xref: /freebsd/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include <cstring>
36 #include <functional>
37 #include "Interp/Context.h"
38 #include "Interp/Frame.h"
39 #include "Interp/State.h"
40 #include "clang/AST/APValue.h"
41 #include "clang/AST/ASTContext.h"
42 #include "clang/AST/ASTDiagnostic.h"
43 #include "clang/AST/ASTLambda.h"
44 #include "clang/AST/CXXInheritance.h"
45 #include "clang/AST/CharUnits.h"
46 #include "clang/AST/CurrentSourceLocExprScope.h"
47 #include "clang/AST/Expr.h"
48 #include "clang/AST/OSLog.h"
49 #include "clang/AST/OptionalDiagnostic.h"
50 #include "clang/AST/RecordLayout.h"
51 #include "clang/AST/StmtVisitor.h"
52 #include "clang/AST/TypeLoc.h"
53 #include "clang/Basic/Builtins.h"
54 #include "clang/Basic/FixedPoint.h"
55 #include "clang/Basic/TargetInfo.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/SmallBitVector.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 
61 #define DEBUG_TYPE "exprconstant"
62 
63 using namespace clang;
64 using llvm::APInt;
65 using llvm::APSInt;
66 using llvm::APFloat;
67 using llvm::Optional;
68 
69 namespace {
70   struct LValue;
71   class CallStackFrame;
72   class EvalInfo;
73 
74   using SourceLocExprScopeGuard =
75       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
76 
77   static QualType getType(APValue::LValueBase B) {
78     if (!B) return QualType();
79     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
80       // FIXME: It's unclear where we're supposed to take the type from, and
81       // this actually matters for arrays of unknown bound. Eg:
82       //
83       // extern int arr[]; void f() { extern int arr[3]; };
84       // constexpr int *p = &arr[1]; // valid?
85       //
86       // For now, we take the array bound from the most recent declaration.
87       for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
88            Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
89         QualType T = Redecl->getType();
90         if (!T->isIncompleteArrayType())
91           return T;
92       }
93       return D->getType();
94     }
95 
96     if (B.is<TypeInfoLValue>())
97       return B.getTypeInfoType();
98 
99     if (B.is<DynamicAllocLValue>())
100       return B.getDynamicAllocType();
101 
102     const Expr *Base = B.get<const Expr*>();
103 
104     // For a materialized temporary, the type of the temporary we materialized
105     // may not be the type of the expression.
106     if (const MaterializeTemporaryExpr *MTE =
107             dyn_cast<MaterializeTemporaryExpr>(Base)) {
108       SmallVector<const Expr *, 2> CommaLHSs;
109       SmallVector<SubobjectAdjustment, 2> Adjustments;
110       const Expr *Temp = MTE->GetTemporaryExpr();
111       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
112                                                                Adjustments);
113       // Keep any cv-qualifiers from the reference if we generated a temporary
114       // for it directly. Otherwise use the type after adjustment.
115       if (!Adjustments.empty())
116         return Inner->getType();
117     }
118 
119     return Base->getType();
120   }
121 
122   /// Get an LValue path entry, which is known to not be an array index, as a
123   /// field declaration.
124   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
125     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
126   }
127   /// Get an LValue path entry, which is known to not be an array index, as a
128   /// base class declaration.
129   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
130     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
131   }
132   /// Determine whether this LValue path entry for a base class names a virtual
133   /// base class.
134   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
135     return E.getAsBaseOrMember().getInt();
136   }
137 
138   /// Given an expression, determine the type used to store the result of
139   /// evaluating that expression.
140   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
141     if (E->isRValue())
142       return E->getType();
143     return Ctx.getLValueReferenceType(E->getType());
144   }
145 
146   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
147   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
148     const FunctionDecl *Callee = CE->getDirectCallee();
149     return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
150   }
151 
152   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
153   /// This will look through a single cast.
154   ///
155   /// Returns null if we couldn't unwrap a function with alloc_size.
156   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
157     if (!E->getType()->isPointerType())
158       return nullptr;
159 
160     E = E->IgnoreParens();
161     // If we're doing a variable assignment from e.g. malloc(N), there will
162     // probably be a cast of some kind. In exotic cases, we might also see a
163     // top-level ExprWithCleanups. Ignore them either way.
164     if (const auto *FE = dyn_cast<FullExpr>(E))
165       E = FE->getSubExpr()->IgnoreParens();
166 
167     if (const auto *Cast = dyn_cast<CastExpr>(E))
168       E = Cast->getSubExpr()->IgnoreParens();
169 
170     if (const auto *CE = dyn_cast<CallExpr>(E))
171       return getAllocSizeAttr(CE) ? CE : nullptr;
172     return nullptr;
173   }
174 
175   /// Determines whether or not the given Base contains a call to a function
176   /// with the alloc_size attribute.
177   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
178     const auto *E = Base.dyn_cast<const Expr *>();
179     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
180   }
181 
182   /// The bound to claim that an array of unknown bound has.
183   /// The value in MostDerivedArraySize is undefined in this case. So, set it
184   /// to an arbitrary value that's likely to loudly break things if it's used.
185   static const uint64_t AssumedSizeForUnsizedArray =
186       std::numeric_limits<uint64_t>::max() / 2;
187 
188   /// Determines if an LValue with the given LValueBase will have an unsized
189   /// array in its designator.
190   /// Find the path length and type of the most-derived subobject in the given
191   /// path, and find the size of the containing array, if any.
192   static unsigned
193   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
194                            ArrayRef<APValue::LValuePathEntry> Path,
195                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
196                            bool &FirstEntryIsUnsizedArray) {
197     // This only accepts LValueBases from APValues, and APValues don't support
198     // arrays that lack size info.
199     assert(!isBaseAnAllocSizeCall(Base) &&
200            "Unsized arrays shouldn't appear here");
201     unsigned MostDerivedLength = 0;
202     Type = getType(Base);
203 
204     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
205       if (Type->isArrayType()) {
206         const ArrayType *AT = Ctx.getAsArrayType(Type);
207         Type = AT->getElementType();
208         MostDerivedLength = I + 1;
209         IsArray = true;
210 
211         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
212           ArraySize = CAT->getSize().getZExtValue();
213         } else {
214           assert(I == 0 && "unexpected unsized array designator");
215           FirstEntryIsUnsizedArray = true;
216           ArraySize = AssumedSizeForUnsizedArray;
217         }
218       } else if (Type->isAnyComplexType()) {
219         const ComplexType *CT = Type->castAs<ComplexType>();
220         Type = CT->getElementType();
221         ArraySize = 2;
222         MostDerivedLength = I + 1;
223         IsArray = true;
224       } else if (const FieldDecl *FD = getAsField(Path[I])) {
225         Type = FD->getType();
226         ArraySize = 0;
227         MostDerivedLength = I + 1;
228         IsArray = false;
229       } else {
230         // Path[I] describes a base class.
231         ArraySize = 0;
232         IsArray = false;
233       }
234     }
235     return MostDerivedLength;
236   }
237 
238   /// A path from a glvalue to a subobject of that glvalue.
239   struct SubobjectDesignator {
240     /// True if the subobject was named in a manner not supported by C++11. Such
241     /// lvalues can still be folded, but they are not core constant expressions
242     /// and we cannot perform lvalue-to-rvalue conversions on them.
243     unsigned Invalid : 1;
244 
245     /// Is this a pointer one past the end of an object?
246     unsigned IsOnePastTheEnd : 1;
247 
248     /// Indicator of whether the first entry is an unsized array.
249     unsigned FirstEntryIsAnUnsizedArray : 1;
250 
251     /// Indicator of whether the most-derived object is an array element.
252     unsigned MostDerivedIsArrayElement : 1;
253 
254     /// The length of the path to the most-derived object of which this is a
255     /// subobject.
256     unsigned MostDerivedPathLength : 28;
257 
258     /// The size of the array of which the most-derived object is an element.
259     /// This will always be 0 if the most-derived object is not an array
260     /// element. 0 is not an indicator of whether or not the most-derived object
261     /// is an array, however, because 0-length arrays are allowed.
262     ///
263     /// If the current array is an unsized array, the value of this is
264     /// undefined.
265     uint64_t MostDerivedArraySize;
266 
267     /// The type of the most derived object referred to by this address.
268     QualType MostDerivedType;
269 
270     typedef APValue::LValuePathEntry PathEntry;
271 
272     /// The entries on the path from the glvalue to the designated subobject.
273     SmallVector<PathEntry, 8> Entries;
274 
275     SubobjectDesignator() : Invalid(true) {}
276 
277     explicit SubobjectDesignator(QualType T)
278         : Invalid(false), IsOnePastTheEnd(false),
279           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
280           MostDerivedPathLength(0), MostDerivedArraySize(0),
281           MostDerivedType(T) {}
282 
283     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
284         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
285           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
286           MostDerivedPathLength(0), MostDerivedArraySize(0) {
287       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
288       if (!Invalid) {
289         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
290         ArrayRef<PathEntry> VEntries = V.getLValuePath();
291         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
292         if (V.getLValueBase()) {
293           bool IsArray = false;
294           bool FirstIsUnsizedArray = false;
295           MostDerivedPathLength = findMostDerivedSubobject(
296               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
297               MostDerivedType, IsArray, FirstIsUnsizedArray);
298           MostDerivedIsArrayElement = IsArray;
299           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
300         }
301       }
302     }
303 
304     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
305                   unsigned NewLength) {
306       if (Invalid)
307         return;
308 
309       assert(Base && "cannot truncate path for null pointer");
310       assert(NewLength <= Entries.size() && "not a truncation");
311 
312       if (NewLength == Entries.size())
313         return;
314       Entries.resize(NewLength);
315 
316       bool IsArray = false;
317       bool FirstIsUnsizedArray = false;
318       MostDerivedPathLength = findMostDerivedSubobject(
319           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
320           FirstIsUnsizedArray);
321       MostDerivedIsArrayElement = IsArray;
322       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
323     }
324 
325     void setInvalid() {
326       Invalid = true;
327       Entries.clear();
328     }
329 
330     /// Determine whether the most derived subobject is an array without a
331     /// known bound.
332     bool isMostDerivedAnUnsizedArray() const {
333       assert(!Invalid && "Calling this makes no sense on invalid designators");
334       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
335     }
336 
337     /// Determine what the most derived array's size is. Results in an assertion
338     /// failure if the most derived array lacks a size.
339     uint64_t getMostDerivedArraySize() const {
340       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
341       return MostDerivedArraySize;
342     }
343 
344     /// Determine whether this is a one-past-the-end pointer.
345     bool isOnePastTheEnd() const {
346       assert(!Invalid);
347       if (IsOnePastTheEnd)
348         return true;
349       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
350           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
351               MostDerivedArraySize)
352         return true;
353       return false;
354     }
355 
356     /// Get the range of valid index adjustments in the form
357     ///   {maximum value that can be subtracted from this pointer,
358     ///    maximum value that can be added to this pointer}
359     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
360       if (Invalid || isMostDerivedAnUnsizedArray())
361         return {0, 0};
362 
363       // [expr.add]p4: For the purposes of these operators, a pointer to a
364       // nonarray object behaves the same as a pointer to the first element of
365       // an array of length one with the type of the object as its element type.
366       bool IsArray = MostDerivedPathLength == Entries.size() &&
367                      MostDerivedIsArrayElement;
368       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
369                                     : (uint64_t)IsOnePastTheEnd;
370       uint64_t ArraySize =
371           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
372       return {ArrayIndex, ArraySize - ArrayIndex};
373     }
374 
375     /// Check that this refers to a valid subobject.
376     bool isValidSubobject() const {
377       if (Invalid)
378         return false;
379       return !isOnePastTheEnd();
380     }
381     /// Check that this refers to a valid subobject, and if not, produce a
382     /// relevant diagnostic and set the designator as invalid.
383     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
384 
385     /// Get the type of the designated object.
386     QualType getType(ASTContext &Ctx) const {
387       assert(!Invalid && "invalid designator has no subobject type");
388       return MostDerivedPathLength == Entries.size()
389                  ? MostDerivedType
390                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
391     }
392 
393     /// Update this designator to refer to the first element within this array.
394     void addArrayUnchecked(const ConstantArrayType *CAT) {
395       Entries.push_back(PathEntry::ArrayIndex(0));
396 
397       // This is a most-derived object.
398       MostDerivedType = CAT->getElementType();
399       MostDerivedIsArrayElement = true;
400       MostDerivedArraySize = CAT->getSize().getZExtValue();
401       MostDerivedPathLength = Entries.size();
402     }
403     /// Update this designator to refer to the first element within the array of
404     /// elements of type T. This is an array of unknown size.
405     void addUnsizedArrayUnchecked(QualType ElemTy) {
406       Entries.push_back(PathEntry::ArrayIndex(0));
407 
408       MostDerivedType = ElemTy;
409       MostDerivedIsArrayElement = true;
410       // The value in MostDerivedArraySize is undefined in this case. So, set it
411       // to an arbitrary value that's likely to loudly break things if it's
412       // used.
413       MostDerivedArraySize = AssumedSizeForUnsizedArray;
414       MostDerivedPathLength = Entries.size();
415     }
416     /// Update this designator to refer to the given base or member of this
417     /// object.
418     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
419       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
420 
421       // If this isn't a base class, it's a new most-derived object.
422       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
423         MostDerivedType = FD->getType();
424         MostDerivedIsArrayElement = false;
425         MostDerivedArraySize = 0;
426         MostDerivedPathLength = Entries.size();
427       }
428     }
429     /// Update this designator to refer to the given complex component.
430     void addComplexUnchecked(QualType EltTy, bool Imag) {
431       Entries.push_back(PathEntry::ArrayIndex(Imag));
432 
433       // This is technically a most-derived object, though in practice this
434       // is unlikely to matter.
435       MostDerivedType = EltTy;
436       MostDerivedIsArrayElement = true;
437       MostDerivedArraySize = 2;
438       MostDerivedPathLength = Entries.size();
439     }
440     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
441     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
442                                    const APSInt &N);
443     /// Add N to the address of this subobject.
444     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
445       if (Invalid || !N) return;
446       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
447       if (isMostDerivedAnUnsizedArray()) {
448         diagnoseUnsizedArrayPointerArithmetic(Info, E);
449         // Can't verify -- trust that the user is doing the right thing (or if
450         // not, trust that the caller will catch the bad behavior).
451         // FIXME: Should we reject if this overflows, at least?
452         Entries.back() = PathEntry::ArrayIndex(
453             Entries.back().getAsArrayIndex() + TruncatedN);
454         return;
455       }
456 
457       // [expr.add]p4: For the purposes of these operators, a pointer to a
458       // nonarray object behaves the same as a pointer to the first element of
459       // an array of length one with the type of the object as its element type.
460       bool IsArray = MostDerivedPathLength == Entries.size() &&
461                      MostDerivedIsArrayElement;
462       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
463                                     : (uint64_t)IsOnePastTheEnd;
464       uint64_t ArraySize =
465           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
466 
467       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
468         // Calculate the actual index in a wide enough type, so we can include
469         // it in the note.
470         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
471         (llvm::APInt&)N += ArrayIndex;
472         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
473         diagnosePointerArithmetic(Info, E, N);
474         setInvalid();
475         return;
476       }
477 
478       ArrayIndex += TruncatedN;
479       assert(ArrayIndex <= ArraySize &&
480              "bounds check succeeded for out-of-bounds index");
481 
482       if (IsArray)
483         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
484       else
485         IsOnePastTheEnd = (ArrayIndex != 0);
486     }
487   };
488 
489   /// A stack frame in the constexpr call stack.
490   class CallStackFrame : public interp::Frame {
491   public:
492     EvalInfo &Info;
493 
494     /// Parent - The caller of this stack frame.
495     CallStackFrame *Caller;
496 
497     /// Callee - The function which was called.
498     const FunctionDecl *Callee;
499 
500     /// This - The binding for the this pointer in this call, if any.
501     const LValue *This;
502 
503     /// Arguments - Parameter bindings for this function call, indexed by
504     /// parameters' function scope indices.
505     APValue *Arguments;
506 
507     /// Source location information about the default argument or default
508     /// initializer expression we're evaluating, if any.
509     CurrentSourceLocExprScope CurSourceLocExprScope;
510 
511     // Note that we intentionally use std::map here so that references to
512     // values are stable.
513     typedef std::pair<const void *, unsigned> MapKeyTy;
514     typedef std::map<MapKeyTy, APValue> MapTy;
515     /// Temporaries - Temporary lvalues materialized within this stack frame.
516     MapTy Temporaries;
517 
518     /// CallLoc - The location of the call expression for this call.
519     SourceLocation CallLoc;
520 
521     /// Index - The call index of this call.
522     unsigned Index;
523 
524     /// The stack of integers for tracking version numbers for temporaries.
525     SmallVector<unsigned, 2> TempVersionStack = {1};
526     unsigned CurTempVersion = TempVersionStack.back();
527 
528     unsigned getTempVersion() const { return TempVersionStack.back(); }
529 
530     void pushTempVersion() {
531       TempVersionStack.push_back(++CurTempVersion);
532     }
533 
534     void popTempVersion() {
535       TempVersionStack.pop_back();
536     }
537 
538     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
539     // on the overall stack usage of deeply-recursing constexpr evaluations.
540     // (We should cache this map rather than recomputing it repeatedly.)
541     // But let's try this and see how it goes; we can look into caching the map
542     // as a later change.
543 
544     /// LambdaCaptureFields - Mapping from captured variables/this to
545     /// corresponding data members in the closure class.
546     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
547     FieldDecl *LambdaThisCaptureField;
548 
549     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
550                    const FunctionDecl *Callee, const LValue *This,
551                    APValue *Arguments);
552     ~CallStackFrame();
553 
554     // Return the temporary for Key whose version number is Version.
555     APValue *getTemporary(const void *Key, unsigned Version) {
556       MapKeyTy KV(Key, Version);
557       auto LB = Temporaries.lower_bound(KV);
558       if (LB != Temporaries.end() && LB->first == KV)
559         return &LB->second;
560       // Pair (Key,Version) wasn't found in the map. Check that no elements
561       // in the map have 'Key' as their key.
562       assert((LB == Temporaries.end() || LB->first.first != Key) &&
563              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
564              "Element with key 'Key' found in map");
565       return nullptr;
566     }
567 
568     // Return the current temporary for Key in the map.
569     APValue *getCurrentTemporary(const void *Key) {
570       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
571       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
572         return &std::prev(UB)->second;
573       return nullptr;
574     }
575 
576     // Return the version number of the current temporary for Key.
577     unsigned getCurrentTemporaryVersion(const void *Key) const {
578       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
579       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
580         return std::prev(UB)->first.second;
581       return 0;
582     }
583 
584     /// Allocate storage for an object of type T in this stack frame.
585     /// Populates LV with a handle to the created object. Key identifies
586     /// the temporary within the stack frame, and must not be reused without
587     /// bumping the temporary version number.
588     template<typename KeyT>
589     APValue &createTemporary(const KeyT *Key, QualType T,
590                              bool IsLifetimeExtended, LValue &LV);
591 
592     void describe(llvm::raw_ostream &OS) override;
593 
594     Frame *getCaller() const override { return Caller; }
595     SourceLocation getCallLocation() const override { return CallLoc; }
596     const FunctionDecl *getCallee() const override { return Callee; }
597 
598     bool isStdFunction() const {
599       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
600         if (DC->isStdNamespace())
601           return true;
602       return false;
603     }
604   };
605 
606   /// Temporarily override 'this'.
607   class ThisOverrideRAII {
608   public:
609     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
610         : Frame(Frame), OldThis(Frame.This) {
611       if (Enable)
612         Frame.This = NewThis;
613     }
614     ~ThisOverrideRAII() {
615       Frame.This = OldThis;
616     }
617   private:
618     CallStackFrame &Frame;
619     const LValue *OldThis;
620   };
621 }
622 
623 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
624                               const LValue &This, QualType ThisType);
625 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
626                               APValue::LValueBase LVBase, APValue &Value,
627                               QualType T);
628 
629 namespace {
630   /// A cleanup, and a flag indicating whether it is lifetime-extended.
631   class Cleanup {
632     llvm::PointerIntPair<APValue*, 1, bool> Value;
633     APValue::LValueBase Base;
634     QualType T;
635 
636   public:
637     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
638             bool IsLifetimeExtended)
639         : Value(Val, IsLifetimeExtended), Base(Base), T(T) {}
640 
641     bool isLifetimeExtended() const { return Value.getInt(); }
642     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
643       if (RunDestructors) {
644         SourceLocation Loc;
645         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
646           Loc = VD->getLocation();
647         else if (const Expr *E = Base.dyn_cast<const Expr*>())
648           Loc = E->getExprLoc();
649         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
650       }
651       *Value.getPointer() = APValue();
652       return true;
653     }
654 
655     bool hasSideEffect() {
656       return T.isDestructedType();
657     }
658   };
659 
660   /// A reference to an object whose construction we are currently evaluating.
661   struct ObjectUnderConstruction {
662     APValue::LValueBase Base;
663     ArrayRef<APValue::LValuePathEntry> Path;
664     friend bool operator==(const ObjectUnderConstruction &LHS,
665                            const ObjectUnderConstruction &RHS) {
666       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
667     }
668     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
669       return llvm::hash_combine(Obj.Base, Obj.Path);
670     }
671   };
672   enum class ConstructionPhase {
673     None,
674     Bases,
675     AfterBases,
676     Destroying,
677     DestroyingBases
678   };
679 }
680 
681 namespace llvm {
682 template<> struct DenseMapInfo<ObjectUnderConstruction> {
683   using Base = DenseMapInfo<APValue::LValueBase>;
684   static ObjectUnderConstruction getEmptyKey() {
685     return {Base::getEmptyKey(), {}}; }
686   static ObjectUnderConstruction getTombstoneKey() {
687     return {Base::getTombstoneKey(), {}};
688   }
689   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
690     return hash_value(Object);
691   }
692   static bool isEqual(const ObjectUnderConstruction &LHS,
693                       const ObjectUnderConstruction &RHS) {
694     return LHS == RHS;
695   }
696 };
697 }
698 
699 namespace {
700   /// A dynamically-allocated heap object.
701   struct DynAlloc {
702     /// The value of this heap-allocated object.
703     APValue Value;
704     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
705     /// or a CallExpr (the latter is for direct calls to operator new inside
706     /// std::allocator<T>::allocate).
707     const Expr *AllocExpr = nullptr;
708 
709     enum Kind {
710       New,
711       ArrayNew,
712       StdAllocator
713     };
714 
715     /// Get the kind of the allocation. This must match between allocation
716     /// and deallocation.
717     Kind getKind() const {
718       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
719         return NE->isArray() ? ArrayNew : New;
720       assert(isa<CallExpr>(AllocExpr));
721       return StdAllocator;
722     }
723   };
724 
725   struct DynAllocOrder {
726     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
727       return L.getIndex() < R.getIndex();
728     }
729   };
730 
731   /// EvalInfo - This is a private struct used by the evaluator to capture
732   /// information about a subexpression as it is folded.  It retains information
733   /// about the AST context, but also maintains information about the folded
734   /// expression.
735   ///
736   /// If an expression could be evaluated, it is still possible it is not a C
737   /// "integer constant expression" or constant expression.  If not, this struct
738   /// captures information about how and why not.
739   ///
740   /// One bit of information passed *into* the request for constant folding
741   /// indicates whether the subexpression is "evaluated" or not according to C
742   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
743   /// evaluate the expression regardless of what the RHS is, but C only allows
744   /// certain things in certain situations.
745   class EvalInfo : public interp::State {
746   public:
747     ASTContext &Ctx;
748 
749     /// EvalStatus - Contains information about the evaluation.
750     Expr::EvalStatus &EvalStatus;
751 
752     /// CurrentCall - The top of the constexpr call stack.
753     CallStackFrame *CurrentCall;
754 
755     /// CallStackDepth - The number of calls in the call stack right now.
756     unsigned CallStackDepth;
757 
758     /// NextCallIndex - The next call index to assign.
759     unsigned NextCallIndex;
760 
761     /// StepsLeft - The remaining number of evaluation steps we're permitted
762     /// to perform. This is essentially a limit for the number of statements
763     /// we will evaluate.
764     unsigned StepsLeft;
765 
766     /// Force the use of the experimental new constant interpreter, bailing out
767     /// with an error if a feature is not supported.
768     bool ForceNewConstInterp;
769 
770     /// Enable the experimental new constant interpreter.
771     bool EnableNewConstInterp;
772 
773     /// BottomFrame - The frame in which evaluation started. This must be
774     /// initialized after CurrentCall and CallStackDepth.
775     CallStackFrame BottomFrame;
776 
777     /// A stack of values whose lifetimes end at the end of some surrounding
778     /// evaluation frame.
779     llvm::SmallVector<Cleanup, 16> CleanupStack;
780 
781     /// EvaluatingDecl - This is the declaration whose initializer is being
782     /// evaluated, if any.
783     APValue::LValueBase EvaluatingDecl;
784 
785     enum class EvaluatingDeclKind {
786       None,
787       /// We're evaluating the construction of EvaluatingDecl.
788       Ctor,
789       /// We're evaluating the destruction of EvaluatingDecl.
790       Dtor,
791     };
792     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
793 
794     /// EvaluatingDeclValue - This is the value being constructed for the
795     /// declaration whose initializer is being evaluated, if any.
796     APValue *EvaluatingDeclValue;
797 
798     /// Set of objects that are currently being constructed.
799     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
800         ObjectsUnderConstruction;
801 
802     /// Current heap allocations, along with the location where each was
803     /// allocated. We use std::map here because we need stable addresses
804     /// for the stored APValues.
805     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
806 
807     /// The number of heap allocations performed so far in this evaluation.
808     unsigned NumHeapAllocs = 0;
809 
810     struct EvaluatingConstructorRAII {
811       EvalInfo &EI;
812       ObjectUnderConstruction Object;
813       bool DidInsert;
814       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
815                                 bool HasBases)
816           : EI(EI), Object(Object) {
817         DidInsert =
818             EI.ObjectsUnderConstruction
819                 .insert({Object, HasBases ? ConstructionPhase::Bases
820                                           : ConstructionPhase::AfterBases})
821                 .second;
822       }
823       void finishedConstructingBases() {
824         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
825       }
826       ~EvaluatingConstructorRAII() {
827         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
828       }
829     };
830 
831     struct EvaluatingDestructorRAII {
832       EvalInfo &EI;
833       ObjectUnderConstruction Object;
834       bool DidInsert;
835       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
836           : EI(EI), Object(Object) {
837         DidInsert = EI.ObjectsUnderConstruction
838                         .insert({Object, ConstructionPhase::Destroying})
839                         .second;
840       }
841       void startedDestroyingBases() {
842         EI.ObjectsUnderConstruction[Object] =
843             ConstructionPhase::DestroyingBases;
844       }
845       ~EvaluatingDestructorRAII() {
846         if (DidInsert)
847           EI.ObjectsUnderConstruction.erase(Object);
848       }
849     };
850 
851     ConstructionPhase
852     isEvaluatingCtorDtor(APValue::LValueBase Base,
853                          ArrayRef<APValue::LValuePathEntry> Path) {
854       return ObjectsUnderConstruction.lookup({Base, Path});
855     }
856 
857     /// If we're currently speculatively evaluating, the outermost call stack
858     /// depth at which we can mutate state, otherwise 0.
859     unsigned SpeculativeEvaluationDepth = 0;
860 
861     /// The current array initialization index, if we're performing array
862     /// initialization.
863     uint64_t ArrayInitIndex = -1;
864 
865     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
866     /// notes attached to it will also be stored, otherwise they will not be.
867     bool HasActiveDiagnostic;
868 
869     /// Have we emitted a diagnostic explaining why we couldn't constant
870     /// fold (not just why it's not strictly a constant expression)?
871     bool HasFoldFailureDiagnostic;
872 
873     /// Whether or not we're in a context where the front end requires a
874     /// constant value.
875     bool InConstantContext;
876 
877     /// Whether we're checking that an expression is a potential constant
878     /// expression. If so, do not fail on constructs that could become constant
879     /// later on (such as a use of an undefined global).
880     bool CheckingPotentialConstantExpression = false;
881 
882     /// Whether we're checking for an expression that has undefined behavior.
883     /// If so, we will produce warnings if we encounter an operation that is
884     /// always undefined.
885     bool CheckingForUndefinedBehavior = false;
886 
887     enum EvaluationMode {
888       /// Evaluate as a constant expression. Stop if we find that the expression
889       /// is not a constant expression.
890       EM_ConstantExpression,
891 
892       /// Evaluate as a constant expression. Stop if we find that the expression
893       /// is not a constant expression. Some expressions can be retried in the
894       /// optimizer if we don't constant fold them here, but in an unevaluated
895       /// context we try to fold them immediately since the optimizer never
896       /// gets a chance to look at it.
897       EM_ConstantExpressionUnevaluated,
898 
899       /// Fold the expression to a constant. Stop if we hit a side-effect that
900       /// we can't model.
901       EM_ConstantFold,
902 
903       /// Evaluate in any way we know how. Don't worry about side-effects that
904       /// can't be modeled.
905       EM_IgnoreSideEffects,
906     } EvalMode;
907 
908     /// Are we checking whether the expression is a potential constant
909     /// expression?
910     bool checkingPotentialConstantExpression() const override  {
911       return CheckingPotentialConstantExpression;
912     }
913 
914     /// Are we checking an expression for overflow?
915     // FIXME: We should check for any kind of undefined or suspicious behavior
916     // in such constructs, not just overflow.
917     bool checkingForUndefinedBehavior() const override {
918       return CheckingForUndefinedBehavior;
919     }
920 
921     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
922         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
923           CallStackDepth(0), NextCallIndex(1),
924           StepsLeft(getLangOpts().ConstexprStepLimit),
925           ForceNewConstInterp(getLangOpts().ForceNewConstInterp),
926           EnableNewConstInterp(ForceNewConstInterp ||
927                                getLangOpts().EnableNewConstInterp),
928           BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
929           EvaluatingDecl((const ValueDecl *)nullptr),
930           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
931           HasFoldFailureDiagnostic(false), InConstantContext(false),
932           EvalMode(Mode) {}
933 
934     ~EvalInfo() {
935       discardCleanups();
936     }
937 
938     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
939                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
940       EvaluatingDecl = Base;
941       IsEvaluatingDecl = EDK;
942       EvaluatingDeclValue = &Value;
943     }
944 
945     bool CheckCallLimit(SourceLocation Loc) {
946       // Don't perform any constexpr calls (other than the call we're checking)
947       // when checking a potential constant expression.
948       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
949         return false;
950       if (NextCallIndex == 0) {
951         // NextCallIndex has wrapped around.
952         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
953         return false;
954       }
955       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
956         return true;
957       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
958         << getLangOpts().ConstexprCallDepth;
959       return false;
960     }
961 
962     std::pair<CallStackFrame *, unsigned>
963     getCallFrameAndDepth(unsigned CallIndex) {
964       assert(CallIndex && "no call index in getCallFrameAndDepth");
965       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
966       // be null in this loop.
967       unsigned Depth = CallStackDepth;
968       CallStackFrame *Frame = CurrentCall;
969       while (Frame->Index > CallIndex) {
970         Frame = Frame->Caller;
971         --Depth;
972       }
973       if (Frame->Index == CallIndex)
974         return {Frame, Depth};
975       return {nullptr, 0};
976     }
977 
978     bool nextStep(const Stmt *S) {
979       if (!StepsLeft) {
980         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
981         return false;
982       }
983       --StepsLeft;
984       return true;
985     }
986 
987     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
988 
989     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
990       Optional<DynAlloc*> Result;
991       auto It = HeapAllocs.find(DA);
992       if (It != HeapAllocs.end())
993         Result = &It->second;
994       return Result;
995     }
996 
997     /// Information about a stack frame for std::allocator<T>::[de]allocate.
998     struct StdAllocatorCaller {
999       unsigned FrameIndex;
1000       QualType ElemType;
1001       explicit operator bool() const { return FrameIndex != 0; };
1002     };
1003 
1004     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1005       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1006            Call = Call->Caller) {
1007         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1008         if (!MD)
1009           continue;
1010         const IdentifierInfo *FnII = MD->getIdentifier();
1011         if (!FnII || !FnII->isStr(FnName))
1012           continue;
1013 
1014         const auto *CTSD =
1015             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1016         if (!CTSD)
1017           continue;
1018 
1019         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1020         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1021         if (CTSD->isInStdNamespace() && ClassII &&
1022             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1023             TAL[0].getKind() == TemplateArgument::Type)
1024           return {Call->Index, TAL[0].getAsType()};
1025       }
1026 
1027       return {};
1028     }
1029 
1030     void performLifetimeExtension() {
1031       // Disable the cleanups for lifetime-extended temporaries.
1032       CleanupStack.erase(
1033           std::remove_if(CleanupStack.begin(), CleanupStack.end(),
1034                          [](Cleanup &C) { return C.isLifetimeExtended(); }),
1035           CleanupStack.end());
1036      }
1037 
1038     /// Throw away any remaining cleanups at the end of evaluation. If any
1039     /// cleanups would have had a side-effect, note that as an unmodeled
1040     /// side-effect and return false. Otherwise, return true.
1041     bool discardCleanups() {
1042       for (Cleanup &C : CleanupStack)
1043         if (C.hasSideEffect())
1044           if (!noteSideEffect())
1045             return false;
1046       return true;
1047     }
1048 
1049   private:
1050     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1051     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1052 
1053     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1054     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1055 
1056     void setFoldFailureDiagnostic(bool Flag) override {
1057       HasFoldFailureDiagnostic = Flag;
1058     }
1059 
1060     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1061 
1062     ASTContext &getCtx() const override { return Ctx; }
1063 
1064     // If we have a prior diagnostic, it will be noting that the expression
1065     // isn't a constant expression. This diagnostic is more important,
1066     // unless we require this evaluation to produce a constant expression.
1067     //
1068     // FIXME: We might want to show both diagnostics to the user in
1069     // EM_ConstantFold mode.
1070     bool hasPriorDiagnostic() override {
1071       if (!EvalStatus.Diag->empty()) {
1072         switch (EvalMode) {
1073         case EM_ConstantFold:
1074         case EM_IgnoreSideEffects:
1075           if (!HasFoldFailureDiagnostic)
1076             break;
1077           // We've already failed to fold something. Keep that diagnostic.
1078           LLVM_FALLTHROUGH;
1079         case EM_ConstantExpression:
1080         case EM_ConstantExpressionUnevaluated:
1081           setActiveDiagnostic(false);
1082           return true;
1083         }
1084       }
1085       return false;
1086     }
1087 
1088     unsigned getCallStackDepth() override { return CallStackDepth; }
1089 
1090   public:
1091     /// Should we continue evaluation after encountering a side-effect that we
1092     /// couldn't model?
1093     bool keepEvaluatingAfterSideEffect() {
1094       switch (EvalMode) {
1095       case EM_IgnoreSideEffects:
1096         return true;
1097 
1098       case EM_ConstantExpression:
1099       case EM_ConstantExpressionUnevaluated:
1100       case EM_ConstantFold:
1101         // By default, assume any side effect might be valid in some other
1102         // evaluation of this expression from a different context.
1103         return checkingPotentialConstantExpression() ||
1104                checkingForUndefinedBehavior();
1105       }
1106       llvm_unreachable("Missed EvalMode case");
1107     }
1108 
1109     /// Note that we have had a side-effect, and determine whether we should
1110     /// keep evaluating.
1111     bool noteSideEffect() {
1112       EvalStatus.HasSideEffects = true;
1113       return keepEvaluatingAfterSideEffect();
1114     }
1115 
1116     /// Should we continue evaluation after encountering undefined behavior?
1117     bool keepEvaluatingAfterUndefinedBehavior() {
1118       switch (EvalMode) {
1119       case EM_IgnoreSideEffects:
1120       case EM_ConstantFold:
1121         return true;
1122 
1123       case EM_ConstantExpression:
1124       case EM_ConstantExpressionUnevaluated:
1125         return checkingForUndefinedBehavior();
1126       }
1127       llvm_unreachable("Missed EvalMode case");
1128     }
1129 
1130     /// Note that we hit something that was technically undefined behavior, but
1131     /// that we can evaluate past it (such as signed overflow or floating-point
1132     /// division by zero.)
1133     bool noteUndefinedBehavior() override {
1134       EvalStatus.HasUndefinedBehavior = true;
1135       return keepEvaluatingAfterUndefinedBehavior();
1136     }
1137 
1138     /// Should we continue evaluation as much as possible after encountering a
1139     /// construct which can't be reduced to a value?
1140     bool keepEvaluatingAfterFailure() const override {
1141       if (!StepsLeft)
1142         return false;
1143 
1144       switch (EvalMode) {
1145       case EM_ConstantExpression:
1146       case EM_ConstantExpressionUnevaluated:
1147       case EM_ConstantFold:
1148       case EM_IgnoreSideEffects:
1149         return checkingPotentialConstantExpression() ||
1150                checkingForUndefinedBehavior();
1151       }
1152       llvm_unreachable("Missed EvalMode case");
1153     }
1154 
1155     /// Notes that we failed to evaluate an expression that other expressions
1156     /// directly depend on, and determine if we should keep evaluating. This
1157     /// should only be called if we actually intend to keep evaluating.
1158     ///
1159     /// Call noteSideEffect() instead if we may be able to ignore the value that
1160     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1161     ///
1162     /// (Foo(), 1)      // use noteSideEffect
1163     /// (Foo() || true) // use noteSideEffect
1164     /// Foo() + 1       // use noteFailure
1165     LLVM_NODISCARD bool noteFailure() {
1166       // Failure when evaluating some expression often means there is some
1167       // subexpression whose evaluation was skipped. Therefore, (because we
1168       // don't track whether we skipped an expression when unwinding after an
1169       // evaluation failure) every evaluation failure that bubbles up from a
1170       // subexpression implies that a side-effect has potentially happened. We
1171       // skip setting the HasSideEffects flag to true until we decide to
1172       // continue evaluating after that point, which happens here.
1173       bool KeepGoing = keepEvaluatingAfterFailure();
1174       EvalStatus.HasSideEffects |= KeepGoing;
1175       return KeepGoing;
1176     }
1177 
1178     class ArrayInitLoopIndex {
1179       EvalInfo &Info;
1180       uint64_t OuterIndex;
1181 
1182     public:
1183       ArrayInitLoopIndex(EvalInfo &Info)
1184           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1185         Info.ArrayInitIndex = 0;
1186       }
1187       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1188 
1189       operator uint64_t&() { return Info.ArrayInitIndex; }
1190     };
1191   };
1192 
1193   /// Object used to treat all foldable expressions as constant expressions.
1194   struct FoldConstant {
1195     EvalInfo &Info;
1196     bool Enabled;
1197     bool HadNoPriorDiags;
1198     EvalInfo::EvaluationMode OldMode;
1199 
1200     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1201       : Info(Info),
1202         Enabled(Enabled),
1203         HadNoPriorDiags(Info.EvalStatus.Diag &&
1204                         Info.EvalStatus.Diag->empty() &&
1205                         !Info.EvalStatus.HasSideEffects),
1206         OldMode(Info.EvalMode) {
1207       if (Enabled)
1208         Info.EvalMode = EvalInfo::EM_ConstantFold;
1209     }
1210     void keepDiagnostics() { Enabled = false; }
1211     ~FoldConstant() {
1212       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1213           !Info.EvalStatus.HasSideEffects)
1214         Info.EvalStatus.Diag->clear();
1215       Info.EvalMode = OldMode;
1216     }
1217   };
1218 
1219   /// RAII object used to set the current evaluation mode to ignore
1220   /// side-effects.
1221   struct IgnoreSideEffectsRAII {
1222     EvalInfo &Info;
1223     EvalInfo::EvaluationMode OldMode;
1224     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1225         : Info(Info), OldMode(Info.EvalMode) {
1226       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1227     }
1228 
1229     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1230   };
1231 
1232   /// RAII object used to optionally suppress diagnostics and side-effects from
1233   /// a speculative evaluation.
1234   class SpeculativeEvaluationRAII {
1235     EvalInfo *Info = nullptr;
1236     Expr::EvalStatus OldStatus;
1237     unsigned OldSpeculativeEvaluationDepth;
1238 
1239     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1240       Info = Other.Info;
1241       OldStatus = Other.OldStatus;
1242       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1243       Other.Info = nullptr;
1244     }
1245 
1246     void maybeRestoreState() {
1247       if (!Info)
1248         return;
1249 
1250       Info->EvalStatus = OldStatus;
1251       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1252     }
1253 
1254   public:
1255     SpeculativeEvaluationRAII() = default;
1256 
1257     SpeculativeEvaluationRAII(
1258         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1259         : Info(&Info), OldStatus(Info.EvalStatus),
1260           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1261       Info.EvalStatus.Diag = NewDiag;
1262       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1263     }
1264 
1265     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1266     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1267       moveFromAndCancel(std::move(Other));
1268     }
1269 
1270     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1271       maybeRestoreState();
1272       moveFromAndCancel(std::move(Other));
1273       return *this;
1274     }
1275 
1276     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1277   };
1278 
1279   /// RAII object wrapping a full-expression or block scope, and handling
1280   /// the ending of the lifetime of temporaries created within it.
1281   template<bool IsFullExpression>
1282   class ScopeRAII {
1283     EvalInfo &Info;
1284     unsigned OldStackSize;
1285   public:
1286     ScopeRAII(EvalInfo &Info)
1287         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1288       // Push a new temporary version. This is needed to distinguish between
1289       // temporaries created in different iterations of a loop.
1290       Info.CurrentCall->pushTempVersion();
1291     }
1292     bool destroy(bool RunDestructors = true) {
1293       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1294       OldStackSize = -1U;
1295       return OK;
1296     }
1297     ~ScopeRAII() {
1298       if (OldStackSize != -1U)
1299         destroy(false);
1300       // Body moved to a static method to encourage the compiler to inline away
1301       // instances of this class.
1302       Info.CurrentCall->popTempVersion();
1303     }
1304   private:
1305     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1306                         unsigned OldStackSize) {
1307       assert(OldStackSize <= Info.CleanupStack.size() &&
1308              "running cleanups out of order?");
1309 
1310       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1311       // for a full-expression scope.
1312       bool Success = true;
1313       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1314         if (!(IsFullExpression &&
1315               Info.CleanupStack[I - 1].isLifetimeExtended())) {
1316           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1317             Success = false;
1318             break;
1319           }
1320         }
1321       }
1322 
1323       // Compact lifetime-extended cleanups.
1324       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1325       if (IsFullExpression)
1326         NewEnd =
1327             std::remove_if(NewEnd, Info.CleanupStack.end(),
1328                            [](Cleanup &C) { return !C.isLifetimeExtended(); });
1329       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1330       return Success;
1331     }
1332   };
1333   typedef ScopeRAII<false> BlockScopeRAII;
1334   typedef ScopeRAII<true> FullExpressionRAII;
1335 }
1336 
1337 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1338                                          CheckSubobjectKind CSK) {
1339   if (Invalid)
1340     return false;
1341   if (isOnePastTheEnd()) {
1342     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1343       << CSK;
1344     setInvalid();
1345     return false;
1346   }
1347   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1348   // must actually be at least one array element; even a VLA cannot have a
1349   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1350   return true;
1351 }
1352 
1353 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1354                                                                 const Expr *E) {
1355   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1356   // Do not set the designator as invalid: we can represent this situation,
1357   // and correct handling of __builtin_object_size requires us to do so.
1358 }
1359 
1360 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1361                                                     const Expr *E,
1362                                                     const APSInt &N) {
1363   // If we're complaining, we must be able to statically determine the size of
1364   // the most derived array.
1365   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1366     Info.CCEDiag(E, diag::note_constexpr_array_index)
1367       << N << /*array*/ 0
1368       << static_cast<unsigned>(getMostDerivedArraySize());
1369   else
1370     Info.CCEDiag(E, diag::note_constexpr_array_index)
1371       << N << /*non-array*/ 1;
1372   setInvalid();
1373 }
1374 
1375 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1376                                const FunctionDecl *Callee, const LValue *This,
1377                                APValue *Arguments)
1378     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1379       Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1380   Info.CurrentCall = this;
1381   ++Info.CallStackDepth;
1382 }
1383 
1384 CallStackFrame::~CallStackFrame() {
1385   assert(Info.CurrentCall == this && "calls retired out of order");
1386   --Info.CallStackDepth;
1387   Info.CurrentCall = Caller;
1388 }
1389 
1390 static bool isRead(AccessKinds AK) {
1391   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1392 }
1393 
1394 static bool isModification(AccessKinds AK) {
1395   switch (AK) {
1396   case AK_Read:
1397   case AK_ReadObjectRepresentation:
1398   case AK_MemberCall:
1399   case AK_DynamicCast:
1400   case AK_TypeId:
1401     return false;
1402   case AK_Assign:
1403   case AK_Increment:
1404   case AK_Decrement:
1405   case AK_Construct:
1406   case AK_Destroy:
1407     return true;
1408   }
1409   llvm_unreachable("unknown access kind");
1410 }
1411 
1412 static bool isAnyAccess(AccessKinds AK) {
1413   return isRead(AK) || isModification(AK);
1414 }
1415 
1416 /// Is this an access per the C++ definition?
1417 static bool isFormalAccess(AccessKinds AK) {
1418   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1419 }
1420 
1421 namespace {
1422   struct ComplexValue {
1423   private:
1424     bool IsInt;
1425 
1426   public:
1427     APSInt IntReal, IntImag;
1428     APFloat FloatReal, FloatImag;
1429 
1430     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1431 
1432     void makeComplexFloat() { IsInt = false; }
1433     bool isComplexFloat() const { return !IsInt; }
1434     APFloat &getComplexFloatReal() { return FloatReal; }
1435     APFloat &getComplexFloatImag() { return FloatImag; }
1436 
1437     void makeComplexInt() { IsInt = true; }
1438     bool isComplexInt() const { return IsInt; }
1439     APSInt &getComplexIntReal() { return IntReal; }
1440     APSInt &getComplexIntImag() { return IntImag; }
1441 
1442     void moveInto(APValue &v) const {
1443       if (isComplexFloat())
1444         v = APValue(FloatReal, FloatImag);
1445       else
1446         v = APValue(IntReal, IntImag);
1447     }
1448     void setFrom(const APValue &v) {
1449       assert(v.isComplexFloat() || v.isComplexInt());
1450       if (v.isComplexFloat()) {
1451         makeComplexFloat();
1452         FloatReal = v.getComplexFloatReal();
1453         FloatImag = v.getComplexFloatImag();
1454       } else {
1455         makeComplexInt();
1456         IntReal = v.getComplexIntReal();
1457         IntImag = v.getComplexIntImag();
1458       }
1459     }
1460   };
1461 
1462   struct LValue {
1463     APValue::LValueBase Base;
1464     CharUnits Offset;
1465     SubobjectDesignator Designator;
1466     bool IsNullPtr : 1;
1467     bool InvalidBase : 1;
1468 
1469     const APValue::LValueBase getLValueBase() const { return Base; }
1470     CharUnits &getLValueOffset() { return Offset; }
1471     const CharUnits &getLValueOffset() const { return Offset; }
1472     SubobjectDesignator &getLValueDesignator() { return Designator; }
1473     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1474     bool isNullPointer() const { return IsNullPtr;}
1475 
1476     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1477     unsigned getLValueVersion() const { return Base.getVersion(); }
1478 
1479     void moveInto(APValue &V) const {
1480       if (Designator.Invalid)
1481         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1482       else {
1483         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1484         V = APValue(Base, Offset, Designator.Entries,
1485                     Designator.IsOnePastTheEnd, IsNullPtr);
1486       }
1487     }
1488     void setFrom(ASTContext &Ctx, const APValue &V) {
1489       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1490       Base = V.getLValueBase();
1491       Offset = V.getLValueOffset();
1492       InvalidBase = false;
1493       Designator = SubobjectDesignator(Ctx, V);
1494       IsNullPtr = V.isNullPointer();
1495     }
1496 
1497     void set(APValue::LValueBase B, bool BInvalid = false) {
1498 #ifndef NDEBUG
1499       // We only allow a few types of invalid bases. Enforce that here.
1500       if (BInvalid) {
1501         const auto *E = B.get<const Expr *>();
1502         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1503                "Unexpected type of invalid base");
1504       }
1505 #endif
1506 
1507       Base = B;
1508       Offset = CharUnits::fromQuantity(0);
1509       InvalidBase = BInvalid;
1510       Designator = SubobjectDesignator(getType(B));
1511       IsNullPtr = false;
1512     }
1513 
1514     void setNull(ASTContext &Ctx, QualType PointerTy) {
1515       Base = (Expr *)nullptr;
1516       Offset =
1517           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1518       InvalidBase = false;
1519       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1520       IsNullPtr = true;
1521     }
1522 
1523     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1524       set(B, true);
1525     }
1526 
1527     std::string toString(ASTContext &Ctx, QualType T) const {
1528       APValue Printable;
1529       moveInto(Printable);
1530       return Printable.getAsString(Ctx, T);
1531     }
1532 
1533   private:
1534     // Check that this LValue is not based on a null pointer. If it is, produce
1535     // a diagnostic and mark the designator as invalid.
1536     template <typename GenDiagType>
1537     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1538       if (Designator.Invalid)
1539         return false;
1540       if (IsNullPtr) {
1541         GenDiag();
1542         Designator.setInvalid();
1543         return false;
1544       }
1545       return true;
1546     }
1547 
1548   public:
1549     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1550                           CheckSubobjectKind CSK) {
1551       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1552         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1553       });
1554     }
1555 
1556     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1557                                        AccessKinds AK) {
1558       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1559         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1560       });
1561     }
1562 
1563     // Check this LValue refers to an object. If not, set the designator to be
1564     // invalid and emit a diagnostic.
1565     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1566       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1567              Designator.checkSubobject(Info, E, CSK);
1568     }
1569 
1570     void addDecl(EvalInfo &Info, const Expr *E,
1571                  const Decl *D, bool Virtual = false) {
1572       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1573         Designator.addDeclUnchecked(D, Virtual);
1574     }
1575     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1576       if (!Designator.Entries.empty()) {
1577         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1578         Designator.setInvalid();
1579         return;
1580       }
1581       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1582         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1583         Designator.FirstEntryIsAnUnsizedArray = true;
1584         Designator.addUnsizedArrayUnchecked(ElemTy);
1585       }
1586     }
1587     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1588       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1589         Designator.addArrayUnchecked(CAT);
1590     }
1591     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1592       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1593         Designator.addComplexUnchecked(EltTy, Imag);
1594     }
1595     void clearIsNullPointer() {
1596       IsNullPtr = false;
1597     }
1598     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1599                               const APSInt &Index, CharUnits ElementSize) {
1600       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1601       // but we're not required to diagnose it and it's valid in C++.)
1602       if (!Index)
1603         return;
1604 
1605       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1606       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1607       // offsets.
1608       uint64_t Offset64 = Offset.getQuantity();
1609       uint64_t ElemSize64 = ElementSize.getQuantity();
1610       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1611       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1612 
1613       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1614         Designator.adjustIndex(Info, E, Index);
1615       clearIsNullPointer();
1616     }
1617     void adjustOffset(CharUnits N) {
1618       Offset += N;
1619       if (N.getQuantity())
1620         clearIsNullPointer();
1621     }
1622   };
1623 
1624   struct MemberPtr {
1625     MemberPtr() {}
1626     explicit MemberPtr(const ValueDecl *Decl) :
1627       DeclAndIsDerivedMember(Decl, false), Path() {}
1628 
1629     /// The member or (direct or indirect) field referred to by this member
1630     /// pointer, or 0 if this is a null member pointer.
1631     const ValueDecl *getDecl() const {
1632       return DeclAndIsDerivedMember.getPointer();
1633     }
1634     /// Is this actually a member of some type derived from the relevant class?
1635     bool isDerivedMember() const {
1636       return DeclAndIsDerivedMember.getInt();
1637     }
1638     /// Get the class which the declaration actually lives in.
1639     const CXXRecordDecl *getContainingRecord() const {
1640       return cast<CXXRecordDecl>(
1641           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1642     }
1643 
1644     void moveInto(APValue &V) const {
1645       V = APValue(getDecl(), isDerivedMember(), Path);
1646     }
1647     void setFrom(const APValue &V) {
1648       assert(V.isMemberPointer());
1649       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1650       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1651       Path.clear();
1652       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1653       Path.insert(Path.end(), P.begin(), P.end());
1654     }
1655 
1656     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1657     /// whether the member is a member of some class derived from the class type
1658     /// of the member pointer.
1659     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1660     /// Path - The path of base/derived classes from the member declaration's
1661     /// class (exclusive) to the class type of the member pointer (inclusive).
1662     SmallVector<const CXXRecordDecl*, 4> Path;
1663 
1664     /// Perform a cast towards the class of the Decl (either up or down the
1665     /// hierarchy).
1666     bool castBack(const CXXRecordDecl *Class) {
1667       assert(!Path.empty());
1668       const CXXRecordDecl *Expected;
1669       if (Path.size() >= 2)
1670         Expected = Path[Path.size() - 2];
1671       else
1672         Expected = getContainingRecord();
1673       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1674         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1675         // if B does not contain the original member and is not a base or
1676         // derived class of the class containing the original member, the result
1677         // of the cast is undefined.
1678         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1679         // (D::*). We consider that to be a language defect.
1680         return false;
1681       }
1682       Path.pop_back();
1683       return true;
1684     }
1685     /// Perform a base-to-derived member pointer cast.
1686     bool castToDerived(const CXXRecordDecl *Derived) {
1687       if (!getDecl())
1688         return true;
1689       if (!isDerivedMember()) {
1690         Path.push_back(Derived);
1691         return true;
1692       }
1693       if (!castBack(Derived))
1694         return false;
1695       if (Path.empty())
1696         DeclAndIsDerivedMember.setInt(false);
1697       return true;
1698     }
1699     /// Perform a derived-to-base member pointer cast.
1700     bool castToBase(const CXXRecordDecl *Base) {
1701       if (!getDecl())
1702         return true;
1703       if (Path.empty())
1704         DeclAndIsDerivedMember.setInt(true);
1705       if (isDerivedMember()) {
1706         Path.push_back(Base);
1707         return true;
1708       }
1709       return castBack(Base);
1710     }
1711   };
1712 
1713   /// Compare two member pointers, which are assumed to be of the same type.
1714   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1715     if (!LHS.getDecl() || !RHS.getDecl())
1716       return !LHS.getDecl() && !RHS.getDecl();
1717     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1718       return false;
1719     return LHS.Path == RHS.Path;
1720   }
1721 }
1722 
1723 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1724 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1725                             const LValue &This, const Expr *E,
1726                             bool AllowNonLiteralTypes = false);
1727 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1728                            bool InvalidBaseOK = false);
1729 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1730                             bool InvalidBaseOK = false);
1731 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1732                                   EvalInfo &Info);
1733 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1734 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1735 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1736                                     EvalInfo &Info);
1737 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1738 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1739 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1740                            EvalInfo &Info);
1741 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1742 
1743 /// Evaluate an integer or fixed point expression into an APResult.
1744 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1745                                         EvalInfo &Info);
1746 
1747 /// Evaluate only a fixed point expression into an APResult.
1748 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1749                                EvalInfo &Info);
1750 
1751 //===----------------------------------------------------------------------===//
1752 // Misc utilities
1753 //===----------------------------------------------------------------------===//
1754 
1755 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1756 /// preserving its value (by extending by up to one bit as needed).
1757 static void negateAsSigned(APSInt &Int) {
1758   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1759     Int = Int.extend(Int.getBitWidth() + 1);
1760     Int.setIsSigned(true);
1761   }
1762   Int = -Int;
1763 }
1764 
1765 template<typename KeyT>
1766 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1767                                          bool IsLifetimeExtended, LValue &LV) {
1768   unsigned Version = getTempVersion();
1769   APValue::LValueBase Base(Key, Index, Version);
1770   LV.set(Base);
1771   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1772   assert(Result.isAbsent() && "temporary created multiple times");
1773 
1774   // If we're creating a temporary immediately in the operand of a speculative
1775   // evaluation, don't register a cleanup to be run outside the speculative
1776   // evaluation context, since we won't actually be able to initialize this
1777   // object.
1778   if (Index <= Info.SpeculativeEvaluationDepth) {
1779     if (T.isDestructedType())
1780       Info.noteSideEffect();
1781   } else {
1782     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended));
1783   }
1784   return Result;
1785 }
1786 
1787 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1788   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1789     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1790     return nullptr;
1791   }
1792 
1793   DynamicAllocLValue DA(NumHeapAllocs++);
1794   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1795   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1796                                    std::forward_as_tuple(DA), std::tuple<>());
1797   assert(Result.second && "reused a heap alloc index?");
1798   Result.first->second.AllocExpr = E;
1799   return &Result.first->second.Value;
1800 }
1801 
1802 /// Produce a string describing the given constexpr call.
1803 void CallStackFrame::describe(raw_ostream &Out) {
1804   unsigned ArgIndex = 0;
1805   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1806                       !isa<CXXConstructorDecl>(Callee) &&
1807                       cast<CXXMethodDecl>(Callee)->isInstance();
1808 
1809   if (!IsMemberCall)
1810     Out << *Callee << '(';
1811 
1812   if (This && IsMemberCall) {
1813     APValue Val;
1814     This->moveInto(Val);
1815     Val.printPretty(Out, Info.Ctx,
1816                     This->Designator.MostDerivedType);
1817     // FIXME: Add parens around Val if needed.
1818     Out << "->" << *Callee << '(';
1819     IsMemberCall = false;
1820   }
1821 
1822   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1823        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1824     if (ArgIndex > (unsigned)IsMemberCall)
1825       Out << ", ";
1826 
1827     const ParmVarDecl *Param = *I;
1828     const APValue &Arg = Arguments[ArgIndex];
1829     Arg.printPretty(Out, Info.Ctx, Param->getType());
1830 
1831     if (ArgIndex == 0 && IsMemberCall)
1832       Out << "->" << *Callee << '(';
1833   }
1834 
1835   Out << ')';
1836 }
1837 
1838 /// Evaluate an expression to see if it had side-effects, and discard its
1839 /// result.
