1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr constant evaluator. 10 // 11 // Constant expression evaluation produces four main results: 12 // 13 // * A success/failure flag indicating whether constant folding was successful. 14 // This is the 'bool' return value used by most of the code in this file. A 15 // 'false' return value indicates that constant folding has failed, and any 16 // appropriate diagnostic has already been produced. 17 // 18 // * An evaluated result, valid only if constant folding has not failed. 19 // 20 // * A flag indicating if evaluation encountered (unevaluated) side-effects. 21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), 22 // where it is possible to determine the evaluated result regardless. 23 // 24 // * A set of notes indicating why the evaluation was not a constant expression 25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed 26 // too, why the expression could not be folded. 27 // 28 // If we are checking for a potential constant expression, failure to constant 29 // fold a potential constant sub-expression will be indicated by a 'false' 30 // return value (the expression could not be folded) and no diagnostic (the 31 // expression is not necessarily non-constant). 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include <cstring> 36 #include <functional> 37 #include "Interp/Context.h" 38 #include "Interp/Frame.h" 39 #include "Interp/State.h" 40 #include "clang/AST/APValue.h" 41 #include "clang/AST/ASTContext.h" 42 #include "clang/AST/ASTDiagnostic.h" 43 #include "clang/AST/ASTLambda.h" 44 #include "clang/AST/CXXInheritance.h" 45 #include "clang/AST/CharUnits.h" 46 #include "clang/AST/CurrentSourceLocExprScope.h" 47 #include "clang/AST/Expr.h" 48 #include "clang/AST/OSLog.h" 49 #include "clang/AST/OptionalDiagnostic.h" 50 #include "clang/AST/RecordLayout.h" 51 #include "clang/AST/StmtVisitor.h" 52 #include "clang/AST/TypeLoc.h" 53 #include "clang/Basic/Builtins.h" 54 #include "clang/Basic/FixedPoint.h" 55 #include "clang/Basic/TargetInfo.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/SmallBitVector.h" 58 #include "llvm/Support/SaveAndRestore.h" 59 #include "llvm/Support/raw_ostream.h" 60 61 #define DEBUG_TYPE "exprconstant" 62 63 using namespace clang; 64 using llvm::APInt; 65 using llvm::APSInt; 66 using llvm::APFloat; 67 using llvm::Optional; 68 69 namespace { 70 struct LValue; 71 class CallStackFrame; 72 class EvalInfo; 73 74 using SourceLocExprScopeGuard = 75 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 76 77 static QualType getType(APValue::LValueBase B) { 78 if (!B) return QualType(); 79 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 80 // FIXME: It's unclear where we're supposed to take the type from, and 81 // this actually matters for arrays of unknown bound. Eg: 82 // 83 // extern int arr[]; void f() { extern int arr[3]; }; 84 // constexpr int *p = &arr[1]; // valid? 85 // 86 // For now, we take the array bound from the most recent declaration. 87 for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl; 88 Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) { 89 QualType T = Redecl->getType(); 90 if (!T->isIncompleteArrayType()) 91 return T; 92 } 93 return D->getType(); 94 } 95 96 if (B.is<TypeInfoLValue>()) 97 return B.getTypeInfoType(); 98 99 if (B.is<DynamicAllocLValue>()) 100 return B.getDynamicAllocType(); 101 102 const Expr *Base = B.get<const Expr*>(); 103 104 // For a materialized temporary, the type of the temporary we materialized 105 // may not be the type of the expression. 106 if (const MaterializeTemporaryExpr *MTE = 107 dyn_cast<MaterializeTemporaryExpr>(Base)) { 108 SmallVector<const Expr *, 2> CommaLHSs; 109 SmallVector<SubobjectAdjustment, 2> Adjustments; 110 const Expr *Temp = MTE->GetTemporaryExpr(); 111 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs, 112 Adjustments); 113 // Keep any cv-qualifiers from the reference if we generated a temporary 114 // for it directly. Otherwise use the type after adjustment. 115 if (!Adjustments.empty()) 116 return Inner->getType(); 117 } 118 119 return Base->getType(); 120 } 121 122 /// Get an LValue path entry, which is known to not be an array index, as a 123 /// field declaration. 124 static const FieldDecl *getAsField(APValue::LValuePathEntry E) { 125 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); 126 } 127 /// Get an LValue path entry, which is known to not be an array index, as a 128 /// base class declaration. 129 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { 130 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); 131 } 132 /// Determine whether this LValue path entry for a base class names a virtual 133 /// base class. 134 static bool isVirtualBaseClass(APValue::LValuePathEntry E) { 135 return E.getAsBaseOrMember().getInt(); 136 } 137 138 /// Given an expression, determine the type used to store the result of 139 /// evaluating that expression. 140 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { 141 if (E->isRValue()) 142 return E->getType(); 143 return Ctx.getLValueReferenceType(E->getType()); 144 } 145 146 /// Given a CallExpr, try to get the alloc_size attribute. May return null. 147 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { 148 const FunctionDecl *Callee = CE->getDirectCallee(); 149 return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr; 150 } 151 152 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. 153 /// This will look through a single cast. 154 /// 155 /// Returns null if we couldn't unwrap a function with alloc_size. 156 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { 157 if (!E->getType()->isPointerType()) 158 return nullptr; 159 160 E = E->IgnoreParens(); 161 // If we're doing a variable assignment from e.g. malloc(N), there will 162 // probably be a cast of some kind. In exotic cases, we might also see a 163 // top-level ExprWithCleanups. Ignore them either way. 164 if (const auto *FE = dyn_cast<FullExpr>(E)) 165 E = FE->getSubExpr()->IgnoreParens(); 166 167 if (const auto *Cast = dyn_cast<CastExpr>(E)) 168 E = Cast->getSubExpr()->IgnoreParens(); 169 170 if (const auto *CE = dyn_cast<CallExpr>(E)) 171 return getAllocSizeAttr(CE) ? CE : nullptr; 172 return nullptr; 173 } 174 175 /// Determines whether or not the given Base contains a call to a function 176 /// with the alloc_size attribute. 177 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { 178 const auto *E = Base.dyn_cast<const Expr *>(); 179 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); 180 } 181 182 /// The bound to claim that an array of unknown bound has. 183 /// The value in MostDerivedArraySize is undefined in this case. So, set it 184 /// to an arbitrary value that's likely to loudly break things if it's used. 185 static const uint64_t AssumedSizeForUnsizedArray = 186 std::numeric_limits<uint64_t>::max() / 2; 187 188 /// Determines if an LValue with the given LValueBase will have an unsized 189 /// array in its designator. 190 /// Find the path length and type of the most-derived subobject in the given 191 /// path, and find the size of the containing array, if any. 192 static unsigned 193 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, 194 ArrayRef<APValue::LValuePathEntry> Path, 195 uint64_t &ArraySize, QualType &Type, bool &IsArray, 196 bool &FirstEntryIsUnsizedArray) { 197 // This only accepts LValueBases from APValues, and APValues don't support 198 // arrays that lack size info. 199 assert(!isBaseAnAllocSizeCall(Base) && 200 "Unsized arrays shouldn't appear here"); 201 unsigned MostDerivedLength = 0; 202 Type = getType(Base); 203 204 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 205 if (Type->isArrayType()) { 206 const ArrayType *AT = Ctx.getAsArrayType(Type); 207 Type = AT->getElementType(); 208 MostDerivedLength = I + 1; 209 IsArray = true; 210 211 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 212 ArraySize = CAT->getSize().getZExtValue(); 213 } else { 214 assert(I == 0 && "unexpected unsized array designator"); 215 FirstEntryIsUnsizedArray = true; 216 ArraySize = AssumedSizeForUnsizedArray; 217 } 218 } else if (Type->isAnyComplexType()) { 219 const ComplexType *CT = Type->castAs<ComplexType>(); 220 Type = CT->getElementType(); 221 ArraySize = 2; 222 MostDerivedLength = I + 1; 223 IsArray = true; 224 } else if (const FieldDecl *FD = getAsField(Path[I])) { 225 Type = FD->getType(); 226 ArraySize = 0; 227 MostDerivedLength = I + 1; 228 IsArray = false; 229 } else { 230 // Path[I] describes a base class. 231 ArraySize = 0; 232 IsArray = false; 233 } 234 } 235 return MostDerivedLength; 236 } 237 238 /// A path from a glvalue to a subobject of that glvalue. 239 struct SubobjectDesignator { 240 /// True if the subobject was named in a manner not supported by C++11. Such 241 /// lvalues can still be folded, but they are not core constant expressions 242 /// and we cannot perform lvalue-to-rvalue conversions on them. 243 unsigned Invalid : 1; 244 245 /// Is this a pointer one past the end of an object? 246 unsigned IsOnePastTheEnd : 1; 247 248 /// Indicator of whether the first entry is an unsized array. 249 unsigned FirstEntryIsAnUnsizedArray : 1; 250 251 /// Indicator of whether the most-derived object is an array element. 252 unsigned MostDerivedIsArrayElement : 1; 253 254 /// The length of the path to the most-derived object of which this is a 255 /// subobject. 256 unsigned MostDerivedPathLength : 28; 257 258 /// The size of the array of which the most-derived object is an element. 259 /// This will always be 0 if the most-derived object is not an array 260 /// element. 0 is not an indicator of whether or not the most-derived object 261 /// is an array, however, because 0-length arrays are allowed. 262 /// 263 /// If the current array is an unsized array, the value of this is 264 /// undefined. 265 uint64_t MostDerivedArraySize; 266 267 /// The type of the most derived object referred to by this address. 268 QualType MostDerivedType; 269 270 typedef APValue::LValuePathEntry PathEntry; 271 272 /// The entries on the path from the glvalue to the designated subobject. 273 SmallVector<PathEntry, 8> Entries; 274 275 SubobjectDesignator() : Invalid(true) {} 276 277 explicit SubobjectDesignator(QualType T) 278 : Invalid(false), IsOnePastTheEnd(false), 279 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 280 MostDerivedPathLength(0), MostDerivedArraySize(0), 281 MostDerivedType(T) {} 282 283 SubobjectDesignator(ASTContext &Ctx, const APValue &V) 284 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), 285 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 286 MostDerivedPathLength(0), MostDerivedArraySize(0) { 287 assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); 288 if (!Invalid) { 289 IsOnePastTheEnd = V.isLValueOnePastTheEnd(); 290 ArrayRef<PathEntry> VEntries = V.getLValuePath(); 291 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); 292 if (V.getLValueBase()) { 293 bool IsArray = false; 294 bool FirstIsUnsizedArray = false; 295 MostDerivedPathLength = findMostDerivedSubobject( 296 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, 297 MostDerivedType, IsArray, FirstIsUnsizedArray); 298 MostDerivedIsArrayElement = IsArray; 299 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 300 } 301 } 302 } 303 304 void truncate(ASTContext &Ctx, APValue::LValueBase Base, 305 unsigned NewLength) { 306 if (Invalid) 307 return; 308 309 assert(Base && "cannot truncate path for null pointer"); 310 assert(NewLength <= Entries.size() && "not a truncation"); 311 312 if (NewLength == Entries.size()) 313 return; 314 Entries.resize(NewLength); 315 316 bool IsArray = false; 317 bool FirstIsUnsizedArray = false; 318 MostDerivedPathLength = findMostDerivedSubobject( 319 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, 320 FirstIsUnsizedArray); 321 MostDerivedIsArrayElement = IsArray; 322 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 323 } 324 325 void setInvalid() { 326 Invalid = true; 327 Entries.clear(); 328 } 329 330 /// Determine whether the most derived subobject is an array without a 331 /// known bound. 332 bool isMostDerivedAnUnsizedArray() const { 333 assert(!Invalid && "Calling this makes no sense on invalid designators"); 334 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; 335 } 336 337 /// Determine what the most derived array's size is. Results in an assertion 338 /// failure if the most derived array lacks a size. 339 uint64_t getMostDerivedArraySize() const { 340 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); 341 return MostDerivedArraySize; 342 } 343 344 /// Determine whether this is a one-past-the-end pointer. 345 bool isOnePastTheEnd() const { 346 assert(!Invalid); 347 if (IsOnePastTheEnd) 348 return true; 349 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && 350 Entries[MostDerivedPathLength - 1].getAsArrayIndex() == 351 MostDerivedArraySize) 352 return true; 353 return false; 354 } 355 356 /// Get the range of valid index adjustments in the form 357 /// {maximum value that can be subtracted from this pointer, 358 /// maximum value that can be added to this pointer} 359 std::pair<uint64_t, uint64_t> validIndexAdjustments() { 360 if (Invalid || isMostDerivedAnUnsizedArray()) 361 return {0, 0}; 362 363 // [expr.add]p4: For the purposes of these operators, a pointer to a 364 // nonarray object behaves the same as a pointer to the first element of 365 // an array of length one with the type of the object as its element type. 366 bool IsArray = MostDerivedPathLength == Entries.size() && 367 MostDerivedIsArrayElement; 368 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 369 : (uint64_t)IsOnePastTheEnd; 370 uint64_t ArraySize = 371 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 372 return {ArrayIndex, ArraySize - ArrayIndex}; 373 } 374 375 /// Check that this refers to a valid subobject. 376 bool isValidSubobject() const { 377 if (Invalid) 378 return false; 379 return !isOnePastTheEnd(); 380 } 381 /// Check that this refers to a valid subobject, and if not, produce a 382 /// relevant diagnostic and set the designator as invalid. 383 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); 384 385 /// Get the type of the designated object. 386 QualType getType(ASTContext &Ctx) const { 387 assert(!Invalid && "invalid designator has no subobject type"); 388 return MostDerivedPathLength == Entries.size() 389 ? MostDerivedType 390 : Ctx.getRecordType(getAsBaseClass(Entries.back())); 391 } 392 393 /// Update this designator to refer to the first element within this array. 394 void addArrayUnchecked(const ConstantArrayType *CAT) { 395 Entries.push_back(PathEntry::ArrayIndex(0)); 396 397 // This is a most-derived object. 398 MostDerivedType = CAT->getElementType(); 399 MostDerivedIsArrayElement = true; 400 MostDerivedArraySize = CAT->getSize().getZExtValue(); 401 MostDerivedPathLength = Entries.size(); 402 } 403 /// Update this designator to refer to the first element within the array of 404 /// elements of type T. This is an array of unknown size. 405 void addUnsizedArrayUnchecked(QualType ElemTy) { 406 Entries.push_back(PathEntry::ArrayIndex(0)); 407 408 MostDerivedType = ElemTy; 409 MostDerivedIsArrayElement = true; 410 // The value in MostDerivedArraySize is undefined in this case. So, set it 411 // to an arbitrary value that's likely to loudly break things if it's 412 // used. 413 MostDerivedArraySize = AssumedSizeForUnsizedArray; 414 MostDerivedPathLength = Entries.size(); 415 } 416 /// Update this designator to refer to the given base or member of this 417 /// object. 418 void addDeclUnchecked(const Decl *D, bool Virtual = false) { 419 Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); 420 421 // If this isn't a base class, it's a new most-derived object. 422 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 423 MostDerivedType = FD->getType(); 424 MostDerivedIsArrayElement = false; 425 MostDerivedArraySize = 0; 426 MostDerivedPathLength = Entries.size(); 427 } 428 } 429 /// Update this designator to refer to the given complex component. 430 void addComplexUnchecked(QualType EltTy, bool Imag) { 431 Entries.push_back(PathEntry::ArrayIndex(Imag)); 432 433 // This is technically a most-derived object, though in practice this 434 // is unlikely to matter. 435 MostDerivedType = EltTy; 436 MostDerivedIsArrayElement = true; 437 MostDerivedArraySize = 2; 438 MostDerivedPathLength = Entries.size(); 439 } 440 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); 441 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, 442 const APSInt &N); 443 /// Add N to the address of this subobject. 444 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { 445 if (Invalid || !N) return; 446 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); 447 if (isMostDerivedAnUnsizedArray()) { 448 diagnoseUnsizedArrayPointerArithmetic(Info, E); 449 // Can't verify -- trust that the user is doing the right thing (or if 450 // not, trust that the caller will catch the bad behavior). 451 // FIXME: Should we reject if this overflows, at least? 452 Entries.back() = PathEntry::ArrayIndex( 453 Entries.back().getAsArrayIndex() + TruncatedN); 454 return; 455 } 456 457 // [expr.add]p4: For the purposes of these operators, a pointer to a 458 // nonarray object behaves the same as a pointer to the first element of 459 // an array of length one with the type of the object as its element type. 460 bool IsArray = MostDerivedPathLength == Entries.size() && 461 MostDerivedIsArrayElement; 462 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 463 : (uint64_t)IsOnePastTheEnd; 464 uint64_t ArraySize = 465 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 466 467 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { 468 // Calculate the actual index in a wide enough type, so we can include 469 // it in the note. 470 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); 471 (llvm::APInt&)N += ArrayIndex; 472 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); 473 diagnosePointerArithmetic(Info, E, N); 474 setInvalid(); 475 return; 476 } 477 478 ArrayIndex += TruncatedN; 479 assert(ArrayIndex <= ArraySize && 480 "bounds check succeeded for out-of-bounds index"); 481 482 if (IsArray) 483 Entries.back() = PathEntry::ArrayIndex(ArrayIndex); 484 else 485 IsOnePastTheEnd = (ArrayIndex != 0); 486 } 487 }; 488 489 /// A stack frame in the constexpr call stack. 490 class CallStackFrame : public interp::Frame { 491 public: 492 EvalInfo &Info; 493 494 /// Parent - The caller of this stack frame. 495 CallStackFrame *Caller; 496 497 /// Callee - The function which was called. 498 const FunctionDecl *Callee; 499 500 /// This - The binding for the this pointer in this call, if any. 501 const LValue *This; 502 503 /// Arguments - Parameter bindings for this function call, indexed by 504 /// parameters' function scope indices. 505 APValue *Arguments; 506 507 /// Source location information about the default argument or default 508 /// initializer expression we're evaluating, if any. 509 CurrentSourceLocExprScope CurSourceLocExprScope; 510 511 // Note that we intentionally use std::map here so that references to 512 // values are stable. 513 typedef std::pair<const void *, unsigned> MapKeyTy; 514 typedef std::map<MapKeyTy, APValue> MapTy; 515 /// Temporaries - Temporary lvalues materialized within this stack frame. 516 MapTy Temporaries; 517 518 /// CallLoc - The location of the call expression for this call. 519 SourceLocation CallLoc; 520 521 /// Index - The call index of this call. 522 unsigned Index; 523 524 /// The stack of integers for tracking version numbers for temporaries. 525 SmallVector<unsigned, 2> TempVersionStack = {1}; 526 unsigned CurTempVersion = TempVersionStack.back(); 527 528 unsigned getTempVersion() const { return TempVersionStack.back(); } 529 530 void pushTempVersion() { 531 TempVersionStack.push_back(++CurTempVersion); 532 } 533 534 void popTempVersion() { 535 TempVersionStack.pop_back(); 536 } 537 538 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact 539 // on the overall stack usage of deeply-recursing constexpr evaluations. 540 // (We should cache this map rather than recomputing it repeatedly.) 541 // But let's try this and see how it goes; we can look into caching the map 542 // as a later change. 543 544 /// LambdaCaptureFields - Mapping from captured variables/this to 545 /// corresponding data members in the closure class. 546 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 547 FieldDecl *LambdaThisCaptureField; 548 549 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 550 const FunctionDecl *Callee, const LValue *This, 551 APValue *Arguments); 552 ~CallStackFrame(); 553 554 // Return the temporary for Key whose version number is Version. 555 APValue *getTemporary(const void *Key, unsigned Version) { 556 MapKeyTy KV(Key, Version); 557 auto LB = Temporaries.lower_bound(KV); 558 if (LB != Temporaries.end() && LB->first == KV) 559 return &LB->second; 560 // Pair (Key,Version) wasn't found in the map. Check that no elements 561 // in the map have 'Key' as their key. 562 assert((LB == Temporaries.end() || LB->first.first != Key) && 563 (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && 564 "Element with key 'Key' found in map"); 565 return nullptr; 566 } 567 568 // Return the current temporary for Key in the map. 569 APValue *getCurrentTemporary(const void *Key) { 570 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 571 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 572 return &std::prev(UB)->second; 573 return nullptr; 574 } 575 576 // Return the version number of the current temporary for Key. 577 unsigned getCurrentTemporaryVersion(const void *Key) const { 578 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 579 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 580 return std::prev(UB)->first.second; 581 return 0; 582 } 583 584 /// Allocate storage for an object of type T in this stack frame. 585 /// Populates LV with a handle to the created object. Key identifies 586 /// the temporary within the stack frame, and must not be reused without 587 /// bumping the temporary version number. 588 template<typename KeyT> 589 APValue &createTemporary(const KeyT *Key, QualType T, 590 bool IsLifetimeExtended, LValue &LV); 591 592 void describe(llvm::raw_ostream &OS) override; 593 594 Frame *getCaller() const override { return Caller; } 595 SourceLocation getCallLocation() const override { return CallLoc; } 596 const FunctionDecl *getCallee() const override { return Callee; } 597 598 bool isStdFunction() const { 599 for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) 600 if (DC->isStdNamespace()) 601 return true; 602 return false; 603 } 604 }; 605 606 /// Temporarily override 'this'. 607 class ThisOverrideRAII { 608 public: 609 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) 610 : Frame(Frame), OldThis(Frame.This) { 611 if (Enable) 612 Frame.This = NewThis; 613 } 614 ~ThisOverrideRAII() { 615 Frame.This = OldThis; 616 } 617 private: 618 CallStackFrame &Frame; 619 const LValue *OldThis; 620 }; 621 } 622 623 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 624 const LValue &This, QualType ThisType); 625 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 626 APValue::LValueBase LVBase, APValue &Value, 627 QualType T); 628 629 namespace { 630 /// A cleanup, and a flag indicating whether it is lifetime-extended. 631 class Cleanup { 632 llvm::PointerIntPair<APValue*, 1, bool> Value; 633 APValue::LValueBase Base; 634 QualType T; 635 636 public: 637 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, 638 bool IsLifetimeExtended) 639 : Value(Val, IsLifetimeExtended), Base(Base), T(T) {} 640 641 bool isLifetimeExtended() const { return Value.getInt(); } 642 bool endLifetime(EvalInfo &Info, bool RunDestructors) { 643 if (RunDestructors) { 644 SourceLocation Loc; 645 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) 646 Loc = VD->getLocation(); 647 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 648 Loc = E->getExprLoc(); 649 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); 650 } 651 *Value.getPointer() = APValue(); 652 return true; 653 } 654 655 bool hasSideEffect() { 656 return T.isDestructedType(); 657 } 658 }; 659 660 /// A reference to an object whose construction we are currently evaluating. 661 struct ObjectUnderConstruction { 662 APValue::LValueBase Base; 663 ArrayRef<APValue::LValuePathEntry> Path; 664 friend bool operator==(const ObjectUnderConstruction &LHS, 665 const ObjectUnderConstruction &RHS) { 666 return LHS.Base == RHS.Base && LHS.Path == RHS.Path; 667 } 668 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { 669 return llvm::hash_combine(Obj.Base, Obj.Path); 670 } 671 }; 672 enum class ConstructionPhase { 673 None, 674 Bases, 675 AfterBases, 676 Destroying, 677 DestroyingBases 678 }; 679 } 680 681 namespace llvm { 682 template<> struct DenseMapInfo<ObjectUnderConstruction> { 683 using Base = DenseMapInfo<APValue::LValueBase>; 684 static ObjectUnderConstruction getEmptyKey() { 685 return {Base::getEmptyKey(), {}}; } 686 static ObjectUnderConstruction getTombstoneKey() { 687 return {Base::getTombstoneKey(), {}}; 688 } 689 static unsigned getHashValue(const ObjectUnderConstruction &Object) { 690 return hash_value(Object); 691 } 692 static bool isEqual(const ObjectUnderConstruction &LHS, 693 const ObjectUnderConstruction &RHS) { 694 return LHS == RHS; 695 } 696 }; 697 } 698 699 namespace { 700 /// A dynamically-allocated heap object. 701 struct DynAlloc { 702 /// The value of this heap-allocated object. 703 APValue Value; 704 /// The allocating expression; used for diagnostics. Either a CXXNewExpr 705 /// or a CallExpr (the latter is for direct calls to operator new inside 706 /// std::allocator<T>::allocate). 707 const Expr *AllocExpr = nullptr; 708 709 enum Kind { 710 New, 711 ArrayNew, 712 StdAllocator 713 }; 714 715 /// Get the kind of the allocation. This must match between allocation 716 /// and deallocation. 717 Kind getKind() const { 718 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) 719 return NE->isArray() ? ArrayNew : New; 720 assert(isa<CallExpr>(AllocExpr)); 721 return StdAllocator; 722 } 723 }; 724 725 struct DynAllocOrder { 726 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { 727 return L.getIndex() < R.getIndex(); 728 } 729 }; 730 731 /// EvalInfo - This is a private struct used by the evaluator to capture 732 /// information about a subexpression as it is folded. It retains information 733 /// about the AST context, but also maintains information about the folded 734 /// expression. 735 /// 736 /// If an expression could be evaluated, it is still possible it is not a C 737 /// "integer constant expression" or constant expression. If not, this struct 738 /// captures information about how and why not. 739 /// 740 /// One bit of information passed *into* the request for constant folding 741 /// indicates whether the subexpression is "evaluated" or not according to C 742 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can 743 /// evaluate the expression regardless of what the RHS is, but C only allows 744 /// certain things in certain situations. 745 class EvalInfo : public interp::State { 746 public: 747 ASTContext &Ctx; 748 749 /// EvalStatus - Contains information about the evaluation. 750 Expr::EvalStatus &EvalStatus; 751 752 /// CurrentCall - The top of the constexpr call stack. 753 CallStackFrame *CurrentCall; 754 755 /// CallStackDepth - The number of calls in the call stack right now. 756 unsigned CallStackDepth; 757 758 /// NextCallIndex - The next call index to assign. 759 unsigned NextCallIndex; 760 761 /// StepsLeft - The remaining number of evaluation steps we're permitted 762 /// to perform. This is essentially a limit for the number of statements 763 /// we will evaluate. 764 unsigned StepsLeft; 765 766 /// Force the use of the experimental new constant interpreter, bailing out 767 /// with an error if a feature is not supported. 768 bool ForceNewConstInterp; 769 770 /// Enable the experimental new constant interpreter. 771 bool EnableNewConstInterp; 772 773 /// BottomFrame - The frame in which evaluation started. This must be 774 /// initialized after CurrentCall and CallStackDepth. 775 CallStackFrame BottomFrame; 776 777 /// A stack of values whose lifetimes end at the end of some surrounding 778 /// evaluation frame. 779 llvm::SmallVector<Cleanup, 16> CleanupStack; 780 781 /// EvaluatingDecl - This is the declaration whose initializer is being 782 /// evaluated, if any. 783 APValue::LValueBase EvaluatingDecl; 784 785 enum class EvaluatingDeclKind { 786 None, 787 /// We're evaluating the construction of EvaluatingDecl. 788 Ctor, 789 /// We're evaluating the destruction of EvaluatingDecl. 790 Dtor, 791 }; 792 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; 793 794 /// EvaluatingDeclValue - This is the value being constructed for the 795 /// declaration whose initializer is being evaluated, if any. 796 APValue *EvaluatingDeclValue; 797 798 /// Set of objects that are currently being constructed. 799 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> 800 ObjectsUnderConstruction; 801 802 /// Current heap allocations, along with the location where each was 803 /// allocated. We use std::map here because we need stable addresses 804 /// for the stored APValues. 805 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; 806 807 /// The number of heap allocations performed so far in this evaluation. 808 unsigned NumHeapAllocs = 0; 809 810 struct EvaluatingConstructorRAII { 811 EvalInfo &EI; 812 ObjectUnderConstruction Object; 813 bool DidInsert; 814 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, 815 bool HasBases) 816 : EI(EI), Object(Object) { 817 DidInsert = 818 EI.ObjectsUnderConstruction 819 .insert({Object, HasBases ? ConstructionPhase::Bases 820 : ConstructionPhase::AfterBases}) 821 .second; 822 } 823 void finishedConstructingBases() { 824 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; 825 } 826 ~EvaluatingConstructorRAII() { 827 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); 828 } 829 }; 830 831 struct EvaluatingDestructorRAII { 832 EvalInfo &EI; 833 ObjectUnderConstruction Object; 834 bool DidInsert; 835 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) 836 : EI(EI), Object(Object) { 837 DidInsert = EI.ObjectsUnderConstruction 838 .insert({Object, ConstructionPhase::Destroying}) 839 .second; 840 } 841 void startedDestroyingBases() { 842 EI.ObjectsUnderConstruction[Object] = 843 ConstructionPhase::DestroyingBases; 844 } 845 ~EvaluatingDestructorRAII() { 846 if (DidInsert) 847 EI.ObjectsUnderConstruction.erase(Object); 848 } 849 }; 850 851 ConstructionPhase 852 isEvaluatingCtorDtor(APValue::LValueBase Base, 853 ArrayRef<APValue::LValuePathEntry> Path) { 854 return ObjectsUnderConstruction.lookup({Base, Path}); 855 } 856 857 /// If we're currently speculatively evaluating, the outermost call stack 858 /// depth at which we can mutate state, otherwise 0. 859 unsigned SpeculativeEvaluationDepth = 0; 860 861 /// The current array initialization index, if we're performing array 862 /// initialization. 863 uint64_t ArrayInitIndex = -1; 864 865 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further 866 /// notes attached to it will also be stored, otherwise they will not be. 867 bool HasActiveDiagnostic; 868 869 /// Have we emitted a diagnostic explaining why we couldn't constant 870 /// fold (not just why it's not strictly a constant expression)? 871 bool HasFoldFailureDiagnostic; 872 873 /// Whether or not we're in a context where the front end requires a 874 /// constant value. 875 bool InConstantContext; 876 877 /// Whether we're checking that an expression is a potential constant 878 /// expression. If so, do not fail on constructs that could become constant 879 /// later on (such as a use of an undefined global). 880 bool CheckingPotentialConstantExpression = false; 881 882 /// Whether we're checking for an expression that has undefined behavior. 883 /// If so, we will produce warnings if we encounter an operation that is 884 /// always undefined. 885 bool CheckingForUndefinedBehavior = false; 886 887 enum EvaluationMode { 888 /// Evaluate as a constant expression. Stop if we find that the expression 889 /// is not a constant expression. 890 EM_ConstantExpression, 891 892 /// Evaluate as a constant expression. Stop if we find that the expression 893 /// is not a constant expression. Some expressions can be retried in the 894 /// optimizer if we don't constant fold them here, but in an unevaluated 895 /// context we try to fold them immediately since the optimizer never 896 /// gets a chance to look at it. 897 EM_ConstantExpressionUnevaluated, 898 899 /// Fold the expression to a constant. Stop if we hit a side-effect that 900 /// we can't model. 901 EM_ConstantFold, 902 903 /// Evaluate in any way we know how. Don't worry about side-effects that 904 /// can't be modeled. 905 EM_IgnoreSideEffects, 906 } EvalMode; 907 908 /// Are we checking whether the expression is a potential constant 909 /// expression? 910 bool checkingPotentialConstantExpression() const override { 911 return CheckingPotentialConstantExpression; 912 } 913 914 /// Are we checking an expression for overflow? 915 // FIXME: We should check for any kind of undefined or suspicious behavior 916 // in such constructs, not just overflow. 917 bool checkingForUndefinedBehavior() const override { 918 return CheckingForUndefinedBehavior; 919 } 920 921 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) 922 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), 923 CallStackDepth(0), NextCallIndex(1), 924 StepsLeft(getLangOpts().ConstexprStepLimit), 925 ForceNewConstInterp(getLangOpts().ForceNewConstInterp), 926 EnableNewConstInterp(ForceNewConstInterp || 927 getLangOpts().EnableNewConstInterp), 928 BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr), 929 EvaluatingDecl((const ValueDecl *)nullptr), 930 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), 931 HasFoldFailureDiagnostic(false), InConstantContext(false), 932 EvalMode(Mode) {} 933 934 ~EvalInfo() { 935 discardCleanups(); 936 } 937 938 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, 939 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { 940 EvaluatingDecl = Base; 941 IsEvaluatingDecl = EDK; 942 EvaluatingDeclValue = &Value; 943 } 944 945 bool CheckCallLimit(SourceLocation Loc) { 946 // Don't perform any constexpr calls (other than the call we're checking) 947 // when checking a potential constant expression. 948 if (checkingPotentialConstantExpression() && CallStackDepth > 1) 949 return false; 950 if (NextCallIndex == 0) { 951 // NextCallIndex has wrapped around. 952 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); 953 return false; 954 } 955 if (CallStackDepth <= getLangOpts().ConstexprCallDepth) 956 return true; 957 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) 958 << getLangOpts().ConstexprCallDepth; 959 return false; 960 } 961 962 std::pair<CallStackFrame *, unsigned> 963 getCallFrameAndDepth(unsigned CallIndex) { 964 assert(CallIndex && "no call index in getCallFrameAndDepth"); 965 // We will eventually hit BottomFrame, which has Index 1, so Frame can't 966 // be null in this loop. 967 unsigned Depth = CallStackDepth; 968 CallStackFrame *Frame = CurrentCall; 969 while (Frame->Index > CallIndex) { 970 Frame = Frame->Caller; 971 --Depth; 972 } 973 if (Frame->Index == CallIndex) 974 return {Frame, Depth}; 975 return {nullptr, 0}; 976 } 977 978 bool nextStep(const Stmt *S) { 979 if (!StepsLeft) { 980 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); 981 return false; 982 } 983 --StepsLeft; 984 return true; 985 } 986 987 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); 988 989 Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) { 990 Optional<DynAlloc*> Result; 991 auto It = HeapAllocs.find(DA); 992 if (It != HeapAllocs.end()) 993 Result = &It->second; 994 return Result; 995 } 996 997 /// Information about a stack frame for std::allocator<T>::[de]allocate. 998 struct StdAllocatorCaller { 999 unsigned FrameIndex; 1000 QualType ElemType; 1001 explicit operator bool() const { return FrameIndex != 0; }; 1002 }; 1003 1004 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { 1005 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; 1006 Call = Call->Caller) { 1007 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); 1008 if (!MD) 1009 continue; 1010 const IdentifierInfo *FnII = MD->getIdentifier(); 1011 if (!FnII || !FnII->isStr(FnName)) 1012 continue; 1013 1014 const auto *CTSD = 1015 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); 1016 if (!CTSD) 1017 continue; 1018 1019 const IdentifierInfo *ClassII = CTSD->getIdentifier(); 1020 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 1021 if (CTSD->isInStdNamespace() && ClassII && 1022 ClassII->isStr("allocator") && TAL.size() >= 1 && 1023 TAL[0].getKind() == TemplateArgument::Type) 1024 return {Call->Index, TAL[0].getAsType()}; 1025 } 1026 1027 return {}; 1028 } 1029 1030 void performLifetimeExtension() { 1031 // Disable the cleanups for lifetime-extended temporaries. 1032 CleanupStack.erase( 1033 std::remove_if(CleanupStack.begin(), CleanupStack.end(), 1034 [](Cleanup &C) { return C.isLifetimeExtended(); }), 1035 CleanupStack.end()); 1036 } 1037 1038 /// Throw away any remaining cleanups at the end of evaluation. If any 1039 /// cleanups would have had a side-effect, note that as an unmodeled 1040 /// side-effect and return false. Otherwise, return true. 1041 bool discardCleanups() { 1042 for (Cleanup &C : CleanupStack) 1043 if (C.hasSideEffect()) 1044 if (!noteSideEffect()) 1045 return false; 1046 return true; 1047 } 1048 1049 private: 1050 interp::Frame *getCurrentFrame() override { return CurrentCall; } 1051 const interp::Frame *getBottomFrame() const override { return &BottomFrame; } 1052 1053 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } 1054 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } 1055 1056 void setFoldFailureDiagnostic(bool Flag) override { 1057 HasFoldFailureDiagnostic = Flag; 1058 } 1059 1060 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } 1061 1062 ASTContext &getCtx() const override { return Ctx; } 1063 1064 // If we have a prior diagnostic, it will be noting that the expression 1065 // isn't a constant expression. This diagnostic is more important, 1066 // unless we require this evaluation to produce a constant expression. 1067 // 1068 // FIXME: We might want to show both diagnostics to the user in 1069 // EM_ConstantFold mode. 1070 bool hasPriorDiagnostic() override { 1071 if (!EvalStatus.Diag->empty()) { 1072 switch (EvalMode) { 1073 case EM_ConstantFold: 1074 case EM_IgnoreSideEffects: 1075 if (!HasFoldFailureDiagnostic) 1076 break; 1077 // We've already failed to fold something. Keep that diagnostic. 1078 LLVM_FALLTHROUGH; 1079 case EM_ConstantExpression: 1080 case EM_ConstantExpressionUnevaluated: 1081 setActiveDiagnostic(false); 1082 return true; 1083 } 1084 } 1085 return false; 1086 } 1087 1088 unsigned getCallStackDepth() override { return CallStackDepth; } 1089 1090 public: 1091 /// Should we continue evaluation after encountering a side-effect that we 1092 /// couldn't model? 1093 bool keepEvaluatingAfterSideEffect() { 1094 switch (EvalMode) { 1095 case EM_IgnoreSideEffects: 1096 return true; 1097 1098 case EM_ConstantExpression: 1099 case EM_ConstantExpressionUnevaluated: 1100 case EM_ConstantFold: 1101 // By default, assume any side effect might be valid in some other 1102 // evaluation of this expression from a different context. 1103 return checkingPotentialConstantExpression() || 1104 checkingForUndefinedBehavior(); 1105 } 1106 llvm_unreachable("Missed EvalMode case"); 1107 } 1108 1109 /// Note that we have had a side-effect, and determine whether we should 1110 /// keep evaluating. 1111 bool noteSideEffect() { 1112 EvalStatus.HasSideEffects = true; 1113 return keepEvaluatingAfterSideEffect(); 1114 } 1115 1116 /// Should we continue evaluation after encountering undefined behavior? 1117 bool keepEvaluatingAfterUndefinedBehavior() { 1118 switch (EvalMode) { 1119 case EM_IgnoreSideEffects: 1120 case EM_ConstantFold: 1121 return true; 1122 1123 case EM_ConstantExpression: 1124 case EM_ConstantExpressionUnevaluated: 1125 return checkingForUndefinedBehavior(); 1126 } 1127 llvm_unreachable("Missed EvalMode case"); 1128 } 1129 1130 /// Note that we hit something that was technically undefined behavior, but 1131 /// that we can evaluate past it (such as signed overflow or floating-point 1132 /// division by zero.) 1133 bool noteUndefinedBehavior() override { 1134 EvalStatus.HasUndefinedBehavior = true; 1135 return keepEvaluatingAfterUndefinedBehavior(); 1136 } 1137 1138 /// Should we continue evaluation as much as possible after encountering a 1139 /// construct which can't be reduced to a value? 1140 bool keepEvaluatingAfterFailure() const override { 1141 if (!StepsLeft) 1142 return false; 1143 1144 switch (EvalMode) { 1145 case EM_ConstantExpression: 1146 case EM_ConstantExpressionUnevaluated: 1147 case EM_ConstantFold: 1148 case EM_IgnoreSideEffects: 1149 return checkingPotentialConstantExpression() || 1150 checkingForUndefinedBehavior(); 1151 } 1152 llvm_unreachable("Missed EvalMode case"); 1153 } 1154 1155 /// Notes that we failed to evaluate an expression that other expressions 1156 /// directly depend on, and determine if we should keep evaluating. This 1157 /// should only be called if we actually intend to keep evaluating. 1158 /// 1159 /// Call noteSideEffect() instead if we may be able to ignore the value that 1160 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: 1161 /// 1162 /// (Foo(), 1) // use noteSideEffect 1163 /// (Foo() || true) // use noteSideEffect 1164 /// Foo() + 1 // use noteFailure 1165 LLVM_NODISCARD bool noteFailure() { 1166 // Failure when evaluating some expression often means there is some 1167 // subexpression whose evaluation was skipped. Therefore, (because we 1168 // don't track whether we skipped an expression when unwinding after an 1169 // evaluation failure) every evaluation failure that bubbles up from a 1170 // subexpression implies that a side-effect has potentially happened. We 1171 // skip setting the HasSideEffects flag to true until we decide to 1172 // continue evaluating after that point, which happens here. 1173 bool KeepGoing = keepEvaluatingAfterFailure(); 1174 EvalStatus.HasSideEffects |= KeepGoing; 1175 return KeepGoing; 1176 } 1177 1178 class ArrayInitLoopIndex { 1179 EvalInfo &Info; 1180 uint64_t OuterIndex; 1181 1182 public: 1183 ArrayInitLoopIndex(EvalInfo &Info) 1184 : Info(Info), OuterIndex(Info.ArrayInitIndex) { 1185 Info.ArrayInitIndex = 0; 1186 } 1187 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } 1188 1189 operator uint64_t&() { return Info.ArrayInitIndex; } 1190 }; 1191 }; 1192 1193 /// Object used to treat all foldable expressions as constant expressions. 1194 struct FoldConstant { 1195 EvalInfo &Info; 1196 bool Enabled; 1197 bool HadNoPriorDiags; 1198 EvalInfo::EvaluationMode OldMode; 1199 1200 explicit FoldConstant(EvalInfo &Info, bool Enabled) 1201 : Info(Info), 1202 Enabled(Enabled), 1203 HadNoPriorDiags(Info.EvalStatus.Diag && 1204 Info.EvalStatus.Diag->empty() && 1205 !Info.EvalStatus.HasSideEffects), 1206 OldMode(Info.EvalMode) { 1207 if (Enabled) 1208 Info.EvalMode = EvalInfo::EM_ConstantFold; 1209 } 1210 void keepDiagnostics() { Enabled = false; } 1211 ~FoldConstant() { 1212 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && 1213 !Info.EvalStatus.HasSideEffects) 1214 Info.EvalStatus.Diag->clear(); 1215 Info.EvalMode = OldMode; 1216 } 1217 }; 1218 1219 /// RAII object used to set the current evaluation mode to ignore 1220 /// side-effects. 1221 struct IgnoreSideEffectsRAII { 1222 EvalInfo &Info; 1223 EvalInfo::EvaluationMode OldMode; 1224 explicit IgnoreSideEffectsRAII(EvalInfo &Info) 1225 : Info(Info), OldMode(Info.EvalMode) { 1226 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; 1227 } 1228 1229 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } 1230 }; 1231 1232 /// RAII object used to optionally suppress diagnostics and side-effects from 1233 /// a speculative evaluation. 1234 class SpeculativeEvaluationRAII { 1235 EvalInfo *Info = nullptr; 1236 Expr::EvalStatus OldStatus; 1237 unsigned OldSpeculativeEvaluationDepth; 1238 1239 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { 1240 Info = Other.Info; 1241 OldStatus = Other.OldStatus; 1242 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; 1243 Other.Info = nullptr; 1244 } 1245 1246 void maybeRestoreState() { 1247 if (!Info) 1248 return; 1249 1250 Info->EvalStatus = OldStatus; 1251 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; 1252 } 1253 1254 public: 1255 SpeculativeEvaluationRAII() = default; 1256 1257 SpeculativeEvaluationRAII( 1258 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) 1259 : Info(&Info), OldStatus(Info.EvalStatus), 1260 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { 1261 Info.EvalStatus.Diag = NewDiag; 1262 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; 1263 } 1264 1265 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; 1266 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { 1267 moveFromAndCancel(std::move(Other)); 1268 } 1269 1270 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { 1271 maybeRestoreState(); 1272 moveFromAndCancel(std::move(Other)); 1273 return *this; 1274 } 1275 1276 ~SpeculativeEvaluationRAII() { maybeRestoreState(); } 1277 }; 1278 1279 /// RAII object wrapping a full-expression or block scope, and handling 1280 /// the ending of the lifetime of temporaries created within it. 1281 template<bool IsFullExpression> 1282 class ScopeRAII { 1283 EvalInfo &Info; 1284 unsigned OldStackSize; 1285 public: 1286 ScopeRAII(EvalInfo &Info) 1287 : Info(Info), OldStackSize(Info.CleanupStack.size()) { 1288 // Push a new temporary version. This is needed to distinguish between 1289 // temporaries created in different iterations of a loop. 1290 Info.CurrentCall->pushTempVersion(); 1291 } 1292 bool destroy(bool RunDestructors = true) { 1293 bool OK = cleanup(Info, RunDestructors, OldStackSize); 1294 OldStackSize = -1U; 1295 return OK; 1296 } 1297 ~ScopeRAII() { 1298 if (OldStackSize != -1U) 1299 destroy(false); 1300 // Body moved to a static method to encourage the compiler to inline away 1301 // instances of this class. 1302 Info.CurrentCall->popTempVersion(); 1303 } 1304 private: 1305 static bool cleanup(EvalInfo &Info, bool RunDestructors, 1306 unsigned OldStackSize) { 1307 assert(OldStackSize <= Info.CleanupStack.size() && 1308 "running cleanups out of order?"); 1309 1310 // Run all cleanups for a block scope, and non-lifetime-extended cleanups 1311 // for a full-expression scope. 1312 bool Success = true; 1313 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { 1314 if (!(IsFullExpression && 1315 Info.CleanupStack[I - 1].isLifetimeExtended())) { 1316 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { 1317 Success = false; 1318 break; 1319 } 1320 } 1321 } 1322 1323 // Compact lifetime-extended cleanups. 1324 auto NewEnd = Info.CleanupStack.begin() + OldStackSize; 1325 if (IsFullExpression) 1326 NewEnd = 1327 std::remove_if(NewEnd, Info.CleanupStack.end(), 1328 [](Cleanup &C) { return !C.isLifetimeExtended(); }); 1329 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); 1330 return Success; 1331 } 1332 }; 1333 typedef ScopeRAII<false> BlockScopeRAII; 1334 typedef ScopeRAII<true> FullExpressionRAII; 1335 } 1336 1337 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, 1338 CheckSubobjectKind CSK) { 1339 if (Invalid) 1340 return false; 1341 if (isOnePastTheEnd()) { 1342 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) 1343 << CSK; 1344 setInvalid(); 1345 return false; 1346 } 1347 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there 1348 // must actually be at least one array element; even a VLA cannot have a 1349 // bound of zero. And if our index is nonzero, we already had a CCEDiag. 1350 return true; 1351 } 1352 1353 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, 1354 const Expr *E) { 1355 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); 1356 // Do not set the designator as invalid: we can represent this situation, 1357 // and correct handling of __builtin_object_size requires us to do so. 1358 } 1359 1360 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, 1361 const Expr *E, 1362 const APSInt &N) { 1363 // If we're complaining, we must be able to statically determine the size of 1364 // the most derived array. 1365 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) 1366 Info.CCEDiag(E, diag::note_constexpr_array_index) 1367 << N << /*array*/ 0 1368 << static_cast<unsigned>(getMostDerivedArraySize()); 1369 else 1370 Info.CCEDiag(E, diag::note_constexpr_array_index) 1371 << N << /*non-array*/ 1; 1372 setInvalid(); 1373 } 1374 1375 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 1376 const FunctionDecl *Callee, const LValue *This, 1377 APValue *Arguments) 1378 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), 1379 Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) { 1380 Info.CurrentCall = this; 1381 ++Info.CallStackDepth; 1382 } 1383 1384 CallStackFrame::~CallStackFrame() { 1385 assert(Info.CurrentCall == this && "calls retired out of order"); 1386 --Info.CallStackDepth; 1387 Info.CurrentCall = Caller; 1388 } 1389 1390 static bool isRead(AccessKinds AK) { 1391 return AK == AK_Read || AK == AK_ReadObjectRepresentation; 1392 } 1393 1394 static bool isModification(AccessKinds AK) { 1395 switch (AK) { 1396 case AK_Read: 1397 case AK_ReadObjectRepresentation: 1398 case AK_MemberCall: 1399 case AK_DynamicCast: 1400 case AK_TypeId: 1401 return false; 1402 case AK_Assign: 1403 case AK_Increment: 1404 case AK_Decrement: 1405 case AK_Construct: 1406 case AK_Destroy: 1407 return true; 1408 } 1409 llvm_unreachable("unknown access kind"); 1410 } 1411 1412 static bool isAnyAccess(AccessKinds AK) { 1413 return isRead(AK) || isModification(AK); 1414 } 1415 1416 /// Is this an access per the C++ definition? 1417 static bool isFormalAccess(AccessKinds AK) { 1418 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy; 1419 } 1420 1421 namespace { 1422 struct ComplexValue { 1423 private: 1424 bool IsInt; 1425 1426 public: 1427 APSInt IntReal, IntImag; 1428 APFloat FloatReal, FloatImag; 1429 1430 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} 1431 1432 void makeComplexFloat() { IsInt = false; } 1433 bool isComplexFloat() const { return !IsInt; } 1434 APFloat &getComplexFloatReal() { return FloatReal; } 1435 APFloat &getComplexFloatImag() { return FloatImag; } 1436 1437 void makeComplexInt() { IsInt = true; } 1438 bool isComplexInt() const { return IsInt; } 1439 APSInt &getComplexIntReal() { return IntReal; } 1440 APSInt &getComplexIntImag() { return IntImag; } 1441 1442 void moveInto(APValue &v) const { 1443 if (isComplexFloat()) 1444 v = APValue(FloatReal, FloatImag); 1445 else 1446 v = APValue(IntReal, IntImag); 1447 } 1448 void setFrom(const APValue &v) { 1449 assert(v.isComplexFloat() || v.isComplexInt()); 1450 if (v.isComplexFloat()) { 1451 makeComplexFloat(); 1452 FloatReal = v.getComplexFloatReal(); 1453 FloatImag = v.getComplexFloatImag(); 1454 } else { 1455 makeComplexInt(); 1456 IntReal = v.getComplexIntReal(); 1457 IntImag = v.getComplexIntImag(); 1458 } 1459 } 1460 }; 1461 1462 struct LValue { 1463 APValue::LValueBase Base; 1464 CharUnits Offset; 1465 SubobjectDesignator Designator; 1466 bool IsNullPtr : 1; 1467 bool InvalidBase : 1; 1468 1469 const APValue::LValueBase getLValueBase() const { return Base; } 1470 CharUnits &getLValueOffset() { return Offset; } 1471 const CharUnits &getLValueOffset() const { return Offset; } 1472 SubobjectDesignator &getLValueDesignator() { return Designator; } 1473 const SubobjectDesignator &getLValueDesignator() const { return Designator;} 1474 bool isNullPointer() const { return IsNullPtr;} 1475 1476 unsigned getLValueCallIndex() const { return Base.getCallIndex(); } 1477 unsigned getLValueVersion() const { return Base.getVersion(); } 1478 1479 void moveInto(APValue &V) const { 1480 if (Designator.Invalid) 1481 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); 1482 else { 1483 assert(!InvalidBase && "APValues can't handle invalid LValue bases"); 1484 V = APValue(Base, Offset, Designator.Entries, 1485 Designator.IsOnePastTheEnd, IsNullPtr); 1486 } 1487 } 1488 void setFrom(ASTContext &Ctx, const APValue &V) { 1489 assert(V.isLValue() && "Setting LValue from a non-LValue?"); 1490 Base = V.getLValueBase(); 1491 Offset = V.getLValueOffset(); 1492 InvalidBase = false; 1493 Designator = SubobjectDesignator(Ctx, V); 1494 IsNullPtr = V.isNullPointer(); 1495 } 1496 1497 void set(APValue::LValueBase B, bool BInvalid = false) { 1498 #ifndef NDEBUG 1499 // We only allow a few types of invalid bases. Enforce that here. 1500 if (BInvalid) { 1501 const auto *E = B.get<const Expr *>(); 1502 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && 1503 "Unexpected type of invalid base"); 1504 } 1505 #endif 1506 1507 Base = B; 1508 Offset = CharUnits::fromQuantity(0); 1509 InvalidBase = BInvalid; 1510 Designator = SubobjectDesignator(getType(B)); 1511 IsNullPtr = false; 1512 } 1513 1514 void setNull(ASTContext &Ctx, QualType PointerTy) { 1515 Base = (Expr *)nullptr; 1516 Offset = 1517 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); 1518 InvalidBase = false; 1519 Designator = SubobjectDesignator(PointerTy->getPointeeType()); 1520 IsNullPtr = true; 1521 } 1522 1523 void setInvalid(APValue::LValueBase B, unsigned I = 0) { 1524 set(B, true); 1525 } 1526 1527 std::string toString(ASTContext &Ctx, QualType T) const { 1528 APValue Printable; 1529 moveInto(Printable); 1530 return Printable.getAsString(Ctx, T); 1531 } 1532 1533 private: 1534 // Check that this LValue is not based on a null pointer. If it is, produce 1535 // a diagnostic and mark the designator as invalid. 1536 template <typename GenDiagType> 1537 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { 1538 if (Designator.Invalid) 1539 return false; 1540 if (IsNullPtr) { 1541 GenDiag(); 1542 Designator.setInvalid(); 1543 return false; 1544 } 1545 return true; 1546 } 1547 1548 public: 1549 bool checkNullPointer(EvalInfo &Info, const Expr *E, 1550 CheckSubobjectKind CSK) { 1551 return checkNullPointerDiagnosingWith([&Info, E, CSK] { 1552 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; 1553 }); 1554 } 1555 1556 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, 1557 AccessKinds AK) { 1558 return checkNullPointerDiagnosingWith([&Info, E, AK] { 1559 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 1560 }); 1561 } 1562 1563 // Check this LValue refers to an object. If not, set the designator to be 1564 // invalid and emit a diagnostic. 1565 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { 1566 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && 1567 Designator.checkSubobject(Info, E, CSK); 1568 } 1569 1570 void addDecl(EvalInfo &Info, const Expr *E, 1571 const Decl *D, bool Virtual = false) { 1572 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) 1573 Designator.addDeclUnchecked(D, Virtual); 1574 } 1575 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { 1576 if (!Designator.Entries.empty()) { 1577 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); 1578 Designator.setInvalid(); 1579 return; 1580 } 1581 if (checkSubobject(Info, E, CSK_ArrayToPointer)) { 1582 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); 1583 Designator.FirstEntryIsAnUnsizedArray = true; 1584 Designator.addUnsizedArrayUnchecked(ElemTy); 1585 } 1586 } 1587 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { 1588 if (checkSubobject(Info, E, CSK_ArrayToPointer)) 1589 Designator.addArrayUnchecked(CAT); 1590 } 1591 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { 1592 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) 1593 Designator.addComplexUnchecked(EltTy, Imag); 1594 } 1595 void clearIsNullPointer() { 1596 IsNullPtr = false; 1597 } 1598 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, 1599 const APSInt &Index, CharUnits ElementSize) { 1600 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, 1601 // but we're not required to diagnose it and it's valid in C++.) 1602 if (!Index) 1603 return; 1604 1605 // Compute the new offset in the appropriate width, wrapping at 64 bits. 1606 // FIXME: When compiling for a 32-bit target, we should use 32-bit 1607 // offsets. 1608 uint64_t Offset64 = Offset.getQuantity(); 1609 uint64_t ElemSize64 = ElementSize.getQuantity(); 1610 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 1611 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); 1612 1613 if (checkNullPointer(Info, E, CSK_ArrayIndex)) 1614 Designator.adjustIndex(Info, E, Index); 1615 clearIsNullPointer(); 1616 } 1617 void adjustOffset(CharUnits N) { 1618 Offset += N; 1619 if (N.getQuantity()) 1620 clearIsNullPointer(); 1621 } 1622 }; 1623 1624 struct MemberPtr { 1625 MemberPtr() {} 1626 explicit MemberPtr(const ValueDecl *Decl) : 1627 DeclAndIsDerivedMember(Decl, false), Path() {} 1628 1629 /// The member or (direct or indirect) field referred to by this member 1630 /// pointer, or 0 if this is a null member pointer. 1631 const ValueDecl *getDecl() const { 1632 return DeclAndIsDerivedMember.getPointer(); 1633 } 1634 /// Is this actually a member of some type derived from the relevant class? 1635 bool isDerivedMember() const { 1636 return DeclAndIsDerivedMember.getInt(); 1637 } 1638 /// Get the class which the declaration actually lives in. 1639 const CXXRecordDecl *getContainingRecord() const { 1640 return cast<CXXRecordDecl>( 1641 DeclAndIsDerivedMember.getPointer()->getDeclContext()); 1642 } 1643 1644 void moveInto(APValue &V) const { 1645 V = APValue(getDecl(), isDerivedMember(), Path); 1646 } 1647 void setFrom(const APValue &V) { 1648 assert(V.isMemberPointer()); 1649 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); 1650 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); 1651 Path.clear(); 1652 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); 1653 Path.insert(Path.end(), P.begin(), P.end()); 1654 } 1655 1656 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating 1657 /// whether the member is a member of some class derived from the class type 1658 /// of the member pointer. 1659 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; 1660 /// Path - The path of base/derived classes from the member declaration's 1661 /// class (exclusive) to the class type of the member pointer (inclusive). 1662 SmallVector<const CXXRecordDecl*, 4> Path; 1663 1664 /// Perform a cast towards the class of the Decl (either up or down the 1665 /// hierarchy). 1666 bool castBack(const CXXRecordDecl *Class) { 1667 assert(!Path.empty()); 1668 const CXXRecordDecl *Expected; 1669 if (Path.size() >= 2) 1670 Expected = Path[Path.size() - 2]; 1671 else 1672 Expected = getContainingRecord(); 1673 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { 1674 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), 1675 // if B does not contain the original member and is not a base or 1676 // derived class of the class containing the original member, the result 1677 // of the cast is undefined. 1678 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to 1679 // (D::*). We consider that to be a language defect. 1680 return false; 1681 } 1682 Path.pop_back(); 1683 return true; 1684 } 1685 /// Perform a base-to-derived member pointer cast. 1686 bool castToDerived(const CXXRecordDecl *Derived) { 1687 if (!getDecl()) 1688 return true; 1689 if (!isDerivedMember()) { 1690 Path.push_back(Derived); 1691 return true; 1692 } 1693 if (!castBack(Derived)) 1694 return false; 1695 if (Path.empty()) 1696 DeclAndIsDerivedMember.setInt(false); 1697 return true; 1698 } 1699 /// Perform a derived-to-base member pointer cast. 1700 bool castToBase(const CXXRecordDecl *Base) { 1701 if (!getDecl()) 1702 return true; 1703 if (Path.empty()) 1704 DeclAndIsDerivedMember.setInt(true); 1705 if (isDerivedMember()) { 1706 Path.push_back(Base); 1707 return true; 1708 } 1709 return castBack(Base); 1710 } 1711 }; 1712 1713 /// Compare two member pointers, which are assumed to be of the same type. 1714 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { 1715 if (!LHS.getDecl() || !RHS.getDecl()) 1716 return !LHS.getDecl() && !RHS.getDecl(); 1717 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) 1718 return false; 1719 return LHS.Path == RHS.Path; 1720 } 1721 } 1722 1723 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); 1724 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, 1725 const LValue &This, const Expr *E, 1726 bool AllowNonLiteralTypes = false); 1727 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 1728 bool InvalidBaseOK = false); 1729 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, 1730 bool InvalidBaseOK = false); 1731 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 1732 EvalInfo &Info); 1733 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); 1734 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); 1735 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 1736 EvalInfo &Info); 1737 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); 1738 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); 1739 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 1740 EvalInfo &Info); 1741 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); 1742 1743 /// Evaluate an integer or fixed point expression into an APResult. 1744 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 1745 EvalInfo &Info); 1746 1747 /// Evaluate only a fixed point expression into an APResult. 1748 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 1749 EvalInfo &Info); 1750 1751 //===----------------------------------------------------------------------===// 1752 // Misc utilities 1753 //===----------------------------------------------------------------------===// 1754 1755 /// Negate an APSInt in place, converting it to a signed form if necessary, and 1756 /// preserving its value (by extending by up to one bit as needed). 1757 static void negateAsSigned(APSInt &Int) { 1758 if (Int.isUnsigned() || Int.isMinSignedValue()) { 1759 Int = Int.extend(Int.getBitWidth() + 1); 1760 Int.setIsSigned(true); 1761 } 1762 Int = -Int; 1763 } 1764 1765 template<typename KeyT> 1766 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, 1767 bool IsLifetimeExtended, LValue &LV) { 1768 unsigned Version = getTempVersion(); 1769 APValue::LValueBase Base(Key, Index, Version); 1770 LV.set(Base); 1771 APValue &Result = Temporaries[MapKeyTy(Key, Version)]; 1772 assert(Result.isAbsent() && "temporary created multiple times"); 1773 1774 // If we're creating a temporary immediately in the operand of a speculative 1775 // evaluation, don't register a cleanup to be run outside the speculative 1776 // evaluation context, since we won't actually be able to initialize this 1777 // object. 1778 if (Index <= Info.SpeculativeEvaluationDepth) { 1779 if (T.isDestructedType()) 1780 Info.noteSideEffect(); 1781 } else { 1782 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended)); 1783 } 1784 return Result; 1785 } 1786 1787 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { 1788 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { 1789 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); 1790 return nullptr; 1791 } 1792 1793 DynamicAllocLValue DA(NumHeapAllocs++); 1794 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); 1795 auto Result = HeapAllocs.emplace(std::piecewise_construct, 1796 std::forward_as_tuple(DA), std::tuple<>()); 1797 assert(Result.second && "reused a heap alloc index?"); 1798 Result.first->second.AllocExpr = E; 1799 return &Result.first->second.Value; 1800 } 1801 1802 /// Produce a string describing the given constexpr call. 1803 void CallStackFrame::describe(raw_ostream &Out) { 1804 unsigned ArgIndex = 0; 1805 bool IsMemberCall = isa<CXXMethodDecl>(Callee) && 1806 !isa<CXXConstructorDecl>(Callee) && 1807 cast<CXXMethodDecl>(Callee)->isInstance(); 1808 1809 if (!IsMemberCall) 1810 Out << *Callee << '('; 1811 1812 if (This && IsMemberCall) { 1813 APValue Val; 1814 This->moveInto(Val); 1815 Val.printPretty(Out, Info.Ctx, 1816 This->Designator.MostDerivedType); 1817 // FIXME: Add parens around Val if needed. 