xref: /freebsd/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp (revision 4542f901cb0c5dd66ab5b541f2fbc659fd46f893)
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/DiagnosticSema.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "llvm/ADT/APFixedPoint.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/TimeProfiler.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cstring>
63 #include <functional>
64 #include <optional>
65 
66 #define DEBUG_TYPE "exprconstant"
67 
68 using namespace clang;
69 using llvm::APFixedPoint;
70 using llvm::APInt;
71 using llvm::APSInt;
72 using llvm::APFloat;
73 using llvm::FixedPointSemantics;
74 
75 namespace {
76   struct LValue;
77   class CallStackFrame;
78   class EvalInfo;
79 
80   using SourceLocExprScopeGuard =
81       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
82 
83   static QualType getType(APValue::LValueBase B) {
84     return B.getType();
85   }
86 
87   /// Get an LValue path entry, which is known to not be an array index, as a
88   /// field declaration.
89   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
90     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
91   }
92   /// Get an LValue path entry, which is known to not be an array index, as a
93   /// base class declaration.
94   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
95     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
96   }
97   /// Determine whether this LValue path entry for a base class names a virtual
98   /// base class.
99   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
100     return E.getAsBaseOrMember().getInt();
101   }
102 
103   /// Given an expression, determine the type used to store the result of
104   /// evaluating that expression.
105   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
106     if (E->isPRValue())
107       return E->getType();
108     return Ctx.getLValueReferenceType(E->getType());
109   }
110 
111   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
112   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
113     if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
114       return DirectCallee->getAttr<AllocSizeAttr>();
115     if (const Decl *IndirectCallee = CE->getCalleeDecl())
116       return IndirectCallee->getAttr<AllocSizeAttr>();
117     return nullptr;
118   }
119 
120   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
121   /// This will look through a single cast.
122   ///
123   /// Returns null if we couldn't unwrap a function with alloc_size.
124   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
125     if (!E->getType()->isPointerType())
126       return nullptr;
127 
128     E = E->IgnoreParens();
129     // If we're doing a variable assignment from e.g. malloc(N), there will
130     // probably be a cast of some kind. In exotic cases, we might also see a
131     // top-level ExprWithCleanups. Ignore them either way.
132     if (const auto *FE = dyn_cast<FullExpr>(E))
133       E = FE->getSubExpr()->IgnoreParens();
134 
135     if (const auto *Cast = dyn_cast<CastExpr>(E))
136       E = Cast->getSubExpr()->IgnoreParens();
137 
138     if (const auto *CE = dyn_cast<CallExpr>(E))
139       return getAllocSizeAttr(CE) ? CE : nullptr;
140     return nullptr;
141   }
142 
143   /// Determines whether or not the given Base contains a call to a function
144   /// with the alloc_size attribute.
145   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
146     const auto *E = Base.dyn_cast<const Expr *>();
147     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
148   }
149 
150   /// Determines whether the given kind of constant expression is only ever
151   /// used for name mangling. If so, it's permitted to reference things that we
152   /// can't generate code for (in particular, dllimported functions).
153   static bool isForManglingOnly(ConstantExprKind Kind) {
154     switch (Kind) {
155     case ConstantExprKind::Normal:
156     case ConstantExprKind::ClassTemplateArgument:
157     case ConstantExprKind::ImmediateInvocation:
158       // Note that non-type template arguments of class type are emitted as
159       // template parameter objects.
160       return false;
161 
162     case ConstantExprKind::NonClassTemplateArgument:
163       return true;
164     }
165     llvm_unreachable("unknown ConstantExprKind");
166   }
167 
168   static bool isTemplateArgument(ConstantExprKind Kind) {
169     switch (Kind) {
170     case ConstantExprKind::Normal:
171     case ConstantExprKind::ImmediateInvocation:
172       return false;
173 
174     case ConstantExprKind::ClassTemplateArgument:
175     case ConstantExprKind::NonClassTemplateArgument:
176       return true;
177     }
178     llvm_unreachable("unknown ConstantExprKind");
179   }
180 
181   /// The bound to claim that an array of unknown bound has.
182   /// The value in MostDerivedArraySize is undefined in this case. So, set it
183   /// to an arbitrary value that's likely to loudly break things if it's used.
184   static const uint64_t AssumedSizeForUnsizedArray =
185       std::numeric_limits<uint64_t>::max() / 2;
186 
187   /// Determines if an LValue with the given LValueBase will have an unsized
188   /// array in its designator.
189   /// Find the path length and type of the most-derived subobject in the given
190   /// path, and find the size of the containing array, if any.
191   static unsigned
192   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
193                            ArrayRef<APValue::LValuePathEntry> Path,
194                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
195                            bool &FirstEntryIsUnsizedArray) {
196     // This only accepts LValueBases from APValues, and APValues don't support
197     // arrays that lack size info.
198     assert(!isBaseAnAllocSizeCall(Base) &&
199            "Unsized arrays shouldn't appear here");
200     unsigned MostDerivedLength = 0;
201     Type = getType(Base);
202 
203     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
204       if (Type->isArrayType()) {
205         const ArrayType *AT = Ctx.getAsArrayType(Type);
206         Type = AT->getElementType();
207         MostDerivedLength = I + 1;
208         IsArray = true;
209 
210         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
211           ArraySize = CAT->getSize().getZExtValue();
212         } else {
213           assert(I == 0 && "unexpected unsized array designator");
214           FirstEntryIsUnsizedArray = true;
215           ArraySize = AssumedSizeForUnsizedArray;
216         }
217       } else if (Type->isAnyComplexType()) {
218         const ComplexType *CT = Type->castAs<ComplexType>();
219         Type = CT->getElementType();
220         ArraySize = 2;
221         MostDerivedLength = I + 1;
222         IsArray = true;
223       } else if (const FieldDecl *FD = getAsField(Path[I])) {
224         Type = FD->getType();
225         ArraySize = 0;
226         MostDerivedLength = I + 1;
227         IsArray = false;
228       } else {
229         // Path[I] describes a base class.
230         ArraySize = 0;
231         IsArray = false;
232       }
233     }
234     return MostDerivedLength;
235   }
236 
237   /// A path from a glvalue to a subobject of that glvalue.
238   struct SubobjectDesignator {
239     /// True if the subobject was named in a manner not supported by C++11. Such
240     /// lvalues can still be folded, but they are not core constant expressions
241     /// and we cannot perform lvalue-to-rvalue conversions on them.
242     unsigned Invalid : 1;
243 
244     /// Is this a pointer one past the end of an object?
245     unsigned IsOnePastTheEnd : 1;
246 
247     /// Indicator of whether the first entry is an unsized array.
248     unsigned FirstEntryIsAnUnsizedArray : 1;
249 
250     /// Indicator of whether the most-derived object is an array element.
251     unsigned MostDerivedIsArrayElement : 1;
252 
253     /// The length of the path to the most-derived object of which this is a
254     /// subobject.
255     unsigned MostDerivedPathLength : 28;
256 
257     /// The size of the array of which the most-derived object is an element.
258     /// This will always be 0 if the most-derived object is not an array
259     /// element. 0 is not an indicator of whether or not the most-derived object
260     /// is an array, however, because 0-length arrays are allowed.
261     ///
262     /// If the current array is an unsized array, the value of this is
263     /// undefined.
264     uint64_t MostDerivedArraySize;
265 
266     /// The type of the most derived object referred to by this address.
267     QualType MostDerivedType;
268 
269     typedef APValue::LValuePathEntry PathEntry;
270 
271     /// The entries on the path from the glvalue to the designated subobject.
