xref: /freebsd/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp (revision 562894f0dc310f658284863ff329906e7737a0a0)
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/FixedPoint.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/SaveAndRestore.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <cstring>
60 #include <functional>
61 
62 #define DEBUG_TYPE "exprconstant"
63 
64 using namespace clang;
65 using llvm::APInt;
66 using llvm::APSInt;
67 using llvm::APFloat;
68 using llvm::Optional;
69 
70 namespace {
71   struct LValue;
72   class CallStackFrame;
73   class EvalInfo;
74 
75   using SourceLocExprScopeGuard =
76       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
77 
78   static QualType getType(APValue::LValueBase B) {
79     if (!B) return QualType();
80     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
81       // FIXME: It's unclear where we're supposed to take the type from, and
82       // this actually matters for arrays of unknown bound. Eg:
83       //
84       // extern int arr[]; void f() { extern int arr[3]; };
85       // constexpr int *p = &arr[1]; // valid?
86       //
87       // For now, we take the array bound from the most recent declaration.
88       for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
89            Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
90         QualType T = Redecl->getType();
91         if (!T->isIncompleteArrayType())
92           return T;
93       }
94       return D->getType();
95     }
96 
97     if (B.is<TypeInfoLValue>())
98       return B.getTypeInfoType();
99 
100     if (B.is<DynamicAllocLValue>())
101       return B.getDynamicAllocType();
102 
103     const Expr *Base = B.get<const Expr*>();
104 
105     // For a materialized temporary, the type of the temporary we materialized
106     // may not be the type of the expression.
107     if (const MaterializeTemporaryExpr *MTE =
108             dyn_cast<MaterializeTemporaryExpr>(Base)) {
109       SmallVector<const Expr *, 2> CommaLHSs;
110       SmallVector<SubobjectAdjustment, 2> Adjustments;
111       const Expr *Temp = MTE->getSubExpr();
112       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
113                                                                Adjustments);
114       // Keep any cv-qualifiers from the reference if we generated a temporary
115       // for it directly. Otherwise use the type after adjustment.
116       if (!Adjustments.empty())
117         return Inner->getType();
118     }
119 
120     return Base->getType();
121   }
122 
123   /// Get an LValue path entry, which is known to not be an array index, as a
124   /// field declaration.
125   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
126     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
127   }
128   /// Get an LValue path entry, which is known to not be an array index, as a
129   /// base class declaration.
130   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
131     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
132   }
133   /// Determine whether this LValue path entry for a base class names a virtual
134   /// base class.
135   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
136     return E.getAsBaseOrMember().getInt();
137   }
138 
139   /// Given an expression, determine the type used to store the result of
140   /// evaluating that expression.
141   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
142     if (E->isRValue())
143       return E->getType();
144     return Ctx.getLValueReferenceType(E->getType());
145   }
146 
147   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
148   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
149     const FunctionDecl *Callee = CE->getDirectCallee();
150     return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
151   }
152 
153   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
154   /// This will look through a single cast.
155   ///
156   /// Returns null if we couldn't unwrap a function with alloc_size.
157   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
158     if (!E->getType()->isPointerType())
159       return nullptr;
160 
161     E = E->IgnoreParens();
162     // If we're doing a variable assignment from e.g. malloc(N), there will
163     // probably be a cast of some kind. In exotic cases, we might also see a
164     // top-level ExprWithCleanups. Ignore them either way.
165     if (const auto *FE = dyn_cast<FullExpr>(E))
166       E = FE->getSubExpr()->IgnoreParens();
167 
168     if (const auto *Cast = dyn_cast<CastExpr>(E))
169       E = Cast->getSubExpr()->IgnoreParens();
170 
171     if (const auto *CE = dyn_cast<CallExpr>(E))
172       return getAllocSizeAttr(CE) ? CE : nullptr;
173     return nullptr;
174   }
175 
176   /// Determines whether or not the given Base contains a call to a function
177   /// with the alloc_size attribute.
178   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
179     const auto *E = Base.dyn_cast<const Expr *>();
180     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
181   }
182 
183   /// The bound to claim that an array of unknown bound has.
184   /// The value in MostDerivedArraySize is undefined in this case. So, set it
185   /// to an arbitrary value that's likely to loudly break things if it's used.
186   static const uint64_t AssumedSizeForUnsizedArray =
187       std::numeric_limits<uint64_t>::max() / 2;
188 
189   /// Determines if an LValue with the given LValueBase will have an unsized
190   /// array in its designator.
191   /// Find the path length and type of the most-derived subobject in the given
192   /// path, and find the size of the containing array, if any.
193   static unsigned
194   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
195                            ArrayRef<APValue::LValuePathEntry> Path,
196                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
197                            bool &FirstEntryIsUnsizedArray) {
198     // This only accepts LValueBases from APValues, and APValues don't support
199     // arrays that lack size info.
200     assert(!isBaseAnAllocSizeCall(Base) &&
201            "Unsized arrays shouldn't appear here");
202     unsigned MostDerivedLength = 0;
203     Type = getType(Base);
204 
205     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
206       if (Type->isArrayType()) {
207         const ArrayType *AT = Ctx.getAsArrayType(Type);
208         Type = AT->getElementType();
209         MostDerivedLength = I + 1;
210         IsArray = true;
211 
212         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
213           ArraySize = CAT->getSize().getZExtValue();
214         } else {
215           assert(I == 0 && "unexpected unsized array designator");
216           FirstEntryIsUnsizedArray = true;
217           ArraySize = AssumedSizeForUnsizedArray;
218         }
219       } else if (Type->isAnyComplexType()) {
220         const ComplexType *CT = Type->castAs<ComplexType>();
221         Type = CT->getElementType();
222         ArraySize = 2;
223         MostDerivedLength = I + 1;
224         IsArray = true;
225       } else if (const FieldDecl *FD = getAsField(Path[I])) {
226         Type = FD->getType();
227         ArraySize = 0;
228         MostDerivedLength = I + 1;
229         IsArray = false;
230       } else {
231         // Path[I] describes a base class.
232         ArraySize = 0;
233         IsArray = false;
234       }
235     }
236     return MostDerivedLength;
237   }
238 
239   /// A path from a glvalue to a subobject of that glvalue.
240   struct SubobjectDesignator {
241     /// True if the subobject was named in a manner not supported by C++11. Such
242     /// lvalues can still be folded, but they are not core constant expressions
243     /// and we cannot perform lvalue-to-rvalue conversions on them.
244     unsigned Invalid : 1;
245 
246     /// Is this a pointer one past the end of an object?
247     unsigned IsOnePastTheEnd : 1;
248 
249     /// Indicator of whether the first entry is an unsized array.
250     unsigned FirstEntryIsAnUnsizedArray : 1;
251 
252     /// Indicator of whether the most-derived object is an array element.
253     unsigned MostDerivedIsArrayElement : 1;
254 
255     /// The length of the path to the most-derived object of which this is a
256     /// subobject.
257     unsigned MostDerivedPathLength : 28;
258 
259     /// The size of the array of which the most-derived object is an element.
260     /// This will always be 0 if the most-derived object is not an array
261     /// element. 0 is not an indicator of whether or not the most-derived object
262     /// is an array, however, because 0-length arrays are allowed.
263     ///
264     /// If the current array is an unsized array, the value of this is
265     /// undefined.
266     uint64_t MostDerivedArraySize;
267 
268     /// The type of the most derived object referred to by this address.
269     QualType MostDerivedType;
270 
271     typedef APValue::LValuePathEntry PathEntry;
272 
273     /// The entries on the path from the glvalue to the designated subobject.
274     SmallVector<PathEntry, 8> Entries;
275 
276     SubobjectDesignator() : Invalid(true) {}
277 
278     explicit SubobjectDesignator(QualType T)
279         : Invalid(false), IsOnePastTheEnd(false),
280           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
281           MostDerivedPathLength(0), MostDerivedArraySize(0),
282           MostDerivedType(T) {}
283 
284     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
285         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
286           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
287           MostDerivedPathLength(0), MostDerivedArraySize(0) {
288       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
289       if (!Invalid) {
290         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
291         ArrayRef<PathEntry> VEntries = V.getLValuePath();
292         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
293         if (V.getLValueBase()) {
294           bool IsArray = false;
295           bool FirstIsUnsizedArray = false;
296           MostDerivedPathLength = findMostDerivedSubobject(
297               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
298               MostDerivedType, IsArray, FirstIsUnsizedArray);
299           MostDerivedIsArrayElement = IsArray;
300           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
301         }
302       }
303     }
304 
305     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
306                   unsigned NewLength) {
307       if (Invalid)
308         return;
309 
310       assert(Base && "cannot truncate path for null pointer");
311       assert(NewLength <= Entries.size() && "not a truncation");
312 
313       if (NewLength == Entries.size())
314         return;
315       Entries.resize(NewLength);
316 
317       bool IsArray = false;
318       bool FirstIsUnsizedArray = false;
319       MostDerivedPathLength = findMostDerivedSubobject(
320           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
321           FirstIsUnsizedArray);
322       MostDerivedIsArrayElement = IsArray;
323       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
324     }
325 
326     void setInvalid() {
327       Invalid = true;
328       Entries.clear();
329     }
330 
331     /// Determine whether the most derived subobject is an array without a
332     /// known bound.
333     bool isMostDerivedAnUnsizedArray() const {
334       assert(!Invalid && "Calling this makes no sense on invalid designators");
335       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
336     }
337 
338     /// Determine what the most derived array's size is. Results in an assertion
339     /// failure if the most derived array lacks a size.
340     uint64_t getMostDerivedArraySize() const {
341       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
342       return MostDerivedArraySize;
343     }
344 
345     /// Determine whether this is a one-past-the-end pointer.
346     bool isOnePastTheEnd() const {
347       assert(!Invalid);
348       if (IsOnePastTheEnd)
349         return true;
350       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
351           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
352               MostDerivedArraySize)
353         return true;
354       return false;
355     }
356 
357     /// Get the range of valid index adjustments in the form
358     ///   {maximum value that can be subtracted from this pointer,
359     ///    maximum value that can be added to this pointer}
360     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
361       if (Invalid || isMostDerivedAnUnsizedArray())
362         return {0, 0};
363 
364       // [expr.add]p4: For the purposes of these operators, a pointer to a
365       // nonarray object behaves the same as a pointer to the first element of
366       // an array of length one with the type of the object as its element type.
367       bool IsArray = MostDerivedPathLength == Entries.size() &&
368                      MostDerivedIsArrayElement;
369       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
370                                     : (uint64_t)IsOnePastTheEnd;
371       uint64_t ArraySize =
372           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
373       return {ArrayIndex, ArraySize - ArrayIndex};
374     }
375 
376     /// Check that this refers to a valid subobject.
377     bool isValidSubobject() const {
378       if (Invalid)
379         return false;
380       return !isOnePastTheEnd();
381     }
382     /// Check that this refers to a valid subobject, and if not, produce a
383     /// relevant diagnostic and set the designator as invalid.
384     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
385 
386     /// Get the type of the designated object.
387     QualType getType(ASTContext &Ctx) const {
388       assert(!Invalid && "invalid designator has no subobject type");
389       return MostDerivedPathLength == Entries.size()
390                  ? MostDerivedType
391                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
392     }
393 
394     /// Update this designator to refer to the first element within this array.
395     void addArrayUnchecked(const ConstantArrayType *CAT) {
396       Entries.push_back(PathEntry::ArrayIndex(0));
397 
398       // This is a most-derived object.
399       MostDerivedType = CAT->getElementType();
400       MostDerivedIsArrayElement = true;
401       MostDerivedArraySize = CAT->getSize().getZExtValue();
402       MostDerivedPathLength = Entries.size();
403     }
404     /// Update this designator to refer to the first element within the array of
405     /// elements of type T. This is an array of unknown size.
406     void addUnsizedArrayUnchecked(QualType ElemTy) {
407       Entries.push_back(PathEntry::ArrayIndex(0));
408 
409       MostDerivedType = ElemTy;
410       MostDerivedIsArrayElement = true;
411       // The value in MostDerivedArraySize is undefined in this case. So, set it
412       // to an arbitrary value that's likely to loudly break things if it's
413       // used.
414       MostDerivedArraySize = AssumedSizeForUnsizedArray;
415       MostDerivedPathLength = Entries.size();
416     }
417     /// Update this designator to refer to the given base or member of this
418     /// object.
419     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
420       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
421 
422       // If this isn't a base class, it's a new most-derived object.
423       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
424         MostDerivedType = FD->getType();
425         MostDerivedIsArrayElement = false;
426         MostDerivedArraySize = 0;
427         MostDerivedPathLength = Entries.size();
428       }
429     }
430     /// Update this designator to refer to the given complex component.
431     void addComplexUnchecked(QualType EltTy, bool Imag) {
432       Entries.push_back(PathEntry::ArrayIndex(Imag));
433 
434       // This is technically a most-derived object, though in practice this
435       // is unlikely to matter.
436       MostDerivedType = EltTy;
437       MostDerivedIsArrayElement = true;
438       MostDerivedArraySize = 2;
439       MostDerivedPathLength = Entries.size();
440     }
441     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
442     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
443                                    const APSInt &N);
444     /// Add N to the address of this subobject.
445     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
446       if (Invalid || !N) return;
447       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
448       if (isMostDerivedAnUnsizedArray()) {
449         diagnoseUnsizedArrayPointerArithmetic(Info, E);
450         // Can't verify -- trust that the user is doing the right thing (or if
451         // not, trust that the caller will catch the bad behavior).
452         // FIXME: Should we reject if this overflows, at least?
453         Entries.back() = PathEntry::ArrayIndex(
454             Entries.back().getAsArrayIndex() + TruncatedN);
455         return;
456       }
457 
458       // [expr.add]p4: For the purposes of these operators, a pointer to a
459       // nonarray object behaves the same as a pointer to the first element of
460       // an array of length one with the type of the object as its element type.
461       bool IsArray = MostDerivedPathLength == Entries.size() &&
462                      MostDerivedIsArrayElement;
463       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
464                                     : (uint64_t)IsOnePastTheEnd;
465       uint64_t ArraySize =
466           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
467 
468       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
469         // Calculate the actual index in a wide enough type, so we can include
470         // it in the note.
471         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
472         (llvm::APInt&)N += ArrayIndex;
473         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
474         diagnosePointerArithmetic(Info, E, N);
475         setInvalid();
476         return;
477       }
478 
479       ArrayIndex += TruncatedN;
480       assert(ArrayIndex <= ArraySize &&
481              "bounds check succeeded for out-of-bounds index");
482 
483       if (IsArray)
484         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
485       else
486         IsOnePastTheEnd = (ArrayIndex != 0);
487     }
488   };
489 
490   /// A stack frame in the constexpr call stack.
491   class CallStackFrame : public interp::Frame {
492   public:
493     EvalInfo &Info;
494 
495     /// Parent - The caller of this stack frame.
496     CallStackFrame *Caller;
497 
498     /// Callee - The function which was called.
499     const FunctionDecl *Callee;
500 
501     /// This - The binding for the this pointer in this call, if any.
502     const LValue *This;
503 
504     /// Arguments - Parameter bindings for this function call, indexed by
505     /// parameters' function scope indices.
506     APValue *Arguments;
507 
508     /// Source location information about the default argument or default
509     /// initializer expression we're evaluating, if any.
510     CurrentSourceLocExprScope CurSourceLocExprScope;
511 
512     // Note that we intentionally use std::map here so that references to
513     // values are stable.
514     typedef std::pair<const void *, unsigned> MapKeyTy;
515     typedef std::map<MapKeyTy, APValue> MapTy;
516     /// Temporaries - Temporary lvalues materialized within this stack frame.
517     MapTy Temporaries;
518 
519     /// CallLoc - The location of the call expression for this call.
520     SourceLocation CallLoc;
521 
522     /// Index - The call index of this call.
523     unsigned Index;
524 
525     /// The stack of integers for tracking version numbers for temporaries.
526     SmallVector<unsigned, 2> TempVersionStack = {1};
527     unsigned CurTempVersion = TempVersionStack.back();
528 
529     unsigned getTempVersion() const { return TempVersionStack.back(); }
530 
531     void pushTempVersion() {
532       TempVersionStack.push_back(++CurTempVersion);
533     }
534 
535     void popTempVersion() {
536       TempVersionStack.pop_back();
537     }
538 
539     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
540     // on the overall stack usage of deeply-recursing constexpr evaluations.
541     // (We should cache this map rather than recomputing it repeatedly.)
542     // But let's try this and see how it goes; we can look into caching the map
543     // as a later change.
544 
545     /// LambdaCaptureFields - Mapping from captured variables/this to
546     /// corresponding data members in the closure class.
547     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
548     FieldDecl *LambdaThisCaptureField;
549 
550     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
551                    const FunctionDecl *Callee, const LValue *This,
552                    APValue *Arguments);
553     ~CallStackFrame();
554 
555     // Return the temporary for Key whose version number is Version.
556     APValue *getTemporary(const void *Key, unsigned Version) {
557       MapKeyTy KV(Key, Version);
558       auto LB = Temporaries.lower_bound(KV);
559       if (LB != Temporaries.end() && LB->first == KV)
560         return &LB->second;
561       // Pair (Key,Version) wasn't found in the map. Check that no elements
562       // in the map have 'Key' as their key.
563       assert((LB == Temporaries.end() || LB->first.first != Key) &&
564              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
565              "Element with key 'Key' found in map");
566       return nullptr;
567     }
568 
569     // Return the current temporary for Key in the map.
570     APValue *getCurrentTemporary(const void *Key) {
571       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
572       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
573         return &std::prev(UB)->second;
574       return nullptr;
575     }
576 
577     // Return the version number of the current temporary for Key.
578     unsigned getCurrentTemporaryVersion(const void *Key) const {
579       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
580       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
581         return std::prev(UB)->first.second;
582       return 0;
583     }
584 
585     /// Allocate storage for an object of type T in this stack frame.
586     /// Populates LV with a handle to the created object. Key identifies
587     /// the temporary within the stack frame, and must not be reused without
588     /// bumping the temporary version number.
589     template<typename KeyT>
590     APValue &createTemporary(const KeyT *Key, QualType T,
591                              bool IsLifetimeExtended, LValue &LV);
592 
593     void describe(llvm::raw_ostream &OS) override;
594 
595     Frame *getCaller() const override { return Caller; }
596     SourceLocation getCallLocation() const override { return CallLoc; }
597     const FunctionDecl *getCallee() const override { return Callee; }
598 
599     bool isStdFunction() const {
600       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
601         if (DC->isStdNamespace())
602           return true;
603       return false;
604     }
605   };
606 
607   /// Temporarily override 'this'.
608   class ThisOverrideRAII {
609   public:
610     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
611         : Frame(Frame), OldThis(Frame.This) {
612       if (Enable)
613         Frame.This = NewThis;
614     }
615     ~ThisOverrideRAII() {
616       Frame.This = OldThis;
617     }
618   private:
619     CallStackFrame &Frame;
620     const LValue *OldThis;
621   };
622 }
623 
624 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
625                               const LValue &This, QualType ThisType);
626 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
627                               APValue::LValueBase LVBase, APValue &Value,
628                               QualType T);
629 
630 namespace {
631   /// A cleanup, and a flag indicating whether it is lifetime-extended.
632   class Cleanup {
633     llvm::PointerIntPair<APValue*, 1, bool> Value;
634     APValue::LValueBase Base;
635     QualType T;
636 
637   public:
638     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
639             bool IsLifetimeExtended)
640         : Value(Val, IsLifetimeExtended), Base(Base), T(T) {}
641 
642     bool isLifetimeExtended() const { return Value.getInt(); }
643     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
644       if (RunDestructors) {
645         SourceLocation Loc;
646         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
647           Loc = VD->getLocation();
648         else if (const Expr *E = Base.dyn_cast<const Expr*>())
649           Loc = E->getExprLoc();
650         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
651       }
652       *Value.getPointer() = APValue();
653       return true;
654     }
655 
656     bool hasSideEffect() {
657       return T.isDestructedType();
658     }
659   };
660 
661   /// A reference to an object whose construction we are currently evaluating.
662   struct ObjectUnderConstruction {
663     APValue::LValueBase Base;
664     ArrayRef<APValue::LValuePathEntry> Path;
665     friend bool operator==(const ObjectUnderConstruction &LHS,
666                            const ObjectUnderConstruction &RHS) {
667       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
668     }
669     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
670       return llvm::hash_combine(Obj.Base, Obj.Path);
671     }
672   };
673   enum class ConstructionPhase {
674     None,
675     Bases,
676     AfterBases,
677     Destroying,
678     DestroyingBases
679   };
680 }
681 
682 namespace llvm {
683 template<> struct DenseMapInfo<ObjectUnderConstruction> {
684   using Base = DenseMapInfo<APValue::LValueBase>;
685   static ObjectUnderConstruction getEmptyKey() {
686     return {Base::getEmptyKey(), {}}; }
687   static ObjectUnderConstruction getTombstoneKey() {
688     return {Base::getTombstoneKey(), {}};
689   }
690   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
691     return hash_value(Object);
692   }
693   static bool isEqual(const ObjectUnderConstruction &LHS,
694                       const ObjectUnderConstruction &RHS) {
695     return LHS == RHS;
696   }
697 };
698 }
699 
700 namespace {
701   /// A dynamically-allocated heap object.
702   struct DynAlloc {
703     /// The value of this heap-allocated object.
704     APValue Value;
705     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
706     /// or a CallExpr (the latter is for direct calls to operator new inside
707     /// std::allocator<T>::allocate).
708     const Expr *AllocExpr = nullptr;
709 
710     enum Kind {
711       New,
712       ArrayNew,
713       StdAllocator
714     };
715 
716     /// Get the kind of the allocation. This must match between allocation
717     /// and deallocation.
718     Kind getKind() const {
719       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
720         return NE->isArray() ? ArrayNew : New;
721       assert(isa<CallExpr>(AllocExpr));
722       return StdAllocator;
723     }
724   };
725 
726   struct DynAllocOrder {
727     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
728       return L.getIndex() < R.getIndex();
729     }
730   };
731 
732   /// EvalInfo - This is a private struct used by the evaluator to capture
733   /// information about a subexpression as it is folded.  It retains information
734   /// about the AST context, but also maintains information about the folded
735   /// expression.
736   ///
737   /// If an expression could be evaluated, it is still possible it is not a C
738   /// "integer constant expression" or constant expression.  If not, this struct
739   /// captures information about how and why not.
740   ///
741   /// One bit of information passed *into* the request for constant folding
742   /// indicates whether the subexpression is "evaluated" or not according to C
743   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
744   /// evaluate the expression regardless of what the RHS is, but C only allows
745   /// certain things in certain situations.
746   class EvalInfo : public interp::State {
747   public:
748     ASTContext &Ctx;
749 
750     /// EvalStatus - Contains information about the evaluation.
751     Expr::EvalStatus &EvalStatus;
752 
753     /// CurrentCall - The top of the constexpr call stack.
754     CallStackFrame *CurrentCall;
755 
756     /// CallStackDepth - The number of calls in the call stack right now.
757     unsigned CallStackDepth;
758 
759     /// NextCallIndex - The next call index to assign.
760     unsigned NextCallIndex;
761 
762     /// StepsLeft - The remaining number of evaluation steps we're permitted
763     /// to perform. This is essentially a limit for the number of statements
764     /// we will evaluate.
765     unsigned StepsLeft;
766 
767     /// Enable the experimental new constant interpreter. If an expression is
768     /// not supported by the interpreter, an error is triggered.
769     bool EnableNewConstInterp;
770 
771     /// BottomFrame - The frame in which evaluation started. This must be
772     /// initialized after CurrentCall and CallStackDepth.
773     CallStackFrame BottomFrame;
774 
775     /// A stack of values whose lifetimes end at the end of some surrounding
776     /// evaluation frame.
777     llvm::SmallVector<Cleanup, 16> CleanupStack;
778 
779     /// EvaluatingDecl - This is the declaration whose initializer is being
780     /// evaluated, if any.
781     APValue::LValueBase EvaluatingDecl;
782 
783     enum class EvaluatingDeclKind {
784       None,
785       /// We're evaluating the construction of EvaluatingDecl.
786       Ctor,
787       /// We're evaluating the destruction of EvaluatingDecl.
788       Dtor,
789     };
790     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
791 
792     /// EvaluatingDeclValue - This is the value being constructed for the
793     /// declaration whose initializer is being evaluated, if any.
794     APValue *EvaluatingDeclValue;
795 
796     /// Set of objects that are currently being constructed.
797     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
798         ObjectsUnderConstruction;
799 
800     /// Current heap allocations, along with the location where each was
801     /// allocated. We use std::map here because we need stable addresses
802     /// for the stored APValues.
803     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
804 
805     /// The number of heap allocations performed so far in this evaluation.
806     unsigned NumHeapAllocs = 0;
807 
808     struct EvaluatingConstructorRAII {
809       EvalInfo &EI;
810       ObjectUnderConstruction Object;
811       bool DidInsert;
812       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
813                                 bool HasBases)
814           : EI(EI), Object(Object) {
815         DidInsert =
816             EI.ObjectsUnderConstruction
817                 .insert({Object, HasBases ? ConstructionPhase::Bases
818                                           : ConstructionPhase::AfterBases})
819                 .second;
820       }
821       void finishedConstructingBases() {
822         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
823       }
824       ~EvaluatingConstructorRAII() {
825         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
826       }
827     };
828 
829     struct EvaluatingDestructorRAII {
830       EvalInfo &EI;
831       ObjectUnderConstruction Object;
832       bool DidInsert;
833       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
834           : EI(EI), Object(Object) {
835         DidInsert = EI.ObjectsUnderConstruction
836                         .insert({Object, ConstructionPhase::Destroying})
837                         .second;
838       }
839       void startedDestroyingBases() {
840         EI.ObjectsUnderConstruction[Object] =
841             ConstructionPhase::DestroyingBases;
842       }
843       ~EvaluatingDestructorRAII() {
844         if (DidInsert)
845           EI.ObjectsUnderConstruction.erase(Object);
846       }
847     };
848 
849     ConstructionPhase
850     isEvaluatingCtorDtor(APValue::LValueBase Base,
851                          ArrayRef<APValue::LValuePathEntry> Path) {
852       return ObjectsUnderConstruction.lookup({Base, Path});
853     }
854 
855     /// If we're currently speculatively evaluating, the outermost call stack
856     /// depth at which we can mutate state, otherwise 0.
857     unsigned SpeculativeEvaluationDepth = 0;
858 
859     /// The current array initialization index, if we're performing array
860     /// initialization.
861     uint64_t ArrayInitIndex = -1;
862 
863     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
864     /// notes attached to it will also be stored, otherwise they will not be.
865     bool HasActiveDiagnostic;
866 
867     /// Have we emitted a diagnostic explaining why we couldn't constant
868     /// fold (not just why it's not strictly a constant expression)?
869     bool HasFoldFailureDiagnostic;
870 
871     /// Whether or not we're in a context where the front end requires a
872     /// constant value.
873     bool InConstantContext;
874 
875     /// Whether we're checking that an expression is a potential constant
876     /// expression. If so, do not fail on constructs that could become constant
877     /// later on (such as a use of an undefined global).
878     bool CheckingPotentialConstantExpression = false;
879 
880     /// Whether we're checking for an expression that has undefined behavior.
881     /// If so, we will produce warnings if we encounter an operation that is
882     /// always undefined.
883     bool CheckingForUndefinedBehavior = false;
884 
885     enum EvaluationMode {
886       /// Evaluate as a constant expression. Stop if we find that the expression
887       /// is not a constant expression.
888       EM_ConstantExpression,
889 
890       /// Evaluate as a constant expression. Stop if we find that the expression
891       /// is not a constant expression. Some expressions can be retried in the
892       /// optimizer if we don't constant fold them here, but in an unevaluated
893       /// context we try to fold them immediately since the optimizer never
894       /// gets a chance to look at it.
895       EM_ConstantExpressionUnevaluated,
896 
897       /// Fold the expression to a constant. Stop if we hit a side-effect that
898       /// we can't model.
899       EM_ConstantFold,
900 
901       /// Evaluate in any way we know how. Don't worry about side-effects that
902       /// can't be modeled.
903       EM_IgnoreSideEffects,
904     } EvalMode;
905 
906     /// Are we checking whether the expression is a potential constant
907     /// expression?
908     bool checkingPotentialConstantExpression() const override  {
909       return CheckingPotentialConstantExpression;
910     }
911 
912     /// Are we checking an expression for overflow?
913     // FIXME: We should check for any kind of undefined or suspicious behavior
914     // in such constructs, not just overflow.
915     bool checkingForUndefinedBehavior() const override {
916       return CheckingForUndefinedBehavior;
917     }
918 
919     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
920         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
921           CallStackDepth(0), NextCallIndex(1),
922           StepsLeft(C.getLangOpts().ConstexprStepLimit),
923           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
924           BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
925           EvaluatingDecl((const ValueDecl *)nullptr),
926           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
927           HasFoldFailureDiagnostic(false), InConstantContext(false),
928           EvalMode(Mode) {}
929 
930     ~EvalInfo() {
931       discardCleanups();
932     }
933 
934     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
935                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
936       EvaluatingDecl = Base;
937       IsEvaluatingDecl = EDK;
938       EvaluatingDeclValue = &Value;
939     }
940 
941     bool CheckCallLimit(SourceLocation Loc) {
942       // Don't perform any constexpr calls (other than the call we're checking)
943       // when checking a potential constant expression.
944       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
945         return false;
946       if (NextCallIndex == 0) {
947         // NextCallIndex has wrapped around.
948         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
949         return false;
950       }
951       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
952         return true;
953       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
954         << getLangOpts().ConstexprCallDepth;
955       return false;
956     }
957 
958     std::pair<CallStackFrame *, unsigned>
959     getCallFrameAndDepth(unsigned CallIndex) {
960       assert(CallIndex && "no call index in getCallFrameAndDepth");
961       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
962       // be null in this loop.
963       unsigned Depth = CallStackDepth;
964       CallStackFrame *Frame = CurrentCall;
965       while (Frame->Index > CallIndex) {
966         Frame = Frame->Caller;
967         --Depth;
968       }
969       if (Frame->Index == CallIndex)
970         return {Frame, Depth};
971       return {nullptr, 0};
972     }
973 
974     bool nextStep(const Stmt *S) {
975       if (!StepsLeft) {
976         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
977         return false;
978       }
979       --StepsLeft;
980       return true;
981     }
982 
983     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
984 
985     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
986       Optional<DynAlloc*> Result;
987       auto It = HeapAllocs.find(DA);
988       if (It != HeapAllocs.end())
989         Result = &It->second;
990       return Result;
991     }
992 
993     /// Information about a stack frame for std::allocator<T>::[de]allocate.
994     struct StdAllocatorCaller {
995       unsigned FrameIndex;
996       QualType ElemType;
997       explicit operator bool() const { return FrameIndex != 0; };
998     };
999 
1000     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1001       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1002            Call = Call->Caller) {
1003         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1004         if (!MD)
1005           continue;
1006         const IdentifierInfo *FnII = MD->getIdentifier();
1007         if (!FnII || !FnII->isStr(FnName))
1008           continue;
1009 
1010         const auto *CTSD =
1011             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1012         if (!CTSD)
1013           continue;
1014 
1015         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1016         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1017         if (CTSD->isInStdNamespace() && ClassII &&
1018             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1019             TAL[0].getKind() == TemplateArgument::Type)
1020           return {Call->Index, TAL[0].getAsType()};
1021       }
1022 
1023       return {};
1024     }
1025 
1026     void performLifetimeExtension() {
1027       // Disable the cleanups for lifetime-extended temporaries.
1028       CleanupStack.erase(
1029           std::remove_if(CleanupStack.begin(), CleanupStack.end(),
1030                          [](Cleanup &C) { return C.isLifetimeExtended(); }),
1031           CleanupStack.end());
1032      }
1033 
1034     /// Throw away any remaining cleanups at the end of evaluation. If any
1035     /// cleanups would have had a side-effect, note that as an unmodeled
1036     /// side-effect and return false. Otherwise, return true.
1037     bool discardCleanups() {
1038       for (Cleanup &C : CleanupStack) {
1039         if (C.hasSideEffect() && !noteSideEffect()) {
1040           CleanupStack.clear();
1041           return false;
1042         }
1043       }
1044       CleanupStack.clear();
1045       return true;
1046     }
1047 
1048   private:
1049     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1050     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1051 
1052     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1053     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1054 
1055     void setFoldFailureDiagnostic(bool Flag) override {
1056       HasFoldFailureDiagnostic = Flag;
1057     }
1058 
1059     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1060 
1061     ASTContext &getCtx() const override { return Ctx; }
1062 
1063     // If we have a prior diagnostic, it will be noting that the expression
1064     // isn't a constant expression. This diagnostic is more important,
1065     // unless we require this evaluation to produce a constant expression.
1066     //
1067     // FIXME: We might want to show both diagnostics to the user in
1068     // EM_ConstantFold mode.
1069     bool hasPriorDiagnostic() override {
1070       if (!EvalStatus.Diag->empty()) {
1071         switch (EvalMode) {
1072         case EM_ConstantFold:
1073         case EM_IgnoreSideEffects:
1074           if (!HasFoldFailureDiagnostic)
1075             break;
1076           // We've already failed to fold something. Keep that diagnostic.
1077           LLVM_FALLTHROUGH;
1078         case EM_ConstantExpression:
1079         case EM_ConstantExpressionUnevaluated:
1080           setActiveDiagnostic(false);
1081           return true;
1082         }
1083       }
1084       return false;
1085     }
1086 
1087     unsigned getCallStackDepth() override { return CallStackDepth; }
1088 
1089   public:
1090     /// Should we continue evaluation after encountering a side-effect that we
1091     /// couldn't model?
1092     bool keepEvaluatingAfterSideEffect() {
1093       switch (EvalMode) {
1094       case EM_IgnoreSideEffects:
1095         return true;
1096 
1097       case EM_ConstantExpression:
1098       case EM_ConstantExpressionUnevaluated:
1099       case EM_ConstantFold:
1100         // By default, assume any side effect might be valid in some other
1101         // evaluation of this expression from a different context.
1102         return checkingPotentialConstantExpression() ||
1103                checkingForUndefinedBehavior();
1104       }
1105       llvm_unreachable("Missed EvalMode case");
1106     }
1107 
1108     /// Note that we have had a side-effect, and determine whether we should
1109     /// keep evaluating.
1110     bool noteSideEffect() {
1111       EvalStatus.HasSideEffects = true;
1112       return keepEvaluatingAfterSideEffect();
1113     }
1114 
1115     /// Should we continue evaluation after encountering undefined behavior?
1116     bool keepEvaluatingAfterUndefinedBehavior() {
1117       switch (EvalMode) {
1118       case EM_IgnoreSideEffects:
1119       case EM_ConstantFold:
1120         return true;
1121 
1122       case EM_ConstantExpression:
1123       case EM_ConstantExpressionUnevaluated:
1124         return checkingForUndefinedBehavior();
1125       }
1126       llvm_unreachable("Missed EvalMode case");
1127     }
1128 
1129     /// Note that we hit something that was technically undefined behavior, but
1130     /// that we can evaluate past it (such as signed overflow or floating-point
1131     /// division by zero.)
1132     bool noteUndefinedBehavior() override {
1133       EvalStatus.HasUndefinedBehavior = true;
1134       return keepEvaluatingAfterUndefinedBehavior();
1135     }
1136 
1137     /// Should we continue evaluation as much as possible after encountering a
1138     /// construct which can't be reduced to a value?
1139     bool keepEvaluatingAfterFailure() const override {
1140       if (!StepsLeft)
1141         return false;
1142 
1143       switch (EvalMode) {
1144       case EM_ConstantExpression:
1145       case EM_ConstantExpressionUnevaluated:
1146       case EM_ConstantFold:
1147       case EM_IgnoreSideEffects:
1148         return checkingPotentialConstantExpression() ||
1149                checkingForUndefinedBehavior();
1150       }
1151       llvm_unreachable("Missed EvalMode case");
1152     }
1153 
1154     /// Notes that we failed to evaluate an expression that other expressions
1155     /// directly depend on, and determine if we should keep evaluating. This
1156     /// should only be called if we actually intend to keep evaluating.
1157     ///
1158     /// Call noteSideEffect() instead if we may be able to ignore the value that
1159     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1160     ///
1161     /// (Foo(), 1)      // use noteSideEffect
1162     /// (Foo() || true) // use noteSideEffect
1163     /// Foo() + 1       // use noteFailure
1164     LLVM_NODISCARD bool noteFailure() {
1165       // Failure when evaluating some expression often means there is some
1166       // subexpression whose evaluation was skipped. Therefore, (because we
1167       // don't track whether we skipped an expression when unwinding after an
1168       // evaluation failure) every evaluation failure that bubbles up from a
1169       // subexpression implies that a side-effect has potentially happened. We
1170       // skip setting the HasSideEffects flag to true until we decide to
1171       // continue evaluating after that point, which happens here.
1172       bool KeepGoing = keepEvaluatingAfterFailure();
1173       EvalStatus.HasSideEffects |= KeepGoing;
1174       return KeepGoing;
1175     }
1176 
1177     class ArrayInitLoopIndex {
1178       EvalInfo &Info;
1179       uint64_t OuterIndex;
1180 
1181     public:
1182       ArrayInitLoopIndex(EvalInfo &Info)
1183           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1184         Info.ArrayInitIndex = 0;
1185       }
1186       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1187 
1188       operator uint64_t&() { return Info.ArrayInitIndex; }
1189     };
1190   };
1191 
1192   /// Object used to treat all foldable expressions as constant expressions.
1193   struct FoldConstant {
1194     EvalInfo &Info;
1195     bool Enabled;
1196     bool HadNoPriorDiags;
1197     EvalInfo::EvaluationMode OldMode;
1198 
1199     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1200       : Info(Info),
1201         Enabled(Enabled),
1202         HadNoPriorDiags(Info.EvalStatus.Diag &&
1203                         Info.EvalStatus.Diag->empty() &&
1204                         !Info.EvalStatus.HasSideEffects),
1205         OldMode(Info.EvalMode) {
1206       if (Enabled)
1207         Info.EvalMode = EvalInfo::EM_ConstantFold;
1208     }
1209     void keepDiagnostics() { Enabled = false; }
1210     ~FoldConstant() {
1211       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1212           !Info.EvalStatus.HasSideEffects)
1213         Info.EvalStatus.Diag->clear();
1214       Info.EvalMode = OldMode;
1215     }
1216   };
1217 
1218   /// RAII object used to set the current evaluation mode to ignore
1219   /// side-effects.
1220   struct IgnoreSideEffectsRAII {
1221     EvalInfo &Info;
1222     EvalInfo::EvaluationMode OldMode;
1223     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1224         : Info(Info), OldMode(Info.EvalMode) {
1225       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1226     }
1227 
1228     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1229   };
1230 
1231   /// RAII object used to optionally suppress diagnostics and side-effects from
1232   /// a speculative evaluation.
1233   class SpeculativeEvaluationRAII {
1234     EvalInfo *Info = nullptr;
1235     Expr::EvalStatus OldStatus;
1236     unsigned OldSpeculativeEvaluationDepth;
1237 
1238     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1239       Info = Other.Info;
1240       OldStatus = Other.OldStatus;
1241       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1242       Other.Info = nullptr;
1243     }
1244 
1245     void maybeRestoreState() {
1246       if (!Info)
1247         return;
1248 
1249       Info->EvalStatus = OldStatus;
1250       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1251     }
1252 
1253   public:
1254     SpeculativeEvaluationRAII() = default;
1255 
1256     SpeculativeEvaluationRAII(
1257         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1258         : Info(&Info), OldStatus(Info.EvalStatus),
1259           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1260       Info.EvalStatus.Diag = NewDiag;
1261       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1262     }
1263 
1264     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1265     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1266       moveFromAndCancel(std::move(Other));
1267     }
1268 
1269     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1270       maybeRestoreState();
1271       moveFromAndCancel(std::move(Other));
1272       return *this;
1273     }
1274 
1275     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1276   };
1277 
1278   /// RAII object wrapping a full-expression or block scope, and handling
1279   /// the ending of the lifetime of temporaries created within it.
1280   template<bool IsFullExpression>
1281   class ScopeRAII {
1282     EvalInfo &Info;
1283     unsigned OldStackSize;
1284   public:
1285     ScopeRAII(EvalInfo &Info)
1286         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1287       // Push a new temporary version. This is needed to distinguish between
1288       // temporaries created in different iterations of a loop.
1289       Info.CurrentCall->pushTempVersion();
1290     }
1291     bool destroy(bool RunDestructors = true) {
1292       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1293       OldStackSize = -1U;
1294       return OK;
1295     }
1296     ~ScopeRAII() {
1297       if (OldStackSize != -1U)
1298         destroy(false);
1299       // Body moved to a static method to encourage the compiler to inline away
1300       // instances of this class.
1301       Info.CurrentCall->popTempVersion();
1302     }
1303   private:
1304     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1305                         unsigned OldStackSize) {
1306       assert(OldStackSize <= Info.CleanupStack.size() &&
1307              "running cleanups out of order?");
1308 
1309       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1310       // for a full-expression scope.
1311       bool Success = true;
1312       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1313         if (!(IsFullExpression &&
1314               Info.CleanupStack[I - 1].isLifetimeExtended())) {
1315           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1316             Success = false;
1317             break;
1318           }
1319         }
1320       }
1321 
1322       // Compact lifetime-extended cleanups.
1323       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1324       if (IsFullExpression)
1325         NewEnd =
1326             std::remove_if(NewEnd, Info.CleanupStack.end(),
1327                            [](Cleanup &C) { return !C.isLifetimeExtended(); });
1328       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1329       return Success;
1330     }
1331   };
1332   typedef ScopeRAII<false> BlockScopeRAII;
1333   typedef ScopeRAII<true> FullExpressionRAII;
1334 }
1335 
1336 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1337                                          CheckSubobjectKind CSK) {
1338   if (Invalid)
1339     return false;
1340   if (isOnePastTheEnd()) {
1341     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1342       << CSK;
1343     setInvalid();
1344     return false;
1345   }
1346   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1347   // must actually be at least one array element; even a VLA cannot have a
1348   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1349   return true;
1350 }
1351 
1352 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1353                                                                 const Expr *E) {
1354   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1355   // Do not set the designator as invalid: we can represent this situation,
1356   // and correct handling of __builtin_object_size requires us to do so.
1357 }
1358 
1359 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1360                                                     const Expr *E,
1361                                                     const APSInt &N) {
1362   // If we're complaining, we must be able to statically determine the size of
1363   // the most derived array.
1364   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1365     Info.CCEDiag(E, diag::note_constexpr_array_index)
1366       << N << /*array*/ 0
1367       << static_cast<unsigned>(getMostDerivedArraySize());
1368   else
1369     Info.CCEDiag(E, diag::note_constexpr_array_index)
1370       << N << /*non-array*/ 1;
1371   setInvalid();
1372 }
1373 
1374 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1375                                const FunctionDecl *Callee, const LValue *This,
1376                                APValue *Arguments)
1377     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1378       Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1379   Info.CurrentCall = this;
1380   ++Info.CallStackDepth;
1381 }
1382 
1383 CallStackFrame::~CallStackFrame() {
1384   assert(Info.CurrentCall == this && "calls retired out of order");
1385   --Info.CallStackDepth;
1386   Info.CurrentCall = Caller;
1387 }
1388 
1389 static bool isRead(AccessKinds AK) {
1390   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1391 }
1392 
1393 static bool isModification(AccessKinds AK) {
1394   switch (AK) {
1395   case AK_Read:
1396   case AK_ReadObjectRepresentation:
1397   case AK_MemberCall:
1398   case AK_DynamicCast:
1399   case AK_TypeId:
1400     return false;
1401   case AK_Assign:
1402   case AK_Increment:
1403   case AK_Decrement:
1404   case AK_Construct:
1405   case AK_Destroy:
1406     return true;
1407   }
1408   llvm_unreachable("unknown access kind");
1409 }
1410 
1411 static bool isAnyAccess(AccessKinds AK) {
1412   return isRead(AK) || isModification(AK);
1413 }
1414 
1415 /// Is this an access per the C++ definition?
1416 static bool isFormalAccess(AccessKinds AK) {
1417   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1418 }
1419 
1420 namespace {
1421   struct ComplexValue {
1422   private:
1423     bool IsInt;
1424 
1425   public:
1426     APSInt IntReal, IntImag;
1427     APFloat FloatReal, FloatImag;
1428 
1429     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1430 
1431     void makeComplexFloat() { IsInt = false; }
1432     bool isComplexFloat() const { return !IsInt; }
1433     APFloat &getComplexFloatReal() { return FloatReal; }
1434     APFloat &getComplexFloatImag() { return FloatImag; }
1435 
1436     void makeComplexInt() { IsInt = true; }
1437     bool isComplexInt() const { return IsInt; }
1438     APSInt &getComplexIntReal() { return IntReal; }
1439     APSInt &getComplexIntImag() { return IntImag; }
1440 
1441     void moveInto(APValue &v) const {
1442       if (isComplexFloat())
1443         v = APValue(FloatReal, FloatImag);
1444       else
1445         v = APValue(IntReal, IntImag);
1446     }
1447     void setFrom(const APValue &v) {
1448       assert(v.isComplexFloat() || v.isComplexInt());
1449       if (v.isComplexFloat()) {
1450         makeComplexFloat();
1451         FloatReal = v.getComplexFloatReal();
1452         FloatImag = v.getComplexFloatImag();
1453       } else {
1454         makeComplexInt();
1455         IntReal = v.getComplexIntReal();
1456         IntImag = v.getComplexIntImag();
1457       }
1458     }
1459   };
1460 
1461   struct LValue {
1462     APValue::LValueBase Base;
1463     CharUnits Offset;
1464     SubobjectDesignator Designator;
1465     bool IsNullPtr : 1;
1466     bool InvalidBase : 1;
1467 
1468     const APValue::LValueBase getLValueBase() const { return Base; }
1469     CharUnits &getLValueOffset() { return Offset; }
1470     const CharUnits &getLValueOffset() const { return Offset; }
1471     SubobjectDesignator &getLValueDesignator() { return Designator; }
1472     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1473     bool isNullPointer() const { return IsNullPtr;}
1474 
1475     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1476     unsigned getLValueVersion() const { return Base.getVersion(); }
1477 
1478     void moveInto(APValue &V) const {
1479       if (Designator.Invalid)
1480         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1481       else {
1482         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1483         V = APValue(Base, Offset, Designator.Entries,
1484                     Designator.IsOnePastTheEnd, IsNullPtr);
1485       }
1486     }
1487     void setFrom(ASTContext &Ctx, const APValue &V) {
1488       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1489       Base = V.getLValueBase();
1490       Offset = V.getLValueOffset();
1491       InvalidBase = false;
1492       Designator = SubobjectDesignator(Ctx, V);
1493       IsNullPtr = V.isNullPointer();
1494     }
1495 
1496     void set(APValue::LValueBase B, bool BInvalid = false) {
1497 #ifndef NDEBUG
1498       // We only allow a few types of invalid bases. Enforce that here.
1499       if (BInvalid) {
1500         const auto *E = B.get<const Expr *>();
1501         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1502                "Unexpected type of invalid base");
1503       }
1504 #endif
1505 
1506       Base = B;
1507       Offset = CharUnits::fromQuantity(0);
1508       InvalidBase = BInvalid;
1509       Designator = SubobjectDesignator(getType(B));
1510       IsNullPtr = false;
1511     }
1512 
1513     void setNull(ASTContext &Ctx, QualType PointerTy) {
1514       Base = (Expr *)nullptr;
1515       Offset =
1516           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1517       InvalidBase = false;
1518       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1519       IsNullPtr = true;
1520     }
1521 
1522     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1523       set(B, true);
1524     }
1525 
1526     std::string toString(ASTContext &Ctx, QualType T) const {
1527       APValue Printable;
1528       moveInto(Printable);
1529       return Printable.getAsString(Ctx, T);
1530     }
1531 
1532   private:
1533     // Check that this LValue is not based on a null pointer. If it is, produce
1534     // a diagnostic and mark the designator as invalid.
1535     template <typename GenDiagType>
1536     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1537       if (Designator.Invalid)
1538         return false;
1539       if (IsNullPtr) {
1540         GenDiag();
1541         Designator.setInvalid();
1542         return false;
1543       }
1544       return true;
1545     }
1546 
1547   public:
1548     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1549                           CheckSubobjectKind CSK) {
1550       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1551         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1552       });
1553     }
1554 
1555     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1556                                        AccessKinds AK) {
1557       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1558         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1559       });
1560     }
1561 
1562     // Check this LValue refers to an object. If not, set the designator to be
1563     // invalid and emit a diagnostic.
1564     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1565       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1566              Designator.checkSubobject(Info, E, CSK);
1567     }
1568 
1569     void addDecl(EvalInfo &Info, const Expr *E,
1570                  const Decl *D, bool Virtual = false) {
1571       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1572         Designator.addDeclUnchecked(D, Virtual);
1573     }
1574     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1575       if (!Designator.Entries.empty()) {
1576         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1577         Designator.setInvalid();
1578         return;
1579       }
1580       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1581         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1582         Designator.FirstEntryIsAnUnsizedArray = true;
1583         Designator.addUnsizedArrayUnchecked(ElemTy);
1584       }
1585     }
1586     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1587       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1588         Designator.addArrayUnchecked(CAT);
1589     }
1590     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1591       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1592         Designator.addComplexUnchecked(EltTy, Imag);
1593     }
1594     void clearIsNullPointer() {
1595       IsNullPtr = false;
1596     }
1597     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1598                               const APSInt &Index, CharUnits ElementSize) {
1599       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1600       // but we're not required to diagnose it and it's valid in C++.)
1601       if (!Index)
1602         return;
1603 
1604       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1605       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1606       // offsets.
1607       uint64_t Offset64 = Offset.getQuantity();
1608       uint64_t ElemSize64 = ElementSize.getQuantity();
1609       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1610       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1611 
1612       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1613         Designator.adjustIndex(Info, E, Index);
1614       clearIsNullPointer();
1615     }
1616     void adjustOffset(CharUnits N) {
1617       Offset += N;
1618       if (N.getQuantity())
1619         clearIsNullPointer();
1620     }
1621   };
1622 
1623   struct MemberPtr {
1624     MemberPtr() {}
1625     explicit MemberPtr(const ValueDecl *Decl) :
1626       DeclAndIsDerivedMember(Decl, false), Path() {}
1627 
1628     /// The member or (direct or indirect) field referred to by this member
1629     /// pointer, or 0 if this is a null member pointer.
1630     const ValueDecl *getDecl() const {
1631       return DeclAndIsDerivedMember.getPointer();
1632     }
1633     /// Is this actually a member of some type derived from the relevant class?
1634     bool isDerivedMember() const {
1635       return DeclAndIsDerivedMember.getInt();
1636     }
1637     /// Get the class which the declaration actually lives in.
1638     const CXXRecordDecl *getContainingRecord() const {
1639       return cast<CXXRecordDecl>(
1640           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1641     }
1642 
1643     void moveInto(APValue &V) const {
1644       V = APValue(getDecl(), isDerivedMember(), Path);
1645     }
1646     void setFrom(const APValue &V) {
1647       assert(V.isMemberPointer());
1648       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1649       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1650       Path.clear();
1651       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1652       Path.insert(Path.end(), P.begin(), P.end());
1653     }
1654 
1655     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1656     /// whether the member is a member of some class derived from the class type
1657     /// of the member pointer.
1658     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1659     /// Path - The path of base/derived classes from the member declaration's
1660     /// class (exclusive) to the class type of the member pointer (inclusive).
1661     SmallVector<const CXXRecordDecl*, 4> Path;
1662 
1663     /// Perform a cast towards the class of the Decl (either up or down the
1664     /// hierarchy).
1665     bool castBack(const CXXRecordDecl *Class) {
1666       assert(!Path.empty());
1667       const CXXRecordDecl *Expected;
1668       if (Path.size() >= 2)
1669         Expected = Path[Path.size() - 2];
1670       else
1671         Expected = getContainingRecord();
1672       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1673         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1674         // if B does not contain the original member and is not a base or
1675         // derived class of the class containing the original member, the result
1676         // of the cast is undefined.
1677         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1678         // (D::*). We consider that to be a language defect.
1679         return false;
1680       }
1681       Path.pop_back();
1682       return true;
1683     }
1684     /// Perform a base-to-derived member pointer cast.
1685     bool castToDerived(const CXXRecordDecl *Derived) {
1686       if (!getDecl())
1687         return true;
1688       if (!isDerivedMember()) {
1689         Path.push_back(Derived);
1690         return true;
1691       }
1692       if (!castBack(Derived))
1693         return false;
1694       if (Path.empty())
1695         DeclAndIsDerivedMember.setInt(false);
1696       return true;
1697     }
1698     /// Perform a derived-to-base member pointer cast.
1699     bool castToBase(const CXXRecordDecl *Base) {
1700       if (!getDecl())
1701         return true;
1702       if (Path.empty())
1703         DeclAndIsDerivedMember.setInt(true);
1704       if (isDerivedMember()) {
1705         Path.push_back(Base);
1706         return true;
1707       }
1708       return castBack(Base);
1709     }
1710   };
1711 
1712   /// Compare two member pointers, which are assumed to be of the same type.
1713   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1714     if (!LHS.getDecl() || !RHS.getDecl())
1715       return !LHS.getDecl() && !RHS.getDecl();
1716     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1717       return false;
1718     return LHS.Path == RHS.Path;
1719   }
1720 }
1721 
1722 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1723 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1724                             const LValue &This, const Expr *E,
1725                             bool AllowNonLiteralTypes = false);
1726 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1727                            bool InvalidBaseOK = false);
1728 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1729                             bool InvalidBaseOK = false);
1730 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1731                                   EvalInfo &Info);
1732 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1733 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1734 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1735                                     EvalInfo &Info);
1736 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1737 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1738 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1739                            EvalInfo &Info);
1740 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1741 
1742 /// Evaluate an integer or fixed point expression into an APResult.
1743 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1744                                         EvalInfo &Info);
1745 
1746 /// Evaluate only a fixed point expression into an APResult.
1747 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1748                                EvalInfo &Info);
1749 
1750 //===----------------------------------------------------------------------===//
1751 // Misc utilities
1752 //===----------------------------------------------------------------------===//
1753 
1754 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1755 /// preserving its value (by extending by up to one bit as needed).
1756 static void negateAsSigned(APSInt &Int) {
1757   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1758     Int = Int.extend(Int.getBitWidth() + 1);
1759     Int.setIsSigned(true);
1760   }
1761   Int = -Int;
1762 }
1763 
1764 template<typename KeyT>
1765 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1766                                          bool IsLifetimeExtended, LValue &LV) {
1767   unsigned Version = getTempVersion();
1768   APValue::LValueBase Base(Key, Index, Version);
1769   LV.set(Base);
1770   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1771   assert(Result.isAbsent() && "temporary created multiple times");
1772 
1773   // If we're creating a temporary immediately in the operand of a speculative
1774   // evaluation, don't register a cleanup to be run outside the speculative
1775   // evaluation context, since we won't actually be able to initialize this
1776   // object.
1777   if (Index <= Info.SpeculativeEvaluationDepth) {
1778     if (T.isDestructedType())
1779       Info.noteSideEffect();
1780   } else {
1781     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended));
1782   }
1783   return Result;
1784 }
1785 
1786 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1787   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1788     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1789     return nullptr;
1790   }
1791 
1792   DynamicAllocLValue DA(NumHeapAllocs++);
1793   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1794   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1795                                    std::forward_as_tuple(DA), std::tuple<>());
1796   assert(Result.second && "reused a heap alloc index?");
1797   Result.first->second.AllocExpr = E;
1798   return &Result.first->second.Value;
1799 }
1800 
1801 /// Produce a string describing the given constexpr call.
1802 void CallStackFrame::describe(raw_ostream &Out) {
1803   unsigned ArgIndex = 0;
1804   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1805                       !isa<CXXConstructorDecl>(Callee) &&
1806                       cast<CXXMethodDecl>(Callee)->isInstance();
1807 
1808   if (!IsMemberCall)
1809     Out << *Callee << '(';
1810 
1811   if (This && IsMemberCall) {
1812     APValue Val;
1813     This->moveInto(Val);
1814     Val.printPretty(Out, Info.Ctx,
1815                     This->Designator.MostDerivedType);
1816     // FIXME: Add parens around Val if needed.
1817     Out << "->" << *Callee << '(';
1818     IsMemberCall = false;
1819   }
1820 
1821   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1822        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1823     if (ArgIndex > (unsigned)IsMemberCall)
1824       Out << ", ";
1825 
1826     const ParmVarDecl *Param = *I;
1827     const APValue &Arg = Arguments[ArgIndex];
1828     Arg.printPretty(Out, Info.Ctx, Param->getType());
1829 
1830     if (ArgIndex == 0 && IsMemberCall)
1831       Out << "->" << *Callee << '(';
1832   }
1833 
1834   Out << ')';
1835 }
1836 
1837 /// Evaluate an expression to see if it had side-effects, and discard its
1838 /// result.
1839 /// \return \c true if the caller should keep evaluating.
1840 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1841   APValue Scratch;
1842   if (!Evaluate(Scratch, Info, E))
1843     // We don't need the value, but we might have skipped a side effect here.
1844     return Info.noteSideEffect();
1845   return true;
1846 }
1847 
1848 /// Should this call expression be treated as a string literal?
1849 static bool IsStringLiteralCall(const CallExpr *E) {
1850   unsigned Builtin = E->getBuiltinCallee();
1851   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1852           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1853 }
1854 
1855 static bool IsGlobalLValue(APValue::LValueBase B) {
1856   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1857   // constant expression of pointer type that evaluates to...
1858 
1859   // ... a null pointer value, or a prvalue core constant expression of type
1860   // std::nullptr_t.
1861   if (!B) return true;
1862 
1863   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1864     // ... the address of an object with static storage duration,
1865     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1866       return VD->hasGlobalStorage();
1867     // ... the address of a function,
1868     return isa<FunctionDecl>(D);
1869   }
1870 
1871   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1872     return true;
1873 
1874   const Expr *E = B.get<const Expr*>();
1875   switch (E->getStmtClass()) {
1876   default:
1877     return false;
1878   case Expr::CompoundLiteralExprClass: {
1879     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1880     return CLE->isFileScope() && CLE->isLValue();
1881   }
1882   case Expr::MaterializeTemporaryExprClass:
1883     // A materialized temporary might have been lifetime-extended to static
1884     // storage duration.
1885     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1886   // A string literal has static storage duration.