1840 /// \return \c true if the caller should keep evaluating.
1841 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1842   APValue Scratch;
1843   if (!Evaluate(Scratch, Info, E))
1844     // We don't need the value, but we might have skipped a side effect here.
1845     return Info.noteSideEffect();
1846   return true;
1847 }
1848 
1849 /// Should this call expression be treated as a string literal?
1850 static bool IsStringLiteralCall(const CallExpr *E) {
1851   unsigned Builtin = E->getBuiltinCallee();
1852   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1853           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1854 }
1855 
1856 static bool IsGlobalLValue(APValue::LValueBase B) {
1857   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1858   // constant expression of pointer type that evaluates to...
1859 
1860   // ... a null pointer value, or a prvalue core constant expression of type
1861   // std::nullptr_t.
1862   if (!B) return true;
1863 
1864   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1865     // ... the address of an object with static storage duration,
1866     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1867       return VD->hasGlobalStorage();
1868     // ... the address of a function,
1869     return isa<FunctionDecl>(D);
1870   }
1871 
1872   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1873     return true;
1874 
1875   const Expr *E = B.get<const Expr*>();
1876   switch (E->getStmtClass()) {
1877   default:
1878     return false;
1879   case Expr::CompoundLiteralExprClass: {
1880     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1881     return CLE->isFileScope() && CLE->isLValue();
1882   }
1883   case Expr::MaterializeTemporaryExprClass:
1884     // A materialized temporary might have been lifetime-extended to static
1885     // storage duration.
1886     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1887   // A string literal has static storage duration.
1888   case Expr::StringLiteralClass:
1889   case Expr::PredefinedExprClass:
1890   case Expr::ObjCStringLiteralClass:
1891   case Expr::ObjCEncodeExprClass:
1892   case Expr::CXXUuidofExprClass:
1893     return true;
1894   case Expr::ObjCBoxedExprClass:
1895     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
1896   case Expr::CallExprClass:
1897     return IsStringLiteralCall(cast<CallExpr>(E));
1898   // For GCC compatibility, &&label has static storage duration.
1899   case Expr::AddrLabelExprClass:
1900     return true;
1901   // A Block literal expression may be used as the initialization value for
1902   // Block variables at global or local static scope.
1903   case Expr::BlockExprClass:
1904     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1905   case Expr::ImplicitValueInitExprClass:
1906     // FIXME:
1907     // We can never form an lvalue with an implicit value initialization as its
1908     // base through expression evaluation, so these only appear in one case: the
1909     // implicit variable declaration we invent when checking whether a constexpr
1910     // constructor can produce a constant expression. We must assume that such
1911     // an expression might be a global lvalue.
1912     return true;
1913   }
1914 }
1915 
1916 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1917   return LVal.Base.dyn_cast<const ValueDecl*>();
1918 }
1919 
1920 static bool IsLiteralLValue(const LValue &Value) {
1921   if (Value.getLValueCallIndex())
1922     return false;
1923   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1924   return E && !isa<MaterializeTemporaryExpr>(E);
1925 }
1926 
1927 static bool IsWeakLValue(const LValue &Value) {
1928   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1929   return Decl && Decl->isWeak();
1930 }
1931 
1932 static bool isZeroSized(const LValue &Value) {
1933   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1934   if (Decl && isa<VarDecl>(Decl)) {
1935     QualType Ty = Decl->getType();
1936     if (Ty->isArrayType())
1937       return Ty->isIncompleteType() ||
1938              Decl->getASTContext().getTypeSize(Ty) == 0;
1939   }
1940   return false;
1941 }
1942 
1943 static bool HasSameBase(const LValue &A, const LValue &B) {
1944   if (!A.getLValueBase())
1945     return !B.getLValueBase();
1946   if (!B.getLValueBase())
1947     return false;
1948 
1949   if (A.getLValueBase().getOpaqueValue() !=
1950       B.getLValueBase().getOpaqueValue()) {
1951     const Decl *ADecl = GetLValueBaseDecl(A);
1952     if (!ADecl)
1953       return false;
1954     const Decl *BDecl = GetLValueBaseDecl(B);
1955     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
1956       return false;
1957   }
1958 
1959   return IsGlobalLValue(A.getLValueBase()) ||
1960          (A.getLValueCallIndex() == B.getLValueCallIndex() &&
1961           A.getLValueVersion() == B.getLValueVersion());
1962 }
1963 
1964 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1965   assert(Base && "no location for a null lvalue");
1966   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1967   if (VD)
1968     Info.Note(VD->getLocation(), diag::note_declared_at);
1969   else if (const Expr *E = Base.dyn_cast<const Expr*>())
1970     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
1971   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
1972     // FIXME: Produce a note for dangling pointers too.
1973     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
1974       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
1975                 diag::note_constexpr_dynamic_alloc_here);
1976   }
1977   // We have no information to show for a typeid(T) object.
1978 }
1979 
1980 enum class CheckEvaluationResultKind {
1981   ConstantExpression,
1982   FullyInitialized,
1983 };
1984 
1985 /// Materialized temporaries that we've already checked to determine if they're
1986 /// initializsed by a constant expression.
1987 using CheckedTemporaries =
1988     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
1989 
1990 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
1991                                   EvalInfo &Info, SourceLocation DiagLoc,
1992                                   QualType Type, const APValue &Value,
1993                                   Expr::ConstExprUsage Usage,
1994                                   SourceLocation SubobjectLoc,
1995                                   CheckedTemporaries &CheckedTemps);
1996 
1997 /// Check that this reference or pointer core constant expression is a valid
1998 /// value for an address or reference constant expression. Return true if we
1999 /// can fold this expression, whether or not it's a constant expression.
2000 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2001                                           QualType Type, const LValue &LVal,
2002                                           Expr::ConstExprUsage Usage,
2003                                           CheckedTemporaries &CheckedTemps) {
2004   bool IsReferenceType = Type->isReferenceType();
2005 
2006   APValue::LValueBase Base = LVal.getLValueBase();
2007   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2008 
2009   // Check that the object is a global. Note that the fake 'this' object we
2010   // manufacture when checking potential constant expressions is conservatively
2011   // assumed to be global here.
2012   if (!IsGlobalLValue(Base)) {
2013     if (Info.getLangOpts().CPlusPlus11) {
2014       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2015       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2016         << IsReferenceType << !Designator.Entries.empty()
2017         << !!VD << VD;
2018       NoteLValueLocation(Info, Base);
2019     } else {
2020       Info.FFDiag(Loc);
2021     }
2022     // Don't allow references to temporaries to escape.
2023     return false;
2024   }
2025   assert((Info.checkingPotentialConstantExpression() ||
2026           LVal.getLValueCallIndex() == 0) &&
2027          "have call index for global lvalue");
2028 
2029   if (Base.is<DynamicAllocLValue>()) {
2030     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2031         << IsReferenceType << !Designator.Entries.empty();
2032     NoteLValueLocation(Info, Base);
2033     return false;
2034   }
2035 
2036   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
2037     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
2038       // Check if this is a thread-local variable.
2039       if (Var->getTLSKind())
2040         // FIXME: Diagnostic!
2041         return false;
2042 
2043       // A dllimport variable never acts like a constant.
2044       if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>())
2045         // FIXME: Diagnostic!
2046         return false;
2047     }
2048     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
2049       // __declspec(dllimport) must be handled very carefully:
2050       // We must never initialize an expression with the thunk in C++.
2051       // Doing otherwise would allow the same id-expression to yield
2052       // different addresses for the same function in different translation
2053       // units.  However, this means that we must dynamically initialize the
2054       // expression with the contents of the import address table at runtime.
2055       //
2056       // The C language has no notion of ODR; furthermore, it has no notion of
2057       // dynamic initialization.  This means that we are permitted to
2058       // perform initialization with the address of the thunk.
2059       if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen &&
2060           FD->hasAttr<DLLImportAttr>())
2061         // FIXME: Diagnostic!
2062         return false;
2063     }
2064   } else if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(
2065                  Base.dyn_cast<const Expr *>())) {
2066     if (CheckedTemps.insert(MTE).second) {
2067       QualType TempType = getType(Base);
2068       if (TempType.isDestructedType()) {
2069         Info.FFDiag(MTE->getExprLoc(),
2070                     diag::note_constexpr_unsupported_tempoarary_nontrivial_dtor)
2071             << TempType;
2072         return false;
2073       }
2074 
2075       APValue *V = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2076       assert(V && "evasluation result refers to uninitialised temporary");
2077       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2078                                  Info, MTE->getExprLoc(), TempType, *V,
2079                                  Usage, SourceLocation(), CheckedTemps))
2080         return false;
2081     }
2082   }
2083 
2084   // Allow address constant expressions to be past-the-end pointers. This is
2085   // an extension: the standard requires them to point to an object.
2086   if (!IsReferenceType)
2087     return true;
2088 
2089   // A reference constant expression must refer to an object.
2090   if (!Base) {
2091     // FIXME: diagnostic
2092     Info.CCEDiag(Loc);
2093     return true;
2094   }
2095 
2096   // Does this refer one past the end of some object?
2097   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2098     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2099     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2100       << !Designator.Entries.empty() << !!VD << VD;
2101     NoteLValueLocation(Info, Base);
2102   }
2103 
2104   return true;
2105 }
2106 
2107 /// Member pointers are constant expressions unless they point to a
2108 /// non-virtual dllimport member function.
2109 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2110                                                  SourceLocation Loc,
2111                                                  QualType Type,
2112                                                  const APValue &Value,
2113                                                  Expr::ConstExprUsage Usage) {
2114   const ValueDecl *Member = Value.getMemberPointerDecl();
2115   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2116   if (!FD)
2117     return true;
2118   return Usage == Expr::EvaluateForMangling || FD->isVirtual() ||
2119          !FD->hasAttr<DLLImportAttr>();
2120 }
2121 
2122 /// Check that this core constant expression is of literal type, and if not,
2123 /// produce an appropriate diagnostic.
2124 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2125                              const LValue *This = nullptr) {
2126   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
2127     return true;
2128 
2129   // C++1y: A constant initializer for an object o [...] may also invoke
2130   // constexpr constructors for o and its subobjects even if those objects
2131   // are of non-literal class types.
2132   //
2133   // C++11 missed this detail for aggregates, so classes like this:
2134   //   struct foo_t { union { int i; volatile int j; } u; };
2135   // are not (obviously) initializable like so:
2136   //   __attribute__((__require_constant_initialization__))
2137   //   static const foo_t x = {{0}};
2138   // because "i" is a subobject with non-literal initialization (due to the
2139   // volatile member of the union). See:
2140   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2141   // Therefore, we use the C++1y behavior.
2142   if (This && Info.EvaluatingDecl == This->getLValueBase())
2143     return true;
2144 
2145   // Prvalue constant expressions must be of literal types.
2146   if (Info.getLangOpts().CPlusPlus11)
2147     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2148       << E->getType();
2149   else
2150     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2151   return false;
2152 }
2153 
2154 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2155                                   EvalInfo &Info, SourceLocation DiagLoc,
2156                                   QualType Type, const APValue &Value,
2157                                   Expr::ConstExprUsage Usage,
2158                                   SourceLocation SubobjectLoc,
2159                                   CheckedTemporaries &CheckedTemps) {
2160   if (!Value.hasValue()) {
2161     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2162       << true << Type;
2163     if (SubobjectLoc.isValid())
2164       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2165     return false;
2166   }
2167 
2168   // We allow _Atomic(T) to be initialized from anything that T can be
2169   // initialized from.
2170   if (const AtomicType *AT = Type->getAs<AtomicType>())
2171     Type = AT->getValueType();
2172 
2173   // Core issue 1454: For a literal constant expression of array or class type,
2174   // each subobject of its value shall have been initialized by a constant
2175   // expression.
2176   if (Value.isArray()) {
2177     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2178     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2179       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2180                                  Value.getArrayInitializedElt(I), Usage,
2181                                  SubobjectLoc, CheckedTemps))
2182         return false;
2183     }
2184     if (!Value.hasArrayFiller())
2185       return true;
2186     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2187                                  Value.getArrayFiller(), Usage, SubobjectLoc,
2188                                  CheckedTemps);
2189   }
2190   if (Value.isUnion() && Value.getUnionField()) {
2191     return CheckEvaluationResult(
2192         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2193         Value.getUnionValue(), Usage, Value.getUnionField()->getLocation(),
2194         CheckedTemps);
2195   }
2196   if (Value.isStruct()) {
2197     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2198     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2199       unsigned BaseIndex = 0;
2200       for (const CXXBaseSpecifier &BS : CD->bases()) {
2201         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2202                                    Value.getStructBase(BaseIndex), Usage,
2203                                    BS.getBeginLoc(), CheckedTemps))
2204           return false;
2205         ++BaseIndex;
2206       }
2207     }
2208     for (const auto *I : RD->fields()) {
2209       if (I->isUnnamedBitfield())
2210         continue;
2211 
2212       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2213                                  Value.getStructField(I->getFieldIndex()),
2214                                  Usage, I->getLocation(), CheckedTemps))
2215         return false;
2216     }
2217   }
2218 
2219   if (Value.isLValue() &&
2220       CERK == CheckEvaluationResultKind::ConstantExpression) {
2221     LValue LVal;
2222     LVal.setFrom(Info.Ctx, Value);
2223     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage,
2224                                          CheckedTemps);
2225   }
2226 
2227   if (Value.isMemberPointer() &&
2228       CERK == CheckEvaluationResultKind::ConstantExpression)
2229     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage);
2230 
2231   // Everything else is fine.
2232   return true;
2233 }
2234 
2235 /// Check that this core constant expression value is a valid value for a
2236 /// constant expression. If not, report an appropriate diagnostic. Does not
2237 /// check that the expression is of literal type.
2238 static bool
2239 CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
2240                         const APValue &Value,
2241                         Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) {
2242   CheckedTemporaries CheckedTemps;
2243   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2244                                Info, DiagLoc, Type, Value, Usage,
2245                                SourceLocation(), CheckedTemps);
2246 }
2247 
2248 /// Check that this evaluated value is fully-initialized and can be loaded by
2249 /// an lvalue-to-rvalue conversion.
2250 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2251                                   QualType Type, const APValue &Value) {
2252   CheckedTemporaries CheckedTemps;
2253   return CheckEvaluationResult(
2254       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2255       Expr::EvaluateForCodeGen, SourceLocation(), CheckedTemps);
2256 }
2257 
2258 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2259 /// "the allocated storage is deallocated within the evaluation".
2260 static bool CheckMemoryLeaks(EvalInfo &Info) {
2261   if (!Info.HeapAllocs.empty()) {
2262     // We can still fold to a constant despite a compile-time memory leak,
2263     // so long as the heap allocation isn't referenced in the result (we check
2264     // that in CheckConstantExpression).
2265     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2266                  diag::note_constexpr_memory_leak)
2267         << unsigned(Info.HeapAllocs.size() - 1);
2268   }
2269   return true;
2270 }
2271 
2272 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2273   // A null base expression indicates a null pointer.  These are always
2274   // evaluatable, and they are false unless the offset is zero.
2275   if (!Value.getLValueBase()) {
2276     Result = !Value.getLValueOffset().isZero();
2277     return true;
2278   }
2279 
2280   // We have a non-null base.  These are generally known to be true, but if it's
2281   // a weak declaration it can be null at runtime.
2282   Result = true;
2283   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2284   return !Decl || !Decl->isWeak();
2285 }
2286 
2287 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2288   switch (Val.getKind()) {
2289   case APValue::None:
2290   case APValue::Indeterminate:
2291     return false;
2292   case APValue::Int:
2293     Result = Val.getInt().getBoolValue();
2294     return true;
2295   case APValue::FixedPoint:
2296     Result = Val.getFixedPoint().getBoolValue();
2297     return true;
2298   case APValue::Float:
2299     Result = !Val.getFloat().isZero();
2300     return true;
2301   case APValue::ComplexInt:
2302     Result = Val.getComplexIntReal().getBoolValue() ||
2303              Val.getComplexIntImag().getBoolValue();
2304     return true;
2305   case APValue::ComplexFloat:
2306     Result = !Val.getComplexFloatReal().isZero() ||
2307              !Val.getComplexFloatImag().isZero();
2308     return true;
2309   case APValue::LValue:
2310     return EvalPointerValueAsBool(Val, Result);
2311   case APValue::MemberPointer:
2312     Result = Val.getMemberPointerDecl();
2313     return true;
2314   case APValue::Vector:
2315   case APValue::Array:
2316   case APValue::Struct:
2317   case APValue::Union:
2318   case APValue::AddrLabelDiff:
2319     return false;
2320   }
2321 
2322   llvm_unreachable("unknown APValue kind");
2323 }
2324 
2325 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2326                                        EvalInfo &Info) {
2327   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
2328   APValue Val;
2329   if (!Evaluate(Val, Info, E))
2330     return false;
2331   return HandleConversionToBool(Val, Result);
2332 }
2333 
2334 template<typename T>
2335 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2336                            const T &SrcValue, QualType DestType) {
2337   Info.CCEDiag(E, diag::note_constexpr_overflow)
2338     << SrcValue << DestType;
2339   return Info.noteUndefinedBehavior();
2340 }
2341 
2342 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2343                                  QualType SrcType, const APFloat &Value,
2344                                  QualType DestType, APSInt &Result) {
2345   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2346   // Determine whether we are converting to unsigned or signed.
2347   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2348 
2349   Result = APSInt(DestWidth, !DestSigned);
2350   bool ignored;
2351   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2352       & APFloat::opInvalidOp)
2353     return HandleOverflow(Info, E, Value, DestType);
2354   return true;
2355 }
2356 
2357 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2358                                    QualType SrcType, QualType DestType,
2359                                    APFloat &Result) {
2360   APFloat Value = Result;
2361   bool ignored;
2362   Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
2363                  APFloat::rmNearestTiesToEven, &ignored);
2364   return true;
2365 }
2366 
2367 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2368                                  QualType DestType, QualType SrcType,
2369                                  const APSInt &Value) {
2370   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2371   // Figure out if this is a truncate, extend or noop cast.
2372   // If the input is signed, do a sign extend, noop, or truncate.
2373   APSInt Result = Value.extOrTrunc(DestWidth);
2374   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2375   if (DestType->isBooleanType())
2376     Result = Value.getBoolValue();
2377   return Result;
2378 }
2379 
2380 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2381                                  QualType SrcType, const APSInt &Value,
2382                                  QualType DestType, APFloat &Result) {
2383   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2384   Result.convertFromAPInt(Value, Value.isSigned(),
2385                           APFloat::rmNearestTiesToEven);
2386   return true;
2387 }
2388 
2389 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2390                                   APValue &Value, const FieldDecl *FD) {
2391   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2392 
2393   if (!Value.isInt()) {
2394     // Trying to store a pointer-cast-to-integer into a bitfield.
2395     // FIXME: In this case, we should provide the diagnostic for casting
2396     // a pointer to an integer.
2397     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2398     Info.FFDiag(E);
2399     return false;
2400   }
2401 
2402   APSInt &Int = Value.getInt();
2403   unsigned OldBitWidth = Int.getBitWidth();
2404   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2405   if (NewBitWidth < OldBitWidth)
2406     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2407   return true;
2408 }
2409 
2410 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2411                                   llvm::APInt &Res) {
2412   APValue SVal;
2413   if (!Evaluate(SVal, Info, E))
2414     return false;
2415   if (SVal.isInt()) {
2416     Res = SVal.getInt();
2417     return true;
2418   }
2419   if (SVal.isFloat()) {
2420     Res = SVal.getFloat().bitcastToAPInt();
2421     return true;
2422   }
2423   if (SVal.isVector()) {
2424     QualType VecTy = E->getType();
2425     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2426     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2427     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2428     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2429     Res = llvm::APInt::getNullValue(VecSize);
2430     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2431       APValue &Elt = SVal.getVectorElt(i);
2432       llvm::APInt EltAsInt;
2433       if (Elt.isInt()) {
2434         EltAsInt = Elt.getInt();
2435       } else if (Elt.isFloat()) {
2436         EltAsInt = Elt.getFloat().bitcastToAPInt();
2437       } else {
2438         // Don't try to handle vectors of anything other than int or float
2439         // (not sure if it's possible to hit this case).
2440         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2441         return false;
2442       }
2443       unsigned BaseEltSize = EltAsInt.getBitWidth();
2444       if (BigEndian)
2445         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2446       else
2447         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2448     }
2449     return true;
2450   }
2451   // Give up if the input isn't an int, float, or vector.  For example, we
2452   // reject "(v4i16)(intptr_t)&a".
2453   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2454   return false;
2455 }
2456 
2457 /// Perform the given integer operation, which is known to need at most BitWidth
2458 /// bits, and check for overflow in the original type (if that type was not an
2459 /// unsigned type).
2460 template<typename Operation>
2461 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2462                                  const APSInt &LHS, const APSInt &RHS,
2463                                  unsigned BitWidth, Operation Op,
2464                                  APSInt &Result) {
2465   if (LHS.isUnsigned()) {
2466     Result = Op(LHS, RHS);
2467     return true;
2468   }
2469 
2470   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2471   Result = Value.trunc(LHS.getBitWidth());
2472   if (Result.extend(BitWidth) != Value) {
2473     if (Info.checkingForUndefinedBehavior())
2474       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2475                                        diag::warn_integer_constant_overflow)
2476           << Result.toString(10) << E->getType();
2477     else
2478       return HandleOverflow(Info, E, Value, E->getType());
2479   }
2480   return true;
2481 }
2482 
2483 /// Perform the given binary integer operation.
2484 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2485                               BinaryOperatorKind Opcode, APSInt RHS,
2486                               APSInt &Result) {
2487   switch (Opcode) {
2488   default:
2489     Info.FFDiag(E);
2490     return false;
2491   case BO_Mul:
2492     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2493                                 std::multiplies<APSInt>(), Result);
2494   case BO_Add:
2495     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2496                                 std::plus<APSInt>(), Result);
2497   case BO_Sub:
2498     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2499                                 std::minus<APSInt>(), Result);
2500   case BO_And: Result = LHS & RHS; return true;
2501   case BO_Xor: Result = LHS ^ RHS; return true;
2502   case BO_Or:  Result = LHS | RHS; return true;
2503   case BO_Div:
2504   case BO_Rem:
2505     if (RHS == 0) {
2506       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2507       return false;
2508     }
2509     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2510     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2511     // this operation and gives the two's complement result.
2512     if (RHS.isNegative() && RHS.isAllOnesValue() &&
2513         LHS.isSigned() && LHS.isMinSignedValue())
2514       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2515                             E->getType());
2516     return true;
2517   case BO_Shl: {
2518     if (Info.getLangOpts().OpenCL)
2519       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2520       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2521                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2522                     RHS.isUnsigned());
2523     else if (RHS.isSigned() && RHS.isNegative()) {
2524       // During constant-folding, a negative shift is an opposite shift. Such
2525       // a shift is not a constant expression.
2526       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2527       RHS = -RHS;
2528       goto shift_right;
2529     }
2530   shift_left:
2531     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2532     // the shifted type.
2533     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2534     if (SA != RHS) {
2535       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2536         << RHS << E->getType() << LHS.getBitWidth();
2537     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus2a) {
2538       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2539       // operand, and must not overflow the corresponding unsigned type.
2540       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2541       // E1 x 2^E2 module 2^N.
2542       if (LHS.isNegative())
2543         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2544       else if (LHS.countLeadingZeros() < SA)
2545         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2546     }
2547     Result = LHS << SA;
2548     return true;
2549   }
2550   case BO_Shr: {
2551     if (Info.getLangOpts().OpenCL)
2552       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2553       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2554                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2555                     RHS.isUnsigned());
2556     else if (RHS.isSigned() && RHS.isNegative()) {
2557       // During constant-folding, a negative shift is an opposite shift. Such a
2558       // shift is not a constant expression.
2559       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2560       RHS = -RHS;
2561       goto shift_left;
2562     }
2563   shift_right:
2564     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2565     // shifted type.
2566     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2567     if (SA != RHS)
2568       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2569         << RHS << E->getType() << LHS.getBitWidth();
2570     Result = LHS >> SA;
2571     return true;
2572   }
2573 
2574   case BO_LT: Result = LHS < RHS; return true;
2575   case BO_GT: Result = LHS > RHS; return true;
2576   case BO_LE: Result = LHS <= RHS; return true;
2577   case BO_GE: Result = LHS >= RHS; return true;
2578   case BO_EQ: Result = LHS == RHS; return true;
2579   case BO_NE: Result = LHS != RHS; return true;
2580   case BO_Cmp:
2581     llvm_unreachable("BO_Cmp should be handled elsewhere");
2582   }
2583 }
2584 
2585 /// Perform the given binary floating-point operation, in-place, on LHS.
2586 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
2587                                   APFloat &LHS, BinaryOperatorKind Opcode,
2588                                   const APFloat &RHS) {
2589   switch (Opcode) {
2590   default:
2591     Info.FFDiag(E);
2592     return false;
2593   case BO_Mul:
2594     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
2595     break;
2596   case BO_Add:
2597     LHS.add(RHS, APFloat::rmNearestTiesToEven);
2598     break;
2599   case BO_Sub:
2600     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
2601     break;
2602   case BO_Div:
2603     // [expr.mul]p4:
2604     //   If the second operand of / or % is zero the behavior is undefined.
2605     if (RHS.isZero())
2606       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2607     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
2608     break;
2609   }
2610 
2611   // [expr.pre]p4:
2612   //   If during the evaluation of an expression, the result is not
2613   //   mathematically defined [...], the behavior is undefined.
2614   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2615   if (LHS.isNaN()) {
2616     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2617     return Info.noteUndefinedBehavior();
2618   }
2619   return true;
2620 }
2621 
2622 /// Cast an lvalue referring to a base subobject to a derived class, by
2623 /// truncating the lvalue's path to the given length.
2624 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
2625                                const RecordDecl *TruncatedType,
2626                                unsigned TruncatedElements) {
2627   SubobjectDesignator &D = Result.Designator;
2628 
2629   // Check we actually point to a derived class object.
2630   if (TruncatedElements == D.Entries.size())
2631     return true;
2632   assert(TruncatedElements >= D.MostDerivedPathLength &&
2633          "not casting to a derived class");
2634   if (!Result.checkSubobject(Info, E, CSK_Derived))
2635     return false;
2636 
2637   // Truncate the path to the subobject, and remove any derived-to-base offsets.
2638   const RecordDecl *RD = TruncatedType;
2639   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
2640     if (RD->isInvalidDecl()) return false;
2641     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2642     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
2643     if (isVirtualBaseClass(D.Entries[I]))
2644       Result.Offset -= Layout.getVBaseClassOffset(Base);
2645     else
2646       Result.Offset -= Layout.getBaseClassOffset(Base);
2647     RD = Base;
2648   }
2649   D.Entries.resize(TruncatedElements);
2650   return true;
2651 }
2652 
2653 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2654                                    const CXXRecordDecl *Derived,
2655                                    const CXXRecordDecl *Base,
2656                                    const ASTRecordLayout *RL = nullptr) {
2657   if (!RL) {
2658     if (Derived->isInvalidDecl()) return false;
2659     RL = &Info.Ctx.getASTRecordLayout(Derived);
2660   }
2661 
2662   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
2663   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
2664   return true;
2665 }
2666 
2667 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2668                              const CXXRecordDecl *DerivedDecl,
2669                              const CXXBaseSpecifier *Base) {
2670   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
2671 
2672   if (!Base->isVirtual())
2673     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
2674 
2675   SubobjectDesignator &D = Obj.Designator;
2676   if (D.Invalid)
2677     return false;
2678 
2679   // Extract most-derived object and corresponding type.
2680   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
2681   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
2682     return false;
2683 
2684   // Find the virtual base class.
2685   if (DerivedDecl->isInvalidDecl()) return false;
2686   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
2687   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
2688   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
2689   return true;
2690 }
2691 
2692 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
2693                                  QualType Type, LValue &Result) {
2694   for (CastExpr::path_const_iterator PathI = E->path_begin(),
2695                                      PathE = E->path_end();
2696        PathI != PathE; ++PathI) {
2697     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2698                           *PathI))
2699       return false;
2700     Type = (*PathI)->getType();
2701   }
2702   return true;
2703 }
2704 
2705 /// Cast an lvalue referring to a derived class to a known base subobject.
2706 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
2707                             const CXXRecordDecl *DerivedRD,
2708                             const CXXRecordDecl *BaseRD) {
2709   CXXBasePaths Paths(/*FindAmbiguities=*/false,
2710                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
2711   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
2712     llvm_unreachable("Class must be derived from the passed in base class!");
2713 
2714   for (CXXBasePathElement &Elem : Paths.front())
2715     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
2716       return false;
2717   return true;
2718 }
2719 
2720 /// Update LVal to refer to the given field, which must be a member of the type
2721 /// currently described by LVal.
2722 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2723                                const FieldDecl *FD,
2724                                const ASTRecordLayout *RL = nullptr) {
2725   if (!RL) {
2726     if (FD->getParent()->isInvalidDecl()) return false;
2727     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2728   }
2729 
2730   unsigned I = FD->getFieldIndex();
2731   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
2732   LVal.addDecl(Info, E, FD);
2733   return true;
2734 }
2735 
2736 /// Update LVal to refer to the given indirect field.
2737 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2738                                        LValue &LVal,
2739                                        const IndirectFieldDecl *IFD) {
2740   for (const auto *C : IFD->chain())
2741     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2742       return false;
2743   return true;
2744 }
2745 
2746 /// Get the size of the given type in char units.
2747 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2748                          QualType Type, CharUnits &Size) {
2749   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2750   // extension.
2751   if (Type->isVoidType() || Type->isFunctionType()) {
2752     Size = CharUnits::One();
2753     return true;
2754   }
2755 
2756   if (Type->isDependentType()) {
2757     Info.FFDiag(Loc);
2758     return false;
2759   }
2760 
2761   if (!Type->isConstantSizeType()) {
2762     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2763     // FIXME: Better diagnostic.
2764     Info.FFDiag(Loc);
2765     return false;
2766   }
2767 
2768   Size = Info.Ctx.getTypeSizeInChars(Type);
2769   return true;
2770 }
2771 
2772 /// Update a pointer value to model pointer arithmetic.
2773 /// \param Info - Information about the ongoing evaluation.
2774 /// \param E - The expression being evaluated, for diagnostic purposes.
2775 /// \param LVal - The pointer value to be updated.
2776 /// \param EltTy - The pointee type represented by LVal.
2777 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
2778 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2779                                         LValue &LVal, QualType EltTy,
2780                                         APSInt Adjustment) {
2781   CharUnits SizeOfPointee;
2782   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2783     return false;
2784 
2785   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
2786   return true;
2787 }
2788 
2789 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2790                                         LValue &LVal, QualType EltTy,
2791                                         int64_t Adjustment) {
2792   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
2793                                      APSInt::get(Adjustment));
2794 }
2795 
2796 /// Update an lvalue to refer to a component of a complex number.
2797 /// \param Info - Information about the ongoing evaluation.
2798 /// \param LVal - The lvalue to be updated.
2799 /// \param EltTy - The complex number's component type.
2800 /// \param Imag - False for the real component, true for the imaginary.
2801 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2802                                        LValue &LVal, QualType EltTy,
2803                                        bool Imag) {
2804   if (Imag) {
2805     CharUnits SizeOfComponent;
2806     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2807       return false;
2808     LVal.Offset += SizeOfComponent;
2809   }
2810   LVal.addComplex(Info, E, EltTy, Imag);
2811   return true;
2812 }
2813 
2814 /// Try to evaluate the initializer for a variable declaration.
2815 ///
2816 /// \param Info   Information about the ongoing evaluation.
2817 /// \param E      An expression to be used when printing diagnostics.
2818 /// \param VD     The variable whose initializer should be obtained.
2819 /// \param Frame  The frame in which the variable was created. Must be null
2820 ///               if this variable is not local to the evaluation.
2821 /// \param Result Filled in with a pointer to the value of the variable.
2822 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2823                                 const VarDecl *VD, CallStackFrame *Frame,
2824                                 APValue *&Result, const LValue *LVal) {
2825 
2826   // If this is a parameter to an active constexpr function call, perform
2827   // argument substitution.
2828   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2829     // Assume arguments of a potential constant expression are unknown
2830     // constant expressions.
2831     if (Info.checkingPotentialConstantExpression())
2832       return false;
2833     if (!Frame || !Frame->Arguments) {
2834       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2835       return false;
2836     }
2837     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2838     return true;
2839   }
2840 
2841   // If this is a local variable, dig out its value.
2842   if (Frame) {
2843     Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
2844                   : Frame->getCurrentTemporary(VD);
2845     if (!Result) {
2846       // Assume variables referenced within a lambda's call operator that were
2847       // not declared within the call operator are captures and during checking
2848       // of a potential constant expression, assume they are unknown constant
2849       // expressions.
2850       assert(isLambdaCallOperator(Frame->Callee) &&
2851              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
2852              "missing value for local variable");
2853       if (Info.checkingPotentialConstantExpression())
2854         return false;
2855       // FIXME: implement capture evaluation during constant expr evaluation.
2856       Info.FFDiag(E->getBeginLoc(),
2857                   diag::note_unimplemented_constexpr_lambda_feature_ast)
2858           << "captures not currently allowed";
2859       return false;
2860     }
2861     return true;
2862   }
2863 
2864   // Dig out the initializer, and use the declaration which it's attached to.
2865   const Expr *Init = VD->getAnyInitializer(VD);
2866   if (!Init || Init->isValueDependent()) {
2867     // If we're checking a potential constant expression, the variable could be
2868     // initialized later.
2869     if (!Info.checkingPotentialConstantExpression())
2870       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2871     return false;
2872   }
2873 
2874   // If we're currently evaluating the initializer of this declaration, use that
2875   // in-flight value.
2876   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2877     Result = Info.EvaluatingDeclValue;
2878     return true;
2879   }
2880 
2881   // Never evaluate the initializer of a weak variable. We can't be sure that
2882   // this is the definition which will be used.
2883   if (VD->isWeak()) {
2884     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2885     return false;
2886   }
2887 
2888   // Check that we can fold the initializer. In C++, we will have already done
2889   // this in the cases where it matters for conformance.
2890   SmallVector<PartialDiagnosticAt, 8> Notes;
2891   if (!VD->evaluateValue(Notes)) {
2892     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
2893               Notes.size() + 1) << VD;
2894     Info.Note(VD->getLocation(), diag::note_declared_at);
2895     Info.addNotes(Notes);
2896     return false;
2897   } else if (!VD->checkInitIsICE()) {
2898     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2899                  Notes.size() + 1) << VD;
2900     Info.Note(VD->getLocation(), diag::note_declared_at);
2901     Info.addNotes(Notes);
2902   }
2903 
2904   Result = VD->getEvaluatedValue();
2905   return true;
2906 }
2907 
2908 static bool IsConstNonVolatile(QualType T) {
2909   Qualifiers Quals = T.getQualifiers();
2910   return Quals.hasConst() && !Quals.hasVolatile();
2911 }
2912 
2913 /// Get the base index of the given base class within an APValue representing
2914 /// the given derived class.
2915 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2916                              const CXXRecordDecl *Base) {
2917   Base = Base->getCanonicalDecl();
2918   unsigned Index = 0;
2919   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2920          E = Derived->bases_end(); I != E; ++I, ++Index) {
2921     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2922       return Index;
2923   }
2924 
2925   llvm_unreachable("base class missing from derived class's bases list");
2926 }
2927 
2928 /// Extract the value of a character from a string literal.
2929 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2930                                             uint64_t Index) {
2931   assert(!isa<SourceLocExpr>(Lit) &&
2932          "SourceLocExpr should have already been converted to a StringLiteral");
2933 
2934   // FIXME: Support MakeStringConstant
2935   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
2936     std::string Str;
2937     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
2938     assert(Index <= Str.size() && "Index too large");
2939     return APSInt::getUnsigned(Str.c_str()[Index]);
2940   }
2941 
2942   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2943     Lit = PE->getFunctionName();
2944   const StringLiteral *S = cast<StringLiteral>(Lit);
2945   const ConstantArrayType *CAT =
2946       Info.Ctx.getAsConstantArrayType(S->getType());
2947   assert(CAT && "string literal isn't an array");
2948   QualType CharType = CAT->getElementType();
2949   assert(CharType->isIntegerType() && "unexpected character type");
2950 
2951   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2952                CharType->isUnsignedIntegerType());
2953   if (Index < S->getLength())
2954     Value = S->getCodeUnit(Index);
2955   return Value;
2956 }
2957 
2958 // Expand a string literal into an array of characters.
2959 //
2960 // FIXME: This is inefficient; we should probably introduce something similar
2961 // to the LLVM ConstantDataArray to make this cheaper.
2962 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
2963                                 APValue &Result,
2964                                 QualType AllocType = QualType()) {
2965   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
2966       AllocType.isNull() ? S->getType() : AllocType);
2967   assert(CAT && "string literal isn't an array");
2968   QualType CharType = CAT->getElementType();
2969   assert(CharType->isIntegerType() && "unexpected character type");
2970 
2971   unsigned Elts = CAT->getSize().getZExtValue();
2972   Result = APValue(APValue::UninitArray(),
2973                    std::min(S->getLength(), Elts), Elts);
2974   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2975                CharType->isUnsignedIntegerType());
2976   if (Result.hasArrayFiller())
2977     Result.getArrayFiller() = APValue(Value);
2978   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2979     Value = S->getCodeUnit(I);
2980     Result.getArrayInitializedElt(I) = APValue(Value);
2981   }
2982 }
2983 
2984 // Expand an array so that it has more than Index filled elements.
2985 static void expandArray(APValue &Array, unsigned Index) {
2986   unsigned Size = Array.getArraySize();
2987   assert(Index < Size);
2988 
2989   // Always at least double the number of elements for which we store a value.
2990   unsigned OldElts = Array.getArrayInitializedElts();
2991   unsigned NewElts = std::max(Index+1, OldElts * 2);
2992   NewElts = std::min(Size, std::max(NewElts, 8u));
2993 
2994   // Copy the data across.
2995   APValue NewValue(APValue::UninitArray(), NewElts, Size);
2996   for (unsigned I = 0; I != OldElts; ++I)
2997     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2998   for (unsigned I = OldElts; I != NewElts; ++I)
2999     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3000   if (NewValue.hasArrayFiller())
3001     NewValue.getArrayFiller() = Array.getArrayFiller();
3002   Array.swap(NewValue);
3003 }
3004 
3005 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3006 /// conversion. If it's of class type, we may assume that the copy operation
3007 /// is trivial. Note that this is never true for a union type with fields
3008 /// (because the copy always "reads" the active member) and always true for
3009 /// a non-class type.
3010 static bool isReadByLvalueToRvalueConversion(QualType T) {
3011   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3012   if (!RD || (RD->isUnion() && !RD->field_empty()))
3013     return true;
3014   if (RD->isEmpty())
3015     return false;
3016 
3017   for (auto *Field : RD->fields())
3018     if (isReadByLvalueToRvalueConversion(Field->getType()))
3019       return true;
3020 
3021   for (auto &BaseSpec : RD->bases())
3022     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3023       return true;
3024 
3025   return false;
3026 }
3027 
3028 /// Diagnose an attempt to read from any unreadable field within the specified
3029 /// type, which might be a class type.
3030 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3031                                   QualType T) {
3032   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3033   if (!RD)
3034     return false;
3035 
3036   if (!RD->hasMutableFields())
3037     return false;
3038 
3039   for (auto *Field : RD->fields()) {
3040     // If we're actually going to read this field in some way, then it can't
3041     // be mutable. If we're in a union, then assigning to a mutable field
3042     // (even an empty one) can change the active member, so that's not OK.
3043     // FIXME: Add core issue number for the union case.
3044     if (Field->isMutable() &&
3045         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3046       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3047       Info.Note(Field->getLocation(), diag::note_declared_at);
3048       return true;
3049     }
3050 
3051     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3052       return true;
3053   }
3054 
3055   for (auto &BaseSpec : RD->bases())
3056     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3057       return true;
3058 
3059   // All mutable fields were empty, and thus not actually read.
3060   return false;
3061 }
3062 
3063 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3064                                         APValue::LValueBase Base,
3065                                         bool MutableSubobject = false) {
3066   // A temporary we created.
3067   if (Base.getCallIndex())
3068     return true;
3069 
3070   auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
3071   if (!Evaluating)
3072     return false;
3073 
3074   auto *BaseD = Base.dyn_cast<const ValueDecl*>();
3075 
3076   switch (Info.IsEvaluatingDecl) {
3077   case EvalInfo::EvaluatingDeclKind::None:
3078     return false;
3079 
3080   case EvalInfo::EvaluatingDeclKind::Ctor:
3081     // The variable whose initializer we're evaluating.
3082     if (BaseD)
3083       return declaresSameEntity(Evaluating, BaseD);
3084 
3085     // A temporary lifetime-extended by the variable whose initializer we're
3086     // evaluating.
3087     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3088       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3089         return declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating);
3090     return false;
3091 
3092   case EvalInfo::EvaluatingDeclKind::Dtor:
3093     // C++2a [expr.const]p6:
3094     //   [during constant destruction] the lifetime of a and its non-mutable
3095     //   subobjects (but not its mutable subobjects) [are] considered to start
3096     //   within e.
3097     //
3098     // FIXME: We can meaningfully extend this to cover non-const objects, but
3099     // we will need special handling: we should be able to access only
3100     // subobjects of such objects that are themselves declared const.
3101     if (!BaseD ||
3102         !(BaseD->getType().isConstQualified() ||
3103           BaseD->getType()->isReferenceType()) ||
3104         MutableSubobject)
3105       return false;
3106     return declaresSameEntity(Evaluating, BaseD);
3107   }
3108 
3109   llvm_unreachable("unknown evaluating decl kind");
3110 }
3111 
3112 namespace {
3113 /// A handle to a complete object (an object that is not a subobject of
3114 /// another object).
3115 struct CompleteObject {
3116   /// The identity of the object.
3117   APValue::LValueBase Base;
3118   /// The value of the complete object.
3119   APValue *Value;
3120   /// The type of the complete object.
3121   QualType Type;
3122 
3123   CompleteObject() : Value(nullptr) {}
3124   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3125       : Base(Base), Value(Value), Type(Type) {}
3126 
3127   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3128     // In C++14 onwards, it is permitted to read a mutable member whose
3129     // lifetime began within the evaluation.
3130     // FIXME: Should we also allow this in C++11?
3131     if (!Info.getLangOpts().CPlusPlus14)
3132       return false;
3133     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3134   }
3135 
3136   explicit operator bool() const { return !Type.isNull(); }
3137 };
3138 } // end anonymous namespace
3139 
3140 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3141                                  bool IsMutable = false) {
3142   // C++ [basic.type.qualifier]p1:
3143   // - A const object is an object of type const T or a non-mutable subobject
3144   //   of a const object.
3145   if (ObjType.isConstQualified() && !IsMutable)
3146     SubobjType.addConst();
3147   // - A volatile object is an object of type const T or a subobject of a
3148   //   volatile object.
3149   if (ObjType.isVolatileQualified())
3150     SubobjType.addVolatile();
3151   return SubobjType;
3152 }
3153 
3154 /// Find the designated sub-object of an rvalue.
3155 template<typename SubobjectHandler>
3156 typename SubobjectHandler::result_type
3157 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3158               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3159   if (Sub.Invalid)
3160     // A diagnostic will have already been produced.
3161     return handler.failed();
3162   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3163     if (Info.getLangOpts().CPlusPlus11)
3164       Info.FFDiag(E, Sub.isOnePastTheEnd()
3165                          ? diag::note_constexpr_access_past_end
3166                          : diag::note_constexpr_access_unsized_array)
3167           << handler.AccessKind;
3168     else
3169       Info.FFDiag(E);
3170     return handler.failed();
3171   }
3172 
3173   APValue *O = Obj.Value;
3174   QualType ObjType = Obj.Type;
3175   const FieldDecl *LastField = nullptr;
3176   const FieldDecl *VolatileField = nullptr;
3177 
3178   // Walk the designator's path to find the subobject.
3179   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3180     // Reading an indeterminate value is undefined, but assigning over one is OK.
3181     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3182         (O->isIndeterminate() && handler.AccessKind != AK_Construct &&
3183          handler.AccessKind != AK_Assign &&
3184          handler.AccessKind != AK_ReadObjectRepresentation)) {
3185       if (!Info.checkingPotentialConstantExpression())
3186         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3187             << handler.AccessKind << O->isIndeterminate();
3188       return handler.failed();
3189     }
3190 
3191     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3192     //    const and volatile semantics are not applied on an object under
3193     //    {con,de}struction.
3194     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3195         ObjType->isRecordType() &&
3196         Info.isEvaluatingCtorDtor(
3197             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3198                                          Sub.Entries.begin() + I)) !=
3199                           ConstructionPhase::None) {
3200       ObjType = Info.Ctx.getCanonicalType(ObjType);
3201       ObjType.removeLocalConst();
3202       ObjType.removeLocalVolatile();
3203     }
3204 
3205     // If this is our last pass, check that the final object type is OK.
3206     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3207       // Accesses to volatile objects are prohibited.
3208       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3209         if (Info.getLangOpts().CPlusPlus) {
3210           int DiagKind;
3211           SourceLocation Loc;
3212           const NamedDecl *Decl = nullptr;
3213           if (VolatileField) {
3214             DiagKind = 2;
3215             Loc = VolatileField->getLocation();
3216             Decl = VolatileField;
3217           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3218             DiagKind = 1;
3219             Loc = VD->getLocation();
3220             Decl = VD;
3221           } else {
3222             DiagKind = 0;
3223             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3224               Loc = E->getExprLoc();
3225           }
3226           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3227               << handler.AccessKind << DiagKind << Decl;
3228           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3229         } else {
3230           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3231         }
3232         return handler.failed();
3233       }
3234 
3235       // If we are reading an object of class type, there may still be more
3236       // things we need to check: if there are any mutable subobjects, we
3237       // cannot perform this read. (This only happens when performing a trivial
3238       // copy or assignment.)
3239       if (ObjType->isRecordType() &&
3240           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3241           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3242         return handler.failed();
3243     }
3244 
3245     if (I == N) {
3246       if (!handler.found(*O, ObjType))
3247         return false;
3248 
3249       // If we modified a bit-field, truncate it to the right width.
3250       if (isModification(handler.AccessKind) &&
3251           LastField && LastField->isBitField() &&
3252           !truncateBitfieldValue(Info, E, *O, LastField))
3253         return false;
3254 
3255       return true;
3256     }
3257 
3258     LastField = nullptr;
3259     if (ObjType->isArrayType()) {
3260       // Next subobject is an array element.
3261       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3262       assert(CAT && "vla in literal type?");
3263       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3264       if (CAT->getSize().ule(Index)) {
3265         // Note, it should not be possible to form a pointer with a valid
3266         // designator which points more than one past the end of the array.
3267         if (Info.getLangOpts().CPlusPlus11)
3268           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3269             << handler.AccessKind;
3270         else
3271           Info.FFDiag(E);
3272         return handler.failed();
3273       }
3274 
3275       ObjType = CAT->getElementType();
3276 
3277       if (O->getArrayInitializedElts() > Index)
3278         O = &O->getArrayInitializedElt(Index);
3279       else if (!isRead(handler.AccessKind)) {
3280         expandArray(*O, Index);
3281         O = &O->getArrayInitializedElt(Index);
3282       } else
3283         O = &O->getArrayFiller();
3284     } else if (ObjType->isAnyComplexType()) {
3285       // Next subobject is a complex number.
3286       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3287       if (Index > 1) {
3288         if (Info.getLangOpts().CPlusPlus11)
3289           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3290             << handler.AccessKind;
3291         else
3292           Info.FFDiag(E);
3293         return handler.failed();
3294       }
3295 
3296       ObjType = getSubobjectType(
3297           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3298 
3299       assert(I == N - 1 && "extracting subobject of scalar?");
3300       if (O->isComplexInt()) {
3301         return handler.found(Index ? O->getComplexIntImag()
3302                                    : O->getComplexIntReal(), ObjType);
3303       } else {
3304         assert(O->isComplexFloat());
3305         return handler.found(Index ? O->getComplexFloatImag()
3306                                    : O->getComplexFloatReal(), ObjType);
3307       }
3308     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3309       if (Field->isMutable() &&
3310           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3311         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3312           << handler.AccessKind << Field;
3313         Info.Note(Field->getLocation(), diag::note_declared_at);
3314         return handler.failed();
3315       }
3316 
3317       // Next subobject is a class, struct or union field.
3318       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3319       if (RD->isUnion()) {
3320         const FieldDecl *UnionField = O->getUnionField();
3321         if (!UnionField ||
3322             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3323           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3324             // Placement new onto an inactive union member makes it active.
3325             O->setUnion(Field, APValue());
3326           } else {
3327             // FIXME: If O->getUnionValue() is absent, report that there's no
3328             // active union member rather than reporting the prior active union
3329             // member. We'll need to fix nullptr_t to not use APValue() as its
3330             // representation first.
3331             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3332                 << handler.AccessKind << Field << !UnionField << UnionField;
3333             return handler.failed();
3334           }
3335         }
3336         O = &O->getUnionValue();
3337       } else
3338         O = &O->getStructField(Field->getFieldIndex());
3339 
3340       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3341       LastField = Field;
3342       if (Field->getType().isVolatileQualified())
3343         VolatileField = Field;
3344     } else {
3345       // Next subobject is a base class.
3346       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3347       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3348       O = &O->getStructBase(getBaseIndex(Derived, Base));
3349 
3350       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3351     }
3352   }
3353 }
3354 
3355 namespace {
3356 struct ExtractSubobjectHandler {
3357   EvalInfo &Info;
3358   const Expr *E;
3359   APValue &Result;
3360   const AccessKinds AccessKind;
3361 
3362   typedef bool result_type;
3363   bool failed() { return false; }
3364   bool found(APValue &Subobj, QualType SubobjType) {
3365     Result = Subobj;
3366     if (AccessKind == AK_ReadObjectRepresentation)
3367       return true;
3368     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3369   }
3370   bool found(APSInt &Value, QualType SubobjType) {
3371     Result = APValue(Value);
3372     return true;
3373   }
3374   bool found(APFloat &Value, QualType SubobjType) {
3375     Result = APValue(Value);
3376     return true;
3377   }
3378 };
3379 } // end anonymous namespace
3380 
3381 /// Extract the designated sub-object of an rvalue.
3382 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3383                              const CompleteObject &Obj,
3384                              const SubobjectDesignator &Sub, APValue &Result,
3385                              AccessKinds AK = AK_Read) {
3386   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3387   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3388   return findSubobject(Info, E, Obj, Sub, Handler);
3389 }
3390 
3391 namespace {
3392 struct ModifySubobjectHandler {
3393   EvalInfo &Info;
3394   APValue &NewVal;
3395   const Expr *E;
3396 
3397   typedef bool result_type;
3398   static const AccessKinds AccessKind = AK_Assign;
3399 
3400   bool checkConst(QualType QT) {
3401     // Assigning to a const object has undefined behavior.
3402     if (QT.isConstQualified()) {
3403       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3404       return false;
3405     }
3406     return true;
3407   }
3408 
3409   bool failed() { return false; }
3410   bool found(APValue &Subobj, QualType SubobjType) {
3411     if (!checkConst(SubobjType))
3412       return false;
3413     // We've been given ownership of NewVal, so just swap it in.
3414     Subobj.swap(NewVal);
3415     return true;
3416   }
3417   bool found(APSInt &Value, QualType SubobjType) {
3418     if (!checkConst(SubobjType))
3419       return false;
3420     if (!NewVal.isInt()) {
3421       // Maybe trying to write a cast pointer value into a complex?
3422       Info.FFDiag(E);
3423       return false;
3424     }
3425     Value = NewVal.getInt();
3426     return true;
3427   }
3428   bool found(APFloat &Value, QualType SubobjType) {
3429     if (!checkConst(SubobjType))
3430       return false;
3431     Value = NewVal.getFloat();
3432     return true;
3433   }
3434 };
3435 } // end anonymous namespace
3436 
3437 const AccessKinds ModifySubobjectHandler::AccessKind;
3438 
3439 /// Update the designated sub-object of an rvalue to the given value.
3440 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3441                             const CompleteObject &Obj,
3442                             const SubobjectDesignator &Sub,
3443                             APValue &NewVal) {
3444   ModifySubobjectHandler Handler = { Info, NewVal, E };
3445   return findSubobject(Info, E, Obj, Sub, Handler);
3446 }
3447 
3448 /// Find the position where two subobject designators diverge, or equivalently
3449 /// the length of the common initial subsequence.
3450 static unsigned FindDesignatorMismatch(QualType ObjType,
3451                                        const SubobjectDesignator &A,
3452                                        const SubobjectDesignator &B,
3453                                        bool &WasArrayIndex) {
3454   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3455   for (/**/; I != N; ++I) {
3456     if (!ObjType.isNull() &&
3457         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3458       // Next subobject is an array element.
3459       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3460         WasArrayIndex = true;
3461         return I;
3462       }
3463       if (ObjType->isAnyComplexType())
3464         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3465       else
3466         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3467     } else {
3468       if (A.Entries[I].getAsBaseOrMember() !=
3469           B.Entries[I].getAsBaseOrMember()) {
3470         WasArrayIndex = false;
3471         return I;
3472       }
3473       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3474         // Next subobject is a field.
3475         ObjType = FD->getType();
3476       else
3477         // Next subobject is a base class.
3478         ObjType = QualType();
3479     }
3480   }
3481   WasArrayIndex = false;
3482   return I;
3483 }
3484 
3485 /// Determine whether the given subobject designators refer to elements of the
3486 /// same array object.
3487 static bool AreElementsOfSameArray(QualType ObjType,
3488                                    const SubobjectDesignator &A,
3489                                    const SubobjectDesignator &B) {
3490   if (A.Entries.size() != B.Entries.size())
3491     return false;
3492 
3493   bool IsArray = A.MostDerivedIsArrayElement;
3494   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3495     // A is a subobject of the array element.
3496     return false;
3497 
3498   // If A (and B) designates an array element, the last entry will be the array
3499   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3500   // of length 1' case, and the entire path must match.
3501   bool WasArrayIndex;
3502   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3503   return CommonLength >= A.Entries.size() - IsArray;
3504 }
3505 
3506 /// Find the complete object to which an LValue refers.
3507 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3508                                          AccessKinds AK, const LValue &LVal,
3509                                          QualType LValType) {
3510   if (LVal.InvalidBase) {
3511     Info.FFDiag(E);
3512     return CompleteObject();
3513   }
3514 
3515   if (!LVal.Base) {
3516     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3517     return CompleteObject();
3518   }
3519 
3520   CallStackFrame *Frame = nullptr;
3521   unsigned Depth = 0;
3522   if (LVal.getLValueCallIndex()) {
3523     std::tie(Frame, Depth) =
3524         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3525     if (!Frame) {
3526       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3527         << AK << LVal.Base.is<const ValueDecl*>();
3528       NoteLValueLocation(Info, LVal.Base);
3529       return CompleteObject();
3530     }
3531   }
3532 
3533   bool IsAccess = isAnyAccess(AK);
3534 
3535   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3536   // is not a constant expression (even if the object is non-volatile). We also
3537   // apply this rule to C++98, in order to conform to the expected 'volatile'
3538   // semantics.
3539   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3540     if (Info.getLangOpts().CPlusPlus)
3541       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3542         << AK << LValType;
3543     else
3544       Info.FFDiag(E);
3545     return CompleteObject();
3546   }
3547 
3548   // Compute value storage location and type of base object.
3549   APValue *BaseVal = nullptr;
3550   QualType BaseType = getType(LVal.Base);
3551 
3552   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
3553     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
3554     // In C++11, constexpr, non-volatile variables initialized with constant
3555     // expressions are constant expressions too. Inside constexpr functions,
3556     // parameters are constant expressions even if they're non-const.
3557     // In C++1y, objects local to a constant expression (those with a Frame) are
3558     // both readable and writable inside constant expressions.
3559     // In C, such things can also be folded, although they are not ICEs.
3560     const VarDecl *VD = dyn_cast<VarDecl>(D);
3561     if (VD) {
3562       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
3563         VD = VDef;
3564     }
3565     if (!VD || VD->isInvalidDecl()) {
3566       Info.FFDiag(E);
3567       return CompleteObject();
3568     }
3569 
3570     // Unless we're looking at a local variable or argument in a constexpr call,
3571     // the variable we're reading must be const.
3572     if (!Frame) {
3573       if (Info.getLangOpts().CPlusPlus14 &&
3574           lifetimeStartedInEvaluation(Info, LVal.Base)) {
3575         // OK, we can read and modify an object if we're in the process of
3576         // evaluating its initializer, because its lifetime began in this
3577         // evaluation.
3578       } else if (isModification(AK)) {
3579         // All the remaining cases do not permit modification of the object.
3580         Info.FFDiag(E, diag::note_constexpr_modify_global);
3581         return CompleteObject();
3582       } else if (VD->isConstexpr()) {
3583         // OK, we can read this variable.
3584       } else if (BaseType->isIntegralOrEnumerationType()) {
3585         // In OpenCL if a variable is in constant address space it is a const
3586         // value.
3587         if (!(BaseType.isConstQualified() ||
3588               (Info.getLangOpts().OpenCL &&
3589                BaseType.getAddressSpace() == LangAS::opencl_constant))) {
3590           if (!IsAccess)
3591             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3592           if (Info.getLangOpts().CPlusPlus) {
3593             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
3594             Info.Note(VD->getLocation(), diag::note_declared_at);
3595           } else {
3596             Info.FFDiag(E);
3597           }
3598           return CompleteObject();
3599         }
3600       } else if (!IsAccess) {
3601         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3602       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
3603         // We support folding of const floating-point types, in order to make
3604         // static const data members of such types (supported as an extension)
3605         // more useful.
