1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr constant evaluator. 10 // 11 // Constant expression evaluation produces four main results: 12 // 13 // * A success/failure flag indicating whether constant folding was successful. 14 // This is the 'bool' return value used by most of the code in this file. A 15 // 'false' return value indicates that constant folding has failed, and any 16 // appropriate diagnostic has already been produced. 17 // 18 // * An evaluated result, valid only if constant folding has not failed. 19 // 20 // * A flag indicating if evaluation encountered (unevaluated) side-effects. 21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), 22 // where it is possible to determine the evaluated result regardless. 23 // 24 // * A set of notes indicating why the evaluation was not a constant expression 25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed 26 // too, why the expression could not be folded. 27 // 28 // If we are checking for a potential constant expression, failure to constant 29 // fold a potential constant sub-expression will be indicated by a 'false' 30 // return value (the expression could not be folded) and no diagnostic (the 31 // expression is not necessarily non-constant). 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "Interp/Context.h" 36 #include "Interp/Frame.h" 37 #include "Interp/State.h" 38 #include "clang/AST/APValue.h" 39 #include "clang/AST/ASTContext.h" 40 #include "clang/AST/ASTDiagnostic.h" 41 #include "clang/AST/ASTLambda.h" 42 #include "clang/AST/Attr.h" 43 #include "clang/AST/CXXInheritance.h" 44 #include "clang/AST/CharUnits.h" 45 #include "clang/AST/CurrentSourceLocExprScope.h" 46 #include "clang/AST/Expr.h" 47 #include "clang/AST/OSLog.h" 48 #include "clang/AST/OptionalDiagnostic.h" 49 #include "clang/AST/RecordLayout.h" 50 #include "clang/AST/StmtVisitor.h" 51 #include "clang/AST/TypeLoc.h" 52 #include "clang/Basic/Builtins.h" 53 #include "clang/Basic/DiagnosticSema.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "llvm/ADT/APFixedPoint.h" 56 #include "llvm/ADT/SmallBitVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/SaveAndRestore.h" 60 #include "llvm/Support/TimeProfiler.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <cstring> 63 #include <functional> 64 #include <optional> 65 66 #define DEBUG_TYPE "exprconstant" 67 68 using namespace clang; 69 using llvm::APFixedPoint; 70 using llvm::APInt; 71 using llvm::APSInt; 72 using llvm::APFloat; 73 using llvm::FixedPointSemantics; 74 75 namespace { 76 struct LValue; 77 class CallStackFrame; 78 class EvalInfo; 79 80 using SourceLocExprScopeGuard = 81 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 82 83 static QualType getType(APValue::LValueBase B) { 84 return B.getType(); 85 } 86 87 /// Get an LValue path entry, which is known to not be an array index, as a 88 /// field declaration. 89 static const FieldDecl *getAsField(APValue::LValuePathEntry E) { 90 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); 91 } 92 /// Get an LValue path entry, which is known to not be an array index, as a 93 /// base class declaration. 94 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { 95 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); 96 } 97 /// Determine whether this LValue path entry for a base class names a virtual 98 /// base class. 99 static bool isVirtualBaseClass(APValue::LValuePathEntry E) { 100 return E.getAsBaseOrMember().getInt(); 101 } 102 103 /// Given an expression, determine the type used to store the result of 104 /// evaluating that expression. 105 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { 106 if (E->isPRValue()) 107 return E->getType(); 108 return Ctx.getLValueReferenceType(E->getType()); 109 } 110 111 /// Given a CallExpr, try to get the alloc_size attribute. May return null. 112 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { 113 if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) 114 return DirectCallee->getAttr<AllocSizeAttr>(); 115 if (const Decl *IndirectCallee = CE->getCalleeDecl()) 116 return IndirectCallee->getAttr<AllocSizeAttr>(); 117 return nullptr; 118 } 119 120 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. 121 /// This will look through a single cast. 122 /// 123 /// Returns null if we couldn't unwrap a function with alloc_size. 124 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { 125 if (!E->getType()->isPointerType()) 126 return nullptr; 127 128 E = E->IgnoreParens(); 129 // If we're doing a variable assignment from e.g. malloc(N), there will 130 // probably be a cast of some kind. In exotic cases, we might also see a 131 // top-level ExprWithCleanups. Ignore them either way. 132 if (const auto *FE = dyn_cast<FullExpr>(E)) 133 E = FE->getSubExpr()->IgnoreParens(); 134 135 if (const auto *Cast = dyn_cast<CastExpr>(E)) 136 E = Cast->getSubExpr()->IgnoreParens(); 137 138 if (const auto *CE = dyn_cast<CallExpr>(E)) 139 return getAllocSizeAttr(CE) ? CE : nullptr; 140 return nullptr; 141 } 142 143 /// Determines whether or not the given Base contains a call to a function 144 /// with the alloc_size attribute. 145 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { 146 const auto *E = Base.dyn_cast<const Expr *>(); 147 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); 148 } 149 150 /// Determines whether the given kind of constant expression is only ever 151 /// used for name mangling. If so, it's permitted to reference things that we 152 /// can't generate code for (in particular, dllimported functions). 153 static bool isForManglingOnly(ConstantExprKind Kind) { 154 switch (Kind) { 155 case ConstantExprKind::Normal: 156 case ConstantExprKind::ClassTemplateArgument: 157 case ConstantExprKind::ImmediateInvocation: 158 // Note that non-type template arguments of class type are emitted as 159 // template parameter objects. 160 return false; 161 162 case ConstantExprKind::NonClassTemplateArgument: 163 return true; 164 } 165 llvm_unreachable("unknown ConstantExprKind"); 166 } 167 168 static bool isTemplateArgument(ConstantExprKind Kind) { 169 switch (Kind) { 170 case ConstantExprKind::Normal: 171 case ConstantExprKind::ImmediateInvocation: 172 return false; 173 174 case ConstantExprKind::ClassTemplateArgument: 175 case ConstantExprKind::NonClassTemplateArgument: 176 return true; 177 } 178 llvm_unreachable("unknown ConstantExprKind"); 179 } 180 181 /// The bound to claim that an array of unknown bound has. 182 /// The value in MostDerivedArraySize is undefined in this case. So, set it 183 /// to an arbitrary value that's likely to loudly break things if it's used. 184 static const uint64_t AssumedSizeForUnsizedArray = 185 std::numeric_limits<uint64_t>::max() / 2; 186 187 /// Determines if an LValue with the given LValueBase will have an unsized 188 /// array in its designator. 189 /// Find the path length and type of the most-derived subobject in the given 190 /// path, and find the size of the containing array, if any. 191 static unsigned 192 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, 193 ArrayRef<APValue::LValuePathEntry> Path, 194 uint64_t &ArraySize, QualType &Type, bool &IsArray, 195 bool &FirstEntryIsUnsizedArray) { 196 // This only accepts LValueBases from APValues, and APValues don't support 197 // arrays that lack size info. 198 assert(!isBaseAnAllocSizeCall(Base) && 199 "Unsized arrays shouldn't appear here"); 200 unsigned MostDerivedLength = 0; 201 Type = getType(Base); 202 203 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 204 if (Type->isArrayType()) { 205 const ArrayType *AT = Ctx.getAsArrayType(Type); 206 Type = AT->getElementType(); 207 MostDerivedLength = I + 1; 208 IsArray = true; 209 210 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 211 ArraySize = CAT->getSize().getZExtValue(); 212 } else { 213 assert(I == 0 && "unexpected unsized array designator"); 214 FirstEntryIsUnsizedArray = true; 215 ArraySize = AssumedSizeForUnsizedArray; 216 } 217 } else if (Type->isAnyComplexType()) { 218 const ComplexType *CT = Type->castAs<ComplexType>(); 219 Type = CT->getElementType(); 220 ArraySize = 2; 221 MostDerivedLength = I + 1; 222 IsArray = true; 223 } else if (const FieldDecl *FD = getAsField(Path[I])) { 224 Type = FD->getType(); 225 ArraySize = 0; 226 MostDerivedLength = I + 1; 227 IsArray = false; 228 } else { 229 // Path[I] describes a base class. 230 ArraySize = 0; 231 IsArray = false; 232 } 233 } 234 return MostDerivedLength; 235 } 236 237 /// A path from a glvalue to a subobject of that glvalue. 238 struct SubobjectDesignator { 239 /// True if the subobject was named in a manner not supported by C++11. Such 240 /// lvalues can still be folded, but they are not core constant expressions 241 /// and we cannot perform lvalue-to-rvalue conversions on them. 242 unsigned Invalid : 1; 243 244 /// Is this a pointer one past the end of an object? 245 unsigned IsOnePastTheEnd : 1; 246 247 /// Indicator of whether the first entry is an unsized array. 248 unsigned FirstEntryIsAnUnsizedArray : 1; 249 250 /// Indicator of whether the most-derived object is an array element. 251 unsigned MostDerivedIsArrayElement : 1; 252 253 /// The length of the path to the most-derived object of which this is a 254 /// subobject. 255 unsigned MostDerivedPathLength : 28; 256 257 /// The size of the array of which the most-derived object is an element. 258 /// This will always be 0 if the most-derived object is not an array 259 /// element. 0 is not an indicator of whether or not the most-derived object 260 /// is an array, however, because 0-length arrays are allowed. 261 /// 262 /// If the current array is an unsized array, the value of this is 263 /// undefined. 264 uint64_t MostDerivedArraySize; 265 266 /// The type of the most derived object referred to by this address. 267 QualType MostDerivedType; 268 269 typedef APValue::LValuePathEntry PathEntry; 270 271 /// The entries on the path from the glvalue to the designated subobject. 272 SmallVector<PathEntry, 8> Entries; 273 274 SubobjectDesignator() : Invalid(true) {} 275 276 explicit SubobjectDesignator(QualType T) 277 : Invalid(false), IsOnePastTheEnd(false), 278 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 279 MostDerivedPathLength(0), MostDerivedArraySize(0), 280 MostDerivedType(T) {} 281 282 SubobjectDesignator(ASTContext &Ctx, const APValue &V) 283 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), 284 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 285 MostDerivedPathLength(0), MostDerivedArraySize(0) { 286 assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); 287 if (!Invalid) { 288 IsOnePastTheEnd = V.isLValueOnePastTheEnd(); 289 ArrayRef<PathEntry> VEntries = V.getLValuePath(); 290 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); 291 if (V.getLValueBase()) { 292 bool IsArray = false; 293 bool FirstIsUnsizedArray = false; 294 MostDerivedPathLength = findMostDerivedSubobject( 295 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, 296 MostDerivedType, IsArray, FirstIsUnsizedArray); 297 MostDerivedIsArrayElement = IsArray; 298 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 299 } 300 } 301 } 302 303 void truncate(ASTContext &Ctx, APValue::LValueBase Base, 304 unsigned NewLength) { 305 if (Invalid) 306 return; 307 308 assert(Base && "cannot truncate path for null pointer"); 309 assert(NewLength <= Entries.size() && "not a truncation"); 310 311 if (NewLength == Entries.size()) 312 return; 313 Entries.resize(NewLength); 314 315 bool IsArray = false; 316 bool FirstIsUnsizedArray = false; 317 MostDerivedPathLength = findMostDerivedSubobject( 318 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, 319 FirstIsUnsizedArray); 320 MostDerivedIsArrayElement = IsArray; 321 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 322 } 323 324 void setInvalid() { 325 Invalid = true; 326 Entries.clear(); 327 } 328 329 /// Determine whether the most derived subobject is an array without a 330 /// known bound. 331 bool isMostDerivedAnUnsizedArray() const { 332 assert(!Invalid && "Calling this makes no sense on invalid designators"); 333 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; 334 } 335 336 /// Determine what the most derived array's size is. Results in an assertion 337 /// failure if the most derived array lacks a size. 338 uint64_t getMostDerivedArraySize() const { 339 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); 340 return MostDerivedArraySize; 341 } 342 343 /// Determine whether this is a one-past-the-end pointer. 344 bool isOnePastTheEnd() const { 345 assert(!Invalid); 346 if (IsOnePastTheEnd) 347 return true; 348 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && 349 Entries[MostDerivedPathLength - 1].getAsArrayIndex() == 350 MostDerivedArraySize) 351 return true; 352 return false; 353 } 354 355 /// Get the range of valid index adjustments in the form 356 /// {maximum value that can be subtracted from this pointer, 357 /// maximum value that can be added to this pointer} 358 std::pair<uint64_t, uint64_t> validIndexAdjustments() { 359 if (Invalid || isMostDerivedAnUnsizedArray()) 360 return {0, 0}; 361 362 // [expr.add]p4: For the purposes of these operators, a pointer to a 363 // nonarray object behaves the same as a pointer to the first element of 364 // an array of length one with the type of the object as its element type. 365 bool IsArray = MostDerivedPathLength == Entries.size() && 366 MostDerivedIsArrayElement; 367 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 368 : (uint64_t)IsOnePastTheEnd; 369 uint64_t ArraySize = 370 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 371 return {ArrayIndex, ArraySize - ArrayIndex}; 372 } 373 374 /// Check that this refers to a valid subobject. 375 bool isValidSubobject() const { 376 if (Invalid) 377 return false; 378 return !isOnePastTheEnd(); 379 } 380 /// Check that this refers to a valid subobject, and if not, produce a 381 /// relevant diagnostic and set the designator as invalid. 382 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); 383 384 /// Get the type of the designated object. 385 QualType getType(ASTContext &Ctx) const { 386 assert(!Invalid && "invalid designator has no subobject type"); 387 return MostDerivedPathLength == Entries.size() 388 ? MostDerivedType 389 : Ctx.getRecordType(getAsBaseClass(Entries.back())); 390 } 391 392 /// Update this designator to refer to the first element within this array. 393 void addArrayUnchecked(const ConstantArrayType *CAT) { 394 Entries.push_back(PathEntry::ArrayIndex(0)); 395 396 // This is a most-derived object. 397 MostDerivedType = CAT->getElementType(); 398 MostDerivedIsArrayElement = true; 399 MostDerivedArraySize = CAT->getSize().getZExtValue(); 400 MostDerivedPathLength = Entries.size(); 401 } 402 /// Update this designator to refer to the first element within the array of 403 /// elements of type T. This is an array of unknown size. 404 void addUnsizedArrayUnchecked(QualType ElemTy) { 405 Entries.push_back(PathEntry::ArrayIndex(0)); 406 407 MostDerivedType = ElemTy; 408 MostDerivedIsArrayElement = true; 409 // The value in MostDerivedArraySize is undefined in this case. So, set it 410 // to an arbitrary value that's likely to loudly break things if it's 411 // used. 412 MostDerivedArraySize = AssumedSizeForUnsizedArray; 413 MostDerivedPathLength = Entries.size(); 414 } 415 /// Update this designator to refer to the given base or member of this 416 /// object. 417 void addDeclUnchecked(const Decl *D, bool Virtual = false) { 418 Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); 419 420 // If this isn't a base class, it's a new most-derived object. 421 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 422 MostDerivedType = FD->getType(); 423 MostDerivedIsArrayElement = false; 424 MostDerivedArraySize = 0; 425 MostDerivedPathLength = Entries.size(); 426 } 427 } 428 /// Update this designator to refer to the given complex component. 429 void addComplexUnchecked(QualType EltTy, bool Imag) { 430 Entries.push_back(PathEntry::ArrayIndex(Imag)); 431 432 // This is technically a most-derived object, though in practice this 433 // is unlikely to matter. 434 MostDerivedType = EltTy; 435 MostDerivedIsArrayElement = true; 436 MostDerivedArraySize = 2; 437 MostDerivedPathLength = Entries.size(); 438 } 439 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); 440 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, 441 const APSInt &N); 442 /// Add N to the address of this subobject. 443 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { 444 if (Invalid || !N) return; 445 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); 446 if (isMostDerivedAnUnsizedArray()) { 447 diagnoseUnsizedArrayPointerArithmetic(Info, E); 448 // Can't verify -- trust that the user is doing the right thing (or if 449 // not, trust that the caller will catch the bad behavior). 450 // FIXME: Should we reject if this overflows, at least? 451 Entries.back() = PathEntry::ArrayIndex( 452 Entries.back().getAsArrayIndex() + TruncatedN); 453 return; 454 } 455 456 // [expr.add]p4: For the purposes of these operators, a pointer to a 457 // nonarray object behaves the same as a pointer to the first element of 458 // an array of length one with the type of the object as its element type. 459 bool IsArray = MostDerivedPathLength == Entries.size() && 460 MostDerivedIsArrayElement; 461 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 462 : (uint64_t)IsOnePastTheEnd; 463 uint64_t ArraySize = 464 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 465 466 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { 467 // Calculate the actual index in a wide enough type, so we can include 468 // it in the note. 469 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); 470 (llvm::APInt&)N += ArrayIndex; 471 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); 472 diagnosePointerArithmetic(Info, E, N); 473 setInvalid(); 474 return; 475 } 476 477 ArrayIndex += TruncatedN; 478 assert(ArrayIndex <= ArraySize && 479 "bounds check succeeded for out-of-bounds index"); 480 481 if (IsArray) 482 Entries.back() = PathEntry::ArrayIndex(ArrayIndex); 483 else 484 IsOnePastTheEnd = (ArrayIndex != 0); 485 } 486 }; 487 488 /// A scope at the end of which an object can need to be destroyed. 489 enum class ScopeKind { 490 Block, 491 FullExpression, 492 Call 493 }; 494 495 /// A reference to a particular call and its arguments. 496 struct CallRef { 497 CallRef() : OrigCallee(), CallIndex(0), Version() {} 498 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) 499 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} 500 501 explicit operator bool() const { return OrigCallee; } 502 503 /// Get the parameter that the caller initialized, corresponding to the 504 /// given parameter in the callee. 505 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { 506 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex()) 507 : PVD; 508 } 509 510 /// The callee at the point where the arguments were evaluated. This might 511 /// be different from the actual callee (a different redeclaration, or a 512 /// virtual override), but this function's parameters are the ones that 513 /// appear in the parameter map. 514 const FunctionDecl *OrigCallee; 515 /// The call index of the frame that holds the argument values. 516 unsigned CallIndex; 517 /// The version of the parameters corresponding to this call. 518 unsigned Version; 519 }; 520 521 /// A stack frame in the constexpr call stack. 522 class CallStackFrame : public interp::Frame { 523 public: 524 EvalInfo &Info; 525 526 /// Parent - The caller of this stack frame. 527 CallStackFrame *Caller; 528 529 /// Callee - The function which was called. 530 const FunctionDecl *Callee; 531 532 /// This - The binding for the this pointer in this call, if any. 533 const LValue *This; 534 535 /// CallExpr - The syntactical structure of member function calls 536 const Expr *CallExpr; 537 538 /// Information on how to find the arguments to this call. Our arguments 539 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a 540 /// key and this value as the version. 541 CallRef Arguments; 542 543 /// Source location information about the default argument or default 544 /// initializer expression we're evaluating, if any. 545 CurrentSourceLocExprScope CurSourceLocExprScope; 546 547 // Note that we intentionally use std::map here so that references to 548 // values are stable. 549 typedef std::pair<const void *, unsigned> MapKeyTy; 550 typedef std::map<MapKeyTy, APValue> MapTy; 551 /// Temporaries - Temporary lvalues materialized within this stack frame. 552 MapTy Temporaries; 553 554 /// CallLoc - The location of the call expression for this call. 555 SourceLocation CallLoc; 556 557 /// Index - The call index of this call. 558 unsigned Index; 559 560 /// The stack of integers for tracking version numbers for temporaries. 561 SmallVector<unsigned, 2> TempVersionStack = {1}; 562 unsigned CurTempVersion = TempVersionStack.back(); 563 564 unsigned getTempVersion() const { return TempVersionStack.back(); } 565 566 void pushTempVersion() { 567 TempVersionStack.push_back(++CurTempVersion); 568 } 569 570 void popTempVersion() { 571 TempVersionStack.pop_back(); 572 } 573 574 CallRef createCall(const FunctionDecl *Callee) { 575 return {Callee, Index, ++CurTempVersion}; 576 } 577 578 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact 579 // on the overall stack usage of deeply-recursing constexpr evaluations. 580 // (We should cache this map rather than recomputing it repeatedly.) 581 // But let's try this and see how it goes; we can look into caching the map 582 // as a later change. 583 584 /// LambdaCaptureFields - Mapping from captured variables/this to 585 /// corresponding data members in the closure class. 586 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 587 FieldDecl *LambdaThisCaptureField = nullptr; 588 589 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 590 const FunctionDecl *Callee, const LValue *This, 591 const Expr *CallExpr, CallRef Arguments); 592 ~CallStackFrame(); 593 594 // Return the temporary for Key whose version number is Version. 595 APValue *getTemporary(const void *Key, unsigned Version) { 596 MapKeyTy KV(Key, Version); 597 auto LB = Temporaries.lower_bound(KV); 598 if (LB != Temporaries.end() && LB->first == KV) 599 return &LB->second; 600 return nullptr; 601 } 602 603 // Return the current temporary for Key in the map. 604 APValue *getCurrentTemporary(const void *Key) { 605 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 606 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 607 return &std::prev(UB)->second; 608 return nullptr; 609 } 610 611 // Return the version number of the current temporary for Key. 612 unsigned getCurrentTemporaryVersion(const void *Key) const { 613 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 614 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 615 return std::prev(UB)->first.second; 616 return 0; 617 } 618 619 /// Allocate storage for an object of type T in this stack frame. 620 /// Populates LV with a handle to the created object. Key identifies 621 /// the temporary within the stack frame, and must not be reused without 622 /// bumping the temporary version number. 623 template<typename KeyT> 624 APValue &createTemporary(const KeyT *Key, QualType T, 625 ScopeKind Scope, LValue &LV); 626 627 /// Allocate storage for a parameter of a function call made in this frame. 628 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); 629 630 void describe(llvm::raw_ostream &OS) const override; 631 632 Frame *getCaller() const override { return Caller; } 633 SourceLocation getCallLocation() const override { return CallLoc; } 634 const FunctionDecl *getCallee() const override { return Callee; } 635 636 bool isStdFunction() const { 637 for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) 638 if (DC->isStdNamespace()) 639 return true; 640 return false; 641 } 642 643 private: 644 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, 645 ScopeKind Scope); 646 }; 647 648 /// Temporarily override 'this'. 649 class ThisOverrideRAII { 650 public: 651 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) 652 : Frame(Frame), OldThis(Frame.This) { 653 if (Enable) 654 Frame.This = NewThis; 655 } 656 ~ThisOverrideRAII() { 657 Frame.This = OldThis; 658 } 659 private: 660 CallStackFrame &Frame; 661 const LValue *OldThis; 662 }; 663 664 // A shorthand time trace scope struct, prints source range, for example 665 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}} 666 class ExprTimeTraceScope { 667 public: 668 ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name) 669 : TimeScope(Name, [E, &Ctx] { 670 return E->getSourceRange().printToString(Ctx.getSourceManager()); 671 }) {} 672 673 private: 674 llvm::TimeTraceScope TimeScope; 675 }; 676 } 677 678 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 679 const LValue &This, QualType ThisType); 680 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 681 APValue::LValueBase LVBase, APValue &Value, 682 QualType T); 683 684 namespace { 685 /// A cleanup, and a flag indicating whether it is lifetime-extended. 686 class Cleanup { 687 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; 688 APValue::LValueBase Base; 689 QualType T; 690 691 public: 692 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, 693 ScopeKind Scope) 694 : Value(Val, Scope), Base(Base), T(T) {} 695 696 /// Determine whether this cleanup should be performed at the end of the 697 /// given kind of scope. 698 bool isDestroyedAtEndOf(ScopeKind K) const { 699 return (int)Value.getInt() >= (int)K; 700 } 701 bool endLifetime(EvalInfo &Info, bool RunDestructors) { 702 if (RunDestructors) { 703 SourceLocation Loc; 704 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) 705 Loc = VD->getLocation(); 706 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 707 Loc = E->getExprLoc(); 708 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); 709 } 710 *Value.getPointer() = APValue(); 711 return true; 712 } 713 714 bool hasSideEffect() { 715 return T.isDestructedType(); 716 } 717 }; 718 719 /// A reference to an object whose construction we are currently evaluating. 720 struct ObjectUnderConstruction { 721 APValue::LValueBase Base; 722 ArrayRef<APValue::LValuePathEntry> Path; 723 friend bool operator==(const ObjectUnderConstruction &LHS, 724 const ObjectUnderConstruction &RHS) { 725 return LHS.Base == RHS.Base && LHS.Path == RHS.Path; 726 } 727 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { 728 return llvm::hash_combine(Obj.Base, Obj.Path); 729 } 730 }; 731 enum class ConstructionPhase { 732 None, 733 Bases, 734 AfterBases, 735 AfterFields, 736 Destroying, 737 DestroyingBases 738 }; 739 } 740 741 namespace llvm { 742 template<> struct DenseMapInfo<ObjectUnderConstruction> { 743 using Base = DenseMapInfo<APValue::LValueBase>; 744 static ObjectUnderConstruction getEmptyKey() { 745 return {Base::getEmptyKey(), {}}; } 746 static ObjectUnderConstruction getTombstoneKey() { 747 return {Base::getTombstoneKey(), {}}; 748 } 749 static unsigned getHashValue(const ObjectUnderConstruction &Object) { 750 return hash_value(Object); 751 } 752 static bool isEqual(const ObjectUnderConstruction &LHS, 753 const ObjectUnderConstruction &RHS) { 754 return LHS == RHS; 755 } 756 }; 757 } 758 759 namespace { 760 /// A dynamically-allocated heap object. 761 struct DynAlloc { 762 /// The value of this heap-allocated object. 763 APValue Value; 764 /// The allocating expression; used for diagnostics. Either a CXXNewExpr 765 /// or a CallExpr (the latter is for direct calls to operator new inside 766 /// std::allocator<T>::allocate). 767 const Expr *AllocExpr = nullptr; 768 769 enum Kind { 770 New, 771 ArrayNew, 772 StdAllocator 773 }; 774 775 /// Get the kind of the allocation. This must match between allocation 776 /// and deallocation. 777 Kind getKind() const { 778 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) 779 return NE->isArray() ? ArrayNew : New; 780 assert(isa<CallExpr>(AllocExpr)); 781 return StdAllocator; 782 } 783 }; 784 785 struct DynAllocOrder { 786 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { 787 return L.getIndex() < R.getIndex(); 788 } 789 }; 790 791 /// EvalInfo - This is a private struct used by the evaluator to capture 792 /// information about a subexpression as it is folded. It retains information 793 /// about the AST context, but also maintains information about the folded 794 /// expression. 795 /// 796 /// If an expression could be evaluated, it is still possible it is not a C 797 /// "integer constant expression" or constant expression. If not, this struct 798 /// captures information about how and why not. 799 /// 800 /// One bit of information passed *into* the request for constant folding 801 /// indicates whether the subexpression is "evaluated" or not according to C 802 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can 803 /// evaluate the expression regardless of what the RHS is, but C only allows 804 /// certain things in certain situations. 805 class EvalInfo : public interp::State { 806 public: 807 ASTContext &Ctx; 808 809 /// EvalStatus - Contains information about the evaluation. 810 Expr::EvalStatus &EvalStatus; 811 812 /// CurrentCall - The top of the constexpr call stack. 813 CallStackFrame *CurrentCall; 814 815 /// CallStackDepth - The number of calls in the call stack right now. 816 unsigned CallStackDepth; 817 818 /// NextCallIndex - The next call index to assign. 819 unsigned NextCallIndex; 820 821 /// StepsLeft - The remaining number of evaluation steps we're permitted 822 /// to perform. This is essentially a limit for the number of statements 823 /// we will evaluate. 824 unsigned StepsLeft; 825 826 /// Enable the experimental new constant interpreter. If an expression is 827 /// not supported by the interpreter, an error is triggered. 828 bool EnableNewConstInterp; 829 830 /// BottomFrame - The frame in which evaluation started. This must be 831 /// initialized after CurrentCall and CallStackDepth. 832 CallStackFrame BottomFrame; 833 834 /// A stack of values whose lifetimes end at the end of some surrounding 835 /// evaluation frame. 836 llvm::SmallVector<Cleanup, 16> CleanupStack; 837 838 /// EvaluatingDecl - This is the declaration whose initializer is being 839 /// evaluated, if any. 840 APValue::LValueBase EvaluatingDecl; 841 842 enum class EvaluatingDeclKind { 843 None, 844 /// We're evaluating the construction of EvaluatingDecl. 845 Ctor, 846 /// We're evaluating the destruction of EvaluatingDecl. 847 Dtor, 848 }; 849 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; 850 851 /// EvaluatingDeclValue - This is the value being constructed for the 852 /// declaration whose initializer is being evaluated, if any. 853 APValue *EvaluatingDeclValue; 854 855 /// Set of objects that are currently being constructed. 856 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> 857 ObjectsUnderConstruction; 858 859 /// Current heap allocations, along with the location where each was 860 /// allocated. We use std::map here because we need stable addresses 861 /// for the stored APValues. 862 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; 863 864 /// The number of heap allocations performed so far in this evaluation. 865 unsigned NumHeapAllocs = 0; 866 867 struct EvaluatingConstructorRAII { 868 EvalInfo &EI; 869 ObjectUnderConstruction Object; 870 bool DidInsert; 871 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, 872 bool HasBases) 873 : EI(EI), Object(Object) { 874 DidInsert = 875 EI.ObjectsUnderConstruction 876 .insert({Object, HasBases ? ConstructionPhase::Bases 877 : ConstructionPhase::AfterBases}) 878 .second; 879 } 880 void finishedConstructingBases() { 881 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; 882 } 883 void finishedConstructingFields() { 884 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; 885 } 886 ~EvaluatingConstructorRAII() { 887 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); 888 } 889 }; 890 891 struct EvaluatingDestructorRAII { 892 EvalInfo &EI; 893 ObjectUnderConstruction Object; 894 bool DidInsert; 895 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) 896 : EI(EI), Object(Object) { 897 DidInsert = EI.ObjectsUnderConstruction 898 .insert({Object, ConstructionPhase::Destroying}) 899 .second; 900 } 901 void startedDestroyingBases() { 902 EI.ObjectsUnderConstruction[Object] = 903 ConstructionPhase::DestroyingBases; 904 } 905 ~EvaluatingDestructorRAII() { 906 if (DidInsert) 907 EI.ObjectsUnderConstruction.erase(Object); 908 } 909 }; 910 911 ConstructionPhase 912 isEvaluatingCtorDtor(APValue::LValueBase Base, 913 ArrayRef<APValue::LValuePathEntry> Path) { 914 return ObjectsUnderConstruction.lookup({Base, Path}); 915 } 916 917 /// If we're currently speculatively evaluating, the outermost call stack 918 /// depth at which we can mutate state, otherwise 0. 919 unsigned SpeculativeEvaluationDepth = 0; 920 921 /// The current array initialization index, if we're performing array 922 /// initialization. 923 uint64_t ArrayInitIndex = -1; 924 925 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further 926 /// notes attached to it will also be stored, otherwise they will not be. 927 bool HasActiveDiagnostic; 928 929 /// Have we emitted a diagnostic explaining why we couldn't constant 930 /// fold (not just why it's not strictly a constant expression)? 931 bool HasFoldFailureDiagnostic; 932 933 /// Whether we're checking that an expression is a potential constant 934 /// expression. If so, do not fail on constructs that could become constant 935 /// later on (such as a use of an undefined global). 936 bool CheckingPotentialConstantExpression = false; 937 938 /// Whether we're checking for an expression that has undefined behavior. 939 /// If so, we will produce warnings if we encounter an operation that is 940 /// always undefined. 941 /// 942 /// Note that we still need to evaluate the expression normally when this 943 /// is set; this is used when evaluating ICEs in C. 944 bool CheckingForUndefinedBehavior = false; 945 946 enum EvaluationMode { 947 /// Evaluate as a constant expression. Stop if we find that the expression 948 /// is not a constant expression. 949 EM_ConstantExpression, 950 951 /// Evaluate as a constant expression. Stop if we find that the expression 952 /// is not a constant expression. Some expressions can be retried in the 953 /// optimizer if we don't constant fold them here, but in an unevaluated 954 /// context we try to fold them immediately since the optimizer never 955 /// gets a chance to look at it. 956 EM_ConstantExpressionUnevaluated, 957 958 /// Fold the expression to a constant. Stop if we hit a side-effect that 959 /// we can't model. 960 EM_ConstantFold, 961 962 /// Evaluate in any way we know how. Don't worry about side-effects that 963 /// can't be modeled. 964 EM_IgnoreSideEffects, 965 } EvalMode; 966 967 /// Are we checking whether the expression is a potential constant 968 /// expression? 969 bool checkingPotentialConstantExpression() const override { 970 return CheckingPotentialConstantExpression; 971 } 972 973 /// Are we checking an expression for overflow? 974 // FIXME: We should check for any kind of undefined or suspicious behavior 975 // in such constructs, not just overflow. 976 bool checkingForUndefinedBehavior() const override { 977 return CheckingForUndefinedBehavior; 978 } 979 980 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) 981 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), 982 CallStackDepth(0), NextCallIndex(1), 983 StepsLeft(C.getLangOpts().ConstexprStepLimit), 984 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), 985 BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr, 986 /*This=*/nullptr, 987 /*CallExpr=*/nullptr, CallRef()), 988 EvaluatingDecl((const ValueDecl *)nullptr), 989 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), 990 HasFoldFailureDiagnostic(false), EvalMode(Mode) {} 991 992 ~EvalInfo() { 993 discardCleanups(); 994 } 995 996 ASTContext &getCtx() const override { return Ctx; } 997 998 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, 999 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { 1000 EvaluatingDecl = Base; 1001 IsEvaluatingDecl = EDK; 1002 EvaluatingDeclValue = &Value; 1003 } 1004 1005 bool CheckCallLimit(SourceLocation Loc) { 1006 // Don't perform any constexpr calls (other than the call we're checking) 1007 // when checking a potential constant expression. 1008 if (checkingPotentialConstantExpression() && CallStackDepth > 1) 1009 return false; 1010 if (NextCallIndex == 0) { 1011 // NextCallIndex has wrapped around. 1012 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); 1013 return false; 1014 } 1015 if (CallStackDepth <= getLangOpts().ConstexprCallDepth) 1016 return true; 1017 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) 1018 << getLangOpts().ConstexprCallDepth; 1019 return false; 1020 } 1021 1022 std::pair<CallStackFrame *, unsigned> 1023 getCallFrameAndDepth(unsigned CallIndex) { 1024 assert(CallIndex && "no call index in getCallFrameAndDepth"); 1025 // We will eventually hit BottomFrame, which has Index 1, so Frame can't 1026 // be null in this loop. 1027 unsigned Depth = CallStackDepth; 1028 CallStackFrame *Frame = CurrentCall; 1029 while (Frame->Index > CallIndex) { 1030 Frame = Frame->Caller; 1031 --Depth; 1032 } 1033 if (Frame->Index == CallIndex) 1034 return {Frame, Depth}; 1035 return {nullptr, 0}; 1036 } 1037 1038 bool nextStep(const Stmt *S) { 1039 if (!StepsLeft) { 1040 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); 1041 return false; 1042 } 1043 --StepsLeft; 1044 return true; 1045 } 1046 1047 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); 1048 1049 std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) { 1050 std::optional<DynAlloc *> Result; 1051 auto It = HeapAllocs.find(DA); 1052 if (It != HeapAllocs.end()) 1053 Result = &It->second; 1054 return Result; 1055 } 1056 1057 /// Get the allocated storage for the given parameter of the given call. 1058 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { 1059 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first; 1060 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version) 1061 : nullptr; 1062 } 1063 1064 /// Information about a stack frame for std::allocator<T>::[de]allocate. 1065 struct StdAllocatorCaller { 1066 unsigned FrameIndex; 1067 QualType ElemType; 1068 explicit operator bool() const { return FrameIndex != 0; }; 1069 }; 1070 1071 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { 1072 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; 1073 Call = Call->Caller) { 1074 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); 1075 if (!MD) 1076 continue; 1077 const IdentifierInfo *FnII = MD->getIdentifier(); 1078 if (!FnII || !FnII->isStr(FnName)) 1079 continue; 1080 1081 const auto *CTSD = 1082 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); 1083 if (!CTSD) 1084 continue; 1085 1086 const IdentifierInfo *ClassII = CTSD->getIdentifier(); 1087 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 1088 if (CTSD->isInStdNamespace() && ClassII && 1089 ClassII->isStr("allocator") && TAL.size() >= 1 && 1090 TAL[0].getKind() == TemplateArgument::Type) 1091 return {Call->Index, TAL[0].getAsType()}; 1092 } 1093 1094 return {}; 1095 } 1096 1097 void performLifetimeExtension() { 1098 // Disable the cleanups for lifetime-extended temporaries. 1099 llvm::erase_if(CleanupStack, [](Cleanup &C) { 1100 return !C.isDestroyedAtEndOf(ScopeKind::FullExpression); 1101 }); 1102 } 1103 1104 /// Throw away any remaining cleanups at the end of evaluation. If any 1105 /// cleanups would have had a side-effect, note that as an unmodeled 1106 /// side-effect and return false. Otherwise, return true. 1107 bool discardCleanups() { 1108 for (Cleanup &C : CleanupStack) { 1109 if (C.hasSideEffect() && !noteSideEffect()) { 1110 CleanupStack.clear(); 1111 return false; 1112 } 1113 } 1114 CleanupStack.clear(); 1115 return true; 1116 } 1117 1118 private: 1119 interp::Frame *getCurrentFrame() override { return CurrentCall; } 1120 const interp::Frame *getBottomFrame() const override { return &BottomFrame; } 1121 1122 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } 1123 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } 1124 1125 void setFoldFailureDiagnostic(bool Flag) override { 1126 HasFoldFailureDiagnostic = Flag; 1127 } 1128 1129 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } 1130 1131 // If we have a prior diagnostic, it will be noting that the expression 1132 // isn't a constant expression. This diagnostic is more important, 1133 // unless we require this evaluation to produce a constant expression. 1134 // 1135 // FIXME: We might want to show both diagnostics to the user in 1136 // EM_ConstantFold mode. 1137 bool hasPriorDiagnostic() override { 1138 if (!EvalStatus.Diag->empty()) { 1139 switch (EvalMode) { 1140 case EM_ConstantFold: 1141 case EM_IgnoreSideEffects: 1142 if (!HasFoldFailureDiagnostic) 1143 break; 1144 // We've already failed to fold something. Keep that diagnostic. 1145 [[fallthrough]]; 1146 case EM_ConstantExpression: 1147 case EM_ConstantExpressionUnevaluated: 1148 setActiveDiagnostic(false); 1149 return true; 1150 } 1151 } 1152 return false; 1153 } 1154 1155 unsigned getCallStackDepth() override { return CallStackDepth; } 1156 1157 public: 1158 /// Should we continue evaluation after encountering a side-effect that we 1159 /// couldn't model? 1160 bool keepEvaluatingAfterSideEffect() { 1161 switch (EvalMode) { 1162 case EM_IgnoreSideEffects: 1163 return true; 1164 1165 case EM_ConstantExpression: 1166 case EM_ConstantExpressionUnevaluated: 1167 case EM_ConstantFold: 1168 // By default, assume any side effect might be valid in some other 1169 // evaluation of this expression from a different context. 1170 return checkingPotentialConstantExpression() || 1171 checkingForUndefinedBehavior(); 1172 } 1173 llvm_unreachable("Missed EvalMode case"); 1174 } 1175 1176 /// Note that we have had a side-effect, and determine whether we should 1177 /// keep evaluating. 1178 bool noteSideEffect() { 1179 EvalStatus.HasSideEffects = true; 1180 return keepEvaluatingAfterSideEffect(); 1181 } 1182 1183 /// Should we continue evaluation after encountering undefined behavior? 1184 bool keepEvaluatingAfterUndefinedBehavior() { 1185 switch (EvalMode) { 1186 case EM_IgnoreSideEffects: 1187 case EM_ConstantFold: 1188 return true; 1189 1190 case EM_ConstantExpression: 1191 case EM_ConstantExpressionUnevaluated: 1192 return checkingForUndefinedBehavior(); 1193 } 1194 llvm_unreachable("Missed EvalMode case"); 1195 } 1196 1197 /// Note that we hit something that was technically undefined behavior, but 1198 /// that we can evaluate past it (such as signed overflow or floating-point 1199 /// division by zero.) 1200 bool noteUndefinedBehavior() override { 1201 EvalStatus.HasUndefinedBehavior = true; 1202 return keepEvaluatingAfterUndefinedBehavior(); 1203 } 1204 1205 /// Should we continue evaluation as much as possible after encountering a 1206 /// construct which can't be reduced to a value? 1207 bool keepEvaluatingAfterFailure() const override { 1208 if (!StepsLeft) 1209 return false; 1210 1211 switch (EvalMode) { 1212 case EM_ConstantExpression: 1213 case EM_ConstantExpressionUnevaluated: 1214 case EM_ConstantFold: 1215 case EM_IgnoreSideEffects: 1216 return checkingPotentialConstantExpression() || 1217 checkingForUndefinedBehavior(); 1218 } 1219 llvm_unreachable("Missed EvalMode case"); 1220 } 1221 1222 /// Notes that we failed to evaluate an expression that other expressions 1223 /// directly depend on, and determine if we should keep evaluating. This 1224 /// should only be called if we actually intend to keep evaluating. 1225 /// 1226 /// Call noteSideEffect() instead if we may be able to ignore the value that 1227 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: 1228 /// 1229 /// (Foo(), 1) // use noteSideEffect 1230 /// (Foo() || true) // use noteSideEffect 1231 /// Foo() + 1 // use noteFailure 1232 [[nodiscard]] bool noteFailure() { 1233 // Failure when evaluating some expression often means there is some 1234 // subexpression whose evaluation was skipped. Therefore, (because we 1235 // don't track whether we skipped an expression when unwinding after an 1236 // evaluation failure) every evaluation failure that bubbles up from a 1237 // subexpression implies that a side-effect has potentially happened. We 1238 // skip setting the HasSideEffects flag to true until we decide to 1239 // continue evaluating after that point, which happens here. 1240 bool KeepGoing = keepEvaluatingAfterFailure(); 1241 EvalStatus.HasSideEffects |= KeepGoing; 1242 return KeepGoing; 1243 } 1244 1245 class ArrayInitLoopIndex { 1246 EvalInfo &Info; 1247 uint64_t OuterIndex; 1248 1249 public: 1250 ArrayInitLoopIndex(EvalInfo &Info) 1251 : Info(Info), OuterIndex(Info.ArrayInitIndex) { 1252 Info.ArrayInitIndex = 0; 1253 } 1254 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } 1255 1256 operator uint64_t&() { return Info.ArrayInitIndex; } 1257 }; 1258 }; 1259 1260 /// Object used to treat all foldable expressions as constant expressions. 1261 struct FoldConstant { 1262 EvalInfo &Info; 1263 bool Enabled; 1264 bool HadNoPriorDiags; 1265 EvalInfo::EvaluationMode OldMode; 1266 1267 explicit FoldConstant(EvalInfo &Info, bool Enabled) 1268 : Info(Info), 1269 Enabled(Enabled), 1270 HadNoPriorDiags(Info.EvalStatus.Diag && 1271 Info.EvalStatus.Diag->empty() && 1272 !Info.EvalStatus.HasSideEffects), 1273 OldMode(Info.EvalMode) { 1274 if (Enabled) 1275 Info.EvalMode = EvalInfo::EM_ConstantFold; 1276 } 1277 void keepDiagnostics() { Enabled = false; } 1278 ~FoldConstant() { 1279 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && 1280 !Info.EvalStatus.HasSideEffects) 1281 Info.EvalStatus.Diag->clear(); 1282 Info.EvalMode = OldMode; 1283 } 1284 }; 1285 1286 /// RAII object used to set the current evaluation mode to ignore 1287 /// side-effects. 1288 struct IgnoreSideEffectsRAII { 1289 EvalInfo &Info; 1290 EvalInfo::EvaluationMode OldMode; 1291 explicit IgnoreSideEffectsRAII(EvalInfo &Info) 1292 : Info(Info), OldMode(Info.EvalMode) { 1293 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; 1294 } 1295 1296 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } 1297 }; 1298 1299 /// RAII object used to optionally suppress diagnostics and side-effects from 1300 /// a speculative evaluation. 1301 class SpeculativeEvaluationRAII { 1302 EvalInfo *Info = nullptr; 1303 Expr::EvalStatus OldStatus; 1304 unsigned OldSpeculativeEvaluationDepth = 0; 1305 1306 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { 1307 Info = Other.Info; 1308 OldStatus = Other.OldStatus; 1309 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; 1310 Other.Info = nullptr; 1311 } 1312 1313 void maybeRestoreState() { 1314 if (!Info) 1315 return; 1316 1317 Info->EvalStatus = OldStatus; 1318 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; 1319 } 1320 1321 public: 1322 SpeculativeEvaluationRAII() = default; 1323 1324 SpeculativeEvaluationRAII( 1325 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) 1326 : Info(&Info), OldStatus(Info.EvalStatus), 1327 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { 1328 Info.EvalStatus.Diag = NewDiag; 1329 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; 1330 } 1331 1332 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; 1333 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { 1334 moveFromAndCancel(std::move(Other)); 1335 } 1336 1337 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { 1338 maybeRestoreState(); 1339 moveFromAndCancel(std::move(Other)); 1340 return *this; 1341 } 1342 1343 ~SpeculativeEvaluationRAII() { maybeRestoreState(); } 1344 }; 1345 1346 /// RAII object wrapping a full-expression or block scope, and handling 1347 /// the ending of the lifetime of temporaries created within it. 1348 template<ScopeKind Kind> 1349 class ScopeRAII { 1350 EvalInfo &Info; 1351 unsigned OldStackSize; 1352 public: 1353 ScopeRAII(EvalInfo &Info) 1354 : Info(Info), OldStackSize(Info.CleanupStack.size()) { 1355 // Push a new temporary version. This is needed to distinguish between 1356 // temporaries created in different iterations of a loop. 1357 Info.CurrentCall->pushTempVersion(); 1358 } 1359 bool destroy(bool RunDestructors = true) { 1360 bool OK = cleanup(Info, RunDestructors, OldStackSize); 1361 OldStackSize = -1U; 1362 return OK; 1363 } 1364 ~ScopeRAII() { 1365 if (OldStackSize != -1U) 1366 destroy(false); 1367 // Body moved to a static method to encourage the compiler to inline away 1368 // instances of this class. 1369 Info.CurrentCall->popTempVersion(); 1370 } 1371 private: 1372 static bool cleanup(EvalInfo &Info, bool RunDestructors, 1373 unsigned OldStackSize) { 1374 assert(OldStackSize <= Info.CleanupStack.size() && 1375 "running cleanups out of order?"); 1376 1377 // Run all cleanups for a block scope, and non-lifetime-extended cleanups 1378 // for a full-expression scope. 1379 bool Success = true; 1380 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { 1381 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { 1382 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { 1383 Success = false; 1384 break; 1385 } 1386 } 1387 } 1388 1389 // Compact any retained cleanups. 1390 auto NewEnd = Info.CleanupStack.begin() + OldStackSize; 1391 if (Kind != ScopeKind::Block) 1392 NewEnd = 1393 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { 1394 return C.isDestroyedAtEndOf(Kind); 1395 }); 1396 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); 1397 return Success; 1398 } 1399 }; 1400 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; 1401 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; 1402 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; 1403 } 1404 1405 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, 1406 CheckSubobjectKind CSK) { 1407 if (Invalid) 1408 return false; 1409 if (isOnePastTheEnd()) { 1410 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) 1411 << CSK; 1412 setInvalid(); 1413 return false; 1414 } 1415 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there 1416 // must actually be at least one array element; even a VLA cannot have a 1417 // bound of zero. And if our index is nonzero, we already had a CCEDiag. 1418 return true; 1419 } 1420 1421 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, 1422 const Expr *E) { 1423 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); 1424 // Do not set the designator as invalid: we can represent this situation, 1425 // and correct handling of __builtin_object_size requires us to do so. 1426 } 1427 1428 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, 1429 const Expr *E, 1430 const APSInt &N) { 1431 // If we're complaining, we must be able to statically determine the size of 1432 // the most derived array. 1433 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) 1434 Info.CCEDiag(E, diag::note_constexpr_array_index) 1435 << N << /*array*/ 0 1436 << static_cast<unsigned>(getMostDerivedArraySize()); 1437 else 1438 Info.CCEDiag(E, diag::note_constexpr_array_index) 1439 << N << /*non-array*/ 1; 1440 setInvalid(); 1441 } 1442 1443 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 1444 const FunctionDecl *Callee, const LValue *This, 1445 const Expr *CallExpr, CallRef Call) 1446 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), 1447 CallExpr(CallExpr), Arguments(Call), CallLoc(CallLoc), 1448 Index(Info.NextCallIndex++) { 1449 Info.CurrentCall = this; 1450 ++Info.CallStackDepth; 1451 } 1452 1453 CallStackFrame::~CallStackFrame() { 1454 assert(Info.CurrentCall == this && "calls retired out of order"); 1455 --Info.CallStackDepth; 1456 Info.CurrentCall = Caller; 1457 } 1458 1459 static bool isRead(AccessKinds AK) { 1460 return AK == AK_Read || AK == AK_ReadObjectRepresentation; 1461 } 1462 1463 static bool isModification(AccessKinds AK) { 1464 switch (AK) { 1465 case AK_Read: 1466 case AK_ReadObjectRepresentation: 1467 case AK_MemberCall: 1468 case AK_DynamicCast: 1469 case AK_TypeId: 1470 return false; 1471 case AK_Assign: 1472 case AK_Increment: 1473 case AK_Decrement: 1474 case AK_Construct: 1475 case AK_Destroy: 1476 return true; 1477 } 1478 llvm_unreachable("unknown access kind"); 1479 } 1480 1481 static bool isAnyAccess(AccessKinds AK) { 1482 return isRead(AK) || isModification(AK); 1483 } 1484 1485 /// Is this an access per the C++ definition? 1486 static bool isFormalAccess(AccessKinds AK) { 1487 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy; 1488 } 1489 1490 /// Is this kind of axcess valid on an indeterminate object value? 1491 static bool isValidIndeterminateAccess(AccessKinds AK) { 1492 switch (AK) { 1493 case AK_Read: 1494 case AK_Increment: 1495 case AK_Decrement: 1496 // These need the object's value. 1497 return false; 1498 1499 case AK_ReadObjectRepresentation: 1500 case AK_Assign: 1501 case AK_Construct: 1502 case AK_Destroy: 1503 // Construction and destruction don't need the value. 1504 return true; 1505 1506 case AK_MemberCall: 1507 case AK_DynamicCast: 1508 case AK_TypeId: 1509 // These aren't really meaningful on scalars. 1510 return true; 1511 } 1512 llvm_unreachable("unknown access kind"); 1513 } 1514 1515 namespace { 1516 struct ComplexValue { 1517 private: 1518 bool IsInt; 1519 1520 public: 1521 APSInt IntReal, IntImag; 1522 APFloat FloatReal, FloatImag; 1523 1524 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} 1525 1526 void makeComplexFloat() { IsInt = false; } 1527 bool isComplexFloat() const { return !IsInt; } 1528 APFloat &getComplexFloatReal() { return FloatReal; } 1529 APFloat &getComplexFloatImag() { return FloatImag; } 1530 1531 void makeComplexInt() { IsInt = true; } 1532 bool isComplexInt() const { return IsInt; } 1533 APSInt &getComplexIntReal() { return IntReal; } 1534 APSInt &getComplexIntImag() { return IntImag; } 1535 1536 void moveInto(APValue &v) const { 1537 if (isComplexFloat()) 1538 v = APValue(FloatReal, FloatImag); 1539 else 1540 v = APValue(IntReal, IntImag); 1541 } 1542 void setFrom(const APValue &v) { 1543 assert(v.isComplexFloat() || v.isComplexInt()); 1544 if (v.isComplexFloat()) { 1545 makeComplexFloat(); 1546 FloatReal = v.getComplexFloatReal(); 1547 FloatImag = v.getComplexFloatImag(); 1548 } else { 1549 makeComplexInt(); 1550 IntReal = v.getComplexIntReal(); 1551 IntImag = v.getComplexIntImag(); 1552 } 1553 } 1554 }; 1555 1556 struct LValue { 1557 APValue::LValueBase Base; 1558 CharUnits Offset; 1559 SubobjectDesignator Designator; 1560 bool IsNullPtr : 1; 1561 bool InvalidBase : 1; 1562 1563 const APValue::LValueBase getLValueBase() const { return Base; } 1564 CharUnits &getLValueOffset() { return Offset; } 1565 const CharUnits &getLValueOffset() const { return Offset; } 1566 SubobjectDesignator &getLValueDesignator() { return Designator; } 1567 const SubobjectDesignator &getLValueDesignator() const { return Designator;} 1568 bool isNullPointer() const { return IsNullPtr;} 1569 1570 unsigned getLValueCallIndex() const { return Base.getCallIndex(); } 1571 unsigned getLValueVersion() const { return Base.getVersion(); } 1572 1573 void moveInto(APValue &V) const { 1574 if (Designator.Invalid) 1575 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); 1576 else { 1577 assert(!InvalidBase && "APValues can't handle invalid LValue bases"); 1578 V = APValue(Base, Offset, Designator.Entries, 1579 Designator.IsOnePastTheEnd, IsNullPtr); 1580 } 1581 } 1582 void setFrom(ASTContext &Ctx, const APValue &V) { 1583 assert(V.isLValue() && "Setting LValue from a non-LValue?"); 1584 Base = V.getLValueBase(); 1585 Offset = V.getLValueOffset(); 1586 InvalidBase = false; 1587 Designator = SubobjectDesignator(Ctx, V); 1588 IsNullPtr = V.isNullPointer(); 1589 } 1590 1591 void set(APValue::LValueBase B, bool BInvalid = false) { 1592 #ifndef NDEBUG 1593 // We only allow a few types of invalid bases. Enforce that here. 1594 if (BInvalid) { 1595 const auto *E = B.get<const Expr *>(); 1596 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && 1597 "Unexpected type of invalid base"); 1598 } 1599 #endif 1600 1601 Base = B; 1602 Offset = CharUnits::fromQuantity(0); 1603 InvalidBase = BInvalid; 1604 Designator = SubobjectDesignator(getType(B)); 1605 IsNullPtr = false; 1606 } 1607 1608 void setNull(ASTContext &Ctx, QualType PointerTy) { 1609 Base = (const ValueDecl *)nullptr; 1610 Offset = 1611 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); 1612 InvalidBase = false; 1613 Designator = SubobjectDesignator(PointerTy->getPointeeType()); 1614 IsNullPtr = true; 1615 } 1616 1617 void setInvalid(APValue::LValueBase B, unsigned I = 0) { 1618 set(B, true); 1619 } 1620 1621 std::string toString(ASTContext &Ctx, QualType T) const { 1622 APValue Printable; 1623 moveInto(Printable); 1624 return Printable.getAsString(Ctx, T); 1625 } 1626 1627 private: 1628 // Check that this LValue is not based on a null pointer. If it is, produce 1629 // a diagnostic and mark the designator as invalid. 1630 template <typename GenDiagType> 1631 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { 1632 if (Designator.Invalid) 1633 return false; 1634 if (IsNullPtr) { 1635 GenDiag(); 1636 Designator.setInvalid(); 1637 return false; 1638 } 1639 return true; 1640 } 1641 1642 public: 1643 bool checkNullPointer(EvalInfo &Info, const Expr *E, 1644 CheckSubobjectKind CSK) { 1645 return checkNullPointerDiagnosingWith([&Info, E, CSK] { 1646 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; 1647 }); 1648 } 1649 1650 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, 1651 AccessKinds AK) { 1652 return checkNullPointerDiagnosingWith([&Info, E, AK] { 1653 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 1654 }); 1655 } 1656 1657 // Check this LValue refers to an object. If not, set the designator to be 1658 // invalid and emit a diagnostic. 1659 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { 1660 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && 1661 Designator.checkSubobject(Info, E, CSK); 1662 } 1663 1664 void addDecl(EvalInfo &Info, const Expr *E, 1665 const Decl *D, bool Virtual = false) { 1666 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) 1667 Designator.addDeclUnchecked(D, Virtual); 1668 } 1669 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { 1670 if (!Designator.Entries.empty()) { 1671 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); 1672 Designator.setInvalid(); 1673 return; 1674 } 1675 if (checkSubobject(Info, E, CSK_ArrayToPointer)) { 1676 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); 1677 Designator.FirstEntryIsAnUnsizedArray = true; 1678 Designator.addUnsizedArrayUnchecked(ElemTy); 1679 } 1680 } 1681 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { 1682 if (checkSubobject(Info, E, CSK_ArrayToPointer)) 1683 Designator.addArrayUnchecked(CAT); 1684 } 1685 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { 1686 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) 1687 Designator.addComplexUnchecked(EltTy, Imag); 1688 } 1689 void clearIsNullPointer() { 1690 IsNullPtr = false; 1691 } 1692 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, 1693 const APSInt &Index, CharUnits ElementSize) { 1694 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, 1695 // but we're not required to diagnose it and it's valid in C++.) 1696 if (!Index) 1697 return; 1698 1699 // Compute the new offset in the appropriate width, wrapping at 64 bits. 1700 // FIXME: When compiling for a 32-bit target, we should use 32-bit 1701 // offsets. 1702 uint64_t Offset64 = Offset.getQuantity(); 1703 uint64_t ElemSize64 = ElementSize.getQuantity(); 1704 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 1705 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); 1706 1707 if (checkNullPointer(Info, E, CSK_ArrayIndex)) 1708 Designator.adjustIndex(Info, E, Index); 1709 clearIsNullPointer(); 1710 } 1711 void adjustOffset(CharUnits N) { 1712 Offset += N; 1713 if (N.getQuantity()) 1714 clearIsNullPointer(); 1715 } 1716 }; 1717 1718 struct MemberPtr { 1719 MemberPtr() {} 1720 explicit MemberPtr(const ValueDecl *Decl) 1721 : DeclAndIsDerivedMember(Decl, false) {} 1722 1723 /// The member or (direct or indirect) field referred to by this member 1724 /// pointer, or 0 if this is a null member pointer. 1725 const ValueDecl *getDecl() const { 1726 return DeclAndIsDerivedMember.getPointer(); 1727 } 1728 /// Is this actually a member of some type derived from the relevant class? 1729 bool isDerivedMember() const { 1730 return DeclAndIsDerivedMember.getInt(); 1731 } 1732 /// Get the class which the declaration actually lives in. 1733 const CXXRecordDecl *getContainingRecord() const { 1734 return cast<CXXRecordDecl>( 1735 DeclAndIsDerivedMember.getPointer()->getDeclContext()); 1736 } 1737 1738 void moveInto(APValue &V) const { 1739 V = APValue(getDecl(), isDerivedMember(), Path); 1740 } 1741 void setFrom(const APValue &V) { 1742 assert(V.isMemberPointer()); 1743 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); 1744 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); 1745 Path.clear(); 1746 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); 1747 Path.insert(Path.end(), P.begin(), P.end()); 1748 } 1749 1750 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating 1751 /// whether the member is a member of some class derived from the class type 1752 /// of the member pointer. 1753 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; 1754 /// Path - The path of base/derived classes from the member declaration's 1755 /// class (exclusive) to the class type of the member pointer (inclusive). 1756 SmallVector<const CXXRecordDecl*, 4> Path; 1757 1758 /// Perform a cast towards the class of the Decl (either up or down the 1759 /// hierarchy). 1760 bool castBack(const CXXRecordDecl *Class) { 1761 assert(!Path.empty()); 1762 const CXXRecordDecl *Expected; 1763 if (Path.size() >= 2) 1764 Expected = Path[Path.size() - 2]; 1765 else 1766 Expected = getContainingRecord(); 1767 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { 1768 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), 1769 // if B does not contain the original member and is not a base or 1770 // derived class of the class containing the original member, the result 1771 // of the cast is undefined. 1772 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to 1773 // (D::*). We consider that to be a language defect. 1774 return false; 1775 } 1776 Path.pop_back(); 1777 return true; 1778 } 1779 /// Perform a base-to-derived member pointer cast. 1780 bool castToDerived(const CXXRecordDecl *Derived) { 1781 if (!getDecl()) 1782 return true; 1783 if (!isDerivedMember()) { 1784 Path.push_back(Derived); 1785 return true; 1786 } 1787 if (!castBack(Derived)) 1788 return false; 1789 if (Path.empty()) 1790 DeclAndIsDerivedMember.setInt(false); 1791 return true; 1792 } 1793 /// Perform a derived-to-base member pointer cast. 1794 bool castToBase(const CXXRecordDecl *Base) { 1795 if (!getDecl()) 1796 return true; 1797 if (Path.empty()) 1798 DeclAndIsDerivedMember.setInt(true); 1799 if (isDerivedMember()) { 1800 Path.push_back(Base); 1801 return true; 1802 } 1803 return castBack(Base); 1804 } 1805 }; 1806 1807 /// Compare two member pointers, which are assumed to be of the same type. 1808 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { 1809 if (!LHS.getDecl() || !RHS.getDecl()) 1810 return !LHS.getDecl() && !RHS.getDecl(); 1811 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) 1812 return false; 1813 return LHS.Path == RHS.Path; 1814 } 1815 } 1816 1817 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); 1818 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, 1819 const LValue &This, const Expr *E, 1820 bool AllowNonLiteralTypes = false); 1821 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 1822 bool InvalidBaseOK = false); 1823 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, 1824 bool InvalidBaseOK = false); 1825 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 1826 EvalInfo &Info); 1827 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); 1828 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); 1829 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 1830 EvalInfo &Info); 1831 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); 1832 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); 1833 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 1834 EvalInfo &Info); 1835 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); 1836 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, 1837 EvalInfo &Info); 1838 1839 /// Evaluate an integer or fixed point expression into an APResult. 1840 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 1841 EvalInfo &Info); 1842 1843 /// Evaluate only a fixed point expression into an APResult. 1844 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 1845 EvalInfo &Info); 1846 1847 //===----------------------------------------------------------------------===// 1848 // Misc utilities 1849 //===----------------------------------------------------------------------===// 1850 1851 /// Negate an APSInt in place, converting it to a signed form if necessary, and 1852 /// preserving its value (by extending by up to one bit as needed). 1853 static void negateAsSigned(APSInt &Int) { 1854 if (Int.isUnsigned() || Int.isMinSignedValue()) { 1855 Int = Int.extend(Int.getBitWidth() + 1); 1856 Int.setIsSigned(true); 1857 } 1858 Int = -Int; 1859 } 1860 1861 template<typename KeyT> 1862 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, 1863 ScopeKind Scope, LValue &LV) { 1864 unsigned Version = getTempVersion(); 1865 APValue::LValueBase Base(Key, Index, Version); 1866 LV.set(Base); 1867 return createLocal(Base, Key, T, Scope); 1868 } 1869 1870 /// Allocate storage for a parameter of a function call made in this frame. 1871 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, 1872 LValue &LV) { 1873 assert(Args.CallIndex == Index && "creating parameter in wrong frame"); 1874 APValue::LValueBase Base(PVD, Index, Args.Version); 1875 LV.set(Base); 1876 // We always destroy parameters at the end of the call, even if we'd allow 1877 // them to live to the end of the full-expression at runtime, in order to 1878 // give portable results and match other compilers. 1879 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call); 1880 } 1881 1882 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, 1883 QualType T, ScopeKind Scope) { 1884 assert(Base.getCallIndex() == Index && "lvalue for wrong frame"); 1885 unsigned Version = Base.getVersion(); 1886 APValue &Result = Temporaries[MapKeyTy(Key, Version)]; 1887 assert(Result.isAbsent() && "local created multiple times"); 1888 1889 // If we're creating a local immediately in the operand of a speculative 1890 // evaluation, don't register a cleanup to be run outside the speculative 1891 // evaluation context, since we won't actually be able to initialize this 1892 // object. 1893 if (Index <= Info.SpeculativeEvaluationDepth) { 1894 if (T.isDestructedType()) 1895 Info.noteSideEffect(); 1896 } else { 1897 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope)); 1898 } 1899 return Result; 1900 } 1901 1902 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { 1903 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { 1904 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); 1905 return nullptr; 1906 } 1907 1908 DynamicAllocLValue DA(NumHeapAllocs++); 1909 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); 1910 auto Result = HeapAllocs.emplace(std::piecewise_construct, 1911 std::forward_as_tuple(DA), std::tuple<>()); 1912 assert(Result.second && "reused a heap alloc index?"); 1913 Result.first->second.AllocExpr = E; 1914 return &Result.first->second.Value; 1915 } 1916 1917 /// Produce a string describing the given constexpr call. 1918 void CallStackFrame::describe(raw_ostream &Out) const { 1919 unsigned ArgIndex = 0; 1920 bool IsMemberCall = isa<CXXMethodDecl>(Callee) && 1921 !isa<CXXConstructorDecl>(Callee) && 1922 cast<CXXMethodDecl>(Callee)->isInstance(); 1923 1924 if (!IsMemberCall) 1925 Out << *Callee << '('; 1926 1927 if (This && IsMemberCall) { 1928 if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) { 1929 const Expr *Object = MCE->getImplicitObjectArgument(); 1930 Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(), 1931 /*Indentation=*/0); 1932 if (Object->getType()->isPointerType()) 1933 Out << "->"; 1934 else 1935 Out << "."; 1936 } else if (const auto *OCE = 1937 dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) { 1938 OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr, 1939 Info.Ctx.getPrintingPolicy(), 1940 /*Indentation=*/0); 1941 Out << "."; 1942 } else { 1943 APValue Val; 1944 This->moveInto(Val); 1945 Val.printPretty( 1946 Out, Info.Ctx, 1947 Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType)); 1948 Out << "."; 1949 } 1950 Out << *Callee << '('; 1951 IsMemberCall = false; 1952 } 1953 1954 for (FunctionDecl::param_const_iterator I = Callee->param_begin(), 1955 E = Callee->param_end(); I != E; ++I, ++ArgIndex) { 1956 if (ArgIndex > (unsigned)IsMemberCall) 1957 Out << ", "; 1958 1959 const ParmVarDecl *Param = *I; 1960 APValue *V = Info.getParamSlot(Arguments, Param); 1961 if (V) 1962 V->printPretty(Out, Info.Ctx, Param->getType()); 1963 else 1964 Out << "<...>"; 1965 1966 if (ArgIndex == 0 && IsMemberCall) 1967 Out << "->" << *Callee << '('; 1968 } 1969 1970 Out << ')'; 1971 } 1972 1973 /// Evaluate an expression to see if it had side-effects, and discard its 1974 /// result. 1975 /// \return \c true if the caller should keep evaluating. 1976 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { 1977 assert(!E->isValueDependent()); 1978 APValue Scratch; 1979 if (!Evaluate(Scratch, Info, E)) 1980 // We don't need the value, but we might have skipped a side effect here. 1981 return Info.noteSideEffect(); 1982 return true; 1983 } 1984 1985 /// Should this call expression be treated as a no-op? 1986 static bool IsNoOpCall(const CallExpr *E) { 1987 unsigned Builtin = E->getBuiltinCallee(); 1988 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 1989 Builtin == Builtin::BI__builtin___NSStringMakeConstantString || 1990 Builtin == Builtin::BI__builtin_function_start); 1991 } 1992 1993 static bool IsGlobalLValue(APValue::LValueBase B) { 1994 // C++11 [expr.const]p3 An address constant expression is a prvalue core 1995 // constant expression of pointer type that evaluates to... 1996 1997 // ... a null pointer value, or a prvalue core constant expression of type 1998 // std::nullptr_t. 1999 if (!B) 2000 return true; 2001 2002 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 2003 // ... the address of an object with static storage duration, 2004 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 2005 return VD->hasGlobalStorage(); 2006 if (isa<TemplateParamObjectDecl>(D)) 2007 return true; 2008 // ... the address of a function, 2009 // ... the address of a GUID [MS extension], 2010 // ... the address of an unnamed global constant 2011 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D); 2012 } 2013 2014 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) 2015 return true; 2016 2017 const Expr *E = B.get<const Expr*>(); 2018 switch (E->getStmtClass()) { 2019 default: 2020 return false; 2021 case Expr::CompoundLiteralExprClass: { 2022 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 2023 return CLE->isFileScope() && CLE->isLValue(); 2024 } 2025 case Expr::MaterializeTemporaryExprClass: 2026 // A materialized temporary might have been lifetime-extended to static 2027 // storage duration. 2028 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; 2029 // A string literal has static storage duration. 2030 case Expr::StringLiteralClass: 2031 case Expr::PredefinedExprClass: 2032 case Expr::ObjCStringLiteralClass: 2033 case Expr::ObjCEncodeExprClass: 2034 return true; 2035 case Expr::ObjCBoxedExprClass: 2036 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); 2037 case Expr::CallExprClass: 2038 return IsNoOpCall(cast<CallExpr>(E)); 2039 // For GCC compatibility, &&label has static storage duration. 2040 case Expr::AddrLabelExprClass: 2041 return true; 2042 // A Block literal expression may be used as the initialization value for 2043 // Block variables at global or local static scope. 2044 case Expr::BlockExprClass: 2045 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); 2046 // The APValue generated from a __builtin_source_location will be emitted as a 2047 // literal. 2048 case Expr::SourceLocExprClass: 2049 return true; 2050 case Expr::ImplicitValueInitExprClass: 2051 // FIXME: 2052 // We can never form an lvalue with an implicit value initialization as its 2053 // base through expression evaluation, so these only appear in one case: the 2054 // implicit variable declaration we invent when checking whether a constexpr 2055 // constructor can produce a constant expression. We must assume that such 2056 // an expression might be a global lvalue. 