1818 Out << "->" << *Callee << '('; 1819 IsMemberCall = false; 1820 } 1821 1822 for (FunctionDecl::param_const_iterator I = Callee->param_begin(), 1823 E = Callee->param_end(); I != E; ++I, ++ArgIndex) { 1824 if (ArgIndex > (unsigned)IsMemberCall) 1825 Out << ", "; 1826 1827 const ParmVarDecl *Param = *I; 1828 const APValue &Arg = Arguments[ArgIndex]; 1829 Arg.printPretty(Out, Info.Ctx, Param->getType()); 1830 1831 if (ArgIndex == 0 && IsMemberCall) 1832 Out << "->" << *Callee << '('; 1833 } 1834 1835 Out << ')'; 1836 } 1837 1838 /// Evaluate an expression to see if it had side-effects, and discard its 1839 /// result. 1840 /// \return \c true if the caller should keep evaluating. 1841 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { 1842 APValue Scratch; 1843 if (!Evaluate(Scratch, Info, E)) 1844 // We don't need the value, but we might have skipped a side effect here. 1845 return Info.noteSideEffect(); 1846 return true; 1847 } 1848 1849 /// Should this call expression be treated as a string literal? 1850 static bool IsStringLiteralCall(const CallExpr *E) { 1851 unsigned Builtin = E->getBuiltinCallee(); 1852 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 1853 Builtin == Builtin::BI__builtin___NSStringMakeConstantString); 1854 } 1855 1856 static bool IsGlobalLValue(APValue::LValueBase B) { 1857 // C++11 [expr.const]p3 An address constant expression is a prvalue core 1858 // constant expression of pointer type that evaluates to... 1859 1860 // ... a null pointer value, or a prvalue core constant expression of type 1861 // std::nullptr_t. 1862 if (!B) return true; 1863 1864 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 1865 // ... the address of an object with static storage duration, 1866 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1867 return VD->hasGlobalStorage(); 1868 // ... the address of a function, 1869 return isa<FunctionDecl>(D); 1870 } 1871 1872 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) 1873 return true; 1874 1875 const Expr *E = B.get<const Expr*>(); 1876 switch (E->getStmtClass()) { 1877 default: 1878 return false; 1879 case Expr::CompoundLiteralExprClass: { 1880 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 1881 return CLE->isFileScope() && CLE->isLValue(); 1882 } 1883 case Expr::MaterializeTemporaryExprClass: 1884 // A materialized temporary might have been lifetime-extended to static 1885 // storage duration. 1886 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; 1887 // A string literal has static storage duration. 1888 case Expr::StringLiteralClass: 1889 case Expr::PredefinedExprClass: 1890 case Expr::ObjCStringLiteralClass: 1891 case Expr::ObjCEncodeExprClass: 1892 case Expr::CXXUuidofExprClass: 1893 return true; 1894 case Expr::ObjCBoxedExprClass: 1895 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); 1896 case Expr::CallExprClass: 1897 return IsStringLiteralCall(cast<CallExpr>(E)); 1898 // For GCC compatibility, &&label has static storage duration. 1899 case Expr::AddrLabelExprClass: 1900 return true; 1901 // A Block literal expression may be used as the initialization value for 1902 // Block variables at global or local static scope. 1903 case Expr::BlockExprClass: 1904 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); 1905 case Expr::ImplicitValueInitExprClass: 1906 // FIXME: 1907 // We can never form an lvalue with an implicit value initialization as its 1908 // base through expression evaluation, so these only appear in one case: the 1909 // implicit variable declaration we invent when checking whether a constexpr 1910 // constructor can produce a constant expression. We must assume that such 1911 // an expression might be a global lvalue. 1912 return true; 1913 } 1914 } 1915 1916 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { 1917 return LVal.Base.dyn_cast<const ValueDecl*>(); 1918 } 1919 1920 static bool IsLiteralLValue(const LValue &Value) { 1921 if (Value.getLValueCallIndex()) 1922 return false; 1923 const Expr *E = Value.Base.dyn_cast<const Expr*>(); 1924 return E && !isa<MaterializeTemporaryExpr>(E); 1925 } 1926 1927 static bool IsWeakLValue(const LValue &Value) { 1928 const ValueDecl *Decl = GetLValueBaseDecl(Value); 1929 return Decl && Decl->isWeak(); 1930 } 1931 1932 static bool isZeroSized(const LValue &Value) { 1933 const ValueDecl *Decl = GetLValueBaseDecl(Value); 1934 if (Decl && isa<VarDecl>(Decl)) { 1935 QualType Ty = Decl->getType(); 1936 if (Ty->isArrayType()) 1937 return Ty->isIncompleteType() || 1938 Decl->getASTContext().getTypeSize(Ty) == 0; 1939 } 1940 return false; 1941 } 1942 1943 static bool HasSameBase(const LValue &A, const LValue &B) { 1944 if (!A.getLValueBase()) 1945 return !B.getLValueBase(); 1946 if (!B.getLValueBase()) 1947 return false; 1948 1949 if (A.getLValueBase().getOpaqueValue() != 1950 B.getLValueBase().getOpaqueValue()) { 1951 const Decl *ADecl = GetLValueBaseDecl(A); 1952 if (!ADecl) 1953 return false; 1954 const Decl *BDecl = GetLValueBaseDecl(B); 1955 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl()) 1956 return false; 1957 } 1958 1959 return IsGlobalLValue(A.getLValueBase()) || 1960 (A.getLValueCallIndex() == B.getLValueCallIndex() && 1961 A.getLValueVersion() == B.getLValueVersion()); 1962 } 1963 1964 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { 1965 assert(Base && "no location for a null lvalue"); 1966 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 1967 if (VD) 1968 Info.Note(VD->getLocation(), diag::note_declared_at); 1969 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 1970 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); 1971 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 1972 // FIXME: Produce a note for dangling pointers too. 1973 if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA)) 1974 Info.Note((*Alloc)->AllocExpr->getExprLoc(), 1975 diag::note_constexpr_dynamic_alloc_here); 1976 } 1977 // We have no information to show for a typeid(T) object. 1978 } 1979 1980 enum class CheckEvaluationResultKind { 1981 ConstantExpression, 1982 FullyInitialized, 1983 }; 1984 1985 /// Materialized temporaries that we've already checked to determine if they're 1986 /// initializsed by a constant expression. 1987 using CheckedTemporaries = 1988 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; 1989 1990 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 1991 EvalInfo &Info, SourceLocation DiagLoc, 1992 QualType Type, const APValue &Value, 1993 Expr::ConstExprUsage Usage, 1994 SourceLocation SubobjectLoc, 1995 CheckedTemporaries &CheckedTemps); 1996 1997 /// Check that this reference or pointer core constant expression is a valid 1998 /// value for an address or reference constant expression. Return true if we 1999 /// can fold this expression, whether or not it's a constant expression. 2000 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, 2001 QualType Type, const LValue &LVal, 2002 Expr::ConstExprUsage Usage, 2003 CheckedTemporaries &CheckedTemps) { 2004 bool IsReferenceType = Type->isReferenceType(); 2005 2006 APValue::LValueBase Base = LVal.getLValueBase(); 2007 const SubobjectDesignator &Designator = LVal.getLValueDesignator(); 2008 2009 // Check that the object is a global. Note that the fake 'this' object we 2010 // manufacture when checking potential constant expressions is conservatively 2011 // assumed to be global here. 2012 if (!IsGlobalLValue(Base)) { 2013 if (Info.getLangOpts().CPlusPlus11) { 2014 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2015 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) 2016 << IsReferenceType << !Designator.Entries.empty() 2017 << !!VD << VD; 2018 NoteLValueLocation(Info, Base); 2019 } else { 2020 Info.FFDiag(Loc); 2021 } 2022 // Don't allow references to temporaries to escape. 2023 return false; 2024 } 2025 assert((Info.checkingPotentialConstantExpression() || 2026 LVal.getLValueCallIndex() == 0) && 2027 "have call index for global lvalue"); 2028 2029 if (Base.is<DynamicAllocLValue>()) { 2030 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) 2031 << IsReferenceType << !Designator.Entries.empty(); 2032 NoteLValueLocation(Info, Base); 2033 return false; 2034 } 2035 2036 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { 2037 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) { 2038 // Check if this is a thread-local variable. 2039 if (Var->getTLSKind()) 2040 // FIXME: Diagnostic! 2041 return false; 2042 2043 // A dllimport variable never acts like a constant. 2044 if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>()) 2045 // FIXME: Diagnostic! 2046 return false; 2047 } 2048 if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) { 2049 // __declspec(dllimport) must be handled very carefully: 2050 // We must never initialize an expression with the thunk in C++. 2051 // Doing otherwise would allow the same id-expression to yield 2052 // different addresses for the same function in different translation 2053 // units. However, this means that we must dynamically initialize the 2054 // expression with the contents of the import address table at runtime. 2055 // 2056 // The C language has no notion of ODR; furthermore, it has no notion of 2057 // dynamic initialization. This means that we are permitted to 2058 // perform initialization with the address of the thunk. 2059 if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen && 2060 FD->hasAttr<DLLImportAttr>()) 2061 // FIXME: Diagnostic! 2062 return false; 2063 } 2064 } else if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>( 2065 Base.dyn_cast<const Expr *>())) { 2066 if (CheckedTemps.insert(MTE).second) { 2067 QualType TempType = getType(Base); 2068 if (TempType.isDestructedType()) { 2069 Info.FFDiag(MTE->getExprLoc(), 2070 diag::note_constexpr_unsupported_tempoarary_nontrivial_dtor) 2071 << TempType; 2072 return false; 2073 } 2074 2075 APValue *V = Info.Ctx.getMaterializedTemporaryValue(MTE, false); 2076 assert(V && "evasluation result refers to uninitialised temporary"); 2077 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2078 Info, MTE->getExprLoc(), TempType, *V, 2079 Usage, SourceLocation(), CheckedTemps)) 2080 return false; 2081 } 2082 } 2083 2084 // Allow address constant expressions to be past-the-end pointers. This is 2085 // an extension: the standard requires them to point to an object. 2086 if (!IsReferenceType) 2087 return true; 2088 2089 // A reference constant expression must refer to an object. 2090 if (!Base) { 2091 // FIXME: diagnostic 2092 Info.CCEDiag(Loc); 2093 return true; 2094 } 2095 2096 // Does this refer one past the end of some object? 2097 if (!Designator.Invalid && Designator.isOnePastTheEnd()) { 2098 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2099 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) 2100 << !Designator.Entries.empty() << !!VD << VD; 2101 NoteLValueLocation(Info, Base); 2102 } 2103 2104 return true; 2105 } 2106 2107 /// Member pointers are constant expressions unless they point to a 2108 /// non-virtual dllimport member function. 2109 static bool CheckMemberPointerConstantExpression(EvalInfo &Info, 2110 SourceLocation Loc, 2111 QualType Type, 2112 const APValue &Value, 2113 Expr::ConstExprUsage Usage) { 2114 const ValueDecl *Member = Value.getMemberPointerDecl(); 2115 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); 2116 if (!FD) 2117 return true; 2118 return Usage == Expr::EvaluateForMangling || FD->isVirtual() || 2119 !FD->hasAttr<DLLImportAttr>(); 2120 } 2121 2122 /// Check that this core constant expression is of literal type, and if not, 2123 /// produce an appropriate diagnostic. 2124 static bool CheckLiteralType(EvalInfo &Info, const Expr *E, 2125 const LValue *This = nullptr) { 2126 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx)) 2127 return true; 2128 2129 // C++1y: A constant initializer for an object o [...] may also invoke 2130 // constexpr constructors for o and its subobjects even if those objects 2131 // are of non-literal class types. 2132 // 2133 // C++11 missed this detail for aggregates, so classes like this: 2134 // struct foo_t { union { int i; volatile int j; } u; }; 2135 // are not (obviously) initializable like so: 2136 // __attribute__((__require_constant_initialization__)) 2137 // static const foo_t x = {{0}}; 2138 // because "i" is a subobject with non-literal initialization (due to the 2139 // volatile member of the union). See: 2140 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 2141 // Therefore, we use the C++1y behavior. 2142 if (This && Info.EvaluatingDecl == This->getLValueBase()) 2143 return true; 2144 2145 // Prvalue constant expressions must be of literal types. 2146 if (Info.getLangOpts().CPlusPlus11) 2147 Info.FFDiag(E, diag::note_constexpr_nonliteral) 2148 << E->getType(); 2149 else 2150 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2151 return false; 2152 } 2153 2154 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2155 EvalInfo &Info, SourceLocation DiagLoc, 2156 QualType Type, const APValue &Value, 2157 Expr::ConstExprUsage Usage, 2158 SourceLocation SubobjectLoc, 2159 CheckedTemporaries &CheckedTemps) { 2160 if (!Value.hasValue()) { 2161 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2162 << true << Type; 2163 if (SubobjectLoc.isValid()) 2164 Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here); 2165 return false; 2166 } 2167 2168 // We allow _Atomic(T) to be initialized from anything that T can be 2169 // initialized from. 2170 if (const AtomicType *AT = Type->getAs<AtomicType>()) 2171 Type = AT->getValueType(); 2172 2173 // Core issue 1454: For a literal constant expression of array or class type, 2174 // each subobject of its value shall have been initialized by a constant 2175 // expression. 2176 if (Value.isArray()) { 2177 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); 2178 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { 2179 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2180 Value.getArrayInitializedElt(I), Usage, 2181 SubobjectLoc, CheckedTemps)) 2182 return false; 2183 } 2184 if (!Value.hasArrayFiller()) 2185 return true; 2186 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2187 Value.getArrayFiller(), Usage, SubobjectLoc, 2188 CheckedTemps); 2189 } 2190 if (Value.isUnion() && Value.getUnionField()) { 2191 return CheckEvaluationResult( 2192 CERK, Info, DiagLoc, Value.getUnionField()->getType(), 2193 Value.getUnionValue(), Usage, Value.getUnionField()->getLocation(), 2194 CheckedTemps); 2195 } 2196 if (Value.isStruct()) { 2197 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 2198 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 2199 unsigned BaseIndex = 0; 2200 for (const CXXBaseSpecifier &BS : CD->bases()) { 2201 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), 2202 Value.getStructBase(BaseIndex), Usage, 2203 BS.getBeginLoc(), CheckedTemps)) 2204 return false; 2205 ++BaseIndex; 2206 } 2207 } 2208 for (const auto *I : RD->fields()) { 2209 if (I->isUnnamedBitfield()) 2210 continue; 2211 2212 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), 2213 Value.getStructField(I->getFieldIndex()), 2214 Usage, I->getLocation(), CheckedTemps)) 2215 return false; 2216 } 2217 } 2218 2219 if (Value.isLValue() && 2220 CERK == CheckEvaluationResultKind::ConstantExpression) { 2221 LValue LVal; 2222 LVal.setFrom(Info.Ctx, Value); 2223 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage, 2224 CheckedTemps); 2225 } 2226 2227 if (Value.isMemberPointer() && 2228 CERK == CheckEvaluationResultKind::ConstantExpression) 2229 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage); 2230 2231 // Everything else is fine. 2232 return true; 2233 } 2234 2235 /// Check that this core constant expression value is a valid value for a 2236 /// constant expression. If not, report an appropriate diagnostic. Does not 2237 /// check that the expression is of literal type. 2238 static bool 2239 CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type, 2240 const APValue &Value, 2241 Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) { 2242 CheckedTemporaries CheckedTemps; 2243 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2244 Info, DiagLoc, Type, Value, Usage, 2245 SourceLocation(), CheckedTemps); 2246 } 2247 2248 /// Check that this evaluated value is fully-initialized and can be loaded by 2249 /// an lvalue-to-rvalue conversion. 2250 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, 2251 QualType Type, const APValue &Value) { 2252 CheckedTemporaries CheckedTemps; 2253 return CheckEvaluationResult( 2254 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, 2255 Expr::EvaluateForCodeGen, SourceLocation(), CheckedTemps); 2256 } 2257 2258 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless 2259 /// "the allocated storage is deallocated within the evaluation". 2260 static bool CheckMemoryLeaks(EvalInfo &Info) { 2261 if (!Info.HeapAllocs.empty()) { 2262 // We can still fold to a constant despite a compile-time memory leak, 2263 // so long as the heap allocation isn't referenced in the result (we check 2264 // that in CheckConstantExpression). 2265 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, 2266 diag::note_constexpr_memory_leak) 2267 << unsigned(Info.HeapAllocs.size() - 1); 2268 } 2269 return true; 2270 } 2271 2272 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { 2273 // A null base expression indicates a null pointer. These are always 2274 // evaluatable, and they are false unless the offset is zero. 2275 if (!Value.getLValueBase()) { 2276 Result = !Value.getLValueOffset().isZero(); 2277 return true; 2278 } 2279 2280 // We have a non-null base. These are generally known to be true, but if it's 2281 // a weak declaration it can be null at runtime. 2282 Result = true; 2283 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); 2284 return !Decl || !Decl->isWeak(); 2285 } 2286 2287 static bool HandleConversionToBool(const APValue &Val, bool &Result) { 2288 switch (Val.getKind()) { 2289 case APValue::None: 2290 case APValue::Indeterminate: 2291 return false; 2292 case APValue::Int: 2293 Result = Val.getInt().getBoolValue(); 2294 return true; 2295 case APValue::FixedPoint: 2296 Result = Val.getFixedPoint().getBoolValue(); 2297 return true; 2298 case APValue::Float: 2299 Result = !Val.getFloat().isZero(); 2300 return true; 2301 case APValue::ComplexInt: 2302 Result = Val.getComplexIntReal().getBoolValue() || 2303 Val.getComplexIntImag().getBoolValue(); 2304 return true; 2305 case APValue::ComplexFloat: 2306 Result = !Val.getComplexFloatReal().isZero() || 2307 !Val.getComplexFloatImag().isZero(); 2308 return true; 2309 case APValue::LValue: 2310 return EvalPointerValueAsBool(Val, Result); 2311 case APValue::MemberPointer: 2312 Result = Val.getMemberPointerDecl(); 2313 return true; 2314 case APValue::Vector: 2315 case APValue::Array: 2316 case APValue::Struct: 2317 case APValue::Union: 2318 case APValue::AddrLabelDiff: 2319 return false; 2320 } 2321 2322 llvm_unreachable("unknown APValue kind"); 2323 } 2324 2325 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, 2326 EvalInfo &Info) { 2327 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"); 2328 APValue Val; 2329 if (!Evaluate(Val, Info, E)) 2330 return false; 2331 return HandleConversionToBool(Val, Result); 2332 } 2333 2334 template<typename T> 2335 static bool HandleOverflow(EvalInfo &Info, const Expr *E, 2336 const T &SrcValue, QualType DestType) { 2337 Info.CCEDiag(E, diag::note_constexpr_overflow) 2338 << SrcValue << DestType; 2339 return Info.noteUndefinedBehavior(); 2340 } 2341 2342 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, 2343 QualType SrcType, const APFloat &Value, 2344 QualType DestType, APSInt &Result) { 2345 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2346 // Determine whether we are converting to unsigned or signed. 2347 bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); 2348 2349 Result = APSInt(DestWidth, !DestSigned); 2350 bool ignored; 2351 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) 2352 & APFloat::opInvalidOp) 2353 return HandleOverflow(Info, E, Value, DestType); 2354 return true; 2355 } 2356 2357 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, 2358 QualType SrcType, QualType DestType, 2359 APFloat &Result) { 2360 APFloat Value = Result; 2361 bool ignored; 2362 Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), 2363 APFloat::rmNearestTiesToEven, &ignored); 2364 return true; 2365 } 2366 2367 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, 2368 QualType DestType, QualType SrcType, 2369 const APSInt &Value) { 2370 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2371 // Figure out if this is a truncate, extend or noop cast. 2372 // If the input is signed, do a sign extend, noop, or truncate. 2373 APSInt Result = Value.extOrTrunc(DestWidth); 2374 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); 2375 if (DestType->isBooleanType()) 2376 Result = Value.getBoolValue(); 2377 return Result; 2378 } 2379 2380 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, 2381 QualType SrcType, const APSInt &Value, 2382 QualType DestType, APFloat &Result) { 2383 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); 2384 Result.convertFromAPInt(Value, Value.isSigned(), 2385 APFloat::rmNearestTiesToEven); 2386 return true; 2387 } 2388 2389 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, 2390 APValue &Value, const FieldDecl *FD) { 2391 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); 2392 2393 if (!Value.isInt()) { 2394 // Trying to store a pointer-cast-to-integer into a bitfield. 2395 // FIXME: In this case, we should provide the diagnostic for casting 2396 // a pointer to an integer. 2397 assert(Value.isLValue() && "integral value neither int nor lvalue?"); 2398 Info.FFDiag(E); 2399 return false; 2400 } 2401 2402 APSInt &Int = Value.getInt(); 2403 unsigned OldBitWidth = Int.getBitWidth(); 2404 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); 2405 if (NewBitWidth < OldBitWidth) 2406 Int = Int.trunc(NewBitWidth).extend(OldBitWidth); 2407 return true; 2408 } 2409 2410 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, 2411 llvm::APInt &Res) { 2412 APValue SVal; 2413 if (!Evaluate(SVal, Info, E)) 2414 return false; 2415 if (SVal.isInt()) { 2416 Res = SVal.getInt(); 2417 return true; 2418 } 2419 if (SVal.isFloat()) { 2420 Res = SVal.getFloat().bitcastToAPInt(); 2421 return true; 2422 } 2423 if (SVal.isVector()) { 2424 QualType VecTy = E->getType(); 2425 unsigned VecSize = Info.Ctx.getTypeSize(VecTy); 2426 QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); 2427 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 2428 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 2429 Res = llvm::APInt::getNullValue(VecSize); 2430 for (unsigned i = 0; i < SVal.getVectorLength(); i++) { 2431 APValue &Elt = SVal.getVectorElt(i); 2432 llvm::APInt EltAsInt; 2433 if (Elt.isInt()) { 2434 EltAsInt = Elt.getInt(); 2435 } else if (Elt.isFloat()) { 2436 EltAsInt = Elt.getFloat().bitcastToAPInt(); 2437 } else { 2438 // Don't try to handle vectors of anything other than int or float 2439 // (not sure if it's possible to hit this case). 2440 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2441 return false; 2442 } 2443 unsigned BaseEltSize = EltAsInt.getBitWidth(); 2444 if (BigEndian) 2445 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); 2446 else 2447 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); 2448 } 2449 return true; 2450 } 2451 // Give up if the input isn't an int, float, or vector. For example, we 2452 // reject "(v4i16)(intptr_t)&a". 2453 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2454 return false; 2455 } 2456 2457 /// Perform the given integer operation, which is known to need at most BitWidth 2458 /// bits, and check for overflow in the original type (if that type was not an 2459 /// unsigned type). 2460 template<typename Operation> 2461 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, 2462 const APSInt &LHS, const APSInt &RHS, 2463 unsigned BitWidth, Operation Op, 2464 APSInt &Result) { 2465 if (LHS.isUnsigned()) { 2466 Result = Op(LHS, RHS); 2467 return true; 2468 } 2469 2470 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); 2471 Result = Value.trunc(LHS.getBitWidth()); 2472 if (Result.extend(BitWidth) != Value) { 2473 if (Info.checkingForUndefinedBehavior()) 2474 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 2475 diag::warn_integer_constant_overflow) 2476 << Result.toString(10) << E->getType(); 2477 else 2478 return HandleOverflow(Info, E, Value, E->getType()); 2479 } 2480 return true; 2481 } 2482 2483 /// Perform the given binary integer operation. 2484 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, 2485 BinaryOperatorKind Opcode, APSInt RHS, 2486 APSInt &Result) { 2487 switch (Opcode) { 2488 default: 2489 Info.FFDiag(E); 2490 return false; 2491 case BO_Mul: 2492 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, 2493 std::multiplies<APSInt>(), Result); 2494 case BO_Add: 2495 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2496 std::plus<APSInt>(), Result); 2497 case BO_Sub: 2498 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2499 std::minus<APSInt>(), Result); 2500 case BO_And: Result = LHS & RHS; return true; 2501 case BO_Xor: Result = LHS ^ RHS; return true; 2502 case BO_Or: Result = LHS | RHS; return true; 2503 case BO_Div: 2504 case BO_Rem: 2505 if (RHS == 0) { 2506 Info.FFDiag(E, diag::note_expr_divide_by_zero); 2507 return false; 2508 } 2509 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); 2510 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports 2511 // this operation and gives the two's complement result. 2512 if (RHS.isNegative() && RHS.isAllOnesValue() && 2513 LHS.isSigned() && LHS.isMinSignedValue()) 2514 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), 2515 E->getType()); 2516 return true; 2517 case BO_Shl: { 2518 if (Info.getLangOpts().OpenCL) 2519 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2520 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2521 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2522 RHS.isUnsigned()); 2523 else if (RHS.isSigned() && RHS.isNegative()) { 2524 // During constant-folding, a negative shift is an opposite shift. Such 2525 // a shift is not a constant expression. 2526 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2527 RHS = -RHS; 2528 goto shift_right; 2529 } 2530 shift_left: 2531 // C++11 [expr.shift]p1: Shift width must be less than the bit width of 2532 // the shifted type. 2533 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2534 if (SA != RHS) { 2535 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2536 << RHS << E->getType() << LHS.getBitWidth(); 2537 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus2a) { 2538 // C++11 [expr.shift]p2: A signed left shift must have a non-negative 2539 // operand, and must not overflow the corresponding unsigned type. 2540 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to 2541 // E1 x 2^E2 module 2^N. 2542 if (LHS.isNegative()) 2543 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; 2544 else if (LHS.countLeadingZeros() < SA) 2545 Info.CCEDiag(E, diag::note_constexpr_lshift_discards); 2546 } 2547 Result = LHS << SA; 2548 return true; 2549 } 2550 case BO_Shr: { 2551 if (Info.getLangOpts().OpenCL) 2552 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2553 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2554 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2555 RHS.isUnsigned()); 2556 else if (RHS.isSigned() && RHS.isNegative()) { 2557 // During constant-folding, a negative shift is an opposite shift. Such a 2558 // shift is not a constant expression. 2559 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2560 RHS = -RHS; 2561 goto shift_left; 2562 } 2563 shift_right: 2564 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the 2565 // shifted type. 2566 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2567 if (SA != RHS) 2568 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2569 << RHS << E->getType() << LHS.getBitWidth(); 2570 Result = LHS >> SA; 2571 return true; 2572 } 2573 2574 case BO_LT: Result = LHS < RHS; return true; 2575 case BO_GT: Result = LHS > RHS; return true; 2576 case BO_LE: Result = LHS <= RHS; return true; 2577 case BO_GE: Result = LHS >= RHS; return true; 2578 case BO_EQ: Result = LHS == RHS; return true; 2579 case BO_NE: Result = LHS != RHS; return true; 2580 case BO_Cmp: 2581 llvm_unreachable("BO_Cmp should be handled elsewhere"); 2582 } 2583 } 2584 2585 /// Perform the given binary floating-point operation, in-place, on LHS. 2586 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E, 2587 APFloat &LHS, BinaryOperatorKind Opcode, 2588 const APFloat &RHS) { 2589 switch (Opcode) { 2590 default: 2591 Info.FFDiag(E); 2592 return false; 2593 case BO_Mul: 2594 LHS.multiply(RHS, APFloat::rmNearestTiesToEven); 2595 break; 2596 case BO_Add: 2597 LHS.add(RHS, APFloat::rmNearestTiesToEven); 2598 break; 2599 case BO_Sub: 2600 LHS.subtract(RHS, APFloat::rmNearestTiesToEven); 2601 break; 2602 case BO_Div: 2603 // [expr.mul]p4: 2604 // If the second operand of / or % is zero the behavior is undefined. 2605 if (RHS.isZero()) 2606 Info.CCEDiag(E, diag::note_expr_divide_by_zero); 2607 LHS.divide(RHS, APFloat::rmNearestTiesToEven); 2608 break; 2609 } 2610 2611 // [expr.pre]p4: 2612 // If during the evaluation of an expression, the result is not 2613 // mathematically defined [...], the behavior is undefined. 2614 // FIXME: C++ rules require us to not conform to IEEE 754 here. 2615 if (LHS.isNaN()) { 2616 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); 2617 return Info.noteUndefinedBehavior(); 2618 } 2619 return true; 2620 } 2621 2622 /// Cast an lvalue referring to a base subobject to a derived class, by 2623 /// truncating the lvalue's path to the given length. 2624 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, 2625 const RecordDecl *TruncatedType, 2626 unsigned TruncatedElements) { 2627 SubobjectDesignator &D = Result.Designator; 2628 2629 // Check we actually point to a derived class object. 2630 if (TruncatedElements == D.Entries.size()) 2631 return true; 2632 assert(TruncatedElements >= D.MostDerivedPathLength && 2633 "not casting to a derived class"); 2634 if (!Result.checkSubobject(Info, E, CSK_Derived)) 2635 return false; 2636 2637 // Truncate the path to the subobject, and remove any derived-to-base offsets. 2638 const RecordDecl *RD = TruncatedType; 2639 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { 2640 if (RD->isInvalidDecl()) return false; 2641 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 2642 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); 2643 if (isVirtualBaseClass(D.Entries[I])) 2644 Result.Offset -= Layout.getVBaseClassOffset(Base); 2645 else 2646 Result.Offset -= Layout.getBaseClassOffset(Base); 2647 RD = Base; 2648 } 2649 D.Entries.resize(TruncatedElements); 2650 return true; 2651 } 2652 2653 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, 2654 const CXXRecordDecl *Derived, 2655 const CXXRecordDecl *Base, 2656 const ASTRecordLayout *RL = nullptr) { 2657 if (!RL) { 2658 if (Derived->isInvalidDecl()) return false; 2659 RL = &Info.Ctx.getASTRecordLayout(Derived); 2660 } 2661 2662 Obj.getLValueOffset() += RL->getBaseClassOffset(Base); 2663 Obj.addDecl(Info, E, Base, /*Virtual*/ false); 2664 return true; 2665 } 2666 2667 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, 2668 const CXXRecordDecl *DerivedDecl, 2669 const CXXBaseSpecifier *Base) { 2670 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 2671 2672 if (!Base->isVirtual()) 2673 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); 2674 2675 SubobjectDesignator &D = Obj.Designator; 2676 if (D.Invalid) 2677 return false; 2678 2679 // Extract most-derived object and corresponding type. 2680 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); 2681 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) 2682 return false; 2683 2684 // Find the virtual base class. 2685 if (DerivedDecl->isInvalidDecl()) return false; 2686 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); 2687 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); 2688 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); 2689 return true; 2690 } 2691 2692 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, 2693 QualType Type, LValue &Result) { 2694 for (CastExpr::path_const_iterator PathI = E->path_begin(), 2695 PathE = E->path_end(); 2696 PathI != PathE; ++PathI) { 2697 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), 2698 *PathI)) 2699 return false; 2700 Type = (*PathI)->getType(); 2701 } 2702 return true; 2703 } 2704 2705 /// Cast an lvalue referring to a derived class to a known base subobject. 2706 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, 2707 const CXXRecordDecl *DerivedRD, 2708 const CXXRecordDecl *BaseRD) { 2709 CXXBasePaths Paths(/*FindAmbiguities=*/false, 2710 /*RecordPaths=*/true, /*DetectVirtual=*/false); 2711 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 2712 llvm_unreachable("Class must be derived from the passed in base class!"); 2713 2714 for (CXXBasePathElement &Elem : Paths.front()) 2715 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) 2716 return false; 2717 return true; 2718 } 2719 2720 /// Update LVal to refer to the given field, which must be a member of the type 2721 /// currently described by LVal. 2722 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, 2723 const FieldDecl *FD, 2724 const ASTRecordLayout *RL = nullptr) { 2725 if (!RL) { 2726 if (FD->getParent()->isInvalidDecl()) return false; 2727 RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); 2728 } 2729 2730 unsigned I = FD->getFieldIndex(); 2731 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); 2732 LVal.addDecl(Info, E, FD); 2733 return true; 2734 } 2735 2736 /// Update LVal to refer to the given indirect field. 2737 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, 2738 LValue &LVal, 2739 const IndirectFieldDecl *IFD) { 2740 for (const auto *C : IFD->chain()) 2741 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) 2742 return false; 2743 return true; 2744 } 2745 2746 /// Get the size of the given type in char units. 2747 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, 2748 QualType Type, CharUnits &Size) { 2749 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc 2750 // extension. 2751 if (Type->isVoidType() || Type->isFunctionType()) { 2752 Size = CharUnits::One(); 2753 return true; 2754 } 2755 2756 if (Type->isDependentType()) { 2757 Info.FFDiag(Loc); 2758 return false; 2759 } 2760 2761 if (!Type->isConstantSizeType()) { 2762 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. 2763 // FIXME: Better diagnostic. 2764 Info.FFDiag(Loc); 2765 return false; 2766 } 2767 2768 Size = Info.Ctx.getTypeSizeInChars(Type); 2769 return true; 2770 } 2771 2772 /// Update a pointer value to model pointer arithmetic. 2773 /// \param Info - Information about the ongoing evaluation. 2774 /// \param E - The expression being evaluated, for diagnostic purposes. 2775 /// \param LVal - The pointer value to be updated. 2776 /// \param EltTy - The pointee type represented by LVal. 2777 /// \param Adjustment - The adjustment, in objects of type EltTy, to add. 2778 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 2779 LValue &LVal, QualType EltTy, 2780 APSInt Adjustment) { 2781 CharUnits SizeOfPointee; 2782 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) 2783 return false; 2784 2785 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); 2786 return true; 2787 } 2788 2789 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 2790 LValue &LVal, QualType EltTy, 2791 int64_t Adjustment) { 2792 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, 2793 APSInt::get(Adjustment)); 2794 } 2795 2796 /// Update an lvalue to refer to a component of a complex number. 2797 /// \param Info - Information about the ongoing evaluation. 2798 /// \param LVal - The lvalue to be updated. 2799 /// \param EltTy - The complex number's component type. 2800 /// \param Imag - False for the real component, true for the imaginary. 2801 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, 2802 LValue &LVal, QualType EltTy, 2803 bool Imag) { 2804 if (Imag) { 2805 CharUnits SizeOfComponent; 2806 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) 2807 return false; 2808 LVal.Offset += SizeOfComponent; 2809 } 2810 LVal.addComplex(Info, E, EltTy, Imag); 2811 return true; 2812 } 2813 2814 /// Try to evaluate the initializer for a variable declaration. 2815 /// 2816 /// \param Info Information about the ongoing evaluation. 2817 /// \param E An expression to be used when printing diagnostics. 2818 /// \param VD The variable whose initializer should be obtained. 2819 /// \param Frame The frame in which the variable was created. Must be null 2820 /// if this variable is not local to the evaluation. 2821 /// \param Result Filled in with a pointer to the value of the variable. 2822 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, 2823 const VarDecl *VD, CallStackFrame *Frame, 2824 APValue *&Result, const LValue *LVal) { 2825 2826 // If this is a parameter to an active constexpr function call, perform 2827 // argument substitution. 2828 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) { 2829 // Assume arguments of a potential constant expression are unknown 2830 // constant expressions. 2831 if (Info.checkingPotentialConstantExpression()) 2832 return false; 2833 if (!Frame || !Frame->Arguments) { 2834 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2835 return false; 2836 } 2837 Result = &Frame->Arguments[PVD->getFunctionScopeIndex()]; 2838 return true; 2839 } 2840 2841 // If this is a local variable, dig out its value. 2842 if (Frame) { 2843 Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion()) 2844 : Frame->getCurrentTemporary(VD); 2845 if (!Result) { 2846 // Assume variables referenced within a lambda's call operator that were 2847 // not declared within the call operator are captures and during checking 2848 // of a potential constant expression, assume they are unknown constant 2849 // expressions. 2850 assert(isLambdaCallOperator(Frame->Callee) && 2851 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && 2852 "missing value for local variable"); 2853 if (Info.checkingPotentialConstantExpression()) 2854 return false; 2855 // FIXME: implement capture evaluation during constant expr evaluation. 2856 Info.FFDiag(E->getBeginLoc(), 2857 diag::note_unimplemented_constexpr_lambda_feature_ast) 2858 << "captures not currently allowed"; 2859 return false; 2860 } 2861 return true; 2862 } 2863 2864 // Dig out the initializer, and use the declaration which it's attached to. 2865 const Expr *Init = VD->getAnyInitializer(VD); 2866 if (!Init || Init->isValueDependent()) { 2867 // If we're checking a potential constant expression, the variable could be 2868 // initialized later. 2869 if (!Info.checkingPotentialConstantExpression()) 2870 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2871 return false; 2872 } 2873 2874 // If we're currently evaluating the initializer of this declaration, use that 2875 // in-flight value. 2876 if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) { 2877 Result = Info.EvaluatingDeclValue; 2878 return true; 2879 } 2880 2881 // Never evaluate the initializer of a weak variable. We can't be sure that 2882 // this is the definition which will be used. 2883 if (VD->isWeak()) { 2884 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2885 return false; 2886 } 2887 2888 // Check that we can fold the initializer. In C++, we will have already done 2889 // this in the cases where it matters for conformance. 2890 SmallVector<PartialDiagnosticAt, 8> Notes; 2891 if (!VD->evaluateValue(Notes)) { 2892 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 2893 Notes.size() + 1) << VD; 2894 Info.Note(VD->getLocation(), diag::note_declared_at); 2895 Info.addNotes(Notes); 2896 return false; 2897 } else if (!VD->checkInitIsICE()) { 2898 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 2899 Notes.size() + 1) << VD; 2900 Info.Note(VD->getLocation(), diag::note_declared_at); 2901 Info.addNotes(Notes); 2902 } 2903 2904 Result = VD->getEvaluatedValue(); 2905 return true; 2906 } 2907 2908 static bool IsConstNonVolatile(QualType T) { 2909 Qualifiers Quals = T.getQualifiers(); 2910 return Quals.hasConst() && !Quals.hasVolatile(); 2911 } 2912 2913 /// Get the base index of the given base class within an APValue representing 2914 /// the given derived class. 2915 static unsigned getBaseIndex(const CXXRecordDecl *Derived, 2916 const CXXRecordDecl *Base) { 2917 Base = Base->getCanonicalDecl(); 2918 unsigned Index = 0; 2919 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), 2920 E = Derived->bases_end(); I != E; ++I, ++Index) { 2921 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) 2922 return Index; 2923 } 2924 2925 llvm_unreachable("base class missing from derived class's bases list"); 2926 } 2927 2928 /// Extract the value of a character from a string literal. 2929 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, 2930 uint64_t Index) { 2931 assert(!isa<SourceLocExpr>(Lit) && 2932 "SourceLocExpr should have already been converted to a StringLiteral"); 2933 2934 // FIXME: Support MakeStringConstant 2935 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { 2936 std::string Str; 2937 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); 2938 assert(Index <= Str.size() && "Index too large"); 2939 return APSInt::getUnsigned(Str.c_str()[Index]); 2940 } 2941 2942 if (auto PE = dyn_cast<PredefinedExpr>(Lit)) 2943 Lit = PE->getFunctionName(); 2944 const StringLiteral *S = cast<StringLiteral>(Lit); 2945 const ConstantArrayType *CAT = 2946 Info.Ctx.getAsConstantArrayType(S->getType()); 2947 assert(CAT && "string literal isn't an array"); 2948 QualType CharType = CAT->getElementType(); 2949 assert(CharType->isIntegerType() && "unexpected character type"); 2950 2951 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 2952 CharType->isUnsignedIntegerType()); 2953 if (Index < S->getLength()) 2954 Value = S->getCodeUnit(Index); 2955 return Value; 2956 } 2957 2958 // Expand a string literal into an array of characters. 2959 // 2960 // FIXME: This is inefficient; we should probably introduce something similar 2961 // to the LLVM ConstantDataArray to make this cheaper. 2962 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, 2963 APValue &Result, 2964 QualType AllocType = QualType()) { 2965 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 2966 AllocType.isNull() ? S->getType() : AllocType); 2967 assert(CAT && "string literal isn't an array"); 2968 QualType CharType = CAT->getElementType(); 2969 assert(CharType->isIntegerType() && "unexpected character type"); 2970 2971 unsigned Elts = CAT->getSize().getZExtValue(); 2972 Result = APValue(APValue::UninitArray(), 2973 std::min(S->getLength(), Elts), Elts); 2974 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 2975 CharType->isUnsignedIntegerType()); 2976 if (Result.hasArrayFiller()) 2977 Result.getArrayFiller() = APValue(Value); 2978 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { 2979 Value = S->getCodeUnit(I); 2980 Result.getArrayInitializedElt(I) = APValue(Value); 2981 } 2982 } 2983 2984 // Expand an array so that it has more than Index filled elements. 2985 static void expandArray(APValue &Array, unsigned Index) { 2986 unsigned Size = Array.getArraySize(); 2987 assert(Index < Size); 2988 2989 // Always at least double the number of elements for which we store a value. 2990 unsigned OldElts = Array.getArrayInitializedElts(); 2991 unsigned NewElts = std::max(Index+1, OldElts * 2); 2992 NewElts = std::min(Size, std::max(NewElts, 8u)); 2993 2994 // Copy the data across. 2995 APValue NewValue(APValue::UninitArray(), NewElts, Size); 2996 for (unsigned I = 0; I != OldElts; ++I) 2997 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); 2998 for (unsigned I = OldElts; I != NewElts; ++I) 2999 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); 3000 if (NewValue.hasArrayFiller()) 3001 NewValue.getArrayFiller() = Array.getArrayFiller(); 3002 Array.swap(NewValue); 3003 } 3004 3005 /// Determine whether a type would actually be read by an lvalue-to-rvalue 3006 /// conversion. If it's of class type, we may assume that the copy operation 3007 /// is trivial. Note that this is never true for a union type with fields 3008 /// (because the copy always "reads" the active member) and always true for 3009 /// a non-class type. 3010 static bool isReadByLvalueToRvalueConversion(QualType T) { 3011 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3012 if (!RD || (RD->isUnion() && !RD->field_empty())) 3013 return true; 3014 if (RD->isEmpty()) 3015 return false; 3016 3017 for (auto *Field : RD->fields()) 3018 if (isReadByLvalueToRvalueConversion(Field->getType())) 3019 return true; 3020 3021 for (auto &BaseSpec : RD->bases()) 3022 if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) 3023 return true; 3024 3025 return false; 3026 } 3027 3028 /// Diagnose an attempt to read from any unreadable field within the specified 3029 /// type, which might be a class type. 3030 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, 3031 QualType T) { 3032 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3033 if (!RD) 3034 return false; 3035 3036 if (!RD->hasMutableFields()) 3037 return false; 3038 3039 for (auto *Field : RD->fields()) { 3040 // If we're actually going to read this field in some way, then it can't 3041 // be mutable. If we're in a union, then assigning to a mutable field 3042 // (even an empty one) can change the active member, so that's not OK. 3043 // FIXME: Add core issue number for the union case. 3044 if (Field->isMutable() && 3045 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { 3046 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; 3047 Info.Note(Field->getLocation(), diag::note_declared_at); 3048 return true; 3049 } 3050 3051 if (diagnoseMutableFields(Info, E, AK, Field->getType())) 3052 return true; 3053 } 3054 3055 for (auto &BaseSpec : RD->bases()) 3056 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) 3057 return true; 3058 3059 // All mutable fields were empty, and thus not actually read. 3060 return false; 3061 } 3062 3063 static bool lifetimeStartedInEvaluation(EvalInfo &Info, 3064 APValue::LValueBase Base, 3065 bool MutableSubobject = false) { 3066 // A temporary we created. 3067 if (Base.getCallIndex()) 3068 return true; 3069 3070 auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>(); 3071 if (!Evaluating) 3072 return false; 3073 3074 auto *BaseD = Base.dyn_cast<const ValueDecl*>(); 3075 3076 switch (Info.IsEvaluatingDecl) { 3077 case EvalInfo::EvaluatingDeclKind::None: 3078 return false; 3079 3080 case EvalInfo::EvaluatingDeclKind::Ctor: 3081 // The variable whose initializer we're evaluating. 3082 if (BaseD) 3083 return declaresSameEntity(Evaluating, BaseD); 3084 3085 // A temporary lifetime-extended by the variable whose initializer we're 3086 // evaluating. 3087 if (auto *BaseE = Base.dyn_cast<const Expr *>()) 3088 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) 3089 return declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating); 3090 return false; 3091 3092 case EvalInfo::EvaluatingDeclKind::Dtor: 3093 // C++2a [expr.const]p6: 3094 // [during constant destruction] the lifetime of a and its non-mutable 3095 // subobjects (but not its mutable subobjects) [are] considered to start 3096 // within e. 3097 // 3098 // FIXME: We can meaningfully extend this to cover non-const objects, but 3099 // we will need special handling: we should be able to access only 3100 // subobjects of such objects that are themselves declared const. 3101 if (!BaseD || 3102 !(BaseD->getType().isConstQualified() || 3103 BaseD->getType()->isReferenceType()) || 3104 MutableSubobject) 3105 return false; 3106 return declaresSameEntity(Evaluating, BaseD); 3107 } 3108 3109 llvm_unreachable("unknown evaluating decl kind"); 3110 } 3111 3112 namespace { 3113 /// A handle to a complete object (an object that is not a subobject of 3114 /// another object). 3115 struct CompleteObject { 3116 /// The identity of the object. 3117 APValue::LValueBase Base; 3118 /// The value of the complete object. 3119 APValue *Value; 3120 /// The type of the complete object. 3121 QualType Type; 3122 3123 CompleteObject() : Value(nullptr) {} 3124 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) 3125 : Base(Base), Value(Value), Type(Type) {} 3126 3127 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { 3128 // In C++14 onwards, it is permitted to read a mutable member whose 3129 // lifetime began within the evaluation. 3130 // FIXME: Should we also allow this in C++11? 3131 if (!Info.getLangOpts().CPlusPlus14) 3132 return false; 3133 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); 3134 } 3135 3136 explicit operator bool() const { return !Type.isNull(); } 3137 }; 3138 } // end anonymous namespace 3139 3140 static QualType getSubobjectType(QualType ObjType, QualType SubobjType, 3141 bool IsMutable = false) { 3142 // C++ [basic.type.qualifier]p1: 3143 // - A const object is an object of type const T or a non-mutable subobject 3144 // of a const object. 3145 if (ObjType.isConstQualified() && !IsMutable) 3146 SubobjType.addConst(); 3147 // - A volatile object is an object of type const T or a subobject of a 3148 // volatile object. 3149 if (ObjType.isVolatileQualified()) 3150 SubobjType.addVolatile(); 3151 return SubobjType; 3152 } 3153 3154 /// Find the designated sub-object of an rvalue. 3155 template<typename SubobjectHandler> 3156 typename SubobjectHandler::result_type 3157 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, 3158 const SubobjectDesignator &Sub, SubobjectHandler &handler) { 3159 if (Sub.Invalid) 3160 // A diagnostic will have already been produced. 3161 return handler.failed(); 3162 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { 3163 if (Info.getLangOpts().CPlusPlus11) 3164 Info.FFDiag(E, Sub.isOnePastTheEnd() 3165 ? diag::note_constexpr_access_past_end 3166 : diag::note_constexpr_access_unsized_array) 3167 << handler.AccessKind; 3168 else 3169 Info.FFDiag(E); 3170 return handler.failed(); 3171 } 3172 3173 APValue *O = Obj.Value; 3174 QualType ObjType = Obj.Type; 3175 const FieldDecl *LastField = nullptr; 3176 const FieldDecl *VolatileField = nullptr; 3177 3178 // Walk the designator's path to find the subobject. 3179 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { 3180 // Reading an indeterminate value is undefined, but assigning over one is OK. 3181 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || 3182 (O->isIndeterminate() && handler.AccessKind != AK_Construct && 3183 handler.AccessKind != AK_Assign && 3184 handler.AccessKind != AK_ReadObjectRepresentation)) { 3185 if (!Info.checkingPotentialConstantExpression()) 3186 Info.FFDiag(E, diag::note_constexpr_access_uninit) 3187 << handler.AccessKind << O->isIndeterminate(); 3188 return handler.failed(); 3189 } 3190 3191 // C++ [class.ctor]p5, C++ [class.dtor]p5: 3192 // const and volatile semantics are not applied on an object under 3193 // {con,de}struction. 3194 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && 3195 ObjType->isRecordType() && 3196 Info.isEvaluatingCtorDtor( 3197 Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), 3198 Sub.Entries.begin() + I)) != 3199 ConstructionPhase::None) { 3200 ObjType = Info.Ctx.getCanonicalType(ObjType); 3201 ObjType.removeLocalConst(); 3202 ObjType.removeLocalVolatile(); 3203 } 3204 3205 // If this is our last pass, check that the final object type is OK. 3206 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { 3207 // Accesses to volatile objects are prohibited. 3208 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { 3209 if (Info.getLangOpts().CPlusPlus) { 3210 int DiagKind; 3211 SourceLocation Loc; 3212 const NamedDecl *Decl = nullptr; 3213 if (VolatileField) { 3214 DiagKind = 2; 3215 Loc = VolatileField->getLocation(); 3216 Decl = VolatileField; 3217 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { 3218 DiagKind = 1; 3219 Loc = VD->getLocation(); 3220 Decl = VD; 3221 } else { 3222 DiagKind = 0; 3223 if (auto *E = Obj.Base.dyn_cast<const Expr *>()) 3224 Loc = E->getExprLoc(); 3225 } 3226 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) 3227 << handler.AccessKind << DiagKind << Decl; 3228 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; 3229 } else { 3230 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 3231 } 3232 return handler.failed(); 3233 } 3234 3235 // If we are reading an object of class type, there may still be more 3236 // things we need to check: if there are any mutable subobjects, we 3237 // cannot perform this read. (This only happens when performing a trivial 3238 // copy or assignment.) 3239 if (ObjType->isRecordType() && 3240 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && 3241 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) 3242 return handler.failed(); 3243 } 3244 3245 if (I == N) { 3246 if (!handler.found(*O, ObjType)) 3247 return false; 3248 3249 // If we modified a bit-field, truncate it to the right width. 3250 if (isModification(handler.AccessKind) && 3251 LastField && LastField->isBitField() && 3252 !truncateBitfieldValue(Info, E, *O, LastField)) 3253 return false; 3254 3255 return true; 3256 } 3257 3258 LastField = nullptr; 3259 if (ObjType->isArrayType()) { 3260 // Next subobject is an array element. 3261 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); 3262 assert(CAT && "vla in literal type?"); 3263 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3264 if (CAT->getSize().ule(Index)) { 3265 // Note, it should not be possible to form a pointer with a valid 3266 // designator which points more than one past the end of the array. 3267 if (Info.getLangOpts().CPlusPlus11) 3268 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3269 << handler.AccessKind; 3270 else 3271 Info.FFDiag(E); 3272 return handler.failed(); 3273 } 3274 3275 ObjType = CAT->getElementType(); 3276 3277 if (O->getArrayInitializedElts() > Index) 3278 O = &O->getArrayInitializedElt(Index); 3279 else if (!isRead(handler.AccessKind)) { 3280 expandArray(*O, Index); 3281 O = &O->getArrayInitializedElt(Index); 3282 } else 3283 O = &O->getArrayFiller(); 3284 } else if (ObjType->isAnyComplexType()) { 3285 // Next subobject is a complex number. 3286 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3287 if (Index > 1) { 3288 if (Info.getLangOpts().CPlusPlus11) 3289 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3290 << handler.AccessKind; 3291 else 3292 Info.FFDiag(E); 3293 return handler.failed(); 3294 } 3295 3296 ObjType = getSubobjectType( 3297 ObjType, ObjType->castAs<ComplexType>()->getElementType()); 3298 3299 assert(I == N - 1 && "extracting subobject of scalar?"); 3300 if (O->isComplexInt()) { 3301 return handler.found(Index ? O->getComplexIntImag() 3302 : O->getComplexIntReal(), ObjType); 3303 } else { 3304 assert(O->isComplexFloat()); 3305 return handler.found(Index ? O->getComplexFloatImag() 3306 : O->getComplexFloatReal(), ObjType); 3307 } 3308 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { 3309 if (Field->isMutable() && 3310 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { 3311 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) 3312 << handler.AccessKind << Field; 3313 Info.Note(Field->getLocation(), diag::note_declared_at); 3314 return handler.failed(); 3315 } 3316 3317 // Next subobject is a class, struct or union field. 3318 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); 3319 if (RD->isUnion()) { 3320 const FieldDecl *UnionField = O->getUnionField(); 3321 if (!UnionField || 3322 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { 3323 if (I == N - 1 && handler.AccessKind == AK_Construct) { 3324 // Placement new onto an inactive union member makes it active. 3325 O->setUnion(Field, APValue()); 3326 } else { 3327 // FIXME: If O->getUnionValue() is absent, report that there's no 3328 // active union member rather than reporting the prior active union 3329 // member. We'll need to fix nullptr_t to not use APValue() as its 3330 // representation first. 3331 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) 3332 << handler.AccessKind << Field << !UnionField << UnionField; 3333 return handler.failed(); 3334 } 3335 } 3336 O = &O->getUnionValue(); 3337 } else 3338 O = &O->getStructField(Field->getFieldIndex()); 3339 3340 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); 3341 LastField = Field; 3342 if (Field->getType().isVolatileQualified()) 3343 VolatileField = Field; 3344 } else { 3345 // Next subobject is a base class. 3346 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); 3347 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); 3348 O = &O->getStructBase(getBaseIndex(Derived, Base)); 3349 3350 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); 3351 } 3352 } 3353 } 3354 3355 namespace { 3356 struct ExtractSubobjectHandler { 3357 EvalInfo &Info; 3358 const Expr *E; 3359 APValue &Result; 3360 const AccessKinds AccessKind; 3361 3362 typedef bool result_type; 3363 bool failed() { return false; } 3364 bool found(APValue &Subobj, QualType SubobjType) { 3365 Result = Subobj; 3366 if (AccessKind == AK_ReadObjectRepresentation) 3367 return true; 3368 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); 3369 } 3370 bool found(APSInt &Value, QualType SubobjType) { 3371 Result = APValue(Value); 3372 return true; 3373 } 3374 bool found(APFloat &Value, QualType SubobjType) { 3375 Result = APValue(Value); 3376 return true; 3377 } 3378 }; 3379 } // end anonymous namespace 3380 3381 /// Extract the designated sub-object of an rvalue. 3382 static bool extractSubobject(EvalInfo &Info, const Expr *E, 3383 const CompleteObject &Obj, 3384 const SubobjectDesignator &Sub, APValue &Result, 3385 AccessKinds AK = AK_Read) { 3386 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); 3387 ExtractSubobjectHandler Handler = {Info, E, Result, AK}; 3388 return findSubobject(Info, E, Obj, Sub, Handler); 3389 } 3390 3391 namespace { 3392 struct ModifySubobjectHandler { 3393 EvalInfo &Info; 3394 APValue &NewVal; 3395 const Expr *E; 3396 3397 typedef bool result_type; 3398 static const AccessKinds AccessKind = AK_Assign; 3399 3400 bool checkConst(QualType QT) { 3401 // Assigning to a const object has undefined behavior. 3402 if (QT.isConstQualified()) { 3403 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 3404 return false; 3405 } 3406 return true; 3407 } 3408 3409 bool failed() { return false; } 3410 bool found(APValue &Subobj, QualType SubobjType) { 3411 if (!checkConst(SubobjType)) 3412 return false; 3413 // We've been given ownership of NewVal, so just swap it in. 3414 Subobj.swap(NewVal); 3415 return true; 3416 } 3417 bool found(APSInt &Value, QualType SubobjType) { 3418 if (!checkConst(SubobjType)) 3419 return false; 3420 if (!NewVal.isInt()) { 3421 // Maybe trying to write a cast pointer value into a complex? 3422 Info.FFDiag(E); 3423 return false; 3424 } 3425 Value = NewVal.getInt(); 3426 return true; 3427 } 3428 bool found(APFloat &Value, QualType SubobjType) { 3429 if (!checkConst(SubobjType)) 3430 return false; 3431 Value = NewVal.getFloat(); 3432 return true; 3433 } 3434 }; 3435 } // end anonymous namespace 3436 3437 const AccessKinds ModifySubobjectHandler::AccessKind; 3438 3439 /// Update the designated sub-object of an rvalue to the given value. 3440 static bool modifySubobject(EvalInfo &Info, const Expr *E, 3441 const CompleteObject &Obj, 3442 const SubobjectDesignator &Sub, 3443 APValue &NewVal) { 3444 ModifySubobjectHandler Handler = { Info, NewVal, E }; 3445 return findSubobject(Info, E, Obj, Sub, Handler); 3446 } 3447 3448 /// Find the position where two subobject designators diverge, or equivalently 3449 /// the length of the common initial subsequence. 3450 static unsigned FindDesignatorMismatch(QualType ObjType, 3451 const SubobjectDesignator &A, 3452 const SubobjectDesignator &B, 3453 bool &WasArrayIndex) { 3454 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); 3455 for (/**/; I != N; ++I) { 3456 if (!ObjType.isNull() && 3457 (ObjType->isArrayType() || ObjType->isAnyComplexType())) { 3458 // Next subobject is an array element. 3459 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { 3460 WasArrayIndex = true; 3461 return I; 3462 } 3463 if (ObjType->isAnyComplexType()) 3464 ObjType = ObjType->castAs<ComplexType>()->getElementType(); 3465 else 3466 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); 3467 } else { 3468 if (A.Entries[I].getAsBaseOrMember() != 3469 B.Entries[I].getAsBaseOrMember()) { 3470 WasArrayIndex = false; 3471 return I; 3472 } 3473 if (const FieldDecl *FD = getAsField(A.Entries[I])) 3474 // Next subobject is a field. 3475 ObjType = FD->getType(); 3476 else 3477 // Next subobject is a base class. 3478 ObjType = QualType(); 3479 } 3480 } 3481 WasArrayIndex = false; 3482 return I; 3483 } 3484 3485 /// Determine whether the given subobject designators refer to elements of the 3486 /// same array object. 3487 static bool AreElementsOfSameArray(QualType ObjType, 3488 const SubobjectDesignator &A, 3489 const SubobjectDesignator &B) { 3490 if (A.Entries.size() != B.Entries.size()) 3491 return false; 3492 3493 bool IsArray = A.MostDerivedIsArrayElement; 3494 if (IsArray && A.MostDerivedPathLength != A.Entries.size()) 3495 // A is a subobject of the array element. 3496 return false; 3497 3498 // If A (and B) designates an array element, the last entry will be the array 3499 // index. That doesn't have to match. Otherwise, we're in the 'implicit array 3500 // of length 1' case, and the entire path must match. 3501 bool WasArrayIndex; 3502 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); 3503 return CommonLength >= A.Entries.size() - IsArray; 3504 } 3505 3506 /// Find the complete object to which an LValue refers. 3507 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, 3508 AccessKinds AK, const LValue &LVal, 3509 QualType LValType) { 3510 if (LVal.InvalidBase) { 3511 Info.FFDiag(E); 3512 return CompleteObject(); 3513 } 3514 3515 if (!LVal.Base) { 3516 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 3517 return CompleteObject(); 3518 } 3519 3520 CallStackFrame *Frame = nullptr; 3521 unsigned Depth = 0; 3522 if (LVal.getLValueCallIndex()) { 3523 std::tie(Frame, Depth) = 3524 Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); 3525 if (!Frame) { 3526 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) 3527 << AK << LVal.Base.is<const ValueDecl*>(); 3528 NoteLValueLocation(Info, LVal.Base); 3529 return CompleteObject(); 3530 } 3531 } 3532 3533 bool IsAccess = isAnyAccess(AK); 3534 3535 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type 3536 // is not a constant expression (even if the object is non-volatile). We also 3537 // apply this rule to C++98, in order to conform to the expected 'volatile' 3538 // semantics. 3539 if (isFormalAccess(AK) && LValType.isVolatileQualified()) { 3540 if (Info.getLangOpts().CPlusPlus) 3541 Info.FFDiag(E, diag::note_constexpr_access_volatile_type) 3542 << AK << LValType; 3543 else 3544 Info.FFDiag(E); 3545 return CompleteObject(); 3546 } 3547 3548 // Compute value storage location and type of base object. 3549 APValue *BaseVal = nullptr; 3550 QualType BaseType = getType(LVal.Base); 3551 3552 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) { 3553 // In C++98, const, non-volatile integers initialized with ICEs are ICEs. 3554 // In C++11, constexpr, non-volatile variables initialized with constant 3555 // expressions are constant expressions too. Inside constexpr functions, 3556 // parameters are constant expressions even if they're non-const. 3557 // In C++1y, objects local to a constant expression (those with a Frame) are 3558 // both readable and writable inside constant expressions. 