272     SmallVector<PathEntry, 8> Entries;
273 
274     SubobjectDesignator() : Invalid(true) {}
275 
276     explicit SubobjectDesignator(QualType T)
277         : Invalid(false), IsOnePastTheEnd(false),
278           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
279           MostDerivedPathLength(0), MostDerivedArraySize(0),
280           MostDerivedType(T) {}
281 
282     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
283         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
284           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
285           MostDerivedPathLength(0), MostDerivedArraySize(0) {
286       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
287       if (!Invalid) {
288         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
289         ArrayRef<PathEntry> VEntries = V.getLValuePath();
290         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
291         if (V.getLValueBase()) {
292           bool IsArray = false;
293           bool FirstIsUnsizedArray = false;
294           MostDerivedPathLength = findMostDerivedSubobject(
295               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
296               MostDerivedType, IsArray, FirstIsUnsizedArray);
297           MostDerivedIsArrayElement = IsArray;
298           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
299         }
300       }
301     }
302 
303     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
304                   unsigned NewLength) {
305       if (Invalid)
306         return;
307 
308       assert(Base && "cannot truncate path for null pointer");
309       assert(NewLength <= Entries.size() && "not a truncation");
310 
311       if (NewLength == Entries.size())
312         return;
313       Entries.resize(NewLength);
314 
315       bool IsArray = false;
316       bool FirstIsUnsizedArray = false;
317       MostDerivedPathLength = findMostDerivedSubobject(
318           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
319           FirstIsUnsizedArray);
320       MostDerivedIsArrayElement = IsArray;
321       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
322     }
323 
324     void setInvalid() {
325       Invalid = true;
326       Entries.clear();
327     }
328 
329     /// Determine whether the most derived subobject is an array without a
330     /// known bound.
331     bool isMostDerivedAnUnsizedArray() const {
332       assert(!Invalid && "Calling this makes no sense on invalid designators");
333       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
334     }
335 
336     /// Determine what the most derived array's size is. Results in an assertion
337     /// failure if the most derived array lacks a size.
338     uint64_t getMostDerivedArraySize() const {
339       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
340       return MostDerivedArraySize;
341     }
342 
343     /// Determine whether this is a one-past-the-end pointer.
344     bool isOnePastTheEnd() const {
345       assert(!Invalid);
346       if (IsOnePastTheEnd)
347         return true;
348       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
349           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
350               MostDerivedArraySize)
351         return true;
352       return false;
353     }
354 
355     /// Get the range of valid index adjustments in the form
356     ///   {maximum value that can be subtracted from this pointer,
357     ///    maximum value that can be added to this pointer}
358     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
359       if (Invalid || isMostDerivedAnUnsizedArray())
360         return {0, 0};
361 
362       // [expr.add]p4: For the purposes of these operators, a pointer to a
363       // nonarray object behaves the same as a pointer to the first element of
364       // an array of length one with the type of the object as its element type.
365       bool IsArray = MostDerivedPathLength == Entries.size() &&
366                      MostDerivedIsArrayElement;
367       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
368                                     : (uint64_t)IsOnePastTheEnd;
369       uint64_t ArraySize =
370           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
371       return {ArrayIndex, ArraySize - ArrayIndex};
372     }
373 
374     /// Check that this refers to a valid subobject.
375     bool isValidSubobject() const {
376       if (Invalid)
377         return false;
378       return !isOnePastTheEnd();
379     }
380     /// Check that this refers to a valid subobject, and if not, produce a
381     /// relevant diagnostic and set the designator as invalid.
382     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
383 
384     /// Get the type of the designated object.
385     QualType getType(ASTContext &Ctx) const {
386       assert(!Invalid && "invalid designator has no subobject type");
387       return MostDerivedPathLength == Entries.size()
388                  ? MostDerivedType
389                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
390     }
391 
392     /// Update this designator to refer to the first element within this array.
393     void addArrayUnchecked(const ConstantArrayType *CAT) {
394       Entries.push_back(PathEntry::ArrayIndex(0));
395 
396       // This is a most-derived object.
397       MostDerivedType = CAT->getElementType();
398       MostDerivedIsArrayElement = true;
399       MostDerivedArraySize = CAT->getSize().getZExtValue();
400       MostDerivedPathLength = Entries.size();
401     }
402     /// Update this designator to refer to the first element within the array of
403     /// elements of type T. This is an array of unknown size.
404     void addUnsizedArrayUnchecked(QualType ElemTy) {
405       Entries.push_back(PathEntry::ArrayIndex(0));
406 
407       MostDerivedType = ElemTy;
408       MostDerivedIsArrayElement = true;
409       // The value in MostDerivedArraySize is undefined in this case. So, set it
410       // to an arbitrary value that's likely to loudly break things if it's
411       // used.
412       MostDerivedArraySize = AssumedSizeForUnsizedArray;
413       MostDerivedPathLength = Entries.size();
414     }
415     /// Update this designator to refer to the given base or member of this
416     /// object.
417     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
418       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
419 
420       // If this isn't a base class, it's a new most-derived object.
421       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
422         MostDerivedType = FD->getType();
423         MostDerivedIsArrayElement = false;
424         MostDerivedArraySize = 0;
425         MostDerivedPathLength = Entries.size();
426       }
427     }
428     /// Update this designator to refer to the given complex component.
429     void addComplexUnchecked(QualType EltTy, bool Imag) {
430       Entries.push_back(PathEntry::ArrayIndex(Imag));
431 
432       // This is technically a most-derived object, though in practice this
433       // is unlikely to matter.
434       MostDerivedType = EltTy;
435       MostDerivedIsArrayElement = true;
436       MostDerivedArraySize = 2;
437       MostDerivedPathLength = Entries.size();
438     }
439     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
440     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
441                                    const APSInt &N);
442     /// Add N to the address of this subobject.
443     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
444       if (Invalid || !N) return;
445       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
446       if (isMostDerivedAnUnsizedArray()) {
447         diagnoseUnsizedArrayPointerArithmetic(Info, E);
448         // Can't verify -- trust that the user is doing the right thing (or if
449         // not, trust that the caller will catch the bad behavior).
450         // FIXME: Should we reject if this overflows, at least?
451         Entries.back() = PathEntry::ArrayIndex(
452             Entries.back().getAsArrayIndex() + TruncatedN);
453         return;
454       }
455 
456       // [expr.add]p4: For the purposes of these operators, a pointer to a
457       // nonarray object behaves the same as a pointer to the first element of
458       // an array of length one with the type of the object as its element type.
459       bool IsArray = MostDerivedPathLength == Entries.size() &&
460                      MostDerivedIsArrayElement;
461       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
462                                     : (uint64_t)IsOnePastTheEnd;
463       uint64_t ArraySize =
464           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
465 
466       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
467         // Calculate the actual index in a wide enough type, so we can include
468         // it in the note.
469         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
470         (llvm::APInt&)N += ArrayIndex;
471         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
472         diagnosePointerArithmetic(Info, E, N);
473         setInvalid();
474         return;
475       }
476 
477       ArrayIndex += TruncatedN;
478       assert(ArrayIndex <= ArraySize &&
479              "bounds check succeeded for out-of-bounds index");
480 
481       if (IsArray)
482         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
483       else
484         IsOnePastTheEnd = (ArrayIndex != 0);
485     }
486   };
487 
488   /// A scope at the end of which an object can need to be destroyed.
489   enum class ScopeKind {
490     Block,
491     FullExpression,
492     Call
493   };
494 
495   /// A reference to a particular call and its arguments.
496   struct CallRef {
497     CallRef() : OrigCallee(), CallIndex(0), Version() {}
498     CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
499         : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
500 
501     explicit operator bool() const { return OrigCallee; }
502 
503     /// Get the parameter that the caller initialized, corresponding to the
504     /// given parameter in the callee.
505     const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
506       return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
507                         : PVD;
508     }
509 
510     /// The callee at the point where the arguments were evaluated. This might
511     /// be different from the actual callee (a different redeclaration, or a
512     /// virtual override), but this function's parameters are the ones that
513     /// appear in the parameter map.
514     const FunctionDecl *OrigCallee;
515     /// The call index of the frame that holds the argument values.
516     unsigned CallIndex;
517     /// The version of the parameters corresponding to this call.
518     unsigned Version;
519   };
520 
521   /// A stack frame in the constexpr call stack.
522   class CallStackFrame : public interp::Frame {
523   public:
524     EvalInfo &Info;
525 
526     /// Parent - The caller of this stack frame.
527     CallStackFrame *Caller;
528 
529     /// Callee - The function which was called.
530     const FunctionDecl *Callee;
531 
532     /// This - The binding for the this pointer in this call, if any.
533     const LValue *This;
534 
535     /// CallExpr - The syntactical structure of member function calls
536     const Expr *CallExpr;
537 
538     /// Information on how to find the arguments to this call. Our arguments
539     /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
540     /// key and this value as the version.