2057 return true; 2058 } 2059 } 2060 2061 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { 2062 return LVal.Base.dyn_cast<const ValueDecl*>(); 2063 } 2064 2065 static bool IsLiteralLValue(const LValue &Value) { 2066 if (Value.getLValueCallIndex()) 2067 return false; 2068 const Expr *E = Value.Base.dyn_cast<const Expr*>(); 2069 return E && !isa<MaterializeTemporaryExpr>(E); 2070 } 2071 2072 static bool IsWeakLValue(const LValue &Value) { 2073 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2074 return Decl && Decl->isWeak(); 2075 } 2076 2077 static bool isZeroSized(const LValue &Value) { 2078 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2079 if (Decl && isa<VarDecl>(Decl)) { 2080 QualType Ty = Decl->getType(); 2081 if (Ty->isArrayType()) 2082 return Ty->isIncompleteType() || 2083 Decl->getASTContext().getTypeSize(Ty) == 0; 2084 } 2085 return false; 2086 } 2087 2088 static bool HasSameBase(const LValue &A, const LValue &B) { 2089 if (!A.getLValueBase()) 2090 return !B.getLValueBase(); 2091 if (!B.getLValueBase()) 2092 return false; 2093 2094 if (A.getLValueBase().getOpaqueValue() != 2095 B.getLValueBase().getOpaqueValue()) 2096 return false; 2097 2098 return A.getLValueCallIndex() == B.getLValueCallIndex() && 2099 A.getLValueVersion() == B.getLValueVersion(); 2100 } 2101 2102 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { 2103 assert(Base && "no location for a null lvalue"); 2104 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2105 2106 // For a parameter, find the corresponding call stack frame (if it still 2107 // exists), and point at the parameter of the function definition we actually 2108 // invoked. 2109 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) { 2110 unsigned Idx = PVD->getFunctionScopeIndex(); 2111 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) { 2112 if (F->Arguments.CallIndex == Base.getCallIndex() && 2113 F->Arguments.Version == Base.getVersion() && F->Callee && 2114 Idx < F->Callee->getNumParams()) { 2115 VD = F->Callee->getParamDecl(Idx); 2116 break; 2117 } 2118 } 2119 } 2120 2121 if (VD) 2122 Info.Note(VD->getLocation(), diag::note_declared_at); 2123 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 2124 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); 2125 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 2126 // FIXME: Produce a note for dangling pointers too. 2127 if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA)) 2128 Info.Note((*Alloc)->AllocExpr->getExprLoc(), 2129 diag::note_constexpr_dynamic_alloc_here); 2130 } 2131 2132 // We have no information to show for a typeid(T) object. 2133 } 2134 2135 enum class CheckEvaluationResultKind { 2136 ConstantExpression, 2137 FullyInitialized, 2138 }; 2139 2140 /// Materialized temporaries that we've already checked to determine if they're 2141 /// initializsed by a constant expression. 2142 using CheckedTemporaries = 2143 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; 2144 2145 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2146 EvalInfo &Info, SourceLocation DiagLoc, 2147 QualType Type, const APValue &Value, 2148 ConstantExprKind Kind, 2149 const FieldDecl *SubobjectDecl, 2150 CheckedTemporaries &CheckedTemps); 2151 2152 /// Check that this reference or pointer core constant expression is a valid 2153 /// value for an address or reference constant expression. Return true if we 2154 /// can fold this expression, whether or not it's a constant expression. 2155 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, 2156 QualType Type, const LValue &LVal, 2157 ConstantExprKind Kind, 2158 CheckedTemporaries &CheckedTemps) { 2159 bool IsReferenceType = Type->isReferenceType(); 2160 2161 APValue::LValueBase Base = LVal.getLValueBase(); 2162 const SubobjectDesignator &Designator = LVal.getLValueDesignator(); 2163 2164 const Expr *BaseE = Base.dyn_cast<const Expr *>(); 2165 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); 2166 2167 // Additional restrictions apply in a template argument. We only enforce the 2168 // C++20 restrictions here; additional syntactic and semantic restrictions 2169 // are applied elsewhere. 2170 if (isTemplateArgument(Kind)) { 2171 int InvalidBaseKind = -1; 2172 StringRef Ident; 2173 if (Base.is<TypeInfoLValue>()) 2174 InvalidBaseKind = 0; 2175 else if (isa_and_nonnull<StringLiteral>(BaseE)) 2176 InvalidBaseKind = 1; 2177 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) || 2178 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD)) 2179 InvalidBaseKind = 2; 2180 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) { 2181 InvalidBaseKind = 3; 2182 Ident = PE->getIdentKindName(); 2183 } 2184 2185 if (InvalidBaseKind != -1) { 2186 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg) 2187 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind 2188 << Ident; 2189 return false; 2190 } 2191 } 2192 2193 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD); 2194 FD && FD->isImmediateFunction()) { 2195 Info.FFDiag(Loc, diag::note_consteval_address_accessible) 2196 << !Type->isAnyPointerType(); 2197 Info.Note(FD->getLocation(), diag::note_declared_at); 2198 return false; 2199 } 2200 2201 // Check that the object is a global. Note that the fake 'this' object we 2202 // manufacture when checking potential constant expressions is conservatively 2203 // assumed to be global here. 2204 if (!IsGlobalLValue(Base)) { 2205 if (Info.getLangOpts().CPlusPlus11) { 2206 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) 2207 << IsReferenceType << !Designator.Entries.empty() << !!BaseVD 2208 << BaseVD; 2209 auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD); 2210 if (VarD && VarD->isConstexpr()) { 2211 // Non-static local constexpr variables have unintuitive semantics: 2212 // constexpr int a = 1; 2213 // constexpr const int *p = &a; 2214 // ... is invalid because the address of 'a' is not constant. Suggest 2215 // adding a 'static' in this case. 2216 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static) 2217 << VarD 2218 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static "); 2219 } else { 2220 NoteLValueLocation(Info, Base); 2221 } 2222 } else { 2223 Info.FFDiag(Loc); 2224 } 2225 // Don't allow references to temporaries to escape. 2226 return false; 2227 } 2228 assert((Info.checkingPotentialConstantExpression() || 2229 LVal.getLValueCallIndex() == 0) && 2230 "have call index for global lvalue"); 2231 2232 if (Base.is<DynamicAllocLValue>()) { 2233 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) 2234 << IsReferenceType << !Designator.Entries.empty(); 2235 NoteLValueLocation(Info, Base); 2236 return false; 2237 } 2238 2239 if (BaseVD) { 2240 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) { 2241 // Check if this is a thread-local variable. 2242 if (Var->getTLSKind()) 2243 // FIXME: Diagnostic! 2244 return false; 2245 2246 // A dllimport variable never acts like a constant, unless we're 2247 // evaluating a value for use only in name mangling. 2248 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()) 2249 // FIXME: Diagnostic! 2250 return false; 2251 2252 // In CUDA/HIP device compilation, only device side variables have 2253 // constant addresses. 2254 if (Info.getCtx().getLangOpts().CUDA && 2255 Info.getCtx().getLangOpts().CUDAIsDevice && 2256 Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) { 2257 if ((!Var->hasAttr<CUDADeviceAttr>() && 2258 !Var->hasAttr<CUDAConstantAttr>() && 2259 !Var->getType()->isCUDADeviceBuiltinSurfaceType() && 2260 !Var->getType()->isCUDADeviceBuiltinTextureType()) || 2261 Var->hasAttr<HIPManagedAttr>()) 2262 return false; 2263 } 2264 } 2265 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) { 2266 // __declspec(dllimport) must be handled very carefully: 2267 // We must never initialize an expression with the thunk in C++. 2268 // Doing otherwise would allow the same id-expression to yield 2269 // different addresses for the same function in different translation 2270 // units. However, this means that we must dynamically initialize the 2271 // expression with the contents of the import address table at runtime. 2272 // 2273 // The C language has no notion of ODR; furthermore, it has no notion of 2274 // dynamic initialization. This means that we are permitted to 2275 // perform initialization with the address of the thunk. 2276 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) && 2277 FD->hasAttr<DLLImportAttr>()) 2278 // FIXME: Diagnostic! 2279 return false; 2280 } 2281 } else if (const auto *MTE = 2282 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) { 2283 if (CheckedTemps.insert(MTE).second) { 2284 QualType TempType = getType(Base); 2285 if (TempType.isDestructedType()) { 2286 Info.FFDiag(MTE->getExprLoc(), 2287 diag::note_constexpr_unsupported_temporary_nontrivial_dtor) 2288 << TempType; 2289 return false; 2290 } 2291 2292 APValue *V = MTE->getOrCreateValue(false); 2293 assert(V && "evasluation result refers to uninitialised temporary"); 2294 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2295 Info, MTE->getExprLoc(), TempType, *V, Kind, 2296 /*SubobjectDecl=*/nullptr, CheckedTemps)) 2297 return false; 2298 } 2299 } 2300 2301 // Allow address constant expressions to be past-the-end pointers. This is 2302 // an extension: the standard requires them to point to an object. 2303 if (!IsReferenceType) 2304 return true; 2305 2306 // A reference constant expression must refer to an object. 2307 if (!Base) { 2308 // FIXME: diagnostic 2309 Info.CCEDiag(Loc); 2310 return true; 2311 } 2312 2313 // Does this refer one past the end of some object? 2314 if (!Designator.Invalid && Designator.isOnePastTheEnd()) { 2315 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) 2316 << !Designator.Entries.empty() << !!BaseVD << BaseVD; 2317 NoteLValueLocation(Info, Base); 2318 } 2319 2320 return true; 2321 } 2322 2323 /// Member pointers are constant expressions unless they point to a 2324 /// non-virtual dllimport member function. 2325 static bool CheckMemberPointerConstantExpression(EvalInfo &Info, 2326 SourceLocation Loc, 2327 QualType Type, 2328 const APValue &Value, 2329 ConstantExprKind Kind) { 2330 const ValueDecl *Member = Value.getMemberPointerDecl(); 2331 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); 2332 if (!FD) 2333 return true; 2334 if (FD->isImmediateFunction()) { 2335 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0; 2336 Info.Note(FD->getLocation(), diag::note_declared_at); 2337 return false; 2338 } 2339 return isForManglingOnly(Kind) || FD->isVirtual() || 2340 !FD->hasAttr<DLLImportAttr>(); 2341 } 2342 2343 /// Check that this core constant expression is of literal type, and if not, 2344 /// produce an appropriate diagnostic. 2345 static bool CheckLiteralType(EvalInfo &Info, const Expr *E, 2346 const LValue *This = nullptr) { 2347 if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx)) 2348 return true; 2349 2350 // C++1y: A constant initializer for an object o [...] may also invoke 2351 // constexpr constructors for o and its subobjects even if those objects 2352 // are of non-literal class types. 2353 // 2354 // C++11 missed this detail for aggregates, so classes like this: 2355 // struct foo_t { union { int i; volatile int j; } u; }; 2356 // are not (obviously) initializable like so: 2357 // __attribute__((__require_constant_initialization__)) 2358 // static const foo_t x = {{0}}; 2359 // because "i" is a subobject with non-literal initialization (due to the 2360 // volatile member of the union). See: 2361 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 2362 // Therefore, we use the C++1y behavior. 2363 if (This && Info.EvaluatingDecl == This->getLValueBase()) 2364 return true; 2365 2366 // Prvalue constant expressions must be of literal types. 2367 if (Info.getLangOpts().CPlusPlus11) 2368 Info.FFDiag(E, diag::note_constexpr_nonliteral) 2369 << E->getType(); 2370 else 2371 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2372 return false; 2373 } 2374 2375 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2376 EvalInfo &Info, SourceLocation DiagLoc, 2377 QualType Type, const APValue &Value, 2378 ConstantExprKind Kind, 2379 const FieldDecl *SubobjectDecl, 2380 CheckedTemporaries &CheckedTemps) { 2381 if (!Value.hasValue()) { 2382 if (SubobjectDecl) { 2383 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2384 << /*(name)*/ 1 << SubobjectDecl; 2385 Info.Note(SubobjectDecl->getLocation(), 2386 diag::note_constexpr_subobject_declared_here); 2387 } else { 2388 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2389 << /*of type*/ 0 << Type; 2390 } 2391 return false; 2392 } 2393 2394 // We allow _Atomic(T) to be initialized from anything that T can be 2395 // initialized from. 2396 if (const AtomicType *AT = Type->getAs<AtomicType>()) 2397 Type = AT->getValueType(); 2398 2399 // Core issue 1454: For a literal constant expression of array or class type, 2400 // each subobject of its value shall have been initialized by a constant 2401 // expression. 2402 if (Value.isArray()) { 2403 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); 2404 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { 2405 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2406 Value.getArrayInitializedElt(I), Kind, 2407 SubobjectDecl, CheckedTemps)) 2408 return false; 2409 } 2410 if (!Value.hasArrayFiller()) 2411 return true; 2412 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2413 Value.getArrayFiller(), Kind, SubobjectDecl, 2414 CheckedTemps); 2415 } 2416 if (Value.isUnion() && Value.getUnionField()) { 2417 return CheckEvaluationResult( 2418 CERK, Info, DiagLoc, Value.getUnionField()->getType(), 2419 Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps); 2420 } 2421 if (Value.isStruct()) { 2422 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 2423 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 2424 unsigned BaseIndex = 0; 2425 for (const CXXBaseSpecifier &BS : CD->bases()) { 2426 const APValue &BaseValue = Value.getStructBase(BaseIndex); 2427 if (!BaseValue.hasValue()) { 2428 SourceLocation TypeBeginLoc = BS.getBaseTypeLoc(); 2429 Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base) 2430 << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc()); 2431 return false; 2432 } 2433 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue, 2434 Kind, /*SubobjectDecl=*/nullptr, 2435 CheckedTemps)) 2436 return false; 2437 ++BaseIndex; 2438 } 2439 } 2440 for (const auto *I : RD->fields()) { 2441 if (I->isUnnamedBitfield()) 2442 continue; 2443 2444 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), 2445 Value.getStructField(I->getFieldIndex()), Kind, 2446 I, CheckedTemps)) 2447 return false; 2448 } 2449 } 2450 2451 if (Value.isLValue() && 2452 CERK == CheckEvaluationResultKind::ConstantExpression) { 2453 LValue LVal; 2454 LVal.setFrom(Info.Ctx, Value); 2455 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind, 2456 CheckedTemps); 2457 } 2458 2459 if (Value.isMemberPointer() && 2460 CERK == CheckEvaluationResultKind::ConstantExpression) 2461 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind); 2462 2463 // Everything else is fine. 2464 return true; 2465 } 2466 2467 /// Check that this core constant expression value is a valid value for a 2468 /// constant expression. If not, report an appropriate diagnostic. Does not 2469 /// check that the expression is of literal type. 2470 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, 2471 QualType Type, const APValue &Value, 2472 ConstantExprKind Kind) { 2473 // Nothing to check for a constant expression of type 'cv void'. 2474 if (Type->isVoidType()) 2475 return true; 2476 2477 CheckedTemporaries CheckedTemps; 2478 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2479 Info, DiagLoc, Type, Value, Kind, 2480 /*SubobjectDecl=*/nullptr, CheckedTemps); 2481 } 2482 2483 /// Check that this evaluated value is fully-initialized and can be loaded by 2484 /// an lvalue-to-rvalue conversion. 2485 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, 2486 QualType Type, const APValue &Value) { 2487 CheckedTemporaries CheckedTemps; 2488 return CheckEvaluationResult( 2489 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, 2490 ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps); 2491 } 2492 2493 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless 2494 /// "the allocated storage is deallocated within the evaluation". 2495 static bool CheckMemoryLeaks(EvalInfo &Info) { 2496 if (!Info.HeapAllocs.empty()) { 2497 // We can still fold to a constant despite a compile-time memory leak, 2498 // so long as the heap allocation isn't referenced in the result (we check 2499 // that in CheckConstantExpression). 2500 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, 2501 diag::note_constexpr_memory_leak) 2502 << unsigned(Info.HeapAllocs.size() - 1); 2503 } 2504 return true; 2505 } 2506 2507 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { 2508 // A null base expression indicates a null pointer. These are always 2509 // evaluatable, and they are false unless the offset is zero. 2510 if (!Value.getLValueBase()) { 2511 // TODO: Should a non-null pointer with an offset of zero evaluate to true? 2512 Result = !Value.getLValueOffset().isZero(); 2513 return true; 2514 } 2515 2516 // We have a non-null base. These are generally known to be true, but if it's 2517 // a weak declaration it can be null at runtime. 2518 Result = true; 2519 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); 2520 return !Decl || !Decl->isWeak(); 2521 } 2522 2523 static bool HandleConversionToBool(const APValue &Val, bool &Result) { 2524 // TODO: This function should produce notes if it fails. 2525 switch (Val.getKind()) { 2526 case APValue::None: 2527 case APValue::Indeterminate: 2528 return false; 2529 case APValue::Int: 2530 Result = Val.getInt().getBoolValue(); 2531 return true; 2532 case APValue::FixedPoint: 2533 Result = Val.getFixedPoint().getBoolValue(); 2534 return true; 2535 case APValue::Float: 2536 Result = !Val.getFloat().isZero(); 2537 return true; 2538 case APValue::ComplexInt: 2539 Result = Val.getComplexIntReal().getBoolValue() || 2540 Val.getComplexIntImag().getBoolValue(); 2541 return true; 2542 case APValue::ComplexFloat: 2543 Result = !Val.getComplexFloatReal().isZero() || 2544 !Val.getComplexFloatImag().isZero(); 2545 return true; 2546 case APValue::LValue: 2547 return EvalPointerValueAsBool(Val, Result); 2548 case APValue::MemberPointer: 2549 if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) { 2550 return false; 2551 } 2552 Result = Val.getMemberPointerDecl(); 2553 return true; 2554 case APValue::Vector: 2555 case APValue::Array: 2556 case APValue::Struct: 2557 case APValue::Union: 2558 case APValue::AddrLabelDiff: 2559 return false; 2560 } 2561 2562 llvm_unreachable("unknown APValue kind"); 2563 } 2564 2565 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, 2566 EvalInfo &Info) { 2567 assert(!E->isValueDependent()); 2568 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition"); 2569 APValue Val; 2570 if (!Evaluate(Val, Info, E)) 2571 return false; 2572 return HandleConversionToBool(Val, Result); 2573 } 2574 2575 template<typename T> 2576 static bool HandleOverflow(EvalInfo &Info, const Expr *E, 2577 const T &SrcValue, QualType DestType) { 2578 Info.CCEDiag(E, diag::note_constexpr_overflow) 2579 << SrcValue << DestType; 2580 return Info.noteUndefinedBehavior(); 2581 } 2582 2583 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, 2584 QualType SrcType, const APFloat &Value, 2585 QualType DestType, APSInt &Result) { 2586 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2587 // Determine whether we are converting to unsigned or signed. 2588 bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); 2589 2590 Result = APSInt(DestWidth, !DestSigned); 2591 bool ignored; 2592 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) 2593 & APFloat::opInvalidOp) 2594 return HandleOverflow(Info, E, Value, DestType); 2595 return true; 2596 } 2597 2598 /// Get rounding mode to use in evaluation of the specified expression. 2599 /// 2600 /// If rounding mode is unknown at compile time, still try to evaluate the 2601 /// expression. If the result is exact, it does not depend on rounding mode. 2602 /// So return "tonearest" mode instead of "dynamic". 2603 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) { 2604 llvm::RoundingMode RM = 2605 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode(); 2606 if (RM == llvm::RoundingMode::Dynamic) 2607 RM = llvm::RoundingMode::NearestTiesToEven; 2608 return RM; 2609 } 2610 2611 /// Check if the given evaluation result is allowed for constant evaluation. 2612 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, 2613 APFloat::opStatus St) { 2614 // In a constant context, assume that any dynamic rounding mode or FP 2615 // exception state matches the default floating-point environment. 2616 if (Info.InConstantContext) 2617 return true; 2618 2619 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 2620 if ((St & APFloat::opInexact) && 2621 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { 2622 // Inexact result means that it depends on rounding mode. If the requested 2623 // mode is dynamic, the evaluation cannot be made in compile time. 2624 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding); 2625 return false; 2626 } 2627 2628 if ((St != APFloat::opOK) && 2629 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || 2630 FPO.getExceptionMode() != LangOptions::FPE_Ignore || 2631 FPO.getAllowFEnvAccess())) { 2632 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 2633 return false; 2634 } 2635 2636 if ((St & APFloat::opStatus::opInvalidOp) && 2637 FPO.getExceptionMode() != LangOptions::FPE_Ignore) { 2638 // There is no usefully definable result. 2639 Info.FFDiag(E); 2640 return false; 2641 } 2642 2643 // FIXME: if: 2644 // - evaluation triggered other FP exception, and 2645 // - exception mode is not "ignore", and 2646 // - the expression being evaluated is not a part of global variable 2647 // initializer, 2648 // the evaluation probably need to be rejected. 2649 return true; 2650 } 2651 2652 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, 2653 QualType SrcType, QualType DestType, 2654 APFloat &Result) { 2655 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E)); 2656 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 2657 APFloat::opStatus St; 2658 APFloat Value = Result; 2659 bool ignored; 2660 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored); 2661 return checkFloatingPointResult(Info, E, St); 2662 } 2663 2664 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, 2665 QualType DestType, QualType SrcType, 2666 const APSInt &Value) { 2667 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2668 // Figure out if this is a truncate, extend or noop cast. 2669 // If the input is signed, do a sign extend, noop, or truncate. 2670 APSInt Result = Value.extOrTrunc(DestWidth); 2671 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); 2672 if (DestType->isBooleanType()) 2673 Result = Value.getBoolValue(); 2674 return Result; 2675 } 2676 2677 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, 2678 const FPOptions FPO, 2679 QualType SrcType, const APSInt &Value, 2680 QualType DestType, APFloat &Result) { 2681 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); 2682 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 2683 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM); 2684 return checkFloatingPointResult(Info, E, St); 2685 } 2686 2687 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, 2688 APValue &Value, const FieldDecl *FD) { 2689 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); 2690 2691 if (!Value.isInt()) { 2692 // Trying to store a pointer-cast-to-integer into a bitfield. 2693 // FIXME: In this case, we should provide the diagnostic for casting 2694 // a pointer to an integer. 2695 assert(Value.isLValue() && "integral value neither int nor lvalue?"); 2696 Info.FFDiag(E); 2697 return false; 2698 } 2699 2700 APSInt &Int = Value.getInt(); 2701 unsigned OldBitWidth = Int.getBitWidth(); 2702 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); 2703 if (NewBitWidth < OldBitWidth) 2704 Int = Int.trunc(NewBitWidth).extend(OldBitWidth); 2705 return true; 2706 } 2707 2708 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, 2709 llvm::APInt &Res) { 2710 APValue SVal; 2711 if (!Evaluate(SVal, Info, E)) 2712 return false; 2713 if (SVal.isInt()) { 2714 Res = SVal.getInt(); 2715 return true; 2716 } 2717 if (SVal.isFloat()) { 2718 Res = SVal.getFloat().bitcastToAPInt(); 2719 return true; 2720 } 2721 if (SVal.isVector()) { 2722 QualType VecTy = E->getType(); 2723 unsigned VecSize = Info.Ctx.getTypeSize(VecTy); 2724 QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); 2725 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 2726 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 2727 Res = llvm::APInt::getZero(VecSize); 2728 for (unsigned i = 0; i < SVal.getVectorLength(); i++) { 2729 APValue &Elt = SVal.getVectorElt(i); 2730 llvm::APInt EltAsInt; 2731 if (Elt.isInt()) { 2732 EltAsInt = Elt.getInt(); 2733 } else if (Elt.isFloat()) { 2734 EltAsInt = Elt.getFloat().bitcastToAPInt(); 2735 } else { 2736 // Don't try to handle vectors of anything other than int or float 2737 // (not sure if it's possible to hit this case). 2738 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2739 return false; 2740 } 2741 unsigned BaseEltSize = EltAsInt.getBitWidth(); 2742 if (BigEndian) 2743 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); 2744 else 2745 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); 2746 } 2747 return true; 2748 } 2749 // Give up if the input isn't an int, float, or vector. For example, we 2750 // reject "(v4i16)(intptr_t)&a". 2751 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2752 return false; 2753 } 2754 2755 /// Perform the given integer operation, which is known to need at most BitWidth 2756 /// bits, and check for overflow in the original type (if that type was not an 2757 /// unsigned type). 2758 template<typename Operation> 2759 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, 2760 const APSInt &LHS, const APSInt &RHS, 2761 unsigned BitWidth, Operation Op, 2762 APSInt &Result) { 2763 if (LHS.isUnsigned()) { 2764 Result = Op(LHS, RHS); 2765 return true; 2766 } 2767 2768 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); 2769 Result = Value.trunc(LHS.getBitWidth()); 2770 if (Result.extend(BitWidth) != Value) { 2771 if (Info.checkingForUndefinedBehavior()) 2772 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 2773 diag::warn_integer_constant_overflow) 2774 << toString(Result, 10) << E->getType(); 2775 return HandleOverflow(Info, E, Value, E->getType()); 2776 } 2777 return true; 2778 } 2779 2780 /// Perform the given binary integer operation. 2781 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, 2782 BinaryOperatorKind Opcode, APSInt RHS, 2783 APSInt &Result) { 2784 bool HandleOverflowResult = true; 2785 switch (Opcode) { 2786 default: 2787 Info.FFDiag(E); 2788 return false; 2789 case BO_Mul: 2790 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, 2791 std::multiplies<APSInt>(), Result); 2792 case BO_Add: 2793 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2794 std::plus<APSInt>(), Result); 2795 case BO_Sub: 2796 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2797 std::minus<APSInt>(), Result); 2798 case BO_And: Result = LHS & RHS; return true; 2799 case BO_Xor: Result = LHS ^ RHS; return true; 2800 case BO_Or: Result = LHS | RHS; return true; 2801 case BO_Div: 2802 case BO_Rem: 2803 if (RHS == 0) { 2804 Info.FFDiag(E, diag::note_expr_divide_by_zero); 2805 return false; 2806 } 2807 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports 2808 // this operation and gives the two's complement result. 2809 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() && 2810 LHS.isMinSignedValue()) 2811 HandleOverflowResult = HandleOverflow( 2812 Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType()); 2813 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); 2814 return HandleOverflowResult; 2815 case BO_Shl: { 2816 if (Info.getLangOpts().OpenCL) 2817 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2818 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2819 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2820 RHS.isUnsigned()); 2821 else if (RHS.isSigned() && RHS.isNegative()) { 2822 // During constant-folding, a negative shift is an opposite shift. Such 2823 // a shift is not a constant expression. 2824 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2825 RHS = -RHS; 2826 goto shift_right; 2827 } 2828 shift_left: 2829 // C++11 [expr.shift]p1: Shift width must be less than the bit width of 2830 // the shifted type. 2831 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2832 if (SA != RHS) { 2833 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2834 << RHS << E->getType() << LHS.getBitWidth(); 2835 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) { 2836 // C++11 [expr.shift]p2: A signed left shift must have a non-negative 2837 // operand, and must not overflow the corresponding unsigned type. 2838 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to 2839 // E1 x 2^E2 module 2^N. 2840 if (LHS.isNegative()) 2841 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; 2842 else if (LHS.countl_zero() < SA) 2843 Info.CCEDiag(E, diag::note_constexpr_lshift_discards); 2844 } 2845 Result = LHS << SA; 2846 return true; 2847 } 2848 case BO_Shr: { 2849 if (Info.getLangOpts().OpenCL) 2850 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2851 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2852 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2853 RHS.isUnsigned()); 2854 else if (RHS.isSigned() && RHS.isNegative()) { 2855 // During constant-folding, a negative shift is an opposite shift. Such a 2856 // shift is not a constant expression. 2857 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2858 RHS = -RHS; 2859 goto shift_left; 2860 } 2861 shift_right: 2862 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the 2863 // shifted type. 2864 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2865 if (SA != RHS) 2866 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2867 << RHS << E->getType() << LHS.getBitWidth(); 2868 Result = LHS >> SA; 2869 return true; 2870 } 2871 2872 case BO_LT: Result = LHS < RHS; return true; 2873 case BO_GT: Result = LHS > RHS; return true; 2874 case BO_LE: Result = LHS <= RHS; return true; 2875 case BO_GE: Result = LHS >= RHS; return true; 2876 case BO_EQ: Result = LHS == RHS; return true; 2877 case BO_NE: Result = LHS != RHS; return true; 2878 case BO_Cmp: 2879 llvm_unreachable("BO_Cmp should be handled elsewhere"); 2880 } 2881 } 2882 2883 /// Perform the given binary floating-point operation, in-place, on LHS. 2884 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, 2885 APFloat &LHS, BinaryOperatorKind Opcode, 2886 const APFloat &RHS) { 2887 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 2888 APFloat::opStatus St; 2889 switch (Opcode) { 2890 default: 2891 Info.FFDiag(E); 2892 return false; 2893 case BO_Mul: 2894 St = LHS.multiply(RHS, RM); 2895 break; 2896 case BO_Add: 2897 St = LHS.add(RHS, RM); 2898 break; 2899 case BO_Sub: 2900 St = LHS.subtract(RHS, RM); 2901 break; 2902 case BO_Div: 2903 // [expr.mul]p4: 2904 // If the second operand of / or % is zero the behavior is undefined. 2905 if (RHS.isZero()) 2906 Info.CCEDiag(E, diag::note_expr_divide_by_zero); 2907 St = LHS.divide(RHS, RM); 2908 break; 2909 } 2910 2911 // [expr.pre]p4: 2912 // If during the evaluation of an expression, the result is not 2913 // mathematically defined [...], the behavior is undefined. 2914 // FIXME: C++ rules require us to not conform to IEEE 754 here. 2915 if (LHS.isNaN()) { 2916 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); 2917 return Info.noteUndefinedBehavior(); 2918 } 2919 2920 return checkFloatingPointResult(Info, E, St); 2921 } 2922 2923 static bool handleLogicalOpForVector(const APInt &LHSValue, 2924 BinaryOperatorKind Opcode, 2925 const APInt &RHSValue, APInt &Result) { 2926 bool LHS = (LHSValue != 0); 2927 bool RHS = (RHSValue != 0); 2928 2929 if (Opcode == BO_LAnd) 2930 Result = LHS && RHS; 2931 else 2932 Result = LHS || RHS; 2933 return true; 2934 } 2935 static bool handleLogicalOpForVector(const APFloat &LHSValue, 2936 BinaryOperatorKind Opcode, 2937 const APFloat &RHSValue, APInt &Result) { 2938 bool LHS = !LHSValue.isZero(); 2939 bool RHS = !RHSValue.isZero(); 2940 2941 if (Opcode == BO_LAnd) 2942 Result = LHS && RHS; 2943 else 2944 Result = LHS || RHS; 2945 return true; 2946 } 2947 2948 static bool handleLogicalOpForVector(const APValue &LHSValue, 2949 BinaryOperatorKind Opcode, 2950 const APValue &RHSValue, APInt &Result) { 2951 // The result is always an int type, however operands match the first. 2952 if (LHSValue.getKind() == APValue::Int) 2953 return handleLogicalOpForVector(LHSValue.getInt(), Opcode, 2954 RHSValue.getInt(), Result); 2955 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 2956 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode, 2957 RHSValue.getFloat(), Result); 2958 } 2959 2960 template <typename APTy> 2961 static bool 2962 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, 2963 const APTy &RHSValue, APInt &Result) { 2964 switch (Opcode) { 2965 default: 2966 llvm_unreachable("unsupported binary operator"); 2967 case BO_EQ: 2968 Result = (LHSValue == RHSValue); 2969 break; 2970 case BO_NE: 2971 Result = (LHSValue != RHSValue); 2972 break; 2973 case BO_LT: 2974 Result = (LHSValue < RHSValue); 2975 break; 2976 case BO_GT: 2977 Result = (LHSValue > RHSValue); 2978 break; 2979 case BO_LE: 2980 Result = (LHSValue <= RHSValue); 2981 break; 2982 case BO_GE: 2983 Result = (LHSValue >= RHSValue); 2984 break; 2985 } 2986 2987 // The boolean operations on these vector types use an instruction that 2988 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 2989 // to -1 to make sure that we produce the correct value. 2990 Result.negate(); 2991 2992 return true; 2993 } 2994 2995 static bool handleCompareOpForVector(const APValue &LHSValue, 2996 BinaryOperatorKind Opcode, 2997 const APValue &RHSValue, APInt &Result) { 2998 // The result is always an int type, however operands match the first. 2999 if (LHSValue.getKind() == APValue::Int) 3000 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode, 3001 RHSValue.getInt(), Result); 3002 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 3003 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode, 3004 RHSValue.getFloat(), Result); 3005 } 3006 3007 // Perform binary operations for vector types, in place on the LHS. 3008 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, 3009 BinaryOperatorKind Opcode, 3010 APValue &LHSValue, 3011 const APValue &RHSValue) { 3012 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && 3013 "Operation not supported on vector types"); 3014 3015 const auto *VT = E->getType()->castAs<VectorType>(); 3016 unsigned NumElements = VT->getNumElements(); 3017 QualType EltTy = VT->getElementType(); 3018 3019 // In the cases (typically C as I've observed) where we aren't evaluating 3020 // constexpr but are checking for cases where the LHS isn't yet evaluatable, 3021 // just give up. 3022 if (!LHSValue.isVector()) { 3023 assert(LHSValue.isLValue() && 3024 "A vector result that isn't a vector OR uncalculated LValue"); 3025 Info.FFDiag(E); 3026 return false; 3027 } 3028 3029 assert(LHSValue.getVectorLength() == NumElements && 3030 RHSValue.getVectorLength() == NumElements && "Different vector sizes"); 3031 3032 SmallVector<APValue, 4> ResultElements; 3033 3034 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) { 3035 APValue LHSElt = LHSValue.getVectorElt(EltNum); 3036 APValue RHSElt = RHSValue.getVectorElt(EltNum); 3037 3038 if (EltTy->isIntegerType()) { 3039 APSInt EltResult{Info.Ctx.getIntWidth(EltTy), 3040 EltTy->isUnsignedIntegerType()}; 3041 bool Success = true; 3042 3043 if (BinaryOperator::isLogicalOp(Opcode)) 3044 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult); 3045 else if (BinaryOperator::isComparisonOp(Opcode)) 3046 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult); 3047 else 3048 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode, 3049 RHSElt.getInt(), EltResult); 3050 3051 if (!Success) { 3052 Info.FFDiag(E); 3053 return false; 3054 } 3055 ResultElements.emplace_back(EltResult); 3056 3057 } else if (EltTy->isFloatingType()) { 3058 assert(LHSElt.getKind() == APValue::Float && 3059 RHSElt.getKind() == APValue::Float && 3060 "Mismatched LHS/RHS/Result Type"); 3061 APFloat LHSFloat = LHSElt.getFloat(); 3062 3063 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode, 3064 RHSElt.getFloat())) { 3065 Info.FFDiag(E); 3066 return false; 3067 } 3068 3069 ResultElements.emplace_back(LHSFloat); 3070 } 3071 } 3072 3073 LHSValue = APValue(ResultElements.data(), ResultElements.size()); 3074 return true; 3075 } 3076 3077 /// Cast an lvalue referring to a base subobject to a derived class, by 3078 /// truncating the lvalue's path to the given length. 3079 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, 3080 const RecordDecl *TruncatedType, 3081 unsigned TruncatedElements) { 3082 SubobjectDesignator &D = Result.Designator; 3083 3084 // Check we actually point to a derived class object. 3085 if (TruncatedElements == D.Entries.size()) 3086 return true; 3087 assert(TruncatedElements >= D.MostDerivedPathLength && 3088 "not casting to a derived class"); 3089 if (!Result.checkSubobject(Info, E, CSK_Derived)) 3090 return false; 3091 3092 // Truncate the path to the subobject, and remove any derived-to-base offsets. 3093 const RecordDecl *RD = TruncatedType; 3094 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { 3095 if (RD->isInvalidDecl()) return false; 3096 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 3097 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); 3098 if (isVirtualBaseClass(D.Entries[I])) 3099 Result.Offset -= Layout.getVBaseClassOffset(Base); 3100 else 3101 Result.Offset -= Layout.getBaseClassOffset(Base); 3102 RD = Base; 3103 } 3104 D.Entries.resize(TruncatedElements); 3105 return true; 3106 } 3107 3108 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3109 const CXXRecordDecl *Derived, 3110 const CXXRecordDecl *Base, 3111 const ASTRecordLayout *RL = nullptr) { 3112 if (!RL) { 3113 if (Derived->isInvalidDecl()) return false; 3114 RL = &Info.Ctx.getASTRecordLayout(Derived); 3115 } 3116 3117 Obj.getLValueOffset() += RL->getBaseClassOffset(Base); 3118 Obj.addDecl(Info, E, Base, /*Virtual*/ false); 3119 return true; 3120 } 3121 3122 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3123 const CXXRecordDecl *DerivedDecl, 3124 const CXXBaseSpecifier *Base) { 3125 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 3126 3127 if (!Base->isVirtual()) 3128 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); 3129 3130 SubobjectDesignator &D = Obj.Designator; 3131 if (D.Invalid) 3132 return false; 3133 3134 // Extract most-derived object and corresponding type. 3135 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); 3136 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) 3137 return false; 3138 3139 // Find the virtual base class. 3140 if (DerivedDecl->isInvalidDecl()) return false; 3141 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); 3142 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); 3143 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); 3144 return true; 3145 } 3146 3147 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, 3148 QualType Type, LValue &Result) { 3149 for (CastExpr::path_const_iterator PathI = E->path_begin(), 3150 PathE = E->path_end(); 3151 PathI != PathE; ++PathI) { 3152 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), 3153 *PathI)) 3154 return false; 3155 Type = (*PathI)->getType(); 3156 } 3157 return true; 3158 } 3159 3160 /// Cast an lvalue referring to a derived class to a known base subobject. 3161 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, 3162 const CXXRecordDecl *DerivedRD, 3163 const CXXRecordDecl *BaseRD) { 3164 CXXBasePaths Paths(/*FindAmbiguities=*/false, 3165 /*RecordPaths=*/true, /*DetectVirtual=*/false); 3166 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 3167 llvm_unreachable("Class must be derived from the passed in base class!"); 3168 3169 for (CXXBasePathElement &Elem : Paths.front()) 3170 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) 3171 return false; 3172 return true; 3173 } 3174 3175 /// Update LVal to refer to the given field, which must be a member of the type 3176 /// currently described by LVal. 3177 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, 3178 const FieldDecl *FD, 3179 const ASTRecordLayout *RL = nullptr) { 3180 if (!RL) { 3181 if (FD->getParent()->isInvalidDecl()) return false; 3182 RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); 3183 } 3184 3185 unsigned I = FD->getFieldIndex(); 3186 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); 3187 LVal.addDecl(Info, E, FD); 3188 return true; 3189 } 3190 3191 /// Update LVal to refer to the given indirect field. 3192 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, 3193 LValue &LVal, 3194 const IndirectFieldDecl *IFD) { 3195 for (const auto *C : IFD->chain()) 3196 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) 3197 return false; 3198 return true; 3199 } 3200 3201 /// Get the size of the given type in char units. 3202 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, 3203 QualType Type, CharUnits &Size) { 3204 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc 3205 // extension. 3206 if (Type->isVoidType() || Type->isFunctionType()) { 3207 Size = CharUnits::One(); 3208 return true; 3209 } 3210 3211 if (Type->isDependentType()) { 3212 Info.FFDiag(Loc); 3213 return false; 3214 } 3215 3216 if (!Type->isConstantSizeType()) { 3217 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. 3218 // FIXME: Better diagnostic. 3219 Info.FFDiag(Loc); 3220 return false; 3221 } 3222 3223 Size = Info.Ctx.getTypeSizeInChars(Type); 3224 return true; 3225 } 3226 3227 /// Update a pointer value to model pointer arithmetic. 3228 /// \param Info - Information about the ongoing evaluation. 3229 /// \param E - The expression being evaluated, for diagnostic purposes. 3230 /// \param LVal - The pointer value to be updated. 3231 /// \param EltTy - The pointee type represented by LVal. 3232 /// \param Adjustment - The adjustment, in objects of type EltTy, to add. 3233 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3234 LValue &LVal, QualType EltTy, 3235 APSInt Adjustment) { 3236 CharUnits SizeOfPointee; 3237 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) 3238 return false; 3239 3240 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); 3241 return true; 3242 } 3243 3244 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3245 LValue &LVal, QualType EltTy, 3246 int64_t Adjustment) { 3247 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, 3248 APSInt::get(Adjustment)); 3249 } 3250 3251 /// Update an lvalue to refer to a component of a complex number. 3252 /// \param Info - Information about the ongoing evaluation. 3253 /// \param LVal - The lvalue to be updated. 3254 /// \param EltTy - The complex number's component type. 3255 /// \param Imag - False for the real component, true for the imaginary. 3256 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, 3257 LValue &LVal, QualType EltTy, 3258 bool Imag) { 3259 if (Imag) { 3260 CharUnits SizeOfComponent; 3261 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) 3262 return false; 3263 LVal.Offset += SizeOfComponent; 3264 } 3265 LVal.addComplex(Info, E, EltTy, Imag); 3266 return true; 3267 } 3268 3269 /// Try to evaluate the initializer for a variable declaration. 3270 /// 3271 /// \param Info Information about the ongoing evaluation. 3272 /// \param E An expression to be used when printing diagnostics. 3273 /// \param VD The variable whose initializer should be obtained. 3274 /// \param Version The version of the variable within the frame. 3275 /// \param Frame The frame in which the variable was created. Must be null 3276 /// if this variable is not local to the evaluation. 3277 /// \param Result Filled in with a pointer to the value of the variable. 3278 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, 3279 const VarDecl *VD, CallStackFrame *Frame, 3280 unsigned Version, APValue *&Result) { 3281 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version); 3282 3283 // If this is a local variable, dig out its value. 3284 if (Frame) { 3285 Result = Frame->getTemporary(VD, Version); 3286 if (Result) 3287 return true; 3288 3289 if (!isa<ParmVarDecl>(VD)) { 3290 // Assume variables referenced within a lambda's call operator that were 3291 // not declared within the call operator are captures and during checking 3292 // of a potential constant expression, assume they are unknown constant 3293 // expressions. 3294 assert(isLambdaCallOperator(Frame->Callee) && 3295 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && 3296 "missing value for local variable"); 3297 if (Info.checkingPotentialConstantExpression()) 3298 return false; 3299 // FIXME: This diagnostic is bogus; we do support captures. Is this code 3300 // still reachable at all? 3301 Info.FFDiag(E->getBeginLoc(), 3302 diag::note_unimplemented_constexpr_lambda_feature_ast) 3303 << "captures not currently allowed"; 3304 return false; 3305 } 3306 } 3307 3308 // If we're currently evaluating the initializer of this declaration, use that 3309 // in-flight value. 3310 if (Info.EvaluatingDecl == Base) { 3311 Result = Info.EvaluatingDeclValue; 3312 return true; 3313 } 3314 3315 if (isa<ParmVarDecl>(VD)) { 3316 // Assume parameters of a potential constant expression are usable in 3317 // constant expressions. 3318 if (!Info.checkingPotentialConstantExpression() || 3319 !Info.CurrentCall->Callee || 3320 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { 3321 if (Info.getLangOpts().CPlusPlus11) { 3322 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) 3323 << VD; 3324 NoteLValueLocation(Info, Base); 3325 } else { 3326 Info.FFDiag(E); 3327 } 3328 } 3329 return false; 3330 } 3331 3332 // Dig out the initializer, and use the declaration which it's attached to. 3333 // FIXME: We should eventually check whether the variable has a reachable 3334 // initializing declaration. 3335 const Expr *Init = VD->getAnyInitializer(VD); 3336 if (!Init) { 3337 // Don't diagnose during potential constant expression checking; an 3338 // initializer might be added later. 3339 if (!Info.checkingPotentialConstantExpression()) { 3340 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) 3341 << VD; 3342 NoteLValueLocation(Info, Base); 3343 } 3344 return false; 3345 } 3346 3347 if (Init->isValueDependent()) { 3348 // The DeclRefExpr is not value-dependent, but the variable it refers to 3349 // has a value-dependent initializer. This should only happen in 3350 // constant-folding cases, where the variable is not actually of a suitable 3351 // type for use in a constant expression (otherwise the DeclRefExpr would 3352 // have been value-dependent too), so diagnose that. 3353 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); 3354 if (!Info.checkingPotentialConstantExpression()) { 3355 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 3356 ? diag::note_constexpr_ltor_non_constexpr 3357 : diag::note_constexpr_ltor_non_integral, 1) 3358 << VD << VD->getType(); 3359 NoteLValueLocation(Info, Base); 3360 } 3361 return false; 3362 } 3363 3364 // Check that we can fold the initializer. In C++, we will have already done 3365 // this in the cases where it matters for conformance. 3366 if (!VD->evaluateValue()) { 3367 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3368 NoteLValueLocation(Info, Base); 3369 return false; 3370 } 3371 3372 // Check that the variable is actually usable in constant expressions. For a 3373 // const integral variable or a reference, we might have a non-constant 3374 // initializer that we can nonetheless evaluate the initializer for. Such 3375 // variables are not usable in constant expressions. In C++98, the 3376 // initializer also syntactically needs to be an ICE. 3377 // 3378 // FIXME: We don't diagnose cases that aren't potentially usable in constant 3379 // expressions here; doing so would regress diagnostics for things like 3380 // reading from a volatile constexpr variable. 3381 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() && 3382 VD->mightBeUsableInConstantExpressions(Info.Ctx)) || 3383 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) && 3384 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) { 3385 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3386 NoteLValueLocation(Info, Base); 3387 } 3388 3389 // Never use the initializer of a weak variable, not even for constant 3390 // folding. We can't be sure that this is the definition that will be used. 3391 if (VD->isWeak()) { 3392 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD; 3393 NoteLValueLocation(Info, Base); 3394 return false; 3395 } 3396 3397 Result = VD->getEvaluatedValue(); 3398 return true; 3399 } 3400 3401 /// Get the base index of the given base class within an APValue representing 3402 /// the given derived class. 3403 static unsigned getBaseIndex(const CXXRecordDecl *Derived, 3404 const CXXRecordDecl *Base) { 3405 Base = Base->getCanonicalDecl(); 3406 unsigned Index = 0; 3407 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), 3408 E = Derived->bases_end(); I != E; ++I, ++Index) { 3409 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) 3410 return Index; 3411 } 3412 3413 llvm_unreachable("base class missing from derived class's bases list"); 3414 } 3415 3416 /// Extract the value of a character from a string literal. 3417 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, 3418 uint64_t Index) { 3419 assert(!isa<SourceLocExpr>(Lit) && 3420 "SourceLocExpr should have already been converted to a StringLiteral"); 3421 3422 // FIXME: Support MakeStringConstant 3423 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { 3424 std::string Str; 3425 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); 3426 assert(Index <= Str.size() && "Index too large"); 3427 return APSInt::getUnsigned(Str.c_str()[Index]); 3428 } 3429 3430 if (auto PE = dyn_cast<PredefinedExpr>(Lit)) 3431 Lit = PE->getFunctionName(); 3432 const StringLiteral *S = cast<StringLiteral>(Lit); 3433 const ConstantArrayType *CAT = 3434 Info.Ctx.getAsConstantArrayType(S->getType()); 3435 assert(CAT && "string literal isn't an array"); 3436 QualType CharType = CAT->getElementType(); 3437 assert(CharType->isIntegerType() && "unexpected character type"); 3438 3439 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 3440 CharType->isUnsignedIntegerType()); 3441 if (Index < S->getLength()) 3442 Value = S->getCodeUnit(Index); 3443 return Value; 3444 } 3445 3446 // Expand a string literal into an array of characters. 3447 // 3448 // FIXME: This is inefficient; we should probably introduce something similar 3449 // to the LLVM ConstantDataArray to make this cheaper. 3450 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, 3451 APValue &Result, 3452 QualType AllocType = QualType()) { 3453 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 3454 AllocType.isNull() ? S->getType() : AllocType); 3455 assert(CAT && "string literal isn't an array"); 3456 QualType CharType = CAT->getElementType(); 3457 assert(CharType->isIntegerType() && "unexpected character type"); 3458 3459 unsigned Elts = CAT->getSize().getZExtValue(); 3460 Result = APValue(APValue::UninitArray(), 3461 std::min(S->getLength(), Elts), Elts); 3462 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 3463 CharType->isUnsignedIntegerType()); 3464 if (Result.hasArrayFiller()) 3465 Result.getArrayFiller() = APValue(Value); 3466 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { 3467 Value = S->getCodeUnit(I); 3468 Result.getArrayInitializedElt(I) = APValue(Value); 3469 } 3470 } 3471 3472 // Expand an array so that it has more than Index filled elements. 3473 static void expandArray(APValue &Array, unsigned Index) { 3474 unsigned Size = Array.getArraySize(); 3475 assert(Index < Size); 3476 3477 // Always at least double the number of elements for which we store a value. 3478 unsigned OldElts = Array.getArrayInitializedElts(); 3479 unsigned NewElts = std::max(Index+1, OldElts * 2); 3480 NewElts = std::min(Size, std::max(NewElts, 8u)); 3481 3482 // Copy the data across. 3483 APValue NewValue(APValue::UninitArray(), NewElts, Size); 3484 for (unsigned I = 0; I != OldElts; ++I) 3485 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); 3486 for (unsigned I = OldElts; I != NewElts; ++I) 3487 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); 3488 if (NewValue.hasArrayFiller()) 3489 NewValue.getArrayFiller() = Array.getArrayFiller(); 3490 Array.swap(NewValue); 3491 } 3492 3493 /// Determine whether a type would actually be read by an lvalue-to-rvalue 3494 /// conversion. If it's of class type, we may assume that the copy operation 3495 /// is trivial. Note that this is never true for a union type with fields 3496 /// (because the copy always "reads" the active member) and always true for 3497 /// a non-class type. 3498 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); 3499 static bool isReadByLvalueToRvalueConversion(QualType T) { 3500 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3501 return !RD || isReadByLvalueToRvalueConversion(RD); 3502 } 3503 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { 3504 // FIXME: A trivial copy of a union copies the object representation, even if 3505 // the union is empty. 3506 if (RD->isUnion()) 3507 return !RD->field_empty(); 3508 if (RD->isEmpty()) 3509 return false; 3510 3511 for (auto *Field : RD->fields()) 3512 if (!Field->isUnnamedBitfield() && 3513 isReadByLvalueToRvalueConversion(Field->getType())) 3514 return true; 3515 3516 for (auto &BaseSpec : RD->bases()) 3517 if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) 3518 return true; 3519 3520 return false; 3521 } 3522 3523 /// Diagnose an attempt to read from any unreadable field within the specified 3524 /// type, which might be a class type. 3525 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, 3526 QualType T) { 3527 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3528 if (!RD) 3529 return false; 3530 3531 if (!RD->hasMutableFields()) 3532 return false; 3533 3534 for (auto *Field : RD->fields()) { 3535 // If we're actually going to read this field in some way, then it can't 3536 // be mutable. If we're in a union, then assigning to a mutable field 3537 // (even an empty one) can change the active member, so that's not OK. 3538 // FIXME: Add core issue number for the union case. 3539 if (Field->isMutable() && 3540 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { 3541 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; 3542 Info.Note(Field->getLocation(), diag::note_declared_at); 3543 return true; 3544 } 3545 3546 if (diagnoseMutableFields(Info, E, AK, Field->getType())) 3547 return true; 3548 } 3549 3550 for (auto &BaseSpec : RD->bases()) 3551 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) 3552 return true; 3553 3554 // All mutable fields were empty, and thus not actually read. 3555 return false; 3556 } 3557 3558 static bool lifetimeStartedInEvaluation(EvalInfo &Info, 3559 APValue::LValueBase Base, 3560 bool MutableSubobject = false) { 3561 // A temporary or transient heap allocation we created. 3562 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()) 3563 return true; 3564 3565 switch (Info.IsEvaluatingDecl) { 3566 case EvalInfo::EvaluatingDeclKind::None: 3567 return false; 3568 3569 case EvalInfo::EvaluatingDeclKind::Ctor: 3570 // The variable whose initializer we're evaluating. 3571 if (Info.EvaluatingDecl == Base) 3572 return true; 3573 3574 // A temporary lifetime-extended by the variable whose initializer we're 3575 // evaluating. 3576 if (auto *BaseE = Base.dyn_cast<const Expr *>()) 3577 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) 3578 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); 3579 return false; 3580 3581 case EvalInfo::EvaluatingDeclKind::Dtor: 3582 // C++2a [expr.const]p6: 3583 // [during constant destruction] the lifetime of a and its non-mutable 3584 // subobjects (but not its mutable subobjects) [are] considered to start 3585 // within e. 3586 if (MutableSubobject || Base != Info.EvaluatingDecl) 3587 return false; 3588 // FIXME: We can meaningfully extend this to cover non-const objects, but 3589 // we will need special handling: we should be able to access only 3590 // subobjects of such objects that are themselves declared const. 3591 QualType T = getType(Base); 3592 return T.isConstQualified() || T->isReferenceType(); 3593 } 3594 3595 llvm_unreachable("unknown evaluating decl kind"); 3596 } 3597 3598 namespace { 3599 /// A handle to a complete object (an object that is not a subobject of 3600 /// another object). 3601 struct CompleteObject { 3602 /// The identity of the object. 3603 APValue::LValueBase Base; 3604 /// The value of the complete object. 3605 APValue *Value; 3606 /// The type of the complete object. 3607 QualType Type; 3608 3609 CompleteObject() : Value(nullptr) {} 3610 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) 3611 : Base(Base), Value(Value), Type(Type) {} 3612 3613 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { 3614 // If this isn't a "real" access (eg, if it's just accessing the type 3615 // info), allow it. We assume the type doesn't change dynamically for 3616 // subobjects of constexpr objects (even though we'd hit UB here if it 3617 // did). FIXME: Is this right? 3618 if (!isAnyAccess(AK)) 3619 return true; 3620 3621 // In C++14 onwards, it is permitted to read a mutable member whose 3622 // lifetime began within the evaluation. 3623 // FIXME: Should we also allow this in C++11? 3624 if (!Info.getLangOpts().CPlusPlus14) 3625 return false; 3626 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); 3627 } 3628 3629 explicit operator bool() const { return !Type.isNull(); } 3630 }; 3631 } // end anonymous namespace 3632 3633 static QualType getSubobjectType(QualType ObjType, QualType SubobjType, 3634 bool IsMutable = false) { 3635 // C++ [basic.type.qualifier]p1: 3636 // - A const object is an object of type const T or a non-mutable subobject 3637 // of a const object. 3638 if (ObjType.isConstQualified() && !IsMutable) 3639 SubobjType.addConst(); 3640 // - A volatile object is an object of type const T or a subobject of a 3641 // volatile object. 3642 if (ObjType.isVolatileQualified()) 3643 SubobjType.addVolatile(); 3644 return SubobjType; 3645 } 3646 3647 /// Find the designated sub-object of an rvalue. 3648 template<typename SubobjectHandler> 3649 typename SubobjectHandler::result_type 3650 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, 3651 const SubobjectDesignator &Sub, SubobjectHandler &handler) { 3652 if (Sub.Invalid) 3653 // A diagnostic will have already been produced. 3654 return handler.failed(); 3655 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { 3656 if (Info.getLangOpts().CPlusPlus11) 3657 Info.FFDiag(E, Sub.isOnePastTheEnd() 3658 ? diag::note_constexpr_access_past_end 3659 : diag::note_constexpr_access_unsized_array) 3660 << handler.AccessKind; 3661 else 3662 Info.FFDiag(E); 3663 return handler.failed(); 3664 } 3665 3666 APValue *O = Obj.Value; 3667 QualType ObjType = Obj.Type; 3668 const FieldDecl *LastField = nullptr; 3669 const FieldDecl *VolatileField = nullptr; 3670 3671 // Walk the designator's path to find the subobject. 3672 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { 3673 // Reading an indeterminate value is undefined, but assigning over one is OK. 3674 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || 3675 (O->isIndeterminate() && 3676 !isValidIndeterminateAccess(handler.AccessKind))) { 3677 if (!Info.checkingPotentialConstantExpression()) 3678 Info.FFDiag(E, diag::note_constexpr_access_uninit) 3679 << handler.AccessKind << O->isIndeterminate(); 3680 return handler.failed(); 3681 } 3682 3683 // C++ [class.ctor]p5, C++ [class.dtor]p5: 3684 // const and volatile semantics are not applied on an object under 3685 // {con,de}struction. 3686 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && 3687 ObjType->isRecordType() && 3688 Info.isEvaluatingCtorDtor( 3689 Obj.Base, 3690 llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) != 3691 ConstructionPhase::None) { 3692 ObjType = Info.Ctx.getCanonicalType(ObjType); 3693 ObjType.removeLocalConst(); 3694 ObjType.removeLocalVolatile(); 3695 } 3696 3697 // If this is our last pass, check that the final object type is OK. 3698 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { 3699 // Accesses to volatile objects are prohibited. 3700 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { 3701 if (Info.getLangOpts().CPlusPlus) { 3702 int DiagKind; 3703 SourceLocation Loc; 3704 const NamedDecl *Decl = nullptr; 3705 if (VolatileField) { 3706 DiagKind = 2; 3707 Loc = VolatileField->getLocation(); 3708 Decl = VolatileField; 3709 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { 3710 DiagKind = 1; 3711 Loc = VD->getLocation(); 3712 Decl = VD; 3713 } else { 3714 DiagKind = 0; 3715 if (auto *E = Obj.Base.dyn_cast<const Expr *>()) 3716 Loc = E->getExprLoc(); 3717 } 3718 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) 3719 << handler.AccessKind << DiagKind << Decl; 3720 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; 3721 } else { 3722 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 3723 } 3724 return handler.failed(); 3725 } 3726 3727 // If we are reading an object of class type, there may still be more 3728 // things we need to check: if there are any mutable subobjects, we 3729 // cannot perform this read. (This only happens when performing a trivial 3730 // copy or assignment.) 3731 if (ObjType->isRecordType() && 3732 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && 3733 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) 3734 return handler.failed(); 3735 } 3736 3737 if (I == N) { 3738 if (!handler.found(*O, ObjType)) 3739 return false; 3740 3741 // If we modified a bit-field, truncate it to the right width. 3742 if (isModification(handler.AccessKind) && 3743 LastField && LastField->isBitField() && 3744 !truncateBitfieldValue(Info, E, *O, LastField)) 3745 return false; 3746 3747 return true; 3748 } 3749 3750 LastField = nullptr; 3751 if (ObjType->isArrayType()) { 3752 // Next subobject is an array element. 3753 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); 3754 assert(CAT && "vla in literal type?"); 3755 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3756 if (CAT->getSize().ule(Index)) { 3757 // Note, it should not be possible to form a pointer with a valid 3758 // designator which points more than one past the end of the array. 3759 if (Info.getLangOpts().CPlusPlus11) 3760 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3761 << handler.AccessKind; 3762 else 3763 Info.FFDiag(E); 3764 return handler.failed(); 3765 } 3766 3767 ObjType = CAT->getElementType(); 3768 3769 if (O->getArrayInitializedElts() > Index) 3770 O = &O->getArrayInitializedElt(Index); 3771 else if (!isRead(handler.AccessKind)) { 3772 expandArray(*O, Index); 3773 O = &O->getArrayInitializedElt(Index); 3774 } else 3775 O = &O->getArrayFiller(); 3776 } else if (ObjType->isAnyComplexType()) { 3777 // Next subobject is a complex number. 3778 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3779 if (Index > 1) { 3780 if (Info.getLangOpts().CPlusPlus11) 3781 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3782 << handler.AccessKind; 3783 else 3784 Info.FFDiag(E); 3785 return handler.failed(); 3786 } 3787 3788 ObjType = getSubobjectType( 3789 ObjType, ObjType->castAs<ComplexType>()->getElementType()); 3790 3791 assert(I == N - 1 && "extracting subobject of scalar?"); 3792 if (O->isComplexInt()) { 3793 return handler.found(Index ? O->getComplexIntImag() 3794 : O->getComplexIntReal(), ObjType); 3795 } else { 3796 assert(O->isComplexFloat()); 3797 return handler.found(Index ? O->getComplexFloatImag() 3798 : O->getComplexFloatReal(), ObjType); 3799 } 3800 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { 3801 if (Field->isMutable() && 3802 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { 3803 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) 3804 << handler.AccessKind << Field; 3805 Info.Note(Field->getLocation(), diag::note_declared_at); 3806 return handler.failed(); 3807 } 3808 3809 // Next subobject is a class, struct or union field. 3810 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); 3811 if (RD->isUnion()) { 3812 const FieldDecl *UnionField = O->getUnionField(); 3813 if (!UnionField || 3814 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { 3815 if (I == N - 1 && handler.AccessKind == AK_Construct) { 3816 // Placement new onto an inactive union member makes it active. 3817 O->setUnion(Field, APValue()); 3818 } else { 3819 // FIXME: If O->getUnionValue() is absent, report that there's no 3820 // active union member rather than reporting the prior active union 3821 // member. We'll need to fix nullptr_t to not use APValue() as its 3822 // representation first. 3823 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) 3824 << handler.AccessKind << Field << !UnionField << UnionField; 3825 return handler.failed(); 3826 } 3827 } 3828 O = &O->getUnionValue(); 3829 } else 3830 O = &O->getStructField(Field->getFieldIndex()); 3831 3832 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); 3833 LastField = Field; 3834 if (Field->getType().isVolatileQualified()) 3835 VolatileField = Field; 3836 } else { 3837 // Next subobject is a base class. 3838 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); 3839 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); 3840 O = &O->getStructBase(getBaseIndex(Derived, Base)); 3841 3842 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); 3843 } 3844 } 3845 } 3846 3847 namespace { 3848 struct ExtractSubobjectHandler { 3849 EvalInfo &Info; 3850 const Expr *E; 3851 APValue &Result; 3852 const AccessKinds AccessKind; 3853 3854 typedef bool result_type; 3855 bool failed() { return false; } 3856 bool found(APValue &Subobj, QualType SubobjType) { 3857 Result = Subobj; 3858 if (AccessKind == AK_ReadObjectRepresentation) 3859 return true; 3860 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); 3861 } 3862 bool found(APSInt &Value, QualType SubobjType) { 3863 Result = APValue(Value); 3864 return true; 3865 } 3866 bool found(APFloat &Value, QualType SubobjType) { 3867 Result = APValue(Value); 3868 return true; 3869 } 3870 }; 3871 } // end anonymous namespace 3872 3873 /// Extract the designated sub-object of an rvalue. 3874 static bool extractSubobject(EvalInfo &Info, const Expr *E, 3875 const CompleteObject &Obj, 3876 const SubobjectDesignator &Sub, APValue &Result, 3877 AccessKinds AK = AK_Read) { 3878 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); 3879 ExtractSubobjectHandler Handler = {Info, E, Result, AK}; 3880 return findSubobject(Info, E, Obj, Sub, Handler); 3881 } 3882 3883 namespace { 3884 struct ModifySubobjectHandler { 3885 EvalInfo &Info; 3886 APValue &NewVal; 3887 const Expr *E; 3888 3889 typedef bool result_type; 3890 static const AccessKinds AccessKind = AK_Assign; 3891 3892 bool checkConst(QualType QT) { 3893 // Assigning to a const object has undefined behavior. 3894 if (QT.isConstQualified()) { 3895 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 3896 return false; 3897 } 3898 return true; 3899 } 3900 3901 bool failed() { return false; } 3902 bool found(APValue &Subobj, QualType SubobjType) { 3903 if (!checkConst(SubobjType)) 3904 return false; 3905 // We've been given ownership of NewVal, so just swap it in. 3906 Subobj.swap(NewVal); 3907 return true; 3908 } 3909 bool found(APSInt &Value, QualType SubobjType) { 3910 if (!checkConst(SubobjType)) 3911 return false; 3912 if (!NewVal.isInt()) { 3913 // Maybe trying to write a cast pointer value into a complex? 3914 Info.FFDiag(E); 3915 return false; 3916 } 3917 Value = NewVal.getInt(); 3918 return true; 3919 } 3920 bool found(APFloat &Value, QualType SubobjType) { 3921 if (!checkConst(SubobjType)) 3922 return false; 3923 Value = NewVal.getFloat(); 3924 return true; 3925 } 3926 }; 3927 } // end anonymous namespace 3928 3929 const AccessKinds ModifySubobjectHandler::AccessKind; 3930 3931 /// Update the designated sub-object of an rvalue to the given value. 3932 static bool modifySubobject(EvalInfo &Info, const Expr *E, 3933 const CompleteObject &Obj, 3934 const SubobjectDesignator &Sub, 3935 APValue &NewVal) { 3936 ModifySubobjectHandler Handler = { Info, NewVal, E }; 3937 return findSubobject(Info, E, Obj, Sub, Handler); 3938 } 3939 3940 /// Find the position where two subobject designators diverge, or equivalently 3941 /// the length of the common initial subsequence. 3942 static unsigned FindDesignatorMismatch(QualType ObjType, 3943 const SubobjectDesignator &A, 3944 const SubobjectDesignator &B, 3945 bool &WasArrayIndex) { 3946 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); 3947 for (/**/; I != N; ++I) { 3948 if (!ObjType.isNull() && 3949 (ObjType->isArrayType() || ObjType->isAnyComplexType())) { 3950 // Next subobject is an array element. 3951 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { 3952 WasArrayIndex = true; 3953 return I; 3954 } 3955 if (ObjType->isAnyComplexType()) 3956 ObjType = ObjType->castAs<ComplexType>()->getElementType(); 3957 else 3958 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); 3959 } else { 3960 if (A.Entries[I].getAsBaseOrMember() != 3961 B.Entries[I].getAsBaseOrMember()) { 3962 WasArrayIndex = false; 3963 return I; 3964 } 3965 if (const FieldDecl *FD = getAsField(A.Entries[I])) 3966 // Next subobject is a field. 3967 ObjType = FD->getType(); 3968 else 3969 // Next subobject is a base class. 3970 ObjType = QualType(); 3971 } 3972 } 3973 WasArrayIndex = false; 3974 return I; 3975 } 3976 3977 /// Determine whether the given subobject designators refer to elements of the 3978 /// same array object. 3979 static bool AreElementsOfSameArray(QualType ObjType, 3980 const SubobjectDesignator &A, 3981 const SubobjectDesignator &B) { 3982 if (A.Entries.size() != B.Entries.size()) 3983 return false; 3984 3985 bool IsArray = A.MostDerivedIsArrayElement; 3986 if (IsArray && A.MostDerivedPathLength != A.Entries.size()) 3987 // A is a subobject of the array element. 3988 return false; 3989 3990 // If A (and B) designates an array element, the last entry will be the array 3991 // index. That doesn't have to match. Otherwise, we're in the 'implicit array 3992 // of length 1' case, and the entire path must match. 3993 bool WasArrayIndex; 3994 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); 3995 return CommonLength >= A.Entries.size() - IsArray; 3996 } 3997 3998 /// Find the complete object to which an LValue refers. 3999 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, 4000 AccessKinds AK, const LValue &LVal, 4001 QualType LValType) { 4002 if (LVal.InvalidBase) { 4003 Info.FFDiag(E); 4004 return CompleteObject(); 4005 } 4006 4007 if (!LVal.Base) { 4008 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 4009 return CompleteObject(); 4010 } 4011 4012 CallStackFrame *Frame = nullptr; 4013 unsigned Depth = 0; 4014 if (LVal.getLValueCallIndex()) { 4015 std::tie(Frame, Depth) = 4016 Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); 4017 if (!Frame) { 4018 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) 4019 << AK << LVal.Base.is<const ValueDecl*>(); 4020 NoteLValueLocation(Info, LVal.Base); 4021 return CompleteObject(); 4022 } 4023 } 4024 4025 bool IsAccess = isAnyAccess(AK); 4026 4027 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type 4028 // is not a constant expression (even if the object is non-volatile). We also 4029 // apply this rule to C++98, in order to conform to the expected 'volatile' 4030 // semantics. 4031 if (isFormalAccess(AK) && LValType.isVolatileQualified()) { 4032 if (Info.getLangOpts().CPlusPlus) 4033 Info.FFDiag(E, diag::note_constexpr_access_volatile_type) 4034 << AK << LValType; 4035 else 4036 Info.FFDiag(E); 4037 return CompleteObject(); 4038 } 4039 4040 // Compute value storage location and type of base object. 4041 APValue *BaseVal = nullptr; 4042 QualType BaseType = getType(LVal.Base); 4043 4044 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl && 4045 lifetimeStartedInEvaluation(Info, LVal.Base)) { 4046 // This is the object whose initializer we're evaluating, so its lifetime 4047 // started in the current evaluation. 4048 BaseVal = Info.EvaluatingDeclValue; 4049 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) { 4050 // Allow reading from a GUID declaration. 4051 if (auto *GD = dyn_cast<MSGuidDecl>(D)) { 4052 if (isModification(AK)) { 4053 // All the remaining cases do not permit modification of the object. 4054 Info.FFDiag(E, diag::note_constexpr_modify_global); 4055 return CompleteObject(); 4056 } 4057 APValue &V = GD->getAsAPValue(); 4058 if (V.isAbsent()) { 4059 Info.FFDiag(E, diag::note_constexpr_unsupported_layout) 4060 << GD->getType(); 4061 return CompleteObject(); 4062 } 4063 return CompleteObject(LVal.Base, &V, GD->getType()); 4064 } 4065 4066 // Allow reading the APValue from an UnnamedGlobalConstantDecl. 4067 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) { 4068 if (isModification(AK)) { 4069 Info.FFDiag(E, diag::note_constexpr_modify_global); 4070 return CompleteObject(); 4071 } 4072 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()), 4073 GCD->getType()); 4074 } 4075 4076 // Allow reading from template parameter objects. 