3606         if (Info.getLangOpts().CPlusPlus11) {
3607           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3608           Info.Note(VD->getLocation(), diag::note_declared_at);
3609         } else {
3610           Info.CCEDiag(E);
3611         }
3612       } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) {
3613         Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD;
3614         // Keep evaluating to see what we can do.
3615       } else {
3616         // FIXME: Allow folding of values of any literal type in all languages.
3617         if (Info.checkingPotentialConstantExpression() &&
3618             VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
3619           // The definition of this variable could be constexpr. We can't
3620           // access it right now, but may be able to in future.
3621         } else if (Info.getLangOpts().CPlusPlus11) {
3622           Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3623           Info.Note(VD->getLocation(), diag::note_declared_at);
3624         } else {
3625           Info.FFDiag(E);
3626         }
3627         return CompleteObject();
3628       }
3629     }
3630 
3631     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
3632       return CompleteObject();
3633   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
3634     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
3635     if (!Alloc) {
3636       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
3637       return CompleteObject();
3638     }
3639     return CompleteObject(LVal.Base, &(*Alloc)->Value,
3640                           LVal.Base.getDynamicAllocType());
3641   } else {
3642     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3643 
3644     if (!Frame) {
3645       if (const MaterializeTemporaryExpr *MTE =
3646               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
3647         assert(MTE->getStorageDuration() == SD_Static &&
3648                "should have a frame for a non-global materialized temporary");
3649 
3650         // Per C++1y [expr.const]p2:
3651         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
3652         //   - a [...] glvalue of integral or enumeration type that refers to
3653         //     a non-volatile const object [...]
3654         //   [...]
3655         //   - a [...] glvalue of literal type that refers to a non-volatile
3656         //     object whose lifetime began within the evaluation of e.
3657         //
3658         // C++11 misses the 'began within the evaluation of e' check and
3659         // instead allows all temporaries, including things like:
3660         //   int &&r = 1;
3661         //   int x = ++r;
3662         //   constexpr int k = r;
3663         // Therefore we use the C++14 rules in C++11 too.
3664         //
3665         // Note that temporaries whose lifetimes began while evaluating a
3666         // variable's constructor are not usable while evaluating the
3667         // corresponding destructor, not even if they're of const-qualified
3668         // types.
3669         if (!(BaseType.isConstQualified() &&
3670               BaseType->isIntegralOrEnumerationType()) &&
3671             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
3672           if (!IsAccess)
3673             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3674           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
3675           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
3676           return CompleteObject();
3677         }
3678 
3679         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
3680         assert(BaseVal && "got reference to unevaluated temporary");
3681       } else {
3682         if (!IsAccess)
3683           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3684         APValue Val;
3685         LVal.moveInto(Val);
3686         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
3687             << AK
3688             << Val.getAsString(Info.Ctx,
3689                                Info.Ctx.getLValueReferenceType(LValType));
3690         NoteLValueLocation(Info, LVal.Base);
3691         return CompleteObject();
3692       }
3693     } else {
3694       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
3695       assert(BaseVal && "missing value for temporary");
3696     }
3697   }
3698 
3699   // In C++14, we can't safely access any mutable state when we might be
3700   // evaluating after an unmodeled side effect.
3701   //
3702   // FIXME: Not all local state is mutable. Allow local constant subobjects
3703   // to be read here (but take care with 'mutable' fields).
3704   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
3705        Info.EvalStatus.HasSideEffects) ||
3706       (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth))
3707     return CompleteObject();
3708 
3709   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
3710 }
3711 
3712 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
3713 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
3714 /// glvalue referred to by an entity of reference type.
3715 ///
3716 /// \param Info - Information about the ongoing evaluation.
3717 /// \param Conv - The expression for which we are performing the conversion.
3718 ///               Used for diagnostics.
3719 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
3720 ///               case of a non-class type).
3721 /// \param LVal - The glvalue on which we are attempting to perform this action.
3722 /// \param RVal - The produced value will be placed here.
3723 /// \param WantObjectRepresentation - If true, we're looking for the object
3724 ///               representation rather than the value, and in particular,
3725 ///               there is no requirement that the result be fully initialized.
3726 static bool
3727 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
3728                                const LValue &LVal, APValue &RVal,
3729                                bool WantObjectRepresentation = false) {
3730   if (LVal.Designator.Invalid)
3731     return false;
3732 
3733   // Check for special cases where there is no existing APValue to look at.
3734   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3735 
3736   AccessKinds AK =
3737       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
3738 
3739   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
3740     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
3741       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
3742       // initializer until now for such expressions. Such an expression can't be
3743       // an ICE in C, so this only matters for fold.
3744       if (Type.isVolatileQualified()) {
3745         Info.FFDiag(Conv);
3746         return false;
3747       }
3748       APValue Lit;
3749       if (!Evaluate(Lit, Info, CLE->getInitializer()))
3750         return false;
3751       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
3752       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
3753     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
3754       // Special-case character extraction so we don't have to construct an
3755       // APValue for the whole string.
3756       assert(LVal.Designator.Entries.size() <= 1 &&
3757              "Can only read characters from string literals");
3758       if (LVal.Designator.Entries.empty()) {
3759         // Fail for now for LValue to RValue conversion of an array.
3760         // (This shouldn't show up in C/C++, but it could be triggered by a
3761         // weird EvaluateAsRValue call from a tool.)
3762         Info.FFDiag(Conv);
3763         return false;
3764       }
3765       if (LVal.Designator.isOnePastTheEnd()) {
3766         if (Info.getLangOpts().CPlusPlus11)
3767           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
3768         else
3769           Info.FFDiag(Conv);
3770         return false;
3771       }
3772       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
3773       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
3774       return true;
3775     }
3776   }
3777 
3778   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
3779   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
3780 }
3781 
3782 /// Perform an assignment of Val to LVal. Takes ownership of Val.
3783 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
3784                              QualType LValType, APValue &Val) {
3785   if (LVal.Designator.Invalid)
3786     return false;
3787 
3788   if (!Info.getLangOpts().CPlusPlus14) {
3789     Info.FFDiag(E);
3790     return false;
3791   }
3792 
3793   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3794   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
3795 }
3796 
3797 namespace {
3798 struct CompoundAssignSubobjectHandler {
3799   EvalInfo &Info;
3800   const Expr *E;
3801   QualType PromotedLHSType;
3802   BinaryOperatorKind Opcode;
3803   const APValue &RHS;
3804 
3805   static const AccessKinds AccessKind = AK_Assign;
3806 
3807   typedef bool result_type;
3808 
3809   bool checkConst(QualType QT) {
3810     // Assigning to a const object has undefined behavior.
3811     if (QT.isConstQualified()) {
3812       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3813       return false;
3814     }
3815     return true;
3816   }
3817 
3818   bool failed() { return false; }
3819   bool found(APValue &Subobj, QualType SubobjType) {
3820     switch (Subobj.getKind()) {
3821     case APValue::Int:
3822       return found(Subobj.getInt(), SubobjType);
3823     case APValue::Float:
3824       return found(Subobj.getFloat(), SubobjType);
3825     case APValue::ComplexInt:
3826     case APValue::ComplexFloat:
3827       // FIXME: Implement complex compound assignment.
3828       Info.FFDiag(E);
3829       return false;
3830     case APValue::LValue:
3831       return foundPointer(Subobj, SubobjType);
3832     default:
3833       // FIXME: can this happen?
3834       Info.FFDiag(E);
3835       return false;
3836     }
3837   }
3838   bool found(APSInt &Value, QualType SubobjType) {
3839     if (!checkConst(SubobjType))
3840       return false;
3841 
3842     if (!SubobjType->isIntegerType()) {
3843       // We don't support compound assignment on integer-cast-to-pointer
3844       // values.
3845       Info.FFDiag(E);
3846       return false;
3847     }
3848 
3849     if (RHS.isInt()) {
3850       APSInt LHS =
3851           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
3852       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
3853         return false;
3854       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
3855       return true;
3856     } else if (RHS.isFloat()) {
3857       APFloat FValue(0.0);
3858       return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType,
3859                                   FValue) &&
3860              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
3861              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
3862                                   Value);
3863     }
3864 
3865     Info.FFDiag(E);
3866     return false;
3867   }
3868   bool found(APFloat &Value, QualType SubobjType) {
3869     return checkConst(SubobjType) &&
3870            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
3871                                   Value) &&
3872            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
3873            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
3874   }
3875   bool foundPointer(APValue &Subobj, QualType SubobjType) {
3876     if (!checkConst(SubobjType))
3877       return false;
3878 
3879     QualType PointeeType;
3880     if (const PointerType *PT = SubobjType->getAs<PointerType>())
3881       PointeeType = PT->getPointeeType();
3882 
3883     if (PointeeType.isNull() || !RHS.isInt() ||
3884         (Opcode != BO_Add && Opcode != BO_Sub)) {
3885       Info.FFDiag(E);
3886       return false;
3887     }
3888 
3889     APSInt Offset = RHS.getInt();
3890     if (Opcode == BO_Sub)
3891       negateAsSigned(Offset);
3892 
3893     LValue LVal;
3894     LVal.setFrom(Info.Ctx, Subobj);
3895     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
3896       return false;
3897     LVal.moveInto(Subobj);
3898     return true;
3899   }
3900 };
3901 } // end anonymous namespace
3902 
3903 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
3904 
3905 /// Perform a compound assignment of LVal <op>= RVal.
3906 static bool handleCompoundAssignment(
3907     EvalInfo &Info, const Expr *E,
3908     const LValue &LVal, QualType LValType, QualType PromotedLValType,
3909     BinaryOperatorKind Opcode, const APValue &RVal) {
3910   if (LVal.Designator.Invalid)
3911     return false;
3912 
3913   if (!Info.getLangOpts().CPlusPlus14) {
3914     Info.FFDiag(E);
3915     return false;
3916   }
3917 
3918   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3919   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
3920                                              RVal };
3921   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3922 }
3923 
3924 namespace {
3925 struct IncDecSubobjectHandler {
3926   EvalInfo &Info;
3927   const UnaryOperator *E;
3928   AccessKinds AccessKind;
3929   APValue *Old;
3930 
3931   typedef bool result_type;
3932 
3933   bool checkConst(QualType QT) {
3934     // Assigning to a const object has undefined behavior.
3935     if (QT.isConstQualified()) {
3936       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3937       return false;
3938     }
3939     return true;
3940   }
3941 
3942   bool failed() { return false; }
3943   bool found(APValue &Subobj, QualType SubobjType) {
3944     // Stash the old value. Also clear Old, so we don't clobber it later
3945     // if we're post-incrementing a complex.
3946     if (Old) {
3947       *Old = Subobj;
3948       Old = nullptr;
3949     }
3950 
3951     switch (Subobj.getKind()) {
3952     case APValue::Int:
3953       return found(Subobj.getInt(), SubobjType);
3954     case APValue::Float:
3955       return found(Subobj.getFloat(), SubobjType);
3956     case APValue::ComplexInt:
3957       return found(Subobj.getComplexIntReal(),
3958                    SubobjType->castAs<ComplexType>()->getElementType()
3959                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3960     case APValue::ComplexFloat:
3961       return found(Subobj.getComplexFloatReal(),
3962                    SubobjType->castAs<ComplexType>()->getElementType()
3963                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3964     case APValue::LValue:
3965       return foundPointer(Subobj, SubobjType);
3966     default:
3967       // FIXME: can this happen?
3968       Info.FFDiag(E);
3969       return false;
3970     }
3971   }
3972   bool found(APSInt &Value, QualType SubobjType) {
3973     if (!checkConst(SubobjType))
3974       return false;
3975 
3976     if (!SubobjType->isIntegerType()) {
3977       // We don't support increment / decrement on integer-cast-to-pointer
3978       // values.
3979       Info.FFDiag(E);
3980       return false;
3981     }
3982 
3983     if (Old) *Old = APValue(Value);
3984 
3985     // bool arithmetic promotes to int, and the conversion back to bool
3986     // doesn't reduce mod 2^n, so special-case it.
3987     if (SubobjType->isBooleanType()) {
3988       if (AccessKind == AK_Increment)
3989         Value = 1;
3990       else
3991         Value = !Value;
3992       return true;
3993     }
3994 
3995     bool WasNegative = Value.isNegative();
3996     if (AccessKind == AK_Increment) {
3997       ++Value;
3998 
3999       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4000         APSInt ActualValue(Value, /*IsUnsigned*/true);
4001         return HandleOverflow(Info, E, ActualValue, SubobjType);
4002       }
4003     } else {
4004       --Value;
4005 
4006       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4007         unsigned BitWidth = Value.getBitWidth();
4008         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4009         ActualValue.setBit(BitWidth);
4010         return HandleOverflow(Info, E, ActualValue, SubobjType);
4011       }
4012     }
4013     return true;
4014   }
4015   bool found(APFloat &Value, QualType SubobjType) {
4016     if (!checkConst(SubobjType))
4017       return false;
4018 
4019     if (Old) *Old = APValue(Value);
4020 
4021     APFloat One(Value.getSemantics(), 1);
4022     if (AccessKind == AK_Increment)
4023       Value.add(One, APFloat::rmNearestTiesToEven);
4024     else
4025       Value.subtract(One, APFloat::rmNearestTiesToEven);
4026     return true;
4027   }
4028   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4029     if (!checkConst(SubobjType))
4030       return false;
4031 
4032     QualType PointeeType;
4033     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4034       PointeeType = PT->getPointeeType();
4035     else {
4036       Info.FFDiag(E);
4037       return false;
4038     }
4039 
4040     LValue LVal;
4041     LVal.setFrom(Info.Ctx, Subobj);
4042     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4043                                      AccessKind == AK_Increment ? 1 : -1))
4044       return false;
4045     LVal.moveInto(Subobj);
4046     return true;
4047   }
4048 };
4049 } // end anonymous namespace
4050 
4051 /// Perform an increment or decrement on LVal.
4052 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4053                          QualType LValType, bool IsIncrement, APValue *Old) {
4054   if (LVal.Designator.Invalid)
4055     return false;
4056 
4057   if (!Info.getLangOpts().CPlusPlus14) {
4058     Info.FFDiag(E);
4059     return false;
4060   }
4061 
4062   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4063   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4064   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4065   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4066 }
4067 
4068 /// Build an lvalue for the object argument of a member function call.
4069 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4070                                    LValue &This) {
4071   if (Object->getType()->isPointerType() && Object->isRValue())
4072     return EvaluatePointer(Object, This, Info);
4073 
4074   if (Object->isGLValue())
4075     return EvaluateLValue(Object, This, Info);
4076 
4077   if (Object->getType()->isLiteralType(Info.Ctx))
4078     return EvaluateTemporary(Object, This, Info);
4079 
4080   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4081   return false;
4082 }
4083 
4084 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4085 /// lvalue referring to the result.
4086 ///
4087 /// \param Info - Information about the ongoing evaluation.
4088 /// \param LV - An lvalue referring to the base of the member pointer.
4089 /// \param RHS - The member pointer expression.
4090 /// \param IncludeMember - Specifies whether the member itself is included in
4091 ///        the resulting LValue subobject designator. This is not possible when
4092 ///        creating a bound member function.
4093 /// \return The field or method declaration to which the member pointer refers,
4094 ///         or 0 if evaluation fails.
4095 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4096                                                   QualType LVType,
4097                                                   LValue &LV,
4098                                                   const Expr *RHS,
4099                                                   bool IncludeMember = true) {
4100   MemberPtr MemPtr;
4101   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4102     return nullptr;
4103 
4104   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4105   // member value, the behavior is undefined.
4106   if (!MemPtr.getDecl()) {
4107     // FIXME: Specific diagnostic.
4108     Info.FFDiag(RHS);
4109     return nullptr;
4110   }
4111 
4112   if (MemPtr.isDerivedMember()) {
4113     // This is a member of some derived class. Truncate LV appropriately.
4114     // The end of the derived-to-base path for the base object must match the
4115     // derived-to-base path for the member pointer.
4116     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4117         LV.Designator.Entries.size()) {
4118       Info.FFDiag(RHS);
4119       return nullptr;
4120     }
4121     unsigned PathLengthToMember =
4122         LV.Designator.Entries.size() - MemPtr.Path.size();
4123     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4124       const CXXRecordDecl *LVDecl = getAsBaseClass(
4125           LV.Designator.Entries[PathLengthToMember + I]);
4126       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4127       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4128         Info.FFDiag(RHS);
4129         return nullptr;
4130       }
4131     }
4132 
4133     // Truncate the lvalue to the appropriate derived class.
4134     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4135                             PathLengthToMember))
4136       return nullptr;
4137   } else if (!MemPtr.Path.empty()) {
4138     // Extend the LValue path with the member pointer's path.
4139     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4140                                   MemPtr.Path.size() + IncludeMember);
4141 
4142     // Walk down to the appropriate base class.
4143     if (const PointerType *PT = LVType->getAs<PointerType>())
4144       LVType = PT->getPointeeType();
4145     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4146     assert(RD && "member pointer access on non-class-type expression");
4147     // The first class in the path is that of the lvalue.
4148     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4149       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4150       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4151         return nullptr;
4152       RD = Base;
4153     }
4154     // Finally cast to the class containing the member.
4155     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4156                                 MemPtr.getContainingRecord()))
4157       return nullptr;
4158   }
4159 
4160   // Add the member. Note that we cannot build bound member functions here.
4161   if (IncludeMember) {
4162     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4163       if (!HandleLValueMember(Info, RHS, LV, FD))
4164         return nullptr;
4165     } else if (const IndirectFieldDecl *IFD =
4166                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4167       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4168         return nullptr;
4169     } else {
4170       llvm_unreachable("can't construct reference to bound member function");
4171     }
4172   }
4173 
4174   return MemPtr.getDecl();
4175 }
4176 
4177 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4178                                                   const BinaryOperator *BO,
4179                                                   LValue &LV,
4180                                                   bool IncludeMember = true) {
4181   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4182 
4183   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4184     if (Info.noteFailure()) {
4185       MemberPtr MemPtr;
4186       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4187     }
4188     return nullptr;
4189   }
4190 
4191   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4192                                    BO->getRHS(), IncludeMember);
4193 }
4194 
4195 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4196 /// the provided lvalue, which currently refers to the base object.
4197 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4198                                     LValue &Result) {
4199   SubobjectDesignator &D = Result.Designator;
4200   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4201     return false;
4202 
4203   QualType TargetQT = E->getType();
4204   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4205     TargetQT = PT->getPointeeType();
4206 
4207   // Check this cast lands within the final derived-to-base subobject path.
4208   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4209     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4210       << D.MostDerivedType << TargetQT;
4211     return false;
4212   }
4213 
4214   // Check the type of the final cast. We don't need to check the path,
4215   // since a cast can only be formed if the path is unique.
4216   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4217   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4218   const CXXRecordDecl *FinalType;
4219   if (NewEntriesSize == D.MostDerivedPathLength)
4220     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4221   else
4222     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4223   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4224     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4225       << D.MostDerivedType << TargetQT;
4226     return false;
4227   }
4228 
4229   // Truncate the lvalue to the appropriate derived class.
4230   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4231 }
4232 
4233 /// Get the value to use for a default-initialized object of type T.
4234 static APValue getDefaultInitValue(QualType T) {
4235   if (auto *RD = T->getAsCXXRecordDecl()) {
4236     if (RD->isUnion())
4237       return APValue((const FieldDecl*)nullptr);
4238 
4239     APValue Struct(APValue::UninitStruct(), RD->getNumBases(),
4240                    std::distance(RD->field_begin(), RD->field_end()));
4241 
4242     unsigned Index = 0;
4243     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4244            End = RD->bases_end(); I != End; ++I, ++Index)
4245       Struct.getStructBase(Index) = getDefaultInitValue(I->getType());
4246 
4247     for (const auto *I : RD->fields()) {
4248       if (I->isUnnamedBitfield())
4249         continue;
4250       Struct.getStructField(I->getFieldIndex()) =
4251           getDefaultInitValue(I->getType());
4252     }
4253     return Struct;
4254   }
4255 
4256   if (auto *AT =
4257           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4258     APValue Array(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4259     if (Array.hasArrayFiller())
4260       Array.getArrayFiller() = getDefaultInitValue(AT->getElementType());
4261     return Array;
4262   }
4263 
4264   return APValue::IndeterminateValue();
4265 }
4266 
4267 namespace {
4268 enum EvalStmtResult {
4269   /// Evaluation failed.
4270   ESR_Failed,
4271   /// Hit a 'return' statement.
4272   ESR_Returned,
4273   /// Evaluation succeeded.
4274   ESR_Succeeded,
4275   /// Hit a 'continue' statement.
4276   ESR_Continue,
4277   /// Hit a 'break' statement.
4278   ESR_Break,
4279   /// Still scanning for 'case' or 'default' statement.
4280   ESR_CaseNotFound
4281 };
4282 }
4283 
4284 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4285   // We don't need to evaluate the initializer for a static local.
4286   if (!VD->hasLocalStorage())
4287     return true;
4288 
4289   LValue Result;
4290   APValue &Val =
4291       Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result);
4292 
4293   const Expr *InitE = VD->getInit();
4294   if (!InitE) {
4295     Val = getDefaultInitValue(VD->getType());
4296     return true;
4297   }
4298 
4299   if (InitE->isValueDependent())
4300     return false;
4301 
4302   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4303     // Wipe out any partially-computed value, to allow tracking that this
4304     // evaluation failed.
4305     Val = APValue();
4306     return false;
4307   }
4308 
4309   return true;
4310 }
4311 
4312 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4313   bool OK = true;
4314 
4315   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4316     OK &= EvaluateVarDecl(Info, VD);
4317 
4318   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4319     for (auto *BD : DD->bindings())
4320       if (auto *VD = BD->getHoldingVar())
4321         OK &= EvaluateDecl(Info, VD);
4322 
4323   return OK;
4324 }
4325 
4326 
4327 /// Evaluate a condition (either a variable declaration or an expression).
4328 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4329                          const Expr *Cond, bool &Result) {
4330   FullExpressionRAII Scope(Info);
4331   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4332     return false;
4333   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4334     return false;
4335   return Scope.destroy();
4336 }
4337 
4338 namespace {
4339 /// A location where the result (returned value) of evaluating a
4340 /// statement should be stored.
4341 struct StmtResult {
4342   /// The APValue that should be filled in with the returned value.
4343   APValue &Value;
4344   /// The location containing the result, if any (used to support RVO).
4345   const LValue *Slot;
4346 };
4347 
4348 struct TempVersionRAII {
4349   CallStackFrame &Frame;
4350 
4351   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4352     Frame.pushTempVersion();
4353   }
4354 
4355   ~TempVersionRAII() {
4356     Frame.popTempVersion();
4357   }
4358 };
4359 
4360 }
4361 
4362 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4363                                    const Stmt *S,
4364                                    const SwitchCase *SC = nullptr);
4365 
4366 /// Evaluate the body of a loop, and translate the result as appropriate.
4367 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4368                                        const Stmt *Body,
4369                                        const SwitchCase *Case = nullptr) {
4370   BlockScopeRAII Scope(Info);
4371 
4372   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4373   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4374     ESR = ESR_Failed;
4375 
4376   switch (ESR) {
4377   case ESR_Break:
4378     return ESR_Succeeded;
4379   case ESR_Succeeded:
4380   case ESR_Continue:
4381     return ESR_Continue;
4382   case ESR_Failed:
4383   case ESR_Returned:
4384   case ESR_CaseNotFound:
4385     return ESR;
4386   }
4387   llvm_unreachable("Invalid EvalStmtResult!");
4388 }
4389 
4390 /// Evaluate a switch statement.
4391 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4392                                      const SwitchStmt *SS) {
4393   BlockScopeRAII Scope(Info);
4394 
4395   // Evaluate the switch condition.
4396   APSInt Value;
4397   {
4398     if (const Stmt *Init = SS->getInit()) {
4399       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4400       if (ESR != ESR_Succeeded) {
4401         if (ESR != ESR_Failed && !Scope.destroy())
4402           ESR = ESR_Failed;
4403         return ESR;
4404       }
4405     }
4406 
4407     FullExpressionRAII CondScope(Info);
4408     if (SS->getConditionVariable() &&
4409         !EvaluateDecl(Info, SS->getConditionVariable()))
4410       return ESR_Failed;
4411     if (!EvaluateInteger(SS->getCond(), Value, Info))
4412       return ESR_Failed;
4413     if (!CondScope.destroy())
4414       return ESR_Failed;
4415   }
4416 
4417   // Find the switch case corresponding to the value of the condition.
4418   // FIXME: Cache this lookup.
4419   const SwitchCase *Found = nullptr;
4420   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4421        SC = SC->getNextSwitchCase()) {
4422     if (isa<DefaultStmt>(SC)) {
4423       Found = SC;
4424       continue;
4425     }
4426 
4427     const CaseStmt *CS = cast<CaseStmt>(SC);
4428     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4429     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4430                               : LHS;
4431     if (LHS <= Value && Value <= RHS) {
4432       Found = SC;
4433       break;
4434     }
4435   }
4436 
4437   if (!Found)
4438     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4439 
4440   // Search the switch body for the switch case and evaluate it from there.
4441   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4442   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4443     return ESR_Failed;
4444 
4445   switch (ESR) {
4446   case ESR_Break:
4447     return ESR_Succeeded;
4448   case ESR_Succeeded:
4449   case ESR_Continue:
4450   case ESR_Failed:
4451   case ESR_Returned:
4452     return ESR;
4453   case ESR_CaseNotFound:
4454     // This can only happen if the switch case is nested within a statement
4455     // expression. We have no intention of supporting that.
4456     Info.FFDiag(Found->getBeginLoc(),
4457                 diag::note_constexpr_stmt_expr_unsupported);
4458     return ESR_Failed;
4459   }
4460   llvm_unreachable("Invalid EvalStmtResult!");
4461 }
4462 
4463 // Evaluate a statement.
4464 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4465                                    const Stmt *S, const SwitchCase *Case) {
4466   if (!Info.nextStep(S))
4467     return ESR_Failed;
4468 
4469   // If we're hunting down a 'case' or 'default' label, recurse through
4470   // substatements until we hit the label.
4471   if (Case) {
4472     switch (S->getStmtClass()) {
4473     case Stmt::CompoundStmtClass:
4474       // FIXME: Precompute which substatement of a compound statement we
4475       // would jump to, and go straight there rather than performing a
4476       // linear scan each time.
4477     case Stmt::LabelStmtClass:
4478     case Stmt::AttributedStmtClass:
4479     case Stmt::DoStmtClass:
4480       break;
4481 
4482     case Stmt::CaseStmtClass:
4483     case Stmt::DefaultStmtClass:
4484       if (Case == S)
4485         Case = nullptr;
4486       break;
4487 
4488     case Stmt::IfStmtClass: {
4489       // FIXME: Precompute which side of an 'if' we would jump to, and go
4490       // straight there rather than scanning both sides.
4491       const IfStmt *IS = cast<IfStmt>(S);
4492 
4493       // Wrap the evaluation in a block scope, in case it's a DeclStmt
4494       // preceded by our switch label.
4495       BlockScopeRAII Scope(Info);
4496 
4497       // Step into the init statement in case it brings an (uninitialized)
4498       // variable into scope.
4499       if (const Stmt *Init = IS->getInit()) {
4500         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
4501         if (ESR != ESR_CaseNotFound) {
4502           assert(ESR != ESR_Succeeded);
4503           return ESR;
4504         }
4505       }
4506 
4507       // Condition variable must be initialized if it exists.
4508       // FIXME: We can skip evaluating the body if there's a condition
4509       // variable, as there can't be any case labels within it.
4510       // (The same is true for 'for' statements.)
4511 
4512       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
4513       if (ESR == ESR_Failed)
4514         return ESR;
4515       if (ESR != ESR_CaseNotFound)
4516         return Scope.destroy() ? ESR : ESR_Failed;
4517       if (!IS->getElse())
4518         return ESR_CaseNotFound;
4519 
4520       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
4521       if (ESR == ESR_Failed)
4522         return ESR;
4523       if (ESR != ESR_CaseNotFound)
4524         return Scope.destroy() ? ESR : ESR_Failed;
4525       return ESR_CaseNotFound;
4526     }
4527 
4528     case Stmt::WhileStmtClass: {
4529       EvalStmtResult ESR =
4530           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
4531       if (ESR != ESR_Continue)
4532         return ESR;
4533       break;
4534     }
4535 
4536     case Stmt::ForStmtClass: {
4537       const ForStmt *FS = cast<ForStmt>(S);
4538       BlockScopeRAII Scope(Info);
4539 
4540       // Step into the init statement in case it brings an (uninitialized)
4541       // variable into scope.
4542       if (const Stmt *Init = FS->getInit()) {
4543         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
4544         if (ESR != ESR_CaseNotFound) {
4545           assert(ESR != ESR_Succeeded);
4546           return ESR;
4547         }
4548       }
4549 
4550       EvalStmtResult ESR =
4551           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
4552       if (ESR != ESR_Continue)
4553         return ESR;
4554       if (FS->getInc()) {
4555         FullExpressionRAII IncScope(Info);
4556         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
4557           return ESR_Failed;
4558       }
4559       break;
4560     }
4561 
4562     case Stmt::DeclStmtClass: {
4563       // Start the lifetime of any uninitialized variables we encounter. They
4564       // might be used by the selected branch of the switch.
4565       const DeclStmt *DS = cast<DeclStmt>(S);
4566       for (const auto *D : DS->decls()) {
4567         if (const auto *VD = dyn_cast<VarDecl>(D)) {
4568           if (VD->hasLocalStorage() && !VD->getInit())
4569             if (!EvaluateVarDecl(Info, VD))
4570               return ESR_Failed;
4571           // FIXME: If the variable has initialization that can't be jumped
4572           // over, bail out of any immediately-surrounding compound-statement
4573           // too. There can't be any case labels here.
4574         }
4575       }
4576       return ESR_CaseNotFound;
4577     }
4578 
4579     default:
4580       return ESR_CaseNotFound;
4581     }
4582   }
4583 
4584   switch (S->getStmtClass()) {
4585   default:
4586     if (const Expr *E = dyn_cast<Expr>(S)) {
4587       // Don't bother evaluating beyond an expression-statement which couldn't
4588       // be evaluated.
4589       // FIXME: Do we need the FullExpressionRAII object here?
4590       // VisitExprWithCleanups should create one when necessary.
4591       FullExpressionRAII Scope(Info);
4592       if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
4593         return ESR_Failed;
4594       return ESR_Succeeded;
4595     }
4596 
4597     Info.FFDiag(S->getBeginLoc());
4598     return ESR_Failed;
4599 
4600   case Stmt::NullStmtClass:
4601     return ESR_Succeeded;
4602 
4603   case Stmt::DeclStmtClass: {
4604     const DeclStmt *DS = cast<DeclStmt>(S);
4605     for (const auto *D : DS->decls()) {
4606       // Each declaration initialization is its own full-expression.
4607       FullExpressionRAII Scope(Info);
4608       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
4609         return ESR_Failed;
4610       if (!Scope.destroy())
4611         return ESR_Failed;
4612     }
4613     return ESR_Succeeded;
4614   }
4615 
4616   case Stmt::ReturnStmtClass: {
4617     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
4618     FullExpressionRAII Scope(Info);
4619     if (RetExpr &&
4620         !(Result.Slot
4621               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
4622               : Evaluate(Result.Value, Info, RetExpr)))
4623       return ESR_Failed;
4624     return Scope.destroy() ? ESR_Returned : ESR_Failed;
4625   }
4626 
4627   case Stmt::CompoundStmtClass: {
4628     BlockScopeRAII Scope(Info);
4629 
4630     const CompoundStmt *CS = cast<CompoundStmt>(S);
4631     for (const auto *BI : CS->body()) {
4632       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
4633       if (ESR == ESR_Succeeded)
4634         Case = nullptr;
4635       else if (ESR != ESR_CaseNotFound) {
4636         if (ESR != ESR_Failed && !Scope.destroy())
4637           return ESR_Failed;
4638         return ESR;
4639       }
4640     }
4641     if (Case)
4642       return ESR_CaseNotFound;
4643     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4644   }
4645 
4646   case Stmt::IfStmtClass: {
4647     const IfStmt *IS = cast<IfStmt>(S);
4648 
4649     // Evaluate the condition, as either a var decl or as an expression.
4650     BlockScopeRAII Scope(Info);
4651     if (const Stmt *Init = IS->getInit()) {
4652       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4653       if (ESR != ESR_Succeeded) {
4654         if (ESR != ESR_Failed && !Scope.destroy())
4655           return ESR_Failed;
4656         return ESR;
4657       }
4658     }
4659     bool Cond;
4660     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
4661       return ESR_Failed;
4662 
4663     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
4664       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
4665       if (ESR != ESR_Succeeded) {
4666         if (ESR != ESR_Failed && !Scope.destroy())
4667           return ESR_Failed;
4668         return ESR;
4669       }
4670     }
4671     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4672   }
4673 
4674   case Stmt::WhileStmtClass: {
4675     const WhileStmt *WS = cast<WhileStmt>(S);
4676     while (true) {
4677       BlockScopeRAII Scope(Info);
4678       bool Continue;
4679       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
4680                         Continue))
4681         return ESR_Failed;
4682       if (!Continue)
4683         break;
4684 
4685       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
4686       if (ESR != ESR_Continue) {
4687         if (ESR != ESR_Failed && !Scope.destroy())
4688           return ESR_Failed;
4689         return ESR;
4690       }
4691       if (!Scope.destroy())
4692         return ESR_Failed;
4693     }
4694     return ESR_Succeeded;
4695   }
4696 
4697   case Stmt::DoStmtClass: {
4698     const DoStmt *DS = cast<DoStmt>(S);
4699     bool Continue;
4700     do {
4701       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
4702       if (ESR != ESR_Continue)
4703         return ESR;
4704       Case = nullptr;
4705 
4706       FullExpressionRAII CondScope(Info);
4707       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
4708           !CondScope.destroy())
4709         return ESR_Failed;
4710     } while (Continue);
4711     return ESR_Succeeded;
4712   }
4713 
4714   case Stmt::ForStmtClass: {
4715     const ForStmt *FS = cast<ForStmt>(S);
4716     BlockScopeRAII ForScope(Info);
4717     if (FS->getInit()) {
4718       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
4719       if (ESR != ESR_Succeeded) {
4720         if (ESR != ESR_Failed && !ForScope.destroy())
4721           return ESR_Failed;
4722         return ESR;
4723       }
4724     }
4725     while (true) {
4726       BlockScopeRAII IterScope(Info);
4727       bool Continue = true;
4728       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
4729                                          FS->getCond(), Continue))
4730         return ESR_Failed;
4731       if (!Continue)
4732         break;
4733 
4734       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4735       if (ESR != ESR_Continue) {
4736         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
4737           return ESR_Failed;
4738         return ESR;
4739       }
4740 
4741       if (FS->getInc()) {
4742         FullExpressionRAII IncScope(Info);
4743         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
4744           return ESR_Failed;
4745       }
4746 
4747       if (!IterScope.destroy())
4748         return ESR_Failed;
4749     }
4750     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
4751   }
4752 
4753   case Stmt::CXXForRangeStmtClass: {
4754     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
4755     BlockScopeRAII Scope(Info);
4756 
4757     // Evaluate the init-statement if present.
4758     if (FS->getInit()) {
4759       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
4760       if (ESR != ESR_Succeeded) {
4761         if (ESR != ESR_Failed && !Scope.destroy())
4762           return ESR_Failed;
4763         return ESR;
4764       }
4765     }
4766 
4767     // Initialize the __range variable.
4768     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
4769     if (ESR != ESR_Succeeded) {
4770       if (ESR != ESR_Failed && !Scope.destroy())
4771         return ESR_Failed;
4772       return ESR;
4773     }
4774 
4775     // Create the __begin and __end iterators.
4776     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
4777     if (ESR != ESR_Succeeded) {
4778       if (ESR != ESR_Failed && !Scope.destroy())
4779         return ESR_Failed;
4780       return ESR;
4781     }
4782     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
4783     if (ESR != ESR_Succeeded) {
4784       if (ESR != ESR_Failed && !Scope.destroy())
4785         return ESR_Failed;
4786       return ESR;
4787     }
4788 
4789     while (true) {
4790       // Condition: __begin != __end.
4791       {
4792         bool Continue = true;
4793         FullExpressionRAII CondExpr(Info);
4794         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
4795           return ESR_Failed;
4796         if (!Continue)
4797           break;
4798       }
4799 
4800       // User's variable declaration, initialized by *__begin.
4801       BlockScopeRAII InnerScope(Info);
4802       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
4803       if (ESR != ESR_Succeeded) {
4804         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
4805           return ESR_Failed;
4806         return ESR;
4807       }
4808 
4809       // Loop body.
4810       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4811       if (ESR != ESR_Continue) {
4812         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
4813           return ESR_Failed;
4814         return ESR;
4815       }
4816 
4817       // Increment: ++__begin
4818       if (!EvaluateIgnoredValue(Info, FS->getInc()))
4819         return ESR_Failed;
4820 
4821       if (!InnerScope.destroy())
4822         return ESR_Failed;
4823     }
4824 
4825     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4826   }
4827 
4828   case Stmt::SwitchStmtClass:
4829     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
4830 
4831   case Stmt::ContinueStmtClass:
4832     return ESR_Continue;
4833 
4834   case Stmt::BreakStmtClass:
4835     return ESR_Break;
4836 
4837   case Stmt::LabelStmtClass:
4838     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
4839 
4840   case Stmt::AttributedStmtClass:
4841     // As a general principle, C++11 attributes can be ignored without
4842     // any semantic impact.
4843     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
4844                         Case);
4845 
4846   case Stmt::CaseStmtClass:
4847   case Stmt::DefaultStmtClass:
4848     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
4849   case Stmt::CXXTryStmtClass:
4850     // Evaluate try blocks by evaluating all sub statements.
4851     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
4852   }
4853 }
4854 
4855 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
4856 /// default constructor. If so, we'll fold it whether or not it's marked as
4857 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
4858 /// so we need special handling.
4859 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
4860                                            const CXXConstructorDecl *CD,
4861                                            bool IsValueInitialization) {
4862   if (!CD->isTrivial() || !CD->isDefaultConstructor())
4863     return false;
4864 
4865   // Value-initialization does not call a trivial default constructor, so such a
4866   // call is a core constant expression whether or not the constructor is
4867   // constexpr.
4868   if (!CD->isConstexpr() && !IsValueInitialization) {
4869     if (Info.getLangOpts().CPlusPlus11) {
4870       // FIXME: If DiagDecl is an implicitly-declared special member function,
4871       // we should be much more explicit about why it's not constexpr.
4872       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
4873         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
4874       Info.Note(CD->getLocation(), diag::note_declared_at);
4875     } else {
4876       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
4877     }
4878   }
4879   return true;
4880 }
4881 
4882 /// CheckConstexprFunction - Check that a function can be called in a constant
4883 /// expression.
4884 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
4885                                    const FunctionDecl *Declaration,
4886                                    const FunctionDecl *Definition,
4887                                    const Stmt *Body) {
4888   // Potential constant expressions can contain calls to declared, but not yet
4889   // defined, constexpr functions.
4890   if (Info.checkingPotentialConstantExpression() && !Definition &&
4891       Declaration->isConstexpr())
4892     return false;
4893 
4894   // Bail out if the function declaration itself is invalid.  We will
4895   // have produced a relevant diagnostic while parsing it, so just
4896   // note the problematic sub-expression.
4897   if (Declaration->isInvalidDecl()) {
4898     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4899     return false;
4900   }
4901 
4902   // DR1872: An instantiated virtual constexpr function can't be called in a
4903   // constant expression (prior to C++20). We can still constant-fold such a
4904   // call.
4905   if (!Info.Ctx.getLangOpts().CPlusPlus2a && isa<CXXMethodDecl>(Declaration) &&
4906       cast<CXXMethodDecl>(Declaration)->isVirtual())
4907     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
4908 
4909   if (Definition && Definition->isInvalidDecl()) {
4910     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4911     return false;
4912   }
4913 
4914   // Can we evaluate this function call?
4915   if (Definition && Definition->isConstexpr() && Body)
4916     return true;
4917 
4918   if (Info.getLangOpts().CPlusPlus11) {
4919     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
4920 
4921     // If this function is not constexpr because it is an inherited
4922     // non-constexpr constructor, diagnose that directly.
4923     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
4924     if (CD && CD->isInheritingConstructor()) {
4925       auto *Inherited = CD->getInheritedConstructor().getConstructor();
4926       if (!Inherited->isConstexpr())
4927         DiagDecl = CD = Inherited;
4928     }
4929 
4930     // FIXME: If DiagDecl is an implicitly-declared special member function
4931     // or an inheriting constructor, we should be much more explicit about why
4932     // it's not constexpr.
4933     if (CD && CD->isInheritingConstructor())
4934       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
4935         << CD->getInheritedConstructor().getConstructor()->getParent();
4936     else
4937       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
4938         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
4939     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
4940   } else {
4941     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4942   }
4943   return false;
4944 }
4945 
4946 namespace {
4947 struct CheckDynamicTypeHandler {
4948   AccessKinds AccessKind;
4949   typedef bool result_type;
4950   bool failed() { return false; }
4951   bool found(APValue &Subobj, QualType SubobjType) { return true; }
4952   bool found(APSInt &Value, QualType SubobjType) { return true; }
4953   bool found(APFloat &Value, QualType SubobjType) { return true; }
4954 };
4955 } // end anonymous namespace
4956 
4957 /// Check that we can access the notional vptr of an object / determine its
4958 /// dynamic type.
4959 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
4960                              AccessKinds AK, bool Polymorphic) {
4961   if (This.Designator.Invalid)
4962     return false;
4963 
4964   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
4965 
4966   if (!Obj)
4967     return false;
4968 
4969   if (!Obj.Value) {
4970     // The object is not usable in constant expressions, so we can't inspect
4971     // its value to see if it's in-lifetime or what the active union members
4972     // are. We can still check for a one-past-the-end lvalue.
4973     if (This.Designator.isOnePastTheEnd() ||
4974         This.Designator.isMostDerivedAnUnsizedArray()) {
4975       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
4976                          ? diag::note_constexpr_access_past_end
4977                          : diag::note_constexpr_access_unsized_array)
4978           << AK;
4979       return false;
4980     } else if (Polymorphic) {
4981       // Conservatively refuse to perform a polymorphic operation if we would
4982       // not be able to read a notional 'vptr' value.
4983       APValue Val;
4984       This.moveInto(Val);
4985       QualType StarThisType =
4986           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
4987       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
4988           << AK << Val.getAsString(Info.Ctx, StarThisType);
4989       return false;
4990     }
4991     return true;
4992   }
4993 
4994   CheckDynamicTypeHandler Handler{AK};
4995   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
4996 }
4997 
4998 /// Check that the pointee of the 'this' pointer in a member function call is
4999 /// either within its lifetime or in its period of construction or destruction.
5000 static bool
5001 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5002                                      const LValue &This,
5003                                      const CXXMethodDecl *NamedMember) {
5004   return checkDynamicType(
5005       Info, E, This,
5006       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5007 }
5008 
5009 struct DynamicType {
5010   /// The dynamic class type of the object.
5011   const CXXRecordDecl *Type;
5012   /// The corresponding path length in the lvalue.
5013   unsigned PathLength;
5014 };
5015 
5016 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5017                                              unsigned PathLength) {
5018   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5019       Designator.Entries.size() && "invalid path length");
5020   return (PathLength == Designator.MostDerivedPathLength)
5021              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5022              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5023 }
5024 
5025 /// Determine the dynamic type of an object.
5026 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5027                                                 LValue &This, AccessKinds AK) {
5028   // If we don't have an lvalue denoting an object of class type, there is no
5029   // meaningful dynamic type. (We consider objects of non-class type to have no
5030   // dynamic type.)
5031   if (!checkDynamicType(Info, E, This, AK, true))
5032     return None;
5033 
5034   // Refuse to compute a dynamic type in the presence of virtual bases. This
5035   // shouldn't happen other than in constant-folding situations, since literal
5036   // types can't have virtual bases.
5037   //
5038   // Note that consumers of DynamicType assume that the type has no virtual
5039   // bases, and will need modifications if this restriction is relaxed.
5040   const CXXRecordDecl *Class =
5041       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5042   if (!Class || Class->getNumVBases()) {
5043     Info.FFDiag(E);
5044     return None;
5045   }
5046 
5047   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5048   // binary search here instead. But the overwhelmingly common case is that
5049   // we're not in the middle of a constructor, so it probably doesn't matter
5050   // in practice.
5051   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5052   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5053        PathLength <= Path.size(); ++PathLength) {
5054     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5055                                       Path.slice(0, PathLength))) {
5056     case ConstructionPhase::Bases:
5057     case ConstructionPhase::DestroyingBases:
5058       // We're constructing or destroying a base class. This is not the dynamic
5059       // type.
5060       break;
5061 
5062     case ConstructionPhase::None:
5063     case ConstructionPhase::AfterBases:
5064     case ConstructionPhase::Destroying:
5065       // We've finished constructing the base classes and not yet started
5066       // destroying them again, so this is the dynamic type.
5067       return DynamicType{getBaseClassType(This.Designator, PathLength),
5068                          PathLength};
5069     }
5070   }
5071 
5072   // CWG issue 1517: we're constructing a base class of the object described by
5073   // 'This', so that object has not yet begun its period of construction and
5074   // any polymorphic operation on it results in undefined behavior.
5075   Info.FFDiag(E);
5076   return None;
5077 }
5078 
5079 /// Perform virtual dispatch.
5080 static const CXXMethodDecl *HandleVirtualDispatch(
5081     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5082     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5083   Optional<DynamicType> DynType = ComputeDynamicType(
5084       Info, E, This,
5085       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5086   if (!DynType)
5087     return nullptr;
5088 
5089   // Find the final overrider. It must be declared in one of the classes on the
5090   // path from the dynamic type to the static type.
5091   // FIXME: If we ever allow literal types to have virtual base classes, that
5092   // won't be true.
5093   const CXXMethodDecl *Callee = Found;
5094   unsigned PathLength = DynType->PathLength;
5095   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5096     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5097     const CXXMethodDecl *Overrider =
5098         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5099     if (Overrider) {
5100       Callee = Overrider;
5101       break;
5102     }
5103   }
5104 
5105   // C++2a [class.abstract]p6:
5106   //   the effect of making a virtual call to a pure virtual function [...] is
5107   //   undefined
5108   if (Callee->isPure()) {
5109     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5110     Info.Note(Callee->getLocation(), diag::note_declared_at);
5111     return nullptr;
5112   }
5113 
5114   // If necessary, walk the rest of the path to determine the sequence of
5115   // covariant adjustment steps to apply.
5116   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5117                                        Found->getReturnType())) {
5118     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5119     for (unsigned CovariantPathLength = PathLength + 1;
5120          CovariantPathLength != This.Designator.Entries.size();
5121          ++CovariantPathLength) {
5122       const CXXRecordDecl *NextClass =
5123           getBaseClassType(This.Designator, CovariantPathLength);
5124       const CXXMethodDecl *Next =
5125           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5126       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5127                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5128         CovariantAdjustmentPath.push_back(Next->getReturnType());
5129     }
5130     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5131                                          CovariantAdjustmentPath.back()))
5132       CovariantAdjustmentPath.push_back(Found->getReturnType());
5133   }
5134 
5135   // Perform 'this' adjustment.
5136   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5137     return nullptr;
5138 
5139   return Callee;
5140 }
5141 
5142 /// Perform the adjustment from a value returned by a virtual function to
5143 /// a value of the statically expected type, which may be a pointer or
5144 /// reference to a base class of the returned type.
5145 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5146                                             APValue &Result,
5147                                             ArrayRef<QualType> Path) {
5148   assert(Result.isLValue() &&
5149          "unexpected kind of APValue for covariant return");
5150   if (Result.isNullPointer())
5151     return true;
5152 
5153   LValue LVal;
5154   LVal.setFrom(Info.Ctx, Result);
5155 
5156   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5157   for (unsigned I = 1; I != Path.size(); ++I) {
5158     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5159     assert(OldClass && NewClass && "unexpected kind of covariant return");
5160     if (OldClass != NewClass &&
5161         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5162       return false;
5163     OldClass = NewClass;
5164   }
5165 
5166   LVal.moveInto(Result);
5167   return true;
5168 }
5169 
5170 /// Determine whether \p Base, which is known to be a direct base class of
5171 /// \p Derived, is a public base class.
5172 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5173                               const CXXRecordDecl *Base) {
5174   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5175     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5176     if (BaseClass && declaresSameEntity(BaseClass, Base))
5177       return BaseSpec.getAccessSpecifier() == AS_public;
5178   }
5179   llvm_unreachable("Base is not a direct base of Derived");
5180 }
5181 
5182 /// Apply the given dynamic cast operation on the provided lvalue.
5183 ///
5184 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5185 /// to find a suitable target subobject.
5186 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5187                               LValue &Ptr) {
5188   // We can't do anything with a non-symbolic pointer value.
5189   SubobjectDesignator &D = Ptr.Designator;
5190   if (D.Invalid)
5191     return false;
5192 
5193   // C++ [expr.dynamic.cast]p6:
5194   //   If v is a null pointer value, the result is a null pointer value.
5195   if (Ptr.isNullPointer() && !E->isGLValue())
5196     return true;
5197 
5198   // For all the other cases, we need the pointer to point to an object within
5199   // its lifetime / period of construction / destruction, and we need to know
5200   // its dynamic type.
5201   Optional<DynamicType> DynType =
5202       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5203   if (!DynType)
5204     return false;
5205 
5206   // C++ [expr.dynamic.cast]p7:
5207   //   If T is "pointer to cv void", then the result is a pointer to the most
5208   //   derived object
5209   if (E->getType()->isVoidPointerType())
5210     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5211 
5212   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5213   assert(C && "dynamic_cast target is not void pointer nor class");
5214   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5215 
5216   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5217     // C++ [expr.dynamic.cast]p9:
5218     if (!E->isGLValue()) {
5219       //   The value of a failed cast to pointer type is the null pointer value
5220       //   of the required result type.
5221       Ptr.setNull(Info.Ctx, E->getType());
5222       return true;
5223     }
5224 
5225     //   A failed cast to reference type throws [...] std::bad_cast.
5226     unsigned DiagKind;
5227     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5228                    DynType->Type->isDerivedFrom(C)))
5229       DiagKind = 0;
5230     else if (!Paths || Paths->begin() == Paths->end())
5231       DiagKind = 1;
5232     else if (Paths->isAmbiguous(CQT))
5233       DiagKind = 2;
5234     else {
5235       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5236       DiagKind = 3;
5237     }
5238     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5239         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5240         << Info.Ctx.getRecordType(DynType->Type)
5241         << E->getType().getUnqualifiedType();
5242     return false;
5243   };
5244 
5245   // Runtime check, phase 1:
5246   //   Walk from the base subobject towards the derived object looking for the
5247   //   target type.
5248   for (int PathLength = Ptr.Designator.Entries.size();
5249        PathLength >= (int)DynType->PathLength; --PathLength) {
5250     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5251     if (declaresSameEntity(Class, C))
5252       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5253     // We can only walk across public inheritance edges.
5254     if (PathLength > (int)DynType->PathLength &&
5255         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5256                            Class))
5257       return RuntimeCheckFailed(nullptr);
5258   }
5259 
5260   // Runtime check, phase 2:
5261   //   Search the dynamic type for an unambiguous public base of type C.
5262   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5263                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5264   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5265       Paths.front().Access == AS_public) {
5266     // Downcast to the dynamic type...
5267     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5268       return false;
5269     // ... then upcast to the chosen base class subobject.
5270     for (CXXBasePathElement &Elem : Paths.front())
5271       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5272         return false;
5273     return true;
5274   }
5275 
5276   // Otherwise, the runtime check fails.
5277   return RuntimeCheckFailed(&Paths);
5278 }
5279 
5280 namespace {
5281 struct StartLifetimeOfUnionMemberHandler {
5282   const FieldDecl *Field;
5283 
5284   static const AccessKinds AccessKind = AK_Assign;
5285 
5286   typedef bool result_type;
5287   bool failed() { return false; }
5288   bool found(APValue &Subobj, QualType SubobjType) {
5289     // We are supposed to perform no initialization but begin the lifetime of
5290     // the object. We interpret that as meaning to do what default
5291     // initialization of the object would do if all constructors involved were
5292     // trivial:
5293     //  * All base, non-variant member, and array element subobjects' lifetimes
5294     //    begin
5295     //  * No variant members' lifetimes begin
5296     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5297     assert(SubobjType->isUnionType());
5298     if (!declaresSameEntity(Subobj.getUnionField(), Field) ||
5299         !Subobj.getUnionValue().hasValue())
5300       Subobj.setUnion(Field, getDefaultInitValue(Field->getType()));
5301     return true;
5302   }
5303   bool found(APSInt &Value, QualType SubobjType) {
5304     llvm_unreachable("wrong value kind for union object");
5305   }
5306   bool found(APFloat &Value, QualType SubobjType) {
5307     llvm_unreachable("wrong value kind for union object");
5308   }
5309 };
5310 } // end anonymous namespace
5311 
5312 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5313 
5314 /// Handle a builtin simple-assignment or a call to a trivial assignment
5315 /// operator whose left-hand side might involve a union member access. If it
5316 /// does, implicitly start the lifetime of any accessed union elements per
5317 /// C++20 [class.union]5.
5318 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5319                                           const LValue &LHS) {
5320   if (LHS.InvalidBase || LHS.Designator.Invalid)
5321     return false;
5322 
5323   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5324   // C++ [class.union]p5:
5325   //   define the set S(E) of subexpressions of E as follows:
5326   unsigned PathLength = LHS.Designator.Entries.size();
5327   for (const Expr *E = LHSExpr; E != nullptr;) {
5328     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
5329     if (auto *ME = dyn_cast<MemberExpr>(E)) {
5330       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5331       // Note that we can't implicitly start the lifetime of a reference,
5332       // so we don't need to proceed any further if we reach one.
5333       if (!FD || FD->getType()->isReferenceType())
5334         break;
5335 
5336       //    ... and also contains A.B if B names a union member
5337       if (FD->getParent()->isUnion())
5338         UnionPathLengths.push_back({PathLength - 1, FD});
5339 
5340       E = ME->getBase();
5341       --PathLength;
5342       assert(declaresSameEntity(FD,
5343                                 LHS.Designator.Entries[PathLength]
5344                                     .getAsBaseOrMember().getPointer()));
5345 
5346       //   -- If E is of the form A[B] and is interpreted as a built-in array
5347       //      subscripting operator, S(E) is [S(the array operand, if any)].
5348     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5349       // Step over an ArrayToPointerDecay implicit cast.
5350       auto *Base = ASE->getBase()->IgnoreImplicit();
5351       if (!Base->getType()->isArrayType())
5352         break;
5353 
5354       E = Base;
5355       --PathLength;
5356 
5357     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5358       // Step over a derived-to-base conversion.
5359       E = ICE->getSubExpr();
5360       if (ICE->getCastKind() == CK_NoOp)
5361         continue;
5362       if (ICE->getCastKind() != CK_DerivedToBase &&
5363           ICE->getCastKind() != CK_UncheckedDerivedToBase)
5364         break;
5365       // Walk path backwards as we walk up from the base to the derived class.
5366       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5367         --PathLength;
5368         (void)Elt;
5369         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
5370                                   LHS.Designator.Entries[PathLength]
5371                                       .getAsBaseOrMember().getPointer()));
5372       }
5373 
5374     //   -- Otherwise, S(E) is empty.
5375     } else {
5376       break;
5377     }
5378   }
5379 
5380   // Common case: no unions' lifetimes are started.
5381   if (UnionPathLengths.empty())
5382     return true;
5383 
5384   //   if modification of X [would access an inactive union member], an object
5385   //   of the type of X is implicitly created
5386   CompleteObject Obj =
5387       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
5388   if (!Obj)
5389     return false;
5390   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
5391            llvm::reverse(UnionPathLengths)) {
5392     // Form a designator for the union object.
5393     SubobjectDesignator D = LHS.Designator;
5394     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
5395 
5396     StartLifetimeOfUnionMemberHandler StartLifetime{LengthAndField.second};
5397     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
5398       return false;
5399   }
5400 
5401   return true;
5402 }
5403 
5404 /// Determine if a class has any fields that might need to be copied by a
5405 /// trivial copy or move operation.
5406 static bool hasFields(const CXXRecordDecl *RD) {
5407   if (!RD || RD->isEmpty())
5408     return false;
5409   for (auto *FD : RD->fields()) {
5410     if (FD->isUnnamedBitfield())
5411       continue;
5412     return true;
5413   }
5414   for (auto &Base : RD->bases())
5415     if (hasFields(Base.getType()->getAsCXXRecordDecl()))
5416       return true;
5417   return false;
5418 }
5419 
5420 namespace {
5421 typedef SmallVector<APValue, 8> ArgVector;
5422 }
5423 
5424 /// EvaluateArgs - Evaluate the arguments to a function call.
5425 static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues,
5426                          EvalInfo &Info, const FunctionDecl *Callee) {
5427   bool Success = true;
5428   llvm::SmallBitVector ForbiddenNullArgs;
5429   if (Callee->hasAttr<NonNullAttr>()) {
5430     ForbiddenNullArgs.resize(Args.size());
5431     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
5432       if (!Attr->args_size()) {
5433         ForbiddenNullArgs.set();
5434         break;
5435       } else
5436         for (auto Idx : Attr->args()) {
5437           unsigned ASTIdx = Idx.getASTIndex();
5438           if (ASTIdx >= Args.size())
5439             continue;
5440           ForbiddenNullArgs[ASTIdx] = 1;
5441         }
5442     }
5443   }
5444   for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
5445     if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) {
5446       // If we're checking for a potential constant expression, evaluate all
5447       // initializers even if some of them fail.