541     CallRef Arguments;
542 
543     /// Source location information about the default argument or default
544     /// initializer expression we're evaluating, if any.
545     CurrentSourceLocExprScope CurSourceLocExprScope;
546 
547     // Note that we intentionally use std::map here so that references to
548     // values are stable.
549     typedef std::pair<const void *, unsigned> MapKeyTy;
550     typedef std::map<MapKeyTy, APValue> MapTy;
551     /// Temporaries - Temporary lvalues materialized within this stack frame.
552     MapTy Temporaries;
553 
554     /// CallLoc - The location of the call expression for this call.
555     SourceLocation CallLoc;
556 
557     /// Index - The call index of this call.
558     unsigned Index;
559 
560     /// The stack of integers for tracking version numbers for temporaries.
561     SmallVector<unsigned, 2> TempVersionStack = {1};
562     unsigned CurTempVersion = TempVersionStack.back();
563 
564     unsigned getTempVersion() const { return TempVersionStack.back(); }
565 
566     void pushTempVersion() {
567       TempVersionStack.push_back(++CurTempVersion);
568     }
569 
570     void popTempVersion() {
571       TempVersionStack.pop_back();
572     }
573 
574     CallRef createCall(const FunctionDecl *Callee) {
575       return {Callee, Index, ++CurTempVersion};
576     }
577 
578     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
579     // on the overall stack usage of deeply-recursing constexpr evaluations.
580     // (We should cache this map rather than recomputing it repeatedly.)
581     // But let's try this and see how it goes; we can look into caching the map
582     // as a later change.
583 
584     /// LambdaCaptureFields - Mapping from captured variables/this to
585     /// corresponding data members in the closure class.
586     llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
587     FieldDecl *LambdaThisCaptureField = nullptr;
588 
589     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
590                    const FunctionDecl *Callee, const LValue *This,
591                    const Expr *CallExpr, CallRef Arguments);
592     ~CallStackFrame();
593 
594     // Return the temporary for Key whose version number is Version.
595     APValue *getTemporary(const void *Key, unsigned Version) {
596       MapKeyTy KV(Key, Version);
597       auto LB = Temporaries.lower_bound(KV);
598       if (LB != Temporaries.end() && LB->first == KV)
599         return &LB->second;
600       return nullptr;
601     }
602 
603     // Return the current temporary for Key in the map.
604     APValue *getCurrentTemporary(const void *Key) {
605       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
606       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607         return &std::prev(UB)->second;
608       return nullptr;
609     }
610 
611     // Return the version number of the current temporary for Key.
612     unsigned getCurrentTemporaryVersion(const void *Key) const {
613       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
614       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615         return std::prev(UB)->first.second;
616       return 0;
617     }
618 
619     /// Allocate storage for an object of type T in this stack frame.
620     /// Populates LV with a handle to the created object. Key identifies
621     /// the temporary within the stack frame, and must not be reused without
622     /// bumping the temporary version number.
623     template<typename KeyT>
624     APValue &createTemporary(const KeyT *Key, QualType T,
625                              ScopeKind Scope, LValue &LV);
626 
627     /// Allocate storage for a parameter of a function call made in this frame.
628     APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
629 
630     void describe(llvm::raw_ostream &OS) const override;
631 
632     Frame *getCaller() const override { return Caller; }
633     SourceLocation getCallLocation() const override { return CallLoc; }
634     const FunctionDecl *getCallee() const override { return Callee; }
635 
636     bool isStdFunction() const {
637       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638         if (DC->isStdNamespace())
639           return true;
640       return false;
641     }
642 
643   private:
644     APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645                          ScopeKind Scope);
646   };
647 
648   /// Temporarily override 'this'.
649   class ThisOverrideRAII {
650   public:
651     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652         : Frame(Frame), OldThis(Frame.This) {
653       if (Enable)
654         Frame.This = NewThis;
655     }
656     ~ThisOverrideRAII() {
657       Frame.This = OldThis;
658     }
659   private:
660     CallStackFrame &Frame;
661     const LValue *OldThis;
662   };
663 
664   // A shorthand time trace scope struct, prints source range, for example
665   // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
666   class ExprTimeTraceScope {
667   public:
668     ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
669         : TimeScope(Name, [E, &Ctx] {
670             return E->getSourceRange().printToString(Ctx.getSourceManager());
671           }) {}
672 
673   private:
674     llvm::TimeTraceScope TimeScope;
675   };
676 }
677 
678 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
679                               const LValue &This, QualType ThisType);
680 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
681                               APValue::LValueBase LVBase, APValue &Value,
682                               QualType T);
683 
684 namespace {
685   /// A cleanup, and a flag indicating whether it is lifetime-extended.
686   class Cleanup {
687     llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
688     APValue::LValueBase Base;
689     QualType T;
690 
691   public:
692     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
693             ScopeKind Scope)
694         : Value(Val, Scope), Base(Base), T(T) {}
695 
696     /// Determine whether this cleanup should be performed at the end of the
697     /// given kind of scope.
698     bool isDestroyedAtEndOf(ScopeKind K) const {
699       return (int)Value.getInt() >= (int)K;
700     }
701     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
702       if (RunDestructors) {
703         SourceLocation Loc;
704         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
705           Loc = VD->getLocation();
706         else if (const Expr *E = Base.dyn_cast<const Expr*>())
707           Loc = E->getExprLoc();
708         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
709       }
710       *Value.getPointer() = APValue();
711       return true;
712     }
713 
714     bool hasSideEffect() {
715       return T.isDestructedType();
716     }
717   };
718 
719   /// A reference to an object whose construction we are currently evaluating.
720   struct ObjectUnderConstruction {
721     APValue::LValueBase Base;
722     ArrayRef<APValue::LValuePathEntry> Path;
723     friend bool operator==(const ObjectUnderConstruction &LHS,
724                            const ObjectUnderConstruction &RHS) {
725       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
726     }
727     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
728       return llvm::hash_combine(Obj.Base, Obj.Path);
729     }
730   };
731   enum class ConstructionPhase {
732     None,
733     Bases,
734     AfterBases,
735     AfterFields,
736     Destroying,
737     DestroyingBases
738   };
739 }
740 
741 namespace llvm {
742 template<> struct DenseMapInfo<ObjectUnderConstruction> {
743   using Base = DenseMapInfo<APValue::LValueBase>;
744   static ObjectUnderConstruction getEmptyKey() {
745     return {Base::getEmptyKey(), {}}; }
746   static ObjectUnderConstruction getTombstoneKey() {
747     return {Base::getTombstoneKey(), {}};
748   }
749   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
750     return hash_value(Object);
751   }
752   static bool isEqual(const ObjectUnderConstruction &LHS,
753                       const ObjectUnderConstruction &RHS) {
754     return LHS == RHS;
755   }
756 };
757 }
758 
759 namespace {
760   /// A dynamically-allocated heap object.
761   struct DynAlloc {
762     /// The value of this heap-allocated object.
763     APValue Value;
764     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
765     /// or a CallExpr (the latter is for direct calls to operator new inside
766     /// std::allocator<T>::allocate).
767     const Expr *AllocExpr = nullptr;
768 
769     enum Kind {
770       New,
771       ArrayNew,
772       StdAllocator
773     };
774 
775     /// Get the kind of the allocation. This must match between allocation
776     /// and deallocation.
777     Kind getKind() const {
778       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
779         return NE->isArray() ? ArrayNew : New;
780       assert(isa<CallExpr>(AllocExpr));
781       return StdAllocator;
782     }
783   };
784 
785   struct DynAllocOrder {
786     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
787       return L.getIndex() < R.getIndex();
788     }
789   };
790 
791   /// EvalInfo - This is a private struct used by the evaluator to capture
792   /// information about a subexpression as it is folded.  It retains information
793   /// about the AST context, but also maintains information about the folded
794   /// expression.
795   ///
796   /// If an expression could be evaluated, it is still possible it is not a C
797   /// "integer constant expression" or constant expression.  If not, this struct
798   /// captures information about how and why not.