3559 // In C, such things can also be folded, although they are not ICEs. 3560 const VarDecl *VD = dyn_cast<VarDecl>(D); 3561 if (VD) { 3562 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) 3563 VD = VDef; 3564 } 3565 if (!VD || VD->isInvalidDecl()) { 3566 Info.FFDiag(E); 3567 return CompleteObject(); 3568 } 3569 3570 // Unless we're looking at a local variable or argument in a constexpr call, 3571 // the variable we're reading must be const. 3572 if (!Frame) { 3573 if (Info.getLangOpts().CPlusPlus14 && 3574 lifetimeStartedInEvaluation(Info, LVal.Base)) { 3575 // OK, we can read and modify an object if we're in the process of 3576 // evaluating its initializer, because its lifetime began in this 3577 // evaluation. 3578 } else if (isModification(AK)) { 3579 // All the remaining cases do not permit modification of the object. 3580 Info.FFDiag(E, diag::note_constexpr_modify_global); 3581 return CompleteObject(); 3582 } else if (VD->isConstexpr()) { 3583 // OK, we can read this variable. 3584 } else if (BaseType->isIntegralOrEnumerationType()) { 3585 // In OpenCL if a variable is in constant address space it is a const 3586 // value. 3587 if (!(BaseType.isConstQualified() || 3588 (Info.getLangOpts().OpenCL && 3589 BaseType.getAddressSpace() == LangAS::opencl_constant))) { 3590 if (!IsAccess) 3591 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 3592 if (Info.getLangOpts().CPlusPlus) { 3593 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; 3594 Info.Note(VD->getLocation(), diag::note_declared_at); 3595 } else { 3596 Info.FFDiag(E); 3597 } 3598 return CompleteObject(); 3599 } 3600 } else if (!IsAccess) { 3601 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 3602 } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) { 3603 // We support folding of const floating-point types, in order to make 3604 // static const data members of such types (supported as an extension) 3605 // more useful. 3606 if (Info.getLangOpts().CPlusPlus11) { 3607 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; 3608 Info.Note(VD->getLocation(), diag::note_declared_at); 3609 } else { 3610 Info.CCEDiag(E); 3611 } 3612 } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) { 3613 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD; 3614 // Keep evaluating to see what we can do. 3615 } else { 3616 // FIXME: Allow folding of values of any literal type in all languages. 3617 if (Info.checkingPotentialConstantExpression() && 3618 VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) { 3619 // The definition of this variable could be constexpr. We can't 3620 // access it right now, but may be able to in future. 3621 } else if (Info.getLangOpts().CPlusPlus11) { 3622 Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; 3623 Info.Note(VD->getLocation(), diag::note_declared_at); 3624 } else { 3625 Info.FFDiag(E); 3626 } 3627 return CompleteObject(); 3628 } 3629 } 3630 3631 if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal)) 3632 return CompleteObject(); 3633 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { 3634 Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA); 3635 if (!Alloc) { 3636 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; 3637 return CompleteObject(); 3638 } 3639 return CompleteObject(LVal.Base, &(*Alloc)->Value, 3640 LVal.Base.getDynamicAllocType()); 3641 } else { 3642 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 3643 3644 if (!Frame) { 3645 if (const MaterializeTemporaryExpr *MTE = 3646 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { 3647 assert(MTE->getStorageDuration() == SD_Static && 3648 "should have a frame for a non-global materialized temporary"); 3649 3650 // Per C++1y [expr.const]p2: 3651 // an lvalue-to-rvalue conversion [is not allowed unless it applies to] 3652 // - a [...] glvalue of integral or enumeration type that refers to 3653 // a non-volatile const object [...] 3654 // [...] 3655 // - a [...] glvalue of literal type that refers to a non-volatile 3656 // object whose lifetime began within the evaluation of e. 3657 // 3658 // C++11 misses the 'began within the evaluation of e' check and 3659 // instead allows all temporaries, including things like: 3660 // int &&r = 1; 3661 // int x = ++r; 3662 // constexpr int k = r; 3663 // Therefore we use the C++14 rules in C++11 too. 3664 // 3665 // Note that temporaries whose lifetimes began while evaluating a 3666 // variable's constructor are not usable while evaluating the 3667 // corresponding destructor, not even if they're of const-qualified 3668 // types. 3669 if (!(BaseType.isConstQualified() && 3670 BaseType->isIntegralOrEnumerationType()) && 3671 !lifetimeStartedInEvaluation(Info, LVal.Base)) { 3672 if (!IsAccess) 3673 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 3674 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; 3675 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); 3676 return CompleteObject(); 3677 } 3678 3679 BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false); 3680 assert(BaseVal && "got reference to unevaluated temporary"); 3681 } else { 3682 if (!IsAccess) 3683 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 3684 APValue Val; 3685 LVal.moveInto(Val); 3686 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) 3687 << AK 3688 << Val.getAsString(Info.Ctx, 3689 Info.Ctx.getLValueReferenceType(LValType)); 3690 NoteLValueLocation(Info, LVal.Base); 3691 return CompleteObject(); 3692 } 3693 } else { 3694 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); 3695 assert(BaseVal && "missing value for temporary"); 3696 } 3697 } 3698 3699 // In C++14, we can't safely access any mutable state when we might be 3700 // evaluating after an unmodeled side effect. 3701 // 3702 // FIXME: Not all local state is mutable. Allow local constant subobjects 3703 // to be read here (but take care with 'mutable' fields). 3704 if ((Frame && Info.getLangOpts().CPlusPlus14 && 3705 Info.EvalStatus.HasSideEffects) || 3706 (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth)) 3707 return CompleteObject(); 3708 3709 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); 3710 } 3711 3712 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This 3713 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the 3714 /// glvalue referred to by an entity of reference type. 3715 /// 3716 /// \param Info - Information about the ongoing evaluation. 3717 /// \param Conv - The expression for which we are performing the conversion. 3718 /// Used for diagnostics. 3719 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the 3720 /// case of a non-class type). 3721 /// \param LVal - The glvalue on which we are attempting to perform this action. 3722 /// \param RVal - The produced value will be placed here. 3723 /// \param WantObjectRepresentation - If true, we're looking for the object 3724 /// representation rather than the value, and in particular, 3725 /// there is no requirement that the result be fully initialized. 3726 static bool 3727 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, 3728 const LValue &LVal, APValue &RVal, 3729 bool WantObjectRepresentation = false) { 3730 if (LVal.Designator.Invalid) 3731 return false; 3732 3733 // Check for special cases where there is no existing APValue to look at. 3734 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 3735 3736 AccessKinds AK = 3737 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; 3738 3739 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { 3740 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { 3741 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the 3742 // initializer until now for such expressions. Such an expression can't be 3743 // an ICE in C, so this only matters for fold. 3744 if (Type.isVolatileQualified()) { 3745 Info.FFDiag(Conv); 3746 return false; 3747 } 3748 APValue Lit; 3749 if (!Evaluate(Lit, Info, CLE->getInitializer())) 3750 return false; 3751 CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); 3752 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); 3753 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { 3754 // Special-case character extraction so we don't have to construct an 3755 // APValue for the whole string. 3756 assert(LVal.Designator.Entries.size() <= 1 && 3757 "Can only read characters from string literals"); 3758 if (LVal.Designator.Entries.empty()) { 3759 // Fail for now for LValue to RValue conversion of an array. 3760 // (This shouldn't show up in C/C++, but it could be triggered by a 3761 // weird EvaluateAsRValue call from a tool.) 3762 Info.FFDiag(Conv); 3763 return false; 3764 } 3765 if (LVal.Designator.isOnePastTheEnd()) { 3766 if (Info.getLangOpts().CPlusPlus11) 3767 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; 3768 else 3769 Info.FFDiag(Conv); 3770 return false; 3771 } 3772 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); 3773 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); 3774 return true; 3775 } 3776 } 3777 3778 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); 3779 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); 3780 } 3781 3782 /// Perform an assignment of Val to LVal. Takes ownership of Val. 3783 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, 3784 QualType LValType, APValue &Val) { 3785 if (LVal.Designator.Invalid) 3786 return false; 3787 3788 if (!Info.getLangOpts().CPlusPlus14) { 3789 Info.FFDiag(E); 3790 return false; 3791 } 3792 3793 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 3794 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); 3795 } 3796 3797 namespace { 3798 struct CompoundAssignSubobjectHandler { 3799 EvalInfo &Info; 3800 const Expr *E; 3801 QualType PromotedLHSType; 3802 BinaryOperatorKind Opcode; 3803 const APValue &RHS; 3804 3805 static const AccessKinds AccessKind = AK_Assign; 3806 3807 typedef bool result_type; 3808 3809 bool checkConst(QualType QT) { 3810 // Assigning to a const object has undefined behavior. 3811 if (QT.isConstQualified()) { 3812 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 3813 return false; 3814 } 3815 return true; 3816 } 3817 3818 bool failed() { return false; } 3819 bool found(APValue &Subobj, QualType SubobjType) { 3820 switch (Subobj.getKind()) { 3821 case APValue::Int: 3822 return found(Subobj.getInt(), SubobjType); 3823 case APValue::Float: 3824 return found(Subobj.getFloat(), SubobjType); 3825 case APValue::ComplexInt: 3826 case APValue::ComplexFloat: 3827 // FIXME: Implement complex compound assignment. 3828 Info.FFDiag(E); 3829 return false; 3830 case APValue::LValue: 3831 return foundPointer(Subobj, SubobjType); 3832 default: 3833 // FIXME: can this happen? 3834 Info.FFDiag(E); 3835 return false; 3836 } 3837 } 3838 bool found(APSInt &Value, QualType SubobjType) { 3839 if (!checkConst(SubobjType)) 3840 return false; 3841 3842 if (!SubobjType->isIntegerType()) { 3843 // We don't support compound assignment on integer-cast-to-pointer 3844 // values. 3845 Info.FFDiag(E); 3846 return false; 3847 } 3848 3849 if (RHS.isInt()) { 3850 APSInt LHS = 3851 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); 3852 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) 3853 return false; 3854 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); 3855 return true; 3856 } else if (RHS.isFloat()) { 3857 APFloat FValue(0.0); 3858 return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType, 3859 FValue) && 3860 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && 3861 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, 3862 Value); 3863 } 3864 3865 Info.FFDiag(E); 3866 return false; 3867 } 3868 bool found(APFloat &Value, QualType SubobjType) { 3869 return checkConst(SubobjType) && 3870 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, 3871 Value) && 3872 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && 3873 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); 3874 } 3875 bool foundPointer(APValue &Subobj, QualType SubobjType) { 3876 if (!checkConst(SubobjType)) 3877 return false; 3878 3879 QualType PointeeType; 3880 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 3881 PointeeType = PT->getPointeeType(); 3882 3883 if (PointeeType.isNull() || !RHS.isInt() || 3884 (Opcode != BO_Add && Opcode != BO_Sub)) { 3885 Info.FFDiag(E); 3886 return false; 3887 } 3888 3889 APSInt Offset = RHS.getInt(); 3890 if (Opcode == BO_Sub) 3891 negateAsSigned(Offset); 3892 3893 LValue LVal; 3894 LVal.setFrom(Info.Ctx, Subobj); 3895 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) 3896 return false; 3897 LVal.moveInto(Subobj); 3898 return true; 3899 } 3900 }; 3901 } // end anonymous namespace 3902 3903 const AccessKinds CompoundAssignSubobjectHandler::AccessKind; 3904 3905 /// Perform a compound assignment of LVal <op>= RVal. 3906 static bool handleCompoundAssignment( 3907 EvalInfo &Info, const Expr *E, 3908 const LValue &LVal, QualType LValType, QualType PromotedLValType, 3909 BinaryOperatorKind Opcode, const APValue &RVal) { 3910 if (LVal.Designator.Invalid) 3911 return false; 3912 3913 if (!Info.getLangOpts().CPlusPlus14) { 3914 Info.FFDiag(E); 3915 return false; 3916 } 3917 3918 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 3919 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, 3920 RVal }; 3921 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 3922 } 3923 3924 namespace { 3925 struct IncDecSubobjectHandler { 3926 EvalInfo &Info; 3927 const UnaryOperator *E; 3928 AccessKinds AccessKind; 3929 APValue *Old; 3930 3931 typedef bool result_type; 3932 3933 bool checkConst(QualType QT) { 3934 // Assigning to a const object has undefined behavior. 3935 if (QT.isConstQualified()) { 3936 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 3937 return false; 3938 } 3939 return true; 3940 } 3941 3942 bool failed() { return false; } 3943 bool found(APValue &Subobj, QualType SubobjType) { 3944 // Stash the old value. Also clear Old, so we don't clobber it later 3945 // if we're post-incrementing a complex. 3946 if (Old) { 3947 *Old = Subobj; 3948 Old = nullptr; 3949 } 3950 3951 switch (Subobj.getKind()) { 3952 case APValue::Int: 3953 return found(Subobj.getInt(), SubobjType); 3954 case APValue::Float: 3955 return found(Subobj.getFloat(), SubobjType); 3956 case APValue::ComplexInt: 3957 return found(Subobj.getComplexIntReal(), 3958 SubobjType->castAs<ComplexType>()->getElementType() 3959 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 3960 case APValue::ComplexFloat: 3961 return found(Subobj.getComplexFloatReal(), 3962 SubobjType->castAs<ComplexType>()->getElementType() 3963 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 3964 case APValue::LValue: 3965 return foundPointer(Subobj, SubobjType); 3966 default: 3967 // FIXME: can this happen? 3968 Info.FFDiag(E); 3969 return false; 3970 } 3971 } 3972 bool found(APSInt &Value, QualType SubobjType) { 3973 if (!checkConst(SubobjType)) 3974 return false; 3975 3976 if (!SubobjType->isIntegerType()) { 3977 // We don't support increment / decrement on integer-cast-to-pointer 3978 // values. 3979 Info.FFDiag(E); 3980 return false; 3981 } 3982 3983 if (Old) *Old = APValue(Value); 3984 3985 // bool arithmetic promotes to int, and the conversion back to bool 3986 // doesn't reduce mod 2^n, so special-case it. 3987 if (SubobjType->isBooleanType()) { 3988 if (AccessKind == AK_Increment) 3989 Value = 1; 3990 else 3991 Value = !Value; 3992 return true; 3993 } 3994 3995 bool WasNegative = Value.isNegative(); 3996 if (AccessKind == AK_Increment) { 3997 ++Value; 3998 3999 if (!WasNegative && Value.isNegative() && E->canOverflow()) { 4000 APSInt ActualValue(Value, /*IsUnsigned*/true); 4001 return HandleOverflow(Info, E, ActualValue, SubobjType); 4002 } 4003 } else { 4004 --Value; 4005 4006 if (WasNegative && !Value.isNegative() && E->canOverflow()) { 4007 unsigned BitWidth = Value.getBitWidth(); 4008 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); 4009 ActualValue.setBit(BitWidth); 4010 return HandleOverflow(Info, E, ActualValue, SubobjType); 4011 } 4012 } 4013 return true; 4014 } 4015 bool found(APFloat &Value, QualType SubobjType) { 4016 if (!checkConst(SubobjType)) 4017 return false; 4018 4019 if (Old) *Old = APValue(Value); 4020 4021 APFloat One(Value.getSemantics(), 1); 4022 if (AccessKind == AK_Increment) 4023 Value.add(One, APFloat::rmNearestTiesToEven); 4024 else 4025 Value.subtract(One, APFloat::rmNearestTiesToEven); 4026 return true; 4027 } 4028 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4029 if (!checkConst(SubobjType)) 4030 return false; 4031 4032 QualType PointeeType; 4033 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4034 PointeeType = PT->getPointeeType(); 4035 else { 4036 Info.FFDiag(E); 4037 return false; 4038 } 4039 4040 LValue LVal; 4041 LVal.setFrom(Info.Ctx, Subobj); 4042 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, 4043 AccessKind == AK_Increment ? 1 : -1)) 4044 return false; 4045 LVal.moveInto(Subobj); 4046 return true; 4047 } 4048 }; 4049 } // end anonymous namespace 4050 4051 /// Perform an increment or decrement on LVal. 4052 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, 4053 QualType LValType, bool IsIncrement, APValue *Old) { 4054 if (LVal.Designator.Invalid) 4055 return false; 4056 4057 if (!Info.getLangOpts().CPlusPlus14) { 4058 Info.FFDiag(E); 4059 return false; 4060 } 4061 4062 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; 4063 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); 4064 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; 4065 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4066 } 4067 4068 /// Build an lvalue for the object argument of a member function call. 4069 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, 4070 LValue &This) { 4071 if (Object->getType()->isPointerType() && Object->isRValue()) 4072 return EvaluatePointer(Object, This, Info); 4073 4074 if (Object->isGLValue()) 4075 return EvaluateLValue(Object, This, Info); 4076 4077 if (Object->getType()->isLiteralType(Info.Ctx)) 4078 return EvaluateTemporary(Object, This, Info); 4079 4080 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); 4081 return false; 4082 } 4083 4084 /// HandleMemberPointerAccess - Evaluate a member access operation and build an 4085 /// lvalue referring to the result. 4086 /// 4087 /// \param Info - Information about the ongoing evaluation. 4088 /// \param LV - An lvalue referring to the base of the member pointer. 4089 /// \param RHS - The member pointer expression. 4090 /// \param IncludeMember - Specifies whether the member itself is included in 4091 /// the resulting LValue subobject designator. This is not possible when 4092 /// creating a bound member function. 4093 /// \return The field or method declaration to which the member pointer refers, 4094 /// or 0 if evaluation fails. 4095 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4096 QualType LVType, 4097 LValue &LV, 4098 const Expr *RHS, 4099 bool IncludeMember = true) { 4100 MemberPtr MemPtr; 4101 if (!EvaluateMemberPointer(RHS, MemPtr, Info)) 4102 return nullptr; 4103 4104 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to 4105 // member value, the behavior is undefined. 4106 if (!MemPtr.getDecl()) { 4107 // FIXME: Specific diagnostic. 4108 Info.FFDiag(RHS); 4109 return nullptr; 4110 } 4111 4112 if (MemPtr.isDerivedMember()) { 4113 // This is a member of some derived class. Truncate LV appropriately. 4114 // The end of the derived-to-base path for the base object must match the 4115 // derived-to-base path for the member pointer. 4116 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > 4117 LV.Designator.Entries.size()) { 4118 Info.FFDiag(RHS); 4119 return nullptr; 4120 } 4121 unsigned PathLengthToMember = 4122 LV.Designator.Entries.size() - MemPtr.Path.size(); 4123 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { 4124 const CXXRecordDecl *LVDecl = getAsBaseClass( 4125 LV.Designator.Entries[PathLengthToMember + I]); 4126 const CXXRecordDecl *MPDecl = MemPtr.Path[I]; 4127 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { 4128 Info.FFDiag(RHS); 4129 return nullptr; 4130 } 4131 } 4132 4133 // Truncate the lvalue to the appropriate derived class. 4134 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), 4135 PathLengthToMember)) 4136 return nullptr; 4137 } else if (!MemPtr.Path.empty()) { 4138 // Extend the LValue path with the member pointer's path. 4139 LV.Designator.Entries.reserve(LV.Designator.Entries.size() + 4140 MemPtr.Path.size() + IncludeMember); 4141 4142 // Walk down to the appropriate base class. 4143 if (const PointerType *PT = LVType->getAs<PointerType>()) 4144 LVType = PT->getPointeeType(); 4145 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); 4146 assert(RD && "member pointer access on non-class-type expression"); 4147 // The first class in the path is that of the lvalue. 4148 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { 4149 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; 4150 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) 4151 return nullptr; 4152 RD = Base; 4153 } 4154 // Finally cast to the class containing the member. 4155 if (!HandleLValueDirectBase(Info, RHS, LV, RD, 4156 MemPtr.getContainingRecord())) 4157 return nullptr; 4158 } 4159 4160 // Add the member. Note that we cannot build bound member functions here. 4161 if (IncludeMember) { 4162 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { 4163 if (!HandleLValueMember(Info, RHS, LV, FD)) 4164 return nullptr; 4165 } else if (const IndirectFieldDecl *IFD = 4166 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { 4167 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) 4168 return nullptr; 4169 } else { 4170 llvm_unreachable("can't construct reference to bound member function"); 4171 } 4172 } 4173 4174 return MemPtr.getDecl(); 4175 } 4176 4177 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4178 const BinaryOperator *BO, 4179 LValue &LV, 4180 bool IncludeMember = true) { 4181 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); 4182 4183 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { 4184 if (Info.noteFailure()) { 4185 MemberPtr MemPtr; 4186 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); 4187 } 4188 return nullptr; 4189 } 4190 4191 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, 4192 BO->getRHS(), IncludeMember); 4193 } 4194 4195 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on 4196 /// the provided lvalue, which currently refers to the base object. 4197 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, 4198 LValue &Result) { 4199 SubobjectDesignator &D = Result.Designator; 4200 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) 4201 return false; 4202 4203 QualType TargetQT = E->getType(); 4204 if (const PointerType *PT = TargetQT->getAs<PointerType>()) 4205 TargetQT = PT->getPointeeType(); 4206 4207 // Check this cast lands within the final derived-to-base subobject path. 4208 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { 4209 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 4210 << D.MostDerivedType << TargetQT; 4211 return false; 4212 } 4213 4214 // Check the type of the final cast. We don't need to check the path, 4215 // since a cast can only be formed if the path is unique. 4216 unsigned NewEntriesSize = D.Entries.size() - E->path_size(); 4217 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); 4218 const CXXRecordDecl *FinalType; 4219 if (NewEntriesSize == D.MostDerivedPathLength) 4220 FinalType = D.MostDerivedType->getAsCXXRecordDecl(); 4221 else 4222 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); 4223 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { 4224 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 4225 << D.MostDerivedType << TargetQT; 4226 return false; 4227 } 4228 4229 // Truncate the lvalue to the appropriate derived class. 4230 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); 4231 } 4232 4233 /// Get the value to use for a default-initialized object of type T. 4234 static APValue getDefaultInitValue(QualType T) { 4235 if (auto *RD = T->getAsCXXRecordDecl()) { 4236 if (RD->isUnion()) 4237 return APValue((const FieldDecl*)nullptr); 4238 4239 APValue Struct(APValue::UninitStruct(), RD->getNumBases(), 4240 std::distance(RD->field_begin(), RD->field_end())); 4241 4242 unsigned Index = 0; 4243 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 4244 End = RD->bases_end(); I != End; ++I, ++Index) 4245 Struct.getStructBase(Index) = getDefaultInitValue(I->getType()); 4246 4247 for (const auto *I : RD->fields()) { 4248 if (I->isUnnamedBitfield()) 4249 continue; 4250 Struct.getStructField(I->getFieldIndex()) = 4251 getDefaultInitValue(I->getType()); 4252 } 4253 return Struct; 4254 } 4255 4256 if (auto *AT = 4257 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { 4258 APValue Array(APValue::UninitArray(), 0, AT->getSize().getZExtValue()); 4259 if (Array.hasArrayFiller()) 4260 Array.getArrayFiller() = getDefaultInitValue(AT->getElementType()); 4261 return Array; 4262 } 4263 4264 return APValue::IndeterminateValue(); 4265 } 4266 4267 namespace { 4268 enum EvalStmtResult { 4269 /// Evaluation failed. 4270 ESR_Failed, 4271 /// Hit a 'return' statement. 4272 ESR_Returned, 4273 /// Evaluation succeeded. 4274 ESR_Succeeded, 4275 /// Hit a 'continue' statement. 4276 ESR_Continue, 4277 /// Hit a 'break' statement. 4278 ESR_Break, 4279 /// Still scanning for 'case' or 'default' statement. 4280 ESR_CaseNotFound 4281 }; 4282 } 4283 4284 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { 4285 // We don't need to evaluate the initializer for a static local. 4286 if (!VD->hasLocalStorage()) 4287 return true; 4288 4289 LValue Result; 4290 APValue &Val = 4291 Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result); 4292 4293 const Expr *InitE = VD->getInit(); 4294 if (!InitE) { 4295 Val = getDefaultInitValue(VD->getType()); 4296 return true; 4297 } 4298 4299 if (InitE->isValueDependent()) 4300 return false; 4301 4302 if (!EvaluateInPlace(Val, Info, Result, InitE)) { 4303 // Wipe out any partially-computed value, to allow tracking that this 4304 // evaluation failed. 4305 Val = APValue(); 4306 return false; 4307 } 4308 4309 return true; 4310 } 4311 4312 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { 4313 bool OK = true; 4314 4315 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 4316 OK &= EvaluateVarDecl(Info, VD); 4317 4318 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) 4319 for (auto *BD : DD->bindings()) 4320 if (auto *VD = BD->getHoldingVar()) 4321 OK &= EvaluateDecl(Info, VD); 4322 4323 return OK; 4324 } 4325 4326 4327 /// Evaluate a condition (either a variable declaration or an expression). 4328 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, 4329 const Expr *Cond, bool &Result) { 4330 FullExpressionRAII Scope(Info); 4331 if (CondDecl && !EvaluateDecl(Info, CondDecl)) 4332 return false; 4333 if (!EvaluateAsBooleanCondition(Cond, Result, Info)) 4334 return false; 4335 return Scope.destroy(); 4336 } 4337 4338 namespace { 4339 /// A location where the result (returned value) of evaluating a 4340 /// statement should be stored. 4341 struct StmtResult { 4342 /// The APValue that should be filled in with the returned value. 4343 APValue &Value; 4344 /// The location containing the result, if any (used to support RVO). 4345 const LValue *Slot; 4346 }; 4347 4348 struct TempVersionRAII { 4349 CallStackFrame &Frame; 4350 4351 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { 4352 Frame.pushTempVersion(); 4353 } 4354 4355 ~TempVersionRAII() { 4356 Frame.popTempVersion(); 4357 } 4358 }; 4359 4360 } 4361 4362 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 4363 const Stmt *S, 4364 const SwitchCase *SC = nullptr); 4365 4366 /// Evaluate the body of a loop, and translate the result as appropriate. 4367 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, 4368 const Stmt *Body, 4369 const SwitchCase *Case = nullptr) { 4370 BlockScopeRAII Scope(Info); 4371 4372 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); 4373 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 4374 ESR = ESR_Failed; 4375 4376 switch (ESR) { 4377 case ESR_Break: 4378 return ESR_Succeeded; 4379 case ESR_Succeeded: 4380 case ESR_Continue: 4381 return ESR_Continue; 4382 case ESR_Failed: 4383 case ESR_Returned: 4384 case ESR_CaseNotFound: 4385 return ESR; 4386 } 4387 llvm_unreachable("Invalid EvalStmtResult!"); 4388 } 4389 4390 /// Evaluate a switch statement. 4391 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, 4392 const SwitchStmt *SS) { 4393 BlockScopeRAII Scope(Info); 4394 4395 // Evaluate the switch condition. 4396 APSInt Value; 4397 { 4398 if (const Stmt *Init = SS->getInit()) { 4399 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 4400 if (ESR != ESR_Succeeded) { 4401 if (ESR != ESR_Failed && !Scope.destroy()) 4402 ESR = ESR_Failed; 4403 return ESR; 4404 } 4405 } 4406 4407 FullExpressionRAII CondScope(Info); 4408 if (SS->getConditionVariable() && 4409 !EvaluateDecl(Info, SS->getConditionVariable())) 4410 return ESR_Failed; 4411 if (!EvaluateInteger(SS->getCond(), Value, Info)) 4412 return ESR_Failed; 4413 if (!CondScope.destroy()) 4414 return ESR_Failed; 4415 } 4416 4417 // Find the switch case corresponding to the value of the condition. 4418 // FIXME: Cache this lookup. 4419 const SwitchCase *Found = nullptr; 4420 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; 4421 SC = SC->getNextSwitchCase()) { 4422 if (isa<DefaultStmt>(SC)) { 4423 Found = SC; 4424 continue; 4425 } 4426 4427 const CaseStmt *CS = cast<CaseStmt>(SC); 4428 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); 4429 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) 4430 : LHS; 4431 if (LHS <= Value && Value <= RHS) { 4432 Found = SC; 4433 break; 4434 } 4435 } 4436 4437 if (!Found) 4438 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 4439 4440 // Search the switch body for the switch case and evaluate it from there. 4441 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); 4442 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 4443 return ESR_Failed; 4444 4445 switch (ESR) { 4446 case ESR_Break: 4447 return ESR_Succeeded; 4448 case ESR_Succeeded: 4449 case ESR_Continue: 4450 case ESR_Failed: 4451 case ESR_Returned: 4452 return ESR; 4453 case ESR_CaseNotFound: 4454 // This can only happen if the switch case is nested within a statement 4455 // expression. We have no intention of supporting that. 4456 Info.FFDiag(Found->getBeginLoc(), 4457 diag::note_constexpr_stmt_expr_unsupported); 4458 return ESR_Failed; 4459 } 4460 llvm_unreachable("Invalid EvalStmtResult!"); 4461 } 4462 4463 // Evaluate a statement. 4464 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 4465 const Stmt *S, const SwitchCase *Case) { 4466 if (!Info.nextStep(S)) 4467 return ESR_Failed; 4468 4469 // If we're hunting down a 'case' or 'default' label, recurse through 4470 // substatements until we hit the label. 4471 if (Case) { 4472 switch (S->getStmtClass()) { 4473 case Stmt::CompoundStmtClass: 4474 // FIXME: Precompute which substatement of a compound statement we 4475 // would jump to, and go straight there rather than performing a 4476 // linear scan each time. 4477 case Stmt::LabelStmtClass: 4478 case Stmt::AttributedStmtClass: 4479 case Stmt::DoStmtClass: 4480 break; 4481 4482 case Stmt::CaseStmtClass: 4483 case Stmt::DefaultStmtClass: 4484 if (Case == S) 4485 Case = nullptr; 4486 break; 4487 4488 case Stmt::IfStmtClass: { 4489 // FIXME: Precompute which side of an 'if' we would jump to, and go 4490 // straight there rather than scanning both sides. 4491 const IfStmt *IS = cast<IfStmt>(S); 4492 4493 // Wrap the evaluation in a block scope, in case it's a DeclStmt 4494 // preceded by our switch label. 4495 BlockScopeRAII Scope(Info); 4496 4497 // Step into the init statement in case it brings an (uninitialized) 4498 // variable into scope. 4499 if (const Stmt *Init = IS->getInit()) { 4500 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 4501 if (ESR != ESR_CaseNotFound) { 4502 assert(ESR != ESR_Succeeded); 4503 return ESR; 4504 } 4505 } 4506 4507 // Condition variable must be initialized if it exists. 4508 // FIXME: We can skip evaluating the body if there's a condition 4509 // variable, as there can't be any case labels within it. 4510 // (The same is true for 'for' statements.) 4511 4512 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); 4513 if (ESR == ESR_Failed) 4514 return ESR; 4515 if (ESR != ESR_CaseNotFound) 4516 return Scope.destroy() ? ESR : ESR_Failed; 4517 if (!IS->getElse()) 4518 return ESR_CaseNotFound; 4519 4520 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); 4521 if (ESR == ESR_Failed) 4522 return ESR; 4523 if (ESR != ESR_CaseNotFound) 4524 return Scope.destroy() ? ESR : ESR_Failed; 4525 return ESR_CaseNotFound; 4526 } 4527 4528 case Stmt::WhileStmtClass: { 4529 EvalStmtResult ESR = 4530 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); 4531 if (ESR != ESR_Continue) 4532 return ESR; 4533 break; 4534 } 4535 4536 case Stmt::ForStmtClass: { 4537 const ForStmt *FS = cast<ForStmt>(S); 4538 BlockScopeRAII Scope(Info); 4539 4540 // Step into the init statement in case it brings an (uninitialized) 4541 // variable into scope. 4542 if (const Stmt *Init = FS->getInit()) { 4543 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 4544 if (ESR != ESR_CaseNotFound) { 4545 assert(ESR != ESR_Succeeded); 4546 return ESR; 4547 } 4548 } 4549 4550 EvalStmtResult ESR = 4551 EvaluateLoopBody(Result, Info, FS->getBody(), Case); 4552 if (ESR != ESR_Continue) 4553 return ESR; 4554 if (FS->getInc()) { 4555 FullExpressionRAII IncScope(Info); 4556 if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy()) 4557 return ESR_Failed; 4558 } 4559 break; 4560 } 4561 4562 case Stmt::DeclStmtClass: { 4563 // Start the lifetime of any uninitialized variables we encounter. They 4564 // might be used by the selected branch of the switch. 4565 const DeclStmt *DS = cast<DeclStmt>(S); 4566 for (const auto *D : DS->decls()) { 4567 if (const auto *VD = dyn_cast<VarDecl>(D)) { 4568 if (VD->hasLocalStorage() && !VD->getInit()) 4569 if (!EvaluateVarDecl(Info, VD)) 4570 return ESR_Failed; 4571 // FIXME: If the variable has initialization that can't be jumped 4572 // over, bail out of any immediately-surrounding compound-statement 4573 // too. There can't be any case labels here. 4574 } 4575 } 4576 return ESR_CaseNotFound; 4577 } 4578 4579 default: 4580 return ESR_CaseNotFound; 4581 } 4582 } 4583 4584 switch (S->getStmtClass()) { 4585 default: 4586 if (const Expr *E = dyn_cast<Expr>(S)) { 4587 // Don't bother evaluating beyond an expression-statement which couldn't 4588 // be evaluated. 4589 // FIXME: Do we need the FullExpressionRAII object here? 4590 // VisitExprWithCleanups should create one when necessary. 4591 FullExpressionRAII Scope(Info); 4592 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) 4593 return ESR_Failed; 4594 return ESR_Succeeded; 4595 } 4596 4597 Info.FFDiag(S->getBeginLoc()); 4598 return ESR_Failed; 4599 4600 case Stmt::NullStmtClass: 4601 return ESR_Succeeded; 4602 4603 case Stmt::DeclStmtClass: { 4604 const DeclStmt *DS = cast<DeclStmt>(S); 4605 for (const auto *D : DS->decls()) { 4606 // Each declaration initialization is its own full-expression. 4607 FullExpressionRAII Scope(Info); 4608 if (!EvaluateDecl(Info, D) && !Info.noteFailure()) 4609 return ESR_Failed; 4610 if (!Scope.destroy()) 4611 return ESR_Failed; 4612 } 4613 return ESR_Succeeded; 4614 } 4615 4616 case Stmt::ReturnStmtClass: { 4617 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); 4618 FullExpressionRAII Scope(Info); 4619 if (RetExpr && 4620 !(Result.Slot 4621 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) 4622 : Evaluate(Result.Value, Info, RetExpr))) 4623 return ESR_Failed; 4624 return Scope.destroy() ? ESR_Returned : ESR_Failed; 4625 } 4626 4627 case Stmt::CompoundStmtClass: { 4628 BlockScopeRAII Scope(Info); 4629 4630 const CompoundStmt *CS = cast<CompoundStmt>(S); 4631 for (const auto *BI : CS->body()) { 4632 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); 4633 if (ESR == ESR_Succeeded) 4634 Case = nullptr; 4635 else if (ESR != ESR_CaseNotFound) { 4636 if (ESR != ESR_Failed && !Scope.destroy()) 4637 return ESR_Failed; 4638 return ESR; 4639 } 4640 } 4641 if (Case) 4642 return ESR_CaseNotFound; 4643 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 4644 } 4645 4646 case Stmt::IfStmtClass: { 4647 const IfStmt *IS = cast<IfStmt>(S); 4648 4649 // Evaluate the condition, as either a var decl or as an expression. 4650 BlockScopeRAII Scope(Info); 4651 if (const Stmt *Init = IS->getInit()) { 4652 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 4653 if (ESR != ESR_Succeeded) { 4654 if (ESR != ESR_Failed && !Scope.destroy()) 4655 return ESR_Failed; 4656 return ESR; 4657 } 4658 } 4659 bool Cond; 4660 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond)) 4661 return ESR_Failed; 4662 4663 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { 4664 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); 4665 if (ESR != ESR_Succeeded) { 4666 if (ESR != ESR_Failed && !Scope.destroy()) 4667 return ESR_Failed; 4668 return ESR; 4669 } 4670 } 4671 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 4672 } 4673 4674 case Stmt::WhileStmtClass: { 4675 const WhileStmt *WS = cast<WhileStmt>(S); 4676 while (true) { 4677 BlockScopeRAII Scope(Info); 4678 bool Continue; 4679 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), 4680 Continue)) 4681 return ESR_Failed; 4682 if (!Continue) 4683 break; 4684 4685 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); 4686 if (ESR != ESR_Continue) { 4687 if (ESR != ESR_Failed && !Scope.destroy()) 4688 return ESR_Failed; 4689 return ESR; 4690 } 4691 if (!Scope.destroy()) 4692 return ESR_Failed; 4693 } 4694 return ESR_Succeeded; 4695 } 4696 4697 case Stmt::DoStmtClass: { 4698 const DoStmt *DS = cast<DoStmt>(S); 4699 bool Continue; 4700 do { 4701 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); 4702 if (ESR != ESR_Continue) 4703 return ESR; 4704 Case = nullptr; 4705 4706 FullExpressionRAII CondScope(Info); 4707 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || 4708 !CondScope.destroy()) 4709 return ESR_Failed; 4710 } while (Continue); 4711 return ESR_Succeeded; 4712 } 4713 4714 case Stmt::ForStmtClass: { 4715 const ForStmt *FS = cast<ForStmt>(S); 4716 BlockScopeRAII ForScope(Info); 4717 if (FS->getInit()) { 4718 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 4719 if (ESR != ESR_Succeeded) { 4720 if (ESR != ESR_Failed && !ForScope.destroy()) 4721 return ESR_Failed; 4722 return ESR; 4723 } 4724 } 4725 while (true) { 4726 BlockScopeRAII IterScope(Info); 4727 bool Continue = true; 4728 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), 4729 FS->getCond(), Continue)) 4730 return ESR_Failed; 4731 if (!Continue) 4732 break; 4733 4734 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 4735 if (ESR != ESR_Continue) { 4736 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) 4737 return ESR_Failed; 4738 return ESR; 4739 } 4740 4741 if (FS->getInc()) { 4742 FullExpressionRAII IncScope(Info); 4743 if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy()) 4744 return ESR_Failed; 4745 } 4746 4747 if (!IterScope.destroy()) 4748 return ESR_Failed; 4749 } 4750 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; 4751 } 4752 4753 case Stmt::CXXForRangeStmtClass: { 4754 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); 4755 BlockScopeRAII Scope(Info); 4756 4757 // Evaluate the init-statement if present. 4758 if (FS->getInit()) { 4759 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 4760 if (ESR != ESR_Succeeded) { 4761 if (ESR != ESR_Failed && !Scope.destroy()) 4762 return ESR_Failed; 4763 return ESR; 4764 } 4765 } 4766 4767 // Initialize the __range variable. 4768 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); 4769 if (ESR != ESR_Succeeded) { 4770 if (ESR != ESR_Failed && !Scope.destroy()) 4771 return ESR_Failed; 4772 return ESR; 4773 } 4774 4775 // Create the __begin and __end iterators. 4776 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); 4777 if (ESR != ESR_Succeeded) { 4778 if (ESR != ESR_Failed && !Scope.destroy()) 4779 return ESR_Failed; 4780 return ESR; 4781 } 4782 ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); 4783 if (ESR != ESR_Succeeded) { 4784 if (ESR != ESR_Failed && !Scope.destroy()) 4785 return ESR_Failed; 4786 return ESR; 4787 } 4788 4789 while (true) { 4790 // Condition: __begin != __end. 4791 { 4792 bool Continue = true; 4793 FullExpressionRAII CondExpr(Info); 4794 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) 4795 return ESR_Failed; 4796 if (!Continue) 4797 break; 4798 } 4799 4800 // User's variable declaration, initialized by *__begin. 4801 BlockScopeRAII InnerScope(Info); 4802 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); 4803 if (ESR != ESR_Succeeded) { 4804 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 4805 return ESR_Failed; 4806 return ESR; 4807 } 4808 4809 // Loop body. 4810 ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 4811 if (ESR != ESR_Continue) { 4812 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 4813 return ESR_Failed; 4814 return ESR; 4815 } 4816 4817 // Increment: ++__begin 4818 if (!EvaluateIgnoredValue(Info, FS->getInc())) 4819 return ESR_Failed; 4820 4821 if (!InnerScope.destroy()) 4822 return ESR_Failed; 4823 } 4824 4825 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 4826 } 4827 4828 case Stmt::SwitchStmtClass: 4829 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); 4830 4831 case Stmt::ContinueStmtClass: 4832 return ESR_Continue; 4833 4834 case Stmt::BreakStmtClass: 4835 return ESR_Break; 4836 4837 case Stmt::LabelStmtClass: 4838 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); 4839 4840 case Stmt::AttributedStmtClass: 4841 // As a general principle, C++11 attributes can be ignored without 4842 // any semantic impact. 4843 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(), 4844 Case); 4845 4846 case Stmt::CaseStmtClass: 4847 case Stmt::DefaultStmtClass: 4848 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); 4849 case Stmt::CXXTryStmtClass: 4850 // Evaluate try blocks by evaluating all sub statements. 4851 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); 4852 } 4853 } 4854 4855 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial 4856 /// default constructor. If so, we'll fold it whether or not it's marked as 4857 /// constexpr. If it is marked as constexpr, we will never implicitly define it, 4858 /// so we need special handling. 4859 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, 4860 const CXXConstructorDecl *CD, 4861 bool IsValueInitialization) { 4862 if (!CD->isTrivial() || !CD->isDefaultConstructor()) 4863 return false; 4864 4865 // Value-initialization does not call a trivial default constructor, so such a 4866 // call is a core constant expression whether or not the constructor is 4867 // constexpr. 4868 if (!CD->isConstexpr() && !IsValueInitialization) { 4869 if (Info.getLangOpts().CPlusPlus11) { 4870 // FIXME: If DiagDecl is an implicitly-declared special member function, 4871 // we should be much more explicit about why it's not constexpr. 4872 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) 4873 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; 4874 Info.Note(CD->getLocation(), diag::note_declared_at); 4875 } else { 4876 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); 4877 } 4878 } 4879 return true; 4880 } 4881 4882 /// CheckConstexprFunction - Check that a function can be called in a constant 4883 /// expression. 4884 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, 4885 const FunctionDecl *Declaration, 4886 const FunctionDecl *Definition, 4887 const Stmt *Body) { 4888 // Potential constant expressions can contain calls to declared, but not yet 4889 // defined, constexpr functions. 4890 if (Info.checkingPotentialConstantExpression() && !Definition && 4891 Declaration->isConstexpr()) 4892 return false; 4893 4894 // Bail out if the function declaration itself is invalid. We will 4895 // have produced a relevant diagnostic while parsing it, so just 4896 // note the problematic sub-expression. 4897 if (Declaration->isInvalidDecl()) { 4898 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 4899 return false; 4900 } 4901 4902 // DR1872: An instantiated virtual constexpr function can't be called in a 4903 // constant expression (prior to C++20). We can still constant-fold such a 4904 // call. 4905 if (!Info.Ctx.getLangOpts().CPlusPlus2a && isa<CXXMethodDecl>(Declaration) && 4906 cast<CXXMethodDecl>(Declaration)->isVirtual()) 4907 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); 4908 4909 if (Definition && Definition->isInvalidDecl()) { 4910 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 4911 return false; 4912 } 4913 4914 // Can we evaluate this function call? 4915 if (Definition && Definition->isConstexpr() && Body) 4916 return true; 4917 4918 if (Info.getLangOpts().CPlusPlus11) { 4919 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; 4920 4921 // If this function is not constexpr because it is an inherited 4922 // non-constexpr constructor, diagnose that directly. 4923 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); 4924 if (CD && CD->isInheritingConstructor()) { 4925 auto *Inherited = CD->getInheritedConstructor().getConstructor(); 4926 if (!Inherited->isConstexpr()) 4927 DiagDecl = CD = Inherited; 4928 } 4929 4930 // FIXME: If DiagDecl is an implicitly-declared special member function 4931 // or an inheriting constructor, we should be much more explicit about why 4932 // it's not constexpr. 4933 if (CD && CD->isInheritingConstructor()) 4934 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) 4935 << CD->getInheritedConstructor().getConstructor()->getParent(); 4936 else 4937 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) 4938 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; 4939 Info.Note(DiagDecl->getLocation(), diag::note_declared_at); 4940 } else { 4941 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 4942 } 4943 return false; 4944 } 4945 4946 namespace { 4947 struct CheckDynamicTypeHandler { 4948 AccessKinds AccessKind; 4949 typedef bool result_type; 4950 bool failed() { return false; } 4951 bool found(APValue &Subobj, QualType SubobjType) { return true; } 4952 bool found(APSInt &Value, QualType SubobjType) { return true; } 4953 bool found(APFloat &Value, QualType SubobjType) { return true; } 4954 }; 4955 } // end anonymous namespace 4956 4957 /// Check that we can access the notional vptr of an object / determine its 4958 /// dynamic type. 4959 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, 4960 AccessKinds AK, bool Polymorphic) { 4961 if (This.Designator.Invalid) 4962 return false; 4963 4964 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); 4965 4966 if (!Obj) 4967 return false; 4968 4969 if (!Obj.Value) { 4970 // The object is not usable in constant expressions, so we can't inspect 4971 // its value to see if it's in-lifetime or what the active union members 4972 // are. We can still check for a one-past-the-end lvalue. 4973 if (This.Designator.isOnePastTheEnd() || 4974 This.Designator.isMostDerivedAnUnsizedArray()) { 4975 Info.FFDiag(E, This.Designator.isOnePastTheEnd() 4976 ? diag::note_constexpr_access_past_end 4977 : diag::note_constexpr_access_unsized_array) 4978 << AK; 4979 return false; 4980 } else if (Polymorphic) { 4981 // Conservatively refuse to perform a polymorphic operation if we would 4982 // not be able to read a notional 'vptr' value. 4983 APValue Val; 4984 This.moveInto(Val); 4985 QualType StarThisType = 4986 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); 4987 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) 4988 << AK << Val.getAsString(Info.Ctx, StarThisType); 4989 return false; 4990 } 4991 return true; 4992 } 4993 4994 CheckDynamicTypeHandler Handler{AK}; 4995 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 4996 } 4997 4998 /// Check that the pointee of the 'this' pointer in a member function call is 4999 /// either within its lifetime or in its period of construction or destruction. 5000 static bool 5001 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, 5002 const LValue &This, 5003 const CXXMethodDecl *NamedMember) { 5004 return checkDynamicType( 5005 Info, E, This, 5006 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); 5007 } 5008 5009 struct DynamicType { 5010 /// The dynamic class type of the object. 5011 const CXXRecordDecl *Type; 5012 /// The corresponding path length in the lvalue. 5013 unsigned PathLength; 5014 }; 5015 5016 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, 5017 unsigned PathLength) { 5018 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= 5019 Designator.Entries.size() && "invalid path length"); 5020 return (PathLength == Designator.MostDerivedPathLength) 5021 ? Designator.MostDerivedType->getAsCXXRecordDecl() 5022 : getAsBaseClass(Designator.Entries[PathLength - 1]); 5023 } 5024 5025 /// Determine the dynamic type of an object. 5026 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E, 5027 LValue &This, AccessKinds AK) { 5028 // If we don't have an lvalue denoting an object of class type, there is no 5029 // meaningful dynamic type. (We consider objects of non-class type to have no 5030 // dynamic type.) 5031 if (!checkDynamicType(Info, E, This, AK, true)) 5032 return None; 5033 5034 // Refuse to compute a dynamic type in the presence of virtual bases. This 5035 // shouldn't happen other than in constant-folding situations, since literal 5036 // types can't have virtual bases. 5037 // 5038 // Note that consumers of DynamicType assume that the type has no virtual 5039 // bases, and will need modifications if this restriction is relaxed. 5040 const CXXRecordDecl *Class = 5041 This.Designator.MostDerivedType->getAsCXXRecordDecl(); 5042 if (!Class || Class->getNumVBases()) { 5043 Info.FFDiag(E); 5044 return None; 5045 } 5046 5047 // FIXME: For very deep class hierarchies, it might be beneficial to use a 5048 // binary search here instead. But the overwhelmingly common case is that 5049 // we're not in the middle of a constructor, so it probably doesn't matter 5050 // in practice. 5051 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; 5052 for (unsigned PathLength = This.Designator.MostDerivedPathLength; 5053 PathLength <= Path.size(); ++PathLength) { 5054 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), 5055 Path.slice(0, PathLength))) { 5056 case ConstructionPhase::Bases: 5057 case ConstructionPhase::DestroyingBases: 5058 // We're constructing or destroying a base class. This is not the dynamic 5059 // type. 5060 break; 5061 5062 case ConstructionPhase::None: 5063 case ConstructionPhase::AfterBases: 5064 case ConstructionPhase::Destroying: 5065 // We've finished constructing the base classes and not yet started 5066 // destroying them again, so this is the dynamic type. 5067 return DynamicType{getBaseClassType(This.Designator, PathLength), 5068 PathLength}; 5069 } 5070 } 5071 5072 // CWG issue 1517: we're constructing a base class of the object described by 5073 // 'This', so that object has not yet begun its period of construction and 5074 // any polymorphic operation on it results in undefined behavior. 5075 Info.FFDiag(E); 5076 return None; 5077 } 5078 5079 /// Perform virtual dispatch. 5080 static const CXXMethodDecl *HandleVirtualDispatch( 5081 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, 5082 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { 5083 Optional<DynamicType> DynType = ComputeDynamicType( 5084 Info, E, This, 5085 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); 5086 if (!DynType) 5087 return nullptr; 5088 5089 // Find the final overrider. It must be declared in one of the classes on the 5090 // path from the dynamic type to the static type. 5091 // FIXME: If we ever allow literal types to have virtual base classes, that 5092 // won't be true. 5093 const CXXMethodDecl *Callee = Found; 5094 unsigned PathLength = DynType->PathLength; 5095 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { 5096 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); 5097 const CXXMethodDecl *Overrider = 5098 Found->getCorrespondingMethodDeclaredInClass(Class, false); 5099 if (Overrider) { 5100 Callee = Overrider; 5101 break; 5102 } 5103 } 5104 5105 // C++2a [class.abstract]p6: 5106 // the effect of making a virtual call to a pure virtual function [...] is 5107 // undefined 5108 if (Callee->isPure()) { 5109 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; 5110 Info.Note(Callee->getLocation(), diag::note_declared_at); 5111 return nullptr; 5112 } 5113 5114 // If necessary, walk the rest of the path to determine the sequence of 5115 // covariant adjustment steps to apply. 5116 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), 5117 Found->getReturnType())) { 5118 CovariantAdjustmentPath.push_back(Callee->getReturnType()); 5119 for (unsigned CovariantPathLength = PathLength + 1; 5120 CovariantPathLength != This.Designator.Entries.size(); 5121 ++CovariantPathLength) { 5122 const CXXRecordDecl *NextClass = 5123 getBaseClassType(This.Designator, CovariantPathLength); 5124 const CXXMethodDecl *Next = 5125 Found->getCorrespondingMethodDeclaredInClass(NextClass, false); 5126 if (Next && !Info.Ctx.hasSameUnqualifiedType( 5127 Next->getReturnType(), CovariantAdjustmentPath.back())) 5128 CovariantAdjustmentPath.push_back(Next->getReturnType()); 5129 } 5130 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), 5131 CovariantAdjustmentPath.back())) 5132 CovariantAdjustmentPath.push_back(Found->getReturnType()); 5133 } 5134 5135 // Perform 'this' adjustment. 5136 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) 5137 return nullptr; 5138 5139 return Callee; 5140 } 5141 5142 /// Perform the adjustment from a value returned by a virtual function to 5143 /// a value of the statically expected type, which may be a pointer or 5144 /// reference to a base class of the returned type. 5145 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, 5146 APValue &Result, 5147 ArrayRef<QualType> Path) { 5148 assert(Result.isLValue() && 5149 "unexpected kind of APValue for covariant return"); 5150 if (Result.isNullPointer()) 5151 return true; 5152 5153 LValue LVal; 5154 LVal.setFrom(Info.Ctx, Result); 5155 5156 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); 5157 for (unsigned I = 1; I != Path.size(); ++I) { 5158 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); 5159 assert(OldClass && NewClass && "unexpected kind of covariant return"); 5160 if (OldClass != NewClass && 5161 !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) 5162 return false; 5163 OldClass = NewClass; 5164 } 5165 5166 LVal.moveInto(Result); 5167 return true; 5168 } 5169 5170 /// Determine whether \p Base, which is known to be a direct base class of 5171 /// \p Derived, is a public base class. 5172 static bool isBaseClassPublic(const CXXRecordDecl *Derived, 5173 const CXXRecordDecl *Base) { 5174 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { 5175 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); 5176 if (BaseClass && declaresSameEntity(BaseClass, Base)) 5177 return BaseSpec.getAccessSpecifier() == AS_public; 5178 } 5179 llvm_unreachable("Base is not a direct base of Derived"); 5180 } 5181 5182 /// Apply the given dynamic cast operation on the provided lvalue. 5183 /// 5184 /// This implements the hard case of dynamic_cast, requiring a "runtime check" 5185 /// to find a suitable target subobject. 5186 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, 5187 LValue &Ptr) { 5188 // We can't do anything with a non-symbolic pointer value. 5189 SubobjectDesignator &D = Ptr.Designator; 5190 if (D.Invalid) 5191 return false; 5192 5193 // C++ [expr.dynamic.cast]p6: 5194 // If v is a null pointer value, the result is a null pointer value. 5195 if (Ptr.isNullPointer() && !E->isGLValue()) 5196 return true; 5197 5198 // For all the other cases, we need the pointer to point to an object within 5199 // its lifetime / period of construction / destruction, and we need to know 5200 // its dynamic type. 5201 Optional<DynamicType> DynType = 5202 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); 5203 if (!DynType) 5204 return false; 5205 5206 // C++ [expr.dynamic.cast]p7: 5207 // If T is "pointer to cv void", then the result is a pointer to the most 5208 // derived object 5209 if (E->getType()->isVoidPointerType()) 5210 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); 5211 5212 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); 5213 assert(C && "dynamic_cast target is not void pointer nor class"); 5214 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); 5215 5216 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { 5217 // C++ [expr.dynamic.cast]p9: 5218 if (!E->isGLValue()) { 5219 // The value of a failed cast to pointer type is the null pointer value 5220 // of the required result type. 5221 Ptr.setNull(Info.Ctx, E->getType()); 5222 return true; 5223 } 5224 5225 // A failed cast to reference type throws [...] std::bad_cast. 5226 unsigned DiagKind; 5227 if (!Paths && (declaresSameEntity(DynType->Type, C) || 5228 DynType->Type->isDerivedFrom(C))) 5229 DiagKind = 0; 5230 else if (!Paths || Paths->begin() == Paths->end()) 5231 DiagKind = 1; 5232 else if (Paths->isAmbiguous(CQT)) 5233 DiagKind = 2; 5234 else { 5235 assert(Paths->front().Access != AS_public && "why did the cast fail?"); 5236 DiagKind = 3; 5237 } 5238 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) 5239 << DiagKind << Ptr.Designator.getType(Info.Ctx) 5240 << Info.Ctx.getRecordType(DynType->Type) 5241 << E->getType().getUnqualifiedType(); 5242 return false; 5243 }; 5244 5245 // Runtime check, phase 1: 5246 // Walk from the base subobject towards the derived object looking for the 5247 // target type. 5248 for (int PathLength = Ptr.Designator.Entries.size(); 5249 PathLength >= (int)DynType->PathLength; --PathLength) { 5250 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); 5251 if (declaresSameEntity(Class, C)) 5252 return CastToDerivedClass(Info, E, Ptr, Class, PathLength); 5253 // We can only walk across public inheritance edges. 5254 if (PathLength > (int)DynType->PathLength && 5255 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), 5256 Class)) 5257 return RuntimeCheckFailed(nullptr); 5258 } 5259 5260 // Runtime check, phase 2: 5261 // Search the dynamic type for an unambiguous public base of type C. 5262 CXXBasePaths Paths(/*FindAmbiguities=*/true, 5263 /*RecordPaths=*/true, /*DetectVirtual=*/false); 5264 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && 5265 Paths.front().Access == AS_public) { 5266 // Downcast to the dynamic type... 5267 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) 5268 return false; 5269 // ... then upcast to the chosen base class subobject. 5270 for (CXXBasePathElement &Elem : Paths.front()) 5271 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) 5272 return false; 5273 return true; 5274 } 5275 5276 // Otherwise, the runtime check fails. 5277 return RuntimeCheckFailed(&Paths); 5278 } 5279 5280 namespace { 5281 struct StartLifetimeOfUnionMemberHandler { 5282 const FieldDecl *Field; 5283 5284 static const AccessKinds AccessKind = AK_Assign; 5285 5286 typedef bool result_type; 5287 bool failed() { return false; } 5288 bool found(APValue &Subobj, QualType SubobjType) { 5289 // We are supposed to perform no initialization but begin the lifetime of 5290 // the object. We interpret that as meaning to do what default 5291 // initialization of the object would do if all constructors involved were 5292 // trivial: 5293 // * All base, non-variant member, and array element subobjects' lifetimes 5294 // begin 5295 // * No variant members' lifetimes begin 5296 // * All scalar subobjects whose lifetimes begin have indeterminate values 5297 assert(SubobjType->isUnionType()); 5298 if (!declaresSameEntity(Subobj.getUnionField(), Field) || 5299 !Subobj.getUnionValue().hasValue()) 5300 Subobj.setUnion(Field, getDefaultInitValue(Field->getType())); 5301 return true; 5302 } 5303 bool found(APSInt &Value, QualType SubobjType) { 5304 llvm_unreachable("wrong value kind for union object"); 5305 } 5306 bool found(APFloat &Value, QualType SubobjType) { 5307 llvm_unreachable("wrong value kind for union object"); 5308 } 5309 }; 5310 } // end anonymous namespace 5311 5312 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; 5313 5314 /// Handle a builtin simple-assignment or a call to a trivial assignment 5315 /// operator whose left-hand side might involve a union member access. If it 5316 /// does, implicitly start the lifetime of any accessed union elements per 5317 /// C++20 [class.union]5. 5318 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr, 5319 const LValue &LHS) { 5320 if (LHS.InvalidBase || LHS.Designator.Invalid) 5321 return false; 5322 5323 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; 5324 // C++ [class.union]p5: 5325 // define the set S(E) of subexpressions of E as follows: 5326 unsigned PathLength = LHS.Designator.Entries.size(); 5327 for (const Expr *E = LHSExpr; E != nullptr;) { 5328 // -- If E is of the form A.B, S(E) contains the elements of S(A)... 5329 if (auto *ME = dyn_cast<MemberExpr>(E)) { 5330 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 5331 // Note that we can't implicitly start the lifetime of a reference, 5332 // so we don't need to proceed any further if we reach one. 5333 if (!FD || FD->getType()->isReferenceType()) 5334 break; 5335 5336 // ... and also contains A.B if B names a union member 5337 if (FD->getParent()->isUnion()) 5338 UnionPathLengths.push_back({PathLength - 1, FD}); 5339 5340 E = ME->getBase(); 5341 --PathLength; 5342 assert(declaresSameEntity(FD, 5343 LHS.Designator.Entries[PathLength] 5344 .getAsBaseOrMember().getPointer())); 5345 5346 // -- If E is of the form A[B] and is interpreted as a built-in array 5347 // subscripting operator, S(E) is [S(the array operand, if any)]. 5348 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { 5349 // Step over an ArrayToPointerDecay implicit cast. 5350 auto *Base = ASE->getBase()->IgnoreImplicit(); 5351 if (!Base->getType()->isArrayType()) 5352 break; 5353 5354 E = Base; 5355 --PathLength; 5356 5357 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5358 // Step over a derived-to-base conversion. 5359 E = ICE->getSubExpr(); 5360 if (ICE->getCastKind() == CK_NoOp) 5361 continue; 5362 if (ICE->getCastKind() != CK_DerivedToBase && 5363 ICE->getCastKind() != CK_UncheckedDerivedToBase) 5364 break; 5365 // Walk path backwards as we walk up from the base to the derived class. 5366 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { 5367 --PathLength; 5368 (void)Elt; 5369 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), 5370 LHS.Designator.Entries[PathLength] 5371 .getAsBaseOrMember().getPointer())); 5372 } 5373 5374 // -- Otherwise, S(E) is empty. 5375 } else { 5376 break; 5377 } 5378 } 5379 5380 // Common case: no unions' lifetimes are started. 5381 if (UnionPathLengths.empty()) 5382 return true; 5383 5384 // if modification of X [would access an inactive union member], an object 5385 // of the type of X is implicitly created 5386 CompleteObject Obj = 5387 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); 5388 if (!Obj) 5389 return false; 5390 for (std::pair<unsigned, const FieldDecl *> LengthAndField : 5391 llvm::reverse(UnionPathLengths)) { 5392 // Form a designator for the union object. 5393 SubobjectDesignator D = LHS.Designator; 5394 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); 5395 5396 StartLifetimeOfUnionMemberHandler StartLifetime{LengthAndField.second}; 5397 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) 5398 return false; 5399 } 5400 5401 return true; 5402 } 5403 5404 /// Determine if a class has any fields that might need to be copied by a 5405 /// trivial copy or move operation. 