1887   case Expr::StringLiteralClass:
1888   case Expr::PredefinedExprClass:
1889   case Expr::ObjCStringLiteralClass:
1890   case Expr::ObjCEncodeExprClass:
1891   case Expr::CXXUuidofExprClass:
1892     return true;
1893   case Expr::ObjCBoxedExprClass:
1894     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
1895   case Expr::CallExprClass:
1896     return IsStringLiteralCall(cast<CallExpr>(E));
1897   // For GCC compatibility, &&label has static storage duration.
1898   case Expr::AddrLabelExprClass:
1899     return true;
1900   // A Block literal expression may be used as the initialization value for
1901   // Block variables at global or local static scope.
1902   case Expr::BlockExprClass:
1903     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1904   case Expr::ImplicitValueInitExprClass:
1905     // FIXME:
1906     // We can never form an lvalue with an implicit value initialization as its
1907     // base through expression evaluation, so these only appear in one case: the
1908     // implicit variable declaration we invent when checking whether a constexpr
1909     // constructor can produce a constant expression. We must assume that such
1910     // an expression might be a global lvalue.
1911     return true;
1912   }
1913 }
1914 
1915 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1916   return LVal.Base.dyn_cast<const ValueDecl*>();
1917 }
1918 
1919 static bool IsLiteralLValue(const LValue &Value) {
1920   if (Value.getLValueCallIndex())
1921     return false;
1922   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1923   return E && !isa<MaterializeTemporaryExpr>(E);
1924 }
1925 
1926 static bool IsWeakLValue(const LValue &Value) {
1927   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1928   return Decl && Decl->isWeak();
1929 }
1930 
1931 static bool isZeroSized(const LValue &Value) {
1932   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1933   if (Decl && isa<VarDecl>(Decl)) {
1934     QualType Ty = Decl->getType();
1935     if (Ty->isArrayType())
1936       return Ty->isIncompleteType() ||
1937              Decl->getASTContext().getTypeSize(Ty) == 0;
1938   }
1939   return false;
1940 }
1941 
1942 static bool HasSameBase(const LValue &A, const LValue &B) {
1943   if (!A.getLValueBase())
1944     return !B.getLValueBase();
1945   if (!B.getLValueBase())
1946     return false;
1947 
1948   if (A.getLValueBase().getOpaqueValue() !=
1949       B.getLValueBase().getOpaqueValue()) {
1950     const Decl *ADecl = GetLValueBaseDecl(A);
1951     if (!ADecl)
1952       return false;
1953     const Decl *BDecl = GetLValueBaseDecl(B);
1954     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
1955       return false;
1956   }
1957 
1958   return IsGlobalLValue(A.getLValueBase()) ||
1959          (A.getLValueCallIndex() == B.getLValueCallIndex() &&
1960           A.getLValueVersion() == B.getLValueVersion());
1961 }
1962 
1963 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1964   assert(Base && "no location for a null lvalue");
1965   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1966   if (VD)
1967     Info.Note(VD->getLocation(), diag::note_declared_at);
1968   else if (const Expr *E = Base.dyn_cast<const Expr*>())
1969     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
1970   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
1971     // FIXME: Produce a note for dangling pointers too.
1972     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
1973       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
1974                 diag::note_constexpr_dynamic_alloc_here);
1975   }
1976   // We have no information to show for a typeid(T) object.
1977 }
1978 
1979 enum class CheckEvaluationResultKind {
1980   ConstantExpression,
1981   FullyInitialized,
1982 };
1983 
1984 /// Materialized temporaries that we've already checked to determine if they're
1985 /// initializsed by a constant expression.
1986 using CheckedTemporaries =
1987     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
1988 
1989 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
1990                                   EvalInfo &Info, SourceLocation DiagLoc,
1991                                   QualType Type, const APValue &Value,
1992                                   Expr::ConstExprUsage Usage,
1993                                   SourceLocation SubobjectLoc,
1994                                   CheckedTemporaries &CheckedTemps);
1995 
1996 /// Check that this reference or pointer core constant expression is a valid
1997 /// value for an address or reference constant expression. Return true if we
1998 /// can fold this expression, whether or not it's a constant expression.
1999 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2000                                           QualType Type, const LValue &LVal,
2001                                           Expr::ConstExprUsage Usage,
2002                                           CheckedTemporaries &CheckedTemps) {
2003   bool IsReferenceType = Type->isReferenceType();
2004 
2005   APValue::LValueBase Base = LVal.getLValueBase();
2006   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2007 
2008   // Check that the object is a global. Note that the fake 'this' object we
2009   // manufacture when checking potential constant expressions is conservatively
2010   // assumed to be global here.
2011   if (!IsGlobalLValue(Base)) {
2012     if (Info.getLangOpts().CPlusPlus11) {
2013       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2014       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2015         << IsReferenceType << !Designator.Entries.empty()
2016         << !!VD << VD;
2017       NoteLValueLocation(Info, Base);
2018     } else {
2019       Info.FFDiag(Loc);
2020     }
2021     // Don't allow references to temporaries to escape.
2022     return false;
2023   }
2024   assert((Info.checkingPotentialConstantExpression() ||
2025           LVal.getLValueCallIndex() == 0) &&
2026          "have call index for global lvalue");
2027 
2028   if (Base.is<DynamicAllocLValue>()) {
2029     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2030         << IsReferenceType << !Designator.Entries.empty();
2031     NoteLValueLocation(Info, Base);
2032     return false;
2033   }
2034 
2035   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
2036     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
2037       // Check if this is a thread-local variable.
2038       if (Var->getTLSKind())
2039         // FIXME: Diagnostic!
2040         return false;
2041 
2042       // A dllimport variable never acts like a constant.
2043       if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>())
2044         // FIXME: Diagnostic!
2045         return false;
2046     }
2047     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
2048       // __declspec(dllimport) must be handled very carefully:
2049       // We must never initialize an expression with the thunk in C++.
2050       // Doing otherwise would allow the same id-expression to yield
2051       // different addresses for the same function in different translation
2052       // units.  However, this means that we must dynamically initialize the
2053       // expression with the contents of the import address table at runtime.
2054       //
2055       // The C language has no notion of ODR; furthermore, it has no notion of
2056       // dynamic initialization.  This means that we are permitted to
2057       // perform initialization with the address of the thunk.
2058       if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen &&
2059           FD->hasAttr<DLLImportAttr>())
2060         // FIXME: Diagnostic!
2061         return false;
2062     }
2063   } else if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(
2064                  Base.dyn_cast<const Expr *>())) {
2065     if (CheckedTemps.insert(MTE).second) {
2066       QualType TempType = getType(Base);
2067       if (TempType.isDestructedType()) {
2068         Info.FFDiag(MTE->getExprLoc(),
2069                     diag::note_constexpr_unsupported_tempoarary_nontrivial_dtor)
2070             << TempType;
2071         return false;
2072       }
2073 
2074       APValue *V = MTE->getOrCreateValue(false);
2075       assert(V && "evasluation result refers to uninitialised temporary");
2076       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2077                                  Info, MTE->getExprLoc(), TempType, *V,
2078                                  Usage, SourceLocation(), CheckedTemps))
2079         return false;
2080     }
2081   }
2082 
2083   // Allow address constant expressions to be past-the-end pointers. This is
2084   // an extension: the standard requires them to point to an object.
2085   if (!IsReferenceType)
2086     return true;
2087 
2088   // A reference constant expression must refer to an object.
2089   if (!Base) {
2090     // FIXME: diagnostic
2091     Info.CCEDiag(Loc);
2092     return true;
2093   }
2094 
2095   // Does this refer one past the end of some object?
2096   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2097     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2098     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2099       << !Designator.Entries.empty() << !!VD << VD;
2100     NoteLValueLocation(Info, Base);
2101   }
2102 
2103   return true;
2104 }
2105 
2106 /// Member pointers are constant expressions unless they point to a
2107 /// non-virtual dllimport member function.
2108 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2109                                                  SourceLocation Loc,
2110                                                  QualType Type,
2111                                                  const APValue &Value,
2112                                                  Expr::ConstExprUsage Usage) {
2113   const ValueDecl *Member = Value.getMemberPointerDecl();
2114   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2115   if (!FD)
2116     return true;
2117   return Usage == Expr::EvaluateForMangling || FD->isVirtual() ||
2118          !FD->hasAttr<DLLImportAttr>();
2119 }
2120 
2121 /// Check that this core constant expression is of literal type, and if not,
2122 /// produce an appropriate diagnostic.
2123 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2124                              const LValue *This = nullptr) {
2125   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
2126     return true;
2127 
2128   // C++1y: A constant initializer for an object o [...] may also invoke
2129   // constexpr constructors for o and its subobjects even if those objects
2130   // are of non-literal class types.
2131   //
2132   // C++11 missed this detail for aggregates, so classes like this:
2133   //   struct foo_t { union { int i; volatile int j; } u; };
2134   // are not (obviously) initializable like so:
2135   //   __attribute__((__require_constant_initialization__))
2136   //   static const foo_t x = {{0}};
2137   // because "i" is a subobject with non-literal initialization (due to the
2138   // volatile member of the union). See:
2139   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2140   // Therefore, we use the C++1y behavior.
2141   if (This && Info.EvaluatingDecl == This->getLValueBase())
2142     return true;
2143 
2144   // Prvalue constant expressions must be of literal types.
2145   if (Info.getLangOpts().CPlusPlus11)
2146     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2147       << E->getType();
2148   else
2149     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2150   return false;
2151 }
2152 
2153 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2154                                   EvalInfo &Info, SourceLocation DiagLoc,
2155                                   QualType Type, const APValue &Value,
2156                                   Expr::ConstExprUsage Usage,
2157                                   SourceLocation SubobjectLoc,
2158                                   CheckedTemporaries &CheckedTemps) {
2159   if (!Value.hasValue()) {
2160     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2161       << true << Type;
2162     if (SubobjectLoc.isValid())
2163       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2164     return false;
2165   }
2166 
2167   // We allow _Atomic(T) to be initialized from anything that T can be
2168   // initialized from.
2169   if (const AtomicType *AT = Type->getAs<AtomicType>())
2170     Type = AT->getValueType();
2171 
2172   // Core issue 1454: For a literal constant expression of array or class type,
2173   // each subobject of its value shall have been initialized by a constant
2174   // expression.
2175   if (Value.isArray()) {
2176     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2177     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2178       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2179                                  Value.getArrayInitializedElt(I), Usage,
2180                                  SubobjectLoc, CheckedTemps))
2181         return false;
2182     }
2183     if (!Value.hasArrayFiller())
2184       return true;
2185     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2186                                  Value.getArrayFiller(), Usage, SubobjectLoc,
2187                                  CheckedTemps);
2188   }
2189   if (Value.isUnion() && Value.getUnionField()) {
2190     return CheckEvaluationResult(
2191         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2192         Value.getUnionValue(), Usage, Value.getUnionField()->getLocation(),
2193         CheckedTemps);
2194   }
2195   if (Value.isStruct()) {
2196     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2197     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2198       unsigned BaseIndex = 0;
2199       for (const CXXBaseSpecifier &BS : CD->bases()) {
2200         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2201                                    Value.getStructBase(BaseIndex), Usage,
2202                                    BS.getBeginLoc(), CheckedTemps))
2203           return false;
2204         ++BaseIndex;
2205       }
2206     }
2207     for (const auto *I : RD->fields()) {
2208       if (I->isUnnamedBitfield())
2209         continue;
2210 
2211       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2212                                  Value.getStructField(I->getFieldIndex()),
2213                                  Usage, I->getLocation(), CheckedTemps))
2214         return false;
2215     }
2216   }
2217 
2218   if (Value.isLValue() &&
2219       CERK == CheckEvaluationResultKind::ConstantExpression) {
2220     LValue LVal;
2221     LVal.setFrom(Info.Ctx, Value);
2222     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage,
2223                                          CheckedTemps);
2224   }
2225 
2226   if (Value.isMemberPointer() &&
2227       CERK == CheckEvaluationResultKind::ConstantExpression)
2228     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage);
2229 
2230   // Everything else is fine.
2231   return true;
2232 }
2233 
2234 /// Check that this core constant expression value is a valid value for a
2235 /// constant expression. If not, report an appropriate diagnostic. Does not
2236 /// check that the expression is of literal type.
2237 static bool
2238 CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
2239                         const APValue &Value,
2240                         Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) {
2241   CheckedTemporaries CheckedTemps;
2242   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2243                                Info, DiagLoc, Type, Value, Usage,
2244                                SourceLocation(), CheckedTemps);
2245 }
2246 
2247 /// Check that this evaluated value is fully-initialized and can be loaded by
2248 /// an lvalue-to-rvalue conversion.
2249 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2250                                   QualType Type, const APValue &Value) {
2251   CheckedTemporaries CheckedTemps;
2252   return CheckEvaluationResult(
2253       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2254       Expr::EvaluateForCodeGen, SourceLocation(), CheckedTemps);
2255 }
2256 
2257 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2258 /// "the allocated storage is deallocated within the evaluation".
2259 static bool CheckMemoryLeaks(EvalInfo &Info) {
2260   if (!Info.HeapAllocs.empty()) {
2261     // We can still fold to a constant despite a compile-time memory leak,
2262     // so long as the heap allocation isn't referenced in the result (we check
2263     // that in CheckConstantExpression).
2264     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2265                  diag::note_constexpr_memory_leak)
2266         << unsigned(Info.HeapAllocs.size() - 1);
2267   }
2268   return true;
2269 }
2270 
2271 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2272   // A null base expression indicates a null pointer.  These are always
2273   // evaluatable, and they are false unless the offset is zero.
2274   if (!Value.getLValueBase()) {
2275     Result = !Value.getLValueOffset().isZero();
2276     return true;
2277   }
2278 
2279   // We have a non-null base.  These are generally known to be true, but if it's
2280   // a weak declaration it can be null at runtime.
2281   Result = true;
2282   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2283   return !Decl || !Decl->isWeak();
2284 }
2285 
2286 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2287   switch (Val.getKind()) {
2288   case APValue::None:
2289   case APValue::Indeterminate:
2290     return false;
2291   case APValue::Int:
2292     Result = Val.getInt().getBoolValue();
2293     return true;
2294   case APValue::FixedPoint:
2295     Result = Val.getFixedPoint().getBoolValue();
2296     return true;
2297   case APValue::Float:
2298     Result = !Val.getFloat().isZero();
2299     return true;
2300   case APValue::ComplexInt:
2301     Result = Val.getComplexIntReal().getBoolValue() ||
2302              Val.getComplexIntImag().getBoolValue();
2303     return true;
2304   case APValue::ComplexFloat:
2305     Result = !Val.getComplexFloatReal().isZero() ||
2306              !Val.getComplexFloatImag().isZero();
2307     return true;
2308   case APValue::LValue:
2309     return EvalPointerValueAsBool(Val, Result);
2310   case APValue::MemberPointer:
2311     Result = Val.getMemberPointerDecl();
2312     return true;
2313   case APValue::Vector:
2314   case APValue::Array:
2315   case APValue::Struct:
2316   case APValue::Union:
2317   case APValue::AddrLabelDiff:
2318     return false;
2319   }
2320 
2321   llvm_unreachable("unknown APValue kind");
2322 }
2323 
2324 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2325                                        EvalInfo &Info) {
2326   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
2327   APValue Val;
2328   if (!Evaluate(Val, Info, E))
2329     return false;
2330   return HandleConversionToBool(Val, Result);
2331 }
2332 
2333 template<typename T>
2334 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2335                            const T &SrcValue, QualType DestType) {
2336   Info.CCEDiag(E, diag::note_constexpr_overflow)
2337     << SrcValue << DestType;
2338   return Info.noteUndefinedBehavior();
2339 }
2340 
2341 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2342                                  QualType SrcType, const APFloat &Value,
2343                                  QualType DestType, APSInt &Result) {
2344   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2345   // Determine whether we are converting to unsigned or signed.
2346   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2347 
2348   Result = APSInt(DestWidth, !DestSigned);
2349   bool ignored;
2350   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2351       & APFloat::opInvalidOp)
2352     return HandleOverflow(Info, E, Value, DestType);
2353   return true;
2354 }
2355 
2356 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2357                                    QualType SrcType, QualType DestType,
2358                                    APFloat &Result) {
2359   APFloat Value = Result;
2360   bool ignored;
2361   Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
2362                  APFloat::rmNearestTiesToEven, &ignored);
2363   return true;
2364 }
2365 
2366 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2367                                  QualType DestType, QualType SrcType,
2368                                  const APSInt &Value) {
2369   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2370   // Figure out if this is a truncate, extend or noop cast.
2371   // If the input is signed, do a sign extend, noop, or truncate.
2372   APSInt Result = Value.extOrTrunc(DestWidth);
2373   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2374   if (DestType->isBooleanType())
2375     Result = Value.getBoolValue();
2376   return Result;
2377 }
2378 
2379 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2380                                  QualType SrcType, const APSInt &Value,
2381                                  QualType DestType, APFloat &Result) {
2382   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2383   Result.convertFromAPInt(Value, Value.isSigned(),
2384                           APFloat::rmNearestTiesToEven);
2385   return true;
2386 }
2387 
2388 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2389                                   APValue &Value, const FieldDecl *FD) {
2390   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2391 
2392   if (!Value.isInt()) {
2393     // Trying to store a pointer-cast-to-integer into a bitfield.
2394     // FIXME: In this case, we should provide the diagnostic for casting
2395     // a pointer to an integer.
2396     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2397     Info.FFDiag(E);
2398     return false;
2399   }
2400 
2401   APSInt &Int = Value.getInt();
2402   unsigned OldBitWidth = Int.getBitWidth();
2403   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2404   if (NewBitWidth < OldBitWidth)
2405     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2406   return true;
2407 }
2408 
2409 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2410                                   llvm::APInt &Res) {
2411   APValue SVal;
2412   if (!Evaluate(SVal, Info, E))
2413     return false;
2414   if (SVal.isInt()) {
2415     Res = SVal.getInt();
2416     return true;
2417   }
2418   if (SVal.isFloat()) {
2419     Res = SVal.getFloat().bitcastToAPInt();
2420     return true;
2421   }
2422   if (SVal.isVector()) {
2423     QualType VecTy = E->getType();
2424     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2425     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2426     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2427     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2428     Res = llvm::APInt::getNullValue(VecSize);
2429     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2430       APValue &Elt = SVal.getVectorElt(i);
2431       llvm::APInt EltAsInt;
2432       if (Elt.isInt()) {
2433         EltAsInt = Elt.getInt();
2434       } else if (Elt.isFloat()) {
2435         EltAsInt = Elt.getFloat().bitcastToAPInt();
2436       } else {
2437         // Don't try to handle vectors of anything other than int or float
2438         // (not sure if it's possible to hit this case).
2439         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2440         return false;
2441       }
2442       unsigned BaseEltSize = EltAsInt.getBitWidth();
2443       if (BigEndian)
2444         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2445       else
2446         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2447     }
2448     return true;
2449   }
2450   // Give up if the input isn't an int, float, or vector.  For example, we
2451   // reject "(v4i16)(intptr_t)&a".
2452   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2453   return false;
2454 }
2455 
2456 /// Perform the given integer operation, which is known to need at most BitWidth
2457 /// bits, and check for overflow in the original type (if that type was not an
2458 /// unsigned type).
2459 template<typename Operation>
2460 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2461                                  const APSInt &LHS, const APSInt &RHS,
2462                                  unsigned BitWidth, Operation Op,
2463                                  APSInt &Result) {
2464   if (LHS.isUnsigned()) {
2465     Result = Op(LHS, RHS);
2466     return true;
2467   }
2468 
2469   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2470   Result = Value.trunc(LHS.getBitWidth());
2471   if (Result.extend(BitWidth) != Value) {
2472     if (Info.checkingForUndefinedBehavior())
2473       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2474                                        diag::warn_integer_constant_overflow)
2475           << Result.toString(10) << E->getType();
2476     else
2477       return HandleOverflow(Info, E, Value, E->getType());
2478   }
2479   return true;
2480 }
2481 
2482 /// Perform the given binary integer operation.
2483 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2484                               BinaryOperatorKind Opcode, APSInt RHS,
2485                               APSInt &Result) {
2486   switch (Opcode) {
2487   default:
2488     Info.FFDiag(E);
2489     return false;
2490   case BO_Mul:
2491     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2492                                 std::multiplies<APSInt>(), Result);
2493   case BO_Add:
2494     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2495                                 std::plus<APSInt>(), Result);
2496   case BO_Sub:
2497     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2498                                 std::minus<APSInt>(), Result);
2499   case BO_And: Result = LHS & RHS; return true;
2500   case BO_Xor: Result = LHS ^ RHS; return true;
2501   case BO_Or:  Result = LHS | RHS; return true;
2502   case BO_Div:
2503   case BO_Rem:
2504     if (RHS == 0) {
2505       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2506       return false;
2507     }
2508     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2509     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2510     // this operation and gives the two's complement result.
2511     if (RHS.isNegative() && RHS.isAllOnesValue() &&
2512         LHS.isSigned() && LHS.isMinSignedValue())
2513       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2514                             E->getType());
2515     return true;
2516   case BO_Shl: {
2517     if (Info.getLangOpts().OpenCL)
2518       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2519       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2520                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2521                     RHS.isUnsigned());
2522     else if (RHS.isSigned() && RHS.isNegative()) {
2523       // During constant-folding, a negative shift is an opposite shift. Such
2524       // a shift is not a constant expression.
2525       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2526       RHS = -RHS;
2527       goto shift_right;
2528     }
2529   shift_left:
2530     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2531     // the shifted type.
2532     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2533     if (SA != RHS) {
2534       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2535         << RHS << E->getType() << LHS.getBitWidth();
2536     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus2a) {
2537       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2538       // operand, and must not overflow the corresponding unsigned type.
2539       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2540       // E1 x 2^E2 module 2^N.
2541       if (LHS.isNegative())
2542         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2543       else if (LHS.countLeadingZeros() < SA)
2544         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2545     }
2546     Result = LHS << SA;
2547     return true;
2548   }
2549   case BO_Shr: {
2550     if (Info.getLangOpts().OpenCL)
2551       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2552       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2553                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2554                     RHS.isUnsigned());
2555     else if (RHS.isSigned() && RHS.isNegative()) {
2556       // During constant-folding, a negative shift is an opposite shift. Such a
2557       // shift is not a constant expression.
2558       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2559       RHS = -RHS;
2560       goto shift_left;
2561     }
2562   shift_right:
2563     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2564     // shifted type.
2565     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2566     if (SA != RHS)
2567       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2568         << RHS << E->getType() << LHS.getBitWidth();
2569     Result = LHS >> SA;
2570     return true;
2571   }
2572 
2573   case BO_LT: Result = LHS < RHS; return true;
2574   case BO_GT: Result = LHS > RHS; return true;
2575   case BO_LE: Result = LHS <= RHS; return true;
2576   case BO_GE: Result = LHS >= RHS; return true;
2577   case BO_EQ: Result = LHS == RHS; return true;
2578   case BO_NE: Result = LHS != RHS; return true;
2579   case BO_Cmp:
2580     llvm_unreachable("BO_Cmp should be handled elsewhere");
2581   }
2582 }
2583 
2584 /// Perform the given binary floating-point operation, in-place, on LHS.
2585 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
2586                                   APFloat &LHS, BinaryOperatorKind Opcode,
2587                                   const APFloat &RHS) {
2588   switch (Opcode) {
2589   default:
2590     Info.FFDiag(E);
2591     return false;
2592   case BO_Mul:
2593     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
2594     break;
2595   case BO_Add:
2596     LHS.add(RHS, APFloat::rmNearestTiesToEven);
2597     break;
2598   case BO_Sub:
2599     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
2600     break;
2601   case BO_Div:
2602     // [expr.mul]p4:
2603     //   If the second operand of / or % is zero the behavior is undefined.
2604     if (RHS.isZero())
2605       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2606     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
2607     break;
2608   }
2609 
2610   // [expr.pre]p4:
2611   //   If during the evaluation of an expression, the result is not
2612   //   mathematically defined [...], the behavior is undefined.
2613   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2614   if (LHS.isNaN()) {
2615     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2616     return Info.noteUndefinedBehavior();
2617   }
2618   return true;
2619 }
2620 
2621 /// Cast an lvalue referring to a base subobject to a derived class, by
2622 /// truncating the lvalue's path to the given length.
2623 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
2624                                const RecordDecl *TruncatedType,
2625                                unsigned TruncatedElements) {
2626   SubobjectDesignator &D = Result.Designator;
2627 
2628   // Check we actually point to a derived class object.
2629   if (TruncatedElements == D.Entries.size())
2630     return true;
2631   assert(TruncatedElements >= D.MostDerivedPathLength &&
2632          "not casting to a derived class");
2633   if (!Result.checkSubobject(Info, E, CSK_Derived))
2634     return false;
2635 
2636   // Truncate the path to the subobject, and remove any derived-to-base offsets.
2637   const RecordDecl *RD = TruncatedType;
2638   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
2639     if (RD->isInvalidDecl()) return false;
2640     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2641     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
2642     if (isVirtualBaseClass(D.Entries[I]))
2643       Result.Offset -= Layout.getVBaseClassOffset(Base);
2644     else
2645       Result.Offset -= Layout.getBaseClassOffset(Base);
2646     RD = Base;
2647   }
2648   D.Entries.resize(TruncatedElements);
2649   return true;
2650 }
2651 
2652 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2653                                    const CXXRecordDecl *Derived,
2654                                    const CXXRecordDecl *Base,
2655                                    const ASTRecordLayout *RL = nullptr) {
2656   if (!RL) {
2657     if (Derived->isInvalidDecl()) return false;
2658     RL = &Info.Ctx.getASTRecordLayout(Derived);
2659   }
2660 
2661   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
2662   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
2663   return true;
2664 }
2665 
2666 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2667                              const CXXRecordDecl *DerivedDecl,
2668                              const CXXBaseSpecifier *Base) {
2669   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
2670 
2671   if (!Base->isVirtual())
2672     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
2673 
2674   SubobjectDesignator &D = Obj.Designator;
2675   if (D.Invalid)
2676     return false;
2677 
2678   // Extract most-derived object and corresponding type.
2679   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
2680   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
2681     return false;
2682 
2683   // Find the virtual base class.
2684   if (DerivedDecl->isInvalidDecl()) return false;
2685   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
2686   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
2687   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
2688   return true;
2689 }
2690 
2691 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
2692                                  QualType Type, LValue &Result) {
2693   for (CastExpr::path_const_iterator PathI = E->path_begin(),
2694                                      PathE = E->path_end();
2695        PathI != PathE; ++PathI) {
2696     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2697                           *PathI))
2698       return false;
2699     Type = (*PathI)->getType();
2700   }
2701   return true;
2702 }
2703 
2704 /// Cast an lvalue referring to a derived class to a known base subobject.
2705 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
2706                             const CXXRecordDecl *DerivedRD,
2707                             const CXXRecordDecl *BaseRD) {
2708   CXXBasePaths Paths(/*FindAmbiguities=*/false,
2709                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
2710   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
2711     llvm_unreachable("Class must be derived from the passed in base class!");
2712 
2713   for (CXXBasePathElement &Elem : Paths.front())
2714     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
2715       return false;
2716   return true;
2717 }
2718 
2719 /// Update LVal to refer to the given field, which must be a member of the type
2720 /// currently described by LVal.
2721 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2722                                const FieldDecl *FD,
2723                                const ASTRecordLayout *RL = nullptr) {
2724   if (!RL) {
2725     if (FD->getParent()->isInvalidDecl()) return false;
2726     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2727   }
2728 
2729   unsigned I = FD->getFieldIndex();
2730   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
2731   LVal.addDecl(Info, E, FD);
2732   return true;
2733 }
2734 
2735 /// Update LVal to refer to the given indirect field.
2736 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2737                                        LValue &LVal,
2738                                        const IndirectFieldDecl *IFD) {
2739   for (const auto *C : IFD->chain())
2740     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2741       return false;
2742   return true;
2743 }
2744 
2745 /// Get the size of the given type in char units.
2746 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2747                          QualType Type, CharUnits &Size) {
2748   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2749   // extension.
2750   if (Type->isVoidType() || Type->isFunctionType()) {
2751     Size = CharUnits::One();
2752     return true;
2753   }
2754 
2755   if (Type->isDependentType()) {
2756     Info.FFDiag(Loc);
2757     return false;
2758   }
2759 
2760   if (!Type->isConstantSizeType()) {
2761     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2762     // FIXME: Better diagnostic.
2763     Info.FFDiag(Loc);
2764     return false;
2765   }
2766 
2767   Size = Info.Ctx.getTypeSizeInChars(Type);
2768   return true;
2769 }
2770 
2771 /// Update a pointer value to model pointer arithmetic.
2772 /// \param Info - Information about the ongoing evaluation.
2773 /// \param E - The expression being evaluated, for diagnostic purposes.
2774 /// \param LVal - The pointer value to be updated.
2775 /// \param EltTy - The pointee type represented by LVal.
2776 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
2777 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2778                                         LValue &LVal, QualType EltTy,
2779                                         APSInt Adjustment) {
2780   CharUnits SizeOfPointee;
2781   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2782     return false;
2783 
2784   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
2785   return true;
2786 }
2787 
2788 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2789                                         LValue &LVal, QualType EltTy,
2790                                         int64_t Adjustment) {
2791   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
2792                                      APSInt::get(Adjustment));
2793 }
2794 
2795 /// Update an lvalue to refer to a component of a complex number.
2796 /// \param Info - Information about the ongoing evaluation.
2797 /// \param LVal - The lvalue to be updated.
2798 /// \param EltTy - The complex number's component type.
2799 /// \param Imag - False for the real component, true for the imaginary.
2800 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2801                                        LValue &LVal, QualType EltTy,
2802                                        bool Imag) {
2803   if (Imag) {
2804     CharUnits SizeOfComponent;
2805     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2806       return false;
2807     LVal.Offset += SizeOfComponent;
2808   }
2809   LVal.addComplex(Info, E, EltTy, Imag);
2810   return true;
2811 }
2812 
2813 /// Try to evaluate the initializer for a variable declaration.
2814 ///
2815 /// \param Info   Information about the ongoing evaluation.
2816 /// \param E      An expression to be used when printing diagnostics.
2817 /// \param VD     The variable whose initializer should be obtained.
2818 /// \param Frame  The frame in which the variable was created. Must be null
2819 ///               if this variable is not local to the evaluation.
2820 /// \param Result Filled in with a pointer to the value of the variable.
2821 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2822                                 const VarDecl *VD, CallStackFrame *Frame,
2823                                 APValue *&Result, const LValue *LVal) {
2824 
2825   // If this is a parameter to an active constexpr function call, perform
2826   // argument substitution.
2827   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2828     // Assume arguments of a potential constant expression are unknown
2829     // constant expressions.
2830     if (Info.checkingPotentialConstantExpression())
2831       return false;
2832     if (!Frame || !Frame->Arguments) {
2833       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2834       return false;
2835     }
2836     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2837     return true;
2838   }
2839 
2840   // If this is a local variable, dig out its value.
2841   if (Frame) {
2842     Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
2843                   : Frame->getCurrentTemporary(VD);
2844     if (!Result) {
2845       // Assume variables referenced within a lambda's call operator that were
2846       // not declared within the call operator are captures and during checking
2847       // of a potential constant expression, assume they are unknown constant
2848       // expressions.
2849       assert(isLambdaCallOperator(Frame->Callee) &&
2850              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
2851              "missing value for local variable");
2852       if (Info.checkingPotentialConstantExpression())
2853         return false;
2854       // FIXME: implement capture evaluation during constant expr evaluation.
2855       Info.FFDiag(E->getBeginLoc(),
2856                   diag::note_unimplemented_constexpr_lambda_feature_ast)
2857           << "captures not currently allowed";
2858       return false;
2859     }
2860     return true;
2861   }
2862 
2863   // Dig out the initializer, and use the declaration which it's attached to.
2864   const Expr *Init = VD->getAnyInitializer(VD);
2865   if (!Init || Init->isValueDependent()) {
2866     // If we're checking a potential constant expression, the variable could be
2867     // initialized later.
2868     if (!Info.checkingPotentialConstantExpression())
2869       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2870     return false;
2871   }
2872 
2873   // If we're currently evaluating the initializer of this declaration, use that
2874   // in-flight value.
2875   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2876     Result = Info.EvaluatingDeclValue;
2877     return true;
2878   }
2879 
2880   // Never evaluate the initializer of a weak variable. We can't be sure that
2881   // this is the definition which will be used.
2882   if (VD->isWeak()) {
2883     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2884     return false;
2885   }
2886 
2887   // Check that we can fold the initializer. In C++, we will have already done
2888   // this in the cases where it matters for conformance.
2889   SmallVector<PartialDiagnosticAt, 8> Notes;
2890   if (!VD->evaluateValue(Notes)) {
2891     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
2892               Notes.size() + 1) << VD;
2893     Info.Note(VD->getLocation(), diag::note_declared_at);
2894     Info.addNotes(Notes);
2895     return false;
2896   } else if (!VD->checkInitIsICE()) {
2897     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2898                  Notes.size() + 1) << VD;
2899     Info.Note(VD->getLocation(), diag::note_declared_at);
2900     Info.addNotes(Notes);
2901   }
2902 
2903   Result = VD->getEvaluatedValue();
2904   return true;
2905 }
2906 
2907 static bool IsConstNonVolatile(QualType T) {
2908   Qualifiers Quals = T.getQualifiers();
2909   return Quals.hasConst() && !Quals.hasVolatile();
2910 }
2911 
2912 /// Get the base index of the given base class within an APValue representing
2913 /// the given derived class.
2914 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2915                              const CXXRecordDecl *Base) {
2916   Base = Base->getCanonicalDecl();
2917   unsigned Index = 0;
2918   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2919          E = Derived->bases_end(); I != E; ++I, ++Index) {
2920     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2921       return Index;
2922   }
2923 
2924   llvm_unreachable("base class missing from derived class's bases list");
2925 }
2926 
2927 /// Extract the value of a character from a string literal.
2928 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2929                                             uint64_t Index) {
2930   assert(!isa<SourceLocExpr>(Lit) &&
2931          "SourceLocExpr should have already been converted to a StringLiteral");
2932 
2933   // FIXME: Support MakeStringConstant
2934   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
2935     std::string Str;
2936     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
2937     assert(Index <= Str.size() && "Index too large");
2938     return APSInt::getUnsigned(Str.c_str()[Index]);
2939   }
2940 
2941   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2942     Lit = PE->getFunctionName();
2943   const StringLiteral *S = cast<StringLiteral>(Lit);
2944   const ConstantArrayType *CAT =
2945       Info.Ctx.getAsConstantArrayType(S->getType());
2946   assert(CAT && "string literal isn't an array");
2947   QualType CharType = CAT->getElementType();
2948   assert(CharType->isIntegerType() && "unexpected character type");
2949 
2950   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2951                CharType->isUnsignedIntegerType());
2952   if (Index < S->getLength())
2953     Value = S->getCodeUnit(Index);
2954   return Value;
2955 }
2956 
2957 // Expand a string literal into an array of characters.
2958 //
2959 // FIXME: This is inefficient; we should probably introduce something similar
2960 // to the LLVM ConstantDataArray to make this cheaper.
2961 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
2962                                 APValue &Result,
2963                                 QualType AllocType = QualType()) {
2964   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
2965       AllocType.isNull() ? S->getType() : AllocType);
2966   assert(CAT && "string literal isn't an array");
2967   QualType CharType = CAT->getElementType();
2968   assert(CharType->isIntegerType() && "unexpected character type");
2969 
2970   unsigned Elts = CAT->getSize().getZExtValue();
2971   Result = APValue(APValue::UninitArray(),
2972                    std::min(S->getLength(), Elts), Elts);
2973   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2974                CharType->isUnsignedIntegerType());
2975   if (Result.hasArrayFiller())
2976     Result.getArrayFiller() = APValue(Value);
2977   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2978     Value = S->getCodeUnit(I);
2979     Result.getArrayInitializedElt(I) = APValue(Value);
2980   }
2981 }
2982 
2983 // Expand an array so that it has more than Index filled elements.
2984 static void expandArray(APValue &Array, unsigned Index) {
2985   unsigned Size = Array.getArraySize();
2986   assert(Index < Size);
2987 
2988   // Always at least double the number of elements for which we store a value.
2989   unsigned OldElts = Array.getArrayInitializedElts();
2990   unsigned NewElts = std::max(Index+1, OldElts * 2);
2991   NewElts = std::min(Size, std::max(NewElts, 8u));
2992 
2993   // Copy the data across.
2994   APValue NewValue(APValue::UninitArray(), NewElts, Size);
2995   for (unsigned I = 0; I != OldElts; ++I)
2996     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2997   for (unsigned I = OldElts; I != NewElts; ++I)
2998     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2999   if (NewValue.hasArrayFiller())
3000     NewValue.getArrayFiller() = Array.getArrayFiller();
3001   Array.swap(NewValue);
3002 }
3003 
3004 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3005 /// conversion. If it's of class type, we may assume that the copy operation
3006 /// is trivial. Note that this is never true for a union type with fields
3007 /// (because the copy always "reads" the active member) and always true for
3008 /// a non-class type.
3009 static bool isReadByLvalueToRvalueConversion(QualType T) {
3010   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3011   if (!RD || (RD->isUnion() && !RD->field_empty()))
3012     return true;
3013   if (RD->isEmpty())
3014     return false;
3015 
3016   for (auto *Field : RD->fields())
3017     if (isReadByLvalueToRvalueConversion(Field->getType()))
3018       return true;
3019 
3020   for (auto &BaseSpec : RD->bases())
3021     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3022       return true;
3023 
3024   return false;
3025 }
3026 
3027 /// Diagnose an attempt to read from any unreadable field within the specified
3028 /// type, which might be a class type.
3029 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3030                                   QualType T) {
3031   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3032   if (!RD)
3033     return false;
3034 
3035   if (!RD->hasMutableFields())
3036     return false;
3037 
3038   for (auto *Field : RD->fields()) {
3039     // If we're actually going to read this field in some way, then it can't
3040     // be mutable. If we're in a union, then assigning to a mutable field
3041     // (even an empty one) can change the active member, so that's not OK.
3042     // FIXME: Add core issue number for the union case.
3043     if (Field->isMutable() &&
3044         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3045       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3046       Info.Note(Field->getLocation(), diag::note_declared_at);
3047       return true;
3048     }
3049 
3050     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3051       return true;
3052   }
3053 
3054   for (auto &BaseSpec : RD->bases())
3055     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3056       return true;
3057 
3058   // All mutable fields were empty, and thus not actually read.
3059   return false;
3060 }
3061 
3062 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3063                                         APValue::LValueBase Base,
3064                                         bool MutableSubobject = false) {
3065   // A temporary we created.
3066   if (Base.getCallIndex())
3067     return true;
3068 
3069   auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
3070   if (!Evaluating)
3071     return false;
3072 
3073   auto *BaseD = Base.dyn_cast<const ValueDecl*>();
3074 
3075   switch (Info.IsEvaluatingDecl) {
3076   case EvalInfo::EvaluatingDeclKind::None:
3077     return false;
3078 
3079   case EvalInfo::EvaluatingDeclKind::Ctor:
3080     // The variable whose initializer we're evaluating.
3081     if (BaseD)
3082       return declaresSameEntity(Evaluating, BaseD);
3083 
3084     // A temporary lifetime-extended by the variable whose initializer we're
3085     // evaluating.
3086     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3087       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3088         return declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating);
3089     return false;
3090 
3091   case EvalInfo::EvaluatingDeclKind::Dtor:
3092     // C++2a [expr.const]p6:
3093     //   [during constant destruction] the lifetime of a and its non-mutable
3094     //   subobjects (but not its mutable subobjects) [are] considered to start
3095     //   within e.
3096     //
3097     // FIXME: We can meaningfully extend this to cover non-const objects, but
3098     // we will need special handling: we should be able to access only
3099     // subobjects of such objects that are themselves declared const.
3100     if (!BaseD ||
3101         !(BaseD->getType().isConstQualified() ||
3102           BaseD->getType()->isReferenceType()) ||
3103         MutableSubobject)
3104       return false;
3105     return declaresSameEntity(Evaluating, BaseD);
3106   }
3107 
3108   llvm_unreachable("unknown evaluating decl kind");
3109 }
3110 
3111 namespace {
3112 /// A handle to a complete object (an object that is not a subobject of
3113 /// another object).
3114 struct CompleteObject {
3115   /// The identity of the object.
3116   APValue::LValueBase Base;
3117   /// The value of the complete object.
3118   APValue *Value;
3119   /// The type of the complete object.
3120   QualType Type;
3121 
3122   CompleteObject() : Value(nullptr) {}
3123   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3124       : Base(Base), Value(Value), Type(Type) {}
3125 
3126   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3127     // In C++14 onwards, it is permitted to read a mutable member whose
3128     // lifetime began within the evaluation.
3129     // FIXME: Should we also allow this in C++11?
3130     if (!Info.getLangOpts().CPlusPlus14)
3131       return false;
3132     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3133   }
3134 
3135   explicit operator bool() const { return !Type.isNull(); }
3136 };
3137 } // end anonymous namespace
3138 
3139 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3140                                  bool IsMutable = false) {
3141   // C++ [basic.type.qualifier]p1:
3142   // - A const object is an object of type const T or a non-mutable subobject
3143   //   of a const object.
3144   if (ObjType.isConstQualified() && !IsMutable)
3145     SubobjType.addConst();
3146   // - A volatile object is an object of type const T or a subobject of a
3147   //   volatile object.
3148   if (ObjType.isVolatileQualified())
3149     SubobjType.addVolatile();
3150   return SubobjType;
3151 }
3152 
3153 /// Find the designated sub-object of an rvalue.
3154 template<typename SubobjectHandler>
3155 typename SubobjectHandler::result_type
3156 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3157               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3158   if (Sub.Invalid)
3159     // A diagnostic will have already been produced.
3160     return handler.failed();
3161   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3162     if (Info.getLangOpts().CPlusPlus11)
3163       Info.FFDiag(E, Sub.isOnePastTheEnd()
3164                          ? diag::note_constexpr_access_past_end
3165                          : diag::note_constexpr_access_unsized_array)
3166           << handler.AccessKind;
3167     else
3168       Info.FFDiag(E);
3169     return handler.failed();
3170   }
3171 
3172   APValue *O = Obj.Value;
3173   QualType ObjType = Obj.Type;
3174   const FieldDecl *LastField = nullptr;
3175   const FieldDecl *VolatileField = nullptr;
3176 
3177   // Walk the designator's path to find the subobject.
3178   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3179     // Reading an indeterminate value is undefined, but assigning over one is OK.
3180     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3181         (O->isIndeterminate() && handler.AccessKind != AK_Construct &&
3182          handler.AccessKind != AK_Assign &&
3183          handler.AccessKind != AK_ReadObjectRepresentation)) {
3184       if (!Info.checkingPotentialConstantExpression())
3185         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3186             << handler.AccessKind << O->isIndeterminate();
3187       return handler.failed();
3188     }
3189 
3190     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3191     //    const and volatile semantics are not applied on an object under
3192     //    {con,de}struction.
3193     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3194         ObjType->isRecordType() &&
3195         Info.isEvaluatingCtorDtor(
3196             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3197                                          Sub.Entries.begin() + I)) !=
3198                           ConstructionPhase::None) {
3199       ObjType = Info.Ctx.getCanonicalType(ObjType);
3200       ObjType.removeLocalConst();
3201       ObjType.removeLocalVolatile();
3202     }
3203 
3204     // If this is our last pass, check that the final object type is OK.
3205     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3206       // Accesses to volatile objects are prohibited.
3207       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3208         if (Info.getLangOpts().CPlusPlus) {
3209           int DiagKind;
3210           SourceLocation Loc;
3211           const NamedDecl *Decl = nullptr;
3212           if (VolatileField) {
3213             DiagKind = 2;
3214             Loc = VolatileField->getLocation();
3215             Decl = VolatileField;
3216           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3217             DiagKind = 1;
3218             Loc = VD->getLocation();
3219             Decl = VD;
3220           } else {
3221             DiagKind = 0;
3222             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3223               Loc = E->getExprLoc();
3224           }
3225           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3226               << handler.AccessKind << DiagKind << Decl;
3227           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3228         } else {
3229           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3230         }
3231         return handler.failed();
3232       }
3233 
3234       // If we are reading an object of class type, there may still be more
3235       // things we need to check: if there are any mutable subobjects, we
3236       // cannot perform this read. (This only happens when performing a trivial
3237       // copy or assignment.)
3238       if (ObjType->isRecordType() &&
3239           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3240           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3241         return handler.failed();
3242     }
3243 
3244     if (I == N) {
3245       if (!handler.found(*O, ObjType))
3246         return false;
3247 
3248       // If we modified a bit-field, truncate it to the right width.
3249       if (isModification(handler.AccessKind) &&
3250           LastField && LastField->isBitField() &&
3251           !truncateBitfieldValue(Info, E, *O, LastField))
3252         return false;
3253 
3254       return true;
3255     }
3256 
3257     LastField = nullptr;
3258     if (ObjType->isArrayType()) {
3259       // Next subobject is an array element.
3260       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3261       assert(CAT && "vla in literal type?");
3262       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3263       if (CAT->getSize().ule(Index)) {
3264         // Note, it should not be possible to form a pointer with a valid
3265         // designator which points more than one past the end of the array.
3266         if (Info.getLangOpts().CPlusPlus11)
3267           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3268             << handler.AccessKind;
3269         else
3270           Info.FFDiag(E);
3271         return handler.failed();
3272       }
3273 
3274       ObjType = CAT->getElementType();
3275 
3276       if (O->getArrayInitializedElts() > Index)
3277         O = &O->getArrayInitializedElt(Index);
3278       else if (!isRead(handler.AccessKind)) {
3279         expandArray(*O, Index);
3280         O = &O->getArrayInitializedElt(Index);
3281       } else
3282         O = &O->getArrayFiller();
3283     } else if (ObjType->isAnyComplexType()) {
3284       // Next subobject is a complex number.
3285       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3286       if (Index > 1) {
3287         if (Info.getLangOpts().CPlusPlus11)
3288           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3289             << handler.AccessKind;
3290         else
3291           Info.FFDiag(E);
3292         return handler.failed();
3293       }
3294 
3295       ObjType = getSubobjectType(
3296           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3297 
3298       assert(I == N - 1 && "extracting subobject of scalar?");
3299       if (O->isComplexInt()) {
3300         return handler.found(Index ? O->getComplexIntImag()
3301                                    : O->getComplexIntReal(), ObjType);
3302       } else {
3303         assert(O->isComplexFloat());
3304         return handler.found(Index ? O->getComplexFloatImag()
3305                                    : O->getComplexFloatReal(), ObjType);
3306       }
3307     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3308       if (Field->isMutable() &&
3309           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3310         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3311           << handler.AccessKind << Field;
3312         Info.Note(Field->getLocation(), diag::note_declared_at);
3313         return handler.failed();
3314       }
3315 
3316       // Next subobject is a class, struct or union field.
3317       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3318       if (RD->isUnion()) {
3319         const FieldDecl *UnionField = O->getUnionField();
3320         if (!UnionField ||
3321             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3322           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3323             // Placement new onto an inactive union member makes it active.
3324             O->setUnion(Field, APValue());
3325           } else {
3326             // FIXME: If O->getUnionValue() is absent, report that there's no
3327             // active union member rather than reporting the prior active union
3328             // member. We'll need to fix nullptr_t to not use APValue() as its
3329             // representation first.
3330             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3331                 << handler.AccessKind << Field << !UnionField << UnionField;
3332             return handler.failed();
3333           }
3334         }
3335         O = &O->getUnionValue();
3336       } else
3337         O = &O->getStructField(Field->getFieldIndex());
3338 
3339       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3340       LastField = Field;
3341       if (Field->getType().isVolatileQualified())
3342         VolatileField = Field;
3343     } else {
3344       // Next subobject is a base class.
3345       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3346       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3347       O = &O->getStructBase(getBaseIndex(Derived, Base));
3348 
3349       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3350     }
3351   }
3352 }
3353 
3354 namespace {
3355 struct ExtractSubobjectHandler {
3356   EvalInfo &Info;
3357   const Expr *E;
3358   APValue &Result;
3359   const AccessKinds AccessKind;
3360 
3361   typedef bool result_type;
3362   bool failed() { return false; }
3363   bool found(APValue &Subobj, QualType SubobjType) {
3364     Result = Subobj;
3365     if (AccessKind == AK_ReadObjectRepresentation)
3366       return true;
3367     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3368   }
3369   bool found(APSInt &Value, QualType SubobjType) {
3370     Result = APValue(Value);
3371     return true;
3372   }
3373   bool found(APFloat &Value, QualType SubobjType) {
3374     Result = APValue(Value);
3375     return true;
3376   }
3377 };
3378 } // end anonymous namespace
3379 
3380 /// Extract the designated sub-object of an rvalue.
3381 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3382                              const CompleteObject &Obj,
3383                              const SubobjectDesignator &Sub, APValue &Result,
3384                              AccessKinds AK = AK_Read) {
3385   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3386   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3387   return findSubobject(Info, E, Obj, Sub, Handler);
3388 }
3389 
3390 namespace {
3391 struct ModifySubobjectHandler {
3392   EvalInfo &Info;
3393   APValue &NewVal;
3394   const Expr *E;
3395 
3396   typedef bool result_type;
3397   static const AccessKinds AccessKind = AK_Assign;
3398 
3399   bool checkConst(QualType QT) {
3400     // Assigning to a const object has undefined behavior.
3401     if (QT.isConstQualified()) {
3402       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3403       return false;
3404     }
3405     return true;
3406   }
3407 
3408   bool failed() { return false; }
3409   bool found(APValue &Subobj, QualType SubobjType) {
3410     if (!checkConst(SubobjType))
3411       return false;
3412     // We've been given ownership of NewVal, so just swap it in.
3413     Subobj.swap(NewVal);
3414     return true;
3415   }
3416   bool found(APSInt &Value, QualType SubobjType) {
3417     if (!checkConst(SubobjType))
3418       return false;
3419     if (!NewVal.isInt()) {
3420       // Maybe trying to write a cast pointer value into a complex?
3421       Info.FFDiag(E);
3422       return false;
3423     }
3424     Value = NewVal.getInt();
3425     return true;
3426   }
3427   bool found(APFloat &Value, QualType SubobjType) {
3428     if (!checkConst(SubobjType))
3429       return false;
3430     Value = NewVal.getFloat();
3431     return true;
3432   }
3433 };
3434 } // end anonymous namespace
3435 
3436 const AccessKinds ModifySubobjectHandler::AccessKind;
3437 
3438 /// Update the designated sub-object of an rvalue to the given value.
3439 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3440                             const CompleteObject &Obj,
3441                             const SubobjectDesignator &Sub,
3442                             APValue &NewVal) {
3443   ModifySubobjectHandler Handler = { Info, NewVal, E };
3444   return findSubobject(Info, E, Obj, Sub, Handler);
3445 }
3446 
3447 /// Find the position where two subobject designators diverge, or equivalently
3448 /// the length of the common initial subsequence.
3449 static unsigned FindDesignatorMismatch(QualType ObjType,
3450                                        const SubobjectDesignator &A,
3451                                        const SubobjectDesignator &B,
3452                                        bool &WasArrayIndex) {
3453   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3454   for (/**/; I != N; ++I) {
3455     if (!ObjType.isNull() &&
3456         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3457       // Next subobject is an array element.
3458       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3459         WasArrayIndex = true;
3460         return I;
3461       }
3462       if (ObjType->isAnyComplexType())
3463         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3464       else
3465         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3466     } else {
3467       if (A.Entries[I].getAsBaseOrMember() !=
3468           B.Entries[I].getAsBaseOrMember()) {
3469         WasArrayIndex = false;
3470         return I;
3471       }
3472       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3473         // Next subobject is a field.
3474         ObjType = FD->getType();
3475       else
3476         // Next subobject is a base class.
3477         ObjType = QualType();
3478     }
3479   }
3480   WasArrayIndex = false;
3481   return I;
3482 }
3483 
3484 /// Determine whether the given subobject designators refer to elements of the
3485 /// same array object.
3486 static bool AreElementsOfSameArray(QualType ObjType,
3487                                    const SubobjectDesignator &A,
3488                                    const SubobjectDesignator &B) {
3489   if (A.Entries.size() != B.Entries.size())
3490     return false;
3491 
3492   bool IsArray = A.MostDerivedIsArrayElement;
3493   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3494     // A is a subobject of the array element.
3495     return false;
3496 
3497   // If A (and B) designates an array element, the last entry will be the array
3498   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3499   // of length 1' case, and the entire path must match.
3500   bool WasArrayIndex;
3501   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3502   return CommonLength >= A.Entries.size() - IsArray;
3503 }
3504 
3505 /// Find the complete object to which an LValue refers.
3506 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3507                                          AccessKinds AK, const LValue &LVal,
3508                                          QualType LValType) {
3509   if (LVal.InvalidBase) {
3510     Info.FFDiag(E);
3511     return CompleteObject();
3512   }
3513 
3514   if (!LVal.Base) {
3515     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3516     return CompleteObject();
3517   }
3518 
3519   CallStackFrame *Frame = nullptr;
3520   unsigned Depth = 0;
3521   if (LVal.getLValueCallIndex()) {
3522     std::tie(Frame, Depth) =
3523         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3524     if (!Frame) {
3525       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3526         << AK << LVal.Base.is<const ValueDecl*>();
3527       NoteLValueLocation(Info, LVal.Base);
3528       return CompleteObject();
3529     }
3530   }
3531 
3532   bool IsAccess = isAnyAccess(AK);
3533 
3534   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3535   // is not a constant expression (even if the object is non-volatile). We also
3536   // apply this rule to C++98, in order to conform to the expected 'volatile'
3537   // semantics.
3538   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3539     if (Info.getLangOpts().CPlusPlus)
3540       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3541         << AK << LValType;
3542     else
3543       Info.FFDiag(E);
3544     return CompleteObject();
3545   }
3546 
3547   // Compute value storage location and type of base object.
3548   APValue *BaseVal = nullptr;
3549   QualType BaseType = getType(LVal.Base);
3550 
3551   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
3552     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
3553     // In C++11, constexpr, non-volatile variables initialized with constant
3554     // expressions are constant expressions too. Inside constexpr functions,
3555     // parameters are constant expressions even if they're non-const.
3556     // In C++1y, objects local to a constant expression (those with a Frame) are
3557     // both readable and writable inside constant expressions.
3558     // In C, such things can also be folded, although they are not ICEs.
3559     const VarDecl *VD = dyn_cast<VarDecl>(D);
3560     if (VD) {
3561       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
3562         VD = VDef;
3563     }
3564     if (!VD || VD->isInvalidDecl()) {
3565       Info.FFDiag(E);
3566       return CompleteObject();
3567     }
3568 
3569     // Unless we're looking at a local variable or argument in a constexpr call,
3570     // the variable we're reading must be const.
3571     if (!Frame) {
3572       if (Info.getLangOpts().CPlusPlus14 &&
3573           lifetimeStartedInEvaluation(Info, LVal.Base)) {
3574         // OK, we can read and modify an object if we're in the process of
3575         // evaluating its initializer, because its lifetime began in this
3576         // evaluation.
3577       } else if (isModification(AK)) {
3578         // All the remaining cases do not permit modification of the object.
3579         Info.FFDiag(E, diag::note_constexpr_modify_global);
3580         return CompleteObject();
3581       } else if (VD->isConstexpr()) {
3582         // OK, we can read this variable.
3583       } else if (BaseType->isIntegralOrEnumerationType()) {
3584         // In OpenCL if a variable is in constant address space it is a const
3585         // value.
3586         if (!(BaseType.isConstQualified() ||
3587               (Info.getLangOpts().OpenCL &&
3588                BaseType.getAddressSpace() == LangAS::opencl_constant))) {
3589           if (!IsAccess)
3590             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3591           if (Info.getLangOpts().CPlusPlus) {
3592             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
3593             Info.Note(VD->getLocation(), diag::note_declared_at);
3594           } else {
3595             Info.FFDiag(E);
3596           }
3597           return CompleteObject();
3598         }
3599       } else if (!IsAccess) {
3600         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3601       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
3602         // We support folding of const floating-point types, in order to make
3603         // static const data members of such types (supported as an extension)
3604         // more useful.
3605         if (Info.getLangOpts().CPlusPlus11) {
3606           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3607           Info.Note(VD->getLocation(), diag::note_declared_at);
3608         } else {
3609           Info.CCEDiag(E);
3610         }
3611       } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) {
3612         Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD;
3613         // Keep evaluating to see what we can do.
3614       } else {
3615         // FIXME: Allow folding of values of any literal type in all languages.
3616         if (Info.checkingPotentialConstantExpression() &&
3617             VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
3618           // The definition of this variable could be constexpr. We can't
3619           // access it right now, but may be able to in future.
3620         } else if (Info.getLangOpts().CPlusPlus11) {
3621           Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3622           Info.Note(VD->getLocation(), diag::note_declared_at);
3623         } else {
3624           Info.FFDiag(E);
3625         }
3626         return CompleteObject();
3627       }
3628     }
3629 
3630     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
3631       return CompleteObject();
3632   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
3633     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
3634     if (!Alloc) {
3635       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
3636       return CompleteObject();
3637     }
3638     return CompleteObject(LVal.Base, &(*Alloc)->Value,
3639                           LVal.Base.getDynamicAllocType());
3640   } else {
3641     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3642 
3643     if (!Frame) {
3644       if (const MaterializeTemporaryExpr *MTE =
3645               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
3646         assert(MTE->getStorageDuration() == SD_Static &&
3647                "should have a frame for a non-global materialized temporary");
3648 
3649         // Per C++1y [expr.const]p2:
3650         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
3651         //   - a [...] glvalue of integral or enumeration type that refers to
3652         //     a non-volatile const object [...]
3653         //   [...]
3654         //   - a [...] glvalue of literal type that refers to a non-volatile
3655         //     object whose lifetime began within the evaluation of e.
3656         //
3657         // C++11 misses the 'began within the evaluation of e' check and
3658         // instead allows all temporaries, including things like:
3659         //   int &&r = 1;
3660         //   int x = ++r;
3661         //   constexpr int k = r;
3662         // Therefore we use the C++14 rules in C++11 too.
3663         //
3664         // Note that temporaries whose lifetimes began while evaluating a
3665         // variable's constructor are not usable while evaluating the
3666         // corresponding destructor, not even if they're of const-qualified
3667         // types.
3668         if (!(BaseType.isConstQualified() &&
3669               BaseType->isIntegralOrEnumerationType()) &&
3670             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
3671           if (!IsAccess)
3672             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3673           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
3674           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
3675           return CompleteObject();
3676         }
3677 
3678         BaseVal = MTE->getOrCreateValue(false);
3679         assert(BaseVal && "got reference to unevaluated temporary");
3680       } else {
3681         if (!IsAccess)
3682           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3683         APValue Val;
3684         LVal.moveInto(Val);
3685         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
3686             << AK
3687             << Val.getAsString(Info.Ctx,
3688                                Info.Ctx.getLValueReferenceType(LValType));
3689         NoteLValueLocation(Info, LVal.Base);
3690         return CompleteObject();
3691       }
3692     } else {
3693       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
3694       assert(BaseVal && "missing value for temporary");
3695     }
3696   }
3697 
3698   // In C++14, we can't safely access any mutable state when we might be
3699   // evaluating after an unmodeled side effect.