799   ///
800   /// One bit of information passed *into* the request for constant folding
801   /// indicates whether the subexpression is "evaluated" or not according to C
802   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
803   /// evaluate the expression regardless of what the RHS is, but C only allows
804   /// certain things in certain situations.
805   class EvalInfo : public interp::State {
806   public:
807     ASTContext &Ctx;
808 
809     /// EvalStatus - Contains information about the evaluation.
810     Expr::EvalStatus &EvalStatus;
811 
812     /// CurrentCall - The top of the constexpr call stack.
813     CallStackFrame *CurrentCall;
814 
815     /// CallStackDepth - The number of calls in the call stack right now.
816     unsigned CallStackDepth;
817 
818     /// NextCallIndex - The next call index to assign.
819     unsigned NextCallIndex;
820 
821     /// StepsLeft - The remaining number of evaluation steps we're permitted
822     /// to perform. This is essentially a limit for the number of statements
823     /// we will evaluate.
824     unsigned StepsLeft;
825 
826     /// Enable the experimental new constant interpreter. If an expression is
827     /// not supported by the interpreter, an error is triggered.
828     bool EnableNewConstInterp;
829 
830     /// BottomFrame - The frame in which evaluation started. This must be
831     /// initialized after CurrentCall and CallStackDepth.
832     CallStackFrame BottomFrame;
833 
834     /// A stack of values whose lifetimes end at the end of some surrounding
835     /// evaluation frame.
836     llvm::SmallVector<Cleanup, 16> CleanupStack;
837 
838     /// EvaluatingDecl - This is the declaration whose initializer is being
839     /// evaluated, if any.
840     APValue::LValueBase EvaluatingDecl;
841 
842     enum class EvaluatingDeclKind {
843       None,
844       /// We're evaluating the construction of EvaluatingDecl.
845       Ctor,
846       /// We're evaluating the destruction of EvaluatingDecl.
847       Dtor,
848     };
849     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
850 
851     /// EvaluatingDeclValue - This is the value being constructed for the
852     /// declaration whose initializer is being evaluated, if any.
853     APValue *EvaluatingDeclValue;
854 
855     /// Set of objects that are currently being constructed.
856     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
857         ObjectsUnderConstruction;
858 
859     /// Current heap allocations, along with the location where each was
860     /// allocated. We use std::map here because we need stable addresses
861     /// for the stored APValues.
862     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
863 
864     /// The number of heap allocations performed so far in this evaluation.
865     unsigned NumHeapAllocs = 0;
866 
867     struct EvaluatingConstructorRAII {
868       EvalInfo &EI;
869       ObjectUnderConstruction Object;
870       bool DidInsert;
871       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
872                                 bool HasBases)
873           : EI(EI), Object(Object) {
874         DidInsert =
875             EI.ObjectsUnderConstruction
876                 .insert({Object, HasBases ? ConstructionPhase::Bases
877                                           : ConstructionPhase::AfterBases})
878                 .second;
879       }
880       void finishedConstructingBases() {
881         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
882       }
883       void finishedConstructingFields() {
884         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
885       }
886       ~EvaluatingConstructorRAII() {
887         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
888       }
889     };
890 
891     struct EvaluatingDestructorRAII {
892       EvalInfo &EI;
893       ObjectUnderConstruction Object;
894       bool DidInsert;
895       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
896           : EI(EI), Object(Object) {
897         DidInsert = EI.ObjectsUnderConstruction
898                         .insert({Object, ConstructionPhase::Destroying})
899                         .second;
900       }
901       void startedDestroyingBases() {
902         EI.ObjectsUnderConstruction[Object] =
903             ConstructionPhase::DestroyingBases;
904       }
905       ~EvaluatingDestructorRAII() {
906         if (DidInsert)
907           EI.ObjectsUnderConstruction.erase(Object);
908       }
909     };
910 
911     ConstructionPhase
912     isEvaluatingCtorDtor(APValue::LValueBase Base,
913                          ArrayRef<APValue::LValuePathEntry> Path) {
914       return ObjectsUnderConstruction.lookup({Base, Path});
915     }
916 
917     /// If we're currently speculatively evaluating, the outermost call stack
918     /// depth at which we can mutate state, otherwise 0.
919     unsigned SpeculativeEvaluationDepth = 0;
920 
921     /// The current array initialization index, if we're performing array
922     /// initialization.
923     uint64_t ArrayInitIndex = -1;
924 
925     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
926     /// notes attached to it will also be stored, otherwise they will not be.
927     bool HasActiveDiagnostic;
928 
929     /// Have we emitted a diagnostic explaining why we couldn't constant
930     /// fold (not just why it's not strictly a constant expression)?
931     bool HasFoldFailureDiagnostic;
932 
933     /// Whether we're checking that an expression is a potential constant
934     /// expression. If so, do not fail on constructs that could become constant
935     /// later on (such as a use of an undefined global).
936     bool CheckingPotentialConstantExpression = false;
937 
938     /// Whether we're checking for an expression that has undefined behavior.
939     /// If so, we will produce warnings if we encounter an operation that is
940     /// always undefined.
941     ///
942     /// Note that we still need to evaluate the expression normally when this
943     /// is set; this is used when evaluating ICEs in C.
944     bool CheckingForUndefinedBehavior = false;
945 
946     enum EvaluationMode {
947       /// Evaluate as a constant expression. Stop if we find that the expression
948       /// is not a constant expression.
949       EM_ConstantExpression,
950 
951       /// Evaluate as a constant expression. Stop if we find that the expression
952       /// is not a constant expression. Some expressions can be retried in the
953       /// optimizer if we don't constant fold them here, but in an unevaluated
954       /// context we try to fold them immediately since the optimizer never
955       /// gets a chance to look at it.
956       EM_ConstantExpressionUnevaluated,
957 
958       /// Fold the expression to a constant. Stop if we hit a side-effect that
959       /// we can't model.
960       EM_ConstantFold,
961 
962       /// Evaluate in any way we know how. Don't worry about side-effects that
963       /// can't be modeled.
964       EM_IgnoreSideEffects,
965     } EvalMode;
966 
967     /// Are we checking whether the expression is a potential constant
968     /// expression?
969     bool checkingPotentialConstantExpression() const override  {
970       return CheckingPotentialConstantExpression;
971     }
972 
973     /// Are we checking an expression for overflow?
974     // FIXME: We should check for any kind of undefined or suspicious behavior
975     // in such constructs, not just overflow.
976     bool checkingForUndefinedBehavior() const override {
977       return CheckingForUndefinedBehavior;
978     }
979 
980     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
981         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
982           CallStackDepth(0), NextCallIndex(1),
983           StepsLeft(C.getLangOpts().ConstexprStepLimit),
984           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
985           BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr,
986                       /*This=*/nullptr,
987                       /*CallExpr=*/nullptr, CallRef()),
988           EvaluatingDecl((const ValueDecl *)nullptr),
989           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
990           HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
991 
992     ~EvalInfo() {
993       discardCleanups();
994     }
995 
996     ASTContext &getCtx() const override { return Ctx; }
997 
998     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
999                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
1000       EvaluatingDecl = Base;
1001       IsEvaluatingDecl = EDK;
1002       EvaluatingDeclValue = &Value;
1003     }
1004 
1005     bool CheckCallLimit(SourceLocation Loc) {
1006       // Don't perform any constexpr calls (other than the call we're checking)
1007       // when checking a potential constant expression.
1008       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1009         return false;
1010       if (NextCallIndex == 0) {
1011         // NextCallIndex has wrapped around.
1012         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1013         return false;
1014       }
1015       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1016         return true;
1017       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1018         << getLangOpts().ConstexprCallDepth;
1019       return false;
1020     }
1021 
1022     std::pair<CallStackFrame *, unsigned>
1023     getCallFrameAndDepth(unsigned CallIndex) {
1024       assert(CallIndex && "no call index in getCallFrameAndDepth");
1025       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1026       // be null in this loop.