5406 static bool hasFields(const CXXRecordDecl *RD) { 5407 if (!RD || RD->isEmpty()) 5408 return false; 5409 for (auto *FD : RD->fields()) { 5410 if (FD->isUnnamedBitfield()) 5411 continue; 5412 return true; 5413 } 5414 for (auto &Base : RD->bases()) 5415 if (hasFields(Base.getType()->getAsCXXRecordDecl())) 5416 return true; 5417 return false; 5418 } 5419 5420 namespace { 5421 typedef SmallVector<APValue, 8> ArgVector; 5422 } 5423 5424 /// EvaluateArgs - Evaluate the arguments to a function call. 5425 static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues, 5426 EvalInfo &Info, const FunctionDecl *Callee) { 5427 bool Success = true; 5428 llvm::SmallBitVector ForbiddenNullArgs; 5429 if (Callee->hasAttr<NonNullAttr>()) { 5430 ForbiddenNullArgs.resize(Args.size()); 5431 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { 5432 if (!Attr->args_size()) { 5433 ForbiddenNullArgs.set(); 5434 break; 5435 } else 5436 for (auto Idx : Attr->args()) { 5437 unsigned ASTIdx = Idx.getASTIndex(); 5438 if (ASTIdx >= Args.size()) 5439 continue; 5440 ForbiddenNullArgs[ASTIdx] = 1; 5441 } 5442 } 5443 } 5444 for (unsigned Idx = 0; Idx < Args.size(); Idx++) { 5445 if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) { 5446 // If we're checking for a potential constant expression, evaluate all 5447 // initializers even if some of them fail. 5448 if (!Info.noteFailure()) 5449 return false; 5450 Success = false; 5451 } else if (!ForbiddenNullArgs.empty() && 5452 ForbiddenNullArgs[Idx] && 5453 ArgValues[Idx].isLValue() && 5454 ArgValues[Idx].isNullPointer()) { 5455 Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed); 5456 if (!Info.noteFailure()) 5457 return false; 5458 Success = false; 5459 } 5460 } 5461 return Success; 5462 } 5463 5464 /// Evaluate a function call. 5465 static bool HandleFunctionCall(SourceLocation CallLoc, 5466 const FunctionDecl *Callee, const LValue *This, 5467 ArrayRef<const Expr*> Args, const Stmt *Body, 5468 EvalInfo &Info, APValue &Result, 5469 const LValue *ResultSlot) { 5470 ArgVector ArgValues(Args.size()); 5471 if (!EvaluateArgs(Args, ArgValues, Info, Callee)) 5472 return false; 5473 5474 if (!Info.CheckCallLimit(CallLoc)) 5475 return false; 5476 5477 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data()); 5478 5479 // For a trivial copy or move assignment, perform an APValue copy. This is 5480 // essential for unions, where the operations performed by the assignment 5481 // operator cannot be represented as statements. 5482 // 5483 // Skip this for non-union classes with no fields; in that case, the defaulted 5484 // copy/move does not actually read the object. 5485 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); 5486 if (MD && MD->isDefaulted() && 5487 (MD->getParent()->isUnion() || 5488 (MD->isTrivial() && hasFields(MD->getParent())))) { 5489 assert(This && 5490 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); 5491 LValue RHS; 5492 RHS.setFrom(Info.Ctx, ArgValues[0]); 5493 APValue RHSValue; 5494 if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS, 5495 RHSValue, MD->getParent()->isUnion())) 5496 return false; 5497 if (Info.getLangOpts().CPlusPlus2a && MD->isTrivial() && 5498 !HandleUnionActiveMemberChange(Info, Args[0], *This)) 5499 return false; 5500 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), 5501 RHSValue)) 5502 return false; 5503 This->moveInto(Result); 5504 return true; 5505 } else if (MD && isLambdaCallOperator(MD)) { 5506 // We're in a lambda; determine the lambda capture field maps unless we're 5507 // just constexpr checking a lambda's call operator. constexpr checking is 5508 // done before the captures have been added to the closure object (unless 5509 // we're inferring constexpr-ness), so we don't have access to them in this 5510 // case. But since we don't need the captures to constexpr check, we can 5511 // just ignore them. 5512 if (!Info.checkingPotentialConstantExpression()) 5513 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, 5514 Frame.LambdaThisCaptureField); 5515 } 5516 5517 StmtResult Ret = {Result, ResultSlot}; 5518 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); 5519 if (ESR == ESR_Succeeded) { 5520 if (Callee->getReturnType()->isVoidType()) 5521 return true; 5522 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); 5523 } 5524 return ESR == ESR_Returned; 5525 } 5526 5527 /// Evaluate a constructor call. 5528 static bool HandleConstructorCall(const Expr *E, const LValue &This, 5529 APValue *ArgValues, 5530 const CXXConstructorDecl *Definition, 5531 EvalInfo &Info, APValue &Result) { 5532 SourceLocation CallLoc = E->getExprLoc(); 5533 if (!Info.CheckCallLimit(CallLoc)) 5534 return false; 5535 5536 const CXXRecordDecl *RD = Definition->getParent(); 5537 if (RD->getNumVBases()) { 5538 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 5539 return false; 5540 } 5541 5542 EvalInfo::EvaluatingConstructorRAII EvalObj( 5543 Info, 5544 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 5545 RD->getNumBases()); 5546 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues); 5547 5548 // FIXME: Creating an APValue just to hold a nonexistent return value is 5549 // wasteful. 5550 APValue RetVal; 5551 StmtResult Ret = {RetVal, nullptr}; 5552 5553 // If it's a delegating constructor, delegate. 5554 if (Definition->isDelegatingConstructor()) { 5555 CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); 5556 { 5557 FullExpressionRAII InitScope(Info); 5558 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || 5559 !InitScope.destroy()) 5560 return false; 5561 } 5562 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; 5563 } 5564 5565 // For a trivial copy or move constructor, perform an APValue copy. This is 5566 // essential for unions (or classes with anonymous union members), where the 5567 // operations performed by the constructor cannot be represented by 5568 // ctor-initializers. 5569 // 5570 // Skip this for empty non-union classes; we should not perform an 5571 // lvalue-to-rvalue conversion on them because their copy constructor does not 5572 // actually read them. 5573 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && 5574 (Definition->getParent()->isUnion() || 5575 (Definition->isTrivial() && hasFields(Definition->getParent())))) { 5576 LValue RHS; 5577 RHS.setFrom(Info.Ctx, ArgValues[0]); 5578 return handleLValueToRValueConversion( 5579 Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(), 5580 RHS, Result, Definition->getParent()->isUnion()); 5581 } 5582 5583 // Reserve space for the struct members. 5584 if (!RD->isUnion() && !Result.hasValue()) 5585 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 5586 std::distance(RD->field_begin(), RD->field_end())); 5587 5588 if (RD->isInvalidDecl()) return false; 5589 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 5590 5591 // A scope for temporaries lifetime-extended by reference members. 5592 BlockScopeRAII LifetimeExtendedScope(Info); 5593 5594 bool Success = true; 5595 unsigned BasesSeen = 0; 5596 #ifndef NDEBUG 5597 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); 5598 #endif 5599 CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); 5600 auto SkipToField = [&](FieldDecl *FD, bool Indirect) { 5601 // We might be initializing the same field again if this is an indirect 5602 // field initialization. 5603 if (FieldIt == RD->field_end() || 5604 FieldIt->getFieldIndex() > FD->getFieldIndex()) { 5605 assert(Indirect && "fields out of order?"); 5606 return; 5607 } 5608 5609 // Default-initialize any fields with no explicit initializer. 5610 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { 5611 assert(FieldIt != RD->field_end() && "missing field?"); 5612 if (!FieldIt->isUnnamedBitfield()) 5613 Result.getStructField(FieldIt->getFieldIndex()) = 5614 getDefaultInitValue(FieldIt->getType()); 5615 } 5616 ++FieldIt; 5617 }; 5618 for (const auto *I : Definition->inits()) { 5619 LValue Subobject = This; 5620 LValue SubobjectParent = This; 5621 APValue *Value = &Result; 5622 5623 // Determine the subobject to initialize. 5624 FieldDecl *FD = nullptr; 5625 if (I->isBaseInitializer()) { 5626 QualType BaseType(I->getBaseClass(), 0); 5627 #ifndef NDEBUG 5628 // Non-virtual base classes are initialized in the order in the class 5629 // definition. We have already checked for virtual base classes. 5630 assert(!BaseIt->isVirtual() && "virtual base for literal type"); 5631 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && 5632 "base class initializers not in expected order"); 5633 ++BaseIt; 5634 #endif 5635 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, 5636 BaseType->getAsCXXRecordDecl(), &Layout)) 5637 return false; 5638 Value = &Result.getStructBase(BasesSeen++); 5639 } else if ((FD = I->getMember())) { 5640 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) 5641 return false; 5642 if (RD->isUnion()) { 5643 Result = APValue(FD); 5644 Value = &Result.getUnionValue(); 5645 } else { 5646 SkipToField(FD, false); 5647 Value = &Result.getStructField(FD->getFieldIndex()); 5648 } 5649 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { 5650 // Walk the indirect field decl's chain to find the object to initialize, 5651 // and make sure we've initialized every step along it. 5652 auto IndirectFieldChain = IFD->chain(); 5653 for (auto *C : IndirectFieldChain) { 5654 FD = cast<FieldDecl>(C); 5655 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); 5656 // Switch the union field if it differs. This happens if we had 5657 // preceding zero-initialization, and we're now initializing a union 5658 // subobject other than the first. 5659 // FIXME: In this case, the values of the other subobjects are 5660 // specified, since zero-initialization sets all padding bits to zero. 5661 if (!Value->hasValue() || 5662 (Value->isUnion() && Value->getUnionField() != FD)) { 5663 if (CD->isUnion()) 5664 *Value = APValue(FD); 5665 else 5666 // FIXME: This immediately starts the lifetime of all members of an 5667 // anonymous struct. It would be preferable to strictly start member 5668 // lifetime in initialization order. 5669 *Value = getDefaultInitValue(Info.Ctx.getRecordType(CD)); 5670 } 5671 // Store Subobject as its parent before updating it for the last element 5672 // in the chain. 5673 if (C == IndirectFieldChain.back()) 5674 SubobjectParent = Subobject; 5675 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) 5676 return false; 5677 if (CD->isUnion()) 5678 Value = &Value->getUnionValue(); 5679 else { 5680 if (C == IndirectFieldChain.front() && !RD->isUnion()) 5681 SkipToField(FD, true); 5682 Value = &Value->getStructField(FD->getFieldIndex()); 5683 } 5684 } 5685 } else { 5686 llvm_unreachable("unknown base initializer kind"); 5687 } 5688 5689 // Need to override This for implicit field initializers as in this case 5690 // This refers to innermost anonymous struct/union containing initializer, 5691 // not to currently constructed class. 5692 const Expr *Init = I->getInit(); 5693 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, 5694 isa<CXXDefaultInitExpr>(Init)); 5695 FullExpressionRAII InitScope(Info); 5696 if (!EvaluateInPlace(*Value, Info, Subobject, Init) || 5697 (FD && FD->isBitField() && 5698 !truncateBitfieldValue(Info, Init, *Value, FD))) { 5699 // If we're checking for a potential constant expression, evaluate all 5700 // initializers even if some of them fail. 5701 if (!Info.noteFailure()) 5702 return false; 5703 Success = false; 5704 } 5705 5706 // This is the point at which the dynamic type of the object becomes this 5707 // class type. 5708 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) 5709 EvalObj.finishedConstructingBases(); 5710 } 5711 5712 // Default-initialize any remaining fields. 5713 if (!RD->isUnion()) { 5714 for (; FieldIt != RD->field_end(); ++FieldIt) { 5715 if (!FieldIt->isUnnamedBitfield()) 5716 Result.getStructField(FieldIt->getFieldIndex()) = 5717 getDefaultInitValue(FieldIt->getType()); 5718 } 5719 } 5720 5721 return Success && 5722 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && 5723 LifetimeExtendedScope.destroy(); 5724 } 5725 5726 static bool HandleConstructorCall(const Expr *E, const LValue &This, 5727 ArrayRef<const Expr*> Args, 5728 const CXXConstructorDecl *Definition, 5729 EvalInfo &Info, APValue &Result) { 5730 ArgVector ArgValues(Args.size()); 5731 if (!EvaluateArgs(Args, ArgValues, Info, Definition)) 5732 return false; 5733 5734 return HandleConstructorCall(E, This, ArgValues.data(), Definition, 5735 Info, Result); 5736 } 5737 5738 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc, 5739 const LValue &This, APValue &Value, 5740 QualType T) { 5741 // Objects can only be destroyed while they're within their lifetimes. 5742 // FIXME: We have no representation for whether an object of type nullptr_t 5743 // is in its lifetime; it usually doesn't matter. Perhaps we should model it 5744 // as indeterminate instead? 5745 if (Value.isAbsent() && !T->isNullPtrType()) { 5746 APValue Printable; 5747 This.moveInto(Printable); 5748 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime) 5749 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); 5750 return false; 5751 } 5752 5753 // Invent an expression for location purposes. 5754 // FIXME: We shouldn't need to do this. 5755 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue); 5756 5757 // For arrays, destroy elements right-to-left. 5758 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { 5759 uint64_t Size = CAT->getSize().getZExtValue(); 5760 QualType ElemT = CAT->getElementType(); 5761 5762 LValue ElemLV = This; 5763 ElemLV.addArray(Info, &LocE, CAT); 5764 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) 5765 return false; 5766 5767 // Ensure that we have actual array elements available to destroy; the 5768 // destructors might mutate the value, so we can't run them on the array 5769 // filler. 5770 if (Size && Size > Value.getArrayInitializedElts()) 5771 expandArray(Value, Value.getArraySize() - 1); 5772 5773 for (; Size != 0; --Size) { 5774 APValue &Elem = Value.getArrayInitializedElt(Size - 1); 5775 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || 5776 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT)) 5777 return false; 5778 } 5779 5780 // End the lifetime of this array now. 5781 Value = APValue(); 5782 return true; 5783 } 5784 5785 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5786 if (!RD) { 5787 if (T.isDestructedType()) { 5788 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T; 5789 return false; 5790 } 5791 5792 Value = APValue(); 5793 return true; 5794 } 5795 5796 if (RD->getNumVBases()) { 5797 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 5798 return false; 5799 } 5800 5801 const CXXDestructorDecl *DD = RD->getDestructor(); 5802 if (!DD && !RD->hasTrivialDestructor()) { 5803 Info.FFDiag(CallLoc); 5804 return false; 5805 } 5806 5807 if (!DD || DD->isTrivial() || 5808 (RD->isAnonymousStructOrUnion() && RD->isUnion())) { 5809 // A trivial destructor just ends the lifetime of the object. Check for 5810 // this case before checking for a body, because we might not bother 5811 // building a body for a trivial destructor. Note that it doesn't matter 5812 // whether the destructor is constexpr in this case; all trivial 5813 // destructors are constexpr. 5814 // 5815 // If an anonymous union would be destroyed, some enclosing destructor must 5816 // have been explicitly defined, and the anonymous union destruction should 5817 // have no effect. 5818 Value = APValue(); 5819 return true; 5820 } 5821 5822 if (!Info.CheckCallLimit(CallLoc)) 5823 return false; 5824 5825 const FunctionDecl *Definition = nullptr; 5826 const Stmt *Body = DD->getBody(Definition); 5827 5828 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body)) 5829 return false; 5830 5831 CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr); 5832 5833 // We're now in the period of destruction of this object. 5834 unsigned BasesLeft = RD->getNumBases(); 5835 EvalInfo::EvaluatingDestructorRAII EvalObj( 5836 Info, 5837 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); 5838 if (!EvalObj.DidInsert) { 5839 // C++2a [class.dtor]p19: 5840 // the behavior is undefined if the destructor is invoked for an object 5841 // whose lifetime has ended 5842 // (Note that formally the lifetime ends when the period of destruction 5843 // begins, even though certain uses of the object remain valid until the 5844 // period of destruction ends.) 5845 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy); 5846 return false; 5847 } 5848 5849 // FIXME: Creating an APValue just to hold a nonexistent return value is 5850 // wasteful. 5851 APValue RetVal; 5852 StmtResult Ret = {RetVal, nullptr}; 5853 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) 5854 return false; 5855 5856 // A union destructor does not implicitly destroy its members. 5857 if (RD->isUnion()) 5858 return true; 5859 5860 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 5861 5862 // We don't have a good way to iterate fields in reverse, so collect all the 5863 // fields first and then walk them backwards. 5864 SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end()); 5865 for (const FieldDecl *FD : llvm::reverse(Fields)) { 5866 if (FD->isUnnamedBitfield()) 5867 continue; 5868 5869 LValue Subobject = This; 5870 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) 5871 return false; 5872 5873 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); 5874 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, 5875 FD->getType())) 5876 return false; 5877 } 5878 5879 if (BasesLeft != 0) 5880 EvalObj.startedDestroyingBases(); 5881 5882 // Destroy base classes in reverse order. 5883 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { 5884 --BasesLeft; 5885 5886 QualType BaseType = Base.getType(); 5887 LValue Subobject = This; 5888 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, 5889 BaseType->getAsCXXRecordDecl(), &Layout)) 5890 return false; 5891 5892 APValue *SubobjectValue = &Value.getStructBase(BasesLeft); 5893 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, 5894 BaseType)) 5895 return false; 5896 } 5897 assert(BasesLeft == 0 && "NumBases was wrong?"); 5898 5899 // The period of destruction ends now. The object is gone. 5900 Value = APValue(); 5901 return true; 5902 } 5903 5904 namespace { 5905 struct DestroyObjectHandler { 5906 EvalInfo &Info; 5907 const Expr *E; 5908 const LValue &This; 5909 const AccessKinds AccessKind; 5910 5911 typedef bool result_type; 5912 bool failed() { return false; } 5913 bool found(APValue &Subobj, QualType SubobjType) { 5914 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj, 5915 SubobjType); 5916 } 5917 bool found(APSInt &Value, QualType SubobjType) { 5918 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 5919 return false; 5920 } 5921 bool found(APFloat &Value, QualType SubobjType) { 5922 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 5923 return false; 5924 } 5925 }; 5926 } 5927 5928 /// Perform a destructor or pseudo-destructor call on the given object, which 5929 /// might in general not be a complete object. 5930 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 5931 const LValue &This, QualType ThisType) { 5932 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); 5933 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; 5934 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 5935 } 5936 5937 /// Destroy and end the lifetime of the given complete object. 5938 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 5939 APValue::LValueBase LVBase, APValue &Value, 5940 QualType T) { 5941 // If we've had an unmodeled side-effect, we can't rely on mutable state 5942 // (such as the object we're about to destroy) being correct. 5943 if (Info.EvalStatus.HasSideEffects) 5944 return false; 5945 5946 LValue LV; 5947 LV.set({LVBase}); 5948 return HandleDestructionImpl(Info, Loc, LV, Value, T); 5949 } 5950 5951 /// Perform a call to 'perator new' or to `__builtin_operator_new'. 5952 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, 5953 LValue &Result) { 5954 if (Info.checkingPotentialConstantExpression() || 5955 Info.SpeculativeEvaluationDepth) 5956 return false; 5957 5958 // This is permitted only within a call to std::allocator<T>::allocate. 5959 auto Caller = Info.getStdAllocatorCaller("allocate"); 5960 if (!Caller) { 5961 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus2a 5962 ? diag::note_constexpr_new_untyped 5963 : diag::note_constexpr_new); 5964 return false; 5965 } 5966 5967 QualType ElemType = Caller.ElemType; 5968 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { 5969 Info.FFDiag(E->getExprLoc(), 5970 diag::note_constexpr_new_not_complete_object_type) 5971 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; 5972 return false; 5973 } 5974 5975 APSInt ByteSize; 5976 if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) 5977 return false; 5978 bool IsNothrow = false; 5979 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { 5980 EvaluateIgnoredValue(Info, E->getArg(I)); 5981 IsNothrow |= E->getType()->isNothrowT(); 5982 } 5983 5984 CharUnits ElemSize; 5985 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) 5986 return false; 5987 APInt Size, Remainder; 5988 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); 5989 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); 5990 if (Remainder != 0) { 5991 // This likely indicates a bug in the implementation of 'std::allocator'. 5992 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) 5993 << ByteSize << APSInt(ElemSizeAP, true) << ElemType; 5994 return false; 5995 } 5996 5997 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) { 5998 if (IsNothrow) { 5999 Result.setNull(Info.Ctx, E->getType()); 6000 return true; 6001 } 6002 6003 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true); 6004 return false; 6005 } 6006 6007 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr, 6008 ArrayType::Normal, 0); 6009 APValue *Val = Info.createHeapAlloc(E, AllocType, Result); 6010 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); 6011 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); 6012 return true; 6013 } 6014 6015 static bool hasVirtualDestructor(QualType T) { 6016 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 6017 if (CXXDestructorDecl *DD = RD->getDestructor()) 6018 return DD->isVirtual(); 6019 return false; 6020 } 6021 6022 static const FunctionDecl *getVirtualOperatorDelete(QualType T) { 6023 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 6024 if (CXXDestructorDecl *DD = RD->getDestructor()) 6025 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; 6026 return nullptr; 6027 } 6028 6029 /// Check that the given object is a suitable pointer to a heap allocation that 6030 /// still exists and is of the right kind for the purpose of a deletion. 6031 /// 6032 /// On success, returns the heap allocation to deallocate. On failure, produces 6033 /// a diagnostic and returns None. 6034 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, 6035 const LValue &Pointer, 6036 DynAlloc::Kind DeallocKind) { 6037 auto PointerAsString = [&] { 6038 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); 6039 }; 6040 6041 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); 6042 if (!DA) { 6043 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) 6044 << PointerAsString(); 6045 if (Pointer.Base) 6046 NoteLValueLocation(Info, Pointer.Base); 6047 return None; 6048 } 6049 6050 Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 6051 if (!Alloc) { 6052 Info.FFDiag(E, diag::note_constexpr_double_delete); 6053 return None; 6054 } 6055 6056 QualType AllocType = Pointer.Base.getDynamicAllocType(); 6057 if (DeallocKind != (*Alloc)->getKind()) { 6058 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) 6059 << DeallocKind << (*Alloc)->getKind() << AllocType; 6060 NoteLValueLocation(Info, Pointer.Base); 6061 return None; 6062 } 6063 6064 bool Subobject = false; 6065 if (DeallocKind == DynAlloc::New) { 6066 Subobject = Pointer.Designator.MostDerivedPathLength != 0 || 6067 Pointer.Designator.isOnePastTheEnd(); 6068 } else { 6069 Subobject = Pointer.Designator.Entries.size() != 1 || 6070 Pointer.Designator.Entries[0].getAsArrayIndex() != 0; 6071 } 6072 if (Subobject) { 6073 Info.FFDiag(E, diag::note_constexpr_delete_subobject) 6074 << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); 6075 return None; 6076 } 6077 6078 return Alloc; 6079 } 6080 6081 // Perform a call to 'operator delete' or '__builtin_operator_delete'. 6082 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { 6083 if (Info.checkingPotentialConstantExpression() || 6084 Info.SpeculativeEvaluationDepth) 6085 return false; 6086 6087 // This is permitted only within a call to std::allocator<T>::deallocate. 6088 if (!Info.getStdAllocatorCaller("deallocate")) { 6089 Info.FFDiag(E->getExprLoc()); 6090 return true; 6091 } 6092 6093 LValue Pointer; 6094 if (!EvaluatePointer(E->getArg(0), Pointer, Info)) 6095 return false; 6096 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) 6097 EvaluateIgnoredValue(Info, E->getArg(I)); 6098 6099 if (Pointer.Designator.Invalid) 6100 return false; 6101 6102 // Deleting a null pointer has no effect. 6103 if (Pointer.isNullPointer()) 6104 return true; 6105 6106 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) 6107 return false; 6108 6109 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); 6110 return true; 6111 } 6112 6113 //===----------------------------------------------------------------------===// 6114 // Generic Evaluation 6115 //===----------------------------------------------------------------------===// 6116 namespace { 6117 6118 class BitCastBuffer { 6119 // FIXME: We're going to need bit-level granularity when we support 6120 // bit-fields. 6121 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but 6122 // we don't support a host or target where that is the case. Still, we should 6123 // use a more generic type in case we ever do. 6124 SmallVector<Optional<unsigned char>, 32> Bytes; 6125 6126 static_assert(std::numeric_limits<unsigned char>::digits >= 8, 6127 "Need at least 8 bit unsigned char"); 6128 6129 bool TargetIsLittleEndian; 6130 6131 public: 6132 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) 6133 : Bytes(Width.getQuantity()), 6134 TargetIsLittleEndian(TargetIsLittleEndian) {} 6135 6136 LLVM_NODISCARD 6137 bool readObject(CharUnits Offset, CharUnits Width, 6138 SmallVectorImpl<unsigned char> &Output) const { 6139 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { 6140 // If a byte of an integer is uninitialized, then the whole integer is 6141 // uninitalized. 6142 if (!Bytes[I.getQuantity()]) 6143 return false; 6144 Output.push_back(*Bytes[I.getQuantity()]); 6145 } 6146 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 6147 std::reverse(Output.begin(), Output.end()); 6148 return true; 6149 } 6150 6151 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { 6152 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 6153 std::reverse(Input.begin(), Input.end()); 6154 6155 size_t Index = 0; 6156 for (unsigned char Byte : Input) { 6157 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); 6158 Bytes[Offset.getQuantity() + Index] = Byte; 6159 ++Index; 6160 } 6161 } 6162 6163 size_t size() { return Bytes.size(); } 6164 }; 6165 6166 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current 6167 /// target would represent the value at runtime. 6168 class APValueToBufferConverter { 6169 EvalInfo &Info; 6170 BitCastBuffer Buffer; 6171 const CastExpr *BCE; 6172 6173 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, 6174 const CastExpr *BCE) 6175 : Info(Info), 6176 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), 6177 BCE(BCE) {} 6178 6179 bool visit(const APValue &Val, QualType Ty) { 6180 return visit(Val, Ty, CharUnits::fromQuantity(0)); 6181 } 6182 6183 // Write out Val with type Ty into Buffer starting at Offset. 6184 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { 6185 assert((size_t)Offset.getQuantity() <= Buffer.size()); 6186 6187 // As a special case, nullptr_t has an indeterminate value. 6188 if (Ty->isNullPtrType()) 6189 return true; 6190 6191 // Dig through Src to find the byte at SrcOffset. 6192 switch (Val.getKind()) { 6193 case APValue::Indeterminate: 6194 case APValue::None: 6195 return true; 6196 6197 case APValue::Int: 6198 return visitInt(Val.getInt(), Ty, Offset); 6199 case APValue::Float: 6200 return visitFloat(Val.getFloat(), Ty, Offset); 6201 case APValue::Array: 6202 return visitArray(Val, Ty, Offset); 6203 case APValue::Struct: 6204 return visitRecord(Val, Ty, Offset); 6205 6206 case APValue::ComplexInt: 6207 case APValue::ComplexFloat: 6208 case APValue::Vector: 6209 case APValue::FixedPoint: 6210 // FIXME: We should support these. 6211 6212 case APValue::Union: 6213 case APValue::MemberPointer: 6214 case APValue::AddrLabelDiff: { 6215 Info.FFDiag(BCE->getBeginLoc(), 6216 diag::note_constexpr_bit_cast_unsupported_type) 6217 << Ty; 6218 return false; 6219 } 6220 6221 case APValue::LValue: 6222 llvm_unreachable("LValue subobject in bit_cast?"); 6223 } 6224 llvm_unreachable("Unhandled APValue::ValueKind"); 6225 } 6226 6227 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { 6228 const RecordDecl *RD = Ty->getAsRecordDecl(); 6229 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6230 6231 // Visit the base classes. 6232 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 6233 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 6234 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 6235 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 6236 6237 if (!visitRecord(Val.getStructBase(I), BS.getType(), 6238 Layout.getBaseClassOffset(BaseDecl) + Offset)) 6239 return false; 6240 } 6241 } 6242 6243 // Visit the fields. 6244 unsigned FieldIdx = 0; 6245 for (FieldDecl *FD : RD->fields()) { 6246 if (FD->isBitField()) { 6247 Info.FFDiag(BCE->getBeginLoc(), 6248 diag::note_constexpr_bit_cast_unsupported_bitfield); 6249 return false; 6250 } 6251 6252 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 6253 6254 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && 6255 "only bit-fields can have sub-char alignment"); 6256 CharUnits FieldOffset = 6257 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; 6258 QualType FieldTy = FD->getType(); 6259 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) 6260 return false; 6261 ++FieldIdx; 6262 } 6263 6264 return true; 6265 } 6266 6267 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { 6268 const auto *CAT = 6269 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); 6270 if (!CAT) 6271 return false; 6272 6273 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); 6274 unsigned NumInitializedElts = Val.getArrayInitializedElts(); 6275 unsigned ArraySize = Val.getArraySize(); 6276 // First, initialize the initialized elements. 6277 for (unsigned I = 0; I != NumInitializedElts; ++I) { 6278 const APValue &SubObj = Val.getArrayInitializedElt(I); 6279 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) 6280 return false; 6281 } 6282 6283 // Next, initialize the rest of the array using the filler. 6284 if (Val.hasArrayFiller()) { 6285 const APValue &Filler = Val.getArrayFiller(); 6286 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { 6287 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) 6288 return false; 6289 } 6290 } 6291 6292 return true; 6293 } 6294 6295 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { 6296 CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty); 6297 SmallVector<unsigned char, 8> Bytes(Width.getQuantity()); 6298 llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity()); 6299 Buffer.writeObject(Offset, Bytes); 6300 return true; 6301 } 6302 6303 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { 6304 APSInt AsInt(Val.bitcastToAPInt()); 6305 return visitInt(AsInt, Ty, Offset); 6306 } 6307 6308 public: 6309 static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src, 6310 const CastExpr *BCE) { 6311 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); 6312 APValueToBufferConverter Converter(Info, DstSize, BCE); 6313 if (!Converter.visit(Src, BCE->getSubExpr()->getType())) 6314 return None; 6315 return Converter.Buffer; 6316 } 6317 }; 6318 6319 /// Write an BitCastBuffer into an APValue. 6320 class BufferToAPValueConverter { 6321 EvalInfo &Info; 6322 const BitCastBuffer &Buffer; 6323 const CastExpr *BCE; 6324 6325 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, 6326 const CastExpr *BCE) 6327 : Info(Info), Buffer(Buffer), BCE(BCE) {} 6328 6329 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast 6330 // with an invalid type, so anything left is a deficiency on our part (FIXME). 6331 // Ideally this will be unreachable. 6332 llvm::NoneType unsupportedType(QualType Ty) { 6333 Info.FFDiag(BCE->getBeginLoc(), 6334 diag::note_constexpr_bit_cast_unsupported_type) 6335 << Ty; 6336 return None; 6337 } 6338 6339 Optional<APValue> visit(const BuiltinType *T, CharUnits Offset, 6340 const EnumType *EnumSugar = nullptr) { 6341 if (T->isNullPtrType()) { 6342 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); 6343 return APValue((Expr *)nullptr, 6344 /*Offset=*/CharUnits::fromQuantity(NullValue), 6345 APValue::NoLValuePath{}, /*IsNullPtr=*/true); 6346 } 6347 6348 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); 6349 SmallVector<uint8_t, 8> Bytes; 6350 if (!Buffer.readObject(Offset, SizeOf, Bytes)) { 6351 // If this is std::byte or unsigned char, then its okay to store an 6352 // indeterminate value. 6353 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); 6354 bool IsUChar = 6355 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || 6356 T->isSpecificBuiltinType(BuiltinType::Char_U)); 6357 if (!IsStdByte && !IsUChar) { 6358 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); 6359 Info.FFDiag(BCE->getExprLoc(), 6360 diag::note_constexpr_bit_cast_indet_dest) 6361 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; 6362 return None; 6363 } 6364 6365 return APValue::IndeterminateValue(); 6366 } 6367 6368 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); 6369 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); 6370 6371 if (T->isIntegralOrEnumerationType()) { 6372 Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); 6373 return APValue(Val); 6374 } 6375 6376 if (T->isRealFloatingType()) { 6377 const llvm::fltSemantics &Semantics = 6378 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 6379 return APValue(APFloat(Semantics, Val)); 6380 } 6381 6382 return unsupportedType(QualType(T, 0)); 6383 } 6384 6385 Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { 6386 const RecordDecl *RD = RTy->getAsRecordDecl(); 6387 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6388 6389 unsigned NumBases = 0; 6390 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6391 NumBases = CXXRD->getNumBases(); 6392 6393 APValue ResultVal(APValue::UninitStruct(), NumBases, 6394 std::distance(RD->field_begin(), RD->field_end())); 6395 6396 // Visit the base classes. 6397 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 6398 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 6399 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 6400 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 6401 if (BaseDecl->isEmpty() || 6402 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) 6403 continue; 6404 6405 Optional<APValue> SubObj = visitType( 6406 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); 6407 if (!SubObj) 6408 return None; 6409 ResultVal.getStructBase(I) = *SubObj; 6410 } 6411 } 6412 6413 // Visit the fields. 6414 unsigned FieldIdx = 0; 6415 for (FieldDecl *FD : RD->fields()) { 6416 // FIXME: We don't currently support bit-fields. A lot of the logic for 6417 // this is in CodeGen, so we need to factor it around. 6418 if (FD->isBitField()) { 6419 Info.FFDiag(BCE->getBeginLoc(), 6420 diag::note_constexpr_bit_cast_unsupported_bitfield); 6421 return None; 6422 } 6423 6424 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 6425 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); 6426 6427 CharUnits FieldOffset = 6428 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + 6429 Offset; 6430 QualType FieldTy = FD->getType(); 6431 Optional<APValue> SubObj = visitType(FieldTy, FieldOffset); 6432 if (!SubObj) 6433 return None; 6434 ResultVal.getStructField(FieldIdx) = *SubObj; 6435 ++FieldIdx; 6436 } 6437 6438 return ResultVal; 6439 } 6440 6441 Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { 6442 QualType RepresentationType = Ty->getDecl()->getIntegerType(); 6443 assert(!RepresentationType.isNull() && 6444 "enum forward decl should be caught by Sema"); 6445 const auto *AsBuiltin = 6446 RepresentationType.getCanonicalType()->castAs<BuiltinType>(); 6447 // Recurse into the underlying type. Treat std::byte transparently as 6448 // unsigned char. 6449 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); 6450 } 6451 6452 Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { 6453 size_t Size = Ty->getSize().getLimitedValue(); 6454 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); 6455 6456 APValue ArrayValue(APValue::UninitArray(), Size, Size); 6457 for (size_t I = 0; I != Size; ++I) { 6458 Optional<APValue> ElementValue = 6459 visitType(Ty->getElementType(), Offset + I * ElementWidth); 6460 if (!ElementValue) 6461 return None; 6462 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); 6463 } 6464 6465 return ArrayValue; 6466 } 6467 6468 Optional<APValue> visit(const Type *Ty, CharUnits Offset) { 6469 return unsupportedType(QualType(Ty, 0)); 6470 } 6471 6472 Optional<APValue> visitType(QualType Ty, CharUnits Offset) { 6473 QualType Can = Ty.getCanonicalType(); 6474 6475 switch (Can->getTypeClass()) { 6476 #define TYPE(Class, Base) \ 6477 case Type::Class: \ 6478 return visit(cast<Class##Type>(Can.getTypePtr()), Offset); 6479 #define ABSTRACT_TYPE(Class, Base) 6480 #define NON_CANONICAL_TYPE(Class, Base) \ 6481 case Type::Class: \ 6482 llvm_unreachable("non-canonical type should be impossible!"); 6483 #define DEPENDENT_TYPE(Class, Base) \ 6484 case Type::Class: \ 6485 llvm_unreachable( \ 6486 "dependent types aren't supported in the constant evaluator!"); 6487 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ 6488 case Type::Class: \ 6489 llvm_unreachable("either dependent or not canonical!"); 6490 #include "clang/AST/TypeNodes.inc" 6491 } 6492 llvm_unreachable("Unhandled Type::TypeClass"); 6493 } 6494 6495 public: 6496 // Pull out a full value of type DstType. 6497 static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, 6498 const CastExpr *BCE) { 6499 BufferToAPValueConverter Converter(Info, Buffer, BCE); 6500 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); 6501 } 6502 }; 6503 6504 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, 6505 QualType Ty, EvalInfo *Info, 6506 const ASTContext &Ctx, 6507 bool CheckingDest) { 6508 Ty = Ty.getCanonicalType(); 6509 6510 auto diag = [&](int Reason) { 6511 if (Info) 6512 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) 6513 << CheckingDest << (Reason == 4) << Reason; 6514 return false; 6515 }; 6516 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { 6517 if (Info) 6518 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) 6519 << NoteTy << Construct << Ty; 6520 return false; 6521 }; 6522 6523 if (Ty->isUnionType()) 6524 return diag(0); 6525 if (Ty->isPointerType()) 6526 return diag(1); 6527 if (Ty->isMemberPointerType()) 6528 return diag(2); 6529 if (Ty.isVolatileQualified()) 6530 return diag(3); 6531 6532 if (RecordDecl *Record = Ty->getAsRecordDecl()) { 6533 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { 6534 for (CXXBaseSpecifier &BS : CXXRD->bases()) 6535 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, 6536 CheckingDest)) 6537 return note(1, BS.getType(), BS.getBeginLoc()); 6538 } 6539 for (FieldDecl *FD : Record->fields()) { 6540 if (FD->getType()->isReferenceType()) 6541 return diag(4); 6542 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, 6543 CheckingDest)) 6544 return note(0, FD->getType(), FD->getBeginLoc()); 6545 } 6546 } 6547 6548 if (Ty->isArrayType() && 6549 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), 6550 Info, Ctx, CheckingDest)) 6551 return false; 6552 6553 return true; 6554 } 6555 6556 static bool checkBitCastConstexprEligibility(EvalInfo *Info, 6557 const ASTContext &Ctx, 6558 const CastExpr *BCE) { 6559 bool DestOK = checkBitCastConstexprEligibilityType( 6560 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); 6561 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( 6562 BCE->getBeginLoc(), 6563 BCE->getSubExpr()->getType(), Info, Ctx, false); 6564 return SourceOK; 6565 } 6566 6567 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, 6568 APValue &SourceValue, 6569 const CastExpr *BCE) { 6570 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && 6571 "no host or target supports non 8-bit chars"); 6572 assert(SourceValue.isLValue() && 6573 "LValueToRValueBitcast requires an lvalue operand!"); 6574 6575 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) 6576 return false; 6577 6578 LValue SourceLValue; 6579 APValue SourceRValue; 6580 SourceLValue.setFrom(Info.Ctx, SourceValue); 6581 if (!handleLValueToRValueConversion( 6582 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, 6583 SourceRValue, /*WantObjectRepresentation=*/true)) 6584 return false; 6585 6586 // Read out SourceValue into a char buffer. 6587 Optional<BitCastBuffer> Buffer = 6588 APValueToBufferConverter::convert(Info, SourceRValue, BCE); 6589 if (!Buffer) 6590 return false; 6591 6592 // Write out the buffer into a new APValue. 6593 Optional<APValue> MaybeDestValue = 6594 BufferToAPValueConverter::convert(Info, *Buffer, BCE); 6595 if (!MaybeDestValue) 6596 return false; 6597 6598 DestValue = std::move(*MaybeDestValue); 6599 return true; 6600 } 6601 6602 template <class Derived> 6603 class ExprEvaluatorBase 6604 : public ConstStmtVisitor<Derived, bool> { 6605 private: 6606 Derived &getDerived() { return static_cast<Derived&>(*this); } 6607 bool DerivedSuccess(const APValue &V, const Expr *E) { 6608 return getDerived().Success(V, E); 6609 } 6610 bool DerivedZeroInitialization(const Expr *E) { 6611 return getDerived().ZeroInitialization(E); 6612 } 6613 6614 // Check whether a conditional operator with a non-constant condition is a 6615 // potential constant expression. If neither arm is a potential constant 6616 // expression, then the conditional operator is not either. 6617 template<typename ConditionalOperator> 6618 void CheckPotentialConstantConditional(const ConditionalOperator *E) { 6619 assert(Info.checkingPotentialConstantExpression()); 6620 6621 // Speculatively evaluate both arms. 6622 SmallVector<PartialDiagnosticAt, 8> Diag; 6623 { 6624 SpeculativeEvaluationRAII Speculate(Info, &Diag); 6625 StmtVisitorTy::Visit(E->getFalseExpr()); 6626 if (Diag.empty()) 6627 return; 6628 } 6629 6630 { 6631 SpeculativeEvaluationRAII Speculate(Info, &Diag); 6632 Diag.clear(); 6633 StmtVisitorTy::Visit(E->getTrueExpr()); 6634 if (Diag.empty()) 6635 return; 6636 } 6637 6638 Error(E, diag::note_constexpr_conditional_never_const); 6639 } 6640 6641 6642 template<typename ConditionalOperator> 6643 bool HandleConditionalOperator(const ConditionalOperator *E) { 6644 bool BoolResult; 6645 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { 6646 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { 6647 CheckPotentialConstantConditional(E); 6648 return false; 6649 } 6650 if (Info.noteFailure()) { 6651 StmtVisitorTy::Visit(E->getTrueExpr()); 6652 StmtVisitorTy::Visit(E->getFalseExpr()); 6653 } 6654 return false; 6655 } 6656 6657 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); 6658 return StmtVisitorTy::Visit(EvalExpr); 6659 } 6660 6661 protected: 6662 EvalInfo &Info; 6663 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; 6664 typedef ExprEvaluatorBase ExprEvaluatorBaseTy; 6665 6666 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 6667 return Info.CCEDiag(E, D); 6668 } 6669 6670 bool ZeroInitialization(const Expr *E) { return Error(E); } 6671 6672 public: 6673 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} 6674 6675 EvalInfo &getEvalInfo() { return Info; } 6676 6677 /// Report an evaluation error. This should only be called when an error is 6678 /// first discovered. When propagating an error, just return false. 6679 bool Error(const Expr *E, diag::kind D) { 6680 Info.FFDiag(E, D); 6681 return false; 6682 } 6683 bool Error(const Expr *E) { 6684 return Error(E, diag::note_invalid_subexpr_in_const_expr); 6685 } 6686 6687 bool VisitStmt(const Stmt *) { 6688 llvm_unreachable("Expression evaluator should not be called on stmts"); 6689 } 6690 bool VisitExpr(const Expr *E) { 6691 return Error(E); 6692 } 6693 6694 bool VisitConstantExpr(const ConstantExpr *E) 6695 { return StmtVisitorTy::Visit(E->getSubExpr()); } 6696 bool VisitParenExpr(const ParenExpr *E) 6697 { return StmtVisitorTy::Visit(E->getSubExpr()); } 6698 bool VisitUnaryExtension(const UnaryOperator *E) 6699 { return StmtVisitorTy::Visit(E->getSubExpr()); } 6700 bool VisitUnaryPlus(const UnaryOperator *E) 6701 { return StmtVisitorTy::Visit(E->getSubExpr()); } 6702 bool VisitChooseExpr(const ChooseExpr *E) 6703 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } 6704 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) 6705 { return StmtVisitorTy::Visit(E->getResultExpr()); } 6706 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) 6707 { return StmtVisitorTy::Visit(E->getReplacement()); } 6708 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 6709 TempVersionRAII RAII(*Info.CurrentCall); 6710 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 6711 return StmtVisitorTy::Visit(E->getExpr()); 6712 } 6713 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 6714 TempVersionRAII RAII(*Info.CurrentCall); 6715 // The initializer may not have been parsed yet, or might be erroneous. 6716 if (!E->getExpr()) 6717 return Error(E); 6718 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 6719 return StmtVisitorTy::Visit(E->getExpr()); 6720 } 6721 6722 bool VisitExprWithCleanups(const ExprWithCleanups *E) { 6723 FullExpressionRAII Scope(Info); 6724 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); 6725 } 6726 6727 // Temporaries are registered when created, so we don't care about 6728 // CXXBindTemporaryExpr. 6729 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 6730 return StmtVisitorTy::Visit(E->getSubExpr()); 6731 } 6732 6733 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { 6734 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; 6735 return static_cast<Derived*>(this)->VisitCastExpr(E); 6736 } 6737 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { 6738 if (!Info.Ctx.getLangOpts().CPlusPlus2a) 6739 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; 6740 return static_cast<Derived*>(this)->VisitCastExpr(E); 6741 } 6742 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { 6743 return static_cast<Derived*>(this)->VisitCastExpr(E); 6744 } 6745 6746 bool VisitBinaryOperator(const BinaryOperator *E) { 6747 switch (E->getOpcode()) { 6748 default: 6749 return Error(E); 6750 6751 case BO_Comma: 6752 VisitIgnoredValue(E->getLHS()); 6753 return StmtVisitorTy::Visit(E->getRHS()); 6754 6755 case BO_PtrMemD: 6756 case BO_PtrMemI: { 6757 LValue Obj; 6758 if (!HandleMemberPointerAccess(Info, E, Obj)) 6759 return false; 6760 APValue Result; 6761 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) 6762 return false; 6763 return DerivedSuccess(Result, E); 6764 } 6765 } 6766 } 6767 6768 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { 6769 return StmtVisitorTy::Visit(E->getSemanticForm()); 6770 } 6771 6772 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { 6773 // Evaluate and cache the common expression. We treat it as a temporary, 6774 // even though it's not quite the same thing. 6775 LValue CommonLV; 6776 if (!Evaluate(Info.CurrentCall->createTemporary( 6777 E->getOpaqueValue(), 6778 getStorageType(Info.Ctx, E->getOpaqueValue()), false, 6779 CommonLV), 6780 Info, E->getCommon())) 6781 return false; 6782 6783 return HandleConditionalOperator(E); 6784 } 6785 6786 bool VisitConditionalOperator(const ConditionalOperator *E) { 6787 bool IsBcpCall = false; 6788 // If the condition (ignoring parens) is a __builtin_constant_p call, 6789 // the result is a constant expression if it can be folded without 6790 // side-effects. This is an important GNU extension. See GCC PR38377 6791 // for discussion. 6792 if (const CallExpr *CallCE = 6793 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) 6794 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 6795 IsBcpCall = true; 6796 6797 // Always assume __builtin_constant_p(...) ? ... : ... is a potential 6798 // constant expression; we can't check whether it's potentially foldable. 6799 // FIXME: We should instead treat __builtin_constant_p as non-constant if 6800 // it would return 'false' in this mode. 6801 if (Info.checkingPotentialConstantExpression() && IsBcpCall) 6802 return false; 6803 6804 FoldConstant Fold(Info, IsBcpCall); 6805 if (!HandleConditionalOperator(E)) { 6806 Fold.keepDiagnostics(); 6807 return false; 6808 } 6809 6810 return true; 6811 } 6812 6813 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 6814 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E)) 6815 return DerivedSuccess(*Value, E); 6816 6817 const Expr *Source = E->getSourceExpr(); 6818 if (!Source) 6819 return Error(E); 6820 if (Source == E) { // sanity checking. 6821 assert(0 && "OpaqueValueExpr recursively refers to itself"); 6822 return Error(E); 6823 } 6824 return StmtVisitorTy::Visit(Source); 6825 } 6826 6827 bool VisitCallExpr(const CallExpr *E) { 6828 APValue Result; 6829 if (!handleCallExpr(E, Result, nullptr)) 6830 return false; 6831 return DerivedSuccess(Result, E); 6832 } 6833 6834 bool handleCallExpr(const CallExpr *E, APValue &Result, 6835 const LValue *ResultSlot) { 6836 const Expr *Callee = E->getCallee()->IgnoreParens(); 6837 QualType CalleeType = Callee->getType(); 6838 6839 const FunctionDecl *FD = nullptr; 6840 LValue *This = nullptr, ThisVal; 6841 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 6842 bool HasQualifier = false; 6843 6844 // Extract function decl and 'this' pointer from the callee. 6845 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { 6846 const CXXMethodDecl *Member = nullptr; 6847 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { 6848 // Explicit bound member calls, such as x.f() or p->g(); 6849 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) 6850 return false; 6851 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); 6852 if (!Member) 6853 return Error(Callee); 6854 This = &ThisVal; 6855 HasQualifier = ME->hasQualifier(); 6856 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { 6857 // Indirect bound member calls ('.*' or '->*'). 6858 const ValueDecl *D = 6859 HandleMemberPointerAccess(Info, BE, ThisVal, false); 6860 if (!D) 6861 return false; 6862 Member = dyn_cast<CXXMethodDecl>(D); 6863 if (!Member) 6864 return Error(Callee); 6865 This = &ThisVal; 6866 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { 6867 if (!Info.getLangOpts().CPlusPlus2a) 6868 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); 6869 // FIXME: If pseudo-destructor calls ever start ending the lifetime of 6870 // their callee, we should start calling HandleDestruction here. 6871 // For now, we just evaluate the object argument and discard it. 6872 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal); 6873 } else 6874 return Error(Callee); 6875 FD = Member; 6876 } else if (CalleeType->isFunctionPointerType()) { 6877 LValue Call; 6878 if (!EvaluatePointer(Callee, Call, Info)) 6879 return false; 6880 6881 if (!Call.getLValueOffset().isZero()) 6882 return Error(Callee); 6883 FD = dyn_cast_or_null<FunctionDecl>( 6884 Call.getLValueBase().dyn_cast<const ValueDecl*>()); 6885 if (!FD) 6886 return Error(Callee); 6887 // Don't call function pointers which have been cast to some other type. 6888 // Per DR (no number yet), the caller and callee can differ in noexcept. 6889 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( 6890 CalleeType->getPointeeType(), FD->getType())) { 6891 return Error(E); 6892 } 6893 6894 // Overloaded operator calls to member functions are represented as normal 6895 // calls with '*this' as the first argument. 6896 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 6897 if (MD && !MD->isStatic()) { 6898 // FIXME: When selecting an implicit conversion for an overloaded 6899 // operator delete, we sometimes try to evaluate calls to conversion 6900 // operators without a 'this' parameter! 6901 if (Args.empty()) 6902 return Error(E); 6903 6904 if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) 6905 return false; 6906 This = &ThisVal; 6907 Args = Args.slice(1); 6908 } else if (MD && MD->isLambdaStaticInvoker()) { 6909 // Map the static invoker for the lambda back to the call operator. 6910 // Conveniently, we don't have to slice out the 'this' argument (as is 6911 // being done for the non-static case), since a static member function 6912 // doesn't have an implicit argument passed in. 6913 const CXXRecordDecl *ClosureClass = MD->getParent(); 6914 assert( 6915 ClosureClass->captures_begin() == ClosureClass->captures_end() && 6916 "Number of captures must be zero for conversion to function-ptr"); 6917 6918 const CXXMethodDecl *LambdaCallOp = 6919 ClosureClass->getLambdaCallOperator(); 6920 6921 // Set 'FD', the function that will be called below, to the call 6922 // operator. If the closure object represents a generic lambda, find 6923 // the corresponding specialization of the call operator. 6924 6925 if (ClosureClass->isGenericLambda()) { 6926 assert(MD->isFunctionTemplateSpecialization() && 6927 "A generic lambda's static-invoker function must be a " 6928 "template specialization"); 6929 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 6930 FunctionTemplateDecl *CallOpTemplate = 6931 LambdaCallOp->getDescribedFunctionTemplate(); 6932 void *InsertPos = nullptr; 6933 FunctionDecl *CorrespondingCallOpSpecialization = 6934 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 6935 assert(CorrespondingCallOpSpecialization && 6936 "We must always have a function call operator specialization " 6937 "that corresponds to our static invoker specialization"); 6938 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 6939 } else 6940 FD = LambdaCallOp; 6941 } else if (FD->isReplaceableGlobalAllocationFunction()) { 6942 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || 6943 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 6944 LValue Ptr; 6945 if (!HandleOperatorNewCall(Info, E, Ptr)) 6946 return false; 6947 Ptr.moveInto(Result); 6948 return true; 6949 } else { 6950 return HandleOperatorDeleteCall(Info, E); 6951 } 6952 } 6953 } else 6954 return Error(E); 6955 6956 SmallVector<QualType, 4> CovariantAdjustmentPath; 6957 if (This) { 6958 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); 6959 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { 6960 // Perform virtual dispatch, if necessary. 6961 FD = HandleVirtualDispatch(Info, E, *This, NamedMember, 6962 CovariantAdjustmentPath); 6963 if (!FD) 6964 return false; 6965 } else { 6966 // Check that the 'this' pointer points to an object of the right type. 6967 // FIXME: If this is an assignment operator call, we may need to change 6968 // the active union member before we check this. 6969 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) 6970 return false; 6971 } 6972 } 6973 6974 // Destructor calls are different enough that they have their own codepath. 6975 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { 6976 assert(This && "no 'this' pointer for destructor call"); 6977 return HandleDestruction(Info, E, *This, 6978 Info.Ctx.getRecordType(DD->getParent())); 6979 } 6980 6981 const FunctionDecl *Definition = nullptr; 6982 Stmt *Body = FD->getBody(Definition); 6983 6984 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || 6985 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info, 6986 Result, ResultSlot)) 6987 return false; 6988 6989 if (!CovariantAdjustmentPath.empty() && 6990 !HandleCovariantReturnAdjustment(Info, E, Result, 6991 CovariantAdjustmentPath)) 6992 return false; 6993 6994 return true; 6995 } 6996 6997 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 6998 return StmtVisitorTy::Visit(E->getInitializer()); 6999 } 7000 bool VisitInitListExpr(const InitListExpr *E) { 7001 if (E->getNumInits() == 0) 7002 return DerivedZeroInitialization(E); 7003 if (E->getNumInits() == 1) 7004 return StmtVisitorTy::Visit(E->getInit(0)); 7005 return Error(E); 7006 } 7007 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 7008 return DerivedZeroInitialization(E); 7009 } 7010 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 7011 return DerivedZeroInitialization(E); 7012 } 7013 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 7014 return DerivedZeroInitialization(E); 7015 } 7016 7017 /// A member expression where the object is a prvalue is itself a prvalue. 7018 bool VisitMemberExpr(const MemberExpr *E) { 7019 assert(!Info.Ctx.getLangOpts().CPlusPlus11 && 7020 "missing temporary materialization conversion"); 7021 assert(!E->isArrow() && "missing call to bound member function?"); 7022 7023 APValue Val; 7024 if (!Evaluate(Val, Info, E->getBase())) 7025 return false; 7026 7027 QualType BaseTy = E->getBase()->getType(); 7028 7029 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); 7030 if (!FD) return Error(E); 7031 assert(!FD->getType()->isReferenceType() && "prvalue reference?"); 7032 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 7033 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 7034 7035 // Note: there is no lvalue base here. But this case should only ever 7036 // happen in C or in C++98, where we cannot be evaluating a constexpr 7037 // constructor, which is the only case the base matters. 7038 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); 7039 SubobjectDesignator Designator(BaseTy); 7040 Designator.addDeclUnchecked(FD); 7041 7042 APValue Result; 7043 return extractSubobject(Info, E, Obj, Designator, Result) && 7044 DerivedSuccess(Result, E); 7045 } 7046 7047 bool VisitCastExpr(const CastExpr *E) { 7048 switch (E->getCastKind()) { 7049 default: 7050 break; 7051 7052 case CK_AtomicToNonAtomic: { 7053 APValue AtomicVal; 7054 // This does not need to be done in place even for class/array types: 7055 // atomic-to-non-atomic conversion implies copying the object 7056 // representation. 7057 if (!Evaluate(AtomicVal, Info, E->getSubExpr())) 7058 return false; 7059 return DerivedSuccess(AtomicVal, E); 7060 } 7061 7062 case CK_NoOp: 7063 case CK_UserDefinedConversion: 7064 return StmtVisitorTy::Visit(E->getSubExpr()); 7065 7066 case CK_LValueToRValue: { 7067 LValue LVal; 7068 if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) 7069 return false; 7070 APValue RVal; 7071 // Note, we use the subexpression's type in order to retain cv-qualifiers. 7072 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 7073 LVal, RVal)) 7074 return false; 7075 return DerivedSuccess(RVal, E); 7076 } 7077 case CK_LValueToRValueBitCast: { 7078 APValue DestValue, SourceValue; 7079 if (!Evaluate(SourceValue, Info, E->getSubExpr())) 7080 return false; 7081 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) 7082 return false; 7083 return DerivedSuccess(DestValue, E); 7084 } 7085 } 7086 7087 return Error(E); 7088 } 7089 7090 bool VisitUnaryPostInc(const UnaryOperator *UO) { 7091 return VisitUnaryPostIncDec(UO); 7092 } 7093 bool VisitUnaryPostDec(const UnaryOperator *UO) { 7094 return VisitUnaryPostIncDec(UO); 7095 } 7096 bool VisitUnaryPostIncDec(const UnaryOperator *UO) { 7097 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 7098 return Error(UO); 7099 7100 LValue LVal; 7101 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) 7102 return false; 7103 APValue RVal; 7104 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), 7105 UO->isIncrementOp(), &RVal)) 7106 return false; 7107 return DerivedSuccess(RVal, UO); 7108 } 7109 7110 bool VisitStmtExpr(const StmtExpr *E) { 7111 // We will have checked the full-expressions inside the statement expression 7112 // when they were completed, and don't need to check them again now. 7113 if (Info.checkingForUndefinedBehavior()) 7114 return Error(E); 7115 7116 const CompoundStmt *CS = E->getSubStmt(); 7117 if (CS->body_empty()) 7118 return true; 7119 7120 BlockScopeRAII Scope(Info); 7121 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 7122 BE = CS->body_end(); 7123 /**/; ++BI) { 7124 if (BI + 1 == BE) { 7125 const Expr *FinalExpr = dyn_cast<Expr>(*BI); 7126 if (!FinalExpr) { 7127 Info.FFDiag((*BI)->getBeginLoc(), 7128 diag::note_constexpr_stmt_expr_unsupported); 7129 return false; 7130 } 7131 return this->Visit(FinalExpr) && Scope.destroy(); 7132 } 7133 7134 APValue ReturnValue; 7135 StmtResult Result = { ReturnValue, nullptr }; 7136 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); 7137 if (ESR != ESR_Succeeded) { 7138 // FIXME: If the statement-expression terminated due to 'return', 7139 // 'break', or 'continue', it would be nice to propagate that to 7140 // the outer statement evaluation rather than bailing out. 7141 if (ESR != ESR_Failed) 7142 Info.FFDiag((*BI)->getBeginLoc(), 7143 diag::note_constexpr_stmt_expr_unsupported); 7144 return false; 7145 } 7146 } 7147 7148 llvm_unreachable("Return from function from the loop above."); 7149 } 7150 7151 /// Visit a value which is evaluated, but whose value is ignored. 7152 void VisitIgnoredValue(const Expr *E) { 7153 EvaluateIgnoredValue(Info, E); 7154 } 7155 7156 /// Potentially visit a MemberExpr's base expression. 7157 void VisitIgnoredBaseExpression(const Expr *E) { 7158 // While MSVC doesn't evaluate the base expression, it does diagnose the 7159 // presence of side-effecting behavior. 7160 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) 7161 return; 7162 VisitIgnoredValue(E); 7163 } 7164 }; 7165 7166 } // namespace 7167 7168 //===----------------------------------------------------------------------===// 7169 // Common base class for lvalue and temporary evaluation. 7170 //===----------------------------------------------------------------------===// 7171 namespace { 7172 template<class Derived> 7173 class LValueExprEvaluatorBase 7174 : public ExprEvaluatorBase<Derived> { 7175 protected: 7176 LValue &Result; 7177 bool InvalidBaseOK; 7178 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; 7179 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; 7180 7181 bool Success(APValue::LValueBase B) { 7182 Result.set(B); 7183 return true; 7184 } 7185 7186 bool evaluatePointer(const Expr *E, LValue &Result) { 7187 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); 7188 } 7189 7190 public: 7191 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) 7192 : ExprEvaluatorBaseTy(Info), Result(Result), 7193 InvalidBaseOK(InvalidBaseOK) {} 7194 7195 bool Success(const APValue &V, const Expr *E) { 7196 Result.setFrom(this->Info.Ctx, V); 7197 return true; 7198 } 7199 7200 bool VisitMemberExpr(const MemberExpr *E) { 7201 // Handle non-static data members. 7202 QualType BaseTy; 7203 bool EvalOK; 7204 if (E->isArrow()) { 7205 EvalOK = evaluatePointer(E->getBase(), Result); 7206 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); 7207 } else if (E->getBase()->isRValue()) { 7208 assert(E->getBase()->getType()->isRecordType()); 7209 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); 7210 BaseTy = E->getBase()->getType(); 7211 } else { 7212 EvalOK = this->Visit(E->getBase()); 7213 BaseTy = E->getBase()->getType(); 7214 } 7215 if (!EvalOK) { 7216 if (!InvalidBaseOK) 7217 return false; 7218 Result.setInvalid(E); 7219 return true; 7220 } 7221 7222 const ValueDecl *MD = E->getMemberDecl(); 7223 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { 7224 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 7225 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 7226 (void)BaseTy; 7227 if (!HandleLValueMember(this->Info, E, Result, FD)) 7228 return false; 7229 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { 7230 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) 7231 return false; 7232 } else 7233 return this->Error(E); 7234 7235 if (MD->getType()->isReferenceType()) { 7236 APValue RefValue; 7237 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, 7238 RefValue)) 7239 return false; 7240 return Success(RefValue, E); 7241 } 7242 return true; 7243 } 7244 7245 bool VisitBinaryOperator(const BinaryOperator *E) { 7246 switch (E->getOpcode()) { 7247 default: 7248 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 7249 7250 case BO_PtrMemD: 7251 case BO_PtrMemI: 7252 return HandleMemberPointerAccess(this->Info, E, Result); 7253 } 7254 } 7255 7256 bool VisitCastExpr(const CastExpr *E) { 7257 switch (E->getCastKind()) { 7258 default: 7259 return ExprEvaluatorBaseTy::VisitCastExpr(E); 7260 7261 case CK_DerivedToBase: 7262 case CK_UncheckedDerivedToBase: 7263 if (!this->Visit(E->getSubExpr())) 7264 return false; 7265 7266 // Now figure out the necessary offset to add to the base LV to get from 7267 // the derived class to the base class. 