5448       if (!Info.noteFailure())
5449         return false;
5450       Success = false;
5451     } else if (!ForbiddenNullArgs.empty() &&
5452                ForbiddenNullArgs[Idx] &&
5453                ArgValues[Idx].isLValue() &&
5454                ArgValues[Idx].isNullPointer()) {
5455       Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed);
5456       if (!Info.noteFailure())
5457         return false;
5458       Success = false;
5459     }
5460   }
5461   return Success;
5462 }
5463 
5464 /// Evaluate a function call.
5465 static bool HandleFunctionCall(SourceLocation CallLoc,
5466                                const FunctionDecl *Callee, const LValue *This,
5467                                ArrayRef<const Expr*> Args, const Stmt *Body,
5468                                EvalInfo &Info, APValue &Result,
5469                                const LValue *ResultSlot) {
5470   ArgVector ArgValues(Args.size());
5471   if (!EvaluateArgs(Args, ArgValues, Info, Callee))
5472     return false;
5473 
5474   if (!Info.CheckCallLimit(CallLoc))
5475     return false;
5476 
5477   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
5478 
5479   // For a trivial copy or move assignment, perform an APValue copy. This is
5480   // essential for unions, where the operations performed by the assignment
5481   // operator cannot be represented as statements.
5482   //
5483   // Skip this for non-union classes with no fields; in that case, the defaulted
5484   // copy/move does not actually read the object.
5485   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
5486   if (MD && MD->isDefaulted() &&
5487       (MD->getParent()->isUnion() ||
5488        (MD->isTrivial() && hasFields(MD->getParent())))) {
5489     assert(This &&
5490            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
5491     LValue RHS;
5492     RHS.setFrom(Info.Ctx, ArgValues[0]);
5493     APValue RHSValue;
5494     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS,
5495                                         RHSValue, MD->getParent()->isUnion()))
5496       return false;
5497     if (Info.getLangOpts().CPlusPlus2a && MD->isTrivial() &&
5498         !HandleUnionActiveMemberChange(Info, Args[0], *This))
5499       return false;
5500     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
5501                           RHSValue))
5502       return false;
5503     This->moveInto(Result);
5504     return true;
5505   } else if (MD && isLambdaCallOperator(MD)) {
5506     // We're in a lambda; determine the lambda capture field maps unless we're
5507     // just constexpr checking a lambda's call operator. constexpr checking is
5508     // done before the captures have been added to the closure object (unless
5509     // we're inferring constexpr-ness), so we don't have access to them in this
5510     // case. But since we don't need the captures to constexpr check, we can
5511     // just ignore them.
5512     if (!Info.checkingPotentialConstantExpression())
5513       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
5514                                         Frame.LambdaThisCaptureField);
5515   }
5516 
5517   StmtResult Ret = {Result, ResultSlot};
5518   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
5519   if (ESR == ESR_Succeeded) {
5520     if (Callee->getReturnType()->isVoidType())
5521       return true;
5522     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
5523   }
5524   return ESR == ESR_Returned;
5525 }
5526 
5527 /// Evaluate a constructor call.
5528 static bool HandleConstructorCall(const Expr *E, const LValue &This,
5529                                   APValue *ArgValues,
5530                                   const CXXConstructorDecl *Definition,
5531                                   EvalInfo &Info, APValue &Result) {
5532   SourceLocation CallLoc = E->getExprLoc();
5533   if (!Info.CheckCallLimit(CallLoc))
5534     return false;
5535 
5536   const CXXRecordDecl *RD = Definition->getParent();
5537   if (RD->getNumVBases()) {
5538     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
5539     return false;
5540   }
5541 
5542   EvalInfo::EvaluatingConstructorRAII EvalObj(
5543       Info,
5544       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
5545       RD->getNumBases());
5546   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
5547 
5548   // FIXME: Creating an APValue just to hold a nonexistent return value is
5549   // wasteful.
5550   APValue RetVal;
5551   StmtResult Ret = {RetVal, nullptr};
5552 
5553   // If it's a delegating constructor, delegate.
5554   if (Definition->isDelegatingConstructor()) {
5555     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
5556     {
5557       FullExpressionRAII InitScope(Info);
5558       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
5559           !InitScope.destroy())
5560         return false;
5561     }
5562     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
5563   }
5564 
5565   // For a trivial copy or move constructor, perform an APValue copy. This is
5566   // essential for unions (or classes with anonymous union members), where the
5567   // operations performed by the constructor cannot be represented by
5568   // ctor-initializers.
5569   //
5570   // Skip this for empty non-union classes; we should not perform an
5571   // lvalue-to-rvalue conversion on them because their copy constructor does not
5572   // actually read them.
5573   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
5574       (Definition->getParent()->isUnion() ||
5575        (Definition->isTrivial() && hasFields(Definition->getParent())))) {
5576     LValue RHS;
5577     RHS.setFrom(Info.Ctx, ArgValues[0]);
5578     return handleLValueToRValueConversion(
5579         Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
5580         RHS, Result, Definition->getParent()->isUnion());
5581   }
5582 
5583   // Reserve space for the struct members.
5584   if (!RD->isUnion() && !Result.hasValue())
5585     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
5586                      std::distance(RD->field_begin(), RD->field_end()));
5587 
5588   if (RD->isInvalidDecl()) return false;
5589   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5590 
5591   // A scope for temporaries lifetime-extended by reference members.
5592   BlockScopeRAII LifetimeExtendedScope(Info);
5593 
5594   bool Success = true;
5595   unsigned BasesSeen = 0;
5596 #ifndef NDEBUG
5597   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
5598 #endif
5599   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
5600   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
5601     // We might be initializing the same field again if this is an indirect
5602     // field initialization.
5603     if (FieldIt == RD->field_end() ||
5604         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
5605       assert(Indirect && "fields out of order?");
5606       return;
5607     }
5608 
5609     // Default-initialize any fields with no explicit initializer.
5610     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
5611       assert(FieldIt != RD->field_end() && "missing field?");
5612       if (!FieldIt->isUnnamedBitfield())
5613         Result.getStructField(FieldIt->getFieldIndex()) =
5614             getDefaultInitValue(FieldIt->getType());
5615     }
5616     ++FieldIt;
5617   };
5618   for (const auto *I : Definition->inits()) {
5619     LValue Subobject = This;
5620     LValue SubobjectParent = This;
5621     APValue *Value = &Result;
5622 
5623     // Determine the subobject to initialize.
5624     FieldDecl *FD = nullptr;
5625     if (I->isBaseInitializer()) {
5626       QualType BaseType(I->getBaseClass(), 0);
5627 #ifndef NDEBUG
5628       // Non-virtual base classes are initialized in the order in the class
5629       // definition. We have already checked for virtual base classes.
5630       assert(!BaseIt->isVirtual() && "virtual base for literal type");
5631       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
5632              "base class initializers not in expected order");
5633       ++BaseIt;
5634 #endif
5635       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
5636                                   BaseType->getAsCXXRecordDecl(), &Layout))
5637         return false;
5638       Value = &Result.getStructBase(BasesSeen++);
5639     } else if ((FD = I->getMember())) {
5640       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
5641         return false;
5642       if (RD->isUnion()) {
5643         Result = APValue(FD);
5644         Value = &Result.getUnionValue();
5645       } else {
5646         SkipToField(FD, false);
5647         Value = &Result.getStructField(FD->getFieldIndex());
5648       }
5649     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
5650       // Walk the indirect field decl's chain to find the object to initialize,
5651       // and make sure we've initialized every step along it.
5652       auto IndirectFieldChain = IFD->chain();
5653       for (auto *C : IndirectFieldChain) {
5654         FD = cast<FieldDecl>(C);
5655         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
5656         // Switch the union field if it differs. This happens if we had
5657         // preceding zero-initialization, and we're now initializing a union
5658         // subobject other than the first.
5659         // FIXME: In this case, the values of the other subobjects are
5660         // specified, since zero-initialization sets all padding bits to zero.
5661         if (!Value->hasValue() ||
5662             (Value->isUnion() && Value->getUnionField() != FD)) {
5663           if (CD->isUnion())
5664             *Value = APValue(FD);
5665           else
5666             // FIXME: This immediately starts the lifetime of all members of an
5667             // anonymous struct. It would be preferable to strictly start member
5668             // lifetime in initialization order.
5669             *Value = getDefaultInitValue(Info.Ctx.getRecordType(CD));
5670         }
5671         // Store Subobject as its parent before updating it for the last element
5672         // in the chain.
5673         if (C == IndirectFieldChain.back())
5674           SubobjectParent = Subobject;
5675         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
5676           return false;
5677         if (CD->isUnion())
5678           Value = &Value->getUnionValue();
5679         else {
5680           if (C == IndirectFieldChain.front() && !RD->isUnion())
5681             SkipToField(FD, true);
5682           Value = &Value->getStructField(FD->getFieldIndex());
5683         }
5684       }
5685     } else {
5686       llvm_unreachable("unknown base initializer kind");
5687     }
5688 
5689     // Need to override This for implicit field initializers as in this case
5690     // This refers to innermost anonymous struct/union containing initializer,
5691     // not to currently constructed class.
5692     const Expr *Init = I->getInit();
5693     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
5694                                   isa<CXXDefaultInitExpr>(Init));
5695     FullExpressionRAII InitScope(Info);
5696     if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
5697         (FD && FD->isBitField() &&
5698          !truncateBitfieldValue(Info, Init, *Value, FD))) {
5699       // If we're checking for a potential constant expression, evaluate all
5700       // initializers even if some of them fail.
5701       if (!Info.noteFailure())
5702         return false;
5703       Success = false;
5704     }
5705 
5706     // This is the point at which the dynamic type of the object becomes this
5707     // class type.
5708     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
5709       EvalObj.finishedConstructingBases();
5710   }
5711 
5712   // Default-initialize any remaining fields.
5713   if (!RD->isUnion()) {
5714     for (; FieldIt != RD->field_end(); ++FieldIt) {
5715       if (!FieldIt->isUnnamedBitfield())
5716         Result.getStructField(FieldIt->getFieldIndex()) =
5717             getDefaultInitValue(FieldIt->getType());
5718     }
5719   }
5720 
5721   return Success &&
5722          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
5723          LifetimeExtendedScope.destroy();
5724 }
5725 
5726 static bool HandleConstructorCall(const Expr *E, const LValue &This,
5727                                   ArrayRef<const Expr*> Args,
5728                                   const CXXConstructorDecl *Definition,
5729                                   EvalInfo &Info, APValue &Result) {
5730   ArgVector ArgValues(Args.size());
5731   if (!EvaluateArgs(Args, ArgValues, Info, Definition))
5732     return false;
5733 
5734   return HandleConstructorCall(E, This, ArgValues.data(), Definition,
5735                                Info, Result);
5736 }
5737 
5738 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
5739                                   const LValue &This, APValue &Value,
5740                                   QualType T) {
5741   // Objects can only be destroyed while they're within their lifetimes.
5742   // FIXME: We have no representation for whether an object of type nullptr_t
5743   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
5744   // as indeterminate instead?
5745   if (Value.isAbsent() && !T->isNullPtrType()) {
5746     APValue Printable;
5747     This.moveInto(Printable);
5748     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
5749       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
5750     return false;
5751   }
5752 
5753   // Invent an expression for location purposes.
5754   // FIXME: We shouldn't need to do this.
5755   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
5756 
5757   // For arrays, destroy elements right-to-left.
5758   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
5759     uint64_t Size = CAT->getSize().getZExtValue();
5760     QualType ElemT = CAT->getElementType();
5761 
5762     LValue ElemLV = This;
5763     ElemLV.addArray(Info, &LocE, CAT);
5764     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
5765       return false;
5766 
5767     // Ensure that we have actual array elements available to destroy; the
5768     // destructors might mutate the value, so we can't run them on the array
5769     // filler.
5770     if (Size && Size > Value.getArrayInitializedElts())
5771       expandArray(Value, Value.getArraySize() - 1);
5772 
5773     for (; Size != 0; --Size) {
5774       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
5775       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
5776           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
5777         return false;
5778     }
5779 
5780     // End the lifetime of this array now.
5781     Value = APValue();
5782     return true;
5783   }
5784 
5785   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5786   if (!RD) {
5787     if (T.isDestructedType()) {
5788       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
5789       return false;
5790     }
5791 
5792     Value = APValue();
5793     return true;
5794   }
5795 
5796   if (RD->getNumVBases()) {
5797     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
5798     return false;
5799   }
5800 
5801   const CXXDestructorDecl *DD = RD->getDestructor();
5802   if (!DD && !RD->hasTrivialDestructor()) {
5803     Info.FFDiag(CallLoc);
5804     return false;
5805   }
5806 
5807   if (!DD || DD->isTrivial() ||
5808       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
5809     // A trivial destructor just ends the lifetime of the object. Check for
5810     // this case before checking for a body, because we might not bother
5811     // building a body for a trivial destructor. Note that it doesn't matter
5812     // whether the destructor is constexpr in this case; all trivial
5813     // destructors are constexpr.
5814     //
5815     // If an anonymous union would be destroyed, some enclosing destructor must
5816     // have been explicitly defined, and the anonymous union destruction should
5817     // have no effect.
5818     Value = APValue();
5819     return true;
5820   }
5821 
5822   if (!Info.CheckCallLimit(CallLoc))
5823     return false;
5824 
5825   const FunctionDecl *Definition = nullptr;
5826   const Stmt *Body = DD->getBody(Definition);
5827 
5828   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
5829     return false;
5830 
5831   CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr);
5832 
5833   // We're now in the period of destruction of this object.
5834   unsigned BasesLeft = RD->getNumBases();
5835   EvalInfo::EvaluatingDestructorRAII EvalObj(
5836       Info,
5837       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
5838   if (!EvalObj.DidInsert) {
5839     // C++2a [class.dtor]p19:
5840     //   the behavior is undefined if the destructor is invoked for an object
5841     //   whose lifetime has ended
5842     // (Note that formally the lifetime ends when the period of destruction
5843     // begins, even though certain uses of the object remain valid until the
5844     // period of destruction ends.)
5845     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
5846     return false;
5847   }
5848 
5849   // FIXME: Creating an APValue just to hold a nonexistent return value is
5850   // wasteful.
5851   APValue RetVal;
5852   StmtResult Ret = {RetVal, nullptr};
5853   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
5854     return false;
5855 
5856   // A union destructor does not implicitly destroy its members.
5857   if (RD->isUnion())
5858     return true;
5859 
5860   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5861 
5862   // We don't have a good way to iterate fields in reverse, so collect all the
5863   // fields first and then walk them backwards.
5864   SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
5865   for (const FieldDecl *FD : llvm::reverse(Fields)) {
5866     if (FD->isUnnamedBitfield())
5867       continue;
5868 
5869     LValue Subobject = This;
5870     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
5871       return false;
5872 
5873     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
5874     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
5875                                FD->getType()))
5876       return false;
5877   }
5878 
5879   if (BasesLeft != 0)
5880     EvalObj.startedDestroyingBases();
5881 
5882   // Destroy base classes in reverse order.
5883   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
5884     --BasesLeft;
5885 
5886     QualType BaseType = Base.getType();
5887     LValue Subobject = This;
5888     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
5889                                 BaseType->getAsCXXRecordDecl(), &Layout))
5890       return false;
5891 
5892     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
5893     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
5894                                BaseType))
5895       return false;
5896   }
5897   assert(BasesLeft == 0 && "NumBases was wrong?");
5898 
5899   // The period of destruction ends now. The object is gone.
5900   Value = APValue();
5901   return true;
5902 }
5903 
5904 namespace {
5905 struct DestroyObjectHandler {
5906   EvalInfo &Info;
5907   const Expr *E;
5908   const LValue &This;
5909   const AccessKinds AccessKind;
5910 
5911   typedef bool result_type;
5912   bool failed() { return false; }
5913   bool found(APValue &Subobj, QualType SubobjType) {
5914     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
5915                                  SubobjType);
5916   }
5917   bool found(APSInt &Value, QualType SubobjType) {
5918     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
5919     return false;
5920   }
5921   bool found(APFloat &Value, QualType SubobjType) {
5922     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
5923     return false;
5924   }
5925 };
5926 }
5927 
5928 /// Perform a destructor or pseudo-destructor call on the given object, which
5929 /// might in general not be a complete object.
5930 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
5931                               const LValue &This, QualType ThisType) {
5932   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
5933   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
5934   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5935 }
5936 
5937 /// Destroy and end the lifetime of the given complete object.
5938 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
5939                               APValue::LValueBase LVBase, APValue &Value,
5940                               QualType T) {
5941   // If we've had an unmodeled side-effect, we can't rely on mutable state
5942   // (such as the object we're about to destroy) being correct.
5943   if (Info.EvalStatus.HasSideEffects)
5944     return false;
5945 
5946   LValue LV;
5947   LV.set({LVBase});
5948   return HandleDestructionImpl(Info, Loc, LV, Value, T);
5949 }
5950 
5951 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
5952 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
5953                                   LValue &Result) {
5954   if (Info.checkingPotentialConstantExpression() ||
5955       Info.SpeculativeEvaluationDepth)
5956     return false;
5957 
5958   // This is permitted only within a call to std::allocator<T>::allocate.
5959   auto Caller = Info.getStdAllocatorCaller("allocate");
5960   if (!Caller) {
5961     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus2a
5962                                      ? diag::note_constexpr_new_untyped
5963                                      : diag::note_constexpr_new);
5964     return false;
5965   }
5966 
5967   QualType ElemType = Caller.ElemType;
5968   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
5969     Info.FFDiag(E->getExprLoc(),
5970                 diag::note_constexpr_new_not_complete_object_type)
5971         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
5972     return false;
5973   }
5974 
5975   APSInt ByteSize;
5976   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
5977     return false;
5978   bool IsNothrow = false;
5979   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
5980     EvaluateIgnoredValue(Info, E->getArg(I));
5981     IsNothrow |= E->getType()->isNothrowT();
5982   }
5983 
5984   CharUnits ElemSize;
5985   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
5986     return false;
5987   APInt Size, Remainder;
5988   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
5989   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
5990   if (Remainder != 0) {
5991     // This likely indicates a bug in the implementation of 'std::allocator'.
5992     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
5993         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
5994     return false;
5995   }
5996 
5997   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
5998     if (IsNothrow) {
5999       Result.setNull(Info.Ctx, E->getType());
6000       return true;
6001     }
6002 
6003     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6004     return false;
6005   }
6006 
6007   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6008                                                      ArrayType::Normal, 0);
6009   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6010   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6011   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6012   return true;
6013 }
6014 
6015 static bool hasVirtualDestructor(QualType T) {
6016   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6017     if (CXXDestructorDecl *DD = RD->getDestructor())
6018       return DD->isVirtual();
6019   return false;
6020 }
6021 
6022 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6023   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6024     if (CXXDestructorDecl *DD = RD->getDestructor())
6025       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6026   return nullptr;
6027 }
6028 
6029 /// Check that the given object is a suitable pointer to a heap allocation that
6030 /// still exists and is of the right kind for the purpose of a deletion.
6031 ///
6032 /// On success, returns the heap allocation to deallocate. On failure, produces
6033 /// a diagnostic and returns None.
6034 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6035                                             const LValue &Pointer,
6036                                             DynAlloc::Kind DeallocKind) {
6037   auto PointerAsString = [&] {
6038     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6039   };
6040 
6041   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6042   if (!DA) {
6043     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6044         << PointerAsString();
6045     if (Pointer.Base)
6046       NoteLValueLocation(Info, Pointer.Base);
6047     return None;
6048   }
6049 
6050   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6051   if (!Alloc) {
6052     Info.FFDiag(E, diag::note_constexpr_double_delete);
6053     return None;
6054   }
6055 
6056   QualType AllocType = Pointer.Base.getDynamicAllocType();
6057   if (DeallocKind != (*Alloc)->getKind()) {
6058     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6059         << DeallocKind << (*Alloc)->getKind() << AllocType;
6060     NoteLValueLocation(Info, Pointer.Base);
6061     return None;
6062   }
6063 
6064   bool Subobject = false;
6065   if (DeallocKind == DynAlloc::New) {
6066     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6067                 Pointer.Designator.isOnePastTheEnd();
6068   } else {
6069     Subobject = Pointer.Designator.Entries.size() != 1 ||
6070                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6071   }
6072   if (Subobject) {
6073     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6074         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6075     return None;
6076   }
6077 
6078   return Alloc;
6079 }
6080 
6081 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6082 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6083   if (Info.checkingPotentialConstantExpression() ||
6084       Info.SpeculativeEvaluationDepth)
6085     return false;
6086 
6087   // This is permitted only within a call to std::allocator<T>::deallocate.
6088   if (!Info.getStdAllocatorCaller("deallocate")) {
6089     Info.FFDiag(E->getExprLoc());
6090     return true;
6091   }
6092 
6093   LValue Pointer;
6094   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6095     return false;
6096   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6097     EvaluateIgnoredValue(Info, E->getArg(I));
6098 
6099   if (Pointer.Designator.Invalid)
6100     return false;
6101 
6102   // Deleting a null pointer has no effect.
6103   if (Pointer.isNullPointer())
6104     return true;
6105 
6106   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6107     return false;
6108 
6109   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6110   return true;
6111 }
6112 
6113 //===----------------------------------------------------------------------===//
6114 // Generic Evaluation
6115 //===----------------------------------------------------------------------===//
6116 namespace {
6117 
6118 class BitCastBuffer {
6119   // FIXME: We're going to need bit-level granularity when we support
6120   // bit-fields.
6121   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6122   // we don't support a host or target where that is the case. Still, we should
6123   // use a more generic type in case we ever do.
6124   SmallVector<Optional<unsigned char>, 32> Bytes;
6125 
6126   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6127                 "Need at least 8 bit unsigned char");
6128 
6129   bool TargetIsLittleEndian;
6130 
6131 public:
6132   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6133       : Bytes(Width.getQuantity()),
6134         TargetIsLittleEndian(TargetIsLittleEndian) {}
6135 
6136   LLVM_NODISCARD
6137   bool readObject(CharUnits Offset, CharUnits Width,
6138                   SmallVectorImpl<unsigned char> &Output) const {
6139     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6140       // If a byte of an integer is uninitialized, then the whole integer is
6141       // uninitalized.
6142       if (!Bytes[I.getQuantity()])
6143         return false;
6144       Output.push_back(*Bytes[I.getQuantity()]);
6145     }
6146     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6147       std::reverse(Output.begin(), Output.end());
6148     return true;
6149   }
6150 
6151   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6152     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6153       std::reverse(Input.begin(), Input.end());
6154 
6155     size_t Index = 0;
6156     for (unsigned char Byte : Input) {
6157       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6158       Bytes[Offset.getQuantity() + Index] = Byte;
6159       ++Index;
6160     }
6161   }
6162 
6163   size_t size() { return Bytes.size(); }
6164 };
6165 
6166 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6167 /// target would represent the value at runtime.
6168 class APValueToBufferConverter {
6169   EvalInfo &Info;
6170   BitCastBuffer Buffer;
6171   const CastExpr *BCE;
6172 
6173   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6174                            const CastExpr *BCE)
6175       : Info(Info),
6176         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6177         BCE(BCE) {}
6178 
6179   bool visit(const APValue &Val, QualType Ty) {
6180     return visit(Val, Ty, CharUnits::fromQuantity(0));
6181   }
6182 
6183   // Write out Val with type Ty into Buffer starting at Offset.
6184   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6185     assert((size_t)Offset.getQuantity() <= Buffer.size());
6186 
6187     // As a special case, nullptr_t has an indeterminate value.
6188     if (Ty->isNullPtrType())
6189       return true;
6190 
6191     // Dig through Src to find the byte at SrcOffset.
6192     switch (Val.getKind()) {
6193     case APValue::Indeterminate:
6194     case APValue::None:
6195       return true;
6196 
6197     case APValue::Int:
6198       return visitInt(Val.getInt(), Ty, Offset);
6199     case APValue::Float:
6200       return visitFloat(Val.getFloat(), Ty, Offset);
6201     case APValue::Array:
6202       return visitArray(Val, Ty, Offset);
6203     case APValue::Struct:
6204       return visitRecord(Val, Ty, Offset);
6205 
6206     case APValue::ComplexInt:
6207     case APValue::ComplexFloat:
6208     case APValue::Vector:
6209     case APValue::FixedPoint:
6210       // FIXME: We should support these.
6211 
6212     case APValue::Union:
6213     case APValue::MemberPointer:
6214     case APValue::AddrLabelDiff: {
6215       Info.FFDiag(BCE->getBeginLoc(),
6216                   diag::note_constexpr_bit_cast_unsupported_type)
6217           << Ty;
6218       return false;
6219     }
6220 
6221     case APValue::LValue:
6222       llvm_unreachable("LValue subobject in bit_cast?");
6223     }
6224     llvm_unreachable("Unhandled APValue::ValueKind");
6225   }
6226 
6227   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6228     const RecordDecl *RD = Ty->getAsRecordDecl();
6229     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6230 
6231     // Visit the base classes.
6232     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6233       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6234         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6235         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6236 
6237         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6238                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6239           return false;
6240       }
6241     }
6242 
6243     // Visit the fields.
6244     unsigned FieldIdx = 0;
6245     for (FieldDecl *FD : RD->fields()) {
6246       if (FD->isBitField()) {
6247         Info.FFDiag(BCE->getBeginLoc(),
6248                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6249         return false;
6250       }
6251 
6252       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6253 
6254       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6255              "only bit-fields can have sub-char alignment");
6256       CharUnits FieldOffset =
6257           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6258       QualType FieldTy = FD->getType();
6259       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6260         return false;
6261       ++FieldIdx;
6262     }
6263 
6264     return true;
6265   }
6266 
6267   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6268     const auto *CAT =
6269         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6270     if (!CAT)
6271       return false;
6272 
6273     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6274     unsigned NumInitializedElts = Val.getArrayInitializedElts();
6275     unsigned ArraySize = Val.getArraySize();
6276     // First, initialize the initialized elements.
6277     for (unsigned I = 0; I != NumInitializedElts; ++I) {
6278       const APValue &SubObj = Val.getArrayInitializedElt(I);
6279       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6280         return false;
6281     }
6282 
6283     // Next, initialize the rest of the array using the filler.
6284     if (Val.hasArrayFiller()) {
6285       const APValue &Filler = Val.getArrayFiller();
6286       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6287         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6288           return false;
6289       }
6290     }
6291 
6292     return true;
6293   }
6294 
6295   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6296     CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty);
6297     SmallVector<unsigned char, 8> Bytes(Width.getQuantity());
6298     llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity());
6299     Buffer.writeObject(Offset, Bytes);
6300     return true;
6301   }
6302 
6303   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6304     APSInt AsInt(Val.bitcastToAPInt());
6305     return visitInt(AsInt, Ty, Offset);
6306   }
6307 
6308 public:
6309   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6310                                          const CastExpr *BCE) {
6311     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6312     APValueToBufferConverter Converter(Info, DstSize, BCE);
6313     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6314       return None;
6315     return Converter.Buffer;
6316   }
6317 };
6318 
6319 /// Write an BitCastBuffer into an APValue.
6320 class BufferToAPValueConverter {
6321   EvalInfo &Info;
6322   const BitCastBuffer &Buffer;
6323   const CastExpr *BCE;
6324 
6325   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6326                            const CastExpr *BCE)
6327       : Info(Info), Buffer(Buffer), BCE(BCE) {}
6328 
6329   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6330   // with an invalid type, so anything left is a deficiency on our part (FIXME).
6331   // Ideally this will be unreachable.
6332   llvm::NoneType unsupportedType(QualType Ty) {
6333     Info.FFDiag(BCE->getBeginLoc(),
6334                 diag::note_constexpr_bit_cast_unsupported_type)
6335         << Ty;
6336     return None;
6337   }
6338 
6339   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
6340                           const EnumType *EnumSugar = nullptr) {
6341     if (T->isNullPtrType()) {
6342       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
6343       return APValue((Expr *)nullptr,
6344                      /*Offset=*/CharUnits::fromQuantity(NullValue),
6345                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
6346     }
6347 
6348     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
6349     SmallVector<uint8_t, 8> Bytes;
6350     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
6351       // If this is std::byte or unsigned char, then its okay to store an
6352       // indeterminate value.
6353       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
6354       bool IsUChar =
6355           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
6356                          T->isSpecificBuiltinType(BuiltinType::Char_U));
6357       if (!IsStdByte && !IsUChar) {
6358         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
6359         Info.FFDiag(BCE->getExprLoc(),
6360                     diag::note_constexpr_bit_cast_indet_dest)
6361             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
6362         return None;
6363       }
6364 
6365       return APValue::IndeterminateValue();
6366     }
6367 
6368     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
6369     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
6370 
6371     if (T->isIntegralOrEnumerationType()) {
6372       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
6373       return APValue(Val);
6374     }
6375 
6376     if (T->isRealFloatingType()) {
6377       const llvm::fltSemantics &Semantics =
6378           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
6379       return APValue(APFloat(Semantics, Val));
6380     }
6381 
6382     return unsupportedType(QualType(T, 0));
6383   }
6384 
6385   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
6386     const RecordDecl *RD = RTy->getAsRecordDecl();
6387     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6388 
6389     unsigned NumBases = 0;
6390     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6391       NumBases = CXXRD->getNumBases();
6392 
6393     APValue ResultVal(APValue::UninitStruct(), NumBases,
6394                       std::distance(RD->field_begin(), RD->field_end()));
6395 
6396     // Visit the base classes.
6397     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6398       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6399         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6400         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6401         if (BaseDecl->isEmpty() ||
6402             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
6403           continue;
6404 
6405         Optional<APValue> SubObj = visitType(
6406             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
6407         if (!SubObj)
6408           return None;
6409         ResultVal.getStructBase(I) = *SubObj;
6410       }
6411     }
6412 
6413     // Visit the fields.
6414     unsigned FieldIdx = 0;
6415     for (FieldDecl *FD : RD->fields()) {
6416       // FIXME: We don't currently support bit-fields. A lot of the logic for
6417       // this is in CodeGen, so we need to factor it around.
6418       if (FD->isBitField()) {
6419         Info.FFDiag(BCE->getBeginLoc(),
6420                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6421         return None;
6422       }
6423 
6424       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6425       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
6426 
6427       CharUnits FieldOffset =
6428           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
6429           Offset;
6430       QualType FieldTy = FD->getType();
6431       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
6432       if (!SubObj)
6433         return None;
6434       ResultVal.getStructField(FieldIdx) = *SubObj;
6435       ++FieldIdx;
6436     }
6437 
6438     return ResultVal;
6439   }
6440 
6441   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
6442     QualType RepresentationType = Ty->getDecl()->getIntegerType();
6443     assert(!RepresentationType.isNull() &&
6444            "enum forward decl should be caught by Sema");
6445     const auto *AsBuiltin =
6446         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
6447     // Recurse into the underlying type. Treat std::byte transparently as
6448     // unsigned char.
6449     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
6450   }
6451 
6452   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
6453     size_t Size = Ty->getSize().getLimitedValue();
6454     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
6455 
6456     APValue ArrayValue(APValue::UninitArray(), Size, Size);
6457     for (size_t I = 0; I != Size; ++I) {
6458       Optional<APValue> ElementValue =
6459           visitType(Ty->getElementType(), Offset + I * ElementWidth);
6460       if (!ElementValue)
6461         return None;
6462       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
6463     }
6464 
6465     return ArrayValue;
6466   }
6467 
6468   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
6469     return unsupportedType(QualType(Ty, 0));
6470   }
6471 
6472   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
6473     QualType Can = Ty.getCanonicalType();
6474 
6475     switch (Can->getTypeClass()) {
6476 #define TYPE(Class, Base)                                                      \
6477   case Type::Class:                                                            \
6478     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
6479 #define ABSTRACT_TYPE(Class, Base)
6480 #define NON_CANONICAL_TYPE(Class, Base)                                        \
6481   case Type::Class:                                                            \
6482     llvm_unreachable("non-canonical type should be impossible!");
6483 #define DEPENDENT_TYPE(Class, Base)                                            \
6484   case Type::Class:                                                            \
6485     llvm_unreachable(                                                          \
6486         "dependent types aren't supported in the constant evaluator!");
6487 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
6488   case Type::Class:                                                            \
6489     llvm_unreachable("either dependent or not canonical!");
6490 #include "clang/AST/TypeNodes.inc"
6491     }
6492     llvm_unreachable("Unhandled Type::TypeClass");
6493   }
6494 
6495 public:
6496   // Pull out a full value of type DstType.
6497   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
6498                                    const CastExpr *BCE) {
6499     BufferToAPValueConverter Converter(Info, Buffer, BCE);
6500     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
6501   }
6502 };
6503 
6504 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
6505                                                  QualType Ty, EvalInfo *Info,
6506                                                  const ASTContext &Ctx,
6507                                                  bool CheckingDest) {
6508   Ty = Ty.getCanonicalType();
6509 
6510   auto diag = [&](int Reason) {
6511     if (Info)
6512       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
6513           << CheckingDest << (Reason == 4) << Reason;
6514     return false;
6515   };
6516   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
6517     if (Info)
6518       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
6519           << NoteTy << Construct << Ty;
6520     return false;
6521   };
6522 
6523   if (Ty->isUnionType())
6524     return diag(0);
6525   if (Ty->isPointerType())
6526     return diag(1);
6527   if (Ty->isMemberPointerType())
6528     return diag(2);
6529   if (Ty.isVolatileQualified())
6530     return diag(3);
6531 
6532   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
6533     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
6534       for (CXXBaseSpecifier &BS : CXXRD->bases())
6535         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
6536                                                   CheckingDest))
6537           return note(1, BS.getType(), BS.getBeginLoc());
6538     }
6539     for (FieldDecl *FD : Record->fields()) {
6540       if (FD->getType()->isReferenceType())
6541         return diag(4);
6542       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
6543                                                 CheckingDest))
6544         return note(0, FD->getType(), FD->getBeginLoc());
6545     }
6546   }
6547 
6548   if (Ty->isArrayType() &&
6549       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
6550                                             Info, Ctx, CheckingDest))
6551     return false;
6552 
6553   return true;
6554 }
6555 
6556 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
6557                                              const ASTContext &Ctx,
6558                                              const CastExpr *BCE) {
6559   bool DestOK = checkBitCastConstexprEligibilityType(
6560       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
6561   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
6562                                 BCE->getBeginLoc(),
6563                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
6564   return SourceOK;
6565 }
6566 
6567 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
6568                                         APValue &SourceValue,
6569                                         const CastExpr *BCE) {
6570   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
6571          "no host or target supports non 8-bit chars");
6572   assert(SourceValue.isLValue() &&
6573          "LValueToRValueBitcast requires an lvalue operand!");
6574 
6575   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
6576     return false;
6577 
6578   LValue SourceLValue;
6579   APValue SourceRValue;
6580   SourceLValue.setFrom(Info.Ctx, SourceValue);
6581   if (!handleLValueToRValueConversion(
6582           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
6583           SourceRValue, /*WantObjectRepresentation=*/true))
6584     return false;
6585 
6586   // Read out SourceValue into a char buffer.
6587   Optional<BitCastBuffer> Buffer =
6588       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
6589   if (!Buffer)
6590     return false;
6591 
6592   // Write out the buffer into a new APValue.
6593   Optional<APValue> MaybeDestValue =
6594       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
6595   if (!MaybeDestValue)
6596     return false;
6597 
6598   DestValue = std::move(*MaybeDestValue);
6599   return true;
6600 }
6601 
6602 template <class Derived>
6603 class ExprEvaluatorBase
6604   : public ConstStmtVisitor<Derived, bool> {
6605 private:
6606   Derived &getDerived() { return static_cast<Derived&>(*this); }
6607   bool DerivedSuccess(const APValue &V, const Expr *E) {
6608     return getDerived().Success(V, E);
6609   }
6610   bool DerivedZeroInitialization(const Expr *E) {
6611     return getDerived().ZeroInitialization(E);
6612   }
6613 
6614   // Check whether a conditional operator with a non-constant condition is a
6615   // potential constant expression. If neither arm is a potential constant
6616   // expression, then the conditional operator is not either.
6617   template<typename ConditionalOperator>
6618   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
6619     assert(Info.checkingPotentialConstantExpression());
6620 
6621     // Speculatively evaluate both arms.
6622     SmallVector<PartialDiagnosticAt, 8> Diag;
6623     {
6624       SpeculativeEvaluationRAII Speculate(Info, &Diag);
6625       StmtVisitorTy::Visit(E->getFalseExpr());
6626       if (Diag.empty())
6627         return;
6628     }
6629 
6630     {
6631       SpeculativeEvaluationRAII Speculate(Info, &Diag);
6632       Diag.clear();
6633       StmtVisitorTy::Visit(E->getTrueExpr());
6634       if (Diag.empty())
6635         return;
6636     }
6637 
6638     Error(E, diag::note_constexpr_conditional_never_const);
6639   }
6640 
6641 
6642   template<typename ConditionalOperator>
6643   bool HandleConditionalOperator(const ConditionalOperator *E) {
6644     bool BoolResult;
6645     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
6646       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
6647         CheckPotentialConstantConditional(E);
6648         return false;
6649       }
6650       if (Info.noteFailure()) {
6651         StmtVisitorTy::Visit(E->getTrueExpr());
6652         StmtVisitorTy::Visit(E->getFalseExpr());
6653       }
6654       return false;
6655     }
6656 
6657     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
6658     return StmtVisitorTy::Visit(EvalExpr);
6659   }
6660 
6661 protected:
6662   EvalInfo &Info;
6663   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
6664   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
6665 
6666   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6667     return Info.CCEDiag(E, D);
6668   }
6669 
6670   bool ZeroInitialization(const Expr *E) { return Error(E); }
6671 
6672 public:
6673   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
6674 
6675   EvalInfo &getEvalInfo() { return Info; }
6676 
6677   /// Report an evaluation error. This should only be called when an error is
6678   /// first discovered. When propagating an error, just return false.
6679   bool Error(const Expr *E, diag::kind D) {
6680     Info.FFDiag(E, D);
6681     return false;
6682   }
6683   bool Error(const Expr *E) {
6684     return Error(E, diag::note_invalid_subexpr_in_const_expr);
6685   }
6686 
6687   bool VisitStmt(const Stmt *) {
6688     llvm_unreachable("Expression evaluator should not be called on stmts");
6689   }
6690   bool VisitExpr(const Expr *E) {
6691     return Error(E);
6692   }
6693 
6694   bool VisitConstantExpr(const ConstantExpr *E)
6695     { return StmtVisitorTy::Visit(E->getSubExpr()); }
6696   bool VisitParenExpr(const ParenExpr *E)
6697     { return StmtVisitorTy::Visit(E->getSubExpr()); }
6698   bool VisitUnaryExtension(const UnaryOperator *E)
6699     { return StmtVisitorTy::Visit(E->getSubExpr()); }
6700   bool VisitUnaryPlus(const UnaryOperator *E)
6701     { return StmtVisitorTy::Visit(E->getSubExpr()); }
6702   bool VisitChooseExpr(const ChooseExpr *E)
6703     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
6704   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
6705     { return StmtVisitorTy::Visit(E->getResultExpr()); }
6706   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
6707     { return StmtVisitorTy::Visit(E->getReplacement()); }
6708   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
6709     TempVersionRAII RAII(*Info.CurrentCall);
6710     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
6711     return StmtVisitorTy::Visit(E->getExpr());
6712   }
6713   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
6714     TempVersionRAII RAII(*Info.CurrentCall);
6715     // The initializer may not have been parsed yet, or might be erroneous.
6716     if (!E->getExpr())
6717       return Error(E);
6718     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
6719     return StmtVisitorTy::Visit(E->getExpr());
6720   }
6721 
6722   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
6723     FullExpressionRAII Scope(Info);
6724     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
6725   }
6726 
6727   // Temporaries are registered when created, so we don't care about
6728   // CXXBindTemporaryExpr.
6729   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
6730     return StmtVisitorTy::Visit(E->getSubExpr());
6731   }
6732 
6733   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
6734     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
6735     return static_cast<Derived*>(this)->VisitCastExpr(E);
6736   }
6737   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
6738     if (!Info.Ctx.getLangOpts().CPlusPlus2a)
6739       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
6740     return static_cast<Derived*>(this)->VisitCastExpr(E);
6741   }
6742   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
6743     return static_cast<Derived*>(this)->VisitCastExpr(E);
6744   }
6745 
6746   bool VisitBinaryOperator(const BinaryOperator *E) {
6747     switch (E->getOpcode()) {
6748     default:
6749       return Error(E);
6750 
6751     case BO_Comma:
6752       VisitIgnoredValue(E->getLHS());
6753       return StmtVisitorTy::Visit(E->getRHS());
6754 
6755     case BO_PtrMemD:
6756     case BO_PtrMemI: {
6757       LValue Obj;
6758       if (!HandleMemberPointerAccess(Info, E, Obj))
6759         return false;
6760       APValue Result;
6761       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
6762         return false;
6763       return DerivedSuccess(Result, E);
6764     }
6765     }
6766   }
6767 
6768   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
6769     return StmtVisitorTy::Visit(E->getSemanticForm());
6770   }
6771 
6772   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
6773     // Evaluate and cache the common expression. We treat it as a temporary,
6774     // even though it's not quite the same thing.
6775     LValue CommonLV;
6776     if (!Evaluate(Info.CurrentCall->createTemporary(
6777                       E->getOpaqueValue(),
6778                       getStorageType(Info.Ctx, E->getOpaqueValue()), false,
6779                       CommonLV),
6780                   Info, E->getCommon()))
6781       return false;
6782 
6783     return HandleConditionalOperator(E);
6784   }
6785 
6786   bool VisitConditionalOperator(const ConditionalOperator *E) {
6787     bool IsBcpCall = false;
6788     // If the condition (ignoring parens) is a __builtin_constant_p call,
6789     // the result is a constant expression if it can be folded without
6790     // side-effects. This is an important GNU extension. See GCC PR38377
6791     // for discussion.
6792     if (const CallExpr *CallCE =
6793           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
6794       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
6795         IsBcpCall = true;
6796 
6797     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
6798     // constant expression; we can't check whether it's potentially foldable.
6799     // FIXME: We should instead treat __builtin_constant_p as non-constant if
6800     // it would return 'false' in this mode.
6801     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
6802       return false;
6803 
6804     FoldConstant Fold(Info, IsBcpCall);
6805     if (!HandleConditionalOperator(E)) {
6806       Fold.keepDiagnostics();
6807       return false;
6808     }
6809 
6810     return true;
6811   }
6812 
6813   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
6814     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
6815       return DerivedSuccess(*Value, E);
6816 
6817     const Expr *Source = E->getSourceExpr();
6818     if (!Source)
6819       return Error(E);
6820     if (Source == E) { // sanity checking.
6821       assert(0 && "OpaqueValueExpr recursively refers to itself");
6822       return Error(E);
6823     }
6824     return StmtVisitorTy::Visit(Source);
6825   }
6826 
6827   bool VisitCallExpr(const CallExpr *E) {
6828     APValue Result;
6829     if (!handleCallExpr(E, Result, nullptr))
6830       return false;
6831     return DerivedSuccess(Result, E);
6832   }
6833 
6834   bool handleCallExpr(const CallExpr *E, APValue &Result,
6835                      const LValue *ResultSlot) {
6836     const Expr *Callee = E->getCallee()->IgnoreParens();
6837     QualType CalleeType = Callee->getType();
6838 
6839     const FunctionDecl *FD = nullptr;
6840     LValue *This = nullptr, ThisVal;
6841     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
6842     bool HasQualifier = false;
6843 
6844     // Extract function decl and 'this' pointer from the callee.
6845     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
6846       const CXXMethodDecl *Member = nullptr;
6847       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
6848         // Explicit bound member calls, such as x.f() or p->g();
6849         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
6850           return false;
6851         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
6852         if (!Member)
6853           return Error(Callee);
6854         This = &ThisVal;
6855         HasQualifier = ME->hasQualifier();
6856       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
6857         // Indirect bound member calls ('.*' or '->*').
6858         const ValueDecl *D =
6859             HandleMemberPointerAccess(Info, BE, ThisVal, false);
6860         if (!D)
6861           return false;
6862         Member = dyn_cast<CXXMethodDecl>(D);
6863         if (!Member)
6864           return Error(Callee);
6865         This = &ThisVal;
6866       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
6867         if (!Info.getLangOpts().CPlusPlus2a)
6868           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
6869         // FIXME: If pseudo-destructor calls ever start ending the lifetime of
6870         // their callee, we should start calling HandleDestruction here.
6871         // For now, we just evaluate the object argument and discard it.
6872         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal);
6873       } else
6874         return Error(Callee);
6875       FD = Member;
6876     } else if (CalleeType->isFunctionPointerType()) {
6877       LValue Call;
6878       if (!EvaluatePointer(Callee, Call, Info))
6879         return false;
6880 
6881       if (!Call.getLValueOffset().isZero())
6882         return Error(Callee);
6883       FD = dyn_cast_or_null<FunctionDecl>(
6884                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
6885       if (!FD)
6886         return Error(Callee);
6887       // Don't call function pointers which have been cast to some other type.
6888       // Per DR (no number yet), the caller and callee can differ in noexcept.
6889       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
6890         CalleeType->getPointeeType(), FD->getType())) {
6891         return Error(E);
6892       }
6893 
6894       // Overloaded operator calls to member functions are represented as normal
6895       // calls with '*this' as the first argument.
6896       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6897       if (MD && !MD->isStatic()) {
6898         // FIXME: When selecting an implicit conversion for an overloaded
6899         // operator delete, we sometimes try to evaluate calls to conversion
6900         // operators without a 'this' parameter!
6901         if (Args.empty())
6902           return Error(E);
6903 
6904         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
6905           return false;
6906         This = &ThisVal;
6907         Args = Args.slice(1);
6908       } else if (MD && MD->isLambdaStaticInvoker()) {
6909         // Map the static invoker for the lambda back to the call operator.
6910         // Conveniently, we don't have to slice out the 'this' argument (as is
6911         // being done for the non-static case), since a static member function
6912         // doesn't have an implicit argument passed in.
6913         const CXXRecordDecl *ClosureClass = MD->getParent();
6914         assert(
6915             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
6916             "Number of captures must be zero for conversion to function-ptr");
6917 
6918         const CXXMethodDecl *LambdaCallOp =
6919             ClosureClass->getLambdaCallOperator();
6920 
6921         // Set 'FD', the function that will be called below, to the call
6922         // operator.  If the closure object represents a generic lambda, find
6923         // the corresponding specialization of the call operator.
6924 
6925         if (ClosureClass->isGenericLambda()) {
6926           assert(MD->isFunctionTemplateSpecialization() &&
6927                  "A generic lambda's static-invoker function must be a "
6928                  "template specialization");
6929           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
6930           FunctionTemplateDecl *CallOpTemplate =
6931               LambdaCallOp->getDescribedFunctionTemplate();
6932           void *InsertPos = nullptr;
6933           FunctionDecl *CorrespondingCallOpSpecialization =
6934               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
6935           assert(CorrespondingCallOpSpecialization &&
6936                  "We must always have a function call operator specialization "
6937                  "that corresponds to our static invoker specialization");
6938           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
6939         } else
6940           FD = LambdaCallOp;
6941       } else if (FD->isReplaceableGlobalAllocationFunction()) {
6942         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
6943             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
6944           LValue Ptr;
6945           if (!HandleOperatorNewCall(Info, E, Ptr))
6946             return false;
6947           Ptr.moveInto(Result);
6948           return true;
6949         } else {
6950           return HandleOperatorDeleteCall(Info, E);
6951         }
6952       }
6953     } else
6954       return Error(E);
6955 
6956     SmallVector<QualType, 4> CovariantAdjustmentPath;
6957     if (This) {
6958       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
6959       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
6960         // Perform virtual dispatch, if necessary.
6961         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
6962                                    CovariantAdjustmentPath);
6963         if (!FD)
6964           return false;
6965       } else {
6966         // Check that the 'this' pointer points to an object of the right type.
6967         // FIXME: If this is an assignment operator call, we may need to change
6968         // the active union member before we check this.
6969         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
6970           return false;
6971       }
6972     }
6973 
6974     // Destructor calls are different enough that they have their own codepath.
6975     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
6976       assert(This && "no 'this' pointer for destructor call");
6977       return HandleDestruction(Info, E, *This,
6978                                Info.Ctx.getRecordType(DD->getParent()));
6979     }
6980 
6981     const FunctionDecl *Definition = nullptr;
6982     Stmt *Body = FD->getBody(Definition);
6983 
6984     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
6985         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
6986                             Result, ResultSlot))
6987       return false;
6988 
6989     if (!CovariantAdjustmentPath.empty() &&
6990         !HandleCovariantReturnAdjustment(Info, E, Result,
6991                                          CovariantAdjustmentPath))
6992       return false;
6993 
6994     return true;
6995   }
6996 
6997   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
6998     return StmtVisitorTy::Visit(E->getInitializer());
6999   }
7000   bool VisitInitListExpr(const InitListExpr *E) {
7001     if (E->getNumInits() == 0)
7002       return DerivedZeroInitialization(E);
7003     if (E->getNumInits() == 1)
7004       return StmtVisitorTy::Visit(E->getInit(0));
7005     return Error(E);
7006   }
7007   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7008     return DerivedZeroInitialization(E);
7009   }
7010   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7011     return DerivedZeroInitialization(E);
7012   }
7013   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7014     return DerivedZeroInitialization(E);
7015   }
7016 
7017   /// A member expression where the object is a prvalue is itself a prvalue.
7018   bool VisitMemberExpr(const MemberExpr *E) {
7019     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7020            "missing temporary materialization conversion");
7021     assert(!E->isArrow() && "missing call to bound member function?");
7022 
7023     APValue Val;
7024     if (!Evaluate(Val, Info, E->getBase()))
7025       return false;
7026 
7027     QualType BaseTy = E->getBase()->getType();
7028 
7029     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7030     if (!FD) return Error(E);
7031     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7032     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7033            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7034 
7035     // Note: there is no lvalue base here. But this case should only ever
7036     // happen in C or in C++98, where we cannot be evaluating a constexpr
7037     // constructor, which is the only case the base matters.
7038     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7039     SubobjectDesignator Designator(BaseTy);
7040     Designator.addDeclUnchecked(FD);
7041 
7042     APValue Result;
7043     return extractSubobject(Info, E, Obj, Designator, Result) &&
7044            DerivedSuccess(Result, E);
7045   }
7046 
7047   bool VisitCastExpr(const CastExpr *E) {
7048     switch (E->getCastKind()) {
7049     default:
7050       break;
7051 
7052     case CK_AtomicToNonAtomic: {
7053       APValue AtomicVal;
7054       // This does not need to be done in place even for class/array types:
7055       // atomic-to-non-atomic conversion implies copying the object
7056       // representation.
7057       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7058         return false;
7059       return DerivedSuccess(AtomicVal, E);
7060     }
7061 
7062     case CK_NoOp:
7063     case CK_UserDefinedConversion:
7064       return StmtVisitorTy::Visit(E->getSubExpr());
7065 
7066     case CK_LValueToRValue: {
7067       LValue LVal;
7068       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7069         return false;
7070       APValue RVal;
7071       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7072       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7073                                           LVal, RVal))
7074         return false;
7075       return DerivedSuccess(RVal, E);
7076     }
7077     case CK_LValueToRValueBitCast: {
7078       APValue DestValue, SourceValue;
7079       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7080         return false;
7081       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7082         return false;
7083       return DerivedSuccess(DestValue, E);
7084     }
7085     }
7086 
7087     return Error(E);
7088   }
7089 
7090   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7091     return VisitUnaryPostIncDec(UO);
7092   }
7093   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7094     return VisitUnaryPostIncDec(UO);
7095   }
7096   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7097     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7098       return Error(UO);
7099 
7100     LValue LVal;
7101     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7102       return false;
7103     APValue RVal;
7104     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7105                       UO->isIncrementOp(), &RVal))
7106       return false;
7107     return DerivedSuccess(RVal, UO);
7108   }
7109 
7110   bool VisitStmtExpr(const StmtExpr *E) {
7111     // We will have checked the full-expressions inside the statement expression
7112     // when they were completed, and don't need to check them again now.
7113     if (Info.checkingForUndefinedBehavior())
7114       return Error(E);
7115 
7116     const CompoundStmt *CS = E->getSubStmt();
7117     if (CS->body_empty())
7118       return true;
7119 
7120     BlockScopeRAII Scope(Info);
7121     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7122                                            BE = CS->body_end();
7123          /**/; ++BI) {
7124       if (BI + 1 == BE) {
7125         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7126         if (!FinalExpr) {
7127           Info.FFDiag((*BI)->getBeginLoc(),
7128                       diag::note_constexpr_stmt_expr_unsupported);
7129           return false;
7130         }
7131         return this->Visit(FinalExpr) && Scope.destroy();
7132       }
7133 
7134       APValue ReturnValue;
7135       StmtResult Result = { ReturnValue, nullptr };
7136       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7137       if (ESR != ESR_Succeeded) {
7138         // FIXME: If the statement-expression terminated due to 'return',
7139         // 'break', or 'continue', it would be nice to propagate that to
7140         // the outer statement evaluation rather than bailing out.
7141         if (ESR != ESR_Failed)
7142           Info.FFDiag((*BI)->getBeginLoc(),
7143                       diag::note_constexpr_stmt_expr_unsupported);
7144         return false;
7145       }
7146     }
7147 
7148     llvm_unreachable("Return from function from the loop above.");
7149   }
7150 
7151   /// Visit a value which is evaluated, but whose value is ignored.
7152   void VisitIgnoredValue(const Expr *E) {
7153     EvaluateIgnoredValue(Info, E);
7154   }
7155 
7156   /// Potentially visit a MemberExpr's base expression.
7157   void VisitIgnoredBaseExpression(const Expr *E) {
7158     // While MSVC doesn't evaluate the base expression, it does diagnose the
7159     // presence of side-effecting behavior.
7160     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7161       return;
7162     VisitIgnoredValue(E);
7163   }
7164 };
7165 
7166 } // namespace
7167 
7168 //===----------------------------------------------------------------------===//
7169 // Common base class for lvalue and temporary evaluation.
7170 //===----------------------------------------------------------------------===//
7171 namespace {
7172 template<class Derived>
7173 class LValueExprEvaluatorBase
7174   : public ExprEvaluatorBase<Derived> {
7175 protected:
7176   LValue &Result;
7177   bool InvalidBaseOK;
7178   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7179   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7180 
7181   bool Success(APValue::LValueBase B) {
7182     Result.set(B);
7183     return true;
7184   }
7185 
7186   bool evaluatePointer(const Expr *E, LValue &Result) {
7187     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7188   }
7189 
7190 public:
7191   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7192       : ExprEvaluatorBaseTy(Info), Result(Result),
7193         InvalidBaseOK(InvalidBaseOK) {}
7194 
7195   bool Success(const APValue &V, const Expr *E) {
7196     Result.setFrom(this->Info.Ctx, V);
7197     return true;
7198   }
7199 
7200   bool VisitMemberExpr(const MemberExpr *E) {
7201     // Handle non-static data members.
7202     QualType BaseTy;
7203     bool EvalOK;
7204     if (E->isArrow()) {
7205       EvalOK = evaluatePointer(E->getBase(), Result);
7206       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7207     } else if (E->getBase()->isRValue()) {
7208       assert(E->getBase()->getType()->isRecordType());
7209       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7210       BaseTy = E->getBase()->getType();
7211     } else {
7212       EvalOK = this->Visit(E->getBase());
7213       BaseTy = E->getBase()->getType();
7214     }
7215     if (!EvalOK) {
7216       if (!InvalidBaseOK)
7217         return false;
7218       Result.setInvalid(E);
7219       return true;
7220     }
7221 
7222     const ValueDecl *MD = E->getMemberDecl();
7223     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7224       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7225              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7226       (void)BaseTy;
7227       if (!HandleLValueMember(this->Info, E, Result, FD))
7228         return false;
7229     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
7230       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
7231         return false;
7232     } else
7233       return this->Error(E);
7234 
7235     if (MD->getType()->isReferenceType()) {
7236       APValue RefValue;
7237       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
7238                                           RefValue))
7239         return false;
7240       return Success(RefValue, E);
7241     }
7242     return true;
7243   }
7244 
7245   bool VisitBinaryOperator(const BinaryOperator *E) {
7246     switch (E->getOpcode()) {
7247     default:
7248       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7249 
7250     case BO_PtrMemD:
7251     case BO_PtrMemI:
7252       return HandleMemberPointerAccess(this->Info, E, Result);
7253     }
7254   }
7255 
7256   bool VisitCastExpr(const CastExpr *E) {
7257     switch (E->getCastKind()) {
7258     default:
7259       return ExprEvaluatorBaseTy::VisitCastExpr(E);
7260 
7261     case CK_DerivedToBase:
7262     case CK_UncheckedDerivedToBase:
7263       if (!this->Visit(E->getSubExpr()))
7264         return false;
7265 
7266       // Now figure out the necessary offset to add to the base LV to get from
7267       // the derived class to the base class.
7268       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
7269                                   Result);
7270     }
7271   }
7272 };
7273 }
7274 
7275 //===----------------------------------------------------------------------===//
7276 // LValue Evaluation
7277 //
7278 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
7279 // function designators (in C), decl references to void objects (in C), and
7280 // temporaries (if building with -Wno-address-of-temporary).
7281 //
7282 // LValue evaluation produces values comprising a base expression of one of the
7283 // following types:
7284 // - Declarations
7285 //  * VarDecl
7286 //  * FunctionDecl
7287 // - Literals
7288 //  * CompoundLiteralExpr in C (and in global scope in C++)
7289 //  * StringLiteral
7290 //  * PredefinedExpr
7291 //  * ObjCStringLiteralExpr
7292 //  * ObjCEncodeExpr
7293 //  * AddrLabelExpr
7294 //  * BlockExpr
7295 //  * CallExpr for a MakeStringConstant builtin
7296 // - typeid(T) expressions, as TypeInfoLValues
7297 // - Locals and temporaries
7298 //  * MaterializeTemporaryExpr
7299 //  * Any Expr, with a CallIndex indicating the function in which the temporary
7300 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
7301 //    from the AST (FIXME).