4077 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 4078 if (isModification(AK)) { 4079 Info.FFDiag(E, diag::note_constexpr_modify_global); 4080 return CompleteObject(); 4081 } 4082 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()), 4083 TPO->getType()); 4084 } 4085 4086 // In C++98, const, non-volatile integers initialized with ICEs are ICEs. 4087 // In C++11, constexpr, non-volatile variables initialized with constant 4088 // expressions are constant expressions too. Inside constexpr functions, 4089 // parameters are constant expressions even if they're non-const. 4090 // In C++1y, objects local to a constant expression (those with a Frame) are 4091 // both readable and writable inside constant expressions. 4092 // In C, such things can also be folded, although they are not ICEs. 4093 const VarDecl *VD = dyn_cast<VarDecl>(D); 4094 if (VD) { 4095 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) 4096 VD = VDef; 4097 } 4098 if (!VD || VD->isInvalidDecl()) { 4099 Info.FFDiag(E); 4100 return CompleteObject(); 4101 } 4102 4103 bool IsConstant = BaseType.isConstant(Info.Ctx); 4104 4105 // Unless we're looking at a local variable or argument in a constexpr call, 4106 // the variable we're reading must be const. 4107 if (!Frame) { 4108 if (IsAccess && isa<ParmVarDecl>(VD)) { 4109 // Access of a parameter that's not associated with a frame isn't going 4110 // to work out, but we can leave it to evaluateVarDeclInit to provide a 4111 // suitable diagnostic. 4112 } else if (Info.getLangOpts().CPlusPlus14 && 4113 lifetimeStartedInEvaluation(Info, LVal.Base)) { 4114 // OK, we can read and modify an object if we're in the process of 4115 // evaluating its initializer, because its lifetime began in this 4116 // evaluation. 4117 } else if (isModification(AK)) { 4118 // All the remaining cases do not permit modification of the object. 4119 Info.FFDiag(E, diag::note_constexpr_modify_global); 4120 return CompleteObject(); 4121 } else if (VD->isConstexpr()) { 4122 // OK, we can read this variable. 4123 } else if (BaseType->isIntegralOrEnumerationType()) { 4124 if (!IsConstant) { 4125 if (!IsAccess) 4126 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4127 if (Info.getLangOpts().CPlusPlus) { 4128 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; 4129 Info.Note(VD->getLocation(), diag::note_declared_at); 4130 } else { 4131 Info.FFDiag(E); 4132 } 4133 return CompleteObject(); 4134 } 4135 } else if (!IsAccess) { 4136 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4137 } else if (IsConstant && Info.checkingPotentialConstantExpression() && 4138 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) { 4139 // This variable might end up being constexpr. Don't diagnose it yet. 4140 } else if (IsConstant) { 4141 // Keep evaluating to see what we can do. In particular, we support 4142 // folding of const floating-point types, in order to make static const 4143 // data members of such types (supported as an extension) more useful. 4144 if (Info.getLangOpts().CPlusPlus) { 4145 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11 4146 ? diag::note_constexpr_ltor_non_constexpr 4147 : diag::note_constexpr_ltor_non_integral, 1) 4148 << VD << BaseType; 4149 Info.Note(VD->getLocation(), diag::note_declared_at); 4150 } else { 4151 Info.CCEDiag(E); 4152 } 4153 } else { 4154 // Never allow reading a non-const value. 4155 if (Info.getLangOpts().CPlusPlus) { 4156 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 4157 ? diag::note_constexpr_ltor_non_constexpr 4158 : diag::note_constexpr_ltor_non_integral, 1) 4159 << VD << BaseType; 4160 Info.Note(VD->getLocation(), diag::note_declared_at); 4161 } else { 4162 Info.FFDiag(E); 4163 } 4164 return CompleteObject(); 4165 } 4166 } 4167 4168 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal)) 4169 return CompleteObject(); 4170 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { 4171 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 4172 if (!Alloc) { 4173 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; 4174 return CompleteObject(); 4175 } 4176 return CompleteObject(LVal.Base, &(*Alloc)->Value, 4177 LVal.Base.getDynamicAllocType()); 4178 } else { 4179 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4180 4181 if (!Frame) { 4182 if (const MaterializeTemporaryExpr *MTE = 4183 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { 4184 assert(MTE->getStorageDuration() == SD_Static && 4185 "should have a frame for a non-global materialized temporary"); 4186 4187 // C++20 [expr.const]p4: [DR2126] 4188 // An object or reference is usable in constant expressions if it is 4189 // - a temporary object of non-volatile const-qualified literal type 4190 // whose lifetime is extended to that of a variable that is usable 4191 // in constant expressions 4192 // 4193 // C++20 [expr.const]p5: 4194 // an lvalue-to-rvalue conversion [is not allowed unless it applies to] 4195 // - a non-volatile glvalue that refers to an object that is usable 4196 // in constant expressions, or 4197 // - a non-volatile glvalue of literal type that refers to a 4198 // non-volatile object whose lifetime began within the evaluation 4199 // of E; 4200 // 4201 // C++11 misses the 'began within the evaluation of e' check and 4202 // instead allows all temporaries, including things like: 4203 // int &&r = 1; 4204 // int x = ++r; 4205 // constexpr int k = r; 4206 // Therefore we use the C++14-onwards rules in C++11 too. 4207 // 4208 // Note that temporaries whose lifetimes began while evaluating a 4209 // variable's constructor are not usable while evaluating the 4210 // corresponding destructor, not even if they're of const-qualified 4211 // types. 4212 if (!MTE->isUsableInConstantExpressions(Info.Ctx) && 4213 !lifetimeStartedInEvaluation(Info, LVal.Base)) { 4214 if (!IsAccess) 4215 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4216 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; 4217 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); 4218 return CompleteObject(); 4219 } 4220 4221 BaseVal = MTE->getOrCreateValue(false); 4222 assert(BaseVal && "got reference to unevaluated temporary"); 4223 } else { 4224 if (!IsAccess) 4225 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4226 APValue Val; 4227 LVal.moveInto(Val); 4228 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) 4229 << AK 4230 << Val.getAsString(Info.Ctx, 4231 Info.Ctx.getLValueReferenceType(LValType)); 4232 NoteLValueLocation(Info, LVal.Base); 4233 return CompleteObject(); 4234 } 4235 } else { 4236 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); 4237 assert(BaseVal && "missing value for temporary"); 4238 } 4239 } 4240 4241 // In C++14, we can't safely access any mutable state when we might be 4242 // evaluating after an unmodeled side effect. Parameters are modeled as state 4243 // in the caller, but aren't visible once the call returns, so they can be 4244 // modified in a speculatively-evaluated call. 4245 // 4246 // FIXME: Not all local state is mutable. Allow local constant subobjects 4247 // to be read here (but take care with 'mutable' fields). 4248 unsigned VisibleDepth = Depth; 4249 if (llvm::isa_and_nonnull<ParmVarDecl>( 4250 LVal.Base.dyn_cast<const ValueDecl *>())) 4251 ++VisibleDepth; 4252 if ((Frame && Info.getLangOpts().CPlusPlus14 && 4253 Info.EvalStatus.HasSideEffects) || 4254 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth)) 4255 return CompleteObject(); 4256 4257 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); 4258 } 4259 4260 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This 4261 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the 4262 /// glvalue referred to by an entity of reference type. 4263 /// 4264 /// \param Info - Information about the ongoing evaluation. 4265 /// \param Conv - The expression for which we are performing the conversion. 4266 /// Used for diagnostics. 4267 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the 4268 /// case of a non-class type). 4269 /// \param LVal - The glvalue on which we are attempting to perform this action. 4270 /// \param RVal - The produced value will be placed here. 4271 /// \param WantObjectRepresentation - If true, we're looking for the object 4272 /// representation rather than the value, and in particular, 4273 /// there is no requirement that the result be fully initialized. 4274 static bool 4275 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, 4276 const LValue &LVal, APValue &RVal, 4277 bool WantObjectRepresentation = false) { 4278 if (LVal.Designator.Invalid) 4279 return false; 4280 4281 // Check for special cases where there is no existing APValue to look at. 4282 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4283 4284 AccessKinds AK = 4285 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; 4286 4287 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { 4288 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { 4289 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the 4290 // initializer until now for such expressions. Such an expression can't be 4291 // an ICE in C, so this only matters for fold. 4292 if (Type.isVolatileQualified()) { 4293 Info.FFDiag(Conv); 4294 return false; 4295 } 4296 4297 APValue Lit; 4298 if (!Evaluate(Lit, Info, CLE->getInitializer())) 4299 return false; 4300 4301 // According to GCC info page: 4302 // 4303 // 6.28 Compound Literals 4304 // 4305 // As an optimization, G++ sometimes gives array compound literals longer 4306 // lifetimes: when the array either appears outside a function or has a 4307 // const-qualified type. If foo and its initializer had elements of type 4308 // char *const rather than char *, or if foo were a global variable, the 4309 // array would have static storage duration. But it is probably safest 4310 // just to avoid the use of array compound literals in C++ code. 4311 // 4312 // Obey that rule by checking constness for converted array types. 4313 4314 QualType CLETy = CLE->getType(); 4315 if (CLETy->isArrayType() && !Type->isArrayType()) { 4316 if (!CLETy.isConstant(Info.Ctx)) { 4317 Info.FFDiag(Conv); 4318 Info.Note(CLE->getExprLoc(), diag::note_declared_at); 4319 return false; 4320 } 4321 } 4322 4323 CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); 4324 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); 4325 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { 4326 // Special-case character extraction so we don't have to construct an 4327 // APValue for the whole string. 4328 assert(LVal.Designator.Entries.size() <= 1 && 4329 "Can only read characters from string literals"); 4330 if (LVal.Designator.Entries.empty()) { 4331 // Fail for now for LValue to RValue conversion of an array. 4332 // (This shouldn't show up in C/C++, but it could be triggered by a 4333 // weird EvaluateAsRValue call from a tool.) 4334 Info.FFDiag(Conv); 4335 return false; 4336 } 4337 if (LVal.Designator.isOnePastTheEnd()) { 4338 if (Info.getLangOpts().CPlusPlus11) 4339 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; 4340 else 4341 Info.FFDiag(Conv); 4342 return false; 4343 } 4344 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); 4345 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); 4346 return true; 4347 } 4348 } 4349 4350 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); 4351 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); 4352 } 4353 4354 /// Perform an assignment of Val to LVal. Takes ownership of Val. 4355 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, 4356 QualType LValType, APValue &Val) { 4357 if (LVal.Designator.Invalid) 4358 return false; 4359 4360 if (!Info.getLangOpts().CPlusPlus14) { 4361 Info.FFDiag(E); 4362 return false; 4363 } 4364 4365 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4366 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); 4367 } 4368 4369 namespace { 4370 struct CompoundAssignSubobjectHandler { 4371 EvalInfo &Info; 4372 const CompoundAssignOperator *E; 4373 QualType PromotedLHSType; 4374 BinaryOperatorKind Opcode; 4375 const APValue &RHS; 4376 4377 static const AccessKinds AccessKind = AK_Assign; 4378 4379 typedef bool result_type; 4380 4381 bool checkConst(QualType QT) { 4382 // Assigning to a const object has undefined behavior. 4383 if (QT.isConstQualified()) { 4384 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4385 return false; 4386 } 4387 return true; 4388 } 4389 4390 bool failed() { return false; } 4391 bool found(APValue &Subobj, QualType SubobjType) { 4392 switch (Subobj.getKind()) { 4393 case APValue::Int: 4394 return found(Subobj.getInt(), SubobjType); 4395 case APValue::Float: 4396 return found(Subobj.getFloat(), SubobjType); 4397 case APValue::ComplexInt: 4398 case APValue::ComplexFloat: 4399 // FIXME: Implement complex compound assignment. 4400 Info.FFDiag(E); 4401 return false; 4402 case APValue::LValue: 4403 return foundPointer(Subobj, SubobjType); 4404 case APValue::Vector: 4405 return foundVector(Subobj, SubobjType); 4406 default: 4407 // FIXME: can this happen? 4408 Info.FFDiag(E); 4409 return false; 4410 } 4411 } 4412 4413 bool foundVector(APValue &Value, QualType SubobjType) { 4414 if (!checkConst(SubobjType)) 4415 return false; 4416 4417 if (!SubobjType->isVectorType()) { 4418 Info.FFDiag(E); 4419 return false; 4420 } 4421 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS); 4422 } 4423 4424 bool found(APSInt &Value, QualType SubobjType) { 4425 if (!checkConst(SubobjType)) 4426 return false; 4427 4428 if (!SubobjType->isIntegerType()) { 4429 // We don't support compound assignment on integer-cast-to-pointer 4430 // values. 4431 Info.FFDiag(E); 4432 return false; 4433 } 4434 4435 if (RHS.isInt()) { 4436 APSInt LHS = 4437 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); 4438 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) 4439 return false; 4440 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); 4441 return true; 4442 } else if (RHS.isFloat()) { 4443 const FPOptions FPO = E->getFPFeaturesInEffect( 4444 Info.Ctx.getLangOpts()); 4445 APFloat FValue(0.0); 4446 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value, 4447 PromotedLHSType, FValue) && 4448 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && 4449 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, 4450 Value); 4451 } 4452 4453 Info.FFDiag(E); 4454 return false; 4455 } 4456 bool found(APFloat &Value, QualType SubobjType) { 4457 return checkConst(SubobjType) && 4458 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, 4459 Value) && 4460 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && 4461 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); 4462 } 4463 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4464 if (!checkConst(SubobjType)) 4465 return false; 4466 4467 QualType PointeeType; 4468 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4469 PointeeType = PT->getPointeeType(); 4470 4471 if (PointeeType.isNull() || !RHS.isInt() || 4472 (Opcode != BO_Add && Opcode != BO_Sub)) { 4473 Info.FFDiag(E); 4474 return false; 4475 } 4476 4477 APSInt Offset = RHS.getInt(); 4478 if (Opcode == BO_Sub) 4479 negateAsSigned(Offset); 4480 4481 LValue LVal; 4482 LVal.setFrom(Info.Ctx, Subobj); 4483 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) 4484 return false; 4485 LVal.moveInto(Subobj); 4486 return true; 4487 } 4488 }; 4489 } // end anonymous namespace 4490 4491 const AccessKinds CompoundAssignSubobjectHandler::AccessKind; 4492 4493 /// Perform a compound assignment of LVal <op>= RVal. 4494 static bool handleCompoundAssignment(EvalInfo &Info, 4495 const CompoundAssignOperator *E, 4496 const LValue &LVal, QualType LValType, 4497 QualType PromotedLValType, 4498 BinaryOperatorKind Opcode, 4499 const APValue &RVal) { 4500 if (LVal.Designator.Invalid) 4501 return false; 4502 4503 if (!Info.getLangOpts().CPlusPlus14) { 4504 Info.FFDiag(E); 4505 return false; 4506 } 4507 4508 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4509 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, 4510 RVal }; 4511 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4512 } 4513 4514 namespace { 4515 struct IncDecSubobjectHandler { 4516 EvalInfo &Info; 4517 const UnaryOperator *E; 4518 AccessKinds AccessKind; 4519 APValue *Old; 4520 4521 typedef bool result_type; 4522 4523 bool checkConst(QualType QT) { 4524 // Assigning to a const object has undefined behavior. 4525 if (QT.isConstQualified()) { 4526 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4527 return false; 4528 } 4529 return true; 4530 } 4531 4532 bool failed() { return false; } 4533 bool found(APValue &Subobj, QualType SubobjType) { 4534 // Stash the old value. Also clear Old, so we don't clobber it later 4535 // if we're post-incrementing a complex. 4536 if (Old) { 4537 *Old = Subobj; 4538 Old = nullptr; 4539 } 4540 4541 switch (Subobj.getKind()) { 4542 case APValue::Int: 4543 return found(Subobj.getInt(), SubobjType); 4544 case APValue::Float: 4545 return found(Subobj.getFloat(), SubobjType); 4546 case APValue::ComplexInt: 4547 return found(Subobj.getComplexIntReal(), 4548 SubobjType->castAs<ComplexType>()->getElementType() 4549 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4550 case APValue::ComplexFloat: 4551 return found(Subobj.getComplexFloatReal(), 4552 SubobjType->castAs<ComplexType>()->getElementType() 4553 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4554 case APValue::LValue: 4555 return foundPointer(Subobj, SubobjType); 4556 default: 4557 // FIXME: can this happen? 4558 Info.FFDiag(E); 4559 return false; 4560 } 4561 } 4562 bool found(APSInt &Value, QualType SubobjType) { 4563 if (!checkConst(SubobjType)) 4564 return false; 4565 4566 if (!SubobjType->isIntegerType()) { 4567 // We don't support increment / decrement on integer-cast-to-pointer 4568 // values. 4569 Info.FFDiag(E); 4570 return false; 4571 } 4572 4573 if (Old) *Old = APValue(Value); 4574 4575 // bool arithmetic promotes to int, and the conversion back to bool 4576 // doesn't reduce mod 2^n, so special-case it. 4577 if (SubobjType->isBooleanType()) { 4578 if (AccessKind == AK_Increment) 4579 Value = 1; 4580 else 4581 Value = !Value; 4582 return true; 4583 } 4584 4585 bool WasNegative = Value.isNegative(); 4586 if (AccessKind == AK_Increment) { 4587 ++Value; 4588 4589 if (!WasNegative && Value.isNegative() && E->canOverflow()) { 4590 APSInt ActualValue(Value, /*IsUnsigned*/true); 4591 return HandleOverflow(Info, E, ActualValue, SubobjType); 4592 } 4593 } else { 4594 --Value; 4595 4596 if (WasNegative && !Value.isNegative() && E->canOverflow()) { 4597 unsigned BitWidth = Value.getBitWidth(); 4598 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); 4599 ActualValue.setBit(BitWidth); 4600 return HandleOverflow(Info, E, ActualValue, SubobjType); 4601 } 4602 } 4603 return true; 4604 } 4605 bool found(APFloat &Value, QualType SubobjType) { 4606 if (!checkConst(SubobjType)) 4607 return false; 4608 4609 if (Old) *Old = APValue(Value); 4610 4611 APFloat One(Value.getSemantics(), 1); 4612 if (AccessKind == AK_Increment) 4613 Value.add(One, APFloat::rmNearestTiesToEven); 4614 else 4615 Value.subtract(One, APFloat::rmNearestTiesToEven); 4616 return true; 4617 } 4618 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4619 if (!checkConst(SubobjType)) 4620 return false; 4621 4622 QualType PointeeType; 4623 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4624 PointeeType = PT->getPointeeType(); 4625 else { 4626 Info.FFDiag(E); 4627 return false; 4628 } 4629 4630 LValue LVal; 4631 LVal.setFrom(Info.Ctx, Subobj); 4632 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, 4633 AccessKind == AK_Increment ? 1 : -1)) 4634 return false; 4635 LVal.moveInto(Subobj); 4636 return true; 4637 } 4638 }; 4639 } // end anonymous namespace 4640 4641 /// Perform an increment or decrement on LVal. 4642 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, 4643 QualType LValType, bool IsIncrement, APValue *Old) { 4644 if (LVal.Designator.Invalid) 4645 return false; 4646 4647 if (!Info.getLangOpts().CPlusPlus14) { 4648 Info.FFDiag(E); 4649 return false; 4650 } 4651 4652 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; 4653 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); 4654 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; 4655 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4656 } 4657 4658 /// Build an lvalue for the object argument of a member function call. 4659 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, 4660 LValue &This) { 4661 if (Object->getType()->isPointerType() && Object->isPRValue()) 4662 return EvaluatePointer(Object, This, Info); 4663 4664 if (Object->isGLValue()) 4665 return EvaluateLValue(Object, This, Info); 4666 4667 if (Object->getType()->isLiteralType(Info.Ctx)) 4668 return EvaluateTemporary(Object, This, Info); 4669 4670 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); 4671 return false; 4672 } 4673 4674 /// HandleMemberPointerAccess - Evaluate a member access operation and build an 4675 /// lvalue referring to the result. 4676 /// 4677 /// \param Info - Information about the ongoing evaluation. 4678 /// \param LV - An lvalue referring to the base of the member pointer. 4679 /// \param RHS - The member pointer expression. 4680 /// \param IncludeMember - Specifies whether the member itself is included in 4681 /// the resulting LValue subobject designator. This is not possible when 4682 /// creating a bound member function. 4683 /// \return The field or method declaration to which the member pointer refers, 4684 /// or 0 if evaluation fails. 4685 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4686 QualType LVType, 4687 LValue &LV, 4688 const Expr *RHS, 4689 bool IncludeMember = true) { 4690 MemberPtr MemPtr; 4691 if (!EvaluateMemberPointer(RHS, MemPtr, Info)) 4692 return nullptr; 4693 4694 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to 4695 // member value, the behavior is undefined. 4696 if (!MemPtr.getDecl()) { 4697 // FIXME: Specific diagnostic. 4698 Info.FFDiag(RHS); 4699 return nullptr; 4700 } 4701 4702 if (MemPtr.isDerivedMember()) { 4703 // This is a member of some derived class. Truncate LV appropriately. 4704 // The end of the derived-to-base path for the base object must match the 4705 // derived-to-base path for the member pointer. 4706 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > 4707 LV.Designator.Entries.size()) { 4708 Info.FFDiag(RHS); 4709 return nullptr; 4710 } 4711 unsigned PathLengthToMember = 4712 LV.Designator.Entries.size() - MemPtr.Path.size(); 4713 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { 4714 const CXXRecordDecl *LVDecl = getAsBaseClass( 4715 LV.Designator.Entries[PathLengthToMember + I]); 4716 const CXXRecordDecl *MPDecl = MemPtr.Path[I]; 4717 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { 4718 Info.FFDiag(RHS); 4719 return nullptr; 4720 } 4721 } 4722 4723 // Truncate the lvalue to the appropriate derived class. 4724 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), 4725 PathLengthToMember)) 4726 return nullptr; 4727 } else if (!MemPtr.Path.empty()) { 4728 // Extend the LValue path with the member pointer's path. 4729 LV.Designator.Entries.reserve(LV.Designator.Entries.size() + 4730 MemPtr.Path.size() + IncludeMember); 4731 4732 // Walk down to the appropriate base class. 4733 if (const PointerType *PT = LVType->getAs<PointerType>()) 4734 LVType = PT->getPointeeType(); 4735 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); 4736 assert(RD && "member pointer access on non-class-type expression"); 4737 // The first class in the path is that of the lvalue. 4738 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { 4739 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; 4740 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) 4741 return nullptr; 4742 RD = Base; 4743 } 4744 // Finally cast to the class containing the member. 4745 if (!HandleLValueDirectBase(Info, RHS, LV, RD, 4746 MemPtr.getContainingRecord())) 4747 return nullptr; 4748 } 4749 4750 // Add the member. Note that we cannot build bound member functions here. 4751 if (IncludeMember) { 4752 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { 4753 if (!HandleLValueMember(Info, RHS, LV, FD)) 4754 return nullptr; 4755 } else if (const IndirectFieldDecl *IFD = 4756 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { 4757 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) 4758 return nullptr; 4759 } else { 4760 llvm_unreachable("can't construct reference to bound member function"); 4761 } 4762 } 4763 4764 return MemPtr.getDecl(); 4765 } 4766 4767 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4768 const BinaryOperator *BO, 4769 LValue &LV, 4770 bool IncludeMember = true) { 4771 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); 4772 4773 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { 4774 if (Info.noteFailure()) { 4775 MemberPtr MemPtr; 4776 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); 4777 } 4778 return nullptr; 4779 } 4780 4781 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, 4782 BO->getRHS(), IncludeMember); 4783 } 4784 4785 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on 4786 /// the provided lvalue, which currently refers to the base object. 4787 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, 4788 LValue &Result) { 4789 SubobjectDesignator &D = Result.Designator; 4790 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) 4791 return false; 4792 4793 QualType TargetQT = E->getType(); 4794 if (const PointerType *PT = TargetQT->getAs<PointerType>()) 4795 TargetQT = PT->getPointeeType(); 4796 4797 // Check this cast lands within the final derived-to-base subobject path. 4798 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { 4799 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 4800 << D.MostDerivedType << TargetQT; 4801 return false; 4802 } 4803 4804 // Check the type of the final cast. We don't need to check the path, 4805 // since a cast can only be formed if the path is unique. 4806 unsigned NewEntriesSize = D.Entries.size() - E->path_size(); 4807 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); 4808 const CXXRecordDecl *FinalType; 4809 if (NewEntriesSize == D.MostDerivedPathLength) 4810 FinalType = D.MostDerivedType->getAsCXXRecordDecl(); 4811 else 4812 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); 4813 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { 4814 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 4815 << D.MostDerivedType << TargetQT; 4816 return false; 4817 } 4818 4819 // Truncate the lvalue to the appropriate derived class. 4820 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); 4821 } 4822 4823 /// Get the value to use for a default-initialized object of type T. 4824 /// Return false if it encounters something invalid. 4825 static bool getDefaultInitValue(QualType T, APValue &Result) { 4826 bool Success = true; 4827 if (auto *RD = T->getAsCXXRecordDecl()) { 4828 if (RD->isInvalidDecl()) { 4829 Result = APValue(); 4830 return false; 4831 } 4832 if (RD->isUnion()) { 4833 Result = APValue((const FieldDecl *)nullptr); 4834 return true; 4835 } 4836 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 4837 std::distance(RD->field_begin(), RD->field_end())); 4838 4839 unsigned Index = 0; 4840 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 4841 End = RD->bases_end(); 4842 I != End; ++I, ++Index) 4843 Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index)); 4844 4845 for (const auto *I : RD->fields()) { 4846 if (I->isUnnamedBitfield()) 4847 continue; 4848 Success &= getDefaultInitValue(I->getType(), 4849 Result.getStructField(I->getFieldIndex())); 4850 } 4851 return Success; 4852 } 4853 4854 if (auto *AT = 4855 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { 4856 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue()); 4857 if (Result.hasArrayFiller()) 4858 Success &= 4859 getDefaultInitValue(AT->getElementType(), Result.getArrayFiller()); 4860 4861 return Success; 4862 } 4863 4864 Result = APValue::IndeterminateValue(); 4865 return true; 4866 } 4867 4868 namespace { 4869 enum EvalStmtResult { 4870 /// Evaluation failed. 4871 ESR_Failed, 4872 /// Hit a 'return' statement. 4873 ESR_Returned, 4874 /// Evaluation succeeded. 4875 ESR_Succeeded, 4876 /// Hit a 'continue' statement. 4877 ESR_Continue, 4878 /// Hit a 'break' statement. 4879 ESR_Break, 4880 /// Still scanning for 'case' or 'default' statement. 4881 ESR_CaseNotFound 4882 }; 4883 } 4884 4885 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { 4886 if (VD->isInvalidDecl()) 4887 return false; 4888 // We don't need to evaluate the initializer for a static local. 4889 if (!VD->hasLocalStorage()) 4890 return true; 4891 4892 LValue Result; 4893 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(), 4894 ScopeKind::Block, Result); 4895 4896 const Expr *InitE = VD->getInit(); 4897 if (!InitE) { 4898 if (VD->getType()->isDependentType()) 4899 return Info.noteSideEffect(); 4900 return getDefaultInitValue(VD->getType(), Val); 4901 } 4902 if (InitE->isValueDependent()) 4903 return false; 4904 4905 if (!EvaluateInPlace(Val, Info, Result, InitE)) { 4906 // Wipe out any partially-computed value, to allow tracking that this 4907 // evaluation failed. 4908 Val = APValue(); 4909 return false; 4910 } 4911 4912 return true; 4913 } 4914 4915 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { 4916 bool OK = true; 4917 4918 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 4919 OK &= EvaluateVarDecl(Info, VD); 4920 4921 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) 4922 for (auto *BD : DD->bindings()) 4923 if (auto *VD = BD->getHoldingVar()) 4924 OK &= EvaluateDecl(Info, VD); 4925 4926 return OK; 4927 } 4928 4929 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) { 4930 assert(E->isValueDependent()); 4931 if (Info.noteSideEffect()) 4932 return true; 4933 assert(E->containsErrors() && "valid value-dependent expression should never " 4934 "reach invalid code path."); 4935 return false; 4936 } 4937 4938 /// Evaluate a condition (either a variable declaration or an expression). 4939 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, 4940 const Expr *Cond, bool &Result) { 4941 if (Cond->isValueDependent()) 4942 return false; 4943 FullExpressionRAII Scope(Info); 4944 if (CondDecl && !EvaluateDecl(Info, CondDecl)) 4945 return false; 4946 if (!EvaluateAsBooleanCondition(Cond, Result, Info)) 4947 return false; 4948 return Scope.destroy(); 4949 } 4950 4951 namespace { 4952 /// A location where the result (returned value) of evaluating a 4953 /// statement should be stored. 4954 struct StmtResult { 4955 /// The APValue that should be filled in with the returned value. 4956 APValue &Value; 4957 /// The location containing the result, if any (used to support RVO). 4958 const LValue *Slot; 4959 }; 4960 4961 struct TempVersionRAII { 4962 CallStackFrame &Frame; 4963 4964 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { 4965 Frame.pushTempVersion(); 4966 } 4967 4968 ~TempVersionRAII() { 4969 Frame.popTempVersion(); 4970 } 4971 }; 4972 4973 } 4974 4975 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 4976 const Stmt *S, 4977 const SwitchCase *SC = nullptr); 4978 4979 /// Evaluate the body of a loop, and translate the result as appropriate. 4980 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, 4981 const Stmt *Body, 4982 const SwitchCase *Case = nullptr) { 4983 BlockScopeRAII Scope(Info); 4984 4985 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); 4986 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 4987 ESR = ESR_Failed; 4988 4989 switch (ESR) { 4990 case ESR_Break: 4991 return ESR_Succeeded; 4992 case ESR_Succeeded: 4993 case ESR_Continue: 4994 return ESR_Continue; 4995 case ESR_Failed: 4996 case ESR_Returned: 4997 case ESR_CaseNotFound: 4998 return ESR; 4999 } 5000 llvm_unreachable("Invalid EvalStmtResult!"); 5001 } 5002 5003 /// Evaluate a switch statement. 5004 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, 5005 const SwitchStmt *SS) { 5006 BlockScopeRAII Scope(Info); 5007 5008 // Evaluate the switch condition. 5009 APSInt Value; 5010 { 5011 if (const Stmt *Init = SS->getInit()) { 5012 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 5013 if (ESR != ESR_Succeeded) { 5014 if (ESR != ESR_Failed && !Scope.destroy()) 5015 ESR = ESR_Failed; 5016 return ESR; 5017 } 5018 } 5019 5020 FullExpressionRAII CondScope(Info); 5021 if (SS->getConditionVariable() && 5022 !EvaluateDecl(Info, SS->getConditionVariable())) 5023 return ESR_Failed; 5024 if (SS->getCond()->isValueDependent()) { 5025 // We don't know what the value is, and which branch should jump to. 5026 EvaluateDependentExpr(SS->getCond(), Info); 5027 return ESR_Failed; 5028 } 5029 if (!EvaluateInteger(SS->getCond(), Value, Info)) 5030 return ESR_Failed; 5031 5032 if (!CondScope.destroy()) 5033 return ESR_Failed; 5034 } 5035 5036 // Find the switch case corresponding to the value of the condition. 5037 // FIXME: Cache this lookup. 5038 const SwitchCase *Found = nullptr; 5039 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; 5040 SC = SC->getNextSwitchCase()) { 5041 if (isa<DefaultStmt>(SC)) { 5042 Found = SC; 5043 continue; 5044 } 5045 5046 const CaseStmt *CS = cast<CaseStmt>(SC); 5047 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); 5048 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) 5049 : LHS; 5050 if (LHS <= Value && Value <= RHS) { 5051 Found = SC; 5052 break; 5053 } 5054 } 5055 5056 if (!Found) 5057 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5058 5059 // Search the switch body for the switch case and evaluate it from there. 5060 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); 5061 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 5062 return ESR_Failed; 5063 5064 switch (ESR) { 5065 case ESR_Break: 5066 return ESR_Succeeded; 5067 case ESR_Succeeded: 5068 case ESR_Continue: 5069 case ESR_Failed: 5070 case ESR_Returned: 5071 return ESR; 5072 case ESR_CaseNotFound: 5073 // This can only happen if the switch case is nested within a statement 5074 // expression. We have no intention of supporting that. 5075 Info.FFDiag(Found->getBeginLoc(), 5076 diag::note_constexpr_stmt_expr_unsupported); 5077 return ESR_Failed; 5078 } 5079 llvm_unreachable("Invalid EvalStmtResult!"); 5080 } 5081 5082 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) { 5083 // An expression E is a core constant expression unless the evaluation of E 5084 // would evaluate one of the following: [C++23] - a control flow that passes 5085 // through a declaration of a variable with static or thread storage duration 5086 // unless that variable is usable in constant expressions. 5087 if (VD->isLocalVarDecl() && VD->isStaticLocal() && 5088 !VD->isUsableInConstantExpressions(Info.Ctx)) { 5089 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local) 5090 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; 5091 return false; 5092 } 5093 return true; 5094 } 5095 5096 // Evaluate a statement. 5097 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 5098 const Stmt *S, const SwitchCase *Case) { 5099 if (!Info.nextStep(S)) 5100 return ESR_Failed; 5101 5102 // If we're hunting down a 'case' or 'default' label, recurse through 5103 // substatements until we hit the label. 5104 if (Case) { 5105 switch (S->getStmtClass()) { 5106 case Stmt::CompoundStmtClass: 5107 // FIXME: Precompute which substatement of a compound statement we 5108 // would jump to, and go straight there rather than performing a 5109 // linear scan each time. 5110 case Stmt::LabelStmtClass: 5111 case Stmt::AttributedStmtClass: 5112 case Stmt::DoStmtClass: 5113 break; 5114 5115 case Stmt::CaseStmtClass: 5116 case Stmt::DefaultStmtClass: 5117 if (Case == S) 5118 Case = nullptr; 5119 break; 5120 5121 case Stmt::IfStmtClass: { 5122 // FIXME: Precompute which side of an 'if' we would jump to, and go 5123 // straight there rather than scanning both sides. 5124 const IfStmt *IS = cast<IfStmt>(S); 5125 5126 // Wrap the evaluation in a block scope, in case it's a DeclStmt 5127 // preceded by our switch label. 5128 BlockScopeRAII Scope(Info); 5129 5130 // Step into the init statement in case it brings an (uninitialized) 5131 // variable into scope. 5132 if (const Stmt *Init = IS->getInit()) { 5133 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5134 if (ESR != ESR_CaseNotFound) { 5135 assert(ESR != ESR_Succeeded); 5136 return ESR; 5137 } 5138 } 5139 5140 // Condition variable must be initialized if it exists. 5141 // FIXME: We can skip evaluating the body if there's a condition 5142 // variable, as there can't be any case labels within it. 5143 // (The same is true for 'for' statements.) 5144 5145 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); 5146 if (ESR == ESR_Failed) 5147 return ESR; 5148 if (ESR != ESR_CaseNotFound) 5149 return Scope.destroy() ? ESR : ESR_Failed; 5150 if (!IS->getElse()) 5151 return ESR_CaseNotFound; 5152 5153 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); 5154 if (ESR == ESR_Failed) 5155 return ESR; 5156 if (ESR != ESR_CaseNotFound) 5157 return Scope.destroy() ? ESR : ESR_Failed; 5158 return ESR_CaseNotFound; 5159 } 5160 5161 case Stmt::WhileStmtClass: { 5162 EvalStmtResult ESR = 5163 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); 5164 if (ESR != ESR_Continue) 5165 return ESR; 5166 break; 5167 } 5168 5169 case Stmt::ForStmtClass: { 5170 const ForStmt *FS = cast<ForStmt>(S); 5171 BlockScopeRAII Scope(Info); 5172 5173 // Step into the init statement in case it brings an (uninitialized) 5174 // variable into scope. 5175 if (const Stmt *Init = FS->getInit()) { 5176 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5177 if (ESR != ESR_CaseNotFound) { 5178 assert(ESR != ESR_Succeeded); 5179 return ESR; 5180 } 5181 } 5182 5183 EvalStmtResult ESR = 5184 EvaluateLoopBody(Result, Info, FS->getBody(), Case); 5185 if (ESR != ESR_Continue) 5186 return ESR; 5187 if (const auto *Inc = FS->getInc()) { 5188 if (Inc->isValueDependent()) { 5189 if (!EvaluateDependentExpr(Inc, Info)) 5190 return ESR_Failed; 5191 } else { 5192 FullExpressionRAII IncScope(Info); 5193 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5194 return ESR_Failed; 5195 } 5196 } 5197 break; 5198 } 5199 5200 case Stmt::DeclStmtClass: { 5201 // Start the lifetime of any uninitialized variables we encounter. They 5202 // might be used by the selected branch of the switch. 5203 const DeclStmt *DS = cast<DeclStmt>(S); 5204 for (const auto *D : DS->decls()) { 5205 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5206 if (!CheckLocalVariableDeclaration(Info, VD)) 5207 return ESR_Failed; 5208 if (VD->hasLocalStorage() && !VD->getInit()) 5209 if (!EvaluateVarDecl(Info, VD)) 5210 return ESR_Failed; 5211 // FIXME: If the variable has initialization that can't be jumped 5212 // over, bail out of any immediately-surrounding compound-statement 5213 // too. There can't be any case labels here. 5214 } 5215 } 5216 return ESR_CaseNotFound; 5217 } 5218 5219 default: 5220 return ESR_CaseNotFound; 5221 } 5222 } 5223 5224 switch (S->getStmtClass()) { 5225 default: 5226 if (const Expr *E = dyn_cast<Expr>(S)) { 5227 if (E->isValueDependent()) { 5228 if (!EvaluateDependentExpr(E, Info)) 5229 return ESR_Failed; 5230 } else { 5231 // Don't bother evaluating beyond an expression-statement which couldn't 5232 // be evaluated. 5233 // FIXME: Do we need the FullExpressionRAII object here? 5234 // VisitExprWithCleanups should create one when necessary. 5235 FullExpressionRAII Scope(Info); 5236 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) 5237 return ESR_Failed; 5238 } 5239 return ESR_Succeeded; 5240 } 5241 5242 Info.FFDiag(S->getBeginLoc()); 5243 return ESR_Failed; 5244 5245 case Stmt::NullStmtClass: 5246 return ESR_Succeeded; 5247 5248 case Stmt::DeclStmtClass: { 5249 const DeclStmt *DS = cast<DeclStmt>(S); 5250 for (const auto *D : DS->decls()) { 5251 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 5252 if (VD && !CheckLocalVariableDeclaration(Info, VD)) 5253 return ESR_Failed; 5254 // Each declaration initialization is its own full-expression. 5255 FullExpressionRAII Scope(Info); 5256 if (!EvaluateDecl(Info, D) && !Info.noteFailure()) 5257 return ESR_Failed; 5258 if (!Scope.destroy()) 5259 return ESR_Failed; 5260 } 5261 return ESR_Succeeded; 5262 } 5263 5264 case Stmt::ReturnStmtClass: { 5265 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); 5266 FullExpressionRAII Scope(Info); 5267 if (RetExpr && RetExpr->isValueDependent()) { 5268 EvaluateDependentExpr(RetExpr, Info); 5269 // We know we returned, but we don't know what the value is. 5270 return ESR_Failed; 5271 } 5272 if (RetExpr && 5273 !(Result.Slot 5274 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) 5275 : Evaluate(Result.Value, Info, RetExpr))) 5276 return ESR_Failed; 5277 return Scope.destroy() ? ESR_Returned : ESR_Failed; 5278 } 5279 5280 case Stmt::CompoundStmtClass: { 5281 BlockScopeRAII Scope(Info); 5282 5283 const CompoundStmt *CS = cast<CompoundStmt>(S); 5284 for (const auto *BI : CS->body()) { 5285 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); 5286 if (ESR == ESR_Succeeded) 5287 Case = nullptr; 5288 else if (ESR != ESR_CaseNotFound) { 5289 if (ESR != ESR_Failed && !Scope.destroy()) 5290 return ESR_Failed; 5291 return ESR; 5292 } 5293 } 5294 if (Case) 5295 return ESR_CaseNotFound; 5296 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5297 } 5298 5299 case Stmt::IfStmtClass: { 5300 const IfStmt *IS = cast<IfStmt>(S); 5301 5302 // Evaluate the condition, as either a var decl or as an expression. 5303 BlockScopeRAII Scope(Info); 5304 if (const Stmt *Init = IS->getInit()) { 5305 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 5306 if (ESR != ESR_Succeeded) { 5307 if (ESR != ESR_Failed && !Scope.destroy()) 5308 return ESR_Failed; 5309 return ESR; 5310 } 5311 } 5312 bool Cond; 5313 if (IS->isConsteval()) { 5314 Cond = IS->isNonNegatedConsteval(); 5315 // If we are not in a constant context, if consteval should not evaluate 5316 // to true. 5317 if (!Info.InConstantContext) 5318 Cond = !Cond; 5319 } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), 5320 Cond)) 5321 return ESR_Failed; 5322 5323 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { 5324 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); 5325 if (ESR != ESR_Succeeded) { 5326 if (ESR != ESR_Failed && !Scope.destroy()) 5327 return ESR_Failed; 5328 return ESR; 5329 } 5330 } 5331 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5332 } 5333 5334 case Stmt::WhileStmtClass: { 5335 const WhileStmt *WS = cast<WhileStmt>(S); 5336 while (true) { 5337 BlockScopeRAII Scope(Info); 5338 bool Continue; 5339 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), 5340 Continue)) 5341 return ESR_Failed; 5342 if (!Continue) 5343 break; 5344 5345 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); 5346 if (ESR != ESR_Continue) { 5347 if (ESR != ESR_Failed && !Scope.destroy()) 5348 return ESR_Failed; 5349 return ESR; 5350 } 5351 if (!Scope.destroy()) 5352 return ESR_Failed; 5353 } 5354 return ESR_Succeeded; 5355 } 5356 5357 case Stmt::DoStmtClass: { 5358 const DoStmt *DS = cast<DoStmt>(S); 5359 bool Continue; 5360 do { 5361 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); 5362 if (ESR != ESR_Continue) 5363 return ESR; 5364 Case = nullptr; 5365 5366 if (DS->getCond()->isValueDependent()) { 5367 EvaluateDependentExpr(DS->getCond(), Info); 5368 // Bailout as we don't know whether to keep going or terminate the loop. 5369 return ESR_Failed; 5370 } 5371 FullExpressionRAII CondScope(Info); 5372 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || 5373 !CondScope.destroy()) 5374 return ESR_Failed; 5375 } while (Continue); 5376 return ESR_Succeeded; 5377 } 5378 5379 case Stmt::ForStmtClass: { 5380 const ForStmt *FS = cast<ForStmt>(S); 5381 BlockScopeRAII ForScope(Info); 5382 if (FS->getInit()) { 5383 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5384 if (ESR != ESR_Succeeded) { 5385 if (ESR != ESR_Failed && !ForScope.destroy()) 5386 return ESR_Failed; 5387 return ESR; 5388 } 5389 } 5390 while (true) { 5391 BlockScopeRAII IterScope(Info); 5392 bool Continue = true; 5393 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), 5394 FS->getCond(), Continue)) 5395 return ESR_Failed; 5396 if (!Continue) 5397 break; 5398 5399 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5400 if (ESR != ESR_Continue) { 5401 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) 5402 return ESR_Failed; 5403 return ESR; 5404 } 5405 5406 if (const auto *Inc = FS->getInc()) { 5407 if (Inc->isValueDependent()) { 5408 if (!EvaluateDependentExpr(Inc, Info)) 5409 return ESR_Failed; 5410 } else { 5411 FullExpressionRAII IncScope(Info); 5412 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5413 return ESR_Failed; 5414 } 5415 } 5416 5417 if (!IterScope.destroy()) 5418 return ESR_Failed; 5419 } 5420 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; 5421 } 5422 5423 case Stmt::CXXForRangeStmtClass: { 5424 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); 5425 BlockScopeRAII Scope(Info); 5426 5427 // Evaluate the init-statement if present. 5428 if (FS->getInit()) { 5429 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5430 if (ESR != ESR_Succeeded) { 5431 if (ESR != ESR_Failed && !Scope.destroy()) 5432 return ESR_Failed; 5433 return ESR; 5434 } 5435 } 5436 5437 // Initialize the __range variable. 5438 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); 5439 if (ESR != ESR_Succeeded) { 5440 if (ESR != ESR_Failed && !Scope.destroy()) 5441 return ESR_Failed; 5442 return ESR; 5443 } 5444 5445 // In error-recovery cases it's possible to get here even if we failed to 5446 // synthesize the __begin and __end variables. 5447 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond()) 5448 return ESR_Failed; 5449 5450 // Create the __begin and __end iterators. 5451 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); 5452 if (ESR != ESR_Succeeded) { 5453 if (ESR != ESR_Failed && !Scope.destroy()) 5454 return ESR_Failed; 5455 return ESR; 5456 } 5457 ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); 5458 if (ESR != ESR_Succeeded) { 5459 if (ESR != ESR_Failed && !Scope.destroy()) 5460 return ESR_Failed; 5461 return ESR; 5462 } 5463 5464 while (true) { 5465 // Condition: __begin != __end. 5466 { 5467 if (FS->getCond()->isValueDependent()) { 5468 EvaluateDependentExpr(FS->getCond(), Info); 5469 // We don't know whether to keep going or terminate the loop. 5470 return ESR_Failed; 5471 } 5472 bool Continue = true; 5473 FullExpressionRAII CondExpr(Info); 5474 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) 5475 return ESR_Failed; 5476 if (!Continue) 5477 break; 5478 } 5479 5480 // User's variable declaration, initialized by *__begin. 5481 BlockScopeRAII InnerScope(Info); 5482 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); 5483 if (ESR != ESR_Succeeded) { 5484 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5485 return ESR_Failed; 5486 return ESR; 5487 } 5488 5489 // Loop body. 5490 ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5491 if (ESR != ESR_Continue) { 5492 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5493 return ESR_Failed; 5494 return ESR; 5495 } 5496 if (FS->getInc()->isValueDependent()) { 5497 if (!EvaluateDependentExpr(FS->getInc(), Info)) 5498 return ESR_Failed; 5499 } else { 5500 // Increment: ++__begin 5501 if (!EvaluateIgnoredValue(Info, FS->getInc())) 5502 return ESR_Failed; 5503 } 5504 5505 if (!InnerScope.destroy()) 5506 return ESR_Failed; 5507 } 5508 5509 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5510 } 5511 5512 case Stmt::SwitchStmtClass: 5513 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); 5514 5515 case Stmt::ContinueStmtClass: 5516 return ESR_Continue; 5517 5518 case Stmt::BreakStmtClass: 5519 return ESR_Break; 5520 5521 case Stmt::LabelStmtClass: 5522 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); 5523 5524 case Stmt::AttributedStmtClass: 5525 // As a general principle, C++11 attributes can be ignored without 5526 // any semantic impact. 5527 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(), 5528 Case); 5529 5530 case Stmt::CaseStmtClass: 5531 case Stmt::DefaultStmtClass: 5532 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); 5533 case Stmt::CXXTryStmtClass: 5534 // Evaluate try blocks by evaluating all sub statements. 5535 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); 5536 } 5537 } 5538 5539 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial 5540 /// default constructor. If so, we'll fold it whether or not it's marked as 5541 /// constexpr. If it is marked as constexpr, we will never implicitly define it, 5542 /// so we need special handling. 5543 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, 5544 const CXXConstructorDecl *CD, 5545 bool IsValueInitialization) { 5546 if (!CD->isTrivial() || !CD->isDefaultConstructor()) 5547 return false; 5548 5549 // Value-initialization does not call a trivial default constructor, so such a 5550 // call is a core constant expression whether or not the constructor is 5551 // constexpr. 5552 if (!CD->isConstexpr() && !IsValueInitialization) { 5553 if (Info.getLangOpts().CPlusPlus11) { 5554 // FIXME: If DiagDecl is an implicitly-declared special member function, 5555 // we should be much more explicit about why it's not constexpr. 5556 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) 5557 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; 5558 Info.Note(CD->getLocation(), diag::note_declared_at); 5559 } else { 5560 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); 5561 } 5562 } 5563 return true; 5564 } 5565 5566 /// CheckConstexprFunction - Check that a function can be called in a constant 5567 /// expression. 5568 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, 5569 const FunctionDecl *Declaration, 5570 const FunctionDecl *Definition, 5571 const Stmt *Body) { 5572 // Potential constant expressions can contain calls to declared, but not yet 5573 // defined, constexpr functions. 5574 if (Info.checkingPotentialConstantExpression() && !Definition && 5575 Declaration->isConstexpr()) 5576 return false; 5577 5578 // Bail out if the function declaration itself is invalid. We will 5579 // have produced a relevant diagnostic while parsing it, so just 5580 // note the problematic sub-expression. 5581 if (Declaration->isInvalidDecl()) { 5582 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5583 return false; 5584 } 5585 5586 // DR1872: An instantiated virtual constexpr function can't be called in a 5587 // constant expression (prior to C++20). We can still constant-fold such a 5588 // call. 5589 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) && 5590 cast<CXXMethodDecl>(Declaration)->isVirtual()) 5591 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); 5592 5593 if (Definition && Definition->isInvalidDecl()) { 5594 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5595 return false; 5596 } 5597 5598 // Can we evaluate this function call? 5599 if (Definition && Definition->isConstexpr() && Body) 5600 return true; 5601 5602 if (Info.getLangOpts().CPlusPlus11) { 5603 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; 5604 5605 // If this function is not constexpr because it is an inherited 5606 // non-constexpr constructor, diagnose that directly. 5607 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); 5608 if (CD && CD->isInheritingConstructor()) { 5609 auto *Inherited = CD->getInheritedConstructor().getConstructor(); 5610 if (!Inherited->isConstexpr()) 5611 DiagDecl = CD = Inherited; 5612 } 5613 5614 // FIXME: If DiagDecl is an implicitly-declared special member function 5615 // or an inheriting constructor, we should be much more explicit about why 5616 // it's not constexpr. 5617 if (CD && CD->isInheritingConstructor()) 5618 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) 5619 << CD->getInheritedConstructor().getConstructor()->getParent(); 5620 else 5621 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) 5622 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; 5623 Info.Note(DiagDecl->getLocation(), diag::note_declared_at); 5624 } else { 5625 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5626 } 5627 return false; 5628 } 5629 5630 namespace { 5631 struct CheckDynamicTypeHandler { 5632 AccessKinds AccessKind; 5633 typedef bool result_type; 5634 bool failed() { return false; } 5635 bool found(APValue &Subobj, QualType SubobjType) { return true; } 5636 bool found(APSInt &Value, QualType SubobjType) { return true; } 5637 bool found(APFloat &Value, QualType SubobjType) { return true; } 5638 }; 5639 } // end anonymous namespace 5640 5641 /// Check that we can access the notional vptr of an object / determine its 5642 /// dynamic type. 5643 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, 5644 AccessKinds AK, bool Polymorphic) { 5645 if (This.Designator.Invalid) 5646 return false; 5647 5648 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); 5649 5650 if (!Obj) 5651 return false; 5652 5653 if (!Obj.Value) { 5654 // The object is not usable in constant expressions, so we can't inspect 5655 // its value to see if it's in-lifetime or what the active union members 5656 // are. We can still check for a one-past-the-end lvalue. 5657 if (This.Designator.isOnePastTheEnd() || 5658 This.Designator.isMostDerivedAnUnsizedArray()) { 5659 Info.FFDiag(E, This.Designator.isOnePastTheEnd() 5660 ? diag::note_constexpr_access_past_end 5661 : diag::note_constexpr_access_unsized_array) 5662 << AK; 5663 return false; 5664 } else if (Polymorphic) { 5665 // Conservatively refuse to perform a polymorphic operation if we would 5666 // not be able to read a notional 'vptr' value. 5667 APValue Val; 5668 This.moveInto(Val); 5669 QualType StarThisType = 5670 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); 5671 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) 5672 << AK << Val.getAsString(Info.Ctx, StarThisType); 5673 return false; 5674 } 5675 return true; 5676 } 5677 5678 CheckDynamicTypeHandler Handler{AK}; 5679 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 5680 } 5681 5682 /// Check that the pointee of the 'this' pointer in a member function call is 5683 /// either within its lifetime or in its period of construction or destruction. 5684 static bool 5685 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, 5686 const LValue &This, 5687 const CXXMethodDecl *NamedMember) { 5688 return checkDynamicType( 5689 Info, E, This, 5690 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); 5691 } 5692 5693 struct DynamicType { 5694 /// The dynamic class type of the object. 5695 const CXXRecordDecl *Type; 5696 /// The corresponding path length in the lvalue. 5697 unsigned PathLength; 5698 }; 5699 5700 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, 5701 unsigned PathLength) { 5702 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= 5703 Designator.Entries.size() && "invalid path length"); 5704 return (PathLength == Designator.MostDerivedPathLength) 5705 ? Designator.MostDerivedType->getAsCXXRecordDecl() 5706 : getAsBaseClass(Designator.Entries[PathLength - 1]); 5707 } 5708 5709 /// Determine the dynamic type of an object. 5710 static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info, 5711 const Expr *E, 5712 LValue &This, 5713 AccessKinds AK) { 5714 // If we don't have an lvalue denoting an object of class type, there is no 5715 // meaningful dynamic type. (We consider objects of non-class type to have no 5716 // dynamic type.) 5717 if (!checkDynamicType(Info, E, This, AK, true)) 5718 return std::nullopt; 5719 5720 // Refuse to compute a dynamic type in the presence of virtual bases. This 5721 // shouldn't happen other than in constant-folding situations, since literal 5722 // types can't have virtual bases. 5723 // 5724 // Note that consumers of DynamicType assume that the type has no virtual 5725 // bases, and will need modifications if this restriction is relaxed. 5726 const CXXRecordDecl *Class = 5727 This.Designator.MostDerivedType->getAsCXXRecordDecl(); 5728 if (!Class || Class->getNumVBases()) { 5729 Info.FFDiag(E); 5730 return std::nullopt; 5731 } 5732 5733 // FIXME: For very deep class hierarchies, it might be beneficial to use a 5734 // binary search here instead. But the overwhelmingly common case is that 5735 // we're not in the middle of a constructor, so it probably doesn't matter 5736 // in practice. 5737 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; 5738 for (unsigned PathLength = This.Designator.MostDerivedPathLength; 5739 PathLength <= Path.size(); ++PathLength) { 5740 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), 5741 Path.slice(0, PathLength))) { 5742 case ConstructionPhase::Bases: 5743 case ConstructionPhase::DestroyingBases: 5744 // We're constructing or destroying a base class. This is not the dynamic 5745 // type. 5746 break; 5747 5748 case ConstructionPhase::None: 5749 case ConstructionPhase::AfterBases: 5750 case ConstructionPhase::AfterFields: 5751 case ConstructionPhase::Destroying: 5752 // We've finished constructing the base classes and not yet started 5753 // destroying them again, so this is the dynamic type. 5754 return DynamicType{getBaseClassType(This.Designator, PathLength), 5755 PathLength}; 5756 } 5757 } 5758 5759 // CWG issue 1517: we're constructing a base class of the object described by 5760 // 'This', so that object has not yet begun its period of construction and 5761 // any polymorphic operation on it results in undefined behavior. 5762 Info.FFDiag(E); 5763 return std::nullopt; 5764 } 5765 5766 /// Perform virtual dispatch. 5767 static const CXXMethodDecl *HandleVirtualDispatch( 5768 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, 5769 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { 5770 std::optional<DynamicType> DynType = ComputeDynamicType( 5771 Info, E, This, 5772 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); 5773 if (!DynType) 5774 return nullptr; 5775 5776 // Find the final overrider. It must be declared in one of the classes on the 5777 // path from the dynamic type to the static type. 5778 // FIXME: If we ever allow literal types to have virtual base classes, that 5779 // won't be true. 5780 const CXXMethodDecl *Callee = Found; 5781 unsigned PathLength = DynType->PathLength; 5782 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { 5783 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); 5784 const CXXMethodDecl *Overrider = 5785 Found->getCorrespondingMethodDeclaredInClass(Class, false); 5786 if (Overrider) { 5787 Callee = Overrider; 5788 break; 5789 } 5790 } 5791 5792 // C++2a [class.abstract]p6: 5793 // the effect of making a virtual call to a pure virtual function [...] is 5794 // undefined 5795 if (Callee->isPure()) { 5796 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; 5797 Info.Note(Callee->getLocation(), diag::note_declared_at); 5798 return nullptr; 5799 } 5800 5801 // If necessary, walk the rest of the path to determine the sequence of 5802 // covariant adjustment steps to apply. 5803 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), 5804 Found->getReturnType())) { 5805 CovariantAdjustmentPath.push_back(Callee->getReturnType()); 5806 for (unsigned CovariantPathLength = PathLength + 1; 5807 CovariantPathLength != This.Designator.Entries.size(); 5808 ++CovariantPathLength) { 5809 const CXXRecordDecl *NextClass = 5810 getBaseClassType(This.Designator, CovariantPathLength); 5811 const CXXMethodDecl *Next = 5812 Found->getCorrespondingMethodDeclaredInClass(NextClass, false); 5813 if (Next && !Info.Ctx.hasSameUnqualifiedType( 5814 Next->getReturnType(), CovariantAdjustmentPath.back())) 5815 CovariantAdjustmentPath.push_back(Next->getReturnType()); 5816 } 5817 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), 5818 CovariantAdjustmentPath.back())) 5819 CovariantAdjustmentPath.push_back(Found->getReturnType()); 5820 } 5821 5822 // Perform 'this' adjustment. 5823 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) 5824 return nullptr; 5825 5826 return Callee; 5827 } 5828 5829 /// Perform the adjustment from a value returned by a virtual function to 5830 /// a value of the statically expected type, which may be a pointer or 5831 /// reference to a base class of the returned type. 5832 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, 5833 APValue &Result, 5834 ArrayRef<QualType> Path) { 5835 assert(Result.isLValue() && 5836 "unexpected kind of APValue for covariant return"); 5837 if (Result.isNullPointer()) 5838 return true; 5839 5840 LValue LVal; 5841 LVal.setFrom(Info.Ctx, Result); 5842 5843 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); 5844 for (unsigned I = 1; I != Path.size(); ++I) { 5845 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); 5846 assert(OldClass && NewClass && "unexpected kind of covariant return"); 5847 if (OldClass != NewClass && 5848 !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) 5849 return false; 5850 OldClass = NewClass; 5851 } 5852 5853 LVal.moveInto(Result); 5854 return true; 5855 } 5856 5857 /// Determine whether \p Base, which is known to be a direct base class of 5858 /// \p Derived, is a public base class. 5859 static bool isBaseClassPublic(const CXXRecordDecl *Derived, 5860 const CXXRecordDecl *Base) { 5861 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { 5862 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); 5863 if (BaseClass && declaresSameEntity(BaseClass, Base)) 5864 return BaseSpec.getAccessSpecifier() == AS_public; 5865 } 5866 llvm_unreachable("Base is not a direct base of Derived"); 5867 } 5868 5869 /// Apply the given dynamic cast operation on the provided lvalue. 5870 /// 5871 /// This implements the hard case of dynamic_cast, requiring a "runtime check" 5872 /// to find a suitable target subobject. 5873 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, 5874 LValue &Ptr) { 5875 // We can't do anything with a non-symbolic pointer value. 5876 SubobjectDesignator &D = Ptr.Designator; 5877 if (D.Invalid) 5878 return false; 5879 5880 // C++ [expr.dynamic.cast]p6: 5881 // If v is a null pointer value, the result is a null pointer value. 5882 if (Ptr.isNullPointer() && !E->isGLValue()) 5883 return true; 5884 5885 // For all the other cases, we need the pointer to point to an object within 5886 // its lifetime / period of construction / destruction, and we need to know 5887 // its dynamic type. 5888 std::optional<DynamicType> DynType = 5889 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); 5890 if (!DynType) 5891 return false; 5892 5893 // C++ [expr.dynamic.cast]p7: 5894 // If T is "pointer to cv void", then the result is a pointer to the most 5895 // derived object 5896 if (E->getType()->isVoidPointerType()) 5897 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); 5898 5899 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); 5900 assert(C && "dynamic_cast target is not void pointer nor class"); 5901 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); 5902 5903 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { 5904 // C++ [expr.dynamic.cast]p9: 5905 if (!E->isGLValue()) { 5906 // The value of a failed cast to pointer type is the null pointer value 5907 // of the required result type. 5908 Ptr.setNull(Info.Ctx, E->getType()); 5909 return true; 5910 } 5911 5912 // A failed cast to reference type throws [...] std::bad_cast. 5913 unsigned DiagKind; 5914 if (!Paths && (declaresSameEntity(DynType->Type, C) || 5915 DynType->Type->isDerivedFrom(C))) 5916 DiagKind = 0; 5917 else if (!Paths || Paths->begin() == Paths->end()) 5918 DiagKind = 1; 5919 else if (Paths->isAmbiguous(CQT)) 5920 DiagKind = 2; 5921 else { 5922 assert(Paths->front().Access != AS_public && "why did the cast fail?"); 5923 DiagKind = 3; 5924 } 5925 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) 5926 << DiagKind << Ptr.Designator.getType(Info.Ctx) 5927 << Info.Ctx.getRecordType(DynType->Type) 5928 << E->getType().getUnqualifiedType(); 5929 return false; 5930 }; 5931 5932 // Runtime check, phase 1: 5933 // Walk from the base subobject towards the derived object looking for the 5934 // target type. 5935 for (int PathLength = Ptr.Designator.Entries.size(); 5936 PathLength >= (int)DynType->PathLength; --PathLength) { 5937 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); 5938 if (declaresSameEntity(Class, C)) 5939 return CastToDerivedClass(Info, E, Ptr, Class, PathLength); 5940 // We can only walk across public inheritance edges. 5941 if (PathLength > (int)DynType->PathLength && 5942 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), 5943 Class)) 5944 return RuntimeCheckFailed(nullptr); 5945 } 5946 5947 // Runtime check, phase 2: 5948 // Search the dynamic type for an unambiguous public base of type C. 5949 CXXBasePaths Paths(/*FindAmbiguities=*/true, 5950 /*RecordPaths=*/true, /*DetectVirtual=*/false); 5951 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && 5952 Paths.front().Access == AS_public) { 5953 // Downcast to the dynamic type... 5954 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) 5955 return false; 5956 // ... then upcast to the chosen base class subobject. 5957 for (CXXBasePathElement &Elem : Paths.front()) 5958 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) 5959 return false; 5960 return true; 5961 } 5962 5963 // Otherwise, the runtime check fails. 5964 return RuntimeCheckFailed(&Paths); 5965 } 5966 5967 namespace { 5968 struct StartLifetimeOfUnionMemberHandler { 5969 EvalInfo &Info; 5970 const Expr *LHSExpr; 5971 const FieldDecl *Field; 5972 bool DuringInit; 5973 bool Failed = false; 5974 static const AccessKinds AccessKind = AK_Assign; 5975 5976 typedef bool result_type; 5977 bool failed() { return Failed; } 5978 bool found(APValue &Subobj, QualType SubobjType) { 5979 // We are supposed to perform no initialization but begin the lifetime of 5980 // the object. We interpret that as meaning to do what default 5981 // initialization of the object would do if all constructors involved were 5982 // trivial: 5983 // * All base, non-variant member, and array element subobjects' lifetimes 5984 // begin 5985 // * No variant members' lifetimes begin 5986 // * All scalar subobjects whose lifetimes begin have indeterminate values 5987 assert(SubobjType->isUnionType()); 5988 if (declaresSameEntity(Subobj.getUnionField(), Field)) { 5989 // This union member is already active. If it's also in-lifetime, there's 5990 // nothing to do. 5991 if (Subobj.getUnionValue().hasValue()) 5992 return true; 5993 } else if (DuringInit) { 5994 // We're currently in the process of initializing a different union 5995 // member. If we carried on, that initialization would attempt to 5996 // store to an inactive union member, resulting in undefined behavior. 5997 Info.FFDiag(LHSExpr, 5998 diag::note_constexpr_union_member_change_during_init); 5999 return false; 6000 } 6001 APValue Result; 6002 Failed = !getDefaultInitValue(Field->getType(), Result); 6003 Subobj.setUnion(Field, Result); 6004 return true; 6005 } 6006 bool found(APSInt &Value, QualType SubobjType) { 6007 llvm_unreachable("wrong value kind for union object"); 6008 } 6009 bool found(APFloat &Value, QualType SubobjType) { 6010 llvm_unreachable("wrong value kind for union object"); 6011 } 6012 }; 6013 } // end anonymous namespace 6014 6015 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; 6016 6017 /// Handle a builtin simple-assignment or a call to a trivial assignment 6018 /// operator whose left-hand side might involve a union member access. If it 6019 /// does, implicitly start the lifetime of any accessed union elements per 6020 /// C++20 [class.union]5. 6021 static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info, 6022 const Expr *LHSExpr, 6023 const LValue &LHS) { 6024 if (LHS.InvalidBase || LHS.Designator.Invalid) 6025 return false; 6026 6027 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; 6028 // C++ [class.union]p5: 6029 // define the set S(E) of subexpressions of E as follows: 6030 unsigned PathLength = LHS.Designator.Entries.size(); 6031 for (const Expr *E = LHSExpr; E != nullptr;) { 6032 // -- If E is of the form A.B, S(E) contains the elements of S(A)... 6033 if (auto *ME = dyn_cast<MemberExpr>(E)) { 6034 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 6035 // Note that we can't implicitly start the lifetime of a reference, 6036 // so we don't need to proceed any further if we reach one. 6037 if (!FD || FD->getType()->isReferenceType()) 6038 break; 6039 6040 // ... and also contains A.B if B names a union member ... 6041 if (FD->getParent()->isUnion()) { 6042 // ... of a non-class, non-array type, or of a class type with a 6043 // trivial default constructor that is not deleted, or an array of 6044 // such types. 6045 auto *RD = 6046 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 6047 if (!RD || RD->hasTrivialDefaultConstructor()) 6048 UnionPathLengths.push_back({PathLength - 1, FD}); 6049 } 6050 6051 E = ME->getBase(); 6052 --PathLength; 6053 assert(declaresSameEntity(FD, 6054 LHS.Designator.Entries[PathLength] 6055 .getAsBaseOrMember().getPointer())); 6056 6057 // -- If E is of the form A[B] and is interpreted as a built-in array 6058 // subscripting operator, S(E) is [S(the array operand, if any)]. 6059 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { 6060 // Step over an ArrayToPointerDecay implicit cast. 6061 auto *Base = ASE->getBase()->IgnoreImplicit(); 6062 if (!Base->getType()->isArrayType()) 6063 break; 6064 6065 E = Base; 6066 --PathLength; 6067 6068 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { 6069 // Step over a derived-to-base conversion. 6070 E = ICE->getSubExpr(); 6071 if (ICE->getCastKind() == CK_NoOp) 6072 continue; 6073 if (ICE->getCastKind() != CK_DerivedToBase && 6074 ICE->getCastKind() != CK_UncheckedDerivedToBase) 6075 break; 6076 // Walk path backwards as we walk up from the base to the derived class. 6077 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { 6078 if (Elt->isVirtual()) { 6079 // A class with virtual base classes never has a trivial default 6080 // constructor, so S(E) is empty in this case. 6081 E = nullptr; 6082 break; 6083 } 6084 6085 --PathLength; 6086 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), 6087 LHS.Designator.Entries[PathLength] 6088 .getAsBaseOrMember().getPointer())); 6089 } 6090 6091 // -- Otherwise, S(E) is empty. 6092 } else { 6093 break; 6094 } 6095 } 6096 6097 // Common case: no unions' lifetimes are started. 6098 if (UnionPathLengths.empty()) 6099 return true; 6100 6101 // if modification of X [would access an inactive union member], an object 6102 // of the type of X is implicitly created 6103 CompleteObject Obj = 6104 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); 6105 if (!Obj) 6106 return false; 6107 for (std::pair<unsigned, const FieldDecl *> LengthAndField : 6108 llvm::reverse(UnionPathLengths)) { 6109 // Form a designator for the union object. 6110 SubobjectDesignator D = LHS.Designator; 6111 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); 6112 6113 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) == 6114 ConstructionPhase::AfterBases; 6115 StartLifetimeOfUnionMemberHandler StartLifetime{ 6116 Info, LHSExpr, LengthAndField.second, DuringInit}; 6117 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) 6118 return false; 6119 } 6120 6121 return true; 6122 } 6123 6124 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg, 6125 CallRef Call, EvalInfo &Info, 6126 bool NonNull = false) { 6127 LValue LV; 6128 // Create the parameter slot and register its destruction. For a vararg 6129 // argument, create a temporary. 6130 // FIXME: For calling conventions that destroy parameters in the callee, 6131 // should we consider performing destruction when the function returns 6132 // instead? 6133 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV) 6134 : Info.CurrentCall->createTemporary(Arg, Arg->getType(), 6135 ScopeKind::Call, LV); 6136 if (!EvaluateInPlace(V, Info, LV, Arg)) 6137 return false; 6138 6139 // Passing a null pointer to an __attribute__((nonnull)) parameter results in 6140 // undefined behavior, so is non-constant. 6141 if (NonNull && V.isLValue() && V.isNullPointer()) { 6142 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed); 6143 return false; 6144 } 6145 6146 return true; 6147 } 6148 6149 /// Evaluate the arguments to a function call. 6150 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call, 6151 EvalInfo &Info, const FunctionDecl *Callee, 6152 bool RightToLeft = false) { 6153 bool Success = true; 6154 llvm::SmallBitVector ForbiddenNullArgs; 6155 if (Callee->hasAttr<NonNullAttr>()) { 6156 ForbiddenNullArgs.resize(Args.size()); 6157 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { 6158 if (!Attr->args_size()) { 6159 ForbiddenNullArgs.set(); 6160 break; 6161 } else 6162 for (auto Idx : Attr->args()) { 6163 unsigned ASTIdx = Idx.getASTIndex(); 6164 if (ASTIdx >= Args.size()) 6165 continue; 6166 ForbiddenNullArgs[ASTIdx] = true; 6167 } 6168 } 6169 } 6170 for (unsigned I = 0; I < Args.size(); I++) { 6171 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I; 6172 const ParmVarDecl *PVD = 6173 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr; 6174 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx]; 6175 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) { 6176 // If we're checking for a potential constant expression, evaluate all 6177 // initializers even if some of them fail. 6178 if (!Info.noteFailure()) 6179 return false; 6180 Success = false; 6181 } 6182 } 6183 return Success; 6184 } 6185 6186 /// Perform a trivial copy from Param, which is the parameter of a copy or move 6187 /// constructor or assignment operator. 