7268 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), 7269 Result); 7270 } 7271 } 7272 }; 7273 } 7274 7275 //===----------------------------------------------------------------------===// 7276 // LValue Evaluation 7277 // 7278 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), 7279 // function designators (in C), decl references to void objects (in C), and 7280 // temporaries (if building with -Wno-address-of-temporary). 7281 // 7282 // LValue evaluation produces values comprising a base expression of one of the 7283 // following types: 7284 // - Declarations 7285 // * VarDecl 7286 // * FunctionDecl 7287 // - Literals 7288 // * CompoundLiteralExpr in C (and in global scope in C++) 7289 // * StringLiteral 7290 // * PredefinedExpr 7291 // * ObjCStringLiteralExpr 7292 // * ObjCEncodeExpr 7293 // * AddrLabelExpr 7294 // * BlockExpr 7295 // * CallExpr for a MakeStringConstant builtin 7296 // - typeid(T) expressions, as TypeInfoLValues 7297 // - Locals and temporaries 7298 // * MaterializeTemporaryExpr 7299 // * Any Expr, with a CallIndex indicating the function in which the temporary 7300 // was evaluated, for cases where the MaterializeTemporaryExpr is missing 7301 // from the AST (FIXME). 7302 // * A MaterializeTemporaryExpr that has static storage duration, with no 7303 // CallIndex, for a lifetime-extended temporary. 7304 // plus an offset in bytes. 7305 //===----------------------------------------------------------------------===// 7306 namespace { 7307 class LValueExprEvaluator 7308 : public LValueExprEvaluatorBase<LValueExprEvaluator> { 7309 public: 7310 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : 7311 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} 7312 7313 bool VisitVarDecl(const Expr *E, const VarDecl *VD); 7314 bool VisitUnaryPreIncDec(const UnaryOperator *UO); 7315 7316 bool VisitDeclRefExpr(const DeclRefExpr *E); 7317 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } 7318 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 7319 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 7320 bool VisitMemberExpr(const MemberExpr *E); 7321 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } 7322 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } 7323 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); 7324 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); 7325 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); 7326 bool VisitUnaryDeref(const UnaryOperator *E); 7327 bool VisitUnaryReal(const UnaryOperator *E); 7328 bool VisitUnaryImag(const UnaryOperator *E); 7329 bool VisitUnaryPreInc(const UnaryOperator *UO) { 7330 return VisitUnaryPreIncDec(UO); 7331 } 7332 bool VisitUnaryPreDec(const UnaryOperator *UO) { 7333 return VisitUnaryPreIncDec(UO); 7334 } 7335 bool VisitBinAssign(const BinaryOperator *BO); 7336 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); 7337 7338 bool VisitCastExpr(const CastExpr *E) { 7339 switch (E->getCastKind()) { 7340 default: 7341 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 7342 7343 case CK_LValueBitCast: 7344 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 7345 if (!Visit(E->getSubExpr())) 7346 return false; 7347 Result.Designator.setInvalid(); 7348 return true; 7349 7350 case CK_BaseToDerived: 7351 if (!Visit(E->getSubExpr())) 7352 return false; 7353 return HandleBaseToDerivedCast(Info, E, Result); 7354 7355 case CK_Dynamic: 7356 if (!Visit(E->getSubExpr())) 7357 return false; 7358 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 7359 } 7360 } 7361 }; 7362 } // end anonymous namespace 7363 7364 /// Evaluate an expression as an lvalue. This can be legitimately called on 7365 /// expressions which are not glvalues, in three cases: 7366 /// * function designators in C, and 7367 /// * "extern void" objects 7368 /// * @selector() expressions in Objective-C 7369 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 7370 bool InvalidBaseOK) { 7371 assert(E->isGLValue() || E->getType()->isFunctionType() || 7372 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)); 7373 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 7374 } 7375 7376 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { 7377 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) 7378 return Success(FD); 7379 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) 7380 return VisitVarDecl(E, VD); 7381 if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl())) 7382 return Visit(BD->getBinding()); 7383 return Error(E); 7384 } 7385 7386 7387 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { 7388 7389 // If we are within a lambda's call operator, check whether the 'VD' referred 7390 // to within 'E' actually represents a lambda-capture that maps to a 7391 // data-member/field within the closure object, and if so, evaluate to the 7392 // field or what the field refers to. 7393 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && 7394 isa<DeclRefExpr>(E) && 7395 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { 7396 // We don't always have a complete capture-map when checking or inferring if 7397 // the function call operator meets the requirements of a constexpr function 7398 // - but we don't need to evaluate the captures to determine constexprness 7399 // (dcl.constexpr C++17). 7400 if (Info.checkingPotentialConstantExpression()) 7401 return false; 7402 7403 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { 7404 // Start with 'Result' referring to the complete closure object... 7405 Result = *Info.CurrentCall->This; 7406 // ... then update it to refer to the field of the closure object 7407 // that represents the capture. 7408 if (!HandleLValueMember(Info, E, Result, FD)) 7409 return false; 7410 // And if the field is of reference type, update 'Result' to refer to what 7411 // the field refers to. 7412 if (FD->getType()->isReferenceType()) { 7413 APValue RVal; 7414 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, 7415 RVal)) 7416 return false; 7417 Result.setFrom(Info.Ctx, RVal); 7418 } 7419 return true; 7420 } 7421 } 7422 CallStackFrame *Frame = nullptr; 7423 if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) { 7424 // Only if a local variable was declared in the function currently being 7425 // evaluated, do we expect to be able to find its value in the current 7426 // frame. (Otherwise it was likely declared in an enclosing context and 7427 // could either have a valid evaluatable value (for e.g. a constexpr 7428 // variable) or be ill-formed (and trigger an appropriate evaluation 7429 // diagnostic)). 7430 if (Info.CurrentCall->Callee && 7431 Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { 7432 Frame = Info.CurrentCall; 7433 } 7434 } 7435 7436 if (!VD->getType()->isReferenceType()) { 7437 if (Frame) { 7438 Result.set({VD, Frame->Index, 7439 Info.CurrentCall->getCurrentTemporaryVersion(VD)}); 7440 return true; 7441 } 7442 return Success(VD); 7443 } 7444 7445 APValue *V; 7446 if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr)) 7447 return false; 7448 if (!V->hasValue()) { 7449 // FIXME: Is it possible for V to be indeterminate here? If so, we should 7450 // adjust the diagnostic to say that. 7451 if (!Info.checkingPotentialConstantExpression()) 7452 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); 7453 return false; 7454 } 7455 return Success(*V, E); 7456 } 7457 7458 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( 7459 const MaterializeTemporaryExpr *E) { 7460 // Walk through the expression to find the materialized temporary itself. 7461 SmallVector<const Expr *, 2> CommaLHSs; 7462 SmallVector<SubobjectAdjustment, 2> Adjustments; 7463 const Expr *Inner = E->GetTemporaryExpr()-> 7464 skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 7465 7466 // If we passed any comma operators, evaluate their LHSs. 7467 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 7468 if (!EvaluateIgnoredValue(Info, CommaLHSs[I])) 7469 return false; 7470 7471 // A materialized temporary with static storage duration can appear within the 7472 // result of a constant expression evaluation, so we need to preserve its 7473 // value for use outside this evaluation. 7474 APValue *Value; 7475 if (E->getStorageDuration() == SD_Static) { 7476 Value = Info.Ctx.getMaterializedTemporaryValue(E, true); 7477 *Value = APValue(); 7478 Result.set(E); 7479 } else { 7480 Value = &Info.CurrentCall->createTemporary( 7481 E, E->getType(), E->getStorageDuration() == SD_Automatic, Result); 7482 } 7483 7484 QualType Type = Inner->getType(); 7485 7486 // Materialize the temporary itself. 7487 if (!EvaluateInPlace(*Value, Info, Result, Inner)) { 7488 *Value = APValue(); 7489 return false; 7490 } 7491 7492 // Adjust our lvalue to refer to the desired subobject. 7493 for (unsigned I = Adjustments.size(); I != 0; /**/) { 7494 --I; 7495 switch (Adjustments[I].Kind) { 7496 case SubobjectAdjustment::DerivedToBaseAdjustment: 7497 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, 7498 Type, Result)) 7499 return false; 7500 Type = Adjustments[I].DerivedToBase.BasePath->getType(); 7501 break; 7502 7503 case SubobjectAdjustment::FieldAdjustment: 7504 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) 7505 return false; 7506 Type = Adjustments[I].Field->getType(); 7507 break; 7508 7509 case SubobjectAdjustment::MemberPointerAdjustment: 7510 if (!HandleMemberPointerAccess(this->Info, Type, Result, 7511 Adjustments[I].Ptr.RHS)) 7512 return false; 7513 Type = Adjustments[I].Ptr.MPT->getPointeeType(); 7514 break; 7515 } 7516 } 7517 7518 return true; 7519 } 7520 7521 bool 7522 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 7523 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && 7524 "lvalue compound literal in c++?"); 7525 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can 7526 // only see this when folding in C, so there's no standard to follow here. 7527 return Success(E); 7528 } 7529 7530 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 7531 TypeInfoLValue TypeInfo; 7532 7533 if (!E->isPotentiallyEvaluated()) { 7534 if (E->isTypeOperand()) 7535 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); 7536 else 7537 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); 7538 } else { 7539 if (!Info.Ctx.getLangOpts().CPlusPlus2a) { 7540 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) 7541 << E->getExprOperand()->getType() 7542 << E->getExprOperand()->getSourceRange(); 7543 } 7544 7545 if (!Visit(E->getExprOperand())) 7546 return false; 7547 7548 Optional<DynamicType> DynType = 7549 ComputeDynamicType(Info, E, Result, AK_TypeId); 7550 if (!DynType) 7551 return false; 7552 7553 TypeInfo = 7554 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); 7555 } 7556 7557 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); 7558 } 7559 7560 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 7561 return Success(E); 7562 } 7563 7564 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { 7565 // Handle static data members. 7566 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { 7567 VisitIgnoredBaseExpression(E->getBase()); 7568 return VisitVarDecl(E, VD); 7569 } 7570 7571 // Handle static member functions. 7572 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { 7573 if (MD->isStatic()) { 7574 VisitIgnoredBaseExpression(E->getBase()); 7575 return Success(MD); 7576 } 7577 } 7578 7579 // Handle non-static data members. 7580 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); 7581 } 7582 7583 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 7584 // FIXME: Deal with vectors as array subscript bases. 7585 if (E->getBase()->getType()->isVectorType()) 7586 return Error(E); 7587 7588 bool Success = true; 7589 if (!evaluatePointer(E->getBase(), Result)) { 7590 if (!Info.noteFailure()) 7591 return false; 7592 Success = false; 7593 } 7594 7595 APSInt Index; 7596 if (!EvaluateInteger(E->getIdx(), Index, Info)) 7597 return false; 7598 7599 return Success && 7600 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); 7601 } 7602 7603 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { 7604 return evaluatePointer(E->getSubExpr(), Result); 7605 } 7606 7607 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 7608 if (!Visit(E->getSubExpr())) 7609 return false; 7610 // __real is a no-op on scalar lvalues. 7611 if (E->getSubExpr()->getType()->isAnyComplexType()) 7612 HandleLValueComplexElement(Info, E, Result, E->getType(), false); 7613 return true; 7614 } 7615 7616 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 7617 assert(E->getSubExpr()->getType()->isAnyComplexType() && 7618 "lvalue __imag__ on scalar?"); 7619 if (!Visit(E->getSubExpr())) 7620 return false; 7621 HandleLValueComplexElement(Info, E, Result, E->getType(), true); 7622 return true; 7623 } 7624 7625 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { 7626 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 7627 return Error(UO); 7628 7629 if (!this->Visit(UO->getSubExpr())) 7630 return false; 7631 7632 return handleIncDec( 7633 this->Info, UO, Result, UO->getSubExpr()->getType(), 7634 UO->isIncrementOp(), nullptr); 7635 } 7636 7637 bool LValueExprEvaluator::VisitCompoundAssignOperator( 7638 const CompoundAssignOperator *CAO) { 7639 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 7640 return Error(CAO); 7641 7642 APValue RHS; 7643 7644 // The overall lvalue result is the result of evaluating the LHS. 7645 if (!this->Visit(CAO->getLHS())) { 7646 if (Info.noteFailure()) 7647 Evaluate(RHS, this->Info, CAO->getRHS()); 7648 return false; 7649 } 7650 7651 if (!Evaluate(RHS, this->Info, CAO->getRHS())) 7652 return false; 7653 7654 return handleCompoundAssignment( 7655 this->Info, CAO, 7656 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), 7657 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); 7658 } 7659 7660 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { 7661 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 7662 return Error(E); 7663 7664 APValue NewVal; 7665 7666 if (!this->Visit(E->getLHS())) { 7667 if (Info.noteFailure()) 7668 Evaluate(NewVal, this->Info, E->getRHS()); 7669 return false; 7670 } 7671 7672 if (!Evaluate(NewVal, this->Info, E->getRHS())) 7673 return false; 7674 7675 if (Info.getLangOpts().CPlusPlus2a && 7676 !HandleUnionActiveMemberChange(Info, E->getLHS(), Result)) 7677 return false; 7678 7679 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), 7680 NewVal); 7681 } 7682 7683 //===----------------------------------------------------------------------===// 7684 // Pointer Evaluation 7685 //===----------------------------------------------------------------------===// 7686 7687 /// Attempts to compute the number of bytes available at the pointer 7688 /// returned by a function with the alloc_size attribute. Returns true if we 7689 /// were successful. Places an unsigned number into `Result`. 7690 /// 7691 /// This expects the given CallExpr to be a call to a function with an 7692 /// alloc_size attribute. 7693 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 7694 const CallExpr *Call, 7695 llvm::APInt &Result) { 7696 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); 7697 7698 assert(AllocSize && AllocSize->getElemSizeParam().isValid()); 7699 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); 7700 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); 7701 if (Call->getNumArgs() <= SizeArgNo) 7702 return false; 7703 7704 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { 7705 Expr::EvalResult ExprResult; 7706 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) 7707 return false; 7708 Into = ExprResult.Val.getInt(); 7709 if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) 7710 return false; 7711 Into = Into.zextOrSelf(BitsInSizeT); 7712 return true; 7713 }; 7714 7715 APSInt SizeOfElem; 7716 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) 7717 return false; 7718 7719 if (!AllocSize->getNumElemsParam().isValid()) { 7720 Result = std::move(SizeOfElem); 7721 return true; 7722 } 7723 7724 APSInt NumberOfElems; 7725 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); 7726 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) 7727 return false; 7728 7729 bool Overflow; 7730 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); 7731 if (Overflow) 7732 return false; 7733 7734 Result = std::move(BytesAvailable); 7735 return true; 7736 } 7737 7738 /// Convenience function. LVal's base must be a call to an alloc_size 7739 /// function. 7740 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 7741 const LValue &LVal, 7742 llvm::APInt &Result) { 7743 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && 7744 "Can't get the size of a non alloc_size function"); 7745 const auto *Base = LVal.getLValueBase().get<const Expr *>(); 7746 const CallExpr *CE = tryUnwrapAllocSizeCall(Base); 7747 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); 7748 } 7749 7750 /// Attempts to evaluate the given LValueBase as the result of a call to 7751 /// a function with the alloc_size attribute. If it was possible to do so, this 7752 /// function will return true, make Result's Base point to said function call, 7753 /// and mark Result's Base as invalid. 7754 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, 7755 LValue &Result) { 7756 if (Base.isNull()) 7757 return false; 7758 7759 // Because we do no form of static analysis, we only support const variables. 7760 // 7761 // Additionally, we can't support parameters, nor can we support static 7762 // variables (in the latter case, use-before-assign isn't UB; in the former, 7763 // we have no clue what they'll be assigned to). 7764 const auto *VD = 7765 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); 7766 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) 7767 return false; 7768 7769 const Expr *Init = VD->getAnyInitializer(); 7770 if (!Init) 7771 return false; 7772 7773 const Expr *E = Init->IgnoreParens(); 7774 if (!tryUnwrapAllocSizeCall(E)) 7775 return false; 7776 7777 // Store E instead of E unwrapped so that the type of the LValue's base is 7778 // what the user wanted. 7779 Result.setInvalid(E); 7780 7781 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); 7782 Result.addUnsizedArray(Info, E, Pointee); 7783 return true; 7784 } 7785 7786 namespace { 7787 class PointerExprEvaluator 7788 : public ExprEvaluatorBase<PointerExprEvaluator> { 7789 LValue &Result; 7790 bool InvalidBaseOK; 7791 7792 bool Success(const Expr *E) { 7793 Result.set(E); 7794 return true; 7795 } 7796 7797 bool evaluateLValue(const Expr *E, LValue &Result) { 7798 return EvaluateLValue(E, Result, Info, InvalidBaseOK); 7799 } 7800 7801 bool evaluatePointer(const Expr *E, LValue &Result) { 7802 return EvaluatePointer(E, Result, Info, InvalidBaseOK); 7803 } 7804 7805 bool visitNonBuiltinCallExpr(const CallExpr *E); 7806 public: 7807 7808 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) 7809 : ExprEvaluatorBaseTy(info), Result(Result), 7810 InvalidBaseOK(InvalidBaseOK) {} 7811 7812 bool Success(const APValue &V, const Expr *E) { 7813 Result.setFrom(Info.Ctx, V); 7814 return true; 7815 } 7816 bool ZeroInitialization(const Expr *E) { 7817 Result.setNull(Info.Ctx, E->getType()); 7818 return true; 7819 } 7820 7821 bool VisitBinaryOperator(const BinaryOperator *E); 7822 bool VisitCastExpr(const CastExpr* E); 7823 bool VisitUnaryAddrOf(const UnaryOperator *E); 7824 bool VisitObjCStringLiteral(const ObjCStringLiteral *E) 7825 { return Success(E); } 7826 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 7827 if (E->isExpressibleAsConstantInitializer()) 7828 return Success(E); 7829 if (Info.noteFailure()) 7830 EvaluateIgnoredValue(Info, E->getSubExpr()); 7831 return Error(E); 7832 } 7833 bool VisitAddrLabelExpr(const AddrLabelExpr *E) 7834 { return Success(E); } 7835 bool VisitCallExpr(const CallExpr *E); 7836 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 7837 bool VisitBlockExpr(const BlockExpr *E) { 7838 if (!E->getBlockDecl()->hasCaptures()) 7839 return Success(E); 7840 return Error(E); 7841 } 7842 bool VisitCXXThisExpr(const CXXThisExpr *E) { 7843 // Can't look at 'this' when checking a potential constant expression. 7844 if (Info.checkingPotentialConstantExpression()) 7845 return false; 7846 if (!Info.CurrentCall->This) { 7847 if (Info.getLangOpts().CPlusPlus11) 7848 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); 7849 else 7850 Info.FFDiag(E); 7851 return false; 7852 } 7853 Result = *Info.CurrentCall->This; 7854 // If we are inside a lambda's call operator, the 'this' expression refers 7855 // to the enclosing '*this' object (either by value or reference) which is 7856 // either copied into the closure object's field that represents the '*this' 7857 // or refers to '*this'. 7858 if (isLambdaCallOperator(Info.CurrentCall->Callee)) { 7859 // Update 'Result' to refer to the data member/field of the closure object 7860 // that represents the '*this' capture. 7861 if (!HandleLValueMember(Info, E, Result, 7862 Info.CurrentCall->LambdaThisCaptureField)) 7863 return false; 7864 // If we captured '*this' by reference, replace the field with its referent. 7865 if (Info.CurrentCall->LambdaThisCaptureField->getType() 7866 ->isPointerType()) { 7867 APValue RVal; 7868 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result, 7869 RVal)) 7870 return false; 7871 7872 Result.setFrom(Info.Ctx, RVal); 7873 } 7874 } 7875 return true; 7876 } 7877 7878 bool VisitCXXNewExpr(const CXXNewExpr *E); 7879 7880 bool VisitSourceLocExpr(const SourceLocExpr *E) { 7881 assert(E->isStringType() && "SourceLocExpr isn't a pointer type?"); 7882 APValue LValResult = E->EvaluateInContext( 7883 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 7884 Result.setFrom(Info.Ctx, LValResult); 7885 return true; 7886 } 7887 7888 // FIXME: Missing: @protocol, @selector 7889 }; 7890 } // end anonymous namespace 7891 7892 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, 7893 bool InvalidBaseOK) { 7894 assert(E->isRValue() && E->getType()->hasPointerRepresentation()); 7895 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 7896 } 7897 7898 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 7899 if (E->getOpcode() != BO_Add && 7900 E->getOpcode() != BO_Sub) 7901 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 7902 7903 const Expr *PExp = E->getLHS(); 7904 const Expr *IExp = E->getRHS(); 7905 if (IExp->getType()->isPointerType()) 7906 std::swap(PExp, IExp); 7907 7908 bool EvalPtrOK = evaluatePointer(PExp, Result); 7909 if (!EvalPtrOK && !Info.noteFailure()) 7910 return false; 7911 7912 llvm::APSInt Offset; 7913 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) 7914 return false; 7915 7916 if (E->getOpcode() == BO_Sub) 7917 negateAsSigned(Offset); 7918 7919 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); 7920 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); 7921 } 7922 7923 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 7924 return evaluateLValue(E->getSubExpr(), Result); 7925 } 7926 7927 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 7928 const Expr *SubExpr = E->getSubExpr(); 7929 7930 switch (E->getCastKind()) { 7931 default: 7932 break; 7933 case CK_BitCast: 7934 case CK_CPointerToObjCPointerCast: 7935 case CK_BlockPointerToObjCPointerCast: 7936 case CK_AnyPointerToBlockPointerCast: 7937 case CK_AddressSpaceConversion: 7938 if (!Visit(SubExpr)) 7939 return false; 7940 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are 7941 // permitted in constant expressions in C++11. Bitcasts from cv void* are 7942 // also static_casts, but we disallow them as a resolution to DR1312. 7943 if (!E->getType()->isVoidPointerType()) { 7944 if (!Result.InvalidBase && !Result.Designator.Invalid && 7945 !Result.IsNullPtr && 7946 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx), 7947 E->getType()->getPointeeType()) && 7948 Info.getStdAllocatorCaller("allocate")) { 7949 // Inside a call to std::allocator::allocate and friends, we permit 7950 // casting from void* back to cv1 T* for a pointer that points to a 7951 // cv2 T. 7952 } else { 7953 Result.Designator.setInvalid(); 7954 if (SubExpr->getType()->isVoidPointerType()) 7955 CCEDiag(E, diag::note_constexpr_invalid_cast) 7956 << 3 << SubExpr->getType(); 7957 else 7958 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 7959 } 7960 } 7961 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) 7962 ZeroInitialization(E); 7963 return true; 7964 7965 case CK_DerivedToBase: 7966 case CK_UncheckedDerivedToBase: 7967 if (!evaluatePointer(E->getSubExpr(), Result)) 7968 return false; 7969 if (!Result.Base && Result.Offset.isZero()) 7970 return true; 7971 7972 // Now figure out the necessary offset to add to the base LV to get from 7973 // the derived class to the base class. 7974 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> 7975 castAs<PointerType>()->getPointeeType(), 7976 Result); 7977 7978 case CK_BaseToDerived: 7979 if (!Visit(E->getSubExpr())) 7980 return false; 7981 if (!Result.Base && Result.Offset.isZero()) 7982 return true; 7983 return HandleBaseToDerivedCast(Info, E, Result); 7984 7985 case CK_Dynamic: 7986 if (!Visit(E->getSubExpr())) 7987 return false; 7988 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 7989 7990 case CK_NullToPointer: 7991 VisitIgnoredValue(E->getSubExpr()); 7992 return ZeroInitialization(E); 7993 7994 case CK_IntegralToPointer: { 7995 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 7996 7997 APValue Value; 7998 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) 7999 break; 8000 8001 if (Value.isInt()) { 8002 unsigned Size = Info.Ctx.getTypeSize(E->getType()); 8003 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); 8004 Result.Base = (Expr*)nullptr; 8005 Result.InvalidBase = false; 8006 Result.Offset = CharUnits::fromQuantity(N); 8007 Result.Designator.setInvalid(); 8008 Result.IsNullPtr = false; 8009 return true; 8010 } else { 8011 // Cast is of an lvalue, no need to change value. 8012 Result.setFrom(Info.Ctx, Value); 8013 return true; 8014 } 8015 } 8016 8017 case CK_ArrayToPointerDecay: { 8018 if (SubExpr->isGLValue()) { 8019 if (!evaluateLValue(SubExpr, Result)) 8020 return false; 8021 } else { 8022 APValue &Value = Info.CurrentCall->createTemporary( 8023 SubExpr, SubExpr->getType(), false, Result); 8024 if (!EvaluateInPlace(Value, Info, Result, SubExpr)) 8025 return false; 8026 } 8027 // The result is a pointer to the first element of the array. 8028 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); 8029 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 8030 Result.addArray(Info, E, CAT); 8031 else 8032 Result.addUnsizedArray(Info, E, AT->getElementType()); 8033 return true; 8034 } 8035 8036 case CK_FunctionToPointerDecay: 8037 return evaluateLValue(SubExpr, Result); 8038 8039 case CK_LValueToRValue: { 8040 LValue LVal; 8041 if (!evaluateLValue(E->getSubExpr(), LVal)) 8042 return false; 8043 8044 APValue RVal; 8045 // Note, we use the subexpression's type in order to retain cv-qualifiers. 8046 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 8047 LVal, RVal)) 8048 return InvalidBaseOK && 8049 evaluateLValueAsAllocSize(Info, LVal.Base, Result); 8050 return Success(RVal, E); 8051 } 8052 } 8053 8054 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8055 } 8056 8057 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T, 8058 UnaryExprOrTypeTrait ExprKind) { 8059 // C++ [expr.alignof]p3: 8060 // When alignof is applied to a reference type, the result is the 8061 // alignment of the referenced type. 8062 if (const ReferenceType *Ref = T->getAs<ReferenceType>()) 8063 T = Ref->getPointeeType(); 8064 8065 if (T.getQualifiers().hasUnaligned()) 8066 return CharUnits::One(); 8067 8068 const bool AlignOfReturnsPreferred = 8069 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 8070 8071 // __alignof is defined to return the preferred alignment. 8072 // Before 8, clang returned the preferred alignment for alignof and _Alignof 8073 // as well. 8074 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 8075 return Info.Ctx.toCharUnitsFromBits( 8076 Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); 8077 // alignof and _Alignof are defined to return the ABI alignment. 8078 else if (ExprKind == UETT_AlignOf) 8079 return Info.Ctx.getTypeAlignInChars(T.getTypePtr()); 8080 else 8081 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); 8082 } 8083 8084 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E, 8085 UnaryExprOrTypeTrait ExprKind) { 8086 E = E->IgnoreParens(); 8087 8088 // The kinds of expressions that we have special-case logic here for 8089 // should be kept up to date with the special checks for those 8090 // expressions in Sema. 8091 8092 // alignof decl is always accepted, even if it doesn't make sense: we default 8093 // to 1 in those cases. 8094 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 8095 return Info.Ctx.getDeclAlign(DRE->getDecl(), 8096 /*RefAsPointee*/true); 8097 8098 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) 8099 return Info.Ctx.getDeclAlign(ME->getMemberDecl(), 8100 /*RefAsPointee*/true); 8101 8102 return GetAlignOfType(Info, E->getType(), ExprKind); 8103 } 8104 8105 // To be clear: this happily visits unsupported builtins. Better name welcomed. 8106 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { 8107 if (ExprEvaluatorBaseTy::VisitCallExpr(E)) 8108 return true; 8109 8110 if (!(InvalidBaseOK && getAllocSizeAttr(E))) 8111 return false; 8112 8113 Result.setInvalid(E); 8114 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); 8115 Result.addUnsizedArray(Info, E, PointeeTy); 8116 return true; 8117 } 8118 8119 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { 8120 if (IsStringLiteralCall(E)) 8121 return Success(E); 8122 8123 if (unsigned BuiltinOp = E->getBuiltinCallee()) 8124 return VisitBuiltinCallExpr(E, BuiltinOp); 8125 8126 return visitNonBuiltinCallExpr(E); 8127 } 8128 8129 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 8130 unsigned BuiltinOp) { 8131 switch (BuiltinOp) { 8132 case Builtin::BI__builtin_addressof: 8133 return evaluateLValue(E->getArg(0), Result); 8134 case Builtin::BI__builtin_assume_aligned: { 8135 // We need to be very careful here because: if the pointer does not have the 8136 // asserted alignment, then the behavior is undefined, and undefined 8137 // behavior is non-constant. 8138 if (!evaluatePointer(E->getArg(0), Result)) 8139 return false; 8140 8141 LValue OffsetResult(Result); 8142 APSInt Alignment; 8143 if (!EvaluateInteger(E->getArg(1), Alignment, Info)) 8144 return false; 8145 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); 8146 8147 if (E->getNumArgs() > 2) { 8148 APSInt Offset; 8149 if (!EvaluateInteger(E->getArg(2), Offset, Info)) 8150 return false; 8151 8152 int64_t AdditionalOffset = -Offset.getZExtValue(); 8153 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); 8154 } 8155 8156 // If there is a base object, then it must have the correct alignment. 8157 if (OffsetResult.Base) { 8158 CharUnits BaseAlignment; 8159 if (const ValueDecl *VD = 8160 OffsetResult.Base.dyn_cast<const ValueDecl*>()) { 8161 BaseAlignment = Info.Ctx.getDeclAlign(VD); 8162 } else if (const Expr *E = OffsetResult.Base.dyn_cast<const Expr *>()) { 8163 BaseAlignment = GetAlignOfExpr(Info, E, UETT_AlignOf); 8164 } else { 8165 BaseAlignment = GetAlignOfType( 8166 Info, OffsetResult.Base.getTypeInfoType(), UETT_AlignOf); 8167 } 8168 8169 if (BaseAlignment < Align) { 8170 Result.Designator.setInvalid(); 8171 // FIXME: Add support to Diagnostic for long / long long. 8172 CCEDiag(E->getArg(0), 8173 diag::note_constexpr_baa_insufficient_alignment) << 0 8174 << (unsigned)BaseAlignment.getQuantity() 8175 << (unsigned)Align.getQuantity(); 8176 return false; 8177 } 8178 } 8179 8180 // The offset must also have the correct alignment. 8181 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { 8182 Result.Designator.setInvalid(); 8183 8184 (OffsetResult.Base 8185 ? CCEDiag(E->getArg(0), 8186 diag::note_constexpr_baa_insufficient_alignment) << 1 8187 : CCEDiag(E->getArg(0), 8188 diag::note_constexpr_baa_value_insufficient_alignment)) 8189 << (int)OffsetResult.Offset.getQuantity() 8190 << (unsigned)Align.getQuantity(); 8191 return false; 8192 } 8193 8194 return true; 8195 } 8196 case Builtin::BI__builtin_operator_new: 8197 return HandleOperatorNewCall(Info, E, Result); 8198 case Builtin::BI__builtin_launder: 8199 return evaluatePointer(E->getArg(0), Result); 8200 case Builtin::BIstrchr: 8201 case Builtin::BIwcschr: 8202 case Builtin::BImemchr: 8203 case Builtin::BIwmemchr: 8204 if (Info.getLangOpts().CPlusPlus11) 8205 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 8206 << /*isConstexpr*/0 << /*isConstructor*/0 8207 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 8208 else 8209 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 8210 LLVM_FALLTHROUGH; 8211 case Builtin::BI__builtin_strchr: 8212 case Builtin::BI__builtin_wcschr: 8213 case Builtin::BI__builtin_memchr: 8214 case Builtin::BI__builtin_char_memchr: 8215 case Builtin::BI__builtin_wmemchr: { 8216 if (!Visit(E->getArg(0))) 8217 return false; 8218 APSInt Desired; 8219 if (!EvaluateInteger(E->getArg(1), Desired, Info)) 8220 return false; 8221 uint64_t MaxLength = uint64_t(-1); 8222 if (BuiltinOp != Builtin::BIstrchr && 8223 BuiltinOp != Builtin::BIwcschr && 8224 BuiltinOp != Builtin::BI__builtin_strchr && 8225 BuiltinOp != Builtin::BI__builtin_wcschr) { 8226 APSInt N; 8227 if (!EvaluateInteger(E->getArg(2), N, Info)) 8228 return false; 8229 MaxLength = N.getExtValue(); 8230 } 8231 // We cannot find the value if there are no candidates to match against. 8232 if (MaxLength == 0u) 8233 return ZeroInitialization(E); 8234 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || 8235 Result.Designator.Invalid) 8236 return false; 8237 QualType CharTy = Result.Designator.getType(Info.Ctx); 8238 bool IsRawByte = BuiltinOp == Builtin::BImemchr || 8239 BuiltinOp == Builtin::BI__builtin_memchr; 8240 assert(IsRawByte || 8241 Info.Ctx.hasSameUnqualifiedType( 8242 CharTy, E->getArg(0)->getType()->getPointeeType())); 8243 // Pointers to const void may point to objects of incomplete type. 8244 if (IsRawByte && CharTy->isIncompleteType()) { 8245 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; 8246 return false; 8247 } 8248 // Give up on byte-oriented matching against multibyte elements. 8249 // FIXME: We can compare the bytes in the correct order. 8250 if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One()) 8251 return false; 8252 // Figure out what value we're actually looking for (after converting to 8253 // the corresponding unsigned type if necessary). 8254 uint64_t DesiredVal; 8255 bool StopAtNull = false; 8256 switch (BuiltinOp) { 8257 case Builtin::BIstrchr: 8258 case Builtin::BI__builtin_strchr: 8259 // strchr compares directly to the passed integer, and therefore 8260 // always fails if given an int that is not a char. 8261 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, 8262 E->getArg(1)->getType(), 8263 Desired), 8264 Desired)) 8265 return ZeroInitialization(E); 8266 StopAtNull = true; 8267 LLVM_FALLTHROUGH; 8268 case Builtin::BImemchr: 8269 case Builtin::BI__builtin_memchr: 8270 case Builtin::BI__builtin_char_memchr: 8271 // memchr compares by converting both sides to unsigned char. That's also 8272 // correct for strchr if we get this far (to cope with plain char being 8273 // unsigned in the strchr case). 8274 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); 8275 break; 8276 8277 case Builtin::BIwcschr: 8278 case Builtin::BI__builtin_wcschr: 8279 StopAtNull = true; 8280 LLVM_FALLTHROUGH; 8281 case Builtin::BIwmemchr: 8282 case Builtin::BI__builtin_wmemchr: 8283 // wcschr and wmemchr are given a wchar_t to look for. Just use it. 8284 DesiredVal = Desired.getZExtValue(); 8285 break; 8286 } 8287 8288 for (; MaxLength; --MaxLength) { 8289 APValue Char; 8290 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || 8291 !Char.isInt()) 8292 return false; 8293 if (Char.getInt().getZExtValue() == DesiredVal) 8294 return true; 8295 if (StopAtNull && !Char.getInt()) 8296 break; 8297 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) 8298 return false; 8299 } 8300 // Not found: return nullptr. 8301 return ZeroInitialization(E); 8302 } 8303 8304 case Builtin::BImemcpy: 8305 case Builtin::BImemmove: 8306 case Builtin::BIwmemcpy: 8307 case Builtin::BIwmemmove: 8308 if (Info.getLangOpts().CPlusPlus11) 8309 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 8310 << /*isConstexpr*/0 << /*isConstructor*/0 8311 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 8312 else 8313 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 8314 LLVM_FALLTHROUGH; 8315 case Builtin::BI__builtin_memcpy: 8316 case Builtin::BI__builtin_memmove: 8317 case Builtin::BI__builtin_wmemcpy: 8318 case Builtin::BI__builtin_wmemmove: { 8319 bool WChar = BuiltinOp == Builtin::BIwmemcpy || 8320 BuiltinOp == Builtin::BIwmemmove || 8321 BuiltinOp == Builtin::BI__builtin_wmemcpy || 8322 BuiltinOp == Builtin::BI__builtin_wmemmove; 8323 bool Move = BuiltinOp == Builtin::BImemmove || 8324 BuiltinOp == Builtin::BIwmemmove || 8325 BuiltinOp == Builtin::BI__builtin_memmove || 8326 BuiltinOp == Builtin::BI__builtin_wmemmove; 8327 8328 // The result of mem* is the first argument. 8329 if (!Visit(E->getArg(0))) 8330 return false; 8331 LValue Dest = Result; 8332 8333 LValue Src; 8334 if (!EvaluatePointer(E->getArg(1), Src, Info)) 8335 return false; 8336 8337 APSInt N; 8338 if (!EvaluateInteger(E->getArg(2), N, Info)) 8339 return false; 8340 assert(!N.isSigned() && "memcpy and friends take an unsigned size"); 8341 8342 // If the size is zero, we treat this as always being a valid no-op. 8343 // (Even if one of the src and dest pointers is null.) 8344 if (!N) 8345 return true; 8346 8347 // Otherwise, if either of the operands is null, we can't proceed. Don't 8348 // try to determine the type of the copied objects, because there aren't 8349 // any. 8350 if (!Src.Base || !Dest.Base) { 8351 APValue Val; 8352 (!Src.Base ? Src : Dest).moveInto(Val); 8353 Info.FFDiag(E, diag::note_constexpr_memcpy_null) 8354 << Move << WChar << !!Src.Base 8355 << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); 8356 return false; 8357 } 8358 if (Src.Designator.Invalid || Dest.Designator.Invalid) 8359 return false; 8360 8361 // We require that Src and Dest are both pointers to arrays of 8362 // trivially-copyable type. (For the wide version, the designator will be 8363 // invalid if the designated object is not a wchar_t.) 8364 QualType T = Dest.Designator.getType(Info.Ctx); 8365 QualType SrcT = Src.Designator.getType(Info.Ctx); 8366 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { 8367 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; 8368 return false; 8369 } 8370 if (T->isIncompleteType()) { 8371 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; 8372 return false; 8373 } 8374 if (!T.isTriviallyCopyableType(Info.Ctx)) { 8375 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; 8376 return false; 8377 } 8378 8379 // Figure out how many T's we're copying. 8380 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); 8381 if (!WChar) { 8382 uint64_t Remainder; 8383 llvm::APInt OrigN = N; 8384 llvm::APInt::udivrem(OrigN, TSize, N, Remainder); 8385 if (Remainder) { 8386 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 8387 << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false) 8388 << (unsigned)TSize; 8389 return false; 8390 } 8391 } 8392 8393 // Check that the copying will remain within the arrays, just so that we 8394 // can give a more meaningful diagnostic. This implicitly also checks that 8395 // N fits into 64 bits. 8396 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; 8397 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; 8398 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { 8399 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 8400 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T 8401 << N.toString(10, /*Signed*/false); 8402 return false; 8403 } 8404 uint64_t NElems = N.getZExtValue(); 8405 uint64_t NBytes = NElems * TSize; 8406 8407 // Check for overlap. 8408 int Direction = 1; 8409 if (HasSameBase(Src, Dest)) { 8410 uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); 8411 uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); 8412 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { 8413 // Dest is inside the source region. 8414 if (!Move) { 8415 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 8416 return false; 8417 } 8418 // For memmove and friends, copy backwards. 8419 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || 8420 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) 8421 return false; 8422 Direction = -1; 8423 } else if (!Move && SrcOffset >= DestOffset && 8424 SrcOffset - DestOffset < NBytes) { 8425 // Src is inside the destination region for memcpy: invalid. 8426 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 8427 return false; 8428 } 8429 } 8430 8431 while (true) { 8432 APValue Val; 8433 // FIXME: Set WantObjectRepresentation to true if we're copying a 8434 // char-like type? 8435 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || 8436 !handleAssignment(Info, E, Dest, T, Val)) 8437 return false; 8438 // Do not iterate past the last element; if we're copying backwards, that 8439 // might take us off the start of the array. 8440 if (--NElems == 0) 8441 return true; 8442 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || 8443 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) 8444 return false; 8445 } 8446 } 8447 8448 default: 8449 break; 8450 } 8451 8452 return visitNonBuiltinCallExpr(E); 8453 } 8454 8455 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 8456 APValue &Result, const InitListExpr *ILE, 8457 QualType AllocType); 8458 8459 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { 8460 if (!Info.getLangOpts().CPlusPlus2a) 8461 Info.CCEDiag(E, diag::note_constexpr_new); 8462 8463 // We cannot speculatively evaluate a delete expression. 8464 if (Info.SpeculativeEvaluationDepth) 8465 return false; 8466 8467 FunctionDecl *OperatorNew = E->getOperatorNew(); 8468 8469 bool IsNothrow = false; 8470 bool IsPlacement = false; 8471 if (OperatorNew->isReservedGlobalPlacementOperator() && 8472 Info.CurrentCall->isStdFunction() && !E->isArray()) { 8473 // FIXME Support array placement new. 8474 assert(E->getNumPlacementArgs() == 1); 8475 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) 8476 return false; 8477 if (Result.Designator.Invalid) 8478 return false; 8479 IsPlacement = true; 8480 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { 8481 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 8482 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; 8483 return false; 8484 } else if (E->getNumPlacementArgs()) { 8485 // The only new-placement list we support is of the form (std::nothrow). 8486 // 8487 // FIXME: There is no restriction on this, but it's not clear that any 8488 // other form makes any sense. We get here for cases such as: 8489 // 8490 // new (std::align_val_t{N}) X(int) 8491 // 8492 // (which should presumably be valid only if N is a multiple of 8493 // alignof(int), and in any case can't be deallocated unless N is 8494 // alignof(X) and X has new-extended alignment). 8495 if (E->getNumPlacementArgs() != 1 || 8496 !E->getPlacementArg(0)->getType()->isNothrowT()) 8497 return Error(E, diag::note_constexpr_new_placement); 8498 8499 LValue Nothrow; 8500 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) 8501 return false; 8502 IsNothrow = true; 8503 } 8504 8505 const Expr *Init = E->getInitializer(); 8506 const InitListExpr *ResizedArrayILE = nullptr; 8507 8508 QualType AllocType = E->getAllocatedType(); 8509 if (Optional<const Expr*> ArraySize = E->getArraySize()) { 8510 const Expr *Stripped = *ArraySize; 8511 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 8512 Stripped = ICE->getSubExpr()) 8513 if (ICE->getCastKind() != CK_NoOp && 8514 ICE->getCastKind() != CK_IntegralCast) 8515 break; 8516 8517 llvm::APSInt ArrayBound; 8518 if (!EvaluateInteger(Stripped, ArrayBound, Info)) 8519 return false; 8520 8521 // C++ [expr.new]p9: 8522 // The expression is erroneous if: 8523 // -- [...] its value before converting to size_t [or] applying the 8524 // second standard conversion sequence is less than zero 8525 if (ArrayBound.isSigned() && ArrayBound.isNegative()) { 8526 if (IsNothrow) 8527 return ZeroInitialization(E); 8528 8529 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) 8530 << ArrayBound << (*ArraySize)->getSourceRange(); 8531 return false; 8532 } 8533 8534 // -- its value is such that the size of the allocated object would 8535 // exceed the implementation-defined limit 8536 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType, 8537 ArrayBound) > 8538 ConstantArrayType::getMaxSizeBits(Info.Ctx)) { 8539 if (IsNothrow) 8540 return ZeroInitialization(E); 8541 8542 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large) 8543 << ArrayBound << (*ArraySize)->getSourceRange(); 8544 return false; 8545 } 8546 8547 // -- the new-initializer is a braced-init-list and the number of 8548 // array elements for which initializers are provided [...] 8549 // exceeds the number of elements to initialize 8550 if (Init) { 8551 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); 8552 assert(CAT && "unexpected type for array initializer"); 8553 8554 unsigned Bits = 8555 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth()); 8556 llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits); 8557 llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits); 8558 if (InitBound.ugt(AllocBound)) { 8559 if (IsNothrow) 8560 return ZeroInitialization(E); 8561 8562 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) 8563 << AllocBound.toString(10, /*Signed=*/false) 8564 << InitBound.toString(10, /*Signed=*/false) 8565 << (*ArraySize)->getSourceRange(); 8566 return false; 8567 } 8568 8569 // If the sizes differ, we must have an initializer list, and we need 8570 // special handling for this case when we initialize. 8571 if (InitBound != AllocBound) 8572 ResizedArrayILE = cast<InitListExpr>(Init); 8573 } 8574 8575 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, 8576 ArrayType::Normal, 0); 8577 } else { 8578 assert(!AllocType->isArrayType() && 8579 "array allocation with non-array new"); 8580 } 8581 8582 APValue *Val; 8583 if (IsPlacement) { 8584 AccessKinds AK = AK_Construct; 8585 struct FindObjectHandler { 8586 EvalInfo &Info; 8587 const Expr *E; 8588 QualType AllocType; 8589 const AccessKinds AccessKind; 8590 APValue *Value; 8591 8592 typedef bool result_type; 8593 bool failed() { return false; } 8594 bool found(APValue &Subobj, QualType SubobjType) { 8595 // FIXME: Reject the cases where [basic.life]p8 would not permit the 8596 // old name of the object to be used to name the new object. 8597 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) { 8598 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) << 8599 SubobjType << AllocType; 8600 return false; 8601 } 8602 Value = &Subobj; 8603 return true; 8604 } 8605 bool found(APSInt &Value, QualType SubobjType) { 8606 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 8607 return false; 8608 } 8609 bool found(APFloat &Value, QualType SubobjType) { 8610 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 8611 return false; 8612 } 8613 } Handler = {Info, E, AllocType, AK, nullptr}; 8614 8615 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); 8616 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) 8617 return false; 8618 8619 Val = Handler.Value; 8620 8621 // [basic.life]p1: 8622 // The lifetime of an object o of type T ends when [...] the storage 8623 // which the object occupies is [...] reused by an object that is not 8624 // nested within o (6.6.2). 8625 *Val = APValue(); 8626 } else { 8627 // Perform the allocation and obtain a pointer to the resulting object. 8628 Val = Info.createHeapAlloc(E, AllocType, Result); 8629 if (!Val) 8630 return false; 8631 } 8632 8633 if (ResizedArrayILE) { 8634 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, 8635 AllocType)) 8636 return false; 8637 } else if (Init) { 8638 if (!EvaluateInPlace(*Val, Info, Result, Init)) 8639 return false; 8640 } else { 8641 *Val = getDefaultInitValue(AllocType); 8642 } 8643 8644 // Array new returns a pointer to the first element, not a pointer to the 8645 // array. 8646 if (auto *AT = AllocType->getAsArrayTypeUnsafe()) 8647 Result.addArray(Info, E, cast<ConstantArrayType>(AT)); 8648 8649 return true; 8650 } 8651 //===----------------------------------------------------------------------===// 8652 // Member Pointer Evaluation 8653 //===----------------------------------------------------------------------===// 8654 8655 namespace { 8656 class MemberPointerExprEvaluator 8657 : public ExprEvaluatorBase<MemberPointerExprEvaluator> { 8658 MemberPtr &Result; 8659 8660 bool Success(const ValueDecl *D) { 8661 Result = MemberPtr(D); 8662 return true; 8663 } 8664 public: 8665 8666 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) 8667 : ExprEvaluatorBaseTy(Info), Result(Result) {} 8668 8669 bool Success(const APValue &V, const Expr *E) { 8670 Result.setFrom(V); 8671 return true; 8672 } 8673 bool ZeroInitialization(const Expr *E) { 8674 return Success((const ValueDecl*)nullptr); 8675 } 8676 8677 bool VisitCastExpr(const CastExpr *E); 8678 bool VisitUnaryAddrOf(const UnaryOperator *E); 8679 }; 8680 } // end anonymous namespace 8681 8682 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 8683 EvalInfo &Info) { 8684 assert(E->isRValue() && E->getType()->isMemberPointerType()); 8685 return MemberPointerExprEvaluator(Info, Result).Visit(E); 8686 } 8687 8688 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 8689 switch (E->getCastKind()) { 8690 default: 8691 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8692 8693 case CK_NullToMemberPointer: 8694 VisitIgnoredValue(E->getSubExpr()); 8695 return ZeroInitialization(E); 8696 8697 case CK_BaseToDerivedMemberPointer: { 8698 if (!Visit(E->getSubExpr())) 8699 return false; 8700 if (E->path_empty()) 8701 return true; 8702 // Base-to-derived member pointer casts store the path in derived-to-base 8703 // order, so iterate backwards. The CXXBaseSpecifier also provides us with 8704 // the wrong end of the derived->base arc, so stagger the path by one class. 8705 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; 8706 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); 8707 PathI != PathE; ++PathI) { 8708 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 8709 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); 8710 if (!Result.castToDerived(Derived)) 8711 return Error(E); 8712 } 8713 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); 8714 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) 8715 return Error(E); 8716 return true; 8717 } 8718 8719 case CK_DerivedToBaseMemberPointer: 8720 if (!Visit(E->getSubExpr())) 8721 return false; 8722 for (CastExpr::path_const_iterator PathI = E->path_begin(), 8723 PathE = E->path_end(); PathI != PathE; ++PathI) { 8724 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 8725 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 8726 if (!Result.castToBase(Base)) 8727 return Error(E); 8728 } 8729 return true; 8730 } 8731 } 8732 8733 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 8734 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 8735 // member can be formed. 8736 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); 8737 } 8738 8739 //===----------------------------------------------------------------------===// 8740 // Record Evaluation 8741 //===----------------------------------------------------------------------===// 8742 8743 namespace { 8744 class RecordExprEvaluator 8745 : public ExprEvaluatorBase<RecordExprEvaluator> { 8746 const LValue &This; 8747 APValue &Result; 8748 public: 8749 8750 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) 8751 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} 8752 8753 bool Success(const APValue &V, const Expr *E) { 8754 Result = V; 8755 return true; 8756 } 8757 bool ZeroInitialization(const Expr *E) { 8758 return ZeroInitialization(E, E->getType()); 8759 } 8760 bool ZeroInitialization(const Expr *E, QualType T); 8761 8762 bool VisitCallExpr(const CallExpr *E) { 8763 return handleCallExpr(E, Result, &This); 8764 } 8765 bool VisitCastExpr(const CastExpr *E); 8766 bool VisitInitListExpr(const InitListExpr *E); 8767 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 8768 return VisitCXXConstructExpr(E, E->getType()); 8769 } 8770 bool VisitLambdaExpr(const LambdaExpr *E); 8771 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 8772 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); 8773 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); 8774 bool VisitBinCmp(const BinaryOperator *E); 8775 }; 8776 } 8777 8778 /// Perform zero-initialization on an object of non-union class type. 8779 /// C++11 [dcl.init]p5: 8780 /// To zero-initialize an object or reference of type T means: 8781 /// [...] 8782 /// -- if T is a (possibly cv-qualified) non-union class type, 8783 /// each non-static data member and each base-class subobject is 8784 /// zero-initialized 8785 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, 8786 const RecordDecl *RD, 8787 const LValue &This, APValue &Result) { 8788 assert(!RD->isUnion() && "Expected non-union class type"); 8789 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 8790 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, 8791 std::distance(RD->field_begin(), RD->field_end())); 8792 8793 if (RD->isInvalidDecl()) return false; 8794 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 8795 8796 if (CD) { 8797 unsigned Index = 0; 8798 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), 8799 End = CD->bases_end(); I != End; ++I, ++Index) { 8800 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); 8801 LValue Subobject = This; 8802 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) 8803 return false; 8804 if (!HandleClassZeroInitialization(Info, E, Base, Subobject, 8805 Result.getStructBase(Index))) 8806 return false; 8807 } 8808 } 8809 8810 for (const auto *I : RD->fields()) { 8811 // -- if T is a reference type, no initialization is performed. 8812 if (I->getType()->isReferenceType()) 8813 continue; 8814 8815 LValue Subobject = This; 8816 if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) 8817 return false; 8818 8819 ImplicitValueInitExpr VIE(I->getType()); 8820 if (!EvaluateInPlace( 8821 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) 8822 return false; 8823 } 8824 8825 return true; 8826 } 8827 8828 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { 8829 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 8830 if (RD->isInvalidDecl()) return false; 8831 if (RD->isUnion()) { 8832 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 8833 // object's first non-static named data member is zero-initialized 8834 RecordDecl::field_iterator I = RD->field_begin(); 8835 if (I == RD->field_end()) { 8836 Result = APValue((const FieldDecl*)nullptr); 8837 return true; 8838 } 8839 8840 LValue Subobject = This; 8841 if (!HandleLValueMember(Info, E, Subobject, *I)) 8842 return false; 8843 Result = APValue(*I); 8844 ImplicitValueInitExpr VIE(I->getType()); 8845 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); 8846 } 8847 8848 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { 8849 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; 8850 return false; 8851 } 8852 8853 return HandleClassZeroInitialization(Info, E, RD, This, Result); 8854 } 8855 8856 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { 8857 switch (E->getCastKind()) { 8858 default: 8859 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8860 8861 case CK_ConstructorConversion: 8862 return Visit(E->getSubExpr()); 8863 8864 case CK_DerivedToBase: 8865 case CK_UncheckedDerivedToBase: { 8866 APValue DerivedObject; 8867 if (!Evaluate(DerivedObject, Info, E->getSubExpr())) 8868 return false; 8869 if (!DerivedObject.isStruct()) 8870 return Error(E->getSubExpr()); 8871 8872 // Derived-to-base rvalue conversion: just slice off the derived part. 8873 APValue *Value = &DerivedObject; 8874 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); 8875 for (CastExpr::path_const_iterator PathI = E->path_begin(), 8876 PathE = E->path_end(); PathI != PathE; ++PathI) { 8877 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); 8878 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 8879 Value = &Value->getStructBase(getBaseIndex(RD, Base)); 8880 RD = Base; 8881 } 8882 Result = *Value; 8883 return true; 8884 } 8885 } 8886 } 8887 8888 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 8889 if (E->isTransparent()) 8890 return Visit(E->getInit(0)); 8891 8892 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl(); 8893 if (RD->isInvalidDecl()) return false; 8894 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 8895 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 8896 8897 EvalInfo::EvaluatingConstructorRAII EvalObj( 8898 Info, 8899 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 8900 CXXRD && CXXRD->getNumBases()); 8901 8902 if (RD->isUnion()) { 8903 const FieldDecl *Field = E->getInitializedFieldInUnion(); 8904 Result = APValue(Field); 8905 if (!Field) 8906 return true; 8907 8908 // If the initializer list for a union does not contain any elements, the 8909 // first element of the union is value-initialized. 8910 // FIXME: The element should be initialized from an initializer list. 8911 // Is this difference ever observable for initializer lists which 8912 // we don't build? 8913 ImplicitValueInitExpr VIE(Field->getType()); 8914 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE; 8915 8916 LValue Subobject = This; 8917 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) 8918 return false; 8919 8920 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 8921 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 8922 isa<CXXDefaultInitExpr>(InitExpr)); 8923 8924 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr); 8925 } 8926 8927 if (!Result.hasValue()) 8928 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, 8929 std::distance(RD->field_begin(), RD->field_end())); 8930 unsigned ElementNo = 0; 8931 bool Success = true; 8932 8933 // Initialize base classes. 8934 if (CXXRD && CXXRD->getNumBases()) { 8935 for (const auto &Base : CXXRD->bases()) { 8936 assert(ElementNo < E->getNumInits() && "missing init for base class"); 8937 const Expr *Init = E->getInit(ElementNo); 8938 8939 LValue Subobject = This; 8940 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) 8941 return false; 8942 8943 APValue &FieldVal = Result.getStructBase(ElementNo); 8944 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { 8945 if (!Info.noteFailure()) 8946 return false; 8947 Success = false; 8948 } 8949 ++ElementNo; 8950 } 8951 8952 EvalObj.finishedConstructingBases(); 8953 } 8954 8955 // Initialize members. 8956 for (const auto *Field : RD->fields()) { 8957 // Anonymous bit-fields are not considered members of the class for 8958 // purposes of aggregate initialization. 8959 if (Field->isUnnamedBitfield()) 8960 continue; 8961 8962 LValue Subobject = This; 8963 8964 bool HaveInit = ElementNo < E->getNumInits(); 8965 8966 // FIXME: Diagnostics here should point to the end of the initializer 8967 // list, not the start. 8968 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, 8969 Subobject, Field, &Layout)) 8970 return false; 8971 8972 // Perform an implicit value-initialization for members beyond the end of 8973 // the initializer list. 8974 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); 8975 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE; 8976 8977 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 8978 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 8979 isa<CXXDefaultInitExpr>(Init)); 8980 8981 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 8982 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || 8983 (Field->isBitField() && !truncateBitfieldValue(Info, Init, 8984 FieldVal, Field))) { 8985 if (!Info.noteFailure()) 8986 return false; 8987 Success = false; 8988 } 8989 } 8990 8991 return Success; 8992 } 8993 8994 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 8995 QualType T) { 8996 // Note that E's type is not necessarily the type of our class here; we might 8997 // be initializing an array element instead. 8998 const CXXConstructorDecl *FD = E->getConstructor(); 8999 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; 9000 9001 bool ZeroInit = E->requiresZeroInitialization(); 9002 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { 9003 // If we've already performed zero-initialization, we're already done. 9004 if (Result.hasValue()) 9005 return true; 9006 9007 if (ZeroInit) 9008 return ZeroInitialization(E, T); 9009 9010 Result = getDefaultInitValue(T); 9011 return true; 9012 } 9013 9014 const FunctionDecl *Definition = nullptr; 9015 auto Body = FD->getBody(Definition); 9016 9017 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 9018 return false; 9019 9020 // Avoid materializing a temporary for an elidable copy/move constructor. 9021 if (E->isElidable() && !ZeroInit) 9022 if (const MaterializeTemporaryExpr *ME 9023 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0))) 9024 return Visit(ME->GetTemporaryExpr()); 9025 9026 if (ZeroInit && !ZeroInitialization(E, T)) 9027 return false; 9028 9029 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 9030 return HandleConstructorCall(E, This, Args, 9031 cast<CXXConstructorDecl>(Definition), Info, 9032 Result); 9033 } 9034 9035 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( 9036 const CXXInheritedCtorInitExpr *E) { 9037 if (!Info.CurrentCall) { 9038 assert(Info.checkingPotentialConstantExpression()); 9039 return false; 9040 } 9041 9042 const CXXConstructorDecl *FD = E->getConstructor(); 9043 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) 9044 return false; 9045 9046 const FunctionDecl *Definition = nullptr; 9047 auto Body = FD->getBody(Definition); 9048 9049 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 9050 return false; 9051 9052 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, 9053 cast<CXXConstructorDecl>(Definition), Info, 9054 Result); 9055 } 9056 9057 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( 9058 const CXXStdInitializerListExpr *E) { 9059 const ConstantArrayType *ArrayType = 9060 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 9061 9062 LValue Array; 9063 if (!EvaluateLValue(E->getSubExpr(), Array, Info)) 9064 return false; 9065 9066 // Get a pointer to the first element of the array. 9067 Array.addArray(Info, E, ArrayType); 9068 9069 // FIXME: Perform the checks on the field types in SemaInit. 9070 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 9071 RecordDecl::field_iterator Field = Record->field_begin(); 9072 if (Field == Record->field_end()) 9073 return Error(E); 9074 9075 // Start pointer. 9076 if (!Field->getType()->isPointerType() || 9077 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 9078 ArrayType->getElementType())) 9079 return Error(E); 9080 9081 // FIXME: What if the initializer_list type has base classes, etc? 9082 Result = APValue(APValue::UninitStruct(), 0, 2); 9083 Array.moveInto(Result.getStructField(0)); 9084 9085 if (++Field == Record->field_end()) 9086 return Error(E); 9087 9088 if (Field->getType()->isPointerType() && 9089 Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 9090 ArrayType->getElementType())) { 9091 // End pointer. 