1027       unsigned Depth = CallStackDepth;
1028       CallStackFrame *Frame = CurrentCall;
1029       while (Frame->Index > CallIndex) {
1030         Frame = Frame->Caller;
1031         --Depth;
1032       }
1033       if (Frame->Index == CallIndex)
1034         return {Frame, Depth};
1035       return {nullptr, 0};
1036     }
1037 
1038     bool nextStep(const Stmt *S) {
1039       if (!StepsLeft) {
1040         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1041         return false;
1042       }
1043       --StepsLeft;
1044       return true;
1045     }
1046 
1047     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1048 
1049     std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1050       std::optional<DynAlloc *> Result;
1051       auto It = HeapAllocs.find(DA);
1052       if (It != HeapAllocs.end())
1053         Result = &It->second;
1054       return Result;
1055     }
1056 
1057     /// Get the allocated storage for the given parameter of the given call.
1058     APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1059       CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1060       return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1061                    : nullptr;
1062     }
1063 
1064     /// Information about a stack frame for std::allocator<T>::[de]allocate.
1065     struct StdAllocatorCaller {
1066       unsigned FrameIndex;
1067       QualType ElemType;
1068       explicit operator bool() const { return FrameIndex != 0; };
1069     };
1070 
1071     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1072       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1073            Call = Call->Caller) {
1074         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1075         if (!MD)
1076           continue;
1077         const IdentifierInfo *FnII = MD->getIdentifier();
1078         if (!FnII || !FnII->isStr(FnName))
1079           continue;
1080 
1081         const auto *CTSD =
1082             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1083         if (!CTSD)
1084           continue;
1085 
1086         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1087         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1088         if (CTSD->isInStdNamespace() && ClassII &&
1089             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1090             TAL[0].getKind() == TemplateArgument::Type)
1091           return {Call->Index, TAL[0].getAsType()};
1092       }
1093 
1094       return {};
1095     }
1096 
1097     void performLifetimeExtension() {
1098       // Disable the cleanups for lifetime-extended temporaries.
1099       llvm::erase_if(CleanupStack, [](Cleanup &C) {
1100         return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1101       });
1102     }
1103 
1104     /// Throw away any remaining cleanups at the end of evaluation. If any
1105     /// cleanups would have had a side-effect, note that as an unmodeled
1106     /// side-effect and return false. Otherwise, return true.
1107     bool discardCleanups() {
1108       for (Cleanup &C : CleanupStack) {
1109         if (C.hasSideEffect() && !noteSideEffect()) {
1110           CleanupStack.clear();
1111           return false;
1112         }
1113       }
1114       CleanupStack.clear();
1115       return true;
1116     }
1117 
1118   private:
1119     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1120     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1121 
1122     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1123     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1124 
1125     void setFoldFailureDiagnostic(bool Flag) override {
1126       HasFoldFailureDiagnostic = Flag;
1127     }
1128 
1129     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1130 
1131     // If we have a prior diagnostic, it will be noting that the expression
1132     // isn't a constant expression. This diagnostic is more important,
1133     // unless we require this evaluation to produce a constant expression.
1134     //
1135     // FIXME: We might want to show both diagnostics to the user in
1136     // EM_ConstantFold mode.
1137     bool hasPriorDiagnostic() override {
1138       if (!EvalStatus.Diag->empty()) {
1139         switch (EvalMode) {
1140         case EM_ConstantFold:
1141         case EM_IgnoreSideEffects:
1142           if (!HasFoldFailureDiagnostic)
1143             break;
1144           // We've already failed to fold something. Keep that diagnostic.
1145           [[fallthrough]];
1146         case EM_ConstantExpression:
1147         case EM_ConstantExpressionUnevaluated:
1148           setActiveDiagnostic(false);
1149           return true;
1150         }
1151       }
1152       return false;
1153     }
1154 
1155     unsigned getCallStackDepth() override { return CallStackDepth; }
1156 
1157   public:
1158     /// Should we continue evaluation after encountering a side-effect that we
1159     /// couldn't model?
1160     bool keepEvaluatingAfterSideEffect() {
1161       switch (EvalMode) {
1162       case EM_IgnoreSideEffects:
1163         return true;
1164 
1165       case EM_ConstantExpression:
1166       case EM_ConstantExpressionUnevaluated:
1167       case EM_ConstantFold:
1168         // By default, assume any side effect might be valid in some other
1169         // evaluation of this expression from a different context.
1170         return checkingPotentialConstantExpression() ||
1171                checkingForUndefinedBehavior();
1172       }
1173       llvm_unreachable("Missed EvalMode case");
1174     }
1175 
1176     /// Note that we have had a side-effect, and determine whether we should
1177     /// keep evaluating.
1178     bool noteSideEffect() {
1179       EvalStatus.HasSideEffects = true;
1180       return keepEvaluatingAfterSideEffect();
1181     }
1182 
1183     /// Should we continue evaluation after encountering undefined behavior?
1184     bool keepEvaluatingAfterUndefinedBehavior() {
1185       switch (EvalMode) {
1186       case EM_IgnoreSideEffects:
1187       case EM_ConstantFold:
1188         return true;
1189 
1190       case EM_ConstantExpression:
1191       case EM_ConstantExpressionUnevaluated:
1192         return checkingForUndefinedBehavior();
1193       }
1194       llvm_unreachable("Missed EvalMode case");
1195     }
1196 
1197     /// Note that we hit something that was technically undefined behavior, but
1198     /// that we can evaluate past it (such as signed overflow or floating-point
1199     /// division by zero.)
1200     bool noteUndefinedBehavior() override {
1201       EvalStatus.HasUndefinedBehavior = true;
1202       return keepEvaluatingAfterUndefinedBehavior();
1203     }
1204 
1205     /// Should we continue evaluation as much as possible after encountering a
1206     /// construct which can't be reduced to a value?
1207     bool keepEvaluatingAfterFailure() const override {
1208       if (!StepsLeft)
1209         return false;
1210 
1211       switch (EvalMode) {
1212       case EM_ConstantExpression:
1213       case EM_ConstantExpressionUnevaluated:
1214       case EM_ConstantFold:
1215       case EM_IgnoreSideEffects:
1216         return checkingPotentialConstantExpression() ||
1217                checkingForUndefinedBehavior();
1218       }
1219       llvm_unreachable("Missed EvalMode case");
1220     }
1221 
1222     /// Notes that we failed to evaluate an expression that other expressions
1223     /// directly depend on, and determine if we should keep evaluating. This
1224     /// should only be called if we actually intend to keep evaluating.
1225     ///
1226     /// Call noteSideEffect() instead if we may be able to ignore the value that
1227     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1228     ///
1229     /// (Foo(), 1)      // use noteSideEffect
1230     /// (Foo() || true) // use noteSideEffect
1231     /// Foo() + 1       // use noteFailure
1232     [[nodiscard]] bool noteFailure() {
1233       // Failure when evaluating some expression often means there is some
1234       // subexpression whose evaluation was skipped. Therefore, (because we
1235       // don't track whether we skipped an expression when unwinding after an
1236       // evaluation failure) every evaluation failure that bubbles up from a
1237       // subexpression implies that a side-effect has potentially happened. We
1238       // skip setting the HasSideEffects flag to true until we decide to
1239       // continue evaluating after that point, which happens here.
1240       bool KeepGoing = keepEvaluatingAfterFailure();
1241       EvalStatus.HasSideEffects |= KeepGoing;
1242       return KeepGoing;
1243     }
1244 
1245     class ArrayInitLoopIndex {
1246       EvalInfo &Info;
1247       uint64_t OuterIndex;
1248 
1249     public:
1250       ArrayInitLoopIndex(EvalInfo &Info)
1251           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1252         Info.ArrayInitIndex = 0;
1253       }
1254       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1255 
1256       operator uint64_t&() { return Info.ArrayInitIndex; }
1257     };
1258   };
1259 
1260   /// Object used to treat all foldable expressions as constant expressions.
1261   struct FoldConstant {
1262     EvalInfo &Info;
1263     bool Enabled;
1264     bool HadNoPriorDiags;
1265     EvalInfo::EvaluationMode OldMode;
1266 
1267     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1268       : Info(Info),
1269         Enabled(Enabled),
1270         HadNoPriorDiags(Info.EvalStatus.Diag &&
1271                         Info.EvalStatus.Diag->empty() &&
1272                         !Info.EvalStatus.HasSideEffects),
1273         OldMode(Info.EvalMode) {
1274       if (Enabled)
1275         Info.EvalMode = EvalInfo::EM_ConstantFold;
1276     }
1277     void keepDiagnostics() { Enabled = false; }
1278     ~FoldConstant() {
1279       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1280           !Info.EvalStatus.HasSideEffects)
1281         Info.EvalStatus.Diag->clear();
1282       Info.EvalMode = OldMode;
1283     }
1284   };
1285 
1286   /// RAII object used to set the current evaluation mode to ignore
1287   /// side-effects.