6188 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param, 6189 const Expr *E, APValue &Result, 6190 bool CopyObjectRepresentation) { 6191 // Find the reference argument. 6192 CallStackFrame *Frame = Info.CurrentCall; 6193 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param); 6194 if (!RefValue) { 6195 Info.FFDiag(E); 6196 return false; 6197 } 6198 6199 // Copy out the contents of the RHS object. 6200 LValue RefLValue; 6201 RefLValue.setFrom(Info.Ctx, *RefValue); 6202 return handleLValueToRValueConversion( 6203 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result, 6204 CopyObjectRepresentation); 6205 } 6206 6207 /// Evaluate a function call. 6208 static bool HandleFunctionCall(SourceLocation CallLoc, 6209 const FunctionDecl *Callee, const LValue *This, 6210 const Expr *E, ArrayRef<const Expr *> Args, 6211 CallRef Call, const Stmt *Body, EvalInfo &Info, 6212 APValue &Result, const LValue *ResultSlot) { 6213 if (!Info.CheckCallLimit(CallLoc)) 6214 return false; 6215 6216 CallStackFrame Frame(Info, CallLoc, Callee, This, E, Call); 6217 6218 // For a trivial copy or move assignment, perform an APValue copy. This is 6219 // essential for unions, where the operations performed by the assignment 6220 // operator cannot be represented as statements. 6221 // 6222 // Skip this for non-union classes with no fields; in that case, the defaulted 6223 // copy/move does not actually read the object. 6224 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); 6225 if (MD && MD->isDefaulted() && 6226 (MD->getParent()->isUnion() || 6227 (MD->isTrivial() && 6228 isReadByLvalueToRvalueConversion(MD->getParent())))) { 6229 assert(This && 6230 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); 6231 APValue RHSValue; 6232 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue, 6233 MD->getParent()->isUnion())) 6234 return false; 6235 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), 6236 RHSValue)) 6237 return false; 6238 This->moveInto(Result); 6239 return true; 6240 } else if (MD && isLambdaCallOperator(MD)) { 6241 // We're in a lambda; determine the lambda capture field maps unless we're 6242 // just constexpr checking a lambda's call operator. constexpr checking is 6243 // done before the captures have been added to the closure object (unless 6244 // we're inferring constexpr-ness), so we don't have access to them in this 6245 // case. But since we don't need the captures to constexpr check, we can 6246 // just ignore them. 6247 if (!Info.checkingPotentialConstantExpression()) 6248 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, 6249 Frame.LambdaThisCaptureField); 6250 } 6251 6252 StmtResult Ret = {Result, ResultSlot}; 6253 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); 6254 if (ESR == ESR_Succeeded) { 6255 if (Callee->getReturnType()->isVoidType()) 6256 return true; 6257 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); 6258 } 6259 return ESR == ESR_Returned; 6260 } 6261 6262 /// Evaluate a constructor call. 6263 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6264 CallRef Call, 6265 const CXXConstructorDecl *Definition, 6266 EvalInfo &Info, APValue &Result) { 6267 SourceLocation CallLoc = E->getExprLoc(); 6268 if (!Info.CheckCallLimit(CallLoc)) 6269 return false; 6270 6271 const CXXRecordDecl *RD = Definition->getParent(); 6272 if (RD->getNumVBases()) { 6273 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 6274 return false; 6275 } 6276 6277 EvalInfo::EvaluatingConstructorRAII EvalObj( 6278 Info, 6279 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 6280 RD->getNumBases()); 6281 CallStackFrame Frame(Info, CallLoc, Definition, &This, E, Call); 6282 6283 // FIXME: Creating an APValue just to hold a nonexistent return value is 6284 // wasteful. 6285 APValue RetVal; 6286 StmtResult Ret = {RetVal, nullptr}; 6287 6288 // If it's a delegating constructor, delegate. 6289 if (Definition->isDelegatingConstructor()) { 6290 CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); 6291 if ((*I)->getInit()->isValueDependent()) { 6292 if (!EvaluateDependentExpr((*I)->getInit(), Info)) 6293 return false; 6294 } else { 6295 FullExpressionRAII InitScope(Info); 6296 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || 6297 !InitScope.destroy()) 6298 return false; 6299 } 6300 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; 6301 } 6302 6303 // For a trivial copy or move constructor, perform an APValue copy. This is 6304 // essential for unions (or classes with anonymous union members), where the 6305 // operations performed by the constructor cannot be represented by 6306 // ctor-initializers. 6307 // 6308 // Skip this for empty non-union classes; we should not perform an 6309 // lvalue-to-rvalue conversion on them because their copy constructor does not 6310 // actually read them. 6311 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && 6312 (Definition->getParent()->isUnion() || 6313 (Definition->isTrivial() && 6314 isReadByLvalueToRvalueConversion(Definition->getParent())))) { 6315 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result, 6316 Definition->getParent()->isUnion()); 6317 } 6318 6319 // Reserve space for the struct members. 6320 if (!Result.hasValue()) { 6321 if (!RD->isUnion()) 6322 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 6323 std::distance(RD->field_begin(), RD->field_end())); 6324 else 6325 // A union starts with no active member. 6326 Result = APValue((const FieldDecl*)nullptr); 6327 } 6328 6329 if (RD->isInvalidDecl()) return false; 6330 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6331 6332 // A scope for temporaries lifetime-extended by reference members. 6333 BlockScopeRAII LifetimeExtendedScope(Info); 6334 6335 bool Success = true; 6336 unsigned BasesSeen = 0; 6337 #ifndef NDEBUG 6338 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); 6339 #endif 6340 CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); 6341 auto SkipToField = [&](FieldDecl *FD, bool Indirect) { 6342 // We might be initializing the same field again if this is an indirect 6343 // field initialization. 6344 if (FieldIt == RD->field_end() || 6345 FieldIt->getFieldIndex() > FD->getFieldIndex()) { 6346 assert(Indirect && "fields out of order?"); 6347 return; 6348 } 6349 6350 // Default-initialize any fields with no explicit initializer. 6351 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { 6352 assert(FieldIt != RD->field_end() && "missing field?"); 6353 if (!FieldIt->isUnnamedBitfield()) 6354 Success &= getDefaultInitValue( 6355 FieldIt->getType(), 6356 Result.getStructField(FieldIt->getFieldIndex())); 6357 } 6358 ++FieldIt; 6359 }; 6360 for (const auto *I : Definition->inits()) { 6361 LValue Subobject = This; 6362 LValue SubobjectParent = This; 6363 APValue *Value = &Result; 6364 6365 // Determine the subobject to initialize. 6366 FieldDecl *FD = nullptr; 6367 if (I->isBaseInitializer()) { 6368 QualType BaseType(I->getBaseClass(), 0); 6369 #ifndef NDEBUG 6370 // Non-virtual base classes are initialized in the order in the class 6371 // definition. We have already checked for virtual base classes. 6372 assert(!BaseIt->isVirtual() && "virtual base for literal type"); 6373 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && 6374 "base class initializers not in expected order"); 6375 ++BaseIt; 6376 #endif 6377 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, 6378 BaseType->getAsCXXRecordDecl(), &Layout)) 6379 return false; 6380 Value = &Result.getStructBase(BasesSeen++); 6381 } else if ((FD = I->getMember())) { 6382 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) 6383 return false; 6384 if (RD->isUnion()) { 6385 Result = APValue(FD); 6386 Value = &Result.getUnionValue(); 6387 } else { 6388 SkipToField(FD, false); 6389 Value = &Result.getStructField(FD->getFieldIndex()); 6390 } 6391 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { 6392 // Walk the indirect field decl's chain to find the object to initialize, 6393 // and make sure we've initialized every step along it. 6394 auto IndirectFieldChain = IFD->chain(); 6395 for (auto *C : IndirectFieldChain) { 6396 FD = cast<FieldDecl>(C); 6397 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); 6398 // Switch the union field if it differs. This happens if we had 6399 // preceding zero-initialization, and we're now initializing a union 6400 // subobject other than the first. 6401 // FIXME: In this case, the values of the other subobjects are 6402 // specified, since zero-initialization sets all padding bits to zero. 6403 if (!Value->hasValue() || 6404 (Value->isUnion() && Value->getUnionField() != FD)) { 6405 if (CD->isUnion()) 6406 *Value = APValue(FD); 6407 else 6408 // FIXME: This immediately starts the lifetime of all members of 6409 // an anonymous struct. It would be preferable to strictly start 6410 // member lifetime in initialization order. 6411 Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value); 6412 } 6413 // Store Subobject as its parent before updating it for the last element 6414 // in the chain. 6415 if (C == IndirectFieldChain.back()) 6416 SubobjectParent = Subobject; 6417 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) 6418 return false; 6419 if (CD->isUnion()) 6420 Value = &Value->getUnionValue(); 6421 else { 6422 if (C == IndirectFieldChain.front() && !RD->isUnion()) 6423 SkipToField(FD, true); 6424 Value = &Value->getStructField(FD->getFieldIndex()); 6425 } 6426 } 6427 } else { 6428 llvm_unreachable("unknown base initializer kind"); 6429 } 6430 6431 // Need to override This for implicit field initializers as in this case 6432 // This refers to innermost anonymous struct/union containing initializer, 6433 // not to currently constructed class. 6434 const Expr *Init = I->getInit(); 6435 if (Init->isValueDependent()) { 6436 if (!EvaluateDependentExpr(Init, Info)) 6437 return false; 6438 } else { 6439 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, 6440 isa<CXXDefaultInitExpr>(Init)); 6441 FullExpressionRAII InitScope(Info); 6442 if (!EvaluateInPlace(*Value, Info, Subobject, Init) || 6443 (FD && FD->isBitField() && 6444 !truncateBitfieldValue(Info, Init, *Value, FD))) { 6445 // If we're checking for a potential constant expression, evaluate all 6446 // initializers even if some of them fail. 6447 if (!Info.noteFailure()) 6448 return false; 6449 Success = false; 6450 } 6451 } 6452 6453 // This is the point at which the dynamic type of the object becomes this 6454 // class type. 6455 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) 6456 EvalObj.finishedConstructingBases(); 6457 } 6458 6459 // Default-initialize any remaining fields. 6460 if (!RD->isUnion()) { 6461 for (; FieldIt != RD->field_end(); ++FieldIt) { 6462 if (!FieldIt->isUnnamedBitfield()) 6463 Success &= getDefaultInitValue( 6464 FieldIt->getType(), 6465 Result.getStructField(FieldIt->getFieldIndex())); 6466 } 6467 } 6468 6469 EvalObj.finishedConstructingFields(); 6470 6471 return Success && 6472 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && 6473 LifetimeExtendedScope.destroy(); 6474 } 6475 6476 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6477 ArrayRef<const Expr*> Args, 6478 const CXXConstructorDecl *Definition, 6479 EvalInfo &Info, APValue &Result) { 6480 CallScopeRAII CallScope(Info); 6481 CallRef Call = Info.CurrentCall->createCall(Definition); 6482 if (!EvaluateArgs(Args, Call, Info, Definition)) 6483 return false; 6484 6485 return HandleConstructorCall(E, This, Call, Definition, Info, Result) && 6486 CallScope.destroy(); 6487 } 6488 6489 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc, 6490 const LValue &This, APValue &Value, 6491 QualType T) { 6492 // Objects can only be destroyed while they're within their lifetimes. 6493 // FIXME: We have no representation for whether an object of type nullptr_t 6494 // is in its lifetime; it usually doesn't matter. Perhaps we should model it 6495 // as indeterminate instead? 6496 if (Value.isAbsent() && !T->isNullPtrType()) { 6497 APValue Printable; 6498 This.moveInto(Printable); 6499 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime) 6500 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); 6501 return false; 6502 } 6503 6504 // Invent an expression for location purposes. 6505 // FIXME: We shouldn't need to do this. 6506 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue); 6507 6508 // For arrays, destroy elements right-to-left. 6509 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { 6510 uint64_t Size = CAT->getSize().getZExtValue(); 6511 QualType ElemT = CAT->getElementType(); 6512 6513 LValue ElemLV = This; 6514 ElemLV.addArray(Info, &LocE, CAT); 6515 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) 6516 return false; 6517 6518 // Ensure that we have actual array elements available to destroy; the 6519 // destructors might mutate the value, so we can't run them on the array 6520 // filler. 6521 if (Size && Size > Value.getArrayInitializedElts()) 6522 expandArray(Value, Value.getArraySize() - 1); 6523 6524 for (; Size != 0; --Size) { 6525 APValue &Elem = Value.getArrayInitializedElt(Size - 1); 6526 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || 6527 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT)) 6528 return false; 6529 } 6530 6531 // End the lifetime of this array now. 6532 Value = APValue(); 6533 return true; 6534 } 6535 6536 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 6537 if (!RD) { 6538 if (T.isDestructedType()) { 6539 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T; 6540 return false; 6541 } 6542 6543 Value = APValue(); 6544 return true; 6545 } 6546 6547 if (RD->getNumVBases()) { 6548 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 6549 return false; 6550 } 6551 6552 const CXXDestructorDecl *DD = RD->getDestructor(); 6553 if (!DD && !RD->hasTrivialDestructor()) { 6554 Info.FFDiag(CallLoc); 6555 return false; 6556 } 6557 6558 if (!DD || DD->isTrivial() || 6559 (RD->isAnonymousStructOrUnion() && RD->isUnion())) { 6560 // A trivial destructor just ends the lifetime of the object. Check for 6561 // this case before checking for a body, because we might not bother 6562 // building a body for a trivial destructor. Note that it doesn't matter 6563 // whether the destructor is constexpr in this case; all trivial 6564 // destructors are constexpr. 6565 // 6566 // If an anonymous union would be destroyed, some enclosing destructor must 6567 // have been explicitly defined, and the anonymous union destruction should 6568 // have no effect. 6569 Value = APValue(); 6570 return true; 6571 } 6572 6573 if (!Info.CheckCallLimit(CallLoc)) 6574 return false; 6575 6576 const FunctionDecl *Definition = nullptr; 6577 const Stmt *Body = DD->getBody(Definition); 6578 6579 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body)) 6580 return false; 6581 6582 CallStackFrame Frame(Info, CallLoc, Definition, &This, /*CallExpr=*/nullptr, 6583 CallRef()); 6584 6585 // We're now in the period of destruction of this object. 6586 unsigned BasesLeft = RD->getNumBases(); 6587 EvalInfo::EvaluatingDestructorRAII EvalObj( 6588 Info, 6589 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); 6590 if (!EvalObj.DidInsert) { 6591 // C++2a [class.dtor]p19: 6592 // the behavior is undefined if the destructor is invoked for an object 6593 // whose lifetime has ended 6594 // (Note that formally the lifetime ends when the period of destruction 6595 // begins, even though certain uses of the object remain valid until the 6596 // period of destruction ends.) 6597 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy); 6598 return false; 6599 } 6600 6601 // FIXME: Creating an APValue just to hold a nonexistent return value is 6602 // wasteful. 6603 APValue RetVal; 6604 StmtResult Ret = {RetVal, nullptr}; 6605 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) 6606 return false; 6607 6608 // A union destructor does not implicitly destroy its members. 6609 if (RD->isUnion()) 6610 return true; 6611 6612 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6613 6614 // We don't have a good way to iterate fields in reverse, so collect all the 6615 // fields first and then walk them backwards. 6616 SmallVector<FieldDecl*, 16> Fields(RD->fields()); 6617 for (const FieldDecl *FD : llvm::reverse(Fields)) { 6618 if (FD->isUnnamedBitfield()) 6619 continue; 6620 6621 LValue Subobject = This; 6622 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) 6623 return false; 6624 6625 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); 6626 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, 6627 FD->getType())) 6628 return false; 6629 } 6630 6631 if (BasesLeft != 0) 6632 EvalObj.startedDestroyingBases(); 6633 6634 // Destroy base classes in reverse order. 6635 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { 6636 --BasesLeft; 6637 6638 QualType BaseType = Base.getType(); 6639 LValue Subobject = This; 6640 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, 6641 BaseType->getAsCXXRecordDecl(), &Layout)) 6642 return false; 6643 6644 APValue *SubobjectValue = &Value.getStructBase(BasesLeft); 6645 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, 6646 BaseType)) 6647 return false; 6648 } 6649 assert(BasesLeft == 0 && "NumBases was wrong?"); 6650 6651 // The period of destruction ends now. The object is gone. 6652 Value = APValue(); 6653 return true; 6654 } 6655 6656 namespace { 6657 struct DestroyObjectHandler { 6658 EvalInfo &Info; 6659 const Expr *E; 6660 const LValue &This; 6661 const AccessKinds AccessKind; 6662 6663 typedef bool result_type; 6664 bool failed() { return false; } 6665 bool found(APValue &Subobj, QualType SubobjType) { 6666 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj, 6667 SubobjType); 6668 } 6669 bool found(APSInt &Value, QualType SubobjType) { 6670 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 6671 return false; 6672 } 6673 bool found(APFloat &Value, QualType SubobjType) { 6674 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 6675 return false; 6676 } 6677 }; 6678 } 6679 6680 /// Perform a destructor or pseudo-destructor call on the given object, which 6681 /// might in general not be a complete object. 6682 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 6683 const LValue &This, QualType ThisType) { 6684 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); 6685 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; 6686 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 6687 } 6688 6689 /// Destroy and end the lifetime of the given complete object. 6690 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 6691 APValue::LValueBase LVBase, APValue &Value, 6692 QualType T) { 6693 // If we've had an unmodeled side-effect, we can't rely on mutable state 6694 // (such as the object we're about to destroy) being correct. 6695 if (Info.EvalStatus.HasSideEffects) 6696 return false; 6697 6698 LValue LV; 6699 LV.set({LVBase}); 6700 return HandleDestructionImpl(Info, Loc, LV, Value, T); 6701 } 6702 6703 /// Perform a call to 'perator new' or to `__builtin_operator_new'. 6704 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, 6705 LValue &Result) { 6706 if (Info.checkingPotentialConstantExpression() || 6707 Info.SpeculativeEvaluationDepth) 6708 return false; 6709 6710 // This is permitted only within a call to std::allocator<T>::allocate. 6711 auto Caller = Info.getStdAllocatorCaller("allocate"); 6712 if (!Caller) { 6713 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20 6714 ? diag::note_constexpr_new_untyped 6715 : diag::note_constexpr_new); 6716 return false; 6717 } 6718 6719 QualType ElemType = Caller.ElemType; 6720 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { 6721 Info.FFDiag(E->getExprLoc(), 6722 diag::note_constexpr_new_not_complete_object_type) 6723 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; 6724 return false; 6725 } 6726 6727 APSInt ByteSize; 6728 if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) 6729 return false; 6730 bool IsNothrow = false; 6731 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { 6732 EvaluateIgnoredValue(Info, E->getArg(I)); 6733 IsNothrow |= E->getType()->isNothrowT(); 6734 } 6735 6736 CharUnits ElemSize; 6737 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) 6738 return false; 6739 APInt Size, Remainder; 6740 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); 6741 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); 6742 if (Remainder != 0) { 6743 // This likely indicates a bug in the implementation of 'std::allocator'. 6744 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) 6745 << ByteSize << APSInt(ElemSizeAP, true) << ElemType; 6746 return false; 6747 } 6748 6749 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) { 6750 if (IsNothrow) { 6751 Result.setNull(Info.Ctx, E->getType()); 6752 return true; 6753 } 6754 6755 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true); 6756 return false; 6757 } 6758 6759 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr, 6760 ArrayType::Normal, 0); 6761 APValue *Val = Info.createHeapAlloc(E, AllocType, Result); 6762 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); 6763 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); 6764 return true; 6765 } 6766 6767 static bool hasVirtualDestructor(QualType T) { 6768 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 6769 if (CXXDestructorDecl *DD = RD->getDestructor()) 6770 return DD->isVirtual(); 6771 return false; 6772 } 6773 6774 static const FunctionDecl *getVirtualOperatorDelete(QualType T) { 6775 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 6776 if (CXXDestructorDecl *DD = RD->getDestructor()) 6777 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; 6778 return nullptr; 6779 } 6780 6781 /// Check that the given object is a suitable pointer to a heap allocation that 6782 /// still exists and is of the right kind for the purpose of a deletion. 6783 /// 6784 /// On success, returns the heap allocation to deallocate. On failure, produces 6785 /// a diagnostic and returns std::nullopt. 6786 static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, 6787 const LValue &Pointer, 6788 DynAlloc::Kind DeallocKind) { 6789 auto PointerAsString = [&] { 6790 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); 6791 }; 6792 6793 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); 6794 if (!DA) { 6795 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) 6796 << PointerAsString(); 6797 if (Pointer.Base) 6798 NoteLValueLocation(Info, Pointer.Base); 6799 return std::nullopt; 6800 } 6801 6802 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 6803 if (!Alloc) { 6804 Info.FFDiag(E, diag::note_constexpr_double_delete); 6805 return std::nullopt; 6806 } 6807 6808 QualType AllocType = Pointer.Base.getDynamicAllocType(); 6809 if (DeallocKind != (*Alloc)->getKind()) { 6810 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) 6811 << DeallocKind << (*Alloc)->getKind() << AllocType; 6812 NoteLValueLocation(Info, Pointer.Base); 6813 return std::nullopt; 6814 } 6815 6816 bool Subobject = false; 6817 if (DeallocKind == DynAlloc::New) { 6818 Subobject = Pointer.Designator.MostDerivedPathLength != 0 || 6819 Pointer.Designator.isOnePastTheEnd(); 6820 } else { 6821 Subobject = Pointer.Designator.Entries.size() != 1 || 6822 Pointer.Designator.Entries[0].getAsArrayIndex() != 0; 6823 } 6824 if (Subobject) { 6825 Info.FFDiag(E, diag::note_constexpr_delete_subobject) 6826 << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); 6827 return std::nullopt; 6828 } 6829 6830 return Alloc; 6831 } 6832 6833 // Perform a call to 'operator delete' or '__builtin_operator_delete'. 6834 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { 6835 if (Info.checkingPotentialConstantExpression() || 6836 Info.SpeculativeEvaluationDepth) 6837 return false; 6838 6839 // This is permitted only within a call to std::allocator<T>::deallocate. 6840 if (!Info.getStdAllocatorCaller("deallocate")) { 6841 Info.FFDiag(E->getExprLoc()); 6842 return true; 6843 } 6844 6845 LValue Pointer; 6846 if (!EvaluatePointer(E->getArg(0), Pointer, Info)) 6847 return false; 6848 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) 6849 EvaluateIgnoredValue(Info, E->getArg(I)); 6850 6851 if (Pointer.Designator.Invalid) 6852 return false; 6853 6854 // Deleting a null pointer would have no effect, but it's not permitted by 6855 // std::allocator<T>::deallocate's contract. 6856 if (Pointer.isNullPointer()) { 6857 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null); 6858 return true; 6859 } 6860 6861 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) 6862 return false; 6863 6864 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); 6865 return true; 6866 } 6867 6868 //===----------------------------------------------------------------------===// 6869 // Generic Evaluation 6870 //===----------------------------------------------------------------------===// 6871 namespace { 6872 6873 class BitCastBuffer { 6874 // FIXME: We're going to need bit-level granularity when we support 6875 // bit-fields. 6876 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but 6877 // we don't support a host or target where that is the case. Still, we should 6878 // use a more generic type in case we ever do. 6879 SmallVector<std::optional<unsigned char>, 32> Bytes; 6880 6881 static_assert(std::numeric_limits<unsigned char>::digits >= 8, 6882 "Need at least 8 bit unsigned char"); 6883 6884 bool TargetIsLittleEndian; 6885 6886 public: 6887 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) 6888 : Bytes(Width.getQuantity()), 6889 TargetIsLittleEndian(TargetIsLittleEndian) {} 6890 6891 [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width, 6892 SmallVectorImpl<unsigned char> &Output) const { 6893 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { 6894 // If a byte of an integer is uninitialized, then the whole integer is 6895 // uninitialized. 6896 if (!Bytes[I.getQuantity()]) 6897 return false; 6898 Output.push_back(*Bytes[I.getQuantity()]); 6899 } 6900 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 6901 std::reverse(Output.begin(), Output.end()); 6902 return true; 6903 } 6904 6905 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { 6906 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 6907 std::reverse(Input.begin(), Input.end()); 6908 6909 size_t Index = 0; 6910 for (unsigned char Byte : Input) { 6911 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); 6912 Bytes[Offset.getQuantity() + Index] = Byte; 6913 ++Index; 6914 } 6915 } 6916 6917 size_t size() { return Bytes.size(); } 6918 }; 6919 6920 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current 6921 /// target would represent the value at runtime. 6922 class APValueToBufferConverter { 6923 EvalInfo &Info; 6924 BitCastBuffer Buffer; 6925 const CastExpr *BCE; 6926 6927 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, 6928 const CastExpr *BCE) 6929 : Info(Info), 6930 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), 6931 BCE(BCE) {} 6932 6933 bool visit(const APValue &Val, QualType Ty) { 6934 return visit(Val, Ty, CharUnits::fromQuantity(0)); 6935 } 6936 6937 // Write out Val with type Ty into Buffer starting at Offset. 6938 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { 6939 assert((size_t)Offset.getQuantity() <= Buffer.size()); 6940 6941 // As a special case, nullptr_t has an indeterminate value. 6942 if (Ty->isNullPtrType()) 6943 return true; 6944 6945 // Dig through Src to find the byte at SrcOffset. 6946 switch (Val.getKind()) { 6947 case APValue::Indeterminate: 6948 case APValue::None: 6949 return true; 6950 6951 case APValue::Int: 6952 return visitInt(Val.getInt(), Ty, Offset); 6953 case APValue::Float: 6954 return visitFloat(Val.getFloat(), Ty, Offset); 6955 case APValue::Array: 6956 return visitArray(Val, Ty, Offset); 6957 case APValue::Struct: 6958 return visitRecord(Val, Ty, Offset); 6959 6960 case APValue::ComplexInt: 6961 case APValue::ComplexFloat: 6962 case APValue::Vector: 6963 case APValue::FixedPoint: 6964 // FIXME: We should support these. 6965 6966 case APValue::Union: 6967 case APValue::MemberPointer: 6968 case APValue::AddrLabelDiff: { 6969 Info.FFDiag(BCE->getBeginLoc(), 6970 diag::note_constexpr_bit_cast_unsupported_type) 6971 << Ty; 6972 return false; 6973 } 6974 6975 case APValue::LValue: 6976 llvm_unreachable("LValue subobject in bit_cast?"); 6977 } 6978 llvm_unreachable("Unhandled APValue::ValueKind"); 6979 } 6980 6981 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { 6982 const RecordDecl *RD = Ty->getAsRecordDecl(); 6983 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6984 6985 // Visit the base classes. 6986 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 6987 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 6988 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 6989 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 6990 6991 if (!visitRecord(Val.getStructBase(I), BS.getType(), 6992 Layout.getBaseClassOffset(BaseDecl) + Offset)) 6993 return false; 6994 } 6995 } 6996 6997 // Visit the fields. 6998 unsigned FieldIdx = 0; 6999 for (FieldDecl *FD : RD->fields()) { 7000 if (FD->isBitField()) { 7001 Info.FFDiag(BCE->getBeginLoc(), 7002 diag::note_constexpr_bit_cast_unsupported_bitfield); 7003 return false; 7004 } 7005 7006 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 7007 7008 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && 7009 "only bit-fields can have sub-char alignment"); 7010 CharUnits FieldOffset = 7011 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; 7012 QualType FieldTy = FD->getType(); 7013 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) 7014 return false; 7015 ++FieldIdx; 7016 } 7017 7018 return true; 7019 } 7020 7021 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { 7022 const auto *CAT = 7023 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); 7024 if (!CAT) 7025 return false; 7026 7027 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); 7028 unsigned NumInitializedElts = Val.getArrayInitializedElts(); 7029 unsigned ArraySize = Val.getArraySize(); 7030 // First, initialize the initialized elements. 7031 for (unsigned I = 0; I != NumInitializedElts; ++I) { 7032 const APValue &SubObj = Val.getArrayInitializedElt(I); 7033 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) 7034 return false; 7035 } 7036 7037 // Next, initialize the rest of the array using the filler. 7038 if (Val.hasArrayFiller()) { 7039 const APValue &Filler = Val.getArrayFiller(); 7040 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { 7041 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) 7042 return false; 7043 } 7044 } 7045 7046 return true; 7047 } 7048 7049 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { 7050 APSInt AdjustedVal = Val; 7051 unsigned Width = AdjustedVal.getBitWidth(); 7052 if (Ty->isBooleanType()) { 7053 Width = Info.Ctx.getTypeSize(Ty); 7054 AdjustedVal = AdjustedVal.extend(Width); 7055 } 7056 7057 SmallVector<unsigned char, 8> Bytes(Width / 8); 7058 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8); 7059 Buffer.writeObject(Offset, Bytes); 7060 return true; 7061 } 7062 7063 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { 7064 APSInt AsInt(Val.bitcastToAPInt()); 7065 return visitInt(AsInt, Ty, Offset); 7066 } 7067 7068 public: 7069 static std::optional<BitCastBuffer> 7070 convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) { 7071 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); 7072 APValueToBufferConverter Converter(Info, DstSize, BCE); 7073 if (!Converter.visit(Src, BCE->getSubExpr()->getType())) 7074 return std::nullopt; 7075 return Converter.Buffer; 7076 } 7077 }; 7078 7079 /// Write an BitCastBuffer into an APValue. 7080 class BufferToAPValueConverter { 7081 EvalInfo &Info; 7082 const BitCastBuffer &Buffer; 7083 const CastExpr *BCE; 7084 7085 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, 7086 const CastExpr *BCE) 7087 : Info(Info), Buffer(Buffer), BCE(BCE) {} 7088 7089 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast 7090 // with an invalid type, so anything left is a deficiency on our part (FIXME). 7091 // Ideally this will be unreachable. 7092 std::nullopt_t unsupportedType(QualType Ty) { 7093 Info.FFDiag(BCE->getBeginLoc(), 7094 diag::note_constexpr_bit_cast_unsupported_type) 7095 << Ty; 7096 return std::nullopt; 7097 } 7098 7099 std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) { 7100 Info.FFDiag(BCE->getBeginLoc(), 7101 diag::note_constexpr_bit_cast_unrepresentable_value) 7102 << Ty << toString(Val, /*Radix=*/10); 7103 return std::nullopt; 7104 } 7105 7106 std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset, 7107 const EnumType *EnumSugar = nullptr) { 7108 if (T->isNullPtrType()) { 7109 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); 7110 return APValue((Expr *)nullptr, 7111 /*Offset=*/CharUnits::fromQuantity(NullValue), 7112 APValue::NoLValuePath{}, /*IsNullPtr=*/true); 7113 } 7114 7115 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); 7116 7117 // Work around floating point types that contain unused padding bytes. This 7118 // is really just `long double` on x86, which is the only fundamental type 7119 // with padding bytes. 7120 if (T->isRealFloatingType()) { 7121 const llvm::fltSemantics &Semantics = 7122 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7123 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics); 7124 assert(NumBits % 8 == 0); 7125 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8); 7126 if (NumBytes != SizeOf) 7127 SizeOf = NumBytes; 7128 } 7129 7130 SmallVector<uint8_t, 8> Bytes; 7131 if (!Buffer.readObject(Offset, SizeOf, Bytes)) { 7132 // If this is std::byte or unsigned char, then its okay to store an 7133 // indeterminate value. 7134 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); 7135 bool IsUChar = 7136 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || 7137 T->isSpecificBuiltinType(BuiltinType::Char_U)); 7138 if (!IsStdByte && !IsUChar) { 7139 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); 7140 Info.FFDiag(BCE->getExprLoc(), 7141 diag::note_constexpr_bit_cast_indet_dest) 7142 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; 7143 return std::nullopt; 7144 } 7145 7146 return APValue::IndeterminateValue(); 7147 } 7148 7149 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); 7150 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); 7151 7152 if (T->isIntegralOrEnumerationType()) { 7153 Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); 7154 7155 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0)); 7156 if (IntWidth != Val.getBitWidth()) { 7157 APSInt Truncated = Val.trunc(IntWidth); 7158 if (Truncated.extend(Val.getBitWidth()) != Val) 7159 return unrepresentableValue(QualType(T, 0), Val); 7160 Val = Truncated; 7161 } 7162 7163 return APValue(Val); 7164 } 7165 7166 if (T->isRealFloatingType()) { 7167 const llvm::fltSemantics &Semantics = 7168 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7169 return APValue(APFloat(Semantics, Val)); 7170 } 7171 7172 return unsupportedType(QualType(T, 0)); 7173 } 7174 7175 std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { 7176 const RecordDecl *RD = RTy->getAsRecordDecl(); 7177 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 7178 7179 unsigned NumBases = 0; 7180 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7181 NumBases = CXXRD->getNumBases(); 7182 7183 APValue ResultVal(APValue::UninitStruct(), NumBases, 7184 std::distance(RD->field_begin(), RD->field_end())); 7185 7186 // Visit the base classes. 7187 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 7188 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 7189 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 7190 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 7191 if (BaseDecl->isEmpty() || 7192 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) 7193 continue; 7194 7195 std::optional<APValue> SubObj = visitType( 7196 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); 7197 if (!SubObj) 7198 return std::nullopt; 7199 ResultVal.getStructBase(I) = *SubObj; 7200 } 7201 } 7202 7203 // Visit the fields. 7204 unsigned FieldIdx = 0; 7205 for (FieldDecl *FD : RD->fields()) { 7206 // FIXME: We don't currently support bit-fields. A lot of the logic for 7207 // this is in CodeGen, so we need to factor it around. 7208 if (FD->isBitField()) { 7209 Info.FFDiag(BCE->getBeginLoc(), 7210 diag::note_constexpr_bit_cast_unsupported_bitfield); 7211 return std::nullopt; 7212 } 7213 7214 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 7215 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); 7216 7217 CharUnits FieldOffset = 7218 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + 7219 Offset; 7220 QualType FieldTy = FD->getType(); 7221 std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset); 7222 if (!SubObj) 7223 return std::nullopt; 7224 ResultVal.getStructField(FieldIdx) = *SubObj; 7225 ++FieldIdx; 7226 } 7227 7228 return ResultVal; 7229 } 7230 7231 std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { 7232 QualType RepresentationType = Ty->getDecl()->getIntegerType(); 7233 assert(!RepresentationType.isNull() && 7234 "enum forward decl should be caught by Sema"); 7235 const auto *AsBuiltin = 7236 RepresentationType.getCanonicalType()->castAs<BuiltinType>(); 7237 // Recurse into the underlying type. Treat std::byte transparently as 7238 // unsigned char. 7239 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); 7240 } 7241 7242 std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { 7243 size_t Size = Ty->getSize().getLimitedValue(); 7244 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); 7245 7246 APValue ArrayValue(APValue::UninitArray(), Size, Size); 7247 for (size_t I = 0; I != Size; ++I) { 7248 std::optional<APValue> ElementValue = 7249 visitType(Ty->getElementType(), Offset + I * ElementWidth); 7250 if (!ElementValue) 7251 return std::nullopt; 7252 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); 7253 } 7254 7255 return ArrayValue; 7256 } 7257 7258 std::optional<APValue> visit(const Type *Ty, CharUnits Offset) { 7259 return unsupportedType(QualType(Ty, 0)); 7260 } 7261 7262 std::optional<APValue> visitType(QualType Ty, CharUnits Offset) { 7263 QualType Can = Ty.getCanonicalType(); 7264 7265 switch (Can->getTypeClass()) { 7266 #define TYPE(Class, Base) \ 7267 case Type::Class: \ 7268 return visit(cast<Class##Type>(Can.getTypePtr()), Offset); 7269 #define ABSTRACT_TYPE(Class, Base) 7270 #define NON_CANONICAL_TYPE(Class, Base) \ 7271 case Type::Class: \ 7272 llvm_unreachable("non-canonical type should be impossible!"); 7273 #define DEPENDENT_TYPE(Class, Base) \ 7274 case Type::Class: \ 7275 llvm_unreachable( \ 7276 "dependent types aren't supported in the constant evaluator!"); 7277 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ 7278 case Type::Class: \ 7279 llvm_unreachable("either dependent or not canonical!"); 7280 #include "clang/AST/TypeNodes.inc" 7281 } 7282 llvm_unreachable("Unhandled Type::TypeClass"); 7283 } 7284 7285 public: 7286 // Pull out a full value of type DstType. 7287 static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, 7288 const CastExpr *BCE) { 7289 BufferToAPValueConverter Converter(Info, Buffer, BCE); 7290 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); 7291 } 7292 }; 7293 7294 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, 7295 QualType Ty, EvalInfo *Info, 7296 const ASTContext &Ctx, 7297 bool CheckingDest) { 7298 Ty = Ty.getCanonicalType(); 7299 7300 auto diag = [&](int Reason) { 7301 if (Info) 7302 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) 7303 << CheckingDest << (Reason == 4) << Reason; 7304 return false; 7305 }; 7306 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { 7307 if (Info) 7308 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) 7309 << NoteTy << Construct << Ty; 7310 return false; 7311 }; 7312 7313 if (Ty->isUnionType()) 7314 return diag(0); 7315 if (Ty->isPointerType()) 7316 return diag(1); 7317 if (Ty->isMemberPointerType()) 7318 return diag(2); 7319 if (Ty.isVolatileQualified()) 7320 return diag(3); 7321 7322 if (RecordDecl *Record = Ty->getAsRecordDecl()) { 7323 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { 7324 for (CXXBaseSpecifier &BS : CXXRD->bases()) 7325 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, 7326 CheckingDest)) 7327 return note(1, BS.getType(), BS.getBeginLoc()); 7328 } 7329 for (FieldDecl *FD : Record->fields()) { 7330 if (FD->getType()->isReferenceType()) 7331 return diag(4); 7332 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, 7333 CheckingDest)) 7334 return note(0, FD->getType(), FD->getBeginLoc()); 7335 } 7336 } 7337 7338 if (Ty->isArrayType() && 7339 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), 7340 Info, Ctx, CheckingDest)) 7341 return false; 7342 7343 return true; 7344 } 7345 7346 static bool checkBitCastConstexprEligibility(EvalInfo *Info, 7347 const ASTContext &Ctx, 7348 const CastExpr *BCE) { 7349 bool DestOK = checkBitCastConstexprEligibilityType( 7350 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); 7351 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( 7352 BCE->getBeginLoc(), 7353 BCE->getSubExpr()->getType(), Info, Ctx, false); 7354 return SourceOK; 7355 } 7356 7357 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, 7358 APValue &SourceValue, 7359 const CastExpr *BCE) { 7360 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && 7361 "no host or target supports non 8-bit chars"); 7362 assert(SourceValue.isLValue() && 7363 "LValueToRValueBitcast requires an lvalue operand!"); 7364 7365 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) 7366 return false; 7367 7368 LValue SourceLValue; 7369 APValue SourceRValue; 7370 SourceLValue.setFrom(Info.Ctx, SourceValue); 7371 if (!handleLValueToRValueConversion( 7372 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, 7373 SourceRValue, /*WantObjectRepresentation=*/true)) 7374 return false; 7375 7376 // Read out SourceValue into a char buffer. 7377 std::optional<BitCastBuffer> Buffer = 7378 APValueToBufferConverter::convert(Info, SourceRValue, BCE); 7379 if (!Buffer) 7380 return false; 7381 7382 // Write out the buffer into a new APValue. 7383 std::optional<APValue> MaybeDestValue = 7384 BufferToAPValueConverter::convert(Info, *Buffer, BCE); 7385 if (!MaybeDestValue) 7386 return false; 7387 7388 DestValue = std::move(*MaybeDestValue); 7389 return true; 7390 } 7391 7392 template <class Derived> 7393 class ExprEvaluatorBase 7394 : public ConstStmtVisitor<Derived, bool> { 7395 private: 7396 Derived &getDerived() { return static_cast<Derived&>(*this); } 7397 bool DerivedSuccess(const APValue &V, const Expr *E) { 7398 return getDerived().Success(V, E); 7399 } 7400 bool DerivedZeroInitialization(const Expr *E) { 7401 return getDerived().ZeroInitialization(E); 7402 } 7403 7404 // Check whether a conditional operator with a non-constant condition is a 7405 // potential constant expression. If neither arm is a potential constant 7406 // expression, then the conditional operator is not either. 7407 template<typename ConditionalOperator> 7408 void CheckPotentialConstantConditional(const ConditionalOperator *E) { 7409 assert(Info.checkingPotentialConstantExpression()); 7410 7411 // Speculatively evaluate both arms. 7412 SmallVector<PartialDiagnosticAt, 8> Diag; 7413 { 7414 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7415 StmtVisitorTy::Visit(E->getFalseExpr()); 7416 if (Diag.empty()) 7417 return; 7418 } 7419 7420 { 7421 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7422 Diag.clear(); 7423 StmtVisitorTy::Visit(E->getTrueExpr()); 7424 if (Diag.empty()) 7425 return; 7426 } 7427 7428 Error(E, diag::note_constexpr_conditional_never_const); 7429 } 7430 7431 7432 template<typename ConditionalOperator> 7433 bool HandleConditionalOperator(const ConditionalOperator *E) { 7434 bool BoolResult; 7435 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { 7436 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { 7437 CheckPotentialConstantConditional(E); 7438 return false; 7439 } 7440 if (Info.noteFailure()) { 7441 StmtVisitorTy::Visit(E->getTrueExpr()); 7442 StmtVisitorTy::Visit(E->getFalseExpr()); 7443 } 7444 return false; 7445 } 7446 7447 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); 7448 return StmtVisitorTy::Visit(EvalExpr); 7449 } 7450 7451 protected: 7452 EvalInfo &Info; 7453 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; 7454 typedef ExprEvaluatorBase ExprEvaluatorBaseTy; 7455 7456 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 7457 return Info.CCEDiag(E, D); 7458 } 7459 7460 bool ZeroInitialization(const Expr *E) { return Error(E); } 7461 7462 bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) { 7463 unsigned BuiltinOp = E->getBuiltinCallee(); 7464 return BuiltinOp != 0 && 7465 Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp); 7466 } 7467 7468 public: 7469 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} 7470 7471 EvalInfo &getEvalInfo() { return Info; } 7472 7473 /// Report an evaluation error. This should only be called when an error is 7474 /// first discovered. When propagating an error, just return false. 7475 bool Error(const Expr *E, diag::kind D) { 7476 Info.FFDiag(E, D); 7477 return false; 7478 } 7479 bool Error(const Expr *E) { 7480 return Error(E, diag::note_invalid_subexpr_in_const_expr); 7481 } 7482 7483 bool VisitStmt(const Stmt *) { 7484 llvm_unreachable("Expression evaluator should not be called on stmts"); 7485 } 7486 bool VisitExpr(const Expr *E) { 7487 return Error(E); 7488 } 7489 7490 bool VisitConstantExpr(const ConstantExpr *E) { 7491 if (E->hasAPValueResult()) 7492 return DerivedSuccess(E->getAPValueResult(), E); 7493 7494 return StmtVisitorTy::Visit(E->getSubExpr()); 7495 } 7496 7497 bool VisitParenExpr(const ParenExpr *E) 7498 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7499 bool VisitUnaryExtension(const UnaryOperator *E) 7500 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7501 bool VisitUnaryPlus(const UnaryOperator *E) 7502 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7503 bool VisitChooseExpr(const ChooseExpr *E) 7504 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } 7505 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) 7506 { return StmtVisitorTy::Visit(E->getResultExpr()); } 7507 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) 7508 { return StmtVisitorTy::Visit(E->getReplacement()); } 7509 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 7510 TempVersionRAII RAII(*Info.CurrentCall); 7511 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 7512 return StmtVisitorTy::Visit(E->getExpr()); 7513 } 7514 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 7515 TempVersionRAII RAII(*Info.CurrentCall); 7516 // The initializer may not have been parsed yet, or might be erroneous. 7517 if (!E->getExpr()) 7518 return Error(E); 7519 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 7520 return StmtVisitorTy::Visit(E->getExpr()); 7521 } 7522 7523 bool VisitExprWithCleanups(const ExprWithCleanups *E) { 7524 FullExpressionRAII Scope(Info); 7525 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); 7526 } 7527 7528 // Temporaries are registered when created, so we don't care about 7529 // CXXBindTemporaryExpr. 7530 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 7531 return StmtVisitorTy::Visit(E->getSubExpr()); 7532 } 7533 7534 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { 7535 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; 7536 return static_cast<Derived*>(this)->VisitCastExpr(E); 7537 } 7538 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { 7539 if (!Info.Ctx.getLangOpts().CPlusPlus20) 7540 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; 7541 return static_cast<Derived*>(this)->VisitCastExpr(E); 7542 } 7543 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { 7544 return static_cast<Derived*>(this)->VisitCastExpr(E); 7545 } 7546 7547 bool VisitBinaryOperator(const BinaryOperator *E) { 7548 switch (E->getOpcode()) { 7549 default: 7550 return Error(E); 7551 7552 case BO_Comma: 7553 VisitIgnoredValue(E->getLHS()); 7554 return StmtVisitorTy::Visit(E->getRHS()); 7555 7556 case BO_PtrMemD: 7557 case BO_PtrMemI: { 7558 LValue Obj; 7559 if (!HandleMemberPointerAccess(Info, E, Obj)) 7560 return false; 7561 APValue Result; 7562 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) 7563 return false; 7564 return DerivedSuccess(Result, E); 7565 } 7566 } 7567 } 7568 7569 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { 7570 return StmtVisitorTy::Visit(E->getSemanticForm()); 7571 } 7572 7573 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { 7574 // Evaluate and cache the common expression. We treat it as a temporary, 7575 // even though it's not quite the same thing. 7576 LValue CommonLV; 7577 if (!Evaluate(Info.CurrentCall->createTemporary( 7578 E->getOpaqueValue(), 7579 getStorageType(Info.Ctx, E->getOpaqueValue()), 7580 ScopeKind::FullExpression, CommonLV), 7581 Info, E->getCommon())) 7582 return false; 7583 7584 return HandleConditionalOperator(E); 7585 } 7586 7587 bool VisitConditionalOperator(const ConditionalOperator *E) { 7588 bool IsBcpCall = false; 7589 // If the condition (ignoring parens) is a __builtin_constant_p call, 7590 // the result is a constant expression if it can be folded without 7591 // side-effects. This is an important GNU extension. See GCC PR38377 7592 // for discussion. 7593 if (const CallExpr *CallCE = 7594 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) 7595 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 7596 IsBcpCall = true; 7597 7598 // Always assume __builtin_constant_p(...) ? ... : ... is a potential 7599 // constant expression; we can't check whether it's potentially foldable. 7600 // FIXME: We should instead treat __builtin_constant_p as non-constant if 7601 // it would return 'false' in this mode. 7602 if (Info.checkingPotentialConstantExpression() && IsBcpCall) 7603 return false; 7604 7605 FoldConstant Fold(Info, IsBcpCall); 7606 if (!HandleConditionalOperator(E)) { 7607 Fold.keepDiagnostics(); 7608 return false; 7609 } 7610 7611 return true; 7612 } 7613 7614 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 7615 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E)) 7616 return DerivedSuccess(*Value, E); 7617 7618 const Expr *Source = E->getSourceExpr(); 7619 if (!Source) 7620 return Error(E); 7621 if (Source == E) { 7622 assert(0 && "OpaqueValueExpr recursively refers to itself"); 7623 return Error(E); 7624 } 7625 return StmtVisitorTy::Visit(Source); 7626 } 7627 7628 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 7629 for (const Expr *SemE : E->semantics()) { 7630 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 7631 // FIXME: We can't handle the case where an OpaqueValueExpr is also the 7632 // result expression: there could be two different LValues that would 7633 // refer to the same object in that case, and we can't model that. 7634 if (SemE == E->getResultExpr()) 7635 return Error(E); 7636 7637 // Unique OVEs get evaluated if and when we encounter them when 7638 // emitting the rest of the semantic form, rather than eagerly. 7639 if (OVE->isUnique()) 7640 continue; 7641 7642 LValue LV; 7643 if (!Evaluate(Info.CurrentCall->createTemporary( 7644 OVE, getStorageType(Info.Ctx, OVE), 7645 ScopeKind::FullExpression, LV), 7646 Info, OVE->getSourceExpr())) 7647 return false; 7648 } else if (SemE == E->getResultExpr()) { 7649 if (!StmtVisitorTy::Visit(SemE)) 7650 return false; 7651 } else { 7652 if (!EvaluateIgnoredValue(Info, SemE)) 7653 return false; 7654 } 7655 } 7656 return true; 7657 } 7658 7659 bool VisitCallExpr(const CallExpr *E) { 7660 APValue Result; 7661 if (!handleCallExpr(E, Result, nullptr)) 7662 return false; 7663 return DerivedSuccess(Result, E); 7664 } 7665 7666 bool handleCallExpr(const CallExpr *E, APValue &Result, 7667 const LValue *ResultSlot) { 7668 CallScopeRAII CallScope(Info); 7669 7670 const Expr *Callee = E->getCallee()->IgnoreParens(); 7671 QualType CalleeType = Callee->getType(); 7672 7673 const FunctionDecl *FD = nullptr; 7674 LValue *This = nullptr, ThisVal; 7675 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); 7676 bool HasQualifier = false; 7677 7678 CallRef Call; 7679 7680 // Extract function decl and 'this' pointer from the callee. 7681 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { 7682 const CXXMethodDecl *Member = nullptr; 7683 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { 7684 // Explicit bound member calls, such as x.f() or p->g(); 7685 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) 7686 return false; 7687 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); 7688 if (!Member) 7689 return Error(Callee); 7690 This = &ThisVal; 7691 HasQualifier = ME->hasQualifier(); 7692 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { 7693 // Indirect bound member calls ('.*' or '->*'). 7694 const ValueDecl *D = 7695 HandleMemberPointerAccess(Info, BE, ThisVal, false); 7696 if (!D) 7697 return false; 7698 Member = dyn_cast<CXXMethodDecl>(D); 7699 if (!Member) 7700 return Error(Callee); 7701 This = &ThisVal; 7702 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { 7703 if (!Info.getLangOpts().CPlusPlus20) 7704 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); 7705 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) && 7706 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType()); 7707 } else 7708 return Error(Callee); 7709 FD = Member; 7710 } else if (CalleeType->isFunctionPointerType()) { 7711 LValue CalleeLV; 7712 if (!EvaluatePointer(Callee, CalleeLV, Info)) 7713 return false; 7714 7715 if (!CalleeLV.getLValueOffset().isZero()) 7716 return Error(Callee); 7717 if (CalleeLV.isNullPointer()) { 7718 Info.FFDiag(Callee, diag::note_constexpr_null_callee) 7719 << const_cast<Expr *>(Callee); 7720 return false; 7721 } 7722 FD = dyn_cast_or_null<FunctionDecl>( 7723 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>()); 7724 if (!FD) 7725 return Error(Callee); 7726 // Don't call function pointers which have been cast to some other type. 7727 // Per DR (no number yet), the caller and callee can differ in noexcept. 7728 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( 7729 CalleeType->getPointeeType(), FD->getType())) { 7730 return Error(E); 7731 } 7732 7733 // For an (overloaded) assignment expression, evaluate the RHS before the 7734 // LHS. 7735 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 7736 if (OCE && OCE->isAssignmentOp()) { 7737 assert(Args.size() == 2 && "wrong number of arguments in assignment"); 7738 Call = Info.CurrentCall->createCall(FD); 7739 if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call, 7740 Info, FD, /*RightToLeft=*/true)) 7741 return false; 7742 } 7743 7744 // Overloaded operator calls to member functions are represented as normal 7745 // calls with '*this' as the first argument. 7746 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 7747 if (MD && !MD->isStatic()) { 7748 // FIXME: When selecting an implicit conversion for an overloaded 7749 // operator delete, we sometimes try to evaluate calls to conversion 7750 // operators without a 'this' parameter! 7751 if (Args.empty()) 7752 return Error(E); 7753 7754 if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) 7755 return false; 7756 This = &ThisVal; 7757 7758 // If this is syntactically a simple assignment using a trivial 7759 // assignment operator, start the lifetimes of union members as needed, 7760 // per C++20 [class.union]5. 7761 if (Info.getLangOpts().CPlusPlus20 && OCE && 7762 OCE->getOperator() == OO_Equal && MD->isTrivial() && 7763 !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal)) 7764 return false; 7765 7766 Args = Args.slice(1); 7767 } else if (MD && MD->isLambdaStaticInvoker()) { 7768 // Map the static invoker for the lambda back to the call operator. 7769 // Conveniently, we don't have to slice out the 'this' argument (as is 7770 // being done for the non-static case), since a static member function 7771 // doesn't have an implicit argument passed in. 7772 const CXXRecordDecl *ClosureClass = MD->getParent(); 7773 assert( 7774 ClosureClass->captures_begin() == ClosureClass->captures_end() && 7775 "Number of captures must be zero for conversion to function-ptr"); 7776 7777 const CXXMethodDecl *LambdaCallOp = 7778 ClosureClass->getLambdaCallOperator(); 7779 7780 // Set 'FD', the function that will be called below, to the call 7781 // operator. If the closure object represents a generic lambda, find 7782 // the corresponding specialization of the call operator. 7783 7784 if (ClosureClass->isGenericLambda()) { 7785 assert(MD->isFunctionTemplateSpecialization() && 7786 "A generic lambda's static-invoker function must be a " 7787 "template specialization"); 7788 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 7789 FunctionTemplateDecl *CallOpTemplate = 7790 LambdaCallOp->getDescribedFunctionTemplate(); 7791 void *InsertPos = nullptr; 7792 FunctionDecl *CorrespondingCallOpSpecialization = 7793 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 7794 assert(CorrespondingCallOpSpecialization && 7795 "We must always have a function call operator specialization " 7796 "that corresponds to our static invoker specialization"); 7797 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 7798 } else 7799 FD = LambdaCallOp; 7800 } else if (FD->isReplaceableGlobalAllocationFunction()) { 7801 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || 7802 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 7803 LValue Ptr; 7804 if (!HandleOperatorNewCall(Info, E, Ptr)) 7805 return false; 7806 Ptr.moveInto(Result); 7807 return CallScope.destroy(); 7808 } else { 7809 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy(); 7810 } 7811 } 7812 } else 7813 return Error(E); 7814 7815 // Evaluate the arguments now if we've not already done so. 7816 if (!Call) { 7817 Call = Info.CurrentCall->createCall(FD); 7818 if (!EvaluateArgs(Args, Call, Info, FD)) 7819 return false; 7820 } 7821 7822 SmallVector<QualType, 4> CovariantAdjustmentPath; 7823 if (This) { 7824 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); 7825 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { 7826 // Perform virtual dispatch, if necessary. 7827 FD = HandleVirtualDispatch(Info, E, *This, NamedMember, 7828 CovariantAdjustmentPath); 7829 if (!FD) 7830 return false; 7831 } else { 7832 // Check that the 'this' pointer points to an object of the right type. 7833 // FIXME: If this is an assignment operator call, we may need to change 7834 // the active union member before we check this. 7835 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) 7836 return false; 7837 } 7838 } 7839 7840 // Destructor calls are different enough that they have their own codepath. 7841 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { 7842 assert(This && "no 'this' pointer for destructor call"); 7843 return HandleDestruction(Info, E, *This, 7844 Info.Ctx.getRecordType(DD->getParent())) && 7845 CallScope.destroy(); 7846 } 7847 7848 const FunctionDecl *Definition = nullptr; 7849 Stmt *Body = FD->getBody(Definition); 7850 7851 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || 7852 !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call, 7853 Body, Info, Result, ResultSlot)) 7854 return false; 7855 7856 if (!CovariantAdjustmentPath.empty() && 7857 !HandleCovariantReturnAdjustment(Info, E, Result, 7858 CovariantAdjustmentPath)) 7859 return false; 7860 7861 return CallScope.destroy(); 7862 } 7863 7864 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 7865 return StmtVisitorTy::Visit(E->getInitializer()); 7866 } 7867 bool VisitInitListExpr(const InitListExpr *E) { 7868 if (E->getNumInits() == 0) 7869 return DerivedZeroInitialization(E); 7870 if (E->getNumInits() == 1) 7871 return StmtVisitorTy::Visit(E->getInit(0)); 7872 return Error(E); 7873 } 7874 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 7875 return DerivedZeroInitialization(E); 7876 } 7877 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 7878 return DerivedZeroInitialization(E); 7879 } 7880 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 7881 return DerivedZeroInitialization(E); 7882 } 7883 7884 /// A member expression where the object is a prvalue is itself a prvalue. 7885 bool VisitMemberExpr(const MemberExpr *E) { 7886 assert(!Info.Ctx.getLangOpts().CPlusPlus11 && 7887 "missing temporary materialization conversion"); 7888 assert(!E->isArrow() && "missing call to bound member function?"); 7889 7890 APValue Val; 7891 if (!Evaluate(Val, Info, E->getBase())) 7892 return false; 7893 7894 QualType BaseTy = E->getBase()->getType(); 7895 7896 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); 7897 if (!FD) return Error(E); 7898 assert(!FD->getType()->isReferenceType() && "prvalue reference?"); 7899 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 7900 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 7901 7902 // Note: there is no lvalue base here. But this case should only ever 7903 // happen in C or in C++98, where we cannot be evaluating a constexpr 7904 // constructor, which is the only case the base matters. 7905 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); 7906 SubobjectDesignator Designator(BaseTy); 7907 Designator.addDeclUnchecked(FD); 7908 7909 APValue Result; 7910 return extractSubobject(Info, E, Obj, Designator, Result) && 7911 DerivedSuccess(Result, E); 7912 } 7913 7914 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) { 7915 APValue Val; 7916 if (!Evaluate(Val, Info, E->getBase())) 7917 return false; 7918 7919 if (Val.isVector()) { 7920 SmallVector<uint32_t, 4> Indices; 7921 E->getEncodedElementAccess(Indices); 7922 if (Indices.size() == 1) { 7923 // Return scalar. 7924 return DerivedSuccess(Val.getVectorElt(Indices[0]), E); 7925 } else { 7926 // Construct new APValue vector. 7927 SmallVector<APValue, 4> Elts; 7928 for (unsigned I = 0; I < Indices.size(); ++I) { 7929 Elts.push_back(Val.getVectorElt(Indices[I])); 7930 } 7931 APValue VecResult(Elts.data(), Indices.size()); 7932 return DerivedSuccess(VecResult, E); 7933 } 7934 } 7935 7936 return false; 7937 } 7938 7939 bool VisitCastExpr(const CastExpr *E) { 7940 switch (E->getCastKind()) { 7941 default: 7942 break; 7943 7944 case CK_AtomicToNonAtomic: { 7945 APValue AtomicVal; 7946 // This does not need to be done in place even for class/array types: 7947 // atomic-to-non-atomic conversion implies copying the object 7948 // representation. 7949 if (!Evaluate(AtomicVal, Info, E->getSubExpr())) 7950 return false; 7951 return DerivedSuccess(AtomicVal, E); 7952 } 7953 7954 case CK_NoOp: 7955 case CK_UserDefinedConversion: 7956 return StmtVisitorTy::Visit(E->getSubExpr()); 7957 7958 case CK_LValueToRValue: { 7959 LValue LVal; 7960 if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) 7961 return false; 7962 APValue RVal; 7963 // Note, we use the subexpression's type in order to retain cv-qualifiers. 7964 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 7965 LVal, RVal)) 7966 return false; 7967 return DerivedSuccess(RVal, E); 7968 } 7969 case CK_LValueToRValueBitCast: { 7970 APValue DestValue, SourceValue; 7971 if (!Evaluate(SourceValue, Info, E->getSubExpr())) 7972 return false; 7973 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) 7974 return false; 7975 return DerivedSuccess(DestValue, E); 7976 } 7977 7978 case CK_AddressSpaceConversion: { 7979 APValue Value; 7980 if (!Evaluate(Value, Info, E->getSubExpr())) 7981 return false; 7982 return DerivedSuccess(Value, E); 7983 } 7984 } 7985 7986 return Error(E); 7987 } 7988 7989 bool VisitUnaryPostInc(const UnaryOperator *UO) { 7990 return VisitUnaryPostIncDec(UO); 7991 } 7992 bool VisitUnaryPostDec(const UnaryOperator *UO) { 7993 return VisitUnaryPostIncDec(UO); 7994 } 7995 bool VisitUnaryPostIncDec(const UnaryOperator *UO) { 7996 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 7997 return Error(UO); 7998 7999 LValue LVal; 8000 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) 8001 return false; 8002 APValue RVal; 8003 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), 8004 UO->isIncrementOp(), &RVal)) 8005 return false; 8006 return DerivedSuccess(RVal, UO); 8007 } 8008 8009 bool VisitStmtExpr(const StmtExpr *E) { 8010 // We will have checked the full-expressions inside the statement expression 8011 // when they were completed, and don't need to check them again now. 8012 llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior, 8013 false); 8014 8015 const CompoundStmt *CS = E->getSubStmt(); 8016 if (CS->body_empty()) 8017 return true; 8018 8019 BlockScopeRAII Scope(Info); 8020 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 8021 BE = CS->body_end(); 8022 /**/; ++BI) { 8023 if (BI + 1 == BE) { 8024 const Expr *FinalExpr = dyn_cast<Expr>(*BI); 8025 if (!FinalExpr) { 8026 Info.FFDiag((*BI)->getBeginLoc(), 8027 diag::note_constexpr_stmt_expr_unsupported); 8028 return false; 8029 } 8030 return this->Visit(FinalExpr) && Scope.destroy(); 8031 } 8032 8033 APValue ReturnValue; 8034 StmtResult Result = { ReturnValue, nullptr }; 8035 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); 8036 if (ESR != ESR_Succeeded) { 8037 // FIXME: If the statement-expression terminated due to 'return', 8038 // 'break', or 'continue', it would be nice to propagate that to 8039 // the outer statement evaluation rather than bailing out. 8040 if (ESR != ESR_Failed) 8041 Info.FFDiag((*BI)->getBeginLoc(), 8042 diag::note_constexpr_stmt_expr_unsupported); 8043 return false; 8044 } 8045 } 8046 8047 llvm_unreachable("Return from function from the loop above."); 8048 } 8049 8050 /// Visit a value which is evaluated, but whose value is ignored. 8051 void VisitIgnoredValue(const Expr *E) { 8052 EvaluateIgnoredValue(Info, E); 8053 } 8054 8055 /// Potentially visit a MemberExpr's base expression. 8056 void VisitIgnoredBaseExpression(const Expr *E) { 8057 // While MSVC doesn't evaluate the base expression, it does diagnose the 8058 // presence of side-effecting behavior. 8059 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) 8060 return; 8061 VisitIgnoredValue(E); 8062 } 8063 }; 8064 8065 } // namespace 8066 8067 //===----------------------------------------------------------------------===// 8068 // Common base class for lvalue and temporary evaluation. 8069 //===----------------------------------------------------------------------===// 8070 namespace { 8071 template<class Derived> 8072 class LValueExprEvaluatorBase 8073 : public ExprEvaluatorBase<Derived> { 8074 protected: 8075 LValue &Result; 8076 bool InvalidBaseOK; 8077 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; 8078 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; 8079 8080 bool Success(APValue::LValueBase B) { 8081 Result.set(B); 8082 return true; 8083 } 8084 8085 bool evaluatePointer(const Expr *E, LValue &Result) { 8086 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); 8087 } 8088 8089 public: 8090 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) 8091 : ExprEvaluatorBaseTy(Info), Result(Result), 8092 InvalidBaseOK(InvalidBaseOK) {} 8093 8094 bool Success(const APValue &V, const Expr *E) { 8095 Result.setFrom(this->Info.Ctx, V); 8096 return true; 8097 } 8098 8099 bool VisitMemberExpr(const MemberExpr *E) { 8100 // Handle non-static data members. 8101 QualType BaseTy; 8102 bool EvalOK; 8103 if (E->isArrow()) { 8104 EvalOK = evaluatePointer(E->getBase(), Result); 8105 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); 8106 } else if (E->getBase()->isPRValue()) { 8107 assert(E->getBase()->getType()->isRecordType()); 8108 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); 8109 BaseTy = E->getBase()->getType(); 8110 } else { 8111 EvalOK = this->Visit(E->getBase()); 8112 BaseTy = E->getBase()->getType(); 8113 } 8114 if (!EvalOK) { 8115 if (!InvalidBaseOK) 8116 return false; 8117 Result.setInvalid(E); 8118 return true; 8119 } 8120 8121 const ValueDecl *MD = E->getMemberDecl(); 8122 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { 8123 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 8124 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 8125 (void)BaseTy; 8126 if (!HandleLValueMember(this->Info, E, Result, FD)) 8127 return false; 8128 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { 8129 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) 8130 return false; 8131 } else 8132 return this->Error(E); 8133 8134 if (MD->getType()->isReferenceType()) { 8135 APValue RefValue; 8136 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, 8137 RefValue)) 8138 return false; 8139 return Success(RefValue, E); 8140 } 8141 return true; 8142 } 8143 8144 bool VisitBinaryOperator(const BinaryOperator *E) { 8145 switch (E->getOpcode()) { 8146 default: 8147 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8148 8149 case BO_PtrMemD: 8150 case BO_PtrMemI: 8151 return HandleMemberPointerAccess(this->Info, E, Result); 8152 } 8153 } 8154 8155 bool VisitCastExpr(const CastExpr *E) { 8156 switch (E->getCastKind()) { 8157 default: 8158 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8159 8160 case CK_DerivedToBase: 8161 case CK_UncheckedDerivedToBase: 8162 if (!this->Visit(E->getSubExpr())) 8163 return false; 8164 8165 // Now figure out the necessary offset to add to the base LV to get from 8166 // the derived class to the base class. 8167 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), 8168 Result); 8169 } 8170 } 8171 }; 8172 } 8173 8174 //===----------------------------------------------------------------------===// 8175 // LValue Evaluation 8176 // 8177 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), 8178 // function designators (in C), decl references to void objects (in C), and 8179 // temporaries (if building with -Wno-address-of-temporary). 8180 // 8181 // LValue evaluation produces values comprising a base expression of one of the 8182 // following types: 8183 // - Declarations 8184 // * VarDecl 8185 // * FunctionDecl 8186 // - Literals 8187 // * CompoundLiteralExpr in C (and in global scope in C++) 8188 // * StringLiteral 8189 // * PredefinedExpr 8190 // * ObjCStringLiteralExpr 8191 // * ObjCEncodeExpr 8192 // * AddrLabelExpr 8193 // * BlockExpr 8194 // * CallExpr for a MakeStringConstant builtin 8195 // - typeid(T) expressions, as TypeInfoLValues 8196 // - Locals and temporaries 8197 // * MaterializeTemporaryExpr 8198 // * Any Expr, with a CallIndex indicating the function in which the temporary 8199 // was evaluated, for cases where the MaterializeTemporaryExpr is missing 8200 // from the AST (FIXME). 8201 // * A MaterializeTemporaryExpr that has static storage duration, with no 8202 // CallIndex, for a lifetime-extended temporary. 8203 // * The ConstantExpr that is currently being evaluated during evaluation of an 8204 // immediate invocation. 8205 // plus an offset in bytes. 8206 //===----------------------------------------------------------------------===// 8207 namespace { 8208 class LValueExprEvaluator 8209 : public LValueExprEvaluatorBase<LValueExprEvaluator> { 8210 public: 8211 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : 8212 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} 8213 8214 bool VisitVarDecl(const Expr *E, const VarDecl *VD); 8215 bool VisitUnaryPreIncDec(const UnaryOperator *UO); 8216 8217 bool VisitCallExpr(const CallExpr *E); 8218 bool VisitDeclRefExpr(const DeclRefExpr *E); 8219 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } 8220 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 8221 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 8222 bool VisitMemberExpr(const MemberExpr *E); 8223 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } 8224 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } 8225 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); 8226 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); 8227 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); 8228 bool VisitUnaryDeref(const UnaryOperator *E); 8229 bool VisitUnaryReal(const UnaryOperator *E); 8230 bool VisitUnaryImag(const UnaryOperator *E); 8231 bool VisitUnaryPreInc(const UnaryOperator *UO) { 8232 return VisitUnaryPreIncDec(UO); 8233 } 8234 bool VisitUnaryPreDec(const UnaryOperator *UO) { 8235 return VisitUnaryPreIncDec(UO); 8236 } 8237 bool VisitBinAssign(const BinaryOperator *BO); 8238 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); 8239 8240 bool VisitCastExpr(const CastExpr *E) { 8241 switch (E->getCastKind()) { 8242 default: 8243 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 8244 8245 case CK_LValueBitCast: 8246 this->CCEDiag(E, diag::note_constexpr_invalid_cast) 8247 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 8248 if (!Visit(E->getSubExpr())) 8249 return false; 8250 Result.Designator.setInvalid(); 8251 return true; 8252 8253 case CK_BaseToDerived: 8254 if (!Visit(E->getSubExpr())) 8255 return false; 8256 return HandleBaseToDerivedCast(Info, E, Result); 8257 8258 case CK_Dynamic: 8259 if (!Visit(E->getSubExpr())) 8260 return false; 8261 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 8262 } 8263 } 8264 }; 8265 } // end anonymous namespace 8266 8267 /// Evaluate an expression as an lvalue. This can be legitimately called on 8268 /// expressions which are not glvalues, in three cases: 8269 /// * function designators in C, and 8270 /// * "extern void" objects 8271 /// * @selector() expressions in Objective-C 8272 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 8273 bool InvalidBaseOK) { 8274 assert(!E->isValueDependent()); 8275 assert(E->isGLValue() || E->getType()->isFunctionType() || 8276 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens())); 8277 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 8278 } 8279 8280 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { 8281 const NamedDecl *D = E->getDecl(); 8282 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl, 8283 UnnamedGlobalConstantDecl>(D)) 8284 return Success(cast<ValueDecl>(D)); 8285 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 8286 return VisitVarDecl(E, VD); 8287 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D)) 8288 return Visit(BD->getBinding()); 8289 return Error(E); 8290 } 8291 8292 8293 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { 8294 8295 // If we are within a lambda's call operator, check whether the 'VD' referred 8296 // to within 'E' actually represents a lambda-capture that maps to a 8297 // data-member/field within the closure object, and if so, evaluate to the 8298 // field or what the field refers to. 8299 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && 8300 isa<DeclRefExpr>(E) && 8301 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { 8302 // We don't always have a complete capture-map when checking or inferring if 8303 // the function call operator meets the requirements of a constexpr function 8304 // - but we don't need to evaluate the captures to determine constexprness 8305 // (dcl.constexpr C++17). 