3700   //
3701   // FIXME: Not all local state is mutable. Allow local constant subobjects
3702   // to be read here (but take care with 'mutable' fields).
3703   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
3704        Info.EvalStatus.HasSideEffects) ||
3705       (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth))
3706     return CompleteObject();
3707 
3708   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
3709 }
3710 
3711 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
3712 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
3713 /// glvalue referred to by an entity of reference type.
3714 ///
3715 /// \param Info - Information about the ongoing evaluation.
3716 /// \param Conv - The expression for which we are performing the conversion.
3717 ///               Used for diagnostics.
3718 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
3719 ///               case of a non-class type).
3720 /// \param LVal - The glvalue on which we are attempting to perform this action.
3721 /// \param RVal - The produced value will be placed here.
3722 /// \param WantObjectRepresentation - If true, we're looking for the object
3723 ///               representation rather than the value, and in particular,
3724 ///               there is no requirement that the result be fully initialized.
3725 static bool
3726 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
3727                                const LValue &LVal, APValue &RVal,
3728                                bool WantObjectRepresentation = false) {
3729   if (LVal.Designator.Invalid)
3730     return false;
3731 
3732   // Check for special cases where there is no existing APValue to look at.
3733   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3734 
3735   AccessKinds AK =
3736       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
3737 
3738   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
3739     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
3740       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
3741       // initializer until now for such expressions. Such an expression can't be
3742       // an ICE in C, so this only matters for fold.
3743       if (Type.isVolatileQualified()) {
3744         Info.FFDiag(Conv);
3745         return false;
3746       }
3747       APValue Lit;
3748       if (!Evaluate(Lit, Info, CLE->getInitializer()))
3749         return false;
3750       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
3751       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
3752     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
3753       // Special-case character extraction so we don't have to construct an
3754       // APValue for the whole string.
3755       assert(LVal.Designator.Entries.size() <= 1 &&
3756              "Can only read characters from string literals");
3757       if (LVal.Designator.Entries.empty()) {
3758         // Fail for now for LValue to RValue conversion of an array.
3759         // (This shouldn't show up in C/C++, but it could be triggered by a
3760         // weird EvaluateAsRValue call from a tool.)
3761         Info.FFDiag(Conv);
3762         return false;
3763       }
3764       if (LVal.Designator.isOnePastTheEnd()) {
3765         if (Info.getLangOpts().CPlusPlus11)
3766           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
3767         else
3768           Info.FFDiag(Conv);
3769         return false;
3770       }
3771       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
3772       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
3773       return true;
3774     }
3775   }
3776 
3777   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
3778   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
3779 }
3780 
3781 /// Perform an assignment of Val to LVal. Takes ownership of Val.
3782 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
3783                              QualType LValType, APValue &Val) {
3784   if (LVal.Designator.Invalid)
3785     return false;
3786 
3787   if (!Info.getLangOpts().CPlusPlus14) {
3788     Info.FFDiag(E);
3789     return false;
3790   }
3791 
3792   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3793   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
3794 }
3795 
3796 namespace {
3797 struct CompoundAssignSubobjectHandler {
3798   EvalInfo &Info;
3799   const Expr *E;
3800   QualType PromotedLHSType;
3801   BinaryOperatorKind Opcode;
3802   const APValue &RHS;
3803 
3804   static const AccessKinds AccessKind = AK_Assign;
3805 
3806   typedef bool result_type;
3807 
3808   bool checkConst(QualType QT) {
3809     // Assigning to a const object has undefined behavior.
3810     if (QT.isConstQualified()) {
3811       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3812       return false;
3813     }
3814     return true;
3815   }
3816 
3817   bool failed() { return false; }
3818   bool found(APValue &Subobj, QualType SubobjType) {
3819     switch (Subobj.getKind()) {
3820     case APValue::Int:
3821       return found(Subobj.getInt(), SubobjType);
3822     case APValue::Float:
3823       return found(Subobj.getFloat(), SubobjType);
3824     case APValue::ComplexInt:
3825     case APValue::ComplexFloat:
3826       // FIXME: Implement complex compound assignment.
3827       Info.FFDiag(E);
3828       return false;
3829     case APValue::LValue:
3830       return foundPointer(Subobj, SubobjType);
3831     default:
3832       // FIXME: can this happen?
3833       Info.FFDiag(E);
3834       return false;
3835     }
3836   }
3837   bool found(APSInt &Value, QualType SubobjType) {
3838     if (!checkConst(SubobjType))
3839       return false;
3840 
3841     if (!SubobjType->isIntegerType()) {
3842       // We don't support compound assignment on integer-cast-to-pointer
3843       // values.
3844       Info.FFDiag(E);
3845       return false;
3846     }
3847 
3848     if (RHS.isInt()) {
3849       APSInt LHS =
3850           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
3851       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
3852         return false;
3853       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
3854       return true;
3855     } else if (RHS.isFloat()) {
3856       APFloat FValue(0.0);
3857       return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType,
3858                                   FValue) &&
3859              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
3860              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
3861                                   Value);
3862     }
3863 
3864     Info.FFDiag(E);
3865     return false;
3866   }
3867   bool found(APFloat &Value, QualType SubobjType) {
3868     return checkConst(SubobjType) &&
3869            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
3870                                   Value) &&
3871            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
3872            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
3873   }
3874   bool foundPointer(APValue &Subobj, QualType SubobjType) {
3875     if (!checkConst(SubobjType))
3876       return false;
3877 
3878     QualType PointeeType;
3879     if (const PointerType *PT = SubobjType->getAs<PointerType>())
3880       PointeeType = PT->getPointeeType();
3881 
3882     if (PointeeType.isNull() || !RHS.isInt() ||
3883         (Opcode != BO_Add && Opcode != BO_Sub)) {
3884       Info.FFDiag(E);
3885       return false;
3886     }
3887 
3888     APSInt Offset = RHS.getInt();
3889     if (Opcode == BO_Sub)
3890       negateAsSigned(Offset);
3891 
3892     LValue LVal;
3893     LVal.setFrom(Info.Ctx, Subobj);
3894     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
3895       return false;
3896     LVal.moveInto(Subobj);
3897     return true;
3898   }
3899 };
3900 } // end anonymous namespace
3901 
3902 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
3903 
3904 /// Perform a compound assignment of LVal <op>= RVal.
3905 static bool handleCompoundAssignment(
3906     EvalInfo &Info, const Expr *E,
3907     const LValue &LVal, QualType LValType, QualType PromotedLValType,
3908     BinaryOperatorKind Opcode, const APValue &RVal) {
3909   if (LVal.Designator.Invalid)
3910     return false;
3911 
3912   if (!Info.getLangOpts().CPlusPlus14) {
3913     Info.FFDiag(E);
3914     return false;
3915   }
3916 
3917   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3918   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
3919                                              RVal };
3920   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3921 }
3922 
3923 namespace {
3924 struct IncDecSubobjectHandler {
3925   EvalInfo &Info;
3926   const UnaryOperator *E;
3927   AccessKinds AccessKind;
3928   APValue *Old;
3929 
3930   typedef bool result_type;
3931 
3932   bool checkConst(QualType QT) {
3933     // Assigning to a const object has undefined behavior.
3934     if (QT.isConstQualified()) {
3935       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3936       return false;
3937     }
3938     return true;
3939   }
3940 
3941   bool failed() { return false; }
3942   bool found(APValue &Subobj, QualType SubobjType) {
3943     // Stash the old value. Also clear Old, so we don't clobber it later
3944     // if we're post-incrementing a complex.
3945     if (Old) {
3946       *Old = Subobj;
3947       Old = nullptr;
3948     }
3949 
3950     switch (Subobj.getKind()) {
3951     case APValue::Int:
3952       return found(Subobj.getInt(), SubobjType);
3953     case APValue::Float:
3954       return found(Subobj.getFloat(), SubobjType);
3955     case APValue::ComplexInt:
3956       return found(Subobj.getComplexIntReal(),
3957                    SubobjType->castAs<ComplexType>()->getElementType()
3958                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3959     case APValue::ComplexFloat:
3960       return found(Subobj.getComplexFloatReal(),
3961                    SubobjType->castAs<ComplexType>()->getElementType()
3962                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3963     case APValue::LValue:
3964       return foundPointer(Subobj, SubobjType);
3965     default:
3966       // FIXME: can this happen?
3967       Info.FFDiag(E);
3968       return false;
3969     }
3970   }
3971   bool found(APSInt &Value, QualType SubobjType) {
3972     if (!checkConst(SubobjType))
3973       return false;
3974 
3975     if (!SubobjType->isIntegerType()) {
3976       // We don't support increment / decrement on integer-cast-to-pointer
3977       // values.
3978       Info.FFDiag(E);
3979       return false;
3980     }
3981 
3982     if (Old) *Old = APValue(Value);
3983 
3984     // bool arithmetic promotes to int, and the conversion back to bool
3985     // doesn't reduce mod 2^n, so special-case it.
3986     if (SubobjType->isBooleanType()) {
3987       if (AccessKind == AK_Increment)
3988         Value = 1;
3989       else
3990         Value = !Value;
3991       return true;
3992     }
3993 
3994     bool WasNegative = Value.isNegative();
3995     if (AccessKind == AK_Increment) {
3996       ++Value;
3997 
3998       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
3999         APSInt ActualValue(Value, /*IsUnsigned*/true);
4000         return HandleOverflow(Info, E, ActualValue, SubobjType);
4001       }
4002     } else {
4003       --Value;
4004 
4005       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4006         unsigned BitWidth = Value.getBitWidth();
4007         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4008         ActualValue.setBit(BitWidth);
4009         return HandleOverflow(Info, E, ActualValue, SubobjType);
4010       }
4011     }
4012     return true;
4013   }
4014   bool found(APFloat &Value, QualType SubobjType) {
4015     if (!checkConst(SubobjType))
4016       return false;
4017 
4018     if (Old) *Old = APValue(Value);
4019 
4020     APFloat One(Value.getSemantics(), 1);
4021     if (AccessKind == AK_Increment)
4022       Value.add(One, APFloat::rmNearestTiesToEven);
4023     else
4024       Value.subtract(One, APFloat::rmNearestTiesToEven);
4025     return true;
4026   }
4027   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4028     if (!checkConst(SubobjType))
4029       return false;
4030 
4031     QualType PointeeType;
4032     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4033       PointeeType = PT->getPointeeType();
4034     else {
4035       Info.FFDiag(E);
4036       return false;
4037     }
4038 
4039     LValue LVal;
4040     LVal.setFrom(Info.Ctx, Subobj);
4041     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4042                                      AccessKind == AK_Increment ? 1 : -1))
4043       return false;
4044     LVal.moveInto(Subobj);
4045     return true;
4046   }
4047 };
4048 } // end anonymous namespace
4049 
4050 /// Perform an increment or decrement on LVal.
4051 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4052                          QualType LValType, bool IsIncrement, APValue *Old) {
4053   if (LVal.Designator.Invalid)
4054     return false;
4055 
4056   if (!Info.getLangOpts().CPlusPlus14) {
4057     Info.FFDiag(E);
4058     return false;
4059   }
4060 
4061   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4062   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4063   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4064   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4065 }
4066 
4067 /// Build an lvalue for the object argument of a member function call.
4068 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4069                                    LValue &This) {
4070   if (Object->getType()->isPointerType() && Object->isRValue())
4071     return EvaluatePointer(Object, This, Info);
4072 
4073   if (Object->isGLValue())
4074     return EvaluateLValue(Object, This, Info);
4075 
4076   if (Object->getType()->isLiteralType(Info.Ctx))
4077     return EvaluateTemporary(Object, This, Info);
4078 
4079   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4080   return false;
4081 }
4082 
4083 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4084 /// lvalue referring to the result.
4085 ///
4086 /// \param Info - Information about the ongoing evaluation.
4087 /// \param LV - An lvalue referring to the base of the member pointer.
4088 /// \param RHS - The member pointer expression.
4089 /// \param IncludeMember - Specifies whether the member itself is included in
4090 ///        the resulting LValue subobject designator. This is not possible when
4091 ///        creating a bound member function.
4092 /// \return The field or method declaration to which the member pointer refers,
4093 ///         or 0 if evaluation fails.
4094 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4095                                                   QualType LVType,
4096                                                   LValue &LV,
4097                                                   const Expr *RHS,
4098                                                   bool IncludeMember = true) {
4099   MemberPtr MemPtr;
4100   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4101     return nullptr;
4102 
4103   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4104   // member value, the behavior is undefined.
4105   if (!MemPtr.getDecl()) {
4106     // FIXME: Specific diagnostic.
4107     Info.FFDiag(RHS);
4108     return nullptr;
4109   }
4110 
4111   if (MemPtr.isDerivedMember()) {
4112     // This is a member of some derived class. Truncate LV appropriately.
4113     // The end of the derived-to-base path for the base object must match the
4114     // derived-to-base path for the member pointer.
4115     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4116         LV.Designator.Entries.size()) {
4117       Info.FFDiag(RHS);
4118       return nullptr;
4119     }
4120     unsigned PathLengthToMember =
4121         LV.Designator.Entries.size() - MemPtr.Path.size();
4122     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4123       const CXXRecordDecl *LVDecl = getAsBaseClass(
4124           LV.Designator.Entries[PathLengthToMember + I]);
4125       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4126       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4127         Info.FFDiag(RHS);
4128         return nullptr;
4129       }
4130     }
4131 
4132     // Truncate the lvalue to the appropriate derived class.
4133     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4134                             PathLengthToMember))
4135       return nullptr;
4136   } else if (!MemPtr.Path.empty()) {
4137     // Extend the LValue path with the member pointer's path.
4138     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4139                                   MemPtr.Path.size() + IncludeMember);
4140 
4141     // Walk down to the appropriate base class.
4142     if (const PointerType *PT = LVType->getAs<PointerType>())
4143       LVType = PT->getPointeeType();
4144     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4145     assert(RD && "member pointer access on non-class-type expression");
4146     // The first class in the path is that of the lvalue.
4147     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4148       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4149       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4150         return nullptr;
4151       RD = Base;
4152     }
4153     // Finally cast to the class containing the member.
4154     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4155                                 MemPtr.getContainingRecord()))
4156       return nullptr;
4157   }
4158 
4159   // Add the member. Note that we cannot build bound member functions here.
4160   if (IncludeMember) {
4161     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4162       if (!HandleLValueMember(Info, RHS, LV, FD))
4163         return nullptr;
4164     } else if (const IndirectFieldDecl *IFD =
4165                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4166       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4167         return nullptr;
4168     } else {
4169       llvm_unreachable("can't construct reference to bound member function");
4170     }
4171   }
4172 
4173   return MemPtr.getDecl();
4174 }
4175 
4176 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4177                                                   const BinaryOperator *BO,
4178                                                   LValue &LV,
4179                                                   bool IncludeMember = true) {
4180   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4181 
4182   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4183     if (Info.noteFailure()) {
4184       MemberPtr MemPtr;
4185       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4186     }
4187     return nullptr;
4188   }
4189 
4190   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4191                                    BO->getRHS(), IncludeMember);
4192 }
4193 
4194 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4195 /// the provided lvalue, which currently refers to the base object.
4196 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4197                                     LValue &Result) {
4198   SubobjectDesignator &D = Result.Designator;
4199   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4200     return false;
4201 
4202   QualType TargetQT = E->getType();
4203   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4204     TargetQT = PT->getPointeeType();
4205 
4206   // Check this cast lands within the final derived-to-base subobject path.
4207   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4208     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4209       << D.MostDerivedType << TargetQT;
4210     return false;
4211   }
4212 
4213   // Check the type of the final cast. We don't need to check the path,
4214   // since a cast can only be formed if the path is unique.
4215   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4216   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4217   const CXXRecordDecl *FinalType;
4218   if (NewEntriesSize == D.MostDerivedPathLength)
4219     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4220   else
4221     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4222   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4223     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4224       << D.MostDerivedType << TargetQT;
4225     return false;
4226   }
4227 
4228   // Truncate the lvalue to the appropriate derived class.
4229   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4230 }
4231 
4232 /// Get the value to use for a default-initialized object of type T.
4233 static APValue getDefaultInitValue(QualType T) {
4234   if (auto *RD = T->getAsCXXRecordDecl()) {
4235     if (RD->isUnion())
4236       return APValue((const FieldDecl*)nullptr);
4237 
4238     APValue Struct(APValue::UninitStruct(), RD->getNumBases(),
4239                    std::distance(RD->field_begin(), RD->field_end()));
4240 
4241     unsigned Index = 0;
4242     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4243            End = RD->bases_end(); I != End; ++I, ++Index)
4244       Struct.getStructBase(Index) = getDefaultInitValue(I->getType());
4245 
4246     for (const auto *I : RD->fields()) {
4247       if (I->isUnnamedBitfield())
4248         continue;
4249       Struct.getStructField(I->getFieldIndex()) =
4250           getDefaultInitValue(I->getType());
4251     }
4252     return Struct;
4253   }
4254 
4255   if (auto *AT =
4256           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4257     APValue Array(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4258     if (Array.hasArrayFiller())
4259       Array.getArrayFiller() = getDefaultInitValue(AT->getElementType());
4260     return Array;
4261   }
4262 
4263   return APValue::IndeterminateValue();
4264 }
4265 
4266 namespace {
4267 enum EvalStmtResult {
4268   /// Evaluation failed.
4269   ESR_Failed,
4270   /// Hit a 'return' statement.
4271   ESR_Returned,
4272   /// Evaluation succeeded.
4273   ESR_Succeeded,
4274   /// Hit a 'continue' statement.
4275   ESR_Continue,
4276   /// Hit a 'break' statement.
4277   ESR_Break,
4278   /// Still scanning for 'case' or 'default' statement.
4279   ESR_CaseNotFound
4280 };
4281 }
4282 
4283 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4284   // We don't need to evaluate the initializer for a static local.
4285   if (!VD->hasLocalStorage())
4286     return true;
4287 
4288   LValue Result;
4289   APValue &Val =
4290       Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result);
4291 
4292   const Expr *InitE = VD->getInit();
4293   if (!InitE) {
4294     Val = getDefaultInitValue(VD->getType());
4295     return true;
4296   }
4297 
4298   if (InitE->isValueDependent())
4299     return false;
4300 
4301   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4302     // Wipe out any partially-computed value, to allow tracking that this
4303     // evaluation failed.
4304     Val = APValue();
4305     return false;
4306   }
4307 
4308   return true;
4309 }
4310 
4311 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4312   bool OK = true;
4313 
4314   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4315     OK &= EvaluateVarDecl(Info, VD);
4316 
4317   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4318     for (auto *BD : DD->bindings())
4319       if (auto *VD = BD->getHoldingVar())
4320         OK &= EvaluateDecl(Info, VD);
4321 
4322   return OK;
4323 }
4324 
4325 
4326 /// Evaluate a condition (either a variable declaration or an expression).
4327 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4328                          const Expr *Cond, bool &Result) {
4329   FullExpressionRAII Scope(Info);
4330   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4331     return false;
4332   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4333     return false;
4334   return Scope.destroy();
4335 }
4336 
4337 namespace {
4338 /// A location where the result (returned value) of evaluating a
4339 /// statement should be stored.
4340 struct StmtResult {
4341   /// The APValue that should be filled in with the returned value.
4342   APValue &Value;
4343   /// The location containing the result, if any (used to support RVO).
4344   const LValue *Slot;
4345 };
4346 
4347 struct TempVersionRAII {
4348   CallStackFrame &Frame;
4349 
4350   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4351     Frame.pushTempVersion();
4352   }
4353 
4354   ~TempVersionRAII() {
4355     Frame.popTempVersion();
4356   }
4357 };
4358 
4359 }
4360 
4361 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4362                                    const Stmt *S,
4363                                    const SwitchCase *SC = nullptr);
4364 
4365 /// Evaluate the body of a loop, and translate the result as appropriate.
4366 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4367                                        const Stmt *Body,
4368                                        const SwitchCase *Case = nullptr) {
4369   BlockScopeRAII Scope(Info);
4370 
4371   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4372   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4373     ESR = ESR_Failed;
4374 
4375   switch (ESR) {
4376   case ESR_Break:
4377     return ESR_Succeeded;
4378   case ESR_Succeeded:
4379   case ESR_Continue:
4380     return ESR_Continue;
4381   case ESR_Failed:
4382   case ESR_Returned:
4383   case ESR_CaseNotFound:
4384     return ESR;
4385   }
4386   llvm_unreachable("Invalid EvalStmtResult!");
4387 }
4388 
4389 /// Evaluate a switch statement.
4390 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4391                                      const SwitchStmt *SS) {
4392   BlockScopeRAII Scope(Info);
4393 
4394   // Evaluate the switch condition.
4395   APSInt Value;
4396   {
4397     if (const Stmt *Init = SS->getInit()) {
4398       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4399       if (ESR != ESR_Succeeded) {
4400         if (ESR != ESR_Failed && !Scope.destroy())
4401           ESR = ESR_Failed;
4402         return ESR;
4403       }
4404     }
4405 
4406     FullExpressionRAII CondScope(Info);
4407     if (SS->getConditionVariable() &&
4408         !EvaluateDecl(Info, SS->getConditionVariable()))
4409       return ESR_Failed;
4410     if (!EvaluateInteger(SS->getCond(), Value, Info))
4411       return ESR_Failed;
4412     if (!CondScope.destroy())
4413       return ESR_Failed;
4414   }
4415 
4416   // Find the switch case corresponding to the value of the condition.
4417   // FIXME: Cache this lookup.
4418   const SwitchCase *Found = nullptr;
4419   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4420        SC = SC->getNextSwitchCase()) {
4421     if (isa<DefaultStmt>(SC)) {
4422       Found = SC;
4423       continue;
4424     }
4425 
4426     const CaseStmt *CS = cast<CaseStmt>(SC);
4427     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4428     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4429                               : LHS;
4430     if (LHS <= Value && Value <= RHS) {
4431       Found = SC;
4432       break;
4433     }
4434   }
4435 
4436   if (!Found)
4437     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4438 
4439   // Search the switch body for the switch case and evaluate it from there.
4440   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4441   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4442     return ESR_Failed;
4443 
4444   switch (ESR) {
4445   case ESR_Break:
4446     return ESR_Succeeded;
4447   case ESR_Succeeded:
4448   case ESR_Continue:
4449   case ESR_Failed:
4450   case ESR_Returned:
4451     return ESR;
4452   case ESR_CaseNotFound:
4453     // This can only happen if the switch case is nested within a statement
4454     // expression. We have no intention of supporting that.
4455     Info.FFDiag(Found->getBeginLoc(),
4456                 diag::note_constexpr_stmt_expr_unsupported);
4457     return ESR_Failed;
4458   }
4459   llvm_unreachable("Invalid EvalStmtResult!");
4460 }
4461 
4462 // Evaluate a statement.
4463 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4464                                    const Stmt *S, const SwitchCase *Case) {
4465   if (!Info.nextStep(S))
4466     return ESR_Failed;
4467 
4468   // If we're hunting down a 'case' or 'default' label, recurse through
4469   // substatements until we hit the label.
4470   if (Case) {
4471     switch (S->getStmtClass()) {
4472     case Stmt::CompoundStmtClass:
4473       // FIXME: Precompute which substatement of a compound statement we
4474       // would jump to, and go straight there rather than performing a
4475       // linear scan each time.
4476     case Stmt::LabelStmtClass:
4477     case Stmt::AttributedStmtClass:
4478     case Stmt::DoStmtClass:
4479       break;
4480 
4481     case Stmt::CaseStmtClass:
4482     case Stmt::DefaultStmtClass:
4483       if (Case == S)
4484         Case = nullptr;
4485       break;
4486 
4487     case Stmt::IfStmtClass: {
4488       // FIXME: Precompute which side of an 'if' we would jump to, and go
4489       // straight there rather than scanning both sides.
4490       const IfStmt *IS = cast<IfStmt>(S);
4491 
4492       // Wrap the evaluation in a block scope, in case it's a DeclStmt
4493       // preceded by our switch label.
4494       BlockScopeRAII Scope(Info);
4495 
4496       // Step into the init statement in case it brings an (uninitialized)
4497       // variable into scope.
4498       if (const Stmt *Init = IS->getInit()) {
4499         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
4500         if (ESR != ESR_CaseNotFound) {
4501           assert(ESR != ESR_Succeeded);
4502           return ESR;
4503         }
4504       }
4505 
4506       // Condition variable must be initialized if it exists.
4507       // FIXME: We can skip evaluating the body if there's a condition
4508       // variable, as there can't be any case labels within it.
4509       // (The same is true for 'for' statements.)
4510 
4511       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
4512       if (ESR == ESR_Failed)
4513         return ESR;
4514       if (ESR != ESR_CaseNotFound)
4515         return Scope.destroy() ? ESR : ESR_Failed;
4516       if (!IS->getElse())
4517         return ESR_CaseNotFound;
4518 
4519       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
4520       if (ESR == ESR_Failed)
4521         return ESR;
4522       if (ESR != ESR_CaseNotFound)
4523         return Scope.destroy() ? ESR : ESR_Failed;
4524       return ESR_CaseNotFound;
4525     }
4526 
4527     case Stmt::WhileStmtClass: {
4528       EvalStmtResult ESR =
4529           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
4530       if (ESR != ESR_Continue)
4531         return ESR;
4532       break;
4533     }
4534 
4535     case Stmt::ForStmtClass: {
4536       const ForStmt *FS = cast<ForStmt>(S);
4537       BlockScopeRAII Scope(Info);
4538 
4539       // Step into the init statement in case it brings an (uninitialized)
4540       // variable into scope.
4541       if (const Stmt *Init = FS->getInit()) {
4542         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
4543         if (ESR != ESR_CaseNotFound) {
4544           assert(ESR != ESR_Succeeded);
4545           return ESR;
4546         }
4547       }
4548 
4549       EvalStmtResult ESR =
4550           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
4551       if (ESR != ESR_Continue)
4552         return ESR;
4553       if (FS->getInc()) {
4554         FullExpressionRAII IncScope(Info);
4555         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
4556           return ESR_Failed;
4557       }
4558       break;
4559     }
4560 
4561     case Stmt::DeclStmtClass: {
4562       // Start the lifetime of any uninitialized variables we encounter. They
4563       // might be used by the selected branch of the switch.
4564       const DeclStmt *DS = cast<DeclStmt>(S);
4565       for (const auto *D : DS->decls()) {
4566         if (const auto *VD = dyn_cast<VarDecl>(D)) {
4567           if (VD->hasLocalStorage() && !VD->getInit())
4568             if (!EvaluateVarDecl(Info, VD))
4569               return ESR_Failed;
4570           // FIXME: If the variable has initialization that can't be jumped
4571           // over, bail out of any immediately-surrounding compound-statement
4572           // too. There can't be any case labels here.
4573         }
4574       }
4575       return ESR_CaseNotFound;
4576     }
4577 
4578     default:
4579       return ESR_CaseNotFound;
4580     }
4581   }
4582 
4583   switch (S->getStmtClass()) {
4584   default:
4585     if (const Expr *E = dyn_cast<Expr>(S)) {
4586       // Don't bother evaluating beyond an expression-statement which couldn't
4587       // be evaluated.
4588       // FIXME: Do we need the FullExpressionRAII object here?
4589       // VisitExprWithCleanups should create one when necessary.
4590       FullExpressionRAII Scope(Info);
4591       if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
4592         return ESR_Failed;
4593       return ESR_Succeeded;
4594     }
4595 
4596     Info.FFDiag(S->getBeginLoc());
4597     return ESR_Failed;
4598 
4599   case Stmt::NullStmtClass:
4600     return ESR_Succeeded;
4601 
4602   case Stmt::DeclStmtClass: {
4603     const DeclStmt *DS = cast<DeclStmt>(S);
4604     for (const auto *D : DS->decls()) {
4605       // Each declaration initialization is its own full-expression.
4606       FullExpressionRAII Scope(Info);
4607       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
4608         return ESR_Failed;
4609       if (!Scope.destroy())
4610         return ESR_Failed;
4611     }
4612     return ESR_Succeeded;
4613   }
4614 
4615   case Stmt::ReturnStmtClass: {
4616     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
4617     FullExpressionRAII Scope(Info);
4618     if (RetExpr &&
4619         !(Result.Slot
4620               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
4621               : Evaluate(Result.Value, Info, RetExpr)))
4622       return ESR_Failed;
4623     return Scope.destroy() ? ESR_Returned : ESR_Failed;
4624   }
4625 
4626   case Stmt::CompoundStmtClass: {
4627     BlockScopeRAII Scope(Info);
4628 
4629     const CompoundStmt *CS = cast<CompoundStmt>(S);
4630     for (const auto *BI : CS->body()) {
4631       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
4632       if (ESR == ESR_Succeeded)
4633         Case = nullptr;
4634       else if (ESR != ESR_CaseNotFound) {
4635         if (ESR != ESR_Failed && !Scope.destroy())
4636           return ESR_Failed;
4637         return ESR;
4638       }
4639     }
4640     if (Case)
4641       return ESR_CaseNotFound;
4642     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4643   }
4644 
4645   case Stmt::IfStmtClass: {
4646     const IfStmt *IS = cast<IfStmt>(S);
4647 
4648     // Evaluate the condition, as either a var decl or as an expression.
4649     BlockScopeRAII Scope(Info);
4650     if (const Stmt *Init = IS->getInit()) {
4651       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4652       if (ESR != ESR_Succeeded) {
4653         if (ESR != ESR_Failed && !Scope.destroy())
4654           return ESR_Failed;
4655         return ESR;
4656       }
4657     }
4658     bool Cond;
4659     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
4660       return ESR_Failed;
4661 
4662     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
4663       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
4664       if (ESR != ESR_Succeeded) {
4665         if (ESR != ESR_Failed && !Scope.destroy())
4666           return ESR_Failed;
4667         return ESR;
4668       }
4669     }
4670     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4671   }
4672 
4673   case Stmt::WhileStmtClass: {
4674     const WhileStmt *WS = cast<WhileStmt>(S);
4675     while (true) {
4676       BlockScopeRAII Scope(Info);
4677       bool Continue;
4678       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
4679                         Continue))
4680         return ESR_Failed;
4681       if (!Continue)
4682         break;
4683 
4684       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
4685       if (ESR != ESR_Continue) {
4686         if (ESR != ESR_Failed && !Scope.destroy())
4687           return ESR_Failed;
4688         return ESR;
4689       }
4690       if (!Scope.destroy())
4691         return ESR_Failed;
4692     }
4693     return ESR_Succeeded;
4694   }
4695 
4696   case Stmt::DoStmtClass: {
4697     const DoStmt *DS = cast<DoStmt>(S);
4698     bool Continue;
4699     do {
4700       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
4701       if (ESR != ESR_Continue)
4702         return ESR;
4703       Case = nullptr;
4704 
4705       FullExpressionRAII CondScope(Info);
4706       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
4707           !CondScope.destroy())
4708         return ESR_Failed;
4709     } while (Continue);
4710     return ESR_Succeeded;
4711   }
4712 
4713   case Stmt::ForStmtClass: {
4714     const ForStmt *FS = cast<ForStmt>(S);
4715     BlockScopeRAII ForScope(Info);
4716     if (FS->getInit()) {
4717       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
4718       if (ESR != ESR_Succeeded) {
4719         if (ESR != ESR_Failed && !ForScope.destroy())
4720           return ESR_Failed;
4721         return ESR;
4722       }
4723     }
4724     while (true) {
4725       BlockScopeRAII IterScope(Info);
4726       bool Continue = true;
4727       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
4728                                          FS->getCond(), Continue))
4729         return ESR_Failed;
4730       if (!Continue)
4731         break;
4732 
4733       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4734       if (ESR != ESR_Continue) {
4735         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
4736           return ESR_Failed;
4737         return ESR;
4738       }
4739 
4740       if (FS->getInc()) {
4741         FullExpressionRAII IncScope(Info);
4742         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
4743           return ESR_Failed;
4744       }
4745 
4746       if (!IterScope.destroy())
4747         return ESR_Failed;
4748     }
4749     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
4750   }
4751 
4752   case Stmt::CXXForRangeStmtClass: {
4753     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
4754     BlockScopeRAII Scope(Info);
4755 
4756     // Evaluate the init-statement if present.
4757     if (FS->getInit()) {
4758       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
4759       if (ESR != ESR_Succeeded) {
4760         if (ESR != ESR_Failed && !Scope.destroy())
4761           return ESR_Failed;
4762         return ESR;
4763       }
4764     }
4765 
4766     // Initialize the __range variable.
4767     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
4768     if (ESR != ESR_Succeeded) {
4769       if (ESR != ESR_Failed && !Scope.destroy())
4770         return ESR_Failed;
4771       return ESR;
4772     }
4773 
4774     // Create the __begin and __end iterators.
4775     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
4776     if (ESR != ESR_Succeeded) {
4777       if (ESR != ESR_Failed && !Scope.destroy())
4778         return ESR_Failed;
4779       return ESR;
4780     }
4781     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
4782     if (ESR != ESR_Succeeded) {
4783       if (ESR != ESR_Failed && !Scope.destroy())
4784         return ESR_Failed;
4785       return ESR;
4786     }
4787 
4788     while (true) {
4789       // Condition: __begin != __end.
4790       {
4791         bool Continue = true;
4792         FullExpressionRAII CondExpr(Info);
4793         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
4794           return ESR_Failed;
4795         if (!Continue)
4796           break;
4797       }
4798 
4799       // User's variable declaration, initialized by *__begin.
4800       BlockScopeRAII InnerScope(Info);
4801       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
4802       if (ESR != ESR_Succeeded) {
4803         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
4804           return ESR_Failed;
4805         return ESR;
4806       }
4807 
4808       // Loop body.
4809       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4810       if (ESR != ESR_Continue) {
4811         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
4812           return ESR_Failed;
4813         return ESR;
4814       }
4815 
4816       // Increment: ++__begin
4817       if (!EvaluateIgnoredValue(Info, FS->getInc()))
4818         return ESR_Failed;
4819 
4820       if (!InnerScope.destroy())
4821         return ESR_Failed;
4822     }
4823 
4824     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4825   }
4826 
4827   case Stmt::SwitchStmtClass:
4828     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
4829 
4830   case Stmt::ContinueStmtClass:
4831     return ESR_Continue;
4832 
4833   case Stmt::BreakStmtClass:
4834     return ESR_Break;
4835 
4836   case Stmt::LabelStmtClass:
4837     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
4838 
4839   case Stmt::AttributedStmtClass:
4840     // As a general principle, C++11 attributes can be ignored without
4841     // any semantic impact.
4842     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
4843                         Case);
4844 
4845   case Stmt::CaseStmtClass:
4846   case Stmt::DefaultStmtClass:
4847     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
4848   case Stmt::CXXTryStmtClass:
4849     // Evaluate try blocks by evaluating all sub statements.
4850     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
4851   }
4852 }
4853 
4854 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
4855 /// default constructor. If so, we'll fold it whether or not it's marked as
4856 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
4857 /// so we need special handling.
4858 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
4859                                            const CXXConstructorDecl *CD,
4860                                            bool IsValueInitialization) {
4861   if (!CD->isTrivial() || !CD->isDefaultConstructor())
4862     return false;
4863 
4864   // Value-initialization does not call a trivial default constructor, so such a
4865   // call is a core constant expression whether or not the constructor is
4866   // constexpr.
4867   if (!CD->isConstexpr() && !IsValueInitialization) {
4868     if (Info.getLangOpts().CPlusPlus11) {
4869       // FIXME: If DiagDecl is an implicitly-declared special member function,
4870       // we should be much more explicit about why it's not constexpr.
4871       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
4872         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
4873       Info.Note(CD->getLocation(), diag::note_declared_at);
4874     } else {
4875       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
4876     }
4877   }
4878   return true;
4879 }
4880 
4881 /// CheckConstexprFunction - Check that a function can be called in a constant
4882 /// expression.
4883 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
4884                                    const FunctionDecl *Declaration,
4885                                    const FunctionDecl *Definition,
4886                                    const Stmt *Body) {
4887   // Potential constant expressions can contain calls to declared, but not yet
4888   // defined, constexpr functions.
4889   if (Info.checkingPotentialConstantExpression() && !Definition &&
4890       Declaration->isConstexpr())
4891     return false;
4892 
4893   // Bail out if the function declaration itself is invalid.  We will
4894   // have produced a relevant diagnostic while parsing it, so just
4895   // note the problematic sub-expression.
4896   if (Declaration->isInvalidDecl()) {
4897     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4898     return false;
4899   }
4900 
4901   // DR1872: An instantiated virtual constexpr function can't be called in a
4902   // constant expression (prior to C++20). We can still constant-fold such a
4903   // call.
4904   if (!Info.Ctx.getLangOpts().CPlusPlus2a && isa<CXXMethodDecl>(Declaration) &&
4905       cast<CXXMethodDecl>(Declaration)->isVirtual())
4906     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
4907 
4908   if (Definition && Definition->isInvalidDecl()) {
4909     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4910     return false;
4911   }
4912 
4913   // Can we evaluate this function call?
4914   if (Definition && Definition->isConstexpr() && Body)
4915     return true;
4916 
4917   if (Info.getLangOpts().CPlusPlus11) {
4918     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
4919 
4920     // If this function is not constexpr because it is an inherited
4921     // non-constexpr constructor, diagnose that directly.
4922     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
4923     if (CD && CD->isInheritingConstructor()) {
4924       auto *Inherited = CD->getInheritedConstructor().getConstructor();
4925       if (!Inherited->isConstexpr())
4926         DiagDecl = CD = Inherited;
4927     }
4928 
4929     // FIXME: If DiagDecl is an implicitly-declared special member function
4930     // or an inheriting constructor, we should be much more explicit about why
4931     // it's not constexpr.
4932     if (CD && CD->isInheritingConstructor())
4933       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
4934         << CD->getInheritedConstructor().getConstructor()->getParent();
4935     else
4936       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
4937         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
4938     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
4939   } else {
4940     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4941   }
4942   return false;
4943 }
4944 
4945 namespace {
4946 struct CheckDynamicTypeHandler {
4947   AccessKinds AccessKind;
4948   typedef bool result_type;
4949   bool failed() { return false; }
4950   bool found(APValue &Subobj, QualType SubobjType) { return true; }
4951   bool found(APSInt &Value, QualType SubobjType) { return true; }
4952   bool found(APFloat &Value, QualType SubobjType) { return true; }
4953 };
4954 } // end anonymous namespace
4955 
4956 /// Check that we can access the notional vptr of an object / determine its
4957 /// dynamic type.
4958 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
4959                              AccessKinds AK, bool Polymorphic) {
4960   if (This.Designator.Invalid)
4961     return false;
4962 
4963   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
4964 
4965   if (!Obj)
4966     return false;
4967 
4968   if (!Obj.Value) {
4969     // The object is not usable in constant expressions, so we can't inspect
4970     // its value to see if it's in-lifetime or what the active union members
4971     // are. We can still check for a one-past-the-end lvalue.
4972     if (This.Designator.isOnePastTheEnd() ||
4973         This.Designator.isMostDerivedAnUnsizedArray()) {
4974       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
4975                          ? diag::note_constexpr_access_past_end
4976                          : diag::note_constexpr_access_unsized_array)
4977           << AK;
4978       return false;
4979     } else if (Polymorphic) {
4980       // Conservatively refuse to perform a polymorphic operation if we would
4981       // not be able to read a notional 'vptr' value.
4982       APValue Val;
4983       This.moveInto(Val);
4984       QualType StarThisType =
4985           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
4986       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
4987           << AK << Val.getAsString(Info.Ctx, StarThisType);
4988       return false;
4989     }
4990     return true;
4991   }
4992 
4993   CheckDynamicTypeHandler Handler{AK};
4994   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
4995 }
4996 
4997 /// Check that the pointee of the 'this' pointer in a member function call is
4998 /// either within its lifetime or in its period of construction or destruction.
4999 static bool
5000 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5001                                      const LValue &This,
5002                                      const CXXMethodDecl *NamedMember) {
5003   return checkDynamicType(
5004       Info, E, This,
5005       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5006 }
5007 
5008 struct DynamicType {
5009   /// The dynamic class type of the object.
5010   const CXXRecordDecl *Type;
5011   /// The corresponding path length in the lvalue.
5012   unsigned PathLength;
5013 };
5014 
5015 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5016                                              unsigned PathLength) {
5017   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5018       Designator.Entries.size() && "invalid path length");
5019   return (PathLength == Designator.MostDerivedPathLength)
5020              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5021              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5022 }
5023 
5024 /// Determine the dynamic type of an object.
5025 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5026                                                 LValue &This, AccessKinds AK) {
5027   // If we don't have an lvalue denoting an object of class type, there is no
5028   // meaningful dynamic type. (We consider objects of non-class type to have no
5029   // dynamic type.)
5030   if (!checkDynamicType(Info, E, This, AK, true))
5031     return None;
5032 
5033   // Refuse to compute a dynamic type in the presence of virtual bases. This
5034   // shouldn't happen other than in constant-folding situations, since literal
5035   // types can't have virtual bases.
5036   //
5037   // Note that consumers of DynamicType assume that the type has no virtual
5038   // bases, and will need modifications if this restriction is relaxed.
5039   const CXXRecordDecl *Class =
5040       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5041   if (!Class || Class->getNumVBases()) {
5042     Info.FFDiag(E);
5043     return None;
5044   }
5045 
5046   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5047   // binary search here instead. But the overwhelmingly common case is that
5048   // we're not in the middle of a constructor, so it probably doesn't matter
5049   // in practice.
5050   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5051   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5052        PathLength <= Path.size(); ++PathLength) {
5053     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5054                                       Path.slice(0, PathLength))) {
5055     case ConstructionPhase::Bases:
5056     case ConstructionPhase::DestroyingBases:
5057       // We're constructing or destroying a base class. This is not the dynamic
5058       // type.
5059       break;
5060 
5061     case ConstructionPhase::None:
5062     case ConstructionPhase::AfterBases:
5063     case ConstructionPhase::Destroying:
5064       // We've finished constructing the base classes and not yet started
5065       // destroying them again, so this is the dynamic type.
5066       return DynamicType{getBaseClassType(This.Designator, PathLength),
5067                          PathLength};
5068     }
5069   }
5070 
5071   // CWG issue 1517: we're constructing a base class of the object described by
5072   // 'This', so that object has not yet begun its period of construction and
5073   // any polymorphic operation on it results in undefined behavior.
5074   Info.FFDiag(E);
5075   return None;
5076 }
5077 
5078 /// Perform virtual dispatch.
5079 static const CXXMethodDecl *HandleVirtualDispatch(
5080     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5081     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5082   Optional<DynamicType> DynType = ComputeDynamicType(
5083       Info, E, This,
5084       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5085   if (!DynType)
5086     return nullptr;
5087 
5088   // Find the final overrider. It must be declared in one of the classes on the
5089   // path from the dynamic type to the static type.
5090   // FIXME: If we ever allow literal types to have virtual base classes, that
5091   // won't be true.
5092   const CXXMethodDecl *Callee = Found;
5093   unsigned PathLength = DynType->PathLength;
5094   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5095     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5096     const CXXMethodDecl *Overrider =
5097         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5098     if (Overrider) {
5099       Callee = Overrider;
5100       break;
5101     }
5102   }
5103 
5104   // C++2a [class.abstract]p6:
5105   //   the effect of making a virtual call to a pure virtual function [...] is
5106   //   undefined
5107   if (Callee->isPure()) {
5108     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5109     Info.Note(Callee->getLocation(), diag::note_declared_at);
5110     return nullptr;
5111   }
5112 
5113   // If necessary, walk the rest of the path to determine the sequence of
5114   // covariant adjustment steps to apply.
5115   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5116                                        Found->getReturnType())) {
5117     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5118     for (unsigned CovariantPathLength = PathLength + 1;
5119          CovariantPathLength != This.Designator.Entries.size();
5120          ++CovariantPathLength) {
5121       const CXXRecordDecl *NextClass =
5122           getBaseClassType(This.Designator, CovariantPathLength);
5123       const CXXMethodDecl *Next =
5124           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5125       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5126                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5127         CovariantAdjustmentPath.push_back(Next->getReturnType());
5128     }
5129     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5130                                          CovariantAdjustmentPath.back()))
5131       CovariantAdjustmentPath.push_back(Found->getReturnType());
5132   }
5133 
5134   // Perform 'this' adjustment.
5135   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5136     return nullptr;
5137 
5138   return Callee;
5139 }
5140 
5141 /// Perform the adjustment from a value returned by a virtual function to
5142 /// a value of the statically expected type, which may be a pointer or
5143 /// reference to a base class of the returned type.
5144 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5145                                             APValue &Result,
5146                                             ArrayRef<QualType> Path) {
5147   assert(Result.isLValue() &&
5148          "unexpected kind of APValue for covariant return");
5149   if (Result.isNullPointer())
5150     return true;
5151 
5152   LValue LVal;
5153   LVal.setFrom(Info.Ctx, Result);
5154 
5155   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5156   for (unsigned I = 1; I != Path.size(); ++I) {
5157     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5158     assert(OldClass && NewClass && "unexpected kind of covariant return");
5159     if (OldClass != NewClass &&
5160         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5161       return false;
5162     OldClass = NewClass;
5163   }
5164 
5165   LVal.moveInto(Result);
5166   return true;
5167 }
5168 
5169 /// Determine whether \p Base, which is known to be a direct base class of
5170 /// \p Derived, is a public base class.
5171 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5172                               const CXXRecordDecl *Base) {
5173   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5174     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5175     if (BaseClass && declaresSameEntity(BaseClass, Base))
5176       return BaseSpec.getAccessSpecifier() == AS_public;
5177   }
5178   llvm_unreachable("Base is not a direct base of Derived");
5179 }
5180 
5181 /// Apply the given dynamic cast operation on the provided lvalue.
5182 ///
5183 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5184 /// to find a suitable target subobject.
5185 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5186                               LValue &Ptr) {
5187   // We can't do anything with a non-symbolic pointer value.
5188   SubobjectDesignator &D = Ptr.Designator;
5189   if (D.Invalid)
5190     return false;
5191 
5192   // C++ [expr.dynamic.cast]p6:
5193   //   If v is a null pointer value, the result is a null pointer value.
5194   if (Ptr.isNullPointer() && !E->isGLValue())
5195     return true;
5196 
5197   // For all the other cases, we need the pointer to point to an object within
5198   // its lifetime / period of construction / destruction, and we need to know
5199   // its dynamic type.
5200   Optional<DynamicType> DynType =
5201       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5202   if (!DynType)
5203     return false;
5204 
5205   // C++ [expr.dynamic.cast]p7:
5206   //   If T is "pointer to cv void", then the result is a pointer to the most
5207   //   derived object
5208   if (E->getType()->isVoidPointerType())
5209     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5210 
5211   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5212   assert(C && "dynamic_cast target is not void pointer nor class");
5213   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5214 
5215   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5216     // C++ [expr.dynamic.cast]p9:
5217     if (!E->isGLValue()) {
5218       //   The value of a failed cast to pointer type is the null pointer value
5219       //   of the required result type.
5220       Ptr.setNull(Info.Ctx, E->getType());
5221       return true;
5222     }
5223 
5224     //   A failed cast to reference type throws [...] std::bad_cast.
5225     unsigned DiagKind;
5226     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5227                    DynType->Type->isDerivedFrom(C)))
5228       DiagKind = 0;
5229     else if (!Paths || Paths->begin() == Paths->end())
5230       DiagKind = 1;
5231     else if (Paths->isAmbiguous(CQT))
5232       DiagKind = 2;
5233     else {
5234       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5235       DiagKind = 3;
5236     }
5237     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5238         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5239         << Info.Ctx.getRecordType(DynType->Type)
5240         << E->getType().getUnqualifiedType();
5241     return false;
5242   };
5243 
5244   // Runtime check, phase 1:
5245   //   Walk from the base subobject towards the derived object looking for the
5246   //   target type.
5247   for (int PathLength = Ptr.Designator.Entries.size();
5248        PathLength >= (int)DynType->PathLength; --PathLength) {
5249     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5250     if (declaresSameEntity(Class, C))
5251       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5252     // We can only walk across public inheritance edges.
5253     if (PathLength > (int)DynType->PathLength &&
5254         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5255                            Class))
5256       return RuntimeCheckFailed(nullptr);
5257   }
5258 
5259   // Runtime check, phase 2:
5260   //   Search the dynamic type for an unambiguous public base of type C.
5261   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5262                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5263   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5264       Paths.front().Access == AS_public) {
5265     // Downcast to the dynamic type...
5266     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5267       return false;
5268     // ... then upcast to the chosen base class subobject.
5269     for (CXXBasePathElement &Elem : Paths.front())
5270       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5271         return false;
5272     return true;
5273   }
5274 
5275   // Otherwise, the runtime check fails.
5276   return RuntimeCheckFailed(&Paths);
5277 }
5278 
5279 namespace {
5280 struct StartLifetimeOfUnionMemberHandler {
5281   const FieldDecl *Field;
5282 
5283   static const AccessKinds AccessKind = AK_Assign;
5284 
5285   typedef bool result_type;
5286   bool failed() { return false; }
5287   bool found(APValue &Subobj, QualType SubobjType) {
5288     // We are supposed to perform no initialization but begin the lifetime of
5289     // the object. We interpret that as meaning to do what default
5290     // initialization of the object would do if all constructors involved were
5291     // trivial:
5292     //  * All base, non-variant member, and array element subobjects' lifetimes
5293     //    begin
5294     //  * No variant members' lifetimes begin
5295     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5296     assert(SubobjType->isUnionType());
5297     if (!declaresSameEntity(Subobj.getUnionField(), Field) ||
5298         !Subobj.getUnionValue().hasValue())
5299       Subobj.setUnion(Field, getDefaultInitValue(Field->getType()));
5300     return true;
5301   }
5302   bool found(APSInt &Value, QualType SubobjType) {
5303     llvm_unreachable("wrong value kind for union object");
5304   }
5305   bool found(APFloat &Value, QualType SubobjType) {
5306     llvm_unreachable("wrong value kind for union object");
5307   }
5308 };
5309 } // end anonymous namespace
5310 
5311 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5312 
5313 /// Handle a builtin simple-assignment or a call to a trivial assignment
5314 /// operator whose left-hand side might involve a union member access. If it
5315 /// does, implicitly start the lifetime of any accessed union elements per
5316 /// C++20 [class.union]5.
5317 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5318                                           const LValue &LHS) {
5319   if (LHS.InvalidBase || LHS.Designator.Invalid)
5320     return false;
5321 
5322   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5323   // C++ [class.union]p5:
5324   //   define the set S(E) of subexpressions of E as follows:
5325   unsigned PathLength = LHS.Designator.Entries.size();
5326   for (const Expr *E = LHSExpr; E != nullptr;) {
5327     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
5328     if (auto *ME = dyn_cast<MemberExpr>(E)) {
5329       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5330       // Note that we can't implicitly start the lifetime of a reference,
5331       // so we don't need to proceed any further if we reach one.
5332       if (!FD || FD->getType()->isReferenceType())
5333         break;
5334 
5335       //    ... and also contains A.B if B names a union member ...
5336       if (FD->getParent()->isUnion()) {
5337         //    ... of a non-class, non-array type, or of a class type with a
5338         //    trivial default constructor that is not deleted, or an array of
5339         //    such types.
5340         auto *RD =
5341             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5342         if (!RD || RD->hasTrivialDefaultConstructor())
5343           UnionPathLengths.push_back({PathLength - 1, FD});
5344       }
5345 
5346       E = ME->getBase();
5347       --PathLength;
5348       assert(declaresSameEntity(FD,
5349                                 LHS.Designator.Entries[PathLength]
5350                                     .getAsBaseOrMember().getPointer()));
5351 
5352       //   -- If E is of the form A[B] and is interpreted as a built-in array
5353       //      subscripting operator, S(E) is [S(the array operand, if any)].
5354     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5355       // Step over an ArrayToPointerDecay implicit cast.
5356       auto *Base = ASE->getBase()->IgnoreImplicit();
5357       if (!Base->getType()->isArrayType())
5358         break;
5359 
5360       E = Base;
5361       --PathLength;
5362 
5363     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5364       // Step over a derived-to-base conversion.
5365       E = ICE->getSubExpr();
5366       if (ICE->getCastKind() == CK_NoOp)
5367         continue;
5368       if (ICE->getCastKind() != CK_DerivedToBase &&
5369           ICE->getCastKind() != CK_UncheckedDerivedToBase)
5370         break;
5371       // Walk path backwards as we walk up from the base to the derived class.
5372       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5373         --PathLength;
5374         (void)Elt;
5375         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
5376                                   LHS.Designator.Entries[PathLength]
5377                                       .getAsBaseOrMember().getPointer()));
5378       }
5379 
5380     //   -- Otherwise, S(E) is empty.
5381     } else {
5382       break;
5383     }
5384   }
5385 
5386   // Common case: no unions' lifetimes are started.
5387   if (UnionPathLengths.empty())
5388     return true;
5389 
5390   //   if modification of X [would access an inactive union member], an object
5391   //   of the type of X is implicitly created
5392   CompleteObject Obj =
5393       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
5394   if (!Obj)
5395     return false;
5396   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
5397            llvm::reverse(UnionPathLengths)) {
5398     // Form a designator for the union object.
5399     SubobjectDesignator D = LHS.Designator;
5400     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
5401 
5402     StartLifetimeOfUnionMemberHandler StartLifetime{LengthAndField.second};
5403     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
5404       return false;
5405   }
5406 
5407   return true;
5408 }
5409 
5410 /// Determine if a class has any fields that might need to be copied by a
5411 /// trivial copy or move operation.
5412 static bool hasFields(const CXXRecordDecl *RD) {
5413   if (!RD || RD->isEmpty())
5414     return false;
5415   for (auto *FD : RD->fields()) {
5416     if (FD->isUnnamedBitfield())
5417       continue;
5418     return true;
5419   }
5420   for (auto &Base : RD->bases())
5421     if (hasFields(Base.getType()->getAsCXXRecordDecl()))
5422       return true;
5423   return false;
5424 }
5425 
5426 namespace {
5427 typedef SmallVector<APValue, 8> ArgVector;
5428 }
5429 
5430 /// EvaluateArgs - Evaluate the arguments to a function call.
5431 static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues,
5432                          EvalInfo &Info, const FunctionDecl *Callee) {
5433   bool Success = true;
5434   llvm::SmallBitVector ForbiddenNullArgs;
5435   if (Callee->hasAttr<NonNullAttr>()) {
5436     ForbiddenNullArgs.resize(Args.size());
5437     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
5438       if (!Attr->args_size()) {
5439         ForbiddenNullArgs.set();
5440         break;
5441       } else
5442         for (auto Idx : Attr->args()) {
5443           unsigned ASTIdx = Idx.getASTIndex();
5444           if (ASTIdx >= Args.size())
5445             continue;
5446           ForbiddenNullArgs[ASTIdx] = 1;
5447         }
5448     }
5449   }
5450   for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
5451     if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) {
5452       // If we're checking for a potential constant expression, evaluate all
5453       // initializers even if some of them fail.
5454       if (!Info.noteFailure())
5455         return false;
5456       Success = false;
5457     } else if (!ForbiddenNullArgs.empty() &&
5458                ForbiddenNullArgs[Idx] &&
5459                ArgValues[Idx].isLValue() &&
5460                ArgValues[Idx].isNullPointer()) {
5461       Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed);
5462       if (!Info.noteFailure())
5463         return false;
5464       Success = false;
5465     }
5466   }
5467   return Success;
5468 }
5469 
5470 /// Evaluate a function call.
5471 static bool HandleFunctionCall(SourceLocation CallLoc,
5472                                const FunctionDecl *Callee, const LValue *This,
5473                                ArrayRef<const Expr*> Args, const Stmt *Body,
5474                                EvalInfo &Info, APValue &Result,
5475                                const LValue *ResultSlot) {
5476   ArgVector ArgValues(Args.size());
5477   if (!EvaluateArgs(Args, ArgValues, Info, Callee))
5478     return false;
5479 
5480   if (!Info.CheckCallLimit(CallLoc))
5481     return false;
5482 
5483   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
5484 
5485   // For a trivial copy or move assignment, perform an APValue copy. This is
5486   // essential for unions, where the operations performed by the assignment
5487   // operator cannot be represented as statements.
5488   //
5489   // Skip this for non-union classes with no fields; in that case, the defaulted
5490   // copy/move does not actually read the object.
5491   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
5492   if (MD && MD->isDefaulted() &&
5493       (MD->getParent()->isUnion() ||
5494        (MD->isTrivial() && hasFields(MD->getParent())))) {
5495     assert(This &&
5496            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
5497     LValue RHS;
5498     RHS.setFrom(Info.Ctx, ArgValues[0]);
5499     APValue RHSValue;
5500     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS,
5501                                         RHSValue, MD->getParent()->isUnion()))
5502       return false;
5503     if (Info.getLangOpts().CPlusPlus2a && MD->isTrivial() &&
5504         !HandleUnionActiveMemberChange(Info, Args[0], *This))
5505       return false;
5506     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
5507                           RHSValue))
5508       return false;
5509     This->moveInto(Result);
5510     return true;
5511   } else if (MD && isLambdaCallOperator(MD)) {
5512     // We're in a lambda; determine the lambda capture field maps unless we're
5513     // just constexpr checking a lambda's call operator. constexpr checking is
5514     // done before the captures have been added to the closure object (unless
5515     // we're inferring constexpr-ness), so we don't have access to them in this
5516     // case. But since we don't need the captures to constexpr check, we can
5517     // just ignore them.
5518     if (!Info.checkingPotentialConstantExpression())
5519       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
5520                                         Frame.LambdaThisCaptureField);
5521   }
5522 
5523   StmtResult Ret = {Result, ResultSlot};
5524   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
5525   if (ESR == ESR_Succeeded) {
5526     if (Callee->getReturnType()->isVoidType())
5527       return true;
5528     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
5529   }
5530   return ESR == ESR_Returned;
5531 }
5532 
5533 /// Evaluate a constructor call.
5534 static bool HandleConstructorCall(const Expr *E, const LValue &This,
5535                                   APValue *ArgValues,
5536                                   const CXXConstructorDecl *Definition,
5537                                   EvalInfo &Info, APValue &Result) {
5538   SourceLocation CallLoc = E->getExprLoc();
5539   if (!Info.CheckCallLimit(CallLoc))
5540     return false;
5541 
5542   const CXXRecordDecl *RD = Definition->getParent();
5543   if (RD->getNumVBases()) {
5544     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
5545     return false;
5546   }
5547 
5548   EvalInfo::EvaluatingConstructorRAII EvalObj(
5549       Info,
5550       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
5551       RD->getNumBases());
5552   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
5553 
5554   // FIXME: Creating an APValue just to hold a nonexistent return value is
5555   // wasteful.