7302 //  * A MaterializeTemporaryExpr that has static storage duration, with no
7303 //    CallIndex, for a lifetime-extended temporary.
7304 // plus an offset in bytes.
7305 //===----------------------------------------------------------------------===//
7306 namespace {
7307 class LValueExprEvaluator
7308   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
7309 public:
7310   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
7311     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
7312 
7313   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
7314   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
7315 
7316   bool VisitDeclRefExpr(const DeclRefExpr *E);
7317   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
7318   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
7319   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
7320   bool VisitMemberExpr(const MemberExpr *E);
7321   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
7322   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
7323   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
7324   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
7325   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
7326   bool VisitUnaryDeref(const UnaryOperator *E);
7327   bool VisitUnaryReal(const UnaryOperator *E);
7328   bool VisitUnaryImag(const UnaryOperator *E);
7329   bool VisitUnaryPreInc(const UnaryOperator *UO) {
7330     return VisitUnaryPreIncDec(UO);
7331   }
7332   bool VisitUnaryPreDec(const UnaryOperator *UO) {
7333     return VisitUnaryPreIncDec(UO);
7334   }
7335   bool VisitBinAssign(const BinaryOperator *BO);
7336   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
7337 
7338   bool VisitCastExpr(const CastExpr *E) {
7339     switch (E->getCastKind()) {
7340     default:
7341       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
7342 
7343     case CK_LValueBitCast:
7344       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7345       if (!Visit(E->getSubExpr()))
7346         return false;
7347       Result.Designator.setInvalid();
7348       return true;
7349 
7350     case CK_BaseToDerived:
7351       if (!Visit(E->getSubExpr()))
7352         return false;
7353       return HandleBaseToDerivedCast(Info, E, Result);
7354 
7355     case CK_Dynamic:
7356       if (!Visit(E->getSubExpr()))
7357         return false;
7358       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
7359     }
7360   }
7361 };
7362 } // end anonymous namespace
7363 
7364 /// Evaluate an expression as an lvalue. This can be legitimately called on
7365 /// expressions which are not glvalues, in three cases:
7366 ///  * function designators in C, and
7367 ///  * "extern void" objects
7368 ///  * @selector() expressions in Objective-C
7369 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
7370                            bool InvalidBaseOK) {
7371   assert(E->isGLValue() || E->getType()->isFunctionType() ||
7372          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
7373   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
7374 }
7375 
7376 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
7377   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
7378     return Success(FD);
7379   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
7380     return VisitVarDecl(E, VD);
7381   if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
7382     return Visit(BD->getBinding());
7383   return Error(E);
7384 }
7385 
7386 
7387 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
7388 
7389   // If we are within a lambda's call operator, check whether the 'VD' referred
7390   // to within 'E' actually represents a lambda-capture that maps to a
7391   // data-member/field within the closure object, and if so, evaluate to the
7392   // field or what the field refers to.
7393   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
7394       isa<DeclRefExpr>(E) &&
7395       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
7396     // We don't always have a complete capture-map when checking or inferring if
7397     // the function call operator meets the requirements of a constexpr function
7398     // - but we don't need to evaluate the captures to determine constexprness
7399     // (dcl.constexpr C++17).
7400     if (Info.checkingPotentialConstantExpression())
7401       return false;
7402 
7403     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
7404       // Start with 'Result' referring to the complete closure object...
7405       Result = *Info.CurrentCall->This;
7406       // ... then update it to refer to the field of the closure object
7407       // that represents the capture.
7408       if (!HandleLValueMember(Info, E, Result, FD))
7409         return false;
7410       // And if the field is of reference type, update 'Result' to refer to what
7411       // the field refers to.
7412       if (FD->getType()->isReferenceType()) {
7413         APValue RVal;
7414         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
7415                                             RVal))
7416           return false;
7417         Result.setFrom(Info.Ctx, RVal);
7418       }
7419       return true;
7420     }
7421   }
7422   CallStackFrame *Frame = nullptr;
7423   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
7424     // Only if a local variable was declared in the function currently being
7425     // evaluated, do we expect to be able to find its value in the current
7426     // frame. (Otherwise it was likely declared in an enclosing context and
7427     // could either have a valid evaluatable value (for e.g. a constexpr
7428     // variable) or be ill-formed (and trigger an appropriate evaluation
7429     // diagnostic)).
7430     if (Info.CurrentCall->Callee &&
7431         Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
7432       Frame = Info.CurrentCall;
7433     }
7434   }
7435 
7436   if (!VD->getType()->isReferenceType()) {
7437     if (Frame) {
7438       Result.set({VD, Frame->Index,
7439                   Info.CurrentCall->getCurrentTemporaryVersion(VD)});
7440       return true;
7441     }
7442     return Success(VD);
7443   }
7444 
7445   APValue *V;
7446   if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
7447     return false;
7448   if (!V->hasValue()) {
7449     // FIXME: Is it possible for V to be indeterminate here? If so, we should
7450     // adjust the diagnostic to say that.
7451     if (!Info.checkingPotentialConstantExpression())
7452       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
7453     return false;
7454   }
7455   return Success(*V, E);
7456 }
7457 
7458 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
7459     const MaterializeTemporaryExpr *E) {
7460   // Walk through the expression to find the materialized temporary itself.
7461   SmallVector<const Expr *, 2> CommaLHSs;
7462   SmallVector<SubobjectAdjustment, 2> Adjustments;
7463   const Expr *Inner = E->GetTemporaryExpr()->
7464       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
7465 
7466   // If we passed any comma operators, evaluate their LHSs.
7467   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
7468     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
7469       return false;
7470 
7471   // A materialized temporary with static storage duration can appear within the
7472   // result of a constant expression evaluation, so we need to preserve its
7473   // value for use outside this evaluation.
7474   APValue *Value;
7475   if (E->getStorageDuration() == SD_Static) {
7476     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
7477     *Value = APValue();
7478     Result.set(E);
7479   } else {
7480     Value = &Info.CurrentCall->createTemporary(
7481         E, E->getType(), E->getStorageDuration() == SD_Automatic, Result);
7482   }
7483 
7484   QualType Type = Inner->getType();
7485 
7486   // Materialize the temporary itself.
7487   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
7488     *Value = APValue();
7489     return false;
7490   }
7491 
7492   // Adjust our lvalue to refer to the desired subobject.
7493   for (unsigned I = Adjustments.size(); I != 0; /**/) {
7494     --I;
7495     switch (Adjustments[I].Kind) {
7496     case SubobjectAdjustment::DerivedToBaseAdjustment:
7497       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
7498                                 Type, Result))
7499         return false;
7500       Type = Adjustments[I].DerivedToBase.BasePath->getType();
7501       break;
7502 
7503     case SubobjectAdjustment::FieldAdjustment:
7504       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
7505         return false;
7506       Type = Adjustments[I].Field->getType();
7507       break;
7508 
7509     case SubobjectAdjustment::MemberPointerAdjustment:
7510       if (!HandleMemberPointerAccess(this->Info, Type, Result,
7511                                      Adjustments[I].Ptr.RHS))
7512         return false;
7513       Type = Adjustments[I].Ptr.MPT->getPointeeType();
7514       break;
7515     }
7516   }
7517 
7518   return true;
7519 }
7520 
7521 bool
7522 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7523   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
7524          "lvalue compound literal in c++?");
7525   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
7526   // only see this when folding in C, so there's no standard to follow here.
7527   return Success(E);
7528 }
7529 
7530 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
7531   TypeInfoLValue TypeInfo;
7532 
7533   if (!E->isPotentiallyEvaluated()) {
7534     if (E->isTypeOperand())
7535       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
7536     else
7537       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
7538   } else {
7539     if (!Info.Ctx.getLangOpts().CPlusPlus2a) {
7540       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
7541         << E->getExprOperand()->getType()
7542         << E->getExprOperand()->getSourceRange();
7543     }
7544 
7545     if (!Visit(E->getExprOperand()))
7546       return false;
7547 
7548     Optional<DynamicType> DynType =
7549         ComputeDynamicType(Info, E, Result, AK_TypeId);
7550     if (!DynType)
7551       return false;
7552 
7553     TypeInfo =
7554         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
7555   }
7556 
7557   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
7558 }
7559 
7560 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
7561   return Success(E);
7562 }
7563 
7564 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
7565   // Handle static data members.
7566   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
7567     VisitIgnoredBaseExpression(E->getBase());
7568     return VisitVarDecl(E, VD);
7569   }
7570 
7571   // Handle static member functions.
7572   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
7573     if (MD->isStatic()) {
7574       VisitIgnoredBaseExpression(E->getBase());
7575       return Success(MD);
7576     }
7577   }
7578 
7579   // Handle non-static data members.
7580   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
7581 }
7582 
7583 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
7584   // FIXME: Deal with vectors as array subscript bases.
7585   if (E->getBase()->getType()->isVectorType())
7586     return Error(E);
7587 
7588   bool Success = true;
7589   if (!evaluatePointer(E->getBase(), Result)) {
7590     if (!Info.noteFailure())
7591       return false;
7592     Success = false;
7593   }
7594 
7595   APSInt Index;
7596   if (!EvaluateInteger(E->getIdx(), Index, Info))
7597     return false;
7598 
7599   return Success &&
7600          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
7601 }
7602 
7603 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
7604   return evaluatePointer(E->getSubExpr(), Result);
7605 }
7606 
7607 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7608   if (!Visit(E->getSubExpr()))
7609     return false;
7610   // __real is a no-op on scalar lvalues.
7611   if (E->getSubExpr()->getType()->isAnyComplexType())
7612     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
7613   return true;
7614 }
7615 
7616 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7617   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
7618          "lvalue __imag__ on scalar?");
7619   if (!Visit(E->getSubExpr()))
7620     return false;
7621   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
7622   return true;
7623 }
7624 
7625 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
7626   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7627     return Error(UO);
7628 
7629   if (!this->Visit(UO->getSubExpr()))
7630     return false;
7631 
7632   return handleIncDec(
7633       this->Info, UO, Result, UO->getSubExpr()->getType(),
7634       UO->isIncrementOp(), nullptr);
7635 }
7636 
7637 bool LValueExprEvaluator::VisitCompoundAssignOperator(
7638     const CompoundAssignOperator *CAO) {
7639   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7640     return Error(CAO);
7641 
7642   APValue RHS;
7643 
7644   // The overall lvalue result is the result of evaluating the LHS.
7645   if (!this->Visit(CAO->getLHS())) {
7646     if (Info.noteFailure())
7647       Evaluate(RHS, this->Info, CAO->getRHS());
7648     return false;
7649   }
7650 
7651   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
7652     return false;
7653 
7654   return handleCompoundAssignment(
7655       this->Info, CAO,
7656       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
7657       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
7658 }
7659 
7660 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
7661   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7662     return Error(E);
7663 
7664   APValue NewVal;
7665 
7666   if (!this->Visit(E->getLHS())) {
7667     if (Info.noteFailure())
7668       Evaluate(NewVal, this->Info, E->getRHS());
7669     return false;
7670   }
7671 
7672   if (!Evaluate(NewVal, this->Info, E->getRHS()))
7673     return false;
7674 
7675   if (Info.getLangOpts().CPlusPlus2a &&
7676       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
7677     return false;
7678 
7679   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
7680                           NewVal);
7681 }
7682 
7683 //===----------------------------------------------------------------------===//
7684 // Pointer Evaluation
7685 //===----------------------------------------------------------------------===//
7686 
7687 /// Attempts to compute the number of bytes available at the pointer
7688 /// returned by a function with the alloc_size attribute. Returns true if we
7689 /// were successful. Places an unsigned number into `Result`.
7690 ///
7691 /// This expects the given CallExpr to be a call to a function with an
7692 /// alloc_size attribute.
7693 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
7694                                             const CallExpr *Call,
7695                                             llvm::APInt &Result) {
7696   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
7697 
7698   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
7699   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
7700   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
7701   if (Call->getNumArgs() <= SizeArgNo)
7702     return false;
7703 
7704   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
7705     Expr::EvalResult ExprResult;
7706     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
7707       return false;
7708     Into = ExprResult.Val.getInt();
7709     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
7710       return false;
7711     Into = Into.zextOrSelf(BitsInSizeT);
7712     return true;
7713   };
7714 
7715   APSInt SizeOfElem;
7716   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
7717     return false;
7718 
7719   if (!AllocSize->getNumElemsParam().isValid()) {
7720     Result = std::move(SizeOfElem);
7721     return true;
7722   }
7723 
7724   APSInt NumberOfElems;
7725   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
7726   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
7727     return false;
7728 
7729   bool Overflow;
7730   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
7731   if (Overflow)
7732     return false;
7733 
7734   Result = std::move(BytesAvailable);
7735   return true;
7736 }
7737 
7738 /// Convenience function. LVal's base must be a call to an alloc_size
7739 /// function.
7740 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
7741                                             const LValue &LVal,
7742                                             llvm::APInt &Result) {
7743   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
7744          "Can't get the size of a non alloc_size function");
7745   const auto *Base = LVal.getLValueBase().get<const Expr *>();
7746   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
7747   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
7748 }
7749 
7750 /// Attempts to evaluate the given LValueBase as the result of a call to
7751 /// a function with the alloc_size attribute. If it was possible to do so, this
7752 /// function will return true, make Result's Base point to said function call,
7753 /// and mark Result's Base as invalid.
7754 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
7755                                       LValue &Result) {
7756   if (Base.isNull())
7757     return false;
7758 
7759   // Because we do no form of static analysis, we only support const variables.
7760   //
7761   // Additionally, we can't support parameters, nor can we support static
7762   // variables (in the latter case, use-before-assign isn't UB; in the former,
7763   // we have no clue what they'll be assigned to).
7764   const auto *VD =
7765       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
7766   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
7767     return false;
7768 
7769   const Expr *Init = VD->getAnyInitializer();
7770   if (!Init)
7771     return false;
7772 
7773   const Expr *E = Init->IgnoreParens();
7774   if (!tryUnwrapAllocSizeCall(E))
7775     return false;
7776 
7777   // Store E instead of E unwrapped so that the type of the LValue's base is
7778   // what the user wanted.
7779   Result.setInvalid(E);
7780 
7781   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
7782   Result.addUnsizedArray(Info, E, Pointee);
7783   return true;
7784 }
7785 
7786 namespace {
7787 class PointerExprEvaluator
7788   : public ExprEvaluatorBase<PointerExprEvaluator> {
7789   LValue &Result;
7790   bool InvalidBaseOK;
7791 
7792   bool Success(const Expr *E) {
7793     Result.set(E);
7794     return true;
7795   }
7796 
7797   bool evaluateLValue(const Expr *E, LValue &Result) {
7798     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
7799   }
7800 
7801   bool evaluatePointer(const Expr *E, LValue &Result) {
7802     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
7803   }
7804 
7805   bool visitNonBuiltinCallExpr(const CallExpr *E);
7806 public:
7807 
7808   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
7809       : ExprEvaluatorBaseTy(info), Result(Result),
7810         InvalidBaseOK(InvalidBaseOK) {}
7811 
7812   bool Success(const APValue &V, const Expr *E) {
7813     Result.setFrom(Info.Ctx, V);
7814     return true;
7815   }
7816   bool ZeroInitialization(const Expr *E) {
7817     Result.setNull(Info.Ctx, E->getType());
7818     return true;
7819   }
7820 
7821   bool VisitBinaryOperator(const BinaryOperator *E);
7822   bool VisitCastExpr(const CastExpr* E);
7823   bool VisitUnaryAddrOf(const UnaryOperator *E);
7824   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
7825       { return Success(E); }
7826   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
7827     if (E->isExpressibleAsConstantInitializer())
7828       return Success(E);
7829     if (Info.noteFailure())
7830       EvaluateIgnoredValue(Info, E->getSubExpr());
7831     return Error(E);
7832   }
7833   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
7834       { return Success(E); }
7835   bool VisitCallExpr(const CallExpr *E);
7836   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
7837   bool VisitBlockExpr(const BlockExpr *E) {
7838     if (!E->getBlockDecl()->hasCaptures())
7839       return Success(E);
7840     return Error(E);
7841   }
7842   bool VisitCXXThisExpr(const CXXThisExpr *E) {
7843     // Can't look at 'this' when checking a potential constant expression.
7844     if (Info.checkingPotentialConstantExpression())
7845       return false;
7846     if (!Info.CurrentCall->This) {
7847       if (Info.getLangOpts().CPlusPlus11)
7848         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
7849       else
7850         Info.FFDiag(E);
7851       return false;
7852     }
7853     Result = *Info.CurrentCall->This;
7854     // If we are inside a lambda's call operator, the 'this' expression refers
7855     // to the enclosing '*this' object (either by value or reference) which is
7856     // either copied into the closure object's field that represents the '*this'
7857     // or refers to '*this'.
7858     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
7859       // Update 'Result' to refer to the data member/field of the closure object
7860       // that represents the '*this' capture.
7861       if (!HandleLValueMember(Info, E, Result,
7862                              Info.CurrentCall->LambdaThisCaptureField))
7863         return false;
7864       // If we captured '*this' by reference, replace the field with its referent.
7865       if (Info.CurrentCall->LambdaThisCaptureField->getType()
7866               ->isPointerType()) {
7867         APValue RVal;
7868         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
7869                                             RVal))
7870           return false;
7871 
7872         Result.setFrom(Info.Ctx, RVal);
7873       }
7874     }
7875     return true;
7876   }
7877 
7878   bool VisitCXXNewExpr(const CXXNewExpr *E);
7879 
7880   bool VisitSourceLocExpr(const SourceLocExpr *E) {
7881     assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
7882     APValue LValResult = E->EvaluateInContext(
7883         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
7884     Result.setFrom(Info.Ctx, LValResult);
7885     return true;
7886   }
7887 
7888   // FIXME: Missing: @protocol, @selector
7889 };
7890 } // end anonymous namespace
7891 
7892 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
7893                             bool InvalidBaseOK) {
7894   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
7895   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
7896 }
7897 
7898 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7899   if (E->getOpcode() != BO_Add &&
7900       E->getOpcode() != BO_Sub)
7901     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7902 
7903   const Expr *PExp = E->getLHS();
7904   const Expr *IExp = E->getRHS();
7905   if (IExp->getType()->isPointerType())
7906     std::swap(PExp, IExp);
7907 
7908   bool EvalPtrOK = evaluatePointer(PExp, Result);
7909   if (!EvalPtrOK && !Info.noteFailure())
7910     return false;
7911 
7912   llvm::APSInt Offset;
7913   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
7914     return false;
7915 
7916   if (E->getOpcode() == BO_Sub)
7917     negateAsSigned(Offset);
7918 
7919   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
7920   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
7921 }
7922 
7923 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
7924   return evaluateLValue(E->getSubExpr(), Result);
7925 }
7926 
7927 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
7928   const Expr *SubExpr = E->getSubExpr();
7929 
7930   switch (E->getCastKind()) {
7931   default:
7932     break;
7933   case CK_BitCast:
7934   case CK_CPointerToObjCPointerCast:
7935   case CK_BlockPointerToObjCPointerCast:
7936   case CK_AnyPointerToBlockPointerCast:
7937   case CK_AddressSpaceConversion:
7938     if (!Visit(SubExpr))
7939       return false;
7940     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
7941     // permitted in constant expressions in C++11. Bitcasts from cv void* are
7942     // also static_casts, but we disallow them as a resolution to DR1312.
7943     if (!E->getType()->isVoidPointerType()) {
7944       if (!Result.InvalidBase && !Result.Designator.Invalid &&
7945           !Result.IsNullPtr &&
7946           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
7947                                           E->getType()->getPointeeType()) &&
7948           Info.getStdAllocatorCaller("allocate")) {
7949         // Inside a call to std::allocator::allocate and friends, we permit
7950         // casting from void* back to cv1 T* for a pointer that points to a
7951         // cv2 T.
7952       } else {
7953         Result.Designator.setInvalid();
7954         if (SubExpr->getType()->isVoidPointerType())
7955           CCEDiag(E, diag::note_constexpr_invalid_cast)
7956             << 3 << SubExpr->getType();
7957         else
7958           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7959       }
7960     }
7961     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
7962       ZeroInitialization(E);
7963     return true;
7964 
7965   case CK_DerivedToBase:
7966   case CK_UncheckedDerivedToBase:
7967     if (!evaluatePointer(E->getSubExpr(), Result))
7968       return false;
7969     if (!Result.Base && Result.Offset.isZero())
7970       return true;
7971 
7972     // Now figure out the necessary offset to add to the base LV to get from
7973     // the derived class to the base class.
7974     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
7975                                   castAs<PointerType>()->getPointeeType(),
7976                                 Result);
7977 
7978   case CK_BaseToDerived:
7979     if (!Visit(E->getSubExpr()))
7980       return false;
7981     if (!Result.Base && Result.Offset.isZero())
7982       return true;
7983     return HandleBaseToDerivedCast(Info, E, Result);
7984 
7985   case CK_Dynamic:
7986     if (!Visit(E->getSubExpr()))
7987       return false;
7988     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
7989 
7990   case CK_NullToPointer:
7991     VisitIgnoredValue(E->getSubExpr());
7992     return ZeroInitialization(E);
7993 
7994   case CK_IntegralToPointer: {
7995     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7996 
7997     APValue Value;
7998     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
7999       break;
8000 
8001     if (Value.isInt()) {
8002       unsigned Size = Info.Ctx.getTypeSize(E->getType());
8003       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8004       Result.Base = (Expr*)nullptr;
8005       Result.InvalidBase = false;
8006       Result.Offset = CharUnits::fromQuantity(N);
8007       Result.Designator.setInvalid();
8008       Result.IsNullPtr = false;
8009       return true;
8010     } else {
8011       // Cast is of an lvalue, no need to change value.
8012       Result.setFrom(Info.Ctx, Value);
8013       return true;
8014     }
8015   }
8016 
8017   case CK_ArrayToPointerDecay: {
8018     if (SubExpr->isGLValue()) {
8019       if (!evaluateLValue(SubExpr, Result))
8020         return false;
8021     } else {
8022       APValue &Value = Info.CurrentCall->createTemporary(
8023           SubExpr, SubExpr->getType(), false, Result);
8024       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8025         return false;
8026     }
8027     // The result is a pointer to the first element of the array.
8028     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8029     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8030       Result.addArray(Info, E, CAT);
8031     else
8032       Result.addUnsizedArray(Info, E, AT->getElementType());
8033     return true;
8034   }
8035 
8036   case CK_FunctionToPointerDecay:
8037     return evaluateLValue(SubExpr, Result);
8038 
8039   case CK_LValueToRValue: {
8040     LValue LVal;
8041     if (!evaluateLValue(E->getSubExpr(), LVal))
8042       return false;
8043 
8044     APValue RVal;
8045     // Note, we use the subexpression's type in order to retain cv-qualifiers.
8046     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8047                                         LVal, RVal))
8048       return InvalidBaseOK &&
8049              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8050     return Success(RVal, E);
8051   }
8052   }
8053 
8054   return ExprEvaluatorBaseTy::VisitCastExpr(E);
8055 }
8056 
8057 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8058                                 UnaryExprOrTypeTrait ExprKind) {
8059   // C++ [expr.alignof]p3:
8060   //     When alignof is applied to a reference type, the result is the
8061   //     alignment of the referenced type.
8062   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8063     T = Ref->getPointeeType();
8064 
8065   if (T.getQualifiers().hasUnaligned())
8066     return CharUnits::One();
8067 
8068   const bool AlignOfReturnsPreferred =
8069       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8070 
8071   // __alignof is defined to return the preferred alignment.
8072   // Before 8, clang returned the preferred alignment for alignof and _Alignof
8073   // as well.
8074   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8075     return Info.Ctx.toCharUnitsFromBits(
8076       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8077   // alignof and _Alignof are defined to return the ABI alignment.
8078   else if (ExprKind == UETT_AlignOf)
8079     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8080   else
8081     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
8082 }
8083 
8084 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8085                                 UnaryExprOrTypeTrait ExprKind) {
8086   E = E->IgnoreParens();
8087 
8088   // The kinds of expressions that we have special-case logic here for
8089   // should be kept up to date with the special checks for those
8090   // expressions in Sema.
8091 
8092   // alignof decl is always accepted, even if it doesn't make sense: we default
8093   // to 1 in those cases.
8094   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8095     return Info.Ctx.getDeclAlign(DRE->getDecl(),
8096                                  /*RefAsPointee*/true);
8097 
8098   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8099     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8100                                  /*RefAsPointee*/true);
8101 
8102   return GetAlignOfType(Info, E->getType(), ExprKind);
8103 }
8104 
8105 // To be clear: this happily visits unsupported builtins. Better name welcomed.
8106 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8107   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8108     return true;
8109 
8110   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8111     return false;
8112 
8113   Result.setInvalid(E);
8114   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8115   Result.addUnsizedArray(Info, E, PointeeTy);
8116   return true;
8117 }
8118 
8119 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8120   if (IsStringLiteralCall(E))
8121     return Success(E);
8122 
8123   if (unsigned BuiltinOp = E->getBuiltinCallee())
8124     return VisitBuiltinCallExpr(E, BuiltinOp);
8125 
8126   return visitNonBuiltinCallExpr(E);
8127 }
8128 
8129 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
8130                                                 unsigned BuiltinOp) {
8131   switch (BuiltinOp) {
8132   case Builtin::BI__builtin_addressof:
8133     return evaluateLValue(E->getArg(0), Result);
8134   case Builtin::BI__builtin_assume_aligned: {
8135     // We need to be very careful here because: if the pointer does not have the
8136     // asserted alignment, then the behavior is undefined, and undefined
8137     // behavior is non-constant.
8138     if (!evaluatePointer(E->getArg(0), Result))
8139       return false;
8140 
8141     LValue OffsetResult(Result);
8142     APSInt Alignment;
8143     if (!EvaluateInteger(E->getArg(1), Alignment, Info))
8144       return false;
8145     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
8146 
8147     if (E->getNumArgs() > 2) {
8148       APSInt Offset;
8149       if (!EvaluateInteger(E->getArg(2), Offset, Info))
8150         return false;
8151 
8152       int64_t AdditionalOffset = -Offset.getZExtValue();
8153       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
8154     }
8155 
8156     // If there is a base object, then it must have the correct alignment.
8157     if (OffsetResult.Base) {
8158       CharUnits BaseAlignment;
8159       if (const ValueDecl *VD =
8160           OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
8161         BaseAlignment = Info.Ctx.getDeclAlign(VD);
8162       } else if (const Expr *E = OffsetResult.Base.dyn_cast<const Expr *>()) {
8163         BaseAlignment = GetAlignOfExpr(Info, E, UETT_AlignOf);
8164       } else {
8165         BaseAlignment = GetAlignOfType(
8166             Info, OffsetResult.Base.getTypeInfoType(), UETT_AlignOf);
8167       }
8168 
8169       if (BaseAlignment < Align) {
8170         Result.Designator.setInvalid();
8171         // FIXME: Add support to Diagnostic for long / long long.
8172         CCEDiag(E->getArg(0),
8173                 diag::note_constexpr_baa_insufficient_alignment) << 0
8174           << (unsigned)BaseAlignment.getQuantity()
8175           << (unsigned)Align.getQuantity();
8176         return false;
8177       }
8178     }
8179 
8180     // The offset must also have the correct alignment.
8181     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
8182       Result.Designator.setInvalid();
8183 
8184       (OffsetResult.Base
8185            ? CCEDiag(E->getArg(0),
8186                      diag::note_constexpr_baa_insufficient_alignment) << 1
8187            : CCEDiag(E->getArg(0),
8188                      diag::note_constexpr_baa_value_insufficient_alignment))
8189         << (int)OffsetResult.Offset.getQuantity()
8190         << (unsigned)Align.getQuantity();
8191       return false;
8192     }
8193 
8194     return true;
8195   }
8196   case Builtin::BI__builtin_operator_new:
8197     return HandleOperatorNewCall(Info, E, Result);
8198   case Builtin::BI__builtin_launder:
8199     return evaluatePointer(E->getArg(0), Result);
8200   case Builtin::BIstrchr:
8201   case Builtin::BIwcschr:
8202   case Builtin::BImemchr:
8203   case Builtin::BIwmemchr:
8204     if (Info.getLangOpts().CPlusPlus11)
8205       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8206         << /*isConstexpr*/0 << /*isConstructor*/0
8207         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8208     else
8209       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8210     LLVM_FALLTHROUGH;
8211   case Builtin::BI__builtin_strchr:
8212   case Builtin::BI__builtin_wcschr:
8213   case Builtin::BI__builtin_memchr:
8214   case Builtin::BI__builtin_char_memchr:
8215   case Builtin::BI__builtin_wmemchr: {
8216     if (!Visit(E->getArg(0)))
8217       return false;
8218     APSInt Desired;
8219     if (!EvaluateInteger(E->getArg(1), Desired, Info))
8220       return false;
8221     uint64_t MaxLength = uint64_t(-1);
8222     if (BuiltinOp != Builtin::BIstrchr &&
8223         BuiltinOp != Builtin::BIwcschr &&
8224         BuiltinOp != Builtin::BI__builtin_strchr &&
8225         BuiltinOp != Builtin::BI__builtin_wcschr) {
8226       APSInt N;
8227       if (!EvaluateInteger(E->getArg(2), N, Info))
8228         return false;
8229       MaxLength = N.getExtValue();
8230     }
8231     // We cannot find the value if there are no candidates to match against.
8232     if (MaxLength == 0u)
8233       return ZeroInitialization(E);
8234     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
8235         Result.Designator.Invalid)
8236       return false;
8237     QualType CharTy = Result.Designator.getType(Info.Ctx);
8238     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
8239                      BuiltinOp == Builtin::BI__builtin_memchr;
8240     assert(IsRawByte ||
8241            Info.Ctx.hasSameUnqualifiedType(
8242                CharTy, E->getArg(0)->getType()->getPointeeType()));
8243     // Pointers to const void may point to objects of incomplete type.
8244     if (IsRawByte && CharTy->isIncompleteType()) {
8245       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
8246       return false;
8247     }
8248     // Give up on byte-oriented matching against multibyte elements.
8249     // FIXME: We can compare the bytes in the correct order.
8250     if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One())
8251       return false;
8252     // Figure out what value we're actually looking for (after converting to
8253     // the corresponding unsigned type if necessary).
8254     uint64_t DesiredVal;
8255     bool StopAtNull = false;
8256     switch (BuiltinOp) {
8257     case Builtin::BIstrchr:
8258     case Builtin::BI__builtin_strchr:
8259       // strchr compares directly to the passed integer, and therefore
8260       // always fails if given an int that is not a char.
8261       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
8262                                                   E->getArg(1)->getType(),
8263                                                   Desired),
8264                                Desired))
8265         return ZeroInitialization(E);
8266       StopAtNull = true;
8267       LLVM_FALLTHROUGH;
8268     case Builtin::BImemchr:
8269     case Builtin::BI__builtin_memchr:
8270     case Builtin::BI__builtin_char_memchr:
8271       // memchr compares by converting both sides to unsigned char. That's also
8272       // correct for strchr if we get this far (to cope with plain char being
8273       // unsigned in the strchr case).
8274       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
8275       break;
8276 
8277     case Builtin::BIwcschr:
8278     case Builtin::BI__builtin_wcschr:
8279       StopAtNull = true;
8280       LLVM_FALLTHROUGH;
8281     case Builtin::BIwmemchr:
8282     case Builtin::BI__builtin_wmemchr:
8283       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
8284       DesiredVal = Desired.getZExtValue();
8285       break;
8286     }
8287 
8288     for (; MaxLength; --MaxLength) {
8289       APValue Char;
8290       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
8291           !Char.isInt())
8292         return false;
8293       if (Char.getInt().getZExtValue() == DesiredVal)
8294         return true;
8295       if (StopAtNull && !Char.getInt())
8296         break;
8297       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
8298         return false;
8299     }
8300     // Not found: return nullptr.
8301     return ZeroInitialization(E);
8302   }
8303 
8304   case Builtin::BImemcpy:
8305   case Builtin::BImemmove:
8306   case Builtin::BIwmemcpy:
8307   case Builtin::BIwmemmove:
8308     if (Info.getLangOpts().CPlusPlus11)
8309       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8310         << /*isConstexpr*/0 << /*isConstructor*/0
8311         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8312     else
8313       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8314     LLVM_FALLTHROUGH;
8315   case Builtin::BI__builtin_memcpy:
8316   case Builtin::BI__builtin_memmove:
8317   case Builtin::BI__builtin_wmemcpy:
8318   case Builtin::BI__builtin_wmemmove: {
8319     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
8320                  BuiltinOp == Builtin::BIwmemmove ||
8321                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
8322                  BuiltinOp == Builtin::BI__builtin_wmemmove;
8323     bool Move = BuiltinOp == Builtin::BImemmove ||
8324                 BuiltinOp == Builtin::BIwmemmove ||
8325                 BuiltinOp == Builtin::BI__builtin_memmove ||
8326                 BuiltinOp == Builtin::BI__builtin_wmemmove;
8327 
8328     // The result of mem* is the first argument.
8329     if (!Visit(E->getArg(0)))
8330       return false;
8331     LValue Dest = Result;
8332 
8333     LValue Src;
8334     if (!EvaluatePointer(E->getArg(1), Src, Info))
8335       return false;
8336 
8337     APSInt N;
8338     if (!EvaluateInteger(E->getArg(2), N, Info))
8339       return false;
8340     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
8341 
8342     // If the size is zero, we treat this as always being a valid no-op.
8343     // (Even if one of the src and dest pointers is null.)
8344     if (!N)
8345       return true;
8346 
8347     // Otherwise, if either of the operands is null, we can't proceed. Don't
8348     // try to determine the type of the copied objects, because there aren't
8349     // any.
8350     if (!Src.Base || !Dest.Base) {
8351       APValue Val;
8352       (!Src.Base ? Src : Dest).moveInto(Val);
8353       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
8354           << Move << WChar << !!Src.Base
8355           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
8356       return false;
8357     }
8358     if (Src.Designator.Invalid || Dest.Designator.Invalid)
8359       return false;
8360 
8361     // We require that Src and Dest are both pointers to arrays of
8362     // trivially-copyable type. (For the wide version, the designator will be
8363     // invalid if the designated object is not a wchar_t.)
8364     QualType T = Dest.Designator.getType(Info.Ctx);
8365     QualType SrcT = Src.Designator.getType(Info.Ctx);
8366     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
8367       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
8368       return false;
8369     }
8370     if (T->isIncompleteType()) {
8371       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
8372       return false;
8373     }
8374     if (!T.isTriviallyCopyableType(Info.Ctx)) {
8375       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
8376       return false;
8377     }
8378 
8379     // Figure out how many T's we're copying.
8380     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
8381     if (!WChar) {
8382       uint64_t Remainder;
8383       llvm::APInt OrigN = N;
8384       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
8385       if (Remainder) {
8386         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
8387             << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
8388             << (unsigned)TSize;
8389         return false;
8390       }
8391     }
8392 
8393     // Check that the copying will remain within the arrays, just so that we
8394     // can give a more meaningful diagnostic. This implicitly also checks that
8395     // N fits into 64 bits.
8396     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
8397     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
8398     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
8399       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
8400           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
8401           << N.toString(10, /*Signed*/false);
8402       return false;
8403     }
8404     uint64_t NElems = N.getZExtValue();
8405     uint64_t NBytes = NElems * TSize;
8406 
8407     // Check for overlap.
8408     int Direction = 1;
8409     if (HasSameBase(Src, Dest)) {
8410       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
8411       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
8412       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
8413         // Dest is inside the source region.
8414         if (!Move) {
8415           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
8416           return false;
8417         }
8418         // For memmove and friends, copy backwards.
8419         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
8420             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
8421           return false;
8422         Direction = -1;
8423       } else if (!Move && SrcOffset >= DestOffset &&
8424                  SrcOffset - DestOffset < NBytes) {
8425         // Src is inside the destination region for memcpy: invalid.
8426         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
8427         return false;
8428       }
8429     }
8430 
8431     while (true) {
8432       APValue Val;
8433       // FIXME: Set WantObjectRepresentation to true if we're copying a
8434       // char-like type?
8435       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
8436           !handleAssignment(Info, E, Dest, T, Val))
8437         return false;
8438       // Do not iterate past the last element; if we're copying backwards, that
8439       // might take us off the start of the array.
8440       if (--NElems == 0)
8441         return true;
8442       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
8443           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
8444         return false;
8445     }
8446   }
8447 
8448   default:
8449     break;
8450   }
8451 
8452   return visitNonBuiltinCallExpr(E);
8453 }
8454 
8455 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
8456                                      APValue &Result, const InitListExpr *ILE,
8457                                      QualType AllocType);
8458 
8459 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
8460   if (!Info.getLangOpts().CPlusPlus2a)
8461     Info.CCEDiag(E, diag::note_constexpr_new);
8462 
8463   // We cannot speculatively evaluate a delete expression.
8464   if (Info.SpeculativeEvaluationDepth)
8465     return false;
8466 
8467   FunctionDecl *OperatorNew = E->getOperatorNew();
8468 
8469   bool IsNothrow = false;
8470   bool IsPlacement = false;
8471   if (OperatorNew->isReservedGlobalPlacementOperator() &&
8472       Info.CurrentCall->isStdFunction() && !E->isArray()) {
8473     // FIXME Support array placement new.
8474     assert(E->getNumPlacementArgs() == 1);
8475     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
8476       return false;
8477     if (Result.Designator.Invalid)
8478       return false;
8479     IsPlacement = true;
8480   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
8481     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
8482         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
8483     return false;
8484   } else if (E->getNumPlacementArgs()) {
8485     // The only new-placement list we support is of the form (std::nothrow).
8486     //
8487     // FIXME: There is no restriction on this, but it's not clear that any
8488     // other form makes any sense. We get here for cases such as:
8489     //
8490     //   new (std::align_val_t{N}) X(int)
8491     //
8492     // (which should presumably be valid only if N is a multiple of
8493     // alignof(int), and in any case can't be deallocated unless N is
8494     // alignof(X) and X has new-extended alignment).
8495     if (E->getNumPlacementArgs() != 1 ||
8496         !E->getPlacementArg(0)->getType()->isNothrowT())
8497       return Error(E, diag::note_constexpr_new_placement);
8498 
8499     LValue Nothrow;
8500     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
8501       return false;
8502     IsNothrow = true;
8503   }
8504 
8505   const Expr *Init = E->getInitializer();
8506   const InitListExpr *ResizedArrayILE = nullptr;
8507 
8508   QualType AllocType = E->getAllocatedType();
8509   if (Optional<const Expr*> ArraySize = E->getArraySize()) {
8510     const Expr *Stripped = *ArraySize;
8511     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
8512          Stripped = ICE->getSubExpr())
8513       if (ICE->getCastKind() != CK_NoOp &&
8514           ICE->getCastKind() != CK_IntegralCast)
8515         break;
8516 
8517     llvm::APSInt ArrayBound;
8518     if (!EvaluateInteger(Stripped, ArrayBound, Info))
8519       return false;
8520 
8521     // C++ [expr.new]p9:
8522     //   The expression is erroneous if:
8523     //   -- [...] its value before converting to size_t [or] applying the
8524     //      second standard conversion sequence is less than zero
8525     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
8526       if (IsNothrow)
8527         return ZeroInitialization(E);
8528 
8529       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
8530           << ArrayBound << (*ArraySize)->getSourceRange();
8531       return false;
8532     }
8533 
8534     //   -- its value is such that the size of the allocated object would
8535     //      exceed the implementation-defined limit
8536     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
8537                                                 ArrayBound) >
8538         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
8539       if (IsNothrow)
8540         return ZeroInitialization(E);
8541 
8542       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
8543         << ArrayBound << (*ArraySize)->getSourceRange();
8544       return false;
8545     }
8546 
8547     //   -- the new-initializer is a braced-init-list and the number of
8548     //      array elements for which initializers are provided [...]
8549     //      exceeds the number of elements to initialize
8550     if (Init) {
8551       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
8552       assert(CAT && "unexpected type for array initializer");
8553 
8554       unsigned Bits =
8555           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
8556       llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
8557       llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
8558       if (InitBound.ugt(AllocBound)) {
8559         if (IsNothrow)
8560           return ZeroInitialization(E);
8561 
8562         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
8563             << AllocBound.toString(10, /*Signed=*/false)
8564             << InitBound.toString(10, /*Signed=*/false)
8565             << (*ArraySize)->getSourceRange();
8566         return false;
8567       }
8568 
8569       // If the sizes differ, we must have an initializer list, and we need
8570       // special handling for this case when we initialize.
8571       if (InitBound != AllocBound)
8572         ResizedArrayILE = cast<InitListExpr>(Init);
8573     }
8574 
8575     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
8576                                               ArrayType::Normal, 0);
8577   } else {
8578     assert(!AllocType->isArrayType() &&
8579            "array allocation with non-array new");
8580   }
8581 
8582   APValue *Val;
8583   if (IsPlacement) {
8584     AccessKinds AK = AK_Construct;
8585     struct FindObjectHandler {
8586       EvalInfo &Info;
8587       const Expr *E;
8588       QualType AllocType;
8589       const AccessKinds AccessKind;
8590       APValue *Value;
8591 
8592       typedef bool result_type;
8593       bool failed() { return false; }
8594       bool found(APValue &Subobj, QualType SubobjType) {
8595         // FIXME: Reject the cases where [basic.life]p8 would not permit the
8596         // old name of the object to be used to name the new object.
8597         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
8598           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
8599             SubobjType << AllocType;
8600           return false;
8601         }
8602         Value = &Subobj;
8603         return true;
8604       }
8605       bool found(APSInt &Value, QualType SubobjType) {
8606         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
8607         return false;
8608       }
8609       bool found(APFloat &Value, QualType SubobjType) {
8610         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
8611         return false;
8612       }
8613     } Handler = {Info, E, AllocType, AK, nullptr};
8614 
8615     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
8616     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
8617       return false;
8618 
8619     Val = Handler.Value;
8620 
8621     // [basic.life]p1:
8622     //   The lifetime of an object o of type T ends when [...] the storage
8623     //   which the object occupies is [...] reused by an object that is not
8624     //   nested within o (6.6.2).
8625     *Val = APValue();
8626   } else {
8627     // Perform the allocation and obtain a pointer to the resulting object.
8628     Val = Info.createHeapAlloc(E, AllocType, Result);
8629     if (!Val)
8630       return false;
8631   }
8632 
8633   if (ResizedArrayILE) {
8634     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
8635                                   AllocType))
8636       return false;
8637   } else if (Init) {
8638     if (!EvaluateInPlace(*Val, Info, Result, Init))
8639       return false;
8640   } else {
8641     *Val = getDefaultInitValue(AllocType);
8642   }
8643 
8644   // Array new returns a pointer to the first element, not a pointer to the
8645   // array.
8646   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
8647     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
8648 
8649   return true;
8650 }
8651 //===----------------------------------------------------------------------===//
8652 // Member Pointer Evaluation
8653 //===----------------------------------------------------------------------===//
8654 
8655 namespace {
8656 class MemberPointerExprEvaluator
8657   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
8658   MemberPtr &Result;
8659 
8660   bool Success(const ValueDecl *D) {
8661     Result = MemberPtr(D);
8662     return true;
8663   }
8664 public:
8665 
8666   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
8667     : ExprEvaluatorBaseTy(Info), Result(Result) {}
8668 
8669   bool Success(const APValue &V, const Expr *E) {
8670     Result.setFrom(V);
8671     return true;
8672   }
8673   bool ZeroInitialization(const Expr *E) {
8674     return Success((const ValueDecl*)nullptr);
8675   }
8676 
8677   bool VisitCastExpr(const CastExpr *E);
8678   bool VisitUnaryAddrOf(const UnaryOperator *E);
8679 };
8680 } // end anonymous namespace
8681 
8682 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
8683                                   EvalInfo &Info) {
8684   assert(E->isRValue() && E->getType()->isMemberPointerType());
8685   return MemberPointerExprEvaluator(Info, Result).Visit(E);
8686 }
8687 
8688 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8689   switch (E->getCastKind()) {
8690   default:
8691     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8692 
8693   case CK_NullToMemberPointer:
8694     VisitIgnoredValue(E->getSubExpr());
8695     return ZeroInitialization(E);
8696 
8697   case CK_BaseToDerivedMemberPointer: {
8698     if (!Visit(E->getSubExpr()))
8699       return false;
8700     if (E->path_empty())
8701       return true;
8702     // Base-to-derived member pointer casts store the path in derived-to-base
8703     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
8704     // the wrong end of the derived->base arc, so stagger the path by one class.
8705     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
8706     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
8707          PathI != PathE; ++PathI) {
8708       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
8709       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
8710       if (!Result.castToDerived(Derived))
8711         return Error(E);
8712     }
8713     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
8714     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
8715       return Error(E);
8716     return true;
8717   }
8718 
8719   case CK_DerivedToBaseMemberPointer:
8720     if (!Visit(E->getSubExpr()))
8721       return false;
8722     for (CastExpr::path_const_iterator PathI = E->path_begin(),
8723          PathE = E->path_end(); PathI != PathE; ++PathI) {
8724       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
8725       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
8726       if (!Result.castToBase(Base))
8727         return Error(E);
8728     }
8729     return true;
8730   }
8731 }
8732 
8733 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8734   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
8735   // member can be formed.
8736   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
8737 }
8738 
8739 //===----------------------------------------------------------------------===//
8740 // Record Evaluation
8741 //===----------------------------------------------------------------------===//
8742 
8743 namespace {
8744   class RecordExprEvaluator
8745   : public ExprEvaluatorBase<RecordExprEvaluator> {
8746     const LValue &This;
8747     APValue &Result;
8748   public:
8749 
8750     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
8751       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
8752 
8753     bool Success(const APValue &V, const Expr *E) {
8754       Result = V;
8755       return true;
8756     }
8757     bool ZeroInitialization(const Expr *E) {
8758       return ZeroInitialization(E, E->getType());
8759     }
8760     bool ZeroInitialization(const Expr *E, QualType T);
8761 
8762     bool VisitCallExpr(const CallExpr *E) {
8763       return handleCallExpr(E, Result, &This);
8764     }
8765     bool VisitCastExpr(const CastExpr *E);
8766     bool VisitInitListExpr(const InitListExpr *E);
8767     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
8768       return VisitCXXConstructExpr(E, E->getType());
8769     }
8770     bool VisitLambdaExpr(const LambdaExpr *E);
8771     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
8772     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
8773     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
8774     bool VisitBinCmp(const BinaryOperator *E);
8775   };
8776 }
8777 
8778 /// Perform zero-initialization on an object of non-union class type.
8779 /// C++11 [dcl.init]p5:
8780 ///  To zero-initialize an object or reference of type T means:
8781 ///    [...]
8782 ///    -- if T is a (possibly cv-qualified) non-union class type,
8783 ///       each non-static data member and each base-class subobject is
8784 ///       zero-initialized
8785 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
8786                                           const RecordDecl *RD,
8787                                           const LValue &This, APValue &Result) {
8788   assert(!RD->isUnion() && "Expected non-union class type");
8789   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
8790   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
8791                    std::distance(RD->field_begin(), RD->field_end()));
8792 
8793   if (RD->isInvalidDecl()) return false;
8794   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
8795 
8796   if (CD) {
8797     unsigned Index = 0;
8798     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
8799            End = CD->bases_end(); I != End; ++I, ++Index) {
8800       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
8801       LValue Subobject = This;
8802       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
8803         return false;
8804       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
8805                                          Result.getStructBase(Index)))
8806         return false;
8807     }
8808   }
8809 
8810   for (const auto *I : RD->fields()) {
8811     // -- if T is a reference type, no initialization is performed.
8812     if (I->getType()->isReferenceType())
8813       continue;
8814 
8815     LValue Subobject = This;
8816     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
8817       return false;
8818 
8819     ImplicitValueInitExpr VIE(I->getType());
8820     if (!EvaluateInPlace(
8821           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
8822       return false;
8823   }
8824 
8825   return true;
8826 }
8827 
8828 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
8829   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
8830   if (RD->isInvalidDecl()) return false;
8831   if (RD->isUnion()) {
8832     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
8833     // object's first non-static named data member is zero-initialized
8834     RecordDecl::field_iterator I = RD->field_begin();
8835     if (I == RD->field_end()) {
8836       Result = APValue((const FieldDecl*)nullptr);
8837       return true;
8838     }
8839 
8840     LValue Subobject = This;
8841     if (!HandleLValueMember(Info, E, Subobject, *I))
8842       return false;
8843     Result = APValue(*I);
8844     ImplicitValueInitExpr VIE(I->getType());
8845     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
8846   }
8847 
8848   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
8849     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
8850     return false;
8851   }
8852 
8853   return HandleClassZeroInitialization(Info, E, RD, This, Result);
8854 }
8855 
8856 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
8857   switch (E->getCastKind()) {
8858   default:
8859     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8860 
8861   case CK_ConstructorConversion:
8862     return Visit(E->getSubExpr());
8863 
8864   case CK_DerivedToBase:
8865   case CK_UncheckedDerivedToBase: {
8866     APValue DerivedObject;
8867     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
8868       return false;
8869     if (!DerivedObject.isStruct())
8870       return Error(E->getSubExpr());
8871 
8872     // Derived-to-base rvalue conversion: just slice off the derived part.
8873     APValue *Value = &DerivedObject;
8874     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
8875     for (CastExpr::path_const_iterator PathI = E->path_begin(),
8876          PathE = E->path_end(); PathI != PathE; ++PathI) {
8877       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
8878       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
8879       Value = &Value->getStructBase(getBaseIndex(RD, Base));
8880       RD = Base;
8881     }
8882     Result = *Value;
8883     return true;
8884   }
8885   }
8886 }
8887 
8888 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8889   if (E->isTransparent())
8890     return Visit(E->getInit(0));
8891 
8892   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
8893   if (RD->isInvalidDecl()) return false;
8894   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
8895   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
8896 
8897   EvalInfo::EvaluatingConstructorRAII EvalObj(
8898       Info,
8899       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
8900       CXXRD && CXXRD->getNumBases());
8901 
8902   if (RD->isUnion()) {
8903     const FieldDecl *Field = E->getInitializedFieldInUnion();
8904     Result = APValue(Field);
8905     if (!Field)
8906       return true;
8907 
8908     // If the initializer list for a union does not contain any elements, the
8909     // first element of the union is value-initialized.
8910     // FIXME: The element should be initialized from an initializer list.
8911     //        Is this difference ever observable for initializer lists which
8912     //        we don't build?
8913     ImplicitValueInitExpr VIE(Field->getType());
8914     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
8915 
8916     LValue Subobject = This;
8917     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
8918       return false;
8919 
8920     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
8921     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
8922                                   isa<CXXDefaultInitExpr>(InitExpr));
8923 
8924     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
8925   }
8926 
8927   if (!Result.hasValue())
8928     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
8929                      std::distance(RD->field_begin(), RD->field_end()));
8930   unsigned ElementNo = 0;
8931   bool Success = true;
8932 
8933   // Initialize base classes.
8934   if (CXXRD && CXXRD->getNumBases()) {
8935     for (const auto &Base : CXXRD->bases()) {
8936       assert(ElementNo < E->getNumInits() && "missing init for base class");
8937       const Expr *Init = E->getInit(ElementNo);
8938 
8939       LValue Subobject = This;
8940       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
8941         return false;
8942 
8943       APValue &FieldVal = Result.getStructBase(ElementNo);
8944       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
8945         if (!Info.noteFailure())
8946           return false;
8947         Success = false;
8948       }
8949       ++ElementNo;
8950     }
8951 
8952     EvalObj.finishedConstructingBases();
8953   }
8954 
8955   // Initialize members.
8956   for (const auto *Field : RD->fields()) {
8957     // Anonymous bit-fields are not considered members of the class for
8958     // purposes of aggregate initialization.
8959     if (Field->isUnnamedBitfield())
8960       continue;
8961 
8962     LValue Subobject = This;
8963 
8964     bool HaveInit = ElementNo < E->getNumInits();
8965 
8966     // FIXME: Diagnostics here should point to the end of the initializer
8967     // list, not the start.
8968     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
8969                             Subobject, Field, &Layout))
8970       return false;
8971 
8972     // Perform an implicit value-initialization for members beyond the end of
8973     // the initializer list.
8974     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
8975     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
8976 
8977     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
8978     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
8979                                   isa<CXXDefaultInitExpr>(Init));
8980 
8981     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
8982     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
8983         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
8984                                                        FieldVal, Field))) {
8985       if (!Info.noteFailure())
8986         return false;
8987       Success = false;
8988     }
8989   }
8990 
8991   return Success;
8992 }
8993 
8994 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
8995                                                 QualType T) {
8996   // Note that E's type is not necessarily the type of our class here; we might
8997   // be initializing an array element instead.
8998   const CXXConstructorDecl *FD = E->getConstructor();
8999   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9000 
9001   bool ZeroInit = E->requiresZeroInitialization();
9002   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9003     // If we've already performed zero-initialization, we're already done.
9004     if (Result.hasValue())
9005       return true;
9006 
9007     if (ZeroInit)
9008       return ZeroInitialization(E, T);
9009 
9010     Result = getDefaultInitValue(T);
9011     return true;
9012   }
9013 
9014   const FunctionDecl *Definition = nullptr;
9015   auto Body = FD->getBody(Definition);
9016 
9017   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9018     return false;
9019 
9020   // Avoid materializing a temporary for an elidable copy/move constructor.
9021   if (E->isElidable() && !ZeroInit)
9022     if (const MaterializeTemporaryExpr *ME
9023           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
9024       return Visit(ME->GetTemporaryExpr());
9025 
9026   if (ZeroInit && !ZeroInitialization(E, T))
9027     return false;
9028 
9029   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9030   return HandleConstructorCall(E, This, Args,
9031                                cast<CXXConstructorDecl>(Definition), Info,
9032                                Result);
9033 }
9034 
9035 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9036     const CXXInheritedCtorInitExpr *E) {
9037   if (!Info.CurrentCall) {
9038     assert(Info.checkingPotentialConstantExpression());
9039     return false;
9040   }
9041 
9042   const CXXConstructorDecl *FD = E->getConstructor();
9043   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9044     return false;
9045 
9046   const FunctionDecl *Definition = nullptr;
9047   auto Body = FD->getBody(Definition);
9048 
9049   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9050     return false;
9051 
9052   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
9053                                cast<CXXConstructorDecl>(Definition), Info,
9054                                Result);
9055 }
9056 
9057 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
9058     const CXXStdInitializerListExpr *E) {
9059   const ConstantArrayType *ArrayType =
9060       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
9061 
9062   LValue Array;
9063   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
9064     return false;
9065 
9066   // Get a pointer to the first element of the array.
9067   Array.addArray(Info, E, ArrayType);
9068 
9069   // FIXME: Perform the checks on the field types in SemaInit.
9070   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
9071   RecordDecl::field_iterator Field = Record->field_begin();
9072   if (Field == Record->field_end())
9073     return Error(E);
9074 
9075   // Start pointer.
9076   if (!Field->getType()->isPointerType() ||
9077       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9078                             ArrayType->getElementType()))
9079     return Error(E);
9080 
9081   // FIXME: What if the initializer_list type has base classes, etc?
9082   Result = APValue(APValue::UninitStruct(), 0, 2);
9083   Array.moveInto(Result.getStructField(0));
9084 
9085   if (++Field == Record->field_end())
9086     return Error(E);
9087 
9088   if (Field->getType()->isPointerType() &&
9089       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9090                            ArrayType->getElementType())) {
9091     // End pointer.
9092     if (!HandleLValueArrayAdjustment(Info, E, Array,
9093                                      ArrayType->getElementType(),
9094                                      ArrayType->getSize().getZExtValue()))
9095       return false;
9096     Array.moveInto(Result.getStructField(1));
9097   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
9098     // Length.
9099     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
9100   else
9101     return Error(E);
9102 
9103   if (++Field != Record->field_end())
9104     return Error(E);
9105 
9106   return true;
9107 }
9108 
9109 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
9110   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
9111   if (ClosureClass->isInvalidDecl())
9112     return false;
9113 
9114   const size_t NumFields =
9115       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
9116 
9117   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
9118                                             E->capture_init_end()) &&
9119          "The number of lambda capture initializers should equal the number of "
9120          "fields within the closure type");
9121 
9122   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
9123   // Iterate through all the lambda's closure object's fields and initialize
9124   // them.
9125   auto *CaptureInitIt = E->capture_init_begin();
9126   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
9127   bool Success = true;
9128   for (const auto *Field : ClosureClass->fields()) {
9129     assert(CaptureInitIt != E->capture_init_end());
9130     // Get the initializer for this field
9131     Expr *const CurFieldInit = *CaptureInitIt++;
9132 
9133     // If there is no initializer, either this is a VLA or an error has
9134     // occurred.
9135     if (!CurFieldInit)
9136       return Error(E);
9137 
9138     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9139     if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
9140       if (!Info.keepEvaluatingAfterFailure())
9141         return false;
9142       Success = false;
9143     }
9144     ++CaptureIt;
9145   }
9146   return Success;
9147 }
9148 
9149 static bool EvaluateRecord(const Expr *E, const LValue &This,
9150                            APValue &Result, EvalInfo &Info) {
9151   assert(E->isRValue() && E->getType()->isRecordType() &&
9152          "can't evaluate expression as a record rvalue");
9153   return RecordExprEvaluator(Info, This, Result).Visit(E);
9154 }
9155 
9156 //===----------------------------------------------------------------------===//
9157 // Temporary Evaluation
9158 //
9159 // Temporaries are represented in the AST as rvalues, but generally behave like
9160 // lvalues. The full-object of which the temporary is a subobject is implicitly
9161 // materialized so that a reference can bind to it.
9162 //===----------------------------------------------------------------------===//
9163 namespace {
9164 class TemporaryExprEvaluator
9165   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
9166 public:
9167   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
9168     LValueExprEvaluatorBaseTy(Info, Result, false) {}
9169 
9170   /// Visit an expression which constructs the value of this temporary.