8306 if (Info.checkingPotentialConstantExpression()) 8307 return false; 8308 8309 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { 8310 // Start with 'Result' referring to the complete closure object... 8311 Result = *Info.CurrentCall->This; 8312 // ... then update it to refer to the field of the closure object 8313 // that represents the capture. 8314 if (!HandleLValueMember(Info, E, Result, FD)) 8315 return false; 8316 // And if the field is of reference type, update 'Result' to refer to what 8317 // the field refers to. 8318 if (FD->getType()->isReferenceType()) { 8319 APValue RVal; 8320 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, 8321 RVal)) 8322 return false; 8323 Result.setFrom(Info.Ctx, RVal); 8324 } 8325 return true; 8326 } 8327 } 8328 8329 CallStackFrame *Frame = nullptr; 8330 unsigned Version = 0; 8331 if (VD->hasLocalStorage()) { 8332 // Only if a local variable was declared in the function currently being 8333 // evaluated, do we expect to be able to find its value in the current 8334 // frame. (Otherwise it was likely declared in an enclosing context and 8335 // could either have a valid evaluatable value (for e.g. a constexpr 8336 // variable) or be ill-formed (and trigger an appropriate evaluation 8337 // diagnostic)). 8338 CallStackFrame *CurrFrame = Info.CurrentCall; 8339 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) { 8340 // Function parameters are stored in some caller's frame. (Usually the 8341 // immediate caller, but for an inherited constructor they may be more 8342 // distant.) 8343 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) { 8344 if (CurrFrame->Arguments) { 8345 VD = CurrFrame->Arguments.getOrigParam(PVD); 8346 Frame = 8347 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first; 8348 Version = CurrFrame->Arguments.Version; 8349 } 8350 } else { 8351 Frame = CurrFrame; 8352 Version = CurrFrame->getCurrentTemporaryVersion(VD); 8353 } 8354 } 8355 } 8356 8357 if (!VD->getType()->isReferenceType()) { 8358 if (Frame) { 8359 Result.set({VD, Frame->Index, Version}); 8360 return true; 8361 } 8362 return Success(VD); 8363 } 8364 8365 if (!Info.getLangOpts().CPlusPlus11) { 8366 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1) 8367 << VD << VD->getType(); 8368 Info.Note(VD->getLocation(), diag::note_declared_at); 8369 } 8370 8371 APValue *V; 8372 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V)) 8373 return false; 8374 if (!V->hasValue()) { 8375 // FIXME: Is it possible for V to be indeterminate here? If so, we should 8376 // adjust the diagnostic to say that. 8377 if (!Info.checkingPotentialConstantExpression()) 8378 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); 8379 return false; 8380 } 8381 return Success(*V, E); 8382 } 8383 8384 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) { 8385 if (!IsConstantEvaluatedBuiltinCall(E)) 8386 return ExprEvaluatorBaseTy::VisitCallExpr(E); 8387 8388 switch (E->getBuiltinCallee()) { 8389 default: 8390 return false; 8391 case Builtin::BIas_const: 8392 case Builtin::BIforward: 8393 case Builtin::BIforward_like: 8394 case Builtin::BImove: 8395 case Builtin::BImove_if_noexcept: 8396 if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr()) 8397 return Visit(E->getArg(0)); 8398 break; 8399 } 8400 8401 return ExprEvaluatorBaseTy::VisitCallExpr(E); 8402 } 8403 8404 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( 8405 const MaterializeTemporaryExpr *E) { 8406 // Walk through the expression to find the materialized temporary itself. 8407 SmallVector<const Expr *, 2> CommaLHSs; 8408 SmallVector<SubobjectAdjustment, 2> Adjustments; 8409 const Expr *Inner = 8410 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 8411 8412 // If we passed any comma operators, evaluate their LHSs. 8413 for (const Expr *E : CommaLHSs) 8414 if (!EvaluateIgnoredValue(Info, E)) 8415 return false; 8416 8417 // A materialized temporary with static storage duration can appear within the 8418 // result of a constant expression evaluation, so we need to preserve its 8419 // value for use outside this evaluation. 8420 APValue *Value; 8421 if (E->getStorageDuration() == SD_Static) { 8422 if (Info.EvalMode == EvalInfo::EM_ConstantFold) 8423 return false; 8424 // FIXME: What about SD_Thread? 8425 Value = E->getOrCreateValue(true); 8426 *Value = APValue(); 8427 Result.set(E); 8428 } else { 8429 Value = &Info.CurrentCall->createTemporary( 8430 E, E->getType(), 8431 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression 8432 : ScopeKind::Block, 8433 Result); 8434 } 8435 8436 QualType Type = Inner->getType(); 8437 8438 // Materialize the temporary itself. 8439 if (!EvaluateInPlace(*Value, Info, Result, Inner)) { 8440 *Value = APValue(); 8441 return false; 8442 } 8443 8444 // Adjust our lvalue to refer to the desired subobject. 8445 for (unsigned I = Adjustments.size(); I != 0; /**/) { 8446 --I; 8447 switch (Adjustments[I].Kind) { 8448 case SubobjectAdjustment::DerivedToBaseAdjustment: 8449 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, 8450 Type, Result)) 8451 return false; 8452 Type = Adjustments[I].DerivedToBase.BasePath->getType(); 8453 break; 8454 8455 case SubobjectAdjustment::FieldAdjustment: 8456 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) 8457 return false; 8458 Type = Adjustments[I].Field->getType(); 8459 break; 8460 8461 case SubobjectAdjustment::MemberPointerAdjustment: 8462 if (!HandleMemberPointerAccess(this->Info, Type, Result, 8463 Adjustments[I].Ptr.RHS)) 8464 return false; 8465 Type = Adjustments[I].Ptr.MPT->getPointeeType(); 8466 break; 8467 } 8468 } 8469 8470 return true; 8471 } 8472 8473 bool 8474 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 8475 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && 8476 "lvalue compound literal in c++?"); 8477 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can 8478 // only see this when folding in C, so there's no standard to follow here. 8479 return Success(E); 8480 } 8481 8482 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 8483 TypeInfoLValue TypeInfo; 8484 8485 if (!E->isPotentiallyEvaluated()) { 8486 if (E->isTypeOperand()) 8487 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); 8488 else 8489 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); 8490 } else { 8491 if (!Info.Ctx.getLangOpts().CPlusPlus20) { 8492 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) 8493 << E->getExprOperand()->getType() 8494 << E->getExprOperand()->getSourceRange(); 8495 } 8496 8497 if (!Visit(E->getExprOperand())) 8498 return false; 8499 8500 std::optional<DynamicType> DynType = 8501 ComputeDynamicType(Info, E, Result, AK_TypeId); 8502 if (!DynType) 8503 return false; 8504 8505 TypeInfo = 8506 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); 8507 } 8508 8509 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); 8510 } 8511 8512 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 8513 return Success(E->getGuidDecl()); 8514 } 8515 8516 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { 8517 // Handle static data members. 8518 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { 8519 VisitIgnoredBaseExpression(E->getBase()); 8520 return VisitVarDecl(E, VD); 8521 } 8522 8523 // Handle static member functions. 8524 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { 8525 if (MD->isStatic()) { 8526 VisitIgnoredBaseExpression(E->getBase()); 8527 return Success(MD); 8528 } 8529 } 8530 8531 // Handle non-static data members. 8532 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); 8533 } 8534 8535 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 8536 // FIXME: Deal with vectors as array subscript bases. 8537 if (E->getBase()->getType()->isVectorType() || 8538 E->getBase()->getType()->isVLSTBuiltinType()) 8539 return Error(E); 8540 8541 APSInt Index; 8542 bool Success = true; 8543 8544 // C++17's rules require us to evaluate the LHS first, regardless of which 8545 // side is the base. 8546 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) { 8547 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result) 8548 : !EvaluateInteger(SubExpr, Index, Info)) { 8549 if (!Info.noteFailure()) 8550 return false; 8551 Success = false; 8552 } 8553 } 8554 8555 return Success && 8556 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); 8557 } 8558 8559 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { 8560 return evaluatePointer(E->getSubExpr(), Result); 8561 } 8562 8563 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 8564 if (!Visit(E->getSubExpr())) 8565 return false; 8566 // __real is a no-op on scalar lvalues. 8567 if (E->getSubExpr()->getType()->isAnyComplexType()) 8568 HandleLValueComplexElement(Info, E, Result, E->getType(), false); 8569 return true; 8570 } 8571 8572 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 8573 assert(E->getSubExpr()->getType()->isAnyComplexType() && 8574 "lvalue __imag__ on scalar?"); 8575 if (!Visit(E->getSubExpr())) 8576 return false; 8577 HandleLValueComplexElement(Info, E, Result, E->getType(), true); 8578 return true; 8579 } 8580 8581 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { 8582 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8583 return Error(UO); 8584 8585 if (!this->Visit(UO->getSubExpr())) 8586 return false; 8587 8588 return handleIncDec( 8589 this->Info, UO, Result, UO->getSubExpr()->getType(), 8590 UO->isIncrementOp(), nullptr); 8591 } 8592 8593 bool LValueExprEvaluator::VisitCompoundAssignOperator( 8594 const CompoundAssignOperator *CAO) { 8595 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8596 return Error(CAO); 8597 8598 bool Success = true; 8599 8600 // C++17 onwards require that we evaluate the RHS first. 8601 APValue RHS; 8602 if (!Evaluate(RHS, this->Info, CAO->getRHS())) { 8603 if (!Info.noteFailure()) 8604 return false; 8605 Success = false; 8606 } 8607 8608 // The overall lvalue result is the result of evaluating the LHS. 8609 if (!this->Visit(CAO->getLHS()) || !Success) 8610 return false; 8611 8612 return handleCompoundAssignment( 8613 this->Info, CAO, 8614 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), 8615 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); 8616 } 8617 8618 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { 8619 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8620 return Error(E); 8621 8622 bool Success = true; 8623 8624 // C++17 onwards require that we evaluate the RHS first. 8625 APValue NewVal; 8626 if (!Evaluate(NewVal, this->Info, E->getRHS())) { 8627 if (!Info.noteFailure()) 8628 return false; 8629 Success = false; 8630 } 8631 8632 if (!this->Visit(E->getLHS()) || !Success) 8633 return false; 8634 8635 if (Info.getLangOpts().CPlusPlus20 && 8636 !MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result)) 8637 return false; 8638 8639 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), 8640 NewVal); 8641 } 8642 8643 //===----------------------------------------------------------------------===// 8644 // Pointer Evaluation 8645 //===----------------------------------------------------------------------===// 8646 8647 /// Attempts to compute the number of bytes available at the pointer 8648 /// returned by a function with the alloc_size attribute. Returns true if we 8649 /// were successful. Places an unsigned number into `Result`. 8650 /// 8651 /// This expects the given CallExpr to be a call to a function with an 8652 /// alloc_size attribute. 8653 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 8654 const CallExpr *Call, 8655 llvm::APInt &Result) { 8656 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); 8657 8658 assert(AllocSize && AllocSize->getElemSizeParam().isValid()); 8659 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); 8660 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); 8661 if (Call->getNumArgs() <= SizeArgNo) 8662 return false; 8663 8664 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { 8665 Expr::EvalResult ExprResult; 8666 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) 8667 return false; 8668 Into = ExprResult.Val.getInt(); 8669 if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) 8670 return false; 8671 Into = Into.zext(BitsInSizeT); 8672 return true; 8673 }; 8674 8675 APSInt SizeOfElem; 8676 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) 8677 return false; 8678 8679 if (!AllocSize->getNumElemsParam().isValid()) { 8680 Result = std::move(SizeOfElem); 8681 return true; 8682 } 8683 8684 APSInt NumberOfElems; 8685 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); 8686 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) 8687 return false; 8688 8689 bool Overflow; 8690 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); 8691 if (Overflow) 8692 return false; 8693 8694 Result = std::move(BytesAvailable); 8695 return true; 8696 } 8697 8698 /// Convenience function. LVal's base must be a call to an alloc_size 8699 /// function. 8700 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 8701 const LValue &LVal, 8702 llvm::APInt &Result) { 8703 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && 8704 "Can't get the size of a non alloc_size function"); 8705 const auto *Base = LVal.getLValueBase().get<const Expr *>(); 8706 const CallExpr *CE = tryUnwrapAllocSizeCall(Base); 8707 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); 8708 } 8709 8710 /// Attempts to evaluate the given LValueBase as the result of a call to 8711 /// a function with the alloc_size attribute. If it was possible to do so, this 8712 /// function will return true, make Result's Base point to said function call, 8713 /// and mark Result's Base as invalid. 8714 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, 8715 LValue &Result) { 8716 if (Base.isNull()) 8717 return false; 8718 8719 // Because we do no form of static analysis, we only support const variables. 8720 // 8721 // Additionally, we can't support parameters, nor can we support static 8722 // variables (in the latter case, use-before-assign isn't UB; in the former, 8723 // we have no clue what they'll be assigned to). 8724 const auto *VD = 8725 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); 8726 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) 8727 return false; 8728 8729 const Expr *Init = VD->getAnyInitializer(); 8730 if (!Init || Init->getType().isNull()) 8731 return false; 8732 8733 const Expr *E = Init->IgnoreParens(); 8734 if (!tryUnwrapAllocSizeCall(E)) 8735 return false; 8736 8737 // Store E instead of E unwrapped so that the type of the LValue's base is 8738 // what the user wanted. 8739 Result.setInvalid(E); 8740 8741 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); 8742 Result.addUnsizedArray(Info, E, Pointee); 8743 return true; 8744 } 8745 8746 namespace { 8747 class PointerExprEvaluator 8748 : public ExprEvaluatorBase<PointerExprEvaluator> { 8749 LValue &Result; 8750 bool InvalidBaseOK; 8751 8752 bool Success(const Expr *E) { 8753 Result.set(E); 8754 return true; 8755 } 8756 8757 bool evaluateLValue(const Expr *E, LValue &Result) { 8758 return EvaluateLValue(E, Result, Info, InvalidBaseOK); 8759 } 8760 8761 bool evaluatePointer(const Expr *E, LValue &Result) { 8762 return EvaluatePointer(E, Result, Info, InvalidBaseOK); 8763 } 8764 8765 bool visitNonBuiltinCallExpr(const CallExpr *E); 8766 public: 8767 8768 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) 8769 : ExprEvaluatorBaseTy(info), Result(Result), 8770 InvalidBaseOK(InvalidBaseOK) {} 8771 8772 bool Success(const APValue &V, const Expr *E) { 8773 Result.setFrom(Info.Ctx, V); 8774 return true; 8775 } 8776 bool ZeroInitialization(const Expr *E) { 8777 Result.setNull(Info.Ctx, E->getType()); 8778 return true; 8779 } 8780 8781 bool VisitBinaryOperator(const BinaryOperator *E); 8782 bool VisitCastExpr(const CastExpr* E); 8783 bool VisitUnaryAddrOf(const UnaryOperator *E); 8784 bool VisitObjCStringLiteral(const ObjCStringLiteral *E) 8785 { return Success(E); } 8786 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 8787 if (E->isExpressibleAsConstantInitializer()) 8788 return Success(E); 8789 if (Info.noteFailure()) 8790 EvaluateIgnoredValue(Info, E->getSubExpr()); 8791 return Error(E); 8792 } 8793 bool VisitAddrLabelExpr(const AddrLabelExpr *E) 8794 { return Success(E); } 8795 bool VisitCallExpr(const CallExpr *E); 8796 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 8797 bool VisitBlockExpr(const BlockExpr *E) { 8798 if (!E->getBlockDecl()->hasCaptures()) 8799 return Success(E); 8800 return Error(E); 8801 } 8802 bool VisitCXXThisExpr(const CXXThisExpr *E) { 8803 // Can't look at 'this' when checking a potential constant expression. 8804 if (Info.checkingPotentialConstantExpression()) 8805 return false; 8806 if (!Info.CurrentCall->This) { 8807 if (Info.getLangOpts().CPlusPlus11) 8808 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); 8809 else 8810 Info.FFDiag(E); 8811 return false; 8812 } 8813 Result = *Info.CurrentCall->This; 8814 8815 if (isLambdaCallOperator(Info.CurrentCall->Callee)) { 8816 // Ensure we actually have captured 'this'. If something was wrong with 8817 // 'this' capture, the error would have been previously reported. 8818 // Otherwise we can be inside of a default initialization of an object 8819 // declared by lambda's body, so no need to return false. 8820 if (!Info.CurrentCall->LambdaThisCaptureField) 8821 return true; 8822 8823 // If we have captured 'this', the 'this' expression refers 8824 // to the enclosing '*this' object (either by value or reference) which is 8825 // either copied into the closure object's field that represents the 8826 // '*this' or refers to '*this'. 8827 // Update 'Result' to refer to the data member/field of the closure object 8828 // that represents the '*this' capture. 8829 if (!HandleLValueMember(Info, E, Result, 8830 Info.CurrentCall->LambdaThisCaptureField)) 8831 return false; 8832 // If we captured '*this' by reference, replace the field with its referent. 8833 if (Info.CurrentCall->LambdaThisCaptureField->getType() 8834 ->isPointerType()) { 8835 APValue RVal; 8836 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result, 8837 RVal)) 8838 return false; 8839 8840 Result.setFrom(Info.Ctx, RVal); 8841 } 8842 } 8843 return true; 8844 } 8845 8846 bool VisitCXXNewExpr(const CXXNewExpr *E); 8847 8848 bool VisitSourceLocExpr(const SourceLocExpr *E) { 8849 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?"); 8850 APValue LValResult = E->EvaluateInContext( 8851 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 8852 Result.setFrom(Info.Ctx, LValResult); 8853 return true; 8854 } 8855 8856 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) { 8857 std::string ResultStr = E->ComputeName(Info.Ctx); 8858 8859 QualType CharTy = Info.Ctx.CharTy.withConst(); 8860 APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()), 8861 ResultStr.size() + 1); 8862 QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr, 8863 ArrayType::Normal, 0); 8864 8865 StringLiteral *SL = 8866 StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ordinary, 8867 /*Pascal*/ false, ArrayTy, E->getLocation()); 8868 8869 evaluateLValue(SL, Result); 8870 Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy)); 8871 return true; 8872 } 8873 8874 // FIXME: Missing: @protocol, @selector 8875 }; 8876 } // end anonymous namespace 8877 8878 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, 8879 bool InvalidBaseOK) { 8880 assert(!E->isValueDependent()); 8881 assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); 8882 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 8883 } 8884 8885 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 8886 if (E->getOpcode() != BO_Add && 8887 E->getOpcode() != BO_Sub) 8888 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8889 8890 const Expr *PExp = E->getLHS(); 8891 const Expr *IExp = E->getRHS(); 8892 if (IExp->getType()->isPointerType()) 8893 std::swap(PExp, IExp); 8894 8895 bool EvalPtrOK = evaluatePointer(PExp, Result); 8896 if (!EvalPtrOK && !Info.noteFailure()) 8897 return false; 8898 8899 llvm::APSInt Offset; 8900 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) 8901 return false; 8902 8903 if (E->getOpcode() == BO_Sub) 8904 negateAsSigned(Offset); 8905 8906 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); 8907 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); 8908 } 8909 8910 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 8911 return evaluateLValue(E->getSubExpr(), Result); 8912 } 8913 8914 // Is the provided decl 'std::source_location::current'? 8915 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) { 8916 if (!FD) 8917 return false; 8918 const IdentifierInfo *FnII = FD->getIdentifier(); 8919 if (!FnII || !FnII->isStr("current")) 8920 return false; 8921 8922 const auto *RD = dyn_cast<RecordDecl>(FD->getParent()); 8923 if (!RD) 8924 return false; 8925 8926 const IdentifierInfo *ClassII = RD->getIdentifier(); 8927 return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location"); 8928 } 8929 8930 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 8931 const Expr *SubExpr = E->getSubExpr(); 8932 8933 switch (E->getCastKind()) { 8934 default: 8935 break; 8936 case CK_BitCast: 8937 case CK_CPointerToObjCPointerCast: 8938 case CK_BlockPointerToObjCPointerCast: 8939 case CK_AnyPointerToBlockPointerCast: 8940 case CK_AddressSpaceConversion: 8941 if (!Visit(SubExpr)) 8942 return false; 8943 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are 8944 // permitted in constant expressions in C++11. Bitcasts from cv void* are 8945 // also static_casts, but we disallow them as a resolution to DR1312. 8946 if (!E->getType()->isVoidPointerType()) { 8947 // In some circumstances, we permit casting from void* to cv1 T*, when the 8948 // actual pointee object is actually a cv2 T. 8949 bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid && 8950 !Result.IsNullPtr; 8951 bool VoidPtrCastMaybeOK = 8952 HasValidResult && 8953 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx), 8954 E->getType()->getPointeeType()); 8955 // 1. We'll allow it in std::allocator::allocate, and anything which that 8956 // calls. 8957 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s 8958 // <source_location> header. Fixed in GCC 12 and later (2022-04-??). 8959 // We'll allow it in the body of std::source_location::current. GCC's 8960 // implementation had a parameter of type `void*`, and casts from 8961 // that back to `const __impl*` in its body. 8962 if (VoidPtrCastMaybeOK && 8963 (Info.getStdAllocatorCaller("allocate") || 8964 IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) || 8965 Info.getLangOpts().CPlusPlus26)) { 8966 // Permitted. 8967 } else { 8968 if (SubExpr->getType()->isVoidPointerType()) { 8969 if (HasValidResult) 8970 CCEDiag(E, diag::note_constexpr_invalid_void_star_cast) 8971 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26 8972 << Result.Designator.getType(Info.Ctx).getCanonicalType() 8973 << E->getType()->getPointeeType(); 8974 else 8975 CCEDiag(E, diag::note_constexpr_invalid_cast) 8976 << 3 << SubExpr->getType(); 8977 } else 8978 CCEDiag(E, diag::note_constexpr_invalid_cast) 8979 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 8980 Result.Designator.setInvalid(); 8981 } 8982 } 8983 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) 8984 ZeroInitialization(E); 8985 return true; 8986 8987 case CK_DerivedToBase: 8988 case CK_UncheckedDerivedToBase: 8989 if (!evaluatePointer(E->getSubExpr(), Result)) 8990 return false; 8991 if (!Result.Base && Result.Offset.isZero()) 8992 return true; 8993 8994 // Now figure out the necessary offset to add to the base LV to get from 8995 // the derived class to the base class. 8996 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> 8997 castAs<PointerType>()->getPointeeType(), 8998 Result); 8999 9000 case CK_BaseToDerived: 9001 if (!Visit(E->getSubExpr())) 9002 return false; 9003 if (!Result.Base && Result.Offset.isZero()) 9004 return true; 9005 return HandleBaseToDerivedCast(Info, E, Result); 9006 9007 case CK_Dynamic: 9008 if (!Visit(E->getSubExpr())) 9009 return false; 9010 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 9011 9012 case CK_NullToPointer: 9013 VisitIgnoredValue(E->getSubExpr()); 9014 return ZeroInitialization(E); 9015 9016 case CK_IntegralToPointer: { 9017 CCEDiag(E, diag::note_constexpr_invalid_cast) 9018 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 9019 9020 APValue Value; 9021 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) 9022 break; 9023 9024 if (Value.isInt()) { 9025 unsigned Size = Info.Ctx.getTypeSize(E->getType()); 9026 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); 9027 Result.Base = (Expr*)nullptr; 9028 Result.InvalidBase = false; 9029 Result.Offset = CharUnits::fromQuantity(N); 9030 Result.Designator.setInvalid(); 9031 Result.IsNullPtr = false; 9032 return true; 9033 } else { 9034 // Cast is of an lvalue, no need to change value. 9035 Result.setFrom(Info.Ctx, Value); 9036 return true; 9037 } 9038 } 9039 9040 case CK_ArrayToPointerDecay: { 9041 if (SubExpr->isGLValue()) { 9042 if (!evaluateLValue(SubExpr, Result)) 9043 return false; 9044 } else { 9045 APValue &Value = Info.CurrentCall->createTemporary( 9046 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result); 9047 if (!EvaluateInPlace(Value, Info, Result, SubExpr)) 9048 return false; 9049 } 9050 // The result is a pointer to the first element of the array. 9051 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); 9052 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 9053 Result.addArray(Info, E, CAT); 9054 else 9055 Result.addUnsizedArray(Info, E, AT->getElementType()); 9056 return true; 9057 } 9058 9059 case CK_FunctionToPointerDecay: 9060 return evaluateLValue(SubExpr, Result); 9061 9062 case CK_LValueToRValue: { 9063 LValue LVal; 9064 if (!evaluateLValue(E->getSubExpr(), LVal)) 9065 return false; 9066 9067 APValue RVal; 9068 // Note, we use the subexpression's type in order to retain cv-qualifiers. 9069 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 9070 LVal, RVal)) 9071 return InvalidBaseOK && 9072 evaluateLValueAsAllocSize(Info, LVal.Base, Result); 9073 return Success(RVal, E); 9074 } 9075 } 9076 9077 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9078 } 9079 9080 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T, 9081 UnaryExprOrTypeTrait ExprKind) { 9082 // C++ [expr.alignof]p3: 9083 // When alignof is applied to a reference type, the result is the 9084 // alignment of the referenced type. 9085 T = T.getNonReferenceType(); 9086 9087 if (T.getQualifiers().hasUnaligned()) 9088 return CharUnits::One(); 9089 9090 const bool AlignOfReturnsPreferred = 9091 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 9092 9093 // __alignof is defined to return the preferred alignment. 9094 // Before 8, clang returned the preferred alignment for alignof and _Alignof 9095 // as well. 9096 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 9097 return Info.Ctx.toCharUnitsFromBits( 9098 Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); 9099 // alignof and _Alignof are defined to return the ABI alignment. 9100 else if (ExprKind == UETT_AlignOf) 9101 return Info.Ctx.getTypeAlignInChars(T.getTypePtr()); 9102 else 9103 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); 9104 } 9105 9106 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E, 9107 UnaryExprOrTypeTrait ExprKind) { 9108 E = E->IgnoreParens(); 9109 9110 // The kinds of expressions that we have special-case logic here for 9111 // should be kept up to date with the special checks for those 9112 // expressions in Sema. 9113 9114 // alignof decl is always accepted, even if it doesn't make sense: we default 9115 // to 1 in those cases. 9116 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 9117 return Info.Ctx.getDeclAlign(DRE->getDecl(), 9118 /*RefAsPointee*/true); 9119 9120 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) 9121 return Info.Ctx.getDeclAlign(ME->getMemberDecl(), 9122 /*RefAsPointee*/true); 9123 9124 return GetAlignOfType(Info, E->getType(), ExprKind); 9125 } 9126 9127 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) { 9128 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>()) 9129 return Info.Ctx.getDeclAlign(VD); 9130 if (const auto *E = Value.Base.dyn_cast<const Expr *>()) 9131 return GetAlignOfExpr(Info, E, UETT_AlignOf); 9132 return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf); 9133 } 9134 9135 /// Evaluate the value of the alignment argument to __builtin_align_{up,down}, 9136 /// __builtin_is_aligned and __builtin_assume_aligned. 9137 static bool getAlignmentArgument(const Expr *E, QualType ForType, 9138 EvalInfo &Info, APSInt &Alignment) { 9139 if (!EvaluateInteger(E, Alignment, Info)) 9140 return false; 9141 if (Alignment < 0 || !Alignment.isPowerOf2()) { 9142 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment; 9143 return false; 9144 } 9145 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType); 9146 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1)); 9147 if (APSInt::compareValues(Alignment, MaxValue) > 0) { 9148 Info.FFDiag(E, diag::note_constexpr_alignment_too_big) 9149 << MaxValue << ForType << Alignment; 9150 return false; 9151 } 9152 // Ensure both alignment and source value have the same bit width so that we 9153 // don't assert when computing the resulting value. 9154 APSInt ExtAlignment = 9155 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true); 9156 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 && 9157 "Alignment should not be changed by ext/trunc"); 9158 Alignment = ExtAlignment; 9159 assert(Alignment.getBitWidth() == SrcWidth); 9160 return true; 9161 } 9162 9163 // To be clear: this happily visits unsupported builtins. Better name welcomed. 9164 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { 9165 if (ExprEvaluatorBaseTy::VisitCallExpr(E)) 9166 return true; 9167 9168 if (!(InvalidBaseOK && getAllocSizeAttr(E))) 9169 return false; 9170 9171 Result.setInvalid(E); 9172 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); 9173 Result.addUnsizedArray(Info, E, PointeeTy); 9174 return true; 9175 } 9176 9177 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { 9178 if (!IsConstantEvaluatedBuiltinCall(E)) 9179 return visitNonBuiltinCallExpr(E); 9180 return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); 9181 } 9182 9183 // Determine if T is a character type for which we guarantee that 9184 // sizeof(T) == 1. 9185 static bool isOneByteCharacterType(QualType T) { 9186 return T->isCharType() || T->isChar8Type(); 9187 } 9188 9189 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 9190 unsigned BuiltinOp) { 9191 if (IsNoOpCall(E)) 9192 return Success(E); 9193 9194 switch (BuiltinOp) { 9195 case Builtin::BIaddressof: 9196 case Builtin::BI__addressof: 9197 case Builtin::BI__builtin_addressof: 9198 return evaluateLValue(E->getArg(0), Result); 9199 case Builtin::BI__builtin_assume_aligned: { 9200 // We need to be very careful here because: if the pointer does not have the 9201 // asserted alignment, then the behavior is undefined, and undefined 9202 // behavior is non-constant. 9203 if (!evaluatePointer(E->getArg(0), Result)) 9204 return false; 9205 9206 LValue OffsetResult(Result); 9207 APSInt Alignment; 9208 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9209 Alignment)) 9210 return false; 9211 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); 9212 9213 if (E->getNumArgs() > 2) { 9214 APSInt Offset; 9215 if (!EvaluateInteger(E->getArg(2), Offset, Info)) 9216 return false; 9217 9218 int64_t AdditionalOffset = -Offset.getZExtValue(); 9219 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); 9220 } 9221 9222 // If there is a base object, then it must have the correct alignment. 9223 if (OffsetResult.Base) { 9224 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult); 9225 9226 if (BaseAlignment < Align) { 9227 Result.Designator.setInvalid(); 9228 // FIXME: Add support to Diagnostic for long / long long. 9229 CCEDiag(E->getArg(0), 9230 diag::note_constexpr_baa_insufficient_alignment) << 0 9231 << (unsigned)BaseAlignment.getQuantity() 9232 << (unsigned)Align.getQuantity(); 9233 return false; 9234 } 9235 } 9236 9237 // The offset must also have the correct alignment. 9238 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { 9239 Result.Designator.setInvalid(); 9240 9241 (OffsetResult.Base 9242 ? CCEDiag(E->getArg(0), 9243 diag::note_constexpr_baa_insufficient_alignment) << 1 9244 : CCEDiag(E->getArg(0), 9245 diag::note_constexpr_baa_value_insufficient_alignment)) 9246 << (int)OffsetResult.Offset.getQuantity() 9247 << (unsigned)Align.getQuantity(); 9248 return false; 9249 } 9250 9251 return true; 9252 } 9253 case Builtin::BI__builtin_align_up: 9254 case Builtin::BI__builtin_align_down: { 9255 if (!evaluatePointer(E->getArg(0), Result)) 9256 return false; 9257 APSInt Alignment; 9258 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9259 Alignment)) 9260 return false; 9261 CharUnits BaseAlignment = getBaseAlignment(Info, Result); 9262 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset); 9263 // For align_up/align_down, we can return the same value if the alignment 9264 // is known to be greater or equal to the requested value. 9265 if (PtrAlign.getQuantity() >= Alignment) 9266 return true; 9267 9268 // The alignment could be greater than the minimum at run-time, so we cannot 9269 // infer much about the resulting pointer value. One case is possible: 9270 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we 9271 // can infer the correct index if the requested alignment is smaller than 9272 // the base alignment so we can perform the computation on the offset. 9273 if (BaseAlignment.getQuantity() >= Alignment) { 9274 assert(Alignment.getBitWidth() <= 64 && 9275 "Cannot handle > 64-bit address-space"); 9276 uint64_t Alignment64 = Alignment.getZExtValue(); 9277 CharUnits NewOffset = CharUnits::fromQuantity( 9278 BuiltinOp == Builtin::BI__builtin_align_down 9279 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64) 9280 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64)); 9281 Result.adjustOffset(NewOffset - Result.Offset); 9282 // TODO: diagnose out-of-bounds values/only allow for arrays? 9283 return true; 9284 } 9285 // Otherwise, we cannot constant-evaluate the result. 9286 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust) 9287 << Alignment; 9288 return false; 9289 } 9290 case Builtin::BI__builtin_operator_new: 9291 return HandleOperatorNewCall(Info, E, Result); 9292 case Builtin::BI__builtin_launder: 9293 return evaluatePointer(E->getArg(0), Result); 9294 case Builtin::BIstrchr: 9295 case Builtin::BIwcschr: 9296 case Builtin::BImemchr: 9297 case Builtin::BIwmemchr: 9298 if (Info.getLangOpts().CPlusPlus11) 9299 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9300 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 9301 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); 9302 else 9303 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9304 [[fallthrough]]; 9305 case Builtin::BI__builtin_strchr: 9306 case Builtin::BI__builtin_wcschr: 9307 case Builtin::BI__builtin_memchr: 9308 case Builtin::BI__builtin_char_memchr: 9309 case Builtin::BI__builtin_wmemchr: { 9310 if (!Visit(E->getArg(0))) 9311 return false; 9312 APSInt Desired; 9313 if (!EvaluateInteger(E->getArg(1), Desired, Info)) 9314 return false; 9315 uint64_t MaxLength = uint64_t(-1); 9316 if (BuiltinOp != Builtin::BIstrchr && 9317 BuiltinOp != Builtin::BIwcschr && 9318 BuiltinOp != Builtin::BI__builtin_strchr && 9319 BuiltinOp != Builtin::BI__builtin_wcschr) { 9320 APSInt N; 9321 if (!EvaluateInteger(E->getArg(2), N, Info)) 9322 return false; 9323 MaxLength = N.getExtValue(); 9324 } 9325 // We cannot find the value if there are no candidates to match against. 9326 if (MaxLength == 0u) 9327 return ZeroInitialization(E); 9328 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || 9329 Result.Designator.Invalid) 9330 return false; 9331 QualType CharTy = Result.Designator.getType(Info.Ctx); 9332 bool IsRawByte = BuiltinOp == Builtin::BImemchr || 9333 BuiltinOp == Builtin::BI__builtin_memchr; 9334 assert(IsRawByte || 9335 Info.Ctx.hasSameUnqualifiedType( 9336 CharTy, E->getArg(0)->getType()->getPointeeType())); 9337 // Pointers to const void may point to objects of incomplete type. 9338 if (IsRawByte && CharTy->isIncompleteType()) { 9339 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; 9340 return false; 9341 } 9342 // Give up on byte-oriented matching against multibyte elements. 9343 // FIXME: We can compare the bytes in the correct order. 9344 if (IsRawByte && !isOneByteCharacterType(CharTy)) { 9345 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported) 9346 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str() 9347 << CharTy; 9348 return false; 9349 } 9350 // Figure out what value we're actually looking for (after converting to 9351 // the corresponding unsigned type if necessary). 9352 uint64_t DesiredVal; 9353 bool StopAtNull = false; 9354 switch (BuiltinOp) { 9355 case Builtin::BIstrchr: 9356 case Builtin::BI__builtin_strchr: 9357 // strchr compares directly to the passed integer, and therefore 9358 // always fails if given an int that is not a char. 9359 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, 9360 E->getArg(1)->getType(), 9361 Desired), 9362 Desired)) 9363 return ZeroInitialization(E); 9364 StopAtNull = true; 9365 [[fallthrough]]; 9366 case Builtin::BImemchr: 9367 case Builtin::BI__builtin_memchr: 9368 case Builtin::BI__builtin_char_memchr: 9369 // memchr compares by converting both sides to unsigned char. That's also 9370 // correct for strchr if we get this far (to cope with plain char being 9371 // unsigned in the strchr case). 9372 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); 9373 break; 9374 9375 case Builtin::BIwcschr: 9376 case Builtin::BI__builtin_wcschr: 9377 StopAtNull = true; 9378 [[fallthrough]]; 9379 case Builtin::BIwmemchr: 9380 case Builtin::BI__builtin_wmemchr: 9381 // wcschr and wmemchr are given a wchar_t to look for. Just use it. 9382 DesiredVal = Desired.getZExtValue(); 9383 break; 9384 } 9385 9386 for (; MaxLength; --MaxLength) { 9387 APValue Char; 9388 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || 9389 !Char.isInt()) 9390 return false; 9391 if (Char.getInt().getZExtValue() == DesiredVal) 9392 return true; 9393 if (StopAtNull && !Char.getInt()) 9394 break; 9395 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) 9396 return false; 9397 } 9398 // Not found: return nullptr. 9399 return ZeroInitialization(E); 9400 } 9401 9402 case Builtin::BImemcpy: 9403 case Builtin::BImemmove: 9404 case Builtin::BIwmemcpy: 9405 case Builtin::BIwmemmove: 9406 if (Info.getLangOpts().CPlusPlus11) 9407 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9408 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 9409 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); 9410 else 9411 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9412 [[fallthrough]]; 9413 case Builtin::BI__builtin_memcpy: 9414 case Builtin::BI__builtin_memmove: 9415 case Builtin::BI__builtin_wmemcpy: 9416 case Builtin::BI__builtin_wmemmove: { 9417 bool WChar = BuiltinOp == Builtin::BIwmemcpy || 9418 BuiltinOp == Builtin::BIwmemmove || 9419 BuiltinOp == Builtin::BI__builtin_wmemcpy || 9420 BuiltinOp == Builtin::BI__builtin_wmemmove; 9421 bool Move = BuiltinOp == Builtin::BImemmove || 9422 BuiltinOp == Builtin::BIwmemmove || 9423 BuiltinOp == Builtin::BI__builtin_memmove || 9424 BuiltinOp == Builtin::BI__builtin_wmemmove; 9425 9426 // The result of mem* is the first argument. 9427 if (!Visit(E->getArg(0))) 9428 return false; 9429 LValue Dest = Result; 9430 9431 LValue Src; 9432 if (!EvaluatePointer(E->getArg(1), Src, Info)) 9433 return false; 9434 9435 APSInt N; 9436 if (!EvaluateInteger(E->getArg(2), N, Info)) 9437 return false; 9438 assert(!N.isSigned() && "memcpy and friends take an unsigned size"); 9439 9440 // If the size is zero, we treat this as always being a valid no-op. 9441 // (Even if one of the src and dest pointers is null.) 9442 if (!N) 9443 return true; 9444 9445 // Otherwise, if either of the operands is null, we can't proceed. Don't 9446 // try to determine the type of the copied objects, because there aren't 9447 // any. 9448 if (!Src.Base || !Dest.Base) { 9449 APValue Val; 9450 (!Src.Base ? Src : Dest).moveInto(Val); 9451 Info.FFDiag(E, diag::note_constexpr_memcpy_null) 9452 << Move << WChar << !!Src.Base 9453 << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); 9454 return false; 9455 } 9456 if (Src.Designator.Invalid || Dest.Designator.Invalid) 9457 return false; 9458 9459 // We require that Src and Dest are both pointers to arrays of 9460 // trivially-copyable type. (For the wide version, the designator will be 9461 // invalid if the designated object is not a wchar_t.) 9462 QualType T = Dest.Designator.getType(Info.Ctx); 9463 QualType SrcT = Src.Designator.getType(Info.Ctx); 9464 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { 9465 // FIXME: Consider using our bit_cast implementation to support this. 9466 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; 9467 return false; 9468 } 9469 if (T->isIncompleteType()) { 9470 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; 9471 return false; 9472 } 9473 if (!T.isTriviallyCopyableType(Info.Ctx)) { 9474 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; 9475 return false; 9476 } 9477 9478 // Figure out how many T's we're copying. 9479 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); 9480 if (!WChar) { 9481 uint64_t Remainder; 9482 llvm::APInt OrigN = N; 9483 llvm::APInt::udivrem(OrigN, TSize, N, Remainder); 9484 if (Remainder) { 9485 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 9486 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false) 9487 << (unsigned)TSize; 9488 return false; 9489 } 9490 } 9491 9492 // Check that the copying will remain within the arrays, just so that we 9493 // can give a more meaningful diagnostic. This implicitly also checks that 9494 // N fits into 64 bits. 9495 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; 9496 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; 9497 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { 9498 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 9499 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T 9500 << toString(N, 10, /*Signed*/false); 9501 return false; 9502 } 9503 uint64_t NElems = N.getZExtValue(); 9504 uint64_t NBytes = NElems * TSize; 9505 9506 // Check for overlap. 9507 int Direction = 1; 9508 if (HasSameBase(Src, Dest)) { 9509 uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); 9510 uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); 9511 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { 9512 // Dest is inside the source region. 9513 if (!Move) { 9514 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 9515 return false; 9516 } 9517 // For memmove and friends, copy backwards. 9518 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || 9519 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) 9520 return false; 9521 Direction = -1; 9522 } else if (!Move && SrcOffset >= DestOffset && 9523 SrcOffset - DestOffset < NBytes) { 9524 // Src is inside the destination region for memcpy: invalid. 9525 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 9526 return false; 9527 } 9528 } 9529 9530 while (true) { 9531 APValue Val; 9532 // FIXME: Set WantObjectRepresentation to true if we're copying a 9533 // char-like type? 9534 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || 9535 !handleAssignment(Info, E, Dest, T, Val)) 9536 return false; 9537 // Do not iterate past the last element; if we're copying backwards, that 9538 // might take us off the start of the array. 9539 if (--NElems == 0) 9540 return true; 9541 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || 9542 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) 9543 return false; 9544 } 9545 } 9546 9547 default: 9548 return false; 9549 } 9550 } 9551 9552 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 9553 APValue &Result, const InitListExpr *ILE, 9554 QualType AllocType); 9555 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 9556 APValue &Result, 9557 const CXXConstructExpr *CCE, 9558 QualType AllocType); 9559 9560 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { 9561 if (!Info.getLangOpts().CPlusPlus20) 9562 Info.CCEDiag(E, diag::note_constexpr_new); 9563 9564 // We cannot speculatively evaluate a delete expression. 9565 if (Info.SpeculativeEvaluationDepth) 9566 return false; 9567 9568 FunctionDecl *OperatorNew = E->getOperatorNew(); 9569 9570 bool IsNothrow = false; 9571 bool IsPlacement = false; 9572 if (OperatorNew->isReservedGlobalPlacementOperator() && 9573 Info.CurrentCall->isStdFunction() && !E->isArray()) { 9574 // FIXME Support array placement new. 9575 assert(E->getNumPlacementArgs() == 1); 9576 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) 9577 return false; 9578 if (Result.Designator.Invalid) 9579 return false; 9580 IsPlacement = true; 9581 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { 9582 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 9583 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; 9584 return false; 9585 } else if (E->getNumPlacementArgs()) { 9586 // The only new-placement list we support is of the form (std::nothrow). 9587 // 9588 // FIXME: There is no restriction on this, but it's not clear that any 9589 // other form makes any sense. We get here for cases such as: 9590 // 9591 // new (std::align_val_t{N}) X(int) 9592 // 9593 // (which should presumably be valid only if N is a multiple of 9594 // alignof(int), and in any case can't be deallocated unless N is 9595 // alignof(X) and X has new-extended alignment). 9596 if (E->getNumPlacementArgs() != 1 || 9597 !E->getPlacementArg(0)->getType()->isNothrowT()) 9598 return Error(E, diag::note_constexpr_new_placement); 9599 9600 LValue Nothrow; 9601 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) 9602 return false; 9603 IsNothrow = true; 9604 } 9605 9606 const Expr *Init = E->getInitializer(); 9607 const InitListExpr *ResizedArrayILE = nullptr; 9608 const CXXConstructExpr *ResizedArrayCCE = nullptr; 9609 bool ValueInit = false; 9610 9611 QualType AllocType = E->getAllocatedType(); 9612 if (std::optional<const Expr *> ArraySize = E->getArraySize()) { 9613 const Expr *Stripped = *ArraySize; 9614 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 9615 Stripped = ICE->getSubExpr()) 9616 if (ICE->getCastKind() != CK_NoOp && 9617 ICE->getCastKind() != CK_IntegralCast) 9618 break; 9619 9620 llvm::APSInt ArrayBound; 9621 if (!EvaluateInteger(Stripped, ArrayBound, Info)) 9622 return false; 9623 9624 // C++ [expr.new]p9: 9625 // The expression is erroneous if: 9626 // -- [...] its value before converting to size_t [or] applying the 9627 // second standard conversion sequence is less than zero 9628 if (ArrayBound.isSigned() && ArrayBound.isNegative()) { 9629 if (IsNothrow) 9630 return ZeroInitialization(E); 9631 9632 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) 9633 << ArrayBound << (*ArraySize)->getSourceRange(); 9634 return false; 9635 } 9636 9637 // -- its value is such that the size of the allocated object would 9638 // exceed the implementation-defined limit 9639 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType, 9640 ArrayBound) > 9641 ConstantArrayType::getMaxSizeBits(Info.Ctx)) { 9642 if (IsNothrow) 9643 return ZeroInitialization(E); 9644 9645 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large) 9646 << ArrayBound << (*ArraySize)->getSourceRange(); 9647 return false; 9648 } 9649 9650 // -- the new-initializer is a braced-init-list and the number of 9651 // array elements for which initializers are provided [...] 9652 // exceeds the number of elements to initialize 9653 if (!Init) { 9654 // No initialization is performed. 9655 } else if (isa<CXXScalarValueInitExpr>(Init) || 9656 isa<ImplicitValueInitExpr>(Init)) { 9657 ValueInit = true; 9658 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { 9659 ResizedArrayCCE = CCE; 9660 } else { 9661 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); 9662 assert(CAT && "unexpected type for array initializer"); 9663 9664 unsigned Bits = 9665 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth()); 9666 llvm::APInt InitBound = CAT->getSize().zext(Bits); 9667 llvm::APInt AllocBound = ArrayBound.zext(Bits); 9668 if (InitBound.ugt(AllocBound)) { 9669 if (IsNothrow) 9670 return ZeroInitialization(E); 9671 9672 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) 9673 << toString(AllocBound, 10, /*Signed=*/false) 9674 << toString(InitBound, 10, /*Signed=*/false) 9675 << (*ArraySize)->getSourceRange(); 9676 return false; 9677 } 9678 9679 // If the sizes differ, we must have an initializer list, and we need 9680 // special handling for this case when we initialize. 9681 if (InitBound != AllocBound) 9682 ResizedArrayILE = cast<InitListExpr>(Init); 9683 } 9684 9685 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, 9686 ArrayType::Normal, 0); 9687 } else { 9688 assert(!AllocType->isArrayType() && 9689 "array allocation with non-array new"); 9690 } 9691 9692 APValue *Val; 9693 if (IsPlacement) { 9694 AccessKinds AK = AK_Construct; 9695 struct FindObjectHandler { 9696 EvalInfo &Info; 9697 const Expr *E; 9698 QualType AllocType; 9699 const AccessKinds AccessKind; 9700 APValue *Value; 9701 9702 typedef bool result_type; 9703 bool failed() { return false; } 9704 bool found(APValue &Subobj, QualType SubobjType) { 9705 // FIXME: Reject the cases where [basic.life]p8 would not permit the 9706 // old name of the object to be used to name the new object. 9707 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) { 9708 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) << 9709 SubobjType << AllocType; 9710 return false; 9711 } 9712 Value = &Subobj; 9713 return true; 9714 } 9715 bool found(APSInt &Value, QualType SubobjType) { 9716 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 9717 return false; 9718 } 9719 bool found(APFloat &Value, QualType SubobjType) { 9720 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 9721 return false; 9722 } 9723 } Handler = {Info, E, AllocType, AK, nullptr}; 9724 9725 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); 9726 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) 9727 return false; 9728 9729 Val = Handler.Value; 9730 9731 // [basic.life]p1: 9732 // The lifetime of an object o of type T ends when [...] the storage 9733 // which the object occupies is [...] reused by an object that is not 9734 // nested within o (6.6.2). 9735 *Val = APValue(); 9736 } else { 9737 // Perform the allocation and obtain a pointer to the resulting object. 9738 Val = Info.createHeapAlloc(E, AllocType, Result); 9739 if (!Val) 9740 return false; 9741 } 9742 9743 if (ValueInit) { 9744 ImplicitValueInitExpr VIE(AllocType); 9745 if (!EvaluateInPlace(*Val, Info, Result, &VIE)) 9746 return false; 9747 } else if (ResizedArrayILE) { 9748 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, 9749 AllocType)) 9750 return false; 9751 } else if (ResizedArrayCCE) { 9752 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE, 9753 AllocType)) 9754 return false; 9755 } else if (Init) { 9756 if (!EvaluateInPlace(*Val, Info, Result, Init)) 9757 return false; 9758 } else if (!getDefaultInitValue(AllocType, *Val)) { 9759 return false; 9760 } 9761 9762 // Array new returns a pointer to the first element, not a pointer to the 9763 // array. 9764 if (auto *AT = AllocType->getAsArrayTypeUnsafe()) 9765 Result.addArray(Info, E, cast<ConstantArrayType>(AT)); 9766 9767 return true; 9768 } 9769 //===----------------------------------------------------------------------===// 9770 // Member Pointer Evaluation 9771 //===----------------------------------------------------------------------===// 9772 9773 namespace { 9774 class MemberPointerExprEvaluator 9775 : public ExprEvaluatorBase<MemberPointerExprEvaluator> { 9776 MemberPtr &Result; 9777 9778 bool Success(const ValueDecl *D) { 9779 Result = MemberPtr(D); 9780 return true; 9781 } 9782 public: 9783 9784 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) 9785 : ExprEvaluatorBaseTy(Info), Result(Result) {} 9786 9787 bool Success(const APValue &V, const Expr *E) { 9788 Result.setFrom(V); 9789 return true; 9790 } 9791 bool ZeroInitialization(const Expr *E) { 9792 return Success((const ValueDecl*)nullptr); 9793 } 9794 9795 bool VisitCastExpr(const CastExpr *E); 9796 bool VisitUnaryAddrOf(const UnaryOperator *E); 9797 }; 9798 } // end anonymous namespace 9799 9800 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 9801 EvalInfo &Info) { 9802 assert(!E->isValueDependent()); 9803 assert(E->isPRValue() && E->getType()->isMemberPointerType()); 9804 return MemberPointerExprEvaluator(Info, Result).Visit(E); 9805 } 9806 9807 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 9808 switch (E->getCastKind()) { 9809 default: 9810 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9811 9812 case CK_NullToMemberPointer: 9813 VisitIgnoredValue(E->getSubExpr()); 9814 return ZeroInitialization(E); 9815 9816 case CK_BaseToDerivedMemberPointer: { 9817 if (!Visit(E->getSubExpr())) 9818 return false; 9819 if (E->path_empty()) 9820 return true; 9821 // Base-to-derived member pointer casts store the path in derived-to-base 9822 // order, so iterate backwards. The CXXBaseSpecifier also provides us with 9823 // the wrong end of the derived->base arc, so stagger the path by one class. 9824 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; 9825 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); 9826 PathI != PathE; ++PathI) { 9827 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 9828 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); 9829 if (!Result.castToDerived(Derived)) 9830 return Error(E); 9831 } 9832 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); 9833 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) 9834 return Error(E); 9835 return true; 9836 } 9837 9838 case CK_DerivedToBaseMemberPointer: 9839 if (!Visit(E->getSubExpr())) 9840 return false; 9841 for (CastExpr::path_const_iterator PathI = E->path_begin(), 9842 PathE = E->path_end(); PathI != PathE; ++PathI) { 9843 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 9844 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 9845 if (!Result.castToBase(Base)) 9846 return Error(E); 9847 } 9848 return true; 9849 } 9850 } 9851 9852 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 9853 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 9854 // member can be formed. 9855 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); 9856 } 9857 9858 //===----------------------------------------------------------------------===// 9859 // Record Evaluation 9860 //===----------------------------------------------------------------------===// 9861 9862 namespace { 9863 class RecordExprEvaluator 9864 : public ExprEvaluatorBase<RecordExprEvaluator> { 9865 const LValue &This; 9866 APValue &Result; 9867 public: 9868 9869 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) 9870 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} 9871 9872 bool Success(const APValue &V, const Expr *E) { 9873 Result = V; 9874 return true; 9875 } 9876 bool ZeroInitialization(const Expr *E) { 9877 return ZeroInitialization(E, E->getType()); 9878 } 9879 bool ZeroInitialization(const Expr *E, QualType T); 9880 9881 bool VisitCallExpr(const CallExpr *E) { 9882 return handleCallExpr(E, Result, &This); 9883 } 9884 bool VisitCastExpr(const CastExpr *E); 9885 bool VisitInitListExpr(const InitListExpr *E); 9886 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 9887 return VisitCXXConstructExpr(E, E->getType()); 9888 } 9889 bool VisitLambdaExpr(const LambdaExpr *E); 9890 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 9891 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); 9892 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); 9893 bool VisitBinCmp(const BinaryOperator *E); 9894 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); 9895 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, 9896 ArrayRef<Expr *> Args); 9897 }; 9898 } 9899 9900 /// Perform zero-initialization on an object of non-union class type. 9901 /// C++11 [dcl.init]p5: 9902 /// To zero-initialize an object or reference of type T means: 9903 /// [...] 9904 /// -- if T is a (possibly cv-qualified) non-union class type, 9905 /// each non-static data member and each base-class subobject is 9906 /// zero-initialized 9907 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, 9908 const RecordDecl *RD, 9909 const LValue &This, APValue &Result) { 9910 assert(!RD->isUnion() && "Expected non-union class type"); 9911 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 9912 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, 9913 std::distance(RD->field_begin(), RD->field_end())); 9914 9915 if (RD->isInvalidDecl()) return false; 9916 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 9917 9918 if (CD) { 9919 unsigned Index = 0; 9920 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), 9921 End = CD->bases_end(); I != End; ++I, ++Index) { 9922 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); 9923 LValue Subobject = This; 9924 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) 9925 return false; 9926 if (!HandleClassZeroInitialization(Info, E, Base, Subobject, 9927 Result.getStructBase(Index))) 9928 return false; 9929 } 9930 } 9931 9932 for (const auto *I : RD->fields()) { 9933 // -- if T is a reference type, no initialization is performed. 9934 if (I->isUnnamedBitfield() || I->getType()->isReferenceType()) 9935 continue; 9936 9937 LValue Subobject = This; 9938 if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) 9939 return false; 9940 9941 ImplicitValueInitExpr VIE(I->getType()); 9942 if (!EvaluateInPlace( 9943 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) 9944 return false; 9945 } 9946 9947 return true; 9948 } 9949 9950 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { 9951 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 9952 if (RD->isInvalidDecl()) return false; 9953 if (RD->isUnion()) { 9954 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 9955 // object's first non-static named data member is zero-initialized 9956 RecordDecl::field_iterator I = RD->field_begin(); 9957 while (I != RD->field_end() && (*I)->isUnnamedBitfield()) 9958 ++I; 9959 if (I == RD->field_end()) { 9960 Result = APValue((const FieldDecl*)nullptr); 9961 return true; 9962 } 9963 9964 LValue Subobject = This; 9965 if (!HandleLValueMember(Info, E, Subobject, *I)) 9966 return false; 9967 Result = APValue(*I); 9968 ImplicitValueInitExpr VIE(I->getType()); 9969 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); 9970 } 9971 9972 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { 9973 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; 9974 return false; 9975 } 9976 9977 return HandleClassZeroInitialization(Info, E, RD, This, Result); 9978 } 9979 9980 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { 9981 switch (E->getCastKind()) { 9982 default: 9983 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9984 9985 case CK_ConstructorConversion: 9986 return Visit(E->getSubExpr()); 9987 9988 case CK_DerivedToBase: 9989 case CK_UncheckedDerivedToBase: { 9990 APValue DerivedObject; 9991 if (!Evaluate(DerivedObject, Info, E->getSubExpr())) 9992 return false; 9993 if (!DerivedObject.isStruct()) 9994 return Error(E->getSubExpr()); 9995 9996 // Derived-to-base rvalue conversion: just slice off the derived part. 9997 APValue *Value = &DerivedObject; 9998 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); 9999 for (CastExpr::path_const_iterator PathI = E->path_begin(), 10000 PathE = E->path_end(); PathI != PathE; ++PathI) { 10001 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); 10002 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 10003 Value = &Value->getStructBase(getBaseIndex(RD, Base)); 10004 RD = Base; 10005 } 10006 Result = *Value; 10007 return true; 10008 } 10009 } 10010 } 10011 10012 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 10013 if (E->isTransparent()) 10014 return Visit(E->getInit(0)); 10015 return VisitCXXParenListOrInitListExpr(E, E->inits()); 10016 } 10017 10018 bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr( 10019 const Expr *ExprToVisit, ArrayRef<Expr *> Args) { 10020 const RecordDecl *RD = 10021 ExprToVisit->getType()->castAs<RecordType>()->getDecl(); 10022 if (RD->isInvalidDecl()) return false; 10023 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 10024 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 10025 10026 EvalInfo::EvaluatingConstructorRAII EvalObj( 10027 Info, 10028 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 10029 CXXRD && CXXRD->getNumBases()); 10030 10031 if (RD->isUnion()) { 10032 const FieldDecl *Field; 10033 if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) { 10034 Field = ILE->getInitializedFieldInUnion(); 10035 } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) { 10036 Field = PLIE->getInitializedFieldInUnion(); 10037 } else { 10038 llvm_unreachable( 10039 "Expression is neither an init list nor a C++ paren list"); 10040 } 10041 10042 Result = APValue(Field); 10043 if (!Field) 10044 return true; 10045 10046 // If the initializer list for a union does not contain any elements, the 10047 // first element of the union is value-initialized. 10048 // FIXME: The element should be initialized from an initializer list. 10049 // Is this difference ever observable for initializer lists which 10050 // we don't build? 10051 ImplicitValueInitExpr VIE(Field->getType()); 10052 const Expr *InitExpr = Args.empty() ? &VIE : Args[0]; 10053 10054 LValue Subobject = This; 10055 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) 10056 return false; 10057 10058 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 10059 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 10060 isa<CXXDefaultInitExpr>(InitExpr)); 10061 10062 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) { 10063 if (Field->isBitField()) 10064 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(), 10065 Field); 10066 return true; 10067 } 10068 10069 return false; 10070 } 10071 10072 if (!Result.hasValue()) 10073 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, 10074 std::distance(RD->field_begin(), RD->field_end())); 10075 unsigned ElementNo = 0; 10076 bool Success = true; 10077 10078 // Initialize base classes. 10079 if (CXXRD && CXXRD->getNumBases()) { 10080 for (const auto &Base : CXXRD->bases()) { 10081 assert(ElementNo < Args.size() && "missing init for base class"); 10082 const Expr *Init = Args[ElementNo]; 10083 10084 LValue Subobject = This; 10085 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) 10086 return false; 10087 10088 APValue &FieldVal = Result.getStructBase(ElementNo); 10089 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { 10090 if (!Info.noteFailure()) 10091 return false; 10092 Success = false; 10093 } 10094 ++ElementNo; 10095 } 10096 10097 EvalObj.finishedConstructingBases(); 10098 } 10099 10100 // Initialize members. 10101 for (const auto *Field : RD->fields()) { 10102 // Anonymous bit-fields are not considered members of the class for 10103 // purposes of aggregate initialization. 10104 if (Field->isUnnamedBitfield()) 10105 continue; 10106 10107 LValue Subobject = This; 10108 10109 bool HaveInit = ElementNo < Args.size(); 10110 10111 // FIXME: Diagnostics here should point to the end of the initializer 10112 // list, not the start. 10113 if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit, 10114 Subobject, Field, &Layout)) 10115 return false; 10116 10117 // Perform an implicit value-initialization for members beyond the end of 10118 // the initializer list. 10119 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); 10120 const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE; 10121 10122 if (Field->getType()->isIncompleteArrayType()) { 10123 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) { 10124 if (!CAT->getSize().isZero()) { 10125 // Bail out for now. This might sort of "work", but the rest of the 10126 // code isn't really prepared to handle it. 10127 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array); 10128 return false; 10129 } 10130 } 10131 } 10132 10133 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 10134 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 10135 isa<CXXDefaultInitExpr>(Init)); 10136 10137 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 10138 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || 10139 (Field->isBitField() && !truncateBitfieldValue(Info, Init, 10140 FieldVal, Field))) { 10141 if (!Info.noteFailure()) 10142 return false; 10143 Success = false; 10144 } 10145 } 10146 10147 EvalObj.finishedConstructingFields(); 10148 10149 return Success; 10150 } 10151 10152 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 10153 QualType T) { 10154 // Note that E's type is not necessarily the type of our class here; we might 10155 // be initializing an array element instead. 10156 const CXXConstructorDecl *FD = E->getConstructor(); 10157 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; 10158 10159 bool ZeroInit = E->requiresZeroInitialization(); 10160 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { 10161 // If we've already performed zero-initialization, we're already done. 10162 if (Result.hasValue()) 10163 return true; 10164 10165 if (ZeroInit) 10166 return ZeroInitialization(E, T); 10167 10168 return getDefaultInitValue(T, Result); 10169 } 10170 10171 const FunctionDecl *Definition = nullptr; 10172 auto Body = FD->getBody(Definition); 10173 10174 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 10175 return false; 10176 10177 // Avoid materializing a temporary for an elidable copy/move constructor. 10178 if (E->isElidable() && !ZeroInit) { 10179 // FIXME: This only handles the simplest case, where the source object 10180 // is passed directly as the first argument to the constructor. 10181 // This should also handle stepping though implicit casts and 10182 // and conversion sequences which involve two steps, with a 10183 // conversion operator followed by a converting constructor. 10184 const Expr *SrcObj = E->getArg(0); 10185 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent())); 10186 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 10187 if (const MaterializeTemporaryExpr *ME = 10188 dyn_cast<MaterializeTemporaryExpr>(SrcObj)) 10189 return Visit(ME->getSubExpr()); 10190 } 10191 10192 if (ZeroInit && !ZeroInitialization(E, T)) 10193 return false; 10194 10195 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); 10196 return HandleConstructorCall(E, This, Args, 10197 cast<CXXConstructorDecl>(Definition), Info, 10198 Result); 10199 } 10200 10201 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( 10202 const CXXInheritedCtorInitExpr *E) { 10203 if (!Info.CurrentCall) { 10204 assert(Info.checkingPotentialConstantExpression()); 10205 return false; 10206 } 10207 10208 const CXXConstructorDecl *FD = E->getConstructor(); 10209 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) 10210 return false; 10211 10212 const FunctionDecl *Definition = nullptr; 10213 auto Body = FD->getBody(Definition); 10214 10215 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 10216 return false; 10217 10218 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, 10219 cast<CXXConstructorDecl>(Definition), Info, 10220 Result); 10221 } 10222 10223 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( 10224 const CXXStdInitializerListExpr *E) { 10225 const ConstantArrayType *ArrayType = 10226 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 10227 10228 LValue Array; 10229 if (!EvaluateLValue(E->getSubExpr(), Array, Info)) 10230 return false; 10231 10232 assert(ArrayType && "unexpected type for array initializer"); 10233 10234 // Get a pointer to the first element of the array. 10235 Array.addArray(Info, E, ArrayType); 10236 10237 auto InvalidType = [&] { 10238 Info.FFDiag(E, diag::note_constexpr_unsupported_layout) 10239 << E->getType(); 10240 return false; 10241 }; 10242 10243 // FIXME: Perform the checks on the field types in SemaInit. 10244 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 10245 RecordDecl::field_iterator Field = Record->field_begin(); 10246 if (Field == Record->field_end()) 10247 return InvalidType(); 10248 10249 // Start pointer. 10250 if (!Field->getType()->isPointerType() || 10251 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 10252 ArrayType->getElementType())) 10253 return InvalidType(); 10254 10255 // FIXME: What if the initializer_list type has base classes, etc? 10256 Result = APValue(APValue::UninitStruct(), 0, 2); 10257 Array.moveInto(Result.getStructField(0)); 10258 10259 if (++Field == Record->field_end()) 10260 return InvalidType(); 10261 10262 if (Field->getType()->isPointerType() && 10263 Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 10264 ArrayType->getElementType())) { 10265 // End pointer. 10266 if (!HandleLValueArrayAdjustment(Info, E, Array, 10267 ArrayType->getElementType(), 10268 ArrayType->getSize().getZExtValue())) 10269 return false; 10270 Array.moveInto(Result.getStructField(1)); 10271 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) 10272 // Length. 10273 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); 10274 else 10275 return InvalidType(); 10276 10277 if (++Field != Record->field_end()) 10278 return InvalidType(); 10279 10280 return true; 10281 } 10282 10283 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { 10284 const CXXRecordDecl *ClosureClass = E->getLambdaClass(); 10285 if (ClosureClass->isInvalidDecl()) 10286 return false; 10287 10288 const size_t NumFields = 10289 std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); 10290 10291 assert(NumFields == (size_t)std::distance(E->capture_init_begin(), 10292 E->capture_init_end()) && 10293 "The number of lambda capture initializers should equal the number of " 10294 "fields within the closure type"); 10295 10296 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); 10297 // Iterate through all the lambda's closure object's fields and initialize 10298 // them. 10299 auto *CaptureInitIt = E->capture_init_begin(); 10300 bool Success = true; 10301 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass); 10302 for (const auto *Field : ClosureClass->fields()) { 10303 assert(CaptureInitIt != E->capture_init_end()); 10304 // Get the initializer for this field 10305 Expr *const CurFieldInit = *CaptureInitIt++; 10306 10307 // If there is no initializer, either this is a VLA or an error has 10308 // occurred. 10309 if (!CurFieldInit) 10310 return Error(E); 10311 10312 LValue Subobject = This; 10313 10314 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout)) 10315 return false; 10316 10317 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 10318 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) { 10319 if (!Info.keepEvaluatingAfterFailure()) 10320 return false; 10321 Success = false; 10322 } 10323 } 10324 return Success; 10325 } 10326 10327 static bool EvaluateRecord(const Expr *E, const LValue &This, 10328 APValue &Result, EvalInfo &Info) { 10329 assert(!E->isValueDependent()); 10330 assert(E->isPRValue() && E->getType()->isRecordType() && 10331 "can't evaluate expression as a record rvalue"); 10332 return RecordExprEvaluator(Info, This, Result).Visit(E); 10333 } 10334 10335 //===----------------------------------------------------------------------===// 10336 // Temporary Evaluation 10337 // 10338 // Temporaries are represented in the AST as rvalues, but generally behave like 10339 // lvalues. The full-object of which the temporary is a subobject is implicitly 10340 // materialized so that a reference can bind to it. 10341 //===----------------------------------------------------------------------===// 10342 namespace { 10343 class TemporaryExprEvaluator 10344 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { 10345 public: 10346 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : 10347 LValueExprEvaluatorBaseTy(Info, Result, false) {} 10348 10349 /// Visit an expression which constructs the value of this temporary. 