5556   APValue RetVal;
5557   StmtResult Ret = {RetVal, nullptr};
5558 
5559   // If it's a delegating constructor, delegate.
5560   if (Definition->isDelegatingConstructor()) {
5561     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
5562     {
5563       FullExpressionRAII InitScope(Info);
5564       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
5565           !InitScope.destroy())
5566         return false;
5567     }
5568     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
5569   }
5570 
5571   // For a trivial copy or move constructor, perform an APValue copy. This is
5572   // essential for unions (or classes with anonymous union members), where the
5573   // operations performed by the constructor cannot be represented by
5574   // ctor-initializers.
5575   //
5576   // Skip this for empty non-union classes; we should not perform an
5577   // lvalue-to-rvalue conversion on them because their copy constructor does not
5578   // actually read them.
5579   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
5580       (Definition->getParent()->isUnion() ||
5581        (Definition->isTrivial() && hasFields(Definition->getParent())))) {
5582     LValue RHS;
5583     RHS.setFrom(Info.Ctx, ArgValues[0]);
5584     return handleLValueToRValueConversion(
5585         Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
5586         RHS, Result, Definition->getParent()->isUnion());
5587   }
5588 
5589   // Reserve space for the struct members.
5590   if (!RD->isUnion() && !Result.hasValue())
5591     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
5592                      std::distance(RD->field_begin(), RD->field_end()));
5593 
5594   if (RD->isInvalidDecl()) return false;
5595   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5596 
5597   // A scope for temporaries lifetime-extended by reference members.
5598   BlockScopeRAII LifetimeExtendedScope(Info);
5599 
5600   bool Success = true;
5601   unsigned BasesSeen = 0;
5602 #ifndef NDEBUG
5603   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
5604 #endif
5605   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
5606   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
5607     // We might be initializing the same field again if this is an indirect
5608     // field initialization.
5609     if (FieldIt == RD->field_end() ||
5610         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
5611       assert(Indirect && "fields out of order?");
5612       return;
5613     }
5614 
5615     // Default-initialize any fields with no explicit initializer.
5616     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
5617       assert(FieldIt != RD->field_end() && "missing field?");
5618       if (!FieldIt->isUnnamedBitfield())
5619         Result.getStructField(FieldIt->getFieldIndex()) =
5620             getDefaultInitValue(FieldIt->getType());
5621     }
5622     ++FieldIt;
5623   };
5624   for (const auto *I : Definition->inits()) {
5625     LValue Subobject = This;
5626     LValue SubobjectParent = This;
5627     APValue *Value = &Result;
5628 
5629     // Determine the subobject to initialize.
5630     FieldDecl *FD = nullptr;
5631     if (I->isBaseInitializer()) {
5632       QualType BaseType(I->getBaseClass(), 0);
5633 #ifndef NDEBUG
5634       // Non-virtual base classes are initialized in the order in the class
5635       // definition. We have already checked for virtual base classes.
5636       assert(!BaseIt->isVirtual() && "virtual base for literal type");
5637       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
5638              "base class initializers not in expected order");
5639       ++BaseIt;
5640 #endif
5641       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
5642                                   BaseType->getAsCXXRecordDecl(), &Layout))
5643         return false;
5644       Value = &Result.getStructBase(BasesSeen++);
5645     } else if ((FD = I->getMember())) {
5646       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
5647         return false;
5648       if (RD->isUnion()) {
5649         Result = APValue(FD);
5650         Value = &Result.getUnionValue();
5651       } else {
5652         SkipToField(FD, false);
5653         Value = &Result.getStructField(FD->getFieldIndex());
5654       }
5655     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
5656       // Walk the indirect field decl's chain to find the object to initialize,
5657       // and make sure we've initialized every step along it.
5658       auto IndirectFieldChain = IFD->chain();
5659       for (auto *C : IndirectFieldChain) {
5660         FD = cast<FieldDecl>(C);
5661         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
5662         // Switch the union field if it differs. This happens if we had
5663         // preceding zero-initialization, and we're now initializing a union
5664         // subobject other than the first.
5665         // FIXME: In this case, the values of the other subobjects are
5666         // specified, since zero-initialization sets all padding bits to zero.
5667         if (!Value->hasValue() ||
5668             (Value->isUnion() && Value->getUnionField() != FD)) {
5669           if (CD->isUnion())
5670             *Value = APValue(FD);
5671           else
5672             // FIXME: This immediately starts the lifetime of all members of an
5673             // anonymous struct. It would be preferable to strictly start member
5674             // lifetime in initialization order.
5675             *Value = getDefaultInitValue(Info.Ctx.getRecordType(CD));
5676         }
5677         // Store Subobject as its parent before updating it for the last element
5678         // in the chain.
5679         if (C == IndirectFieldChain.back())
5680           SubobjectParent = Subobject;
5681         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
5682           return false;
5683         if (CD->isUnion())
5684           Value = &Value->getUnionValue();
5685         else {
5686           if (C == IndirectFieldChain.front() && !RD->isUnion())
5687             SkipToField(FD, true);
5688           Value = &Value->getStructField(FD->getFieldIndex());
5689         }
5690       }
5691     } else {
5692       llvm_unreachable("unknown base initializer kind");
5693     }
5694 
5695     // Need to override This for implicit field initializers as in this case
5696     // This refers to innermost anonymous struct/union containing initializer,
5697     // not to currently constructed class.
5698     const Expr *Init = I->getInit();
5699     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
5700                                   isa<CXXDefaultInitExpr>(Init));
5701     FullExpressionRAII InitScope(Info);
5702     if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
5703         (FD && FD->isBitField() &&
5704          !truncateBitfieldValue(Info, Init, *Value, FD))) {
5705       // If we're checking for a potential constant expression, evaluate all
5706       // initializers even if some of them fail.
5707       if (!Info.noteFailure())
5708         return false;
5709       Success = false;
5710     }
5711 
5712     // This is the point at which the dynamic type of the object becomes this
5713     // class type.
5714     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
5715       EvalObj.finishedConstructingBases();
5716   }
5717 
5718   // Default-initialize any remaining fields.
5719   if (!RD->isUnion()) {
5720     for (; FieldIt != RD->field_end(); ++FieldIt) {
5721       if (!FieldIt->isUnnamedBitfield())
5722         Result.getStructField(FieldIt->getFieldIndex()) =
5723             getDefaultInitValue(FieldIt->getType());
5724     }
5725   }
5726 
5727   return Success &&
5728          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
5729          LifetimeExtendedScope.destroy();
5730 }
5731 
5732 static bool HandleConstructorCall(const Expr *E, const LValue &This,
5733                                   ArrayRef<const Expr*> Args,
5734                                   const CXXConstructorDecl *Definition,
5735                                   EvalInfo &Info, APValue &Result) {
5736   ArgVector ArgValues(Args.size());
5737   if (!EvaluateArgs(Args, ArgValues, Info, Definition))
5738     return false;
5739 
5740   return HandleConstructorCall(E, This, ArgValues.data(), Definition,
5741                                Info, Result);
5742 }
5743 
5744 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
5745                                   const LValue &This, APValue &Value,
5746                                   QualType T) {
5747   // Objects can only be destroyed while they're within their lifetimes.
5748   // FIXME: We have no representation for whether an object of type nullptr_t
5749   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
5750   // as indeterminate instead?
5751   if (Value.isAbsent() && !T->isNullPtrType()) {
5752     APValue Printable;
5753     This.moveInto(Printable);
5754     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
5755       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
5756     return false;
5757   }
5758 
5759   // Invent an expression for location purposes.
5760   // FIXME: We shouldn't need to do this.
5761   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
5762 
5763   // For arrays, destroy elements right-to-left.
5764   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
5765     uint64_t Size = CAT->getSize().getZExtValue();
5766     QualType ElemT = CAT->getElementType();
5767 
5768     LValue ElemLV = This;
5769     ElemLV.addArray(Info, &LocE, CAT);
5770     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
5771       return false;
5772 
5773     // Ensure that we have actual array elements available to destroy; the
5774     // destructors might mutate the value, so we can't run them on the array
5775     // filler.
5776     if (Size && Size > Value.getArrayInitializedElts())
5777       expandArray(Value, Value.getArraySize() - 1);
5778 
5779     for (; Size != 0; --Size) {
5780       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
5781       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
5782           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
5783         return false;
5784     }
5785 
5786     // End the lifetime of this array now.
5787     Value = APValue();
5788     return true;
5789   }
5790 
5791   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5792   if (!RD) {
5793     if (T.isDestructedType()) {
5794       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
5795       return false;
5796     }
5797 
5798     Value = APValue();
5799     return true;
5800   }
5801 
5802   if (RD->getNumVBases()) {
5803     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
5804     return false;
5805   }
5806 
5807   const CXXDestructorDecl *DD = RD->getDestructor();
5808   if (!DD && !RD->hasTrivialDestructor()) {
5809     Info.FFDiag(CallLoc);
5810     return false;
5811   }
5812 
5813   if (!DD || DD->isTrivial() ||
5814       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
5815     // A trivial destructor just ends the lifetime of the object. Check for
5816     // this case before checking for a body, because we might not bother
5817     // building a body for a trivial destructor. Note that it doesn't matter
5818     // whether the destructor is constexpr in this case; all trivial
5819     // destructors are constexpr.
5820     //
5821     // If an anonymous union would be destroyed, some enclosing destructor must
5822     // have been explicitly defined, and the anonymous union destruction should
5823     // have no effect.
5824     Value = APValue();
5825     return true;
5826   }
5827 
5828   if (!Info.CheckCallLimit(CallLoc))
5829     return false;
5830 
5831   const FunctionDecl *Definition = nullptr;
5832   const Stmt *Body = DD->getBody(Definition);
5833 
5834   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
5835     return false;
5836 
5837   CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr);
5838 
5839   // We're now in the period of destruction of this object.
5840   unsigned BasesLeft = RD->getNumBases();
5841   EvalInfo::EvaluatingDestructorRAII EvalObj(
5842       Info,
5843       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
5844   if (!EvalObj.DidInsert) {
5845     // C++2a [class.dtor]p19:
5846     //   the behavior is undefined if the destructor is invoked for an object
5847     //   whose lifetime has ended
5848     // (Note that formally the lifetime ends when the period of destruction
5849     // begins, even though certain uses of the object remain valid until the
5850     // period of destruction ends.)
5851     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
5852     return false;
5853   }
5854 
5855   // FIXME: Creating an APValue just to hold a nonexistent return value is
5856   // wasteful.
5857   APValue RetVal;
5858   StmtResult Ret = {RetVal, nullptr};
5859   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
5860     return false;
5861 
5862   // A union destructor does not implicitly destroy its members.
5863   if (RD->isUnion())
5864     return true;
5865 
5866   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5867 
5868   // We don't have a good way to iterate fields in reverse, so collect all the
5869   // fields first and then walk them backwards.
5870   SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
5871   for (const FieldDecl *FD : llvm::reverse(Fields)) {
5872     if (FD->isUnnamedBitfield())
5873       continue;
5874 
5875     LValue Subobject = This;
5876     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
5877       return false;
5878 
5879     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
5880     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
5881                                FD->getType()))
5882       return false;
5883   }
5884 
5885   if (BasesLeft != 0)
5886     EvalObj.startedDestroyingBases();
5887 
5888   // Destroy base classes in reverse order.
5889   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
5890     --BasesLeft;
5891 
5892     QualType BaseType = Base.getType();
5893     LValue Subobject = This;
5894     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
5895                                 BaseType->getAsCXXRecordDecl(), &Layout))
5896       return false;
5897 
5898     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
5899     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
5900                                BaseType))
5901       return false;
5902   }
5903   assert(BasesLeft == 0 && "NumBases was wrong?");
5904 
5905   // The period of destruction ends now. The object is gone.
5906   Value = APValue();
5907   return true;
5908 }
5909 
5910 namespace {
5911 struct DestroyObjectHandler {
5912   EvalInfo &Info;
5913   const Expr *E;
5914   const LValue &This;
5915   const AccessKinds AccessKind;
5916 
5917   typedef bool result_type;
5918   bool failed() { return false; }
5919   bool found(APValue &Subobj, QualType SubobjType) {
5920     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
5921                                  SubobjType);
5922   }
5923   bool found(APSInt &Value, QualType SubobjType) {
5924     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
5925     return false;
5926   }
5927   bool found(APFloat &Value, QualType SubobjType) {
5928     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
5929     return false;
5930   }
5931 };
5932 }
5933 
5934 /// Perform a destructor or pseudo-destructor call on the given object, which
5935 /// might in general not be a complete object.
5936 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
5937                               const LValue &This, QualType ThisType) {
5938   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
5939   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
5940   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5941 }
5942 
5943 /// Destroy and end the lifetime of the given complete object.
5944 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
5945                               APValue::LValueBase LVBase, APValue &Value,
5946                               QualType T) {
5947   // If we've had an unmodeled side-effect, we can't rely on mutable state
5948   // (such as the object we're about to destroy) being correct.
5949   if (Info.EvalStatus.HasSideEffects)
5950     return false;
5951 
5952   LValue LV;
5953   LV.set({LVBase});
5954   return HandleDestructionImpl(Info, Loc, LV, Value, T);
5955 }
5956 
5957 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
5958 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
5959                                   LValue &Result) {
5960   if (Info.checkingPotentialConstantExpression() ||
5961       Info.SpeculativeEvaluationDepth)
5962     return false;
5963 
5964   // This is permitted only within a call to std::allocator<T>::allocate.
5965   auto Caller = Info.getStdAllocatorCaller("allocate");
5966   if (!Caller) {
5967     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus2a
5968                                      ? diag::note_constexpr_new_untyped
5969                                      : diag::note_constexpr_new);
5970     return false;
5971   }
5972 
5973   QualType ElemType = Caller.ElemType;
5974   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
5975     Info.FFDiag(E->getExprLoc(),
5976                 diag::note_constexpr_new_not_complete_object_type)
5977         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
5978     return false;
5979   }
5980 
5981   APSInt ByteSize;
5982   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
5983     return false;
5984   bool IsNothrow = false;
5985   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
5986     EvaluateIgnoredValue(Info, E->getArg(I));
5987     IsNothrow |= E->getType()->isNothrowT();
5988   }
5989 
5990   CharUnits ElemSize;
5991   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
5992     return false;
5993   APInt Size, Remainder;
5994   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
5995   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
5996   if (Remainder != 0) {
5997     // This likely indicates a bug in the implementation of 'std::allocator'.
5998     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
5999         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6000     return false;
6001   }
6002 
6003   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6004     if (IsNothrow) {
6005       Result.setNull(Info.Ctx, E->getType());
6006       return true;
6007     }
6008 
6009     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6010     return false;
6011   }
6012 
6013   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6014                                                      ArrayType::Normal, 0);
6015   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6016   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6017   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6018   return true;
6019 }
6020 
6021 static bool hasVirtualDestructor(QualType T) {
6022   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6023     if (CXXDestructorDecl *DD = RD->getDestructor())
6024       return DD->isVirtual();
6025   return false;
6026 }
6027 
6028 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6029   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6030     if (CXXDestructorDecl *DD = RD->getDestructor())
6031       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6032   return nullptr;
6033 }
6034 
6035 /// Check that the given object is a suitable pointer to a heap allocation that
6036 /// still exists and is of the right kind for the purpose of a deletion.
6037 ///
6038 /// On success, returns the heap allocation to deallocate. On failure, produces
6039 /// a diagnostic and returns None.
6040 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6041                                             const LValue &Pointer,
6042                                             DynAlloc::Kind DeallocKind) {
6043   auto PointerAsString = [&] {
6044     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6045   };
6046 
6047   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6048   if (!DA) {
6049     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6050         << PointerAsString();
6051     if (Pointer.Base)
6052       NoteLValueLocation(Info, Pointer.Base);
6053     return None;
6054   }
6055 
6056   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6057   if (!Alloc) {
6058     Info.FFDiag(E, diag::note_constexpr_double_delete);
6059     return None;
6060   }
6061 
6062   QualType AllocType = Pointer.Base.getDynamicAllocType();
6063   if (DeallocKind != (*Alloc)->getKind()) {
6064     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6065         << DeallocKind << (*Alloc)->getKind() << AllocType;
6066     NoteLValueLocation(Info, Pointer.Base);
6067     return None;
6068   }
6069 
6070   bool Subobject = false;
6071   if (DeallocKind == DynAlloc::New) {
6072     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6073                 Pointer.Designator.isOnePastTheEnd();
6074   } else {
6075     Subobject = Pointer.Designator.Entries.size() != 1 ||
6076                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6077   }
6078   if (Subobject) {
6079     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6080         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6081     return None;
6082   }
6083 
6084   return Alloc;
6085 }
6086 
6087 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6088 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6089   if (Info.checkingPotentialConstantExpression() ||
6090       Info.SpeculativeEvaluationDepth)
6091     return false;
6092 
6093   // This is permitted only within a call to std::allocator<T>::deallocate.
6094   if (!Info.getStdAllocatorCaller("deallocate")) {
6095     Info.FFDiag(E->getExprLoc());
6096     return true;
6097   }
6098 
6099   LValue Pointer;
6100   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6101     return false;
6102   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6103     EvaluateIgnoredValue(Info, E->getArg(I));
6104 
6105   if (Pointer.Designator.Invalid)
6106     return false;
6107 
6108   // Deleting a null pointer has no effect.
6109   if (Pointer.isNullPointer())
6110     return true;
6111 
6112   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6113     return false;
6114 
6115   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6116   return true;
6117 }
6118 
6119 //===----------------------------------------------------------------------===//
6120 // Generic Evaluation
6121 //===----------------------------------------------------------------------===//
6122 namespace {
6123 
6124 class BitCastBuffer {
6125   // FIXME: We're going to need bit-level granularity when we support
6126   // bit-fields.
6127   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6128   // we don't support a host or target where that is the case. Still, we should
6129   // use a more generic type in case we ever do.
6130   SmallVector<Optional<unsigned char>, 32> Bytes;
6131 
6132   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6133                 "Need at least 8 bit unsigned char");
6134 
6135   bool TargetIsLittleEndian;
6136 
6137 public:
6138   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6139       : Bytes(Width.getQuantity()),
6140         TargetIsLittleEndian(TargetIsLittleEndian) {}
6141 
6142   LLVM_NODISCARD
6143   bool readObject(CharUnits Offset, CharUnits Width,
6144                   SmallVectorImpl<unsigned char> &Output) const {
6145     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6146       // If a byte of an integer is uninitialized, then the whole integer is
6147       // uninitalized.
6148       if (!Bytes[I.getQuantity()])
6149         return false;
6150       Output.push_back(*Bytes[I.getQuantity()]);
6151     }
6152     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6153       std::reverse(Output.begin(), Output.end());
6154     return true;
6155   }
6156 
6157   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6158     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6159       std::reverse(Input.begin(), Input.end());
6160 
6161     size_t Index = 0;
6162     for (unsigned char Byte : Input) {
6163       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6164       Bytes[Offset.getQuantity() + Index] = Byte;
6165       ++Index;
6166     }
6167   }
6168 
6169   size_t size() { return Bytes.size(); }
6170 };
6171 
6172 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6173 /// target would represent the value at runtime.
6174 class APValueToBufferConverter {
6175   EvalInfo &Info;
6176   BitCastBuffer Buffer;
6177   const CastExpr *BCE;
6178 
6179   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6180                            const CastExpr *BCE)
6181       : Info(Info),
6182         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6183         BCE(BCE) {}
6184 
6185   bool visit(const APValue &Val, QualType Ty) {
6186     return visit(Val, Ty, CharUnits::fromQuantity(0));
6187   }
6188 
6189   // Write out Val with type Ty into Buffer starting at Offset.
6190   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6191     assert((size_t)Offset.getQuantity() <= Buffer.size());
6192 
6193     // As a special case, nullptr_t has an indeterminate value.
6194     if (Ty->isNullPtrType())
6195       return true;
6196 
6197     // Dig through Src to find the byte at SrcOffset.
6198     switch (Val.getKind()) {
6199     case APValue::Indeterminate:
6200     case APValue::None:
6201       return true;
6202 
6203     case APValue::Int:
6204       return visitInt(Val.getInt(), Ty, Offset);
6205     case APValue::Float:
6206       return visitFloat(Val.getFloat(), Ty, Offset);
6207     case APValue::Array:
6208       return visitArray(Val, Ty, Offset);
6209     case APValue::Struct:
6210       return visitRecord(Val, Ty, Offset);
6211 
6212     case APValue::ComplexInt:
6213     case APValue::ComplexFloat:
6214     case APValue::Vector:
6215     case APValue::FixedPoint:
6216       // FIXME: We should support these.
6217 
6218     case APValue::Union:
6219     case APValue::MemberPointer:
6220     case APValue::AddrLabelDiff: {
6221       Info.FFDiag(BCE->getBeginLoc(),
6222                   diag::note_constexpr_bit_cast_unsupported_type)
6223           << Ty;
6224       return false;
6225     }
6226 
6227     case APValue::LValue:
6228       llvm_unreachable("LValue subobject in bit_cast?");
6229     }
6230     llvm_unreachable("Unhandled APValue::ValueKind");
6231   }
6232 
6233   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6234     const RecordDecl *RD = Ty->getAsRecordDecl();
6235     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6236 
6237     // Visit the base classes.
6238     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6239       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6240         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6241         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6242 
6243         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6244                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6245           return false;
6246       }
6247     }
6248 
6249     // Visit the fields.
6250     unsigned FieldIdx = 0;
6251     for (FieldDecl *FD : RD->fields()) {
6252       if (FD->isBitField()) {
6253         Info.FFDiag(BCE->getBeginLoc(),
6254                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6255         return false;
6256       }
6257 
6258       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6259 
6260       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6261              "only bit-fields can have sub-char alignment");
6262       CharUnits FieldOffset =
6263           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6264       QualType FieldTy = FD->getType();
6265       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6266         return false;
6267       ++FieldIdx;
6268     }
6269 
6270     return true;
6271   }
6272 
6273   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6274     const auto *CAT =
6275         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6276     if (!CAT)
6277       return false;
6278 
6279     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6280     unsigned NumInitializedElts = Val.getArrayInitializedElts();
6281     unsigned ArraySize = Val.getArraySize();
6282     // First, initialize the initialized elements.
6283     for (unsigned I = 0; I != NumInitializedElts; ++I) {
6284       const APValue &SubObj = Val.getArrayInitializedElt(I);
6285       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6286         return false;
6287     }
6288 
6289     // Next, initialize the rest of the array using the filler.
6290     if (Val.hasArrayFiller()) {
6291       const APValue &Filler = Val.getArrayFiller();
6292       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6293         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6294           return false;
6295       }
6296     }
6297 
6298     return true;
6299   }
6300 
6301   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6302     CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty);
6303     SmallVector<unsigned char, 8> Bytes(Width.getQuantity());
6304     llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity());
6305     Buffer.writeObject(Offset, Bytes);
6306     return true;
6307   }
6308 
6309   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6310     APSInt AsInt(Val.bitcastToAPInt());
6311     return visitInt(AsInt, Ty, Offset);
6312   }
6313 
6314 public:
6315   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6316                                          const CastExpr *BCE) {
6317     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6318     APValueToBufferConverter Converter(Info, DstSize, BCE);
6319     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6320       return None;
6321     return Converter.Buffer;
6322   }
6323 };
6324 
6325 /// Write an BitCastBuffer into an APValue.
6326 class BufferToAPValueConverter {
6327   EvalInfo &Info;
6328   const BitCastBuffer &Buffer;
6329   const CastExpr *BCE;
6330 
6331   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6332                            const CastExpr *BCE)
6333       : Info(Info), Buffer(Buffer), BCE(BCE) {}
6334 
6335   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6336   // with an invalid type, so anything left is a deficiency on our part (FIXME).
6337   // Ideally this will be unreachable.
6338   llvm::NoneType unsupportedType(QualType Ty) {
6339     Info.FFDiag(BCE->getBeginLoc(),
6340                 diag::note_constexpr_bit_cast_unsupported_type)
6341         << Ty;
6342     return None;
6343   }
6344 
6345   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
6346                           const EnumType *EnumSugar = nullptr) {
6347     if (T->isNullPtrType()) {
6348       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
6349       return APValue((Expr *)nullptr,
6350                      /*Offset=*/CharUnits::fromQuantity(NullValue),
6351                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
6352     }
6353 
6354     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
6355     SmallVector<uint8_t, 8> Bytes;
6356     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
6357       // If this is std::byte or unsigned char, then its okay to store an
6358       // indeterminate value.
6359       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
6360       bool IsUChar =
6361           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
6362                          T->isSpecificBuiltinType(BuiltinType::Char_U));
6363       if (!IsStdByte && !IsUChar) {
6364         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
6365         Info.FFDiag(BCE->getExprLoc(),
6366                     diag::note_constexpr_bit_cast_indet_dest)
6367             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
6368         return None;
6369       }
6370 
6371       return APValue::IndeterminateValue();
6372     }
6373 
6374     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
6375     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
6376 
6377     if (T->isIntegralOrEnumerationType()) {
6378       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
6379       return APValue(Val);
6380     }
6381 
6382     if (T->isRealFloatingType()) {
6383       const llvm::fltSemantics &Semantics =
6384           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
6385       return APValue(APFloat(Semantics, Val));
6386     }
6387 
6388     return unsupportedType(QualType(T, 0));
6389   }
6390 
6391   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
6392     const RecordDecl *RD = RTy->getAsRecordDecl();
6393     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6394 
6395     unsigned NumBases = 0;
6396     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6397       NumBases = CXXRD->getNumBases();
6398 
6399     APValue ResultVal(APValue::UninitStruct(), NumBases,
6400                       std::distance(RD->field_begin(), RD->field_end()));
6401 
6402     // Visit the base classes.
6403     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6404       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6405         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6406         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6407         if (BaseDecl->isEmpty() ||
6408             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
6409           continue;
6410 
6411         Optional<APValue> SubObj = visitType(
6412             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
6413         if (!SubObj)
6414           return None;
6415         ResultVal.getStructBase(I) = *SubObj;
6416       }
6417     }
6418 
6419     // Visit the fields.
6420     unsigned FieldIdx = 0;
6421     for (FieldDecl *FD : RD->fields()) {
6422       // FIXME: We don't currently support bit-fields. A lot of the logic for
6423       // this is in CodeGen, so we need to factor it around.
6424       if (FD->isBitField()) {
6425         Info.FFDiag(BCE->getBeginLoc(),
6426                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6427         return None;
6428       }
6429 
6430       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6431       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
6432 
6433       CharUnits FieldOffset =
6434           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
6435           Offset;
6436       QualType FieldTy = FD->getType();
6437       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
6438       if (!SubObj)
6439         return None;
6440       ResultVal.getStructField(FieldIdx) = *SubObj;
6441       ++FieldIdx;
6442     }
6443 
6444     return ResultVal;
6445   }
6446 
6447   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
6448     QualType RepresentationType = Ty->getDecl()->getIntegerType();
6449     assert(!RepresentationType.isNull() &&
6450            "enum forward decl should be caught by Sema");
6451     const auto *AsBuiltin =
6452         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
6453     // Recurse into the underlying type. Treat std::byte transparently as
6454     // unsigned char.
6455     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
6456   }
6457 
6458   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
6459     size_t Size = Ty->getSize().getLimitedValue();
6460     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
6461 
6462     APValue ArrayValue(APValue::UninitArray(), Size, Size);
6463     for (size_t I = 0; I != Size; ++I) {
6464       Optional<APValue> ElementValue =
6465           visitType(Ty->getElementType(), Offset + I * ElementWidth);
6466       if (!ElementValue)
6467         return None;
6468       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
6469     }
6470 
6471     return ArrayValue;
6472   }
6473 
6474   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
6475     return unsupportedType(QualType(Ty, 0));
6476   }
6477 
6478   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
6479     QualType Can = Ty.getCanonicalType();
6480 
6481     switch (Can->getTypeClass()) {
6482 #define TYPE(Class, Base)                                                      \
6483   case Type::Class:                                                            \
6484     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
6485 #define ABSTRACT_TYPE(Class, Base)
6486 #define NON_CANONICAL_TYPE(Class, Base)                                        \
6487   case Type::Class:                                                            \
6488     llvm_unreachable("non-canonical type should be impossible!");
6489 #define DEPENDENT_TYPE(Class, Base)                                            \
6490   case Type::Class:                                                            \
6491     llvm_unreachable(                                                          \
6492         "dependent types aren't supported in the constant evaluator!");
6493 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
6494   case Type::Class:                                                            \
6495     llvm_unreachable("either dependent or not canonical!");
6496 #include "clang/AST/TypeNodes.inc"
6497     }
6498     llvm_unreachable("Unhandled Type::TypeClass");
6499   }
6500 
6501 public:
6502   // Pull out a full value of type DstType.
6503   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
6504                                    const CastExpr *BCE) {
6505     BufferToAPValueConverter Converter(Info, Buffer, BCE);
6506     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
6507   }
6508 };
6509 
6510 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
6511                                                  QualType Ty, EvalInfo *Info,
6512                                                  const ASTContext &Ctx,
6513                                                  bool CheckingDest) {
6514   Ty = Ty.getCanonicalType();
6515 
6516   auto diag = [&](int Reason) {
6517     if (Info)
6518       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
6519           << CheckingDest << (Reason == 4) << Reason;
6520     return false;
6521   };
6522   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
6523     if (Info)
6524       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
6525           << NoteTy << Construct << Ty;
6526     return false;
6527   };
6528 
6529   if (Ty->isUnionType())
6530     return diag(0);
6531   if (Ty->isPointerType())
6532     return diag(1);
6533   if (Ty->isMemberPointerType())
6534     return diag(2);
6535   if (Ty.isVolatileQualified())
6536     return diag(3);
6537 
6538   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
6539     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
6540       for (CXXBaseSpecifier &BS : CXXRD->bases())
6541         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
6542                                                   CheckingDest))
6543           return note(1, BS.getType(), BS.getBeginLoc());
6544     }
6545     for (FieldDecl *FD : Record->fields()) {
6546       if (FD->getType()->isReferenceType())
6547         return diag(4);
6548       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
6549                                                 CheckingDest))
6550         return note(0, FD->getType(), FD->getBeginLoc());
6551     }
6552   }
6553 
6554   if (Ty->isArrayType() &&
6555       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
6556                                             Info, Ctx, CheckingDest))
6557     return false;
6558 
6559   return true;
6560 }
6561 
6562 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
6563                                              const ASTContext &Ctx,
6564                                              const CastExpr *BCE) {
6565   bool DestOK = checkBitCastConstexprEligibilityType(
6566       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
6567   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
6568                                 BCE->getBeginLoc(),
6569                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
6570   return SourceOK;
6571 }
6572 
6573 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
6574                                         APValue &SourceValue,
6575                                         const CastExpr *BCE) {
6576   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
6577          "no host or target supports non 8-bit chars");
6578   assert(SourceValue.isLValue() &&
6579          "LValueToRValueBitcast requires an lvalue operand!");
6580 
6581   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
6582     return false;
6583 
6584   LValue SourceLValue;
6585   APValue SourceRValue;
6586   SourceLValue.setFrom(Info.Ctx, SourceValue);
6587   if (!handleLValueToRValueConversion(
6588           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
6589           SourceRValue, /*WantObjectRepresentation=*/true))
6590     return false;
6591 
6592   // Read out SourceValue into a char buffer.
6593   Optional<BitCastBuffer> Buffer =
6594       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
6595   if (!Buffer)
6596     return false;
6597 
6598   // Write out the buffer into a new APValue.
6599   Optional<APValue> MaybeDestValue =
6600       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
6601   if (!MaybeDestValue)
6602     return false;
6603 
6604   DestValue = std::move(*MaybeDestValue);
6605   return true;
6606 }
6607 
6608 template <class Derived>
6609 class ExprEvaluatorBase
6610   : public ConstStmtVisitor<Derived, bool> {
6611 private:
6612   Derived &getDerived() { return static_cast<Derived&>(*this); }
6613   bool DerivedSuccess(const APValue &V, const Expr *E) {
6614     return getDerived().Success(V, E);
6615   }
6616   bool DerivedZeroInitialization(const Expr *E) {
6617     return getDerived().ZeroInitialization(E);
6618   }
6619 
6620   // Check whether a conditional operator with a non-constant condition is a
6621   // potential constant expression. If neither arm is a potential constant
6622   // expression, then the conditional operator is not either.
6623   template<typename ConditionalOperator>
6624   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
6625     assert(Info.checkingPotentialConstantExpression());
6626 
6627     // Speculatively evaluate both arms.
6628     SmallVector<PartialDiagnosticAt, 8> Diag;
6629     {
6630       SpeculativeEvaluationRAII Speculate(Info, &Diag);
6631       StmtVisitorTy::Visit(E->getFalseExpr());
6632       if (Diag.empty())
6633         return;
6634     }
6635 
6636     {
6637       SpeculativeEvaluationRAII Speculate(Info, &Diag);
6638       Diag.clear();
6639       StmtVisitorTy::Visit(E->getTrueExpr());
6640       if (Diag.empty())
6641         return;
6642     }
6643 
6644     Error(E, diag::note_constexpr_conditional_never_const);
6645   }
6646 
6647 
6648   template<typename ConditionalOperator>
6649   bool HandleConditionalOperator(const ConditionalOperator *E) {
6650     bool BoolResult;
6651     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
6652       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
6653         CheckPotentialConstantConditional(E);
6654         return false;
6655       }
6656       if (Info.noteFailure()) {
6657         StmtVisitorTy::Visit(E->getTrueExpr());
6658         StmtVisitorTy::Visit(E->getFalseExpr());
6659       }
6660       return false;
6661     }
6662 
6663     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
6664     return StmtVisitorTy::Visit(EvalExpr);
6665   }
6666 
6667 protected:
6668   EvalInfo &Info;
6669   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
6670   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
6671 
6672   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6673     return Info.CCEDiag(E, D);
6674   }
6675 
6676   bool ZeroInitialization(const Expr *E) { return Error(E); }
6677 
6678 public:
6679   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
6680 
6681   EvalInfo &getEvalInfo() { return Info; }
6682 
6683   /// Report an evaluation error. This should only be called when an error is
6684   /// first discovered. When propagating an error, just return false.
6685   bool Error(const Expr *E, diag::kind D) {
6686     Info.FFDiag(E, D);
6687     return false;
6688   }
6689   bool Error(const Expr *E) {
6690     return Error(E, diag::note_invalid_subexpr_in_const_expr);
6691   }
6692 
6693   bool VisitStmt(const Stmt *) {
6694     llvm_unreachable("Expression evaluator should not be called on stmts");
6695   }
6696   bool VisitExpr(const Expr *E) {
6697     return Error(E);
6698   }
6699 
6700   bool VisitConstantExpr(const ConstantExpr *E)
6701     { return StmtVisitorTy::Visit(E->getSubExpr()); }
6702   bool VisitParenExpr(const ParenExpr *E)
6703     { return StmtVisitorTy::Visit(E->getSubExpr()); }
6704   bool VisitUnaryExtension(const UnaryOperator *E)
6705     { return StmtVisitorTy::Visit(E->getSubExpr()); }
6706   bool VisitUnaryPlus(const UnaryOperator *E)
6707     { return StmtVisitorTy::Visit(E->getSubExpr()); }
6708   bool VisitChooseExpr(const ChooseExpr *E)
6709     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
6710   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
6711     { return StmtVisitorTy::Visit(E->getResultExpr()); }
6712   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
6713     { return StmtVisitorTy::Visit(E->getReplacement()); }
6714   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
6715     TempVersionRAII RAII(*Info.CurrentCall);
6716     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
6717     return StmtVisitorTy::Visit(E->getExpr());
6718   }
6719   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
6720     TempVersionRAII RAII(*Info.CurrentCall);
6721     // The initializer may not have been parsed yet, or might be erroneous.
6722     if (!E->getExpr())
6723       return Error(E);
6724     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
6725     return StmtVisitorTy::Visit(E->getExpr());
6726   }
6727 
6728   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
6729     FullExpressionRAII Scope(Info);
6730     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
6731   }
6732 
6733   // Temporaries are registered when created, so we don't care about
6734   // CXXBindTemporaryExpr.
6735   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
6736     return StmtVisitorTy::Visit(E->getSubExpr());
6737   }
6738 
6739   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
6740     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
6741     return static_cast<Derived*>(this)->VisitCastExpr(E);
6742   }
6743   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
6744     if (!Info.Ctx.getLangOpts().CPlusPlus2a)
6745       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
6746     return static_cast<Derived*>(this)->VisitCastExpr(E);
6747   }
6748   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
6749     return static_cast<Derived*>(this)->VisitCastExpr(E);
6750   }
6751 
6752   bool VisitBinaryOperator(const BinaryOperator *E) {
6753     switch (E->getOpcode()) {
6754     default:
6755       return Error(E);
6756 
6757     case BO_Comma:
6758       VisitIgnoredValue(E->getLHS());
6759       return StmtVisitorTy::Visit(E->getRHS());
6760 
6761     case BO_PtrMemD:
6762     case BO_PtrMemI: {
6763       LValue Obj;
6764       if (!HandleMemberPointerAccess(Info, E, Obj))
6765         return false;
6766       APValue Result;
6767       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
6768         return false;
6769       return DerivedSuccess(Result, E);
6770     }
6771     }
6772   }
6773 
6774   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
6775     return StmtVisitorTy::Visit(E->getSemanticForm());
6776   }
6777 
6778   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
6779     // Evaluate and cache the common expression. We treat it as a temporary,
6780     // even though it's not quite the same thing.
6781     LValue CommonLV;
6782     if (!Evaluate(Info.CurrentCall->createTemporary(
6783                       E->getOpaqueValue(),
6784                       getStorageType(Info.Ctx, E->getOpaqueValue()), false,
6785                       CommonLV),
6786                   Info, E->getCommon()))
6787       return false;
6788 
6789     return HandleConditionalOperator(E);
6790   }
6791 
6792   bool VisitConditionalOperator(const ConditionalOperator *E) {
6793     bool IsBcpCall = false;
6794     // If the condition (ignoring parens) is a __builtin_constant_p call,
6795     // the result is a constant expression if it can be folded without
6796     // side-effects. This is an important GNU extension. See GCC PR38377
6797     // for discussion.
6798     if (const CallExpr *CallCE =
6799           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
6800       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
6801         IsBcpCall = true;
6802 
6803     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
6804     // constant expression; we can't check whether it's potentially foldable.
6805     // FIXME: We should instead treat __builtin_constant_p as non-constant if
6806     // it would return 'false' in this mode.
6807     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
6808       return false;
6809 
6810     FoldConstant Fold(Info, IsBcpCall);
6811     if (!HandleConditionalOperator(E)) {
6812       Fold.keepDiagnostics();
6813       return false;
6814     }
6815 
6816     return true;
6817   }
6818 
6819   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
6820     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
6821       return DerivedSuccess(*Value, E);
6822 
6823     const Expr *Source = E->getSourceExpr();
6824     if (!Source)
6825       return Error(E);
6826     if (Source == E) { // sanity checking.
6827       assert(0 && "OpaqueValueExpr recursively refers to itself");
6828       return Error(E);
6829     }
6830     return StmtVisitorTy::Visit(Source);
6831   }
6832 
6833   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
6834     for (const Expr *SemE : E->semantics()) {
6835       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
6836         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
6837         // result expression: there could be two different LValues that would
6838         // refer to the same object in that case, and we can't model that.
6839         if (SemE == E->getResultExpr())
6840           return Error(E);
6841 
6842         // Unique OVEs get evaluated if and when we encounter them when
6843         // emitting the rest of the semantic form, rather than eagerly.
6844         if (OVE->isUnique())
6845           continue;
6846 
6847         LValue LV;
6848         if (!Evaluate(Info.CurrentCall->createTemporary(
6849                           OVE, getStorageType(Info.Ctx, OVE), false, LV),
6850                       Info, OVE->getSourceExpr()))
6851           return false;
6852       } else if (SemE == E->getResultExpr()) {
6853         if (!StmtVisitorTy::Visit(SemE))
6854           return false;
6855       } else {
6856         if (!EvaluateIgnoredValue(Info, SemE))
6857           return false;
6858       }
6859     }
6860     return true;
6861   }
6862 
6863   bool VisitCallExpr(const CallExpr *E) {
6864     APValue Result;
6865     if (!handleCallExpr(E, Result, nullptr))
6866       return false;
6867     return DerivedSuccess(Result, E);
6868   }
6869 
6870   bool handleCallExpr(const CallExpr *E, APValue &Result,
6871                      const LValue *ResultSlot) {
6872     const Expr *Callee = E->getCallee()->IgnoreParens();
6873     QualType CalleeType = Callee->getType();
6874 
6875     const FunctionDecl *FD = nullptr;
6876     LValue *This = nullptr, ThisVal;
6877     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
6878     bool HasQualifier = false;
6879 
6880     // Extract function decl and 'this' pointer from the callee.
6881     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
6882       const CXXMethodDecl *Member = nullptr;
6883       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
6884         // Explicit bound member calls, such as x.f() or p->g();
6885         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
6886           return false;
6887         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
6888         if (!Member)
6889           return Error(Callee);
6890         This = &ThisVal;
6891         HasQualifier = ME->hasQualifier();
6892       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
6893         // Indirect bound member calls ('.*' or '->*').
6894         const ValueDecl *D =
6895             HandleMemberPointerAccess(Info, BE, ThisVal, false);
6896         if (!D)
6897           return false;
6898         Member = dyn_cast<CXXMethodDecl>(D);
6899         if (!Member)
6900           return Error(Callee);
6901         This = &ThisVal;
6902       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
6903         if (!Info.getLangOpts().CPlusPlus2a)
6904           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
6905         // FIXME: If pseudo-destructor calls ever start ending the lifetime of
6906         // their callee, we should start calling HandleDestruction here.
6907         // For now, we just evaluate the object argument and discard it.
6908         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal);
6909       } else
6910         return Error(Callee);
6911       FD = Member;
6912     } else if (CalleeType->isFunctionPointerType()) {
6913       LValue Call;
6914       if (!EvaluatePointer(Callee, Call, Info))
6915         return false;
6916 
6917       if (!Call.getLValueOffset().isZero())
6918         return Error(Callee);
6919       FD = dyn_cast_or_null<FunctionDecl>(
6920                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
6921       if (!FD)
6922         return Error(Callee);
6923       // Don't call function pointers which have been cast to some other type.
6924       // Per DR (no number yet), the caller and callee can differ in noexcept.
6925       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
6926         CalleeType->getPointeeType(), FD->getType())) {
6927         return Error(E);
6928       }
6929 
6930       // Overloaded operator calls to member functions are represented as normal
6931       // calls with '*this' as the first argument.
6932       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6933       if (MD && !MD->isStatic()) {
6934         // FIXME: When selecting an implicit conversion for an overloaded
6935         // operator delete, we sometimes try to evaluate calls to conversion
6936         // operators without a 'this' parameter!
6937         if (Args.empty())
6938           return Error(E);
6939 
6940         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
6941           return false;
6942         This = &ThisVal;
6943         Args = Args.slice(1);
6944       } else if (MD && MD->isLambdaStaticInvoker()) {
6945         // Map the static invoker for the lambda back to the call operator.
6946         // Conveniently, we don't have to slice out the 'this' argument (as is
6947         // being done for the non-static case), since a static member function
6948         // doesn't have an implicit argument passed in.
6949         const CXXRecordDecl *ClosureClass = MD->getParent();
6950         assert(
6951             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
6952             "Number of captures must be zero for conversion to function-ptr");
6953 
6954         const CXXMethodDecl *LambdaCallOp =
6955             ClosureClass->getLambdaCallOperator();
6956 
6957         // Set 'FD', the function that will be called below, to the call
6958         // operator.  If the closure object represents a generic lambda, find
6959         // the corresponding specialization of the call operator.
6960 
6961         if (ClosureClass->isGenericLambda()) {
6962           assert(MD->isFunctionTemplateSpecialization() &&
6963                  "A generic lambda's static-invoker function must be a "
6964                  "template specialization");
6965           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
6966           FunctionTemplateDecl *CallOpTemplate =
6967               LambdaCallOp->getDescribedFunctionTemplate();
6968           void *InsertPos = nullptr;
6969           FunctionDecl *CorrespondingCallOpSpecialization =
6970               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
6971           assert(CorrespondingCallOpSpecialization &&
6972                  "We must always have a function call operator specialization "
6973                  "that corresponds to our static invoker specialization");
6974           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
6975         } else
6976           FD = LambdaCallOp;
6977       } else if (FD->isReplaceableGlobalAllocationFunction()) {
6978         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
6979             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
6980           LValue Ptr;
6981           if (!HandleOperatorNewCall(Info, E, Ptr))
6982             return false;
6983           Ptr.moveInto(Result);
6984           return true;
6985         } else {
6986           return HandleOperatorDeleteCall(Info, E);
6987         }
6988       }
6989     } else
6990       return Error(E);
6991 
6992     SmallVector<QualType, 4> CovariantAdjustmentPath;
6993     if (This) {
6994       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
6995       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
6996         // Perform virtual dispatch, if necessary.
6997         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
6998                                    CovariantAdjustmentPath);
6999         if (!FD)
7000           return false;
7001       } else {
7002         // Check that the 'this' pointer points to an object of the right type.
7003         // FIXME: If this is an assignment operator call, we may need to change
7004         // the active union member before we check this.
7005         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7006           return false;
7007       }
7008     }
7009 
7010     // Destructor calls are different enough that they have their own codepath.
7011     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7012       assert(This && "no 'this' pointer for destructor call");
7013       return HandleDestruction(Info, E, *This,
7014                                Info.Ctx.getRecordType(DD->getParent()));
7015     }
7016 
7017     const FunctionDecl *Definition = nullptr;
7018     Stmt *Body = FD->getBody(Definition);
7019 
7020     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7021         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
7022                             Result, ResultSlot))
7023       return false;
7024 
7025     if (!CovariantAdjustmentPath.empty() &&
7026         !HandleCovariantReturnAdjustment(Info, E, Result,
7027                                          CovariantAdjustmentPath))
7028       return false;
7029 
7030     return true;
7031   }
7032 
7033   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7034     return StmtVisitorTy::Visit(E->getInitializer());
7035   }
7036   bool VisitInitListExpr(const InitListExpr *E) {
7037     if (E->getNumInits() == 0)
7038       return DerivedZeroInitialization(E);
7039     if (E->getNumInits() == 1)
7040       return StmtVisitorTy::Visit(E->getInit(0));
7041     return Error(E);
7042   }
7043   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7044     return DerivedZeroInitialization(E);
7045   }
7046   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7047     return DerivedZeroInitialization(E);
7048   }
7049   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7050     return DerivedZeroInitialization(E);
7051   }
7052 
7053   /// A member expression where the object is a prvalue is itself a prvalue.
7054   bool VisitMemberExpr(const MemberExpr *E) {
7055     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7056            "missing temporary materialization conversion");
7057     assert(!E->isArrow() && "missing call to bound member function?");
7058 
7059     APValue Val;
7060     if (!Evaluate(Val, Info, E->getBase()))
7061       return false;
7062 
7063     QualType BaseTy = E->getBase()->getType();
7064 
7065     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7066     if (!FD) return Error(E);
7067     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7068     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7069            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7070 
7071     // Note: there is no lvalue base here. But this case should only ever
7072     // happen in C or in C++98, where we cannot be evaluating a constexpr
7073     // constructor, which is the only case the base matters.
7074     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7075     SubobjectDesignator Designator(BaseTy);
7076     Designator.addDeclUnchecked(FD);
7077 
7078     APValue Result;
7079     return extractSubobject(Info, E, Obj, Designator, Result) &&
7080            DerivedSuccess(Result, E);
7081   }
7082 
7083   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7084     APValue Val;
7085     if (!Evaluate(Val, Info, E->getBase()))
7086       return false;
7087 
7088     if (Val.isVector()) {
7089       SmallVector<uint32_t, 4> Indices;
7090       E->getEncodedElementAccess(Indices);
7091       if (Indices.size() == 1) {
7092         // Return scalar.
7093         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7094       } else {
7095         // Construct new APValue vector.
7096         SmallVector<APValue, 4> Elts;
7097         for (unsigned I = 0; I < Indices.size(); ++I) {
7098           Elts.push_back(Val.getVectorElt(Indices[I]));
7099         }
7100         APValue VecResult(Elts.data(), Indices.size());
7101         return DerivedSuccess(VecResult, E);
7102       }
7103     }
7104 
7105     return false;
7106   }
7107 
7108   bool VisitCastExpr(const CastExpr *E) {
7109     switch (E->getCastKind()) {
7110     default:
7111       break;
7112 
7113     case CK_AtomicToNonAtomic: {
7114       APValue AtomicVal;
7115       // This does not need to be done in place even for class/array types:
7116       // atomic-to-non-atomic conversion implies copying the object
7117       // representation.
7118       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7119         return false;
7120       return DerivedSuccess(AtomicVal, E);
7121     }
7122 
7123     case CK_NoOp:
7124     case CK_UserDefinedConversion:
7125       return StmtVisitorTy::Visit(E->getSubExpr());
7126 
7127     case CK_LValueToRValue: {
7128       LValue LVal;
7129       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7130         return false;
7131       APValue RVal;
7132       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7133       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7134                                           LVal, RVal))
7135         return false;
7136       return DerivedSuccess(RVal, E);
7137     }
7138     case CK_LValueToRValueBitCast: {
7139       APValue DestValue, SourceValue;
7140       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7141         return false;
7142       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7143         return false;
7144       return DerivedSuccess(DestValue, E);
7145     }
7146 
7147     case CK_AddressSpaceConversion: {
7148       APValue Value;
7149       if (!Evaluate(Value, Info, E->getSubExpr()))
7150         return false;
7151       return DerivedSuccess(Value, E);
7152     }
7153     }
7154 
7155     return Error(E);
7156   }
7157 
7158   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7159     return VisitUnaryPostIncDec(UO);
7160   }
7161   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7162     return VisitUnaryPostIncDec(UO);
7163   }
7164   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7165     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7166       return Error(UO);
7167 
7168     LValue LVal;
7169     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7170       return false;
7171     APValue RVal;
7172     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7173                       UO->isIncrementOp(), &RVal))
7174       return false;
7175     return DerivedSuccess(RVal, UO);
7176   }
7177 
7178   bool VisitStmtExpr(const StmtExpr *E) {
7179     // We will have checked the full-expressions inside the statement expression
7180     // when they were completed, and don't need to check them again now.
7181     if (Info.checkingForUndefinedBehavior())
7182       return Error(E);
7183 
7184     const CompoundStmt *CS = E->getSubStmt();
7185     if (CS->body_empty())
7186       return true;
7187 
7188     BlockScopeRAII Scope(Info);
7189     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7190                                            BE = CS->body_end();
7191          /**/; ++BI) {
7192       if (BI + 1 == BE) {
7193         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7194         if (!FinalExpr) {
7195           Info.FFDiag((*BI)->getBeginLoc(),
7196                       diag::note_constexpr_stmt_expr_unsupported);
7197           return false;
7198         }
7199         return this->Visit(FinalExpr) && Scope.destroy();
7200       }
7201 
7202       APValue ReturnValue;
7203       StmtResult Result = { ReturnValue, nullptr };
7204       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7205       if (ESR != ESR_Succeeded) {
7206         // FIXME: If the statement-expression terminated due to 'return',
7207         // 'break', or 'continue', it would be nice to propagate that to
7208         // the outer statement evaluation rather than bailing out.
7209         if (ESR != ESR_Failed)
7210           Info.FFDiag((*BI)->getBeginLoc(),
7211                       diag::note_constexpr_stmt_expr_unsupported);
7212         return false;
7213       }
7214     }
7215 
7216     llvm_unreachable("Return from function from the loop above.");
7217   }
7218 
7219   /// Visit a value which is evaluated, but whose value is ignored.
7220   void VisitIgnoredValue(const Expr *E) {
7221     EvaluateIgnoredValue(Info, E);
7222   }
7223 
7224   /// Potentially visit a MemberExpr's base expression.
7225   void VisitIgnoredBaseExpression(const Expr *E) {
7226     // While MSVC doesn't evaluate the base expression, it does diagnose the
7227     // presence of side-effecting behavior.
7228     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7229       return;
7230     VisitIgnoredValue(E);
7231   }
7232 };
7233 
7234 } // namespace
7235 
7236 //===----------------------------------------------------------------------===//
7237 // Common base class for lvalue and temporary evaluation.
7238 //===----------------------------------------------------------------------===//
7239 namespace {
7240 template<class Derived>
7241 class LValueExprEvaluatorBase
7242   : public ExprEvaluatorBase<Derived> {
7243 protected:
7244   LValue &Result;
7245   bool InvalidBaseOK;
7246   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7247   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7248 
7249   bool Success(APValue::LValueBase B) {
7250     Result.set(B);
7251     return true;
7252   }
7253 
7254   bool evaluatePointer(const Expr *E, LValue &Result) {
7255     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7256   }
7257 
7258 public:
7259   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7260       : ExprEvaluatorBaseTy(Info), Result(Result),
7261         InvalidBaseOK(InvalidBaseOK) {}
7262 
7263   bool Success(const APValue &V, const Expr *E) {
7264     Result.setFrom(this->Info.Ctx, V);
7265     return true;
7266   }
7267 
7268   bool VisitMemberExpr(const MemberExpr *E) {
7269     // Handle non-static data members.
7270     QualType BaseTy;
7271     bool EvalOK;
7272     if (E->isArrow()) {
7273       EvalOK = evaluatePointer(E->getBase(), Result);
7274       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7275     } else if (E->getBase()->isRValue()) {
7276       assert(E->getBase()->getType()->isRecordType());
7277       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7278       BaseTy = E->getBase()->getType();
7279     } else {
7280       EvalOK = this->Visit(E->getBase());
7281       BaseTy = E->getBase()->getType();
7282     }
7283     if (!EvalOK) {
7284       if (!InvalidBaseOK)
7285         return false;
7286       Result.setInvalid(E);
7287       return true;
7288     }
7289 
7290     const ValueDecl *MD = E->getMemberDecl();
7291     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7292       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7293              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7294       (void)BaseTy;
7295       if (!HandleLValueMember(this->Info, E, Result, FD))
7296         return false;
7297     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
7298       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
7299         return false;
7300     } else
7301       return this->Error(E);
7302 
7303     if (MD->getType()->isReferenceType()) {
7304       APValue RefValue;
7305       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
7306                                           RefValue))
7307         return false;
7308       return Success(RefValue, E);
7309     }
7310     return true;
7311   }
7312 
7313   bool VisitBinaryOperator(const BinaryOperator *E) {
7314     switch (E->getOpcode()) {
7315     default:
7316       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7317 
7318     case BO_PtrMemD:
7319     case BO_PtrMemI:
7320       return HandleMemberPointerAccess(this->Info, E, Result);
7321     }
7322   }
7323 
7324   bool VisitCastExpr(const CastExpr *E) {
7325     switch (E->getCastKind()) {
7326     default:
7327       return ExprEvaluatorBaseTy::VisitCastExpr(E);
7328 
7329     case CK_DerivedToBase:
7330     case CK_UncheckedDerivedToBase:
7331       if (!this->Visit(E->getSubExpr()))
7332         return false;
7333 
7334       // Now figure out the necessary offset to add to the base LV to get from
7335       // the derived class to the base class.
7336       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
7337                                   Result);
7338     }
7339   }
7340 };
7341 }
7342 
7343 //===----------------------------------------------------------------------===//
7344 // LValue Evaluation
7345 //
7346 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
7347 // function designators (in C), decl references to void objects (in C), and
7348 // temporaries (if building with -Wno-address-of-temporary).
7349 //
7350 // LValue evaluation produces values comprising a base expression of one of the
7351 // following types:
7352 // - Declarations
7353 //  * VarDecl
7354 //  * FunctionDecl
7355 // - Literals
7356 //  * CompoundLiteralExpr in C (and in global scope in C++)
7357 //  * StringLiteral
7358 //  * PredefinedExpr
7359 //  * ObjCStringLiteralExpr
7360 //  * ObjCEncodeExpr
7361 //  * AddrLabelExpr
7362 //  * BlockExpr
7363 //  * CallExpr for a MakeStringConstant builtin
7364 // - typeid(T) expressions, as TypeInfoLValues
7365 // - Locals and temporaries
7366 //  * MaterializeTemporaryExpr
7367 //  * Any Expr, with a CallIndex indicating the function in which the temporary
7368 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
7369 //    from the AST (FIXME).
7370 //  * A MaterializeTemporaryExpr that has static storage duration, with no
7371 //    CallIndex, for a lifetime-extended temporary.
7372 // plus an offset in bytes.
7373 //===----------------------------------------------------------------------===//
7374 namespace {
7375 class LValueExprEvaluator
7376   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
7377 public:
7378   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
7379     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
7380 
7381   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
7382   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
7383 
7384   bool VisitDeclRefExpr(const DeclRefExpr *E);
7385   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
7386   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
7387   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
7388   bool VisitMemberExpr(const MemberExpr *E);
7389   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
7390   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
7391   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
7392   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
7393   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
7394   bool VisitUnaryDeref(const UnaryOperator *E);
7395   bool VisitUnaryReal(const UnaryOperator *E);
7396   bool VisitUnaryImag(const UnaryOperator *E);
7397   bool VisitUnaryPreInc(const UnaryOperator *UO) {
7398     return VisitUnaryPreIncDec(UO);
7399   }
7400   bool VisitUnaryPreDec(const UnaryOperator *UO) {
7401     return VisitUnaryPreIncDec(UO);
7402   }
7403   bool VisitBinAssign(const BinaryOperator *BO);
7404   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
7405 
7406   bool VisitCastExpr(const CastExpr *E) {
7407     switch (E->getCastKind()) {
7408     default:
7409       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
7410 
7411     case CK_LValueBitCast:
7412       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7413       if (!Visit(E->getSubExpr()))
7414         return false;
7415       Result.Designator.setInvalid();
7416       return true;
7417 
7418     case CK_BaseToDerived:
7419       if (!Visit(E->getSubExpr()))
7420         return false;
7421       return HandleBaseToDerivedCast(Info, E, Result);
7422 
7423     case CK_Dynamic:
7424       if (!Visit(E->getSubExpr()))
7425         return false;
7426       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
7427     }
7428   }
7429 };
7430 } // end anonymous namespace
7431 
7432 /// Evaluate an expression as an lvalue. This can be legitimately called on
7433 /// expressions which are not glvalues, in three cases:
7434 ///  * function designators in C, and
7435 ///  * "extern void" objects
7436 ///  * @selector() expressions in Objective-C
7437 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
7438                            bool InvalidBaseOK) {
7439   assert(E->isGLValue() || E->getType()->isFunctionType() ||
7440          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
7441   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
7442 }
7443 
7444 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
7445   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
7446     return Success(FD);
7447   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
7448     return VisitVarDecl(E, VD);
7449   if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
7450     return Visit(BD->getBinding());
7451   return Error(E);
7452 }
7453 
7454 
7455 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
7456 
7457   // If we are within a lambda's call operator, check whether the 'VD' referred
7458   // to within 'E' actually represents a lambda-capture that maps to a
7459   // data-member/field within the closure object, and if so, evaluate to the
7460   // field or what the field refers to.