9171   bool VisitConstructExpr(const Expr *E) {
9172     APValue &Value =
9173         Info.CurrentCall->createTemporary(E, E->getType(), false, Result);
9174     return EvaluateInPlace(Value, Info, Result, E);
9175   }
9176 
9177   bool VisitCastExpr(const CastExpr *E) {
9178     switch (E->getCastKind()) {
9179     default:
9180       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
9181 
9182     case CK_ConstructorConversion:
9183       return VisitConstructExpr(E->getSubExpr());
9184     }
9185   }
9186   bool VisitInitListExpr(const InitListExpr *E) {
9187     return VisitConstructExpr(E);
9188   }
9189   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9190     return VisitConstructExpr(E);
9191   }
9192   bool VisitCallExpr(const CallExpr *E) {
9193     return VisitConstructExpr(E);
9194   }
9195   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
9196     return VisitConstructExpr(E);
9197   }
9198   bool VisitLambdaExpr(const LambdaExpr *E) {
9199     return VisitConstructExpr(E);
9200   }
9201 };
9202 } // end anonymous namespace
9203 
9204 /// Evaluate an expression of record type as a temporary.
9205 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
9206   assert(E->isRValue() && E->getType()->isRecordType());
9207   return TemporaryExprEvaluator(Info, Result).Visit(E);
9208 }
9209 
9210 //===----------------------------------------------------------------------===//
9211 // Vector Evaluation
9212 //===----------------------------------------------------------------------===//
9213 
9214 namespace {
9215   class VectorExprEvaluator
9216   : public ExprEvaluatorBase<VectorExprEvaluator> {
9217     APValue &Result;
9218   public:
9219 
9220     VectorExprEvaluator(EvalInfo &info, APValue &Result)
9221       : ExprEvaluatorBaseTy(info), Result(Result) {}
9222 
9223     bool Success(ArrayRef<APValue> V, const Expr *E) {
9224       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
9225       // FIXME: remove this APValue copy.
9226       Result = APValue(V.data(), V.size());
9227       return true;
9228     }
9229     bool Success(const APValue &V, const Expr *E) {
9230       assert(V.isVector());
9231       Result = V;
9232       return true;
9233     }
9234     bool ZeroInitialization(const Expr *E);
9235 
9236     bool VisitUnaryReal(const UnaryOperator *E)
9237       { return Visit(E->getSubExpr()); }
9238     bool VisitCastExpr(const CastExpr* E);
9239     bool VisitInitListExpr(const InitListExpr *E);
9240     bool VisitUnaryImag(const UnaryOperator *E);
9241     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
9242     //                 binary comparisons, binary and/or/xor,
9243     //                 shufflevector, ExtVectorElementExpr
9244   };
9245 } // end anonymous namespace
9246 
9247 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
9248   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
9249   return VectorExprEvaluator(Info, Result).Visit(E);
9250 }
9251 
9252 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
9253   const VectorType *VTy = E->getType()->castAs<VectorType>();
9254   unsigned NElts = VTy->getNumElements();
9255 
9256   const Expr *SE = E->getSubExpr();
9257   QualType SETy = SE->getType();
9258 
9259   switch (E->getCastKind()) {
9260   case CK_VectorSplat: {
9261     APValue Val = APValue();
9262     if (SETy->isIntegerType()) {
9263       APSInt IntResult;
9264       if (!EvaluateInteger(SE, IntResult, Info))
9265         return false;
9266       Val = APValue(std::move(IntResult));
9267     } else if (SETy->isRealFloatingType()) {
9268       APFloat FloatResult(0.0);
9269       if (!EvaluateFloat(SE, FloatResult, Info))
9270         return false;
9271       Val = APValue(std::move(FloatResult));
9272     } else {
9273       return Error(E);
9274     }
9275 
9276     // Splat and create vector APValue.
9277     SmallVector<APValue, 4> Elts(NElts, Val);
9278     return Success(Elts, E);
9279   }
9280   case CK_BitCast: {
9281     // Evaluate the operand into an APInt we can extract from.
9282     llvm::APInt SValInt;
9283     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
9284       return false;
9285     // Extract the elements
9286     QualType EltTy = VTy->getElementType();
9287     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
9288     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
9289     SmallVector<APValue, 4> Elts;
9290     if (EltTy->isRealFloatingType()) {
9291       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
9292       unsigned FloatEltSize = EltSize;
9293       if (&Sem == &APFloat::x87DoubleExtended())
9294         FloatEltSize = 80;
9295       for (unsigned i = 0; i < NElts; i++) {
9296         llvm::APInt Elt;
9297         if (BigEndian)
9298           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
9299         else
9300           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
9301         Elts.push_back(APValue(APFloat(Sem, Elt)));
9302       }
9303     } else if (EltTy->isIntegerType()) {
9304       for (unsigned i = 0; i < NElts; i++) {
9305         llvm::APInt Elt;
9306         if (BigEndian)
9307           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
9308         else
9309           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
9310         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
9311       }
9312     } else {
9313       return Error(E);
9314     }
9315     return Success(Elts, E);
9316   }
9317   default:
9318     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9319   }
9320 }
9321 
9322 bool
9323 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9324   const VectorType *VT = E->getType()->castAs<VectorType>();
9325   unsigned NumInits = E->getNumInits();
9326   unsigned NumElements = VT->getNumElements();
9327 
9328   QualType EltTy = VT->getElementType();
9329   SmallVector<APValue, 4> Elements;
9330 
9331   // The number of initializers can be less than the number of
9332   // vector elements. For OpenCL, this can be due to nested vector
9333   // initialization. For GCC compatibility, missing trailing elements
9334   // should be initialized with zeroes.
9335   unsigned CountInits = 0, CountElts = 0;
9336   while (CountElts < NumElements) {
9337     // Handle nested vector initialization.
9338     if (CountInits < NumInits
9339         && E->getInit(CountInits)->getType()->isVectorType()) {
9340       APValue v;
9341       if (!EvaluateVector(E->getInit(CountInits), v, Info))
9342         return Error(E);
9343       unsigned vlen = v.getVectorLength();
9344       for (unsigned j = 0; j < vlen; j++)
9345         Elements.push_back(v.getVectorElt(j));
9346       CountElts += vlen;
9347     } else if (EltTy->isIntegerType()) {
9348       llvm::APSInt sInt(32);
9349       if (CountInits < NumInits) {
9350         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
9351           return false;
9352       } else // trailing integer zero.
9353         sInt = Info.Ctx.MakeIntValue(0, EltTy);
9354       Elements.push_back(APValue(sInt));
9355       CountElts++;
9356     } else {
9357       llvm::APFloat f(0.0);
9358       if (CountInits < NumInits) {
9359         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
9360           return false;
9361       } else // trailing float zero.
9362         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
9363       Elements.push_back(APValue(f));
9364       CountElts++;
9365     }
9366     CountInits++;
9367   }
9368   return Success(Elements, E);
9369 }
9370 
9371 bool
9372 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
9373   const auto *VT = E->getType()->castAs<VectorType>();
9374   QualType EltTy = VT->getElementType();
9375   APValue ZeroElement;
9376   if (EltTy->isIntegerType())
9377     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
9378   else
9379     ZeroElement =
9380         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
9381 
9382   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
9383   return Success(Elements, E);
9384 }
9385 
9386 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9387   VisitIgnoredValue(E->getSubExpr());
9388   return ZeroInitialization(E);
9389 }
9390 
9391 //===----------------------------------------------------------------------===//
9392 // Array Evaluation
9393 //===----------------------------------------------------------------------===//
9394 
9395 namespace {
9396   class ArrayExprEvaluator
9397   : public ExprEvaluatorBase<ArrayExprEvaluator> {
9398     const LValue &This;
9399     APValue &Result;
9400   public:
9401 
9402     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
9403       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
9404 
9405     bool Success(const APValue &V, const Expr *E) {
9406       assert(V.isArray() && "expected array");
9407       Result = V;
9408       return true;
9409     }
9410 
9411     bool ZeroInitialization(const Expr *E) {
9412       const ConstantArrayType *CAT =
9413           Info.Ctx.getAsConstantArrayType(E->getType());
9414       if (!CAT)
9415         return Error(E);
9416 
9417       Result = APValue(APValue::UninitArray(), 0,
9418                        CAT->getSize().getZExtValue());
9419       if (!Result.hasArrayFiller()) return true;
9420 
9421       // Zero-initialize all elements.
9422       LValue Subobject = This;
9423       Subobject.addArray(Info, E, CAT);
9424       ImplicitValueInitExpr VIE(CAT->getElementType());
9425       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
9426     }
9427 
9428     bool VisitCallExpr(const CallExpr *E) {
9429       return handleCallExpr(E, Result, &This);
9430     }
9431     bool VisitInitListExpr(const InitListExpr *E,
9432                            QualType AllocType = QualType());
9433     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
9434     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
9435     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
9436                                const LValue &Subobject,
9437                                APValue *Value, QualType Type);
9438     bool VisitStringLiteral(const StringLiteral *E,
9439                             QualType AllocType = QualType()) {
9440       expandStringLiteral(Info, E, Result, AllocType);
9441       return true;
9442     }
9443   };
9444 } // end anonymous namespace
9445 
9446 static bool EvaluateArray(const Expr *E, const LValue &This,
9447                           APValue &Result, EvalInfo &Info) {
9448   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
9449   return ArrayExprEvaluator(Info, This, Result).Visit(E);
9450 }
9451 
9452 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9453                                      APValue &Result, const InitListExpr *ILE,
9454                                      QualType AllocType) {
9455   assert(ILE->isRValue() && ILE->getType()->isArrayType() &&
9456          "not an array rvalue");
9457   return ArrayExprEvaluator(Info, This, Result)
9458       .VisitInitListExpr(ILE, AllocType);
9459 }
9460 
9461 // Return true iff the given array filler may depend on the element index.
9462 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
9463   // For now, just whitelist non-class value-initialization and initialization
9464   // lists comprised of them.
9465   if (isa<ImplicitValueInitExpr>(FillerExpr))
9466     return false;
9467   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
9468     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
9469       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
9470         return true;
9471     }
9472     return false;
9473   }
9474   return true;
9475 }
9476 
9477 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
9478                                            QualType AllocType) {
9479   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
9480       AllocType.isNull() ? E->getType() : AllocType);
9481   if (!CAT)
9482     return Error(E);
9483 
9484   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
9485   // an appropriately-typed string literal enclosed in braces.
9486   if (E->isStringLiteralInit()) {
9487     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
9488     // FIXME: Support ObjCEncodeExpr here once we support it in
9489     // ArrayExprEvaluator generally.
9490     if (!SL)
9491       return Error(E);
9492     return VisitStringLiteral(SL, AllocType);
9493   }
9494 
9495   bool Success = true;
9496 
9497   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
9498          "zero-initialized array shouldn't have any initialized elts");
9499   APValue Filler;
9500   if (Result.isArray() && Result.hasArrayFiller())
9501     Filler = Result.getArrayFiller();
9502 
9503   unsigned NumEltsToInit = E->getNumInits();
9504   unsigned NumElts = CAT->getSize().getZExtValue();
9505   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
9506 
9507   // If the initializer might depend on the array index, run it for each
9508   // array element.
9509   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
9510     NumEltsToInit = NumElts;
9511 
9512   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
9513                           << NumEltsToInit << ".\n");
9514 
9515   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
9516 
9517   // If the array was previously zero-initialized, preserve the
9518   // zero-initialized values.
9519   if (Filler.hasValue()) {
9520     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
9521       Result.getArrayInitializedElt(I) = Filler;
9522     if (Result.hasArrayFiller())
9523       Result.getArrayFiller() = Filler;
9524   }
9525 
9526   LValue Subobject = This;
9527   Subobject.addArray(Info, E, CAT);
9528   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
9529     const Expr *Init =
9530         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
9531     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
9532                          Info, Subobject, Init) ||
9533         !HandleLValueArrayAdjustment(Info, Init, Subobject,
9534                                      CAT->getElementType(), 1)) {
9535       if (!Info.noteFailure())
9536         return false;
9537       Success = false;
9538     }
9539   }
9540 
9541   if (!Result.hasArrayFiller())
9542     return Success;
9543 
9544   // If we get here, we have a trivial filler, which we can just evaluate
9545   // once and splat over the rest of the array elements.
9546   assert(FillerExpr && "no array filler for incomplete init list");
9547   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
9548                          FillerExpr) && Success;
9549 }
9550 
9551 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
9552   LValue CommonLV;
9553   if (E->getCommonExpr() &&
9554       !Evaluate(Info.CurrentCall->createTemporary(
9555                     E->getCommonExpr(),
9556                     getStorageType(Info.Ctx, E->getCommonExpr()), false,
9557                     CommonLV),
9558                 Info, E->getCommonExpr()->getSourceExpr()))
9559     return false;
9560 
9561   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
9562 
9563   uint64_t Elements = CAT->getSize().getZExtValue();
9564   Result = APValue(APValue::UninitArray(), Elements, Elements);
9565 
9566   LValue Subobject = This;
9567   Subobject.addArray(Info, E, CAT);
9568 
9569   bool Success = true;
9570   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
9571     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
9572                          Info, Subobject, E->getSubExpr()) ||
9573         !HandleLValueArrayAdjustment(Info, E, Subobject,
9574                                      CAT->getElementType(), 1)) {
9575       if (!Info.noteFailure())
9576         return false;
9577       Success = false;
9578     }
9579   }
9580 
9581   return Success;
9582 }
9583 
9584 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
9585   return VisitCXXConstructExpr(E, This, &Result, E->getType());
9586 }
9587 
9588 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9589                                                const LValue &Subobject,
9590                                                APValue *Value,
9591                                                QualType Type) {
9592   bool HadZeroInit = Value->hasValue();
9593 
9594   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
9595     unsigned N = CAT->getSize().getZExtValue();
9596 
9597     // Preserve the array filler if we had prior zero-initialization.
9598     APValue Filler =
9599       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
9600                                              : APValue();
9601 
9602     *Value = APValue(APValue::UninitArray(), N, N);
9603 
9604     if (HadZeroInit)
9605       for (unsigned I = 0; I != N; ++I)
9606         Value->getArrayInitializedElt(I) = Filler;
9607 
9608     // Initialize the elements.
9609     LValue ArrayElt = Subobject;
9610     ArrayElt.addArray(Info, E, CAT);
9611     for (unsigned I = 0; I != N; ++I)
9612       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
9613                                  CAT->getElementType()) ||
9614           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
9615                                        CAT->getElementType(), 1))
9616         return false;
9617 
9618     return true;
9619   }
9620 
9621   if (!Type->isRecordType())
9622     return Error(E);
9623 
9624   return RecordExprEvaluator(Info, Subobject, *Value)
9625              .VisitCXXConstructExpr(E, Type);
9626 }
9627 
9628 //===----------------------------------------------------------------------===//
9629 // Integer Evaluation
9630 //
9631 // As a GNU extension, we support casting pointers to sufficiently-wide integer
9632 // types and back in constant folding. Integer values are thus represented
9633 // either as an integer-valued APValue, or as an lvalue-valued APValue.
9634 //===----------------------------------------------------------------------===//
9635 
9636 namespace {
9637 class IntExprEvaluator
9638         : public ExprEvaluatorBase<IntExprEvaluator> {
9639   APValue &Result;
9640 public:
9641   IntExprEvaluator(EvalInfo &info, APValue &result)
9642       : ExprEvaluatorBaseTy(info), Result(result) {}
9643 
9644   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
9645     assert(E->getType()->isIntegralOrEnumerationType() &&
9646            "Invalid evaluation result.");
9647     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
9648            "Invalid evaluation result.");
9649     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
9650            "Invalid evaluation result.");
9651     Result = APValue(SI);
9652     return true;
9653   }
9654   bool Success(const llvm::APSInt &SI, const Expr *E) {
9655     return Success(SI, E, Result);
9656   }
9657 
9658   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
9659     assert(E->getType()->isIntegralOrEnumerationType() &&
9660            "Invalid evaluation result.");
9661     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
9662            "Invalid evaluation result.");
9663     Result = APValue(APSInt(I));
9664     Result.getInt().setIsUnsigned(
9665                             E->getType()->isUnsignedIntegerOrEnumerationType());
9666     return true;
9667   }
9668   bool Success(const llvm::APInt &I, const Expr *E) {
9669     return Success(I, E, Result);
9670   }
9671 
9672   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
9673     assert(E->getType()->isIntegralOrEnumerationType() &&
9674            "Invalid evaluation result.");
9675     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
9676     return true;
9677   }
9678   bool Success(uint64_t Value, const Expr *E) {
9679     return Success(Value, E, Result);
9680   }
9681 
9682   bool Success(CharUnits Size, const Expr *E) {
9683     return Success(Size.getQuantity(), E);
9684   }
9685 
9686   bool Success(const APValue &V, const Expr *E) {
9687     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
9688       Result = V;
9689       return true;
9690     }
9691     return Success(V.getInt(), E);
9692   }
9693 
9694   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
9695 
9696   //===--------------------------------------------------------------------===//
9697   //                            Visitor Methods
9698   //===--------------------------------------------------------------------===//
9699 
9700   bool VisitConstantExpr(const ConstantExpr *E);
9701 
9702   bool VisitIntegerLiteral(const IntegerLiteral *E) {
9703     return Success(E->getValue(), E);
9704   }
9705   bool VisitCharacterLiteral(const CharacterLiteral *E) {
9706     return Success(E->getValue(), E);
9707   }
9708 
9709   bool CheckReferencedDecl(const Expr *E, const Decl *D);
9710   bool VisitDeclRefExpr(const DeclRefExpr *E) {
9711     if (CheckReferencedDecl(E, E->getDecl()))
9712       return true;
9713 
9714     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
9715   }
9716   bool VisitMemberExpr(const MemberExpr *E) {
9717     if (CheckReferencedDecl(E, E->getMemberDecl())) {
9718       VisitIgnoredBaseExpression(E->getBase());
9719       return true;
9720     }
9721 
9722     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
9723   }
9724 
9725   bool VisitCallExpr(const CallExpr *E);
9726   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
9727   bool VisitBinaryOperator(const BinaryOperator *E);
9728   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
9729   bool VisitUnaryOperator(const UnaryOperator *E);
9730 
9731   bool VisitCastExpr(const CastExpr* E);
9732   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
9733 
9734   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
9735     return Success(E->getValue(), E);
9736   }
9737 
9738   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
9739     return Success(E->getValue(), E);
9740   }
9741 
9742   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
9743     if (Info.ArrayInitIndex == uint64_t(-1)) {
9744       // We were asked to evaluate this subexpression independent of the
9745       // enclosing ArrayInitLoopExpr. We can't do that.
9746       Info.FFDiag(E);
9747       return false;
9748     }
9749     return Success(Info.ArrayInitIndex, E);
9750   }
9751 
9752   // Note, GNU defines __null as an integer, not a pointer.
9753   bool VisitGNUNullExpr(const GNUNullExpr *E) {
9754     return ZeroInitialization(E);
9755   }
9756 
9757   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
9758     return Success(E->getValue(), E);
9759   }
9760 
9761   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
9762     return Success(E->getValue(), E);
9763   }
9764 
9765   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
9766     return Success(E->getValue(), E);
9767   }
9768 
9769   bool VisitUnaryReal(const UnaryOperator *E);
9770   bool VisitUnaryImag(const UnaryOperator *E);
9771 
9772   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
9773   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
9774   bool VisitSourceLocExpr(const SourceLocExpr *E);
9775   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
9776   // FIXME: Missing: array subscript of vector, member of vector
9777 };
9778 
9779 class FixedPointExprEvaluator
9780     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
9781   APValue &Result;
9782 
9783  public:
9784   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
9785       : ExprEvaluatorBaseTy(info), Result(result) {}
9786 
9787   bool Success(const llvm::APInt &I, const Expr *E) {
9788     return Success(
9789         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
9790   }
9791 
9792   bool Success(uint64_t Value, const Expr *E) {
9793     return Success(
9794         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
9795   }
9796 
9797   bool Success(const APValue &V, const Expr *E) {
9798     return Success(V.getFixedPoint(), E);
9799   }
9800 
9801   bool Success(const APFixedPoint &V, const Expr *E) {
9802     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
9803     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
9804            "Invalid evaluation result.");
9805     Result = APValue(V);
9806     return true;
9807   }
9808 
9809   //===--------------------------------------------------------------------===//
9810   //                            Visitor Methods
9811   //===--------------------------------------------------------------------===//
9812 
9813   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
9814     return Success(E->getValue(), E);
9815   }
9816 
9817   bool VisitCastExpr(const CastExpr *E);
9818   bool VisitUnaryOperator(const UnaryOperator *E);
9819   bool VisitBinaryOperator(const BinaryOperator *E);
9820 };
9821 } // end anonymous namespace
9822 
9823 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
9824 /// produce either the integer value or a pointer.
9825 ///
9826 /// GCC has a heinous extension which folds casts between pointer types and
9827 /// pointer-sized integral types. We support this by allowing the evaluation of
9828 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
9829 /// Some simple arithmetic on such values is supported (they are treated much
9830 /// like char*).
9831 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
9832                                     EvalInfo &Info) {
9833   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
9834   return IntExprEvaluator(Info, Result).Visit(E);
9835 }
9836 
9837 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
9838   APValue Val;
9839   if (!EvaluateIntegerOrLValue(E, Val, Info))
9840     return false;
9841   if (!Val.isInt()) {
9842     // FIXME: It would be better to produce the diagnostic for casting
9843     //        a pointer to an integer.
9844     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
9845     return false;
9846   }
9847   Result = Val.getInt();
9848   return true;
9849 }
9850 
9851 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
9852   APValue Evaluated = E->EvaluateInContext(
9853       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9854   return Success(Evaluated, E);
9855 }
9856 
9857 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
9858                                EvalInfo &Info) {
9859   if (E->getType()->isFixedPointType()) {
9860     APValue Val;
9861     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
9862       return false;
9863     if (!Val.isFixedPoint())
9864       return false;
9865 
9866     Result = Val.getFixedPoint();
9867     return true;
9868   }
9869   return false;
9870 }
9871 
9872 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
9873                                         EvalInfo &Info) {
9874   if (E->getType()->isIntegerType()) {
9875     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
9876     APSInt Val;
9877     if (!EvaluateInteger(E, Val, Info))
9878       return false;
9879     Result = APFixedPoint(Val, FXSema);
9880     return true;
9881   } else if (E->getType()->isFixedPointType()) {
9882     return EvaluateFixedPoint(E, Result, Info);
9883   }
9884   return false;
9885 }
9886 
9887 /// Check whether the given declaration can be directly converted to an integral
9888 /// rvalue. If not, no diagnostic is produced; there are other things we can
9889 /// try.
9890 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
9891   // Enums are integer constant exprs.
9892   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
9893     // Check for signedness/width mismatches between E type and ECD value.
9894     bool SameSign = (ECD->getInitVal().isSigned()
9895                      == E->getType()->isSignedIntegerOrEnumerationType());
9896     bool SameWidth = (ECD->getInitVal().getBitWidth()
9897                       == Info.Ctx.getIntWidth(E->getType()));
9898     if (SameSign && SameWidth)
9899       return Success(ECD->getInitVal(), E);
9900     else {
9901       // Get rid of mismatch (otherwise Success assertions will fail)
9902       // by computing a new value matching the type of E.
9903       llvm::APSInt Val = ECD->getInitVal();
9904       if (!SameSign)
9905         Val.setIsSigned(!ECD->getInitVal().isSigned());
9906       if (!SameWidth)
9907         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
9908       return Success(Val, E);
9909     }
9910   }
9911   return false;
9912 }
9913 
9914 /// Values returned by __builtin_classify_type, chosen to match the values
9915 /// produced by GCC's builtin.
9916 enum class GCCTypeClass {
9917   None = -1,
9918   Void = 0,
9919   Integer = 1,
9920   // GCC reserves 2 for character types, but instead classifies them as
9921   // integers.
9922   Enum = 3,
9923   Bool = 4,
9924   Pointer = 5,
9925   // GCC reserves 6 for references, but appears to never use it (because
9926   // expressions never have reference type, presumably).
9927   PointerToDataMember = 7,
9928   RealFloat = 8,
9929   Complex = 9,
9930   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
9931   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
9932   // GCC claims to reserve 11 for pointers to member functions, but *actually*
9933   // uses 12 for that purpose, same as for a class or struct. Maybe it
9934   // internally implements a pointer to member as a struct?  Who knows.
9935   PointerToMemberFunction = 12, // Not a bug, see above.
9936   ClassOrStruct = 12,
9937   Union = 13,
9938   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
9939   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
9940   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
9941   // literals.
9942 };
9943 
9944 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
9945 /// as GCC.
9946 static GCCTypeClass
9947 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
9948   assert(!T->isDependentType() && "unexpected dependent type");
9949 
9950   QualType CanTy = T.getCanonicalType();
9951   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
9952 
9953   switch (CanTy->getTypeClass()) {
9954 #define TYPE(ID, BASE)
9955 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
9956 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
9957 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
9958 #include "clang/AST/TypeNodes.inc"
9959   case Type::Auto:
9960   case Type::DeducedTemplateSpecialization:
9961       llvm_unreachable("unexpected non-canonical or dependent type");
9962 
9963   case Type::Builtin:
9964     switch (BT->getKind()) {
9965 #define BUILTIN_TYPE(ID, SINGLETON_ID)
9966 #define SIGNED_TYPE(ID, SINGLETON_ID) \
9967     case BuiltinType::ID: return GCCTypeClass::Integer;
9968 #define FLOATING_TYPE(ID, SINGLETON_ID) \
9969     case BuiltinType::ID: return GCCTypeClass::RealFloat;
9970 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
9971     case BuiltinType::ID: break;
9972 #include "clang/AST/BuiltinTypes.def"
9973     case BuiltinType::Void:
9974       return GCCTypeClass::Void;
9975 
9976     case BuiltinType::Bool:
9977       return GCCTypeClass::Bool;
9978 
9979     case BuiltinType::Char_U:
9980     case BuiltinType::UChar:
9981     case BuiltinType::WChar_U:
9982     case BuiltinType::Char8:
9983     case BuiltinType::Char16:
9984     case BuiltinType::Char32:
9985     case BuiltinType::UShort:
9986     case BuiltinType::UInt:
9987     case BuiltinType::ULong:
9988     case BuiltinType::ULongLong:
9989     case BuiltinType::UInt128:
9990       return GCCTypeClass::Integer;
9991 
9992     case BuiltinType::UShortAccum:
9993     case BuiltinType::UAccum:
9994     case BuiltinType::ULongAccum:
9995     case BuiltinType::UShortFract:
9996     case BuiltinType::UFract:
9997     case BuiltinType::ULongFract:
9998     case BuiltinType::SatUShortAccum:
9999     case BuiltinType::SatUAccum:
10000     case BuiltinType::SatULongAccum:
10001     case BuiltinType::SatUShortFract:
10002     case BuiltinType::SatUFract:
10003     case BuiltinType::SatULongFract:
10004       return GCCTypeClass::None;
10005 
10006     case BuiltinType::NullPtr:
10007 
10008     case BuiltinType::ObjCId:
10009     case BuiltinType::ObjCClass:
10010     case BuiltinType::ObjCSel:
10011 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
10012     case BuiltinType::Id:
10013 #include "clang/Basic/OpenCLImageTypes.def"
10014 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
10015     case BuiltinType::Id:
10016 #include "clang/Basic/OpenCLExtensionTypes.def"
10017     case BuiltinType::OCLSampler:
10018     case BuiltinType::OCLEvent:
10019     case BuiltinType::OCLClkEvent:
10020     case BuiltinType::OCLQueue:
10021     case BuiltinType::OCLReserveID:
10022 #define SVE_TYPE(Name, Id, SingletonId) \
10023     case BuiltinType::Id:
10024 #include "clang/Basic/AArch64SVEACLETypes.def"
10025       return GCCTypeClass::None;
10026 
10027     case BuiltinType::Dependent:
10028       llvm_unreachable("unexpected dependent type");
10029     };
10030     llvm_unreachable("unexpected placeholder type");
10031 
10032   case Type::Enum:
10033     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
10034 
10035   case Type::Pointer:
10036   case Type::ConstantArray:
10037   case Type::VariableArray:
10038   case Type::IncompleteArray:
10039   case Type::FunctionNoProto:
10040   case Type::FunctionProto:
10041     return GCCTypeClass::Pointer;
10042 
10043   case Type::MemberPointer:
10044     return CanTy->isMemberDataPointerType()
10045                ? GCCTypeClass::PointerToDataMember
10046                : GCCTypeClass::PointerToMemberFunction;
10047 
10048   case Type::Complex:
10049     return GCCTypeClass::Complex;
10050 
10051   case Type::Record:
10052     return CanTy->isUnionType() ? GCCTypeClass::Union
10053                                 : GCCTypeClass::ClassOrStruct;
10054 
10055   case Type::Atomic:
10056     // GCC classifies _Atomic T the same as T.
10057     return EvaluateBuiltinClassifyType(
10058         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
10059 
10060   case Type::BlockPointer:
10061   case Type::Vector:
10062   case Type::ExtVector:
10063   case Type::ObjCObject:
10064   case Type::ObjCInterface:
10065   case Type::ObjCObjectPointer:
10066   case Type::Pipe:
10067     // GCC classifies vectors as None. We follow its lead and classify all
10068     // other types that don't fit into the regular classification the same way.
10069     return GCCTypeClass::None;
10070 
10071   case Type::LValueReference:
10072   case Type::RValueReference:
10073     llvm_unreachable("invalid type for expression");
10074   }
10075 
10076   llvm_unreachable("unexpected type class");
10077 }
10078 
10079 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10080 /// as GCC.
10081 static GCCTypeClass
10082 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
10083   // If no argument was supplied, default to None. This isn't
10084   // ideal, however it is what gcc does.
10085   if (E->getNumArgs() == 0)
10086     return GCCTypeClass::None;
10087 
10088   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
10089   // being an ICE, but still folds it to a constant using the type of the first
10090   // argument.
10091   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
10092 }
10093 
10094 /// EvaluateBuiltinConstantPForLValue - Determine the result of
10095 /// __builtin_constant_p when applied to the given pointer.
10096 ///
10097 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
10098 /// or it points to the first character of a string literal.
10099 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
10100   APValue::LValueBase Base = LV.getLValueBase();
10101   if (Base.isNull()) {
10102     // A null base is acceptable.
10103     return true;
10104   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
10105     if (!isa<StringLiteral>(E))
10106       return false;
10107     return LV.getLValueOffset().isZero();
10108   } else if (Base.is<TypeInfoLValue>()) {
10109     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
10110     // evaluate to true.
10111     return true;
10112   } else {
10113     // Any other base is not constant enough for GCC.
10114     return false;
10115   }
10116 }
10117 
10118 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
10119 /// GCC as we can manage.
10120 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
10121   // This evaluation is not permitted to have side-effects, so evaluate it in
10122   // a speculative evaluation context.
10123   SpeculativeEvaluationRAII SpeculativeEval(Info);
10124 
10125   // Constant-folding is always enabled for the operand of __builtin_constant_p
10126   // (even when the enclosing evaluation context otherwise requires a strict
10127   // language-specific constant expression).
10128   FoldConstant Fold(Info, true);
10129 
10130   QualType ArgType = Arg->getType();
10131 
10132   // __builtin_constant_p always has one operand. The rules which gcc follows
10133   // are not precisely documented, but are as follows:
10134   //
10135   //  - If the operand is of integral, floating, complex or enumeration type,
10136   //    and can be folded to a known value of that type, it returns 1.
10137   //  - If the operand can be folded to a pointer to the first character
10138   //    of a string literal (or such a pointer cast to an integral type)
10139   //    or to a null pointer or an integer cast to a pointer, it returns 1.
10140   //
10141   // Otherwise, it returns 0.
10142   //
10143   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
10144   // its support for this did not work prior to GCC 9 and is not yet well
10145   // understood.
10146   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
10147       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
10148       ArgType->isNullPtrType()) {
10149     APValue V;
10150     if (!::EvaluateAsRValue(Info, Arg, V)) {
10151       Fold.keepDiagnostics();
10152       return false;
10153     }
10154 
10155     // For a pointer (possibly cast to integer), there are special rules.
10156     if (V.getKind() == APValue::LValue)
10157       return EvaluateBuiltinConstantPForLValue(V);
10158 
10159     // Otherwise, any constant value is good enough.
10160     return V.hasValue();
10161   }
10162 
10163   // Anything else isn't considered to be sufficiently constant.
10164   return false;
10165 }
10166 
10167 /// Retrieves the "underlying object type" of the given expression,
10168 /// as used by __builtin_object_size.
10169 static QualType getObjectType(APValue::LValueBase B) {
10170   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
10171     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
10172       return VD->getType();
10173   } else if (const Expr *E = B.get<const Expr*>()) {
10174     if (isa<CompoundLiteralExpr>(E))
10175       return E->getType();
10176   } else if (B.is<TypeInfoLValue>()) {
10177     return B.getTypeInfoType();
10178   } else if (B.is<DynamicAllocLValue>()) {
10179     return B.getDynamicAllocType();
10180   }
10181 
10182   return QualType();
10183 }
10184 
10185 /// A more selective version of E->IgnoreParenCasts for
10186 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
10187 /// to change the type of E.
10188 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
10189 ///
10190 /// Always returns an RValue with a pointer representation.
10191 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
10192   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
10193 
10194   auto *NoParens = E->IgnoreParens();
10195   auto *Cast = dyn_cast<CastExpr>(NoParens);
10196   if (Cast == nullptr)
10197     return NoParens;
10198 
10199   // We only conservatively allow a few kinds of casts, because this code is
10200   // inherently a simple solution that seeks to support the common case.
10201   auto CastKind = Cast->getCastKind();
10202   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
10203       CastKind != CK_AddressSpaceConversion)
10204     return NoParens;
10205 
10206   auto *SubExpr = Cast->getSubExpr();
10207   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
10208     return NoParens;
10209   return ignorePointerCastsAndParens(SubExpr);
10210 }
10211 
10212 /// Checks to see if the given LValue's Designator is at the end of the LValue's
10213 /// record layout. e.g.
10214 ///   struct { struct { int a, b; } fst, snd; } obj;
10215 ///   obj.fst   // no
10216 ///   obj.snd   // yes
10217 ///   obj.fst.a // no
10218 ///   obj.fst.b // no
10219 ///   obj.snd.a // no
10220 ///   obj.snd.b // yes
10221 ///
10222 /// Please note: this function is specialized for how __builtin_object_size
10223 /// views "objects".
10224 ///
10225 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
10226 /// correct result, it will always return true.
10227 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
10228   assert(!LVal.Designator.Invalid);
10229 
10230   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
10231     const RecordDecl *Parent = FD->getParent();
10232     Invalid = Parent->isInvalidDecl();
10233     if (Invalid || Parent->isUnion())
10234       return true;
10235     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
10236     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
10237   };
10238 
10239   auto &Base = LVal.getLValueBase();
10240   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
10241     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
10242       bool Invalid;
10243       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
10244         return Invalid;
10245     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
10246       for (auto *FD : IFD->chain()) {
10247         bool Invalid;
10248         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
10249           return Invalid;
10250       }
10251     }
10252   }
10253 
10254   unsigned I = 0;
10255   QualType BaseType = getType(Base);
10256   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
10257     // If we don't know the array bound, conservatively assume we're looking at
10258     // the final array element.
10259     ++I;
10260     if (BaseType->isIncompleteArrayType())
10261       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
10262     else
10263       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
10264   }
10265 
10266   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
10267     const auto &Entry = LVal.Designator.Entries[I];
10268     if (BaseType->isArrayType()) {
10269       // Because __builtin_object_size treats arrays as objects, we can ignore
10270       // the index iff this is the last array in the Designator.
10271       if (I + 1 == E)
10272         return true;
10273       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
10274       uint64_t Index = Entry.getAsArrayIndex();
10275       if (Index + 1 != CAT->getSize())
10276         return false;
10277       BaseType = CAT->getElementType();
10278     } else if (BaseType->isAnyComplexType()) {
10279       const auto *CT = BaseType->castAs<ComplexType>();
10280       uint64_t Index = Entry.getAsArrayIndex();
10281       if (Index != 1)
10282         return false;
10283       BaseType = CT->getElementType();
10284     } else if (auto *FD = getAsField(Entry)) {
10285       bool Invalid;
10286       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
10287         return Invalid;
10288       BaseType = FD->getType();
10289     } else {
10290       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
10291       return false;
10292     }
10293   }
10294   return true;
10295 }
10296 
10297 /// Tests to see if the LValue has a user-specified designator (that isn't
10298 /// necessarily valid). Note that this always returns 'true' if the LValue has
10299 /// an unsized array as its first designator entry, because there's currently no
10300 /// way to tell if the user typed *foo or foo[0].
10301 static bool refersToCompleteObject(const LValue &LVal) {
10302   if (LVal.Designator.Invalid)
10303     return false;
10304 
10305   if (!LVal.Designator.Entries.empty())
10306     return LVal.Designator.isMostDerivedAnUnsizedArray();
10307 
10308   if (!LVal.InvalidBase)
10309     return true;
10310 
10311   // If `E` is a MemberExpr, then the first part of the designator is hiding in
10312   // the LValueBase.
10313   const auto *E = LVal.Base.dyn_cast<const Expr *>();
10314   return !E || !isa<MemberExpr>(E);
10315 }
10316 
10317 /// Attempts to detect a user writing into a piece of memory that's impossible
10318 /// to figure out the size of by just using types.
10319 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
10320   const SubobjectDesignator &Designator = LVal.Designator;
10321   // Notes:
10322   // - Users can only write off of the end when we have an invalid base. Invalid
10323   //   bases imply we don't know where the memory came from.
10324   // - We used to be a bit more aggressive here; we'd only be conservative if
10325   //   the array at the end was flexible, or if it had 0 or 1 elements. This
10326   //   broke some common standard library extensions (PR30346), but was
10327   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
10328   //   with some sort of whitelist. OTOH, it seems that GCC is always
10329   //   conservative with the last element in structs (if it's an array), so our
10330   //   current behavior is more compatible than a whitelisting approach would
10331   //   be.
10332   return LVal.InvalidBase &&
10333          Designator.Entries.size() == Designator.MostDerivedPathLength &&
10334          Designator.MostDerivedIsArrayElement &&
10335          isDesignatorAtObjectEnd(Ctx, LVal);
10336 }
10337 
10338 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
10339 /// Fails if the conversion would cause loss of precision.
10340 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
10341                                             CharUnits &Result) {
10342   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
10343   if (Int.ugt(CharUnitsMax))
10344     return false;
10345   Result = CharUnits::fromQuantity(Int.getZExtValue());
10346   return true;
10347 }
10348 
10349 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
10350 /// determine how many bytes exist from the beginning of the object to either
10351 /// the end of the current subobject, or the end of the object itself, depending
10352 /// on what the LValue looks like + the value of Type.
10353 ///
10354 /// If this returns false, the value of Result is undefined.
10355 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
10356                                unsigned Type, const LValue &LVal,
10357                                CharUnits &EndOffset) {
10358   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
10359 
10360   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
10361     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
10362       return false;
10363     return HandleSizeof(Info, ExprLoc, Ty, Result);
10364   };
10365 
10366   // We want to evaluate the size of the entire object. This is a valid fallback
10367   // for when Type=1 and the designator is invalid, because we're asked for an
10368   // upper-bound.
10369   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
10370     // Type=3 wants a lower bound, so we can't fall back to this.
10371     if (Type == 3 && !DetermineForCompleteObject)
10372       return false;
10373 
10374     llvm::APInt APEndOffset;
10375     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
10376         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
10377       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
10378 
10379     if (LVal.InvalidBase)
10380       return false;
10381 
10382     QualType BaseTy = getObjectType(LVal.getLValueBase());
10383     return CheckedHandleSizeof(BaseTy, EndOffset);
10384   }
10385 
10386   // We want to evaluate the size of a subobject.
10387   const SubobjectDesignator &Designator = LVal.Designator;
10388 
10389   // The following is a moderately common idiom in C:
10390   //
10391   // struct Foo { int a; char c[1]; };
10392   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
10393   // strcpy(&F->c[0], Bar);
10394   //
10395   // In order to not break too much legacy code, we need to support it.
10396   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
10397     // If we can resolve this to an alloc_size call, we can hand that back,
10398     // because we know for certain how many bytes there are to write to.
10399     llvm::APInt APEndOffset;
10400     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
10401         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
10402       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
10403 
10404     // If we cannot determine the size of the initial allocation, then we can't
10405     // given an accurate upper-bound. However, we are still able to give
10406     // conservative lower-bounds for Type=3.
10407     if (Type == 1)
10408       return false;
10409   }
10410 
10411   CharUnits BytesPerElem;
10412   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
10413     return false;
10414 
10415   // According to the GCC documentation, we want the size of the subobject
10416   // denoted by the pointer. But that's not quite right -- what we actually
10417   // want is the size of the immediately-enclosing array, if there is one.
10418   int64_t ElemsRemaining;
10419   if (Designator.MostDerivedIsArrayElement &&
10420       Designator.Entries.size() == Designator.MostDerivedPathLength) {
10421     uint64_t ArraySize = Designator.getMostDerivedArraySize();
10422     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
10423     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
10424   } else {
10425     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
10426   }
10427 
10428   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
10429   return true;
10430 }
10431 
10432 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
10433 /// returns true and stores the result in @p Size.
10434 ///
10435 /// If @p WasError is non-null, this will report whether the failure to evaluate
10436 /// is to be treated as an Error in IntExprEvaluator.
10437 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
10438                                          EvalInfo &Info, uint64_t &Size) {
10439   // Determine the denoted object.
10440   LValue LVal;
10441   {
10442     // The operand of __builtin_object_size is never evaluated for side-effects.
10443     // If there are any, but we can determine the pointed-to object anyway, then
10444     // ignore the side-effects.
10445     SpeculativeEvaluationRAII SpeculativeEval(Info);
10446     IgnoreSideEffectsRAII Fold(Info);
10447 
10448     if (E->isGLValue()) {
10449       // It's possible for us to be given GLValues if we're called via
10450       // Expr::tryEvaluateObjectSize.
10451       APValue RVal;
10452       if (!EvaluateAsRValue(Info, E, RVal))
10453         return false;
10454       LVal.setFrom(Info.Ctx, RVal);
10455     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
10456                                 /*InvalidBaseOK=*/true))
10457       return false;
10458   }
10459 
10460   // If we point to before the start of the object, there are no accessible
10461   // bytes.
10462   if (LVal.getLValueOffset().isNegative()) {
10463     Size = 0;
10464     return true;
10465   }
10466 
10467   CharUnits EndOffset;
10468   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
10469     return false;
10470 
10471   // If we've fallen outside of the end offset, just pretend there's nothing to
10472   // write to/read from.
10473   if (EndOffset <= LVal.getLValueOffset())
10474     Size = 0;
10475   else
10476     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
10477   return true;
10478 }
10479 
10480 bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) {
10481   llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true);
10482   if (E->getResultAPValueKind() != APValue::None)
10483     return Success(E->getAPValueResult(), E);
10484   return ExprEvaluatorBaseTy::VisitConstantExpr(E);
10485 }
10486 
10487 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
10488   if (unsigned BuiltinOp = E->getBuiltinCallee())
10489     return VisitBuiltinCallExpr(E, BuiltinOp);
10490 
10491   return ExprEvaluatorBaseTy::VisitCallExpr(E);
10492 }
10493 
10494 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
10495                                             unsigned BuiltinOp) {
10496   switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
10497   default:
10498     return ExprEvaluatorBaseTy::VisitCallExpr(E);
10499 
10500   case Builtin::BI__builtin_dynamic_object_size:
10501   case Builtin::BI__builtin_object_size: {
10502     // The type was checked when we built the expression.
10503     unsigned Type =
10504         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
10505     assert(Type <= 3 && "unexpected type");
10506 
10507     uint64_t Size;
10508     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
10509       return Success(Size, E);
10510 
10511     if (E->getArg(0)->HasSideEffects(Info.Ctx))
10512       return Success((Type & 2) ? 0 : -1, E);
10513 
10514     // Expression had no side effects, but we couldn't statically determine the
10515     // size of the referenced object.
10516     switch (Info.EvalMode) {
10517     case EvalInfo::EM_ConstantExpression:
10518     case EvalInfo::EM_ConstantFold:
10519     case EvalInfo::EM_IgnoreSideEffects:
10520       // Leave it to IR generation.
10521       return Error(E);
10522     case EvalInfo::EM_ConstantExpressionUnevaluated:
10523       // Reduce it to a constant now.
10524       return Success((Type & 2) ? 0 : -1, E);
10525     }
10526 
10527     llvm_unreachable("unexpected EvalMode");
10528   }
10529 
10530   case Builtin::BI__builtin_os_log_format_buffer_size: {
10531     analyze_os_log::OSLogBufferLayout Layout;
10532     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
10533     return Success(Layout.size().getQuantity(), E);
10534   }
10535 
10536   case Builtin::BI__builtin_bswap16:
10537   case Builtin::BI__builtin_bswap32:
10538   case Builtin::BI__builtin_bswap64: {
10539     APSInt Val;
10540     if (!EvaluateInteger(E->getArg(0), Val, Info))
10541       return false;
10542 
10543     return Success(Val.byteSwap(), E);
10544   }
10545 
10546   case Builtin::BI__builtin_classify_type:
10547     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
10548 
10549   case Builtin::BI__builtin_clrsb:
10550   case Builtin::BI__builtin_clrsbl:
10551   case Builtin::BI__builtin_clrsbll: {
10552     APSInt Val;
10553     if (!EvaluateInteger(E->getArg(0), Val, Info))
10554       return false;
10555 
10556     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
10557   }
10558 
10559   case Builtin::BI__builtin_clz:
10560   case Builtin::BI__builtin_clzl:
10561   case Builtin::BI__builtin_clzll:
10562   case Builtin::BI__builtin_clzs: {
10563     APSInt Val;
10564     if (!EvaluateInteger(E->getArg(0), Val, Info))
10565       return false;
10566     if (!Val)
10567       return Error(E);
10568 
10569     return Success(Val.countLeadingZeros(), E);
10570   }
10571 
10572   case Builtin::BI__builtin_constant_p: {
10573     const Expr *Arg = E->getArg(0);
10574     if (EvaluateBuiltinConstantP(Info, Arg))
10575       return Success(true, E);
10576     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
10577       // Outside a constant context, eagerly evaluate to false in the presence
10578       // of side-effects in order to avoid -Wunsequenced false-positives in
10579       // a branch on __builtin_constant_p(expr).
10580       return Success(false, E);
10581     }
10582     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10583     return false;
10584   }
10585 
10586   case Builtin::BI__builtin_is_constant_evaluated:
10587     return Success(Info.InConstantContext, E);
10588 
10589   case Builtin::BI__builtin_ctz:
10590   case Builtin::BI__builtin_ctzl:
10591   case Builtin::BI__builtin_ctzll:
10592   case Builtin::BI__builtin_ctzs: {
10593     APSInt Val;
10594     if (!EvaluateInteger(E->getArg(0), Val, Info))
10595       return false;
10596     if (!Val)
10597       return Error(E);
10598 
10599     return Success(Val.countTrailingZeros(), E);
10600   }
10601 
10602   case Builtin::BI__builtin_eh_return_data_regno: {
10603     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
10604     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
10605     return Success(Operand, E);
10606   }
10607 
10608   case Builtin::BI__builtin_expect:
10609     return Visit(E->getArg(0));
10610 
10611   case Builtin::BI__builtin_ffs:
10612   case Builtin::BI__builtin_ffsl:
10613   case Builtin::BI__builtin_ffsll: {
10614     APSInt Val;
10615     if (!EvaluateInteger(E->getArg(0), Val, Info))
10616       return false;
10617 
10618     unsigned N = Val.countTrailingZeros();
10619     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
10620   }
10621 
10622   case Builtin::BI__builtin_fpclassify: {
10623     APFloat Val(0.0);
10624     if (!EvaluateFloat(E->getArg(5), Val, Info))
10625       return false;
10626     unsigned Arg;
10627     switch (Val.getCategory()) {
10628     case APFloat::fcNaN: Arg = 0; break;
10629     case APFloat::fcInfinity: Arg = 1; break;
10630     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
10631     case APFloat::fcZero: Arg = 4; break;
10632     }
10633     return Visit(E->getArg(Arg));
10634   }
10635 
10636   case Builtin::BI__builtin_isinf_sign: {
10637     APFloat Val(0.0);
10638     return EvaluateFloat(E->getArg(0), Val, Info) &&
10639            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
10640   }
10641 
10642   case Builtin::BI__builtin_isinf: {
10643     APFloat Val(0.0);
10644     return EvaluateFloat(E->getArg(0), Val, Info) &&
10645            Success(Val.isInfinity() ? 1 : 0, E);
10646   }
10647 
10648   case Builtin::BI__builtin_isfinite: {
10649     APFloat Val(0.0);
10650     return EvaluateFloat(E->getArg(0), Val, Info) &&
10651            Success(Val.isFinite() ? 1 : 0, E);
10652   }
10653 
10654   case Builtin::BI__builtin_isnan: {
10655     APFloat Val(0.0);
10656     return EvaluateFloat(E->getArg(0), Val, Info) &&
10657            Success(Val.isNaN() ? 1 : 0, E);
10658   }
10659 
10660   case Builtin::BI__builtin_isnormal: {
10661     APFloat Val(0.0);
10662     return EvaluateFloat(E->getArg(0), Val, Info) &&
10663            Success(Val.isNormal() ? 1 : 0, E);
10664   }
10665 
10666   case Builtin::BI__builtin_parity:
10667   case Builtin::BI__builtin_parityl:
10668   case Builtin::BI__builtin_parityll: {
10669     APSInt Val;
10670     if (!EvaluateInteger(E->getArg(0), Val, Info))
10671       return false;
10672 
10673     return Success(Val.countPopulation() % 2, E);
10674   }
10675 
10676   case Builtin::BI__builtin_popcount:
10677   case Builtin::BI__builtin_popcountl:
10678   case Builtin::BI__builtin_popcountll: {
10679     APSInt Val;
10680     if (!EvaluateInteger(E->getArg(0), Val, Info))
10681       return false;
10682 
10683     return Success(Val.countPopulation(), E);
10684   }
10685 
10686   case Builtin::BIstrlen:
10687   case Builtin::BIwcslen:
10688     // A call to strlen is not a constant expression.
10689     if (Info.getLangOpts().CPlusPlus11)
10690       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
10691         << /*isConstexpr*/0 << /*isConstructor*/0
10692         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
10693     else
10694       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
10695     LLVM_FALLTHROUGH;
10696   case Builtin::BI__builtin_strlen:
10697   case Builtin::BI__builtin_wcslen: {
10698     // As an extension, we support __builtin_strlen() as a constant expression,
10699     // and support folding strlen() to a constant.
10700     LValue String;
10701     if (!EvaluatePointer(E->getArg(0), String, Info))
10702       return false;
10703 
10704     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
10705 
10706     // Fast path: if it's a string literal, search the string value.
10707     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
10708             String.getLValueBase().dyn_cast<const Expr *>())) {
10709       // The string literal may have embedded null characters. Find the first
10710       // one and truncate there.
10711       StringRef Str = S->getBytes();
10712       int64_t Off = String.Offset.getQuantity();
10713       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
10714           S->getCharByteWidth() == 1 &&
10715           // FIXME: Add fast-path for wchar_t too.
10716           Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
10717         Str = Str.substr(Off);
10718 
10719         StringRef::size_type Pos = Str.find(0);
10720         if (Pos != StringRef::npos)
10721           Str = Str.substr(0, Pos);
10722 
10723         return Success(Str.size(), E);
10724       }
10725 
10726       // Fall through to slow path to issue appropriate diagnostic.
10727     }
10728 
10729     // Slow path: scan the bytes of the string looking for the terminating 0.
10730     for (uint64_t Strlen = 0; /**/; ++Strlen) {
10731       APValue Char;
10732       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
10733           !Char.isInt())
10734         return false;
10735       if (!Char.getInt())
10736         return Success(Strlen, E);
10737       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
10738         return false;
10739     }
10740   }
10741 
10742   case Builtin::BIstrcmp:
10743   case Builtin::BIwcscmp:
10744   case Builtin::BIstrncmp:
10745   case Builtin::BIwcsncmp:
10746   case Builtin::BImemcmp:
10747   case Builtin::BIbcmp:
10748   case Builtin::BIwmemcmp:
10749     // A call to strlen is not a constant expression.
10750     if (Info.getLangOpts().CPlusPlus11)
10751       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
10752         << /*isConstexpr*/0 << /*isConstructor*/0
10753         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
10754     else
10755       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
10756     LLVM_FALLTHROUGH;
10757   case Builtin::BI__builtin_strcmp:
10758   case Builtin::BI__builtin_wcscmp:
10759   case Builtin::BI__builtin_strncmp:
10760   case Builtin::BI__builtin_wcsncmp:
10761   case Builtin::BI__builtin_memcmp:
10762   case Builtin::BI__builtin_bcmp:
10763   case Builtin::BI__builtin_wmemcmp: {
10764     LValue String1, String2;
10765     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
10766         !EvaluatePointer(E->getArg(1), String2, Info))
10767       return false;
10768 
10769     uint64_t MaxLength = uint64_t(-1);
10770     if (BuiltinOp != Builtin::BIstrcmp &&
10771         BuiltinOp != Builtin::BIwcscmp &&
10772         BuiltinOp != Builtin::BI__builtin_strcmp &&
10773         BuiltinOp != Builtin::BI__builtin_wcscmp) {
10774       APSInt N;
10775       if (!EvaluateInteger(E->getArg(2), N, Info))
10776         return false;
10777       MaxLength = N.getExtValue();
10778     }
10779 
10780     // Empty substrings compare equal by definition.
10781     if (MaxLength == 0u)
10782       return Success(0, E);
10783 
10784     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
10785         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
10786         String1.Designator.Invalid || String2.Designator.Invalid)
10787       return false;
10788 
10789     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
10790     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
10791 
10792     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
10793                      BuiltinOp == Builtin::BIbcmp ||
10794                      BuiltinOp == Builtin::BI__builtin_memcmp ||
10795                      BuiltinOp == Builtin::BI__builtin_bcmp;
10796 
10797     assert(IsRawByte ||
10798            (Info.Ctx.hasSameUnqualifiedType(
10799                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
10800             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
10801 
10802     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
10803       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
10804              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
10805              Char1.isInt() && Char2.isInt();
10806     };
10807     const auto &AdvanceElems = [&] {
10808       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
10809              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
10810     };
10811 
10812     if (IsRawByte) {
10813       uint64_t BytesRemaining = MaxLength;
10814       // Pointers to const void may point to objects of incomplete type.
10815       if (CharTy1->isIncompleteType()) {
10816         Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1;
10817         return false;
10818       }
10819       if (CharTy2->isIncompleteType()) {
10820         Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2;
10821         return false;
10822       }
10823       uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)};
10824       CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width);
10825       // Give up on comparing between elements with disparate widths.
10826       if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2))
10827         return false;
10828       uint64_t BytesPerElement = CharTy1Size.getQuantity();
10829       assert(BytesRemaining && "BytesRemaining should not be zero: the "
10830                                "following loop considers at least one element");
10831       while (true) {
10832         APValue Char1, Char2;
10833         if (!ReadCurElems(Char1, Char2))
10834           return false;
10835         // We have compatible in-memory widths, but a possible type and
10836         // (for `bool`) internal representation mismatch.
10837         // Assuming two's complement representation, including 0 for `false` and
10838         // 1 for `true`, we can check an appropriate number of elements for
10839         // equality even if they are not byte-sized.
10840         APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width);
10841         APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width);
10842         if (Char1InMem.ne(Char2InMem)) {
10843           // If the elements are byte-sized, then we can produce a three-way
10844           // comparison result in a straightforward manner.
10845           if (BytesPerElement == 1u) {
10846             // memcmp always compares unsigned chars.
10847             return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E);
10848           }
10849           // The result is byte-order sensitive, and we have multibyte elements.
10850           // FIXME: We can compare the remaining bytes in the correct order.
10851           return false;
10852         }
10853         if (!AdvanceElems())
10854           return false;
10855         if (BytesRemaining <= BytesPerElement)
10856           break;
10857         BytesRemaining -= BytesPerElement;
10858       }
10859       // Enough elements are equal to account for the memcmp limit.
10860       return Success(0, E);
10861     }
10862 
10863     bool StopAtNull =
10864         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
10865          BuiltinOp != Builtin::BIwmemcmp &&
10866          BuiltinOp != Builtin::BI__builtin_memcmp &&
10867          BuiltinOp != Builtin::BI__builtin_bcmp &&
10868          BuiltinOp != Builtin::BI__builtin_wmemcmp);
10869     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
10870                   BuiltinOp == Builtin::BIwcsncmp ||
10871                   BuiltinOp == Builtin::BIwmemcmp ||
10872                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
10873                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
10874                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
10875 
10876     for (; MaxLength; --MaxLength) {
10877       APValue Char1, Char2;
10878       if (!ReadCurElems(Char1, Char2))
10879         return false;
10880       if (Char1.getInt() != Char2.getInt()) {
10881         if (IsWide) // wmemcmp compares with wchar_t signedness.
10882           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
10883         // memcmp always compares unsigned chars.
10884         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
10885       }
10886       if (StopAtNull && !Char1.getInt())
10887         return Success(0, E);
10888       assert(!(StopAtNull && !Char2.getInt()));
10889       if (!AdvanceElems())
10890         return false;
10891     }
10892     // We hit the strncmp / memcmp limit.
10893     return Success(0, E);
10894   }
10895 
10896   case Builtin::BI__atomic_always_lock_free:
10897   case Builtin::BI__atomic_is_lock_free:
10898   case Builtin::BI__c11_atomic_is_lock_free: {
10899     APSInt SizeVal;
10900     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
10901       return false;
10902 
10903     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
10904     // of two less than the maximum inline atomic width, we know it is
10905     // lock-free.  If the size isn't a power of two, or greater than the
10906     // maximum alignment where we promote atomics, we know it is not lock-free
10907     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
10908     // the answer can only be determined at runtime; for example, 16-byte
10909     // atomics have lock-free implementations on some, but not all,
10910     // x86-64 processors.