10350 bool VisitConstructExpr(const Expr *E) { 10351 APValue &Value = Info.CurrentCall->createTemporary( 10352 E, E->getType(), ScopeKind::FullExpression, Result); 10353 return EvaluateInPlace(Value, Info, Result, E); 10354 } 10355 10356 bool VisitCastExpr(const CastExpr *E) { 10357 switch (E->getCastKind()) { 10358 default: 10359 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 10360 10361 case CK_ConstructorConversion: 10362 return VisitConstructExpr(E->getSubExpr()); 10363 } 10364 } 10365 bool VisitInitListExpr(const InitListExpr *E) { 10366 return VisitConstructExpr(E); 10367 } 10368 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 10369 return VisitConstructExpr(E); 10370 } 10371 bool VisitCallExpr(const CallExpr *E) { 10372 return VisitConstructExpr(E); 10373 } 10374 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { 10375 return VisitConstructExpr(E); 10376 } 10377 bool VisitLambdaExpr(const LambdaExpr *E) { 10378 return VisitConstructExpr(E); 10379 } 10380 }; 10381 } // end anonymous namespace 10382 10383 /// Evaluate an expression of record type as a temporary. 10384 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { 10385 assert(!E->isValueDependent()); 10386 assert(E->isPRValue() && E->getType()->isRecordType()); 10387 return TemporaryExprEvaluator(Info, Result).Visit(E); 10388 } 10389 10390 //===----------------------------------------------------------------------===// 10391 // Vector Evaluation 10392 //===----------------------------------------------------------------------===// 10393 10394 namespace { 10395 class VectorExprEvaluator 10396 : public ExprEvaluatorBase<VectorExprEvaluator> { 10397 APValue &Result; 10398 public: 10399 10400 VectorExprEvaluator(EvalInfo &info, APValue &Result) 10401 : ExprEvaluatorBaseTy(info), Result(Result) {} 10402 10403 bool Success(ArrayRef<APValue> V, const Expr *E) { 10404 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); 10405 // FIXME: remove this APValue copy. 10406 Result = APValue(V.data(), V.size()); 10407 return true; 10408 } 10409 bool Success(const APValue &V, const Expr *E) { 10410 assert(V.isVector()); 10411 Result = V; 10412 return true; 10413 } 10414 bool ZeroInitialization(const Expr *E); 10415 10416 bool VisitUnaryReal(const UnaryOperator *E) 10417 { return Visit(E->getSubExpr()); } 10418 bool VisitCastExpr(const CastExpr* E); 10419 bool VisitInitListExpr(const InitListExpr *E); 10420 bool VisitUnaryImag(const UnaryOperator *E); 10421 bool VisitBinaryOperator(const BinaryOperator *E); 10422 bool VisitUnaryOperator(const UnaryOperator *E); 10423 // FIXME: Missing: conditional operator (for GNU 10424 // conditional select), shufflevector, ExtVectorElementExpr 10425 }; 10426 } // end anonymous namespace 10427 10428 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { 10429 assert(E->isPRValue() && E->getType()->isVectorType() && 10430 "not a vector prvalue"); 10431 return VectorExprEvaluator(Info, Result).Visit(E); 10432 } 10433 10434 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { 10435 const VectorType *VTy = E->getType()->castAs<VectorType>(); 10436 unsigned NElts = VTy->getNumElements(); 10437 10438 const Expr *SE = E->getSubExpr(); 10439 QualType SETy = SE->getType(); 10440 10441 switch (E->getCastKind()) { 10442 case CK_VectorSplat: { 10443 APValue Val = APValue(); 10444 if (SETy->isIntegerType()) { 10445 APSInt IntResult; 10446 if (!EvaluateInteger(SE, IntResult, Info)) 10447 return false; 10448 Val = APValue(std::move(IntResult)); 10449 } else if (SETy->isRealFloatingType()) { 10450 APFloat FloatResult(0.0); 10451 if (!EvaluateFloat(SE, FloatResult, Info)) 10452 return false; 10453 Val = APValue(std::move(FloatResult)); 10454 } else { 10455 return Error(E); 10456 } 10457 10458 // Splat and create vector APValue. 10459 SmallVector<APValue, 4> Elts(NElts, Val); 10460 return Success(Elts, E); 10461 } 10462 case CK_BitCast: { 10463 // Evaluate the operand into an APInt we can extract from. 10464 llvm::APInt SValInt; 10465 if (!EvalAndBitcastToAPInt(Info, SE, SValInt)) 10466 return false; 10467 // Extract the elements 10468 QualType EltTy = VTy->getElementType(); 10469 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 10470 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 10471 SmallVector<APValue, 4> Elts; 10472 if (EltTy->isRealFloatingType()) { 10473 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy); 10474 unsigned FloatEltSize = EltSize; 10475 if (&Sem == &APFloat::x87DoubleExtended()) 10476 FloatEltSize = 80; 10477 for (unsigned i = 0; i < NElts; i++) { 10478 llvm::APInt Elt; 10479 if (BigEndian) 10480 Elt = SValInt.rotl(i * EltSize + FloatEltSize).trunc(FloatEltSize); 10481 else 10482 Elt = SValInt.rotr(i * EltSize).trunc(FloatEltSize); 10483 Elts.push_back(APValue(APFloat(Sem, Elt))); 10484 } 10485 } else if (EltTy->isIntegerType()) { 10486 for (unsigned i = 0; i < NElts; i++) { 10487 llvm::APInt Elt; 10488 if (BigEndian) 10489 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize); 10490 else 10491 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize); 10492 Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType()))); 10493 } 10494 } else { 10495 return Error(E); 10496 } 10497 return Success(Elts, E); 10498 } 10499 default: 10500 return ExprEvaluatorBaseTy::VisitCastExpr(E); 10501 } 10502 } 10503 10504 bool 10505 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 10506 const VectorType *VT = E->getType()->castAs<VectorType>(); 10507 unsigned NumInits = E->getNumInits(); 10508 unsigned NumElements = VT->getNumElements(); 10509 10510 QualType EltTy = VT->getElementType(); 10511 SmallVector<APValue, 4> Elements; 10512 10513 // The number of initializers can be less than the number of 10514 // vector elements. For OpenCL, this can be due to nested vector 10515 // initialization. For GCC compatibility, missing trailing elements 10516 // should be initialized with zeroes. 10517 unsigned CountInits = 0, CountElts = 0; 10518 while (CountElts < NumElements) { 10519 // Handle nested vector initialization. 10520 if (CountInits < NumInits 10521 && E->getInit(CountInits)->getType()->isVectorType()) { 10522 APValue v; 10523 if (!EvaluateVector(E->getInit(CountInits), v, Info)) 10524 return Error(E); 10525 unsigned vlen = v.getVectorLength(); 10526 for (unsigned j = 0; j < vlen; j++) 10527 Elements.push_back(v.getVectorElt(j)); 10528 CountElts += vlen; 10529 } else if (EltTy->isIntegerType()) { 10530 llvm::APSInt sInt(32); 10531 if (CountInits < NumInits) { 10532 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) 10533 return false; 10534 } else // trailing integer zero. 10535 sInt = Info.Ctx.MakeIntValue(0, EltTy); 10536 Elements.push_back(APValue(sInt)); 10537 CountElts++; 10538 } else { 10539 llvm::APFloat f(0.0); 10540 if (CountInits < NumInits) { 10541 if (!EvaluateFloat(E->getInit(CountInits), f, Info)) 10542 return false; 10543 } else // trailing float zero. 10544 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); 10545 Elements.push_back(APValue(f)); 10546 CountElts++; 10547 } 10548 CountInits++; 10549 } 10550 return Success(Elements, E); 10551 } 10552 10553 bool 10554 VectorExprEvaluator::ZeroInitialization(const Expr *E) { 10555 const auto *VT = E->getType()->castAs<VectorType>(); 10556 QualType EltTy = VT->getElementType(); 10557 APValue ZeroElement; 10558 if (EltTy->isIntegerType()) 10559 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); 10560 else 10561 ZeroElement = 10562 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); 10563 10564 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); 10565 return Success(Elements, E); 10566 } 10567 10568 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 10569 VisitIgnoredValue(E->getSubExpr()); 10570 return ZeroInitialization(E); 10571 } 10572 10573 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 10574 BinaryOperatorKind Op = E->getOpcode(); 10575 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && 10576 "Operation not supported on vector types"); 10577 10578 if (Op == BO_Comma) 10579 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 10580 10581 Expr *LHS = E->getLHS(); 10582 Expr *RHS = E->getRHS(); 10583 10584 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && 10585 "Must both be vector types"); 10586 // Checking JUST the types are the same would be fine, except shifts don't 10587 // need to have their types be the same (since you always shift by an int). 10588 assert(LHS->getType()->castAs<VectorType>()->getNumElements() == 10589 E->getType()->castAs<VectorType>()->getNumElements() && 10590 RHS->getType()->castAs<VectorType>()->getNumElements() == 10591 E->getType()->castAs<VectorType>()->getNumElements() && 10592 "All operands must be the same size."); 10593 10594 APValue LHSValue; 10595 APValue RHSValue; 10596 bool LHSOK = Evaluate(LHSValue, Info, LHS); 10597 if (!LHSOK && !Info.noteFailure()) 10598 return false; 10599 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK) 10600 return false; 10601 10602 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue)) 10603 return false; 10604 10605 return Success(LHSValue, E); 10606 } 10607 10608 static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx, 10609 QualType ResultTy, 10610 UnaryOperatorKind Op, 10611 APValue Elt) { 10612 switch (Op) { 10613 case UO_Plus: 10614 // Nothing to do here. 10615 return Elt; 10616 case UO_Minus: 10617 if (Elt.getKind() == APValue::Int) { 10618 Elt.getInt().negate(); 10619 } else { 10620 assert(Elt.getKind() == APValue::Float && 10621 "Vector can only be int or float type"); 10622 Elt.getFloat().changeSign(); 10623 } 10624 return Elt; 10625 case UO_Not: 10626 // This is only valid for integral types anyway, so we don't have to handle 10627 // float here. 10628 assert(Elt.getKind() == APValue::Int && 10629 "Vector operator ~ can only be int"); 10630 Elt.getInt().flipAllBits(); 10631 return Elt; 10632 case UO_LNot: { 10633 if (Elt.getKind() == APValue::Int) { 10634 Elt.getInt() = !Elt.getInt(); 10635 // operator ! on vectors returns -1 for 'truth', so negate it. 10636 Elt.getInt().negate(); 10637 return Elt; 10638 } 10639 assert(Elt.getKind() == APValue::Float && 10640 "Vector can only be int or float type"); 10641 // Float types result in an int of the same size, but -1 for true, or 0 for 10642 // false. 10643 APSInt EltResult{Ctx.getIntWidth(ResultTy), 10644 ResultTy->isUnsignedIntegerType()}; 10645 if (Elt.getFloat().isZero()) 10646 EltResult.setAllBits(); 10647 else 10648 EltResult.clearAllBits(); 10649 10650 return APValue{EltResult}; 10651 } 10652 default: 10653 // FIXME: Implement the rest of the unary operators. 10654 return std::nullopt; 10655 } 10656 } 10657 10658 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 10659 Expr *SubExpr = E->getSubExpr(); 10660 const auto *VD = SubExpr->getType()->castAs<VectorType>(); 10661 // This result element type differs in the case of negating a floating point 10662 // vector, since the result type is the a vector of the equivilant sized 10663 // integer. 10664 const QualType ResultEltTy = VD->getElementType(); 10665 UnaryOperatorKind Op = E->getOpcode(); 10666 10667 APValue SubExprValue; 10668 if (!Evaluate(SubExprValue, Info, SubExpr)) 10669 return false; 10670 10671 // FIXME: This vector evaluator someday needs to be changed to be LValue 10672 // aware/keep LValue information around, rather than dealing with just vector 10673 // types directly. Until then, we cannot handle cases where the operand to 10674 // these unary operators is an LValue. The only case I've been able to see 10675 // cause this is operator++ assigning to a member expression (only valid in 10676 // altivec compilations) in C mode, so this shouldn't limit us too much. 10677 if (SubExprValue.isLValue()) 10678 return false; 10679 10680 assert(SubExprValue.getVectorLength() == VD->getNumElements() && 10681 "Vector length doesn't match type?"); 10682 10683 SmallVector<APValue, 4> ResultElements; 10684 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) { 10685 std::optional<APValue> Elt = handleVectorUnaryOperator( 10686 Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum)); 10687 if (!Elt) 10688 return false; 10689 ResultElements.push_back(*Elt); 10690 } 10691 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 10692 } 10693 10694 //===----------------------------------------------------------------------===// 10695 // Array Evaluation 10696 //===----------------------------------------------------------------------===// 10697 10698 namespace { 10699 class ArrayExprEvaluator 10700 : public ExprEvaluatorBase<ArrayExprEvaluator> { 10701 const LValue &This; 10702 APValue &Result; 10703 public: 10704 10705 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) 10706 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 10707 10708 bool Success(const APValue &V, const Expr *E) { 10709 assert(V.isArray() && "expected array"); 10710 Result = V; 10711 return true; 10712 } 10713 10714 bool ZeroInitialization(const Expr *E) { 10715 const ConstantArrayType *CAT = 10716 Info.Ctx.getAsConstantArrayType(E->getType()); 10717 if (!CAT) { 10718 if (E->getType()->isIncompleteArrayType()) { 10719 // We can be asked to zero-initialize a flexible array member; this 10720 // is represented as an ImplicitValueInitExpr of incomplete array 10721 // type. In this case, the array has zero elements. 10722 Result = APValue(APValue::UninitArray(), 0, 0); 10723 return true; 10724 } 10725 // FIXME: We could handle VLAs here. 10726 return Error(E); 10727 } 10728 10729 Result = APValue(APValue::UninitArray(), 0, 10730 CAT->getSize().getZExtValue()); 10731 if (!Result.hasArrayFiller()) 10732 return true; 10733 10734 // Zero-initialize all elements. 10735 LValue Subobject = This; 10736 Subobject.addArray(Info, E, CAT); 10737 ImplicitValueInitExpr VIE(CAT->getElementType()); 10738 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); 10739 } 10740 10741 bool VisitCallExpr(const CallExpr *E) { 10742 return handleCallExpr(E, Result, &This); 10743 } 10744 bool VisitInitListExpr(const InitListExpr *E, 10745 QualType AllocType = QualType()); 10746 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); 10747 bool VisitCXXConstructExpr(const CXXConstructExpr *E); 10748 bool VisitCXXConstructExpr(const CXXConstructExpr *E, 10749 const LValue &Subobject, 10750 APValue *Value, QualType Type); 10751 bool VisitStringLiteral(const StringLiteral *E, 10752 QualType AllocType = QualType()) { 10753 expandStringLiteral(Info, E, Result, AllocType); 10754 return true; 10755 } 10756 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); 10757 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, 10758 ArrayRef<Expr *> Args, 10759 const Expr *ArrayFiller, 10760 QualType AllocType = QualType()); 10761 }; 10762 } // end anonymous namespace 10763 10764 static bool EvaluateArray(const Expr *E, const LValue &This, 10765 APValue &Result, EvalInfo &Info) { 10766 assert(!E->isValueDependent()); 10767 assert(E->isPRValue() && E->getType()->isArrayType() && 10768 "not an array prvalue"); 10769 return ArrayExprEvaluator(Info, This, Result).Visit(E); 10770 } 10771 10772 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 10773 APValue &Result, const InitListExpr *ILE, 10774 QualType AllocType) { 10775 assert(!ILE->isValueDependent()); 10776 assert(ILE->isPRValue() && ILE->getType()->isArrayType() && 10777 "not an array prvalue"); 10778 return ArrayExprEvaluator(Info, This, Result) 10779 .VisitInitListExpr(ILE, AllocType); 10780 } 10781 10782 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 10783 APValue &Result, 10784 const CXXConstructExpr *CCE, 10785 QualType AllocType) { 10786 assert(!CCE->isValueDependent()); 10787 assert(CCE->isPRValue() && CCE->getType()->isArrayType() && 10788 "not an array prvalue"); 10789 return ArrayExprEvaluator(Info, This, Result) 10790 .VisitCXXConstructExpr(CCE, This, &Result, AllocType); 10791 } 10792 10793 // Return true iff the given array filler may depend on the element index. 10794 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { 10795 // For now, just allow non-class value-initialization and initialization 10796 // lists comprised of them. 10797 if (isa<ImplicitValueInitExpr>(FillerExpr)) 10798 return false; 10799 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { 10800 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { 10801 if (MaybeElementDependentArrayFiller(ILE->getInit(I))) 10802 return true; 10803 } 10804 10805 if (ILE->hasArrayFiller() && 10806 MaybeElementDependentArrayFiller(ILE->getArrayFiller())) 10807 return true; 10808 10809 return false; 10810 } 10811 return true; 10812 } 10813 10814 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, 10815 QualType AllocType) { 10816 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 10817 AllocType.isNull() ? E->getType() : AllocType); 10818 if (!CAT) 10819 return Error(E); 10820 10821 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] 10822 // an appropriately-typed string literal enclosed in braces. 10823 if (E->isStringLiteralInit()) { 10824 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts()); 10825 // FIXME: Support ObjCEncodeExpr here once we support it in 10826 // ArrayExprEvaluator generally. 10827 if (!SL) 10828 return Error(E); 10829 return VisitStringLiteral(SL, AllocType); 10830 } 10831 // Any other transparent list init will need proper handling of the 10832 // AllocType; we can't just recurse to the inner initializer. 10833 assert(!E->isTransparent() && 10834 "transparent array list initialization is not string literal init?"); 10835 10836 return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(), 10837 AllocType); 10838 } 10839 10840 bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr( 10841 const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller, 10842 QualType AllocType) { 10843 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 10844 AllocType.isNull() ? ExprToVisit->getType() : AllocType); 10845 10846 bool Success = true; 10847 10848 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && 10849 "zero-initialized array shouldn't have any initialized elts"); 10850 APValue Filler; 10851 if (Result.isArray() && Result.hasArrayFiller()) 10852 Filler = Result.getArrayFiller(); 10853 10854 unsigned NumEltsToInit = Args.size(); 10855 unsigned NumElts = CAT->getSize().getZExtValue(); 10856 10857 // If the initializer might depend on the array index, run it for each 10858 // array element. 10859 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(ArrayFiller)) 10860 NumEltsToInit = NumElts; 10861 10862 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " 10863 << NumEltsToInit << ".\n"); 10864 10865 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); 10866 10867 // If the array was previously zero-initialized, preserve the 10868 // zero-initialized values. 10869 if (Filler.hasValue()) { 10870 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) 10871 Result.getArrayInitializedElt(I) = Filler; 10872 if (Result.hasArrayFiller()) 10873 Result.getArrayFiller() = Filler; 10874 } 10875 10876 LValue Subobject = This; 10877 Subobject.addArray(Info, ExprToVisit, CAT); 10878 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { 10879 const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller; 10880 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 10881 Info, Subobject, Init) || 10882 !HandleLValueArrayAdjustment(Info, Init, Subobject, 10883 CAT->getElementType(), 1)) { 10884 if (!Info.noteFailure()) 10885 return false; 10886 Success = false; 10887 } 10888 } 10889 10890 if (!Result.hasArrayFiller()) 10891 return Success; 10892 10893 // If we get here, we have a trivial filler, which we can just evaluate 10894 // once and splat over the rest of the array elements. 10895 assert(ArrayFiller && "no array filler for incomplete init list"); 10896 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, 10897 ArrayFiller) && 10898 Success; 10899 } 10900 10901 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 10902 LValue CommonLV; 10903 if (E->getCommonExpr() && 10904 !Evaluate(Info.CurrentCall->createTemporary( 10905 E->getCommonExpr(), 10906 getStorageType(Info.Ctx, E->getCommonExpr()), 10907 ScopeKind::FullExpression, CommonLV), 10908 Info, E->getCommonExpr()->getSourceExpr())) 10909 return false; 10910 10911 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); 10912 10913 uint64_t Elements = CAT->getSize().getZExtValue(); 10914 Result = APValue(APValue::UninitArray(), Elements, Elements); 10915 10916 LValue Subobject = This; 10917 Subobject.addArray(Info, E, CAT); 10918 10919 bool Success = true; 10920 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { 10921 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 10922 Info, Subobject, E->getSubExpr()) || 10923 !HandleLValueArrayAdjustment(Info, E, Subobject, 10924 CAT->getElementType(), 1)) { 10925 if (!Info.noteFailure()) 10926 return false; 10927 Success = false; 10928 } 10929 } 10930 10931 return Success; 10932 } 10933 10934 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { 10935 return VisitCXXConstructExpr(E, This, &Result, E->getType()); 10936 } 10937 10938 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 10939 const LValue &Subobject, 10940 APValue *Value, 10941 QualType Type) { 10942 bool HadZeroInit = Value->hasValue(); 10943 10944 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { 10945 unsigned FinalSize = CAT->getSize().getZExtValue(); 10946 10947 // Preserve the array filler if we had prior zero-initialization. 10948 APValue Filler = 10949 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() 10950 : APValue(); 10951 10952 *Value = APValue(APValue::UninitArray(), 0, FinalSize); 10953 if (FinalSize == 0) 10954 return true; 10955 10956 bool HasTrivialConstructor = CheckTrivialDefaultConstructor( 10957 Info, E->getExprLoc(), E->getConstructor(), 10958 E->requiresZeroInitialization()); 10959 LValue ArrayElt = Subobject; 10960 ArrayElt.addArray(Info, E, CAT); 10961 // We do the whole initialization in two passes, first for just one element, 10962 // then for the whole array. It's possible we may find out we can't do const 10963 // init in the first pass, in which case we avoid allocating a potentially 10964 // large array. We don't do more passes because expanding array requires 10965 // copying the data, which is wasteful. 10966 for (const unsigned N : {1u, FinalSize}) { 10967 unsigned OldElts = Value->getArrayInitializedElts(); 10968 if (OldElts == N) 10969 break; 10970 10971 // Expand the array to appropriate size. 10972 APValue NewValue(APValue::UninitArray(), N, FinalSize); 10973 for (unsigned I = 0; I < OldElts; ++I) 10974 NewValue.getArrayInitializedElt(I).swap( 10975 Value->getArrayInitializedElt(I)); 10976 Value->swap(NewValue); 10977 10978 if (HadZeroInit) 10979 for (unsigned I = OldElts; I < N; ++I) 10980 Value->getArrayInitializedElt(I) = Filler; 10981 10982 if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) { 10983 // If we have a trivial constructor, only evaluate it once and copy 10984 // the result into all the array elements. 10985 APValue &FirstResult = Value->getArrayInitializedElt(0); 10986 for (unsigned I = OldElts; I < FinalSize; ++I) 10987 Value->getArrayInitializedElt(I) = FirstResult; 10988 } else { 10989 for (unsigned I = OldElts; I < N; ++I) { 10990 if (!VisitCXXConstructExpr(E, ArrayElt, 10991 &Value->getArrayInitializedElt(I), 10992 CAT->getElementType()) || 10993 !HandleLValueArrayAdjustment(Info, E, ArrayElt, 10994 CAT->getElementType(), 1)) 10995 return false; 10996 // When checking for const initilization any diagnostic is considered 10997 // an error. 10998 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() && 10999 !Info.keepEvaluatingAfterFailure()) 11000 return false; 11001 } 11002 } 11003 } 11004 11005 return true; 11006 } 11007 11008 if (!Type->isRecordType()) 11009 return Error(E); 11010 11011 return RecordExprEvaluator(Info, Subobject, *Value) 11012 .VisitCXXConstructExpr(E, Type); 11013 } 11014 11015 bool ArrayExprEvaluator::VisitCXXParenListInitExpr( 11016 const CXXParenListInitExpr *E) { 11017 assert(dyn_cast<ConstantArrayType>(E->getType()) && 11018 "Expression result is not a constant array type"); 11019 11020 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(), 11021 E->getArrayFiller()); 11022 } 11023 11024 //===----------------------------------------------------------------------===// 11025 // Integer Evaluation 11026 // 11027 // As a GNU extension, we support casting pointers to sufficiently-wide integer 11028 // types and back in constant folding. Integer values are thus represented 11029 // either as an integer-valued APValue, or as an lvalue-valued APValue. 11030 //===----------------------------------------------------------------------===// 11031 11032 namespace { 11033 class IntExprEvaluator 11034 : public ExprEvaluatorBase<IntExprEvaluator> { 11035 APValue &Result; 11036 public: 11037 IntExprEvaluator(EvalInfo &info, APValue &result) 11038 : ExprEvaluatorBaseTy(info), Result(result) {} 11039 11040 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { 11041 assert(E->getType()->isIntegralOrEnumerationType() && 11042 "Invalid evaluation result."); 11043 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && 11044 "Invalid evaluation result."); 11045 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 11046 "Invalid evaluation result."); 11047 Result = APValue(SI); 11048 return true; 11049 } 11050 bool Success(const llvm::APSInt &SI, const Expr *E) { 11051 return Success(SI, E, Result); 11052 } 11053 11054 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { 11055 assert(E->getType()->isIntegralOrEnumerationType() && 11056 "Invalid evaluation result."); 11057 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 11058 "Invalid evaluation result."); 11059 Result = APValue(APSInt(I)); 11060 Result.getInt().setIsUnsigned( 11061 E->getType()->isUnsignedIntegerOrEnumerationType()); 11062 return true; 11063 } 11064 bool Success(const llvm::APInt &I, const Expr *E) { 11065 return Success(I, E, Result); 11066 } 11067 11068 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 11069 assert(E->getType()->isIntegralOrEnumerationType() && 11070 "Invalid evaluation result."); 11071 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); 11072 return true; 11073 } 11074 bool Success(uint64_t Value, const Expr *E) { 11075 return Success(Value, E, Result); 11076 } 11077 11078 bool Success(CharUnits Size, const Expr *E) { 11079 return Success(Size.getQuantity(), E); 11080 } 11081 11082 bool Success(const APValue &V, const Expr *E) { 11083 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { 11084 Result = V; 11085 return true; 11086 } 11087 return Success(V.getInt(), E); 11088 } 11089 11090 bool ZeroInitialization(const Expr *E) { return Success(0, E); } 11091 11092 //===--------------------------------------------------------------------===// 11093 // Visitor Methods 11094 //===--------------------------------------------------------------------===// 11095 11096 bool VisitIntegerLiteral(const IntegerLiteral *E) { 11097 return Success(E->getValue(), E); 11098 } 11099 bool VisitCharacterLiteral(const CharacterLiteral *E) { 11100 return Success(E->getValue(), E); 11101 } 11102 11103 bool CheckReferencedDecl(const Expr *E, const Decl *D); 11104 bool VisitDeclRefExpr(const DeclRefExpr *E) { 11105 if (CheckReferencedDecl(E, E->getDecl())) 11106 return true; 11107 11108 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); 11109 } 11110 bool VisitMemberExpr(const MemberExpr *E) { 11111 if (CheckReferencedDecl(E, E->getMemberDecl())) { 11112 VisitIgnoredBaseExpression(E->getBase()); 11113 return true; 11114 } 11115 11116 return ExprEvaluatorBaseTy::VisitMemberExpr(E); 11117 } 11118 11119 bool VisitCallExpr(const CallExpr *E); 11120 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 11121 bool VisitBinaryOperator(const BinaryOperator *E); 11122 bool VisitOffsetOfExpr(const OffsetOfExpr *E); 11123 bool VisitUnaryOperator(const UnaryOperator *E); 11124 11125 bool VisitCastExpr(const CastExpr* E); 11126 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 11127 11128 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 11129 return Success(E->getValue(), E); 11130 } 11131 11132 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 11133 return Success(E->getValue(), E); 11134 } 11135 11136 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 11137 if (Info.ArrayInitIndex == uint64_t(-1)) { 11138 // We were asked to evaluate this subexpression independent of the 11139 // enclosing ArrayInitLoopExpr. We can't do that. 11140 Info.FFDiag(E); 11141 return false; 11142 } 11143 return Success(Info.ArrayInitIndex, E); 11144 } 11145 11146 // Note, GNU defines __null as an integer, not a pointer. 11147 bool VisitGNUNullExpr(const GNUNullExpr *E) { 11148 return ZeroInitialization(E); 11149 } 11150 11151 bool VisitTypeTraitExpr(const TypeTraitExpr *E) { 11152 return Success(E->getValue(), E); 11153 } 11154 11155 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 11156 return Success(E->getValue(), E); 11157 } 11158 11159 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 11160 return Success(E->getValue(), E); 11161 } 11162 11163 bool VisitUnaryReal(const UnaryOperator *E); 11164 bool VisitUnaryImag(const UnaryOperator *E); 11165 11166 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); 11167 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); 11168 bool VisitSourceLocExpr(const SourceLocExpr *E); 11169 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); 11170 bool VisitRequiresExpr(const RequiresExpr *E); 11171 // FIXME: Missing: array subscript of vector, member of vector 11172 }; 11173 11174 class FixedPointExprEvaluator 11175 : public ExprEvaluatorBase<FixedPointExprEvaluator> { 11176 APValue &Result; 11177 11178 public: 11179 FixedPointExprEvaluator(EvalInfo &info, APValue &result) 11180 : ExprEvaluatorBaseTy(info), Result(result) {} 11181 11182 bool Success(const llvm::APInt &I, const Expr *E) { 11183 return Success( 11184 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); 11185 } 11186 11187 bool Success(uint64_t Value, const Expr *E) { 11188 return Success( 11189 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); 11190 } 11191 11192 bool Success(const APValue &V, const Expr *E) { 11193 return Success(V.getFixedPoint(), E); 11194 } 11195 11196 bool Success(const APFixedPoint &V, const Expr *E) { 11197 assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); 11198 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && 11199 "Invalid evaluation result."); 11200 Result = APValue(V); 11201 return true; 11202 } 11203 11204 //===--------------------------------------------------------------------===// 11205 // Visitor Methods 11206 //===--------------------------------------------------------------------===// 11207 11208 bool VisitFixedPointLiteral(const FixedPointLiteral *E) { 11209 return Success(E->getValue(), E); 11210 } 11211 11212 bool VisitCastExpr(const CastExpr *E); 11213 bool VisitUnaryOperator(const UnaryOperator *E); 11214 bool VisitBinaryOperator(const BinaryOperator *E); 11215 }; 11216 } // end anonymous namespace 11217 11218 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and 11219 /// produce either the integer value or a pointer. 11220 /// 11221 /// GCC has a heinous extension which folds casts between pointer types and 11222 /// pointer-sized integral types. We support this by allowing the evaluation of 11223 /// an integer rvalue to produce a pointer (represented as an lvalue) instead. 11224 /// Some simple arithmetic on such values is supported (they are treated much 11225 /// like char*). 11226 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 11227 EvalInfo &Info) { 11228 assert(!E->isValueDependent()); 11229 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType()); 11230 return IntExprEvaluator(Info, Result).Visit(E); 11231 } 11232 11233 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { 11234 assert(!E->isValueDependent()); 11235 APValue Val; 11236 if (!EvaluateIntegerOrLValue(E, Val, Info)) 11237 return false; 11238 if (!Val.isInt()) { 11239 // FIXME: It would be better to produce the diagnostic for casting 11240 // a pointer to an integer. 11241 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 11242 return false; 11243 } 11244 Result = Val.getInt(); 11245 return true; 11246 } 11247 11248 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { 11249 APValue Evaluated = E->EvaluateInContext( 11250 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 11251 return Success(Evaluated, E); 11252 } 11253 11254 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 11255 EvalInfo &Info) { 11256 assert(!E->isValueDependent()); 11257 if (E->getType()->isFixedPointType()) { 11258 APValue Val; 11259 if (!FixedPointExprEvaluator(Info, Val).Visit(E)) 11260 return false; 11261 if (!Val.isFixedPoint()) 11262 return false; 11263 11264 Result = Val.getFixedPoint(); 11265 return true; 11266 } 11267 return false; 11268 } 11269 11270 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 11271 EvalInfo &Info) { 11272 assert(!E->isValueDependent()); 11273 if (E->getType()->isIntegerType()) { 11274 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); 11275 APSInt Val; 11276 if (!EvaluateInteger(E, Val, Info)) 11277 return false; 11278 Result = APFixedPoint(Val, FXSema); 11279 return true; 11280 } else if (E->getType()->isFixedPointType()) { 11281 return EvaluateFixedPoint(E, Result, Info); 11282 } 11283 return false; 11284 } 11285 11286 /// Check whether the given declaration can be directly converted to an integral 11287 /// rvalue. If not, no diagnostic is produced; there are other things we can 11288 /// try. 11289 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { 11290 // Enums are integer constant exprs. 11291 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { 11292 // Check for signedness/width mismatches between E type and ECD value. 11293 bool SameSign = (ECD->getInitVal().isSigned() 11294 == E->getType()->isSignedIntegerOrEnumerationType()); 11295 bool SameWidth = (ECD->getInitVal().getBitWidth() 11296 == Info.Ctx.getIntWidth(E->getType())); 11297 if (SameSign && SameWidth) 11298 return Success(ECD->getInitVal(), E); 11299 else { 11300 // Get rid of mismatch (otherwise Success assertions will fail) 11301 // by computing a new value matching the type of E. 11302 llvm::APSInt Val = ECD->getInitVal(); 11303 if (!SameSign) 11304 Val.setIsSigned(!ECD->getInitVal().isSigned()); 11305 if (!SameWidth) 11306 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); 11307 return Success(Val, E); 11308 } 11309 } 11310 return false; 11311 } 11312 11313 /// Values returned by __builtin_classify_type, chosen to match the values 11314 /// produced by GCC's builtin. 11315 enum class GCCTypeClass { 11316 None = -1, 11317 Void = 0, 11318 Integer = 1, 11319 // GCC reserves 2 for character types, but instead classifies them as 11320 // integers. 11321 Enum = 3, 11322 Bool = 4, 11323 Pointer = 5, 11324 // GCC reserves 6 for references, but appears to never use it (because 11325 // expressions never have reference type, presumably). 11326 PointerToDataMember = 7, 11327 RealFloat = 8, 11328 Complex = 9, 11329 // GCC reserves 10 for functions, but does not use it since GCC version 6 due 11330 // to decay to pointer. (Prior to version 6 it was only used in C++ mode). 11331 // GCC claims to reserve 11 for pointers to member functions, but *actually* 11332 // uses 12 for that purpose, same as for a class or struct. Maybe it 11333 // internally implements a pointer to member as a struct? Who knows. 11334 PointerToMemberFunction = 12, // Not a bug, see above. 11335 ClassOrStruct = 12, 11336 Union = 13, 11337 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to 11338 // decay to pointer. (Prior to version 6 it was only used in C++ mode). 11339 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string 11340 // literals. 11341 }; 11342 11343 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 11344 /// as GCC. 11345 static GCCTypeClass 11346 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) { 11347 assert(!T->isDependentType() && "unexpected dependent type"); 11348 11349 QualType CanTy = T.getCanonicalType(); 11350 11351 switch (CanTy->getTypeClass()) { 11352 #define TYPE(ID, BASE) 11353 #define DEPENDENT_TYPE(ID, BASE) case Type::ID: 11354 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: 11355 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: 11356 #include "clang/AST/TypeNodes.inc" 11357 case Type::Auto: 11358 case Type::DeducedTemplateSpecialization: 11359 llvm_unreachable("unexpected non-canonical or dependent type"); 11360 11361 case Type::Builtin: 11362 switch (cast<BuiltinType>(CanTy)->getKind()) { 11363 #define BUILTIN_TYPE(ID, SINGLETON_ID) 11364 #define SIGNED_TYPE(ID, SINGLETON_ID) \ 11365 case BuiltinType::ID: return GCCTypeClass::Integer; 11366 #define FLOATING_TYPE(ID, SINGLETON_ID) \ 11367 case BuiltinType::ID: return GCCTypeClass::RealFloat; 11368 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ 11369 case BuiltinType::ID: break; 11370 #include "clang/AST/BuiltinTypes.def" 11371 case BuiltinType::Void: 11372 return GCCTypeClass::Void; 11373 11374 case BuiltinType::Bool: 11375 return GCCTypeClass::Bool; 11376 11377 case BuiltinType::Char_U: 11378 case BuiltinType::UChar: 11379 case BuiltinType::WChar_U: 11380 case BuiltinType::Char8: 11381 case BuiltinType::Char16: 11382 case BuiltinType::Char32: 11383 case BuiltinType::UShort: 11384 case BuiltinType::UInt: 11385 case BuiltinType::ULong: 11386 case BuiltinType::ULongLong: 11387 case BuiltinType::UInt128: 11388 return GCCTypeClass::Integer; 11389 11390 case BuiltinType::UShortAccum: 11391 case BuiltinType::UAccum: 11392 case BuiltinType::ULongAccum: 11393 case BuiltinType::UShortFract: 11394 case BuiltinType::UFract: 11395 case BuiltinType::ULongFract: 11396 case BuiltinType::SatUShortAccum: 11397 case BuiltinType::SatUAccum: 11398 case BuiltinType::SatULongAccum: 11399 case BuiltinType::SatUShortFract: 11400 case BuiltinType::SatUFract: 11401 case BuiltinType::SatULongFract: 11402 return GCCTypeClass::None; 11403 11404 case BuiltinType::NullPtr: 11405 11406 case BuiltinType::ObjCId: 11407 case BuiltinType::ObjCClass: 11408 case BuiltinType::ObjCSel: 11409 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 11410 case BuiltinType::Id: 11411 #include "clang/Basic/OpenCLImageTypes.def" 11412 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 11413 case BuiltinType::Id: 11414 #include "clang/Basic/OpenCLExtensionTypes.def" 11415 case BuiltinType::OCLSampler: 11416 case BuiltinType::OCLEvent: 11417 case BuiltinType::OCLClkEvent: 11418 case BuiltinType::OCLQueue: 11419 case BuiltinType::OCLReserveID: 11420 #define SVE_TYPE(Name, Id, SingletonId) \ 11421 case BuiltinType::Id: 11422 #include "clang/Basic/AArch64SVEACLETypes.def" 11423 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 11424 case BuiltinType::Id: 11425 #include "clang/Basic/PPCTypes.def" 11426 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 11427 #include "clang/Basic/RISCVVTypes.def" 11428 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 11429 #include "clang/Basic/WebAssemblyReferenceTypes.def" 11430 return GCCTypeClass::None; 11431 11432 case BuiltinType::Dependent: 11433 llvm_unreachable("unexpected dependent type"); 11434 }; 11435 llvm_unreachable("unexpected placeholder type"); 11436 11437 case Type::Enum: 11438 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; 11439 11440 case Type::Pointer: 11441 case Type::ConstantArray: 11442 case Type::VariableArray: 11443 case Type::IncompleteArray: 11444 case Type::FunctionNoProto: 11445 case Type::FunctionProto: 11446 return GCCTypeClass::Pointer; 11447 11448 case Type::MemberPointer: 11449 return CanTy->isMemberDataPointerType() 11450 ? GCCTypeClass::PointerToDataMember 11451 : GCCTypeClass::PointerToMemberFunction; 11452 11453 case Type::Complex: 11454 return GCCTypeClass::Complex; 11455 11456 case Type::Record: 11457 return CanTy->isUnionType() ? GCCTypeClass::Union 11458 : GCCTypeClass::ClassOrStruct; 11459 11460 case Type::Atomic: 11461 // GCC classifies _Atomic T the same as T. 11462 return EvaluateBuiltinClassifyType( 11463 CanTy->castAs<AtomicType>()->getValueType(), LangOpts); 11464 11465 case Type::BlockPointer: 11466 case Type::Vector: 11467 case Type::ExtVector: 11468 case Type::ConstantMatrix: 11469 case Type::ObjCObject: 11470 case Type::ObjCInterface: 11471 case Type::ObjCObjectPointer: 11472 case Type::Pipe: 11473 case Type::BitInt: 11474 // GCC classifies vectors as None. We follow its lead and classify all 11475 // other types that don't fit into the regular classification the same way. 11476 return GCCTypeClass::None; 11477 11478 case Type::LValueReference: 11479 case Type::RValueReference: 11480 llvm_unreachable("invalid type for expression"); 11481 } 11482 11483 llvm_unreachable("unexpected type class"); 11484 } 11485 11486 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 11487 /// as GCC. 11488 static GCCTypeClass 11489 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { 11490 // If no argument was supplied, default to None. This isn't 11491 // ideal, however it is what gcc does. 11492 if (E->getNumArgs() == 0) 11493 return GCCTypeClass::None; 11494 11495 // FIXME: Bizarrely, GCC treats a call with more than one argument as not 11496 // being an ICE, but still folds it to a constant using the type of the first 11497 // argument. 11498 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); 11499 } 11500 11501 /// EvaluateBuiltinConstantPForLValue - Determine the result of 11502 /// __builtin_constant_p when applied to the given pointer. 11503 /// 11504 /// A pointer is only "constant" if it is null (or a pointer cast to integer) 11505 /// or it points to the first character of a string literal. 11506 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { 11507 APValue::LValueBase Base = LV.getLValueBase(); 11508 if (Base.isNull()) { 11509 // A null base is acceptable. 11510 return true; 11511 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { 11512 if (!isa<StringLiteral>(E)) 11513 return false; 11514 return LV.getLValueOffset().isZero(); 11515 } else if (Base.is<TypeInfoLValue>()) { 11516 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to 11517 // evaluate to true. 11518 return true; 11519 } else { 11520 // Any other base is not constant enough for GCC. 11521 return false; 11522 } 11523 } 11524 11525 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to 11526 /// GCC as we can manage. 11527 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { 11528 // This evaluation is not permitted to have side-effects, so evaluate it in 11529 // a speculative evaluation context. 11530 SpeculativeEvaluationRAII SpeculativeEval(Info); 11531 11532 // Constant-folding is always enabled for the operand of __builtin_constant_p 11533 // (even when the enclosing evaluation context otherwise requires a strict 11534 // language-specific constant expression). 11535 FoldConstant Fold(Info, true); 11536 11537 QualType ArgType = Arg->getType(); 11538 11539 // __builtin_constant_p always has one operand. The rules which gcc follows 11540 // are not precisely documented, but are as follows: 11541 // 11542 // - If the operand is of integral, floating, complex or enumeration type, 11543 // and can be folded to a known value of that type, it returns 1. 11544 // - If the operand can be folded to a pointer to the first character 11545 // of a string literal (or such a pointer cast to an integral type) 11546 // or to a null pointer or an integer cast to a pointer, it returns 1. 11547 // 11548 // Otherwise, it returns 0. 11549 // 11550 // FIXME: GCC also intends to return 1 for literals of aggregate types, but 11551 // its support for this did not work prior to GCC 9 and is not yet well 11552 // understood. 11553 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || 11554 ArgType->isAnyComplexType() || ArgType->isPointerType() || 11555 ArgType->isNullPtrType()) { 11556 APValue V; 11557 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) { 11558 Fold.keepDiagnostics(); 11559 return false; 11560 } 11561 11562 // For a pointer (possibly cast to integer), there are special rules. 11563 if (V.getKind() == APValue::LValue) 11564 return EvaluateBuiltinConstantPForLValue(V); 11565 11566 // Otherwise, any constant value is good enough. 11567 return V.hasValue(); 11568 } 11569 11570 // Anything else isn't considered to be sufficiently constant. 11571 return false; 11572 } 11573 11574 /// Retrieves the "underlying object type" of the given expression, 11575 /// as used by __builtin_object_size. 11576 static QualType getObjectType(APValue::LValueBase B) { 11577 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 11578 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 11579 return VD->getType(); 11580 } else if (const Expr *E = B.dyn_cast<const Expr*>()) { 11581 if (isa<CompoundLiteralExpr>(E)) 11582 return E->getType(); 11583 } else if (B.is<TypeInfoLValue>()) { 11584 return B.getTypeInfoType(); 11585 } else if (B.is<DynamicAllocLValue>()) { 11586 return B.getDynamicAllocType(); 11587 } 11588 11589 return QualType(); 11590 } 11591 11592 /// A more selective version of E->IgnoreParenCasts for 11593 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only 11594 /// to change the type of E. 11595 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` 11596 /// 11597 /// Always returns an RValue with a pointer representation. 11598 static const Expr *ignorePointerCastsAndParens(const Expr *E) { 11599 assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); 11600 11601 auto *NoParens = E->IgnoreParens(); 11602 auto *Cast = dyn_cast<CastExpr>(NoParens); 11603 if (Cast == nullptr) 11604 return NoParens; 11605 11606 // We only conservatively allow a few kinds of casts, because this code is 11607 // inherently a simple solution that seeks to support the common case. 11608 auto CastKind = Cast->getCastKind(); 11609 if (CastKind != CK_NoOp && CastKind != CK_BitCast && 11610 CastKind != CK_AddressSpaceConversion) 11611 return NoParens; 11612 11613 auto *SubExpr = Cast->getSubExpr(); 11614 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue()) 11615 return NoParens; 11616 return ignorePointerCastsAndParens(SubExpr); 11617 } 11618 11619 /// Checks to see if the given LValue's Designator is at the end of the LValue's 11620 /// record layout. e.g. 11621 /// struct { struct { int a, b; } fst, snd; } obj; 11622 /// obj.fst // no 11623 /// obj.snd // yes 11624 /// obj.fst.a // no 11625 /// obj.fst.b // no 11626 /// obj.snd.a // no 11627 /// obj.snd.b // yes 11628 /// 11629 /// Please note: this function is specialized for how __builtin_object_size 11630 /// views "objects". 11631 /// 11632 /// If this encounters an invalid RecordDecl or otherwise cannot determine the 11633 /// correct result, it will always return true. 11634 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { 11635 assert(!LVal.Designator.Invalid); 11636 11637 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { 11638 const RecordDecl *Parent = FD->getParent(); 11639 Invalid = Parent->isInvalidDecl(); 11640 if (Invalid || Parent->isUnion()) 11641 return true; 11642 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); 11643 return FD->getFieldIndex() + 1 == Layout.getFieldCount(); 11644 }; 11645 11646 auto &Base = LVal.getLValueBase(); 11647 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { 11648 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 11649 bool Invalid; 11650 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 11651 return Invalid; 11652 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { 11653 for (auto *FD : IFD->chain()) { 11654 bool Invalid; 11655 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) 11656 return Invalid; 11657 } 11658 } 11659 } 11660 11661 unsigned I = 0; 11662 QualType BaseType = getType(Base); 11663 if (LVal.Designator.FirstEntryIsAnUnsizedArray) { 11664 // If we don't know the array bound, conservatively assume we're looking at 11665 // the final array element. 11666 ++I; 11667 if (BaseType->isIncompleteArrayType()) 11668 BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); 11669 else 11670 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 11671 } 11672 11673 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { 11674 const auto &Entry = LVal.Designator.Entries[I]; 11675 if (BaseType->isArrayType()) { 11676 // Because __builtin_object_size treats arrays as objects, we can ignore 11677 // the index iff this is the last array in the Designator. 11678 if (I + 1 == E) 11679 return true; 11680 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); 11681 uint64_t Index = Entry.getAsArrayIndex(); 11682 if (Index + 1 != CAT->getSize()) 11683 return false; 11684 BaseType = CAT->getElementType(); 11685 } else if (BaseType->isAnyComplexType()) { 11686 const auto *CT = BaseType->castAs<ComplexType>(); 11687 uint64_t Index = Entry.getAsArrayIndex(); 11688 if (Index != 1) 11689 return false; 11690 BaseType = CT->getElementType(); 11691 } else if (auto *FD = getAsField(Entry)) { 11692 bool Invalid; 11693 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 11694 return Invalid; 11695 BaseType = FD->getType(); 11696 } else { 11697 assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); 11698 return false; 11699 } 11700 } 11701 return true; 11702 } 11703 11704 /// Tests to see if the LValue has a user-specified designator (that isn't 11705 /// necessarily valid). Note that this always returns 'true' if the LValue has 11706 /// an unsized array as its first designator entry, because there's currently no 11707 /// way to tell if the user typed *foo or foo[0]. 11708 static bool refersToCompleteObject(const LValue &LVal) { 11709 if (LVal.Designator.Invalid) 11710 return false; 11711 11712 if (!LVal.Designator.Entries.empty()) 11713 return LVal.Designator.isMostDerivedAnUnsizedArray(); 11714 11715 if (!LVal.InvalidBase) 11716 return true; 11717 11718 // If `E` is a MemberExpr, then the first part of the designator is hiding in 11719 // the LValueBase. 11720 const auto *E = LVal.Base.dyn_cast<const Expr *>(); 11721 return !E || !isa<MemberExpr>(E); 11722 } 11723 11724 /// Attempts to detect a user writing into a piece of memory that's impossible 11725 /// to figure out the size of by just using types. 11726 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { 11727 const SubobjectDesignator &Designator = LVal.Designator; 11728 // Notes: 11729 // - Users can only write off of the end when we have an invalid base. Invalid 11730 // bases imply we don't know where the memory came from. 11731 // - We used to be a bit more aggressive here; we'd only be conservative if 11732 // the array at the end was flexible, or if it had 0 or 1 elements. This 11733 // broke some common standard library extensions (PR30346), but was 11734 // otherwise seemingly fine. It may be useful to reintroduce this behavior 11735 // with some sort of list. OTOH, it seems that GCC is always 11736 // conservative with the last element in structs (if it's an array), so our 11737 // current behavior is more compatible than an explicit list approach would 11738 // be. 11739 auto isFlexibleArrayMember = [&] { 11740 using FAMKind = LangOptions::StrictFlexArraysLevelKind; 11741 FAMKind StrictFlexArraysLevel = 11742 Ctx.getLangOpts().getStrictFlexArraysLevel(); 11743 11744 if (Designator.isMostDerivedAnUnsizedArray()) 11745 return true; 11746 11747 if (StrictFlexArraysLevel == FAMKind::Default) 11748 return true; 11749 11750 if (Designator.getMostDerivedArraySize() == 0 && 11751 StrictFlexArraysLevel != FAMKind::IncompleteOnly) 11752 return true; 11753 11754 if (Designator.getMostDerivedArraySize() == 1 && 11755 StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete) 11756 return true; 11757 11758 return false; 11759 }; 11760 11761 return LVal.InvalidBase && 11762 Designator.Entries.size() == Designator.MostDerivedPathLength && 11763 Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() && 11764 isDesignatorAtObjectEnd(Ctx, LVal); 11765 } 11766 11767 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. 11768 /// Fails if the conversion would cause loss of precision. 11769 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, 11770 CharUnits &Result) { 11771 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); 11772 if (Int.ugt(CharUnitsMax)) 11773 return false; 11774 Result = CharUnits::fromQuantity(Int.getZExtValue()); 11775 return true; 11776 } 11777 11778 /// If we're evaluating the object size of an instance of a struct that 11779 /// contains a flexible array member, add the size of the initializer. 11780 static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T, 11781 const LValue &LV, CharUnits &Size) { 11782 if (!T.isNull() && T->isStructureType() && 11783 T->getAsStructureType()->getDecl()->hasFlexibleArrayMember()) 11784 if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>()) 11785 if (const auto *VD = dyn_cast<VarDecl>(V)) 11786 if (VD->hasInit()) 11787 Size += VD->getFlexibleArrayInitChars(Info.Ctx); 11788 } 11789 11790 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will 11791 /// determine how many bytes exist from the beginning of the object to either 11792 /// the end of the current subobject, or the end of the object itself, depending 11793 /// on what the LValue looks like + the value of Type. 11794 /// 11795 /// If this returns false, the value of Result is undefined. 11796 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, 11797 unsigned Type, const LValue &LVal, 11798 CharUnits &EndOffset) { 11799 bool DetermineForCompleteObject = refersToCompleteObject(LVal); 11800 11801 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { 11802 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) 11803 return false; 11804 return HandleSizeof(Info, ExprLoc, Ty, Result); 11805 }; 11806 11807 // We want to evaluate the size of the entire object. This is a valid fallback 11808 // for when Type=1 and the designator is invalid, because we're asked for an 11809 // upper-bound. 11810 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { 11811 // Type=3 wants a lower bound, so we can't fall back to this. 11812 if (Type == 3 && !DetermineForCompleteObject) 11813 return false; 11814 11815 llvm::APInt APEndOffset; 11816 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 11817 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 11818 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 11819 11820 if (LVal.InvalidBase) 11821 return false; 11822 11823 QualType BaseTy = getObjectType(LVal.getLValueBase()); 11824 const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset); 11825 addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset); 11826 return Ret; 11827 } 11828 11829 // We want to evaluate the size of a subobject. 11830 const SubobjectDesignator &Designator = LVal.Designator; 11831 11832 // The following is a moderately common idiom in C: 11833 // 11834 // struct Foo { int a; char c[1]; }; 11835 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); 11836 // strcpy(&F->c[0], Bar); 11837 // 11838 // In order to not break too much legacy code, we need to support it. 11839 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { 11840 // If we can resolve this to an alloc_size call, we can hand that back, 11841 // because we know for certain how many bytes there are to write to. 11842 llvm::APInt APEndOffset; 11843 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 11844 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 11845 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 11846 11847 // If we cannot determine the size of the initial allocation, then we can't 11848 // given an accurate upper-bound. However, we are still able to give 11849 // conservative lower-bounds for Type=3. 11850 if (Type == 1) 11851 return false; 11852 } 11853 11854 CharUnits BytesPerElem; 11855 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) 11856 return false; 11857 11858 // According to the GCC documentation, we want the size of the subobject 11859 // denoted by the pointer. But that's not quite right -- what we actually 11860 // want is the size of the immediately-enclosing array, if there is one. 11861 int64_t ElemsRemaining; 11862 if (Designator.MostDerivedIsArrayElement && 11863 Designator.Entries.size() == Designator.MostDerivedPathLength) { 11864 uint64_t ArraySize = Designator.getMostDerivedArraySize(); 11865 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); 11866 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; 11867 } else { 11868 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; 11869 } 11870 11871 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; 11872 return true; 11873 } 11874 11875 /// Tries to evaluate the __builtin_object_size for @p E. If successful, 11876 /// returns true and stores the result in @p Size. 11877 /// 11878 /// If @p WasError is non-null, this will report whether the failure to evaluate 11879 /// is to be treated as an Error in IntExprEvaluator. 11880 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, 11881 EvalInfo &Info, uint64_t &Size) { 11882 // Determine the denoted object. 11883 LValue LVal; 11884 { 11885 // The operand of __builtin_object_size is never evaluated for side-effects. 11886 // If there are any, but we can determine the pointed-to object anyway, then 11887 // ignore the side-effects. 11888 SpeculativeEvaluationRAII SpeculativeEval(Info); 11889 IgnoreSideEffectsRAII Fold(Info); 11890 11891 if (E->isGLValue()) { 11892 // It's possible for us to be given GLValues if we're called via 11893 // Expr::tryEvaluateObjectSize. 11894 APValue RVal; 11895 if (!EvaluateAsRValue(Info, E, RVal)) 11896 return false; 11897 LVal.setFrom(Info.Ctx, RVal); 11898 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, 11899 /*InvalidBaseOK=*/true)) 11900 return false; 11901 } 11902 11903 // If we point to before the start of the object, there are no accessible 11904 // bytes. 11905 if (LVal.getLValueOffset().isNegative()) { 11906 Size = 0; 11907 return true; 11908 } 11909 11910 CharUnits EndOffset; 11911 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) 11912 return false; 11913 11914 // If we've fallen outside of the end offset, just pretend there's nothing to 11915 // write to/read from. 11916 if (EndOffset <= LVal.getLValueOffset()) 11917 Size = 0; 11918 else 11919 Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); 11920 return true; 11921 } 11922 11923 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { 11924 if (!IsConstantEvaluatedBuiltinCall(E)) 11925 return ExprEvaluatorBaseTy::VisitCallExpr(E); 11926 return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); 11927 } 11928 11929 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info, 11930 APValue &Val, APSInt &Alignment) { 11931 QualType SrcTy = E->getArg(0)->getType(); 11932 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment)) 11933 return false; 11934 // Even though we are evaluating integer expressions we could get a pointer 11935 // argument for the __builtin_is_aligned() case. 11936 if (SrcTy->isPointerType()) { 11937 LValue Ptr; 11938 if (!EvaluatePointer(E->getArg(0), Ptr, Info)) 11939 return false; 11940 Ptr.moveInto(Val); 11941 } else if (!SrcTy->isIntegralOrEnumerationType()) { 11942 Info.FFDiag(E->getArg(0)); 11943 return false; 11944 } else { 11945 APSInt SrcInt; 11946 if (!EvaluateInteger(E->getArg(0), SrcInt, Info)) 11947 return false; 11948 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() && 11949 "Bit widths must be the same"); 11950 Val = APValue(SrcInt); 11951 } 11952 assert(Val.hasValue()); 11953 return true; 11954 } 11955 11956 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 11957 unsigned BuiltinOp) { 11958 switch (BuiltinOp) { 11959 default: 11960 return false; 11961 11962 case Builtin::BI__builtin_dynamic_object_size: 11963 case Builtin::BI__builtin_object_size: { 11964 // The type was checked when we built the expression. 11965 unsigned Type = 11966 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 11967 assert(Type <= 3 && "unexpected type"); 11968 11969 uint64_t Size; 11970 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) 11971 return Success(Size, E); 11972 11973 if (E->getArg(0)->HasSideEffects(Info.Ctx)) 11974 return Success((Type & 2) ? 0 : -1, E); 11975 11976 // Expression had no side effects, but we couldn't statically determine the 11977 // size of the referenced object. 11978 switch (Info.EvalMode) { 11979 case EvalInfo::EM_ConstantExpression: 11980 case EvalInfo::EM_ConstantFold: 11981 case EvalInfo::EM_IgnoreSideEffects: 11982 // Leave it to IR generation. 11983 return Error(E); 11984 case EvalInfo::EM_ConstantExpressionUnevaluated: 11985 // Reduce it to a constant now. 11986 return Success((Type & 2) ? 0 : -1, E); 11987 } 11988 11989 llvm_unreachable("unexpected EvalMode"); 11990 } 11991 11992 case Builtin::BI__builtin_os_log_format_buffer_size: { 11993 analyze_os_log::OSLogBufferLayout Layout; 11994 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); 11995 return Success(Layout.size().getQuantity(), E); 11996 } 11997 11998 case Builtin::BI__builtin_is_aligned: { 11999 APValue Src; 12000 APSInt Alignment; 12001 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12002 return false; 12003 if (Src.isLValue()) { 12004 // If we evaluated a pointer, check the minimum known alignment. 12005 LValue Ptr; 12006 Ptr.setFrom(Info.Ctx, Src); 12007 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr); 12008 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset); 12009 // We can return true if the known alignment at the computed offset is 12010 // greater than the requested alignment. 12011 assert(PtrAlign.isPowerOfTwo()); 12012 assert(Alignment.isPowerOf2()); 12013 if (PtrAlign.getQuantity() >= Alignment) 12014 return Success(1, E); 12015 // If the alignment is not known to be sufficient, some cases could still 12016 // be aligned at run time. However, if the requested alignment is less or 12017 // equal to the base alignment and the offset is not aligned, we know that 12018 // the run-time value can never be aligned. 12019 if (BaseAlignment.getQuantity() >= Alignment && 12020 PtrAlign.getQuantity() < Alignment) 12021 return Success(0, E); 12022 // Otherwise we can't infer whether the value is sufficiently aligned. 12023 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N) 12024 // in cases where we can't fully evaluate the pointer. 12025 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute) 12026 << Alignment; 12027 return false; 12028 } 12029 assert(Src.isInt()); 12030 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E); 12031 } 12032 case Builtin::BI__builtin_align_up: { 12033 APValue Src; 12034 APSInt Alignment; 12035 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12036 return false; 12037 if (!Src.isInt()) 12038 return Error(E); 12039 APSInt AlignedVal = 12040 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1), 12041 Src.getInt().isUnsigned()); 12042 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 12043 return Success(AlignedVal, E); 12044 } 12045 case Builtin::BI__builtin_align_down: { 12046 APValue Src; 12047 APSInt Alignment; 12048 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12049 return false; 12050 if (!Src.isInt()) 12051 return Error(E); 12052 APSInt AlignedVal = 12053 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned()); 12054 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 12055 return Success(AlignedVal, E); 12056 } 12057 12058 case Builtin::BI__builtin_bitreverse8: 12059 case Builtin::BI__builtin_bitreverse16: 12060 case Builtin::BI__builtin_bitreverse32: 12061 case Builtin::BI__builtin_bitreverse64: { 12062 APSInt Val; 12063 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12064 return false; 12065 12066 return Success(Val.reverseBits(), E); 12067 } 12068 12069 case Builtin::BI__builtin_bswap16: 12070 case Builtin::BI__builtin_bswap32: 12071 case Builtin::BI__builtin_bswap64: { 12072 APSInt Val; 12073 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12074 return false; 12075 12076 return Success(Val.byteSwap(), E); 12077 } 12078 12079 case Builtin::BI__builtin_classify_type: 12080 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); 12081 12082 case Builtin::BI__builtin_clrsb: 12083 case Builtin::BI__builtin_clrsbl: 12084 case Builtin::BI__builtin_clrsbll: { 12085 APSInt Val; 12086 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12087 return false; 12088 12089 return Success(Val.getBitWidth() - Val.getSignificantBits(), E); 12090 } 12091 12092 case Builtin::BI__builtin_clz: 12093 case Builtin::BI__builtin_clzl: 12094 case Builtin::BI__builtin_clzll: 12095 case Builtin::BI__builtin_clzs: { 12096 APSInt Val; 12097 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12098 return false; 12099 if (!Val) 12100 return Error(E); 12101 12102 return Success(Val.countl_zero(), E); 12103 } 12104 12105 case Builtin::BI__builtin_constant_p: { 12106 const Expr *Arg = E->getArg(0); 12107 if (EvaluateBuiltinConstantP(Info, Arg)) 12108 return Success(true, E); 12109 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { 12110 // Outside a constant context, eagerly evaluate to false in the presence 12111 // of side-effects in order to avoid -Wunsequenced false-positives in 12112 // a branch on __builtin_constant_p(expr). 12113 return Success(false, E); 12114 } 12115 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 12116 return false; 12117 } 12118 12119 case Builtin::BI__builtin_is_constant_evaluated: { 12120 const auto *Callee = Info.CurrentCall->getCallee(); 12121 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression && 12122 (Info.CallStackDepth == 1 || 12123 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() && 12124 Callee->getIdentifier() && 12125 Callee->getIdentifier()->isStr("is_constant_evaluated")))) { 12126 // FIXME: Find a better way to avoid duplicated diagnostics. 12127 if (Info.EvalStatus.Diag) 12128 Info.report((Info.CallStackDepth == 1) ? E->getExprLoc() 12129 : Info.CurrentCall->CallLoc, 12130 diag::warn_is_constant_evaluated_always_true_constexpr) 12131 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated" 12132 : "std::is_constant_evaluated"); 12133 } 12134 12135 return Success(Info.InConstantContext, E); 12136 } 12137 12138 case Builtin::BI__builtin_ctz: 12139 case Builtin::BI__builtin_ctzl: 12140 case Builtin::BI__builtin_ctzll: 12141 case Builtin::BI__builtin_ctzs: { 12142 APSInt Val; 12143 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12144 return false; 12145 if (!Val) 12146 return Error(E); 12147 12148 return Success(Val.countr_zero(), E); 12149 } 12150 12151 case Builtin::BI__builtin_eh_return_data_regno: { 12152 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 12153 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); 12154 return Success(Operand, E); 12155 } 12156 12157 case Builtin::BI__builtin_expect: 12158 case Builtin::BI__builtin_expect_with_probability: 12159 return Visit(E->getArg(0)); 12160 12161 case Builtin::BI__builtin_ffs: 12162 case Builtin::BI__builtin_ffsl: 12163 case Builtin::BI__builtin_ffsll: { 12164 APSInt Val; 12165 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12166 return false; 12167 12168 unsigned N = Val.countr_zero(); 12169 return Success(N == Val.getBitWidth() ? 0 : N + 1, E); 12170 } 12171 12172 case Builtin::BI__builtin_fpclassify: { 12173 APFloat Val(0.0); 12174 if (!EvaluateFloat(E->getArg(5), Val, Info)) 12175 return false; 12176 unsigned Arg; 12177 switch (Val.getCategory()) { 12178 case APFloat::fcNaN: Arg = 0; break; 12179 case APFloat::fcInfinity: Arg = 1; break; 12180 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; 12181 case APFloat::fcZero: Arg = 4; break; 12182 } 12183 return Visit(E->getArg(Arg)); 12184 } 12185 12186 case Builtin::BI__builtin_isinf_sign: { 12187 APFloat Val(0.0); 12188 return EvaluateFloat(E->getArg(0), Val, Info) && 12189 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); 12190 } 12191 12192 case Builtin::BI__builtin_isinf: { 12193 APFloat Val(0.0); 12194 return EvaluateFloat(E->getArg(0), Val, Info) && 12195 Success(Val.isInfinity() ? 1 : 0, E); 12196 } 12197 12198 case Builtin::BI__builtin_isfinite: { 12199 APFloat Val(0.0); 12200 return EvaluateFloat(E->getArg(0), Val, Info) && 12201 Success(Val.isFinite() ? 1 : 0, E); 12202 } 12203 12204 case Builtin::BI__builtin_isnan: { 12205 APFloat Val(0.0); 12206 return EvaluateFloat(E->getArg(0), Val, Info) && 12207 Success(Val.isNaN() ? 1 : 0, E); 12208 } 12209 12210 case Builtin::BI__builtin_isnormal: { 12211 APFloat Val(0.0); 12212 return EvaluateFloat(E->getArg(0), Val, Info) && 12213 Success(Val.isNormal() ? 1 : 0, E); 12214 } 12215 12216 case Builtin::BI__builtin_isfpclass: { 12217 APSInt MaskVal; 12218 if (!EvaluateInteger(E->getArg(1), MaskVal, Info)) 12219 return false; 12220 unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue()); 12221 APFloat Val(0.0); 12222 return EvaluateFloat(E->getArg(0), Val, Info) && 12223 Success((Val.classify() & Test) ? 1 : 0, E); 12224 } 12225 12226 case Builtin::BI__builtin_parity: 12227 case Builtin::BI__builtin_parityl: 12228 case Builtin::BI__builtin_parityll: { 12229 APSInt Val; 12230 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12231 return false; 12232 12233 return Success(Val.popcount() % 2, E); 12234 } 12235 12236 case Builtin::BI__builtin_popcount: 12237 case Builtin::BI__builtin_popcountl: 12238 case Builtin::BI__builtin_popcountll: { 12239 APSInt Val; 12240 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12241 return false; 12242 12243 return Success(Val.popcount(), E); 12244 } 12245 12246 case Builtin::BI__builtin_rotateleft8: 12247 case Builtin::BI__builtin_rotateleft16: 12248 case Builtin::BI__builtin_rotateleft32: 12249 case Builtin::BI__builtin_rotateleft64: 12250 case Builtin::BI_rotl8: // Microsoft variants of rotate right 12251 case Builtin::BI_rotl16: 12252 case Builtin::BI_rotl: 12253 case Builtin::BI_lrotl: 12254 case Builtin::BI_rotl64: { 12255 APSInt Val, Amt; 12256 if (!EvaluateInteger(E->getArg(0), Val, Info) || 12257 !EvaluateInteger(E->getArg(1), Amt, Info)) 12258 return false; 12259 12260 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E); 12261 } 12262 12263 case Builtin::BI__builtin_rotateright8: 12264 case Builtin::BI__builtin_rotateright16: 12265 case Builtin::BI__builtin_rotateright32: 12266 case Builtin::BI__builtin_rotateright64: 12267 case Builtin::BI_rotr8: // Microsoft variants of rotate right 12268 case Builtin::BI_rotr16: 12269 case Builtin::BI_rotr: 12270 case Builtin::BI_lrotr: 12271 case Builtin::BI_rotr64: { 12272 APSInt Val, Amt; 12273 if (!EvaluateInteger(E->getArg(0), Val, Info) || 12274 !EvaluateInteger(E->getArg(1), Amt, Info)) 12275 return false; 12276 12277 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E); 12278 } 12279 12280 case Builtin::BIstrlen: 12281 case Builtin::BIwcslen: 12282 // A call to strlen is not a constant expression. 12283 if (Info.getLangOpts().CPlusPlus11) 12284 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 12285 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 12286 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); 12287 else 12288 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 12289 [[fallthrough]]; 12290 case Builtin::BI__builtin_strlen: 12291 case Builtin::BI__builtin_wcslen: { 12292 // As an extension, we support __builtin_strlen() as a constant expression, 12293 // and support folding strlen() to a constant. 12294 uint64_t StrLen; 12295 if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info)) 12296 return Success(StrLen, E); 12297 return false; 12298 } 12299 12300 case Builtin::BIstrcmp: 12301 case Builtin::BIwcscmp: 12302 case Builtin::BIstrncmp: 12303 case Builtin::BIwcsncmp: 12304 case Builtin::BImemcmp: 12305 case Builtin::BIbcmp: 12306 case Builtin::BIwmemcmp: 12307 // A call to strlen is not a constant expression. 12308 if (Info.getLangOpts().CPlusPlus11) 12309 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 12310 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 12311 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); 12312 else 12313 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 12314 [[fallthrough]]; 12315 case Builtin::BI__builtin_strcmp: 12316 case Builtin::BI__builtin_wcscmp: 12317 case Builtin::BI__builtin_strncmp: 12318 case Builtin::BI__builtin_wcsncmp: 12319 case Builtin::BI__builtin_memcmp: 12320 case Builtin::BI__builtin_bcmp: 12321 case Builtin::BI__builtin_wmemcmp: { 12322 LValue String1, String2; 12323 if (!EvaluatePointer(E->getArg(0), String1, Info) || 12324 !EvaluatePointer(E->getArg(1), String2, Info)) 12325 return false; 12326 12327 uint64_t MaxLength = uint64_t(-1); 12328 if (BuiltinOp != Builtin::BIstrcmp && 12329 BuiltinOp != Builtin::BIwcscmp && 12330 BuiltinOp != Builtin::BI__builtin_strcmp && 12331 BuiltinOp != Builtin::BI__builtin_wcscmp) { 12332 APSInt N; 12333 if (!EvaluateInteger(E->getArg(2), N, Info)) 12334 return false; 12335 MaxLength = N.getExtValue(); 12336 } 12337 12338 // Empty substrings compare equal by definition. 