7461   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
7462       isa<DeclRefExpr>(E) &&
7463       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
7464     // We don't always have a complete capture-map when checking or inferring if
7465     // the function call operator meets the requirements of a constexpr function
7466     // - but we don't need to evaluate the captures to determine constexprness
7467     // (dcl.constexpr C++17).
7468     if (Info.checkingPotentialConstantExpression())
7469       return false;
7470 
7471     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
7472       // Start with 'Result' referring to the complete closure object...
7473       Result = *Info.CurrentCall->This;
7474       // ... then update it to refer to the field of the closure object
7475       // that represents the capture.
7476       if (!HandleLValueMember(Info, E, Result, FD))
7477         return false;
7478       // And if the field is of reference type, update 'Result' to refer to what
7479       // the field refers to.
7480       if (FD->getType()->isReferenceType()) {
7481         APValue RVal;
7482         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
7483                                             RVal))
7484           return false;
7485         Result.setFrom(Info.Ctx, RVal);
7486       }
7487       return true;
7488     }
7489   }
7490   CallStackFrame *Frame = nullptr;
7491   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
7492     // Only if a local variable was declared in the function currently being
7493     // evaluated, do we expect to be able to find its value in the current
7494     // frame. (Otherwise it was likely declared in an enclosing context and
7495     // could either have a valid evaluatable value (for e.g. a constexpr
7496     // variable) or be ill-formed (and trigger an appropriate evaluation
7497     // diagnostic)).
7498     if (Info.CurrentCall->Callee &&
7499         Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
7500       Frame = Info.CurrentCall;
7501     }
7502   }
7503 
7504   if (!VD->getType()->isReferenceType()) {
7505     if (Frame) {
7506       Result.set({VD, Frame->Index,
7507                   Info.CurrentCall->getCurrentTemporaryVersion(VD)});
7508       return true;
7509     }
7510     return Success(VD);
7511   }
7512 
7513   APValue *V;
7514   if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
7515     return false;
7516   if (!V->hasValue()) {
7517     // FIXME: Is it possible for V to be indeterminate here? If so, we should
7518     // adjust the diagnostic to say that.
7519     if (!Info.checkingPotentialConstantExpression())
7520       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
7521     return false;
7522   }
7523   return Success(*V, E);
7524 }
7525 
7526 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
7527     const MaterializeTemporaryExpr *E) {
7528   // Walk through the expression to find the materialized temporary itself.
7529   SmallVector<const Expr *, 2> CommaLHSs;
7530   SmallVector<SubobjectAdjustment, 2> Adjustments;
7531   const Expr *Inner =
7532       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
7533 
7534   // If we passed any comma operators, evaluate their LHSs.
7535   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
7536     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
7537       return false;
7538 
7539   // A materialized temporary with static storage duration can appear within the
7540   // result of a constant expression evaluation, so we need to preserve its
7541   // value for use outside this evaluation.
7542   APValue *Value;
7543   if (E->getStorageDuration() == SD_Static) {
7544     Value = E->getOrCreateValue(true);
7545     *Value = APValue();
7546     Result.set(E);
7547   } else {
7548     Value = &Info.CurrentCall->createTemporary(
7549         E, E->getType(), E->getStorageDuration() == SD_Automatic, Result);
7550   }
7551 
7552   QualType Type = Inner->getType();
7553 
7554   // Materialize the temporary itself.
7555   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
7556     *Value = APValue();
7557     return false;
7558   }
7559 
7560   // Adjust our lvalue to refer to the desired subobject.
7561   for (unsigned I = Adjustments.size(); I != 0; /**/) {
7562     --I;
7563     switch (Adjustments[I].Kind) {
7564     case SubobjectAdjustment::DerivedToBaseAdjustment:
7565       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
7566                                 Type, Result))
7567         return false;
7568       Type = Adjustments[I].DerivedToBase.BasePath->getType();
7569       break;
7570 
7571     case SubobjectAdjustment::FieldAdjustment:
7572       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
7573         return false;
7574       Type = Adjustments[I].Field->getType();
7575       break;
7576 
7577     case SubobjectAdjustment::MemberPointerAdjustment:
7578       if (!HandleMemberPointerAccess(this->Info, Type, Result,
7579                                      Adjustments[I].Ptr.RHS))
7580         return false;
7581       Type = Adjustments[I].Ptr.MPT->getPointeeType();
7582       break;
7583     }
7584   }
7585 
7586   return true;
7587 }
7588 
7589 bool
7590 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7591   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
7592          "lvalue compound literal in c++?");
7593   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
7594   // only see this when folding in C, so there's no standard to follow here.
7595   return Success(E);
7596 }
7597 
7598 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
7599   TypeInfoLValue TypeInfo;
7600 
7601   if (!E->isPotentiallyEvaluated()) {
7602     if (E->isTypeOperand())
7603       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
7604     else
7605       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
7606   } else {
7607     if (!Info.Ctx.getLangOpts().CPlusPlus2a) {
7608       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
7609         << E->getExprOperand()->getType()
7610         << E->getExprOperand()->getSourceRange();
7611     }
7612 
7613     if (!Visit(E->getExprOperand()))
7614       return false;
7615 
7616     Optional<DynamicType> DynType =
7617         ComputeDynamicType(Info, E, Result, AK_TypeId);
7618     if (!DynType)
7619       return false;
7620 
7621     TypeInfo =
7622         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
7623   }
7624 
7625   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
7626 }
7627 
7628 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
7629   return Success(E);
7630 }
7631 
7632 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
7633   // Handle static data members.
7634   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
7635     VisitIgnoredBaseExpression(E->getBase());
7636     return VisitVarDecl(E, VD);
7637   }
7638 
7639   // Handle static member functions.
7640   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
7641     if (MD->isStatic()) {
7642       VisitIgnoredBaseExpression(E->getBase());
7643       return Success(MD);
7644     }
7645   }
7646 
7647   // Handle non-static data members.
7648   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
7649 }
7650 
7651 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
7652   // FIXME: Deal with vectors as array subscript bases.
7653   if (E->getBase()->getType()->isVectorType())
7654     return Error(E);
7655 
7656   bool Success = true;
7657   if (!evaluatePointer(E->getBase(), Result)) {
7658     if (!Info.noteFailure())
7659       return false;
7660     Success = false;
7661   }
7662 
7663   APSInt Index;
7664   if (!EvaluateInteger(E->getIdx(), Index, Info))
7665     return false;
7666 
7667   return Success &&
7668          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
7669 }
7670 
7671 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
7672   return evaluatePointer(E->getSubExpr(), Result);
7673 }
7674 
7675 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7676   if (!Visit(E->getSubExpr()))
7677     return false;
7678   // __real is a no-op on scalar lvalues.
7679   if (E->getSubExpr()->getType()->isAnyComplexType())
7680     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
7681   return true;
7682 }
7683 
7684 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7685   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
7686          "lvalue __imag__ on scalar?");
7687   if (!Visit(E->getSubExpr()))
7688     return false;
7689   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
7690   return true;
7691 }
7692 
7693 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
7694   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7695     return Error(UO);
7696 
7697   if (!this->Visit(UO->getSubExpr()))
7698     return false;
7699 
7700   return handleIncDec(
7701       this->Info, UO, Result, UO->getSubExpr()->getType(),
7702       UO->isIncrementOp(), nullptr);
7703 }
7704 
7705 bool LValueExprEvaluator::VisitCompoundAssignOperator(
7706     const CompoundAssignOperator *CAO) {
7707   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7708     return Error(CAO);
7709 
7710   APValue RHS;
7711 
7712   // The overall lvalue result is the result of evaluating the LHS.
7713   if (!this->Visit(CAO->getLHS())) {
7714     if (Info.noteFailure())
7715       Evaluate(RHS, this->Info, CAO->getRHS());
7716     return false;
7717   }
7718 
7719   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
7720     return false;
7721 
7722   return handleCompoundAssignment(
7723       this->Info, CAO,
7724       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
7725       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
7726 }
7727 
7728 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
7729   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7730     return Error(E);
7731 
7732   APValue NewVal;
7733 
7734   if (!this->Visit(E->getLHS())) {
7735     if (Info.noteFailure())
7736       Evaluate(NewVal, this->Info, E->getRHS());
7737     return false;
7738   }
7739 
7740   if (!Evaluate(NewVal, this->Info, E->getRHS()))
7741     return false;
7742 
7743   if (Info.getLangOpts().CPlusPlus2a &&
7744       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
7745     return false;
7746 
7747   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
7748                           NewVal);
7749 }
7750 
7751 //===----------------------------------------------------------------------===//
7752 // Pointer Evaluation
7753 //===----------------------------------------------------------------------===//
7754 
7755 /// Attempts to compute the number of bytes available at the pointer
7756 /// returned by a function with the alloc_size attribute. Returns true if we
7757 /// were successful. Places an unsigned number into `Result`.
7758 ///
7759 /// This expects the given CallExpr to be a call to a function with an
7760 /// alloc_size attribute.
7761 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
7762                                             const CallExpr *Call,
7763                                             llvm::APInt &Result) {
7764   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
7765 
7766   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
7767   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
7768   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
7769   if (Call->getNumArgs() <= SizeArgNo)
7770     return false;
7771 
7772   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
7773     Expr::EvalResult ExprResult;
7774     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
7775       return false;
7776     Into = ExprResult.Val.getInt();
7777     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
7778       return false;
7779     Into = Into.zextOrSelf(BitsInSizeT);
7780     return true;
7781   };
7782 
7783   APSInt SizeOfElem;
7784   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
7785     return false;
7786 
7787   if (!AllocSize->getNumElemsParam().isValid()) {
7788     Result = std::move(SizeOfElem);
7789     return true;
7790   }
7791 
7792   APSInt NumberOfElems;
7793   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
7794   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
7795     return false;
7796 
7797   bool Overflow;
7798   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
7799   if (Overflow)
7800     return false;
7801 
7802   Result = std::move(BytesAvailable);
7803   return true;
7804 }
7805 
7806 /// Convenience function. LVal's base must be a call to an alloc_size
7807 /// function.
7808 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
7809                                             const LValue &LVal,
7810                                             llvm::APInt &Result) {
7811   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
7812          "Can't get the size of a non alloc_size function");
7813   const auto *Base = LVal.getLValueBase().get<const Expr *>();
7814   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
7815   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
7816 }
7817 
7818 /// Attempts to evaluate the given LValueBase as the result of a call to
7819 /// a function with the alloc_size attribute. If it was possible to do so, this
7820 /// function will return true, make Result's Base point to said function call,
7821 /// and mark Result's Base as invalid.
7822 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
7823                                       LValue &Result) {
7824   if (Base.isNull())
7825     return false;
7826 
7827   // Because we do no form of static analysis, we only support const variables.
7828   //
7829   // Additionally, we can't support parameters, nor can we support static
7830   // variables (in the latter case, use-before-assign isn't UB; in the former,
7831   // we have no clue what they'll be assigned to).
7832   const auto *VD =
7833       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
7834   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
7835     return false;
7836 
7837   const Expr *Init = VD->getAnyInitializer();
7838   if (!Init)
7839     return false;
7840 
7841   const Expr *E = Init->IgnoreParens();
7842   if (!tryUnwrapAllocSizeCall(E))
7843     return false;
7844 
7845   // Store E instead of E unwrapped so that the type of the LValue's base is
7846   // what the user wanted.
7847   Result.setInvalid(E);
7848 
7849   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
7850   Result.addUnsizedArray(Info, E, Pointee);
7851   return true;
7852 }
7853 
7854 namespace {
7855 class PointerExprEvaluator
7856   : public ExprEvaluatorBase<PointerExprEvaluator> {
7857   LValue &Result;
7858   bool InvalidBaseOK;
7859 
7860   bool Success(const Expr *E) {
7861     Result.set(E);
7862     return true;
7863   }
7864 
7865   bool evaluateLValue(const Expr *E, LValue &Result) {
7866     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
7867   }
7868 
7869   bool evaluatePointer(const Expr *E, LValue &Result) {
7870     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
7871   }
7872 
7873   bool visitNonBuiltinCallExpr(const CallExpr *E);
7874 public:
7875 
7876   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
7877       : ExprEvaluatorBaseTy(info), Result(Result),
7878         InvalidBaseOK(InvalidBaseOK) {}
7879 
7880   bool Success(const APValue &V, const Expr *E) {
7881     Result.setFrom(Info.Ctx, V);
7882     return true;
7883   }
7884   bool ZeroInitialization(const Expr *E) {
7885     Result.setNull(Info.Ctx, E->getType());
7886     return true;
7887   }
7888 
7889   bool VisitBinaryOperator(const BinaryOperator *E);
7890   bool VisitCastExpr(const CastExpr* E);
7891   bool VisitUnaryAddrOf(const UnaryOperator *E);
7892   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
7893       { return Success(E); }
7894   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
7895     if (E->isExpressibleAsConstantInitializer())
7896       return Success(E);
7897     if (Info.noteFailure())
7898       EvaluateIgnoredValue(Info, E->getSubExpr());
7899     return Error(E);
7900   }
7901   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
7902       { return Success(E); }
7903   bool VisitCallExpr(const CallExpr *E);
7904   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
7905   bool VisitBlockExpr(const BlockExpr *E) {
7906     if (!E->getBlockDecl()->hasCaptures())
7907       return Success(E);
7908     return Error(E);
7909   }
7910   bool VisitCXXThisExpr(const CXXThisExpr *E) {
7911     // Can't look at 'this' when checking a potential constant expression.
7912     if (Info.checkingPotentialConstantExpression())
7913       return false;
7914     if (!Info.CurrentCall->This) {
7915       if (Info.getLangOpts().CPlusPlus11)
7916         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
7917       else
7918         Info.FFDiag(E);
7919       return false;
7920     }
7921     Result = *Info.CurrentCall->This;
7922     // If we are inside a lambda's call operator, the 'this' expression refers
7923     // to the enclosing '*this' object (either by value or reference) which is
7924     // either copied into the closure object's field that represents the '*this'
7925     // or refers to '*this'.
7926     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
7927       // Ensure we actually have captured 'this'. (an error will have
7928       // been previously reported if not).
7929       if (!Info.CurrentCall->LambdaThisCaptureField)
7930         return false;
7931 
7932       // Update 'Result' to refer to the data member/field of the closure object
7933       // that represents the '*this' capture.
7934       if (!HandleLValueMember(Info, E, Result,
7935                              Info.CurrentCall->LambdaThisCaptureField))
7936         return false;
7937       // If we captured '*this' by reference, replace the field with its referent.
7938       if (Info.CurrentCall->LambdaThisCaptureField->getType()
7939               ->isPointerType()) {
7940         APValue RVal;
7941         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
7942                                             RVal))
7943           return false;
7944 
7945         Result.setFrom(Info.Ctx, RVal);
7946       }
7947     }
7948     return true;
7949   }
7950 
7951   bool VisitCXXNewExpr(const CXXNewExpr *E);
7952 
7953   bool VisitSourceLocExpr(const SourceLocExpr *E) {
7954     assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
7955     APValue LValResult = E->EvaluateInContext(
7956         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
7957     Result.setFrom(Info.Ctx, LValResult);
7958     return true;
7959   }
7960 
7961   // FIXME: Missing: @protocol, @selector
7962 };
7963 } // end anonymous namespace
7964 
7965 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
7966                             bool InvalidBaseOK) {
7967   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
7968   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
7969 }
7970 
7971 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7972   if (E->getOpcode() != BO_Add &&
7973       E->getOpcode() != BO_Sub)
7974     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7975 
7976   const Expr *PExp = E->getLHS();
7977   const Expr *IExp = E->getRHS();
7978   if (IExp->getType()->isPointerType())
7979     std::swap(PExp, IExp);
7980 
7981   bool EvalPtrOK = evaluatePointer(PExp, Result);
7982   if (!EvalPtrOK && !Info.noteFailure())
7983     return false;
7984 
7985   llvm::APSInt Offset;
7986   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
7987     return false;
7988 
7989   if (E->getOpcode() == BO_Sub)
7990     negateAsSigned(Offset);
7991 
7992   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
7993   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
7994 }
7995 
7996 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
7997   return evaluateLValue(E->getSubExpr(), Result);
7998 }
7999 
8000 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8001   const Expr *SubExpr = E->getSubExpr();
8002 
8003   switch (E->getCastKind()) {
8004   default:
8005     break;
8006   case CK_BitCast:
8007   case CK_CPointerToObjCPointerCast:
8008   case CK_BlockPointerToObjCPointerCast:
8009   case CK_AnyPointerToBlockPointerCast:
8010   case CK_AddressSpaceConversion:
8011     if (!Visit(SubExpr))
8012       return false;
8013     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8014     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8015     // also static_casts, but we disallow them as a resolution to DR1312.
8016     if (!E->getType()->isVoidPointerType()) {
8017       if (!Result.InvalidBase && !Result.Designator.Invalid &&
8018           !Result.IsNullPtr &&
8019           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8020                                           E->getType()->getPointeeType()) &&
8021           Info.getStdAllocatorCaller("allocate")) {
8022         // Inside a call to std::allocator::allocate and friends, we permit
8023         // casting from void* back to cv1 T* for a pointer that points to a
8024         // cv2 T.
8025       } else {
8026         Result.Designator.setInvalid();
8027         if (SubExpr->getType()->isVoidPointerType())
8028           CCEDiag(E, diag::note_constexpr_invalid_cast)
8029             << 3 << SubExpr->getType();
8030         else
8031           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8032       }
8033     }
8034     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8035       ZeroInitialization(E);
8036     return true;
8037 
8038   case CK_DerivedToBase:
8039   case CK_UncheckedDerivedToBase:
8040     if (!evaluatePointer(E->getSubExpr(), Result))
8041       return false;
8042     if (!Result.Base && Result.Offset.isZero())
8043       return true;
8044 
8045     // Now figure out the necessary offset to add to the base LV to get from
8046     // the derived class to the base class.
8047     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8048                                   castAs<PointerType>()->getPointeeType(),
8049                                 Result);
8050 
8051   case CK_BaseToDerived:
8052     if (!Visit(E->getSubExpr()))
8053       return false;
8054     if (!Result.Base && Result.Offset.isZero())
8055       return true;
8056     return HandleBaseToDerivedCast(Info, E, Result);
8057 
8058   case CK_Dynamic:
8059     if (!Visit(E->getSubExpr()))
8060       return false;
8061     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8062 
8063   case CK_NullToPointer:
8064     VisitIgnoredValue(E->getSubExpr());
8065     return ZeroInitialization(E);
8066 
8067   case CK_IntegralToPointer: {
8068     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8069 
8070     APValue Value;
8071     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8072       break;
8073 
8074     if (Value.isInt()) {
8075       unsigned Size = Info.Ctx.getTypeSize(E->getType());
8076       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8077       Result.Base = (Expr*)nullptr;
8078       Result.InvalidBase = false;
8079       Result.Offset = CharUnits::fromQuantity(N);
8080       Result.Designator.setInvalid();
8081       Result.IsNullPtr = false;
8082       return true;
8083     } else {
8084       // Cast is of an lvalue, no need to change value.
8085       Result.setFrom(Info.Ctx, Value);
8086       return true;
8087     }
8088   }
8089 
8090   case CK_ArrayToPointerDecay: {
8091     if (SubExpr->isGLValue()) {
8092       if (!evaluateLValue(SubExpr, Result))
8093         return false;
8094     } else {
8095       APValue &Value = Info.CurrentCall->createTemporary(
8096           SubExpr, SubExpr->getType(), false, Result);
8097       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8098         return false;
8099     }
8100     // The result is a pointer to the first element of the array.
8101     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8102     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8103       Result.addArray(Info, E, CAT);
8104     else
8105       Result.addUnsizedArray(Info, E, AT->getElementType());
8106     return true;
8107   }
8108 
8109   case CK_FunctionToPointerDecay:
8110     return evaluateLValue(SubExpr, Result);
8111 
8112   case CK_LValueToRValue: {
8113     LValue LVal;
8114     if (!evaluateLValue(E->getSubExpr(), LVal))
8115       return false;
8116 
8117     APValue RVal;
8118     // Note, we use the subexpression's type in order to retain cv-qualifiers.
8119     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8120                                         LVal, RVal))
8121       return InvalidBaseOK &&
8122              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8123     return Success(RVal, E);
8124   }
8125   }
8126 
8127   return ExprEvaluatorBaseTy::VisitCastExpr(E);
8128 }
8129 
8130 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8131                                 UnaryExprOrTypeTrait ExprKind) {
8132   // C++ [expr.alignof]p3:
8133   //     When alignof is applied to a reference type, the result is the
8134   //     alignment of the referenced type.
8135   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8136     T = Ref->getPointeeType();
8137 
8138   if (T.getQualifiers().hasUnaligned())
8139     return CharUnits::One();
8140 
8141   const bool AlignOfReturnsPreferred =
8142       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8143 
8144   // __alignof is defined to return the preferred alignment.
8145   // Before 8, clang returned the preferred alignment for alignof and _Alignof
8146   // as well.
8147   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8148     return Info.Ctx.toCharUnitsFromBits(
8149       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8150   // alignof and _Alignof are defined to return the ABI alignment.
8151   else if (ExprKind == UETT_AlignOf)
8152     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8153   else
8154     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
8155 }
8156 
8157 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8158                                 UnaryExprOrTypeTrait ExprKind) {
8159   E = E->IgnoreParens();
8160 
8161   // The kinds of expressions that we have special-case logic here for
8162   // should be kept up to date with the special checks for those
8163   // expressions in Sema.
8164 
8165   // alignof decl is always accepted, even if it doesn't make sense: we default
8166   // to 1 in those cases.
8167   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8168     return Info.Ctx.getDeclAlign(DRE->getDecl(),
8169                                  /*RefAsPointee*/true);
8170 
8171   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8172     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8173                                  /*RefAsPointee*/true);
8174 
8175   return GetAlignOfType(Info, E->getType(), ExprKind);
8176 }
8177 
8178 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
8179   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
8180     return Info.Ctx.getDeclAlign(VD);
8181   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
8182     return GetAlignOfExpr(Info, E, UETT_AlignOf);
8183   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
8184 }
8185 
8186 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
8187 /// __builtin_is_aligned and __builtin_assume_aligned.
8188 static bool getAlignmentArgument(const Expr *E, QualType ForType,
8189                                  EvalInfo &Info, APSInt &Alignment) {
8190   if (!EvaluateInteger(E, Alignment, Info))
8191     return false;
8192   if (Alignment < 0 || !Alignment.isPowerOf2()) {
8193     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
8194     return false;
8195   }
8196   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
8197   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
8198   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
8199     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
8200         << MaxValue << ForType << Alignment;
8201     return false;
8202   }
8203   // Ensure both alignment and source value have the same bit width so that we
8204   // don't assert when computing the resulting value.
8205   APSInt ExtAlignment =
8206       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
8207   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
8208          "Alignment should not be changed by ext/trunc");
8209   Alignment = ExtAlignment;
8210   assert(Alignment.getBitWidth() == SrcWidth);
8211   return true;
8212 }
8213 
8214 // To be clear: this happily visits unsupported builtins. Better name welcomed.
8215 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8216   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8217     return true;
8218 
8219   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8220     return false;
8221 
8222   Result.setInvalid(E);
8223   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8224   Result.addUnsizedArray(Info, E, PointeeTy);
8225   return true;
8226 }
8227 
8228 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8229   if (IsStringLiteralCall(E))
8230     return Success(E);
8231 
8232   if (unsigned BuiltinOp = E->getBuiltinCallee())
8233     return VisitBuiltinCallExpr(E, BuiltinOp);
8234 
8235   return visitNonBuiltinCallExpr(E);
8236 }
8237 
8238 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
8239                                                 unsigned BuiltinOp) {
8240   switch (BuiltinOp) {
8241   case Builtin::BI__builtin_addressof:
8242     return evaluateLValue(E->getArg(0), Result);
8243   case Builtin::BI__builtin_assume_aligned: {
8244     // We need to be very careful here because: if the pointer does not have the
8245     // asserted alignment, then the behavior is undefined, and undefined
8246     // behavior is non-constant.
8247     if (!evaluatePointer(E->getArg(0), Result))
8248       return false;
8249 
8250     LValue OffsetResult(Result);
8251     APSInt Alignment;
8252     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
8253                               Alignment))
8254       return false;
8255     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
8256 
8257     if (E->getNumArgs() > 2) {
8258       APSInt Offset;
8259       if (!EvaluateInteger(E->getArg(2), Offset, Info))
8260         return false;
8261 
8262       int64_t AdditionalOffset = -Offset.getZExtValue();
8263       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
8264     }
8265 
8266     // If there is a base object, then it must have the correct alignment.
8267     if (OffsetResult.Base) {
8268       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
8269 
8270       if (BaseAlignment < Align) {
8271         Result.Designator.setInvalid();
8272         // FIXME: Add support to Diagnostic for long / long long.
8273         CCEDiag(E->getArg(0),
8274                 diag::note_constexpr_baa_insufficient_alignment) << 0
8275           << (unsigned)BaseAlignment.getQuantity()
8276           << (unsigned)Align.getQuantity();
8277         return false;
8278       }
8279     }
8280 
8281     // The offset must also have the correct alignment.
8282     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
8283       Result.Designator.setInvalid();
8284 
8285       (OffsetResult.Base
8286            ? CCEDiag(E->getArg(0),
8287                      diag::note_constexpr_baa_insufficient_alignment) << 1
8288            : CCEDiag(E->getArg(0),
8289                      diag::note_constexpr_baa_value_insufficient_alignment))
8290         << (int)OffsetResult.Offset.getQuantity()
8291         << (unsigned)Align.getQuantity();
8292       return false;
8293     }
8294 
8295     return true;
8296   }
8297   case Builtin::BI__builtin_align_up:
8298   case Builtin::BI__builtin_align_down: {
8299     if (!evaluatePointer(E->getArg(0), Result))
8300       return false;
8301     APSInt Alignment;
8302     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
8303                               Alignment))
8304       return false;
8305     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
8306     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
8307     // For align_up/align_down, we can return the same value if the alignment
8308     // is known to be greater or equal to the requested value.
8309     if (PtrAlign.getQuantity() >= Alignment)
8310       return true;
8311 
8312     // The alignment could be greater than the minimum at run-time, so we cannot
8313     // infer much about the resulting pointer value. One case is possible:
8314     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
8315     // can infer the correct index if the requested alignment is smaller than
8316     // the base alignment so we can perform the computation on the offset.
8317     if (BaseAlignment.getQuantity() >= Alignment) {
8318       assert(Alignment.getBitWidth() <= 64 &&
8319              "Cannot handle > 64-bit address-space");
8320       uint64_t Alignment64 = Alignment.getZExtValue();
8321       CharUnits NewOffset = CharUnits::fromQuantity(
8322           BuiltinOp == Builtin::BI__builtin_align_down
8323               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
8324               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
8325       Result.adjustOffset(NewOffset - Result.Offset);
8326       // TODO: diagnose out-of-bounds values/only allow for arrays?
8327       return true;
8328     }
8329     // Otherwise, we cannot constant-evaluate the result.
8330     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
8331         << Alignment;
8332     return false;
8333   }
8334   case Builtin::BI__builtin_operator_new:
8335     return HandleOperatorNewCall(Info, E, Result);
8336   case Builtin::BI__builtin_launder:
8337     return evaluatePointer(E->getArg(0), Result);
8338   case Builtin::BIstrchr:
8339   case Builtin::BIwcschr:
8340   case Builtin::BImemchr:
8341   case Builtin::BIwmemchr:
8342     if (Info.getLangOpts().CPlusPlus11)
8343       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8344         << /*isConstexpr*/0 << /*isConstructor*/0
8345         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8346     else
8347       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8348     LLVM_FALLTHROUGH;
8349   case Builtin::BI__builtin_strchr:
8350   case Builtin::BI__builtin_wcschr:
8351   case Builtin::BI__builtin_memchr:
8352   case Builtin::BI__builtin_char_memchr:
8353   case Builtin::BI__builtin_wmemchr: {
8354     if (!Visit(E->getArg(0)))
8355       return false;
8356     APSInt Desired;
8357     if (!EvaluateInteger(E->getArg(1), Desired, Info))
8358       return false;
8359     uint64_t MaxLength = uint64_t(-1);
8360     if (BuiltinOp != Builtin::BIstrchr &&
8361         BuiltinOp != Builtin::BIwcschr &&
8362         BuiltinOp != Builtin::BI__builtin_strchr &&
8363         BuiltinOp != Builtin::BI__builtin_wcschr) {
8364       APSInt N;
8365       if (!EvaluateInteger(E->getArg(2), N, Info))
8366         return false;
8367       MaxLength = N.getExtValue();
8368     }
8369     // We cannot find the value if there are no candidates to match against.
8370     if (MaxLength == 0u)
8371       return ZeroInitialization(E);
8372     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
8373         Result.Designator.Invalid)
8374       return false;
8375     QualType CharTy = Result.Designator.getType(Info.Ctx);
8376     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
8377                      BuiltinOp == Builtin::BI__builtin_memchr;
8378     assert(IsRawByte ||
8379            Info.Ctx.hasSameUnqualifiedType(
8380                CharTy, E->getArg(0)->getType()->getPointeeType()));
8381     // Pointers to const void may point to objects of incomplete type.
8382     if (IsRawByte && CharTy->isIncompleteType()) {
8383       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
8384       return false;
8385     }
8386     // Give up on byte-oriented matching against multibyte elements.
8387     // FIXME: We can compare the bytes in the correct order.
8388     if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One())
8389       return false;
8390     // Figure out what value we're actually looking for (after converting to
8391     // the corresponding unsigned type if necessary).
8392     uint64_t DesiredVal;
8393     bool StopAtNull = false;
8394     switch (BuiltinOp) {
8395     case Builtin::BIstrchr:
8396     case Builtin::BI__builtin_strchr:
8397       // strchr compares directly to the passed integer, and therefore
8398       // always fails if given an int that is not a char.
8399       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
8400                                                   E->getArg(1)->getType(),
8401                                                   Desired),
8402                                Desired))
8403         return ZeroInitialization(E);
8404       StopAtNull = true;
8405       LLVM_FALLTHROUGH;
8406     case Builtin::BImemchr:
8407     case Builtin::BI__builtin_memchr:
8408     case Builtin::BI__builtin_char_memchr:
8409       // memchr compares by converting both sides to unsigned char. That's also
8410       // correct for strchr if we get this far (to cope with plain char being
8411       // unsigned in the strchr case).
8412       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
8413       break;
8414 
8415     case Builtin::BIwcschr:
8416     case Builtin::BI__builtin_wcschr:
8417       StopAtNull = true;
8418       LLVM_FALLTHROUGH;
8419     case Builtin::BIwmemchr:
8420     case Builtin::BI__builtin_wmemchr:
8421       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
8422       DesiredVal = Desired.getZExtValue();
8423       break;
8424     }
8425 
8426     for (; MaxLength; --MaxLength) {
8427       APValue Char;
8428       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
8429           !Char.isInt())
8430         return false;
8431       if (Char.getInt().getZExtValue() == DesiredVal)
8432         return true;
8433       if (StopAtNull && !Char.getInt())
8434         break;
8435       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
8436         return false;
8437     }
8438     // Not found: return nullptr.
8439     return ZeroInitialization(E);
8440   }
8441 
8442   case Builtin::BImemcpy:
8443   case Builtin::BImemmove:
8444   case Builtin::BIwmemcpy:
8445   case Builtin::BIwmemmove:
8446     if (Info.getLangOpts().CPlusPlus11)
8447       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8448         << /*isConstexpr*/0 << /*isConstructor*/0
8449         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8450     else
8451       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8452     LLVM_FALLTHROUGH;
8453   case Builtin::BI__builtin_memcpy:
8454   case Builtin::BI__builtin_memmove:
8455   case Builtin::BI__builtin_wmemcpy:
8456   case Builtin::BI__builtin_wmemmove: {
8457     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
8458                  BuiltinOp == Builtin::BIwmemmove ||
8459                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
8460                  BuiltinOp == Builtin::BI__builtin_wmemmove;
8461     bool Move = BuiltinOp == Builtin::BImemmove ||
8462                 BuiltinOp == Builtin::BIwmemmove ||
8463                 BuiltinOp == Builtin::BI__builtin_memmove ||
8464                 BuiltinOp == Builtin::BI__builtin_wmemmove;
8465 
8466     // The result of mem* is the first argument.
8467     if (!Visit(E->getArg(0)))
8468       return false;
8469     LValue Dest = Result;
8470 
8471     LValue Src;
8472     if (!EvaluatePointer(E->getArg(1), Src, Info))
8473       return false;
8474 
8475     APSInt N;
8476     if (!EvaluateInteger(E->getArg(2), N, Info))
8477       return false;
8478     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
8479 
8480     // If the size is zero, we treat this as always being a valid no-op.
8481     // (Even if one of the src and dest pointers is null.)
8482     if (!N)
8483       return true;
8484 
8485     // Otherwise, if either of the operands is null, we can't proceed. Don't
8486     // try to determine the type of the copied objects, because there aren't
8487     // any.
8488     if (!Src.Base || !Dest.Base) {
8489       APValue Val;
8490       (!Src.Base ? Src : Dest).moveInto(Val);
8491       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
8492           << Move << WChar << !!Src.Base
8493           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
8494       return false;
8495     }
8496     if (Src.Designator.Invalid || Dest.Designator.Invalid)
8497       return false;
8498 
8499     // We require that Src and Dest are both pointers to arrays of
8500     // trivially-copyable type. (For the wide version, the designator will be
8501     // invalid if the designated object is not a wchar_t.)
8502     QualType T = Dest.Designator.getType(Info.Ctx);
8503     QualType SrcT = Src.Designator.getType(Info.Ctx);
8504     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
8505       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
8506       return false;
8507     }
8508     if (T->isIncompleteType()) {
8509       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
8510       return false;
8511     }
8512     if (!T.isTriviallyCopyableType(Info.Ctx)) {
8513       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
8514       return false;
8515     }
8516 
8517     // Figure out how many T's we're copying.
8518     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
8519     if (!WChar) {
8520       uint64_t Remainder;
8521       llvm::APInt OrigN = N;
8522       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
8523       if (Remainder) {
8524         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
8525             << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
8526             << (unsigned)TSize;
8527         return false;
8528       }
8529     }
8530 
8531     // Check that the copying will remain within the arrays, just so that we
8532     // can give a more meaningful diagnostic. This implicitly also checks that
8533     // N fits into 64 bits.
8534     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
8535     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
8536     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
8537       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
8538           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
8539           << N.toString(10, /*Signed*/false);
8540       return false;
8541     }
8542     uint64_t NElems = N.getZExtValue();
8543     uint64_t NBytes = NElems * TSize;
8544 
8545     // Check for overlap.
8546     int Direction = 1;
8547     if (HasSameBase(Src, Dest)) {
8548       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
8549       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
8550       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
8551         // Dest is inside the source region.
8552         if (!Move) {
8553           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
8554           return false;
8555         }
8556         // For memmove and friends, copy backwards.
8557         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
8558             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
8559           return false;
8560         Direction = -1;
8561       } else if (!Move && SrcOffset >= DestOffset &&
8562                  SrcOffset - DestOffset < NBytes) {
8563         // Src is inside the destination region for memcpy: invalid.
8564         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
8565         return false;
8566       }
8567     }
8568 
8569     while (true) {
8570       APValue Val;
8571       // FIXME: Set WantObjectRepresentation to true if we're copying a
8572       // char-like type?
8573       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
8574           !handleAssignment(Info, E, Dest, T, Val))
8575         return false;
8576       // Do not iterate past the last element; if we're copying backwards, that
8577       // might take us off the start of the array.
8578       if (--NElems == 0)
8579         return true;
8580       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
8581           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
8582         return false;
8583     }
8584   }
8585 
8586   default:
8587     break;
8588   }
8589 
8590   return visitNonBuiltinCallExpr(E);
8591 }
8592 
8593 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
8594                                      APValue &Result, const InitListExpr *ILE,
8595                                      QualType AllocType);
8596 
8597 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
8598   if (!Info.getLangOpts().CPlusPlus2a)
8599     Info.CCEDiag(E, diag::note_constexpr_new);
8600 
8601   // We cannot speculatively evaluate a delete expression.
8602   if (Info.SpeculativeEvaluationDepth)
8603     return false;
8604 
8605   FunctionDecl *OperatorNew = E->getOperatorNew();
8606 
8607   bool IsNothrow = false;
8608   bool IsPlacement = false;
8609   if (OperatorNew->isReservedGlobalPlacementOperator() &&
8610       Info.CurrentCall->isStdFunction() && !E->isArray()) {
8611     // FIXME Support array placement new.
8612     assert(E->getNumPlacementArgs() == 1);
8613     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
8614       return false;
8615     if (Result.Designator.Invalid)
8616       return false;
8617     IsPlacement = true;
8618   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
8619     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
8620         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
8621     return false;
8622   } else if (E->getNumPlacementArgs()) {
8623     // The only new-placement list we support is of the form (std::nothrow).
8624     //
8625     // FIXME: There is no restriction on this, but it's not clear that any
8626     // other form makes any sense. We get here for cases such as:
8627     //
8628     //   new (std::align_val_t{N}) X(int)
8629     //
8630     // (which should presumably be valid only if N is a multiple of
8631     // alignof(int), and in any case can't be deallocated unless N is
8632     // alignof(X) and X has new-extended alignment).
8633     if (E->getNumPlacementArgs() != 1 ||
8634         !E->getPlacementArg(0)->getType()->isNothrowT())
8635       return Error(E, diag::note_constexpr_new_placement);
8636 
8637     LValue Nothrow;
8638     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
8639       return false;
8640     IsNothrow = true;
8641   }
8642 
8643   const Expr *Init = E->getInitializer();
8644   const InitListExpr *ResizedArrayILE = nullptr;
8645 
8646   QualType AllocType = E->getAllocatedType();
8647   if (Optional<const Expr*> ArraySize = E->getArraySize()) {
8648     const Expr *Stripped = *ArraySize;
8649     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
8650          Stripped = ICE->getSubExpr())
8651       if (ICE->getCastKind() != CK_NoOp &&
8652           ICE->getCastKind() != CK_IntegralCast)
8653         break;
8654 
8655     llvm::APSInt ArrayBound;
8656     if (!EvaluateInteger(Stripped, ArrayBound, Info))
8657       return false;
8658 
8659     // C++ [expr.new]p9:
8660     //   The expression is erroneous if:
8661     //   -- [...] its value before converting to size_t [or] applying the
8662     //      second standard conversion sequence is less than zero
8663     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
8664       if (IsNothrow)
8665         return ZeroInitialization(E);
8666 
8667       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
8668           << ArrayBound << (*ArraySize)->getSourceRange();
8669       return false;
8670     }
8671 
8672     //   -- its value is such that the size of the allocated object would
8673     //      exceed the implementation-defined limit
8674     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
8675                                                 ArrayBound) >
8676         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
8677       if (IsNothrow)
8678         return ZeroInitialization(E);
8679 
8680       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
8681         << ArrayBound << (*ArraySize)->getSourceRange();
8682       return false;
8683     }
8684 
8685     //   -- the new-initializer is a braced-init-list and the number of
8686     //      array elements for which initializers are provided [...]
8687     //      exceeds the number of elements to initialize
8688     if (Init) {
8689       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
8690       assert(CAT && "unexpected type for array initializer");
8691 
8692       unsigned Bits =
8693           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
8694       llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
8695       llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
8696       if (InitBound.ugt(AllocBound)) {
8697         if (IsNothrow)
8698           return ZeroInitialization(E);
8699 
8700         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
8701             << AllocBound.toString(10, /*Signed=*/false)
8702             << InitBound.toString(10, /*Signed=*/false)
8703             << (*ArraySize)->getSourceRange();
8704         return false;
8705       }
8706 
8707       // If the sizes differ, we must have an initializer list, and we need
8708       // special handling for this case when we initialize.
8709       if (InitBound != AllocBound)
8710         ResizedArrayILE = cast<InitListExpr>(Init);
8711     }
8712 
8713     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
8714                                               ArrayType::Normal, 0);
8715   } else {
8716     assert(!AllocType->isArrayType() &&
8717            "array allocation with non-array new");
8718   }
8719 
8720   APValue *Val;
8721   if (IsPlacement) {
8722     AccessKinds AK = AK_Construct;
8723     struct FindObjectHandler {
8724       EvalInfo &Info;
8725       const Expr *E;
8726       QualType AllocType;
8727       const AccessKinds AccessKind;
8728       APValue *Value;
8729 
8730       typedef bool result_type;
8731       bool failed() { return false; }
8732       bool found(APValue &Subobj, QualType SubobjType) {
8733         // FIXME: Reject the cases where [basic.life]p8 would not permit the
8734         // old name of the object to be used to name the new object.
8735         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
8736           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
8737             SubobjType << AllocType;
8738           return false;
8739         }
8740         Value = &Subobj;
8741         return true;
8742       }
8743       bool found(APSInt &Value, QualType SubobjType) {
8744         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
8745         return false;
8746       }
8747       bool found(APFloat &Value, QualType SubobjType) {
8748         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
8749         return false;
8750       }
8751     } Handler = {Info, E, AllocType, AK, nullptr};
8752 
8753     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
8754     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
8755       return false;
8756 
8757     Val = Handler.Value;
8758 
8759     // [basic.life]p1:
8760     //   The lifetime of an object o of type T ends when [...] the storage
8761     //   which the object occupies is [...] reused by an object that is not
8762     //   nested within o (6.6.2).
8763     *Val = APValue();
8764   } else {
8765     // Perform the allocation and obtain a pointer to the resulting object.
8766     Val = Info.createHeapAlloc(E, AllocType, Result);
8767     if (!Val)
8768       return false;
8769   }
8770 
8771   if (ResizedArrayILE) {
8772     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
8773                                   AllocType))
8774       return false;
8775   } else if (Init) {
8776     if (!EvaluateInPlace(*Val, Info, Result, Init))
8777       return false;
8778   } else {
8779     *Val = getDefaultInitValue(AllocType);
8780   }
8781 
8782   // Array new returns a pointer to the first element, not a pointer to the
8783   // array.
8784   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
8785     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
8786 
8787   return true;
8788 }
8789 //===----------------------------------------------------------------------===//
8790 // Member Pointer Evaluation
8791 //===----------------------------------------------------------------------===//
8792 
8793 namespace {
8794 class MemberPointerExprEvaluator
8795   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
8796   MemberPtr &Result;
8797 
8798   bool Success(const ValueDecl *D) {
8799     Result = MemberPtr(D);
8800     return true;
8801   }
8802 public:
8803 
8804   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
8805     : ExprEvaluatorBaseTy(Info), Result(Result) {}
8806 
8807   bool Success(const APValue &V, const Expr *E) {
8808     Result.setFrom(V);
8809     return true;
8810   }
8811   bool ZeroInitialization(const Expr *E) {
8812     return Success((const ValueDecl*)nullptr);
8813   }
8814 
8815   bool VisitCastExpr(const CastExpr *E);
8816   bool VisitUnaryAddrOf(const UnaryOperator *E);
8817 };
8818 } // end anonymous namespace
8819 
8820 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
8821                                   EvalInfo &Info) {
8822   assert(E->isRValue() && E->getType()->isMemberPointerType());
8823   return MemberPointerExprEvaluator(Info, Result).Visit(E);
8824 }
8825 
8826 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8827   switch (E->getCastKind()) {
8828   default:
8829     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8830 
8831   case CK_NullToMemberPointer:
8832     VisitIgnoredValue(E->getSubExpr());
8833     return ZeroInitialization(E);
8834 
8835   case CK_BaseToDerivedMemberPointer: {
8836     if (!Visit(E->getSubExpr()))
8837       return false;
8838     if (E->path_empty())
8839       return true;
8840     // Base-to-derived member pointer casts store the path in derived-to-base
8841     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
8842     // the wrong end of the derived->base arc, so stagger the path by one class.
8843     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
8844     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
8845          PathI != PathE; ++PathI) {
8846       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
8847       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
8848       if (!Result.castToDerived(Derived))
8849         return Error(E);
8850     }
8851     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
8852     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
8853       return Error(E);
8854     return true;
8855   }
8856 
8857   case CK_DerivedToBaseMemberPointer:
8858     if (!Visit(E->getSubExpr()))
8859       return false;
8860     for (CastExpr::path_const_iterator PathI = E->path_begin(),
8861          PathE = E->path_end(); PathI != PathE; ++PathI) {
8862       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
8863       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
8864       if (!Result.castToBase(Base))
8865         return Error(E);
8866     }
8867     return true;
8868   }
8869 }
8870 
8871 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8872   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
8873   // member can be formed.
8874   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
8875 }
8876 
8877 //===----------------------------------------------------------------------===//
8878 // Record Evaluation
8879 //===----------------------------------------------------------------------===//
8880 
8881 namespace {
8882   class RecordExprEvaluator
8883   : public ExprEvaluatorBase<RecordExprEvaluator> {
8884     const LValue &This;
8885     APValue &Result;
8886   public:
8887 
8888     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
8889       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
8890 
8891     bool Success(const APValue &V, const Expr *E) {
8892       Result = V;
8893       return true;
8894     }
8895     bool ZeroInitialization(const Expr *E) {
8896       return ZeroInitialization(E, E->getType());
8897     }
8898     bool ZeroInitialization(const Expr *E, QualType T);
8899 
8900     bool VisitCallExpr(const CallExpr *E) {
8901       return handleCallExpr(E, Result, &This);
8902     }
8903     bool VisitCastExpr(const CastExpr *E);
8904     bool VisitInitListExpr(const InitListExpr *E);
8905     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
8906       return VisitCXXConstructExpr(E, E->getType());
8907     }
8908     bool VisitLambdaExpr(const LambdaExpr *E);
8909     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
8910     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
8911     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
8912     bool VisitBinCmp(const BinaryOperator *E);
8913   };
8914 }
8915 
8916 /// Perform zero-initialization on an object of non-union class type.
8917 /// C++11 [dcl.init]p5:
8918 ///  To zero-initialize an object or reference of type T means:
8919 ///    [...]
8920 ///    -- if T is a (possibly cv-qualified) non-union class type,
8921 ///       each non-static data member and each base-class subobject is
8922 ///       zero-initialized
8923 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
8924                                           const RecordDecl *RD,
8925                                           const LValue &This, APValue &Result) {
8926   assert(!RD->isUnion() && "Expected non-union class type");
8927   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
8928   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
8929                    std::distance(RD->field_begin(), RD->field_end()));
8930 
8931   if (RD->isInvalidDecl()) return false;
8932   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
8933 
8934   if (CD) {
8935     unsigned Index = 0;
8936     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
8937            End = CD->bases_end(); I != End; ++I, ++Index) {
8938       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
8939       LValue Subobject = This;
8940       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
8941         return false;
8942       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
8943                                          Result.getStructBase(Index)))
8944         return false;
8945     }
8946   }
8947 
8948   for (const auto *I : RD->fields()) {
8949     // -- if T is a reference type, no initialization is performed.
8950     if (I->getType()->isReferenceType())
8951       continue;
8952 
8953     LValue Subobject = This;
8954     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
8955       return false;
8956 
8957     ImplicitValueInitExpr VIE(I->getType());
8958     if (!EvaluateInPlace(
8959           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
8960       return false;
8961   }
8962 
8963   return true;
8964 }
8965 
8966 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
8967   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
8968   if (RD->isInvalidDecl()) return false;
8969   if (RD->isUnion()) {
8970     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
8971     // object's first non-static named data member is zero-initialized
8972     RecordDecl::field_iterator I = RD->field_begin();
8973     if (I == RD->field_end()) {
8974       Result = APValue((const FieldDecl*)nullptr);
8975       return true;
8976     }
8977 
8978     LValue Subobject = This;
8979     if (!HandleLValueMember(Info, E, Subobject, *I))
8980       return false;
8981     Result = APValue(*I);
8982     ImplicitValueInitExpr VIE(I->getType());
8983     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
8984   }
8985 
8986   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
8987     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
8988     return false;
8989   }
8990 
8991   return HandleClassZeroInitialization(Info, E, RD, This, Result);
8992 }
8993 
8994 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
8995   switch (E->getCastKind()) {
8996   default:
8997     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8998 
8999   case CK_ConstructorConversion:
9000     return Visit(E->getSubExpr());
9001 
9002   case CK_DerivedToBase:
9003   case CK_UncheckedDerivedToBase: {
9004     APValue DerivedObject;
9005     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9006       return false;
9007     if (!DerivedObject.isStruct())
9008       return Error(E->getSubExpr());
9009 
9010     // Derived-to-base rvalue conversion: just slice off the derived part.
9011     APValue *Value = &DerivedObject;
9012     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9013     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9014          PathE = E->path_end(); PathI != PathE; ++PathI) {
9015       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9016       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9017       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9018       RD = Base;
9019     }
9020     Result = *Value;
9021     return true;
9022   }
9023   }
9024 }
9025 
9026 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9027   if (E->isTransparent())
9028     return Visit(E->getInit(0));
9029 
9030   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9031   if (RD->isInvalidDecl()) return false;
9032   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9033   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9034 
9035   EvalInfo::EvaluatingConstructorRAII EvalObj(
9036       Info,
9037       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9038       CXXRD && CXXRD->getNumBases());
9039 
9040   if (RD->isUnion()) {
9041     const FieldDecl *Field = E->getInitializedFieldInUnion();
9042     Result = APValue(Field);
9043     if (!Field)
9044       return true;
9045 
9046     // If the initializer list for a union does not contain any elements, the
9047     // first element of the union is value-initialized.
9048     // FIXME: The element should be initialized from an initializer list.
9049     //        Is this difference ever observable for initializer lists which
9050     //        we don't build?
9051     ImplicitValueInitExpr VIE(Field->getType());
9052     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9053 
9054     LValue Subobject = This;
9055     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9056       return false;
9057 
9058     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9059     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9060                                   isa<CXXDefaultInitExpr>(InitExpr));
9061 
9062     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
9063   }
9064 
9065   if (!Result.hasValue())
9066     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9067                      std::distance(RD->field_begin(), RD->field_end()));
9068   unsigned ElementNo = 0;
9069   bool Success = true;
9070 
9071   // Initialize base classes.
9072   if (CXXRD && CXXRD->getNumBases()) {
9073     for (const auto &Base : CXXRD->bases()) {
9074       assert(ElementNo < E->getNumInits() && "missing init for base class");
9075       const Expr *Init = E->getInit(ElementNo);
9076 
9077       LValue Subobject = This;
9078       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9079         return false;
9080 
9081       APValue &FieldVal = Result.getStructBase(ElementNo);
9082       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9083         if (!Info.noteFailure())
9084           return false;
9085         Success = false;
9086       }
9087       ++ElementNo;
9088     }
9089 
9090     EvalObj.finishedConstructingBases();
9091   }
9092 
9093   // Initialize members.
9094   for (const auto *Field : RD->fields()) {
9095     // Anonymous bit-fields are not considered members of the class for
9096     // purposes of aggregate initialization.
9097     if (Field->isUnnamedBitfield())
9098       continue;
9099 
9100     LValue Subobject = This;
9101 
9102     bool HaveInit = ElementNo < E->getNumInits();
9103 
9104     // FIXME: Diagnostics here should point to the end of the initializer
9105     // list, not the start.
9106     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
9107                             Subobject, Field, &Layout))
9108       return false;
9109 
9110     // Perform an implicit value-initialization for members beyond the end of
9111     // the initializer list.
9112     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
9113     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
9114 
9115     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9116     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9117                                   isa<CXXDefaultInitExpr>(Init));
9118 
9119     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9120     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
9121         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
9122                                                        FieldVal, Field))) {
9123       if (!Info.noteFailure())
9124         return false;
9125       Success = false;
9126     }
9127   }
9128 
9129   return Success;
9130 }
9131 
9132 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9133                                                 QualType T) {
9134   // Note that E's type is not necessarily the type of our class here; we might
9135   // be initializing an array element instead.
9136   const CXXConstructorDecl *FD = E->getConstructor();
9137   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9138 
9139   bool ZeroInit = E->requiresZeroInitialization();
9140   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9141     // If we've already performed zero-initialization, we're already done.
9142     if (Result.hasValue())
9143       return true;
9144 
9145     if (ZeroInit)
9146       return ZeroInitialization(E, T);
9147 
9148     Result = getDefaultInitValue(T);
9149     return true;
9150   }
9151 
9152   const FunctionDecl *Definition = nullptr;
9153   auto Body = FD->getBody(Definition);
9154 
9155   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9156     return false;
9157 
9158   // Avoid materializing a temporary for an elidable copy/move constructor.
9159   if (E->isElidable() && !ZeroInit)
9160     if (const MaterializeTemporaryExpr *ME
9161           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
9162       return Visit(ME->getSubExpr());
9163 
9164   if (ZeroInit && !ZeroInitialization(E, T))
9165     return false;
9166 
9167   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9168   return HandleConstructorCall(E, This, Args,
9169                                cast<CXXConstructorDecl>(Definition), Info,
9170                                Result);
9171 }
9172 
9173 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9174     const CXXInheritedCtorInitExpr *E) {
9175   if (!Info.CurrentCall) {
9176     assert(Info.checkingPotentialConstantExpression());
9177     return false;
9178   }
9179 
9180   const CXXConstructorDecl *FD = E->getConstructor();
9181   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9182     return false;
9183 
9184   const FunctionDecl *Definition = nullptr;
9185   auto Body = FD->getBody(Definition);
9186 
9187   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9188     return false;
9189 
9190   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
9191                                cast<CXXConstructorDecl>(Definition), Info,
9192                                Result);
9193 }
9194 
9195 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
9196     const CXXStdInitializerListExpr *E) {
9197   const ConstantArrayType *ArrayType =
9198       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
9199 
9200   LValue Array;
9201   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
9202     return false;
9203 
9204   // Get a pointer to the first element of the array.
9205   Array.addArray(Info, E, ArrayType);
9206 
9207   // FIXME: Perform the checks on the field types in SemaInit.
9208   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
9209   RecordDecl::field_iterator Field = Record->field_begin();
9210   if (Field == Record->field_end())
9211     return Error(E);
9212 
9213   // Start pointer.
9214   if (!Field->getType()->isPointerType() ||
9215       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9216                             ArrayType->getElementType()))
9217     return Error(E);
9218 
9219   // FIXME: What if the initializer_list type has base classes, etc?
9220   Result = APValue(APValue::UninitStruct(), 0, 2);
9221   Array.moveInto(Result.getStructField(0));
9222 
9223   if (++Field == Record->field_end())
9224     return Error(E);
9225 
9226   if (Field->getType()->isPointerType() &&
9227       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9228                            ArrayType->getElementType())) {
9229     // End pointer.
9230     if (!HandleLValueArrayAdjustment(Info, E, Array,
9231                                      ArrayType->getElementType(),
9232                                      ArrayType->getSize().getZExtValue()))
9233       return false;
9234     Array.moveInto(Result.getStructField(1));
9235   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
9236     // Length.
9237     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
9238   else
9239     return Error(E);
9240 
9241   if (++Field != Record->field_end())
9242     return Error(E);
9243 
9244   return true;
9245 }
9246 
9247 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
9248   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
9249   if (ClosureClass->isInvalidDecl())
9250     return false;
9251 
9252   const size_t NumFields =
9253       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
9254 
9255   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
9256                                             E->capture_init_end()) &&
9257          "The number of lambda capture initializers should equal the number of "
9258          "fields within the closure type");
9259 
9260   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
9261   // Iterate through all the lambda's closure object's fields and initialize
9262   // them.
9263   auto *CaptureInitIt = E->capture_init_begin();
9264   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
9265   bool Success = true;
9266   for (const auto *Field : ClosureClass->fields()) {
9267     assert(CaptureInitIt != E->capture_init_end());
9268     // Get the initializer for this field
9269     Expr *const CurFieldInit = *CaptureInitIt++;
9270 
9271     // If there is no initializer, either this is a VLA or an error has
9272     // occurred.
9273     if (!CurFieldInit)
9274       return Error(E);
9275 
9276     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9277     if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
9278       if (!Info.keepEvaluatingAfterFailure())
9279         return false;
9280       Success = false;
9281     }
9282     ++CaptureIt;
9283   }
9284   return Success;
9285 }
9286 
9287 static bool EvaluateRecord(const Expr *E, const LValue &This,
9288                            APValue &Result, EvalInfo &Info) {
9289   assert(E->isRValue() && E->getType()->isRecordType() &&
9290          "can't evaluate expression as a record rvalue");
9291   return RecordExprEvaluator(Info, This, Result).Visit(E);
9292 }
9293 
9294 //===----------------------------------------------------------------------===//
9295 // Temporary Evaluation
9296 //
9297 // Temporaries are represented in the AST as rvalues, but generally behave like
9298 // lvalues. The full-object of which the temporary is a subobject is implicitly
9299 // materialized so that a reference can bind to it.
9300 //===----------------------------------------------------------------------===//
9301 namespace {
9302 class TemporaryExprEvaluator
9303   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
9304 public:
9305   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
9306     LValueExprEvaluatorBaseTy(Info, Result, false) {}
9307 
9308   /// Visit an expression which constructs the value of this temporary.
9309   bool VisitConstructExpr(const Expr *E) {
9310     APValue &Value =
9311         Info.CurrentCall->createTemporary(E, E->getType(), false, Result);
9312     return EvaluateInPlace(Value, Info, Result, E);
9313   }
9314 
9315   bool VisitCastExpr(const CastExpr *E) {
9316     switch (E->getCastKind()) {
9317     default:
9318       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
9319 
9320     case CK_ConstructorConversion:
9321       return VisitConstructExpr(E->getSubExpr());
9322     }
9323   }
9324   bool VisitInitListExpr(const InitListExpr *E) {
9325     return VisitConstructExpr(E);
9326   }
9327   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9328     return VisitConstructExpr(E);
9329   }
9330   bool VisitCallExpr(const CallExpr *E) {
9331     return VisitConstructExpr(E);
9332   }
9333   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
9334     return VisitConstructExpr(E);
9335   }
9336   bool VisitLambdaExpr(const LambdaExpr *E) {
9337     return VisitConstructExpr(E);
9338   }
9339 };
9340 } // end anonymous namespace
9341 
9342 /// Evaluate an expression of record type as a temporary.