10911 
10912     // Check power-of-two.
10913     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
10914     if (Size.isPowerOfTwo()) {
10915       // Check against inlining width.
10916       unsigned InlineWidthBits =
10917           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
10918       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
10919         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
10920             Size == CharUnits::One() ||
10921             E->getArg(1)->isNullPointerConstant(Info.Ctx,
10922                                                 Expr::NPC_NeverValueDependent))
10923           // OK, we will inline appropriately-aligned operations of this size,
10924           // and _Atomic(T) is appropriately-aligned.
10925           return Success(1, E);
10926 
10927         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
10928           castAs<PointerType>()->getPointeeType();
10929         if (!PointeeType->isIncompleteType() &&
10930             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
10931           // OK, we will inline operations on this object.
10932           return Success(1, E);
10933         }
10934       }
10935     }
10936 
10937     // Avoid emiting call for runtime decision on PowerPC 32-bit
10938     // The lock free possibilities on this platform are covered by the lines
10939     // above and we know in advance other cases require lock
10940     if (Info.Ctx.getTargetInfo().getTriple().getArch() == llvm::Triple::ppc) {
10941         return Success(0, E);
10942     }
10943 
10944     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
10945         Success(0, E) : Error(E);
10946   }
10947   case Builtin::BIomp_is_initial_device:
10948     // We can decide statically which value the runtime would return if called.
10949     return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
10950   case Builtin::BI__builtin_add_overflow:
10951   case Builtin::BI__builtin_sub_overflow:
10952   case Builtin::BI__builtin_mul_overflow:
10953   case Builtin::BI__builtin_sadd_overflow:
10954   case Builtin::BI__builtin_uadd_overflow:
10955   case Builtin::BI__builtin_uaddl_overflow:
10956   case Builtin::BI__builtin_uaddll_overflow:
10957   case Builtin::BI__builtin_usub_overflow:
10958   case Builtin::BI__builtin_usubl_overflow:
10959   case Builtin::BI__builtin_usubll_overflow:
10960   case Builtin::BI__builtin_umul_overflow:
10961   case Builtin::BI__builtin_umull_overflow:
10962   case Builtin::BI__builtin_umulll_overflow:
10963   case Builtin::BI__builtin_saddl_overflow:
10964   case Builtin::BI__builtin_saddll_overflow:
10965   case Builtin::BI__builtin_ssub_overflow:
10966   case Builtin::BI__builtin_ssubl_overflow:
10967   case Builtin::BI__builtin_ssubll_overflow:
10968   case Builtin::BI__builtin_smul_overflow:
10969   case Builtin::BI__builtin_smull_overflow:
10970   case Builtin::BI__builtin_smulll_overflow: {
10971     LValue ResultLValue;
10972     APSInt LHS, RHS;
10973 
10974     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
10975     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
10976         !EvaluateInteger(E->getArg(1), RHS, Info) ||
10977         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
10978       return false;
10979 
10980     APSInt Result;
10981     bool DidOverflow = false;
10982 
10983     // If the types don't have to match, enlarge all 3 to the largest of them.
10984     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
10985         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
10986         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
10987       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
10988                       ResultType->isSignedIntegerOrEnumerationType();
10989       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
10990                       ResultType->isSignedIntegerOrEnumerationType();
10991       uint64_t LHSSize = LHS.getBitWidth();
10992       uint64_t RHSSize = RHS.getBitWidth();
10993       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
10994       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
10995 
10996       // Add an additional bit if the signedness isn't uniformly agreed to. We
10997       // could do this ONLY if there is a signed and an unsigned that both have
10998       // MaxBits, but the code to check that is pretty nasty.  The issue will be
10999       // caught in the shrink-to-result later anyway.
11000       if (IsSigned && !AllSigned)
11001         ++MaxBits;
11002 
11003       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
11004       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
11005       Result = APSInt(MaxBits, !IsSigned);
11006     }
11007 
11008     // Find largest int.
11009     switch (BuiltinOp) {
11010     default:
11011       llvm_unreachable("Invalid value for BuiltinOp");
11012     case Builtin::BI__builtin_add_overflow:
11013     case Builtin::BI__builtin_sadd_overflow:
11014     case Builtin::BI__builtin_saddl_overflow:
11015     case Builtin::BI__builtin_saddll_overflow:
11016     case Builtin::BI__builtin_uadd_overflow:
11017     case Builtin::BI__builtin_uaddl_overflow:
11018     case Builtin::BI__builtin_uaddll_overflow:
11019       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
11020                               : LHS.uadd_ov(RHS, DidOverflow);
11021       break;
11022     case Builtin::BI__builtin_sub_overflow:
11023     case Builtin::BI__builtin_ssub_overflow:
11024     case Builtin::BI__builtin_ssubl_overflow:
11025     case Builtin::BI__builtin_ssubll_overflow:
11026     case Builtin::BI__builtin_usub_overflow:
11027     case Builtin::BI__builtin_usubl_overflow:
11028     case Builtin::BI__builtin_usubll_overflow:
11029       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
11030                               : LHS.usub_ov(RHS, DidOverflow);
11031       break;
11032     case Builtin::BI__builtin_mul_overflow:
11033     case Builtin::BI__builtin_smul_overflow:
11034     case Builtin::BI__builtin_smull_overflow:
11035     case Builtin::BI__builtin_smulll_overflow:
11036     case Builtin::BI__builtin_umul_overflow:
11037     case Builtin::BI__builtin_umull_overflow:
11038     case Builtin::BI__builtin_umulll_overflow:
11039       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
11040                               : LHS.umul_ov(RHS, DidOverflow);
11041       break;
11042     }
11043 
11044     // In the case where multiple sizes are allowed, truncate and see if
11045     // the values are the same.
11046     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
11047         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
11048         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
11049       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
11050       // since it will give us the behavior of a TruncOrSelf in the case where
11051       // its parameter <= its size.  We previously set Result to be at least the
11052       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
11053       // will work exactly like TruncOrSelf.
11054       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
11055       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
11056 
11057       if (!APSInt::isSameValue(Temp, Result))
11058         DidOverflow = true;
11059       Result = Temp;
11060     }
11061 
11062     APValue APV{Result};
11063     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
11064       return false;
11065     return Success(DidOverflow, E);
11066   }
11067   }
11068 }
11069 
11070 /// Determine whether this is a pointer past the end of the complete
11071 /// object referred to by the lvalue.
11072 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
11073                                             const LValue &LV) {
11074   // A null pointer can be viewed as being "past the end" but we don't
11075   // choose to look at it that way here.
11076   if (!LV.getLValueBase())
11077     return false;
11078 
11079   // If the designator is valid and refers to a subobject, we're not pointing
11080   // past the end.
11081   if (!LV.getLValueDesignator().Invalid &&
11082       !LV.getLValueDesignator().isOnePastTheEnd())
11083     return false;
11084 
11085   // A pointer to an incomplete type might be past-the-end if the type's size is
11086   // zero.  We cannot tell because the type is incomplete.
11087   QualType Ty = getType(LV.getLValueBase());
11088   if (Ty->isIncompleteType())
11089     return true;
11090 
11091   // We're a past-the-end pointer if we point to the byte after the object,
11092   // no matter what our type or path is.
11093   auto Size = Ctx.getTypeSizeInChars(Ty);
11094   return LV.getLValueOffset() == Size;
11095 }
11096 
11097 namespace {
11098 
11099 /// Data recursive integer evaluator of certain binary operators.
11100 ///
11101 /// We use a data recursive algorithm for binary operators so that we are able
11102 /// to handle extreme cases of chained binary operators without causing stack
11103 /// overflow.
11104 class DataRecursiveIntBinOpEvaluator {
11105   struct EvalResult {
11106     APValue Val;
11107     bool Failed;
11108 
11109     EvalResult() : Failed(false) { }
11110 
11111     void swap(EvalResult &RHS) {
11112       Val.swap(RHS.Val);
11113       Failed = RHS.Failed;
11114       RHS.Failed = false;
11115     }
11116   };
11117 
11118   struct Job {
11119     const Expr *E;
11120     EvalResult LHSResult; // meaningful only for binary operator expression.
11121     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
11122 
11123     Job() = default;
11124     Job(Job &&) = default;
11125 
11126     void startSpeculativeEval(EvalInfo &Info) {
11127       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
11128     }
11129 
11130   private:
11131     SpeculativeEvaluationRAII SpecEvalRAII;
11132   };
11133 
11134   SmallVector<Job, 16> Queue;
11135 
11136   IntExprEvaluator &IntEval;
11137   EvalInfo &Info;
11138   APValue &FinalResult;
11139 
11140 public:
11141   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
11142     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
11143 
11144   /// True if \param E is a binary operator that we are going to handle
11145   /// data recursively.
11146   /// We handle binary operators that are comma, logical, or that have operands
11147   /// with integral or enumeration type.
11148   static bool shouldEnqueue(const BinaryOperator *E) {
11149     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
11150            (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
11151             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11152             E->getRHS()->getType()->isIntegralOrEnumerationType());
11153   }
11154 
11155   bool Traverse(const BinaryOperator *E) {
11156     enqueue(E);
11157     EvalResult PrevResult;
11158     while (!Queue.empty())
11159       process(PrevResult);
11160 
11161     if (PrevResult.Failed) return false;
11162 
11163     FinalResult.swap(PrevResult.Val);
11164     return true;
11165   }
11166 
11167 private:
11168   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11169     return IntEval.Success(Value, E, Result);
11170   }
11171   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
11172     return IntEval.Success(Value, E, Result);
11173   }
11174   bool Error(const Expr *E) {
11175     return IntEval.Error(E);
11176   }
11177   bool Error(const Expr *E, diag::kind D) {
11178     return IntEval.Error(E, D);
11179   }
11180 
11181   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
11182     return Info.CCEDiag(E, D);
11183   }
11184 
11185   // Returns true if visiting the RHS is necessary, false otherwise.
11186   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
11187                          bool &SuppressRHSDiags);
11188 
11189   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
11190                   const BinaryOperator *E, APValue &Result);
11191 
11192   void EvaluateExpr(const Expr *E, EvalResult &Result) {
11193     Result.Failed = !Evaluate(Result.Val, Info, E);
11194     if (Result.Failed)
11195       Result.Val = APValue();
11196   }
11197 
11198   void process(EvalResult &Result);
11199 
11200   void enqueue(const Expr *E) {
11201     E = E->IgnoreParens();
11202     Queue.resize(Queue.size()+1);
11203     Queue.back().E = E;
11204     Queue.back().Kind = Job::AnyExprKind;
11205   }
11206 };
11207 
11208 }
11209 
11210 bool DataRecursiveIntBinOpEvaluator::
11211        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
11212                          bool &SuppressRHSDiags) {
11213   if (E->getOpcode() == BO_Comma) {
11214     // Ignore LHS but note if we could not evaluate it.
11215     if (LHSResult.Failed)
11216       return Info.noteSideEffect();
11217     return true;
11218   }
11219 
11220   if (E->isLogicalOp()) {
11221     bool LHSAsBool;
11222     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
11223       // We were able to evaluate the LHS, see if we can get away with not
11224       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
11225       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
11226         Success(LHSAsBool, E, LHSResult.Val);
11227         return false; // Ignore RHS
11228       }
11229     } else {
11230       LHSResult.Failed = true;
11231 
11232       // Since we weren't able to evaluate the left hand side, it
11233       // might have had side effects.
11234       if (!Info.noteSideEffect())
11235         return false;
11236 
11237       // We can't evaluate the LHS; however, sometimes the result
11238       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
11239       // Don't ignore RHS and suppress diagnostics from this arm.
11240       SuppressRHSDiags = true;
11241     }
11242 
11243     return true;
11244   }
11245 
11246   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11247          E->getRHS()->getType()->isIntegralOrEnumerationType());
11248 
11249   if (LHSResult.Failed && !Info.noteFailure())
11250     return false; // Ignore RHS;
11251 
11252   return true;
11253 }
11254 
11255 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
11256                                     bool IsSub) {
11257   // Compute the new offset in the appropriate width, wrapping at 64 bits.
11258   // FIXME: When compiling for a 32-bit target, we should use 32-bit
11259   // offsets.
11260   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
11261   CharUnits &Offset = LVal.getLValueOffset();
11262   uint64_t Offset64 = Offset.getQuantity();
11263   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
11264   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
11265                                          : Offset64 + Index64);
11266 }
11267 
11268 bool DataRecursiveIntBinOpEvaluator::
11269        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
11270                   const BinaryOperator *E, APValue &Result) {
11271   if (E->getOpcode() == BO_Comma) {
11272     if (RHSResult.Failed)
11273       return false;
11274     Result = RHSResult.Val;
11275     return true;
11276   }
11277 
11278   if (E->isLogicalOp()) {
11279     bool lhsResult, rhsResult;
11280     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
11281     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
11282 
11283     if (LHSIsOK) {
11284       if (RHSIsOK) {
11285         if (E->getOpcode() == BO_LOr)
11286           return Success(lhsResult || rhsResult, E, Result);
11287         else
11288           return Success(lhsResult && rhsResult, E, Result);
11289       }
11290     } else {
11291       if (RHSIsOK) {
11292         // We can't evaluate the LHS; however, sometimes the result
11293         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
11294         if (rhsResult == (E->getOpcode() == BO_LOr))
11295           return Success(rhsResult, E, Result);
11296       }
11297     }
11298 
11299     return false;
11300   }
11301 
11302   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11303          E->getRHS()->getType()->isIntegralOrEnumerationType());
11304 
11305   if (LHSResult.Failed || RHSResult.Failed)
11306     return false;
11307 
11308   const APValue &LHSVal = LHSResult.Val;
11309   const APValue &RHSVal = RHSResult.Val;
11310 
11311   // Handle cases like (unsigned long)&a + 4.
11312   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
11313     Result = LHSVal;
11314     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
11315     return true;
11316   }
11317 
11318   // Handle cases like 4 + (unsigned long)&a
11319   if (E->getOpcode() == BO_Add &&
11320       RHSVal.isLValue() && LHSVal.isInt()) {
11321     Result = RHSVal;
11322     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
11323     return true;
11324   }
11325 
11326   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
11327     // Handle (intptr_t)&&A - (intptr_t)&&B.
11328     if (!LHSVal.getLValueOffset().isZero() ||
11329         !RHSVal.getLValueOffset().isZero())
11330       return false;
11331     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
11332     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
11333     if (!LHSExpr || !RHSExpr)
11334       return false;
11335     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
11336     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
11337     if (!LHSAddrExpr || !RHSAddrExpr)
11338       return false;
11339     // Make sure both labels come from the same function.
11340     if (LHSAddrExpr->getLabel()->getDeclContext() !=
11341         RHSAddrExpr->getLabel()->getDeclContext())
11342       return false;
11343     Result = APValue(LHSAddrExpr, RHSAddrExpr);
11344     return true;
11345   }
11346 
11347   // All the remaining cases expect both operands to be an integer
11348   if (!LHSVal.isInt() || !RHSVal.isInt())
11349     return Error(E);
11350 
11351   // Set up the width and signedness manually, in case it can't be deduced
11352   // from the operation we're performing.
11353   // FIXME: Don't do this in the cases where we can deduce it.
11354   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
11355                E->getType()->isUnsignedIntegerOrEnumerationType());
11356   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
11357                          RHSVal.getInt(), Value))
11358     return false;
11359   return Success(Value, E, Result);
11360 }
11361 
11362 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
11363   Job &job = Queue.back();
11364 
11365   switch (job.Kind) {
11366     case Job::AnyExprKind: {
11367       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
11368         if (shouldEnqueue(Bop)) {
11369           job.Kind = Job::BinOpKind;
11370           enqueue(Bop->getLHS());
11371           return;
11372         }
11373       }
11374 
11375       EvaluateExpr(job.E, Result);
11376       Queue.pop_back();
11377       return;
11378     }
11379 
11380     case Job::BinOpKind: {
11381       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
11382       bool SuppressRHSDiags = false;
11383       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
11384         Queue.pop_back();
11385         return;
11386       }
11387       if (SuppressRHSDiags)
11388         job.startSpeculativeEval(Info);
11389       job.LHSResult.swap(Result);
11390       job.Kind = Job::BinOpVisitedLHSKind;
11391       enqueue(Bop->getRHS());
11392       return;
11393     }
11394 
11395     case Job::BinOpVisitedLHSKind: {
11396       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
11397       EvalResult RHS;
11398       RHS.swap(Result);
11399       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
11400       Queue.pop_back();
11401       return;
11402     }
11403   }
11404 
11405   llvm_unreachable("Invalid Job::Kind!");
11406 }
11407 
11408 namespace {
11409 /// Used when we determine that we should fail, but can keep evaluating prior to
11410 /// noting that we had a failure.
11411 class DelayedNoteFailureRAII {
11412   EvalInfo &Info;
11413   bool NoteFailure;
11414 
11415 public:
11416   DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
11417       : Info(Info), NoteFailure(NoteFailure) {}
11418   ~DelayedNoteFailureRAII() {
11419     if (NoteFailure) {
11420       bool ContinueAfterFailure = Info.noteFailure();
11421       (void)ContinueAfterFailure;
11422       assert(ContinueAfterFailure &&
11423              "Shouldn't have kept evaluating on failure.");
11424     }
11425   }
11426 };
11427 }
11428 
11429 template <class SuccessCB, class AfterCB>
11430 static bool
11431 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
11432                                  SuccessCB &&Success, AfterCB &&DoAfter) {
11433   assert(E->isComparisonOp() && "expected comparison operator");
11434   assert((E->getOpcode() == BO_Cmp ||
11435           E->getType()->isIntegralOrEnumerationType()) &&
11436          "unsupported binary expression evaluation");
11437   auto Error = [&](const Expr *E) {
11438     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11439     return false;
11440   };
11441 
11442   using CCR = ComparisonCategoryResult;
11443   bool IsRelational = E->isRelationalOp();
11444   bool IsEquality = E->isEqualityOp();
11445   if (E->getOpcode() == BO_Cmp) {
11446     const ComparisonCategoryInfo &CmpInfo =
11447         Info.Ctx.CompCategories.getInfoForType(E->getType());
11448     IsRelational = CmpInfo.isOrdered();
11449     IsEquality = CmpInfo.isEquality();
11450   }
11451 
11452   QualType LHSTy = E->getLHS()->getType();
11453   QualType RHSTy = E->getRHS()->getType();
11454 
11455   if (LHSTy->isIntegralOrEnumerationType() &&
11456       RHSTy->isIntegralOrEnumerationType()) {
11457     APSInt LHS, RHS;
11458     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
11459     if (!LHSOK && !Info.noteFailure())
11460       return false;
11461     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
11462       return false;
11463     if (LHS < RHS)
11464       return Success(CCR::Less, E);
11465     if (LHS > RHS)
11466       return Success(CCR::Greater, E);
11467     return Success(CCR::Equal, E);
11468   }
11469 
11470   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
11471     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
11472     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
11473 
11474     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
11475     if (!LHSOK && !Info.noteFailure())
11476       return false;
11477     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
11478       return false;
11479     if (LHSFX < RHSFX)
11480       return Success(CCR::Less, E);
11481     if (LHSFX > RHSFX)
11482       return Success(CCR::Greater, E);
11483     return Success(CCR::Equal, E);
11484   }
11485 
11486   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
11487     ComplexValue LHS, RHS;
11488     bool LHSOK;
11489     if (E->isAssignmentOp()) {
11490       LValue LV;
11491       EvaluateLValue(E->getLHS(), LV, Info);
11492       LHSOK = false;
11493     } else if (LHSTy->isRealFloatingType()) {
11494       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
11495       if (LHSOK) {
11496         LHS.makeComplexFloat();
11497         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
11498       }
11499     } else {
11500       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
11501     }
11502     if (!LHSOK && !Info.noteFailure())
11503       return false;
11504 
11505     if (E->getRHS()->getType()->isRealFloatingType()) {
11506       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
11507         return false;
11508       RHS.makeComplexFloat();
11509       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
11510     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
11511       return false;
11512 
11513     if (LHS.isComplexFloat()) {
11514       APFloat::cmpResult CR_r =
11515         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
11516       APFloat::cmpResult CR_i =
11517         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
11518       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
11519       return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
11520     } else {
11521       assert(IsEquality && "invalid complex comparison");
11522       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
11523                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
11524       return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
11525     }
11526   }
11527 
11528   if (LHSTy->isRealFloatingType() &&
11529       RHSTy->isRealFloatingType()) {
11530     APFloat RHS(0.0), LHS(0.0);
11531 
11532     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
11533     if (!LHSOK && !Info.noteFailure())
11534       return false;
11535 
11536     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
11537       return false;
11538 
11539     assert(E->isComparisonOp() && "Invalid binary operator!");
11540     auto GetCmpRes = [&]() {
11541       switch (LHS.compare(RHS)) {
11542       case APFloat::cmpEqual:
11543         return CCR::Equal;
11544       case APFloat::cmpLessThan:
11545         return CCR::Less;
11546       case APFloat::cmpGreaterThan:
11547         return CCR::Greater;
11548       case APFloat::cmpUnordered:
11549         return CCR::Unordered;
11550       }
11551       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
11552     };
11553     return Success(GetCmpRes(), E);
11554   }
11555 
11556   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
11557     LValue LHSValue, RHSValue;
11558 
11559     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
11560     if (!LHSOK && !Info.noteFailure())
11561       return false;
11562 
11563     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
11564       return false;
11565 
11566     // Reject differing bases from the normal codepath; we special-case
11567     // comparisons to null.
11568     if (!HasSameBase(LHSValue, RHSValue)) {
11569       // Inequalities and subtractions between unrelated pointers have
11570       // unspecified or undefined behavior.
11571       if (!IsEquality)
11572         return Error(E);
11573       // A constant address may compare equal to the address of a symbol.
11574       // The one exception is that address of an object cannot compare equal
11575       // to a null pointer constant.
11576       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
11577           (!RHSValue.Base && !RHSValue.Offset.isZero()))
11578         return Error(E);
11579       // It's implementation-defined whether distinct literals will have
11580       // distinct addresses. In clang, the result of such a comparison is
11581       // unspecified, so it is not a constant expression. However, we do know
11582       // that the address of a literal will be non-null.
11583       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
11584           LHSValue.Base && RHSValue.Base)
11585         return Error(E);
11586       // We can't tell whether weak symbols will end up pointing to the same
11587       // object.
11588       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
11589         return Error(E);
11590       // We can't compare the address of the start of one object with the
11591       // past-the-end address of another object, per C++ DR1652.
11592       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
11593            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
11594           (RHSValue.Base && RHSValue.Offset.isZero() &&
11595            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
11596         return Error(E);
11597       // We can't tell whether an object is at the same address as another
11598       // zero sized object.
11599       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
11600           (LHSValue.Base && isZeroSized(RHSValue)))
11601         return Error(E);
11602       return Success(CCR::Nonequal, E);
11603     }
11604 
11605     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
11606     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
11607 
11608     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
11609     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
11610 
11611     // C++11 [expr.rel]p3:
11612     //   Pointers to void (after pointer conversions) can be compared, with a
11613     //   result defined as follows: If both pointers represent the same
11614     //   address or are both the null pointer value, the result is true if the
11615     //   operator is <= or >= and false otherwise; otherwise the result is
11616     //   unspecified.
11617     // We interpret this as applying to pointers to *cv* void.
11618     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
11619       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
11620 
11621     // C++11 [expr.rel]p2:
11622     // - If two pointers point to non-static data members of the same object,
11623     //   or to subobjects or array elements fo such members, recursively, the
11624     //   pointer to the later declared member compares greater provided the
11625     //   two members have the same access control and provided their class is
11626     //   not a union.
11627     //   [...]
11628     // - Otherwise pointer comparisons are unspecified.
11629     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
11630       bool WasArrayIndex;
11631       unsigned Mismatch = FindDesignatorMismatch(
11632           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
11633       // At the point where the designators diverge, the comparison has a
11634       // specified value if:
11635       //  - we are comparing array indices
11636       //  - we are comparing fields of a union, or fields with the same access
11637       // Otherwise, the result is unspecified and thus the comparison is not a
11638       // constant expression.
11639       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
11640           Mismatch < RHSDesignator.Entries.size()) {
11641         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
11642         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
11643         if (!LF && !RF)
11644           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
11645         else if (!LF)
11646           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
11647               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
11648               << RF->getParent() << RF;
11649         else if (!RF)
11650           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
11651               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
11652               << LF->getParent() << LF;
11653         else if (!LF->getParent()->isUnion() &&
11654                  LF->getAccess() != RF->getAccess())
11655           Info.CCEDiag(E,
11656                        diag::note_constexpr_pointer_comparison_differing_access)
11657               << LF << LF->getAccess() << RF << RF->getAccess()
11658               << LF->getParent();
11659       }
11660     }
11661 
11662     // The comparison here must be unsigned, and performed with the same
11663     // width as the pointer.
11664     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
11665     uint64_t CompareLHS = LHSOffset.getQuantity();
11666     uint64_t CompareRHS = RHSOffset.getQuantity();
11667     assert(PtrSize <= 64 && "Unexpected pointer width");
11668     uint64_t Mask = ~0ULL >> (64 - PtrSize);
11669     CompareLHS &= Mask;
11670     CompareRHS &= Mask;
11671 
11672     // If there is a base and this is a relational operator, we can only
11673     // compare pointers within the object in question; otherwise, the result
11674     // depends on where the object is located in memory.
11675     if (!LHSValue.Base.isNull() && IsRelational) {
11676       QualType BaseTy = getType(LHSValue.Base);
11677       if (BaseTy->isIncompleteType())
11678         return Error(E);
11679       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
11680       uint64_t OffsetLimit = Size.getQuantity();
11681       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
11682         return Error(E);
11683     }
11684 
11685     if (CompareLHS < CompareRHS)
11686       return Success(CCR::Less, E);
11687     if (CompareLHS > CompareRHS)
11688       return Success(CCR::Greater, E);
11689     return Success(CCR::Equal, E);
11690   }
11691 
11692   if (LHSTy->isMemberPointerType()) {
11693     assert(IsEquality && "unexpected member pointer operation");
11694     assert(RHSTy->isMemberPointerType() && "invalid comparison");
11695 
11696     MemberPtr LHSValue, RHSValue;
11697 
11698     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
11699     if (!LHSOK && !Info.noteFailure())
11700       return false;
11701 
11702     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
11703       return false;
11704 
11705     // C++11 [expr.eq]p2:
11706     //   If both operands are null, they compare equal. Otherwise if only one is
11707     //   null, they compare unequal.
11708     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
11709       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
11710       return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
11711     }
11712 
11713     //   Otherwise if either is a pointer to a virtual member function, the
11714     //   result is unspecified.
11715     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
11716       if (MD->isVirtual())
11717         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
11718     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
11719       if (MD->isVirtual())
11720         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
11721 
11722     //   Otherwise they compare equal if and only if they would refer to the
11723     //   same member of the same most derived object or the same subobject if
11724     //   they were dereferenced with a hypothetical object of the associated
11725     //   class type.
11726     bool Equal = LHSValue == RHSValue;
11727     return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
11728   }
11729 
11730   if (LHSTy->isNullPtrType()) {
11731     assert(E->isComparisonOp() && "unexpected nullptr operation");
11732     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
11733     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
11734     // are compared, the result is true of the operator is <=, >= or ==, and
11735     // false otherwise.
11736     return Success(CCR::Equal, E);
11737   }
11738 
11739   return DoAfter();
11740 }
11741 
11742 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
11743   if (!CheckLiteralType(Info, E))
11744     return false;
11745 
11746   auto OnSuccess = [&](ComparisonCategoryResult ResKind,
11747                        const BinaryOperator *E) {
11748     // Evaluation succeeded. Lookup the information for the comparison category
11749     // type and fetch the VarDecl for the result.
11750     const ComparisonCategoryInfo &CmpInfo =
11751         Info.Ctx.CompCategories.getInfoForType(E->getType());
11752     const VarDecl *VD =
11753         CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD;
11754     // Check and evaluate the result as a constant expression.
11755     LValue LV;
11756     LV.set(VD);
11757     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
11758       return false;
11759     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
11760   };
11761   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
11762     return ExprEvaluatorBaseTy::VisitBinCmp(E);
11763   });
11764 }
11765 
11766 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
11767   // We don't call noteFailure immediately because the assignment happens after
11768   // we evaluate LHS and RHS.
11769   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
11770     return Error(E);
11771 
11772   DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
11773   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
11774     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
11775 
11776   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
11777           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
11778          "DataRecursiveIntBinOpEvaluator should have handled integral types");
11779 
11780   if (E->isComparisonOp()) {
11781     // Evaluate builtin binary comparisons by evaluating them as C++2a three-way
11782     // comparisons and then translating the result.
11783     auto OnSuccess = [&](ComparisonCategoryResult ResKind,
11784                          const BinaryOperator *E) {
11785       using CCR = ComparisonCategoryResult;
11786       bool IsEqual   = ResKind == CCR::Equal,
11787            IsLess    = ResKind == CCR::Less,
11788            IsGreater = ResKind == CCR::Greater;
11789       auto Op = E->getOpcode();
11790       switch (Op) {
11791       default:
11792         llvm_unreachable("unsupported binary operator");
11793       case BO_EQ:
11794       case BO_NE:
11795         return Success(IsEqual == (Op == BO_EQ), E);
11796       case BO_LT: return Success(IsLess, E);
11797       case BO_GT: return Success(IsGreater, E);
11798       case BO_LE: return Success(IsEqual || IsLess, E);
11799       case BO_GE: return Success(IsEqual || IsGreater, E);
11800       }
11801     };
11802     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
11803       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
11804     });
11805   }
11806 
11807   QualType LHSTy = E->getLHS()->getType();
11808   QualType RHSTy = E->getRHS()->getType();
11809 
11810   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
11811       E->getOpcode() == BO_Sub) {
11812     LValue LHSValue, RHSValue;
11813 
11814     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
11815     if (!LHSOK && !Info.noteFailure())
11816       return false;
11817 
11818     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
11819       return false;
11820 
11821     // Reject differing bases from the normal codepath; we special-case
11822     // comparisons to null.
11823     if (!HasSameBase(LHSValue, RHSValue)) {
11824       // Handle &&A - &&B.
11825       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
11826         return Error(E);
11827       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
11828       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
11829       if (!LHSExpr || !RHSExpr)
11830         return Error(E);
11831       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
11832       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
11833       if (!LHSAddrExpr || !RHSAddrExpr)
11834         return Error(E);
11835       // Make sure both labels come from the same function.
11836       if (LHSAddrExpr->getLabel()->getDeclContext() !=
11837           RHSAddrExpr->getLabel()->getDeclContext())
11838         return Error(E);
11839       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
11840     }
11841     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
11842     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
11843 
11844     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
11845     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
11846 
11847     // C++11 [expr.add]p6:
11848     //   Unless both pointers point to elements of the same array object, or
11849     //   one past the last element of the array object, the behavior is
11850     //   undefined.
11851     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
11852         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
11853                                 RHSDesignator))
11854       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
11855 
11856     QualType Type = E->getLHS()->getType();
11857     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
11858 
11859     CharUnits ElementSize;
11860     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
11861       return false;
11862 
11863     // As an extension, a type may have zero size (empty struct or union in
11864     // C, array of zero length). Pointer subtraction in such cases has
11865     // undefined behavior, so is not constant.
11866     if (ElementSize.isZero()) {
11867       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
11868           << ElementType;
11869       return false;
11870     }
11871 
11872     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
11873     // and produce incorrect results when it overflows. Such behavior
11874     // appears to be non-conforming, but is common, so perhaps we should
11875     // assume the standard intended for such cases to be undefined behavior
11876     // and check for them.
11877 
11878     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
11879     // overflow in the final conversion to ptrdiff_t.
11880     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
11881     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
11882     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
11883                     false);
11884     APSInt TrueResult = (LHS - RHS) / ElemSize;
11885     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
11886 
11887     if (Result.extend(65) != TrueResult &&
11888         !HandleOverflow(Info, E, TrueResult, E->getType()))
11889       return false;
11890     return Success(Result, E);
11891   }
11892 
11893   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
11894 }
11895 
11896 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
11897 /// a result as the expression's type.
11898 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
11899                                     const UnaryExprOrTypeTraitExpr *E) {
11900   switch(E->getKind()) {
11901   case UETT_PreferredAlignOf:
11902   case UETT_AlignOf: {
11903     if (E->isArgumentType())
11904       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
11905                      E);
11906     else
11907       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
11908                      E);
11909   }
11910 
11911   case UETT_VecStep: {
11912     QualType Ty = E->getTypeOfArgument();
11913 
11914     if (Ty->isVectorType()) {
11915       unsigned n = Ty->castAs<VectorType>()->getNumElements();
11916 
11917       // The vec_step built-in functions that take a 3-component
11918       // vector return 4. (OpenCL 1.1 spec 6.11.12)
11919       if (n == 3)
11920         n = 4;
11921 
11922       return Success(n, E);
11923     } else
11924       return Success(1, E);
11925   }
11926 
11927   case UETT_SizeOf: {
11928     QualType SrcTy = E->getTypeOfArgument();
11929     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
11930     //   the result is the size of the referenced type."
11931     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
11932       SrcTy = Ref->getPointeeType();
11933 
11934     CharUnits Sizeof;
11935     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
11936       return false;
11937     return Success(Sizeof, E);
11938   }
11939   case UETT_OpenMPRequiredSimdAlign:
11940     assert(E->isArgumentType());
11941     return Success(
11942         Info.Ctx.toCharUnitsFromBits(
11943                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
11944             .getQuantity(),
11945         E);
11946   }
11947 
11948   llvm_unreachable("unknown expr/type trait");
11949 }
11950 
11951 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
11952   CharUnits Result;
11953   unsigned n = OOE->getNumComponents();
11954   if (n == 0)
11955     return Error(OOE);
11956   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
11957   for (unsigned i = 0; i != n; ++i) {
11958     OffsetOfNode ON = OOE->getComponent(i);
11959     switch (ON.getKind()) {
11960     case OffsetOfNode::Array: {
11961       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
11962       APSInt IdxResult;
11963       if (!EvaluateInteger(Idx, IdxResult, Info))
11964         return false;
11965       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
11966       if (!AT)
11967         return Error(OOE);
11968       CurrentType = AT->getElementType();
11969       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
11970       Result += IdxResult.getSExtValue() * ElementSize;
11971       break;
11972     }
11973 
11974     case OffsetOfNode::Field: {
11975       FieldDecl *MemberDecl = ON.getField();
11976       const RecordType *RT = CurrentType->getAs<RecordType>();
11977       if (!RT)
11978         return Error(OOE);
11979       RecordDecl *RD = RT->getDecl();
11980       if (RD->isInvalidDecl()) return false;
11981       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
11982       unsigned i = MemberDecl->getFieldIndex();
11983       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
11984       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
11985       CurrentType = MemberDecl->getType().getNonReferenceType();
11986       break;
11987     }
11988 
11989     case OffsetOfNode::Identifier:
11990       llvm_unreachable("dependent __builtin_offsetof");
11991 
11992     case OffsetOfNode::Base: {
11993       CXXBaseSpecifier *BaseSpec = ON.getBase();
11994       if (BaseSpec->isVirtual())
11995         return Error(OOE);
11996 
11997       // Find the layout of the class whose base we are looking into.
11998       const RecordType *RT = CurrentType->getAs<RecordType>();
11999       if (!RT)
12000         return Error(OOE);
12001       RecordDecl *RD = RT->getDecl();
12002       if (RD->isInvalidDecl()) return false;
12003       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
12004 
12005       // Find the base class itself.
12006       CurrentType = BaseSpec->getType();
12007       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
12008       if (!BaseRT)
12009         return Error(OOE);
12010 
12011       // Add the offset to the base.
12012       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
12013       break;
12014     }
12015     }
12016   }
12017   return Success(Result, OOE);
12018 }
12019 
12020 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12021   switch (E->getOpcode()) {
12022   default:
12023     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
12024     // See C99 6.6p3.
12025     return Error(E);
12026   case UO_Extension:
12027     // FIXME: Should extension allow i-c-e extension expressions in its scope?
12028     // If so, we could clear the diagnostic ID.
12029     return Visit(E->getSubExpr());
12030   case UO_Plus:
12031     // The result is just the value.
12032     return Visit(E->getSubExpr());
12033   case UO_Minus: {
12034     if (!Visit(E->getSubExpr()))
12035       return false;
12036     if (!Result.isInt()) return Error(E);
12037     const APSInt &Value = Result.getInt();
12038     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
12039         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
12040                         E->getType()))
12041       return false;
12042     return Success(-Value, E);
12043   }
12044   case UO_Not: {
12045     if (!Visit(E->getSubExpr()))
12046       return false;
12047     if (!Result.isInt()) return Error(E);
12048     return Success(~Result.getInt(), E);
12049   }
12050   case UO_LNot: {
12051     bool bres;
12052     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
12053       return false;
12054     return Success(!bres, E);
12055   }
12056   }
12057 }
12058 
12059 /// HandleCast - This is used to evaluate implicit or explicit casts where the
12060 /// result type is integer.
12061 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
12062   const Expr *SubExpr = E->getSubExpr();
12063   QualType DestType = E->getType();
12064   QualType SrcType = SubExpr->getType();
12065 
12066   switch (E->getCastKind()) {
12067   case CK_BaseToDerived:
12068   case CK_DerivedToBase:
12069   case CK_UncheckedDerivedToBase:
12070   case CK_Dynamic:
12071   case CK_ToUnion:
12072   case CK_ArrayToPointerDecay:
12073   case CK_FunctionToPointerDecay:
12074   case CK_NullToPointer:
12075   case CK_NullToMemberPointer:
12076   case CK_BaseToDerivedMemberPointer:
12077   case CK_DerivedToBaseMemberPointer:
12078   case CK_ReinterpretMemberPointer:
12079   case CK_ConstructorConversion:
12080   case CK_IntegralToPointer:
12081   case CK_ToVoid:
12082   case CK_VectorSplat:
12083   case CK_IntegralToFloating:
12084   case CK_FloatingCast:
12085   case CK_CPointerToObjCPointerCast:
12086   case CK_BlockPointerToObjCPointerCast:
12087   case CK_AnyPointerToBlockPointerCast:
12088   case CK_ObjCObjectLValueCast:
12089   case CK_FloatingRealToComplex:
12090   case CK_FloatingComplexToReal:
12091   case CK_FloatingComplexCast:
12092   case CK_FloatingComplexToIntegralComplex:
12093   case CK_IntegralRealToComplex:
12094   case CK_IntegralComplexCast:
12095   case CK_IntegralComplexToFloatingComplex:
12096   case CK_BuiltinFnToFnPtr:
12097   case CK_ZeroToOCLOpaqueType:
12098   case CK_NonAtomicToAtomic:
12099   case CK_AddressSpaceConversion:
12100   case CK_IntToOCLSampler:
12101   case CK_FixedPointCast:
12102   case CK_IntegralToFixedPoint:
12103     llvm_unreachable("invalid cast kind for integral value");
12104 
12105   case CK_BitCast:
12106   case CK_Dependent:
12107   case CK_LValueBitCast:
12108   case CK_ARCProduceObject:
12109   case CK_ARCConsumeObject:
12110   case CK_ARCReclaimReturnedObject:
12111   case CK_ARCExtendBlockObject:
12112   case CK_CopyAndAutoreleaseBlockObject:
12113     return Error(E);
12114 
12115   case CK_UserDefinedConversion:
12116   case CK_LValueToRValue:
12117   case CK_AtomicToNonAtomic:
12118   case CK_NoOp:
12119   case CK_LValueToRValueBitCast:
12120     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12121 
12122   case CK_MemberPointerToBoolean:
12123   case CK_PointerToBoolean:
12124   case CK_IntegralToBoolean:
12125   case CK_FloatingToBoolean:
12126   case CK_BooleanToSignedIntegral:
12127   case CK_FloatingComplexToBoolean:
12128   case CK_IntegralComplexToBoolean: {
12129     bool BoolResult;
12130     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
12131       return false;
12132     uint64_t IntResult = BoolResult;
12133     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
12134       IntResult = (uint64_t)-1;
12135     return Success(IntResult, E);
12136   }
12137 
12138   case CK_FixedPointToIntegral: {
12139     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
12140     if (!EvaluateFixedPoint(SubExpr, Src, Info))
12141       return false;
12142     bool Overflowed;
12143     llvm::APSInt Result = Src.convertToInt(
12144         Info.Ctx.getIntWidth(DestType),
12145         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
12146     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
12147       return false;
12148     return Success(Result, E);
12149   }
12150 
12151   case CK_FixedPointToBoolean: {
12152     // Unsigned padding does not affect this.
12153     APValue Val;
12154     if (!Evaluate(Val, Info, SubExpr))
12155       return false;
12156     return Success(Val.getFixedPoint().getBoolValue(), E);
12157   }
12158 
12159   case CK_IntegralCast: {
12160     if (!Visit(SubExpr))
12161       return false;
12162 
12163     if (!Result.isInt()) {
12164       // Allow casts of address-of-label differences if they are no-ops
12165       // or narrowing.  (The narrowing case isn't actually guaranteed to
12166       // be constant-evaluatable except in some narrow cases which are hard
12167       // to detect here.  We let it through on the assumption the user knows
12168       // what they are doing.)
12169       if (Result.isAddrLabelDiff())
12170         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
12171       // Only allow casts of lvalues if they are lossless.
12172       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
12173     }
12174 
12175     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
12176                                       Result.getInt()), E);
12177   }
12178 
12179   case CK_PointerToIntegral: {
12180     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
12181 
12182     LValue LV;
12183     if (!EvaluatePointer(SubExpr, LV, Info))
12184       return false;
12185 
12186     if (LV.getLValueBase()) {
12187       // Only allow based lvalue casts if they are lossless.
12188       // FIXME: Allow a larger integer size than the pointer size, and allow
12189       // narrowing back down to pointer width in subsequent integral casts.
12190       // FIXME: Check integer type's active bits, not its type size.
12191       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
12192         return Error(E);
12193 
12194       LV.Designator.setInvalid();
12195       LV.moveInto(Result);
12196       return true;
12197     }
12198 
12199     APSInt AsInt;
12200     APValue V;
12201     LV.moveInto(V);
12202     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
12203       llvm_unreachable("Can't cast this!");
12204 
12205     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
12206   }
12207 
12208   case CK_IntegralComplexToReal: {
12209     ComplexValue C;
12210     if (!EvaluateComplex(SubExpr, C, Info))
12211       return false;
12212     return Success(C.getComplexIntReal(), E);
12213   }
12214 
12215   case CK_FloatingToIntegral: {
12216     APFloat F(0.0);
12217     if (!EvaluateFloat(SubExpr, F, Info))
12218       return false;
12219 
12220     APSInt Value;
12221     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
12222       return false;
12223     return Success(Value, E);
12224   }
12225   }
12226 
12227   llvm_unreachable("unknown cast resulting in integral value");
12228 }
12229 
12230 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
12231   if (E->getSubExpr()->getType()->isAnyComplexType()) {
12232     ComplexValue LV;
12233     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
12234       return false;
12235     if (!LV.isComplexInt())
12236       return Error(E);
12237     return Success(LV.getComplexIntReal(), E);
12238   }
12239 
12240   return Visit(E->getSubExpr());
12241 }
12242 
12243 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
12244   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
12245     ComplexValue LV;
12246     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
12247       return false;
12248     if (!LV.isComplexInt())
12249       return Error(E);
12250     return Success(LV.getComplexIntImag(), E);
12251   }
12252 
12253   VisitIgnoredValue(E->getSubExpr());
12254   return Success(0, E);
12255 }
12256 
12257 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
12258   return Success(E->getPackLength(), E);
12259 }
12260 
12261 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
12262   return Success(E->getValue(), E);
12263 }
12264 
12265 bool IntExprEvaluator::VisitConceptSpecializationExpr(
12266        const ConceptSpecializationExpr *E) {
12267   return Success(E->isSatisfied(), E);
12268 }
12269 
12270 
12271 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12272   switch (E->getOpcode()) {
12273     default:
12274       // Invalid unary operators
12275       return Error(E);
12276     case UO_Plus:
12277       // The result is just the value.
12278       return Visit(E->getSubExpr());
12279     case UO_Minus: {
12280       if (!Visit(E->getSubExpr())) return false;
12281       if (!Result.isFixedPoint())
12282         return Error(E);
12283       bool Overflowed;
12284       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
12285       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
12286         return false;
12287       return Success(Negated, E);
12288     }
12289     case UO_LNot: {
12290       bool bres;
12291       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
12292         return false;
12293       return Success(!bres, E);
12294     }
12295   }
12296 }
12297 
12298 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
12299   const Expr *SubExpr = E->getSubExpr();
12300   QualType DestType = E->getType();
12301   assert(DestType->isFixedPointType() &&
12302          "Expected destination type to be a fixed point type");
12303   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
12304 
12305   switch (E->getCastKind()) {
12306   case CK_FixedPointCast: {
12307     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
12308     if (!EvaluateFixedPoint(SubExpr, Src, Info))
12309       return false;
12310     bool Overflowed;
12311     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
12312     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
12313       return false;
12314     return Success(Result, E);
12315   }
12316   case CK_IntegralToFixedPoint: {
12317     APSInt Src;
12318     if (!EvaluateInteger(SubExpr, Src, Info))
12319       return false;
12320 
12321     bool Overflowed;
12322     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
12323         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
12324 
12325     if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType))
12326       return false;
12327 
12328     return Success(IntResult, E);
12329   }
12330   case CK_NoOp:
12331   case CK_LValueToRValue:
12332     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12333   default:
12334     return Error(E);
12335   }
12336 }
12337 
12338 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12339   const Expr *LHS = E->getLHS();
12340   const Expr *RHS = E->getRHS();
12341   FixedPointSemantics ResultFXSema =
12342       Info.Ctx.getFixedPointSemantics(E->getType());
12343 
12344   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
12345   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
12346     return false;
12347   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
12348   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
12349     return false;
12350 
12351   switch (E->getOpcode()) {
12352   case BO_Add: {
12353     bool AddOverflow, ConversionOverflow;
12354     APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow)
12355                               .convert(ResultFXSema, &ConversionOverflow);
12356     if ((AddOverflow || ConversionOverflow) &&
12357         !HandleOverflow(Info, E, Result, E->getType()))
12358       return false;
12359     return Success(Result, E);
12360   }
12361   default:
12362     return false;
12363   }
12364   llvm_unreachable("Should've exited before this");
12365 }
12366 
12367 //===----------------------------------------------------------------------===//
12368 // Float Evaluation
12369 //===----------------------------------------------------------------------===//
12370 
12371 namespace {
12372 class FloatExprEvaluator
12373   : public ExprEvaluatorBase<FloatExprEvaluator> {
12374   APFloat &Result;
12375 public:
12376   FloatExprEvaluator(EvalInfo &info, APFloat &result)
12377     : ExprEvaluatorBaseTy(info), Result(result) {}
12378 
12379   bool Success(const APValue &V, const Expr *e) {
12380     Result = V.getFloat();
12381     return true;
12382   }
12383 
12384   bool ZeroInitialization(const Expr *E) {
12385     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
12386     return true;
12387   }
12388 
12389   bool VisitCallExpr(const CallExpr *E);
12390 
12391   bool VisitUnaryOperator(const UnaryOperator *E);
12392   bool VisitBinaryOperator(const BinaryOperator *E);
12393   bool VisitFloatingLiteral(const FloatingLiteral *E);
12394   bool VisitCastExpr(const CastExpr *E);
12395 
12396   bool VisitUnaryReal(const UnaryOperator *E);
12397   bool VisitUnaryImag(const UnaryOperator *E);
12398 
12399   // FIXME: Missing: array subscript of vector, member of vector
12400 };
12401 } // end anonymous namespace
12402 
12403 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
12404   assert(E->isRValue() && E->getType()->isRealFloatingType());
12405   return FloatExprEvaluator(Info, Result).Visit(E);
12406 }
12407 
12408 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
12409                                   QualType ResultTy,
12410                                   const Expr *Arg,
12411                                   bool SNaN,
12412                                   llvm::APFloat &Result) {
12413   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
12414   if (!S) return false;
12415 
12416   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
12417 
12418   llvm::APInt fill;
12419 
12420   // Treat empty strings as if they were zero.
12421   if (S->getString().empty())
12422     fill = llvm::APInt(32, 0);
12423   else if (S->getString().getAsInteger(0, fill))
12424     return false;
12425 
12426   if (Context.getTargetInfo().isNan2008()) {
12427     if (SNaN)
12428       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
12429     else
12430       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
12431   } else {
12432     // Prior to IEEE 754-2008, architectures were allowed to choose whether
12433     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
12434     // a different encoding to what became a standard in 2008, and for pre-
12435     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
12436     // sNaN. This is now known as "legacy NaN" encoding.
12437     if (SNaN)
12438       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
12439     else
12440       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
12441   }
12442 
12443   return true;
12444 }
12445 
12446 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
12447   switch (E->getBuiltinCallee()) {
12448   default:
12449     return ExprEvaluatorBaseTy::VisitCallExpr(E);
12450 
12451   case Builtin::BI__builtin_huge_val:
12452   case Builtin::BI__builtin_huge_valf:
12453   case Builtin::BI__builtin_huge_vall:
12454   case Builtin::BI__builtin_huge_valf128:
12455   case Builtin::BI__builtin_inf:
12456   case Builtin::BI__builtin_inff:
12457   case Builtin::BI__builtin_infl:
12458   case Builtin::BI__builtin_inff128: {
12459     const llvm::fltSemantics &Sem =
12460       Info.Ctx.getFloatTypeSemantics(E->getType());
12461     Result = llvm::APFloat::getInf(Sem);
12462     return true;
12463   }
12464 
12465   case Builtin::BI__builtin_nans:
12466   case Builtin::BI__builtin_nansf:
12467   case Builtin::BI__builtin_nansl:
12468   case Builtin::BI__builtin_nansf128:
12469     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
12470                                true, Result))
12471       return Error(E);
12472     return true;
12473 
12474   case Builtin::BI__builtin_nan:
12475   case Builtin::BI__builtin_nanf:
12476   case Builtin::BI__builtin_nanl:
12477   case Builtin::BI__builtin_nanf128:
12478     // If this is __builtin_nan() turn this into a nan, otherwise we
12479     // can't constant fold it.
12480     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
12481                                false, Result))
12482       return Error(E);
12483     return true;
12484 
12485   case Builtin::BI__builtin_fabs:
12486   case Builtin::BI__builtin_fabsf:
12487   case Builtin::BI__builtin_fabsl:
12488   case Builtin::BI__builtin_fabsf128:
12489     if (!EvaluateFloat(E->getArg(0), Result, Info))
12490       return false;
12491 
12492     if (Result.isNegative())
12493       Result.changeSign();
12494     return true;
12495 
12496   // FIXME: Builtin::BI__builtin_powi
12497   // FIXME: Builtin::BI__builtin_powif
12498   // FIXME: Builtin::BI__builtin_powil
12499 
12500   case Builtin::BI__builtin_copysign:
12501   case Builtin::BI__builtin_copysignf:
12502   case Builtin::BI__builtin_copysignl:
12503   case Builtin::BI__builtin_copysignf128: {
12504     APFloat RHS(0.);
12505     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
12506         !EvaluateFloat(E->getArg(1), RHS, Info))
12507       return false;
12508     Result.copySign(RHS);
12509     return true;
12510   }
12511   }
12512 }
12513 
12514 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
12515   if (E->getSubExpr()->getType()->isAnyComplexType()) {
12516     ComplexValue CV;
12517     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
12518       return false;
12519     Result = CV.FloatReal;
12520     return true;
12521   }
12522 
12523   return Visit(E->getSubExpr());
12524 }
12525 
12526 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
12527   if (E->getSubExpr()->getType()->isAnyComplexType()) {
12528     ComplexValue CV;
12529     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
12530       return false;
12531     Result = CV.FloatImag;
12532     return true;
12533   }
12534 
12535   VisitIgnoredValue(E->getSubExpr());
12536   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
12537   Result = llvm::APFloat::getZero(Sem);
12538   return true;
12539 }
12540 
12541 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12542   switch (E->getOpcode()) {
12543   default: return Error(E);
12544   case UO_Plus:
12545     return EvaluateFloat(E->getSubExpr(), Result, Info);
12546   case UO_Minus:
12547     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
12548       return false;
12549     Result.changeSign();
12550     return true;
12551   }
12552 }
12553 
12554 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12555   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
12556     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12557 
12558   APFloat RHS(0.0);
12559   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
12560   if (!LHSOK && !Info.noteFailure())
12561     return false;
12562   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
12563          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
12564 }
12565 
12566 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
12567   Result = E->getValue();
12568   return true;
12569 }
12570 
12571 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
12572   const Expr* SubExpr = E->getSubExpr();
12573 
12574   switch (E->getCastKind()) {
12575   default:
12576     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12577 
12578   case CK_IntegralToFloating: {
12579     APSInt IntResult;
12580     return EvaluateInteger(SubExpr, IntResult, Info) &&
12581            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
12582                                 E->getType(), Result);
12583   }
12584 
12585   case CK_FloatingCast: {
12586     if (!Visit(SubExpr))
12587       return false;
12588     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
12589                                   Result);
12590   }
12591 
12592   case CK_FloatingComplexToReal: {
12593     ComplexValue V;
12594     if (!EvaluateComplex(SubExpr, V, Info))
12595       return false;
12596     Result = V.getComplexFloatReal();
12597     return true;
12598   }
12599   }
12600 }
12601 
12602 //===----------------------------------------------------------------------===//
12603 // Complex Evaluation (for float and integer)
12604 //===----------------------------------------------------------------------===//
12605 
12606 namespace {
12607 class ComplexExprEvaluator
12608   : public ExprEvaluatorBase<ComplexExprEvaluator> {
12609   ComplexValue &Result;
12610 
12611 public:
12612   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
12613     : ExprEvaluatorBaseTy(info), Result(Result) {}
12614 
12615   bool Success(const APValue &V, const Expr *e) {
12616     Result.setFrom(V);
12617     return true;
12618   }
12619 
12620   bool ZeroInitialization(const Expr *E);
12621 
12622   //===--------------------------------------------------------------------===//
12623   //                            Visitor Methods
12624   //===--------------------------------------------------------------------===//
12625 
12626   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
12627   bool VisitCastExpr(const CastExpr *E);
12628   bool VisitBinaryOperator(const BinaryOperator *E);
12629   bool VisitUnaryOperator(const UnaryOperator *E);
12630   bool VisitInitListExpr(const InitListExpr *E);
12631 };
12632 } // end anonymous namespace
12633 
12634 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
12635                             EvalInfo &Info) {
12636   assert(E->isRValue() && E->getType()->isAnyComplexType());
12637   return ComplexExprEvaluator(Info, Result).Visit(E);
12638 }
12639 
12640 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
12641   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
12642   if (ElemTy->isRealFloatingType()) {
12643     Result.makeComplexFloat();
12644     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
12645     Result.FloatReal = Zero;
12646     Result.FloatImag = Zero;
12647   } else {
12648     Result.makeComplexInt();
12649     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
12650     Result.IntReal = Zero;
12651     Result.IntImag = Zero;
12652   }
12653   return true;
12654 }
12655 
12656 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
12657   const Expr* SubExpr = E->getSubExpr();
12658 
12659   if (SubExpr->getType()->isRealFloatingType()) {
12660     Result.makeComplexFloat();
12661     APFloat &Imag = Result.FloatImag;
12662     if (!EvaluateFloat(SubExpr, Imag, Info))
12663       return false;
12664 
12665     Result.FloatReal = APFloat(Imag.getSemantics());
12666     return true;
12667   } else {
12668     assert(SubExpr->getType()->isIntegerType() &&
12669            "Unexpected imaginary literal.");
12670 
12671     Result.makeComplexInt();
12672     APSInt &Imag = Result.IntImag;
12673     if (!EvaluateInteger(SubExpr, Imag, Info))
12674       return false;
12675 
12676     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
12677     return true;
12678   }
12679 }
12680 
12681 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
12682 
12683   switch (E->getCastKind()) {
12684   case CK_BitCast:
12685   case CK_BaseToDerived:
12686   case CK_DerivedToBase:
12687   case CK_UncheckedDerivedToBase:
12688   case CK_Dynamic:
12689   case CK_ToUnion:
12690   case CK_ArrayToPointerDecay:
12691   case CK_FunctionToPointerDecay:
12692   case CK_NullToPointer:
12693   case CK_NullToMemberPointer:
12694   case CK_BaseToDerivedMemberPointer:
12695   case CK_DerivedToBaseMemberPointer:
12696   case CK_MemberPointerToBoolean:
12697   case CK_ReinterpretMemberPointer:
12698   case CK_ConstructorConversion:
12699   case CK_IntegralToPointer:
12700   case CK_PointerToIntegral:
12701   case CK_PointerToBoolean:
12702   case CK_ToVoid:
12703   case CK_VectorSplat:
12704   case CK_IntegralCast:
12705   case CK_BooleanToSignedIntegral:
12706   case CK_IntegralToBoolean:
12707   case CK_IntegralToFloating:
12708   case CK_FloatingToIntegral:
12709   case CK_FloatingToBoolean:
12710   case CK_FloatingCast:
12711   case CK_CPointerToObjCPointerCast:
12712   case CK_BlockPointerToObjCPointerCast:
12713   case CK_AnyPointerToBlockPointerCast:
12714   case CK_ObjCObjectLValueCast:
12715   case CK_FloatingComplexToReal:
12716   case CK_FloatingComplexToBoolean:
12717   case CK_IntegralComplexToReal:
12718   case CK_IntegralComplexToBoolean:
12719   case CK_ARCProduceObject:
12720   case CK_ARCConsumeObject:
12721   case CK_ARCReclaimReturnedObject:
12722   case CK_ARCExtendBlockObject:
12723   case CK_CopyAndAutoreleaseBlockObject:
12724   case CK_BuiltinFnToFnPtr:
12725   case CK_ZeroToOCLOpaqueType:
12726   case CK_NonAtomicToAtomic:
12727   case CK_AddressSpaceConversion:
12728   case CK_IntToOCLSampler:
12729   case CK_FixedPointCast:
12730   case CK_FixedPointToBoolean:
12731   case CK_FixedPointToIntegral:
12732   case CK_IntegralToFixedPoint:
12733     llvm_unreachable("invalid cast kind for complex value");
12734 
12735   case CK_LValueToRValue:
12736   case CK_AtomicToNonAtomic:
12737   case CK_NoOp:
12738   case CK_LValueToRValueBitCast:
12739     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12740 
12741   case CK_Dependent:
12742   case CK_LValueBitCast:
12743   case CK_UserDefinedConversion:
12744     return Error(E);
12745 
12746   case CK_FloatingRealToComplex: {
12747     APFloat &Real = Result.FloatReal;
12748     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
12749       return false;
12750 
12751     Result.makeComplexFloat();
12752     Result.FloatImag = APFloat(Real.getSemantics());
12753     return true;
12754   }
12755 
12756   case CK_FloatingComplexCast: {
12757     if (!Visit(E->getSubExpr()))
12758       return false;
12759 
12760     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
12761     QualType From
12762       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
12763 
12764     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
12765            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
12766   }
12767 
12768   case CK_FloatingComplexToIntegralComplex: {
12769     if (!Visit(E->getSubExpr()))
12770       return false;
12771 
12772     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
12773     QualType From
12774       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
12775     Result.makeComplexInt();
12776     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
12777                                 To, Result.IntReal) &&
12778            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
12779                                 To, Result.IntImag);
12780   }
12781 
12782   case CK_IntegralRealToComplex: {
12783     APSInt &Real = Result.IntReal;
12784     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
12785       return false;
12786 
12787     Result.makeComplexInt();
12788     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
12789     return true;
12790   }
12791 
12792   case CK_IntegralComplexCast: {
12793     if (!Visit(E->getSubExpr()))
12794       return false;
12795 
12796     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
12797     QualType From
12798       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
12799 
12800     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
12801     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
12802     return true;
12803   }
12804 
12805   case CK_IntegralComplexToFloatingComplex: {
12806     if (!Visit(E->getSubExpr()))
12807       return false;
12808 
12809     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
12810     QualType From
12811       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
12812     Result.makeComplexFloat();
12813     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
12814                                 To, Result.FloatReal) &&
12815            HandleIntToFloatCast(Info, E, From, Result.IntImag,
12816                                 To, Result.FloatImag);
12817   }
12818   }
12819 
12820   llvm_unreachable("unknown cast resulting in complex value");
12821 }
12822 
12823 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12824   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
12825     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12826 
12827   // Track whether the LHS or RHS is real at the type system level. When this is
12828   // the case we can simplify our evaluation strategy.