9092 if (!HandleLValueArrayAdjustment(Info, E, Array, 9093 ArrayType->getElementType(), 9094 ArrayType->getSize().getZExtValue())) 9095 return false; 9096 Array.moveInto(Result.getStructField(1)); 9097 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) 9098 // Length. 9099 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); 9100 else 9101 return Error(E); 9102 9103 if (++Field != Record->field_end()) 9104 return Error(E); 9105 9106 return true; 9107 } 9108 9109 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { 9110 const CXXRecordDecl *ClosureClass = E->getLambdaClass(); 9111 if (ClosureClass->isInvalidDecl()) 9112 return false; 9113 9114 const size_t NumFields = 9115 std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); 9116 9117 assert(NumFields == (size_t)std::distance(E->capture_init_begin(), 9118 E->capture_init_end()) && 9119 "The number of lambda capture initializers should equal the number of " 9120 "fields within the closure type"); 9121 9122 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); 9123 // Iterate through all the lambda's closure object's fields and initialize 9124 // them. 9125 auto *CaptureInitIt = E->capture_init_begin(); 9126 const LambdaCapture *CaptureIt = ClosureClass->captures_begin(); 9127 bool Success = true; 9128 for (const auto *Field : ClosureClass->fields()) { 9129 assert(CaptureInitIt != E->capture_init_end()); 9130 // Get the initializer for this field 9131 Expr *const CurFieldInit = *CaptureInitIt++; 9132 9133 // If there is no initializer, either this is a VLA or an error has 9134 // occurred. 9135 if (!CurFieldInit) 9136 return Error(E); 9137 9138 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 9139 if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) { 9140 if (!Info.keepEvaluatingAfterFailure()) 9141 return false; 9142 Success = false; 9143 } 9144 ++CaptureIt; 9145 } 9146 return Success; 9147 } 9148 9149 static bool EvaluateRecord(const Expr *E, const LValue &This, 9150 APValue &Result, EvalInfo &Info) { 9151 assert(E->isRValue() && E->getType()->isRecordType() && 9152 "can't evaluate expression as a record rvalue"); 9153 return RecordExprEvaluator(Info, This, Result).Visit(E); 9154 } 9155 9156 //===----------------------------------------------------------------------===// 9157 // Temporary Evaluation 9158 // 9159 // Temporaries are represented in the AST as rvalues, but generally behave like 9160 // lvalues. The full-object of which the temporary is a subobject is implicitly 9161 // materialized so that a reference can bind to it. 9162 //===----------------------------------------------------------------------===// 9163 namespace { 9164 class TemporaryExprEvaluator 9165 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { 9166 public: 9167 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : 9168 LValueExprEvaluatorBaseTy(Info, Result, false) {} 9169 9170 /// Visit an expression which constructs the value of this temporary. 9171 bool VisitConstructExpr(const Expr *E) { 9172 APValue &Value = 9173 Info.CurrentCall->createTemporary(E, E->getType(), false, Result); 9174 return EvaluateInPlace(Value, Info, Result, E); 9175 } 9176 9177 bool VisitCastExpr(const CastExpr *E) { 9178 switch (E->getCastKind()) { 9179 default: 9180 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 9181 9182 case CK_ConstructorConversion: 9183 return VisitConstructExpr(E->getSubExpr()); 9184 } 9185 } 9186 bool VisitInitListExpr(const InitListExpr *E) { 9187 return VisitConstructExpr(E); 9188 } 9189 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 9190 return VisitConstructExpr(E); 9191 } 9192 bool VisitCallExpr(const CallExpr *E) { 9193 return VisitConstructExpr(E); 9194 } 9195 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { 9196 return VisitConstructExpr(E); 9197 } 9198 bool VisitLambdaExpr(const LambdaExpr *E) { 9199 return VisitConstructExpr(E); 9200 } 9201 }; 9202 } // end anonymous namespace 9203 9204 /// Evaluate an expression of record type as a temporary. 9205 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { 9206 assert(E->isRValue() && E->getType()->isRecordType()); 9207 return TemporaryExprEvaluator(Info, Result).Visit(E); 9208 } 9209 9210 //===----------------------------------------------------------------------===// 9211 // Vector Evaluation 9212 //===----------------------------------------------------------------------===// 9213 9214 namespace { 9215 class VectorExprEvaluator 9216 : public ExprEvaluatorBase<VectorExprEvaluator> { 9217 APValue &Result; 9218 public: 9219 9220 VectorExprEvaluator(EvalInfo &info, APValue &Result) 9221 : ExprEvaluatorBaseTy(info), Result(Result) {} 9222 9223 bool Success(ArrayRef<APValue> V, const Expr *E) { 9224 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); 9225 // FIXME: remove this APValue copy. 9226 Result = APValue(V.data(), V.size()); 9227 return true; 9228 } 9229 bool Success(const APValue &V, const Expr *E) { 9230 assert(V.isVector()); 9231 Result = V; 9232 return true; 9233 } 9234 bool ZeroInitialization(const Expr *E); 9235 9236 bool VisitUnaryReal(const UnaryOperator *E) 9237 { return Visit(E->getSubExpr()); } 9238 bool VisitCastExpr(const CastExpr* E); 9239 bool VisitInitListExpr(const InitListExpr *E); 9240 bool VisitUnaryImag(const UnaryOperator *E); 9241 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, 9242 // binary comparisons, binary and/or/xor, 9243 // shufflevector, ExtVectorElementExpr 9244 }; 9245 } // end anonymous namespace 9246 9247 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { 9248 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue"); 9249 return VectorExprEvaluator(Info, Result).Visit(E); 9250 } 9251 9252 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { 9253 const VectorType *VTy = E->getType()->castAs<VectorType>(); 9254 unsigned NElts = VTy->getNumElements(); 9255 9256 const Expr *SE = E->getSubExpr(); 9257 QualType SETy = SE->getType(); 9258 9259 switch (E->getCastKind()) { 9260 case CK_VectorSplat: { 9261 APValue Val = APValue(); 9262 if (SETy->isIntegerType()) { 9263 APSInt IntResult; 9264 if (!EvaluateInteger(SE, IntResult, Info)) 9265 return false; 9266 Val = APValue(std::move(IntResult)); 9267 } else if (SETy->isRealFloatingType()) { 9268 APFloat FloatResult(0.0); 9269 if (!EvaluateFloat(SE, FloatResult, Info)) 9270 return false; 9271 Val = APValue(std::move(FloatResult)); 9272 } else { 9273 return Error(E); 9274 } 9275 9276 // Splat and create vector APValue. 9277 SmallVector<APValue, 4> Elts(NElts, Val); 9278 return Success(Elts, E); 9279 } 9280 case CK_BitCast: { 9281 // Evaluate the operand into an APInt we can extract from. 9282 llvm::APInt SValInt; 9283 if (!EvalAndBitcastToAPInt(Info, SE, SValInt)) 9284 return false; 9285 // Extract the elements 9286 QualType EltTy = VTy->getElementType(); 9287 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 9288 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 9289 SmallVector<APValue, 4> Elts; 9290 if (EltTy->isRealFloatingType()) { 9291 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy); 9292 unsigned FloatEltSize = EltSize; 9293 if (&Sem == &APFloat::x87DoubleExtended()) 9294 FloatEltSize = 80; 9295 for (unsigned i = 0; i < NElts; i++) { 9296 llvm::APInt Elt; 9297 if (BigEndian) 9298 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize); 9299 else 9300 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize); 9301 Elts.push_back(APValue(APFloat(Sem, Elt))); 9302 } 9303 } else if (EltTy->isIntegerType()) { 9304 for (unsigned i = 0; i < NElts; i++) { 9305 llvm::APInt Elt; 9306 if (BigEndian) 9307 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize); 9308 else 9309 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize); 9310 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType()))); 9311 } 9312 } else { 9313 return Error(E); 9314 } 9315 return Success(Elts, E); 9316 } 9317 default: 9318 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9319 } 9320 } 9321 9322 bool 9323 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 9324 const VectorType *VT = E->getType()->castAs<VectorType>(); 9325 unsigned NumInits = E->getNumInits(); 9326 unsigned NumElements = VT->getNumElements(); 9327 9328 QualType EltTy = VT->getElementType(); 9329 SmallVector<APValue, 4> Elements; 9330 9331 // The number of initializers can be less than the number of 9332 // vector elements. For OpenCL, this can be due to nested vector 9333 // initialization. For GCC compatibility, missing trailing elements 9334 // should be initialized with zeroes. 9335 unsigned CountInits = 0, CountElts = 0; 9336 while (CountElts < NumElements) { 9337 // Handle nested vector initialization. 9338 if (CountInits < NumInits 9339 && E->getInit(CountInits)->getType()->isVectorType()) { 9340 APValue v; 9341 if (!EvaluateVector(E->getInit(CountInits), v, Info)) 9342 return Error(E); 9343 unsigned vlen = v.getVectorLength(); 9344 for (unsigned j = 0; j < vlen; j++) 9345 Elements.push_back(v.getVectorElt(j)); 9346 CountElts += vlen; 9347 } else if (EltTy->isIntegerType()) { 9348 llvm::APSInt sInt(32); 9349 if (CountInits < NumInits) { 9350 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) 9351 return false; 9352 } else // trailing integer zero. 9353 sInt = Info.Ctx.MakeIntValue(0, EltTy); 9354 Elements.push_back(APValue(sInt)); 9355 CountElts++; 9356 } else { 9357 llvm::APFloat f(0.0); 9358 if (CountInits < NumInits) { 9359 if (!EvaluateFloat(E->getInit(CountInits), f, Info)) 9360 return false; 9361 } else // trailing float zero. 9362 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); 9363 Elements.push_back(APValue(f)); 9364 CountElts++; 9365 } 9366 CountInits++; 9367 } 9368 return Success(Elements, E); 9369 } 9370 9371 bool 9372 VectorExprEvaluator::ZeroInitialization(const Expr *E) { 9373 const auto *VT = E->getType()->castAs<VectorType>(); 9374 QualType EltTy = VT->getElementType(); 9375 APValue ZeroElement; 9376 if (EltTy->isIntegerType()) 9377 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); 9378 else 9379 ZeroElement = 9380 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); 9381 9382 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); 9383 return Success(Elements, E); 9384 } 9385 9386 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 9387 VisitIgnoredValue(E->getSubExpr()); 9388 return ZeroInitialization(E); 9389 } 9390 9391 //===----------------------------------------------------------------------===// 9392 // Array Evaluation 9393 //===----------------------------------------------------------------------===// 9394 9395 namespace { 9396 class ArrayExprEvaluator 9397 : public ExprEvaluatorBase<ArrayExprEvaluator> { 9398 const LValue &This; 9399 APValue &Result; 9400 public: 9401 9402 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) 9403 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 9404 9405 bool Success(const APValue &V, const Expr *E) { 9406 assert(V.isArray() && "expected array"); 9407 Result = V; 9408 return true; 9409 } 9410 9411 bool ZeroInitialization(const Expr *E) { 9412 const ConstantArrayType *CAT = 9413 Info.Ctx.getAsConstantArrayType(E->getType()); 9414 if (!CAT) 9415 return Error(E); 9416 9417 Result = APValue(APValue::UninitArray(), 0, 9418 CAT->getSize().getZExtValue()); 9419 if (!Result.hasArrayFiller()) return true; 9420 9421 // Zero-initialize all elements. 9422 LValue Subobject = This; 9423 Subobject.addArray(Info, E, CAT); 9424 ImplicitValueInitExpr VIE(CAT->getElementType()); 9425 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); 9426 } 9427 9428 bool VisitCallExpr(const CallExpr *E) { 9429 return handleCallExpr(E, Result, &This); 9430 } 9431 bool VisitInitListExpr(const InitListExpr *E, 9432 QualType AllocType = QualType()); 9433 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); 9434 bool VisitCXXConstructExpr(const CXXConstructExpr *E); 9435 bool VisitCXXConstructExpr(const CXXConstructExpr *E, 9436 const LValue &Subobject, 9437 APValue *Value, QualType Type); 9438 bool VisitStringLiteral(const StringLiteral *E, 9439 QualType AllocType = QualType()) { 9440 expandStringLiteral(Info, E, Result, AllocType); 9441 return true; 9442 } 9443 }; 9444 } // end anonymous namespace 9445 9446 static bool EvaluateArray(const Expr *E, const LValue &This, 9447 APValue &Result, EvalInfo &Info) { 9448 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue"); 9449 return ArrayExprEvaluator(Info, This, Result).Visit(E); 9450 } 9451 9452 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 9453 APValue &Result, const InitListExpr *ILE, 9454 QualType AllocType) { 9455 assert(ILE->isRValue() && ILE->getType()->isArrayType() && 9456 "not an array rvalue"); 9457 return ArrayExprEvaluator(Info, This, Result) 9458 .VisitInitListExpr(ILE, AllocType); 9459 } 9460 9461 // Return true iff the given array filler may depend on the element index. 9462 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { 9463 // For now, just whitelist non-class value-initialization and initialization 9464 // lists comprised of them. 9465 if (isa<ImplicitValueInitExpr>(FillerExpr)) 9466 return false; 9467 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { 9468 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { 9469 if (MaybeElementDependentArrayFiller(ILE->getInit(I))) 9470 return true; 9471 } 9472 return false; 9473 } 9474 return true; 9475 } 9476 9477 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, 9478 QualType AllocType) { 9479 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 9480 AllocType.isNull() ? E->getType() : AllocType); 9481 if (!CAT) 9482 return Error(E); 9483 9484 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] 9485 // an appropriately-typed string literal enclosed in braces. 9486 if (E->isStringLiteralInit()) { 9487 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens()); 9488 // FIXME: Support ObjCEncodeExpr here once we support it in 9489 // ArrayExprEvaluator generally. 9490 if (!SL) 9491 return Error(E); 9492 return VisitStringLiteral(SL, AllocType); 9493 } 9494 9495 bool Success = true; 9496 9497 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && 9498 "zero-initialized array shouldn't have any initialized elts"); 9499 APValue Filler; 9500 if (Result.isArray() && Result.hasArrayFiller()) 9501 Filler = Result.getArrayFiller(); 9502 9503 unsigned NumEltsToInit = E->getNumInits(); 9504 unsigned NumElts = CAT->getSize().getZExtValue(); 9505 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr; 9506 9507 // If the initializer might depend on the array index, run it for each 9508 // array element. 9509 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr)) 9510 NumEltsToInit = NumElts; 9511 9512 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " 9513 << NumEltsToInit << ".\n"); 9514 9515 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); 9516 9517 // If the array was previously zero-initialized, preserve the 9518 // zero-initialized values. 9519 if (Filler.hasValue()) { 9520 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) 9521 Result.getArrayInitializedElt(I) = Filler; 9522 if (Result.hasArrayFiller()) 9523 Result.getArrayFiller() = Filler; 9524 } 9525 9526 LValue Subobject = This; 9527 Subobject.addArray(Info, E, CAT); 9528 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { 9529 const Expr *Init = 9530 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr; 9531 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 9532 Info, Subobject, Init) || 9533 !HandleLValueArrayAdjustment(Info, Init, Subobject, 9534 CAT->getElementType(), 1)) { 9535 if (!Info.noteFailure()) 9536 return false; 9537 Success = false; 9538 } 9539 } 9540 9541 if (!Result.hasArrayFiller()) 9542 return Success; 9543 9544 // If we get here, we have a trivial filler, which we can just evaluate 9545 // once and splat over the rest of the array elements. 9546 assert(FillerExpr && "no array filler for incomplete init list"); 9547 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, 9548 FillerExpr) && Success; 9549 } 9550 9551 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 9552 LValue CommonLV; 9553 if (E->getCommonExpr() && 9554 !Evaluate(Info.CurrentCall->createTemporary( 9555 E->getCommonExpr(), 9556 getStorageType(Info.Ctx, E->getCommonExpr()), false, 9557 CommonLV), 9558 Info, E->getCommonExpr()->getSourceExpr())) 9559 return false; 9560 9561 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); 9562 9563 uint64_t Elements = CAT->getSize().getZExtValue(); 9564 Result = APValue(APValue::UninitArray(), Elements, Elements); 9565 9566 LValue Subobject = This; 9567 Subobject.addArray(Info, E, CAT); 9568 9569 bool Success = true; 9570 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { 9571 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 9572 Info, Subobject, E->getSubExpr()) || 9573 !HandleLValueArrayAdjustment(Info, E, Subobject, 9574 CAT->getElementType(), 1)) { 9575 if (!Info.noteFailure()) 9576 return false; 9577 Success = false; 9578 } 9579 } 9580 9581 return Success; 9582 } 9583 9584 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { 9585 return VisitCXXConstructExpr(E, This, &Result, E->getType()); 9586 } 9587 9588 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 9589 const LValue &Subobject, 9590 APValue *Value, 9591 QualType Type) { 9592 bool HadZeroInit = Value->hasValue(); 9593 9594 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { 9595 unsigned N = CAT->getSize().getZExtValue(); 9596 9597 // Preserve the array filler if we had prior zero-initialization. 9598 APValue Filler = 9599 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() 9600 : APValue(); 9601 9602 *Value = APValue(APValue::UninitArray(), N, N); 9603 9604 if (HadZeroInit) 9605 for (unsigned I = 0; I != N; ++I) 9606 Value->getArrayInitializedElt(I) = Filler; 9607 9608 // Initialize the elements. 9609 LValue ArrayElt = Subobject; 9610 ArrayElt.addArray(Info, E, CAT); 9611 for (unsigned I = 0; I != N; ++I) 9612 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I), 9613 CAT->getElementType()) || 9614 !HandleLValueArrayAdjustment(Info, E, ArrayElt, 9615 CAT->getElementType(), 1)) 9616 return false; 9617 9618 return true; 9619 } 9620 9621 if (!Type->isRecordType()) 9622 return Error(E); 9623 9624 return RecordExprEvaluator(Info, Subobject, *Value) 9625 .VisitCXXConstructExpr(E, Type); 9626 } 9627 9628 //===----------------------------------------------------------------------===// 9629 // Integer Evaluation 9630 // 9631 // As a GNU extension, we support casting pointers to sufficiently-wide integer 9632 // types and back in constant folding. Integer values are thus represented 9633 // either as an integer-valued APValue, or as an lvalue-valued APValue. 9634 //===----------------------------------------------------------------------===// 9635 9636 namespace { 9637 class IntExprEvaluator 9638 : public ExprEvaluatorBase<IntExprEvaluator> { 9639 APValue &Result; 9640 public: 9641 IntExprEvaluator(EvalInfo &info, APValue &result) 9642 : ExprEvaluatorBaseTy(info), Result(result) {} 9643 9644 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { 9645 assert(E->getType()->isIntegralOrEnumerationType() && 9646 "Invalid evaluation result."); 9647 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && 9648 "Invalid evaluation result."); 9649 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 9650 "Invalid evaluation result."); 9651 Result = APValue(SI); 9652 return true; 9653 } 9654 bool Success(const llvm::APSInt &SI, const Expr *E) { 9655 return Success(SI, E, Result); 9656 } 9657 9658 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { 9659 assert(E->getType()->isIntegralOrEnumerationType() && 9660 "Invalid evaluation result."); 9661 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 9662 "Invalid evaluation result."); 9663 Result = APValue(APSInt(I)); 9664 Result.getInt().setIsUnsigned( 9665 E->getType()->isUnsignedIntegerOrEnumerationType()); 9666 return true; 9667 } 9668 bool Success(const llvm::APInt &I, const Expr *E) { 9669 return Success(I, E, Result); 9670 } 9671 9672 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 9673 assert(E->getType()->isIntegralOrEnumerationType() && 9674 "Invalid evaluation result."); 9675 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); 9676 return true; 9677 } 9678 bool Success(uint64_t Value, const Expr *E) { 9679 return Success(Value, E, Result); 9680 } 9681 9682 bool Success(CharUnits Size, const Expr *E) { 9683 return Success(Size.getQuantity(), E); 9684 } 9685 9686 bool Success(const APValue &V, const Expr *E) { 9687 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { 9688 Result = V; 9689 return true; 9690 } 9691 return Success(V.getInt(), E); 9692 } 9693 9694 bool ZeroInitialization(const Expr *E) { return Success(0, E); } 9695 9696 //===--------------------------------------------------------------------===// 9697 // Visitor Methods 9698 //===--------------------------------------------------------------------===// 9699 9700 bool VisitConstantExpr(const ConstantExpr *E); 9701 9702 bool VisitIntegerLiteral(const IntegerLiteral *E) { 9703 return Success(E->getValue(), E); 9704 } 9705 bool VisitCharacterLiteral(const CharacterLiteral *E) { 9706 return Success(E->getValue(), E); 9707 } 9708 9709 bool CheckReferencedDecl(const Expr *E, const Decl *D); 9710 bool VisitDeclRefExpr(const DeclRefExpr *E) { 9711 if (CheckReferencedDecl(E, E->getDecl())) 9712 return true; 9713 9714 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); 9715 } 9716 bool VisitMemberExpr(const MemberExpr *E) { 9717 if (CheckReferencedDecl(E, E->getMemberDecl())) { 9718 VisitIgnoredBaseExpression(E->getBase()); 9719 return true; 9720 } 9721 9722 return ExprEvaluatorBaseTy::VisitMemberExpr(E); 9723 } 9724 9725 bool VisitCallExpr(const CallExpr *E); 9726 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 9727 bool VisitBinaryOperator(const BinaryOperator *E); 9728 bool VisitOffsetOfExpr(const OffsetOfExpr *E); 9729 bool VisitUnaryOperator(const UnaryOperator *E); 9730 9731 bool VisitCastExpr(const CastExpr* E); 9732 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 9733 9734 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 9735 return Success(E->getValue(), E); 9736 } 9737 9738 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 9739 return Success(E->getValue(), E); 9740 } 9741 9742 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 9743 if (Info.ArrayInitIndex == uint64_t(-1)) { 9744 // We were asked to evaluate this subexpression independent of the 9745 // enclosing ArrayInitLoopExpr. We can't do that. 9746 Info.FFDiag(E); 9747 return false; 9748 } 9749 return Success(Info.ArrayInitIndex, E); 9750 } 9751 9752 // Note, GNU defines __null as an integer, not a pointer. 9753 bool VisitGNUNullExpr(const GNUNullExpr *E) { 9754 return ZeroInitialization(E); 9755 } 9756 9757 bool VisitTypeTraitExpr(const TypeTraitExpr *E) { 9758 return Success(E->getValue(), E); 9759 } 9760 9761 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 9762 return Success(E->getValue(), E); 9763 } 9764 9765 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 9766 return Success(E->getValue(), E); 9767 } 9768 9769 bool VisitUnaryReal(const UnaryOperator *E); 9770 bool VisitUnaryImag(const UnaryOperator *E); 9771 9772 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); 9773 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); 9774 bool VisitSourceLocExpr(const SourceLocExpr *E); 9775 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); 9776 // FIXME: Missing: array subscript of vector, member of vector 9777 }; 9778 9779 class FixedPointExprEvaluator 9780 : public ExprEvaluatorBase<FixedPointExprEvaluator> { 9781 APValue &Result; 9782 9783 public: 9784 FixedPointExprEvaluator(EvalInfo &info, APValue &result) 9785 : ExprEvaluatorBaseTy(info), Result(result) {} 9786 9787 bool Success(const llvm::APInt &I, const Expr *E) { 9788 return Success( 9789 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); 9790 } 9791 9792 bool Success(uint64_t Value, const Expr *E) { 9793 return Success( 9794 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); 9795 } 9796 9797 bool Success(const APValue &V, const Expr *E) { 9798 return Success(V.getFixedPoint(), E); 9799 } 9800 9801 bool Success(const APFixedPoint &V, const Expr *E) { 9802 assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); 9803 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && 9804 "Invalid evaluation result."); 9805 Result = APValue(V); 9806 return true; 9807 } 9808 9809 //===--------------------------------------------------------------------===// 9810 // Visitor Methods 9811 //===--------------------------------------------------------------------===// 9812 9813 bool VisitFixedPointLiteral(const FixedPointLiteral *E) { 9814 return Success(E->getValue(), E); 9815 } 9816 9817 bool VisitCastExpr(const CastExpr *E); 9818 bool VisitUnaryOperator(const UnaryOperator *E); 9819 bool VisitBinaryOperator(const BinaryOperator *E); 9820 }; 9821 } // end anonymous namespace 9822 9823 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and 9824 /// produce either the integer value or a pointer. 9825 /// 9826 /// GCC has a heinous extension which folds casts between pointer types and 9827 /// pointer-sized integral types. We support this by allowing the evaluation of 9828 /// an integer rvalue to produce a pointer (represented as an lvalue) instead. 9829 /// Some simple arithmetic on such values is supported (they are treated much 9830 /// like char*). 9831 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 9832 EvalInfo &Info) { 9833 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType()); 9834 return IntExprEvaluator(Info, Result).Visit(E); 9835 } 9836 9837 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { 9838 APValue Val; 9839 if (!EvaluateIntegerOrLValue(E, Val, Info)) 9840 return false; 9841 if (!Val.isInt()) { 9842 // FIXME: It would be better to produce the diagnostic for casting 9843 // a pointer to an integer. 9844 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 9845 return false; 9846 } 9847 Result = Val.getInt(); 9848 return true; 9849 } 9850 9851 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { 9852 APValue Evaluated = E->EvaluateInContext( 9853 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 9854 return Success(Evaluated, E); 9855 } 9856 9857 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 9858 EvalInfo &Info) { 9859 if (E->getType()->isFixedPointType()) { 9860 APValue Val; 9861 if (!FixedPointExprEvaluator(Info, Val).Visit(E)) 9862 return false; 9863 if (!Val.isFixedPoint()) 9864 return false; 9865 9866 Result = Val.getFixedPoint(); 9867 return true; 9868 } 9869 return false; 9870 } 9871 9872 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 9873 EvalInfo &Info) { 9874 if (E->getType()->isIntegerType()) { 9875 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); 9876 APSInt Val; 9877 if (!EvaluateInteger(E, Val, Info)) 9878 return false; 9879 Result = APFixedPoint(Val, FXSema); 9880 return true; 9881 } else if (E->getType()->isFixedPointType()) { 9882 return EvaluateFixedPoint(E, Result, Info); 9883 } 9884 return false; 9885 } 9886 9887 /// Check whether the given declaration can be directly converted to an integral 9888 /// rvalue. If not, no diagnostic is produced; there are other things we can 9889 /// try. 9890 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { 9891 // Enums are integer constant exprs. 9892 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { 9893 // Check for signedness/width mismatches between E type and ECD value. 9894 bool SameSign = (ECD->getInitVal().isSigned() 9895 == E->getType()->isSignedIntegerOrEnumerationType()); 9896 bool SameWidth = (ECD->getInitVal().getBitWidth() 9897 == Info.Ctx.getIntWidth(E->getType())); 9898 if (SameSign && SameWidth) 9899 return Success(ECD->getInitVal(), E); 9900 else { 9901 // Get rid of mismatch (otherwise Success assertions will fail) 9902 // by computing a new value matching the type of E. 9903 llvm::APSInt Val = ECD->getInitVal(); 9904 if (!SameSign) 9905 Val.setIsSigned(!ECD->getInitVal().isSigned()); 9906 if (!SameWidth) 9907 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); 9908 return Success(Val, E); 9909 } 9910 } 9911 return false; 9912 } 9913 9914 /// Values returned by __builtin_classify_type, chosen to match the values 9915 /// produced by GCC's builtin. 9916 enum class GCCTypeClass { 9917 None = -1, 9918 Void = 0, 9919 Integer = 1, 9920 // GCC reserves 2 for character types, but instead classifies them as 9921 // integers. 9922 Enum = 3, 9923 Bool = 4, 9924 Pointer = 5, 9925 // GCC reserves 6 for references, but appears to never use it (because 9926 // expressions never have reference type, presumably). 9927 PointerToDataMember = 7, 9928 RealFloat = 8, 9929 Complex = 9, 9930 // GCC reserves 10 for functions, but does not use it since GCC version 6 due 9931 // to decay to pointer. (Prior to version 6 it was only used in C++ mode). 9932 // GCC claims to reserve 11 for pointers to member functions, but *actually* 9933 // uses 12 for that purpose, same as for a class or struct. Maybe it 9934 // internally implements a pointer to member as a struct? Who knows. 9935 PointerToMemberFunction = 12, // Not a bug, see above. 9936 ClassOrStruct = 12, 9937 Union = 13, 9938 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to 9939 // decay to pointer. (Prior to version 6 it was only used in C++ mode). 9940 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string 9941 // literals. 9942 }; 9943 9944 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 9945 /// as GCC. 9946 static GCCTypeClass 9947 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) { 9948 assert(!T->isDependentType() && "unexpected dependent type"); 9949 9950 QualType CanTy = T.getCanonicalType(); 9951 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy); 9952 9953 switch (CanTy->getTypeClass()) { 9954 #define TYPE(ID, BASE) 9955 #define DEPENDENT_TYPE(ID, BASE) case Type::ID: 9956 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: 9957 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: 9958 #include "clang/AST/TypeNodes.inc" 9959 case Type::Auto: 9960 case Type::DeducedTemplateSpecialization: 9961 llvm_unreachable("unexpected non-canonical or dependent type"); 9962 9963 case Type::Builtin: 9964 switch (BT->getKind()) { 9965 #define BUILTIN_TYPE(ID, SINGLETON_ID) 9966 #define SIGNED_TYPE(ID, SINGLETON_ID) \ 9967 case BuiltinType::ID: return GCCTypeClass::Integer; 9968 #define FLOATING_TYPE(ID, SINGLETON_ID) \ 9969 case BuiltinType::ID: return GCCTypeClass::RealFloat; 9970 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ 9971 case BuiltinType::ID: break; 9972 #include "clang/AST/BuiltinTypes.def" 9973 case BuiltinType::Void: 9974 return GCCTypeClass::Void; 9975 9976 case BuiltinType::Bool: 9977 return GCCTypeClass::Bool; 9978 9979 case BuiltinType::Char_U: 9980 case BuiltinType::UChar: 9981 case BuiltinType::WChar_U: 9982 case BuiltinType::Char8: 9983 case BuiltinType::Char16: 9984 case BuiltinType::Char32: 9985 case BuiltinType::UShort: 9986 case BuiltinType::UInt: 9987 case BuiltinType::ULong: 9988 case BuiltinType::ULongLong: 9989 case BuiltinType::UInt128: 9990 return GCCTypeClass::Integer; 9991 9992 case BuiltinType::UShortAccum: 9993 case BuiltinType::UAccum: 9994 case BuiltinType::ULongAccum: 9995 case BuiltinType::UShortFract: 9996 case BuiltinType::UFract: 9997 case BuiltinType::ULongFract: 9998 case BuiltinType::SatUShortAccum: 9999 case BuiltinType::SatUAccum: 10000 case BuiltinType::SatULongAccum: 10001 case BuiltinType::SatUShortFract: 10002 case BuiltinType::SatUFract: 10003 case BuiltinType::SatULongFract: 10004 return GCCTypeClass::None; 10005 10006 case BuiltinType::NullPtr: 10007 10008 case BuiltinType::ObjCId: 10009 case BuiltinType::ObjCClass: 10010 case BuiltinType::ObjCSel: 10011 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 10012 case BuiltinType::Id: 10013 #include "clang/Basic/OpenCLImageTypes.def" 10014 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 10015 case BuiltinType::Id: 10016 #include "clang/Basic/OpenCLExtensionTypes.def" 10017 case BuiltinType::OCLSampler: 10018 case BuiltinType::OCLEvent: 10019 case BuiltinType::OCLClkEvent: 10020 case BuiltinType::OCLQueue: 10021 case BuiltinType::OCLReserveID: 10022 #define SVE_TYPE(Name, Id, SingletonId) \ 10023 case BuiltinType::Id: 10024 #include "clang/Basic/AArch64SVEACLETypes.def" 10025 return GCCTypeClass::None; 10026 10027 case BuiltinType::Dependent: 10028 llvm_unreachable("unexpected dependent type"); 10029 }; 10030 llvm_unreachable("unexpected placeholder type"); 10031 10032 case Type::Enum: 10033 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; 10034 10035 case Type::Pointer: 10036 case Type::ConstantArray: 10037 case Type::VariableArray: 10038 case Type::IncompleteArray: 10039 case Type::FunctionNoProto: 10040 case Type::FunctionProto: 10041 return GCCTypeClass::Pointer; 10042 10043 case Type::MemberPointer: 10044 return CanTy->isMemberDataPointerType() 10045 ? GCCTypeClass::PointerToDataMember 10046 : GCCTypeClass::PointerToMemberFunction; 10047 10048 case Type::Complex: 10049 return GCCTypeClass::Complex; 10050 10051 case Type::Record: 10052 return CanTy->isUnionType() ? GCCTypeClass::Union 10053 : GCCTypeClass::ClassOrStruct; 10054 10055 case Type::Atomic: 10056 // GCC classifies _Atomic T the same as T. 10057 return EvaluateBuiltinClassifyType( 10058 CanTy->castAs<AtomicType>()->getValueType(), LangOpts); 10059 10060 case Type::BlockPointer: 10061 case Type::Vector: 10062 case Type::ExtVector: 10063 case Type::ObjCObject: 10064 case Type::ObjCInterface: 10065 case Type::ObjCObjectPointer: 10066 case Type::Pipe: 10067 // GCC classifies vectors as None. We follow its lead and classify all 10068 // other types that don't fit into the regular classification the same way. 10069 return GCCTypeClass::None; 10070 10071 case Type::LValueReference: 10072 case Type::RValueReference: 10073 llvm_unreachable("invalid type for expression"); 10074 } 10075 10076 llvm_unreachable("unexpected type class"); 10077 } 10078 10079 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 10080 /// as GCC. 10081 static GCCTypeClass 10082 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { 10083 // If no argument was supplied, default to None. This isn't 10084 // ideal, however it is what gcc does. 10085 if (E->getNumArgs() == 0) 10086 return GCCTypeClass::None; 10087 10088 // FIXME: Bizarrely, GCC treats a call with more than one argument as not 10089 // being an ICE, but still folds it to a constant using the type of the first 10090 // argument. 10091 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); 10092 } 10093 10094 /// EvaluateBuiltinConstantPForLValue - Determine the result of 10095 /// __builtin_constant_p when applied to the given pointer. 10096 /// 10097 /// A pointer is only "constant" if it is null (or a pointer cast to integer) 10098 /// or it points to the first character of a string literal. 10099 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { 10100 APValue::LValueBase Base = LV.getLValueBase(); 10101 if (Base.isNull()) { 10102 // A null base is acceptable. 10103 return true; 10104 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { 10105 if (!isa<StringLiteral>(E)) 10106 return false; 10107 return LV.getLValueOffset().isZero(); 10108 } else if (Base.is<TypeInfoLValue>()) { 10109 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to 10110 // evaluate to true. 10111 return true; 10112 } else { 10113 // Any other base is not constant enough for GCC. 10114 return false; 10115 } 10116 } 10117 10118 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to 10119 /// GCC as we can manage. 10120 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { 10121 // This evaluation is not permitted to have side-effects, so evaluate it in 10122 // a speculative evaluation context. 10123 SpeculativeEvaluationRAII SpeculativeEval(Info); 10124 10125 // Constant-folding is always enabled for the operand of __builtin_constant_p 10126 // (even when the enclosing evaluation context otherwise requires a strict 10127 // language-specific constant expression). 10128 FoldConstant Fold(Info, true); 10129 10130 QualType ArgType = Arg->getType(); 10131 10132 // __builtin_constant_p always has one operand. The rules which gcc follows 10133 // are not precisely documented, but are as follows: 10134 // 10135 // - If the operand is of integral, floating, complex or enumeration type, 10136 // and can be folded to a known value of that type, it returns 1. 10137 // - If the operand can be folded to a pointer to the first character 10138 // of a string literal (or such a pointer cast to an integral type) 10139 // or to a null pointer or an integer cast to a pointer, it returns 1. 10140 // 10141 // Otherwise, it returns 0. 10142 // 10143 // FIXME: GCC also intends to return 1 for literals of aggregate types, but 10144 // its support for this did not work prior to GCC 9 and is not yet well 10145 // understood. 10146 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || 10147 ArgType->isAnyComplexType() || ArgType->isPointerType() || 10148 ArgType->isNullPtrType()) { 10149 APValue V; 10150 if (!::EvaluateAsRValue(Info, Arg, V)) { 10151 Fold.keepDiagnostics(); 10152 return false; 10153 } 10154 10155 // For a pointer (possibly cast to integer), there are special rules. 10156 if (V.getKind() == APValue::LValue) 10157 return EvaluateBuiltinConstantPForLValue(V); 10158 10159 // Otherwise, any constant value is good enough. 10160 return V.hasValue(); 10161 } 10162 10163 // Anything else isn't considered to be sufficiently constant. 10164 return false; 10165 } 10166 10167 /// Retrieves the "underlying object type" of the given expression, 10168 /// as used by __builtin_object_size. 10169 static QualType getObjectType(APValue::LValueBase B) { 10170 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 10171 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 10172 return VD->getType(); 10173 } else if (const Expr *E = B.get<const Expr*>()) { 10174 if (isa<CompoundLiteralExpr>(E)) 10175 return E->getType(); 10176 } else if (B.is<TypeInfoLValue>()) { 10177 return B.getTypeInfoType(); 10178 } else if (B.is<DynamicAllocLValue>()) { 10179 return B.getDynamicAllocType(); 10180 } 10181 10182 return QualType(); 10183 } 10184 10185 /// A more selective version of E->IgnoreParenCasts for 10186 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only 10187 /// to change the type of E. 10188 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` 10189 /// 10190 /// Always returns an RValue with a pointer representation. 10191 static const Expr *ignorePointerCastsAndParens(const Expr *E) { 10192 assert(E->isRValue() && E->getType()->hasPointerRepresentation()); 10193 10194 auto *NoParens = E->IgnoreParens(); 10195 auto *Cast = dyn_cast<CastExpr>(NoParens); 10196 if (Cast == nullptr) 10197 return NoParens; 10198 10199 // We only conservatively allow a few kinds of casts, because this code is 10200 // inherently a simple solution that seeks to support the common case. 10201 auto CastKind = Cast->getCastKind(); 10202 if (CastKind != CK_NoOp && CastKind != CK_BitCast && 10203 CastKind != CK_AddressSpaceConversion) 10204 return NoParens; 10205 10206 auto *SubExpr = Cast->getSubExpr(); 10207 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue()) 10208 return NoParens; 10209 return ignorePointerCastsAndParens(SubExpr); 10210 } 10211 10212 /// Checks to see if the given LValue's Designator is at the end of the LValue's 10213 /// record layout. e.g. 10214 /// struct { struct { int a, b; } fst, snd; } obj; 10215 /// obj.fst // no 10216 /// obj.snd // yes 10217 /// obj.fst.a // no 10218 /// obj.fst.b // no 10219 /// obj.snd.a // no 10220 /// obj.snd.b // yes 10221 /// 10222 /// Please note: this function is specialized for how __builtin_object_size 10223 /// views "objects". 10224 /// 10225 /// If this encounters an invalid RecordDecl or otherwise cannot determine the 10226 /// correct result, it will always return true. 10227 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { 10228 assert(!LVal.Designator.Invalid); 10229 10230 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { 10231 const RecordDecl *Parent = FD->getParent(); 10232 Invalid = Parent->isInvalidDecl(); 10233 if (Invalid || Parent->isUnion()) 10234 return true; 10235 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); 10236 return FD->getFieldIndex() + 1 == Layout.getFieldCount(); 10237 }; 10238 10239 auto &Base = LVal.getLValueBase(); 10240 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { 10241 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 10242 bool Invalid; 10243 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 10244 return Invalid; 10245 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { 10246 for (auto *FD : IFD->chain()) { 10247 bool Invalid; 10248 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) 10249 return Invalid; 10250 } 10251 } 10252 } 10253 10254 unsigned I = 0; 10255 QualType BaseType = getType(Base); 10256 if (LVal.Designator.FirstEntryIsAnUnsizedArray) { 10257 // If we don't know the array bound, conservatively assume we're looking at 10258 // the final array element. 10259 ++I; 10260 if (BaseType->isIncompleteArrayType()) 10261 BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); 10262 else 10263 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 10264 } 10265 10266 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { 10267 const auto &Entry = LVal.Designator.Entries[I]; 10268 if (BaseType->isArrayType()) { 10269 // Because __builtin_object_size treats arrays as objects, we can ignore 10270 // the index iff this is the last array in the Designator. 10271 if (I + 1 == E) 10272 return true; 10273 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); 10274 uint64_t Index = Entry.getAsArrayIndex(); 10275 if (Index + 1 != CAT->getSize()) 10276 return false; 10277 BaseType = CAT->getElementType(); 10278 } else if (BaseType->isAnyComplexType()) { 10279 const auto *CT = BaseType->castAs<ComplexType>(); 10280 uint64_t Index = Entry.getAsArrayIndex(); 10281 if (Index != 1) 10282 return false; 10283 BaseType = CT->getElementType(); 10284 } else if (auto *FD = getAsField(Entry)) { 10285 bool Invalid; 10286 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 10287 return Invalid; 10288 BaseType = FD->getType(); 10289 } else { 10290 assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); 10291 return false; 10292 } 10293 } 10294 return true; 10295 } 10296 10297 /// Tests to see if the LValue has a user-specified designator (that isn't 10298 /// necessarily valid). Note that this always returns 'true' if the LValue has 10299 /// an unsized array as its first designator entry, because there's currently no 10300 /// way to tell if the user typed *foo or foo[0]. 10301 static bool refersToCompleteObject(const LValue &LVal) { 10302 if (LVal.Designator.Invalid) 10303 return false; 10304 10305 if (!LVal.Designator.Entries.empty()) 10306 return LVal.Designator.isMostDerivedAnUnsizedArray(); 10307 10308 if (!LVal.InvalidBase) 10309 return true; 10310 10311 // If `E` is a MemberExpr, then the first part of the designator is hiding in 10312 // the LValueBase. 10313 const auto *E = LVal.Base.dyn_cast<const Expr *>(); 10314 return !E || !isa<MemberExpr>(E); 10315 } 10316 10317 /// Attempts to detect a user writing into a piece of memory that's impossible 10318 /// to figure out the size of by just using types. 10319 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { 10320 const SubobjectDesignator &Designator = LVal.Designator; 10321 // Notes: 10322 // - Users can only write off of the end when we have an invalid base. Invalid 10323 // bases imply we don't know where the memory came from. 10324 // - We used to be a bit more aggressive here; we'd only be conservative if 10325 // the array at the end was flexible, or if it had 0 or 1 elements. This 10326 // broke some common standard library extensions (PR30346), but was 10327 // otherwise seemingly fine. It may be useful to reintroduce this behavior 10328 // with some sort of whitelist. OTOH, it seems that GCC is always 10329 // conservative with the last element in structs (if it's an array), so our 10330 // current behavior is more compatible than a whitelisting approach would 10331 // be. 10332 return LVal.InvalidBase && 10333 Designator.Entries.size() == Designator.MostDerivedPathLength && 10334 Designator.MostDerivedIsArrayElement && 10335 isDesignatorAtObjectEnd(Ctx, LVal); 10336 } 10337 10338 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. 10339 /// Fails if the conversion would cause loss of precision. 10340 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, 10341 CharUnits &Result) { 10342 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); 10343 if (Int.ugt(CharUnitsMax)) 10344 return false; 10345 Result = CharUnits::fromQuantity(Int.getZExtValue()); 10346 return true; 10347 } 10348 10349 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will 10350 /// determine how many bytes exist from the beginning of the object to either 10351 /// the end of the current subobject, or the end of the object itself, depending 10352 /// on what the LValue looks like + the value of Type. 10353 /// 10354 /// If this returns false, the value of Result is undefined. 10355 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, 10356 unsigned Type, const LValue &LVal, 10357 CharUnits &EndOffset) { 10358 bool DetermineForCompleteObject = refersToCompleteObject(LVal); 10359 10360 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { 10361 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) 10362 return false; 10363 return HandleSizeof(Info, ExprLoc, Ty, Result); 10364 }; 10365 10366 // We want to evaluate the size of the entire object. This is a valid fallback 10367 // for when Type=1 and the designator is invalid, because we're asked for an 10368 // upper-bound. 10369 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { 10370 // Type=3 wants a lower bound, so we can't fall back to this. 10371 if (Type == 3 && !DetermineForCompleteObject) 10372 return false; 10373 10374 llvm::APInt APEndOffset; 10375 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 10376 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 10377 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 10378 10379 if (LVal.InvalidBase) 10380 return false; 10381 10382 QualType BaseTy = getObjectType(LVal.getLValueBase()); 10383 return CheckedHandleSizeof(BaseTy, EndOffset); 10384 } 10385 10386 // We want to evaluate the size of a subobject. 10387 const SubobjectDesignator &Designator = LVal.Designator; 10388 10389 // The following is a moderately common idiom in C: 10390 // 10391 // struct Foo { int a; char c[1]; }; 10392 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); 10393 // strcpy(&F->c[0], Bar); 10394 // 10395 // In order to not break too much legacy code, we need to support it. 10396 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { 10397 // If we can resolve this to an alloc_size call, we can hand that back, 10398 // because we know for certain how many bytes there are to write to. 10399 llvm::APInt APEndOffset; 10400 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 10401 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 10402 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 10403 10404 // If we cannot determine the size of the initial allocation, then we can't 10405 // given an accurate upper-bound. However, we are still able to give 10406 // conservative lower-bounds for Type=3. 10407 if (Type == 1) 10408 return false; 10409 } 10410 10411 CharUnits BytesPerElem; 10412 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) 10413 return false; 10414 10415 // According to the GCC documentation, we want the size of the subobject 10416 // denoted by the pointer. But that's not quite right -- what we actually 10417 // want is the size of the immediately-enclosing array, if there is one. 10418 int64_t ElemsRemaining; 10419 if (Designator.MostDerivedIsArrayElement && 10420 Designator.Entries.size() == Designator.MostDerivedPathLength) { 10421 uint64_t ArraySize = Designator.getMostDerivedArraySize(); 10422 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); 10423 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; 10424 } else { 10425 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; 10426 } 10427 10428 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; 10429 return true; 10430 } 10431 10432 /// Tries to evaluate the __builtin_object_size for @p E. If successful, 10433 /// returns true and stores the result in @p Size. 10434 /// 10435 /// If @p WasError is non-null, this will report whether the failure to evaluate 10436 /// is to be treated as an Error in IntExprEvaluator. 10437 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, 10438 EvalInfo &Info, uint64_t &Size) { 10439 // Determine the denoted object. 10440 LValue LVal; 10441 { 10442 // The operand of __builtin_object_size is never evaluated for side-effects. 10443 // If there are any, but we can determine the pointed-to object anyway, then 10444 // ignore the side-effects. 10445 SpeculativeEvaluationRAII SpeculativeEval(Info); 10446 IgnoreSideEffectsRAII Fold(Info); 10447 10448 if (E->isGLValue()) { 10449 // It's possible for us to be given GLValues if we're called via 10450 // Expr::tryEvaluateObjectSize. 10451 APValue RVal; 10452 if (!EvaluateAsRValue(Info, E, RVal)) 10453 return false; 10454 LVal.setFrom(Info.Ctx, RVal); 10455 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, 10456 /*InvalidBaseOK=*/true)) 10457 return false; 10458 } 10459 10460 // If we point to before the start of the object, there are no accessible 10461 // bytes. 10462 if (LVal.getLValueOffset().isNegative()) { 10463 Size = 0; 10464 return true; 10465 } 10466 10467 CharUnits EndOffset; 10468 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) 10469 return false; 10470 10471 // If we've fallen outside of the end offset, just pretend there's nothing to 10472 // write to/read from. 10473 if (EndOffset <= LVal.getLValueOffset()) 10474 Size = 0; 10475 else 10476 Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); 10477 return true; 10478 } 10479 10480 bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) { 10481 llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true); 10482 if (E->getResultAPValueKind() != APValue::None) 10483 return Success(E->getAPValueResult(), E); 10484 return ExprEvaluatorBaseTy::VisitConstantExpr(E); 10485 } 10486 10487 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { 10488 if (unsigned BuiltinOp = E->getBuiltinCallee()) 10489 return VisitBuiltinCallExpr(E, BuiltinOp); 10490 10491 return ExprEvaluatorBaseTy::VisitCallExpr(E); 10492 } 10493 10494 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 10495 unsigned BuiltinOp) { 10496 switch (unsigned BuiltinOp = E->getBuiltinCallee()) { 10497 default: 10498 return ExprEvaluatorBaseTy::VisitCallExpr(E); 10499 10500 case Builtin::BI__builtin_dynamic_object_size: 10501 case Builtin::BI__builtin_object_size: { 10502 // The type was checked when we built the expression. 10503 unsigned Type = 10504 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 10505 assert(Type <= 3 && "unexpected type"); 10506 10507 uint64_t Size; 10508 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) 10509 return Success(Size, E); 10510 10511 if (E->getArg(0)->HasSideEffects(Info.Ctx)) 10512 return Success((Type & 2) ? 0 : -1, E); 10513 10514 // Expression had no side effects, but we couldn't statically determine the 10515 // size of the referenced object. 10516 switch (Info.EvalMode) { 10517 case EvalInfo::EM_ConstantExpression: 10518 case EvalInfo::EM_ConstantFold: 10519 case EvalInfo::EM_IgnoreSideEffects: 10520 // Leave it to IR generation. 10521 return Error(E); 10522 case EvalInfo::EM_ConstantExpressionUnevaluated: 10523 // Reduce it to a constant now. 10524 return Success((Type & 2) ? 0 : -1, E); 10525 } 10526 10527 llvm_unreachable("unexpected EvalMode"); 10528 } 10529 10530 case Builtin::BI__builtin_os_log_format_buffer_size: { 10531 analyze_os_log::OSLogBufferLayout Layout; 10532 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); 10533 return Success(Layout.size().getQuantity(), E); 10534 } 10535 10536 case Builtin::BI__builtin_bswap16: 10537 case Builtin::BI__builtin_bswap32: 10538 case Builtin::BI__builtin_bswap64: { 10539 APSInt Val; 10540 if (!EvaluateInteger(E->getArg(0), Val, Info)) 10541 return false; 10542 10543 return Success(Val.byteSwap(), E); 10544 } 10545 10546 case Builtin::BI__builtin_classify_type: 10547 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); 10548 10549 case Builtin::BI__builtin_clrsb: 10550 case Builtin::BI__builtin_clrsbl: 10551 case Builtin::BI__builtin_clrsbll: { 10552 APSInt Val; 10553 if (!EvaluateInteger(E->getArg(0), Val, Info)) 10554 return false; 10555 10556 return Success(Val.getBitWidth() - Val.getMinSignedBits(), E); 10557 } 10558 10559 case Builtin::BI__builtin_clz: 10560 case Builtin::BI__builtin_clzl: 10561 case Builtin::BI__builtin_clzll: 10562 case Builtin::BI__builtin_clzs: { 10563 APSInt Val; 10564 if (!EvaluateInteger(E->getArg(0), Val, Info)) 10565 return false; 10566 if (!Val) 10567 return Error(E); 10568 10569 return Success(Val.countLeadingZeros(), E); 10570 } 10571 10572 case Builtin::BI__builtin_constant_p: { 10573 const Expr *Arg = E->getArg(0); 10574 if (EvaluateBuiltinConstantP(Info, Arg)) 10575 return Success(true, E); 10576 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { 10577 // Outside a constant context, eagerly evaluate to false in the presence 10578 // of side-effects in order to avoid -Wunsequenced false-positives in 10579 // a branch on __builtin_constant_p(expr). 10580 return Success(false, E); 10581 } 10582 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 10583 return false; 10584 } 10585 10586 case Builtin::BI__builtin_is_constant_evaluated: 10587 return Success(Info.InConstantContext, E); 10588 10589 case Builtin::BI__builtin_ctz: 10590 case Builtin::BI__builtin_ctzl: 10591 case Builtin::BI__builtin_ctzll: 10592 case Builtin::BI__builtin_ctzs: { 10593 APSInt Val; 10594 if (!EvaluateInteger(E->getArg(0), Val, Info)) 10595 return false; 10596 if (!Val) 10597 return Error(E); 10598 10599 return Success(Val.countTrailingZeros(), E); 10600 } 10601 10602 case Builtin::BI__builtin_eh_return_data_regno: { 10603 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 10604 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); 10605 return Success(Operand, E); 10606 } 10607 10608 case Builtin::BI__builtin_expect: 10609 return Visit(E->getArg(0)); 10610 10611 case Builtin::BI__builtin_ffs: 10612 case Builtin::BI__builtin_ffsl: 10613 case Builtin::BI__builtin_ffsll: { 10614 APSInt Val; 10615 if (!EvaluateInteger(E->getArg(0), Val, Info)) 10616 return false; 10617 10618 unsigned N = Val.countTrailingZeros(); 10619 return Success(N == Val.getBitWidth() ? 0 : N + 1, E); 10620 } 10621 10622 case Builtin::BI__builtin_fpclassify: { 10623 APFloat Val(0.0); 10624 if (!EvaluateFloat(E->getArg(5), Val, Info)) 10625 return false; 10626 unsigned Arg; 10627 switch (Val.getCategory()) { 10628 case APFloat::fcNaN: Arg = 0; break; 10629 case APFloat::fcInfinity: Arg = 1; break; 10630 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; 10631 case APFloat::fcZero: Arg = 4; break; 10632 } 10633 return Visit(E->getArg(Arg)); 10634 } 10635 10636 case Builtin::BI__builtin_isinf_sign: { 10637 APFloat Val(0.0); 10638 return EvaluateFloat(E->getArg(0), Val, Info) && 10639 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); 10640 } 10641 10642 case Builtin::BI__builtin_isinf: { 10643 APFloat Val(0.0); 10644 return EvaluateFloat(E->getArg(0), Val, Info) && 10645 Success(Val.isInfinity() ? 1 : 0, E); 10646 } 10647 10648 case Builtin::BI__builtin_isfinite: { 10649 APFloat Val(0.0); 10650 return EvaluateFloat(E->getArg(0), Val, Info) && 10651 Success(Val.isFinite() ? 1 : 0, E); 10652 } 10653 10654 case Builtin::BI__builtin_isnan: { 10655 APFloat Val(0.0); 10656 return EvaluateFloat(E->getArg(0), Val, Info) && 10657 Success(Val.isNaN() ? 1 : 0, E); 10658 } 10659 10660 case Builtin::BI__builtin_isnormal: { 10661 APFloat Val(0.0); 10662 return EvaluateFloat(E->getArg(0), Val, Info) && 10663 Success(Val.isNormal() ? 1 : 0, E); 10664 } 10665 10666 case Builtin::BI__builtin_parity: 10667 case Builtin::BI__builtin_parityl: 10668 case Builtin::BI__builtin_parityll: { 10669 APSInt Val; 10670 if (!EvaluateInteger(E->getArg(0), Val, Info)) 10671 return false; 10672 10673 return Success(Val.countPopulation() % 2, E); 10674 } 10675 10676 case Builtin::BI__builtin_popcount: 10677 case Builtin::BI__builtin_popcountl: 10678 case Builtin::BI__builtin_popcountll: { 10679 APSInt Val; 10680 if (!EvaluateInteger(E->getArg(0), Val, Info)) 10681 return false; 10682 10683 return Success(Val.countPopulation(), E); 10684 } 10685 10686 case Builtin::BIstrlen: 10687 case Builtin::BIwcslen: 10688 // A call to strlen is not a constant expression. 10689 if (Info.getLangOpts().CPlusPlus11) 10690 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 10691 << /*isConstexpr*/0 << /*isConstructor*/0 10692 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 10693 else 10694 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 10695 LLVM_FALLTHROUGH; 10696 case Builtin::BI__builtin_strlen: 10697 case Builtin::BI__builtin_wcslen: { 10698 // As an extension, we support __builtin_strlen() as a constant expression, 10699 // and support folding strlen() to a constant. 10700 LValue String; 10701 if (!EvaluatePointer(E->getArg(0), String, Info)) 10702 return false; 10703 10704 QualType CharTy = E->getArg(0)->getType()->getPointeeType(); 10705 10706 // Fast path: if it's a string literal, search the string value. 10707 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( 10708 String.getLValueBase().dyn_cast<const Expr *>())) { 10709 // The string literal may have embedded null characters. Find the first 10710 // one and truncate there. 10711 StringRef Str = S->getBytes(); 10712 int64_t Off = String.Offset.getQuantity(); 10713 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && 10714 S->getCharByteWidth() == 1 && 10715 // FIXME: Add fast-path for wchar_t too. 10716 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { 10717 Str = Str.substr(Off); 10718 10719 StringRef::size_type Pos = Str.find(0); 10720 if (Pos != StringRef::npos) 10721 Str = Str.substr(0, Pos); 10722 10723 return Success(Str.size(), E); 10724 } 10725 10726 // Fall through to slow path to issue appropriate diagnostic. 10727 } 10728 10729 // Slow path: scan the bytes of the string looking for the terminating 0. 10730 for (uint64_t Strlen = 0; /**/; ++Strlen) { 10731 APValue Char; 10732 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || 10733 !Char.isInt()) 10734 return false; 10735 if (!Char.getInt()) 10736 return Success(Strlen, E); 10737 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) 10738 return false; 10739 } 10740 } 10741 10742 case Builtin::BIstrcmp: 10743 case Builtin::BIwcscmp: 10744 case Builtin::BIstrncmp: 10745 case Builtin::BIwcsncmp: 10746 case Builtin::BImemcmp: 10747 case Builtin::BIbcmp: 10748 case Builtin::BIwmemcmp: 10749 // A call to strlen is not a constant expression. 10750 if (Info.getLangOpts().CPlusPlus11) 10751 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 10752 << /*isConstexpr*/0 << /*isConstructor*/0 10753 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 10754 else 10755 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 10756 LLVM_FALLTHROUGH; 10757 case Builtin::BI__builtin_strcmp: 10758 case Builtin::BI__builtin_wcscmp: 10759 case Builtin::BI__builtin_strncmp: 10760 case Builtin::BI__builtin_wcsncmp: 10761 case Builtin::BI__builtin_memcmp: 10762 case Builtin::BI__builtin_bcmp: 10763 case Builtin::BI__builtin_wmemcmp: { 10764 LValue String1, String2; 10765 if (!EvaluatePointer(E->getArg(0), String1, Info) || 10766 !EvaluatePointer(E->getArg(1), String2, Info)) 10767 return false; 10768 10769 uint64_t MaxLength = uint64_t(-1); 10770 if (BuiltinOp != Builtin::BIstrcmp && 10771 BuiltinOp != Builtin::BIwcscmp && 10772 BuiltinOp != Builtin::BI__builtin_strcmp && 10773 BuiltinOp != Builtin::BI__builtin_wcscmp) { 10774 APSInt N; 10775 if (!EvaluateInteger(E->getArg(2), N, Info)) 10776 return false; 10777 MaxLength = N.getExtValue(); 10778 } 10779 10780 // Empty substrings compare equal by definition. 10781 if (MaxLength == 0u) 10782 return Success(0, E); 10783 10784 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || 10785 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || 10786 String1.Designator.Invalid || String2.Designator.Invalid) 10787 return false; 10788 10789 QualType CharTy1 = String1.Designator.getType(Info.Ctx); 10790 QualType CharTy2 = String2.Designator.getType(Info.Ctx); 10791 10792 bool IsRawByte = BuiltinOp == Builtin::BImemcmp || 10793 BuiltinOp == Builtin::BIbcmp || 10794 BuiltinOp == Builtin::BI__builtin_memcmp || 10795 BuiltinOp == Builtin::BI__builtin_bcmp; 10796 10797 assert(IsRawByte || 10798 (Info.Ctx.hasSameUnqualifiedType( 10799 CharTy1, E->getArg(0)->getType()->getPointeeType()) && 10800 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); 10801 10802 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { 10803 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && 10804 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && 10805 Char1.isInt() && Char2.isInt(); 10806 }; 10807 const auto &AdvanceElems = [&] { 10808 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && 10809 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); 10810 }; 10811 10812 if (IsRawByte) { 10813 uint64_t BytesRemaining = MaxLength; 10814 // Pointers to const void may point to objects of incomplete type. 10815 if (CharTy1->isIncompleteType()) { 10816 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1; 10817 return false; 10818 } 10819 if (CharTy2->isIncompleteType()) { 10820 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2; 10821 return false; 10822 } 10823 uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)}; 10824 CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width); 10825 // Give up on comparing between elements with disparate widths. 10826 if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2)) 10827 return false; 10828 uint64_t BytesPerElement = CharTy1Size.getQuantity(); 10829 assert(BytesRemaining && "BytesRemaining should not be zero: the " 10830 "following loop considers at least one element"); 10831 while (true) { 10832 APValue Char1, Char2; 10833 if (!ReadCurElems(Char1, Char2)) 10834 return false; 10835 // We have compatible in-memory widths, but a possible type and 10836 // (for `bool`) internal representation mismatch. 10837 // Assuming two's complement representation, including 0 for `false` and 10838 // 1 for `true`, we can check an appropriate number of elements for 10839 // equality even if they are not byte-sized. 10840 APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width); 10841 APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width); 10842 if (Char1InMem.ne(Char2InMem)) { 10843 // If the elements are byte-sized, then we can produce a three-way 10844 // comparison result in a straightforward manner. 10845 if (BytesPerElement == 1u) { 10846 // memcmp always compares unsigned chars. 10847 return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E); 10848 } 10849 // The result is byte-order sensitive, and we have multibyte elements. 10850 // FIXME: We can compare the remaining bytes in the correct order. 10851 return false; 10852 } 10853 if (!AdvanceElems()) 10854 return false; 10855 if (BytesRemaining <= BytesPerElement) 10856 break; 10857 BytesRemaining -= BytesPerElement; 10858 } 10859 // Enough elements are equal to account for the memcmp limit. 