9343 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
9344   assert(E->isRValue() && E->getType()->isRecordType());
9345   return TemporaryExprEvaluator(Info, Result).Visit(E);
9346 }
9347 
9348 //===----------------------------------------------------------------------===//
9349 // Vector Evaluation
9350 //===----------------------------------------------------------------------===//
9351 
9352 namespace {
9353   class VectorExprEvaluator
9354   : public ExprEvaluatorBase<VectorExprEvaluator> {
9355     APValue &Result;
9356   public:
9357 
9358     VectorExprEvaluator(EvalInfo &info, APValue &Result)
9359       : ExprEvaluatorBaseTy(info), Result(Result) {}
9360 
9361     bool Success(ArrayRef<APValue> V, const Expr *E) {
9362       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
9363       // FIXME: remove this APValue copy.
9364       Result = APValue(V.data(), V.size());
9365       return true;
9366     }
9367     bool Success(const APValue &V, const Expr *E) {
9368       assert(V.isVector());
9369       Result = V;
9370       return true;
9371     }
9372     bool ZeroInitialization(const Expr *E);
9373 
9374     bool VisitUnaryReal(const UnaryOperator *E)
9375       { return Visit(E->getSubExpr()); }
9376     bool VisitCastExpr(const CastExpr* E);
9377     bool VisitInitListExpr(const InitListExpr *E);
9378     bool VisitUnaryImag(const UnaryOperator *E);
9379     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
9380     //                 binary comparisons, binary and/or/xor,
9381     //                 conditional operator (for GNU conditional select),
9382     //                 shufflevector, ExtVectorElementExpr
9383   };
9384 } // end anonymous namespace
9385 
9386 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
9387   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
9388   return VectorExprEvaluator(Info, Result).Visit(E);
9389 }
9390 
9391 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
9392   const VectorType *VTy = E->getType()->castAs<VectorType>();
9393   unsigned NElts = VTy->getNumElements();
9394 
9395   const Expr *SE = E->getSubExpr();
9396   QualType SETy = SE->getType();
9397 
9398   switch (E->getCastKind()) {
9399   case CK_VectorSplat: {
9400     APValue Val = APValue();
9401     if (SETy->isIntegerType()) {
9402       APSInt IntResult;
9403       if (!EvaluateInteger(SE, IntResult, Info))
9404         return false;
9405       Val = APValue(std::move(IntResult));
9406     } else if (SETy->isRealFloatingType()) {
9407       APFloat FloatResult(0.0);
9408       if (!EvaluateFloat(SE, FloatResult, Info))
9409         return false;
9410       Val = APValue(std::move(FloatResult));
9411     } else {
9412       return Error(E);
9413     }
9414 
9415     // Splat and create vector APValue.
9416     SmallVector<APValue, 4> Elts(NElts, Val);
9417     return Success(Elts, E);
9418   }
9419   case CK_BitCast: {
9420     // Evaluate the operand into an APInt we can extract from.
9421     llvm::APInt SValInt;
9422     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
9423       return false;
9424     // Extract the elements
9425     QualType EltTy = VTy->getElementType();
9426     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
9427     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
9428     SmallVector<APValue, 4> Elts;
9429     if (EltTy->isRealFloatingType()) {
9430       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
9431       unsigned FloatEltSize = EltSize;
9432       if (&Sem == &APFloat::x87DoubleExtended())
9433         FloatEltSize = 80;
9434       for (unsigned i = 0; i < NElts; i++) {
9435         llvm::APInt Elt;
9436         if (BigEndian)
9437           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
9438         else
9439           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
9440         Elts.push_back(APValue(APFloat(Sem, Elt)));
9441       }
9442     } else if (EltTy->isIntegerType()) {
9443       for (unsigned i = 0; i < NElts; i++) {
9444         llvm::APInt Elt;
9445         if (BigEndian)
9446           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
9447         else
9448           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
9449         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
9450       }
9451     } else {
9452       return Error(E);
9453     }
9454     return Success(Elts, E);
9455   }
9456   default:
9457     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9458   }
9459 }
9460 
9461 bool
9462 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9463   const VectorType *VT = E->getType()->castAs<VectorType>();
9464   unsigned NumInits = E->getNumInits();
9465   unsigned NumElements = VT->getNumElements();
9466 
9467   QualType EltTy = VT->getElementType();
9468   SmallVector<APValue, 4> Elements;
9469 
9470   // The number of initializers can be less than the number of
9471   // vector elements. For OpenCL, this can be due to nested vector
9472   // initialization. For GCC compatibility, missing trailing elements
9473   // should be initialized with zeroes.
9474   unsigned CountInits = 0, CountElts = 0;
9475   while (CountElts < NumElements) {
9476     // Handle nested vector initialization.
9477     if (CountInits < NumInits
9478         && E->getInit(CountInits)->getType()->isVectorType()) {
9479       APValue v;
9480       if (!EvaluateVector(E->getInit(CountInits), v, Info))
9481         return Error(E);
9482       unsigned vlen = v.getVectorLength();
9483       for (unsigned j = 0; j < vlen; j++)
9484         Elements.push_back(v.getVectorElt(j));
9485       CountElts += vlen;
9486     } else if (EltTy->isIntegerType()) {
9487       llvm::APSInt sInt(32);
9488       if (CountInits < NumInits) {
9489         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
9490           return false;
9491       } else // trailing integer zero.
9492         sInt = Info.Ctx.MakeIntValue(0, EltTy);
9493       Elements.push_back(APValue(sInt));
9494       CountElts++;
9495     } else {
9496       llvm::APFloat f(0.0);
9497       if (CountInits < NumInits) {
9498         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
9499           return false;
9500       } else // trailing float zero.
9501         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
9502       Elements.push_back(APValue(f));
9503       CountElts++;
9504     }
9505     CountInits++;
9506   }
9507   return Success(Elements, E);
9508 }
9509 
9510 bool
9511 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
9512   const auto *VT = E->getType()->castAs<VectorType>();
9513   QualType EltTy = VT->getElementType();
9514   APValue ZeroElement;
9515   if (EltTy->isIntegerType())
9516     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
9517   else
9518     ZeroElement =
9519         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
9520 
9521   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
9522   return Success(Elements, E);
9523 }
9524 
9525 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9526   VisitIgnoredValue(E->getSubExpr());
9527   return ZeroInitialization(E);
9528 }
9529 
9530 //===----------------------------------------------------------------------===//
9531 // Array Evaluation
9532 //===----------------------------------------------------------------------===//
9533 
9534 namespace {
9535   class ArrayExprEvaluator
9536   : public ExprEvaluatorBase<ArrayExprEvaluator> {
9537     const LValue &This;
9538     APValue &Result;
9539   public:
9540 
9541     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
9542       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
9543 
9544     bool Success(const APValue &V, const Expr *E) {
9545       assert(V.isArray() && "expected array");
9546       Result = V;
9547       return true;
9548     }
9549 
9550     bool ZeroInitialization(const Expr *E) {
9551       const ConstantArrayType *CAT =
9552           Info.Ctx.getAsConstantArrayType(E->getType());
9553       if (!CAT)
9554         return Error(E);
9555 
9556       Result = APValue(APValue::UninitArray(), 0,
9557                        CAT->getSize().getZExtValue());
9558       if (!Result.hasArrayFiller()) return true;
9559 
9560       // Zero-initialize all elements.
9561       LValue Subobject = This;
9562       Subobject.addArray(Info, E, CAT);
9563       ImplicitValueInitExpr VIE(CAT->getElementType());
9564       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
9565     }
9566 
9567     bool VisitCallExpr(const CallExpr *E) {
9568       return handleCallExpr(E, Result, &This);
9569     }
9570     bool VisitInitListExpr(const InitListExpr *E,
9571                            QualType AllocType = QualType());
9572     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
9573     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
9574     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
9575                                const LValue &Subobject,
9576                                APValue *Value, QualType Type);
9577     bool VisitStringLiteral(const StringLiteral *E,
9578                             QualType AllocType = QualType()) {
9579       expandStringLiteral(Info, E, Result, AllocType);
9580       return true;
9581     }
9582   };
9583 } // end anonymous namespace
9584 
9585 static bool EvaluateArray(const Expr *E, const LValue &This,
9586                           APValue &Result, EvalInfo &Info) {
9587   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
9588   return ArrayExprEvaluator(Info, This, Result).Visit(E);
9589 }
9590 
9591 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9592                                      APValue &Result, const InitListExpr *ILE,
9593                                      QualType AllocType) {
9594   assert(ILE->isRValue() && ILE->getType()->isArrayType() &&
9595          "not an array rvalue");
9596   return ArrayExprEvaluator(Info, This, Result)
9597       .VisitInitListExpr(ILE, AllocType);
9598 }
9599 
9600 // Return true iff the given array filler may depend on the element index.
9601 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
9602   // For now, just whitelist non-class value-initialization and initialization
9603   // lists comprised of them.
9604   if (isa<ImplicitValueInitExpr>(FillerExpr))
9605     return false;
9606   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
9607     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
9608       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
9609         return true;
9610     }
9611     return false;
9612   }
9613   return true;
9614 }
9615 
9616 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
9617                                            QualType AllocType) {
9618   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
9619       AllocType.isNull() ? E->getType() : AllocType);
9620   if (!CAT)
9621     return Error(E);
9622 
9623   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
9624   // an appropriately-typed string literal enclosed in braces.
9625   if (E->isStringLiteralInit()) {
9626     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
9627     // FIXME: Support ObjCEncodeExpr here once we support it in
9628     // ArrayExprEvaluator generally.
9629     if (!SL)
9630       return Error(E);
9631     return VisitStringLiteral(SL, AllocType);
9632   }
9633 
9634   bool Success = true;
9635 
9636   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
9637          "zero-initialized array shouldn't have any initialized elts");
9638   APValue Filler;
9639   if (Result.isArray() && Result.hasArrayFiller())
9640     Filler = Result.getArrayFiller();
9641 
9642   unsigned NumEltsToInit = E->getNumInits();
9643   unsigned NumElts = CAT->getSize().getZExtValue();
9644   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
9645 
9646   // If the initializer might depend on the array index, run it for each
9647   // array element.
9648   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
9649     NumEltsToInit = NumElts;
9650 
9651   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
9652                           << NumEltsToInit << ".\n");
9653 
9654   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
9655 
9656   // If the array was previously zero-initialized, preserve the
9657   // zero-initialized values.
9658   if (Filler.hasValue()) {
9659     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
9660       Result.getArrayInitializedElt(I) = Filler;
9661     if (Result.hasArrayFiller())
9662       Result.getArrayFiller() = Filler;
9663   }
9664 
9665   LValue Subobject = This;
9666   Subobject.addArray(Info, E, CAT);
9667   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
9668     const Expr *Init =
9669         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
9670     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
9671                          Info, Subobject, Init) ||
9672         !HandleLValueArrayAdjustment(Info, Init, Subobject,
9673                                      CAT->getElementType(), 1)) {
9674       if (!Info.noteFailure())
9675         return false;
9676       Success = false;
9677     }
9678   }
9679 
9680   if (!Result.hasArrayFiller())
9681     return Success;
9682 
9683   // If we get here, we have a trivial filler, which we can just evaluate
9684   // once and splat over the rest of the array elements.
9685   assert(FillerExpr && "no array filler for incomplete init list");
9686   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
9687                          FillerExpr) && Success;
9688 }
9689 
9690 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
9691   LValue CommonLV;
9692   if (E->getCommonExpr() &&
9693       !Evaluate(Info.CurrentCall->createTemporary(
9694                     E->getCommonExpr(),
9695                     getStorageType(Info.Ctx, E->getCommonExpr()), false,
9696                     CommonLV),
9697                 Info, E->getCommonExpr()->getSourceExpr()))
9698     return false;
9699 
9700   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
9701 
9702   uint64_t Elements = CAT->getSize().getZExtValue();
9703   Result = APValue(APValue::UninitArray(), Elements, Elements);
9704 
9705   LValue Subobject = This;
9706   Subobject.addArray(Info, E, CAT);
9707 
9708   bool Success = true;
9709   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
9710     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
9711                          Info, Subobject, E->getSubExpr()) ||
9712         !HandleLValueArrayAdjustment(Info, E, Subobject,
9713                                      CAT->getElementType(), 1)) {
9714       if (!Info.noteFailure())
9715         return false;
9716       Success = false;
9717     }
9718   }
9719 
9720   return Success;
9721 }
9722 
9723 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
9724   return VisitCXXConstructExpr(E, This, &Result, E->getType());
9725 }
9726 
9727 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9728                                                const LValue &Subobject,
9729                                                APValue *Value,
9730                                                QualType Type) {
9731   bool HadZeroInit = Value->hasValue();
9732 
9733   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
9734     unsigned N = CAT->getSize().getZExtValue();
9735 
9736     // Preserve the array filler if we had prior zero-initialization.
9737     APValue Filler =
9738       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
9739                                              : APValue();
9740 
9741     *Value = APValue(APValue::UninitArray(), N, N);
9742 
9743     if (HadZeroInit)
9744       for (unsigned I = 0; I != N; ++I)
9745         Value->getArrayInitializedElt(I) = Filler;
9746 
9747     // Initialize the elements.
9748     LValue ArrayElt = Subobject;
9749     ArrayElt.addArray(Info, E, CAT);
9750     for (unsigned I = 0; I != N; ++I)
9751       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
9752                                  CAT->getElementType()) ||
9753           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
9754                                        CAT->getElementType(), 1))
9755         return false;
9756 
9757     return true;
9758   }
9759 
9760   if (!Type->isRecordType())
9761     return Error(E);
9762 
9763   return RecordExprEvaluator(Info, Subobject, *Value)
9764              .VisitCXXConstructExpr(E, Type);
9765 }
9766 
9767 //===----------------------------------------------------------------------===//
9768 // Integer Evaluation
9769 //
9770 // As a GNU extension, we support casting pointers to sufficiently-wide integer
9771 // types and back in constant folding. Integer values are thus represented
9772 // either as an integer-valued APValue, or as an lvalue-valued APValue.
9773 //===----------------------------------------------------------------------===//
9774 
9775 namespace {
9776 class IntExprEvaluator
9777         : public ExprEvaluatorBase<IntExprEvaluator> {
9778   APValue &Result;
9779 public:
9780   IntExprEvaluator(EvalInfo &info, APValue &result)
9781       : ExprEvaluatorBaseTy(info), Result(result) {}
9782 
9783   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
9784     assert(E->getType()->isIntegralOrEnumerationType() &&
9785            "Invalid evaluation result.");
9786     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
9787            "Invalid evaluation result.");
9788     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
9789            "Invalid evaluation result.");
9790     Result = APValue(SI);
9791     return true;
9792   }
9793   bool Success(const llvm::APSInt &SI, const Expr *E) {
9794     return Success(SI, E, Result);
9795   }
9796 
9797   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
9798     assert(E->getType()->isIntegralOrEnumerationType() &&
9799            "Invalid evaluation result.");
9800     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
9801            "Invalid evaluation result.");
9802     Result = APValue(APSInt(I));
9803     Result.getInt().setIsUnsigned(
9804                             E->getType()->isUnsignedIntegerOrEnumerationType());
9805     return true;
9806   }
9807   bool Success(const llvm::APInt &I, const Expr *E) {
9808     return Success(I, E, Result);
9809   }
9810 
9811   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
9812     assert(E->getType()->isIntegralOrEnumerationType() &&
9813            "Invalid evaluation result.");
9814     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
9815     return true;
9816   }
9817   bool Success(uint64_t Value, const Expr *E) {
9818     return Success(Value, E, Result);
9819   }
9820 
9821   bool Success(CharUnits Size, const Expr *E) {
9822     return Success(Size.getQuantity(), E);
9823   }
9824 
9825   bool Success(const APValue &V, const Expr *E) {
9826     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
9827       Result = V;
9828       return true;
9829     }
9830     return Success(V.getInt(), E);
9831   }
9832 
9833   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
9834 
9835   //===--------------------------------------------------------------------===//
9836   //                            Visitor Methods
9837   //===--------------------------------------------------------------------===//
9838 
9839   bool VisitConstantExpr(const ConstantExpr *E);
9840 
9841   bool VisitIntegerLiteral(const IntegerLiteral *E) {
9842     return Success(E->getValue(), E);
9843   }
9844   bool VisitCharacterLiteral(const CharacterLiteral *E) {
9845     return Success(E->getValue(), E);
9846   }
9847 
9848   bool CheckReferencedDecl(const Expr *E, const Decl *D);
9849   bool VisitDeclRefExpr(const DeclRefExpr *E) {
9850     if (CheckReferencedDecl(E, E->getDecl()))
9851       return true;
9852 
9853     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
9854   }
9855   bool VisitMemberExpr(const MemberExpr *E) {
9856     if (CheckReferencedDecl(E, E->getMemberDecl())) {
9857       VisitIgnoredBaseExpression(E->getBase());
9858       return true;
9859     }
9860 
9861     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
9862   }
9863 
9864   bool VisitCallExpr(const CallExpr *E);
9865   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
9866   bool VisitBinaryOperator(const BinaryOperator *E);
9867   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
9868   bool VisitUnaryOperator(const UnaryOperator *E);
9869 
9870   bool VisitCastExpr(const CastExpr* E);
9871   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
9872 
9873   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
9874     return Success(E->getValue(), E);
9875   }
9876 
9877   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
9878     return Success(E->getValue(), E);
9879   }
9880 
9881   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
9882     if (Info.ArrayInitIndex == uint64_t(-1)) {
9883       // We were asked to evaluate this subexpression independent of the
9884       // enclosing ArrayInitLoopExpr. We can't do that.
9885       Info.FFDiag(E);
9886       return false;
9887     }
9888     return Success(Info.ArrayInitIndex, E);
9889   }
9890 
9891   // Note, GNU defines __null as an integer, not a pointer.
9892   bool VisitGNUNullExpr(const GNUNullExpr *E) {
9893     return ZeroInitialization(E);
9894   }
9895 
9896   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
9897     return Success(E->getValue(), E);
9898   }
9899 
9900   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
9901     return Success(E->getValue(), E);
9902   }
9903 
9904   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
9905     return Success(E->getValue(), E);
9906   }
9907 
9908   bool VisitUnaryReal(const UnaryOperator *E);
9909   bool VisitUnaryImag(const UnaryOperator *E);
9910 
9911   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
9912   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
9913   bool VisitSourceLocExpr(const SourceLocExpr *E);
9914   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
9915   bool VisitRequiresExpr(const RequiresExpr *E);
9916   // FIXME: Missing: array subscript of vector, member of vector
9917 };
9918 
9919 class FixedPointExprEvaluator
9920     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
9921   APValue &Result;
9922 
9923  public:
9924   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
9925       : ExprEvaluatorBaseTy(info), Result(result) {}
9926 
9927   bool Success(const llvm::APInt &I, const Expr *E) {
9928     return Success(
9929         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
9930   }
9931 
9932   bool Success(uint64_t Value, const Expr *E) {
9933     return Success(
9934         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
9935   }
9936 
9937   bool Success(const APValue &V, const Expr *E) {
9938     return Success(V.getFixedPoint(), E);
9939   }
9940 
9941   bool Success(const APFixedPoint &V, const Expr *E) {
9942     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
9943     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
9944            "Invalid evaluation result.");
9945     Result = APValue(V);
9946     return true;
9947   }
9948 
9949   //===--------------------------------------------------------------------===//
9950   //                            Visitor Methods
9951   //===--------------------------------------------------------------------===//
9952 
9953   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
9954     return Success(E->getValue(), E);
9955   }
9956 
9957   bool VisitCastExpr(const CastExpr *E);
9958   bool VisitUnaryOperator(const UnaryOperator *E);
9959   bool VisitBinaryOperator(const BinaryOperator *E);
9960 };
9961 } // end anonymous namespace
9962 
9963 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
9964 /// produce either the integer value or a pointer.
9965 ///
9966 /// GCC has a heinous extension which folds casts between pointer types and
9967 /// pointer-sized integral types. We support this by allowing the evaluation of
9968 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
9969 /// Some simple arithmetic on such values is supported (they are treated much
9970 /// like char*).
9971 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
9972                                     EvalInfo &Info) {
9973   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
9974   return IntExprEvaluator(Info, Result).Visit(E);
9975 }
9976 
9977 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
9978   APValue Val;
9979   if (!EvaluateIntegerOrLValue(E, Val, Info))
9980     return false;
9981   if (!Val.isInt()) {
9982     // FIXME: It would be better to produce the diagnostic for casting
9983     //        a pointer to an integer.
9984     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
9985     return false;
9986   }
9987   Result = Val.getInt();
9988   return true;
9989 }
9990 
9991 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
9992   APValue Evaluated = E->EvaluateInContext(
9993       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9994   return Success(Evaluated, E);
9995 }
9996 
9997 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
9998                                EvalInfo &Info) {
9999   if (E->getType()->isFixedPointType()) {
10000     APValue Val;
10001     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
10002       return false;
10003     if (!Val.isFixedPoint())
10004       return false;
10005 
10006     Result = Val.getFixedPoint();
10007     return true;
10008   }
10009   return false;
10010 }
10011 
10012 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
10013                                         EvalInfo &Info) {
10014   if (E->getType()->isIntegerType()) {
10015     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
10016     APSInt Val;
10017     if (!EvaluateInteger(E, Val, Info))
10018       return false;
10019     Result = APFixedPoint(Val, FXSema);
10020     return true;
10021   } else if (E->getType()->isFixedPointType()) {
10022     return EvaluateFixedPoint(E, Result, Info);
10023   }
10024   return false;
10025 }
10026 
10027 /// Check whether the given declaration can be directly converted to an integral
10028 /// rvalue. If not, no diagnostic is produced; there are other things we can
10029 /// try.
10030 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
10031   // Enums are integer constant exprs.
10032   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
10033     // Check for signedness/width mismatches between E type and ECD value.
10034     bool SameSign = (ECD->getInitVal().isSigned()
10035                      == E->getType()->isSignedIntegerOrEnumerationType());
10036     bool SameWidth = (ECD->getInitVal().getBitWidth()
10037                       == Info.Ctx.getIntWidth(E->getType()));
10038     if (SameSign && SameWidth)
10039       return Success(ECD->getInitVal(), E);
10040     else {
10041       // Get rid of mismatch (otherwise Success assertions will fail)
10042       // by computing a new value matching the type of E.
10043       llvm::APSInt Val = ECD->getInitVal();
10044       if (!SameSign)
10045         Val.setIsSigned(!ECD->getInitVal().isSigned());
10046       if (!SameWidth)
10047         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
10048       return Success(Val, E);
10049     }
10050   }
10051   return false;
10052 }
10053 
10054 /// Values returned by __builtin_classify_type, chosen to match the values
10055 /// produced by GCC's builtin.
10056 enum class GCCTypeClass {
10057   None = -1,
10058   Void = 0,
10059   Integer = 1,
10060   // GCC reserves 2 for character types, but instead classifies them as
10061   // integers.
10062   Enum = 3,
10063   Bool = 4,
10064   Pointer = 5,
10065   // GCC reserves 6 for references, but appears to never use it (because
10066   // expressions never have reference type, presumably).
10067   PointerToDataMember = 7,
10068   RealFloat = 8,
10069   Complex = 9,
10070   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
10071   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
10072   // GCC claims to reserve 11 for pointers to member functions, but *actually*
10073   // uses 12 for that purpose, same as for a class or struct. Maybe it
10074   // internally implements a pointer to member as a struct?  Who knows.
10075   PointerToMemberFunction = 12, // Not a bug, see above.
10076   ClassOrStruct = 12,
10077   Union = 13,
10078   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
10079   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
10080   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
10081   // literals.
10082 };
10083 
10084 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10085 /// as GCC.
10086 static GCCTypeClass
10087 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
10088   assert(!T->isDependentType() && "unexpected dependent type");
10089 
10090   QualType CanTy = T.getCanonicalType();
10091   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
10092 
10093   switch (CanTy->getTypeClass()) {
10094 #define TYPE(ID, BASE)
10095 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
10096 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
10097 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
10098 #include "clang/AST/TypeNodes.inc"
10099   case Type::Auto:
10100   case Type::DeducedTemplateSpecialization:
10101       llvm_unreachable("unexpected non-canonical or dependent type");
10102 
10103   case Type::Builtin:
10104     switch (BT->getKind()) {
10105 #define BUILTIN_TYPE(ID, SINGLETON_ID)
10106 #define SIGNED_TYPE(ID, SINGLETON_ID) \
10107     case BuiltinType::ID: return GCCTypeClass::Integer;
10108 #define FLOATING_TYPE(ID, SINGLETON_ID) \
10109     case BuiltinType::ID: return GCCTypeClass::RealFloat;
10110 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
10111     case BuiltinType::ID: break;
10112 #include "clang/AST/BuiltinTypes.def"
10113     case BuiltinType::Void:
10114       return GCCTypeClass::Void;
10115 
10116     case BuiltinType::Bool:
10117       return GCCTypeClass::Bool;
10118 
10119     case BuiltinType::Char_U:
10120     case BuiltinType::UChar:
10121     case BuiltinType::WChar_U:
10122     case BuiltinType::Char8:
10123     case BuiltinType::Char16:
10124     case BuiltinType::Char32:
10125     case BuiltinType::UShort:
10126     case BuiltinType::UInt:
10127     case BuiltinType::ULong:
10128     case BuiltinType::ULongLong:
10129     case BuiltinType::UInt128:
10130       return GCCTypeClass::Integer;
10131 
10132     case BuiltinType::UShortAccum:
10133     case BuiltinType::UAccum:
10134     case BuiltinType::ULongAccum:
10135     case BuiltinType::UShortFract:
10136     case BuiltinType::UFract:
10137     case BuiltinType::ULongFract:
10138     case BuiltinType::SatUShortAccum:
10139     case BuiltinType::SatUAccum:
10140     case BuiltinType::SatULongAccum:
10141     case BuiltinType::SatUShortFract:
10142     case BuiltinType::SatUFract:
10143     case BuiltinType::SatULongFract:
10144       return GCCTypeClass::None;
10145 
10146     case BuiltinType::NullPtr:
10147 
10148     case BuiltinType::ObjCId:
10149     case BuiltinType::ObjCClass:
10150     case BuiltinType::ObjCSel:
10151 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
10152     case BuiltinType::Id:
10153 #include "clang/Basic/OpenCLImageTypes.def"
10154 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
10155     case BuiltinType::Id:
10156 #include "clang/Basic/OpenCLExtensionTypes.def"
10157     case BuiltinType::OCLSampler:
10158     case BuiltinType::OCLEvent:
10159     case BuiltinType::OCLClkEvent:
10160     case BuiltinType::OCLQueue:
10161     case BuiltinType::OCLReserveID:
10162 #define SVE_TYPE(Name, Id, SingletonId) \
10163     case BuiltinType::Id:
10164 #include "clang/Basic/AArch64SVEACLETypes.def"
10165       return GCCTypeClass::None;
10166 
10167     case BuiltinType::Dependent:
10168       llvm_unreachable("unexpected dependent type");
10169     };
10170     llvm_unreachable("unexpected placeholder type");
10171 
10172   case Type::Enum:
10173     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
10174 
10175   case Type::Pointer:
10176   case Type::ConstantArray:
10177   case Type::VariableArray:
10178   case Type::IncompleteArray:
10179   case Type::FunctionNoProto:
10180   case Type::FunctionProto:
10181     return GCCTypeClass::Pointer;
10182 
10183   case Type::MemberPointer:
10184     return CanTy->isMemberDataPointerType()
10185                ? GCCTypeClass::PointerToDataMember
10186                : GCCTypeClass::PointerToMemberFunction;
10187 
10188   case Type::Complex:
10189     return GCCTypeClass::Complex;
10190 
10191   case Type::Record:
10192     return CanTy->isUnionType() ? GCCTypeClass::Union
10193                                 : GCCTypeClass::ClassOrStruct;
10194 
10195   case Type::Atomic:
10196     // GCC classifies _Atomic T the same as T.
10197     return EvaluateBuiltinClassifyType(
10198         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
10199 
10200   case Type::BlockPointer:
10201   case Type::Vector:
10202   case Type::ExtVector:
10203   case Type::ObjCObject:
10204   case Type::ObjCInterface:
10205   case Type::ObjCObjectPointer:
10206   case Type::Pipe:
10207     // GCC classifies vectors as None. We follow its lead and classify all
10208     // other types that don't fit into the regular classification the same way.
10209     return GCCTypeClass::None;
10210 
10211   case Type::LValueReference:
10212   case Type::RValueReference:
10213     llvm_unreachable("invalid type for expression");
10214   }
10215 
10216   llvm_unreachable("unexpected type class");
10217 }
10218 
10219 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10220 /// as GCC.
10221 static GCCTypeClass
10222 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
10223   // If no argument was supplied, default to None. This isn't
10224   // ideal, however it is what gcc does.
10225   if (E->getNumArgs() == 0)
10226     return GCCTypeClass::None;
10227 
10228   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
10229   // being an ICE, but still folds it to a constant using the type of the first
10230   // argument.
10231   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
10232 }
10233 
10234 /// EvaluateBuiltinConstantPForLValue - Determine the result of
10235 /// __builtin_constant_p when applied to the given pointer.
10236 ///
10237 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
10238 /// or it points to the first character of a string literal.
10239 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
10240   APValue::LValueBase Base = LV.getLValueBase();
10241   if (Base.isNull()) {
10242     // A null base is acceptable.
10243     return true;
10244   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
10245     if (!isa<StringLiteral>(E))
10246       return false;
10247     return LV.getLValueOffset().isZero();
10248   } else if (Base.is<TypeInfoLValue>()) {
10249     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
10250     // evaluate to true.
10251     return true;
10252   } else {
10253     // Any other base is not constant enough for GCC.
10254     return false;
10255   }
10256 }
10257 
10258 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
10259 /// GCC as we can manage.
10260 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
10261   // This evaluation is not permitted to have side-effects, so evaluate it in
10262   // a speculative evaluation context.
10263   SpeculativeEvaluationRAII SpeculativeEval(Info);
10264 
10265   // Constant-folding is always enabled for the operand of __builtin_constant_p
10266   // (even when the enclosing evaluation context otherwise requires a strict
10267   // language-specific constant expression).
10268   FoldConstant Fold(Info, true);
10269 
10270   QualType ArgType = Arg->getType();
10271 
10272   // __builtin_constant_p always has one operand. The rules which gcc follows
10273   // are not precisely documented, but are as follows:
10274   //
10275   //  - If the operand is of integral, floating, complex or enumeration type,
10276   //    and can be folded to a known value of that type, it returns 1.
10277   //  - If the operand can be folded to a pointer to the first character
10278   //    of a string literal (or such a pointer cast to an integral type)
10279   //    or to a null pointer or an integer cast to a pointer, it returns 1.
10280   //
10281   // Otherwise, it returns 0.
10282   //
10283   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
10284   // its support for this did not work prior to GCC 9 and is not yet well
10285   // understood.
10286   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
10287       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
10288       ArgType->isNullPtrType()) {
10289     APValue V;
10290     if (!::EvaluateAsRValue(Info, Arg, V)) {
10291       Fold.keepDiagnostics();
10292       return false;
10293     }
10294 
10295     // For a pointer (possibly cast to integer), there are special rules.
10296     if (V.getKind() == APValue::LValue)
10297       return EvaluateBuiltinConstantPForLValue(V);
10298 
10299     // Otherwise, any constant value is good enough.
10300     return V.hasValue();
10301   }
10302 
10303   // Anything else isn't considered to be sufficiently constant.
10304   return false;
10305 }
10306 
10307 /// Retrieves the "underlying object type" of the given expression,
10308 /// as used by __builtin_object_size.
10309 static QualType getObjectType(APValue::LValueBase B) {
10310   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
10311     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
10312       return VD->getType();
10313   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
10314     if (isa<CompoundLiteralExpr>(E))
10315       return E->getType();
10316   } else if (B.is<TypeInfoLValue>()) {
10317     return B.getTypeInfoType();
10318   } else if (B.is<DynamicAllocLValue>()) {
10319     return B.getDynamicAllocType();
10320   }
10321 
10322   return QualType();
10323 }
10324 
10325 /// A more selective version of E->IgnoreParenCasts for
10326 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
10327 /// to change the type of E.
10328 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
10329 ///
10330 /// Always returns an RValue with a pointer representation.
10331 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
10332   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
10333 
10334   auto *NoParens = E->IgnoreParens();
10335   auto *Cast = dyn_cast<CastExpr>(NoParens);
10336   if (Cast == nullptr)
10337     return NoParens;
10338 
10339   // We only conservatively allow a few kinds of casts, because this code is
10340   // inherently a simple solution that seeks to support the common case.
10341   auto CastKind = Cast->getCastKind();
10342   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
10343       CastKind != CK_AddressSpaceConversion)
10344     return NoParens;
10345 
10346   auto *SubExpr = Cast->getSubExpr();
10347   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
10348     return NoParens;
10349   return ignorePointerCastsAndParens(SubExpr);
10350 }
10351 
10352 /// Checks to see if the given LValue's Designator is at the end of the LValue's
10353 /// record layout. e.g.
10354 ///   struct { struct { int a, b; } fst, snd; } obj;
10355 ///   obj.fst   // no
10356 ///   obj.snd   // yes
10357 ///   obj.fst.a // no
10358 ///   obj.fst.b // no
10359 ///   obj.snd.a // no
10360 ///   obj.snd.b // yes
10361 ///
10362 /// Please note: this function is specialized for how __builtin_object_size
10363 /// views "objects".
10364 ///
10365 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
10366 /// correct result, it will always return true.
10367 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
10368   assert(!LVal.Designator.Invalid);
10369 
10370   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
10371     const RecordDecl *Parent = FD->getParent();
10372     Invalid = Parent->isInvalidDecl();
10373     if (Invalid || Parent->isUnion())
10374       return true;
10375     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
10376     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
10377   };
10378 
10379   auto &Base = LVal.getLValueBase();
10380   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
10381     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
10382       bool Invalid;
10383       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
10384         return Invalid;
10385     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
10386       for (auto *FD : IFD->chain()) {
10387         bool Invalid;
10388         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
10389           return Invalid;
10390       }
10391     }
10392   }
10393 
10394   unsigned I = 0;
10395   QualType BaseType = getType(Base);
10396   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
10397     // If we don't know the array bound, conservatively assume we're looking at
10398     // the final array element.
10399     ++I;
10400     if (BaseType->isIncompleteArrayType())
10401       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
10402     else
10403       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
10404   }
10405 
10406   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
10407     const auto &Entry = LVal.Designator.Entries[I];
10408     if (BaseType->isArrayType()) {
10409       // Because __builtin_object_size treats arrays as objects, we can ignore
10410       // the index iff this is the last array in the Designator.
10411       if (I + 1 == E)
10412         return true;
10413       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
10414       uint64_t Index = Entry.getAsArrayIndex();
10415       if (Index + 1 != CAT->getSize())
10416         return false;
10417       BaseType = CAT->getElementType();
10418     } else if (BaseType->isAnyComplexType()) {
10419       const auto *CT = BaseType->castAs<ComplexType>();
10420       uint64_t Index = Entry.getAsArrayIndex();
10421       if (Index != 1)
10422         return false;
10423       BaseType = CT->getElementType();
10424     } else if (auto *FD = getAsField(Entry)) {
10425       bool Invalid;
10426       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
10427         return Invalid;
10428       BaseType = FD->getType();
10429     } else {
10430       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
10431       return false;
10432     }
10433   }
10434   return true;
10435 }
10436 
10437 /// Tests to see if the LValue has a user-specified designator (that isn't
10438 /// necessarily valid). Note that this always returns 'true' if the LValue has
10439 /// an unsized array as its first designator entry, because there's currently no
10440 /// way to tell if the user typed *foo or foo[0].
10441 static bool refersToCompleteObject(const LValue &LVal) {
10442   if (LVal.Designator.Invalid)
10443     return false;
10444 
10445   if (!LVal.Designator.Entries.empty())
10446     return LVal.Designator.isMostDerivedAnUnsizedArray();
10447 
10448   if (!LVal.InvalidBase)
10449     return true;
10450 
10451   // If `E` is a MemberExpr, then the first part of the designator is hiding in
10452   // the LValueBase.
10453   const auto *E = LVal.Base.dyn_cast<const Expr *>();
10454   return !E || !isa<MemberExpr>(E);
10455 }
10456 
10457 /// Attempts to detect a user writing into a piece of memory that's impossible
10458 /// to figure out the size of by just using types.
10459 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
10460   const SubobjectDesignator &Designator = LVal.Designator;
10461   // Notes:
10462   // - Users can only write off of the end when we have an invalid base. Invalid
10463   //   bases imply we don't know where the memory came from.
10464   // - We used to be a bit more aggressive here; we'd only be conservative if
10465   //   the array at the end was flexible, or if it had 0 or 1 elements. This
10466   //   broke some common standard library extensions (PR30346), but was
10467   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
10468   //   with some sort of whitelist. OTOH, it seems that GCC is always
10469   //   conservative with the last element in structs (if it's an array), so our
10470   //   current behavior is more compatible than a whitelisting approach would
10471   //   be.
10472   return LVal.InvalidBase &&
10473          Designator.Entries.size() == Designator.MostDerivedPathLength &&
10474          Designator.MostDerivedIsArrayElement &&
10475          isDesignatorAtObjectEnd(Ctx, LVal);
10476 }
10477 
10478 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
10479 /// Fails if the conversion would cause loss of precision.
10480 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
10481                                             CharUnits &Result) {
10482   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
10483   if (Int.ugt(CharUnitsMax))
10484     return false;
10485   Result = CharUnits::fromQuantity(Int.getZExtValue());
10486   return true;
10487 }
10488 
10489 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
10490 /// determine how many bytes exist from the beginning of the object to either
10491 /// the end of the current subobject, or the end of the object itself, depending
10492 /// on what the LValue looks like + the value of Type.
10493 ///
10494 /// If this returns false, the value of Result is undefined.
10495 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
10496                                unsigned Type, const LValue &LVal,
10497                                CharUnits &EndOffset) {
10498   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
10499 
10500   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
10501     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
10502       return false;
10503     return HandleSizeof(Info, ExprLoc, Ty, Result);
10504   };
10505 
10506   // We want to evaluate the size of the entire object. This is a valid fallback
10507   // for when Type=1 and the designator is invalid, because we're asked for an
10508   // upper-bound.
10509   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
10510     // Type=3 wants a lower bound, so we can't fall back to this.
10511     if (Type == 3 && !DetermineForCompleteObject)
10512       return false;
10513 
10514     llvm::APInt APEndOffset;
10515     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
10516         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
10517       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
10518 
10519     if (LVal.InvalidBase)
10520       return false;
10521 
10522     QualType BaseTy = getObjectType(LVal.getLValueBase());
10523     return CheckedHandleSizeof(BaseTy, EndOffset);
10524   }
10525 
10526   // We want to evaluate the size of a subobject.
10527   const SubobjectDesignator &Designator = LVal.Designator;
10528 
10529   // The following is a moderately common idiom in C:
10530   //
10531   // struct Foo { int a; char c[1]; };
10532   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
10533   // strcpy(&F->c[0], Bar);
10534   //
10535   // In order to not break too much legacy code, we need to support it.
10536   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
10537     // If we can resolve this to an alloc_size call, we can hand that back,
10538     // because we know for certain how many bytes there are to write to.
10539     llvm::APInt APEndOffset;
10540     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
10541         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
10542       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
10543 
10544     // If we cannot determine the size of the initial allocation, then we can't
10545     // given an accurate upper-bound. However, we are still able to give
10546     // conservative lower-bounds for Type=3.
10547     if (Type == 1)
10548       return false;
10549   }
10550 
10551   CharUnits BytesPerElem;
10552   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
10553     return false;
10554 
10555   // According to the GCC documentation, we want the size of the subobject
10556   // denoted by the pointer. But that's not quite right -- what we actually
10557   // want is the size of the immediately-enclosing array, if there is one.
10558   int64_t ElemsRemaining;
10559   if (Designator.MostDerivedIsArrayElement &&
10560       Designator.Entries.size() == Designator.MostDerivedPathLength) {
10561     uint64_t ArraySize = Designator.getMostDerivedArraySize();
10562     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
10563     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
10564   } else {
10565     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
10566   }
10567 
10568   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
10569   return true;
10570 }
10571 
10572 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
10573 /// returns true and stores the result in @p Size.
10574 ///
10575 /// If @p WasError is non-null, this will report whether the failure to evaluate
10576 /// is to be treated as an Error in IntExprEvaluator.
10577 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
10578                                          EvalInfo &Info, uint64_t &Size) {
10579   // Determine the denoted object.
10580   LValue LVal;
10581   {
10582     // The operand of __builtin_object_size is never evaluated for side-effects.
10583     // If there are any, but we can determine the pointed-to object anyway, then
10584     // ignore the side-effects.
10585     SpeculativeEvaluationRAII SpeculativeEval(Info);
10586     IgnoreSideEffectsRAII Fold(Info);
10587 
10588     if (E->isGLValue()) {
10589       // It's possible for us to be given GLValues if we're called via
10590       // Expr::tryEvaluateObjectSize.
10591       APValue RVal;
10592       if (!EvaluateAsRValue(Info, E, RVal))
10593         return false;
10594       LVal.setFrom(Info.Ctx, RVal);
10595     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
10596                                 /*InvalidBaseOK=*/true))
10597       return false;
10598   }
10599 
10600   // If we point to before the start of the object, there are no accessible
10601   // bytes.
10602   if (LVal.getLValueOffset().isNegative()) {
10603     Size = 0;
10604     return true;
10605   }
10606 
10607   CharUnits EndOffset;
10608   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
10609     return false;
10610 
10611   // If we've fallen outside of the end offset, just pretend there's nothing to
10612   // write to/read from.
10613   if (EndOffset <= LVal.getLValueOffset())
10614     Size = 0;
10615   else
10616     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
10617   return true;
10618 }
10619 
10620 bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) {
10621   llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true);
10622   if (E->getResultAPValueKind() != APValue::None)
10623     return Success(E->getAPValueResult(), E);
10624   return ExprEvaluatorBaseTy::VisitConstantExpr(E);
10625 }
10626 
10627 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
10628   if (unsigned BuiltinOp = E->getBuiltinCallee())
10629     return VisitBuiltinCallExpr(E, BuiltinOp);
10630 
10631   return ExprEvaluatorBaseTy::VisitCallExpr(E);
10632 }
10633 
10634 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
10635                                      APValue &Val, APSInt &Alignment) {
10636   QualType SrcTy = E->getArg(0)->getType();
10637   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
10638     return false;
10639   // Even though we are evaluating integer expressions we could get a pointer
10640   // argument for the __builtin_is_aligned() case.
10641   if (SrcTy->isPointerType()) {
10642     LValue Ptr;
10643     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
10644       return false;
10645     Ptr.moveInto(Val);
10646   } else if (!SrcTy->isIntegralOrEnumerationType()) {
10647     Info.FFDiag(E->getArg(0));
10648     return false;
10649   } else {
10650     APSInt SrcInt;
10651     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
10652       return false;
10653     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
10654            "Bit widths must be the same");
10655     Val = APValue(SrcInt);
10656   }
10657   assert(Val.hasValue());
10658   return true;
10659 }
10660 
10661 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
10662                                             unsigned BuiltinOp) {
10663   switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
10664   default:
10665     return ExprEvaluatorBaseTy::VisitCallExpr(E);
10666 
10667   case Builtin::BI__builtin_dynamic_object_size:
10668   case Builtin::BI__builtin_object_size: {
10669     // The type was checked when we built the expression.
10670     unsigned Type =
10671         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
10672     assert(Type <= 3 && "unexpected type");
10673 
10674     uint64_t Size;
10675     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
10676       return Success(Size, E);
10677 
10678     if (E->getArg(0)->HasSideEffects(Info.Ctx))
10679       return Success((Type & 2) ? 0 : -1, E);
10680 
10681     // Expression had no side effects, but we couldn't statically determine the
10682     // size of the referenced object.
10683     switch (Info.EvalMode) {
10684     case EvalInfo::EM_ConstantExpression:
10685     case EvalInfo::EM_ConstantFold:
10686     case EvalInfo::EM_IgnoreSideEffects:
10687       // Leave it to IR generation.
10688       return Error(E);
10689     case EvalInfo::EM_ConstantExpressionUnevaluated:
10690       // Reduce it to a constant now.
10691       return Success((Type & 2) ? 0 : -1, E);
10692     }
10693 
10694     llvm_unreachable("unexpected EvalMode");
10695   }
10696 
10697   case Builtin::BI__builtin_os_log_format_buffer_size: {
10698     analyze_os_log::OSLogBufferLayout Layout;
10699     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
10700     return Success(Layout.size().getQuantity(), E);
10701   }
10702 
10703   case Builtin::BI__builtin_is_aligned: {
10704     APValue Src;
10705     APSInt Alignment;
10706     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
10707       return false;
10708     if (Src.isLValue()) {
10709       // If we evaluated a pointer, check the minimum known alignment.
10710       LValue Ptr;
10711       Ptr.setFrom(Info.Ctx, Src);
10712       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
10713       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
10714       // We can return true if the known alignment at the computed offset is
10715       // greater than the requested alignment.
10716       assert(PtrAlign.isPowerOfTwo());
10717       assert(Alignment.isPowerOf2());
10718       if (PtrAlign.getQuantity() >= Alignment)
10719         return Success(1, E);
10720       // If the alignment is not known to be sufficient, some cases could still
10721       // be aligned at run time. However, if the requested alignment is less or
10722       // equal to the base alignment and the offset is not aligned, we know that
10723       // the run-time value can never be aligned.
10724       if (BaseAlignment.getQuantity() >= Alignment &&
10725           PtrAlign.getQuantity() < Alignment)
10726         return Success(0, E);
10727       // Otherwise we can't infer whether the value is sufficiently aligned.
10728       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
10729       //  in cases where we can't fully evaluate the pointer.
10730       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
10731           << Alignment;
10732       return false;
10733     }
10734     assert(Src.isInt());
10735     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
10736   }
10737   case Builtin::BI__builtin_align_up: {
10738     APValue Src;
10739     APSInt Alignment;
10740     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
10741       return false;
10742     if (!Src.isInt())
10743       return Error(E);
10744     APSInt AlignedVal =
10745         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
10746                Src.getInt().isUnsigned());
10747     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
10748     return Success(AlignedVal, E);
10749   }
10750   case Builtin::BI__builtin_align_down: {
10751     APValue Src;
10752     APSInt Alignment;
10753     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
10754       return false;
10755     if (!Src.isInt())
10756       return Error(E);
10757     APSInt AlignedVal =
10758         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
10759     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
10760     return Success(AlignedVal, E);
10761   }
10762 
10763   case Builtin::BI__builtin_bswap16:
10764   case Builtin::BI__builtin_bswap32:
10765   case Builtin::BI__builtin_bswap64: {
10766     APSInt Val;
10767     if (!EvaluateInteger(E->getArg(0), Val, Info))
10768       return false;
10769 
10770     return Success(Val.byteSwap(), E);
10771   }
10772 
10773   case Builtin::BI__builtin_classify_type:
10774     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
10775 
10776   case Builtin::BI__builtin_clrsb:
10777   case Builtin::BI__builtin_clrsbl:
10778   case Builtin::BI__builtin_clrsbll: {
10779     APSInt Val;
10780     if (!EvaluateInteger(E->getArg(0), Val, Info))
10781       return false;
10782 
10783     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
10784   }
10785 
10786   case Builtin::BI__builtin_clz:
10787   case Builtin::BI__builtin_clzl:
10788   case Builtin::BI__builtin_clzll:
10789   case Builtin::BI__builtin_clzs: {
10790     APSInt Val;
10791     if (!EvaluateInteger(E->getArg(0), Val, Info))
10792       return false;
10793     if (!Val)
10794       return Error(E);
10795 
10796     return Success(Val.countLeadingZeros(), E);
10797   }
10798 
10799   case Builtin::BI__builtin_constant_p: {
10800     const Expr *Arg = E->getArg(0);
10801     if (EvaluateBuiltinConstantP(Info, Arg))
10802       return Success(true, E);
10803     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
10804       // Outside a constant context, eagerly evaluate to false in the presence
10805       // of side-effects in order to avoid -Wunsequenced false-positives in
10806       // a branch on __builtin_constant_p(expr).
10807       return Success(false, E);
10808     }
10809     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10810     return false;
10811   }
10812 
10813   case Builtin::BI__builtin_is_constant_evaluated: {
10814     const auto *Callee = Info.CurrentCall->getCallee();
10815     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
10816         (Info.CallStackDepth == 1 ||
10817          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
10818           Callee->getIdentifier() &&
10819           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
10820       // FIXME: Find a better way to avoid duplicated diagnostics.
10821       if (Info.EvalStatus.Diag)
10822         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
10823                                                : Info.CurrentCall->CallLoc,
10824                     diag::warn_is_constant_evaluated_always_true_constexpr)
10825             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
10826                                          : "std::is_constant_evaluated");
10827     }
10828 
10829     return Success(Info.InConstantContext, E);
10830   }
10831 
10832   case Builtin::BI__builtin_ctz:
10833   case Builtin::BI__builtin_ctzl:
10834   case Builtin::BI__builtin_ctzll:
10835   case Builtin::BI__builtin_ctzs: {
10836     APSInt Val;
10837     if (!EvaluateInteger(E->getArg(0), Val, Info))
10838       return false;
10839     if (!Val)
10840       return Error(E);
10841 
10842     return Success(Val.countTrailingZeros(), E);
10843   }
10844 
10845   case Builtin::BI__builtin_eh_return_data_regno: {
10846     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
10847     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
10848     return Success(Operand, E);
10849   }
10850 
10851   case Builtin::BI__builtin_expect:
10852     return Visit(E->getArg(0));
10853 
10854   case Builtin::BI__builtin_ffs:
10855   case Builtin::BI__builtin_ffsl:
10856   case Builtin::BI__builtin_ffsll: {
10857     APSInt Val;
10858     if (!EvaluateInteger(E->getArg(0), Val, Info))
10859       return false;
10860 
10861     unsigned N = Val.countTrailingZeros();
10862     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
10863   }
10864 
10865   case Builtin::BI__builtin_fpclassify: {
10866     APFloat Val(0.0);
10867     if (!EvaluateFloat(E->getArg(5), Val, Info))
10868       return false;
10869     unsigned Arg;
10870     switch (Val.getCategory()) {
10871     case APFloat::fcNaN: Arg = 0; break;
10872     case APFloat::fcInfinity: Arg = 1; break;
10873     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
10874     case APFloat::fcZero: Arg = 4; break;
10875     }
10876     return Visit(E->getArg(Arg));
10877   }
10878 
10879   case Builtin::BI__builtin_isinf_sign: {
10880     APFloat Val(0.0);
10881     return EvaluateFloat(E->getArg(0), Val, Info) &&
10882            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
10883   }
10884 
10885   case Builtin::BI__builtin_isinf: {
10886     APFloat Val(0.0);
10887     return EvaluateFloat(E->getArg(0), Val, Info) &&
10888            Success(Val.isInfinity() ? 1 : 0, E);
10889   }
10890 
10891   case Builtin::BI__builtin_isfinite: {
10892     APFloat Val(0.0);
10893     return EvaluateFloat(E->getArg(0), Val, Info) &&
10894            Success(Val.isFinite() ? 1 : 0, E);
10895   }
10896 
10897   case Builtin::BI__builtin_isnan: {
10898     APFloat Val(0.0);
10899     return EvaluateFloat(E->getArg(0), Val, Info) &&
10900            Success(Val.isNaN() ? 1 : 0, E);
10901   }
10902 
10903   case Builtin::BI__builtin_isnormal: {
10904     APFloat Val(0.0);
10905     return EvaluateFloat(E->getArg(0), Val, Info) &&
10906            Success(Val.isNormal() ? 1 : 0, E);
10907   }
10908 
10909   case Builtin::BI__builtin_parity:
10910   case Builtin::BI__builtin_parityl:
10911   case Builtin::BI__builtin_parityll: {
10912     APSInt Val;
10913     if (!EvaluateInteger(E->getArg(0), Val, Info))
10914       return false;
10915 
10916     return Success(Val.countPopulation() % 2, E);
10917   }
10918 
10919   case Builtin::BI__builtin_popcount:
10920   case Builtin::BI__builtin_popcountl:
10921   case Builtin::BI__builtin_popcountll: {
10922     APSInt Val;
10923     if (!EvaluateInteger(E->getArg(0), Val, Info))
10924       return false;
10925 
10926     return Success(Val.countPopulation(), E);
10927   }
10928 
10929   case Builtin::BIstrlen:
10930   case Builtin::BIwcslen:
10931     // A call to strlen is not a constant expression.
10932     if (Info.getLangOpts().CPlusPlus11)
10933       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
10934         << /*isConstexpr*/0 << /*isConstructor*/0
10935         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
10936     else
10937       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
10938     LLVM_FALLTHROUGH;
10939   case Builtin::BI__builtin_strlen:
10940   case Builtin::BI__builtin_wcslen: {
10941     // As an extension, we support __builtin_strlen() as a constant expression,
10942     // and support folding strlen() to a constant.
10943     LValue String;
10944     if (!EvaluatePointer(E->getArg(0), String, Info))
10945       return false;
10946 
10947     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
10948 
10949     // Fast path: if it's a string literal, search the string value.
10950     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
10951             String.getLValueBase().dyn_cast<const Expr *>())) {
10952       // The string literal may have embedded null characters. Find the first
10953       // one and truncate there.
10954       StringRef Str = S->getBytes();
10955       int64_t Off = String.Offset.getQuantity();
10956       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
10957           S->getCharByteWidth() == 1 &&
10958           // FIXME: Add fast-path for wchar_t too.
10959           Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
10960         Str = Str.substr(Off);
10961 
10962         StringRef::size_type Pos = Str.find(0);
10963         if (Pos != StringRef::npos)
10964           Str = Str.substr(0, Pos);
10965 
10966         return Success(Str.size(), E);
10967       }
10968 
10969       // Fall through to slow path to issue appropriate diagnostic.
10970     }
10971 
10972     // Slow path: scan the bytes of the string looking for the terminating 0.
10973     for (uint64_t Strlen = 0; /**/; ++Strlen) {
10974       APValue Char;
10975       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
10976           !Char.isInt())
10977         return false;
10978       if (!Char.getInt())
10979         return Success(Strlen, E);
10980       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
10981         return false;
10982     }
10983   }
10984 
10985   case Builtin::BIstrcmp:
10986   case Builtin::BIwcscmp:
10987   case Builtin::BIstrncmp:
10988   case Builtin::BIwcsncmp:
10989   case Builtin::BImemcmp:
10990   case Builtin::BIbcmp:
10991   case Builtin::BIwmemcmp:
10992     // A call to strlen is not a constant expression.
10993     if (Info.getLangOpts().CPlusPlus11)
10994       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
10995         << /*isConstexpr*/0 << /*isConstructor*/0
10996         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
10997     else
10998       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
10999     LLVM_FALLTHROUGH;
11000   case Builtin::BI__builtin_strcmp:
11001   case Builtin::BI__builtin_wcscmp:
11002   case Builtin::BI__builtin_strncmp:
11003   case Builtin::BI__builtin_wcsncmp:
11004   case Builtin::BI__builtin_memcmp:
11005   case Builtin::BI__builtin_bcmp:
11006   case Builtin::BI__builtin_wmemcmp: {
11007     LValue String1, String2;
11008     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
11009         !EvaluatePointer(E->getArg(1), String2, Info))
11010       return false;
11011 
11012     uint64_t MaxLength = uint64_t(-1);
11013     if (BuiltinOp != Builtin::BIstrcmp &&
11014         BuiltinOp != Builtin::BIwcscmp &&
11015         BuiltinOp != Builtin::BI__builtin_strcmp &&
11016         BuiltinOp != Builtin::BI__builtin_wcscmp) {
11017       APSInt N;
11018       if (!EvaluateInteger(E->getArg(2), N, Info))
11019         return false;
11020       MaxLength = N.getExtValue();
11021     }
11022 
11023     // Empty substrings compare equal by definition.
11024     if (MaxLength == 0u)
11025       return Success(0, E);
11026 
11027     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11028         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11029         String1.Designator.Invalid || String2.Designator.Invalid)
11030       return false;
11031 
11032     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
11033     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
11034 
11035     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
11036                      BuiltinOp == Builtin::BIbcmp ||
11037                      BuiltinOp == Builtin::BI__builtin_memcmp ||
11038                      BuiltinOp == Builtin::BI__builtin_bcmp;
11039 
11040     assert(IsRawByte ||
11041            (Info.Ctx.hasSameUnqualifiedType(
11042                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
11043             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
11044 
11045     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
11046       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
11047              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
11048              Char1.isInt() && Char2.isInt();
11049     };
11050     const auto &AdvanceElems = [&] {
11051       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
11052              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
11053     };
11054 
11055     if (IsRawByte) {
11056       uint64_t BytesRemaining = MaxLength;
11057       // Pointers to const void may point to objects of incomplete type.
11058       if (CharTy1->isIncompleteType()) {
11059         Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1;
11060         return false;
11061       }
11062       if (CharTy2->isIncompleteType()) {
11063         Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2;
11064         return false;
11065       }
11066       uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)};
11067       CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width);
11068       // Give up on comparing between elements with disparate widths.
11069       if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2))
11070         return false;
11071       uint64_t BytesPerElement = CharTy1Size.getQuantity();
11072       assert(BytesRemaining && "BytesRemaining should not be zero: the "
11073                                "following loop considers at least one element");
11074       while (true) {
11075         APValue Char1, Char2;
11076         if (!ReadCurElems(Char1, Char2))
11077           return false;
11078         // We have compatible in-memory widths, but a possible type and
11079         // (for `bool`) internal representation mismatch.
11080         // Assuming two's complement representation, including 0 for `false` and
11081         // 1 for `true`, we can check an appropriate number of elements for
11082         // equality even if they are not byte-sized.
11083         APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width);
11084         APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width);
11085         if (Char1InMem.ne(Char2InMem)) {
11086           // If the elements are byte-sized, then we can produce a three-way
11087           // comparison result in a straightforward manner.
11088           if (BytesPerElement == 1u) {
11089             // memcmp always compares unsigned chars.
11090             return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E);
11091           }
11092           // The result is byte-order sensitive, and we have multibyte elements.
11093           // FIXME: We can compare the remaining bytes in the correct order.
11094           return false;
11095         }
11096         if (!AdvanceElems())
11097           return false;
11098         if (BytesRemaining <= BytesPerElement)
11099           break;
11100         BytesRemaining -= BytesPerElement;
11101       }
11102       // Enough elements are equal to account for the memcmp limit.