12829   bool LHSReal = false, RHSReal = false;
12830 
12831   bool LHSOK;
12832   if (E->getLHS()->getType()->isRealFloatingType()) {
12833     LHSReal = true;
12834     APFloat &Real = Result.FloatReal;
12835     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
12836     if (LHSOK) {
12837       Result.makeComplexFloat();
12838       Result.FloatImag = APFloat(Real.getSemantics());
12839     }
12840   } else {
12841     LHSOK = Visit(E->getLHS());
12842   }
12843   if (!LHSOK && !Info.noteFailure())
12844     return false;
12845 
12846   ComplexValue RHS;
12847   if (E->getRHS()->getType()->isRealFloatingType()) {
12848     RHSReal = true;
12849     APFloat &Real = RHS.FloatReal;
12850     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
12851       return false;
12852     RHS.makeComplexFloat();
12853     RHS.FloatImag = APFloat(Real.getSemantics());
12854   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12855     return false;
12856 
12857   assert(!(LHSReal && RHSReal) &&
12858          "Cannot have both operands of a complex operation be real.");
12859   switch (E->getOpcode()) {
12860   default: return Error(E);
12861   case BO_Add:
12862     if (Result.isComplexFloat()) {
12863       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
12864                                        APFloat::rmNearestTiesToEven);
12865       if (LHSReal)
12866         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
12867       else if (!RHSReal)
12868         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
12869                                          APFloat::rmNearestTiesToEven);
12870     } else {
12871       Result.getComplexIntReal() += RHS.getComplexIntReal();
12872       Result.getComplexIntImag() += RHS.getComplexIntImag();
12873     }
12874     break;
12875   case BO_Sub:
12876     if (Result.isComplexFloat()) {
12877       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
12878                                             APFloat::rmNearestTiesToEven);
12879       if (LHSReal) {
12880         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
12881         Result.getComplexFloatImag().changeSign();
12882       } else if (!RHSReal) {
12883         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
12884                                               APFloat::rmNearestTiesToEven);
12885       }
12886     } else {
12887       Result.getComplexIntReal() -= RHS.getComplexIntReal();
12888       Result.getComplexIntImag() -= RHS.getComplexIntImag();
12889     }
12890     break;
12891   case BO_Mul:
12892     if (Result.isComplexFloat()) {
12893       // This is an implementation of complex multiplication according to the
12894       // constraints laid out in C11 Annex G. The implementation uses the
12895       // following naming scheme:
12896       //   (a + ib) * (c + id)
12897       ComplexValue LHS = Result;
12898       APFloat &A = LHS.getComplexFloatReal();
12899       APFloat &B = LHS.getComplexFloatImag();
12900       APFloat &C = RHS.getComplexFloatReal();
12901       APFloat &D = RHS.getComplexFloatImag();
12902       APFloat &ResR = Result.getComplexFloatReal();
12903       APFloat &ResI = Result.getComplexFloatImag();
12904       if (LHSReal) {
12905         assert(!RHSReal && "Cannot have two real operands for a complex op!");
12906         ResR = A * C;
12907         ResI = A * D;
12908       } else if (RHSReal) {
12909         ResR = C * A;
12910         ResI = C * B;
12911       } else {
12912         // In the fully general case, we need to handle NaNs and infinities
12913         // robustly.
12914         APFloat AC = A * C;
12915         APFloat BD = B * D;
12916         APFloat AD = A * D;
12917         APFloat BC = B * C;
12918         ResR = AC - BD;
12919         ResI = AD + BC;
12920         if (ResR.isNaN() && ResI.isNaN()) {
12921           bool Recalc = false;
12922           if (A.isInfinity() || B.isInfinity()) {
12923             A = APFloat::copySign(
12924                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
12925             B = APFloat::copySign(
12926                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
12927             if (C.isNaN())
12928               C = APFloat::copySign(APFloat(C.getSemantics()), C);
12929             if (D.isNaN())
12930               D = APFloat::copySign(APFloat(D.getSemantics()), D);
12931             Recalc = true;
12932           }
12933           if (C.isInfinity() || D.isInfinity()) {
12934             C = APFloat::copySign(
12935                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
12936             D = APFloat::copySign(
12937                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
12938             if (A.isNaN())
12939               A = APFloat::copySign(APFloat(A.getSemantics()), A);
12940             if (B.isNaN())
12941               B = APFloat::copySign(APFloat(B.getSemantics()), B);
12942             Recalc = true;
12943           }
12944           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
12945                           AD.isInfinity() || BC.isInfinity())) {
12946             if (A.isNaN())
12947               A = APFloat::copySign(APFloat(A.getSemantics()), A);
12948             if (B.isNaN())
12949               B = APFloat::copySign(APFloat(B.getSemantics()), B);
12950             if (C.isNaN())
12951               C = APFloat::copySign(APFloat(C.getSemantics()), C);
12952             if (D.isNaN())
12953               D = APFloat::copySign(APFloat(D.getSemantics()), D);
12954             Recalc = true;
12955           }
12956           if (Recalc) {
12957             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
12958             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
12959           }
12960         }
12961       }
12962     } else {
12963       ComplexValue LHS = Result;
12964       Result.getComplexIntReal() =
12965         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
12966          LHS.getComplexIntImag() * RHS.getComplexIntImag());
12967       Result.getComplexIntImag() =
12968         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
12969          LHS.getComplexIntImag() * RHS.getComplexIntReal());
12970     }
12971     break;
12972   case BO_Div:
12973     if (Result.isComplexFloat()) {
12974       // This is an implementation of complex division according to the
12975       // constraints laid out in C11 Annex G. The implementation uses the
12976       // following naming scheme:
12977       //   (a + ib) / (c + id)
12978       ComplexValue LHS = Result;
12979       APFloat &A = LHS.getComplexFloatReal();
12980       APFloat &B = LHS.getComplexFloatImag();
12981       APFloat &C = RHS.getComplexFloatReal();
12982       APFloat &D = RHS.getComplexFloatImag();
12983       APFloat &ResR = Result.getComplexFloatReal();
12984       APFloat &ResI = Result.getComplexFloatImag();
12985       if (RHSReal) {
12986         ResR = A / C;
12987         ResI = B / C;
12988       } else {
12989         if (LHSReal) {
12990           // No real optimizations we can do here, stub out with zero.
12991           B = APFloat::getZero(A.getSemantics());
12992         }
12993         int DenomLogB = 0;
12994         APFloat MaxCD = maxnum(abs(C), abs(D));
12995         if (MaxCD.isFinite()) {
12996           DenomLogB = ilogb(MaxCD);
12997           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
12998           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
12999         }
13000         APFloat Denom = C * C + D * D;
13001         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
13002                       APFloat::rmNearestTiesToEven);
13003         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
13004                       APFloat::rmNearestTiesToEven);
13005         if (ResR.isNaN() && ResI.isNaN()) {
13006           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
13007             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
13008             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
13009           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
13010                      D.isFinite()) {
13011             A = APFloat::copySign(
13012                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
13013             B = APFloat::copySign(
13014                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
13015             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
13016             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
13017           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
13018             C = APFloat::copySign(
13019                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
13020             D = APFloat::copySign(
13021                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
13022             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
13023             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
13024           }
13025         }
13026       }
13027     } else {
13028       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
13029         return Error(E, diag::note_expr_divide_by_zero);
13030 
13031       ComplexValue LHS = Result;
13032       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
13033         RHS.getComplexIntImag() * RHS.getComplexIntImag();
13034       Result.getComplexIntReal() =
13035         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
13036          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
13037       Result.getComplexIntImag() =
13038         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
13039          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
13040     }
13041     break;
13042   }
13043 
13044   return true;
13045 }
13046 
13047 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13048   // Get the operand value into 'Result'.
13049   if (!Visit(E->getSubExpr()))
13050     return false;
13051 
13052   switch (E->getOpcode()) {
13053   default:
13054     return Error(E);
13055   case UO_Extension:
13056     return true;
13057   case UO_Plus:
13058     // The result is always just the subexpr.
13059     return true;
13060   case UO_Minus:
13061     if (Result.isComplexFloat()) {
13062       Result.getComplexFloatReal().changeSign();
13063       Result.getComplexFloatImag().changeSign();
13064     }
13065     else {
13066       Result.getComplexIntReal() = -Result.getComplexIntReal();
13067       Result.getComplexIntImag() = -Result.getComplexIntImag();
13068     }
13069     return true;
13070   case UO_Not:
13071     if (Result.isComplexFloat())
13072       Result.getComplexFloatImag().changeSign();
13073     else
13074       Result.getComplexIntImag() = -Result.getComplexIntImag();
13075     return true;
13076   }
13077 }
13078 
13079 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
13080   if (E->getNumInits() == 2) {
13081     if (E->getType()->isComplexType()) {
13082       Result.makeComplexFloat();
13083       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
13084         return false;
13085       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
13086         return false;
13087     } else {
13088       Result.makeComplexInt();
13089       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
13090         return false;
13091       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
13092         return false;
13093     }
13094     return true;
13095   }
13096   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
13097 }
13098 
13099 //===----------------------------------------------------------------------===//
13100 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
13101 // implicit conversion.
13102 //===----------------------------------------------------------------------===//
13103 
13104 namespace {
13105 class AtomicExprEvaluator :
13106     public ExprEvaluatorBase<AtomicExprEvaluator> {
13107   const LValue *This;
13108   APValue &Result;
13109 public:
13110   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
13111       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
13112 
13113   bool Success(const APValue &V, const Expr *E) {
13114     Result = V;
13115     return true;
13116   }
13117 
13118   bool ZeroInitialization(const Expr *E) {
13119     ImplicitValueInitExpr VIE(
13120         E->getType()->castAs<AtomicType>()->getValueType());
13121     // For atomic-qualified class (and array) types in C++, initialize the
13122     // _Atomic-wrapped subobject directly, in-place.
13123     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
13124                 : Evaluate(Result, Info, &VIE);
13125   }
13126 
13127   bool VisitCastExpr(const CastExpr *E) {
13128     switch (E->getCastKind()) {
13129     default:
13130       return ExprEvaluatorBaseTy::VisitCastExpr(E);
13131     case CK_NonAtomicToAtomic:
13132       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
13133                   : Evaluate(Result, Info, E->getSubExpr());
13134     }
13135   }
13136 };
13137 } // end anonymous namespace
13138 
13139 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
13140                            EvalInfo &Info) {
13141   assert(E->isRValue() && E->getType()->isAtomicType());
13142   return AtomicExprEvaluator(Info, This, Result).Visit(E);
13143 }
13144 
13145 //===----------------------------------------------------------------------===//
13146 // Void expression evaluation, primarily for a cast to void on the LHS of a
13147 // comma operator
13148 //===----------------------------------------------------------------------===//
13149 
13150 namespace {
13151 class VoidExprEvaluator
13152   : public ExprEvaluatorBase<VoidExprEvaluator> {
13153 public:
13154   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
13155 
13156   bool Success(const APValue &V, const Expr *e) { return true; }
13157 
13158   bool ZeroInitialization(const Expr *E) { return true; }
13159 
13160   bool VisitCastExpr(const CastExpr *E) {
13161     switch (E->getCastKind()) {
13162     default:
13163       return ExprEvaluatorBaseTy::VisitCastExpr(E);
13164     case CK_ToVoid:
13165       VisitIgnoredValue(E->getSubExpr());
13166       return true;
13167     }
13168   }
13169 
13170   bool VisitCallExpr(const CallExpr *E) {
13171     switch (E->getBuiltinCallee()) {
13172     case Builtin::BI__assume:
13173     case Builtin::BI__builtin_assume:
13174       // The argument is not evaluated!
13175       return true;
13176 
13177     case Builtin::BI__builtin_operator_delete:
13178       return HandleOperatorDeleteCall(Info, E);
13179 
13180     default:
13181       break;
13182     }
13183 
13184     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13185   }
13186 
13187   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
13188 };
13189 } // end anonymous namespace
13190 
13191 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
13192   // We cannot speculatively evaluate a delete expression.
13193   if (Info.SpeculativeEvaluationDepth)
13194     return false;
13195 
13196   FunctionDecl *OperatorDelete = E->getOperatorDelete();
13197   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
13198     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
13199         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
13200     return false;
13201   }
13202 
13203   const Expr *Arg = E->getArgument();
13204 
13205   LValue Pointer;
13206   if (!EvaluatePointer(Arg, Pointer, Info))
13207     return false;
13208   if (Pointer.Designator.Invalid)
13209     return false;
13210 
13211   // Deleting a null pointer has no effect.
13212   if (Pointer.isNullPointer()) {
13213     // This is the only case where we need to produce an extension warning:
13214     // the only other way we can succeed is if we find a dynamic allocation,
13215     // and we will have warned when we allocated it in that case.
13216     if (!Info.getLangOpts().CPlusPlus2a)
13217       Info.CCEDiag(E, diag::note_constexpr_new);
13218     return true;
13219   }
13220 
13221   Optional<DynAlloc *> Alloc = CheckDeleteKind(
13222       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
13223   if (!Alloc)
13224     return false;
13225   QualType AllocType = Pointer.Base.getDynamicAllocType();
13226 
13227   // For the non-array case, the designator must be empty if the static type
13228   // does not have a virtual destructor.
13229   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
13230       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
13231     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
13232         << Arg->getType()->getPointeeType() << AllocType;
13233     return false;
13234   }
13235 
13236   // For a class type with a virtual destructor, the selected operator delete
13237   // is the one looked up when building the destructor.
13238   if (!E->isArrayForm() && !E->isGlobalDelete()) {
13239     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
13240     if (VirtualDelete &&
13241         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
13242       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
13243           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
13244       return false;
13245     }
13246   }
13247 
13248   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
13249                          (*Alloc)->Value, AllocType))
13250     return false;
13251 
13252   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
13253     // The element was already erased. This means the destructor call also
13254     // deleted the object.
13255     // FIXME: This probably results in undefined behavior before we get this
13256     // far, and should be diagnosed elsewhere first.
13257     Info.FFDiag(E, diag::note_constexpr_double_delete);
13258     return false;
13259   }
13260 
13261   return true;
13262 }
13263 
13264 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
13265   assert(E->isRValue() && E->getType()->isVoidType());
13266   return VoidExprEvaluator(Info).Visit(E);
13267 }
13268 
13269 //===----------------------------------------------------------------------===//
13270 // Top level Expr::EvaluateAsRValue method.
13271 //===----------------------------------------------------------------------===//
13272 
13273 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
13274   // In C, function designators are not lvalues, but we evaluate them as if they
13275   // are.
13276   QualType T = E->getType();
13277   if (E->isGLValue() || T->isFunctionType()) {
13278     LValue LV;
13279     if (!EvaluateLValue(E, LV, Info))
13280       return false;
13281     LV.moveInto(Result);
13282   } else if (T->isVectorType()) {
13283     if (!EvaluateVector(E, Result, Info))
13284       return false;
13285   } else if (T->isIntegralOrEnumerationType()) {
13286     if (!IntExprEvaluator(Info, Result).Visit(E))
13287       return false;
13288   } else if (T->hasPointerRepresentation()) {
13289     LValue LV;
13290     if (!EvaluatePointer(E, LV, Info))
13291       return false;
13292     LV.moveInto(Result);
13293   } else if (T->isRealFloatingType()) {
13294     llvm::APFloat F(0.0);
13295     if (!EvaluateFloat(E, F, Info))
13296       return false;
13297     Result = APValue(F);
13298   } else if (T->isAnyComplexType()) {
13299     ComplexValue C;
13300     if (!EvaluateComplex(E, C, Info))
13301       return false;
13302     C.moveInto(Result);
13303   } else if (T->isFixedPointType()) {
13304     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
13305   } else if (T->isMemberPointerType()) {
13306     MemberPtr P;
13307     if (!EvaluateMemberPointer(E, P, Info))
13308       return false;
13309     P.moveInto(Result);
13310     return true;
13311   } else if (T->isArrayType()) {
13312     LValue LV;
13313     APValue &Value =
13314         Info.CurrentCall->createTemporary(E, T, false, LV);
13315     if (!EvaluateArray(E, LV, Value, Info))
13316       return false;
13317     Result = Value;
13318   } else if (T->isRecordType()) {
13319     LValue LV;
13320     APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV);
13321     if (!EvaluateRecord(E, LV, Value, Info))
13322       return false;
13323     Result = Value;
13324   } else if (T->isVoidType()) {
13325     if (!Info.getLangOpts().CPlusPlus11)
13326       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
13327         << E->getType();
13328     if (!EvaluateVoid(E, Info))
13329       return false;
13330   } else if (T->isAtomicType()) {
13331     QualType Unqual = T.getAtomicUnqualifiedType();
13332     if (Unqual->isArrayType() || Unqual->isRecordType()) {
13333       LValue LV;
13334       APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV);
13335       if (!EvaluateAtomic(E, &LV, Value, Info))
13336         return false;
13337     } else {
13338       if (!EvaluateAtomic(E, nullptr, Result, Info))
13339         return false;
13340     }
13341   } else if (Info.getLangOpts().CPlusPlus11) {
13342     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
13343     return false;
13344   } else {
13345     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13346     return false;
13347   }
13348 
13349   return true;
13350 }
13351 
13352 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
13353 /// cases, the in-place evaluation is essential, since later initializers for
13354 /// an object can indirectly refer to subobjects which were initialized earlier.
13355 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
13356                             const Expr *E, bool AllowNonLiteralTypes) {
13357   assert(!E->isValueDependent());
13358 
13359   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
13360     return false;
13361 
13362   if (E->isRValue()) {
13363     // Evaluate arrays and record types in-place, so that later initializers can
13364     // refer to earlier-initialized members of the object.
13365     QualType T = E->getType();
13366     if (T->isArrayType())
13367       return EvaluateArray(E, This, Result, Info);
13368     else if (T->isRecordType())
13369       return EvaluateRecord(E, This, Result, Info);
13370     else if (T->isAtomicType()) {
13371       QualType Unqual = T.getAtomicUnqualifiedType();
13372       if (Unqual->isArrayType() || Unqual->isRecordType())
13373         return EvaluateAtomic(E, &This, Result, Info);
13374     }
13375   }
13376 
13377   // For any other type, in-place evaluation is unimportant.
13378   return Evaluate(Result, Info, E);
13379 }
13380 
13381 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
13382 /// lvalue-to-rvalue cast if it is an lvalue.
13383 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
13384    if (Info.EnableNewConstInterp) {
13385     auto &InterpCtx = Info.Ctx.getInterpContext();
13386     switch (InterpCtx.evaluateAsRValue(Info, E, Result)) {
13387     case interp::InterpResult::Success:
13388       return true;
13389     case interp::InterpResult::Fail:
13390       return false;
13391     case interp::InterpResult::Bail:
13392       break;
13393     }
13394   }
13395 
13396   if (E->getType().isNull())
13397     return false;
13398 
13399   if (!CheckLiteralType(Info, E))
13400     return false;
13401 
13402   if (!::Evaluate(Result, Info, E))
13403     return false;
13404 
13405   if (E->isGLValue()) {
13406     LValue LV;
13407     LV.setFrom(Info.Ctx, Result);
13408     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13409       return false;
13410   }
13411 
13412   // Check this core constant expression is a constant expression.
13413   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result) &&
13414          CheckMemoryLeaks(Info);
13415 }
13416 
13417 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
13418                                  const ASTContext &Ctx, bool &IsConst) {
13419   // Fast-path evaluations of integer literals, since we sometimes see files
13420   // containing vast quantities of these.
13421   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
13422     Result.Val = APValue(APSInt(L->getValue(),
13423                                 L->getType()->isUnsignedIntegerType()));
13424     IsConst = true;
13425     return true;
13426   }
13427 
13428   // This case should be rare, but we need to check it before we check on
13429   // the type below.
13430   if (Exp->getType().isNull()) {
13431     IsConst = false;
13432     return true;
13433   }
13434 
13435   // FIXME: Evaluating values of large array and record types can cause
13436   // performance problems. Only do so in C++11 for now.
13437   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
13438                           Exp->getType()->isRecordType()) &&
13439       !Ctx.getLangOpts().CPlusPlus11) {
13440     IsConst = false;
13441     return true;
13442   }
13443   return false;
13444 }
13445 
13446 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
13447                                       Expr::SideEffectsKind SEK) {
13448   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
13449          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
13450 }
13451 
13452 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
13453                              const ASTContext &Ctx, EvalInfo &Info) {
13454   bool IsConst;
13455   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
13456     return IsConst;
13457 
13458   return EvaluateAsRValue(Info, E, Result.Val);
13459 }
13460 
13461 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
13462                           const ASTContext &Ctx,
13463                           Expr::SideEffectsKind AllowSideEffects,
13464                           EvalInfo &Info) {
13465   if (!E->getType()->isIntegralOrEnumerationType())
13466     return false;
13467 
13468   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
13469       !ExprResult.Val.isInt() ||
13470       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13471     return false;
13472 
13473   return true;
13474 }
13475 
13476 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
13477                                  const ASTContext &Ctx,
13478                                  Expr::SideEffectsKind AllowSideEffects,
13479                                  EvalInfo &Info) {
13480   if (!E->getType()->isFixedPointType())
13481     return false;
13482 
13483   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
13484     return false;
13485 
13486   if (!ExprResult.Val.isFixedPoint() ||
13487       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13488     return false;
13489 
13490   return true;
13491 }
13492 
13493 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
13494 /// any crazy technique (that has nothing to do with language standards) that
13495 /// we want to.  If this function returns true, it returns the folded constant
13496 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
13497 /// will be applied to the result.
13498 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
13499                             bool InConstantContext) const {
13500   assert(!isValueDependent() &&
13501          "Expression evaluator can't be called on a dependent expression.");
13502   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13503   Info.InConstantContext = InConstantContext;
13504   return ::EvaluateAsRValue(this, Result, Ctx, Info);
13505 }
13506 
13507 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
13508                                       bool InConstantContext) const {
13509   assert(!isValueDependent() &&
13510          "Expression evaluator can't be called on a dependent expression.");
13511   EvalResult Scratch;
13512   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
13513          HandleConversionToBool(Scratch.Val, Result);
13514 }
13515 
13516 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
13517                          SideEffectsKind AllowSideEffects,
13518                          bool InConstantContext) const {
13519   assert(!isValueDependent() &&
13520          "Expression evaluator can't be called on a dependent expression.");
13521   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13522   Info.InConstantContext = InConstantContext;
13523   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
13524 }
13525 
13526 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
13527                                 SideEffectsKind AllowSideEffects,
13528                                 bool InConstantContext) const {
13529   assert(!isValueDependent() &&
13530          "Expression evaluator can't be called on a dependent expression.");
13531   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13532   Info.InConstantContext = InConstantContext;
13533   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
13534 }
13535 
13536 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
13537                            SideEffectsKind AllowSideEffects,
13538                            bool InConstantContext) const {
13539   assert(!isValueDependent() &&
13540          "Expression evaluator can't be called on a dependent expression.");
13541 
13542   if (!getType()->isRealFloatingType())
13543     return false;
13544 
13545   EvalResult ExprResult;
13546   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
13547       !ExprResult.Val.isFloat() ||
13548       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13549     return false;
13550 
13551   Result = ExprResult.Val.getFloat();
13552   return true;
13553 }
13554 
13555 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
13556                             bool InConstantContext) const {
13557   assert(!isValueDependent() &&
13558          "Expression evaluator can't be called on a dependent expression.");
13559 
13560   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
13561   Info.InConstantContext = InConstantContext;
13562   LValue LV;
13563   CheckedTemporaries CheckedTemps;
13564   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
13565       Result.HasSideEffects ||
13566       !CheckLValueConstantExpression(Info, getExprLoc(),
13567                                      Ctx.getLValueReferenceType(getType()), LV,
13568                                      Expr::EvaluateForCodeGen, CheckedTemps))
13569     return false;
13570 
13571   LV.moveInto(Result.Val);
13572   return true;
13573 }
13574 
13575 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
13576                                   const ASTContext &Ctx) const {
13577   assert(!isValueDependent() &&
13578          "Expression evaluator can't be called on a dependent expression.");
13579 
13580   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
13581   EvalInfo Info(Ctx, Result, EM);
13582   Info.InConstantContext = true;
13583 
13584   if (!::Evaluate(Result.Val, Info, this) || Result.HasSideEffects)
13585     return false;
13586 
13587   if (!Info.discardCleanups())
13588     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
13589 
13590   return CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
13591                                  Result.Val, Usage) &&
13592          CheckMemoryLeaks(Info);
13593 }
13594 
13595 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
13596                                  const VarDecl *VD,
13597                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
13598   assert(!isValueDependent() &&
13599          "Expression evaluator can't be called on a dependent expression.");
13600 
13601   // FIXME: Evaluating initializers for large array and record types can cause
13602   // performance problems. Only do so in C++11 for now.
13603   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
13604       !Ctx.getLangOpts().CPlusPlus11)
13605     return false;
13606 
13607   Expr::EvalStatus EStatus;
13608   EStatus.Diag = &Notes;
13609 
13610   EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
13611                                       ? EvalInfo::EM_ConstantExpression
13612                                       : EvalInfo::EM_ConstantFold);
13613   Info.setEvaluatingDecl(VD, Value);
13614   Info.InConstantContext = true;
13615 
13616   SourceLocation DeclLoc = VD->getLocation();
13617   QualType DeclTy = VD->getType();
13618 
13619   if (Info.EnableNewConstInterp) {
13620     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
13621     switch (InterpCtx.evaluateAsInitializer(Info, VD, Value)) {
13622     case interp::InterpResult::Fail:
13623       // Bail out if an error was encountered.
13624       return false;
13625     case interp::InterpResult::Success:
13626       // Evaluation succeeded and value was set.
13627       return CheckConstantExpression(Info, DeclLoc, DeclTy, Value);
13628     case interp::InterpResult::Bail:
13629       // Evaluate the value again for the tree evaluator to use.
13630       break;
13631     }
13632   }
13633 
13634   LValue LVal;
13635   LVal.set(VD);
13636 
13637   // C++11 [basic.start.init]p2:
13638   //  Variables with static storage duration or thread storage duration shall be
13639   //  zero-initialized before any other initialization takes place.
13640   // This behavior is not present in C.
13641   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
13642       !DeclTy->isReferenceType()) {
13643     ImplicitValueInitExpr VIE(DeclTy);
13644     if (!EvaluateInPlace(Value, Info, LVal, &VIE,
13645                          /*AllowNonLiteralTypes=*/true))
13646       return false;
13647   }
13648 
13649   if (!EvaluateInPlace(Value, Info, LVal, this,
13650                        /*AllowNonLiteralTypes=*/true) ||
13651       EStatus.HasSideEffects)
13652     return false;
13653 
13654   // At this point, any lifetime-extended temporaries are completely
13655   // initialized.
13656   Info.performLifetimeExtension();
13657 
13658   if (!Info.discardCleanups())
13659     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
13660 
13661   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value) &&
13662          CheckMemoryLeaks(Info);
13663 }
13664 
13665 bool VarDecl::evaluateDestruction(
13666     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
13667   assert(getEvaluatedValue() && !getEvaluatedValue()->isAbsent() &&
13668          "cannot evaluate destruction of non-constant-initialized variable");
13669 
13670   Expr::EvalStatus EStatus;
13671   EStatus.Diag = &Notes;
13672 
13673   // Make a copy of the value for the destructor to mutate.
13674   APValue DestroyedValue = *getEvaluatedValue();
13675 
13676   EvalInfo Info(getASTContext(), EStatus, EvalInfo::EM_ConstantExpression);
13677   Info.setEvaluatingDecl(this, DestroyedValue,
13678                          EvalInfo::EvaluatingDeclKind::Dtor);
13679   Info.InConstantContext = true;
13680 
13681   SourceLocation DeclLoc = getLocation();
13682   QualType DeclTy = getType();
13683 
13684   LValue LVal;
13685   LVal.set(this);
13686 
13687   // FIXME: Consider storing whether this variable has constant destruction in
13688   // the EvaluatedStmt so that CodeGen can query it.
13689   if (!HandleDestruction(Info, DeclLoc, LVal.Base, DestroyedValue, DeclTy) ||
13690       EStatus.HasSideEffects)
13691     return false;
13692 
13693   if (!Info.discardCleanups())
13694     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
13695 
13696   ensureEvaluatedStmt()->HasConstantDestruction = true;
13697   return true;
13698 }
13699 
13700 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
13701 /// constant folded, but discard the result.
13702 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
13703   assert(!isValueDependent() &&
13704          "Expression evaluator can't be called on a dependent expression.");
13705 
13706   EvalResult Result;
13707   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
13708          !hasUnacceptableSideEffect(Result, SEK);
13709 }
13710 
13711 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
13712                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
13713   assert(!isValueDependent() &&
13714          "Expression evaluator can't be called on a dependent expression.");
13715 
13716   EvalResult EVResult;
13717   EVResult.Diag = Diag;
13718   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
13719   Info.InConstantContext = true;
13720 
13721   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
13722   (void)Result;
13723   assert(Result && "Could not evaluate expression");
13724   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
13725 
13726   return EVResult.Val.getInt();
13727 }
13728 
13729 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
13730     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
13731   assert(!isValueDependent() &&
13732          "Expression evaluator can't be called on a dependent expression.");
13733 
13734   EvalResult EVResult;
13735   EVResult.Diag = Diag;
13736   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
13737   Info.InConstantContext = true;
13738   Info.CheckingForUndefinedBehavior = true;
13739 
13740   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
13741   (void)Result;
13742   assert(Result && "Could not evaluate expression");
13743   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
13744 
13745   return EVResult.Val.getInt();
13746 }
13747 
13748 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
13749   assert(!isValueDependent() &&
13750          "Expression evaluator can't be called on a dependent expression.");
13751 
13752   bool IsConst;
13753   EvalResult EVResult;
13754   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
13755     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
13756     Info.CheckingForUndefinedBehavior = true;
13757     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
13758   }
13759 }
13760 
13761 bool Expr::EvalResult::isGlobalLValue() const {
13762   assert(Val.isLValue());
13763   return IsGlobalLValue(Val.getLValueBase());
13764 }
13765 
13766 
13767 /// isIntegerConstantExpr - this recursive routine will test if an expression is
13768 /// an integer constant expression.
13769 
13770 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
13771 /// comma, etc
13772 
13773 // CheckICE - This function does the fundamental ICE checking: the returned
13774 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
13775 // and a (possibly null) SourceLocation indicating the location of the problem.
13776 //
13777 // Note that to reduce code duplication, this helper does no evaluation
13778 // itself; the caller checks whether the expression is evaluatable, and
13779 // in the rare cases where CheckICE actually cares about the evaluated
13780 // value, it calls into Evaluate.
13781 
13782 namespace {
13783 
13784 enum ICEKind {
13785   /// This expression is an ICE.
13786   IK_ICE,
13787   /// This expression is not an ICE, but if it isn't evaluated, it's
13788   /// a legal subexpression for an ICE. This return value is used to handle
13789   /// the comma operator in C99 mode, and non-constant subexpressions.
13790   IK_ICEIfUnevaluated,
13791   /// This expression is not an ICE, and is not a legal subexpression for one.
13792   IK_NotICE
13793 };
13794 
13795 struct ICEDiag {
13796   ICEKind Kind;
13797   SourceLocation Loc;
13798 
13799   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
13800 };
13801 
13802 }
13803 
13804 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
13805 
13806 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
13807 
13808 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
13809   Expr::EvalResult EVResult;
13810   Expr::EvalStatus Status;
13811   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
13812 
13813   Info.InConstantContext = true;
13814   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
13815       !EVResult.Val.isInt())
13816     return ICEDiag(IK_NotICE, E->getBeginLoc());
13817 
13818   return NoDiag();
13819 }
13820 
13821 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
13822   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
13823   if (!E->getType()->isIntegralOrEnumerationType())
13824     return ICEDiag(IK_NotICE, E->getBeginLoc());
13825 
13826   switch (E->getStmtClass()) {
13827 #define ABSTRACT_STMT(Node)
13828 #define STMT(Node, Base) case Expr::Node##Class:
13829 #define EXPR(Node, Base)
13830 #include "clang/AST/StmtNodes.inc"
13831   case Expr::PredefinedExprClass:
13832   case Expr::FloatingLiteralClass:
13833   case Expr::ImaginaryLiteralClass:
13834   case Expr::StringLiteralClass:
13835   case Expr::ArraySubscriptExprClass:
13836   case Expr::OMPArraySectionExprClass:
13837   case Expr::MemberExprClass:
13838   case Expr::CompoundAssignOperatorClass:
13839   case Expr::CompoundLiteralExprClass:
13840   case Expr::ExtVectorElementExprClass:
13841   case Expr::DesignatedInitExprClass:
13842   case Expr::ArrayInitLoopExprClass:
13843   case Expr::ArrayInitIndexExprClass:
13844   case Expr::NoInitExprClass:
13845   case Expr::DesignatedInitUpdateExprClass:
13846   case Expr::ImplicitValueInitExprClass:
13847   case Expr::ParenListExprClass:
13848   case Expr::VAArgExprClass:
13849   case Expr::AddrLabelExprClass:
13850   case Expr::StmtExprClass:
13851   case Expr::CXXMemberCallExprClass:
13852   case Expr::CUDAKernelCallExprClass:
13853   case Expr::CXXDynamicCastExprClass:
13854   case Expr::CXXTypeidExprClass:
13855   case Expr::CXXUuidofExprClass:
13856   case Expr::MSPropertyRefExprClass:
13857   case Expr::MSPropertySubscriptExprClass:
13858   case Expr::CXXNullPtrLiteralExprClass:
13859   case Expr::UserDefinedLiteralClass:
13860   case Expr::CXXThisExprClass:
13861   case Expr::CXXThrowExprClass:
13862   case Expr::CXXNewExprClass:
13863   case Expr::CXXDeleteExprClass:
13864   case Expr::CXXPseudoDestructorExprClass:
13865   case Expr::UnresolvedLookupExprClass:
13866   case Expr::TypoExprClass:
13867   case Expr::DependentScopeDeclRefExprClass:
13868   case Expr::CXXConstructExprClass:
13869   case Expr::CXXInheritedCtorInitExprClass:
13870   case Expr::CXXStdInitializerListExprClass:
13871   case Expr::CXXBindTemporaryExprClass:
13872   case Expr::ExprWithCleanupsClass:
13873   case Expr::CXXTemporaryObjectExprClass:
13874   case Expr::CXXUnresolvedConstructExprClass:
13875   case Expr::CXXDependentScopeMemberExprClass:
13876   case Expr::UnresolvedMemberExprClass:
13877   case Expr::ObjCStringLiteralClass:
13878   case Expr::ObjCBoxedExprClass:
13879   case Expr::ObjCArrayLiteralClass:
13880   case Expr::ObjCDictionaryLiteralClass:
13881   case Expr::ObjCEncodeExprClass:
13882   case Expr::ObjCMessageExprClass:
13883   case Expr::ObjCSelectorExprClass:
13884   case Expr::ObjCProtocolExprClass:
13885   case Expr::ObjCIvarRefExprClass:
13886   case Expr::ObjCPropertyRefExprClass:
13887   case Expr::ObjCSubscriptRefExprClass:
13888   case Expr::ObjCIsaExprClass:
13889   case Expr::ObjCAvailabilityCheckExprClass:
13890   case Expr::ShuffleVectorExprClass:
13891   case Expr::ConvertVectorExprClass:
13892   case Expr::BlockExprClass:
13893   case Expr::NoStmtClass:
13894   case Expr::OpaqueValueExprClass:
13895   case Expr::PackExpansionExprClass:
13896   case Expr::SubstNonTypeTemplateParmPackExprClass:
13897   case Expr::FunctionParmPackExprClass:
13898   case Expr::AsTypeExprClass:
13899   case Expr::ObjCIndirectCopyRestoreExprClass:
13900   case Expr::MaterializeTemporaryExprClass:
13901   case Expr::PseudoObjectExprClass:
13902   case Expr::AtomicExprClass:
13903   case Expr::LambdaExprClass:
13904   case Expr::CXXFoldExprClass:
13905   case Expr::CoawaitExprClass:
13906   case Expr::DependentCoawaitExprClass:
13907   case Expr::CoyieldExprClass:
13908     return ICEDiag(IK_NotICE, E->getBeginLoc());
13909 
13910   case Expr::InitListExprClass: {
13911     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
13912     // form "T x = { a };" is equivalent to "T x = a;".
13913     // Unless we're initializing a reference, T is a scalar as it is known to be
13914     // of integral or enumeration type.
13915     if (E->isRValue())
13916       if (cast<InitListExpr>(E)->getNumInits() == 1)
13917         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
13918     return ICEDiag(IK_NotICE, E->getBeginLoc());
13919   }
13920 
13921   case Expr::SizeOfPackExprClass:
13922   case Expr::GNUNullExprClass:
13923   case Expr::SourceLocExprClass:
13924     return NoDiag();
13925 
13926   case Expr::SubstNonTypeTemplateParmExprClass:
13927     return
13928       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
13929 
13930   case Expr::ConstantExprClass:
13931     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
13932 
13933   case Expr::ParenExprClass:
13934     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
13935   case Expr::GenericSelectionExprClass:
13936     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
13937   case Expr::IntegerLiteralClass:
13938   case Expr::FixedPointLiteralClass:
13939   case Expr::CharacterLiteralClass:
13940   case Expr::ObjCBoolLiteralExprClass:
13941   case Expr::CXXBoolLiteralExprClass:
13942   case Expr::CXXScalarValueInitExprClass:
13943   case Expr::TypeTraitExprClass:
13944   case Expr::ConceptSpecializationExprClass:
13945   case Expr::ArrayTypeTraitExprClass:
13946   case Expr::ExpressionTraitExprClass:
13947   case Expr::CXXNoexceptExprClass:
13948     return NoDiag();
13949   case Expr::CallExprClass:
13950   case Expr::CXXOperatorCallExprClass: {
13951     // C99 6.6/3 allows function calls within unevaluated subexpressions of
13952     // constant expressions, but they can never be ICEs because an ICE cannot
13953     // contain an operand of (pointer to) function type.
13954     const CallExpr *CE = cast<CallExpr>(E);
13955     if (CE->getBuiltinCallee())
13956       return CheckEvalInICE(E, Ctx);
13957     return ICEDiag(IK_NotICE, E->getBeginLoc());
13958   }
13959   case Expr::CXXRewrittenBinaryOperatorClass:
13960     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
13961                     Ctx);
13962   case Expr::DeclRefExprClass: {
13963     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
13964       return NoDiag();
13965     const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
13966     if (Ctx.getLangOpts().CPlusPlus &&
13967         D && IsConstNonVolatile(D->getType())) {
13968       // Parameter variables are never constants.  Without this check,
13969       // getAnyInitializer() can find a default argument, which leads
13970       // to chaos.
13971       if (isa<ParmVarDecl>(D))
13972         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
13973 
13974       // C++ 7.1.5.1p2
13975       //   A variable of non-volatile const-qualified integral or enumeration
13976       //   type initialized by an ICE can be used in ICEs.
13977       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
13978         if (!Dcl->getType()->isIntegralOrEnumerationType())
13979           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
13980 
13981         const VarDecl *VD;
13982         // Look for a declaration of this variable that has an initializer, and
13983         // check whether it is an ICE.
13984         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
13985           return NoDiag();
13986         else
13987           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
13988       }
13989     }
13990     return ICEDiag(IK_NotICE, E->getBeginLoc());
13991   }
13992   case Expr::UnaryOperatorClass: {
13993     const UnaryOperator *Exp = cast<UnaryOperator>(E);
13994     switch (Exp->getOpcode()) {
13995     case UO_PostInc:
13996     case UO_PostDec:
13997     case UO_PreInc:
13998     case UO_PreDec:
13999     case UO_AddrOf:
14000     case UO_Deref:
14001     case UO_Coawait:
14002       // C99 6.6/3 allows increment and decrement within unevaluated
14003       // subexpressions of constant expressions, but they can never be ICEs
14004       // because an ICE cannot contain an lvalue operand.
14005       return ICEDiag(IK_NotICE, E->getBeginLoc());
14006     case UO_Extension:
14007     case UO_LNot:
14008     case UO_Plus:
14009     case UO_Minus:
14010     case UO_Not:
14011     case UO_Real:
14012     case UO_Imag:
14013       return CheckICE(Exp->getSubExpr(), Ctx);
14014     }
14015     llvm_unreachable("invalid unary operator class");
14016   }
14017   case Expr::OffsetOfExprClass: {
14018     // Note that per C99, offsetof must be an ICE. And AFAIK, using
14019     // EvaluateAsRValue matches the proposed gcc behavior for cases like
14020     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
14021     // compliance: we should warn earlier for offsetof expressions with
14022     // array subscripts that aren't ICEs, and if the array subscripts
14023     // are ICEs, the value of the offsetof must be an integer constant.
14024     return CheckEvalInICE(E, Ctx);
14025   }
14026   case Expr::UnaryExprOrTypeTraitExprClass: {
14027     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
14028     if ((Exp->getKind() ==  UETT_SizeOf) &&
14029         Exp->getTypeOfArgument()->isVariableArrayType())
14030       return ICEDiag(IK_NotICE, E->getBeginLoc());
14031     return NoDiag();
14032   }
14033   case Expr::BinaryOperatorClass: {
14034     const BinaryOperator *Exp = cast<BinaryOperator>(E);
14035     switch (Exp->getOpcode()) {
14036     case BO_PtrMemD:
14037     case BO_PtrMemI:
14038     case BO_Assign:
14039     case BO_MulAssign:
14040     case BO_DivAssign:
14041     case BO_RemAssign:
14042     case BO_AddAssign:
14043     case BO_SubAssign:
14044     case BO_ShlAssign:
14045     case BO_ShrAssign:
14046     case BO_AndAssign:
14047     case BO_XorAssign:
14048     case BO_OrAssign:
14049       // C99 6.6/3 allows assignments within unevaluated subexpressions of
14050       // constant expressions, but they can never be ICEs because an ICE cannot
14051       // contain an lvalue operand.
14052       return ICEDiag(IK_NotICE, E->getBeginLoc());
14053 
14054     case BO_Mul:
14055     case BO_Div:
14056     case BO_Rem:
14057     case BO_Add:
14058     case BO_Sub:
14059     case BO_Shl:
14060     case BO_Shr:
14061     case BO_LT:
14062     case BO_GT:
14063     case BO_LE:
14064     case BO_GE:
14065     case BO_EQ:
14066     case BO_NE:
14067     case BO_And:
14068     case BO_Xor:
14069     case BO_Or:
14070     case BO_Comma:
14071     case BO_Cmp: {
14072       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
14073       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
14074       if (Exp->getOpcode() == BO_Div ||
14075           Exp->getOpcode() == BO_Rem) {
14076         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
14077         // we don't evaluate one.
14078         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
14079           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
14080           if (REval == 0)
14081             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14082           if (REval.isSigned() && REval.isAllOnesValue()) {
14083             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
14084             if (LEval.isMinSignedValue())
14085               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14086           }
14087         }
14088       }
14089       if (Exp->getOpcode() == BO_Comma) {
14090         if (Ctx.getLangOpts().C99) {
14091           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
14092           // if it isn't evaluated.
14093           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
14094             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14095         } else {
14096           // In both C89 and C++, commas in ICEs are illegal.
14097           return ICEDiag(IK_NotICE, E->getBeginLoc());
14098         }
14099       }
14100       return Worst(LHSResult, RHSResult);
14101     }
14102     case BO_LAnd:
14103     case BO_LOr: {
14104       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
14105       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
14106       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
14107         // Rare case where the RHS has a comma "side-effect"; we need
14108         // to actually check the condition to see whether the side
14109         // with the comma is evaluated.
14110         if ((Exp->getOpcode() == BO_LAnd) !=
14111             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
14112           return RHSResult;
14113         return NoDiag();
14114       }
14115 
14116       return Worst(LHSResult, RHSResult);
14117     }
14118     }
14119     llvm_unreachable("invalid binary operator kind");
14120   }
14121   case Expr::ImplicitCastExprClass:
14122   case Expr::CStyleCastExprClass:
14123   case Expr::CXXFunctionalCastExprClass:
14124   case Expr::CXXStaticCastExprClass:
14125   case Expr::CXXReinterpretCastExprClass:
14126   case Expr::CXXConstCastExprClass:
14127   case Expr::ObjCBridgedCastExprClass: {
14128     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
14129     if (isa<ExplicitCastExpr>(E)) {
14130       if (const FloatingLiteral *FL
14131             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
14132         unsigned DestWidth = Ctx.getIntWidth(E->getType());
14133         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
14134         APSInt IgnoredVal(DestWidth, !DestSigned);
14135         bool Ignored;
14136         // If the value does not fit in the destination type, the behavior is
14137         // undefined, so we are not required to treat it as a constant
14138         // expression.
14139         if (FL->getValue().convertToInteger(IgnoredVal,
14140                                             llvm::APFloat::rmTowardZero,
14141                                             &Ignored) & APFloat::opInvalidOp)
14142           return ICEDiag(IK_NotICE, E->getBeginLoc());
14143         return NoDiag();
14144       }
14145     }
14146     switch (cast<CastExpr>(E)->getCastKind()) {
14147     case CK_LValueToRValue:
14148     case CK_AtomicToNonAtomic:
14149     case CK_NonAtomicToAtomic:
14150     case CK_NoOp:
14151     case CK_IntegralToBoolean:
14152     case CK_IntegralCast:
14153       return CheckICE(SubExpr, Ctx);
14154     default:
14155       return ICEDiag(IK_NotICE, E->getBeginLoc());
14156     }
14157   }
14158   case Expr::BinaryConditionalOperatorClass: {
14159     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
14160     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
14161     if (CommonResult.Kind == IK_NotICE) return CommonResult;
14162     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
14163     if (FalseResult.Kind == IK_NotICE) return FalseResult;
14164     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
14165     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
14166         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
14167     return FalseResult;
14168   }
14169   case Expr::ConditionalOperatorClass: {
14170     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
14171     // If the condition (ignoring parens) is a __builtin_constant_p call,
14172     // then only the true side is actually considered in an integer constant
14173     // expression, and it is fully evaluated.  This is an important GNU
14174     // extension.  See GCC PR38377 for discussion.
14175     if (const CallExpr *CallCE
14176         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
14177       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
14178         return CheckEvalInICE(E, Ctx);
14179     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
14180     if (CondResult.Kind == IK_NotICE)
14181       return CondResult;
14182 
14183     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
14184     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
14185 
14186     if (TrueResult.Kind == IK_NotICE)
14187       return TrueResult;
14188     if (FalseResult.Kind == IK_NotICE)
14189       return FalseResult;
14190     if (CondResult.Kind == IK_ICEIfUnevaluated)
14191       return CondResult;
14192     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
14193       return NoDiag();
14194     // Rare case where the diagnostics depend on which side is evaluated
14195     // Note that if we get here, CondResult is 0, and at least one of
14196     // TrueResult and FalseResult is non-zero.
14197     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
14198       return FalseResult;
14199     return TrueResult;
14200   }
14201   case Expr::CXXDefaultArgExprClass:
14202     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
14203   case Expr::CXXDefaultInitExprClass:
14204     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
14205   case Expr::ChooseExprClass: {
14206     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
14207   }
14208   case Expr::BuiltinBitCastExprClass: {
14209     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
14210       return ICEDiag(IK_NotICE, E->getBeginLoc());
14211     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
14212   }
14213   }
14214 
14215   llvm_unreachable("Invalid StmtClass!");
14216 }
14217 
14218 /// Evaluate an expression as a C++11 integral constant expression.
14219 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
14220                                                     const Expr *E,
14221                                                     llvm::APSInt *Value,
14222                                                     SourceLocation *Loc) {
14223   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
14224     if (Loc) *Loc = E->getExprLoc();
14225     return false;
14226   }
14227 
14228   APValue Result;
14229   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
14230     return false;
14231 
14232   if (!Result.isInt()) {
14233     if (Loc) *Loc = E->getExprLoc();
14234     return false;
14235   }
14236 
14237   if (Value) *Value = Result.getInt();
14238   return true;
14239 }
14240 
14241 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
14242                                  SourceLocation *Loc) const {
14243   assert(!isValueDependent() &&
14244          "Expression evaluator can't be called on a dependent expression.");
14245 
14246   if (Ctx.getLangOpts().CPlusPlus11)
14247     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
14248 
14249   ICEDiag D = CheckICE(this, Ctx);
14250   if (D.Kind != IK_ICE) {
14251     if (Loc) *Loc = D.Loc;
14252     return false;
14253   }
14254   return true;
14255 }
14256 
14257 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
14258                                  SourceLocation *Loc, bool isEvaluated) const {
14259   assert(!isValueDependent() &&
14260          "Expression evaluator can't be called on a dependent expression.");
14261 
14262   if (Ctx.getLangOpts().CPlusPlus11)
14263     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
14264 
14265   if (!isIntegerConstantExpr(Ctx, Loc))
14266     return false;
14267 
14268   // The only possible side-effects here are due to UB discovered in the
14269   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
14270   // required to treat the expression as an ICE, so we produce the folded
14271   // value.
14272   EvalResult ExprResult;
14273   Expr::EvalStatus Status;
14274   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
14275   Info.InConstantContext = true;
14276 
14277   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
14278     llvm_unreachable("ICE cannot be evaluated!");
14279 
14280   Value = ExprResult.Val.getInt();
14281   return true;
14282 }
14283 
14284 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
14285   assert(!isValueDependent() &&
14286          "Expression evaluator can't be called on a dependent expression.");
14287 
14288   return CheckICE(this, Ctx).Kind == IK_ICE;
14289 }
14290 
14291 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
14292                                SourceLocation *Loc) const {
14293   assert(!isValueDependent() &&
14294          "Expression evaluator can't be called on a dependent expression.");
14295 
14296   // We support this checking in C++98 mode in order to diagnose compatibility
14297   // issues.
14298   assert(Ctx.getLangOpts().CPlusPlus);
14299 
14300   // Build evaluation settings.
14301   Expr::EvalStatus Status;
14302   SmallVector<PartialDiagnosticAt, 8> Diags;
14303   Status.Diag = &Diags;
14304   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
14305 
14306   APValue Scratch;
14307   bool IsConstExpr =
14308       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
14309       // FIXME: We don't produce a diagnostic for this, but the callers that
14310       // call us on arbitrary full-expressions should generally not care.
14311       Info.discardCleanups() && !Status.HasSideEffects;
14312 
14313   if (!Diags.empty()) {
14314     IsConstExpr = false;
14315     if (Loc) *Loc = Diags[0].first;
14316   } else if (!IsConstExpr) {
14317     // FIXME: This shouldn't happen.
14318     if (Loc) *Loc = getExprLoc();
14319   }
14320 
14321   return IsConstExpr;
14322 }
14323 
14324 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
14325                                     const FunctionDecl *Callee,
14326                                     ArrayRef<const Expr*> Args,
14327                                     const Expr *This) const {
14328   assert(!isValueDependent() &&
14329          "Expression evaluator can't be called on a dependent expression.");
14330 
14331   Expr::EvalStatus Status;
14332   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
14333   Info.InConstantContext = true;
14334 
14335   LValue ThisVal;
14336   const LValue *ThisPtr = nullptr;
14337   if (This) {
14338 #ifndef NDEBUG
14339     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
14340     assert(MD && "Don't provide `this` for non-methods.");
14341     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
14342 #endif
14343     if (EvaluateObjectArgument(Info, This, ThisVal))
14344       ThisPtr = &ThisVal;
14345     if (Info.EvalStatus.HasSideEffects)
14346       return false;
14347   }
14348 
14349   ArgVector ArgValues(Args.size());
14350   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
14351        I != E; ++I) {
14352     if ((*I)->isValueDependent() ||
14353         !Evaluate(ArgValues[I - Args.begin()], Info, *I))
14354       // If evaluation fails, throw away the argument entirely.
14355       ArgValues[I - Args.begin()] = APValue();
14356     if (Info.EvalStatus.HasSideEffects)
14357       return false;
14358   }
14359 
14360   // Build fake call to Callee.
14361   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
14362                        ArgValues.data());
14363   return Evaluate(Value, Info, this) && Info.discardCleanups() &&
14364          !Info.EvalStatus.HasSideEffects;
14365 }
14366 
14367 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
14368                                    SmallVectorImpl<
14369                                      PartialDiagnosticAt> &Diags) {
14370   // FIXME: It would be useful to check constexpr function templates, but at the
14371   // moment the constant expression evaluator cannot cope with the non-rigorous
14372   // ASTs which we build for dependent expressions.
14373   if (FD->isDependentContext())
14374     return true;
14375 
14376   Expr::EvalStatus Status;
14377   Status.Diag = &Diags;
14378 
14379   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
14380   Info.InConstantContext = true;
14381   Info.CheckingPotentialConstantExpression = true;
14382 
14383   // The constexpr VM attempts to compile all methods to bytecode here.
14384   if (Info.EnableNewConstInterp) {
14385     auto &InterpCtx = Info.Ctx.getInterpContext();
14386     switch (InterpCtx.isPotentialConstantExpr(Info, FD)) {
14387     case interp::InterpResult::Success:
14388     case interp::InterpResult::Fail:
14389       return Diags.empty();
14390     case interp::InterpResult::Bail:
14391       break;
14392     }
14393   }
14394 
14395   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
14396   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
14397 
14398   // Fabricate an arbitrary expression on the stack and pretend that it
14399   // is a temporary being used as the 'this' pointer.
14400   LValue This;
14401   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
14402   This.set({&VIE, Info.CurrentCall->Index});
14403 
14404   ArrayRef<const Expr*> Args;
14405 
14406   APValue Scratch;
14407   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
14408     // Evaluate the call as a constant initializer, to allow the construction
14409     // of objects of non-literal types.
14410     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
14411     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
14412   } else {
14413     SourceLocation Loc = FD->getLocation();
14414     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
14415                        Args, FD->getBody(), Info, Scratch, nullptr);
14416   }
14417 
14418   return Diags.empty();
14419 }
14420 
14421 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
14422                                               const FunctionDecl *FD,
14423                                               SmallVectorImpl<
14424                                                 PartialDiagnosticAt> &Diags) {
14425   assert(!E->isValueDependent() &&
14426          "Expression evaluator can't be called on a dependent expression.");
14427 
14428   Expr::EvalStatus Status;
14429   Status.Diag = &Diags;
14430 
14431   EvalInfo Info(FD->getASTContext(), Status,
14432                 EvalInfo::EM_ConstantExpressionUnevaluated);
14433   Info.InConstantContext = true;
14434   Info.CheckingPotentialConstantExpression = true;
14435 
14436   // Fabricate a call stack frame to give the arguments a plausible cover story.
14437   ArrayRef<const Expr*> Args;
14438   ArgVector ArgValues(0);
14439   bool Success = EvaluateArgs(Args, ArgValues, Info, FD);
14440   (void)Success;
14441   assert(Success &&
14442          "Failed to set up arguments for potential constant evaluation");
14443   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
14444 
14445   APValue ResultScratch;
14446   Evaluate(ResultScratch, Info, E);
14447   return Diags.empty();
14448 }
14449 
14450 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
14451                                  unsigned Type) const {
14452   if (!getType()->isPointerType())
14453     return false;
14454 
14455   Expr::EvalStatus Status;
14456   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
14457   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
14458 }
14459