12339 if (MaxLength == 0u) 12340 return Success(0, E); 12341 12342 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || 12343 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || 12344 String1.Designator.Invalid || String2.Designator.Invalid) 12345 return false; 12346 12347 QualType CharTy1 = String1.Designator.getType(Info.Ctx); 12348 QualType CharTy2 = String2.Designator.getType(Info.Ctx); 12349 12350 bool IsRawByte = BuiltinOp == Builtin::BImemcmp || 12351 BuiltinOp == Builtin::BIbcmp || 12352 BuiltinOp == Builtin::BI__builtin_memcmp || 12353 BuiltinOp == Builtin::BI__builtin_bcmp; 12354 12355 assert(IsRawByte || 12356 (Info.Ctx.hasSameUnqualifiedType( 12357 CharTy1, E->getArg(0)->getType()->getPointeeType()) && 12358 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); 12359 12360 // For memcmp, allow comparing any arrays of '[[un]signed] char' or 12361 // 'char8_t', but no other types. 12362 if (IsRawByte && 12363 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) { 12364 // FIXME: Consider using our bit_cast implementation to support this. 12365 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported) 12366 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str() 12367 << CharTy1 << CharTy2; 12368 return false; 12369 } 12370 12371 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { 12372 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && 12373 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && 12374 Char1.isInt() && Char2.isInt(); 12375 }; 12376 const auto &AdvanceElems = [&] { 12377 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && 12378 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); 12379 }; 12380 12381 bool StopAtNull = 12382 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && 12383 BuiltinOp != Builtin::BIwmemcmp && 12384 BuiltinOp != Builtin::BI__builtin_memcmp && 12385 BuiltinOp != Builtin::BI__builtin_bcmp && 12386 BuiltinOp != Builtin::BI__builtin_wmemcmp); 12387 bool IsWide = BuiltinOp == Builtin::BIwcscmp || 12388 BuiltinOp == Builtin::BIwcsncmp || 12389 BuiltinOp == Builtin::BIwmemcmp || 12390 BuiltinOp == Builtin::BI__builtin_wcscmp || 12391 BuiltinOp == Builtin::BI__builtin_wcsncmp || 12392 BuiltinOp == Builtin::BI__builtin_wmemcmp; 12393 12394 for (; MaxLength; --MaxLength) { 12395 APValue Char1, Char2; 12396 if (!ReadCurElems(Char1, Char2)) 12397 return false; 12398 if (Char1.getInt().ne(Char2.getInt())) { 12399 if (IsWide) // wmemcmp compares with wchar_t signedness. 12400 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); 12401 // memcmp always compares unsigned chars. 12402 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); 12403 } 12404 if (StopAtNull && !Char1.getInt()) 12405 return Success(0, E); 12406 assert(!(StopAtNull && !Char2.getInt())); 12407 if (!AdvanceElems()) 12408 return false; 12409 } 12410 // We hit the strncmp / memcmp limit. 12411 return Success(0, E); 12412 } 12413 12414 case Builtin::BI__atomic_always_lock_free: 12415 case Builtin::BI__atomic_is_lock_free: 12416 case Builtin::BI__c11_atomic_is_lock_free: { 12417 APSInt SizeVal; 12418 if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) 12419 return false; 12420 12421 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power 12422 // of two less than or equal to the maximum inline atomic width, we know it 12423 // is lock-free. If the size isn't a power of two, or greater than the 12424 // maximum alignment where we promote atomics, we know it is not lock-free 12425 // (at least not in the sense of atomic_is_lock_free). Otherwise, 12426 // the answer can only be determined at runtime; for example, 16-byte 12427 // atomics have lock-free implementations on some, but not all, 12428 // x86-64 processors. 12429 12430 // Check power-of-two. 12431 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); 12432 if (Size.isPowerOfTwo()) { 12433 // Check against inlining width. 12434 unsigned InlineWidthBits = 12435 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); 12436 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { 12437 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || 12438 Size == CharUnits::One() || 12439 E->getArg(1)->isNullPointerConstant(Info.Ctx, 12440 Expr::NPC_NeverValueDependent)) 12441 // OK, we will inline appropriately-aligned operations of this size, 12442 // and _Atomic(T) is appropriately-aligned. 12443 return Success(1, E); 12444 12445 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> 12446 castAs<PointerType>()->getPointeeType(); 12447 if (!PointeeType->isIncompleteType() && 12448 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { 12449 // OK, we will inline operations on this object. 12450 return Success(1, E); 12451 } 12452 } 12453 } 12454 12455 return BuiltinOp == Builtin::BI__atomic_always_lock_free ? 12456 Success(0, E) : Error(E); 12457 } 12458 case Builtin::BI__builtin_add_overflow: 12459 case Builtin::BI__builtin_sub_overflow: 12460 case Builtin::BI__builtin_mul_overflow: 12461 case Builtin::BI__builtin_sadd_overflow: 12462 case Builtin::BI__builtin_uadd_overflow: 12463 case Builtin::BI__builtin_uaddl_overflow: 12464 case Builtin::BI__builtin_uaddll_overflow: 12465 case Builtin::BI__builtin_usub_overflow: 12466 case Builtin::BI__builtin_usubl_overflow: 12467 case Builtin::BI__builtin_usubll_overflow: 12468 case Builtin::BI__builtin_umul_overflow: 12469 case Builtin::BI__builtin_umull_overflow: 12470 case Builtin::BI__builtin_umulll_overflow: 12471 case Builtin::BI__builtin_saddl_overflow: 12472 case Builtin::BI__builtin_saddll_overflow: 12473 case Builtin::BI__builtin_ssub_overflow: 12474 case Builtin::BI__builtin_ssubl_overflow: 12475 case Builtin::BI__builtin_ssubll_overflow: 12476 case Builtin::BI__builtin_smul_overflow: 12477 case Builtin::BI__builtin_smull_overflow: 12478 case Builtin::BI__builtin_smulll_overflow: { 12479 LValue ResultLValue; 12480 APSInt LHS, RHS; 12481 12482 QualType ResultType = E->getArg(2)->getType()->getPointeeType(); 12483 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 12484 !EvaluateInteger(E->getArg(1), RHS, Info) || 12485 !EvaluatePointer(E->getArg(2), ResultLValue, Info)) 12486 return false; 12487 12488 APSInt Result; 12489 bool DidOverflow = false; 12490 12491 // If the types don't have to match, enlarge all 3 to the largest of them. 12492 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 12493 BuiltinOp == Builtin::BI__builtin_sub_overflow || 12494 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 12495 bool IsSigned = LHS.isSigned() || RHS.isSigned() || 12496 ResultType->isSignedIntegerOrEnumerationType(); 12497 bool AllSigned = LHS.isSigned() && RHS.isSigned() && 12498 ResultType->isSignedIntegerOrEnumerationType(); 12499 uint64_t LHSSize = LHS.getBitWidth(); 12500 uint64_t RHSSize = RHS.getBitWidth(); 12501 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); 12502 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); 12503 12504 // Add an additional bit if the signedness isn't uniformly agreed to. We 12505 // could do this ONLY if there is a signed and an unsigned that both have 12506 // MaxBits, but the code to check that is pretty nasty. The issue will be 12507 // caught in the shrink-to-result later anyway. 12508 if (IsSigned && !AllSigned) 12509 ++MaxBits; 12510 12511 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); 12512 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); 12513 Result = APSInt(MaxBits, !IsSigned); 12514 } 12515 12516 // Find largest int. 12517 switch (BuiltinOp) { 12518 default: 12519 llvm_unreachable("Invalid value for BuiltinOp"); 12520 case Builtin::BI__builtin_add_overflow: 12521 case Builtin::BI__builtin_sadd_overflow: 12522 case Builtin::BI__builtin_saddl_overflow: 12523 case Builtin::BI__builtin_saddll_overflow: 12524 case Builtin::BI__builtin_uadd_overflow: 12525 case Builtin::BI__builtin_uaddl_overflow: 12526 case Builtin::BI__builtin_uaddll_overflow: 12527 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) 12528 : LHS.uadd_ov(RHS, DidOverflow); 12529 break; 12530 case Builtin::BI__builtin_sub_overflow: 12531 case Builtin::BI__builtin_ssub_overflow: 12532 case Builtin::BI__builtin_ssubl_overflow: 12533 case Builtin::BI__builtin_ssubll_overflow: 12534 case Builtin::BI__builtin_usub_overflow: 12535 case Builtin::BI__builtin_usubl_overflow: 12536 case Builtin::BI__builtin_usubll_overflow: 12537 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) 12538 : LHS.usub_ov(RHS, DidOverflow); 12539 break; 12540 case Builtin::BI__builtin_mul_overflow: 12541 case Builtin::BI__builtin_smul_overflow: 12542 case Builtin::BI__builtin_smull_overflow: 12543 case Builtin::BI__builtin_smulll_overflow: 12544 case Builtin::BI__builtin_umul_overflow: 12545 case Builtin::BI__builtin_umull_overflow: 12546 case Builtin::BI__builtin_umulll_overflow: 12547 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) 12548 : LHS.umul_ov(RHS, DidOverflow); 12549 break; 12550 } 12551 12552 // In the case where multiple sizes are allowed, truncate and see if 12553 // the values are the same. 12554 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 12555 BuiltinOp == Builtin::BI__builtin_sub_overflow || 12556 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 12557 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, 12558 // since it will give us the behavior of a TruncOrSelf in the case where 12559 // its parameter <= its size. We previously set Result to be at least the 12560 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth 12561 // will work exactly like TruncOrSelf. 12562 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); 12563 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); 12564 12565 if (!APSInt::isSameValue(Temp, Result)) 12566 DidOverflow = true; 12567 Result = Temp; 12568 } 12569 12570 APValue APV{Result}; 12571 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) 12572 return false; 12573 return Success(DidOverflow, E); 12574 } 12575 } 12576 } 12577 12578 /// Determine whether this is a pointer past the end of the complete 12579 /// object referred to by the lvalue. 12580 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, 12581 const LValue &LV) { 12582 // A null pointer can be viewed as being "past the end" but we don't 12583 // choose to look at it that way here. 12584 if (!LV.getLValueBase()) 12585 return false; 12586 12587 // If the designator is valid and refers to a subobject, we're not pointing 12588 // past the end. 12589 if (!LV.getLValueDesignator().Invalid && 12590 !LV.getLValueDesignator().isOnePastTheEnd()) 12591 return false; 12592 12593 // A pointer to an incomplete type might be past-the-end if the type's size is 12594 // zero. We cannot tell because the type is incomplete. 12595 QualType Ty = getType(LV.getLValueBase()); 12596 if (Ty->isIncompleteType()) 12597 return true; 12598 12599 // We're a past-the-end pointer if we point to the byte after the object, 12600 // no matter what our type or path is. 12601 auto Size = Ctx.getTypeSizeInChars(Ty); 12602 return LV.getLValueOffset() == Size; 12603 } 12604 12605 namespace { 12606 12607 /// Data recursive integer evaluator of certain binary operators. 12608 /// 12609 /// We use a data recursive algorithm for binary operators so that we are able 12610 /// to handle extreme cases of chained binary operators without causing stack 12611 /// overflow. 12612 class DataRecursiveIntBinOpEvaluator { 12613 struct EvalResult { 12614 APValue Val; 12615 bool Failed; 12616 12617 EvalResult() : Failed(false) { } 12618 12619 void swap(EvalResult &RHS) { 12620 Val.swap(RHS.Val); 12621 Failed = RHS.Failed; 12622 RHS.Failed = false; 12623 } 12624 }; 12625 12626 struct Job { 12627 const Expr *E; 12628 EvalResult LHSResult; // meaningful only for binary operator expression. 12629 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; 12630 12631 Job() = default; 12632 Job(Job &&) = default; 12633 12634 void startSpeculativeEval(EvalInfo &Info) { 12635 SpecEvalRAII = SpeculativeEvaluationRAII(Info); 12636 } 12637 12638 private: 12639 SpeculativeEvaluationRAII SpecEvalRAII; 12640 }; 12641 12642 SmallVector<Job, 16> Queue; 12643 12644 IntExprEvaluator &IntEval; 12645 EvalInfo &Info; 12646 APValue &FinalResult; 12647 12648 public: 12649 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) 12650 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } 12651 12652 /// True if \param E is a binary operator that we are going to handle 12653 /// data recursively. 12654 /// We handle binary operators that are comma, logical, or that have operands 12655 /// with integral or enumeration type. 12656 static bool shouldEnqueue(const BinaryOperator *E) { 12657 return E->getOpcode() == BO_Comma || E->isLogicalOp() || 12658 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() && 12659 E->getLHS()->getType()->isIntegralOrEnumerationType() && 12660 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12661 } 12662 12663 bool Traverse(const BinaryOperator *E) { 12664 enqueue(E); 12665 EvalResult PrevResult; 12666 while (!Queue.empty()) 12667 process(PrevResult); 12668 12669 if (PrevResult.Failed) return false; 12670 12671 FinalResult.swap(PrevResult.Val); 12672 return true; 12673 } 12674 12675 private: 12676 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 12677 return IntEval.Success(Value, E, Result); 12678 } 12679 bool Success(const APSInt &Value, const Expr *E, APValue &Result) { 12680 return IntEval.Success(Value, E, Result); 12681 } 12682 bool Error(const Expr *E) { 12683 return IntEval.Error(E); 12684 } 12685 bool Error(const Expr *E, diag::kind D) { 12686 return IntEval.Error(E, D); 12687 } 12688 12689 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 12690 return Info.CCEDiag(E, D); 12691 } 12692 12693 // Returns true if visiting the RHS is necessary, false otherwise. 12694 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 12695 bool &SuppressRHSDiags); 12696 12697 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 12698 const BinaryOperator *E, APValue &Result); 12699 12700 void EvaluateExpr(const Expr *E, EvalResult &Result) { 12701 Result.Failed = !Evaluate(Result.Val, Info, E); 12702 if (Result.Failed) 12703 Result.Val = APValue(); 12704 } 12705 12706 void process(EvalResult &Result); 12707 12708 void enqueue(const Expr *E) { 12709 E = E->IgnoreParens(); 12710 Queue.resize(Queue.size()+1); 12711 Queue.back().E = E; 12712 Queue.back().Kind = Job::AnyExprKind; 12713 } 12714 }; 12715 12716 } 12717 12718 bool DataRecursiveIntBinOpEvaluator:: 12719 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 12720 bool &SuppressRHSDiags) { 12721 if (E->getOpcode() == BO_Comma) { 12722 // Ignore LHS but note if we could not evaluate it. 12723 if (LHSResult.Failed) 12724 return Info.noteSideEffect(); 12725 return true; 12726 } 12727 12728 if (E->isLogicalOp()) { 12729 bool LHSAsBool; 12730 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { 12731 // We were able to evaluate the LHS, see if we can get away with not 12732 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 12733 if (LHSAsBool == (E->getOpcode() == BO_LOr)) { 12734 Success(LHSAsBool, E, LHSResult.Val); 12735 return false; // Ignore RHS 12736 } 12737 } else { 12738 LHSResult.Failed = true; 12739 12740 // Since we weren't able to evaluate the left hand side, it 12741 // might have had side effects. 12742 if (!Info.noteSideEffect()) 12743 return false; 12744 12745 // We can't evaluate the LHS; however, sometimes the result 12746 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 12747 // Don't ignore RHS and suppress diagnostics from this arm. 12748 SuppressRHSDiags = true; 12749 } 12750 12751 return true; 12752 } 12753 12754 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 12755 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12756 12757 if (LHSResult.Failed && !Info.noteFailure()) 12758 return false; // Ignore RHS; 12759 12760 return true; 12761 } 12762 12763 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, 12764 bool IsSub) { 12765 // Compute the new offset in the appropriate width, wrapping at 64 bits. 12766 // FIXME: When compiling for a 32-bit target, we should use 32-bit 12767 // offsets. 12768 assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); 12769 CharUnits &Offset = LVal.getLValueOffset(); 12770 uint64_t Offset64 = Offset.getQuantity(); 12771 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 12772 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 12773 : Offset64 + Index64); 12774 } 12775 12776 bool DataRecursiveIntBinOpEvaluator:: 12777 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 12778 const BinaryOperator *E, APValue &Result) { 12779 if (E->getOpcode() == BO_Comma) { 12780 if (RHSResult.Failed) 12781 return false; 12782 Result = RHSResult.Val; 12783 return true; 12784 } 12785 12786 if (E->isLogicalOp()) { 12787 bool lhsResult, rhsResult; 12788 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); 12789 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); 12790 12791 if (LHSIsOK) { 12792 if (RHSIsOK) { 12793 if (E->getOpcode() == BO_LOr) 12794 return Success(lhsResult || rhsResult, E, Result); 12795 else 12796 return Success(lhsResult && rhsResult, E, Result); 12797 } 12798 } else { 12799 if (RHSIsOK) { 12800 // We can't evaluate the LHS; however, sometimes the result 12801 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 12802 if (rhsResult == (E->getOpcode() == BO_LOr)) 12803 return Success(rhsResult, E, Result); 12804 } 12805 } 12806 12807 return false; 12808 } 12809 12810 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 12811 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12812 12813 if (LHSResult.Failed || RHSResult.Failed) 12814 return false; 12815 12816 const APValue &LHSVal = LHSResult.Val; 12817 const APValue &RHSVal = RHSResult.Val; 12818 12819 // Handle cases like (unsigned long)&a + 4. 12820 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { 12821 Result = LHSVal; 12822 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); 12823 return true; 12824 } 12825 12826 // Handle cases like 4 + (unsigned long)&a 12827 if (E->getOpcode() == BO_Add && 12828 RHSVal.isLValue() && LHSVal.isInt()) { 12829 Result = RHSVal; 12830 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); 12831 return true; 12832 } 12833 12834 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { 12835 // Handle (intptr_t)&&A - (intptr_t)&&B. 12836 if (!LHSVal.getLValueOffset().isZero() || 12837 !RHSVal.getLValueOffset().isZero()) 12838 return false; 12839 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); 12840 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); 12841 if (!LHSExpr || !RHSExpr) 12842 return false; 12843 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 12844 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 12845 if (!LHSAddrExpr || !RHSAddrExpr) 12846 return false; 12847 // Make sure both labels come from the same function. 12848 if (LHSAddrExpr->getLabel()->getDeclContext() != 12849 RHSAddrExpr->getLabel()->getDeclContext()) 12850 return false; 12851 Result = APValue(LHSAddrExpr, RHSAddrExpr); 12852 return true; 12853 } 12854 12855 // All the remaining cases expect both operands to be an integer 12856 if (!LHSVal.isInt() || !RHSVal.isInt()) 12857 return Error(E); 12858 12859 // Set up the width and signedness manually, in case it can't be deduced 12860 // from the operation we're performing. 12861 // FIXME: Don't do this in the cases where we can deduce it. 12862 APSInt Value(Info.Ctx.getIntWidth(E->getType()), 12863 E->getType()->isUnsignedIntegerOrEnumerationType()); 12864 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), 12865 RHSVal.getInt(), Value)) 12866 return false; 12867 return Success(Value, E, Result); 12868 } 12869 12870 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { 12871 Job &job = Queue.back(); 12872 12873 switch (job.Kind) { 12874 case Job::AnyExprKind: { 12875 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { 12876 if (shouldEnqueue(Bop)) { 12877 job.Kind = Job::BinOpKind; 12878 enqueue(Bop->getLHS()); 12879 return; 12880 } 12881 } 12882 12883 EvaluateExpr(job.E, Result); 12884 Queue.pop_back(); 12885 return; 12886 } 12887 12888 case Job::BinOpKind: { 12889 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 12890 bool SuppressRHSDiags = false; 12891 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { 12892 Queue.pop_back(); 12893 return; 12894 } 12895 if (SuppressRHSDiags) 12896 job.startSpeculativeEval(Info); 12897 job.LHSResult.swap(Result); 12898 job.Kind = Job::BinOpVisitedLHSKind; 12899 enqueue(Bop->getRHS()); 12900 return; 12901 } 12902 12903 case Job::BinOpVisitedLHSKind: { 12904 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 12905 EvalResult RHS; 12906 RHS.swap(Result); 12907 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); 12908 Queue.pop_back(); 12909 return; 12910 } 12911 } 12912 12913 llvm_unreachable("Invalid Job::Kind!"); 12914 } 12915 12916 namespace { 12917 enum class CmpResult { 12918 Unequal, 12919 Less, 12920 Equal, 12921 Greater, 12922 Unordered, 12923 }; 12924 } 12925 12926 template <class SuccessCB, class AfterCB> 12927 static bool 12928 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, 12929 SuccessCB &&Success, AfterCB &&DoAfter) { 12930 assert(!E->isValueDependent()); 12931 assert(E->isComparisonOp() && "expected comparison operator"); 12932 assert((E->getOpcode() == BO_Cmp || 12933 E->getType()->isIntegralOrEnumerationType()) && 12934 "unsupported binary expression evaluation"); 12935 auto Error = [&](const Expr *E) { 12936 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 12937 return false; 12938 }; 12939 12940 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp; 12941 bool IsEquality = E->isEqualityOp(); 12942 12943 QualType LHSTy = E->getLHS()->getType(); 12944 QualType RHSTy = E->getRHS()->getType(); 12945 12946 if (LHSTy->isIntegralOrEnumerationType() && 12947 RHSTy->isIntegralOrEnumerationType()) { 12948 APSInt LHS, RHS; 12949 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); 12950 if (!LHSOK && !Info.noteFailure()) 12951 return false; 12952 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) 12953 return false; 12954 if (LHS < RHS) 12955 return Success(CmpResult::Less, E); 12956 if (LHS > RHS) 12957 return Success(CmpResult::Greater, E); 12958 return Success(CmpResult::Equal, E); 12959 } 12960 12961 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { 12962 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); 12963 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); 12964 12965 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); 12966 if (!LHSOK && !Info.noteFailure()) 12967 return false; 12968 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) 12969 return false; 12970 if (LHSFX < RHSFX) 12971 return Success(CmpResult::Less, E); 12972 if (LHSFX > RHSFX) 12973 return Success(CmpResult::Greater, E); 12974 return Success(CmpResult::Equal, E); 12975 } 12976 12977 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { 12978 ComplexValue LHS, RHS; 12979 bool LHSOK; 12980 if (E->isAssignmentOp()) { 12981 LValue LV; 12982 EvaluateLValue(E->getLHS(), LV, Info); 12983 LHSOK = false; 12984 } else if (LHSTy->isRealFloatingType()) { 12985 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); 12986 if (LHSOK) { 12987 LHS.makeComplexFloat(); 12988 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); 12989 } 12990 } else { 12991 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); 12992 } 12993 if (!LHSOK && !Info.noteFailure()) 12994 return false; 12995 12996 if (E->getRHS()->getType()->isRealFloatingType()) { 12997 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) 12998 return false; 12999 RHS.makeComplexFloat(); 13000 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); 13001 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 13002 return false; 13003 13004 if (LHS.isComplexFloat()) { 13005 APFloat::cmpResult CR_r = 13006 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); 13007 APFloat::cmpResult CR_i = 13008 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); 13009 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; 13010 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 13011 } else { 13012 assert(IsEquality && "invalid complex comparison"); 13013 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && 13014 LHS.getComplexIntImag() == RHS.getComplexIntImag(); 13015 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 13016 } 13017 } 13018 13019 if (LHSTy->isRealFloatingType() && 13020 RHSTy->isRealFloatingType()) { 13021 APFloat RHS(0.0), LHS(0.0); 13022 13023 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); 13024 if (!LHSOK && !Info.noteFailure()) 13025 return false; 13026 13027 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) 13028 return false; 13029 13030 assert(E->isComparisonOp() && "Invalid binary operator!"); 13031 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS); 13032 if (!Info.InConstantContext && 13033 APFloatCmpResult == APFloat::cmpUnordered && 13034 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) { 13035 // Note: Compares may raise invalid in some cases involving NaN or sNaN. 13036 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 13037 return false; 13038 } 13039 auto GetCmpRes = [&]() { 13040 switch (APFloatCmpResult) { 13041 case APFloat::cmpEqual: 13042 return CmpResult::Equal; 13043 case APFloat::cmpLessThan: 13044 return CmpResult::Less; 13045 case APFloat::cmpGreaterThan: 13046 return CmpResult::Greater; 13047 case APFloat::cmpUnordered: 13048 return CmpResult::Unordered; 13049 } 13050 llvm_unreachable("Unrecognised APFloat::cmpResult enum"); 13051 }; 13052 return Success(GetCmpRes(), E); 13053 } 13054 13055 if (LHSTy->isPointerType() && RHSTy->isPointerType()) { 13056 LValue LHSValue, RHSValue; 13057 13058 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 13059 if (!LHSOK && !Info.noteFailure()) 13060 return false; 13061 13062 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 13063 return false; 13064 13065 // Reject differing bases from the normal codepath; we special-case 13066 // comparisons to null. 13067 if (!HasSameBase(LHSValue, RHSValue)) { 13068 auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) { 13069 std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType()); 13070 std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType()); 13071 Info.FFDiag(E, DiagID) 13072 << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS); 13073 return false; 13074 }; 13075 // Inequalities and subtractions between unrelated pointers have 13076 // unspecified or undefined behavior. 13077 if (!IsEquality) 13078 return DiagComparison( 13079 diag::note_constexpr_pointer_comparison_unspecified); 13080 // A constant address may compare equal to the address of a symbol. 13081 // The one exception is that address of an object cannot compare equal 13082 // to a null pointer constant. 13083 // TODO: Should we restrict this to actual null pointers, and exclude the 13084 // case of zero cast to pointer type? 13085 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || 13086 (!RHSValue.Base && !RHSValue.Offset.isZero())) 13087 return DiagComparison(diag::note_constexpr_pointer_constant_comparison, 13088 !RHSValue.Base); 13089 // It's implementation-defined whether distinct literals will have 13090 // distinct addresses. In clang, the result of such a comparison is 13091 // unspecified, so it is not a constant expression. However, we do know 13092 // that the address of a literal will be non-null. 13093 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && 13094 LHSValue.Base && RHSValue.Base) 13095 return DiagComparison(diag::note_constexpr_literal_comparison); 13096 // We can't tell whether weak symbols will end up pointing to the same 13097 // object. 13098 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) 13099 return DiagComparison(diag::note_constexpr_pointer_weak_comparison, 13100 !IsWeakLValue(LHSValue)); 13101 // We can't compare the address of the start of one object with the 13102 // past-the-end address of another object, per C++ DR1652. 13103 if (LHSValue.Base && LHSValue.Offset.isZero() && 13104 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) 13105 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, 13106 true); 13107 if (RHSValue.Base && RHSValue.Offset.isZero() && 13108 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)) 13109 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, 13110 false); 13111 // We can't tell whether an object is at the same address as another 13112 // zero sized object. 13113 if ((RHSValue.Base && isZeroSized(LHSValue)) || 13114 (LHSValue.Base && isZeroSized(RHSValue))) 13115 return DiagComparison( 13116 diag::note_constexpr_pointer_comparison_zero_sized); 13117 return Success(CmpResult::Unequal, E); 13118 } 13119 13120 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 13121 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 13122 13123 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 13124 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 13125 13126 // C++11 [expr.rel]p3: 13127 // Pointers to void (after pointer conversions) can be compared, with a 13128 // result defined as follows: If both pointers represent the same 13129 // address or are both the null pointer value, the result is true if the 13130 // operator is <= or >= and false otherwise; otherwise the result is 13131 // unspecified. 13132 // We interpret this as applying to pointers to *cv* void. 13133 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) 13134 Info.CCEDiag(E, diag::note_constexpr_void_comparison); 13135 13136 // C++11 [expr.rel]p2: 13137 // - If two pointers point to non-static data members of the same object, 13138 // or to subobjects or array elements fo such members, recursively, the 13139 // pointer to the later declared member compares greater provided the 13140 // two members have the same access control and provided their class is 13141 // not a union. 13142 // [...] 13143 // - Otherwise pointer comparisons are unspecified. 13144 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { 13145 bool WasArrayIndex; 13146 unsigned Mismatch = FindDesignatorMismatch( 13147 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); 13148 // At the point where the designators diverge, the comparison has a 13149 // specified value if: 13150 // - we are comparing array indices 13151 // - we are comparing fields of a union, or fields with the same access 13152 // Otherwise, the result is unspecified and thus the comparison is not a 13153 // constant expression. 13154 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && 13155 Mismatch < RHSDesignator.Entries.size()) { 13156 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); 13157 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); 13158 if (!LF && !RF) 13159 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); 13160 else if (!LF) 13161 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 13162 << getAsBaseClass(LHSDesignator.Entries[Mismatch]) 13163 << RF->getParent() << RF; 13164 else if (!RF) 13165 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 13166 << getAsBaseClass(RHSDesignator.Entries[Mismatch]) 13167 << LF->getParent() << LF; 13168 else if (!LF->getParent()->isUnion() && 13169 LF->getAccess() != RF->getAccess()) 13170 Info.CCEDiag(E, 13171 diag::note_constexpr_pointer_comparison_differing_access) 13172 << LF << LF->getAccess() << RF << RF->getAccess() 13173 << LF->getParent(); 13174 } 13175 } 13176 13177 // The comparison here must be unsigned, and performed with the same 13178 // width as the pointer. 13179 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); 13180 uint64_t CompareLHS = LHSOffset.getQuantity(); 13181 uint64_t CompareRHS = RHSOffset.getQuantity(); 13182 assert(PtrSize <= 64 && "Unexpected pointer width"); 13183 uint64_t Mask = ~0ULL >> (64 - PtrSize); 13184 CompareLHS &= Mask; 13185 CompareRHS &= Mask; 13186 13187 // If there is a base and this is a relational operator, we can only 13188 // compare pointers within the object in question; otherwise, the result 13189 // depends on where the object is located in memory. 13190 if (!LHSValue.Base.isNull() && IsRelational) { 13191 QualType BaseTy = getType(LHSValue.Base); 13192 if (BaseTy->isIncompleteType()) 13193 return Error(E); 13194 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); 13195 uint64_t OffsetLimit = Size.getQuantity(); 13196 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) 13197 return Error(E); 13198 } 13199 13200 if (CompareLHS < CompareRHS) 13201 return Success(CmpResult::Less, E); 13202 if (CompareLHS > CompareRHS) 13203 return Success(CmpResult::Greater, E); 13204 return Success(CmpResult::Equal, E); 13205 } 13206 13207 if (LHSTy->isMemberPointerType()) { 13208 assert(IsEquality && "unexpected member pointer operation"); 13209 assert(RHSTy->isMemberPointerType() && "invalid comparison"); 13210 13211 MemberPtr LHSValue, RHSValue; 13212 13213 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); 13214 if (!LHSOK && !Info.noteFailure()) 13215 return false; 13216 13217 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) 13218 return false; 13219 13220 // If either operand is a pointer to a weak function, the comparison is not 13221 // constant. 13222 if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) { 13223 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) 13224 << LHSValue.getDecl(); 13225 return false; 13226 } 13227 if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) { 13228 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) 13229 << RHSValue.getDecl(); 13230 return false; 13231 } 13232 13233 // C++11 [expr.eq]p2: 13234 // If both operands are null, they compare equal. Otherwise if only one is 13235 // null, they compare unequal. 13236 if (!LHSValue.getDecl() || !RHSValue.getDecl()) { 13237 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); 13238 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 13239 } 13240 13241 // Otherwise if either is a pointer to a virtual member function, the 13242 // result is unspecified. 13243 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) 13244 if (MD->isVirtual()) 13245 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 13246 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) 13247 if (MD->isVirtual()) 13248 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 13249 13250 // Otherwise they compare equal if and only if they would refer to the 13251 // same member of the same most derived object or the same subobject if 13252 // they were dereferenced with a hypothetical object of the associated 13253 // class type. 13254 bool Equal = LHSValue == RHSValue; 13255 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 13256 } 13257 13258 if (LHSTy->isNullPtrType()) { 13259 assert(E->isComparisonOp() && "unexpected nullptr operation"); 13260 assert(RHSTy->isNullPtrType() && "missing pointer conversion"); 13261 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t 13262 // are compared, the result is true of the operator is <=, >= or ==, and 13263 // false otherwise. 13264 return Success(CmpResult::Equal, E); 13265 } 13266 13267 return DoAfter(); 13268 } 13269 13270 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { 13271 if (!CheckLiteralType(Info, E)) 13272 return false; 13273 13274 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 13275 ComparisonCategoryResult CCR; 13276 switch (CR) { 13277 case CmpResult::Unequal: 13278 llvm_unreachable("should never produce Unequal for three-way comparison"); 13279 case CmpResult::Less: 13280 CCR = ComparisonCategoryResult::Less; 13281 break; 13282 case CmpResult::Equal: 13283 CCR = ComparisonCategoryResult::Equal; 13284 break; 13285 case CmpResult::Greater: 13286 CCR = ComparisonCategoryResult::Greater; 13287 break; 13288 case CmpResult::Unordered: 13289 CCR = ComparisonCategoryResult::Unordered; 13290 break; 13291 } 13292 // Evaluation succeeded. Lookup the information for the comparison category 13293 // type and fetch the VarDecl for the result. 13294 const ComparisonCategoryInfo &CmpInfo = 13295 Info.Ctx.CompCategories.getInfoForType(E->getType()); 13296 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD; 13297 // Check and evaluate the result as a constant expression. 13298 LValue LV; 13299 LV.set(VD); 13300 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 13301 return false; 13302 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 13303 ConstantExprKind::Normal); 13304 }; 13305 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 13306 return ExprEvaluatorBaseTy::VisitBinCmp(E); 13307 }); 13308 } 13309 13310 bool RecordExprEvaluator::VisitCXXParenListInitExpr( 13311 const CXXParenListInitExpr *E) { 13312 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs()); 13313 } 13314 13315 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 13316 // We don't support assignment in C. C++ assignments don't get here because 13317 // assignment is an lvalue in C++. 13318 if (E->isAssignmentOp()) { 13319 Error(E); 13320 if (!Info.noteFailure()) 13321 return false; 13322 } 13323 13324 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) 13325 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); 13326 13327 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || 13328 !E->getRHS()->getType()->isIntegralOrEnumerationType()) && 13329 "DataRecursiveIntBinOpEvaluator should have handled integral types"); 13330 13331 if (E->isComparisonOp()) { 13332 // Evaluate builtin binary comparisons by evaluating them as three-way 13333 // comparisons and then translating the result. 13334 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 13335 assert((CR != CmpResult::Unequal || E->isEqualityOp()) && 13336 "should only produce Unequal for equality comparisons"); 13337 bool IsEqual = CR == CmpResult::Equal, 13338 IsLess = CR == CmpResult::Less, 13339 IsGreater = CR == CmpResult::Greater; 13340 auto Op = E->getOpcode(); 13341 switch (Op) { 13342 default: 13343 llvm_unreachable("unsupported binary operator"); 13344 case BO_EQ: 13345 case BO_NE: 13346 return Success(IsEqual == (Op == BO_EQ), E); 13347 case BO_LT: 13348 return Success(IsLess, E); 13349 case BO_GT: 13350 return Success(IsGreater, E); 13351 case BO_LE: 13352 return Success(IsEqual || IsLess, E); 13353 case BO_GE: 13354 return Success(IsEqual || IsGreater, E); 13355 } 13356 }; 13357 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 13358 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13359 }); 13360 } 13361 13362 QualType LHSTy = E->getLHS()->getType(); 13363 QualType RHSTy = E->getRHS()->getType(); 13364 13365 if (LHSTy->isPointerType() && RHSTy->isPointerType() && 13366 E->getOpcode() == BO_Sub) { 13367 LValue LHSValue, RHSValue; 13368 13369 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 13370 if (!LHSOK && !Info.noteFailure()) 13371 return false; 13372 13373 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 13374 return false; 13375 13376 // Reject differing bases from the normal codepath; we special-case 13377 // comparisons to null. 13378 if (!HasSameBase(LHSValue, RHSValue)) { 13379 // Handle &&A - &&B. 13380 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) 13381 return Error(E); 13382 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); 13383 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); 13384 if (!LHSExpr || !RHSExpr) 13385 return Error(E); 13386 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 13387 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 13388 if (!LHSAddrExpr || !RHSAddrExpr) 13389 return Error(E); 13390 // Make sure both labels come from the same function. 13391 if (LHSAddrExpr->getLabel()->getDeclContext() != 13392 RHSAddrExpr->getLabel()->getDeclContext()) 13393 return Error(E); 13394 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); 13395 } 13396 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 13397 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 13398 13399 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 13400 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 13401 13402 // C++11 [expr.add]p6: 13403 // Unless both pointers point to elements of the same array object, or 13404 // one past the last element of the array object, the behavior is 13405 // undefined. 13406 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && 13407 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, 13408 RHSDesignator)) 13409 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); 13410 13411 QualType Type = E->getLHS()->getType(); 13412 QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); 13413 13414 CharUnits ElementSize; 13415 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) 13416 return false; 13417 13418 // As an extension, a type may have zero size (empty struct or union in 13419 // C, array of zero length). Pointer subtraction in such cases has 13420 // undefined behavior, so is not constant. 13421 if (ElementSize.isZero()) { 13422 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) 13423 << ElementType; 13424 return false; 13425 } 13426 13427 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, 13428 // and produce incorrect results when it overflows. Such behavior 13429 // appears to be non-conforming, but is common, so perhaps we should 13430 // assume the standard intended for such cases to be undefined behavior 13431 // and check for them. 13432 13433 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for 13434 // overflow in the final conversion to ptrdiff_t. 13435 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); 13436 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); 13437 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), 13438 false); 13439 APSInt TrueResult = (LHS - RHS) / ElemSize; 13440 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); 13441 13442 if (Result.extend(65) != TrueResult && 13443 !HandleOverflow(Info, E, TrueResult, E->getType())) 13444 return false; 13445 return Success(Result, E); 13446 } 13447 13448 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13449 } 13450 13451 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with 13452 /// a result as the expression's type. 13453 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( 13454 const UnaryExprOrTypeTraitExpr *E) { 13455 switch(E->getKind()) { 13456 case UETT_PreferredAlignOf: 13457 case UETT_AlignOf: { 13458 if (E->isArgumentType()) 13459 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()), 13460 E); 13461 else 13462 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()), 13463 E); 13464 } 13465 13466 case UETT_VecStep: { 13467 QualType Ty = E->getTypeOfArgument(); 13468 13469 if (Ty->isVectorType()) { 13470 unsigned n = Ty->castAs<VectorType>()->getNumElements(); 13471 13472 // The vec_step built-in functions that take a 3-component 13473 // vector return 4. (OpenCL 1.1 spec 6.11.12) 13474 if (n == 3) 13475 n = 4; 13476 13477 return Success(n, E); 13478 } else 13479 return Success(1, E); 13480 } 13481 13482 case UETT_SizeOf: { 13483 QualType SrcTy = E->getTypeOfArgument(); 13484 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 13485 // the result is the size of the referenced type." 13486 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) 13487 SrcTy = Ref->getPointeeType(); 13488 13489 CharUnits Sizeof; 13490 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof)) 13491 return false; 13492 return Success(Sizeof, E); 13493 } 13494 case UETT_OpenMPRequiredSimdAlign: 13495 assert(E->isArgumentType()); 13496 return Success( 13497 Info.Ctx.toCharUnitsFromBits( 13498 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) 13499 .getQuantity(), 13500 E); 13501 } 13502 13503 llvm_unreachable("unknown expr/type trait"); 13504 } 13505 13506 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { 13507 CharUnits Result; 13508 unsigned n = OOE->getNumComponents(); 13509 if (n == 0) 13510 return Error(OOE); 13511 QualType CurrentType = OOE->getTypeSourceInfo()->getType(); 13512 for (unsigned i = 0; i != n; ++i) { 13513 OffsetOfNode ON = OOE->getComponent(i); 13514 switch (ON.getKind()) { 13515 case OffsetOfNode::Array: { 13516 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); 13517 APSInt IdxResult; 13518 if (!EvaluateInteger(Idx, IdxResult, Info)) 13519 return false; 13520 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); 13521 if (!AT) 13522 return Error(OOE); 13523 CurrentType = AT->getElementType(); 13524 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); 13525 Result += IdxResult.getSExtValue() * ElementSize; 13526 break; 13527 } 13528 13529 case OffsetOfNode::Field: { 13530 FieldDecl *MemberDecl = ON.getField(); 13531 const RecordType *RT = CurrentType->getAs<RecordType>(); 13532 if (!RT) 13533 return Error(OOE); 13534 RecordDecl *RD = RT->getDecl(); 13535 if (RD->isInvalidDecl()) return false; 13536 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 13537 unsigned i = MemberDecl->getFieldIndex(); 13538 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 13539 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); 13540 CurrentType = MemberDecl->getType().getNonReferenceType(); 13541 break; 13542 } 13543 13544 case OffsetOfNode::Identifier: 13545 llvm_unreachable("dependent __builtin_offsetof"); 13546 13547 case OffsetOfNode::Base: { 13548 CXXBaseSpecifier *BaseSpec = ON.getBase(); 13549 if (BaseSpec->isVirtual()) 13550 return Error(OOE); 13551 13552 // Find the layout of the class whose base we are looking into. 13553 const RecordType *RT = CurrentType->getAs<RecordType>(); 13554 if (!RT) 13555 return Error(OOE); 13556 RecordDecl *RD = RT->getDecl(); 13557 if (RD->isInvalidDecl()) return false; 13558 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 13559 13560 // Find the base class itself. 13561 CurrentType = BaseSpec->getType(); 13562 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 13563 if (!BaseRT) 13564 return Error(OOE); 13565 13566 // Add the offset to the base. 13567 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); 13568 break; 13569 } 13570 } 13571 } 13572 return Success(Result, OOE); 13573 } 13574 13575 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13576 switch (E->getOpcode()) { 13577 default: 13578 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. 13579 // See C99 6.6p3. 13580 return Error(E); 13581 case UO_Extension: 13582 // FIXME: Should extension allow i-c-e extension expressions in its scope? 13583 // If so, we could clear the diagnostic ID. 13584 return Visit(E->getSubExpr()); 13585 case UO_Plus: 13586 // The result is just the value. 13587 return Visit(E->getSubExpr()); 13588 case UO_Minus: { 13589 if (!Visit(E->getSubExpr())) 13590 return false; 13591 if (!Result.isInt()) return Error(E); 13592 const APSInt &Value = Result.getInt(); 13593 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) { 13594 if (Info.checkingForUndefinedBehavior()) 13595 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13596 diag::warn_integer_constant_overflow) 13597 << toString(Value, 10) << E->getType(); 13598 13599 if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), 13600 E->getType())) 13601 return false; 13602 } 13603 return Success(-Value, E); 13604 } 13605 case UO_Not: { 13606 if (!Visit(E->getSubExpr())) 13607 return false; 13608 if (!Result.isInt()) return Error(E); 13609 return Success(~Result.getInt(), E); 13610 } 13611 case UO_LNot: { 13612 bool bres; 13613 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 13614 return false; 13615 return Success(!bres, E); 13616 } 13617 } 13618 } 13619 13620 /// HandleCast - This is used to evaluate implicit or explicit casts where the 13621 /// result type is integer. 13622 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { 13623 const Expr *SubExpr = E->getSubExpr(); 13624 QualType DestType = E->getType(); 13625 QualType SrcType = SubExpr->getType(); 13626 13627 switch (E->getCastKind()) { 13628 case CK_BaseToDerived: 13629 case CK_DerivedToBase: 13630 case CK_UncheckedDerivedToBase: 13631 case CK_Dynamic: 13632 case CK_ToUnion: 13633 case CK_ArrayToPointerDecay: 13634 case CK_FunctionToPointerDecay: 13635 case CK_NullToPointer: 13636 case CK_NullToMemberPointer: 13637 case CK_BaseToDerivedMemberPointer: 13638 case CK_DerivedToBaseMemberPointer: 13639 case CK_ReinterpretMemberPointer: 13640 case CK_ConstructorConversion: 13641 case CK_IntegralToPointer: 13642 case CK_ToVoid: 13643 case CK_VectorSplat: 13644 case CK_IntegralToFloating: 13645 case CK_FloatingCast: 13646 case CK_CPointerToObjCPointerCast: 13647 case CK_BlockPointerToObjCPointerCast: 13648 case CK_AnyPointerToBlockPointerCast: 13649 case CK_ObjCObjectLValueCast: 13650 case CK_FloatingRealToComplex: 13651 case CK_FloatingComplexToReal: 13652 case CK_FloatingComplexCast: 13653 case CK_FloatingComplexToIntegralComplex: 13654 case CK_IntegralRealToComplex: 13655 case CK_IntegralComplexCast: 13656 case CK_IntegralComplexToFloatingComplex: 13657 case CK_BuiltinFnToFnPtr: 13658 case CK_ZeroToOCLOpaqueType: 13659 case CK_NonAtomicToAtomic: 13660 case CK_AddressSpaceConversion: 13661 case CK_IntToOCLSampler: 13662 case CK_FloatingToFixedPoint: 13663 case CK_FixedPointToFloating: 13664 case CK_FixedPointCast: 13665 case CK_IntegralToFixedPoint: 13666 case CK_MatrixCast: 13667 llvm_unreachable("invalid cast kind for integral value"); 13668 13669 case CK_BitCast: 13670 case CK_Dependent: 13671 case CK_LValueBitCast: 13672 case CK_ARCProduceObject: 13673 case CK_ARCConsumeObject: 13674 case CK_ARCReclaimReturnedObject: 13675 case CK_ARCExtendBlockObject: 13676 case CK_CopyAndAutoreleaseBlockObject: 13677 return Error(E); 13678 13679 case CK_UserDefinedConversion: 13680 case CK_LValueToRValue: 13681 case CK_AtomicToNonAtomic: 13682 case CK_NoOp: 13683 case CK_LValueToRValueBitCast: 13684 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13685 13686 case CK_MemberPointerToBoolean: 13687 case CK_PointerToBoolean: 13688 case CK_IntegralToBoolean: 13689 case CK_FloatingToBoolean: 13690 case CK_BooleanToSignedIntegral: 13691 case CK_FloatingComplexToBoolean: 13692 case CK_IntegralComplexToBoolean: { 13693 bool BoolResult; 13694 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) 13695 return false; 13696 uint64_t IntResult = BoolResult; 13697 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) 13698 IntResult = (uint64_t)-1; 13699 return Success(IntResult, E); 13700 } 13701 13702 case CK_FixedPointToIntegral: { 13703 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); 13704 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 13705 return false; 13706 bool Overflowed; 13707 llvm::APSInt Result = Src.convertToInt( 13708 Info.Ctx.getIntWidth(DestType), 13709 DestType->isSignedIntegerOrEnumerationType(), &Overflowed); 13710 if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) 13711 return false; 13712 return Success(Result, E); 13713 } 13714 13715 case CK_FixedPointToBoolean: { 13716 // Unsigned padding does not affect this. 13717 APValue Val; 13718 if (!Evaluate(Val, Info, SubExpr)) 13719 return false; 13720 return Success(Val.getFixedPoint().getBoolValue(), E); 13721 } 13722 13723 case CK_IntegralCast: { 13724 if (!Visit(SubExpr)) 13725 return false; 13726 13727 if (!Result.isInt()) { 13728 // Allow casts of address-of-label differences if they are no-ops 13729 // or narrowing. (The narrowing case isn't actually guaranteed to 13730 // be constant-evaluatable except in some narrow cases which are hard 13731 // to detect here. We let it through on the assumption the user knows 13732 // what they are doing.) 13733 if (Result.isAddrLabelDiff()) 13734 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); 13735 // Only allow casts of lvalues if they are lossless. 13736 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); 13737 } 13738 13739 if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext && 13740 Info.EvalMode == EvalInfo::EM_ConstantExpression && 13741 DestType->isEnumeralType()) { 13742 13743 bool ConstexprVar = true; 13744 13745 // We know if we are here that we are in a context that we might require 13746 // a constant expression or a context that requires a constant 13747 // value. But if we are initializing a value we don't know if it is a 13748 // constexpr variable or not. We can check the EvaluatingDecl to determine 13749 // if it constexpr or not. If not then we don't want to emit a diagnostic. 13750 if (const auto *VD = dyn_cast_or_null<VarDecl>( 13751 Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) 13752 ConstexprVar = VD->isConstexpr(); 13753 13754 const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType()); 13755 const EnumDecl *ED = ET->getDecl(); 13756 // Check that the value is within the range of the enumeration values. 13757 // 13758 // This corressponds to [expr.static.cast]p10 which says: 13759 // A value of integral or enumeration type can be explicitly converted 13760 // to a complete enumeration type ... If the enumeration type does not 13761 // have a fixed underlying type, the value is unchanged if the original 13762 // value is within the range of the enumeration values ([dcl.enum]), and 13763 // otherwise, the behavior is undefined. 13764 // 13765 // This was resolved as part of DR2338 which has CD5 status. 13766 if (!ED->isFixed()) { 13767 llvm::APInt Min; 13768 llvm::APInt Max; 13769 13770 ED->getValueRange(Max, Min); 13771 --Max; 13772 13773 if (ED->getNumNegativeBits() && ConstexprVar && 13774 (Max.slt(Result.getInt().getSExtValue()) || 13775 Min.sgt(Result.getInt().getSExtValue()))) 13776 Info.Ctx.getDiagnostics().Report( 13777 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range) 13778 << llvm::toString(Result.getInt(), 10) << Min.getSExtValue() 13779 << Max.getSExtValue() << ED; 13780 else if (!ED->getNumNegativeBits() && ConstexprVar && 13781 Max.ult(Result.getInt().getZExtValue())) 13782 Info.Ctx.getDiagnostics().Report( 13783 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range) 13784 << llvm::toString(Result.getInt(), 10) << Min.getZExtValue() 13785 << Max.getZExtValue() << ED; 13786 } 13787 } 13788 13789 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, 13790 Result.getInt()), E); 13791 } 13792 13793 case CK_PointerToIntegral: { 13794 CCEDiag(E, diag::note_constexpr_invalid_cast) 13795 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 13796 13797 LValue LV; 13798 if (!EvaluatePointer(SubExpr, LV, Info)) 13799 return false; 13800 13801 if (LV.getLValueBase()) { 13802 // Only allow based lvalue casts if they are lossless. 13803 // FIXME: Allow a larger integer size than the pointer size, and allow 13804 // narrowing back down to pointer width in subsequent integral casts. 13805 // FIXME: Check integer type's active bits, not its type size. 13806 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) 13807 return Error(E); 13808 13809 LV.Designator.setInvalid(); 13810 LV.moveInto(Result); 13811 return true; 13812 } 13813 13814 APSInt AsInt; 13815 APValue V; 13816 LV.moveInto(V); 13817 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) 13818 llvm_unreachable("Can't cast this!"); 13819 13820 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); 13821 } 13822 13823 case CK_IntegralComplexToReal: { 13824 ComplexValue C; 13825 if (!EvaluateComplex(SubExpr, C, Info)) 13826 return false; 13827 return Success(C.getComplexIntReal(), E); 13828 } 13829 13830 case CK_FloatingToIntegral: { 13831 APFloat F(0.0); 13832 if (!EvaluateFloat(SubExpr, F, Info)) 13833 return false; 13834 13835 APSInt Value; 13836 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) 13837 return false; 13838 return Success(Value, E); 13839 } 13840 } 13841 13842 llvm_unreachable("unknown cast resulting in integral value"); 13843 } 13844 13845 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 13846 if (E->getSubExpr()->getType()->isAnyComplexType()) { 13847 ComplexValue LV; 13848 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 13849 return false; 13850 if (!LV.isComplexInt()) 13851 return Error(E); 13852 return Success(LV.getComplexIntReal(), E); 13853 } 13854 13855 return Visit(E->getSubExpr()); 13856 } 13857 13858 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 13859 if (E->getSubExpr()->getType()->isComplexIntegerType()) { 13860 ComplexValue LV; 13861 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 13862 return false; 13863 if (!LV.isComplexInt()) 13864 return Error(E); 13865 return Success(LV.getComplexIntImag(), E); 13866 } 13867 13868 VisitIgnoredValue(E->getSubExpr()); 13869 return Success(0, E); 13870 } 13871 13872 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 13873 return Success(E->getPackLength(), E); 13874 } 13875 13876 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 13877 return Success(E->getValue(), E); 13878 } 13879 13880 bool IntExprEvaluator::VisitConceptSpecializationExpr( 13881 const ConceptSpecializationExpr *E) { 13882 return Success(E->isSatisfied(), E); 13883 } 13884 13885 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) { 13886 return Success(E->isSatisfied(), E); 13887 } 13888 13889 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13890 switch (E->getOpcode()) { 13891 default: 13892 // Invalid unary operators 13893 return Error(E); 13894 case UO_Plus: 13895 // The result is just the value. 13896 return Visit(E->getSubExpr()); 13897 case UO_Minus: { 13898 if (!Visit(E->getSubExpr())) return false; 13899 if (!Result.isFixedPoint()) 13900 return Error(E); 13901 bool Overflowed; 13902 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); 13903 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) 13904 return false; 13905 return Success(Negated, E); 13906 } 13907 case UO_LNot: { 13908 bool bres; 13909 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 13910 return false; 13911 return Success(!bres, E); 13912 } 13913 } 13914 } 13915 13916 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { 13917 const Expr *SubExpr = E->getSubExpr(); 13918 QualType DestType = E->getType(); 13919 assert(DestType->isFixedPointType() && 13920 "Expected destination type to be a fixed point type"); 13921 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); 13922 13923 switch (E->getCastKind()) { 13924 case CK_FixedPointCast: { 13925 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 13926 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 13927 return false; 13928 bool Overflowed; 13929 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); 13930 if (Overflowed) { 13931 if (Info.checkingForUndefinedBehavior()) 13932 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13933 diag::warn_fixedpoint_constant_overflow) 13934 << Result.toString() << E->getType(); 13935 if (!HandleOverflow(Info, E, Result, E->getType())) 13936 return false; 13937 } 13938 return Success(Result, E); 13939 } 13940 case CK_IntegralToFixedPoint: { 13941 APSInt Src; 13942 if (!EvaluateInteger(SubExpr, Src, Info)) 13943 return false; 13944 13945 bool Overflowed; 13946 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 13947 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 13948 13949 if (Overflowed) { 13950 if (Info.checkingForUndefinedBehavior()) 13951 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13952 diag::warn_fixedpoint_constant_overflow) 13953 << IntResult.toString() << E->getType(); 13954 if (!HandleOverflow(Info, E, IntResult, E->getType())) 13955 return false; 13956 } 13957 13958 return Success(IntResult, E); 13959 } 13960 case CK_FloatingToFixedPoint: { 13961 APFloat Src(0.0); 13962 if (!EvaluateFloat(SubExpr, Src, Info)) 13963 return false; 13964 13965 bool Overflowed; 13966 APFixedPoint Result = APFixedPoint::getFromFloatValue( 13967 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 13968 13969 if (Overflowed) { 13970 if (Info.checkingForUndefinedBehavior()) 13971 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13972 diag::warn_fixedpoint_constant_overflow) 13973 << Result.toString() << E->getType(); 13974 if (!HandleOverflow(Info, E, Result, E->getType())) 13975 return false; 13976 } 13977 13978 return Success(Result, E); 13979 } 13980 case CK_NoOp: 13981 case CK_LValueToRValue: 13982 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13983 default: 13984 return Error(E); 13985 } 13986 } 13987 13988 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 13989 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 13990 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13991 13992 const Expr *LHS = E->getLHS(); 13993 const Expr *RHS = E->getRHS(); 13994 FixedPointSemantics ResultFXSema = 13995 Info.Ctx.getFixedPointSemantics(E->getType()); 13996 13997 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); 13998 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) 13999 return false; 14000 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); 14001 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) 14002 return false; 14003 14004 bool OpOverflow = false, ConversionOverflow = false; 14005 APFixedPoint Result(LHSFX.getSemantics()); 14006 switch (E->getOpcode()) { 14007 case BO_Add: { 14008 Result = LHSFX.add(RHSFX, &OpOverflow) 14009 .convert(ResultFXSema, &ConversionOverflow); 14010 break; 14011 } 14012 case BO_Sub: { 14013 Result = LHSFX.sub(RHSFX, &OpOverflow) 14014 .convert(ResultFXSema, &ConversionOverflow); 14015 break; 14016 } 14017 case BO_Mul: { 14018 Result = LHSFX.mul(RHSFX, &OpOverflow) 14019 .convert(ResultFXSema, &ConversionOverflow); 14020 break; 14021 } 14022 case BO_Div: { 14023 if (RHSFX.getValue() == 0) { 14024 Info.FFDiag(E, diag::note_expr_divide_by_zero); 14025 return false; 14026 } 14027 Result = LHSFX.div(RHSFX, &OpOverflow) 14028 .convert(ResultFXSema, &ConversionOverflow); 14029 break; 14030 } 14031 case BO_Shl: 14032 case BO_Shr: { 14033 FixedPointSemantics LHSSema = LHSFX.getSemantics(); 14034 llvm::APSInt RHSVal = RHSFX.getValue(); 14035 14036 unsigned ShiftBW = 14037 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding(); 14038 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1); 14039 // Embedded-C 4.1.6.2.2: 14040 // The right operand must be nonnegative and less than the total number 14041 // of (nonpadding) bits of the fixed-point operand ... 14042 if (RHSVal.isNegative()) 14043 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal; 14044 else if (Amt != RHSVal) 14045 Info.CCEDiag(E, diag::note_constexpr_large_shift) 14046 << RHSVal << E->getType() << ShiftBW; 14047 14048 if (E->getOpcode() == BO_Shl) 14049 Result = LHSFX.shl(Amt, &OpOverflow); 14050 else 14051 Result = LHSFX.shr(Amt, &OpOverflow); 14052 break; 14053 } 14054 default: 14055 return false; 14056 } 14057 if (OpOverflow || ConversionOverflow) { 14058 if (Info.checkingForUndefinedBehavior()) 14059 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 14060 diag::warn_fixedpoint_constant_overflow) 14061 << Result.toString() << E->getType(); 14062 if (!HandleOverflow(Info, E, Result, E->getType())) 14063 return false; 14064 } 14065 return Success(Result, E); 14066 } 14067 14068 //===----------------------------------------------------------------------===// 14069 // Float Evaluation 14070 //===----------------------------------------------------------------------===// 14071 14072 namespace { 14073 class FloatExprEvaluator 14074 : public ExprEvaluatorBase<FloatExprEvaluator> { 14075 APFloat &Result; 14076 public: 14077 FloatExprEvaluator(EvalInfo &info, APFloat &result) 14078 : ExprEvaluatorBaseTy(info), Result(result) {} 14079 14080 bool Success(const APValue &V, const Expr *e) { 14081 Result = V.getFloat(); 14082 return true; 14083 } 14084 14085 bool ZeroInitialization(const Expr *E) { 14086 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); 14087 return true; 14088 } 14089 14090 bool VisitCallExpr(const CallExpr *E); 14091 14092 bool VisitUnaryOperator(const UnaryOperator *E); 14093 bool VisitBinaryOperator(const BinaryOperator *E); 14094 bool VisitFloatingLiteral(const FloatingLiteral *E); 14095 bool VisitCastExpr(const CastExpr *E); 14096 14097 bool VisitUnaryReal(const UnaryOperator *E); 14098 bool VisitUnaryImag(const UnaryOperator *E); 14099 14100 // FIXME: Missing: array subscript of vector, member of vector 14101 }; 14102 } // end anonymous namespace 14103 14104 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { 14105 assert(!E->isValueDependent()); 14106 assert(E->isPRValue() && E->getType()->isRealFloatingType()); 14107 return FloatExprEvaluator(Info, Result).Visit(E); 14108 } 14109 14110 static bool TryEvaluateBuiltinNaN(const ASTContext &Context, 14111 QualType ResultTy, 14112 const Expr *Arg, 14113 bool SNaN, 14114 llvm::APFloat &Result) { 14115 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 14116 if (!S) return false; 14117 14118 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); 14119 14120 llvm::APInt fill; 14121 14122 // Treat empty strings as if they were zero. 14123 if (S->getString().empty()) 14124 fill = llvm::APInt(32, 0); 14125 else if (S->getString().getAsInteger(0, fill)) 14126 return false; 14127 14128 if (Context.getTargetInfo().isNan2008()) { 14129 if (SNaN) 14130 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 14131 else 14132 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 14133 } else { 14134 // Prior to IEEE 754-2008, architectures were allowed to choose whether 14135 // the first bit of their significand was set for qNaN or sNaN. MIPS chose 14136 // a different encoding to what became a standard in 2008, and for pre- 14137 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as 14138 // sNaN. This is now known as "legacy NaN" encoding. 14139 if (SNaN) 14140 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 14141 else 14142 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 14143 } 14144 14145 return true; 14146 } 14147 14148 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { 14149 if (!IsConstantEvaluatedBuiltinCall(E)) 14150 return ExprEvaluatorBaseTy::VisitCallExpr(E); 14151 14152 switch (E->getBuiltinCallee()) { 14153 default: 14154 return false; 14155 14156 case Builtin::BI__builtin_huge_val: 14157 case Builtin::BI__builtin_huge_valf: 14158 case Builtin::BI__builtin_huge_vall: 14159 case Builtin::BI__builtin_huge_valf16: 14160 case Builtin::BI__builtin_huge_valf128: 14161 case Builtin::BI__builtin_inf: 14162 case Builtin::BI__builtin_inff: 14163 case Builtin::BI__builtin_infl: 14164 case Builtin::BI__builtin_inff16: 14165 case Builtin::BI__builtin_inff128: { 14166 const llvm::fltSemantics &Sem = 14167 Info.Ctx.getFloatTypeSemantics(E->getType()); 14168 Result = llvm::APFloat::getInf(Sem); 14169 return true; 14170 } 14171 14172 case Builtin::BI__builtin_nans: 14173 case Builtin::BI__builtin_nansf: 14174 case Builtin::BI__builtin_nansl: 14175 case Builtin::BI__builtin_nansf16: 14176 case Builtin::BI__builtin_nansf128: 14177 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 14178 true, Result)) 14179 return Error(E); 14180 return true; 14181 14182 case Builtin::BI__builtin_nan: 14183 case Builtin::BI__builtin_nanf: 14184 case Builtin::BI__builtin_nanl: 14185 case Builtin::BI__builtin_nanf16: 14186 case Builtin::BI__builtin_nanf128: 14187 // If this is __builtin_nan() turn this into a nan, otherwise we 14188 // can't constant fold it. 14189 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 14190 false, Result)) 14191 return Error(E); 14192 return true; 14193 14194 case Builtin::BI__builtin_fabs: 14195 case Builtin::BI__builtin_fabsf: 14196 case Builtin::BI__builtin_fabsl: 14197 case Builtin::BI__builtin_fabsf128: 14198 // The C standard says "fabs raises no floating-point exceptions, 14199 // even if x is a signaling NaN. The returned value is independent of 14200 // the current rounding direction mode." Therefore constant folding can 14201 // proceed without regard to the floating point settings. 14202 // Reference, WG14 N2478 F.10.4.3 14203 if (!EvaluateFloat(E->getArg(0), Result, Info)) 14204 return false; 14205 14206 if (Result.isNegative()) 14207 Result.changeSign(); 14208 return true; 14209 14210 case Builtin::BI__arithmetic_fence: 14211 return EvaluateFloat(E->getArg(0), Result, Info); 14212 14213 // FIXME: Builtin::BI__builtin_powi 14214 // FIXME: Builtin::BI__builtin_powif 14215 // FIXME: Builtin::BI__builtin_powil 14216 14217 case Builtin::BI__builtin_copysign: 14218 case Builtin::BI__builtin_copysignf: 14219 case Builtin::BI__builtin_copysignl: 14220 case Builtin::BI__builtin_copysignf128: { 14221 APFloat RHS(0.); 14222 if (!EvaluateFloat(E->getArg(0), Result, Info) || 14223 !EvaluateFloat(E->getArg(1), RHS, Info)) 14224 return false; 14225 Result.copySign(RHS); 14226 return true; 14227 } 14228 14229 case Builtin::BI__builtin_fmax: 14230 case Builtin::BI__builtin_fmaxf: 14231 case Builtin::BI__builtin_fmaxl: 14232 case Builtin::BI__builtin_fmaxf16: 14233 case Builtin::BI__builtin_fmaxf128: { 14234 // TODO: Handle sNaN. 14235 APFloat RHS(0.); 14236 if (!EvaluateFloat(E->getArg(0), Result, Info) || 14237 !EvaluateFloat(E->getArg(1), RHS, Info)) 14238 return false; 14239 // When comparing zeroes, return +0.0 if one of the zeroes is positive. 14240 if (Result.isZero() && RHS.isZero() && Result.isNegative()) 14241 Result = RHS; 14242 else if (Result.isNaN() || RHS > Result) 14243 Result = RHS; 14244 return true; 14245 } 14246 14247 case Builtin::BI__builtin_fmin: 14248 case Builtin::BI__builtin_fminf: 14249 case Builtin::BI__builtin_fminl: 14250 case Builtin::BI__builtin_fminf16: 14251 case Builtin::BI__builtin_fminf128: { 14252 // TODO: Handle sNaN. 14253 APFloat RHS(0.); 14254 if (!EvaluateFloat(E->getArg(0), Result, Info) || 14255 !EvaluateFloat(E->getArg(1), RHS, Info)) 14256 return false; 14257 // When comparing zeroes, return -0.0 if one of the zeroes is negative. 14258 if (Result.isZero() && RHS.isZero() && RHS.isNegative()) 14259 Result = RHS; 14260 else if (Result.isNaN() || RHS < Result) 14261 Result = RHS; 14262 return true; 14263 } 14264 } 14265 } 14266 14267 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 14268 if (E->getSubExpr()->getType()->isAnyComplexType()) { 14269 ComplexValue CV; 14270 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 14271 return false; 14272 Result = CV.FloatReal; 14273 return true; 14274 } 14275 14276 return Visit(E->getSubExpr()); 14277 } 14278 14279 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 14280 if (E->getSubExpr()->getType()->isAnyComplexType()) { 14281 ComplexValue CV; 14282 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 14283 return false; 14284 Result = CV.FloatImag; 14285 return true; 14286 } 14287 14288 VisitIgnoredValue(E->getSubExpr()); 14289 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); 14290 Result = llvm::APFloat::getZero(Sem); 14291 return true; 14292 } 14293 14294 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 14295 switch (E->getOpcode()) { 14296 default: return Error(E); 14297 case UO_Plus: 14298 return EvaluateFloat(E->getSubExpr(), Result, Info); 14299 case UO_Minus: 14300 // In C standard, WG14 N2478 F.3 p4 14301 // "the unary - raises no floating point exceptions, 14302 // even if the operand is signalling." 