11103       return Success(0, E);
11104     }
11105 
11106     bool StopAtNull =
11107         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
11108          BuiltinOp != Builtin::BIwmemcmp &&
11109          BuiltinOp != Builtin::BI__builtin_memcmp &&
11110          BuiltinOp != Builtin::BI__builtin_bcmp &&
11111          BuiltinOp != Builtin::BI__builtin_wmemcmp);
11112     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
11113                   BuiltinOp == Builtin::BIwcsncmp ||
11114                   BuiltinOp == Builtin::BIwmemcmp ||
11115                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
11116                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
11117                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
11118 
11119     for (; MaxLength; --MaxLength) {
11120       APValue Char1, Char2;
11121       if (!ReadCurElems(Char1, Char2))
11122         return false;
11123       if (Char1.getInt() != Char2.getInt()) {
11124         if (IsWide) // wmemcmp compares with wchar_t signedness.
11125           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
11126         // memcmp always compares unsigned chars.
11127         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
11128       }
11129       if (StopAtNull && !Char1.getInt())
11130         return Success(0, E);
11131       assert(!(StopAtNull && !Char2.getInt()));
11132       if (!AdvanceElems())
11133         return false;
11134     }
11135     // We hit the strncmp / memcmp limit.
11136     return Success(0, E);
11137   }
11138 
11139   case Builtin::BI__atomic_always_lock_free:
11140   case Builtin::BI__atomic_is_lock_free:
11141   case Builtin::BI__c11_atomic_is_lock_free: {
11142     APSInt SizeVal;
11143     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
11144       return false;
11145 
11146     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
11147     // of two less than the maximum inline atomic width, we know it is
11148     // lock-free.  If the size isn't a power of two, or greater than the
11149     // maximum alignment where we promote atomics, we know it is not lock-free
11150     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
11151     // the answer can only be determined at runtime; for example, 16-byte
11152     // atomics have lock-free implementations on some, but not all,
11153     // x86-64 processors.
11154 
11155     // Check power-of-two.
11156     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
11157     if (Size.isPowerOfTwo()) {
11158       // Check against inlining width.
11159       unsigned InlineWidthBits =
11160           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
11161       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
11162         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
11163             Size == CharUnits::One() ||
11164             E->getArg(1)->isNullPointerConstant(Info.Ctx,
11165                                                 Expr::NPC_NeverValueDependent))
11166           // OK, we will inline appropriately-aligned operations of this size,
11167           // and _Atomic(T) is appropriately-aligned.
11168           return Success(1, E);
11169 
11170         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
11171           castAs<PointerType>()->getPointeeType();
11172         if (!PointeeType->isIncompleteType() &&
11173             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
11174           // OK, we will inline operations on this object.
11175           return Success(1, E);
11176         }
11177       }
11178     }
11179 
11180     // Avoid emiting call for runtime decision on PowerPC 32-bit
11181     // The lock free possibilities on this platform are covered by the lines
11182     // above and we know in advance other cases require lock
11183     if (Info.Ctx.getTargetInfo().getTriple().getArch() == llvm::Triple::ppc) {
11184         return Success(0, E);
11185     }
11186 
11187     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
11188         Success(0, E) : Error(E);
11189   }
11190   case Builtin::BIomp_is_initial_device:
11191     // We can decide statically which value the runtime would return if called.
11192     return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
11193   case Builtin::BI__builtin_add_overflow:
11194   case Builtin::BI__builtin_sub_overflow:
11195   case Builtin::BI__builtin_mul_overflow:
11196   case Builtin::BI__builtin_sadd_overflow:
11197   case Builtin::BI__builtin_uadd_overflow:
11198   case Builtin::BI__builtin_uaddl_overflow:
11199   case Builtin::BI__builtin_uaddll_overflow:
11200   case Builtin::BI__builtin_usub_overflow:
11201   case Builtin::BI__builtin_usubl_overflow:
11202   case Builtin::BI__builtin_usubll_overflow:
11203   case Builtin::BI__builtin_umul_overflow:
11204   case Builtin::BI__builtin_umull_overflow:
11205   case Builtin::BI__builtin_umulll_overflow:
11206   case Builtin::BI__builtin_saddl_overflow:
11207   case Builtin::BI__builtin_saddll_overflow:
11208   case Builtin::BI__builtin_ssub_overflow:
11209   case Builtin::BI__builtin_ssubl_overflow:
11210   case Builtin::BI__builtin_ssubll_overflow:
11211   case Builtin::BI__builtin_smul_overflow:
11212   case Builtin::BI__builtin_smull_overflow:
11213   case Builtin::BI__builtin_smulll_overflow: {
11214     LValue ResultLValue;
11215     APSInt LHS, RHS;
11216 
11217     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
11218     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
11219         !EvaluateInteger(E->getArg(1), RHS, Info) ||
11220         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
11221       return false;
11222 
11223     APSInt Result;
11224     bool DidOverflow = false;
11225 
11226     // If the types don't have to match, enlarge all 3 to the largest of them.
11227     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
11228         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
11229         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
11230       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
11231                       ResultType->isSignedIntegerOrEnumerationType();
11232       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
11233                       ResultType->isSignedIntegerOrEnumerationType();
11234       uint64_t LHSSize = LHS.getBitWidth();
11235       uint64_t RHSSize = RHS.getBitWidth();
11236       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
11237       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
11238 
11239       // Add an additional bit if the signedness isn't uniformly agreed to. We
11240       // could do this ONLY if there is a signed and an unsigned that both have
11241       // MaxBits, but the code to check that is pretty nasty.  The issue will be
11242       // caught in the shrink-to-result later anyway.
11243       if (IsSigned && !AllSigned)
11244         ++MaxBits;
11245 
11246       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
11247       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
11248       Result = APSInt(MaxBits, !IsSigned);
11249     }
11250 
11251     // Find largest int.
11252     switch (BuiltinOp) {
11253     default:
11254       llvm_unreachable("Invalid value for BuiltinOp");
11255     case Builtin::BI__builtin_add_overflow:
11256     case Builtin::BI__builtin_sadd_overflow:
11257     case Builtin::BI__builtin_saddl_overflow:
11258     case Builtin::BI__builtin_saddll_overflow:
11259     case Builtin::BI__builtin_uadd_overflow:
11260     case Builtin::BI__builtin_uaddl_overflow:
11261     case Builtin::BI__builtin_uaddll_overflow:
11262       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
11263                               : LHS.uadd_ov(RHS, DidOverflow);
11264       break;
11265     case Builtin::BI__builtin_sub_overflow:
11266     case Builtin::BI__builtin_ssub_overflow:
11267     case Builtin::BI__builtin_ssubl_overflow:
11268     case Builtin::BI__builtin_ssubll_overflow:
11269     case Builtin::BI__builtin_usub_overflow:
11270     case Builtin::BI__builtin_usubl_overflow:
11271     case Builtin::BI__builtin_usubll_overflow:
11272       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
11273                               : LHS.usub_ov(RHS, DidOverflow);
11274       break;
11275     case Builtin::BI__builtin_mul_overflow:
11276     case Builtin::BI__builtin_smul_overflow:
11277     case Builtin::BI__builtin_smull_overflow:
11278     case Builtin::BI__builtin_smulll_overflow:
11279     case Builtin::BI__builtin_umul_overflow:
11280     case Builtin::BI__builtin_umull_overflow:
11281     case Builtin::BI__builtin_umulll_overflow:
11282       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
11283                               : LHS.umul_ov(RHS, DidOverflow);
11284       break;
11285     }
11286 
11287     // In the case where multiple sizes are allowed, truncate and see if
11288     // the values are the same.
11289     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
11290         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
11291         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
11292       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
11293       // since it will give us the behavior of a TruncOrSelf in the case where
11294       // its parameter <= its size.  We previously set Result to be at least the
11295       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
11296       // will work exactly like TruncOrSelf.
11297       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
11298       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
11299 
11300       if (!APSInt::isSameValue(Temp, Result))
11301         DidOverflow = true;
11302       Result = Temp;
11303     }
11304 
11305     APValue APV{Result};
11306     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
11307       return false;
11308     return Success(DidOverflow, E);
11309   }
11310   }
11311 }
11312 
11313 /// Determine whether this is a pointer past the end of the complete
11314 /// object referred to by the lvalue.
11315 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
11316                                             const LValue &LV) {
11317   // A null pointer can be viewed as being "past the end" but we don't
11318   // choose to look at it that way here.
11319   if (!LV.getLValueBase())
11320     return false;
11321 
11322   // If the designator is valid and refers to a subobject, we're not pointing
11323   // past the end.
11324   if (!LV.getLValueDesignator().Invalid &&
11325       !LV.getLValueDesignator().isOnePastTheEnd())
11326     return false;
11327 
11328   // A pointer to an incomplete type might be past-the-end if the type's size is
11329   // zero.  We cannot tell because the type is incomplete.
11330   QualType Ty = getType(LV.getLValueBase());
11331   if (Ty->isIncompleteType())
11332     return true;
11333 
11334   // We're a past-the-end pointer if we point to the byte after the object,
11335   // no matter what our type or path is.
11336   auto Size = Ctx.getTypeSizeInChars(Ty);
11337   return LV.getLValueOffset() == Size;
11338 }
11339 
11340 namespace {
11341 
11342 /// Data recursive integer evaluator of certain binary operators.
11343 ///
11344 /// We use a data recursive algorithm for binary operators so that we are able
11345 /// to handle extreme cases of chained binary operators without causing stack
11346 /// overflow.
11347 class DataRecursiveIntBinOpEvaluator {
11348   struct EvalResult {
11349     APValue Val;
11350     bool Failed;
11351 
11352     EvalResult() : Failed(false) { }
11353 
11354     void swap(EvalResult &RHS) {
11355       Val.swap(RHS.Val);
11356       Failed = RHS.Failed;
11357       RHS.Failed = false;
11358     }
11359   };
11360 
11361   struct Job {
11362     const Expr *E;
11363     EvalResult LHSResult; // meaningful only for binary operator expression.
11364     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
11365 
11366     Job() = default;
11367     Job(Job &&) = default;
11368 
11369     void startSpeculativeEval(EvalInfo &Info) {
11370       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
11371     }
11372 
11373   private:
11374     SpeculativeEvaluationRAII SpecEvalRAII;
11375   };
11376 
11377   SmallVector<Job, 16> Queue;
11378 
11379   IntExprEvaluator &IntEval;
11380   EvalInfo &Info;
11381   APValue &FinalResult;
11382 
11383 public:
11384   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
11385     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
11386 
11387   /// True if \param E is a binary operator that we are going to handle
11388   /// data recursively.
11389   /// We handle binary operators that are comma, logical, or that have operands
11390   /// with integral or enumeration type.
11391   static bool shouldEnqueue(const BinaryOperator *E) {
11392     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
11393            (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
11394             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11395             E->getRHS()->getType()->isIntegralOrEnumerationType());
11396   }
11397 
11398   bool Traverse(const BinaryOperator *E) {
11399     enqueue(E);
11400     EvalResult PrevResult;
11401     while (!Queue.empty())
11402       process(PrevResult);
11403 
11404     if (PrevResult.Failed) return false;
11405 
11406     FinalResult.swap(PrevResult.Val);
11407     return true;
11408   }
11409 
11410 private:
11411   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11412     return IntEval.Success(Value, E, Result);
11413   }
11414   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
11415     return IntEval.Success(Value, E, Result);
11416   }
11417   bool Error(const Expr *E) {
11418     return IntEval.Error(E);
11419   }
11420   bool Error(const Expr *E, diag::kind D) {
11421     return IntEval.Error(E, D);
11422   }
11423 
11424   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
11425     return Info.CCEDiag(E, D);
11426   }
11427 
11428   // Returns true if visiting the RHS is necessary, false otherwise.
11429   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
11430                          bool &SuppressRHSDiags);
11431 
11432   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
11433                   const BinaryOperator *E, APValue &Result);
11434 
11435   void EvaluateExpr(const Expr *E, EvalResult &Result) {
11436     Result.Failed = !Evaluate(Result.Val, Info, E);
11437     if (Result.Failed)
11438       Result.Val = APValue();
11439   }
11440 
11441   void process(EvalResult &Result);
11442 
11443   void enqueue(const Expr *E) {
11444     E = E->IgnoreParens();
11445     Queue.resize(Queue.size()+1);
11446     Queue.back().E = E;
11447     Queue.back().Kind = Job::AnyExprKind;
11448   }
11449 };
11450 
11451 }
11452 
11453 bool DataRecursiveIntBinOpEvaluator::
11454        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
11455                          bool &SuppressRHSDiags) {
11456   if (E->getOpcode() == BO_Comma) {
11457     // Ignore LHS but note if we could not evaluate it.
11458     if (LHSResult.Failed)
11459       return Info.noteSideEffect();
11460     return true;
11461   }
11462 
11463   if (E->isLogicalOp()) {
11464     bool LHSAsBool;
11465     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
11466       // We were able to evaluate the LHS, see if we can get away with not
11467       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
11468       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
11469         Success(LHSAsBool, E, LHSResult.Val);
11470         return false; // Ignore RHS
11471       }
11472     } else {
11473       LHSResult.Failed = true;
11474 
11475       // Since we weren't able to evaluate the left hand side, it
11476       // might have had side effects.
11477       if (!Info.noteSideEffect())
11478         return false;
11479 
11480       // We can't evaluate the LHS; however, sometimes the result
11481       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
11482       // Don't ignore RHS and suppress diagnostics from this arm.
11483       SuppressRHSDiags = true;
11484     }
11485 
11486     return true;
11487   }
11488 
11489   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11490          E->getRHS()->getType()->isIntegralOrEnumerationType());
11491 
11492   if (LHSResult.Failed && !Info.noteFailure())
11493     return false; // Ignore RHS;
11494 
11495   return true;
11496 }
11497 
11498 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
11499                                     bool IsSub) {
11500   // Compute the new offset in the appropriate width, wrapping at 64 bits.
11501   // FIXME: When compiling for a 32-bit target, we should use 32-bit
11502   // offsets.
11503   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
11504   CharUnits &Offset = LVal.getLValueOffset();
11505   uint64_t Offset64 = Offset.getQuantity();
11506   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
11507   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
11508                                          : Offset64 + Index64);
11509 }
11510 
11511 bool DataRecursiveIntBinOpEvaluator::
11512        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
11513                   const BinaryOperator *E, APValue &Result) {
11514   if (E->getOpcode() == BO_Comma) {
11515     if (RHSResult.Failed)
11516       return false;
11517     Result = RHSResult.Val;
11518     return true;
11519   }
11520 
11521   if (E->isLogicalOp()) {
11522     bool lhsResult, rhsResult;
11523     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
11524     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
11525 
11526     if (LHSIsOK) {
11527       if (RHSIsOK) {
11528         if (E->getOpcode() == BO_LOr)
11529           return Success(lhsResult || rhsResult, E, Result);
11530         else
11531           return Success(lhsResult && rhsResult, E, Result);
11532       }
11533     } else {
11534       if (RHSIsOK) {
11535         // We can't evaluate the LHS; however, sometimes the result
11536         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
11537         if (rhsResult == (E->getOpcode() == BO_LOr))
11538           return Success(rhsResult, E, Result);
11539       }
11540     }
11541 
11542     return false;
11543   }
11544 
11545   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11546          E->getRHS()->getType()->isIntegralOrEnumerationType());
11547 
11548   if (LHSResult.Failed || RHSResult.Failed)
11549     return false;
11550 
11551   const APValue &LHSVal = LHSResult.Val;
11552   const APValue &RHSVal = RHSResult.Val;
11553 
11554   // Handle cases like (unsigned long)&a + 4.
11555   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
11556     Result = LHSVal;
11557     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
11558     return true;
11559   }
11560 
11561   // Handle cases like 4 + (unsigned long)&a
11562   if (E->getOpcode() == BO_Add &&
11563       RHSVal.isLValue() && LHSVal.isInt()) {
11564     Result = RHSVal;
11565     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
11566     return true;
11567   }
11568 
11569   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
11570     // Handle (intptr_t)&&A - (intptr_t)&&B.
11571     if (!LHSVal.getLValueOffset().isZero() ||
11572         !RHSVal.getLValueOffset().isZero())
11573       return false;
11574     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
11575     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
11576     if (!LHSExpr || !RHSExpr)
11577       return false;
11578     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
11579     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
11580     if (!LHSAddrExpr || !RHSAddrExpr)
11581       return false;
11582     // Make sure both labels come from the same function.
11583     if (LHSAddrExpr->getLabel()->getDeclContext() !=
11584         RHSAddrExpr->getLabel()->getDeclContext())
11585       return false;
11586     Result = APValue(LHSAddrExpr, RHSAddrExpr);
11587     return true;
11588   }
11589 
11590   // All the remaining cases expect both operands to be an integer
11591   if (!LHSVal.isInt() || !RHSVal.isInt())
11592     return Error(E);
11593 
11594   // Set up the width and signedness manually, in case it can't be deduced
11595   // from the operation we're performing.
11596   // FIXME: Don't do this in the cases where we can deduce it.
11597   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
11598                E->getType()->isUnsignedIntegerOrEnumerationType());
11599   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
11600                          RHSVal.getInt(), Value))
11601     return false;
11602   return Success(Value, E, Result);
11603 }
11604 
11605 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
11606   Job &job = Queue.back();
11607 
11608   switch (job.Kind) {
11609     case Job::AnyExprKind: {
11610       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
11611         if (shouldEnqueue(Bop)) {
11612           job.Kind = Job::BinOpKind;
11613           enqueue(Bop->getLHS());
11614           return;
11615         }
11616       }
11617 
11618       EvaluateExpr(job.E, Result);
11619       Queue.pop_back();
11620       return;
11621     }
11622 
11623     case Job::BinOpKind: {
11624       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
11625       bool SuppressRHSDiags = false;
11626       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
11627         Queue.pop_back();
11628         return;
11629       }
11630       if (SuppressRHSDiags)
11631         job.startSpeculativeEval(Info);
11632       job.LHSResult.swap(Result);
11633       job.Kind = Job::BinOpVisitedLHSKind;
11634       enqueue(Bop->getRHS());
11635       return;
11636     }
11637 
11638     case Job::BinOpVisitedLHSKind: {
11639       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
11640       EvalResult RHS;
11641       RHS.swap(Result);
11642       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
11643       Queue.pop_back();
11644       return;
11645     }
11646   }
11647 
11648   llvm_unreachable("Invalid Job::Kind!");
11649 }
11650 
11651 namespace {
11652 /// Used when we determine that we should fail, but can keep evaluating prior to
11653 /// noting that we had a failure.
11654 class DelayedNoteFailureRAII {
11655   EvalInfo &Info;
11656   bool NoteFailure;
11657 
11658 public:
11659   DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
11660       : Info(Info), NoteFailure(NoteFailure) {}
11661   ~DelayedNoteFailureRAII() {
11662     if (NoteFailure) {
11663       bool ContinueAfterFailure = Info.noteFailure();
11664       (void)ContinueAfterFailure;
11665       assert(ContinueAfterFailure &&
11666              "Shouldn't have kept evaluating on failure.");
11667     }
11668   }
11669 };
11670 
11671 enum class CmpResult {
11672   Unequal,
11673   Less,
11674   Equal,
11675   Greater,
11676   Unordered,
11677 };
11678 }
11679 
11680 template <class SuccessCB, class AfterCB>
11681 static bool
11682 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
11683                                  SuccessCB &&Success, AfterCB &&DoAfter) {
11684   assert(E->isComparisonOp() && "expected comparison operator");
11685   assert((E->getOpcode() == BO_Cmp ||
11686           E->getType()->isIntegralOrEnumerationType()) &&
11687          "unsupported binary expression evaluation");
11688   auto Error = [&](const Expr *E) {
11689     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11690     return false;
11691   };
11692 
11693   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
11694   bool IsEquality = E->isEqualityOp();
11695 
11696   QualType LHSTy = E->getLHS()->getType();
11697   QualType RHSTy = E->getRHS()->getType();
11698 
11699   if (LHSTy->isIntegralOrEnumerationType() &&
11700       RHSTy->isIntegralOrEnumerationType()) {
11701     APSInt LHS, RHS;
11702     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
11703     if (!LHSOK && !Info.noteFailure())
11704       return false;
11705     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
11706       return false;
11707     if (LHS < RHS)
11708       return Success(CmpResult::Less, E);
11709     if (LHS > RHS)
11710       return Success(CmpResult::Greater, E);
11711     return Success(CmpResult::Equal, E);
11712   }
11713 
11714   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
11715     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
11716     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
11717 
11718     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
11719     if (!LHSOK && !Info.noteFailure())
11720       return false;
11721     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
11722       return false;
11723     if (LHSFX < RHSFX)
11724       return Success(CmpResult::Less, E);
11725     if (LHSFX > RHSFX)
11726       return Success(CmpResult::Greater, E);
11727     return Success(CmpResult::Equal, E);
11728   }
11729 
11730   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
11731     ComplexValue LHS, RHS;
11732     bool LHSOK;
11733     if (E->isAssignmentOp()) {
11734       LValue LV;
11735       EvaluateLValue(E->getLHS(), LV, Info);
11736       LHSOK = false;
11737     } else if (LHSTy->isRealFloatingType()) {
11738       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
11739       if (LHSOK) {
11740         LHS.makeComplexFloat();
11741         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
11742       }
11743     } else {
11744       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
11745     }
11746     if (!LHSOK && !Info.noteFailure())
11747       return false;
11748 
11749     if (E->getRHS()->getType()->isRealFloatingType()) {
11750       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
11751         return false;
11752       RHS.makeComplexFloat();
11753       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
11754     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
11755       return false;
11756 
11757     if (LHS.isComplexFloat()) {
11758       APFloat::cmpResult CR_r =
11759         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
11760       APFloat::cmpResult CR_i =
11761         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
11762       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
11763       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
11764     } else {
11765       assert(IsEquality && "invalid complex comparison");
11766       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
11767                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
11768       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
11769     }
11770   }
11771 
11772   if (LHSTy->isRealFloatingType() &&
11773       RHSTy->isRealFloatingType()) {
11774     APFloat RHS(0.0), LHS(0.0);
11775 
11776     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
11777     if (!LHSOK && !Info.noteFailure())
11778       return false;
11779 
11780     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
11781       return false;
11782 
11783     assert(E->isComparisonOp() && "Invalid binary operator!");
11784     auto GetCmpRes = [&]() {
11785       switch (LHS.compare(RHS)) {
11786       case APFloat::cmpEqual:
11787         return CmpResult::Equal;
11788       case APFloat::cmpLessThan:
11789         return CmpResult::Less;
11790       case APFloat::cmpGreaterThan:
11791         return CmpResult::Greater;
11792       case APFloat::cmpUnordered:
11793         return CmpResult::Unordered;
11794       }
11795       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
11796     };
11797     return Success(GetCmpRes(), E);
11798   }
11799 
11800   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
11801     LValue LHSValue, RHSValue;
11802 
11803     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
11804     if (!LHSOK && !Info.noteFailure())
11805       return false;
11806 
11807     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
11808       return false;
11809 
11810     // Reject differing bases from the normal codepath; we special-case
11811     // comparisons to null.
11812     if (!HasSameBase(LHSValue, RHSValue)) {
11813       // Inequalities and subtractions between unrelated pointers have
11814       // unspecified or undefined behavior.
11815       if (!IsEquality) {
11816         Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
11817         return false;
11818       }
11819       // A constant address may compare equal to the address of a symbol.
11820       // The one exception is that address of an object cannot compare equal
11821       // to a null pointer constant.
11822       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
11823           (!RHSValue.Base && !RHSValue.Offset.isZero()))
11824         return Error(E);
11825       // It's implementation-defined whether distinct literals will have
11826       // distinct addresses. In clang, the result of such a comparison is
11827       // unspecified, so it is not a constant expression. However, we do know
11828       // that the address of a literal will be non-null.
11829       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
11830           LHSValue.Base && RHSValue.Base)
11831         return Error(E);
11832       // We can't tell whether weak symbols will end up pointing to the same
11833       // object.
11834       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
11835         return Error(E);
11836       // We can't compare the address of the start of one object with the
11837       // past-the-end address of another object, per C++ DR1652.
11838       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
11839            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
11840           (RHSValue.Base && RHSValue.Offset.isZero() &&
11841            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
11842         return Error(E);
11843       // We can't tell whether an object is at the same address as another
11844       // zero sized object.
11845       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
11846           (LHSValue.Base && isZeroSized(RHSValue)))
11847         return Error(E);
11848       return Success(CmpResult::Unequal, E);
11849     }
11850 
11851     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
11852     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
11853 
11854     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
11855     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
11856 
11857     // C++11 [expr.rel]p3:
11858     //   Pointers to void (after pointer conversions) can be compared, with a
11859     //   result defined as follows: If both pointers represent the same
11860     //   address or are both the null pointer value, the result is true if the
11861     //   operator is <= or >= and false otherwise; otherwise the result is
11862     //   unspecified.
11863     // We interpret this as applying to pointers to *cv* void.
11864     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
11865       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
11866 
11867     // C++11 [expr.rel]p2:
11868     // - If two pointers point to non-static data members of the same object,
11869     //   or to subobjects or array elements fo such members, recursively, the
11870     //   pointer to the later declared member compares greater provided the
11871     //   two members have the same access control and provided their class is
11872     //   not a union.
11873     //   [...]
11874     // - Otherwise pointer comparisons are unspecified.
11875     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
11876       bool WasArrayIndex;
11877       unsigned Mismatch = FindDesignatorMismatch(
11878           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
11879       // At the point where the designators diverge, the comparison has a
11880       // specified value if:
11881       //  - we are comparing array indices
11882       //  - we are comparing fields of a union, or fields with the same access
11883       // Otherwise, the result is unspecified and thus the comparison is not a
11884       // constant expression.
11885       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
11886           Mismatch < RHSDesignator.Entries.size()) {
11887         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
11888         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
11889         if (!LF && !RF)
11890           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
11891         else if (!LF)
11892           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
11893               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
11894               << RF->getParent() << RF;
11895         else if (!RF)
11896           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
11897               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
11898               << LF->getParent() << LF;
11899         else if (!LF->getParent()->isUnion() &&
11900                  LF->getAccess() != RF->getAccess())
11901           Info.CCEDiag(E,
11902                        diag::note_constexpr_pointer_comparison_differing_access)
11903               << LF << LF->getAccess() << RF << RF->getAccess()
11904               << LF->getParent();
11905       }
11906     }
11907 
11908     // The comparison here must be unsigned, and performed with the same
11909     // width as the pointer.
11910     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
11911     uint64_t CompareLHS = LHSOffset.getQuantity();
11912     uint64_t CompareRHS = RHSOffset.getQuantity();
11913     assert(PtrSize <= 64 && "Unexpected pointer width");
11914     uint64_t Mask = ~0ULL >> (64 - PtrSize);
11915     CompareLHS &= Mask;
11916     CompareRHS &= Mask;
11917 
11918     // If there is a base and this is a relational operator, we can only
11919     // compare pointers within the object in question; otherwise, the result
11920     // depends on where the object is located in memory.
11921     if (!LHSValue.Base.isNull() && IsRelational) {
11922       QualType BaseTy = getType(LHSValue.Base);
11923       if (BaseTy->isIncompleteType())
11924         return Error(E);
11925       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
11926       uint64_t OffsetLimit = Size.getQuantity();
11927       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
11928         return Error(E);
11929     }
11930 
11931     if (CompareLHS < CompareRHS)
11932       return Success(CmpResult::Less, E);
11933     if (CompareLHS > CompareRHS)
11934       return Success(CmpResult::Greater, E);
11935     return Success(CmpResult::Equal, E);
11936   }
11937 
11938   if (LHSTy->isMemberPointerType()) {
11939     assert(IsEquality && "unexpected member pointer operation");
11940     assert(RHSTy->isMemberPointerType() && "invalid comparison");
11941 
11942     MemberPtr LHSValue, RHSValue;
11943 
11944     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
11945     if (!LHSOK && !Info.noteFailure())
11946       return false;
11947 
11948     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
11949       return false;
11950 
11951     // C++11 [expr.eq]p2:
11952     //   If both operands are null, they compare equal. Otherwise if only one is
11953     //   null, they compare unequal.
11954     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
11955       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
11956       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
11957     }
11958 
11959     //   Otherwise if either is a pointer to a virtual member function, the
11960     //   result is unspecified.
11961     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
11962       if (MD->isVirtual())
11963         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
11964     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
11965       if (MD->isVirtual())
11966         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
11967 
11968     //   Otherwise they compare equal if and only if they would refer to the
11969     //   same member of the same most derived object or the same subobject if
11970     //   they were dereferenced with a hypothetical object of the associated
11971     //   class type.
11972     bool Equal = LHSValue == RHSValue;
11973     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
11974   }
11975 
11976   if (LHSTy->isNullPtrType()) {
11977     assert(E->isComparisonOp() && "unexpected nullptr operation");
11978     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
11979     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
11980     // are compared, the result is true of the operator is <=, >= or ==, and
11981     // false otherwise.
11982     return Success(CmpResult::Equal, E);
11983   }
11984 
11985   return DoAfter();
11986 }
11987 
11988 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
11989   if (!CheckLiteralType(Info, E))
11990     return false;
11991 
11992   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
11993     ComparisonCategoryResult CCR;
11994     switch (CR) {
11995     case CmpResult::Unequal:
11996       llvm_unreachable("should never produce Unequal for three-way comparison");
11997     case CmpResult::Less:
11998       CCR = ComparisonCategoryResult::Less;
11999       break;
12000     case CmpResult::Equal:
12001       CCR = ComparisonCategoryResult::Equal;
12002       break;
12003     case CmpResult::Greater:
12004       CCR = ComparisonCategoryResult::Greater;
12005       break;
12006     case CmpResult::Unordered:
12007       CCR = ComparisonCategoryResult::Unordered;
12008       break;
12009     }
12010     // Evaluation succeeded. Lookup the information for the comparison category
12011     // type and fetch the VarDecl for the result.
12012     const ComparisonCategoryInfo &CmpInfo =
12013         Info.Ctx.CompCategories.getInfoForType(E->getType());
12014     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
12015     // Check and evaluate the result as a constant expression.
12016     LValue LV;
12017     LV.set(VD);
12018     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
12019       return false;
12020     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
12021   };
12022   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12023     return ExprEvaluatorBaseTy::VisitBinCmp(E);
12024   });
12025 }
12026 
12027 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12028   // We don't call noteFailure immediately because the assignment happens after
12029   // we evaluate LHS and RHS.
12030   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
12031     return Error(E);
12032 
12033   DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
12034   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
12035     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
12036 
12037   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
12038           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
12039          "DataRecursiveIntBinOpEvaluator should have handled integral types");
12040 
12041   if (E->isComparisonOp()) {
12042     // Evaluate builtin binary comparisons by evaluating them as three-way
12043     // comparisons and then translating the result.
12044     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12045       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
12046              "should only produce Unequal for equality comparisons");
12047       bool IsEqual   = CR == CmpResult::Equal,
12048            IsLess    = CR == CmpResult::Less,
12049            IsGreater = CR == CmpResult::Greater;
12050       auto Op = E->getOpcode();
12051       switch (Op) {
12052       default:
12053         llvm_unreachable("unsupported binary operator");
12054       case BO_EQ:
12055       case BO_NE:
12056         return Success(IsEqual == (Op == BO_EQ), E);
12057       case BO_LT:
12058         return Success(IsLess, E);
12059       case BO_GT:
12060         return Success(IsGreater, E);
12061       case BO_LE:
12062         return Success(IsEqual || IsLess, E);
12063       case BO_GE:
12064         return Success(IsEqual || IsGreater, E);
12065       }
12066     };
12067     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12068       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12069     });
12070   }
12071 
12072   QualType LHSTy = E->getLHS()->getType();
12073   QualType RHSTy = E->getRHS()->getType();
12074 
12075   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
12076       E->getOpcode() == BO_Sub) {
12077     LValue LHSValue, RHSValue;
12078 
12079     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12080     if (!LHSOK && !Info.noteFailure())
12081       return false;
12082 
12083     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12084       return false;
12085 
12086     // Reject differing bases from the normal codepath; we special-case
12087     // comparisons to null.
12088     if (!HasSameBase(LHSValue, RHSValue)) {
12089       // Handle &&A - &&B.
12090       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
12091         return Error(E);
12092       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
12093       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
12094       if (!LHSExpr || !RHSExpr)
12095         return Error(E);
12096       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12097       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12098       if (!LHSAddrExpr || !RHSAddrExpr)
12099         return Error(E);
12100       // Make sure both labels come from the same function.
12101       if (LHSAddrExpr->getLabel()->getDeclContext() !=
12102           RHSAddrExpr->getLabel()->getDeclContext())
12103         return Error(E);
12104       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
12105     }
12106     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12107     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12108 
12109     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12110     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12111 
12112     // C++11 [expr.add]p6:
12113     //   Unless both pointers point to elements of the same array object, or
12114     //   one past the last element of the array object, the behavior is
12115     //   undefined.
12116     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
12117         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
12118                                 RHSDesignator))
12119       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
12120 
12121     QualType Type = E->getLHS()->getType();
12122     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
12123 
12124     CharUnits ElementSize;
12125     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
12126       return false;
12127 
12128     // As an extension, a type may have zero size (empty struct or union in
12129     // C, array of zero length). Pointer subtraction in such cases has
12130     // undefined behavior, so is not constant.
12131     if (ElementSize.isZero()) {
12132       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
12133           << ElementType;
12134       return false;
12135     }
12136 
12137     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
12138     // and produce incorrect results when it overflows. Such behavior
12139     // appears to be non-conforming, but is common, so perhaps we should
12140     // assume the standard intended for such cases to be undefined behavior
12141     // and check for them.
12142 
12143     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
12144     // overflow in the final conversion to ptrdiff_t.
12145     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
12146     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
12147     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
12148                     false);
12149     APSInt TrueResult = (LHS - RHS) / ElemSize;
12150     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
12151 
12152     if (Result.extend(65) != TrueResult &&
12153         !HandleOverflow(Info, E, TrueResult, E->getType()))
12154       return false;
12155     return Success(Result, E);
12156   }
12157 
12158   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12159 }
12160 
12161 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
12162 /// a result as the expression's type.
12163 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
12164                                     const UnaryExprOrTypeTraitExpr *E) {
12165   switch(E->getKind()) {
12166   case UETT_PreferredAlignOf:
12167   case UETT_AlignOf: {
12168     if (E->isArgumentType())
12169       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
12170                      E);
12171     else
12172       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
12173                      E);
12174   }
12175 
12176   case UETT_VecStep: {
12177     QualType Ty = E->getTypeOfArgument();
12178 
12179     if (Ty->isVectorType()) {
12180       unsigned n = Ty->castAs<VectorType>()->getNumElements();
12181 
12182       // The vec_step built-in functions that take a 3-component
12183       // vector return 4. (OpenCL 1.1 spec 6.11.12)
12184       if (n == 3)
12185         n = 4;
12186 
12187       return Success(n, E);
12188     } else
12189       return Success(1, E);
12190   }
12191 
12192   case UETT_SizeOf: {
12193     QualType SrcTy = E->getTypeOfArgument();
12194     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
12195     //   the result is the size of the referenced type."
12196     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
12197       SrcTy = Ref->getPointeeType();
12198 
12199     CharUnits Sizeof;
12200     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
12201       return false;
12202     return Success(Sizeof, E);
12203   }
12204   case UETT_OpenMPRequiredSimdAlign:
12205     assert(E->isArgumentType());
12206     return Success(
12207         Info.Ctx.toCharUnitsFromBits(
12208                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
12209             .getQuantity(),
12210         E);
12211   }
12212 
12213   llvm_unreachable("unknown expr/type trait");
12214 }
12215 
12216 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
12217   CharUnits Result;
12218   unsigned n = OOE->getNumComponents();
12219   if (n == 0)
12220     return Error(OOE);
12221   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
12222   for (unsigned i = 0; i != n; ++i) {
12223     OffsetOfNode ON = OOE->getComponent(i);
12224     switch (ON.getKind()) {
12225     case OffsetOfNode::Array: {
12226       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
12227       APSInt IdxResult;
12228       if (!EvaluateInteger(Idx, IdxResult, Info))
12229         return false;
12230       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
12231       if (!AT)
12232         return Error(OOE);
12233       CurrentType = AT->getElementType();
12234       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
12235       Result += IdxResult.getSExtValue() * ElementSize;
12236       break;
12237     }
12238 
12239     case OffsetOfNode::Field: {
12240       FieldDecl *MemberDecl = ON.getField();
12241       const RecordType *RT = CurrentType->getAs<RecordType>();
12242       if (!RT)
12243         return Error(OOE);
12244       RecordDecl *RD = RT->getDecl();
12245       if (RD->isInvalidDecl()) return false;
12246       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
12247       unsigned i = MemberDecl->getFieldIndex();
12248       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
12249       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
12250       CurrentType = MemberDecl->getType().getNonReferenceType();
12251       break;
12252     }
12253 
12254     case OffsetOfNode::Identifier:
12255       llvm_unreachable("dependent __builtin_offsetof");
12256 
12257     case OffsetOfNode::Base: {
12258       CXXBaseSpecifier *BaseSpec = ON.getBase();
12259       if (BaseSpec->isVirtual())
12260         return Error(OOE);
12261 
12262       // Find the layout of the class whose base we are looking into.
12263       const RecordType *RT = CurrentType->getAs<RecordType>();
12264       if (!RT)
12265         return Error(OOE);
12266       RecordDecl *RD = RT->getDecl();
12267       if (RD->isInvalidDecl()) return false;
12268       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
12269 
12270       // Find the base class itself.
12271       CurrentType = BaseSpec->getType();
12272       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
12273       if (!BaseRT)
12274         return Error(OOE);
12275 
12276       // Add the offset to the base.
12277       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
12278       break;
12279     }
12280     }
12281   }
12282   return Success(Result, OOE);
12283 }
12284 
12285 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12286   switch (E->getOpcode()) {
12287   default:
12288     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
12289     // See C99 6.6p3.
12290     return Error(E);
12291   case UO_Extension:
12292     // FIXME: Should extension allow i-c-e extension expressions in its scope?
12293     // If so, we could clear the diagnostic ID.
12294     return Visit(E->getSubExpr());
12295   case UO_Plus:
12296     // The result is just the value.
12297     return Visit(E->getSubExpr());
12298   case UO_Minus: {
12299     if (!Visit(E->getSubExpr()))
12300       return false;
12301     if (!Result.isInt()) return Error(E);
12302     const APSInt &Value = Result.getInt();
12303     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
12304         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
12305                         E->getType()))
12306       return false;
12307     return Success(-Value, E);
12308   }
12309   case UO_Not: {
12310     if (!Visit(E->getSubExpr()))
12311       return false;
12312     if (!Result.isInt()) return Error(E);
12313     return Success(~Result.getInt(), E);
12314   }
12315   case UO_LNot: {
12316     bool bres;
12317     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
12318       return false;
12319     return Success(!bres, E);
12320   }
12321   }
12322 }
12323 
12324 /// HandleCast - This is used to evaluate implicit or explicit casts where the
12325 /// result type is integer.
12326 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
12327   const Expr *SubExpr = E->getSubExpr();
12328   QualType DestType = E->getType();
12329   QualType SrcType = SubExpr->getType();
12330 
12331   switch (E->getCastKind()) {
12332   case CK_BaseToDerived:
12333   case CK_DerivedToBase:
12334   case CK_UncheckedDerivedToBase:
12335   case CK_Dynamic:
12336   case CK_ToUnion:
12337   case CK_ArrayToPointerDecay:
12338   case CK_FunctionToPointerDecay:
12339   case CK_NullToPointer:
12340   case CK_NullToMemberPointer:
12341   case CK_BaseToDerivedMemberPointer:
12342   case CK_DerivedToBaseMemberPointer:
12343   case CK_ReinterpretMemberPointer:
12344   case CK_ConstructorConversion:
12345   case CK_IntegralToPointer:
12346   case CK_ToVoid:
12347   case CK_VectorSplat:
12348   case CK_IntegralToFloating:
12349   case CK_FloatingCast:
12350   case CK_CPointerToObjCPointerCast:
12351   case CK_BlockPointerToObjCPointerCast:
12352   case CK_AnyPointerToBlockPointerCast:
12353   case CK_ObjCObjectLValueCast:
12354   case CK_FloatingRealToComplex:
12355   case CK_FloatingComplexToReal:
12356   case CK_FloatingComplexCast:
12357   case CK_FloatingComplexToIntegralComplex:
12358   case CK_IntegralRealToComplex:
12359   case CK_IntegralComplexCast:
12360   case CK_IntegralComplexToFloatingComplex:
12361   case CK_BuiltinFnToFnPtr:
12362   case CK_ZeroToOCLOpaqueType:
12363   case CK_NonAtomicToAtomic:
12364   case CK_AddressSpaceConversion:
12365   case CK_IntToOCLSampler:
12366   case CK_FixedPointCast:
12367   case CK_IntegralToFixedPoint:
12368     llvm_unreachable("invalid cast kind for integral value");
12369 
12370   case CK_BitCast:
12371   case CK_Dependent:
12372   case CK_LValueBitCast:
12373   case CK_ARCProduceObject:
12374   case CK_ARCConsumeObject:
12375   case CK_ARCReclaimReturnedObject:
12376   case CK_ARCExtendBlockObject:
12377   case CK_CopyAndAutoreleaseBlockObject:
12378     return Error(E);
12379 
12380   case CK_UserDefinedConversion:
12381   case CK_LValueToRValue:
12382   case CK_AtomicToNonAtomic:
12383   case CK_NoOp:
12384   case CK_LValueToRValueBitCast:
12385     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12386 
12387   case CK_MemberPointerToBoolean:
12388   case CK_PointerToBoolean:
12389   case CK_IntegralToBoolean:
12390   case CK_FloatingToBoolean:
12391   case CK_BooleanToSignedIntegral:
12392   case CK_FloatingComplexToBoolean:
12393   case CK_IntegralComplexToBoolean: {
12394     bool BoolResult;
12395     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
12396       return false;
12397     uint64_t IntResult = BoolResult;
12398     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
12399       IntResult = (uint64_t)-1;
12400     return Success(IntResult, E);
12401   }
12402 
12403   case CK_FixedPointToIntegral: {
12404     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
12405     if (!EvaluateFixedPoint(SubExpr, Src, Info))
12406       return false;
12407     bool Overflowed;
12408     llvm::APSInt Result = Src.convertToInt(
12409         Info.Ctx.getIntWidth(DestType),
12410         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
12411     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
12412       return false;
12413     return Success(Result, E);
12414   }
12415 
12416   case CK_FixedPointToBoolean: {
12417     // Unsigned padding does not affect this.
12418     APValue Val;
12419     if (!Evaluate(Val, Info, SubExpr))
12420       return false;
12421     return Success(Val.getFixedPoint().getBoolValue(), E);
12422   }
12423 
12424   case CK_IntegralCast: {
12425     if (!Visit(SubExpr))
12426       return false;
12427 
12428     if (!Result.isInt()) {
12429       // Allow casts of address-of-label differences if they are no-ops
12430       // or narrowing.  (The narrowing case isn't actually guaranteed to
12431       // be constant-evaluatable except in some narrow cases which are hard
12432       // to detect here.  We let it through on the assumption the user knows
12433       // what they are doing.)
12434       if (Result.isAddrLabelDiff())
12435         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
12436       // Only allow casts of lvalues if they are lossless.
12437       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
12438     }
12439 
12440     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
12441                                       Result.getInt()), E);
12442   }
12443 
12444   case CK_PointerToIntegral: {
12445     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
12446 
12447     LValue LV;
12448     if (!EvaluatePointer(SubExpr, LV, Info))
12449       return false;
12450 
12451     if (LV.getLValueBase()) {
12452       // Only allow based lvalue casts if they are lossless.
12453       // FIXME: Allow a larger integer size than the pointer size, and allow
12454       // narrowing back down to pointer width in subsequent integral casts.
12455       // FIXME: Check integer type's active bits, not its type size.
12456       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
12457         return Error(E);
12458 
12459       LV.Designator.setInvalid();
12460       LV.moveInto(Result);
12461       return true;
12462     }
12463 
12464     APSInt AsInt;
12465     APValue V;
12466     LV.moveInto(V);
12467     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
12468       llvm_unreachable("Can't cast this!");
12469 
12470     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
12471   }
12472 
12473   case CK_IntegralComplexToReal: {
12474     ComplexValue C;
12475     if (!EvaluateComplex(SubExpr, C, Info))
12476       return false;
12477     return Success(C.getComplexIntReal(), E);
12478   }
12479 
12480   case CK_FloatingToIntegral: {
12481     APFloat F(0.0);
12482     if (!EvaluateFloat(SubExpr, F, Info))
12483       return false;
12484 
12485     APSInt Value;
12486     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
12487       return false;
12488     return Success(Value, E);
12489   }
12490   }
12491 
12492   llvm_unreachable("unknown cast resulting in integral value");
12493 }
12494 
12495 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
12496   if (E->getSubExpr()->getType()->isAnyComplexType()) {
12497     ComplexValue LV;
12498     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
12499       return false;
12500     if (!LV.isComplexInt())
12501       return Error(E);
12502     return Success(LV.getComplexIntReal(), E);
12503   }
12504 
12505   return Visit(E->getSubExpr());
12506 }
12507 
12508 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
12509   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
12510     ComplexValue LV;
12511     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
12512       return false;
12513     if (!LV.isComplexInt())
12514       return Error(E);
12515     return Success(LV.getComplexIntImag(), E);
12516   }
12517 
12518   VisitIgnoredValue(E->getSubExpr());
12519   return Success(0, E);
12520 }
12521 
12522 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
12523   return Success(E->getPackLength(), E);
12524 }
12525 
12526 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
12527   return Success(E->getValue(), E);
12528 }
12529 
12530 bool IntExprEvaluator::VisitConceptSpecializationExpr(
12531        const ConceptSpecializationExpr *E) {
12532   return Success(E->isSatisfied(), E);
12533 }
12534 
12535 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
12536   return Success(E->isSatisfied(), E);
12537 }
12538 
12539 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12540   switch (E->getOpcode()) {
12541     default:
12542       // Invalid unary operators
12543       return Error(E);
12544     case UO_Plus:
12545       // The result is just the value.
12546       return Visit(E->getSubExpr());
12547     case UO_Minus: {
12548       if (!Visit(E->getSubExpr())) return false;
12549       if (!Result.isFixedPoint())
12550         return Error(E);
12551       bool Overflowed;
12552       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
12553       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
12554         return false;
12555       return Success(Negated, E);
12556     }
12557     case UO_LNot: {
12558       bool bres;
12559       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
12560         return false;
12561       return Success(!bres, E);
12562     }
12563   }
12564 }
12565 
12566 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
12567   const Expr *SubExpr = E->getSubExpr();
12568   QualType DestType = E->getType();
12569   assert(DestType->isFixedPointType() &&
12570          "Expected destination type to be a fixed point type");
12571   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
12572 
12573   switch (E->getCastKind()) {
12574   case CK_FixedPointCast: {
12575     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
12576     if (!EvaluateFixedPoint(SubExpr, Src, Info))
12577       return false;
12578     bool Overflowed;
12579     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
12580     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
12581       return false;
12582     return Success(Result, E);
12583   }
12584   case CK_IntegralToFixedPoint: {
12585     APSInt Src;
12586     if (!EvaluateInteger(SubExpr, Src, Info))
12587       return false;
12588 
12589     bool Overflowed;
12590     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
12591         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
12592 
12593     if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType))
12594       return false;
12595 
12596     return Success(IntResult, E);
12597   }
12598   case CK_NoOp:
12599   case CK_LValueToRValue:
12600     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12601   default:
12602     return Error(E);
12603   }
12604 }
12605 
12606 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12607   const Expr *LHS = E->getLHS();
12608   const Expr *RHS = E->getRHS();
12609   FixedPointSemantics ResultFXSema =
12610       Info.Ctx.getFixedPointSemantics(E->getType());
12611 
12612   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
12613   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
12614     return false;
12615   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
12616   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
12617     return false;
12618 
12619   switch (E->getOpcode()) {
12620   case BO_Add: {
12621     bool AddOverflow, ConversionOverflow;
12622     APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow)
12623                               .convert(ResultFXSema, &ConversionOverflow);
12624     if ((AddOverflow || ConversionOverflow) &&
12625         !HandleOverflow(Info, E, Result, E->getType()))
12626       return false;
12627     return Success(Result, E);
12628   }
12629   default:
12630     return false;
12631   }
12632   llvm_unreachable("Should've exited before this");
12633 }
12634 
12635 //===----------------------------------------------------------------------===//
12636 // Float Evaluation
12637 //===----------------------------------------------------------------------===//
12638 
12639 namespace {
12640 class FloatExprEvaluator
12641   : public ExprEvaluatorBase<FloatExprEvaluator> {
12642   APFloat &Result;
12643 public:
12644   FloatExprEvaluator(EvalInfo &info, APFloat &result)
12645     : ExprEvaluatorBaseTy(info), Result(result) {}
12646 
12647   bool Success(const APValue &V, const Expr *e) {
12648     Result = V.getFloat();
12649     return true;
12650   }
12651 
12652   bool ZeroInitialization(const Expr *E) {
12653     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
12654     return true;
12655   }
12656 
12657   bool VisitCallExpr(const CallExpr *E);
12658 
12659   bool VisitUnaryOperator(const UnaryOperator *E);
12660   bool VisitBinaryOperator(const BinaryOperator *E);
12661   bool VisitFloatingLiteral(const FloatingLiteral *E);
12662   bool VisitCastExpr(const CastExpr *E);
12663 
12664   bool VisitUnaryReal(const UnaryOperator *E);
12665   bool VisitUnaryImag(const UnaryOperator *E);
12666 
12667   // FIXME: Missing: array subscript of vector, member of vector
12668 };
12669 } // end anonymous namespace
12670 
12671 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
12672   assert(E->isRValue() && E->getType()->isRealFloatingType());
12673   return FloatExprEvaluator(Info, Result).Visit(E);
12674 }
12675 
12676 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
12677                                   QualType ResultTy,
12678                                   const Expr *Arg,
12679                                   bool SNaN,
12680                                   llvm::APFloat &Result) {
12681   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
12682   if (!S) return false;
12683 
12684   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
12685 
12686   llvm::APInt fill;
12687 
12688   // Treat empty strings as if they were zero.
12689   if (S->getString().empty())
12690     fill = llvm::APInt(32, 0);
12691   else if (S->getString().getAsInteger(0, fill))
12692     return false;
12693 
12694   if (Context.getTargetInfo().isNan2008()) {
12695     if (SNaN)
12696       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
12697     else
12698       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
12699   } else {
12700     // Prior to IEEE 754-2008, architectures were allowed to choose whether
12701     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
12702     // a different encoding to what became a standard in 2008, and for pre-
12703     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
12704     // sNaN. This is now known as "legacy NaN" encoding.
12705     if (SNaN)
12706       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
12707     else
12708       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
12709   }
12710 
12711   return true;
12712 }
12713 
12714 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
12715   switch (E->getBuiltinCallee()) {
12716   default:
12717     return ExprEvaluatorBaseTy::VisitCallExpr(E);
12718 
12719   case Builtin::BI__builtin_huge_val:
12720   case Builtin::BI__builtin_huge_valf:
12721   case Builtin::BI__builtin_huge_vall:
12722   case Builtin::BI__builtin_huge_valf128:
12723   case Builtin::BI__builtin_inf:
12724   case Builtin::BI__builtin_inff:
12725   case Builtin::BI__builtin_infl:
12726   case Builtin::BI__builtin_inff128: {
12727     const llvm::fltSemantics &Sem =
12728       Info.Ctx.getFloatTypeSemantics(E->getType());
12729     Result = llvm::APFloat::getInf(Sem);
12730     return true;
12731   }
12732 
12733   case Builtin::BI__builtin_nans:
12734   case Builtin::BI__builtin_nansf:
12735   case Builtin::BI__builtin_nansl:
12736   case Builtin::BI__builtin_nansf128:
12737     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
12738                                true, Result))
12739       return Error(E);
12740     return true;
12741 
12742   case Builtin::BI__builtin_nan:
12743   case Builtin::BI__builtin_nanf:
12744   case Builtin::BI__builtin_nanl:
12745   case Builtin::BI__builtin_nanf128:
12746     // If this is __builtin_nan() turn this into a nan, otherwise we
12747     // can't constant fold it.
12748     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
12749                                false, Result))
12750       return Error(E);
12751     return true;
12752 
12753   case Builtin::BI__builtin_fabs:
12754   case Builtin::BI__builtin_fabsf:
12755   case Builtin::BI__builtin_fabsl:
12756   case Builtin::BI__builtin_fabsf128:
12757     if (!EvaluateFloat(E->getArg(0), Result, Info))
12758       return false;
12759 
12760     if (Result.isNegative())
12761       Result.changeSign();
12762     return true;
12763 
12764   // FIXME: Builtin::BI__builtin_powi
12765   // FIXME: Builtin::BI__builtin_powif
12766   // FIXME: Builtin::BI__builtin_powil
12767 
12768   case Builtin::BI__builtin_copysign:
12769   case Builtin::BI__builtin_copysignf:
12770   case Builtin::BI__builtin_copysignl:
12771   case Builtin::BI__builtin_copysignf128: {
12772     APFloat RHS(0.);
12773     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
12774         !EvaluateFloat(E->getArg(1), RHS, Info))
12775       return false;
12776     Result.copySign(RHS);
12777     return true;
12778   }
12779   }
12780 }
12781 
12782 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
12783   if (E->getSubExpr()->getType()->isAnyComplexType()) {
12784     ComplexValue CV;
12785     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
12786       return false;
12787     Result = CV.FloatReal;
12788     return true;
12789   }
12790 
12791   return Visit(E->getSubExpr());
12792 }
12793 
12794 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
12795   if (E->getSubExpr()->getType()->isAnyComplexType()) {
12796     ComplexValue CV;
12797     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
12798       return false;
12799     Result = CV.FloatImag;
12800     return true;
12801   }
12802 
12803   VisitIgnoredValue(E->getSubExpr());
12804   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
12805   Result = llvm::APFloat::getZero(Sem);
12806   return true;
12807 }
12808 
12809 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12810   switch (E->getOpcode()) {
12811   default: return Error(E);
12812   case UO_Plus:
12813     return EvaluateFloat(E->getSubExpr(), Result, Info);
12814   case UO_Minus:
12815     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
12816       return false;
12817     Result.changeSign();
12818     return true;
12819   }
12820 }
12821 
12822 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12823   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
12824     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12825 
12826   APFloat RHS(0.0);
12827   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
12828   if (!LHSOK && !Info.noteFailure())
12829     return false;
12830   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
12831          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
12832 }
12833 
12834 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
12835   Result = E->getValue();
12836   return true;
12837 }
12838 
12839 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
12840   const Expr* SubExpr = E->getSubExpr();
12841 
12842   switch (E->getCastKind()) {
12843   default:
12844     return ExprEvaluatorBaseTy::VisitCastExpr(E);
12845 
12846   case CK_IntegralToFloating: {
12847     APSInt IntResult;
12848     return EvaluateInteger(SubExpr, IntResult, Info) &&
12849            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
12850                                 E->getType(), Result);
12851   }
12852 
12853   case CK_FloatingCast: {
12854     if (!Visit(SubExpr))
12855       return false;
12856     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
12857                                   Result);
12858   }
12859 
12860   case CK_FloatingComplexToReal: {
12861     ComplexValue V;
12862     if (!EvaluateComplex(SubExpr, V, Info))
12863       return false;
12864     Result = V.getComplexFloatReal();
12865     return true;
12866   }
12867   }
12868 }
12869 
12870 //===----------------------------------------------------------------------===//
12871 // Complex Evaluation (for float and integer)
12872 //===----------------------------------------------------------------------===//
12873 
12874 namespace {
12875 class ComplexExprEvaluator
12876   : public ExprEvaluatorBase<ComplexExprEvaluator> {
12877   ComplexValue &Result;
12878 
12879 public:
12880   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
12881     : ExprEvaluatorBaseTy(info), Result(Result) {}
12882 
12883   bool Success(const APValue &V, const Expr *e) {
12884     Result.setFrom(V);
12885     return true;
12886   }
12887 
12888   bool ZeroInitialization(const Expr *E);
12889 
12890   //===--------------------------------------------------------------------===//
12891   //                            Visitor Methods
12892   //===--------------------------------------------------------------------===//
12893 
12894   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
12895   bool VisitCastExpr(const CastExpr *E);
12896   bool VisitBinaryOperator(const BinaryOperator *E);
12897   bool VisitUnaryOperator(const UnaryOperator *E);
12898   bool VisitInitListExpr(const InitListExpr *E);
12899 };
12900 } // end anonymous namespace
12901 
12902 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
12903                             EvalInfo &Info) {
12904   assert(E->isRValue() && E->getType()->isAnyComplexType());
12905   return ComplexExprEvaluator(Info, Result).Visit(E);
12906 }
12907 
12908 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
12909   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
12910   if (ElemTy->isRealFloatingType()) {
12911     Result.makeComplexFloat();
12912     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
12913     Result.FloatReal = Zero;
12914     Result.FloatImag = Zero;
12915   } else {
12916     Result.makeComplexInt();
12917     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
12918     Result.IntReal = Zero;
12919     Result.IntImag = Zero;
12920   }
12921   return true;
12922 }
12923 
12924 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
12925   const Expr* SubExpr = E->getSubExpr();
12926 
12927   if (SubExpr->getType()->isRealFloatingType()) {
12928     Result.makeComplexFloat();
12929     APFloat &Imag = Result.FloatImag;
12930     if (!EvaluateFloat(SubExpr, Imag, Info))
12931       return false;
12932 
12933     Result.FloatReal = APFloat(Imag.getSemantics());
12934     return true;
12935   } else {
12936     assert(SubExpr->getType()->isIntegerType() &&
12937            "Unexpected imaginary literal.");
12938 
12939     Result.makeComplexInt();
12940     APSInt &Imag = Result.IntImag;
12941     if (!EvaluateInteger(SubExpr, Imag, Info))
12942       return false;
12943 
12944     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
12945     return true;
12946   }
12947 }
12948 
12949 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
12950 
12951   switch (E->getCastKind()) {
12952   case CK_BitCast:
12953   case CK_BaseToDerived:
12954   case CK_DerivedToBase:
12955   case CK_UncheckedDerivedToBase:
12956   case CK_Dynamic:
12957   case CK_ToUnion:
12958   case CK_ArrayToPointerDecay:
12959   case CK_FunctionToPointerDecay:
12960   case CK_NullToPointer:
12961   case CK_NullToMemberPointer:
12962   case CK_BaseToDerivedMemberPointer:
12963   case CK_DerivedToBaseMemberPointer:
12964   case CK_MemberPointerToBoolean:
12965   case CK_ReinterpretMemberPointer:
12966   case CK_ConstructorConversion:
12967   case CK_IntegralToPointer:
12968   case CK_PointerToIntegral:
12969   case CK_PointerToBoolean:
12970   case CK_ToVoid:
12971   case CK_VectorSplat:
12972   case CK_IntegralCast:
12973   case CK_BooleanToSignedIntegral:
12974   case CK_IntegralToBoolean:
12975   case CK_IntegralToFloating:
12976   case CK_FloatingToIntegral:
12977   case CK_FloatingToBoolean:
12978   case CK_FloatingCast:
12979   case CK_CPointerToObjCPointerCast:
12980   case CK_BlockPointerToObjCPointerCast:
12981   case CK_AnyPointerToBlockPointerCast:
12982   case CK_ObjCObjectLValueCast:
12983   case CK_FloatingComplexToReal:
12984   case CK_FloatingComplexToBoolean:
12985   case CK_IntegralComplexToReal:
12986   case CK_IntegralComplexToBoolean:
12987   case CK_ARCProduceObject:
12988   case CK_ARCConsumeObject:
12989   case CK_ARCReclaimReturnedObject:
12990   case CK_ARCExtendBlockObject:
12991   case CK_CopyAndAutoreleaseBlockObject:
12992   case CK_BuiltinFnToFnPtr:
12993   case CK_ZeroToOCLOpaqueType:
12994   case CK_NonAtomicToAtomic:
12995   case CK_AddressSpaceConversion:
12996   case CK_IntToOCLSampler:
12997   case CK_FixedPointCast:
12998   case CK_FixedPointToBoolean:
12999   case CK_FixedPointToIntegral:
13000   case CK_IntegralToFixedPoint:
13001     llvm_unreachable("invalid cast kind for complex value");
13002 
13003   case CK_LValueToRValue:
13004   case CK_AtomicToNonAtomic:
13005   case CK_NoOp:
13006   case CK_LValueToRValueBitCast:
13007     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13008 
13009   case CK_Dependent:
13010   case CK_LValueBitCast:
13011   case CK_UserDefinedConversion:
13012     return Error(E);
13013 
13014   case CK_FloatingRealToComplex: {
13015     APFloat &Real = Result.FloatReal;
13016     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
13017       return false;
13018 
13019     Result.makeComplexFloat();
13020     Result.FloatImag = APFloat(Real.getSemantics());
13021     return true;
13022   }
13023 
13024   case CK_FloatingComplexCast: {
13025     if (!Visit(E->getSubExpr()))
13026       return false;
13027 
13028     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13029     QualType From
13030       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13031 
13032     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
13033            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
13034   }
13035 
13036   case CK_FloatingComplexToIntegralComplex: {
13037     if (!Visit(E->getSubExpr()))
13038       return false;
13039 
13040     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13041     QualType From
13042       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13043     Result.makeComplexInt();
13044     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
13045                                 To, Result.IntReal) &&
13046            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
13047                                 To, Result.IntImag);
13048   }
13049 
13050   case CK_IntegralRealToComplex: {
13051     APSInt &Real = Result.IntReal;
13052     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
13053       return false;
13054 
13055     Result.makeComplexInt();
13056     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
13057     return true;
13058   }
13059 
13060   case CK_IntegralComplexCast: {
13061     if (!Visit(E->getSubExpr()))
13062       return false;
13063 
13064     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13065     QualType From
13066       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13067 
13068     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
13069     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
13070     return true;
13071   }
13072 
13073   case CK_IntegralComplexToFloatingComplex: {
13074     if (!Visit(E->getSubExpr()))
13075       return false;
13076 
13077     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13078     QualType From
13079       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13080     Result.makeComplexFloat();
13081     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
13082                                 To, Result.FloatReal) &&
13083            HandleIntToFloatCast(Info, E, From, Result.IntImag,
13084                                 To, Result.FloatImag);
13085   }
13086   }
13087 
13088   llvm_unreachable("unknown cast resulting in complex value");
13089 }
13090 
13091 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13092   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13093     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13094 
13095   // Track whether the LHS or RHS is real at the type system level. When this is
13096   // the case we can simplify our evaluation strategy.