1288   struct IgnoreSideEffectsRAII {
1289     EvalInfo &Info;
1290     EvalInfo::EvaluationMode OldMode;
1291     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1292         : Info(Info), OldMode(Info.EvalMode) {
1293       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1294     }
1295 
1296     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1297   };
1298 
1299   /// RAII object used to optionally suppress diagnostics and side-effects from
1300   /// a speculative evaluation.
1301   class SpeculativeEvaluationRAII {
1302     EvalInfo *Info = nullptr;
1303     Expr::EvalStatus OldStatus;
1304     unsigned OldSpeculativeEvaluationDepth = 0;
1305 
1306     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1307       Info = Other.Info;
1308       OldStatus = Other.OldStatus;
1309       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1310       Other.Info = nullptr;
1311     }
1312 
1313     void maybeRestoreState() {
1314       if (!Info)
1315         return;
1316 
1317       Info->EvalStatus = OldStatus;
1318       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1319     }
1320 
1321   public:
1322     SpeculativeEvaluationRAII() = default;
1323 
1324     SpeculativeEvaluationRAII(
1325         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1326         : Info(&Info), OldStatus(Info.EvalStatus),
1327           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1328       Info.EvalStatus.Diag = NewDiag;
1329       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1330     }
1331 
1332     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1333     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1334       moveFromAndCancel(std::move(Other));
1335     }
1336 
1337     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1338       maybeRestoreState();
1339       moveFromAndCancel(std::move(Other));
1340       return *this;
1341     }
1342 
1343     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1344   };
1345 
1346   /// RAII object wrapping a full-expression or block scope, and handling
1347   /// the ending of the lifetime of temporaries created within it.
1348   template<ScopeKind Kind>
1349   class ScopeRAII {
1350     EvalInfo &Info;
1351     unsigned OldStackSize;
1352   public:
1353     ScopeRAII(EvalInfo &Info)
1354         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1355       // Push a new temporary version. This is needed to distinguish between
1356       // temporaries created in different iterations of a loop.
1357       Info.CurrentCall->pushTempVersion();
1358     }
1359     bool destroy(bool RunDestructors = true) {
1360       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1361       OldStackSize = -1U;
1362       return OK;
1363     }
1364     ~ScopeRAII() {
1365       if (OldStackSize != -1U)
1366         destroy(false);
1367       // Body moved to a static method to encourage the compiler to inline away
1368       // instances of this class.
1369       Info.CurrentCall->popTempVersion();
1370     }
1371   private:
1372     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1373                         unsigned OldStackSize) {
1374       assert(OldStackSize <= Info.CleanupStack.size() &&
1375              "running cleanups out of order?");
1376 
1377       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1378       // for a full-expression scope.
1379       bool Success = true;
1380       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1381         if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1382           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1383             Success = false;
1384             break;
1385           }
1386         }
1387       }
1388 
1389       // Compact any retained cleanups.
1390       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1391       if (Kind != ScopeKind::Block)
1392         NewEnd =
1393             std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1394               return C.isDestroyedAtEndOf(Kind);
1395             });
1396       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1397       return Success;
1398     }
1399   };
1400   typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1401   typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1402   typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1403 }
1404 
1405 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1406                                          CheckSubobjectKind CSK) {
1407   if (Invalid)
1408     return false;
1409   if (isOnePastTheEnd()) {
1410     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1411       << CSK;
1412     setInvalid();
1413     return false;
1414   }
1415   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1416   // must actually be at least one array element; even a VLA cannot have a
1417   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1418   return true;
1419 }
1420 
1421 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1422                                                                 const Expr *E) {
1423   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1424   // Do not set the designator as invalid: we can represent this situation,
1425   // and correct handling of __builtin_object_size requires us to do so.
1426 }
1427 
1428 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1429                                                     const Expr *E,
1430                                                     const APSInt &N) {
1431   // If we're complaining, we must be able to statically determine the size of
1432   // the most derived array.
1433   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1434     Info.CCEDiag(E, diag::note_constexpr_array_index)
1435       << N << /*array*/ 0
1436       << static_cast<unsigned>(getMostDerivedArraySize());
1437   else
1438     Info.CCEDiag(E, diag::note_constexpr_array_index)
1439       << N << /*non-array*/ 1;
1440   setInvalid();
1441 }
1442 
1443 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1444                                const FunctionDecl *Callee, const LValue *This,
1445                                const Expr *CallExpr, CallRef Call)
1446     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1447       CallExpr(CallExpr), Arguments(Call), CallLoc(CallLoc),
1448       Index(Info.NextCallIndex++) {
1449   Info.CurrentCall = this;
1450   ++Info.CallStackDepth;
1451 }
1452 
1453 CallStackFrame::~CallStackFrame() {
1454   assert(Info.CurrentCall == this && "calls retired out of order");
1455   --Info.CallStackDepth;
1456   Info.CurrentCall = Caller;
1457 }
1458 
1459 static bool isRead(AccessKinds AK) {
1460   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1461 }
1462 
1463 static bool isModification(AccessKinds AK) {
1464   switch (AK) {
1465   case AK_Read:
1466   case AK_ReadObjectRepresentation:
1467   case AK_MemberCall:
1468   case AK_DynamicCast:
1469   case AK_TypeId:
1470     return false;
1471   case AK_Assign:
1472   case AK_Increment:
1473   case AK_Decrement:
1474   case AK_Construct:
1475   case AK_Destroy:
1476     return true;
1477   }
1478   llvm_unreachable("unknown access kind");
1479 }
1480 
1481 static bool isAnyAccess(AccessKinds AK) {
1482   return isRead(AK) || isModification(AK);
1483 }
1484 
1485 /// Is this an access per the C++ definition?
1486 static bool isFormalAccess(AccessKinds AK) {
1487   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1488 }
1489 
1490 /// Is this kind of axcess valid on an indeterminate object value?
1491 static bool isValidIndeterminateAccess(AccessKinds AK) {
1492   switch (AK) {
1493   case AK_Read:
1494   case AK_Increment:
1495   case AK_Decrement:
1496     // These need the object's value.
1497     return false;
1498 
1499   case AK_ReadObjectRepresentation:
1500   case AK_Assign:
1501   case AK_Construct:
1502   case AK_Destroy:
1503     // Construction and destruction don't need the value.
1504     return true;
1505 
1506   case AK_MemberCall:
1507   case AK_DynamicCast:
1508   case AK_TypeId:
1509     // These aren't really meaningful on scalars.