10860 return Success(0, E); 10861 } 10862 10863 bool StopAtNull = 10864 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && 10865 BuiltinOp != Builtin::BIwmemcmp && 10866 BuiltinOp != Builtin::BI__builtin_memcmp && 10867 BuiltinOp != Builtin::BI__builtin_bcmp && 10868 BuiltinOp != Builtin::BI__builtin_wmemcmp); 10869 bool IsWide = BuiltinOp == Builtin::BIwcscmp || 10870 BuiltinOp == Builtin::BIwcsncmp || 10871 BuiltinOp == Builtin::BIwmemcmp || 10872 BuiltinOp == Builtin::BI__builtin_wcscmp || 10873 BuiltinOp == Builtin::BI__builtin_wcsncmp || 10874 BuiltinOp == Builtin::BI__builtin_wmemcmp; 10875 10876 for (; MaxLength; --MaxLength) { 10877 APValue Char1, Char2; 10878 if (!ReadCurElems(Char1, Char2)) 10879 return false; 10880 if (Char1.getInt() != Char2.getInt()) { 10881 if (IsWide) // wmemcmp compares with wchar_t signedness. 10882 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); 10883 // memcmp always compares unsigned chars. 10884 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); 10885 } 10886 if (StopAtNull && !Char1.getInt()) 10887 return Success(0, E); 10888 assert(!(StopAtNull && !Char2.getInt())); 10889 if (!AdvanceElems()) 10890 return false; 10891 } 10892 // We hit the strncmp / memcmp limit. 10893 return Success(0, E); 10894 } 10895 10896 case Builtin::BI__atomic_always_lock_free: 10897 case Builtin::BI__atomic_is_lock_free: 10898 case Builtin::BI__c11_atomic_is_lock_free: { 10899 APSInt SizeVal; 10900 if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) 10901 return false; 10902 10903 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power 10904 // of two less than the maximum inline atomic width, we know it is 10905 // lock-free. If the size isn't a power of two, or greater than the 10906 // maximum alignment where we promote atomics, we know it is not lock-free 10907 // (at least not in the sense of atomic_is_lock_free). Otherwise, 10908 // the answer can only be determined at runtime; for example, 16-byte 10909 // atomics have lock-free implementations on some, but not all, 10910 // x86-64 processors. 10911 10912 // Check power-of-two. 10913 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); 10914 if (Size.isPowerOfTwo()) { 10915 // Check against inlining width. 10916 unsigned InlineWidthBits = 10917 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); 10918 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { 10919 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || 10920 Size == CharUnits::One() || 10921 E->getArg(1)->isNullPointerConstant(Info.Ctx, 10922 Expr::NPC_NeverValueDependent)) 10923 // OK, we will inline appropriately-aligned operations of this size, 10924 // and _Atomic(T) is appropriately-aligned. 10925 return Success(1, E); 10926 10927 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> 10928 castAs<PointerType>()->getPointeeType(); 10929 if (!PointeeType->isIncompleteType() && 10930 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { 10931 // OK, we will inline operations on this object. 10932 return Success(1, E); 10933 } 10934 } 10935 } 10936 10937 // Avoid emiting call for runtime decision on PowerPC 32-bit 10938 // The lock free possibilities on this platform are covered by the lines 10939 // above and we know in advance other cases require lock 10940 if (Info.Ctx.getTargetInfo().getTriple().getArch() == llvm::Triple::ppc) { 10941 return Success(0, E); 10942 } 10943 10944 return BuiltinOp == Builtin::BI__atomic_always_lock_free ? 10945 Success(0, E) : Error(E); 10946 } 10947 case Builtin::BIomp_is_initial_device: 10948 // We can decide statically which value the runtime would return if called. 10949 return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E); 10950 case Builtin::BI__builtin_add_overflow: 10951 case Builtin::BI__builtin_sub_overflow: 10952 case Builtin::BI__builtin_mul_overflow: 10953 case Builtin::BI__builtin_sadd_overflow: 10954 case Builtin::BI__builtin_uadd_overflow: 10955 case Builtin::BI__builtin_uaddl_overflow: 10956 case Builtin::BI__builtin_uaddll_overflow: 10957 case Builtin::BI__builtin_usub_overflow: 10958 case Builtin::BI__builtin_usubl_overflow: 10959 case Builtin::BI__builtin_usubll_overflow: 10960 case Builtin::BI__builtin_umul_overflow: 10961 case Builtin::BI__builtin_umull_overflow: 10962 case Builtin::BI__builtin_umulll_overflow: 10963 case Builtin::BI__builtin_saddl_overflow: 10964 case Builtin::BI__builtin_saddll_overflow: 10965 case Builtin::BI__builtin_ssub_overflow: 10966 case Builtin::BI__builtin_ssubl_overflow: 10967 case Builtin::BI__builtin_ssubll_overflow: 10968 case Builtin::BI__builtin_smul_overflow: 10969 case Builtin::BI__builtin_smull_overflow: 10970 case Builtin::BI__builtin_smulll_overflow: { 10971 LValue ResultLValue; 10972 APSInt LHS, RHS; 10973 10974 QualType ResultType = E->getArg(2)->getType()->getPointeeType(); 10975 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 10976 !EvaluateInteger(E->getArg(1), RHS, Info) || 10977 !EvaluatePointer(E->getArg(2), ResultLValue, Info)) 10978 return false; 10979 10980 APSInt Result; 10981 bool DidOverflow = false; 10982 10983 // If the types don't have to match, enlarge all 3 to the largest of them. 10984 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 10985 BuiltinOp == Builtin::BI__builtin_sub_overflow || 10986 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 10987 bool IsSigned = LHS.isSigned() || RHS.isSigned() || 10988 ResultType->isSignedIntegerOrEnumerationType(); 10989 bool AllSigned = LHS.isSigned() && RHS.isSigned() && 10990 ResultType->isSignedIntegerOrEnumerationType(); 10991 uint64_t LHSSize = LHS.getBitWidth(); 10992 uint64_t RHSSize = RHS.getBitWidth(); 10993 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); 10994 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); 10995 10996 // Add an additional bit if the signedness isn't uniformly agreed to. We 10997 // could do this ONLY if there is a signed and an unsigned that both have 10998 // MaxBits, but the code to check that is pretty nasty. The issue will be 10999 // caught in the shrink-to-result later anyway. 11000 if (IsSigned && !AllSigned) 11001 ++MaxBits; 11002 11003 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); 11004 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); 11005 Result = APSInt(MaxBits, !IsSigned); 11006 } 11007 11008 // Find largest int. 11009 switch (BuiltinOp) { 11010 default: 11011 llvm_unreachable("Invalid value for BuiltinOp"); 11012 case Builtin::BI__builtin_add_overflow: 11013 case Builtin::BI__builtin_sadd_overflow: 11014 case Builtin::BI__builtin_saddl_overflow: 11015 case Builtin::BI__builtin_saddll_overflow: 11016 case Builtin::BI__builtin_uadd_overflow: 11017 case Builtin::BI__builtin_uaddl_overflow: 11018 case Builtin::BI__builtin_uaddll_overflow: 11019 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) 11020 : LHS.uadd_ov(RHS, DidOverflow); 11021 break; 11022 case Builtin::BI__builtin_sub_overflow: 11023 case Builtin::BI__builtin_ssub_overflow: 11024 case Builtin::BI__builtin_ssubl_overflow: 11025 case Builtin::BI__builtin_ssubll_overflow: 11026 case Builtin::BI__builtin_usub_overflow: 11027 case Builtin::BI__builtin_usubl_overflow: 11028 case Builtin::BI__builtin_usubll_overflow: 11029 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) 11030 : LHS.usub_ov(RHS, DidOverflow); 11031 break; 11032 case Builtin::BI__builtin_mul_overflow: 11033 case Builtin::BI__builtin_smul_overflow: 11034 case Builtin::BI__builtin_smull_overflow: 11035 case Builtin::BI__builtin_smulll_overflow: 11036 case Builtin::BI__builtin_umul_overflow: 11037 case Builtin::BI__builtin_umull_overflow: 11038 case Builtin::BI__builtin_umulll_overflow: 11039 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) 11040 : LHS.umul_ov(RHS, DidOverflow); 11041 break; 11042 } 11043 11044 // In the case where multiple sizes are allowed, truncate and see if 11045 // the values are the same. 11046 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 11047 BuiltinOp == Builtin::BI__builtin_sub_overflow || 11048 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 11049 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, 11050 // since it will give us the behavior of a TruncOrSelf in the case where 11051 // its parameter <= its size. We previously set Result to be at least the 11052 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth 11053 // will work exactly like TruncOrSelf. 11054 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); 11055 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); 11056 11057 if (!APSInt::isSameValue(Temp, Result)) 11058 DidOverflow = true; 11059 Result = Temp; 11060 } 11061 11062 APValue APV{Result}; 11063 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) 11064 return false; 11065 return Success(DidOverflow, E); 11066 } 11067 } 11068 } 11069 11070 /// Determine whether this is a pointer past the end of the complete 11071 /// object referred to by the lvalue. 11072 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, 11073 const LValue &LV) { 11074 // A null pointer can be viewed as being "past the end" but we don't 11075 // choose to look at it that way here. 11076 if (!LV.getLValueBase()) 11077 return false; 11078 11079 // If the designator is valid and refers to a subobject, we're not pointing 11080 // past the end. 11081 if (!LV.getLValueDesignator().Invalid && 11082 !LV.getLValueDesignator().isOnePastTheEnd()) 11083 return false; 11084 11085 // A pointer to an incomplete type might be past-the-end if the type's size is 11086 // zero. We cannot tell because the type is incomplete. 11087 QualType Ty = getType(LV.getLValueBase()); 11088 if (Ty->isIncompleteType()) 11089 return true; 11090 11091 // We're a past-the-end pointer if we point to the byte after the object, 11092 // no matter what our type or path is. 11093 auto Size = Ctx.getTypeSizeInChars(Ty); 11094 return LV.getLValueOffset() == Size; 11095 } 11096 11097 namespace { 11098 11099 /// Data recursive integer evaluator of certain binary operators. 11100 /// 11101 /// We use a data recursive algorithm for binary operators so that we are able 11102 /// to handle extreme cases of chained binary operators without causing stack 11103 /// overflow. 11104 class DataRecursiveIntBinOpEvaluator { 11105 struct EvalResult { 11106 APValue Val; 11107 bool Failed; 11108 11109 EvalResult() : Failed(false) { } 11110 11111 void swap(EvalResult &RHS) { 11112 Val.swap(RHS.Val); 11113 Failed = RHS.Failed; 11114 RHS.Failed = false; 11115 } 11116 }; 11117 11118 struct Job { 11119 const Expr *E; 11120 EvalResult LHSResult; // meaningful only for binary operator expression. 11121 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; 11122 11123 Job() = default; 11124 Job(Job &&) = default; 11125 11126 void startSpeculativeEval(EvalInfo &Info) { 11127 SpecEvalRAII = SpeculativeEvaluationRAII(Info); 11128 } 11129 11130 private: 11131 SpeculativeEvaluationRAII SpecEvalRAII; 11132 }; 11133 11134 SmallVector<Job, 16> Queue; 11135 11136 IntExprEvaluator &IntEval; 11137 EvalInfo &Info; 11138 APValue &FinalResult; 11139 11140 public: 11141 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) 11142 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } 11143 11144 /// True if \param E is a binary operator that we are going to handle 11145 /// data recursively. 11146 /// We handle binary operators that are comma, logical, or that have operands 11147 /// with integral or enumeration type. 11148 static bool shouldEnqueue(const BinaryOperator *E) { 11149 return E->getOpcode() == BO_Comma || E->isLogicalOp() || 11150 (E->isRValue() && E->getType()->isIntegralOrEnumerationType() && 11151 E->getLHS()->getType()->isIntegralOrEnumerationType() && 11152 E->getRHS()->getType()->isIntegralOrEnumerationType()); 11153 } 11154 11155 bool Traverse(const BinaryOperator *E) { 11156 enqueue(E); 11157 EvalResult PrevResult; 11158 while (!Queue.empty()) 11159 process(PrevResult); 11160 11161 if (PrevResult.Failed) return false; 11162 11163 FinalResult.swap(PrevResult.Val); 11164 return true; 11165 } 11166 11167 private: 11168 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 11169 return IntEval.Success(Value, E, Result); 11170 } 11171 bool Success(const APSInt &Value, const Expr *E, APValue &Result) { 11172 return IntEval.Success(Value, E, Result); 11173 } 11174 bool Error(const Expr *E) { 11175 return IntEval.Error(E); 11176 } 11177 bool Error(const Expr *E, diag::kind D) { 11178 return IntEval.Error(E, D); 11179 } 11180 11181 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 11182 return Info.CCEDiag(E, D); 11183 } 11184 11185 // Returns true if visiting the RHS is necessary, false otherwise. 11186 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 11187 bool &SuppressRHSDiags); 11188 11189 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 11190 const BinaryOperator *E, APValue &Result); 11191 11192 void EvaluateExpr(const Expr *E, EvalResult &Result) { 11193 Result.Failed = !Evaluate(Result.Val, Info, E); 11194 if (Result.Failed) 11195 Result.Val = APValue(); 11196 } 11197 11198 void process(EvalResult &Result); 11199 11200 void enqueue(const Expr *E) { 11201 E = E->IgnoreParens(); 11202 Queue.resize(Queue.size()+1); 11203 Queue.back().E = E; 11204 Queue.back().Kind = Job::AnyExprKind; 11205 } 11206 }; 11207 11208 } 11209 11210 bool DataRecursiveIntBinOpEvaluator:: 11211 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 11212 bool &SuppressRHSDiags) { 11213 if (E->getOpcode() == BO_Comma) { 11214 // Ignore LHS but note if we could not evaluate it. 11215 if (LHSResult.Failed) 11216 return Info.noteSideEffect(); 11217 return true; 11218 } 11219 11220 if (E->isLogicalOp()) { 11221 bool LHSAsBool; 11222 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { 11223 // We were able to evaluate the LHS, see if we can get away with not 11224 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 11225 if (LHSAsBool == (E->getOpcode() == BO_LOr)) { 11226 Success(LHSAsBool, E, LHSResult.Val); 11227 return false; // Ignore RHS 11228 } 11229 } else { 11230 LHSResult.Failed = true; 11231 11232 // Since we weren't able to evaluate the left hand side, it 11233 // might have had side effects. 11234 if (!Info.noteSideEffect()) 11235 return false; 11236 11237 // We can't evaluate the LHS; however, sometimes the result 11238 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 11239 // Don't ignore RHS and suppress diagnostics from this arm. 11240 SuppressRHSDiags = true; 11241 } 11242 11243 return true; 11244 } 11245 11246 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 11247 E->getRHS()->getType()->isIntegralOrEnumerationType()); 11248 11249 if (LHSResult.Failed && !Info.noteFailure()) 11250 return false; // Ignore RHS; 11251 11252 return true; 11253 } 11254 11255 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, 11256 bool IsSub) { 11257 // Compute the new offset in the appropriate width, wrapping at 64 bits. 11258 // FIXME: When compiling for a 32-bit target, we should use 32-bit 11259 // offsets. 11260 assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); 11261 CharUnits &Offset = LVal.getLValueOffset(); 11262 uint64_t Offset64 = Offset.getQuantity(); 11263 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 11264 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 11265 : Offset64 + Index64); 11266 } 11267 11268 bool DataRecursiveIntBinOpEvaluator:: 11269 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 11270 const BinaryOperator *E, APValue &Result) { 11271 if (E->getOpcode() == BO_Comma) { 11272 if (RHSResult.Failed) 11273 return false; 11274 Result = RHSResult.Val; 11275 return true; 11276 } 11277 11278 if (E->isLogicalOp()) { 11279 bool lhsResult, rhsResult; 11280 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); 11281 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); 11282 11283 if (LHSIsOK) { 11284 if (RHSIsOK) { 11285 if (E->getOpcode() == BO_LOr) 11286 return Success(lhsResult || rhsResult, E, Result); 11287 else 11288 return Success(lhsResult && rhsResult, E, Result); 11289 } 11290 } else { 11291 if (RHSIsOK) { 11292 // We can't evaluate the LHS; however, sometimes the result 11293 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 11294 if (rhsResult == (E->getOpcode() == BO_LOr)) 11295 return Success(rhsResult, E, Result); 11296 } 11297 } 11298 11299 return false; 11300 } 11301 11302 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 11303 E->getRHS()->getType()->isIntegralOrEnumerationType()); 11304 11305 if (LHSResult.Failed || RHSResult.Failed) 11306 return false; 11307 11308 const APValue &LHSVal = LHSResult.Val; 11309 const APValue &RHSVal = RHSResult.Val; 11310 11311 // Handle cases like (unsigned long)&a + 4. 11312 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { 11313 Result = LHSVal; 11314 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); 11315 return true; 11316 } 11317 11318 // Handle cases like 4 + (unsigned long)&a 11319 if (E->getOpcode() == BO_Add && 11320 RHSVal.isLValue() && LHSVal.isInt()) { 11321 Result = RHSVal; 11322 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); 11323 return true; 11324 } 11325 11326 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { 11327 // Handle (intptr_t)&&A - (intptr_t)&&B. 11328 if (!LHSVal.getLValueOffset().isZero() || 11329 !RHSVal.getLValueOffset().isZero()) 11330 return false; 11331 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); 11332 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); 11333 if (!LHSExpr || !RHSExpr) 11334 return false; 11335 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 11336 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 11337 if (!LHSAddrExpr || !RHSAddrExpr) 11338 return false; 11339 // Make sure both labels come from the same function. 11340 if (LHSAddrExpr->getLabel()->getDeclContext() != 11341 RHSAddrExpr->getLabel()->getDeclContext()) 11342 return false; 11343 Result = APValue(LHSAddrExpr, RHSAddrExpr); 11344 return true; 11345 } 11346 11347 // All the remaining cases expect both operands to be an integer 11348 if (!LHSVal.isInt() || !RHSVal.isInt()) 11349 return Error(E); 11350 11351 // Set up the width and signedness manually, in case it can't be deduced 11352 // from the operation we're performing. 11353 // FIXME: Don't do this in the cases where we can deduce it. 11354 APSInt Value(Info.Ctx.getIntWidth(E->getType()), 11355 E->getType()->isUnsignedIntegerOrEnumerationType()); 11356 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), 11357 RHSVal.getInt(), Value)) 11358 return false; 11359 return Success(Value, E, Result); 11360 } 11361 11362 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { 11363 Job &job = Queue.back(); 11364 11365 switch (job.Kind) { 11366 case Job::AnyExprKind: { 11367 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { 11368 if (shouldEnqueue(Bop)) { 11369 job.Kind = Job::BinOpKind; 11370 enqueue(Bop->getLHS()); 11371 return; 11372 } 11373 } 11374 11375 EvaluateExpr(job.E, Result); 11376 Queue.pop_back(); 11377 return; 11378 } 11379 11380 case Job::BinOpKind: { 11381 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 11382 bool SuppressRHSDiags = false; 11383 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { 11384 Queue.pop_back(); 11385 return; 11386 } 11387 if (SuppressRHSDiags) 11388 job.startSpeculativeEval(Info); 11389 job.LHSResult.swap(Result); 11390 job.Kind = Job::BinOpVisitedLHSKind; 11391 enqueue(Bop->getRHS()); 11392 return; 11393 } 11394 11395 case Job::BinOpVisitedLHSKind: { 11396 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 11397 EvalResult RHS; 11398 RHS.swap(Result); 11399 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); 11400 Queue.pop_back(); 11401 return; 11402 } 11403 } 11404 11405 llvm_unreachable("Invalid Job::Kind!"); 11406 } 11407 11408 namespace { 11409 /// Used when we determine that we should fail, but can keep evaluating prior to 11410 /// noting that we had a failure. 11411 class DelayedNoteFailureRAII { 11412 EvalInfo &Info; 11413 bool NoteFailure; 11414 11415 public: 11416 DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true) 11417 : Info(Info), NoteFailure(NoteFailure) {} 11418 ~DelayedNoteFailureRAII() { 11419 if (NoteFailure) { 11420 bool ContinueAfterFailure = Info.noteFailure(); 11421 (void)ContinueAfterFailure; 11422 assert(ContinueAfterFailure && 11423 "Shouldn't have kept evaluating on failure."); 11424 } 11425 } 11426 }; 11427 } 11428 11429 template <class SuccessCB, class AfterCB> 11430 static bool 11431 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, 11432 SuccessCB &&Success, AfterCB &&DoAfter) { 11433 assert(E->isComparisonOp() && "expected comparison operator"); 11434 assert((E->getOpcode() == BO_Cmp || 11435 E->getType()->isIntegralOrEnumerationType()) && 11436 "unsupported binary expression evaluation"); 11437 auto Error = [&](const Expr *E) { 11438 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 11439 return false; 11440 }; 11441 11442 using CCR = ComparisonCategoryResult; 11443 bool IsRelational = E->isRelationalOp(); 11444 bool IsEquality = E->isEqualityOp(); 11445 if (E->getOpcode() == BO_Cmp) { 11446 const ComparisonCategoryInfo &CmpInfo = 11447 Info.Ctx.CompCategories.getInfoForType(E->getType()); 11448 IsRelational = CmpInfo.isOrdered(); 11449 IsEquality = CmpInfo.isEquality(); 11450 } 11451 11452 QualType LHSTy = E->getLHS()->getType(); 11453 QualType RHSTy = E->getRHS()->getType(); 11454 11455 if (LHSTy->isIntegralOrEnumerationType() && 11456 RHSTy->isIntegralOrEnumerationType()) { 11457 APSInt LHS, RHS; 11458 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); 11459 if (!LHSOK && !Info.noteFailure()) 11460 return false; 11461 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) 11462 return false; 11463 if (LHS < RHS) 11464 return Success(CCR::Less, E); 11465 if (LHS > RHS) 11466 return Success(CCR::Greater, E); 11467 return Success(CCR::Equal, E); 11468 } 11469 11470 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { 11471 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); 11472 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); 11473 11474 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); 11475 if (!LHSOK && !Info.noteFailure()) 11476 return false; 11477 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) 11478 return false; 11479 if (LHSFX < RHSFX) 11480 return Success(CCR::Less, E); 11481 if (LHSFX > RHSFX) 11482 return Success(CCR::Greater, E); 11483 return Success(CCR::Equal, E); 11484 } 11485 11486 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { 11487 ComplexValue LHS, RHS; 11488 bool LHSOK; 11489 if (E->isAssignmentOp()) { 11490 LValue LV; 11491 EvaluateLValue(E->getLHS(), LV, Info); 11492 LHSOK = false; 11493 } else if (LHSTy->isRealFloatingType()) { 11494 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); 11495 if (LHSOK) { 11496 LHS.makeComplexFloat(); 11497 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); 11498 } 11499 } else { 11500 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); 11501 } 11502 if (!LHSOK && !Info.noteFailure()) 11503 return false; 11504 11505 if (E->getRHS()->getType()->isRealFloatingType()) { 11506 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) 11507 return false; 11508 RHS.makeComplexFloat(); 11509 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); 11510 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 11511 return false; 11512 11513 if (LHS.isComplexFloat()) { 11514 APFloat::cmpResult CR_r = 11515 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); 11516 APFloat::cmpResult CR_i = 11517 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); 11518 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; 11519 return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E); 11520 } else { 11521 assert(IsEquality && "invalid complex comparison"); 11522 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && 11523 LHS.getComplexIntImag() == RHS.getComplexIntImag(); 11524 return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E); 11525 } 11526 } 11527 11528 if (LHSTy->isRealFloatingType() && 11529 RHSTy->isRealFloatingType()) { 11530 APFloat RHS(0.0), LHS(0.0); 11531 11532 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); 11533 if (!LHSOK && !Info.noteFailure()) 11534 return false; 11535 11536 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) 11537 return false; 11538 11539 assert(E->isComparisonOp() && "Invalid binary operator!"); 11540 auto GetCmpRes = [&]() { 11541 switch (LHS.compare(RHS)) { 11542 case APFloat::cmpEqual: 11543 return CCR::Equal; 11544 case APFloat::cmpLessThan: 11545 return CCR::Less; 11546 case APFloat::cmpGreaterThan: 11547 return CCR::Greater; 11548 case APFloat::cmpUnordered: 11549 return CCR::Unordered; 11550 } 11551 llvm_unreachable("Unrecognised APFloat::cmpResult enum"); 11552 }; 11553 return Success(GetCmpRes(), E); 11554 } 11555 11556 if (LHSTy->isPointerType() && RHSTy->isPointerType()) { 11557 LValue LHSValue, RHSValue; 11558 11559 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 11560 if (!LHSOK && !Info.noteFailure()) 11561 return false; 11562 11563 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 11564 return false; 11565 11566 // Reject differing bases from the normal codepath; we special-case 11567 // comparisons to null. 11568 if (!HasSameBase(LHSValue, RHSValue)) { 11569 // Inequalities and subtractions between unrelated pointers have 11570 // unspecified or undefined behavior. 11571 if (!IsEquality) 11572 return Error(E); 11573 // A constant address may compare equal to the address of a symbol. 11574 // The one exception is that address of an object cannot compare equal 11575 // to a null pointer constant. 11576 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || 11577 (!RHSValue.Base && !RHSValue.Offset.isZero())) 11578 return Error(E); 11579 // It's implementation-defined whether distinct literals will have 11580 // distinct addresses. In clang, the result of such a comparison is 11581 // unspecified, so it is not a constant expression. However, we do know 11582 // that the address of a literal will be non-null. 11583 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && 11584 LHSValue.Base && RHSValue.Base) 11585 return Error(E); 11586 // We can't tell whether weak symbols will end up pointing to the same 11587 // object. 11588 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) 11589 return Error(E); 11590 // We can't compare the address of the start of one object with the 11591 // past-the-end address of another object, per C++ DR1652. 11592 if ((LHSValue.Base && LHSValue.Offset.isZero() && 11593 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) || 11594 (RHSValue.Base && RHSValue.Offset.isZero() && 11595 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))) 11596 return Error(E); 11597 // We can't tell whether an object is at the same address as another 11598 // zero sized object. 11599 if ((RHSValue.Base && isZeroSized(LHSValue)) || 11600 (LHSValue.Base && isZeroSized(RHSValue))) 11601 return Error(E); 11602 return Success(CCR::Nonequal, E); 11603 } 11604 11605 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 11606 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 11607 11608 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 11609 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 11610 11611 // C++11 [expr.rel]p3: 11612 // Pointers to void (after pointer conversions) can be compared, with a 11613 // result defined as follows: If both pointers represent the same 11614 // address or are both the null pointer value, the result is true if the 11615 // operator is <= or >= and false otherwise; otherwise the result is 11616 // unspecified. 11617 // We interpret this as applying to pointers to *cv* void. 11618 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) 11619 Info.CCEDiag(E, diag::note_constexpr_void_comparison); 11620 11621 // C++11 [expr.rel]p2: 11622 // - If two pointers point to non-static data members of the same object, 11623 // or to subobjects or array elements fo such members, recursively, the 11624 // pointer to the later declared member compares greater provided the 11625 // two members have the same access control and provided their class is 11626 // not a union. 11627 // [...] 11628 // - Otherwise pointer comparisons are unspecified. 11629 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { 11630 bool WasArrayIndex; 11631 unsigned Mismatch = FindDesignatorMismatch( 11632 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); 11633 // At the point where the designators diverge, the comparison has a 11634 // specified value if: 11635 // - we are comparing array indices 11636 // - we are comparing fields of a union, or fields with the same access 11637 // Otherwise, the result is unspecified and thus the comparison is not a 11638 // constant expression. 11639 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && 11640 Mismatch < RHSDesignator.Entries.size()) { 11641 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); 11642 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); 11643 if (!LF && !RF) 11644 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); 11645 else if (!LF) 11646 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 11647 << getAsBaseClass(LHSDesignator.Entries[Mismatch]) 11648 << RF->getParent() << RF; 11649 else if (!RF) 11650 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 11651 << getAsBaseClass(RHSDesignator.Entries[Mismatch]) 11652 << LF->getParent() << LF; 11653 else if (!LF->getParent()->isUnion() && 11654 LF->getAccess() != RF->getAccess()) 11655 Info.CCEDiag(E, 11656 diag::note_constexpr_pointer_comparison_differing_access) 11657 << LF << LF->getAccess() << RF << RF->getAccess() 11658 << LF->getParent(); 11659 } 11660 } 11661 11662 // The comparison here must be unsigned, and performed with the same 11663 // width as the pointer. 11664 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); 11665 uint64_t CompareLHS = LHSOffset.getQuantity(); 11666 uint64_t CompareRHS = RHSOffset.getQuantity(); 11667 assert(PtrSize <= 64 && "Unexpected pointer width"); 11668 uint64_t Mask = ~0ULL >> (64 - PtrSize); 11669 CompareLHS &= Mask; 11670 CompareRHS &= Mask; 11671 11672 // If there is a base and this is a relational operator, we can only 11673 // compare pointers within the object in question; otherwise, the result 11674 // depends on where the object is located in memory. 11675 if (!LHSValue.Base.isNull() && IsRelational) { 11676 QualType BaseTy = getType(LHSValue.Base); 11677 if (BaseTy->isIncompleteType()) 11678 return Error(E); 11679 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); 11680 uint64_t OffsetLimit = Size.getQuantity(); 11681 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) 11682 return Error(E); 11683 } 11684 11685 if (CompareLHS < CompareRHS) 11686 return Success(CCR::Less, E); 11687 if (CompareLHS > CompareRHS) 11688 return Success(CCR::Greater, E); 11689 return Success(CCR::Equal, E); 11690 } 11691 11692 if (LHSTy->isMemberPointerType()) { 11693 assert(IsEquality && "unexpected member pointer operation"); 11694 assert(RHSTy->isMemberPointerType() && "invalid comparison"); 11695 11696 MemberPtr LHSValue, RHSValue; 11697 11698 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); 11699 if (!LHSOK && !Info.noteFailure()) 11700 return false; 11701 11702 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) 11703 return false; 11704 11705 // C++11 [expr.eq]p2: 11706 // If both operands are null, they compare equal. Otherwise if only one is 11707 // null, they compare unequal. 11708 if (!LHSValue.getDecl() || !RHSValue.getDecl()) { 11709 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); 11710 return Success(Equal ? CCR::Equal : CCR::Nonequal, E); 11711 } 11712 11713 // Otherwise if either is a pointer to a virtual member function, the 11714 // result is unspecified. 11715 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) 11716 if (MD->isVirtual()) 11717 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 11718 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) 11719 if (MD->isVirtual()) 11720 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 11721 11722 // Otherwise they compare equal if and only if they would refer to the 11723 // same member of the same most derived object or the same subobject if 11724 // they were dereferenced with a hypothetical object of the associated 11725 // class type. 11726 bool Equal = LHSValue == RHSValue; 11727 return Success(Equal ? CCR::Equal : CCR::Nonequal, E); 11728 } 11729 11730 if (LHSTy->isNullPtrType()) { 11731 assert(E->isComparisonOp() && "unexpected nullptr operation"); 11732 assert(RHSTy->isNullPtrType() && "missing pointer conversion"); 11733 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t 11734 // are compared, the result is true of the operator is <=, >= or ==, and 11735 // false otherwise. 11736 return Success(CCR::Equal, E); 11737 } 11738 11739 return DoAfter(); 11740 } 11741 11742 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { 11743 if (!CheckLiteralType(Info, E)) 11744 return false; 11745 11746 auto OnSuccess = [&](ComparisonCategoryResult ResKind, 11747 const BinaryOperator *E) { 11748 // Evaluation succeeded. Lookup the information for the comparison category 11749 // type and fetch the VarDecl for the result. 11750 const ComparisonCategoryInfo &CmpInfo = 11751 Info.Ctx.CompCategories.getInfoForType(E->getType()); 11752 const VarDecl *VD = 11753 CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD; 11754 // Check and evaluate the result as a constant expression. 11755 LValue LV; 11756 LV.set(VD); 11757 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 11758 return false; 11759 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result); 11760 }; 11761 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 11762 return ExprEvaluatorBaseTy::VisitBinCmp(E); 11763 }); 11764 } 11765 11766 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 11767 // We don't call noteFailure immediately because the assignment happens after 11768 // we evaluate LHS and RHS. 11769 if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp()) 11770 return Error(E); 11771 11772 DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp()); 11773 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) 11774 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); 11775 11776 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || 11777 !E->getRHS()->getType()->isIntegralOrEnumerationType()) && 11778 "DataRecursiveIntBinOpEvaluator should have handled integral types"); 11779 11780 if (E->isComparisonOp()) { 11781 // Evaluate builtin binary comparisons by evaluating them as C++2a three-way 11782 // comparisons and then translating the result. 11783 auto OnSuccess = [&](ComparisonCategoryResult ResKind, 11784 const BinaryOperator *E) { 11785 using CCR = ComparisonCategoryResult; 11786 bool IsEqual = ResKind == CCR::Equal, 11787 IsLess = ResKind == CCR::Less, 11788 IsGreater = ResKind == CCR::Greater; 11789 auto Op = E->getOpcode(); 11790 switch (Op) { 11791 default: 11792 llvm_unreachable("unsupported binary operator"); 11793 case BO_EQ: 11794 case BO_NE: 11795 return Success(IsEqual == (Op == BO_EQ), E); 11796 case BO_LT: return Success(IsLess, E); 11797 case BO_GT: return Success(IsGreater, E); 11798 case BO_LE: return Success(IsEqual || IsLess, E); 11799 case BO_GE: return Success(IsEqual || IsGreater, E); 11800 } 11801 }; 11802 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 11803 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 11804 }); 11805 } 11806 11807 QualType LHSTy = E->getLHS()->getType(); 11808 QualType RHSTy = E->getRHS()->getType(); 11809 11810 if (LHSTy->isPointerType() && RHSTy->isPointerType() && 11811 E->getOpcode() == BO_Sub) { 11812 LValue LHSValue, RHSValue; 11813 11814 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 11815 if (!LHSOK && !Info.noteFailure()) 11816 return false; 11817 11818 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 11819 return false; 11820 11821 // Reject differing bases from the normal codepath; we special-case 11822 // comparisons to null. 11823 if (!HasSameBase(LHSValue, RHSValue)) { 11824 // Handle &&A - &&B. 11825 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) 11826 return Error(E); 11827 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); 11828 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); 11829 if (!LHSExpr || !RHSExpr) 11830 return Error(E); 11831 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 11832 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 11833 if (!LHSAddrExpr || !RHSAddrExpr) 11834 return Error(E); 11835 // Make sure both labels come from the same function. 11836 if (LHSAddrExpr->getLabel()->getDeclContext() != 11837 RHSAddrExpr->getLabel()->getDeclContext()) 11838 return Error(E); 11839 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); 11840 } 11841 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 11842 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 11843 11844 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 11845 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 11846 11847 // C++11 [expr.add]p6: 11848 // Unless both pointers point to elements of the same array object, or 11849 // one past the last element of the array object, the behavior is 11850 // undefined. 11851 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && 11852 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, 11853 RHSDesignator)) 11854 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); 11855 11856 QualType Type = E->getLHS()->getType(); 11857 QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); 11858 11859 CharUnits ElementSize; 11860 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) 11861 return false; 11862 11863 // As an extension, a type may have zero size (empty struct or union in 11864 // C, array of zero length). Pointer subtraction in such cases has 11865 // undefined behavior, so is not constant. 11866 if (ElementSize.isZero()) { 11867 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) 11868 << ElementType; 11869 return false; 11870 } 11871 11872 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, 11873 // and produce incorrect results when it overflows. Such behavior 11874 // appears to be non-conforming, but is common, so perhaps we should 11875 // assume the standard intended for such cases to be undefined behavior 11876 // and check for them. 11877 11878 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for 11879 // overflow in the final conversion to ptrdiff_t. 11880 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); 11881 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); 11882 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), 11883 false); 11884 APSInt TrueResult = (LHS - RHS) / ElemSize; 11885 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); 11886 11887 if (Result.extend(65) != TrueResult && 11888 !HandleOverflow(Info, E, TrueResult, E->getType())) 11889 return false; 11890 return Success(Result, E); 11891 } 11892 11893 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 11894 } 11895 11896 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with 11897 /// a result as the expression's type. 11898 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( 11899 const UnaryExprOrTypeTraitExpr *E) { 11900 switch(E->getKind()) { 11901 case UETT_PreferredAlignOf: 11902 case UETT_AlignOf: { 11903 if (E->isArgumentType()) 11904 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()), 11905 E); 11906 else 11907 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()), 11908 E); 11909 } 11910 11911 case UETT_VecStep: { 11912 QualType Ty = E->getTypeOfArgument(); 11913 11914 if (Ty->isVectorType()) { 11915 unsigned n = Ty->castAs<VectorType>()->getNumElements(); 11916 11917 // The vec_step built-in functions that take a 3-component 11918 // vector return 4. (OpenCL 1.1 spec 6.11.12) 11919 if (n == 3) 11920 n = 4; 11921 11922 return Success(n, E); 11923 } else 11924 return Success(1, E); 11925 } 11926 11927 case UETT_SizeOf: { 11928 QualType SrcTy = E->getTypeOfArgument(); 11929 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 11930 // the result is the size of the referenced type." 11931 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) 11932 SrcTy = Ref->getPointeeType(); 11933 11934 CharUnits Sizeof; 11935 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof)) 11936 return false; 11937 return Success(Sizeof, E); 11938 } 11939 case UETT_OpenMPRequiredSimdAlign: 11940 assert(E->isArgumentType()); 11941 return Success( 11942 Info.Ctx.toCharUnitsFromBits( 11943 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) 11944 .getQuantity(), 11945 E); 11946 } 11947 11948 llvm_unreachable("unknown expr/type trait"); 11949 } 11950 11951 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { 11952 CharUnits Result; 11953 unsigned n = OOE->getNumComponents(); 11954 if (n == 0) 11955 return Error(OOE); 11956 QualType CurrentType = OOE->getTypeSourceInfo()->getType(); 11957 for (unsigned i = 0; i != n; ++i) { 11958 OffsetOfNode ON = OOE->getComponent(i); 11959 switch (ON.getKind()) { 11960 case OffsetOfNode::Array: { 11961 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); 11962 APSInt IdxResult; 11963 if (!EvaluateInteger(Idx, IdxResult, Info)) 11964 return false; 11965 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); 11966 if (!AT) 11967 return Error(OOE); 11968 CurrentType = AT->getElementType(); 11969 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); 11970 Result += IdxResult.getSExtValue() * ElementSize; 11971 break; 11972 } 11973 11974 case OffsetOfNode::Field: { 11975 FieldDecl *MemberDecl = ON.getField(); 11976 const RecordType *RT = CurrentType->getAs<RecordType>(); 11977 if (!RT) 11978 return Error(OOE); 11979 RecordDecl *RD = RT->getDecl(); 11980 if (RD->isInvalidDecl()) return false; 11981 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 11982 unsigned i = MemberDecl->getFieldIndex(); 11983 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 11984 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); 11985 CurrentType = MemberDecl->getType().getNonReferenceType(); 11986 break; 11987 } 11988 11989 case OffsetOfNode::Identifier: 11990 llvm_unreachable("dependent __builtin_offsetof"); 11991 11992 case OffsetOfNode::Base: { 11993 CXXBaseSpecifier *BaseSpec = ON.getBase(); 11994 if (BaseSpec->isVirtual()) 11995 return Error(OOE); 11996 11997 // Find the layout of the class whose base we are looking into. 11998 const RecordType *RT = CurrentType->getAs<RecordType>(); 11999 if (!RT) 12000 return Error(OOE); 12001 RecordDecl *RD = RT->getDecl(); 12002 if (RD->isInvalidDecl()) return false; 12003 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 12004 12005 // Find the base class itself. 12006 CurrentType = BaseSpec->getType(); 12007 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 12008 if (!BaseRT) 12009 return Error(OOE); 12010 12011 // Add the offset to the base. 12012 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); 12013 break; 12014 } 12015 } 12016 } 12017 return Success(Result, OOE); 12018 } 12019 12020 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 12021 switch (E->getOpcode()) { 12022 default: 12023 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. 12024 // See C99 6.6p3. 12025 return Error(E); 12026 case UO_Extension: 12027 // FIXME: Should extension allow i-c-e extension expressions in its scope? 12028 // If so, we could clear the diagnostic ID. 12029 return Visit(E->getSubExpr()); 12030 case UO_Plus: 12031 // The result is just the value. 12032 return Visit(E->getSubExpr()); 12033 case UO_Minus: { 12034 if (!Visit(E->getSubExpr())) 12035 return false; 12036 if (!Result.isInt()) return Error(E); 12037 const APSInt &Value = Result.getInt(); 12038 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() && 12039 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), 12040 E->getType())) 12041 return false; 12042 return Success(-Value, E); 12043 } 12044 case UO_Not: { 12045 if (!Visit(E->getSubExpr())) 12046 return false; 12047 if (!Result.isInt()) return Error(E); 12048 return Success(~Result.getInt(), E); 12049 } 12050 case UO_LNot: { 12051 bool bres; 12052 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 12053 return false; 12054 return Success(!bres, E); 12055 } 12056 } 12057 } 12058 12059 /// HandleCast - This is used to evaluate implicit or explicit casts where the 12060 /// result type is integer. 12061 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { 12062 const Expr *SubExpr = E->getSubExpr(); 12063 QualType DestType = E->getType(); 12064 QualType SrcType = SubExpr->getType(); 12065 12066 switch (E->getCastKind()) { 12067 case CK_BaseToDerived: 12068 case CK_DerivedToBase: 12069 case CK_UncheckedDerivedToBase: 12070 case CK_Dynamic: 12071 case CK_ToUnion: 12072 case CK_ArrayToPointerDecay: 12073 case CK_FunctionToPointerDecay: 12074 case CK_NullToPointer: 12075 case CK_NullToMemberPointer: 12076 case CK_BaseToDerivedMemberPointer: 12077 case CK_DerivedToBaseMemberPointer: 12078 case CK_ReinterpretMemberPointer: 12079 case CK_ConstructorConversion: 12080 case CK_IntegralToPointer: 12081 case CK_ToVoid: 12082 case CK_VectorSplat: 12083 case CK_IntegralToFloating: 12084 case CK_FloatingCast: 12085 case CK_CPointerToObjCPointerCast: 12086 case CK_BlockPointerToObjCPointerCast: 12087 case CK_AnyPointerToBlockPointerCast: 12088 case CK_ObjCObjectLValueCast: 12089 case CK_FloatingRealToComplex: 12090 case CK_FloatingComplexToReal: 12091 case CK_FloatingComplexCast: 12092 case CK_FloatingComplexToIntegralComplex: 12093 case CK_IntegralRealToComplex: 12094 case CK_IntegralComplexCast: 12095 case CK_IntegralComplexToFloatingComplex: 12096 case CK_BuiltinFnToFnPtr: 12097 case CK_ZeroToOCLOpaqueType: 12098 case CK_NonAtomicToAtomic: 12099 case CK_AddressSpaceConversion: 12100 case CK_IntToOCLSampler: 12101 case CK_FixedPointCast: 12102 case CK_IntegralToFixedPoint: 12103 llvm_unreachable("invalid cast kind for integral value"); 12104 12105 case CK_BitCast: 12106 case CK_Dependent: 12107 case CK_LValueBitCast: 12108 case CK_ARCProduceObject: 12109 case CK_ARCConsumeObject: 12110 case CK_ARCReclaimReturnedObject: 12111 case CK_ARCExtendBlockObject: 12112 case CK_CopyAndAutoreleaseBlockObject: 12113 return Error(E); 12114 12115 case CK_UserDefinedConversion: 12116 case CK_LValueToRValue: 12117 case CK_AtomicToNonAtomic: 12118 case CK_NoOp: 12119 case CK_LValueToRValueBitCast: 12120 return ExprEvaluatorBaseTy::VisitCastExpr(E); 12121 12122 case CK_MemberPointerToBoolean: 12123 case CK_PointerToBoolean: 12124 case CK_IntegralToBoolean: 12125 case CK_FloatingToBoolean: 12126 case CK_BooleanToSignedIntegral: 12127 case CK_FloatingComplexToBoolean: 12128 case CK_IntegralComplexToBoolean: { 12129 bool BoolResult; 12130 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) 12131 return false; 12132 uint64_t IntResult = BoolResult; 12133 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) 12134 IntResult = (uint64_t)-1; 12135 return Success(IntResult, E); 12136 } 12137 12138 case CK_FixedPointToIntegral: { 12139 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); 12140 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 12141 return false; 12142 bool Overflowed; 12143 llvm::APSInt Result = Src.convertToInt( 12144 Info.Ctx.getIntWidth(DestType), 12145 DestType->isSignedIntegerOrEnumerationType(), &Overflowed); 12146 if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) 12147 return false; 12148 return Success(Result, E); 12149 } 12150 12151 case CK_FixedPointToBoolean: { 12152 // Unsigned padding does not affect this. 12153 APValue Val; 12154 if (!Evaluate(Val, Info, SubExpr)) 12155 return false; 12156 return Success(Val.getFixedPoint().getBoolValue(), E); 12157 } 12158 12159 case CK_IntegralCast: { 12160 if (!Visit(SubExpr)) 12161 return false; 12162 12163 if (!Result.isInt()) { 12164 // Allow casts of address-of-label differences if they are no-ops 12165 // or narrowing. (The narrowing case isn't actually guaranteed to 12166 // be constant-evaluatable except in some narrow cases which are hard 12167 // to detect here. We let it through on the assumption the user knows 12168 // what they are doing.) 12169 if (Result.isAddrLabelDiff()) 12170 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); 12171 // Only allow casts of lvalues if they are lossless. 12172 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); 12173 } 12174 12175 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, 12176 Result.getInt()), E); 12177 } 12178 12179 case CK_PointerToIntegral: { 12180 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 12181 12182 LValue LV; 12183 if (!EvaluatePointer(SubExpr, LV, Info)) 12184 return false; 12185 12186 if (LV.getLValueBase()) { 12187 // Only allow based lvalue casts if they are lossless. 12188 // FIXME: Allow a larger integer size than the pointer size, and allow 12189 // narrowing back down to pointer width in subsequent integral casts. 12190 // FIXME: Check integer type's active bits, not its type size. 12191 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) 12192 return Error(E); 12193 12194 LV.Designator.setInvalid(); 12195 LV.moveInto(Result); 12196 return true; 12197 } 12198 12199 APSInt AsInt; 12200 APValue V; 12201 LV.moveInto(V); 12202 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) 12203 llvm_unreachable("Can't cast this!"); 12204 12205 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); 12206 } 12207 12208 case CK_IntegralComplexToReal: { 12209 ComplexValue C; 12210 if (!EvaluateComplex(SubExpr, C, Info)) 12211 return false; 12212 return Success(C.getComplexIntReal(), E); 12213 } 12214 12215 case CK_FloatingToIntegral: { 12216 APFloat F(0.0); 12217 if (!EvaluateFloat(SubExpr, F, Info)) 12218 return false; 12219 12220 APSInt Value; 12221 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) 12222 return false; 12223 return Success(Value, E); 12224 } 12225 } 12226 12227 llvm_unreachable("unknown cast resulting in integral value"); 12228 } 12229 12230 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 12231 if (E->getSubExpr()->getType()->isAnyComplexType()) { 12232 ComplexValue LV; 12233 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 12234 return false; 12235 if (!LV.isComplexInt()) 12236 return Error(E); 12237 return Success(LV.getComplexIntReal(), E); 12238 } 12239 12240 return Visit(E->getSubExpr()); 12241 } 12242 12243 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 12244 if (E->getSubExpr()->getType()->isComplexIntegerType()) { 12245 ComplexValue LV; 12246 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 12247 return false; 12248 if (!LV.isComplexInt()) 12249 return Error(E); 12250 return Success(LV.getComplexIntImag(), E); 12251 } 12252 12253 VisitIgnoredValue(E->getSubExpr()); 12254 return Success(0, E); 12255 } 12256 12257 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 12258 return Success(E->getPackLength(), E); 12259 } 12260 12261 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 12262 return Success(E->getValue(), E); 12263 } 12264 12265 bool IntExprEvaluator::VisitConceptSpecializationExpr( 12266 const ConceptSpecializationExpr *E) { 12267 return Success(E->isSatisfied(), E); 12268 } 12269 12270 12271 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 12272 switch (E->getOpcode()) { 12273 default: 12274 // Invalid unary operators 12275 return Error(E); 12276 case UO_Plus: 12277 // The result is just the value. 12278 return Visit(E->getSubExpr()); 12279 case UO_Minus: { 12280 if (!Visit(E->getSubExpr())) return false; 12281 if (!Result.isFixedPoint()) 12282 return Error(E); 12283 bool Overflowed; 12284 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); 12285 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) 12286 return false; 12287 return Success(Negated, E); 12288 } 12289 case UO_LNot: { 12290 bool bres; 12291 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 12292 return false; 12293 return Success(!bres, E); 12294 } 12295 } 12296 } 12297 12298 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { 12299 const Expr *SubExpr = E->getSubExpr(); 12300 QualType DestType = E->getType(); 12301 assert(DestType->isFixedPointType() && 12302 "Expected destination type to be a fixed point type"); 12303 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); 12304 12305 switch (E->getCastKind()) { 12306 case CK_FixedPointCast: { 12307 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 12308 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 12309 return false; 12310 bool Overflowed; 12311 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); 12312 if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) 12313 return false; 12314 return Success(Result, E); 12315 } 12316 case CK_IntegralToFixedPoint: { 12317 APSInt Src; 12318 if (!EvaluateInteger(SubExpr, Src, Info)) 12319 return false; 12320 12321 bool Overflowed; 12322 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 12323 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 12324 12325 if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType)) 12326 return false; 12327 12328 return Success(IntResult, E); 12329 } 12330 case CK_NoOp: 12331 case CK_LValueToRValue: 12332 return ExprEvaluatorBaseTy::VisitCastExpr(E); 12333 default: 12334 return Error(E); 12335 } 12336 } 12337 12338 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 12339 const Expr *LHS = E->getLHS(); 12340 const Expr *RHS = E->getRHS(); 12341 FixedPointSemantics ResultFXSema = 12342 Info.Ctx.getFixedPointSemantics(E->getType()); 12343 12344 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); 12345 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) 12346 return false; 12347 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); 12348 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) 12349 return false; 12350 12351 switch (E->getOpcode()) { 12352 case BO_Add: { 12353 bool AddOverflow, ConversionOverflow; 12354 APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow) 12355 .convert(ResultFXSema, &ConversionOverflow); 12356 if ((AddOverflow || ConversionOverflow) && 12357 !HandleOverflow(Info, E, Result, E->getType())) 12358 return false; 12359 return Success(Result, E); 12360 } 12361 default: 12362 return false; 12363 } 12364 llvm_unreachable("Should've exited before this"); 12365 } 12366 12367 //===----------------------------------------------------------------------===// 12368 // Float Evaluation 12369 //===----------------------------------------------------------------------===// 12370 12371 namespace { 12372 class FloatExprEvaluator 12373 : public ExprEvaluatorBase<FloatExprEvaluator> { 12374 APFloat &Result; 12375 public: 12376 FloatExprEvaluator(EvalInfo &info, APFloat &result) 12377 : ExprEvaluatorBaseTy(info), Result(result) {} 12378 12379 bool Success(const APValue &V, const Expr *e) { 12380 Result = V.getFloat(); 12381 return true; 12382 } 12383 12384 bool ZeroInitialization(const Expr *E) { 12385 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); 12386 return true; 12387 } 12388 12389 bool VisitCallExpr(const CallExpr *E); 12390 12391 bool VisitUnaryOperator(const UnaryOperator *E); 12392 bool VisitBinaryOperator(const BinaryOperator *E); 12393 bool VisitFloatingLiteral(const FloatingLiteral *E); 12394 bool VisitCastExpr(const CastExpr *E); 12395 12396 bool VisitUnaryReal(const UnaryOperator *E); 12397 bool VisitUnaryImag(const UnaryOperator *E); 12398 12399 // FIXME: Missing: array subscript of vector, member of vector 12400 }; 12401 } // end anonymous namespace 12402 12403 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { 12404 assert(E->isRValue() && E->getType()->isRealFloatingType()); 12405 return FloatExprEvaluator(Info, Result).Visit(E); 12406 } 12407 12408 static bool TryEvaluateBuiltinNaN(const ASTContext &Context, 12409 QualType ResultTy, 12410 const Expr *Arg, 12411 bool SNaN, 12412 llvm::APFloat &Result) { 12413 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 12414 if (!S) return false; 12415 12416 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); 12417 12418 llvm::APInt fill; 12419 12420 // Treat empty strings as if they were zero. 12421 if (S->getString().empty()) 12422 fill = llvm::APInt(32, 0); 12423 else if (S->getString().getAsInteger(0, fill)) 12424 return false; 12425 12426 if (Context.getTargetInfo().isNan2008()) { 12427 if (SNaN) 12428 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 12429 else 12430 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 12431 } else { 12432 // Prior to IEEE 754-2008, architectures were allowed to choose whether 12433 // the first bit of their significand was set for qNaN or sNaN. MIPS chose 12434 // a different encoding to what became a standard in 2008, and for pre- 12435 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as 12436 // sNaN. This is now known as "legacy NaN" encoding. 12437 if (SNaN) 12438 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 12439 else 12440 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 12441 } 12442 12443 return true; 12444 } 12445 12446 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { 12447 switch (E->getBuiltinCallee()) { 12448 default: 12449 return ExprEvaluatorBaseTy::VisitCallExpr(E); 12450 12451 case Builtin::BI__builtin_huge_val: 12452 case Builtin::BI__builtin_huge_valf: 12453 case Builtin::BI__builtin_huge_vall: 12454 case Builtin::BI__builtin_huge_valf128: 12455 case Builtin::BI__builtin_inf: 12456 case Builtin::BI__builtin_inff: 12457 case Builtin::BI__builtin_infl: 12458 case Builtin::BI__builtin_inff128: { 12459 const llvm::fltSemantics &Sem = 12460 Info.Ctx.getFloatTypeSemantics(E->getType()); 12461 Result = llvm::APFloat::getInf(Sem); 12462 return true; 12463 } 12464 12465 case Builtin::BI__builtin_nans: 12466 case Builtin::BI__builtin_nansf: 12467 case Builtin::BI__builtin_nansl: 12468 case Builtin::BI__builtin_nansf128: 12469 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 12470 true, Result)) 12471 return Error(E); 12472 return true; 12473 12474 case Builtin::BI__builtin_nan: 12475 case Builtin::BI__builtin_nanf: 12476 case Builtin::BI__builtin_nanl: 12477 case Builtin::BI__builtin_nanf128: 12478 // If this is __builtin_nan() turn this into a nan, otherwise we 12479 // can't constant fold it. 12480 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 12481 false, Result)) 12482 return Error(E); 12483 return true; 12484 12485 case Builtin::BI__builtin_fabs: 12486 case Builtin::BI__builtin_fabsf: 12487 case Builtin::BI__builtin_fabsl: 12488 case Builtin::BI__builtin_fabsf128: 12489 if (!EvaluateFloat(E->getArg(0), Result, Info)) 12490 return false; 12491 12492 if (Result.isNegative()) 12493 Result.changeSign(); 12494 return true; 12495 12496 // FIXME: Builtin::BI__builtin_powi 12497 // FIXME: Builtin::BI__builtin_powif 12498 // FIXME: Builtin::BI__builtin_powil 12499 12500 case Builtin::BI__builtin_copysign: 12501 case Builtin::BI__builtin_copysignf: 12502 case Builtin::BI__builtin_copysignl: 12503 case Builtin::BI__builtin_copysignf128: { 12504 APFloat RHS(0.); 12505 if (!EvaluateFloat(E->getArg(0), Result, Info) || 12506 !EvaluateFloat(E->getArg(1), RHS, Info)) 12507 return false; 12508 Result.copySign(RHS); 12509 return true; 12510 } 12511 } 12512 } 12513 12514 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 12515 if (E->getSubExpr()->getType()->isAnyComplexType()) { 12516 ComplexValue CV; 12517 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 12518 return false; 12519 Result = CV.FloatReal; 12520 return true; 12521 } 12522 12523 return Visit(E->getSubExpr()); 12524 } 12525 12526 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 12527 if (E->getSubExpr()->getType()->isAnyComplexType()) { 12528 ComplexValue CV; 12529 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 12530 return false; 12531 Result = CV.FloatImag; 12532 return true; 12533 } 12534 12535 VisitIgnoredValue(E->getSubExpr()); 12536 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); 12537 Result = llvm::APFloat::getZero(Sem); 12538 return true; 12539 } 12540 12541 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 12542 switch (E->getOpcode()) { 12543 default: return Error(E); 12544 case UO_Plus: 12545 return EvaluateFloat(E->getSubExpr(), Result, Info); 12546 case UO_Minus: 12547 if (!EvaluateFloat(E->getSubExpr(), Result, Info)) 12548 return false; 12549 Result.changeSign(); 12550 return true; 12551 } 12552 } 12553 12554 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 12555 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 12556 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 12557 12558 APFloat RHS(0.0); 12559 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); 12560 if (!LHSOK && !Info.noteFailure()) 12561 return false; 12562 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && 12563 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); 12564 } 12565 12566 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { 12567 Result = E->getValue(); 12568 return true; 12569 } 12570 12571 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { 12572 const Expr* SubExpr = E->getSubExpr(); 12573 12574 switch (E->getCastKind()) { 12575 default: 12576 return ExprEvaluatorBaseTy::VisitCastExpr(E); 12577 12578 case CK_IntegralToFloating: { 12579 APSInt IntResult; 12580 return EvaluateInteger(SubExpr, IntResult, Info) && 12581 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult, 12582 E->getType(), Result); 12583 } 12584 12585 case CK_FloatingCast: { 12586 if (!Visit(SubExpr)) 12587 return false; 12588 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), 12589 Result); 12590 } 12591 12592 case CK_FloatingComplexToReal: { 12593 ComplexValue V; 12594 if (!EvaluateComplex(SubExpr, V, Info)) 12595 return false; 12596 Result = V.getComplexFloatReal(); 12597 return true; 12598 } 12599 } 12600 } 12601 12602 //===----------------------------------------------------------------------===// 12603 // Complex Evaluation (for float and integer) 12604 //===----------------------------------------------------------------------===// 12605 12606 namespace { 12607 class ComplexExprEvaluator 12608 : public ExprEvaluatorBase<ComplexExprEvaluator> { 12609 ComplexValue &Result; 12610 12611 public: 12612 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) 12613 : ExprEvaluatorBaseTy(info), Result(Result) {} 12614 12615 bool Success(const APValue &V, const Expr *e) { 12616 Result.setFrom(V); 12617 return true; 12618 } 12619 12620 bool ZeroInitialization(const Expr *E); 12621 12622 //===--------------------------------------------------------------------===// 12623 // Visitor Methods 12624 //===--------------------------------------------------------------------===// 12625 12626 bool VisitImaginaryLiteral(const ImaginaryLiteral *E); 12627 bool VisitCastExpr(const CastExpr *E); 12628 bool VisitBinaryOperator(const BinaryOperator *E); 12629 bool VisitUnaryOperator(const UnaryOperator *E); 12630 bool VisitInitListExpr(const InitListExpr *E); 12631 }; 12632 } // end anonymous namespace 12633 12634 static bool EvaluateComplex(const Expr *E, ComplexValue &Result, 12635 EvalInfo &Info) { 12636 assert(E->isRValue() && E->getType()->isAnyComplexType()); 12637 return ComplexExprEvaluator(Info, Result).Visit(E); 12638 } 12639 12640 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { 12641 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 12642 if (ElemTy->isRealFloatingType()) { 12643 Result.makeComplexFloat(); 12644 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); 12645 Result.FloatReal = Zero; 12646 Result.FloatImag = Zero; 12647 } else { 12648 Result.makeComplexInt(); 12649 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); 12650 Result.IntReal = Zero; 12651 Result.IntImag = Zero; 12652 } 12653 return true; 12654 } 12655 12656 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 12657 const Expr* SubExpr = E->getSubExpr(); 12658 12659 if (SubExpr->getType()->isRealFloatingType()) { 12660 Result.makeComplexFloat(); 12661 APFloat &Imag = Result.FloatImag; 12662 if (!EvaluateFloat(SubExpr, Imag, Info)) 12663 return false; 12664 12665 Result.FloatReal = APFloat(Imag.getSemantics()); 12666 return true; 12667 } else { 12668 assert(SubExpr->getType()->isIntegerType() && 12669 "Unexpected imaginary literal."); 12670 12671 Result.makeComplexInt(); 12672 APSInt &Imag = Result.IntImag; 12673 if (!EvaluateInteger(SubExpr, Imag, Info)) 12674 return false; 12675 12676 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); 12677 return true; 12678 } 12679 } 12680 12681 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { 12682 12683 switch (E->getCastKind()) { 12684 case CK_BitCast: 12685 case CK_BaseToDerived: 12686 case CK_DerivedToBase: 12687 case CK_UncheckedDerivedToBase: 12688 case CK_Dynamic: 12689 case CK_ToUnion: 12690 case CK_ArrayToPointerDecay: 12691 case CK_FunctionToPointerDecay: 12692 case CK_NullToPointer: 12693 case CK_NullToMemberPointer: 12694 case CK_BaseToDerivedMemberPointer: 12695 case CK_DerivedToBaseMemberPointer: 12696 case CK_MemberPointerToBoolean: 12697 case CK_ReinterpretMemberPointer: 12698 case CK_ConstructorConversion: 12699 case CK_IntegralToPointer: 12700 case CK_PointerToIntegral: 12701 case CK_PointerToBoolean: 12702 case CK_ToVoid: 12703 case CK_VectorSplat: 12704 case CK_IntegralCast: 12705 case CK_BooleanToSignedIntegral: 12706 case CK_IntegralToBoolean: 12707 case CK_IntegralToFloating: 12708 case CK_FloatingToIntegral: 12709 case CK_FloatingToBoolean: 12710 case CK_FloatingCast: 12711 case CK_CPointerToObjCPointerCast: 12712 case CK_BlockPointerToObjCPointerCast: 12713 case CK_AnyPointerToBlockPointerCast: 12714 case CK_ObjCObjectLValueCast: 12715 case CK_FloatingComplexToReal: 12716 case CK_FloatingComplexToBoolean: 12717 case CK_IntegralComplexToReal: 12718 case CK_IntegralComplexToBoolean: 12719 case CK_ARCProduceObject: 12720 case CK_ARCConsumeObject: 12721 case CK_ARCReclaimReturnedObject: 12722 case CK_ARCExtendBlockObject: 12723 case CK_CopyAndAutoreleaseBlockObject: 12724 case CK_BuiltinFnToFnPtr: 12725 case CK_ZeroToOCLOpaqueType: 12726 case CK_NonAtomicToAtomic: 12727 case CK_AddressSpaceConversion: 12728 case CK_IntToOCLSampler: 12729 case CK_FixedPointCast: 12730 case CK_FixedPointToBoolean: 12731 case CK_FixedPointToIntegral: 12732 case CK_IntegralToFixedPoint: 12733 llvm_unreachable("invalid cast kind for complex value"); 12734 12735 case CK_LValueToRValue: 12736 case CK_AtomicToNonAtomic: 12737 case CK_NoOp: 12738 case CK_LValueToRValueBitCast: 12739 return ExprEvaluatorBaseTy::VisitCastExpr(E); 12740 12741 case CK_Dependent: 12742 case CK_LValueBitCast: 12743 case CK_UserDefinedConversion: 12744 return Error(E); 12745 12746 case CK_FloatingRealToComplex: { 12747 APFloat &Real = Result.FloatReal; 12748 if (!EvaluateFloat(E->getSubExpr(), Real, Info)) 12749 return false; 12750 12751 Result.makeComplexFloat(); 12752 Result.FloatImag = APFloat(Real.getSemantics()); 12753 return true; 12754 } 12755 12756 case CK_FloatingComplexCast: { 12757 if (!Visit(E->getSubExpr())) 12758 return false; 12759 12760 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 12761 QualType From 12762 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 12763 12764 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && 12765 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); 12766 } 12767 12768 case CK_FloatingComplexToIntegralComplex: { 12769 if (!Visit(E->getSubExpr())) 12770 return false; 12771 12772 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 12773 QualType From 12774 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 12775 Result.makeComplexInt(); 12776 return HandleFloatToIntCast(Info, E, From, Result.FloatReal, 12777 To, Result.IntReal) && 12778 HandleFloatToIntCast(Info, E, From, Result.FloatImag, 12779 To, Result.IntImag); 12780 } 12781 12782 case CK_IntegralRealToComplex: { 12783 APSInt &Real = Result.IntReal; 12784 if (!EvaluateInteger(E->getSubExpr(), Real, Info)) 12785 return false; 12786 12787 Result.makeComplexInt(); 12788 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); 12789 return true; 12790 } 12791 12792 case CK_IntegralComplexCast: { 12793 if (!Visit(E->getSubExpr())) 12794 return false; 12795 12796 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 12797 QualType From 12798 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 12799 12800 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); 12801 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); 12802 return true; 12803 } 12804 12805 case CK_IntegralComplexToFloatingComplex: { 12806 if (!Visit(E->getSubExpr())) 12807 return false; 12808 12809 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 12810 QualType From 12811 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 12812 Result.makeComplexFloat(); 12813 return HandleIntToFloatCast(Info, E, From, Result.IntReal, 12814 To, Result.FloatReal) && 12815 HandleIntToFloatCast(Info, E, From, Result.IntImag, 12816 To, Result.FloatImag); 12817 } 12818 } 12819 12820 llvm_unreachable("unknown cast resulting in complex value"); 12821 } 12822 12823 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 12824 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 12825 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 12826 12827 // Track whether the LHS or RHS is real at the type system level. When this is 12828 // the case we can simplify our evaluation strategy. 