14303 if (!EvaluateFloat(E->getSubExpr(), Result, Info)) 14304 return false; 14305 Result.changeSign(); 14306 return true; 14307 } 14308 } 14309 14310 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 14311 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 14312 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 14313 14314 APFloat RHS(0.0); 14315 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); 14316 if (!LHSOK && !Info.noteFailure()) 14317 return false; 14318 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && 14319 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); 14320 } 14321 14322 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { 14323 Result = E->getValue(); 14324 return true; 14325 } 14326 14327 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { 14328 const Expr* SubExpr = E->getSubExpr(); 14329 14330 switch (E->getCastKind()) { 14331 default: 14332 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14333 14334 case CK_IntegralToFloating: { 14335 APSInt IntResult; 14336 const FPOptions FPO = E->getFPFeaturesInEffect( 14337 Info.Ctx.getLangOpts()); 14338 return EvaluateInteger(SubExpr, IntResult, Info) && 14339 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(), 14340 IntResult, E->getType(), Result); 14341 } 14342 14343 case CK_FixedPointToFloating: { 14344 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 14345 if (!EvaluateFixedPoint(SubExpr, FixResult, Info)) 14346 return false; 14347 Result = 14348 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType())); 14349 return true; 14350 } 14351 14352 case CK_FloatingCast: { 14353 if (!Visit(SubExpr)) 14354 return false; 14355 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), 14356 Result); 14357 } 14358 14359 case CK_FloatingComplexToReal: { 14360 ComplexValue V; 14361 if (!EvaluateComplex(SubExpr, V, Info)) 14362 return false; 14363 Result = V.getComplexFloatReal(); 14364 return true; 14365 } 14366 } 14367 } 14368 14369 //===----------------------------------------------------------------------===// 14370 // Complex Evaluation (for float and integer) 14371 //===----------------------------------------------------------------------===// 14372 14373 namespace { 14374 class ComplexExprEvaluator 14375 : public ExprEvaluatorBase<ComplexExprEvaluator> { 14376 ComplexValue &Result; 14377 14378 public: 14379 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) 14380 : ExprEvaluatorBaseTy(info), Result(Result) {} 14381 14382 bool Success(const APValue &V, const Expr *e) { 14383 Result.setFrom(V); 14384 return true; 14385 } 14386 14387 bool ZeroInitialization(const Expr *E); 14388 14389 //===--------------------------------------------------------------------===// 14390 // Visitor Methods 14391 //===--------------------------------------------------------------------===// 14392 14393 bool VisitImaginaryLiteral(const ImaginaryLiteral *E); 14394 bool VisitCastExpr(const CastExpr *E); 14395 bool VisitBinaryOperator(const BinaryOperator *E); 14396 bool VisitUnaryOperator(const UnaryOperator *E); 14397 bool VisitInitListExpr(const InitListExpr *E); 14398 bool VisitCallExpr(const CallExpr *E); 14399 }; 14400 } // end anonymous namespace 14401 14402 static bool EvaluateComplex(const Expr *E, ComplexValue &Result, 14403 EvalInfo &Info) { 14404 assert(!E->isValueDependent()); 14405 assert(E->isPRValue() && E->getType()->isAnyComplexType()); 14406 return ComplexExprEvaluator(Info, Result).Visit(E); 14407 } 14408 14409 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { 14410 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 14411 if (ElemTy->isRealFloatingType()) { 14412 Result.makeComplexFloat(); 14413 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); 14414 Result.FloatReal = Zero; 14415 Result.FloatImag = Zero; 14416 } else { 14417 Result.makeComplexInt(); 14418 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); 14419 Result.IntReal = Zero; 14420 Result.IntImag = Zero; 14421 } 14422 return true; 14423 } 14424 14425 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 14426 const Expr* SubExpr = E->getSubExpr(); 14427 14428 if (SubExpr->getType()->isRealFloatingType()) { 14429 Result.makeComplexFloat(); 14430 APFloat &Imag = Result.FloatImag; 14431 if (!EvaluateFloat(SubExpr, Imag, Info)) 14432 return false; 14433 14434 Result.FloatReal = APFloat(Imag.getSemantics()); 14435 return true; 14436 } else { 14437 assert(SubExpr->getType()->isIntegerType() && 14438 "Unexpected imaginary literal."); 14439 14440 Result.makeComplexInt(); 14441 APSInt &Imag = Result.IntImag; 14442 if (!EvaluateInteger(SubExpr, Imag, Info)) 14443 return false; 14444 14445 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); 14446 return true; 14447 } 14448 } 14449 14450 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { 14451 14452 switch (E->getCastKind()) { 14453 case CK_BitCast: 14454 case CK_BaseToDerived: 14455 case CK_DerivedToBase: 14456 case CK_UncheckedDerivedToBase: 14457 case CK_Dynamic: 14458 case CK_ToUnion: 14459 case CK_ArrayToPointerDecay: 14460 case CK_FunctionToPointerDecay: 14461 case CK_NullToPointer: 14462 case CK_NullToMemberPointer: 14463 case CK_BaseToDerivedMemberPointer: 14464 case CK_DerivedToBaseMemberPointer: 14465 case CK_MemberPointerToBoolean: 14466 case CK_ReinterpretMemberPointer: 14467 case CK_ConstructorConversion: 14468 case CK_IntegralToPointer: 14469 case CK_PointerToIntegral: 14470 case CK_PointerToBoolean: 14471 case CK_ToVoid: 14472 case CK_VectorSplat: 14473 case CK_IntegralCast: 14474 case CK_BooleanToSignedIntegral: 14475 case CK_IntegralToBoolean: 14476 case CK_IntegralToFloating: 14477 case CK_FloatingToIntegral: 14478 case CK_FloatingToBoolean: 14479 case CK_FloatingCast: 14480 case CK_CPointerToObjCPointerCast: 14481 case CK_BlockPointerToObjCPointerCast: 14482 case CK_AnyPointerToBlockPointerCast: 14483 case CK_ObjCObjectLValueCast: 14484 case CK_FloatingComplexToReal: 14485 case CK_FloatingComplexToBoolean: 14486 case CK_IntegralComplexToReal: 14487 case CK_IntegralComplexToBoolean: 14488 case CK_ARCProduceObject: 14489 case CK_ARCConsumeObject: 14490 case CK_ARCReclaimReturnedObject: 14491 case CK_ARCExtendBlockObject: 14492 case CK_CopyAndAutoreleaseBlockObject: 14493 case CK_BuiltinFnToFnPtr: 14494 case CK_ZeroToOCLOpaqueType: 14495 case CK_NonAtomicToAtomic: 14496 case CK_AddressSpaceConversion: 14497 case CK_IntToOCLSampler: 14498 case CK_FloatingToFixedPoint: 14499 case CK_FixedPointToFloating: 14500 case CK_FixedPointCast: 14501 case CK_FixedPointToBoolean: 14502 case CK_FixedPointToIntegral: 14503 case CK_IntegralToFixedPoint: 14504 case CK_MatrixCast: 14505 llvm_unreachable("invalid cast kind for complex value"); 14506 14507 case CK_LValueToRValue: 14508 case CK_AtomicToNonAtomic: 14509 case CK_NoOp: 14510 case CK_LValueToRValueBitCast: 14511 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14512 14513 case CK_Dependent: 14514 case CK_LValueBitCast: 14515 case CK_UserDefinedConversion: 14516 return Error(E); 14517 14518 case CK_FloatingRealToComplex: { 14519 APFloat &Real = Result.FloatReal; 14520 if (!EvaluateFloat(E->getSubExpr(), Real, Info)) 14521 return false; 14522 14523 Result.makeComplexFloat(); 14524 Result.FloatImag = APFloat(Real.getSemantics()); 14525 return true; 14526 } 14527 14528 case CK_FloatingComplexCast: { 14529 if (!Visit(E->getSubExpr())) 14530 return false; 14531 14532 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14533 QualType From 14534 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14535 14536 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && 14537 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); 14538 } 14539 14540 case CK_FloatingComplexToIntegralComplex: { 14541 if (!Visit(E->getSubExpr())) 14542 return false; 14543 14544 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14545 QualType From 14546 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14547 Result.makeComplexInt(); 14548 return HandleFloatToIntCast(Info, E, From, Result.FloatReal, 14549 To, Result.IntReal) && 14550 HandleFloatToIntCast(Info, E, From, Result.FloatImag, 14551 To, Result.IntImag); 14552 } 14553 14554 case CK_IntegralRealToComplex: { 14555 APSInt &Real = Result.IntReal; 14556 if (!EvaluateInteger(E->getSubExpr(), Real, Info)) 14557 return false; 14558 14559 Result.makeComplexInt(); 14560 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); 14561 return true; 14562 } 14563 14564 case CK_IntegralComplexCast: { 14565 if (!Visit(E->getSubExpr())) 14566 return false; 14567 14568 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14569 QualType From 14570 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14571 14572 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); 14573 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); 14574 return true; 14575 } 14576 14577 case CK_IntegralComplexToFloatingComplex: { 14578 if (!Visit(E->getSubExpr())) 14579 return false; 14580 14581 const FPOptions FPO = E->getFPFeaturesInEffect( 14582 Info.Ctx.getLangOpts()); 14583 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14584 QualType From 14585 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14586 Result.makeComplexFloat(); 14587 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal, 14588 To, Result.FloatReal) && 14589 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag, 14590 To, Result.FloatImag); 14591 } 14592 } 14593 14594 llvm_unreachable("unknown cast resulting in complex value"); 14595 } 14596 14597 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 14598 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 14599 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 14600 14601 // Track whether the LHS or RHS is real at the type system level. When this is 14602 // the case we can simplify our evaluation strategy. 14603 bool LHSReal = false, RHSReal = false; 14604 14605 bool LHSOK; 14606 if (E->getLHS()->getType()->isRealFloatingType()) { 14607 LHSReal = true; 14608 APFloat &Real = Result.FloatReal; 14609 LHSOK = EvaluateFloat(E->getLHS(), Real, Info); 14610 if (LHSOK) { 14611 Result.makeComplexFloat(); 14612 Result.FloatImag = APFloat(Real.getSemantics()); 14613 } 14614 } else { 14615 LHSOK = Visit(E->getLHS()); 14616 } 14617 if (!LHSOK && !Info.noteFailure()) 14618 return false; 14619 14620 ComplexValue RHS; 14621 if (E->getRHS()->getType()->isRealFloatingType()) { 14622 RHSReal = true; 14623 APFloat &Real = RHS.FloatReal; 14624 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) 14625 return false; 14626 RHS.makeComplexFloat(); 14627 RHS.FloatImag = APFloat(Real.getSemantics()); 14628 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 14629 return false; 14630 14631 assert(!(LHSReal && RHSReal) && 14632 "Cannot have both operands of a complex operation be real."); 14633 switch (E->getOpcode()) { 14634 default: return Error(E); 14635 case BO_Add: 14636 if (Result.isComplexFloat()) { 14637 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), 14638 APFloat::rmNearestTiesToEven); 14639 if (LHSReal) 14640 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 14641 else if (!RHSReal) 14642 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), 14643 APFloat::rmNearestTiesToEven); 14644 } else { 14645 Result.getComplexIntReal() += RHS.getComplexIntReal(); 14646 Result.getComplexIntImag() += RHS.getComplexIntImag(); 14647 } 14648 break; 14649 case BO_Sub: 14650 if (Result.isComplexFloat()) { 14651 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), 14652 APFloat::rmNearestTiesToEven); 14653 if (LHSReal) { 14654 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 14655 Result.getComplexFloatImag().changeSign(); 14656 } else if (!RHSReal) { 14657 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), 14658 APFloat::rmNearestTiesToEven); 14659 } 14660 } else { 14661 Result.getComplexIntReal() -= RHS.getComplexIntReal(); 14662 Result.getComplexIntImag() -= RHS.getComplexIntImag(); 14663 } 14664 break; 14665 case BO_Mul: 14666 if (Result.isComplexFloat()) { 14667 // This is an implementation of complex multiplication according to the 14668 // constraints laid out in C11 Annex G. The implementation uses the 14669 // following naming scheme: 14670 // (a + ib) * (c + id) 14671 ComplexValue LHS = Result; 14672 APFloat &A = LHS.getComplexFloatReal(); 14673 APFloat &B = LHS.getComplexFloatImag(); 14674 APFloat &C = RHS.getComplexFloatReal(); 14675 APFloat &D = RHS.getComplexFloatImag(); 14676 APFloat &ResR = Result.getComplexFloatReal(); 14677 APFloat &ResI = Result.getComplexFloatImag(); 14678 if (LHSReal) { 14679 assert(!RHSReal && "Cannot have two real operands for a complex op!"); 14680 ResR = A * C; 14681 ResI = A * D; 14682 } else if (RHSReal) { 14683 ResR = C * A; 14684 ResI = C * B; 14685 } else { 14686 // In the fully general case, we need to handle NaNs and infinities 14687 // robustly. 14688 APFloat AC = A * C; 14689 APFloat BD = B * D; 14690 APFloat AD = A * D; 14691 APFloat BC = B * C; 14692 ResR = AC - BD; 14693 ResI = AD + BC; 14694 if (ResR.isNaN() && ResI.isNaN()) { 14695 bool Recalc = false; 14696 if (A.isInfinity() || B.isInfinity()) { 14697 A = APFloat::copySign( 14698 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 14699 B = APFloat::copySign( 14700 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 14701 if (C.isNaN()) 14702 C = APFloat::copySign(APFloat(C.getSemantics()), C); 14703 if (D.isNaN()) 14704 D = APFloat::copySign(APFloat(D.getSemantics()), D); 14705 Recalc = true; 14706 } 14707 if (C.isInfinity() || D.isInfinity()) { 14708 C = APFloat::copySign( 14709 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 14710 D = APFloat::copySign( 14711 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 14712 if (A.isNaN()) 14713 A = APFloat::copySign(APFloat(A.getSemantics()), A); 14714 if (B.isNaN()) 14715 B = APFloat::copySign(APFloat(B.getSemantics()), B); 14716 Recalc = true; 14717 } 14718 if (!Recalc && (AC.isInfinity() || BD.isInfinity() || 14719 AD.isInfinity() || BC.isInfinity())) { 14720 if (A.isNaN()) 14721 A = APFloat::copySign(APFloat(A.getSemantics()), A); 14722 if (B.isNaN()) 14723 B = APFloat::copySign(APFloat(B.getSemantics()), B); 14724 if (C.isNaN()) 14725 C = APFloat::copySign(APFloat(C.getSemantics()), C); 14726 if (D.isNaN()) 14727 D = APFloat::copySign(APFloat(D.getSemantics()), D); 14728 Recalc = true; 14729 } 14730 if (Recalc) { 14731 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); 14732 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); 14733 } 14734 } 14735 } 14736 } else { 14737 ComplexValue LHS = Result; 14738 Result.getComplexIntReal() = 14739 (LHS.getComplexIntReal() * RHS.getComplexIntReal() - 14740 LHS.getComplexIntImag() * RHS.getComplexIntImag()); 14741 Result.getComplexIntImag() = 14742 (LHS.getComplexIntReal() * RHS.getComplexIntImag() + 14743 LHS.getComplexIntImag() * RHS.getComplexIntReal()); 14744 } 14745 break; 14746 case BO_Div: 14747 if (Result.isComplexFloat()) { 14748 // This is an implementation of complex division according to the 14749 // constraints laid out in C11 Annex G. The implementation uses the 14750 // following naming scheme: 14751 // (a + ib) / (c + id) 14752 ComplexValue LHS = Result; 14753 APFloat &A = LHS.getComplexFloatReal(); 14754 APFloat &B = LHS.getComplexFloatImag(); 14755 APFloat &C = RHS.getComplexFloatReal(); 14756 APFloat &D = RHS.getComplexFloatImag(); 14757 APFloat &ResR = Result.getComplexFloatReal(); 14758 APFloat &ResI = Result.getComplexFloatImag(); 14759 if (RHSReal) { 14760 ResR = A / C; 14761 ResI = B / C; 14762 } else { 14763 if (LHSReal) { 14764 // No real optimizations we can do here, stub out with zero. 14765 B = APFloat::getZero(A.getSemantics()); 14766 } 14767 int DenomLogB = 0; 14768 APFloat MaxCD = maxnum(abs(C), abs(D)); 14769 if (MaxCD.isFinite()) { 14770 DenomLogB = ilogb(MaxCD); 14771 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); 14772 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); 14773 } 14774 APFloat Denom = C * C + D * D; 14775 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB, 14776 APFloat::rmNearestTiesToEven); 14777 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB, 14778 APFloat::rmNearestTiesToEven); 14779 if (ResR.isNaN() && ResI.isNaN()) { 14780 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { 14781 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; 14782 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; 14783 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && 14784 D.isFinite()) { 14785 A = APFloat::copySign( 14786 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 14787 B = APFloat::copySign( 14788 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 14789 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); 14790 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); 14791 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { 14792 C = APFloat::copySign( 14793 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 14794 D = APFloat::copySign( 14795 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 14796 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); 14797 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); 14798 } 14799 } 14800 } 14801 } else { 14802 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) 14803 return Error(E, diag::note_expr_divide_by_zero); 14804 14805 ComplexValue LHS = Result; 14806 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + 14807 RHS.getComplexIntImag() * RHS.getComplexIntImag(); 14808 Result.getComplexIntReal() = 14809 (LHS.getComplexIntReal() * RHS.getComplexIntReal() + 14810 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; 14811 Result.getComplexIntImag() = 14812 (LHS.getComplexIntImag() * RHS.getComplexIntReal() - 14813 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; 14814 } 14815 break; 14816 } 14817 14818 return true; 14819 } 14820 14821 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 14822 // Get the operand value into 'Result'. 14823 if (!Visit(E->getSubExpr())) 14824 return false; 14825 14826 switch (E->getOpcode()) { 14827 default: 14828 return Error(E); 14829 case UO_Extension: 14830 return true; 14831 case UO_Plus: 14832 // The result is always just the subexpr. 14833 return true; 14834 case UO_Minus: 14835 if (Result.isComplexFloat()) { 14836 Result.getComplexFloatReal().changeSign(); 14837 Result.getComplexFloatImag().changeSign(); 14838 } 14839 else { 14840 Result.getComplexIntReal() = -Result.getComplexIntReal(); 14841 Result.getComplexIntImag() = -Result.getComplexIntImag(); 14842 } 14843 return true; 14844 case UO_Not: 14845 if (Result.isComplexFloat()) 14846 Result.getComplexFloatImag().changeSign(); 14847 else 14848 Result.getComplexIntImag() = -Result.getComplexIntImag(); 14849 return true; 14850 } 14851 } 14852 14853 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 14854 if (E->getNumInits() == 2) { 14855 if (E->getType()->isComplexType()) { 14856 Result.makeComplexFloat(); 14857 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) 14858 return false; 14859 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) 14860 return false; 14861 } else { 14862 Result.makeComplexInt(); 14863 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) 14864 return false; 14865 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) 14866 return false; 14867 } 14868 return true; 14869 } 14870 return ExprEvaluatorBaseTy::VisitInitListExpr(E); 14871 } 14872 14873 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) { 14874 if (!IsConstantEvaluatedBuiltinCall(E)) 14875 return ExprEvaluatorBaseTy::VisitCallExpr(E); 14876 14877 switch (E->getBuiltinCallee()) { 14878 case Builtin::BI__builtin_complex: 14879 Result.makeComplexFloat(); 14880 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info)) 14881 return false; 14882 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info)) 14883 return false; 14884 return true; 14885 14886 default: 14887 return false; 14888 } 14889 } 14890 14891 //===----------------------------------------------------------------------===// 14892 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic 14893 // implicit conversion. 14894 //===----------------------------------------------------------------------===// 14895 14896 namespace { 14897 class AtomicExprEvaluator : 14898 public ExprEvaluatorBase<AtomicExprEvaluator> { 14899 const LValue *This; 14900 APValue &Result; 14901 public: 14902 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) 14903 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 14904 14905 bool Success(const APValue &V, const Expr *E) { 14906 Result = V; 14907 return true; 14908 } 14909 14910 bool ZeroInitialization(const Expr *E) { 14911 ImplicitValueInitExpr VIE( 14912 E->getType()->castAs<AtomicType>()->getValueType()); 14913 // For atomic-qualified class (and array) types in C++, initialize the 14914 // _Atomic-wrapped subobject directly, in-place. 14915 return This ? EvaluateInPlace(Result, Info, *This, &VIE) 14916 : Evaluate(Result, Info, &VIE); 14917 } 14918 14919 bool VisitCastExpr(const CastExpr *E) { 14920 switch (E->getCastKind()) { 14921 default: 14922 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14923 case CK_NullToPointer: 14924 VisitIgnoredValue(E->getSubExpr()); 14925 return ZeroInitialization(E); 14926 case CK_NonAtomicToAtomic: 14927 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) 14928 : Evaluate(Result, Info, E->getSubExpr()); 14929 } 14930 } 14931 }; 14932 } // end anonymous namespace 14933 14934 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 14935 EvalInfo &Info) { 14936 assert(!E->isValueDependent()); 14937 assert(E->isPRValue() && E->getType()->isAtomicType()); 14938 return AtomicExprEvaluator(Info, This, Result).Visit(E); 14939 } 14940 14941 //===----------------------------------------------------------------------===// 14942 // Void expression evaluation, primarily for a cast to void on the LHS of a 14943 // comma operator 14944 //===----------------------------------------------------------------------===// 14945 14946 namespace { 14947 class VoidExprEvaluator 14948 : public ExprEvaluatorBase<VoidExprEvaluator> { 14949 public: 14950 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} 14951 14952 bool Success(const APValue &V, const Expr *e) { return true; } 14953 14954 bool ZeroInitialization(const Expr *E) { return true; } 14955 14956 bool VisitCastExpr(const CastExpr *E) { 14957 switch (E->getCastKind()) { 14958 default: 14959 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14960 case CK_ToVoid: 14961 VisitIgnoredValue(E->getSubExpr()); 14962 return true; 14963 } 14964 } 14965 14966 bool VisitCallExpr(const CallExpr *E) { 14967 if (!IsConstantEvaluatedBuiltinCall(E)) 14968 return ExprEvaluatorBaseTy::VisitCallExpr(E); 14969 14970 switch (E->getBuiltinCallee()) { 14971 case Builtin::BI__assume: 14972 case Builtin::BI__builtin_assume: 14973 // The argument is not evaluated! 14974 return true; 14975 14976 case Builtin::BI__builtin_operator_delete: 14977 return HandleOperatorDeleteCall(Info, E); 14978 14979 default: 14980 return false; 14981 } 14982 } 14983 14984 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); 14985 }; 14986 } // end anonymous namespace 14987 14988 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 14989 // We cannot speculatively evaluate a delete expression. 14990 if (Info.SpeculativeEvaluationDepth) 14991 return false; 14992 14993 FunctionDecl *OperatorDelete = E->getOperatorDelete(); 14994 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { 14995 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 14996 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; 14997 return false; 14998 } 14999 15000 const Expr *Arg = E->getArgument(); 15001 15002 LValue Pointer; 15003 if (!EvaluatePointer(Arg, Pointer, Info)) 15004 return false; 15005 if (Pointer.Designator.Invalid) 15006 return false; 15007 15008 // Deleting a null pointer has no effect. 15009 if (Pointer.isNullPointer()) { 15010 // This is the only case where we need to produce an extension warning: 15011 // the only other way we can succeed is if we find a dynamic allocation, 15012 // and we will have warned when we allocated it in that case. 15013 if (!Info.getLangOpts().CPlusPlus20) 15014 Info.CCEDiag(E, diag::note_constexpr_new); 15015 return true; 15016 } 15017 15018 std::optional<DynAlloc *> Alloc = CheckDeleteKind( 15019 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); 15020 if (!Alloc) 15021 return false; 15022 QualType AllocType = Pointer.Base.getDynamicAllocType(); 15023 15024 // For the non-array case, the designator must be empty if the static type 15025 // does not have a virtual destructor. 15026 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && 15027 !hasVirtualDestructor(Arg->getType()->getPointeeType())) { 15028 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) 15029 << Arg->getType()->getPointeeType() << AllocType; 15030 return false; 15031 } 15032 15033 // For a class type with a virtual destructor, the selected operator delete 15034 // is the one looked up when building the destructor. 15035 if (!E->isArrayForm() && !E->isGlobalDelete()) { 15036 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); 15037 if (VirtualDelete && 15038 !VirtualDelete->isReplaceableGlobalAllocationFunction()) { 15039 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 15040 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; 15041 return false; 15042 } 15043 } 15044 15045 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), 15046 (*Alloc)->Value, AllocType)) 15047 return false; 15048 15049 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { 15050 // The element was already erased. This means the destructor call also 15051 // deleted the object. 15052 // FIXME: This probably results in undefined behavior before we get this 15053 // far, and should be diagnosed elsewhere first. 15054 Info.FFDiag(E, diag::note_constexpr_double_delete); 15055 return false; 15056 } 15057 15058 return true; 15059 } 15060 15061 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { 15062 assert(!E->isValueDependent()); 15063 assert(E->isPRValue() && E->getType()->isVoidType()); 15064 return VoidExprEvaluator(Info).Visit(E); 15065 } 15066 15067 //===----------------------------------------------------------------------===// 15068 // Top level Expr::EvaluateAsRValue method. 15069 //===----------------------------------------------------------------------===// 15070 15071 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { 15072 assert(!E->isValueDependent()); 15073 // In C, function designators are not lvalues, but we evaluate them as if they 15074 // are. 15075 QualType T = E->getType(); 15076 if (E->isGLValue() || T->isFunctionType()) { 15077 LValue LV; 15078 if (!EvaluateLValue(E, LV, Info)) 15079 return false; 15080 LV.moveInto(Result); 15081 } else if (T->isVectorType()) { 15082 if (!EvaluateVector(E, Result, Info)) 15083 return false; 15084 } else if (T->isIntegralOrEnumerationType()) { 15085 if (!IntExprEvaluator(Info, Result).Visit(E)) 15086 return false; 15087 } else if (T->hasPointerRepresentation()) { 15088 LValue LV; 15089 if (!EvaluatePointer(E, LV, Info)) 15090 return false; 15091 LV.moveInto(Result); 15092 } else if (T->isRealFloatingType()) { 15093 llvm::APFloat F(0.0); 15094 if (!EvaluateFloat(E, F, Info)) 15095 return false; 15096 Result = APValue(F); 15097 } else if (T->isAnyComplexType()) { 15098 ComplexValue C; 15099 if (!EvaluateComplex(E, C, Info)) 15100 return false; 15101 C.moveInto(Result); 15102 } else if (T->isFixedPointType()) { 15103 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; 15104 } else if (T->isMemberPointerType()) { 15105 MemberPtr P; 15106 if (!EvaluateMemberPointer(E, P, Info)) 15107 return false; 15108 P.moveInto(Result); 15109 return true; 15110 } else if (T->isArrayType()) { 15111 LValue LV; 15112 APValue &Value = 15113 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 15114 if (!EvaluateArray(E, LV, Value, Info)) 15115 return false; 15116 Result = Value; 15117 } else if (T->isRecordType()) { 15118 LValue LV; 15119 APValue &Value = 15120 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 15121 if (!EvaluateRecord(E, LV, Value, Info)) 15122 return false; 15123 Result = Value; 15124 } else if (T->isVoidType()) { 15125 if (!Info.getLangOpts().CPlusPlus11) 15126 Info.CCEDiag(E, diag::note_constexpr_nonliteral) 15127 << E->getType(); 15128 if (!EvaluateVoid(E, Info)) 15129 return false; 15130 } else if (T->isAtomicType()) { 15131 QualType Unqual = T.getAtomicUnqualifiedType(); 15132 if (Unqual->isArrayType() || Unqual->isRecordType()) { 15133 LValue LV; 15134 APValue &Value = Info.CurrentCall->createTemporary( 15135 E, Unqual, ScopeKind::FullExpression, LV); 15136 if (!EvaluateAtomic(E, &LV, Value, Info)) 15137 return false; 15138 Result = Value; 15139 } else { 15140 if (!EvaluateAtomic(E, nullptr, Result, Info)) 15141 return false; 15142 } 15143 } else if (Info.getLangOpts().CPlusPlus11) { 15144 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); 15145 return false; 15146 } else { 15147 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 15148 return false; 15149 } 15150 15151 return true; 15152 } 15153 15154 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some 15155 /// cases, the in-place evaluation is essential, since later initializers for 15156 /// an object can indirectly refer to subobjects which were initialized earlier. 15157 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, 15158 const Expr *E, bool AllowNonLiteralTypes) { 15159 assert(!E->isValueDependent()); 15160 15161 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) 15162 return false; 15163 15164 if (E->isPRValue()) { 15165 // Evaluate arrays and record types in-place, so that later initializers can 15166 // refer to earlier-initialized members of the object. 15167 QualType T = E->getType(); 15168 if (T->isArrayType()) 15169 return EvaluateArray(E, This, Result, Info); 15170 else if (T->isRecordType()) 15171 return EvaluateRecord(E, This, Result, Info); 15172 else if (T->isAtomicType()) { 15173 QualType Unqual = T.getAtomicUnqualifiedType(); 15174 if (Unqual->isArrayType() || Unqual->isRecordType()) 15175 return EvaluateAtomic(E, &This, Result, Info); 15176 } 15177 } 15178 15179 // For any other type, in-place evaluation is unimportant. 15180 return Evaluate(Result, Info, E); 15181 } 15182 15183 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit 15184 /// lvalue-to-rvalue cast if it is an lvalue. 15185 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { 15186 assert(!E->isValueDependent()); 15187 15188 if (E->getType().isNull()) 15189 return false; 15190 15191 if (!CheckLiteralType(Info, E)) 15192 return false; 15193 15194 if (Info.EnableNewConstInterp) { 15195 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result)) 15196 return false; 15197 } else { 15198 if (!::Evaluate(Result, Info, E)) 15199 return false; 15200 } 15201 15202 // Implicit lvalue-to-rvalue cast. 15203 if (E->isGLValue()) { 15204 LValue LV; 15205 LV.setFrom(Info.Ctx, Result); 15206 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 15207 return false; 15208 } 15209 15210 // Check this core constant expression is a constant expression. 15211 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 15212 ConstantExprKind::Normal) && 15213 CheckMemoryLeaks(Info); 15214 } 15215 15216 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, 15217 const ASTContext &Ctx, bool &IsConst) { 15218 // Fast-path evaluations of integer literals, since we sometimes see files 15219 // containing vast quantities of these. 15220 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { 15221 Result.Val = APValue(APSInt(L->getValue(), 15222 L->getType()->isUnsignedIntegerType())); 15223 IsConst = true; 15224 return true; 15225 } 15226 15227 if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) { 15228 Result.Val = APValue(APSInt(APInt(1, L->getValue()))); 15229 IsConst = true; 15230 return true; 15231 } 15232 15233 // This case should be rare, but we need to check it before we check on 15234 // the type below. 15235 if (Exp->getType().isNull()) { 15236 IsConst = false; 15237 return true; 15238 } 15239 15240 return false; 15241 } 15242 15243 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, 15244 Expr::SideEffectsKind SEK) { 15245 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || 15246 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); 15247 } 15248 15249 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, 15250 const ASTContext &Ctx, EvalInfo &Info) { 15251 assert(!E->isValueDependent()); 15252 bool IsConst; 15253 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) 15254 return IsConst; 15255 15256 return EvaluateAsRValue(Info, E, Result.Val); 15257 } 15258 15259 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, 15260 const ASTContext &Ctx, 15261 Expr::SideEffectsKind AllowSideEffects, 15262 EvalInfo &Info) { 15263 assert(!E->isValueDependent()); 15264 if (!E->getType()->isIntegralOrEnumerationType()) 15265 return false; 15266 15267 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || 15268 !ExprResult.Val.isInt() || 15269 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 15270 return false; 15271 15272 return true; 15273 } 15274 15275 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, 15276 const ASTContext &Ctx, 15277 Expr::SideEffectsKind AllowSideEffects, 15278 EvalInfo &Info) { 15279 assert(!E->isValueDependent()); 15280 if (!E->getType()->isFixedPointType()) 15281 return false; 15282 15283 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) 15284 return false; 15285 15286 if (!ExprResult.Val.isFixedPoint() || 15287 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 15288 return false; 15289 15290 return true; 15291 } 15292 15293 /// EvaluateAsRValue - Return true if this is a constant which we can fold using 15294 /// any crazy technique (that has nothing to do with language standards) that 15295 /// we want to. If this function returns true, it returns the folded constant 15296 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion 15297 /// will be applied to the result. 15298 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, 15299 bool InConstantContext) const { 15300 assert(!isValueDependent() && 15301 "Expression evaluator can't be called on a dependent expression."); 15302 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue"); 15303 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 15304 Info.InConstantContext = InConstantContext; 15305 return ::EvaluateAsRValue(this, Result, Ctx, Info); 15306 } 15307 15308 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, 15309 bool InConstantContext) const { 15310 assert(!isValueDependent() && 15311 "Expression evaluator can't be called on a dependent expression."); 15312 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition"); 15313 EvalResult Scratch; 15314 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && 15315 HandleConversionToBool(Scratch.Val, Result); 15316 } 15317 15318 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, 15319 SideEffectsKind AllowSideEffects, 15320 bool InConstantContext) const { 15321 assert(!isValueDependent() && 15322 "Expression evaluator can't be called on a dependent expression."); 15323 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt"); 15324 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 15325 Info.InConstantContext = InConstantContext; 15326 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); 15327 } 15328 15329 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, 15330 SideEffectsKind AllowSideEffects, 15331 bool InConstantContext) const { 15332 assert(!isValueDependent() && 15333 "Expression evaluator can't be called on a dependent expression."); 15334 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint"); 15335 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 15336 Info.InConstantContext = InConstantContext; 15337 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); 15338 } 15339 15340 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, 15341 SideEffectsKind AllowSideEffects, 15342 bool InConstantContext) const { 15343 assert(!isValueDependent() && 15344 "Expression evaluator can't be called on a dependent expression."); 15345 15346 if (!getType()->isRealFloatingType()) 15347 return false; 15348 15349 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat"); 15350 EvalResult ExprResult; 15351 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || 15352 !ExprResult.Val.isFloat() || 15353 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 15354 return false; 15355 15356 Result = ExprResult.Val.getFloat(); 15357 return true; 15358 } 15359 15360 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, 15361 bool InConstantContext) const { 15362 assert(!isValueDependent() && 15363 "Expression evaluator can't be called on a dependent expression."); 15364 15365 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue"); 15366 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); 15367 Info.InConstantContext = InConstantContext; 15368 LValue LV; 15369 CheckedTemporaries CheckedTemps; 15370 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || 15371 Result.HasSideEffects || 15372 !CheckLValueConstantExpression(Info, getExprLoc(), 15373 Ctx.getLValueReferenceType(getType()), LV, 15374 ConstantExprKind::Normal, CheckedTemps)) 15375 return false; 15376 15377 LV.moveInto(Result.Val); 15378 return true; 15379 } 15380 15381 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base, 15382 APValue DestroyedValue, QualType Type, 15383 SourceLocation Loc, Expr::EvalStatus &EStatus, 15384 bool IsConstantDestruction) { 15385 EvalInfo Info(Ctx, EStatus, 15386 IsConstantDestruction ? EvalInfo::EM_ConstantExpression 15387 : EvalInfo::EM_ConstantFold); 15388 Info.setEvaluatingDecl(Base, DestroyedValue, 15389 EvalInfo::EvaluatingDeclKind::Dtor); 15390 Info.InConstantContext = IsConstantDestruction; 15391 15392 LValue LVal; 15393 LVal.set(Base); 15394 15395 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) || 15396 EStatus.HasSideEffects) 15397 return false; 15398 15399 if (!Info.discardCleanups()) 15400 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 15401 15402 return true; 15403 } 15404 15405 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, 15406 ConstantExprKind Kind) const { 15407 assert(!isValueDependent() && 15408 "Expression evaluator can't be called on a dependent expression."); 15409 bool IsConst; 15410 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue()) 15411 return true; 15412 15413 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr"); 15414 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; 15415 EvalInfo Info(Ctx, Result, EM); 15416 Info.InConstantContext = true; 15417 15418 // The type of the object we're initializing is 'const T' for a class NTTP. 15419 QualType T = getType(); 15420 if (Kind == ConstantExprKind::ClassTemplateArgument) 15421 T.addConst(); 15422 15423 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to 15424 // represent the result of the evaluation. CheckConstantExpression ensures 15425 // this doesn't escape. 15426 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true); 15427 APValue::LValueBase Base(&BaseMTE); 15428 15429 Info.setEvaluatingDecl(Base, Result.Val); 15430 LValue LVal; 15431 LVal.set(Base); 15432 15433 { 15434 // C++23 [intro.execution]/p5 15435 // A full-expression is [...] a constant-expression 15436 // So we need to make sure temporary objects are destroyed after having 15437 // evaluating the expression (per C++23 [class.temporary]/p4). 15438 FullExpressionRAII Scope(Info); 15439 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || 15440 Result.HasSideEffects || !Scope.destroy()) 15441 return false; 15442 } 15443 15444 if (!Info.discardCleanups()) 15445 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 15446 15447 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), 15448 Result.Val, Kind)) 15449 return false; 15450 if (!CheckMemoryLeaks(Info)) 15451 return false; 15452 15453 // If this is a class template argument, it's required to have constant 15454 // destruction too. 15455 if (Kind == ConstantExprKind::ClassTemplateArgument && 15456 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result, 15457 true) || 15458 Result.HasSideEffects)) { 15459 // FIXME: Prefix a note to indicate that the problem is lack of constant 15460 // destruction. 15461 return false; 15462 } 15463 15464 return true; 15465 } 15466 15467 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, 15468 const VarDecl *VD, 15469 SmallVectorImpl<PartialDiagnosticAt> &Notes, 15470 bool IsConstantInitialization) const { 15471 assert(!isValueDependent() && 15472 "Expression evaluator can't be called on a dependent expression."); 15473 15474 llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] { 15475 std::string Name; 15476 llvm::raw_string_ostream OS(Name); 15477 VD->printQualifiedName(OS); 15478 return Name; 15479 }); 15480 15481 Expr::EvalStatus EStatus; 15482 EStatus.Diag = &Notes; 15483 15484 EvalInfo Info(Ctx, EStatus, 15485 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus) 15486 ? EvalInfo::EM_ConstantExpression 15487 : EvalInfo::EM_ConstantFold); 15488 Info.setEvaluatingDecl(VD, Value); 15489 Info.InConstantContext = IsConstantInitialization; 15490 15491 if (Info.EnableNewConstInterp) { 15492 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); 15493 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value)) 15494 return false; 15495 } else { 15496 LValue LVal; 15497 LVal.set(VD); 15498 15499 if (!EvaluateInPlace(Value, Info, LVal, this, 15500 /*AllowNonLiteralTypes=*/true) || 15501 EStatus.HasSideEffects) 15502 return false; 15503 15504 // At this point, any lifetime-extended temporaries are completely 15505 // initialized. 15506 Info.performLifetimeExtension(); 15507 15508 if (!Info.discardCleanups()) 15509 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 15510 } 15511 15512 SourceLocation DeclLoc = VD->getLocation(); 15513 QualType DeclTy = VD->getType(); 15514 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, 15515 ConstantExprKind::Normal) && 15516 CheckMemoryLeaks(Info); 15517 } 15518 15519 bool VarDecl::evaluateDestruction( 15520 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 15521 Expr::EvalStatus EStatus; 15522 EStatus.Diag = &Notes; 15523 15524 // Only treat the destruction as constant destruction if we formally have 15525 // constant initialization (or are usable in a constant expression). 15526 bool IsConstantDestruction = hasConstantInitialization(); 15527 15528 // Make a copy of the value for the destructor to mutate, if we know it. 15529 // Otherwise, treat the value as default-initialized; if the destructor works 15530 // anyway, then the destruction is constant (and must be essentially empty). 15531 APValue DestroyedValue; 15532 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent()) 15533 DestroyedValue = *getEvaluatedValue(); 15534 else if (!getDefaultInitValue(getType(), DestroyedValue)) 15535 return false; 15536 15537 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue), 15538 getType(), getLocation(), EStatus, 15539 IsConstantDestruction) || 15540 EStatus.HasSideEffects) 15541 return false; 15542 15543 ensureEvaluatedStmt()->HasConstantDestruction = true; 15544 return true; 15545 } 15546 15547 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be 15548 /// constant folded, but discard the result. 15549 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { 15550 assert(!isValueDependent() && 15551 "Expression evaluator can't be called on a dependent expression."); 15552 15553 EvalResult Result; 15554 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && 15555 !hasUnacceptableSideEffect(Result, SEK); 15556 } 15557 15558 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, 15559 SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 15560 assert(!isValueDependent() && 15561 "Expression evaluator can't be called on a dependent expression."); 15562 15563 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt"); 15564 EvalResult EVResult; 15565 EVResult.Diag = Diag; 15566 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 15567 Info.InConstantContext = true; 15568 15569 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); 15570 (void)Result; 15571 assert(Result && "Could not evaluate expression"); 15572 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 15573 15574 return EVResult.Val.getInt(); 15575 } 15576 15577 APSInt Expr::EvaluateKnownConstIntCheckOverflow( 15578 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 15579 assert(!isValueDependent() && 15580 "Expression evaluator can't be called on a dependent expression."); 15581 15582 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow"); 15583 EvalResult EVResult; 15584 EVResult.Diag = Diag; 15585 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 15586 Info.InConstantContext = true; 15587 Info.CheckingForUndefinedBehavior = true; 15588 15589 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); 15590 (void)Result; 15591 assert(Result && "Could not evaluate expression"); 15592 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 15593 15594 return EVResult.Val.getInt(); 15595 } 15596 15597 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { 15598 assert(!isValueDependent() && 15599 "Expression evaluator can't be called on a dependent expression."); 15600 15601 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow"); 15602 bool IsConst; 15603 EvalResult EVResult; 15604 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { 15605 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 15606 Info.CheckingForUndefinedBehavior = true; 15607 (void)::EvaluateAsRValue(Info, this, EVResult.Val); 15608 } 15609 } 15610 15611 bool Expr::EvalResult::isGlobalLValue() const { 15612 assert(Val.isLValue()); 15613 return IsGlobalLValue(Val.getLValueBase()); 15614 } 15615 15616 /// isIntegerConstantExpr - this recursive routine will test if an expression is 15617 /// an integer constant expression. 15618 15619 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 15620 /// comma, etc 15621 15622 // CheckICE - This function does the fundamental ICE checking: the returned 15623 // ICEDiag contains an ICEKind indicating whether the expression is an ICE, 15624 // and a (possibly null) SourceLocation indicating the location of the problem. 15625 // 15626 // Note that to reduce code duplication, this helper does no evaluation 15627 // itself; the caller checks whether the expression is evaluatable, and 15628 // in the rare cases where CheckICE actually cares about the evaluated 15629 // value, it calls into Evaluate. 15630 15631 namespace { 15632 15633 enum ICEKind { 15634 /// This expression is an ICE. 15635 IK_ICE, 15636 /// This expression is not an ICE, but if it isn't evaluated, it's 15637 /// a legal subexpression for an ICE. This return value is used to handle 15638 /// the comma operator in C99 mode, and non-constant subexpressions. 15639 IK_ICEIfUnevaluated, 15640 /// This expression is not an ICE, and is not a legal subexpression for one. 15641 IK_NotICE 15642 }; 15643 15644 struct ICEDiag { 15645 ICEKind Kind; 15646 SourceLocation Loc; 15647 15648 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} 15649 }; 15650 15651 } 15652 15653 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } 15654 15655 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } 15656 15657 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { 15658 Expr::EvalResult EVResult; 15659 Expr::EvalStatus Status; 15660 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 15661 15662 Info.InConstantContext = true; 15663 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || 15664 !EVResult.Val.isInt()) 15665 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15666 15667 return NoDiag(); 15668 } 15669 15670 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { 15671 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 15672 if (!E->getType()->isIntegralOrEnumerationType()) 15673 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15674 15675 switch (E->getStmtClass()) { 15676 #define ABSTRACT_STMT(Node) 15677 #define STMT(Node, Base) case Expr::Node##Class: 15678 #define EXPR(Node, Base) 15679 #include "clang/AST/StmtNodes.inc" 15680 case Expr::PredefinedExprClass: 15681 case Expr::FloatingLiteralClass: 15682 case Expr::ImaginaryLiteralClass: 15683 case Expr::StringLiteralClass: 15684 case Expr::ArraySubscriptExprClass: 15685 case Expr::MatrixSubscriptExprClass: 15686 case Expr::OMPArraySectionExprClass: 15687 case Expr::OMPArrayShapingExprClass: 15688 case Expr::OMPIteratorExprClass: 15689 case Expr::MemberExprClass: 15690 case Expr::CompoundAssignOperatorClass: 15691 case Expr::CompoundLiteralExprClass: 15692 case Expr::ExtVectorElementExprClass: 15693 case Expr::DesignatedInitExprClass: 15694 case Expr::ArrayInitLoopExprClass: 15695 case Expr::ArrayInitIndexExprClass: 15696 case Expr::NoInitExprClass: 15697 case Expr::DesignatedInitUpdateExprClass: 15698 case Expr::ImplicitValueInitExprClass: 15699 case Expr::ParenListExprClass: 15700 case Expr::VAArgExprClass: 15701 case Expr::AddrLabelExprClass: 15702 case Expr::StmtExprClass: 15703 case Expr::CXXMemberCallExprClass: 15704 case Expr::CUDAKernelCallExprClass: 15705 case Expr::CXXAddrspaceCastExprClass: 15706 case Expr::CXXDynamicCastExprClass: 15707 case Expr::CXXTypeidExprClass: 15708 case Expr::CXXUuidofExprClass: 15709 case Expr::MSPropertyRefExprClass: 15710 case Expr::MSPropertySubscriptExprClass: 15711 case Expr::CXXNullPtrLiteralExprClass: 15712 case Expr::UserDefinedLiteralClass: 15713 case Expr::CXXThisExprClass: 15714 case Expr::CXXThrowExprClass: 15715 case Expr::CXXNewExprClass: 15716 case Expr::CXXDeleteExprClass: 15717 case Expr::CXXPseudoDestructorExprClass: 15718 case Expr::UnresolvedLookupExprClass: 15719 case Expr::TypoExprClass: 15720 case Expr::RecoveryExprClass: 15721 case Expr::DependentScopeDeclRefExprClass: 15722 case Expr::CXXConstructExprClass: 15723 case Expr::CXXInheritedCtorInitExprClass: 15724 case Expr::CXXStdInitializerListExprClass: 15725 case Expr::CXXBindTemporaryExprClass: 15726 case Expr::ExprWithCleanupsClass: 15727 case Expr::CXXTemporaryObjectExprClass: 15728 case Expr::CXXUnresolvedConstructExprClass: 15729 case Expr::CXXDependentScopeMemberExprClass: 15730 case Expr::UnresolvedMemberExprClass: 15731 case Expr::ObjCStringLiteralClass: 15732 case Expr::ObjCBoxedExprClass: 15733 case Expr::ObjCArrayLiteralClass: 15734 case Expr::ObjCDictionaryLiteralClass: 15735 case Expr::ObjCEncodeExprClass: 15736 case Expr::ObjCMessageExprClass: 15737 case Expr::ObjCSelectorExprClass: 15738 case Expr::ObjCProtocolExprClass: 15739 case Expr::ObjCIvarRefExprClass: 15740 case Expr::ObjCPropertyRefExprClass: 15741 case Expr::ObjCSubscriptRefExprClass: 15742 case Expr::ObjCIsaExprClass: 15743 case Expr::ObjCAvailabilityCheckExprClass: 15744 case Expr::ShuffleVectorExprClass: 15745 case Expr::ConvertVectorExprClass: 15746 case Expr::BlockExprClass: 15747 case Expr::NoStmtClass: 15748 case Expr::OpaqueValueExprClass: 15749 case Expr::PackExpansionExprClass: 15750 case Expr::SubstNonTypeTemplateParmPackExprClass: 15751 case Expr::FunctionParmPackExprClass: 15752 case Expr::AsTypeExprClass: 15753 case Expr::ObjCIndirectCopyRestoreExprClass: 15754 case Expr::MaterializeTemporaryExprClass: 15755 case Expr::PseudoObjectExprClass: 15756 case Expr::AtomicExprClass: 15757 case Expr::LambdaExprClass: 15758 case Expr::CXXFoldExprClass: 15759 case Expr::CoawaitExprClass: 15760 case Expr::DependentCoawaitExprClass: 15761 case Expr::CoyieldExprClass: 15762 case Expr::SYCLUniqueStableNameExprClass: 15763 case Expr::CXXParenListInitExprClass: 15764 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15765 15766 case Expr::InitListExprClass: { 15767 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the 15768 // form "T x = { a };" is equivalent to "T x = a;". 15769 // Unless we're initializing a reference, T is a scalar as it is known to be 15770 // of integral or enumeration type. 15771 if (E->isPRValue()) 15772 if (cast<InitListExpr>(E)->getNumInits() == 1) 15773 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); 15774 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15775 } 15776 15777 case Expr::SizeOfPackExprClass: 15778 case Expr::GNUNullExprClass: 15779 case Expr::SourceLocExprClass: 15780 return NoDiag(); 15781 15782 case Expr::SubstNonTypeTemplateParmExprClass: 15783 return 15784 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); 15785 15786 case Expr::ConstantExprClass: 15787 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); 15788 15789 case Expr::ParenExprClass: 15790 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 15791 case Expr::GenericSelectionExprClass: 15792 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); 15793 case Expr::IntegerLiteralClass: 15794 case Expr::FixedPointLiteralClass: 15795 case Expr::CharacterLiteralClass: 15796 case Expr::ObjCBoolLiteralExprClass: 15797 case Expr::CXXBoolLiteralExprClass: 15798 case Expr::CXXScalarValueInitExprClass: 15799 case Expr::TypeTraitExprClass: 15800 case Expr::ConceptSpecializationExprClass: 15801 case Expr::RequiresExprClass: 15802 case Expr::ArrayTypeTraitExprClass: 15803 case Expr::ExpressionTraitExprClass: 15804 case Expr::CXXNoexceptExprClass: 15805 return NoDiag(); 15806 case Expr::CallExprClass: 15807 case Expr::CXXOperatorCallExprClass: { 15808 // C99 6.6/3 allows function calls within unevaluated subexpressions of 15809 // constant expressions, but they can never be ICEs because an ICE cannot 15810 // contain an operand of (pointer to) function type. 15811 const CallExpr *CE = cast<CallExpr>(E); 15812 if (CE->getBuiltinCallee()) 15813 return CheckEvalInICE(E, Ctx); 15814 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15815 } 15816 case Expr::CXXRewrittenBinaryOperatorClass: 15817 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), 15818 Ctx); 15819 case Expr::DeclRefExprClass: { 15820 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); 15821 if (isa<EnumConstantDecl>(D)) 15822 return NoDiag(); 15823 15824 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified 15825 // integer variables in constant expressions: 15826 // 15827 // C++ 7.1.5.1p2 15828 // A variable of non-volatile const-qualified integral or enumeration 15829 // type initialized by an ICE can be used in ICEs. 15830 // 15831 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In 15832 // that mode, use of reference variables should not be allowed. 15833 const VarDecl *VD = dyn_cast<VarDecl>(D); 15834 if (VD && VD->isUsableInConstantExpressions(Ctx) && 15835 !VD->getType()->isReferenceType()) 15836 return NoDiag(); 15837 15838 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15839 } 15840 case Expr::UnaryOperatorClass: { 15841 const UnaryOperator *Exp = cast<UnaryOperator>(E); 15842 switch (Exp->getOpcode()) { 15843 case UO_PostInc: 15844 case UO_PostDec: 15845 case UO_PreInc: 15846 case UO_PreDec: 15847 case UO_AddrOf: 15848 case UO_Deref: 15849 case UO_Coawait: 15850 // C99 6.6/3 allows increment and decrement within unevaluated 15851 // subexpressions of constant expressions, but they can never be ICEs 15852 // because an ICE cannot contain an lvalue operand. 15853 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15854 case UO_Extension: 15855 case UO_LNot: 15856 case UO_Plus: 15857 case UO_Minus: 15858 case UO_Not: 15859 case UO_Real: 15860 case UO_Imag: 15861 return CheckICE(Exp->getSubExpr(), Ctx); 15862 } 15863 llvm_unreachable("invalid unary operator class"); 15864 } 15865 case Expr::OffsetOfExprClass: { 15866 // Note that per C99, offsetof must be an ICE. And AFAIK, using 15867 // EvaluateAsRValue matches the proposed gcc behavior for cases like 15868 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect 15869 // compliance: we should warn earlier for offsetof expressions with 15870 // array subscripts that aren't ICEs, and if the array subscripts 15871 // are ICEs, the value of the offsetof must be an integer constant. 15872 return CheckEvalInICE(E, Ctx); 15873 } 15874 case Expr::UnaryExprOrTypeTraitExprClass: { 15875 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); 15876 if ((Exp->getKind() == UETT_SizeOf) && 15877 Exp->getTypeOfArgument()->isVariableArrayType()) 15878 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15879 return NoDiag(); 15880 } 15881 case Expr::BinaryOperatorClass: { 15882 const BinaryOperator *Exp = cast<BinaryOperator>(E); 15883 switch (Exp->getOpcode()) { 15884 case BO_PtrMemD: 15885 case BO_PtrMemI: 15886 case BO_Assign: 15887 case BO_MulAssign: 15888 case BO_DivAssign: 15889 case BO_RemAssign: 15890 case BO_AddAssign: 15891 case BO_SubAssign: 15892 case BO_ShlAssign: 15893 case BO_ShrAssign: 15894 case BO_AndAssign: 15895 case BO_XorAssign: 15896 case BO_OrAssign: 15897 // C99 6.6/3 allows assignments within unevaluated subexpressions of 15898 // constant expressions, but they can never be ICEs because an ICE cannot 15899 // contain an lvalue operand. 15900 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15901 15902 case BO_Mul: 15903 case BO_Div: 15904 case BO_Rem: 15905 case BO_Add: 15906 case BO_Sub: 15907 case BO_Shl: 15908 case BO_Shr: 15909 case BO_LT: 15910 case BO_GT: 15911 case BO_LE: 15912 case BO_GE: 15913 case BO_EQ: 15914 case BO_NE: 15915 case BO_And: 15916 case BO_Xor: 15917 case BO_Or: 15918 case BO_Comma: 15919 case BO_Cmp: { 15920 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 15921 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 15922 if (Exp->getOpcode() == BO_Div || 15923 Exp->getOpcode() == BO_Rem) { 15924 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure 15925 // we don't evaluate one. 15926 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { 15927 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); 15928 if (REval == 0) 15929 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15930 if (REval.isSigned() && REval.isAllOnes()) { 15931 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); 15932 if (LEval.isMinSignedValue()) 15933 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15934 } 15935 } 15936 } 15937 if (Exp->getOpcode() == BO_Comma) { 15938 if (Ctx.getLangOpts().C99) { 15939 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 15940 // if it isn't evaluated. 15941 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) 15942 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15943 } else { 15944 // In both C89 and C++, commas in ICEs are illegal. 15945 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15946 } 15947 } 15948 return Worst(LHSResult, RHSResult); 15949 } 15950 case BO_LAnd: 15951 case BO_LOr: { 15952 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 15953 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 15954 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { 15955 // Rare case where the RHS has a comma "side-effect"; we need 15956 // to actually check the condition to see whether the side 15957 // with the comma is evaluated. 15958 if ((Exp->getOpcode() == BO_LAnd) != 15959 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) 15960 return RHSResult; 15961 return NoDiag(); 15962 } 15963 15964 return Worst(LHSResult, RHSResult); 15965 } 15966 } 15967 llvm_unreachable("invalid binary operator kind"); 15968 } 15969 case Expr::ImplicitCastExprClass: 15970 case Expr::CStyleCastExprClass: 15971 case Expr::CXXFunctionalCastExprClass: 15972 case Expr::CXXStaticCastExprClass: 15973 case Expr::CXXReinterpretCastExprClass: 15974 case Expr::CXXConstCastExprClass: 15975 case Expr::ObjCBridgedCastExprClass: { 15976 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 15977 if (isa<ExplicitCastExpr>(E)) { 15978 if (const FloatingLiteral *FL 15979 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { 15980 unsigned DestWidth = Ctx.getIntWidth(E->getType()); 15981 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); 15982 APSInt IgnoredVal(DestWidth, !DestSigned); 15983 bool Ignored; 15984 // If the value does not fit in the destination type, the behavior is 15985 // undefined, so we are not required to treat it as a constant 15986 // expression. 15987 if (FL->getValue().convertToInteger(IgnoredVal, 15988 llvm::APFloat::rmTowardZero, 15989 &Ignored) & APFloat::opInvalidOp) 15990 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15991 return NoDiag(); 15992 } 15993 } 15994 switch (cast<CastExpr>(E)->getCastKind()) { 15995 case CK_LValueToRValue: 15996 case CK_AtomicToNonAtomic: 15997 case CK_NonAtomicToAtomic: 15998 case CK_NoOp: 15999 case CK_IntegralToBoolean: 16000 case CK_IntegralCast: 16001 return CheckICE(SubExpr, Ctx); 16002 default: 16003 return ICEDiag(IK_NotICE, E->getBeginLoc()); 16004 } 16005 } 16006 case Expr::BinaryConditionalOperatorClass: { 16007 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); 16008 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); 16009 if (CommonResult.Kind == IK_NotICE) return CommonResult; 16010 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 16011 if (FalseResult.Kind == IK_NotICE) return FalseResult; 16012 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; 16013 if (FalseResult.Kind == IK_ICEIfUnevaluated && 16014 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); 16015 return FalseResult; 16016 } 16017 case Expr::ConditionalOperatorClass: { 16018 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 16019 // If the condition (ignoring parens) is a __builtin_constant_p call, 16020 // then only the true side is actually considered in an integer constant 16021 // expression, and it is fully evaluated. This is an important GNU 16022 // extension. See GCC PR38377 for discussion. 16023 if (const CallExpr *CallCE 16024 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 16025 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 16026 return CheckEvalInICE(E, Ctx); 16027 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 16028 if (CondResult.Kind == IK_NotICE) 16029 return CondResult; 16030 16031 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 16032 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 16033 16034 if (TrueResult.Kind == IK_NotICE) 16035 return TrueResult; 16036 if (FalseResult.Kind == IK_NotICE) 16037 return FalseResult; 16038 if (CondResult.Kind == IK_ICEIfUnevaluated) 16039 return CondResult; 16040 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) 16041 return NoDiag(); 16042 // Rare case where the diagnostics depend on which side is evaluated 16043 // Note that if we get here, CondResult is 0, and at least one of 16044 // TrueResult and FalseResult is non-zero. 16045 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) 16046 return FalseResult; 16047 return TrueResult; 16048 } 16049 case Expr::CXXDefaultArgExprClass: 16050 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 16051 case Expr::CXXDefaultInitExprClass: 16052 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); 16053 case Expr::ChooseExprClass: { 16054 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); 16055 } 16056 case Expr::BuiltinBitCastExprClass: { 16057 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) 16058 return ICEDiag(IK_NotICE, E->getBeginLoc()); 16059 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); 16060 } 16061 } 16062 16063 llvm_unreachable("Invalid StmtClass!"); 16064 } 16065 16066 /// Evaluate an expression as a C++11 integral constant expression. 16067 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, 16068 const Expr *E, 16069 llvm::APSInt *Value, 16070 SourceLocation *Loc) { 16071 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { 16072 if (Loc) *Loc = E->getExprLoc(); 16073 return false; 16074 } 16075 16076 APValue Result; 16077 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) 16078 return false; 16079 16080 if (!Result.isInt()) { 16081 if (Loc) *Loc = E->getExprLoc(); 16082 return false; 16083 } 16084 16085 if (Value) *Value = Result.getInt(); 16086 return true; 16087 } 16088 16089 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, 16090 SourceLocation *Loc) const { 16091 assert(!isValueDependent() && 16092 "Expression evaluator can't be called on a dependent expression."); 16093 16094 ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr"); 16095 16096 if (Ctx.getLangOpts().CPlusPlus11) 16097 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); 16098 16099 ICEDiag D = CheckICE(this, Ctx); 16100 if (D.Kind != IK_ICE) { 16101 if (Loc) *Loc = D.Loc; 16102 return false; 16103 } 16104 return true; 16105 } 16106 16107 std::optional<llvm::APSInt> 16108 Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc, 16109 bool isEvaluated) const { 16110 if (isValueDependent()) { 16111 // Expression evaluator can't succeed on a dependent expression. 16112 return std::nullopt; 16113 } 16114 16115 APSInt Value; 16116 16117 if (Ctx.getLangOpts().CPlusPlus11) { 16118 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc)) 16119 return Value; 16120 return std::nullopt; 16121 } 16122 16123 if (!isIntegerConstantExpr(Ctx, Loc)) 16124 return std::nullopt; 16125 16126 // The only possible side-effects here are due to UB discovered in the 16127 // evaluation (for instance, INT_MAX + 1). In such a case, we are still 16128 // required to treat the expression as an ICE, so we produce the folded 16129 // value. 16130 EvalResult ExprResult; 16131 Expr::EvalStatus Status; 16132 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); 16133 Info.InConstantContext = true; 16134 16135 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) 16136 llvm_unreachable("ICE cannot be evaluated!"); 16137 16138 return ExprResult.Val.getInt(); 16139 } 16140 16141 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { 16142 assert(!isValueDependent() && 16143 "Expression evaluator can't be called on a dependent expression."); 16144 16145 return CheckICE(this, Ctx).Kind == IK_ICE; 16146 } 16147 16148 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, 16149 SourceLocation *Loc) const { 16150 assert(!isValueDependent() && 16151 "Expression evaluator can't be called on a dependent expression."); 16152 16153 // We support this checking in C++98 mode in order to diagnose compatibility 16154 // issues. 16155 assert(Ctx.getLangOpts().CPlusPlus); 16156 16157 // Build evaluation settings. 16158 Expr::EvalStatus Status; 16159 SmallVector<PartialDiagnosticAt, 8> Diags; 16160 Status.Diag = &Diags; 16161 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 16162 16163 APValue Scratch; 16164 bool IsConstExpr = 16165 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && 16166 // FIXME: We don't produce a diagnostic for this, but the callers that 16167 // call us on arbitrary full-expressions should generally not care. 16168 Info.discardCleanups() && !Status.HasSideEffects; 16169 16170 if (!Diags.empty()) { 16171 IsConstExpr = false; 16172 if (Loc) *Loc = Diags[0].first; 16173 } else if (!IsConstExpr) { 16174 // FIXME: This shouldn't happen. 16175 if (Loc) *Loc = getExprLoc(); 16176 } 16177 16178 return IsConstExpr; 16179 } 16180 16181 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, 16182 const FunctionDecl *Callee, 16183 ArrayRef<const Expr*> Args, 16184 const Expr *This) const { 16185 assert(!isValueDependent() && 16186 "Expression evaluator can't be called on a dependent expression."); 16187 16188 llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] { 16189 std::string Name; 16190 llvm::raw_string_ostream OS(Name); 16191 Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(), 16192 /*Qualified=*/true); 16193 return Name; 16194 }); 16195 16196 Expr::EvalStatus Status; 16197 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); 16198 Info.InConstantContext = true; 16199 16200 LValue ThisVal; 16201 const LValue *ThisPtr = nullptr; 16202 if (This) { 16203 #ifndef NDEBUG 16204 auto *MD = dyn_cast<CXXMethodDecl>(Callee); 16205 assert(MD && "Don't provide `this` for non-methods."); 16206 assert(!MD->isStatic() && "Don't provide `this` for static methods."); 16207 #endif 16208 if (!This->isValueDependent() && 16209 EvaluateObjectArgument(Info, This, ThisVal) && 16210 !Info.EvalStatus.HasSideEffects) 16211 ThisPtr = &ThisVal; 16212 16213 // Ignore any side-effects from a failed evaluation. This is safe because 16214 // they can't interfere with any other argument evaluation. 16215 Info.EvalStatus.HasSideEffects = false; 16216 } 16217 16218 CallRef Call = Info.CurrentCall->createCall(Callee); 16219 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); 16220 I != E; ++I) { 16221 unsigned Idx = I - Args.begin(); 16222 if (Idx >= Callee->getNumParams()) 16223 break; 16224 const ParmVarDecl *PVD = Callee->getParamDecl(Idx); 16225 if ((*I)->isValueDependent() || 16226 !EvaluateCallArg(PVD, *I, Call, Info) || 16227 Info.EvalStatus.HasSideEffects) { 16228 // If evaluation fails, throw away the argument entirely. 16229 if (APValue *Slot = Info.getParamSlot(Call, PVD)) 16230 *Slot = APValue(); 16231 } 16232 16233 // Ignore any side-effects from a failed evaluation. This is safe because 16234 // they can't interfere with any other argument evaluation. 16235 Info.EvalStatus.HasSideEffects = false; 16236 } 16237 16238 // Parameter cleanups happen in the caller and are not part of this 16239 // evaluation. 16240 Info.discardCleanups(); 16241 Info.EvalStatus.HasSideEffects = false; 16242 16243 // Build fake call to Callee. 16244 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This, 16245 Call); 16246 // FIXME: Missing ExprWithCleanups in enable_if conditions? 16247 FullExpressionRAII Scope(Info); 16248 return Evaluate(Value, Info, this) && Scope.destroy() && 16249 !Info.EvalStatus.HasSideEffects; 16250 } 16251 16252 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, 16253 SmallVectorImpl< 16254 PartialDiagnosticAt> &Diags) { 16255 // FIXME: It would be useful to check constexpr function templates, but at the 16256 // moment the constant expression evaluator cannot cope with the non-rigorous 16257 // ASTs which we build for dependent expressions. 16258 if (FD->isDependentContext()) 16259 return true; 16260 16261 llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] { 16262 std::string Name; 16263 llvm::raw_string_ostream OS(Name); 16264 FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(), 16265 /*Qualified=*/true); 16266 return Name; 16267 }); 16268 16269 Expr::EvalStatus Status; 16270 Status.Diag = &Diags; 16271 16272 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); 16273 Info.InConstantContext = true; 16274 Info.CheckingPotentialConstantExpression = true; 16275 16276 // The constexpr VM attempts to compile all methods to bytecode here. 16277 if (Info.EnableNewConstInterp) { 16278 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD); 16279 return Diags.empty(); 16280 } 16281 16282 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 16283 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; 16284 16285 // Fabricate an arbitrary expression on the stack and pretend that it 16286 // is a temporary being used as the 'this' pointer. 16287 LValue This; 16288 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); 16289 This.set({&VIE, Info.CurrentCall->Index}); 16290 16291 ArrayRef<const Expr*> Args; 16292 16293 APValue Scratch; 16294 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 16295 // Evaluate the call as a constant initializer, to allow the construction 16296 // of objects of non-literal types. 16297 Info.setEvaluatingDecl(This.getLValueBase(), Scratch); 16298 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); 16299 } else { 16300 SourceLocation Loc = FD->getLocation(); 16301 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr, 16302 &VIE, Args, CallRef(), FD->getBody(), Info, Scratch, 16303 /*ResultSlot=*/nullptr); 16304 } 16305 16306 return Diags.empty(); 16307 } 16308 16309 bool Expr::isPotentialConstantExprUnevaluated(Expr *E, 16310 const FunctionDecl *FD, 16311 SmallVectorImpl< 16312 PartialDiagnosticAt> &Diags) { 16313 assert(!E->isValueDependent() && 16314 "Expression evaluator can't be called on a dependent expression."); 16315 16316 Expr::EvalStatus Status; 16317 Status.Diag = &Diags; 16318 16319 EvalInfo Info(FD->getASTContext(), Status, 16320 EvalInfo::EM_ConstantExpressionUnevaluated); 16321 Info.InConstantContext = true; 16322 Info.CheckingPotentialConstantExpression = true; 16323 16324 // Fabricate a call stack frame to give the arguments a plausible cover story. 16325 CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr, 16326 /*CallExpr=*/nullptr, CallRef()); 16327 16328 APValue ResultScratch; 16329 Evaluate(ResultScratch, Info, E); 16330 return Diags.empty(); 16331 } 16332 16333 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, 16334 unsigned Type) const { 16335 if (!getType()->isPointerType()) 16336 return false; 16337 16338 Expr::EvalStatus Status; 16339 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 16340 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); 16341 } 16342 16343 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, 16344 EvalInfo &Info) { 16345 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue()) 16346 return false; 16347 16348 LValue String; 16349 16350 if (!EvaluatePointer(E, String, Info)) 16351 return false; 16352 16353 QualType CharTy = E->getType()->getPointeeType(); 16354 16355 // Fast path: if it's a string literal, search the string value. 16356 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( 16357 String.getLValueBase().dyn_cast<const Expr *>())) { 16358 StringRef Str = S->getBytes(); 16359 int64_t Off = String.Offset.getQuantity(); 16360 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && 16361 S->getCharByteWidth() == 1 && 16362 // FIXME: Add fast-path for wchar_t too. 16363 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { 16364 Str = Str.substr(Off); 16365 16366 StringRef::size_type Pos = Str.find(0); 16367 if (Pos != StringRef::npos) 16368 Str = Str.substr(0, Pos); 16369 16370 Result = Str.size(); 16371 return true; 16372 } 16373 16374 // Fall through to slow path. 16375 } 16376 16377 // Slow path: scan the bytes of the string looking for the terminating 0. 16378 for (uint64_t Strlen = 0; /**/; ++Strlen) { 16379 APValue Char; 16380 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || 16381 !Char.isInt()) 16382 return false; 16383 if (!Char.getInt()) { 16384 Result = Strlen; 16385 return true; 16386 } 16387 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) 16388 return false; 16389 } 16390 } 16391 16392 bool Expr::EvaluateCharRangeAsString(std::string &Result, 16393 const Expr *SizeExpression, 16394 const Expr *PtrExpression, ASTContext &Ctx, 16395 EvalResult &Status) const { 16396 LValue String; 16397 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 16398 Info.InConstantContext = true; 16399 16400 FullExpressionRAII Scope(Info); 16401 APSInt SizeValue; 16402 if (!::EvaluateInteger(SizeExpression, SizeValue, Info)) 16403 return false; 16404 16405 int64_t Size = SizeValue.getExtValue(); 16406 16407 if (!::EvaluatePointer(PtrExpression, String, Info)) 16408 return false; 16409 16410 QualType CharTy = PtrExpression->getType()->getPointeeType(); 16411 for (int64_t I = 0; I < Size; ++I) { 16412 APValue Char; 16413 if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String, 16414 Char)) 16415 return false; 16416 16417 APSInt C = Char.getInt(); 16418 Result.push_back(static_cast<char>(C.getExtValue())); 16419 if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1)) 16420 return false; 16421 } 16422 if (!Scope.destroy()) 16423 return false; 16424 16425 if (!CheckMemoryLeaks(Info)) 16426 return false; 16427 16428 return true; 16429 } 16430 16431 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const { 16432 Expr::EvalStatus Status; 16433 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 16434 return EvaluateBuiltinStrLen(this, Result, Info); 16435 } 16436