1510     return true;
1511   }
1512   llvm_unreachable("unknown access kind");
1513 }
1514 
1515 namespace {
1516   struct ComplexValue {
1517   private:
1518     bool IsInt;
1519 
1520   public:
1521     APSInt IntReal, IntImag;
1522     APFloat FloatReal, FloatImag;
1523 
1524     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1525 
1526     void makeComplexFloat() { IsInt = false; }
1527     bool isComplexFloat() const { return !IsInt; }
1528     APFloat &getComplexFloatReal() { return FloatReal; }
1529     APFloat &getComplexFloatImag() { return FloatImag; }
1530 
1531     void makeComplexInt() { IsInt = true; }
1532     bool isComplexInt() const { return IsInt; }
1533     APSInt &getComplexIntReal() { return IntReal; }
1534     APSInt &getComplexIntImag() { return IntImag; }
1535 
1536     void moveInto(APValue &v) const {
1537       if (isComplexFloat())
1538         v = APValue(FloatReal, FloatImag);
1539       else
1540         v = APValue(IntReal, IntImag);
1541     }
1542     void setFrom(const APValue &v) {
1543       assert(v.isComplexFloat() || v.isComplexInt());
1544       if (v.isComplexFloat()) {
1545         makeComplexFloat();
1546         FloatReal = v.getComplexFloatReal();
1547         FloatImag = v.getComplexFloatImag();
1548       } else {
1549         makeComplexInt();
1550         IntReal = v.getComplexIntReal();
1551         IntImag = v.getComplexIntImag();
1552       }
1553     }
1554   };
1555 
1556   struct LValue {
1557     APValue::LValueBase Base;
1558     CharUnits Offset;
1559     SubobjectDesignator Designator;
1560     bool IsNullPtr : 1;
1561     bool InvalidBase : 1;
1562 
1563     const APValue::LValueBase getLValueBase() const { return Base; }
1564     CharUnits &getLValueOffset() { return Offset; }
1565     const CharUnits &getLValueOffset() const { return Offset; }
1566     SubobjectDesignator &getLValueDesignator() { return Designator; }
1567     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1568     bool isNullPointer() const { return IsNullPtr;}
1569 
1570     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1571     unsigned getLValueVersion() const { return Base.getVersion(); }
1572 
1573     void moveInto(APValue &V) const {
1574       if (Designator.Invalid)
1575         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1576       else {
1577         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1578         V = APValue(Base, Offset, Designator.Entries,
1579                     Designator.IsOnePastTheEnd, IsNullPtr);
1580       }
1581     }
1582     void setFrom(ASTContext &Ctx, const APValue &V) {
1583       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1584       Base = V.getLValueBase();
1585       Offset = V.getLValueOffset();
1586       InvalidBase = false;
1587       Designator = SubobjectDesignator(Ctx, V);
1588       IsNullPtr = V.isNullPointer();
1589     }
1590 
1591     void set(APValue::LValueBase B, bool BInvalid = false) {
1592 #ifndef NDEBUG
1593       // We only allow a few types of invalid bases. Enforce that here.
1594       if (BInvalid) {
1595         const auto *E = B.get<const Expr *>();
1596         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1597                "Unexpected type of invalid base");
1598       }
1599 #endif
1600 
1601       Base = B;
1602       Offset = CharUnits::fromQuantity(0);
1603       InvalidBase = BInvalid;
1604       Designator = SubobjectDesignator(getType(B));
1605       IsNullPtr = false;
1606     }
1607 
1608     void setNull(ASTContext &Ctx, QualType PointerTy) {
1609       Base = (const ValueDecl *)nullptr;
1610       Offset =
1611           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1612       InvalidBase = false;
1613       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1614       IsNullPtr = true;
1615     }
1616 
1617     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1618       set(B, true);
1619     }
1620 
1621     std::string toString(ASTContext &Ctx, QualType T) const {
1622       APValue Printable;
1623       moveInto(Printable);
1624       return Printable.getAsString(Ctx, T);
1625     }
1626 
1627   private:
1628     // Check that this LValue is not based on a null pointer. If it is, produce
1629     // a diagnostic and mark the designator as invalid.
1630     template <typename GenDiagType>
1631     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1632       if (Designator.Invalid)
1633         return false;
1634       if (IsNullPtr) {
1635         GenDiag();
1636         Designator.setInvalid();
1637         return false;
1638       }
1639       return true;
1640     }
1641 
1642   public:
1643     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1644                           CheckSubobjectKind CSK) {
1645       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1646         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1647       });
1648     }
1649 
1650     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1651                                        AccessKinds AK) {
1652       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1653         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1654       });
1655     }
1656 
1657     // Check this LValue refers to an object. If not, set the designator to be
1658     // invalid and emit a diagnostic.
1659     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1660       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1661              Designator.checkSubobject(Info, E, CSK);
1662     }
1663 
1664     void addDecl(EvalInfo &Info, const Expr *E,
1665                  const Decl *D, bool Virtual = false) {
1666       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1667         Designator.addDeclUnchecked(D, Virtual);
1668     }
1669     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1670       if (!Designator.Entries.empty()) {
1671         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1672         Designator.setInvalid();
1673         return;
1674       }
1675       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1676         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1677         Designator.FirstEntryIsAnUnsizedArray = true;
1678         Designator.addUnsizedArrayUnchecked(ElemTy);
1679       }
1680     }
1681     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1682       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1683         Designator.addArrayUnchecked(CAT);
1684     }
1685     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1686       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1687         Designator.addComplexUnchecked(EltTy, Imag);
1688     }
1689     void clearIsNullPointer() {
1690       IsNullPtr = false;
1691     }
1692     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1693                               const APSInt &Index, CharUnits ElementSize) {
1694       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1695       // but we're not required to diagnose it and it's valid in C++.)
1696       if (!Index)
1697         return;
1698 
1699       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1700       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1701       // offsets.
1702       uint64_t Offset64 = Offset.getQuantity();
1703       uint64_t ElemSize64 = ElementSize.getQuantity();
1704       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1705       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1706 
1707       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1708         Designator.adjustIndex(Info, E, Index);
1709       clearIsNullPointer();
1710     }
1711     void adjustOffset(CharUnits N) {
1712       Offset += N;
1713       if (N.getQuantity())
1714         clearIsNullPointer();
1715     }
1716   };
1717 
1718   struct MemberPtr {
1719     MemberPtr() {}
1720     explicit MemberPtr(const ValueDecl *Decl)
1721         : DeclAndIsDerivedMember(Decl, false) {}
1722 
1723     /// The member or (direct or indirect) field referred to by this member
1724     /// pointer, or 0 if this is a null member pointer.
1725     const ValueDecl *getDecl() const {
1726       return DeclAndIsDerivedMember.getPointer();
1727     }
1728     /// Is this actually a member of some type derived from the relevant class?
1729     bool isDerivedMember() const {
1730       return DeclAndIsDerivedMember.getInt();
1731     }
1732     /// Get the class which the declaration actually lives in.
1733     const CXXRecordDecl *getContainingRecord() const {
1734       return cast<CXXRecordDecl>(
1735           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1736     }
1737 
1738     void moveInto(APValue &V) const {
1739       V = APValue(getDecl(), isDerivedMember(), Path);
1740     }
1741     void setFrom(const APValue &V) {
1742       assert(V.isMemberPointer());
1743       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1744       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1745       Path.clear();
1746       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1747       Path.insert(Path.end(), P.begin(), P.end());
1748     }
1749 
1750     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1751     /// whether the member is a member of some class derived from the class type
1752     /// of the member pointer.
1753     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1754     /// Path - The path of base/derived classes from the member declaration's
1755     /// class (exclusive) to the class type of the member pointer (inclusive).
1756     SmallVector<const CXXRecordDecl*, 4> Path;
1757 
1758     /// Perform a cast towards the class of the Decl (either up or down the
1759     /// hierarchy).
1760     bool castBack(const CXXRecordDecl *Class) {
1761       assert(!Path.empty());
1762       const CXXRecordDecl *Expected;
1763       if (Path.size() >= 2)
1764         Expected = Path[Path.size() - 2];
1765       else
1766         Expected = getContainingRecord();
1767       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1768         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1769         // if B does not contain the original member and is not a base or
1770         // derived class of the class containing the original member, the result
1771         // of the cast is undefined.
1772         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1773         // (D::*). We consider that to be a language defect.
1774         return false;
1775       }
1776       Path.pop_back();
1777       return true;
1778     }
1779     /// Perform a base-to-derived member pointer cast.
1780     bool castToDerived(const CXXRecordDecl *Derived) {
1781       if (!getDecl())
1782         return true;
1783       if (!isDerivedMember()) {
1784         Path.push_back(Derived);
1785         return true;
1786       }
1787       if (!castBack(Derived))
1788         return false;
1789       if (Path.empty())
1790         DeclAndIsDerivedMember.setInt(false);
1791       return true;
1792     }
1793     /// Perform a derived-to-base member pointer cast.
1794     bool castToBase(const CXXRecordDecl *Base) {
1795       if (!getDecl())
1796         return true;
1797       if (Path.empty())
1798         DeclAndIsDerivedMember.setInt(true);
1799       if (isDerivedMember()) {
1800         Path.push_back(Base);
1801         return true;
1802       }
1803       return castBack(Base);
1804     }
1805   };
1806 
1807   /// Compare two member pointers, which are assumed to be of the same type.