12829 bool LHSReal = false, RHSReal = false; 12830 12831 bool LHSOK; 12832 if (E->getLHS()->getType()->isRealFloatingType()) { 12833 LHSReal = true; 12834 APFloat &Real = Result.FloatReal; 12835 LHSOK = EvaluateFloat(E->getLHS(), Real, Info); 12836 if (LHSOK) { 12837 Result.makeComplexFloat(); 12838 Result.FloatImag = APFloat(Real.getSemantics()); 12839 } 12840 } else { 12841 LHSOK = Visit(E->getLHS()); 12842 } 12843 if (!LHSOK && !Info.noteFailure()) 12844 return false; 12845 12846 ComplexValue RHS; 12847 if (E->getRHS()->getType()->isRealFloatingType()) { 12848 RHSReal = true; 12849 APFloat &Real = RHS.FloatReal; 12850 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) 12851 return false; 12852 RHS.makeComplexFloat(); 12853 RHS.FloatImag = APFloat(Real.getSemantics()); 12854 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 12855 return false; 12856 12857 assert(!(LHSReal && RHSReal) && 12858 "Cannot have both operands of a complex operation be real."); 12859 switch (E->getOpcode()) { 12860 default: return Error(E); 12861 case BO_Add: 12862 if (Result.isComplexFloat()) { 12863 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), 12864 APFloat::rmNearestTiesToEven); 12865 if (LHSReal) 12866 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 12867 else if (!RHSReal) 12868 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), 12869 APFloat::rmNearestTiesToEven); 12870 } else { 12871 Result.getComplexIntReal() += RHS.getComplexIntReal(); 12872 Result.getComplexIntImag() += RHS.getComplexIntImag(); 12873 } 12874 break; 12875 case BO_Sub: 12876 if (Result.isComplexFloat()) { 12877 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), 12878 APFloat::rmNearestTiesToEven); 12879 if (LHSReal) { 12880 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 12881 Result.getComplexFloatImag().changeSign(); 12882 } else if (!RHSReal) { 12883 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), 12884 APFloat::rmNearestTiesToEven); 12885 } 12886 } else { 12887 Result.getComplexIntReal() -= RHS.getComplexIntReal(); 12888 Result.getComplexIntImag() -= RHS.getComplexIntImag(); 12889 } 12890 break; 12891 case BO_Mul: 12892 if (Result.isComplexFloat()) { 12893 // This is an implementation of complex multiplication according to the 12894 // constraints laid out in C11 Annex G. The implementation uses the 12895 // following naming scheme: 12896 // (a + ib) * (c + id) 12897 ComplexValue LHS = Result; 12898 APFloat &A = LHS.getComplexFloatReal(); 12899 APFloat &B = LHS.getComplexFloatImag(); 12900 APFloat &C = RHS.getComplexFloatReal(); 12901 APFloat &D = RHS.getComplexFloatImag(); 12902 APFloat &ResR = Result.getComplexFloatReal(); 12903 APFloat &ResI = Result.getComplexFloatImag(); 12904 if (LHSReal) { 12905 assert(!RHSReal && "Cannot have two real operands for a complex op!"); 12906 ResR = A * C; 12907 ResI = A * D; 12908 } else if (RHSReal) { 12909 ResR = C * A; 12910 ResI = C * B; 12911 } else { 12912 // In the fully general case, we need to handle NaNs and infinities 12913 // robustly. 12914 APFloat AC = A * C; 12915 APFloat BD = B * D; 12916 APFloat AD = A * D; 12917 APFloat BC = B * C; 12918 ResR = AC - BD; 12919 ResI = AD + BC; 12920 if (ResR.isNaN() && ResI.isNaN()) { 12921 bool Recalc = false; 12922 if (A.isInfinity() || B.isInfinity()) { 12923 A = APFloat::copySign( 12924 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 12925 B = APFloat::copySign( 12926 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 12927 if (C.isNaN()) 12928 C = APFloat::copySign(APFloat(C.getSemantics()), C); 12929 if (D.isNaN()) 12930 D = APFloat::copySign(APFloat(D.getSemantics()), D); 12931 Recalc = true; 12932 } 12933 if (C.isInfinity() || D.isInfinity()) { 12934 C = APFloat::copySign( 12935 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 12936 D = APFloat::copySign( 12937 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 12938 if (A.isNaN()) 12939 A = APFloat::copySign(APFloat(A.getSemantics()), A); 12940 if (B.isNaN()) 12941 B = APFloat::copySign(APFloat(B.getSemantics()), B); 12942 Recalc = true; 12943 } 12944 if (!Recalc && (AC.isInfinity() || BD.isInfinity() || 12945 AD.isInfinity() || BC.isInfinity())) { 12946 if (A.isNaN()) 12947 A = APFloat::copySign(APFloat(A.getSemantics()), A); 12948 if (B.isNaN()) 12949 B = APFloat::copySign(APFloat(B.getSemantics()), B); 12950 if (C.isNaN()) 12951 C = APFloat::copySign(APFloat(C.getSemantics()), C); 12952 if (D.isNaN()) 12953 D = APFloat::copySign(APFloat(D.getSemantics()), D); 12954 Recalc = true; 12955 } 12956 if (Recalc) { 12957 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); 12958 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); 12959 } 12960 } 12961 } 12962 } else { 12963 ComplexValue LHS = Result; 12964 Result.getComplexIntReal() = 12965 (LHS.getComplexIntReal() * RHS.getComplexIntReal() - 12966 LHS.getComplexIntImag() * RHS.getComplexIntImag()); 12967 Result.getComplexIntImag() = 12968 (LHS.getComplexIntReal() * RHS.getComplexIntImag() + 12969 LHS.getComplexIntImag() * RHS.getComplexIntReal()); 12970 } 12971 break; 12972 case BO_Div: 12973 if (Result.isComplexFloat()) { 12974 // This is an implementation of complex division according to the 12975 // constraints laid out in C11 Annex G. The implementation uses the 12976 // following naming scheme: 12977 // (a + ib) / (c + id) 12978 ComplexValue LHS = Result; 12979 APFloat &A = LHS.getComplexFloatReal(); 12980 APFloat &B = LHS.getComplexFloatImag(); 12981 APFloat &C = RHS.getComplexFloatReal(); 12982 APFloat &D = RHS.getComplexFloatImag(); 12983 APFloat &ResR = Result.getComplexFloatReal(); 12984 APFloat &ResI = Result.getComplexFloatImag(); 12985 if (RHSReal) { 12986 ResR = A / C; 12987 ResI = B / C; 12988 } else { 12989 if (LHSReal) { 12990 // No real optimizations we can do here, stub out with zero. 12991 B = APFloat::getZero(A.getSemantics()); 12992 } 12993 int DenomLogB = 0; 12994 APFloat MaxCD = maxnum(abs(C), abs(D)); 12995 if (MaxCD.isFinite()) { 12996 DenomLogB = ilogb(MaxCD); 12997 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); 12998 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); 12999 } 13000 APFloat Denom = C * C + D * D; 13001 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB, 13002 APFloat::rmNearestTiesToEven); 13003 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB, 13004 APFloat::rmNearestTiesToEven); 13005 if (ResR.isNaN() && ResI.isNaN()) { 13006 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { 13007 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; 13008 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; 13009 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && 13010 D.isFinite()) { 13011 A = APFloat::copySign( 13012 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 13013 B = APFloat::copySign( 13014 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 13015 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); 13016 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); 13017 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { 13018 C = APFloat::copySign( 13019 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 13020 D = APFloat::copySign( 13021 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 13022 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); 13023 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); 13024 } 13025 } 13026 } 13027 } else { 13028 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) 13029 return Error(E, diag::note_expr_divide_by_zero); 13030 13031 ComplexValue LHS = Result; 13032 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + 13033 RHS.getComplexIntImag() * RHS.getComplexIntImag(); 13034 Result.getComplexIntReal() = 13035 (LHS.getComplexIntReal() * RHS.getComplexIntReal() + 13036 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; 13037 Result.getComplexIntImag() = 13038 (LHS.getComplexIntImag() * RHS.getComplexIntReal() - 13039 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; 13040 } 13041 break; 13042 } 13043 13044 return true; 13045 } 13046 13047 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13048 // Get the operand value into 'Result'. 13049 if (!Visit(E->getSubExpr())) 13050 return false; 13051 13052 switch (E->getOpcode()) { 13053 default: 13054 return Error(E); 13055 case UO_Extension: 13056 return true; 13057 case UO_Plus: 13058 // The result is always just the subexpr. 13059 return true; 13060 case UO_Minus: 13061 if (Result.isComplexFloat()) { 13062 Result.getComplexFloatReal().changeSign(); 13063 Result.getComplexFloatImag().changeSign(); 13064 } 13065 else { 13066 Result.getComplexIntReal() = -Result.getComplexIntReal(); 13067 Result.getComplexIntImag() = -Result.getComplexIntImag(); 13068 } 13069 return true; 13070 case UO_Not: 13071 if (Result.isComplexFloat()) 13072 Result.getComplexFloatImag().changeSign(); 13073 else 13074 Result.getComplexIntImag() = -Result.getComplexIntImag(); 13075 return true; 13076 } 13077 } 13078 13079 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 13080 if (E->getNumInits() == 2) { 13081 if (E->getType()->isComplexType()) { 13082 Result.makeComplexFloat(); 13083 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) 13084 return false; 13085 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) 13086 return false; 13087 } else { 13088 Result.makeComplexInt(); 13089 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) 13090 return false; 13091 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) 13092 return false; 13093 } 13094 return true; 13095 } 13096 return ExprEvaluatorBaseTy::VisitInitListExpr(E); 13097 } 13098 13099 //===----------------------------------------------------------------------===// 13100 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic 13101 // implicit conversion. 13102 //===----------------------------------------------------------------------===// 13103 13104 namespace { 13105 class AtomicExprEvaluator : 13106 public ExprEvaluatorBase<AtomicExprEvaluator> { 13107 const LValue *This; 13108 APValue &Result; 13109 public: 13110 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) 13111 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 13112 13113 bool Success(const APValue &V, const Expr *E) { 13114 Result = V; 13115 return true; 13116 } 13117 13118 bool ZeroInitialization(const Expr *E) { 13119 ImplicitValueInitExpr VIE( 13120 E->getType()->castAs<AtomicType>()->getValueType()); 13121 // For atomic-qualified class (and array) types in C++, initialize the 13122 // _Atomic-wrapped subobject directly, in-place. 13123 return This ? EvaluateInPlace(Result, Info, *This, &VIE) 13124 : Evaluate(Result, Info, &VIE); 13125 } 13126 13127 bool VisitCastExpr(const CastExpr *E) { 13128 switch (E->getCastKind()) { 13129 default: 13130 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13131 case CK_NonAtomicToAtomic: 13132 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) 13133 : Evaluate(Result, Info, E->getSubExpr()); 13134 } 13135 } 13136 }; 13137 } // end anonymous namespace 13138 13139 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 13140 EvalInfo &Info) { 13141 assert(E->isRValue() && E->getType()->isAtomicType()); 13142 return AtomicExprEvaluator(Info, This, Result).Visit(E); 13143 } 13144 13145 //===----------------------------------------------------------------------===// 13146 // Void expression evaluation, primarily for a cast to void on the LHS of a 13147 // comma operator 13148 //===----------------------------------------------------------------------===// 13149 13150 namespace { 13151 class VoidExprEvaluator 13152 : public ExprEvaluatorBase<VoidExprEvaluator> { 13153 public: 13154 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} 13155 13156 bool Success(const APValue &V, const Expr *e) { return true; } 13157 13158 bool ZeroInitialization(const Expr *E) { return true; } 13159 13160 bool VisitCastExpr(const CastExpr *E) { 13161 switch (E->getCastKind()) { 13162 default: 13163 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13164 case CK_ToVoid: 13165 VisitIgnoredValue(E->getSubExpr()); 13166 return true; 13167 } 13168 } 13169 13170 bool VisitCallExpr(const CallExpr *E) { 13171 switch (E->getBuiltinCallee()) { 13172 case Builtin::BI__assume: 13173 case Builtin::BI__builtin_assume: 13174 // The argument is not evaluated! 13175 return true; 13176 13177 case Builtin::BI__builtin_operator_delete: 13178 return HandleOperatorDeleteCall(Info, E); 13179 13180 default: 13181 break; 13182 } 13183 13184 return ExprEvaluatorBaseTy::VisitCallExpr(E); 13185 } 13186 13187 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); 13188 }; 13189 } // end anonymous namespace 13190 13191 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 13192 // We cannot speculatively evaluate a delete expression. 13193 if (Info.SpeculativeEvaluationDepth) 13194 return false; 13195 13196 FunctionDecl *OperatorDelete = E->getOperatorDelete(); 13197 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { 13198 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 13199 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; 13200 return false; 13201 } 13202 13203 const Expr *Arg = E->getArgument(); 13204 13205 LValue Pointer; 13206 if (!EvaluatePointer(Arg, Pointer, Info)) 13207 return false; 13208 if (Pointer.Designator.Invalid) 13209 return false; 13210 13211 // Deleting a null pointer has no effect. 13212 if (Pointer.isNullPointer()) { 13213 // This is the only case where we need to produce an extension warning: 13214 // the only other way we can succeed is if we find a dynamic allocation, 13215 // and we will have warned when we allocated it in that case. 13216 if (!Info.getLangOpts().CPlusPlus2a) 13217 Info.CCEDiag(E, diag::note_constexpr_new); 13218 return true; 13219 } 13220 13221 Optional<DynAlloc *> Alloc = CheckDeleteKind( 13222 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); 13223 if (!Alloc) 13224 return false; 13225 QualType AllocType = Pointer.Base.getDynamicAllocType(); 13226 13227 // For the non-array case, the designator must be empty if the static type 13228 // does not have a virtual destructor. 13229 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && 13230 !hasVirtualDestructor(Arg->getType()->getPointeeType())) { 13231 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) 13232 << Arg->getType()->getPointeeType() << AllocType; 13233 return false; 13234 } 13235 13236 // For a class type with a virtual destructor, the selected operator delete 13237 // is the one looked up when building the destructor. 13238 if (!E->isArrayForm() && !E->isGlobalDelete()) { 13239 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); 13240 if (VirtualDelete && 13241 !VirtualDelete->isReplaceableGlobalAllocationFunction()) { 13242 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 13243 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; 13244 return false; 13245 } 13246 } 13247 13248 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), 13249 (*Alloc)->Value, AllocType)) 13250 return false; 13251 13252 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { 13253 // The element was already erased. This means the destructor call also 13254 // deleted the object. 13255 // FIXME: This probably results in undefined behavior before we get this 13256 // far, and should be diagnosed elsewhere first. 13257 Info.FFDiag(E, diag::note_constexpr_double_delete); 13258 return false; 13259 } 13260 13261 return true; 13262 } 13263 13264 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { 13265 assert(E->isRValue() && E->getType()->isVoidType()); 13266 return VoidExprEvaluator(Info).Visit(E); 13267 } 13268 13269 //===----------------------------------------------------------------------===// 13270 // Top level Expr::EvaluateAsRValue method. 13271 //===----------------------------------------------------------------------===// 13272 13273 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { 13274 // In C, function designators are not lvalues, but we evaluate them as if they 13275 // are. 13276 QualType T = E->getType(); 13277 if (E->isGLValue() || T->isFunctionType()) { 13278 LValue LV; 13279 if (!EvaluateLValue(E, LV, Info)) 13280 return false; 13281 LV.moveInto(Result); 13282 } else if (T->isVectorType()) { 13283 if (!EvaluateVector(E, Result, Info)) 13284 return false; 13285 } else if (T->isIntegralOrEnumerationType()) { 13286 if (!IntExprEvaluator(Info, Result).Visit(E)) 13287 return false; 13288 } else if (T->hasPointerRepresentation()) { 13289 LValue LV; 13290 if (!EvaluatePointer(E, LV, Info)) 13291 return false; 13292 LV.moveInto(Result); 13293 } else if (T->isRealFloatingType()) { 13294 llvm::APFloat F(0.0); 13295 if (!EvaluateFloat(E, F, Info)) 13296 return false; 13297 Result = APValue(F); 13298 } else if (T->isAnyComplexType()) { 13299 ComplexValue C; 13300 if (!EvaluateComplex(E, C, Info)) 13301 return false; 13302 C.moveInto(Result); 13303 } else if (T->isFixedPointType()) { 13304 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; 13305 } else if (T->isMemberPointerType()) { 13306 MemberPtr P; 13307 if (!EvaluateMemberPointer(E, P, Info)) 13308 return false; 13309 P.moveInto(Result); 13310 return true; 13311 } else if (T->isArrayType()) { 13312 LValue LV; 13313 APValue &Value = 13314 Info.CurrentCall->createTemporary(E, T, false, LV); 13315 if (!EvaluateArray(E, LV, Value, Info)) 13316 return false; 13317 Result = Value; 13318 } else if (T->isRecordType()) { 13319 LValue LV; 13320 APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV); 13321 if (!EvaluateRecord(E, LV, Value, Info)) 13322 return false; 13323 Result = Value; 13324 } else if (T->isVoidType()) { 13325 if (!Info.getLangOpts().CPlusPlus11) 13326 Info.CCEDiag(E, diag::note_constexpr_nonliteral) 13327 << E->getType(); 13328 if (!EvaluateVoid(E, Info)) 13329 return false; 13330 } else if (T->isAtomicType()) { 13331 QualType Unqual = T.getAtomicUnqualifiedType(); 13332 if (Unqual->isArrayType() || Unqual->isRecordType()) { 13333 LValue LV; 13334 APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV); 13335 if (!EvaluateAtomic(E, &LV, Value, Info)) 13336 return false; 13337 } else { 13338 if (!EvaluateAtomic(E, nullptr, Result, Info)) 13339 return false; 13340 } 13341 } else if (Info.getLangOpts().CPlusPlus11) { 13342 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); 13343 return false; 13344 } else { 13345 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 13346 return false; 13347 } 13348 13349 return true; 13350 } 13351 13352 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some 13353 /// cases, the in-place evaluation is essential, since later initializers for 13354 /// an object can indirectly refer to subobjects which were initialized earlier. 13355 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, 13356 const Expr *E, bool AllowNonLiteralTypes) { 13357 assert(!E->isValueDependent()); 13358 13359 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) 13360 return false; 13361 13362 if (E->isRValue()) { 13363 // Evaluate arrays and record types in-place, so that later initializers can 13364 // refer to earlier-initialized members of the object. 13365 QualType T = E->getType(); 13366 if (T->isArrayType()) 13367 return EvaluateArray(E, This, Result, Info); 13368 else if (T->isRecordType()) 13369 return EvaluateRecord(E, This, Result, Info); 13370 else if (T->isAtomicType()) { 13371 QualType Unqual = T.getAtomicUnqualifiedType(); 13372 if (Unqual->isArrayType() || Unqual->isRecordType()) 13373 return EvaluateAtomic(E, &This, Result, Info); 13374 } 13375 } 13376 13377 // For any other type, in-place evaluation is unimportant. 13378 return Evaluate(Result, Info, E); 13379 } 13380 13381 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit 13382 /// lvalue-to-rvalue cast if it is an lvalue. 13383 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { 13384 if (Info.EnableNewConstInterp) { 13385 auto &InterpCtx = Info.Ctx.getInterpContext(); 13386 switch (InterpCtx.evaluateAsRValue(Info, E, Result)) { 13387 case interp::InterpResult::Success: 13388 return true; 13389 case interp::InterpResult::Fail: 13390 return false; 13391 case interp::InterpResult::Bail: 13392 break; 13393 } 13394 } 13395 13396 if (E->getType().isNull()) 13397 return false; 13398 13399 if (!CheckLiteralType(Info, E)) 13400 return false; 13401 13402 if (!::Evaluate(Result, Info, E)) 13403 return false; 13404 13405 if (E->isGLValue()) { 13406 LValue LV; 13407 LV.setFrom(Info.Ctx, Result); 13408 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 13409 return false; 13410 } 13411 13412 // Check this core constant expression is a constant expression. 13413 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result) && 13414 CheckMemoryLeaks(Info); 13415 } 13416 13417 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, 13418 const ASTContext &Ctx, bool &IsConst) { 13419 // Fast-path evaluations of integer literals, since we sometimes see files 13420 // containing vast quantities of these. 13421 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { 13422 Result.Val = APValue(APSInt(L->getValue(), 13423 L->getType()->isUnsignedIntegerType())); 13424 IsConst = true; 13425 return true; 13426 } 13427 13428 // This case should be rare, but we need to check it before we check on 13429 // the type below. 13430 if (Exp->getType().isNull()) { 13431 IsConst = false; 13432 return true; 13433 } 13434 13435 // FIXME: Evaluating values of large array and record types can cause 13436 // performance problems. Only do so in C++11 for now. 13437 if (Exp->isRValue() && (Exp->getType()->isArrayType() || 13438 Exp->getType()->isRecordType()) && 13439 !Ctx.getLangOpts().CPlusPlus11) { 13440 IsConst = false; 13441 return true; 13442 } 13443 return false; 13444 } 13445 13446 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, 13447 Expr::SideEffectsKind SEK) { 13448 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || 13449 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); 13450 } 13451 13452 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, 13453 const ASTContext &Ctx, EvalInfo &Info) { 13454 bool IsConst; 13455 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) 13456 return IsConst; 13457 13458 return EvaluateAsRValue(Info, E, Result.Val); 13459 } 13460 13461 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, 13462 const ASTContext &Ctx, 13463 Expr::SideEffectsKind AllowSideEffects, 13464 EvalInfo &Info) { 13465 if (!E->getType()->isIntegralOrEnumerationType()) 13466 return false; 13467 13468 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || 13469 !ExprResult.Val.isInt() || 13470 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 13471 return false; 13472 13473 return true; 13474 } 13475 13476 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, 13477 const ASTContext &Ctx, 13478 Expr::SideEffectsKind AllowSideEffects, 13479 EvalInfo &Info) { 13480 if (!E->getType()->isFixedPointType()) 13481 return false; 13482 13483 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) 13484 return false; 13485 13486 if (!ExprResult.Val.isFixedPoint() || 13487 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 13488 return false; 13489 13490 return true; 13491 } 13492 13493 /// EvaluateAsRValue - Return true if this is a constant which we can fold using 13494 /// any crazy technique (that has nothing to do with language standards) that 13495 /// we want to. If this function returns true, it returns the folded constant 13496 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion 13497 /// will be applied to the result. 13498 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, 13499 bool InConstantContext) const { 13500 assert(!isValueDependent() && 13501 "Expression evaluator can't be called on a dependent expression."); 13502 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 13503 Info.InConstantContext = InConstantContext; 13504 return ::EvaluateAsRValue(this, Result, Ctx, Info); 13505 } 13506 13507 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, 13508 bool InConstantContext) const { 13509 assert(!isValueDependent() && 13510 "Expression evaluator can't be called on a dependent expression."); 13511 EvalResult Scratch; 13512 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && 13513 HandleConversionToBool(Scratch.Val, Result); 13514 } 13515 13516 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, 13517 SideEffectsKind AllowSideEffects, 13518 bool InConstantContext) const { 13519 assert(!isValueDependent() && 13520 "Expression evaluator can't be called on a dependent expression."); 13521 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 13522 Info.InConstantContext = InConstantContext; 13523 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); 13524 } 13525 13526 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, 13527 SideEffectsKind AllowSideEffects, 13528 bool InConstantContext) const { 13529 assert(!isValueDependent() && 13530 "Expression evaluator can't be called on a dependent expression."); 13531 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 13532 Info.InConstantContext = InConstantContext; 13533 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); 13534 } 13535 13536 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, 13537 SideEffectsKind AllowSideEffects, 13538 bool InConstantContext) const { 13539 assert(!isValueDependent() && 13540 "Expression evaluator can't be called on a dependent expression."); 13541 13542 if (!getType()->isRealFloatingType()) 13543 return false; 13544 13545 EvalResult ExprResult; 13546 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || 13547 !ExprResult.Val.isFloat() || 13548 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 13549 return false; 13550 13551 Result = ExprResult.Val.getFloat(); 13552 return true; 13553 } 13554 13555 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, 13556 bool InConstantContext) const { 13557 assert(!isValueDependent() && 13558 "Expression evaluator can't be called on a dependent expression."); 13559 13560 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); 13561 Info.InConstantContext = InConstantContext; 13562 LValue LV; 13563 CheckedTemporaries CheckedTemps; 13564 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || 13565 Result.HasSideEffects || 13566 !CheckLValueConstantExpression(Info, getExprLoc(), 13567 Ctx.getLValueReferenceType(getType()), LV, 13568 Expr::EvaluateForCodeGen, CheckedTemps)) 13569 return false; 13570 13571 LV.moveInto(Result.Val); 13572 return true; 13573 } 13574 13575 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage, 13576 const ASTContext &Ctx) const { 13577 assert(!isValueDependent() && 13578 "Expression evaluator can't be called on a dependent expression."); 13579 13580 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; 13581 EvalInfo Info(Ctx, Result, EM); 13582 Info.InConstantContext = true; 13583 13584 if (!::Evaluate(Result.Val, Info, this) || Result.HasSideEffects) 13585 return false; 13586 13587 if (!Info.discardCleanups()) 13588 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 13589 13590 return CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), 13591 Result.Val, Usage) && 13592 CheckMemoryLeaks(Info); 13593 } 13594 13595 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, 13596 const VarDecl *VD, 13597 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 13598 assert(!isValueDependent() && 13599 "Expression evaluator can't be called on a dependent expression."); 13600 13601 // FIXME: Evaluating initializers for large array and record types can cause 13602 // performance problems. Only do so in C++11 for now. 13603 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) && 13604 !Ctx.getLangOpts().CPlusPlus11) 13605 return false; 13606 13607 Expr::EvalStatus EStatus; 13608 EStatus.Diag = &Notes; 13609 13610 EvalInfo Info(Ctx, EStatus, VD->isConstexpr() 13611 ? EvalInfo::EM_ConstantExpression 13612 : EvalInfo::EM_ConstantFold); 13613 Info.setEvaluatingDecl(VD, Value); 13614 Info.InConstantContext = true; 13615 13616 SourceLocation DeclLoc = VD->getLocation(); 13617 QualType DeclTy = VD->getType(); 13618 13619 if (Info.EnableNewConstInterp) { 13620 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); 13621 switch (InterpCtx.evaluateAsInitializer(Info, VD, Value)) { 13622 case interp::InterpResult::Fail: 13623 // Bail out if an error was encountered. 13624 return false; 13625 case interp::InterpResult::Success: 13626 // Evaluation succeeded and value was set. 13627 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value); 13628 case interp::InterpResult::Bail: 13629 // Evaluate the value again for the tree evaluator to use. 13630 break; 13631 } 13632 } 13633 13634 LValue LVal; 13635 LVal.set(VD); 13636 13637 // C++11 [basic.start.init]p2: 13638 // Variables with static storage duration or thread storage duration shall be 13639 // zero-initialized before any other initialization takes place. 13640 // This behavior is not present in C. 13641 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() && 13642 !DeclTy->isReferenceType()) { 13643 ImplicitValueInitExpr VIE(DeclTy); 13644 if (!EvaluateInPlace(Value, Info, LVal, &VIE, 13645 /*AllowNonLiteralTypes=*/true)) 13646 return false; 13647 } 13648 13649 if (!EvaluateInPlace(Value, Info, LVal, this, 13650 /*AllowNonLiteralTypes=*/true) || 13651 EStatus.HasSideEffects) 13652 return false; 13653 13654 // At this point, any lifetime-extended temporaries are completely 13655 // initialized. 13656 Info.performLifetimeExtension(); 13657 13658 if (!Info.discardCleanups()) 13659 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 13660 13661 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value) && 13662 CheckMemoryLeaks(Info); 13663 } 13664 13665 bool VarDecl::evaluateDestruction( 13666 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 13667 assert(getEvaluatedValue() && !getEvaluatedValue()->isAbsent() && 13668 "cannot evaluate destruction of non-constant-initialized variable"); 13669 13670 Expr::EvalStatus EStatus; 13671 EStatus.Diag = &Notes; 13672 13673 // Make a copy of the value for the destructor to mutate. 13674 APValue DestroyedValue = *getEvaluatedValue(); 13675 13676 EvalInfo Info(getASTContext(), EStatus, EvalInfo::EM_ConstantExpression); 13677 Info.setEvaluatingDecl(this, DestroyedValue, 13678 EvalInfo::EvaluatingDeclKind::Dtor); 13679 Info.InConstantContext = true; 13680 13681 SourceLocation DeclLoc = getLocation(); 13682 QualType DeclTy = getType(); 13683 13684 LValue LVal; 13685 LVal.set(this); 13686 13687 // FIXME: Consider storing whether this variable has constant destruction in 13688 // the EvaluatedStmt so that CodeGen can query it. 13689 if (!HandleDestruction(Info, DeclLoc, LVal.Base, DestroyedValue, DeclTy) || 13690 EStatus.HasSideEffects) 13691 return false; 13692 13693 if (!Info.discardCleanups()) 13694 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 13695 13696 ensureEvaluatedStmt()->HasConstantDestruction = true; 13697 return true; 13698 } 13699 13700 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be 13701 /// constant folded, but discard the result. 13702 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { 13703 assert(!isValueDependent() && 13704 "Expression evaluator can't be called on a dependent expression."); 13705 13706 EvalResult Result; 13707 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && 13708 !hasUnacceptableSideEffect(Result, SEK); 13709 } 13710 13711 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, 13712 SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 13713 assert(!isValueDependent() && 13714 "Expression evaluator can't be called on a dependent expression."); 13715 13716 EvalResult EVResult; 13717 EVResult.Diag = Diag; 13718 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 13719 Info.InConstantContext = true; 13720 13721 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); 13722 (void)Result; 13723 assert(Result && "Could not evaluate expression"); 13724 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 13725 13726 return EVResult.Val.getInt(); 13727 } 13728 13729 APSInt Expr::EvaluateKnownConstIntCheckOverflow( 13730 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 13731 assert(!isValueDependent() && 13732 "Expression evaluator can't be called on a dependent expression."); 13733 13734 EvalResult EVResult; 13735 EVResult.Diag = Diag; 13736 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 13737 Info.InConstantContext = true; 13738 Info.CheckingForUndefinedBehavior = true; 13739 13740 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); 13741 (void)Result; 13742 assert(Result && "Could not evaluate expression"); 13743 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 13744 13745 return EVResult.Val.getInt(); 13746 } 13747 13748 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { 13749 assert(!isValueDependent() && 13750 "Expression evaluator can't be called on a dependent expression."); 13751 13752 bool IsConst; 13753 EvalResult EVResult; 13754 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { 13755 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 13756 Info.CheckingForUndefinedBehavior = true; 13757 (void)::EvaluateAsRValue(Info, this, EVResult.Val); 13758 } 13759 } 13760 13761 bool Expr::EvalResult::isGlobalLValue() const { 13762 assert(Val.isLValue()); 13763 return IsGlobalLValue(Val.getLValueBase()); 13764 } 13765 13766 13767 /// isIntegerConstantExpr - this recursive routine will test if an expression is 13768 /// an integer constant expression. 13769 13770 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 13771 /// comma, etc 13772 13773 // CheckICE - This function does the fundamental ICE checking: the returned 13774 // ICEDiag contains an ICEKind indicating whether the expression is an ICE, 13775 // and a (possibly null) SourceLocation indicating the location of the problem. 13776 // 13777 // Note that to reduce code duplication, this helper does no evaluation 13778 // itself; the caller checks whether the expression is evaluatable, and 13779 // in the rare cases where CheckICE actually cares about the evaluated 13780 // value, it calls into Evaluate. 13781 13782 namespace { 13783 13784 enum ICEKind { 13785 /// This expression is an ICE. 13786 IK_ICE, 13787 /// This expression is not an ICE, but if it isn't evaluated, it's 13788 /// a legal subexpression for an ICE. This return value is used to handle 13789 /// the comma operator in C99 mode, and non-constant subexpressions. 13790 IK_ICEIfUnevaluated, 13791 /// This expression is not an ICE, and is not a legal subexpression for one. 13792 IK_NotICE 13793 }; 13794 13795 struct ICEDiag { 13796 ICEKind Kind; 13797 SourceLocation Loc; 13798 13799 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} 13800 }; 13801 13802 } 13803 13804 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } 13805 13806 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } 13807 13808 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { 13809 Expr::EvalResult EVResult; 13810 Expr::EvalStatus Status; 13811 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 13812 13813 Info.InConstantContext = true; 13814 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || 13815 !EVResult.Val.isInt()) 13816 return ICEDiag(IK_NotICE, E->getBeginLoc()); 13817 13818 return NoDiag(); 13819 } 13820 13821 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { 13822 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 13823 if (!E->getType()->isIntegralOrEnumerationType()) 13824 return ICEDiag(IK_NotICE, E->getBeginLoc()); 13825 13826 switch (E->getStmtClass()) { 13827 #define ABSTRACT_STMT(Node) 13828 #define STMT(Node, Base) case Expr::Node##Class: 13829 #define EXPR(Node, Base) 13830 #include "clang/AST/StmtNodes.inc" 13831 case Expr::PredefinedExprClass: 13832 case Expr::FloatingLiteralClass: 13833 case Expr::ImaginaryLiteralClass: 13834 case Expr::StringLiteralClass: 13835 case Expr::ArraySubscriptExprClass: 13836 case Expr::OMPArraySectionExprClass: 13837 case Expr::MemberExprClass: 13838 case Expr::CompoundAssignOperatorClass: 13839 case Expr::CompoundLiteralExprClass: 13840 case Expr::ExtVectorElementExprClass: 13841 case Expr::DesignatedInitExprClass: 13842 case Expr::ArrayInitLoopExprClass: 13843 case Expr::ArrayInitIndexExprClass: 13844 case Expr::NoInitExprClass: 13845 case Expr::DesignatedInitUpdateExprClass: 13846 case Expr::ImplicitValueInitExprClass: 13847 case Expr::ParenListExprClass: 13848 case Expr::VAArgExprClass: 13849 case Expr::AddrLabelExprClass: 13850 case Expr::StmtExprClass: 13851 case Expr::CXXMemberCallExprClass: 13852 case Expr::CUDAKernelCallExprClass: 13853 case Expr::CXXDynamicCastExprClass: 13854 case Expr::CXXTypeidExprClass: 13855 case Expr::CXXUuidofExprClass: 13856 case Expr::MSPropertyRefExprClass: 13857 case Expr::MSPropertySubscriptExprClass: 13858 case Expr::CXXNullPtrLiteralExprClass: 13859 case Expr::UserDefinedLiteralClass: 13860 case Expr::CXXThisExprClass: 13861 case Expr::CXXThrowExprClass: 13862 case Expr::CXXNewExprClass: 13863 case Expr::CXXDeleteExprClass: 13864 case Expr::CXXPseudoDestructorExprClass: 13865 case Expr::UnresolvedLookupExprClass: 13866 case Expr::TypoExprClass: 13867 case Expr::DependentScopeDeclRefExprClass: 13868 case Expr::CXXConstructExprClass: 13869 case Expr::CXXInheritedCtorInitExprClass: 13870 case Expr::CXXStdInitializerListExprClass: 13871 case Expr::CXXBindTemporaryExprClass: 13872 case Expr::ExprWithCleanupsClass: 13873 case Expr::CXXTemporaryObjectExprClass: 13874 case Expr::CXXUnresolvedConstructExprClass: 13875 case Expr::CXXDependentScopeMemberExprClass: 13876 case Expr::UnresolvedMemberExprClass: 13877 case Expr::ObjCStringLiteralClass: 13878 case Expr::ObjCBoxedExprClass: 13879 case Expr::ObjCArrayLiteralClass: 13880 case Expr::ObjCDictionaryLiteralClass: 13881 case Expr::ObjCEncodeExprClass: 13882 case Expr::ObjCMessageExprClass: 13883 case Expr::ObjCSelectorExprClass: 13884 case Expr::ObjCProtocolExprClass: 13885 case Expr::ObjCIvarRefExprClass: 13886 case Expr::ObjCPropertyRefExprClass: 13887 case Expr::ObjCSubscriptRefExprClass: 13888 case Expr::ObjCIsaExprClass: 13889 case Expr::ObjCAvailabilityCheckExprClass: 13890 case Expr::ShuffleVectorExprClass: 13891 case Expr::ConvertVectorExprClass: 13892 case Expr::BlockExprClass: 13893 case Expr::NoStmtClass: 13894 case Expr::OpaqueValueExprClass: 13895 case Expr::PackExpansionExprClass: 13896 case Expr::SubstNonTypeTemplateParmPackExprClass: 13897 case Expr::FunctionParmPackExprClass: 13898 case Expr::AsTypeExprClass: 13899 case Expr::ObjCIndirectCopyRestoreExprClass: 13900 case Expr::MaterializeTemporaryExprClass: 13901 case Expr::PseudoObjectExprClass: 13902 case Expr::AtomicExprClass: 13903 case Expr::LambdaExprClass: 13904 case Expr::CXXFoldExprClass: 13905 case Expr::CoawaitExprClass: 13906 case Expr::DependentCoawaitExprClass: 13907 case Expr::CoyieldExprClass: 13908 return ICEDiag(IK_NotICE, E->getBeginLoc()); 13909 13910 case Expr::InitListExprClass: { 13911 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the 13912 // form "T x = { a };" is equivalent to "T x = a;". 13913 // Unless we're initializing a reference, T is a scalar as it is known to be 13914 // of integral or enumeration type. 13915 if (E->isRValue()) 13916 if (cast<InitListExpr>(E)->getNumInits() == 1) 13917 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); 13918 return ICEDiag(IK_NotICE, E->getBeginLoc()); 13919 } 13920 13921 case Expr::SizeOfPackExprClass: 13922 case Expr::GNUNullExprClass: 13923 case Expr::SourceLocExprClass: 13924 return NoDiag(); 13925 13926 case Expr::SubstNonTypeTemplateParmExprClass: 13927 return 13928 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); 13929 13930 case Expr::ConstantExprClass: 13931 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); 13932 13933 case Expr::ParenExprClass: 13934 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 13935 case Expr::GenericSelectionExprClass: 13936 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); 13937 case Expr::IntegerLiteralClass: 13938 case Expr::FixedPointLiteralClass: 13939 case Expr::CharacterLiteralClass: 13940 case Expr::ObjCBoolLiteralExprClass: 13941 case Expr::CXXBoolLiteralExprClass: 13942 case Expr::CXXScalarValueInitExprClass: 13943 case Expr::TypeTraitExprClass: 13944 case Expr::ConceptSpecializationExprClass: 13945 case Expr::ArrayTypeTraitExprClass: 13946 case Expr::ExpressionTraitExprClass: 13947 case Expr::CXXNoexceptExprClass: 13948 return NoDiag(); 13949 case Expr::CallExprClass: 13950 case Expr::CXXOperatorCallExprClass: { 13951 // C99 6.6/3 allows function calls within unevaluated subexpressions of 13952 // constant expressions, but they can never be ICEs because an ICE cannot 13953 // contain an operand of (pointer to) function type. 13954 const CallExpr *CE = cast<CallExpr>(E); 13955 if (CE->getBuiltinCallee()) 13956 return CheckEvalInICE(E, Ctx); 13957 return ICEDiag(IK_NotICE, E->getBeginLoc()); 13958 } 13959 case Expr::CXXRewrittenBinaryOperatorClass: 13960 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), 13961 Ctx); 13962 case Expr::DeclRefExprClass: { 13963 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) 13964 return NoDiag(); 13965 const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl(); 13966 if (Ctx.getLangOpts().CPlusPlus && 13967 D && IsConstNonVolatile(D->getType())) { 13968 // Parameter variables are never constants. Without this check, 13969 // getAnyInitializer() can find a default argument, which leads 13970 // to chaos. 13971 if (isa<ParmVarDecl>(D)) 13972 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); 13973 13974 // C++ 7.1.5.1p2 13975 // A variable of non-volatile const-qualified integral or enumeration 13976 // type initialized by an ICE can be used in ICEs. 13977 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { 13978 if (!Dcl->getType()->isIntegralOrEnumerationType()) 13979 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); 13980 13981 const VarDecl *VD; 13982 // Look for a declaration of this variable that has an initializer, and 13983 // check whether it is an ICE. 13984 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE()) 13985 return NoDiag(); 13986 else 13987 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); 13988 } 13989 } 13990 return ICEDiag(IK_NotICE, E->getBeginLoc()); 13991 } 13992 case Expr::UnaryOperatorClass: { 13993 const UnaryOperator *Exp = cast<UnaryOperator>(E); 13994 switch (Exp->getOpcode()) { 13995 case UO_PostInc: 13996 case UO_PostDec: 13997 case UO_PreInc: 13998 case UO_PreDec: 13999 case UO_AddrOf: 14000 case UO_Deref: 14001 case UO_Coawait: 14002 // C99 6.6/3 allows increment and decrement within unevaluated 14003 // subexpressions of constant expressions, but they can never be ICEs 14004 // because an ICE cannot contain an lvalue operand. 14005 return ICEDiag(IK_NotICE, E->getBeginLoc()); 14006 case UO_Extension: 14007 case UO_LNot: 14008 case UO_Plus: 14009 case UO_Minus: 14010 case UO_Not: 14011 case UO_Real: 14012 case UO_Imag: 14013 return CheckICE(Exp->getSubExpr(), Ctx); 14014 } 14015 llvm_unreachable("invalid unary operator class"); 14016 } 14017 case Expr::OffsetOfExprClass: { 14018 // Note that per C99, offsetof must be an ICE. And AFAIK, using 14019 // EvaluateAsRValue matches the proposed gcc behavior for cases like 14020 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect 14021 // compliance: we should warn earlier for offsetof expressions with 14022 // array subscripts that aren't ICEs, and if the array subscripts 14023 // are ICEs, the value of the offsetof must be an integer constant. 14024 return CheckEvalInICE(E, Ctx); 14025 } 14026 case Expr::UnaryExprOrTypeTraitExprClass: { 14027 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); 14028 if ((Exp->getKind() == UETT_SizeOf) && 14029 Exp->getTypeOfArgument()->isVariableArrayType()) 14030 return ICEDiag(IK_NotICE, E->getBeginLoc()); 14031 return NoDiag(); 14032 } 14033 case Expr::BinaryOperatorClass: { 14034 const BinaryOperator *Exp = cast<BinaryOperator>(E); 14035 switch (Exp->getOpcode()) { 14036 case BO_PtrMemD: 14037 case BO_PtrMemI: 14038 case BO_Assign: 14039 case BO_MulAssign: 14040 case BO_DivAssign: 14041 case BO_RemAssign: 14042 case BO_AddAssign: 14043 case BO_SubAssign: 14044 case BO_ShlAssign: 14045 case BO_ShrAssign: 14046 case BO_AndAssign: 14047 case BO_XorAssign: 14048 case BO_OrAssign: 14049 // C99 6.6/3 allows assignments within unevaluated subexpressions of 14050 // constant expressions, but they can never be ICEs because an ICE cannot 14051 // contain an lvalue operand. 14052 return ICEDiag(IK_NotICE, E->getBeginLoc()); 14053 14054 case BO_Mul: 14055 case BO_Div: 14056 case BO_Rem: 14057 case BO_Add: 14058 case BO_Sub: 14059 case BO_Shl: 14060 case BO_Shr: 14061 case BO_LT: 14062 case BO_GT: 14063 case BO_LE: 14064 case BO_GE: 14065 case BO_EQ: 14066 case BO_NE: 14067 case BO_And: 14068 case BO_Xor: 14069 case BO_Or: 14070 case BO_Comma: 14071 case BO_Cmp: { 14072 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 14073 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 14074 if (Exp->getOpcode() == BO_Div || 14075 Exp->getOpcode() == BO_Rem) { 14076 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure 14077 // we don't evaluate one. 14078 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { 14079 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); 14080 if (REval == 0) 14081 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 14082 if (REval.isSigned() && REval.isAllOnesValue()) { 14083 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); 14084 if (LEval.isMinSignedValue()) 14085 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 14086 } 14087 } 14088 } 14089 if (Exp->getOpcode() == BO_Comma) { 14090 if (Ctx.getLangOpts().C99) { 14091 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 14092 // if it isn't evaluated. 14093 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) 14094 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 14095 } else { 14096 // In both C89 and C++, commas in ICEs are illegal. 14097 return ICEDiag(IK_NotICE, E->getBeginLoc()); 14098 } 14099 } 14100 return Worst(LHSResult, RHSResult); 14101 } 14102 case BO_LAnd: 14103 case BO_LOr: { 14104 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 14105 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 14106 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { 14107 // Rare case where the RHS has a comma "side-effect"; we need 14108 // to actually check the condition to see whether the side 14109 // with the comma is evaluated. 14110 if ((Exp->getOpcode() == BO_LAnd) != 14111 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) 14112 return RHSResult; 14113 return NoDiag(); 14114 } 14115 14116 return Worst(LHSResult, RHSResult); 14117 } 14118 } 14119 llvm_unreachable("invalid binary operator kind"); 14120 } 14121 case Expr::ImplicitCastExprClass: 14122 case Expr::CStyleCastExprClass: 14123 case Expr::CXXFunctionalCastExprClass: 14124 case Expr::CXXStaticCastExprClass: 14125 case Expr::CXXReinterpretCastExprClass: 14126 case Expr::CXXConstCastExprClass: 14127 case Expr::ObjCBridgedCastExprClass: { 14128 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 14129 if (isa<ExplicitCastExpr>(E)) { 14130 if (const FloatingLiteral *FL 14131 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { 14132 unsigned DestWidth = Ctx.getIntWidth(E->getType()); 14133 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); 14134 APSInt IgnoredVal(DestWidth, !DestSigned); 14135 bool Ignored; 14136 // If the value does not fit in the destination type, the behavior is 14137 // undefined, so we are not required to treat it as a constant 14138 // expression. 14139 if (FL->getValue().convertToInteger(IgnoredVal, 14140 llvm::APFloat::rmTowardZero, 14141 &Ignored) & APFloat::opInvalidOp) 14142 return ICEDiag(IK_NotICE, E->getBeginLoc()); 14143 return NoDiag(); 14144 } 14145 } 14146 switch (cast<CastExpr>(E)->getCastKind()) { 14147 case CK_LValueToRValue: 14148 case CK_AtomicToNonAtomic: 14149 case CK_NonAtomicToAtomic: 14150 case CK_NoOp: 14151 case CK_IntegralToBoolean: 14152 case CK_IntegralCast: 14153 return CheckICE(SubExpr, Ctx); 14154 default: 14155 return ICEDiag(IK_NotICE, E->getBeginLoc()); 14156 } 14157 } 14158 case Expr::BinaryConditionalOperatorClass: { 14159 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); 14160 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); 14161 if (CommonResult.Kind == IK_NotICE) return CommonResult; 14162 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 14163 if (FalseResult.Kind == IK_NotICE) return FalseResult; 14164 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; 14165 if (FalseResult.Kind == IK_ICEIfUnevaluated && 14166 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); 14167 return FalseResult; 14168 } 14169 case Expr::ConditionalOperatorClass: { 14170 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 14171 // If the condition (ignoring parens) is a __builtin_constant_p call, 14172 // then only the true side is actually considered in an integer constant 14173 // expression, and it is fully evaluated. This is an important GNU 14174 // extension. See GCC PR38377 for discussion. 14175 if (const CallExpr *CallCE 14176 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 14177 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 14178 return CheckEvalInICE(E, Ctx); 14179 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 14180 if (CondResult.Kind == IK_NotICE) 14181 return CondResult; 14182 14183 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 14184 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 14185 14186 if (TrueResult.Kind == IK_NotICE) 14187 return TrueResult; 14188 if (FalseResult.Kind == IK_NotICE) 14189 return FalseResult; 14190 if (CondResult.Kind == IK_ICEIfUnevaluated) 14191 return CondResult; 14192 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) 14193 return NoDiag(); 14194 // Rare case where the diagnostics depend on which side is evaluated 14195 // Note that if we get here, CondResult is 0, and at least one of 14196 // TrueResult and FalseResult is non-zero. 14197 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) 14198 return FalseResult; 14199 return TrueResult; 14200 } 14201 case Expr::CXXDefaultArgExprClass: 14202 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 14203 case Expr::CXXDefaultInitExprClass: 14204 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); 14205 case Expr::ChooseExprClass: { 14206 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); 14207 } 14208 case Expr::BuiltinBitCastExprClass: { 14209 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) 14210 return ICEDiag(IK_NotICE, E->getBeginLoc()); 14211 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); 14212 } 14213 } 14214 14215 llvm_unreachable("Invalid StmtClass!"); 14216 } 14217 14218 /// Evaluate an expression as a C++11 integral constant expression. 14219 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, 14220 const Expr *E, 14221 llvm::APSInt *Value, 14222 SourceLocation *Loc) { 14223 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { 14224 if (Loc) *Loc = E->getExprLoc(); 14225 return false; 14226 } 14227 14228 APValue Result; 14229 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) 14230 return false; 14231 14232 if (!Result.isInt()) { 14233 if (Loc) *Loc = E->getExprLoc(); 14234 return false; 14235 } 14236 14237 if (Value) *Value = Result.getInt(); 14238 return true; 14239 } 14240 14241 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, 14242 SourceLocation *Loc) const { 14243 assert(!isValueDependent() && 14244 "Expression evaluator can't be called on a dependent expression."); 14245 14246 if (Ctx.getLangOpts().CPlusPlus11) 14247 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); 14248 14249 ICEDiag D = CheckICE(this, Ctx); 14250 if (D.Kind != IK_ICE) { 14251 if (Loc) *Loc = D.Loc; 14252 return false; 14253 } 14254 return true; 14255 } 14256 14257 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx, 14258 SourceLocation *Loc, bool isEvaluated) const { 14259 assert(!isValueDependent() && 14260 "Expression evaluator can't be called on a dependent expression."); 14261 14262 if (Ctx.getLangOpts().CPlusPlus11) 14263 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc); 14264 14265 if (!isIntegerConstantExpr(Ctx, Loc)) 14266 return false; 14267 14268 // The only possible side-effects here are due to UB discovered in the 14269 // evaluation (for instance, INT_MAX + 1). In such a case, we are still 14270 // required to treat the expression as an ICE, so we produce the folded 14271 // value. 14272 EvalResult ExprResult; 14273 Expr::EvalStatus Status; 14274 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); 14275 Info.InConstantContext = true; 14276 14277 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) 14278 llvm_unreachable("ICE cannot be evaluated!"); 14279 14280 Value = ExprResult.Val.getInt(); 14281 return true; 14282 } 14283 14284 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { 14285 assert(!isValueDependent() && 14286 "Expression evaluator can't be called on a dependent expression."); 14287 14288 return CheckICE(this, Ctx).Kind == IK_ICE; 14289 } 14290 14291 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, 14292 SourceLocation *Loc) const { 14293 assert(!isValueDependent() && 14294 "Expression evaluator can't be called on a dependent expression."); 14295 14296 // We support this checking in C++98 mode in order to diagnose compatibility 14297 // issues. 14298 assert(Ctx.getLangOpts().CPlusPlus); 14299 14300 // Build evaluation settings. 14301 Expr::EvalStatus Status; 14302 SmallVector<PartialDiagnosticAt, 8> Diags; 14303 Status.Diag = &Diags; 14304 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 14305 14306 APValue Scratch; 14307 bool IsConstExpr = 14308 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && 14309 // FIXME: We don't produce a diagnostic for this, but the callers that 14310 // call us on arbitrary full-expressions should generally not care. 14311 Info.discardCleanups() && !Status.HasSideEffects; 14312 14313 if (!Diags.empty()) { 14314 IsConstExpr = false; 14315 if (Loc) *Loc = Diags[0].first; 14316 } else if (!IsConstExpr) { 14317 // FIXME: This shouldn't happen. 14318 if (Loc) *Loc = getExprLoc(); 14319 } 14320 14321 return IsConstExpr; 14322 } 14323 14324 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, 14325 const FunctionDecl *Callee, 14326 ArrayRef<const Expr*> Args, 14327 const Expr *This) const { 14328 assert(!isValueDependent() && 14329 "Expression evaluator can't be called on a dependent expression."); 14330 14331 Expr::EvalStatus Status; 14332 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); 14333 Info.InConstantContext = true; 14334 14335 LValue ThisVal; 14336 const LValue *ThisPtr = nullptr; 14337 if (This) { 14338 #ifndef NDEBUG 14339 auto *MD = dyn_cast<CXXMethodDecl>(Callee); 14340 assert(MD && "Don't provide `this` for non-methods."); 14341 assert(!MD->isStatic() && "Don't provide `this` for static methods."); 14342 #endif 14343 if (EvaluateObjectArgument(Info, This, ThisVal)) 14344 ThisPtr = &ThisVal; 14345 if (Info.EvalStatus.HasSideEffects) 14346 return false; 14347 } 14348 14349 ArgVector ArgValues(Args.size()); 14350 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); 14351 I != E; ++I) { 14352 if ((*I)->isValueDependent() || 14353 !Evaluate(ArgValues[I - Args.begin()], Info, *I)) 14354 // If evaluation fails, throw away the argument entirely. 14355 ArgValues[I - Args.begin()] = APValue(); 14356 if (Info.EvalStatus.HasSideEffects) 14357 return false; 14358 } 14359 14360 // Build fake call to Callee. 14361 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, 14362 ArgValues.data()); 14363 return Evaluate(Value, Info, this) && Info.discardCleanups() && 14364 !Info.EvalStatus.HasSideEffects; 14365 } 14366 14367 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, 14368 SmallVectorImpl< 14369 PartialDiagnosticAt> &Diags) { 14370 // FIXME: It would be useful to check constexpr function templates, but at the 14371 // moment the constant expression evaluator cannot cope with the non-rigorous 14372 // ASTs which we build for dependent expressions. 14373 if (FD->isDependentContext()) 14374 return true; 14375 14376 Expr::EvalStatus Status; 14377 Status.Diag = &Diags; 14378 14379 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); 14380 Info.InConstantContext = true; 14381 Info.CheckingPotentialConstantExpression = true; 14382 14383 // The constexpr VM attempts to compile all methods to bytecode here. 14384 if (Info.EnableNewConstInterp) { 14385 auto &InterpCtx = Info.Ctx.getInterpContext(); 14386 switch (InterpCtx.isPotentialConstantExpr(Info, FD)) { 14387 case interp::InterpResult::Success: 14388 case interp::InterpResult::Fail: 14389 return Diags.empty(); 14390 case interp::InterpResult::Bail: 14391 break; 14392 } 14393 } 14394 14395 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 14396 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; 14397 14398 // Fabricate an arbitrary expression on the stack and pretend that it 14399 // is a temporary being used as the 'this' pointer. 14400 LValue This; 14401 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); 14402 This.set({&VIE, Info.CurrentCall->Index}); 14403 14404 ArrayRef<const Expr*> Args; 14405 14406 APValue Scratch; 14407 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 14408 // Evaluate the call as a constant initializer, to allow the construction 14409 // of objects of non-literal types. 14410 Info.setEvaluatingDecl(This.getLValueBase(), Scratch); 14411 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); 14412 } else { 14413 SourceLocation Loc = FD->getLocation(); 14414 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr, 14415 Args, FD->getBody(), Info, Scratch, nullptr); 14416 } 14417 14418 return Diags.empty(); 14419 } 14420 14421 bool Expr::isPotentialConstantExprUnevaluated(Expr *E, 14422 const FunctionDecl *FD, 14423 SmallVectorImpl< 14424 PartialDiagnosticAt> &Diags) { 14425 assert(!E->isValueDependent() && 14426 "Expression evaluator can't be called on a dependent expression."); 14427 14428 Expr::EvalStatus Status; 14429 Status.Diag = &Diags; 14430 14431 EvalInfo Info(FD->getASTContext(), Status, 14432 EvalInfo::EM_ConstantExpressionUnevaluated); 14433 Info.InConstantContext = true; 14434 Info.CheckingPotentialConstantExpression = true; 14435 14436 // Fabricate a call stack frame to give the arguments a plausible cover story. 14437 ArrayRef<const Expr*> Args; 14438 ArgVector ArgValues(0); 14439 bool Success = EvaluateArgs(Args, ArgValues, Info, FD); 14440 (void)Success; 14441 assert(Success && 14442 "Failed to set up arguments for potential constant evaluation"); 14443 CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data()); 14444 14445 APValue ResultScratch; 14446 Evaluate(ResultScratch, Info, E); 14447 return Diags.empty(); 14448 } 14449 14450 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, 14451 unsigned Type) const { 14452 if (!getType()->isPointerType()) 14453 return false; 14454 14455 Expr::EvalStatus Status; 14456 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 14457 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); 14458 } 14459