13097   bool LHSReal = false, RHSReal = false;
13098 
13099   bool LHSOK;
13100   if (E->getLHS()->getType()->isRealFloatingType()) {
13101     LHSReal = true;
13102     APFloat &Real = Result.FloatReal;
13103     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
13104     if (LHSOK) {
13105       Result.makeComplexFloat();
13106       Result.FloatImag = APFloat(Real.getSemantics());
13107     }
13108   } else {
13109     LHSOK = Visit(E->getLHS());
13110   }
13111   if (!LHSOK && !Info.noteFailure())
13112     return false;
13113 
13114   ComplexValue RHS;
13115   if (E->getRHS()->getType()->isRealFloatingType()) {
13116     RHSReal = true;
13117     APFloat &Real = RHS.FloatReal;
13118     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
13119       return false;
13120     RHS.makeComplexFloat();
13121     RHS.FloatImag = APFloat(Real.getSemantics());
13122   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
13123     return false;
13124 
13125   assert(!(LHSReal && RHSReal) &&
13126          "Cannot have both operands of a complex operation be real.");
13127   switch (E->getOpcode()) {
13128   default: return Error(E);
13129   case BO_Add:
13130     if (Result.isComplexFloat()) {
13131       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
13132                                        APFloat::rmNearestTiesToEven);
13133       if (LHSReal)
13134         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
13135       else if (!RHSReal)
13136         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
13137                                          APFloat::rmNearestTiesToEven);
13138     } else {
13139       Result.getComplexIntReal() += RHS.getComplexIntReal();
13140       Result.getComplexIntImag() += RHS.getComplexIntImag();
13141     }
13142     break;
13143   case BO_Sub:
13144     if (Result.isComplexFloat()) {
13145       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
13146                                             APFloat::rmNearestTiesToEven);
13147       if (LHSReal) {
13148         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
13149         Result.getComplexFloatImag().changeSign();
13150       } else if (!RHSReal) {
13151         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
13152                                               APFloat::rmNearestTiesToEven);
13153       }
13154     } else {
13155       Result.getComplexIntReal() -= RHS.getComplexIntReal();
13156       Result.getComplexIntImag() -= RHS.getComplexIntImag();
13157     }
13158     break;
13159   case BO_Mul:
13160     if (Result.isComplexFloat()) {
13161       // This is an implementation of complex multiplication according to the
13162       // constraints laid out in C11 Annex G. The implementation uses the
13163       // following naming scheme:
13164       //   (a + ib) * (c + id)
13165       ComplexValue LHS = Result;
13166       APFloat &A = LHS.getComplexFloatReal();
13167       APFloat &B = LHS.getComplexFloatImag();
13168       APFloat &C = RHS.getComplexFloatReal();
13169       APFloat &D = RHS.getComplexFloatImag();
13170       APFloat &ResR = Result.getComplexFloatReal();
13171       APFloat &ResI = Result.getComplexFloatImag();
13172       if (LHSReal) {
13173         assert(!RHSReal && "Cannot have two real operands for a complex op!");
13174         ResR = A * C;
13175         ResI = A * D;
13176       } else if (RHSReal) {
13177         ResR = C * A;
13178         ResI = C * B;
13179       } else {
13180         // In the fully general case, we need to handle NaNs and infinities
13181         // robustly.
13182         APFloat AC = A * C;
13183         APFloat BD = B * D;
13184         APFloat AD = A * D;
13185         APFloat BC = B * C;
13186         ResR = AC - BD;
13187         ResI = AD + BC;
13188         if (ResR.isNaN() && ResI.isNaN()) {
13189           bool Recalc = false;
13190           if (A.isInfinity() || B.isInfinity()) {
13191             A = APFloat::copySign(
13192                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
13193             B = APFloat::copySign(
13194                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
13195             if (C.isNaN())
13196               C = APFloat::copySign(APFloat(C.getSemantics()), C);
13197             if (D.isNaN())
13198               D = APFloat::copySign(APFloat(D.getSemantics()), D);
13199             Recalc = true;
13200           }
13201           if (C.isInfinity() || D.isInfinity()) {
13202             C = APFloat::copySign(
13203                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
13204             D = APFloat::copySign(
13205                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
13206             if (A.isNaN())
13207               A = APFloat::copySign(APFloat(A.getSemantics()), A);
13208             if (B.isNaN())
13209               B = APFloat::copySign(APFloat(B.getSemantics()), B);
13210             Recalc = true;
13211           }
13212           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
13213                           AD.isInfinity() || BC.isInfinity())) {
13214             if (A.isNaN())
13215               A = APFloat::copySign(APFloat(A.getSemantics()), A);
13216             if (B.isNaN())
13217               B = APFloat::copySign(APFloat(B.getSemantics()), B);
13218             if (C.isNaN())
13219               C = APFloat::copySign(APFloat(C.getSemantics()), C);
13220             if (D.isNaN())
13221               D = APFloat::copySign(APFloat(D.getSemantics()), D);
13222             Recalc = true;
13223           }
13224           if (Recalc) {
13225             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
13226             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
13227           }
13228         }
13229       }
13230     } else {
13231       ComplexValue LHS = Result;
13232       Result.getComplexIntReal() =
13233         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
13234          LHS.getComplexIntImag() * RHS.getComplexIntImag());
13235       Result.getComplexIntImag() =
13236         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
13237          LHS.getComplexIntImag() * RHS.getComplexIntReal());
13238     }
13239     break;
13240   case BO_Div:
13241     if (Result.isComplexFloat()) {
13242       // This is an implementation of complex division according to the
13243       // constraints laid out in C11 Annex G. The implementation uses the
13244       // following naming scheme:
13245       //   (a + ib) / (c + id)
13246       ComplexValue LHS = Result;
13247       APFloat &A = LHS.getComplexFloatReal();
13248       APFloat &B = LHS.getComplexFloatImag();
13249       APFloat &C = RHS.getComplexFloatReal();
13250       APFloat &D = RHS.getComplexFloatImag();
13251       APFloat &ResR = Result.getComplexFloatReal();
13252       APFloat &ResI = Result.getComplexFloatImag();
13253       if (RHSReal) {
13254         ResR = A / C;
13255         ResI = B / C;
13256       } else {
13257         if (LHSReal) {
13258           // No real optimizations we can do here, stub out with zero.
13259           B = APFloat::getZero(A.getSemantics());
13260         }
13261         int DenomLogB = 0;
13262         APFloat MaxCD = maxnum(abs(C), abs(D));
13263         if (MaxCD.isFinite()) {
13264           DenomLogB = ilogb(MaxCD);
13265           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
13266           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
13267         }
13268         APFloat Denom = C * C + D * D;
13269         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
13270                       APFloat::rmNearestTiesToEven);
13271         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
13272                       APFloat::rmNearestTiesToEven);
13273         if (ResR.isNaN() && ResI.isNaN()) {
13274           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
13275             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
13276             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
13277           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
13278                      D.isFinite()) {
13279             A = APFloat::copySign(
13280                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
13281             B = APFloat::copySign(
13282                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
13283             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
13284             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
13285           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
13286             C = APFloat::copySign(
13287                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
13288             D = APFloat::copySign(
13289                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
13290             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
13291             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
13292           }
13293         }
13294       }
13295     } else {
13296       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
13297         return Error(E, diag::note_expr_divide_by_zero);
13298 
13299       ComplexValue LHS = Result;
13300       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
13301         RHS.getComplexIntImag() * RHS.getComplexIntImag();
13302       Result.getComplexIntReal() =
13303         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
13304          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
13305       Result.getComplexIntImag() =
13306         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
13307          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
13308     }
13309     break;
13310   }
13311 
13312   return true;
13313 }
13314 
13315 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13316   // Get the operand value into 'Result'.
13317   if (!Visit(E->getSubExpr()))
13318     return false;
13319 
13320   switch (E->getOpcode()) {
13321   default:
13322     return Error(E);
13323   case UO_Extension:
13324     return true;
13325   case UO_Plus:
13326     // The result is always just the subexpr.
13327     return true;
13328   case UO_Minus:
13329     if (Result.isComplexFloat()) {
13330       Result.getComplexFloatReal().changeSign();
13331       Result.getComplexFloatImag().changeSign();
13332     }
13333     else {
13334       Result.getComplexIntReal() = -Result.getComplexIntReal();
13335       Result.getComplexIntImag() = -Result.getComplexIntImag();
13336     }
13337     return true;
13338   case UO_Not:
13339     if (Result.isComplexFloat())
13340       Result.getComplexFloatImag().changeSign();
13341     else
13342       Result.getComplexIntImag() = -Result.getComplexIntImag();
13343     return true;
13344   }
13345 }
13346 
13347 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
13348   if (E->getNumInits() == 2) {
13349     if (E->getType()->isComplexType()) {
13350       Result.makeComplexFloat();
13351       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
13352         return false;
13353       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
13354         return false;
13355     } else {
13356       Result.makeComplexInt();
13357       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
13358         return false;
13359       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
13360         return false;
13361     }
13362     return true;
13363   }
13364   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
13365 }
13366 
13367 //===----------------------------------------------------------------------===//
13368 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
13369 // implicit conversion.
13370 //===----------------------------------------------------------------------===//
13371 
13372 namespace {
13373 class AtomicExprEvaluator :
13374     public ExprEvaluatorBase<AtomicExprEvaluator> {
13375   const LValue *This;
13376   APValue &Result;
13377 public:
13378   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
13379       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
13380 
13381   bool Success(const APValue &V, const Expr *E) {
13382     Result = V;
13383     return true;
13384   }
13385 
13386   bool ZeroInitialization(const Expr *E) {
13387     ImplicitValueInitExpr VIE(
13388         E->getType()->castAs<AtomicType>()->getValueType());
13389     // For atomic-qualified class (and array) types in C++, initialize the
13390     // _Atomic-wrapped subobject directly, in-place.
13391     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
13392                 : Evaluate(Result, Info, &VIE);
13393   }
13394 
13395   bool VisitCastExpr(const CastExpr *E) {
13396     switch (E->getCastKind()) {
13397     default:
13398       return ExprEvaluatorBaseTy::VisitCastExpr(E);
13399     case CK_NonAtomicToAtomic:
13400       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
13401                   : Evaluate(Result, Info, E->getSubExpr());
13402     }
13403   }
13404 };
13405 } // end anonymous namespace
13406 
13407 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
13408                            EvalInfo &Info) {
13409   assert(E->isRValue() && E->getType()->isAtomicType());
13410   return AtomicExprEvaluator(Info, This, Result).Visit(E);
13411 }
13412 
13413 //===----------------------------------------------------------------------===//
13414 // Void expression evaluation, primarily for a cast to void on the LHS of a
13415 // comma operator
13416 //===----------------------------------------------------------------------===//
13417 
13418 namespace {
13419 class VoidExprEvaluator
13420   : public ExprEvaluatorBase<VoidExprEvaluator> {
13421 public:
13422   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
13423 
13424   bool Success(const APValue &V, const Expr *e) { return true; }
13425 
13426   bool ZeroInitialization(const Expr *E) { return true; }
13427 
13428   bool VisitCastExpr(const CastExpr *E) {
13429     switch (E->getCastKind()) {
13430     default:
13431       return ExprEvaluatorBaseTy::VisitCastExpr(E);
13432     case CK_ToVoid:
13433       VisitIgnoredValue(E->getSubExpr());
13434       return true;
13435     }
13436   }
13437 
13438   bool VisitCallExpr(const CallExpr *E) {
13439     switch (E->getBuiltinCallee()) {
13440     case Builtin::BI__assume:
13441     case Builtin::BI__builtin_assume:
13442       // The argument is not evaluated!
13443       return true;
13444 
13445     case Builtin::BI__builtin_operator_delete:
13446       return HandleOperatorDeleteCall(Info, E);
13447 
13448     default:
13449       break;
13450     }
13451 
13452     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13453   }
13454 
13455   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
13456 };
13457 } // end anonymous namespace
13458 
13459 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
13460   // We cannot speculatively evaluate a delete expression.
13461   if (Info.SpeculativeEvaluationDepth)
13462     return false;
13463 
13464   FunctionDecl *OperatorDelete = E->getOperatorDelete();
13465   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
13466     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
13467         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
13468     return false;
13469   }
13470 
13471   const Expr *Arg = E->getArgument();
13472 
13473   LValue Pointer;
13474   if (!EvaluatePointer(Arg, Pointer, Info))
13475     return false;
13476   if (Pointer.Designator.Invalid)
13477     return false;
13478 
13479   // Deleting a null pointer has no effect.
13480   if (Pointer.isNullPointer()) {
13481     // This is the only case where we need to produce an extension warning:
13482     // the only other way we can succeed is if we find a dynamic allocation,
13483     // and we will have warned when we allocated it in that case.
13484     if (!Info.getLangOpts().CPlusPlus2a)
13485       Info.CCEDiag(E, diag::note_constexpr_new);
13486     return true;
13487   }
13488 
13489   Optional<DynAlloc *> Alloc = CheckDeleteKind(
13490       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
13491   if (!Alloc)
13492     return false;
13493   QualType AllocType = Pointer.Base.getDynamicAllocType();
13494 
13495   // For the non-array case, the designator must be empty if the static type
13496   // does not have a virtual destructor.
13497   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
13498       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
13499     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
13500         << Arg->getType()->getPointeeType() << AllocType;
13501     return false;
13502   }
13503 
13504   // For a class type with a virtual destructor, the selected operator delete
13505   // is the one looked up when building the destructor.
13506   if (!E->isArrayForm() && !E->isGlobalDelete()) {
13507     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
13508     if (VirtualDelete &&
13509         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
13510       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
13511           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
13512       return false;
13513     }
13514   }
13515 
13516   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
13517                          (*Alloc)->Value, AllocType))
13518     return false;
13519 
13520   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
13521     // The element was already erased. This means the destructor call also
13522     // deleted the object.
13523     // FIXME: This probably results in undefined behavior before we get this
13524     // far, and should be diagnosed elsewhere first.
13525     Info.FFDiag(E, diag::note_constexpr_double_delete);
13526     return false;
13527   }
13528 
13529   return true;
13530 }
13531 
13532 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
13533   assert(E->isRValue() && E->getType()->isVoidType());
13534   return VoidExprEvaluator(Info).Visit(E);
13535 }
13536 
13537 //===----------------------------------------------------------------------===//
13538 // Top level Expr::EvaluateAsRValue method.
13539 //===----------------------------------------------------------------------===//
13540 
13541 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
13542   // In C, function designators are not lvalues, but we evaluate them as if they
13543   // are.
13544   QualType T = E->getType();
13545   if (E->isGLValue() || T->isFunctionType()) {
13546     LValue LV;
13547     if (!EvaluateLValue(E, LV, Info))
13548       return false;
13549     LV.moveInto(Result);
13550   } else if (T->isVectorType()) {
13551     if (!EvaluateVector(E, Result, Info))
13552       return false;
13553   } else if (T->isIntegralOrEnumerationType()) {
13554     if (!IntExprEvaluator(Info, Result).Visit(E))
13555       return false;
13556   } else if (T->hasPointerRepresentation()) {
13557     LValue LV;
13558     if (!EvaluatePointer(E, LV, Info))
13559       return false;
13560     LV.moveInto(Result);
13561   } else if (T->isRealFloatingType()) {
13562     llvm::APFloat F(0.0);
13563     if (!EvaluateFloat(E, F, Info))
13564       return false;
13565     Result = APValue(F);
13566   } else if (T->isAnyComplexType()) {
13567     ComplexValue C;
13568     if (!EvaluateComplex(E, C, Info))
13569       return false;
13570     C.moveInto(Result);
13571   } else if (T->isFixedPointType()) {
13572     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
13573   } else if (T->isMemberPointerType()) {
13574     MemberPtr P;
13575     if (!EvaluateMemberPointer(E, P, Info))
13576       return false;
13577     P.moveInto(Result);
13578     return true;
13579   } else if (T->isArrayType()) {
13580     LValue LV;
13581     APValue &Value =
13582         Info.CurrentCall->createTemporary(E, T, false, LV);
13583     if (!EvaluateArray(E, LV, Value, Info))
13584       return false;
13585     Result = Value;
13586   } else if (T->isRecordType()) {
13587     LValue LV;
13588     APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV);
13589     if (!EvaluateRecord(E, LV, Value, Info))
13590       return false;
13591     Result = Value;
13592   } else if (T->isVoidType()) {
13593     if (!Info.getLangOpts().CPlusPlus11)
13594       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
13595         << E->getType();
13596     if (!EvaluateVoid(E, Info))
13597       return false;
13598   } else if (T->isAtomicType()) {
13599     QualType Unqual = T.getAtomicUnqualifiedType();
13600     if (Unqual->isArrayType() || Unqual->isRecordType()) {
13601       LValue LV;
13602       APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV);
13603       if (!EvaluateAtomic(E, &LV, Value, Info))
13604         return false;
13605     } else {
13606       if (!EvaluateAtomic(E, nullptr, Result, Info))
13607         return false;
13608     }
13609   } else if (Info.getLangOpts().CPlusPlus11) {
13610     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
13611     return false;
13612   } else {
13613     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13614     return false;
13615   }
13616 
13617   return true;
13618 }
13619 
13620 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
13621 /// cases, the in-place evaluation is essential, since later initializers for
13622 /// an object can indirectly refer to subobjects which were initialized earlier.
13623 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
13624                             const Expr *E, bool AllowNonLiteralTypes) {
13625   assert(!E->isValueDependent());
13626 
13627   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
13628     return false;
13629 
13630   if (E->isRValue()) {
13631     // Evaluate arrays and record types in-place, so that later initializers can
13632     // refer to earlier-initialized members of the object.
13633     QualType T = E->getType();
13634     if (T->isArrayType())
13635       return EvaluateArray(E, This, Result, Info);
13636     else if (T->isRecordType())
13637       return EvaluateRecord(E, This, Result, Info);
13638     else if (T->isAtomicType()) {
13639       QualType Unqual = T.getAtomicUnqualifiedType();
13640       if (Unqual->isArrayType() || Unqual->isRecordType())
13641         return EvaluateAtomic(E, &This, Result, Info);
13642     }
13643   }
13644 
13645   // For any other type, in-place evaluation is unimportant.
13646   return Evaluate(Result, Info, E);
13647 }
13648 
13649 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
13650 /// lvalue-to-rvalue cast if it is an lvalue.
13651 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
13652   if (Info.EnableNewConstInterp) {
13653     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
13654       return false;
13655   } else {
13656     if (E->getType().isNull())
13657       return false;
13658 
13659     if (!CheckLiteralType(Info, E))
13660       return false;
13661 
13662     if (!::Evaluate(Result, Info, E))
13663       return false;
13664 
13665     if (E->isGLValue()) {
13666       LValue LV;
13667       LV.setFrom(Info.Ctx, Result);
13668       if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13669         return false;
13670     }
13671   }
13672 
13673   // Check this core constant expression is a constant expression.
13674   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result) &&
13675          CheckMemoryLeaks(Info);
13676 }
13677 
13678 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
13679                                  const ASTContext &Ctx, bool &IsConst) {
13680   // Fast-path evaluations of integer literals, since we sometimes see files
13681   // containing vast quantities of these.
13682   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
13683     Result.Val = APValue(APSInt(L->getValue(),
13684                                 L->getType()->isUnsignedIntegerType()));
13685     IsConst = true;
13686     return true;
13687   }
13688 
13689   // This case should be rare, but we need to check it before we check on
13690   // the type below.
13691   if (Exp->getType().isNull()) {
13692     IsConst = false;
13693     return true;
13694   }
13695 
13696   // FIXME: Evaluating values of large array and record types can cause
13697   // performance problems. Only do so in C++11 for now.
13698   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
13699                           Exp->getType()->isRecordType()) &&
13700       !Ctx.getLangOpts().CPlusPlus11) {
13701     IsConst = false;
13702     return true;
13703   }
13704   return false;
13705 }
13706 
13707 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
13708                                       Expr::SideEffectsKind SEK) {
13709   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
13710          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
13711 }
13712 
13713 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
13714                              const ASTContext &Ctx, EvalInfo &Info) {
13715   bool IsConst;
13716   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
13717     return IsConst;
13718 
13719   return EvaluateAsRValue(Info, E, Result.Val);
13720 }
13721 
13722 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
13723                           const ASTContext &Ctx,
13724                           Expr::SideEffectsKind AllowSideEffects,
13725                           EvalInfo &Info) {
13726   if (!E->getType()->isIntegralOrEnumerationType())
13727     return false;
13728 
13729   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
13730       !ExprResult.Val.isInt() ||
13731       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13732     return false;
13733 
13734   return true;
13735 }
13736 
13737 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
13738                                  const ASTContext &Ctx,
13739                                  Expr::SideEffectsKind AllowSideEffects,
13740                                  EvalInfo &Info) {
13741   if (!E->getType()->isFixedPointType())
13742     return false;
13743 
13744   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
13745     return false;
13746 
13747   if (!ExprResult.Val.isFixedPoint() ||
13748       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13749     return false;
13750 
13751   return true;
13752 }
13753 
13754 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
13755 /// any crazy technique (that has nothing to do with language standards) that
13756 /// we want to.  If this function returns true, it returns the folded constant
13757 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
13758 /// will be applied to the result.
13759 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
13760                             bool InConstantContext) const {
13761   assert(!isValueDependent() &&
13762          "Expression evaluator can't be called on a dependent expression.");
13763   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13764   Info.InConstantContext = InConstantContext;
13765   return ::EvaluateAsRValue(this, Result, Ctx, Info);
13766 }
13767 
13768 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
13769                                       bool InConstantContext) const {
13770   assert(!isValueDependent() &&
13771          "Expression evaluator can't be called on a dependent expression.");
13772   EvalResult Scratch;
13773   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
13774          HandleConversionToBool(Scratch.Val, Result);
13775 }
13776 
13777 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
13778                          SideEffectsKind AllowSideEffects,
13779                          bool InConstantContext) const {
13780   assert(!isValueDependent() &&
13781          "Expression evaluator can't be called on a dependent expression.");
13782   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13783   Info.InConstantContext = InConstantContext;
13784   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
13785 }
13786 
13787 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
13788                                 SideEffectsKind AllowSideEffects,
13789                                 bool InConstantContext) const {
13790   assert(!isValueDependent() &&
13791          "Expression evaluator can't be called on a dependent expression.");
13792   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13793   Info.InConstantContext = InConstantContext;
13794   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
13795 }
13796 
13797 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
13798                            SideEffectsKind AllowSideEffects,
13799                            bool InConstantContext) const {
13800   assert(!isValueDependent() &&
13801          "Expression evaluator can't be called on a dependent expression.");
13802 
13803   if (!getType()->isRealFloatingType())
13804     return false;
13805 
13806   EvalResult ExprResult;
13807   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
13808       !ExprResult.Val.isFloat() ||
13809       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13810     return false;
13811 
13812   Result = ExprResult.Val.getFloat();
13813   return true;
13814 }
13815 
13816 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
13817                             bool InConstantContext) const {
13818   assert(!isValueDependent() &&
13819          "Expression evaluator can't be called on a dependent expression.");
13820 
13821   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
13822   Info.InConstantContext = InConstantContext;
13823   LValue LV;
13824   CheckedTemporaries CheckedTemps;
13825   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
13826       Result.HasSideEffects ||
13827       !CheckLValueConstantExpression(Info, getExprLoc(),
13828                                      Ctx.getLValueReferenceType(getType()), LV,
13829                                      Expr::EvaluateForCodeGen, CheckedTemps))
13830     return false;
13831 
13832   LV.moveInto(Result.Val);
13833   return true;
13834 }
13835 
13836 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
13837                                   const ASTContext &Ctx) const {
13838   assert(!isValueDependent() &&
13839          "Expression evaluator can't be called on a dependent expression.");
13840 
13841   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
13842   EvalInfo Info(Ctx, Result, EM);
13843   Info.InConstantContext = true;
13844 
13845   if (!::Evaluate(Result.Val, Info, this) || Result.HasSideEffects)
13846     return false;
13847 
13848   if (!Info.discardCleanups())
13849     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
13850 
13851   return CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
13852                                  Result.Val, Usage) &&
13853          CheckMemoryLeaks(Info);
13854 }
13855 
13856 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
13857                                  const VarDecl *VD,
13858                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
13859   assert(!isValueDependent() &&
13860          "Expression evaluator can't be called on a dependent expression.");
13861 
13862   // FIXME: Evaluating initializers for large array and record types can cause
13863   // performance problems. Only do so in C++11 for now.
13864   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
13865       !Ctx.getLangOpts().CPlusPlus11)
13866     return false;
13867 
13868   Expr::EvalStatus EStatus;
13869   EStatus.Diag = &Notes;
13870 
13871   EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
13872                                       ? EvalInfo::EM_ConstantExpression
13873                                       : EvalInfo::EM_ConstantFold);
13874   Info.setEvaluatingDecl(VD, Value);
13875   Info.InConstantContext = true;
13876 
13877   SourceLocation DeclLoc = VD->getLocation();
13878   QualType DeclTy = VD->getType();
13879 
13880   if (Info.EnableNewConstInterp) {
13881     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
13882     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
13883       return false;
13884   } else {
13885     LValue LVal;
13886     LVal.set(VD);
13887 
13888     // C++11 [basic.start.init]p2:
13889     //  Variables with static storage duration or thread storage duration shall
13890     //  be zero-initialized before any other initialization takes place.
13891     // This behavior is not present in C.
13892     if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
13893         !DeclTy->isReferenceType()) {
13894       ImplicitValueInitExpr VIE(DeclTy);
13895       if (!EvaluateInPlace(Value, Info, LVal, &VIE,
13896                            /*AllowNonLiteralTypes=*/true))
13897         return false;
13898     }
13899 
13900     if (!EvaluateInPlace(Value, Info, LVal, this,
13901                          /*AllowNonLiteralTypes=*/true) ||
13902         EStatus.HasSideEffects)
13903       return false;
13904 
13905     // At this point, any lifetime-extended temporaries are completely
13906     // initialized.
13907     Info.performLifetimeExtension();
13908 
13909     if (!Info.discardCleanups())
13910       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
13911   }
13912   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value) &&
13913          CheckMemoryLeaks(Info);
13914 }
13915 
13916 bool VarDecl::evaluateDestruction(
13917     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
13918   assert(getEvaluatedValue() && !getEvaluatedValue()->isAbsent() &&
13919          "cannot evaluate destruction of non-constant-initialized variable");
13920 
13921   Expr::EvalStatus EStatus;
13922   EStatus.Diag = &Notes;
13923 
13924   // Make a copy of the value for the destructor to mutate.
13925   APValue DestroyedValue = *getEvaluatedValue();
13926 
13927   EvalInfo Info(getASTContext(), EStatus, EvalInfo::EM_ConstantExpression);
13928   Info.setEvaluatingDecl(this, DestroyedValue,
13929                          EvalInfo::EvaluatingDeclKind::Dtor);
13930   Info.InConstantContext = true;
13931 
13932   SourceLocation DeclLoc = getLocation();
13933   QualType DeclTy = getType();
13934 
13935   LValue LVal;
13936   LVal.set(this);
13937 
13938   // FIXME: Consider storing whether this variable has constant destruction in
13939   // the EvaluatedStmt so that CodeGen can query it.
13940   if (!HandleDestruction(Info, DeclLoc, LVal.Base, DestroyedValue, DeclTy) ||
13941       EStatus.HasSideEffects)
13942     return false;
13943 
13944   if (!Info.discardCleanups())
13945     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
13946 
13947   ensureEvaluatedStmt()->HasConstantDestruction = true;
13948   return true;
13949 }
13950 
13951 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
13952 /// constant folded, but discard the result.
13953 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
13954   assert(!isValueDependent() &&
13955          "Expression evaluator can't be called on a dependent expression.");
13956 
13957   EvalResult Result;
13958   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
13959          !hasUnacceptableSideEffect(Result, SEK);
13960 }
13961 
13962 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
13963                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
13964   assert(!isValueDependent() &&
13965          "Expression evaluator can't be called on a dependent expression.");
13966 
13967   EvalResult EVResult;
13968   EVResult.Diag = Diag;
13969   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
13970   Info.InConstantContext = true;
13971 
13972   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
13973   (void)Result;
13974   assert(Result && "Could not evaluate expression");
13975   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
13976 
13977   return EVResult.Val.getInt();
13978 }
13979 
13980 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
13981     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
13982   assert(!isValueDependent() &&
13983          "Expression evaluator can't be called on a dependent expression.");
13984 
13985   EvalResult EVResult;
13986   EVResult.Diag = Diag;
13987   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
13988   Info.InConstantContext = true;
13989   Info.CheckingForUndefinedBehavior = true;
13990 
13991   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
13992   (void)Result;
13993   assert(Result && "Could not evaluate expression");
13994   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
13995 
13996   return EVResult.Val.getInt();
13997 }
13998 
13999 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
14000   assert(!isValueDependent() &&
14001          "Expression evaluator can't be called on a dependent expression.");
14002 
14003   bool IsConst;
14004   EvalResult EVResult;
14005   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
14006     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14007     Info.CheckingForUndefinedBehavior = true;
14008     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
14009   }
14010 }
14011 
14012 bool Expr::EvalResult::isGlobalLValue() const {
14013   assert(Val.isLValue());
14014   return IsGlobalLValue(Val.getLValueBase());
14015 }
14016 
14017 
14018 /// isIntegerConstantExpr - this recursive routine will test if an expression is
14019 /// an integer constant expression.
14020 
14021 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
14022 /// comma, etc
14023 
14024 // CheckICE - This function does the fundamental ICE checking: the returned
14025 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
14026 // and a (possibly null) SourceLocation indicating the location of the problem.
14027 //
14028 // Note that to reduce code duplication, this helper does no evaluation
14029 // itself; the caller checks whether the expression is evaluatable, and
14030 // in the rare cases where CheckICE actually cares about the evaluated
14031 // value, it calls into Evaluate.
14032 
14033 namespace {
14034 
14035 enum ICEKind {
14036   /// This expression is an ICE.
14037   IK_ICE,
14038   /// This expression is not an ICE, but if it isn't evaluated, it's
14039   /// a legal subexpression for an ICE. This return value is used to handle
14040   /// the comma operator in C99 mode, and non-constant subexpressions.
14041   IK_ICEIfUnevaluated,
14042   /// This expression is not an ICE, and is not a legal subexpression for one.
14043   IK_NotICE
14044 };
14045 
14046 struct ICEDiag {
14047   ICEKind Kind;
14048   SourceLocation Loc;
14049 
14050   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
14051 };
14052 
14053 }
14054 
14055 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
14056 
14057 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
14058 
14059 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
14060   Expr::EvalResult EVResult;
14061   Expr::EvalStatus Status;
14062   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
14063 
14064   Info.InConstantContext = true;
14065   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
14066       !EVResult.Val.isInt())
14067     return ICEDiag(IK_NotICE, E->getBeginLoc());
14068 
14069   return NoDiag();
14070 }
14071 
14072 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
14073   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
14074   if (!E->getType()->isIntegralOrEnumerationType())
14075     return ICEDiag(IK_NotICE, E->getBeginLoc());
14076 
14077   switch (E->getStmtClass()) {
14078 #define ABSTRACT_STMT(Node)
14079 #define STMT(Node, Base) case Expr::Node##Class:
14080 #define EXPR(Node, Base)
14081 #include "clang/AST/StmtNodes.inc"
14082   case Expr::PredefinedExprClass:
14083   case Expr::FloatingLiteralClass:
14084   case Expr::ImaginaryLiteralClass:
14085   case Expr::StringLiteralClass:
14086   case Expr::ArraySubscriptExprClass:
14087   case Expr::OMPArraySectionExprClass:
14088   case Expr::MemberExprClass:
14089   case Expr::CompoundAssignOperatorClass:
14090   case Expr::CompoundLiteralExprClass:
14091   case Expr::ExtVectorElementExprClass:
14092   case Expr::DesignatedInitExprClass:
14093   case Expr::ArrayInitLoopExprClass:
14094   case Expr::ArrayInitIndexExprClass:
14095   case Expr::NoInitExprClass:
14096   case Expr::DesignatedInitUpdateExprClass:
14097   case Expr::ImplicitValueInitExprClass:
14098   case Expr::ParenListExprClass:
14099   case Expr::VAArgExprClass:
14100   case Expr::AddrLabelExprClass:
14101   case Expr::StmtExprClass:
14102   case Expr::CXXMemberCallExprClass:
14103   case Expr::CUDAKernelCallExprClass:
14104   case Expr::CXXDynamicCastExprClass:
14105   case Expr::CXXTypeidExprClass:
14106   case Expr::CXXUuidofExprClass:
14107   case Expr::MSPropertyRefExprClass:
14108   case Expr::MSPropertySubscriptExprClass:
14109   case Expr::CXXNullPtrLiteralExprClass:
14110   case Expr::UserDefinedLiteralClass:
14111   case Expr::CXXThisExprClass:
14112   case Expr::CXXThrowExprClass:
14113   case Expr::CXXNewExprClass:
14114   case Expr::CXXDeleteExprClass:
14115   case Expr::CXXPseudoDestructorExprClass:
14116   case Expr::UnresolvedLookupExprClass:
14117   case Expr::TypoExprClass:
14118   case Expr::DependentScopeDeclRefExprClass:
14119   case Expr::CXXConstructExprClass:
14120   case Expr::CXXInheritedCtorInitExprClass:
14121   case Expr::CXXStdInitializerListExprClass:
14122   case Expr::CXXBindTemporaryExprClass:
14123   case Expr::ExprWithCleanupsClass:
14124   case Expr::CXXTemporaryObjectExprClass:
14125   case Expr::CXXUnresolvedConstructExprClass:
14126   case Expr::CXXDependentScopeMemberExprClass:
14127   case Expr::UnresolvedMemberExprClass:
14128   case Expr::ObjCStringLiteralClass:
14129   case Expr::ObjCBoxedExprClass:
14130   case Expr::ObjCArrayLiteralClass:
14131   case Expr::ObjCDictionaryLiteralClass:
14132   case Expr::ObjCEncodeExprClass:
14133   case Expr::ObjCMessageExprClass:
14134   case Expr::ObjCSelectorExprClass:
14135   case Expr::ObjCProtocolExprClass:
14136   case Expr::ObjCIvarRefExprClass:
14137   case Expr::ObjCPropertyRefExprClass:
14138   case Expr::ObjCSubscriptRefExprClass:
14139   case Expr::ObjCIsaExprClass:
14140   case Expr::ObjCAvailabilityCheckExprClass:
14141   case Expr::ShuffleVectorExprClass:
14142   case Expr::ConvertVectorExprClass:
14143   case Expr::BlockExprClass:
14144   case Expr::NoStmtClass:
14145   case Expr::OpaqueValueExprClass:
14146   case Expr::PackExpansionExprClass:
14147   case Expr::SubstNonTypeTemplateParmPackExprClass:
14148   case Expr::FunctionParmPackExprClass:
14149   case Expr::AsTypeExprClass:
14150   case Expr::ObjCIndirectCopyRestoreExprClass:
14151   case Expr::MaterializeTemporaryExprClass:
14152   case Expr::PseudoObjectExprClass:
14153   case Expr::AtomicExprClass:
14154   case Expr::LambdaExprClass:
14155   case Expr::CXXFoldExprClass:
14156   case Expr::CoawaitExprClass:
14157   case Expr::DependentCoawaitExprClass:
14158   case Expr::CoyieldExprClass:
14159     return ICEDiag(IK_NotICE, E->getBeginLoc());
14160 
14161   case Expr::InitListExprClass: {
14162     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
14163     // form "T x = { a };" is equivalent to "T x = a;".
14164     // Unless we're initializing a reference, T is a scalar as it is known to be
14165     // of integral or enumeration type.
14166     if (E->isRValue())
14167       if (cast<InitListExpr>(E)->getNumInits() == 1)
14168         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
14169     return ICEDiag(IK_NotICE, E->getBeginLoc());
14170   }
14171 
14172   case Expr::SizeOfPackExprClass:
14173   case Expr::GNUNullExprClass:
14174   case Expr::SourceLocExprClass:
14175     return NoDiag();
14176 
14177   case Expr::SubstNonTypeTemplateParmExprClass:
14178     return
14179       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
14180 
14181   case Expr::ConstantExprClass:
14182     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
14183 
14184   case Expr::ParenExprClass:
14185     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
14186   case Expr::GenericSelectionExprClass:
14187     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
14188   case Expr::IntegerLiteralClass:
14189   case Expr::FixedPointLiteralClass:
14190   case Expr::CharacterLiteralClass:
14191   case Expr::ObjCBoolLiteralExprClass:
14192   case Expr::CXXBoolLiteralExprClass:
14193   case Expr::CXXScalarValueInitExprClass:
14194   case Expr::TypeTraitExprClass:
14195   case Expr::ConceptSpecializationExprClass:
14196   case Expr::RequiresExprClass:
14197   case Expr::ArrayTypeTraitExprClass:
14198   case Expr::ExpressionTraitExprClass:
14199   case Expr::CXXNoexceptExprClass:
14200     return NoDiag();
14201   case Expr::CallExprClass:
14202   case Expr::CXXOperatorCallExprClass: {
14203     // C99 6.6/3 allows function calls within unevaluated subexpressions of
14204     // constant expressions, but they can never be ICEs because an ICE cannot
14205     // contain an operand of (pointer to) function type.
14206     const CallExpr *CE = cast<CallExpr>(E);
14207     if (CE->getBuiltinCallee())
14208       return CheckEvalInICE(E, Ctx);
14209     return ICEDiag(IK_NotICE, E->getBeginLoc());
14210   }
14211   case Expr::CXXRewrittenBinaryOperatorClass:
14212     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
14213                     Ctx);
14214   case Expr::DeclRefExprClass: {
14215     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
14216       return NoDiag();
14217     const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
14218     if (Ctx.getLangOpts().CPlusPlus &&
14219         D && IsConstNonVolatile(D->getType())) {
14220       // Parameter variables are never constants.  Without this check,
14221       // getAnyInitializer() can find a default argument, which leads
14222       // to chaos.
14223       if (isa<ParmVarDecl>(D))
14224         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
14225 
14226       // C++ 7.1.5.1p2
14227       //   A variable of non-volatile const-qualified integral or enumeration
14228       //   type initialized by an ICE can be used in ICEs.
14229       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
14230         if (!Dcl->getType()->isIntegralOrEnumerationType())
14231           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
14232 
14233         const VarDecl *VD;
14234         // Look for a declaration of this variable that has an initializer, and
14235         // check whether it is an ICE.
14236         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
14237           return NoDiag();
14238         else
14239           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
14240       }
14241     }
14242     return ICEDiag(IK_NotICE, E->getBeginLoc());
14243   }
14244   case Expr::UnaryOperatorClass: {
14245     const UnaryOperator *Exp = cast<UnaryOperator>(E);
14246     switch (Exp->getOpcode()) {
14247     case UO_PostInc:
14248     case UO_PostDec:
14249     case UO_PreInc:
14250     case UO_PreDec:
14251     case UO_AddrOf:
14252     case UO_Deref:
14253     case UO_Coawait:
14254       // C99 6.6/3 allows increment and decrement within unevaluated
14255       // subexpressions of constant expressions, but they can never be ICEs
14256       // because an ICE cannot contain an lvalue operand.
14257       return ICEDiag(IK_NotICE, E->getBeginLoc());
14258     case UO_Extension:
14259     case UO_LNot:
14260     case UO_Plus:
14261     case UO_Minus:
14262     case UO_Not:
14263     case UO_Real:
14264     case UO_Imag:
14265       return CheckICE(Exp->getSubExpr(), Ctx);
14266     }
14267     llvm_unreachable("invalid unary operator class");
14268   }
14269   case Expr::OffsetOfExprClass: {
14270     // Note that per C99, offsetof must be an ICE. And AFAIK, using
14271     // EvaluateAsRValue matches the proposed gcc behavior for cases like
14272     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
14273     // compliance: we should warn earlier for offsetof expressions with
14274     // array subscripts that aren't ICEs, and if the array subscripts
14275     // are ICEs, the value of the offsetof must be an integer constant.
14276     return CheckEvalInICE(E, Ctx);
14277   }
14278   case Expr::UnaryExprOrTypeTraitExprClass: {
14279     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
14280     if ((Exp->getKind() ==  UETT_SizeOf) &&
14281         Exp->getTypeOfArgument()->isVariableArrayType())
14282       return ICEDiag(IK_NotICE, E->getBeginLoc());
14283     return NoDiag();
14284   }
14285   case Expr::BinaryOperatorClass: {
14286     const BinaryOperator *Exp = cast<BinaryOperator>(E);
14287     switch (Exp->getOpcode()) {
14288     case BO_PtrMemD:
14289     case BO_PtrMemI:
14290     case BO_Assign:
14291     case BO_MulAssign:
14292     case BO_DivAssign:
14293     case BO_RemAssign:
14294     case BO_AddAssign:
14295     case BO_SubAssign:
14296     case BO_ShlAssign:
14297     case BO_ShrAssign:
14298     case BO_AndAssign:
14299     case BO_XorAssign:
14300     case BO_OrAssign:
14301       // C99 6.6/3 allows assignments within unevaluated subexpressions of
14302       // constant expressions, but they can never be ICEs because an ICE cannot
14303       // contain an lvalue operand.
14304       return ICEDiag(IK_NotICE, E->getBeginLoc());
14305 
14306     case BO_Mul:
14307     case BO_Div:
14308     case BO_Rem:
14309     case BO_Add:
14310     case BO_Sub:
14311     case BO_Shl:
14312     case BO_Shr:
14313     case BO_LT:
14314     case BO_GT:
14315     case BO_LE:
14316     case BO_GE:
14317     case BO_EQ:
14318     case BO_NE:
14319     case BO_And:
14320     case BO_Xor:
14321     case BO_Or:
14322     case BO_Comma:
14323     case BO_Cmp: {
14324       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
14325       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
14326       if (Exp->getOpcode() == BO_Div ||
14327           Exp->getOpcode() == BO_Rem) {
14328         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
14329         // we don't evaluate one.
14330         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
14331           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
14332           if (REval == 0)
14333             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14334           if (REval.isSigned() && REval.isAllOnesValue()) {
14335             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
14336             if (LEval.isMinSignedValue())
14337               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14338           }
14339         }
14340       }
14341       if (Exp->getOpcode() == BO_Comma) {
14342         if (Ctx.getLangOpts().C99) {
14343           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
14344           // if it isn't evaluated.
14345           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
14346             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14347         } else {
14348           // In both C89 and C++, commas in ICEs are illegal.
14349           return ICEDiag(IK_NotICE, E->getBeginLoc());
14350         }
14351       }
14352       return Worst(LHSResult, RHSResult);
14353     }
14354     case BO_LAnd:
14355     case BO_LOr: {
14356       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
14357       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
14358       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
14359         // Rare case where the RHS has a comma "side-effect"; we need
14360         // to actually check the condition to see whether the side
14361         // with the comma is evaluated.
14362         if ((Exp->getOpcode() == BO_LAnd) !=
14363             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
14364           return RHSResult;
14365         return NoDiag();
14366       }
14367 
14368       return Worst(LHSResult, RHSResult);
14369     }
14370     }
14371     llvm_unreachable("invalid binary operator kind");
14372   }
14373   case Expr::ImplicitCastExprClass:
14374   case Expr::CStyleCastExprClass:
14375   case Expr::CXXFunctionalCastExprClass:
14376   case Expr::CXXStaticCastExprClass:
14377   case Expr::CXXReinterpretCastExprClass:
14378   case Expr::CXXConstCastExprClass:
14379   case Expr::ObjCBridgedCastExprClass: {
14380     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
14381     if (isa<ExplicitCastExpr>(E)) {
14382       if (const FloatingLiteral *FL
14383             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
14384         unsigned DestWidth = Ctx.getIntWidth(E->getType());
14385         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
14386         APSInt IgnoredVal(DestWidth, !DestSigned);
14387         bool Ignored;
14388         // If the value does not fit in the destination type, the behavior is
14389         // undefined, so we are not required to treat it as a constant
14390         // expression.
14391         if (FL->getValue().convertToInteger(IgnoredVal,
14392                                             llvm::APFloat::rmTowardZero,
14393                                             &Ignored) & APFloat::opInvalidOp)
14394           return ICEDiag(IK_NotICE, E->getBeginLoc());
14395         return NoDiag();
14396       }
14397     }
14398     switch (cast<CastExpr>(E)->getCastKind()) {
14399     case CK_LValueToRValue:
14400     case CK_AtomicToNonAtomic:
14401     case CK_NonAtomicToAtomic:
14402     case CK_NoOp:
14403     case CK_IntegralToBoolean:
14404     case CK_IntegralCast:
14405       return CheckICE(SubExpr, Ctx);
14406     default:
14407       return ICEDiag(IK_NotICE, E->getBeginLoc());
14408     }
14409   }
14410   case Expr::BinaryConditionalOperatorClass: {
14411     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
14412     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
14413     if (CommonResult.Kind == IK_NotICE) return CommonResult;
14414     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
14415     if (FalseResult.Kind == IK_NotICE) return FalseResult;
14416     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
14417     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
14418         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
14419     return FalseResult;
14420   }
14421   case Expr::ConditionalOperatorClass: {
14422     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
14423     // If the condition (ignoring parens) is a __builtin_constant_p call,
14424     // then only the true side is actually considered in an integer constant
14425     // expression, and it is fully evaluated.  This is an important GNU
14426     // extension.  See GCC PR38377 for discussion.
14427     if (const CallExpr *CallCE
14428         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
14429       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
14430         return CheckEvalInICE(E, Ctx);
14431     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
14432     if (CondResult.Kind == IK_NotICE)
14433       return CondResult;
14434 
14435     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
14436     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
14437 
14438     if (TrueResult.Kind == IK_NotICE)
14439       return TrueResult;
14440     if (FalseResult.Kind == IK_NotICE)
14441       return FalseResult;
14442     if (CondResult.Kind == IK_ICEIfUnevaluated)
14443       return CondResult;
14444     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
14445       return NoDiag();
14446     // Rare case where the diagnostics depend on which side is evaluated
14447     // Note that if we get here, CondResult is 0, and at least one of
14448     // TrueResult and FalseResult is non-zero.
14449     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
14450       return FalseResult;
14451     return TrueResult;
14452   }
14453   case Expr::CXXDefaultArgExprClass:
14454     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
14455   case Expr::CXXDefaultInitExprClass:
14456     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
14457   case Expr::ChooseExprClass: {
14458     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
14459   }
14460   case Expr::BuiltinBitCastExprClass: {
14461     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
14462       return ICEDiag(IK_NotICE, E->getBeginLoc());
14463     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
14464   }
14465   }
14466 
14467   llvm_unreachable("Invalid StmtClass!");
14468 }
14469 
14470 /// Evaluate an expression as a C++11 integral constant expression.
14471 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
14472                                                     const Expr *E,
14473                                                     llvm::APSInt *Value,
14474                                                     SourceLocation *Loc) {
14475   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
14476     if (Loc) *Loc = E->getExprLoc();
14477     return false;
14478   }
14479 
14480   APValue Result;
14481   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
14482     return false;
14483 
14484   if (!Result.isInt()) {
14485     if (Loc) *Loc = E->getExprLoc();
14486     return false;
14487   }
14488 
14489   if (Value) *Value = Result.getInt();
14490   return true;
14491 }
14492 
14493 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
14494                                  SourceLocation *Loc) const {
14495   assert(!isValueDependent() &&
14496          "Expression evaluator can't be called on a dependent expression.");
14497 
14498   if (Ctx.getLangOpts().CPlusPlus11)
14499     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
14500 
14501   ICEDiag D = CheckICE(this, Ctx);
14502   if (D.Kind != IK_ICE) {
14503     if (Loc) *Loc = D.Loc;
14504     return false;
14505   }
14506   return true;
14507 }
14508 
14509 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
14510                                  SourceLocation *Loc, bool isEvaluated) const {
14511   assert(!isValueDependent() &&
14512          "Expression evaluator can't be called on a dependent expression.");
14513 
14514   if (Ctx.getLangOpts().CPlusPlus11)
14515     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
14516 
14517   if (!isIntegerConstantExpr(Ctx, Loc))
14518     return false;
14519 
14520   // The only possible side-effects here are due to UB discovered in the
14521   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
14522   // required to treat the expression as an ICE, so we produce the folded
14523   // value.
14524   EvalResult ExprResult;
14525   Expr::EvalStatus Status;
14526   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
14527   Info.InConstantContext = true;
14528 
14529   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
14530     llvm_unreachable("ICE cannot be evaluated!");
14531 
14532   Value = ExprResult.Val.getInt();
14533   return true;
14534 }
14535 
14536 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
14537   assert(!isValueDependent() &&
14538          "Expression evaluator can't be called on a dependent expression.");
14539 
14540   return CheckICE(this, Ctx).Kind == IK_ICE;
14541 }
14542 
14543 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
14544                                SourceLocation *Loc) const {
14545   assert(!isValueDependent() &&
14546          "Expression evaluator can't be called on a dependent expression.");
14547 
14548   // We support this checking in C++98 mode in order to diagnose compatibility
14549   // issues.
14550   assert(Ctx.getLangOpts().CPlusPlus);
14551 
14552   // Build evaluation settings.
14553   Expr::EvalStatus Status;
14554   SmallVector<PartialDiagnosticAt, 8> Diags;
14555   Status.Diag = &Diags;
14556   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
14557 
14558   APValue Scratch;
14559   bool IsConstExpr =
14560       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
14561       // FIXME: We don't produce a diagnostic for this, but the callers that
14562       // call us on arbitrary full-expressions should generally not care.
14563       Info.discardCleanups() && !Status.HasSideEffects;
14564 
14565   if (!Diags.empty()) {
14566     IsConstExpr = false;
14567     if (Loc) *Loc = Diags[0].first;
14568   } else if (!IsConstExpr) {
14569     // FIXME: This shouldn't happen.
14570     if (Loc) *Loc = getExprLoc();
14571   }
14572 
14573   return IsConstExpr;
14574 }
14575 
14576 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
14577                                     const FunctionDecl *Callee,
14578                                     ArrayRef<const Expr*> Args,
14579                                     const Expr *This) const {
14580   assert(!isValueDependent() &&
14581          "Expression evaluator can't be called on a dependent expression.");
14582 
14583   Expr::EvalStatus Status;
14584   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
14585   Info.InConstantContext = true;
14586 
14587   LValue ThisVal;
14588   const LValue *ThisPtr = nullptr;
14589   if (This) {
14590 #ifndef NDEBUG
14591     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
14592     assert(MD && "Don't provide `this` for non-methods.");
14593     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
14594 #endif
14595     if (!This->isValueDependent() &&
14596         EvaluateObjectArgument(Info, This, ThisVal) &&
14597         !Info.EvalStatus.HasSideEffects)
14598       ThisPtr = &ThisVal;
14599 
14600     // Ignore any side-effects from a failed evaluation. This is safe because
14601     // they can't interfere with any other argument evaluation.
14602     Info.EvalStatus.HasSideEffects = false;
14603   }
14604 
14605   ArgVector ArgValues(Args.size());
14606   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
14607        I != E; ++I) {
14608     if ((*I)->isValueDependent() ||
14609         !Evaluate(ArgValues[I - Args.begin()], Info, *I) ||
14610         Info.EvalStatus.HasSideEffects)
14611       // If evaluation fails, throw away the argument entirely.
14612       ArgValues[I - Args.begin()] = APValue();
14613 
14614     // Ignore any side-effects from a failed evaluation. This is safe because
14615     // they can't interfere with any other argument evaluation.
14616     Info.EvalStatus.HasSideEffects = false;
14617   }
14618 
14619   // Parameter cleanups happen in the caller and are not part of this
14620   // evaluation.
14621   Info.discardCleanups();
14622   Info.EvalStatus.HasSideEffects = false;
14623 
14624   // Build fake call to Callee.
14625   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
14626                        ArgValues.data());
14627   // FIXME: Missing ExprWithCleanups in enable_if conditions?
14628   FullExpressionRAII Scope(Info);
14629   return Evaluate(Value, Info, this) && Scope.destroy() &&
14630          !Info.EvalStatus.HasSideEffects;
14631 }
14632 
14633 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
14634                                    SmallVectorImpl<
14635                                      PartialDiagnosticAt> &Diags) {
14636   // FIXME: It would be useful to check constexpr function templates, but at the
14637   // moment the constant expression evaluator cannot cope with the non-rigorous
14638   // ASTs which we build for dependent expressions.
14639   if (FD->isDependentContext())
14640     return true;
14641 
14642   Expr::EvalStatus Status;
14643   Status.Diag = &Diags;
14644 
14645   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
14646   Info.InConstantContext = true;
14647   Info.CheckingPotentialConstantExpression = true;
14648 
14649   // The constexpr VM attempts to compile all methods to bytecode here.
14650   if (Info.EnableNewConstInterp) {
14651     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
14652     return Diags.empty();
14653   }
14654 
14655   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
14656   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
14657 
14658   // Fabricate an arbitrary expression on the stack and pretend that it
14659   // is a temporary being used as the 'this' pointer.
14660   LValue This;
14661   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
14662   This.set({&VIE, Info.CurrentCall->Index});
14663 
14664   ArrayRef<const Expr*> Args;
14665 
14666   APValue Scratch;
14667   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
14668     // Evaluate the call as a constant initializer, to allow the construction
14669     // of objects of non-literal types.
14670     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
14671     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
14672   } else {
14673     SourceLocation Loc = FD->getLocation();
14674     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
14675                        Args, FD->getBody(), Info, Scratch, nullptr);
14676   }
14677 
14678   return Diags.empty();
14679 }
14680 
14681 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
14682                                               const FunctionDecl *FD,
14683                                               SmallVectorImpl<
14684                                                 PartialDiagnosticAt> &Diags) {
14685   assert(!E->isValueDependent() &&
14686          "Expression evaluator can't be called on a dependent expression.");
14687 
14688   Expr::EvalStatus Status;
14689   Status.Diag = &Diags;
14690 
14691   EvalInfo Info(FD->getASTContext(), Status,
14692                 EvalInfo::EM_ConstantExpressionUnevaluated);
14693   Info.InConstantContext = true;
14694   Info.CheckingPotentialConstantExpression = true;
14695 
14696   // Fabricate a call stack frame to give the arguments a plausible cover story.
14697   ArrayRef<const Expr*> Args;
14698   ArgVector ArgValues(0);
14699   bool Success = EvaluateArgs(Args, ArgValues, Info, FD);
14700   (void)Success;
14701   assert(Success &&
14702          "Failed to set up arguments for potential constant evaluation");
14703   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
14704 
14705   APValue ResultScratch;
14706   Evaluate(ResultScratch, Info, E);
14707   return Diags.empty();
14708 }
14709 
14710 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
14711                                  unsigned Type) const {
14712   if (!getType()->isPointerType())
14713     return false;
14714 
14715   Expr::EvalStatus Status;
14716   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
14717   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
14718 }
14719