1808   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1809     if (!LHS.getDecl() || !RHS.getDecl())
1810       return !LHS.getDecl() && !RHS.getDecl();
1811     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1812       return false;
1813     return LHS.Path == RHS.Path;
1814   }
1815 }
1816 
1817 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1818 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1819                             const LValue &This, const Expr *E,
1820                             bool AllowNonLiteralTypes = false);
1821 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1822                            bool InvalidBaseOK = false);
1823 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1824                             bool InvalidBaseOK = false);
1825 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1826                                   EvalInfo &Info);
1827 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1828 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1829 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1830                                     EvalInfo &Info);
1831 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1832 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1833 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1834                            EvalInfo &Info);
1835 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1836 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1837                                   EvalInfo &Info);
1838 
1839 /// Evaluate an integer or fixed point expression into an APResult.
1840 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1841                                         EvalInfo &Info);
1842 
1843 /// Evaluate only a fixed point expression into an APResult.
1844 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1845                                EvalInfo &Info);
1846 
1847 //===----------------------------------------------------------------------===//
1848 // Misc utilities
1849 //===----------------------------------------------------------------------===//
1850 
1851 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1852 /// preserving its value (by extending by up to one bit as needed).
1853 static void negateAsSigned(APSInt &Int) {
1854   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1855     Int = Int.extend(Int.getBitWidth() + 1);
1856     Int.setIsSigned(true);
1857   }
1858   Int = -Int;
1859 }
1860 
1861 template<typename KeyT>
1862 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1863                                          ScopeKind Scope, LValue &LV) {
1864   unsigned Version = getTempVersion();
1865   APValue::LValueBase Base(Key, Index, Version);
1866   LV.set(Base);
1867   return createLocal(Base, Key, T, Scope);
1868 }
1869 
1870 /// Allocate storage for a parameter of a function call made in this frame.
1871 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1872                                      LValue &LV) {
1873   assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1874   APValue::LValueBase Base(PVD, Index, Args.Version);
1875   LV.set(Base);
1876   // We always destroy parameters at the end of the call, even if we'd allow
1877   // them to live to the end of the full-expression at runtime, in order to
1878   // give portable results and match other compilers.
1879   return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1880 }
1881 
1882 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1883                                      QualType T, ScopeKind Scope) {
1884   assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1885   unsigned Version = Base.getVersion();
1886   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1887   assert(Result.isAbsent() && "local created multiple times");
1888 
1889   // If we're creating a local immediately in the operand of a speculative
1890   // evaluation, don't register a cleanup to be run outside the speculative
1891   // evaluation context, since we won't actually be able to initialize this
1892   // object.
1893   if (Index <= Info.SpeculativeEvaluationDepth) {
1894     if (T.isDestructedType())
1895       Info.noteSideEffect();
1896   } else {
1897     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1898   }
1899   return Result;
1900 }
1901 
1902 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1903   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1904     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1905     return nullptr;
1906   }
1907 
1908   DynamicAllocLValue DA(NumHeapAllocs++);
1909   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1910   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1911                                    std::forward_as_tuple(DA), std::tuple<>());
1912   assert(Result.second && "reused a heap alloc index?");
1913   Result.first->second.AllocExpr = E;
1914   return &Result.first->second.Value;
1915 }
1916 
1917 /// Produce a string describing the given constexpr call.
1918 void CallStackFrame::describe(raw_ostream &Out) const {
1919   unsigned ArgIndex = 0;
1920   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1921                       !isa<CXXConstructorDecl>(Callee) &&
1922                       cast<CXXMethodDecl>(Callee)->isInstance();
1923 
1924   if (!IsMemberCall)
1925     Out << *Callee << '(';
1926 
1927   if (This && IsMemberCall) {
1928     if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) {
1929       const Expr *Object = MCE->getImplicitObjectArgument();
1930       Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(),
1931                           /*Indentation=*/0);
1932       if (Object->getType()->isPointerType())
1933           Out << "->";
1934       else
1935           Out << ".";
1936     } else if (const auto *OCE =
1937                    dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) {
1938       OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr,
1939                                   Info.Ctx.getPrintingPolicy(),
1940                                   /*Indentation=*/0);
1941       Out << ".";
1942     } else {
1943       APValue Val;
1944       This->moveInto(Val);
1945       Val.printPretty(
1946           Out, Info.Ctx,
1947           Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType));
1948       Out << ".";
1949     }
1950     Out << *Callee << '(';
1951     IsMemberCall = false;
1952   }
1953 
1954   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1955        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1956     if (ArgIndex > (unsigned)IsMemberCall)
1957       Out << ", ";
1958 
1959     const ParmVarDecl *Param = *I;
1960     APValue *V = Info.getParamSlot(Arguments, Param);
1961     if (V)
1962       V->printPretty(Out, Info.Ctx, Param->getType());
1963     else
1964       Out << "<...>";
1965 
1966     if (ArgIndex == 0 && IsMemberCall)
1967       Out << "->" << *Callee << '(';
1968   }
1969 
1970   Out << ')';
1971 }
1972 
1973 /// Evaluate an expression to see if it had side-effects, and discard its
1974 /// result.
1975 /// \return \c true if the caller should keep evaluating.
1976 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1977   assert(!E->isValueDependent());
1978   APValue Scratch;
1979   if (!Evaluate(Scratch, Info, E))
1980     // We don't need the value, but we might have skipped a side effect here.
1981     return Info.noteSideEffect();
1982   return true;
1983 }
1984 
1985 /// Should this call expression be treated as a no-op?
1986 static bool IsNoOpCall(const CallExpr *E) {
1987   unsigned Builtin = E->getBuiltinCallee();
1988   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1989           Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
1990           Builtin == Builtin::BI__builtin_function_start);
1991 }
1992 
1993 static bool IsGlobalLValue(APValue::LValueBase B) {
1994   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1995   // constant expression of pointer type that evaluates to...
1996 
1997   // ... a null pointer value, or a prvalue core constant expression of type
1998   // std::nullptr_t.
1999   if (!B)
2000     return true;
2001 
2002   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
2003     // ... the address of an object with static storage duration,
2004     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2005       return VD->hasGlobalStorage();
2006     if (isa<TemplateParamObjectDecl>(D))
2007       return true;
2008     // ... the address of a function,
2009     // ... the address of a GUID [MS extension],
2010     // ... the address of an unnamed global constant
2011     return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D);
2012   }
2013 
2014   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
2015     return true;
2016 
2017   const Expr *E = B.get<const Expr*>();
2018   switch (E->getStmtClass()) {
2019   default:
2020     return false;
2021   case Expr::CompoundLiteralExprClass: {
2022     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
2023     return CLE->isFileScope() && CLE->isLValue();
2024   }
2025   case Expr::MaterializeTemporaryExprClass:
2026     // A materialized temporary might have been lifetime-extended to static
2027     // storage duration.
2028     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2029   // A string literal has static storage duration.
2030   case Expr::StringLiteralClass:
2031   case Expr::PredefinedExprClass:
2032   case Expr::ObjCStringLiteralClass:
2033   case Expr::ObjCEncodeExprClass:
2034     return true;
2035   case Expr::ObjCBoxedExprClass:
2036     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2037   case Expr::CallExprClass:
2038     return IsNoOpCall(cast<CallExpr>(E));
2039   // For GCC compatibility, &&label has static storage duration.
2040   case Expr::AddrLabelExprClass:
2041     return true;
2042   // A Block literal expression may be used as the initialization value for
2043   // Block variables at global or local static scope.
2044   case Expr::BlockExprClass:
2045     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2046   // The APValue generated from a __builtin_source_location will be emitted as a
2047   // literal.
2048   case Expr::SourceLocExprClass:
2049     return true;
2050   case Expr::ImplicitValueInitExprClass:
2051     // FIXME:
2052     // We can never form an lvalue with an implicit value initialization as its
2053     // base through expression evaluation, so these only appear in one case: the
2054     // implicit variable declaration we invent when checking whether a constexpr
2055     // constructor can produce a constant expression. We must assume that such
2056     // an expression might be a global lvalue.
2057     return true;
2058   }
2059 }
2060 
2061 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2062   return LVal.Base.dyn_cast<const ValueDecl*>();
2063 }
2064 
2065 static bool IsLiteralLValue(const LValue &Value) {
2066   if (Value.getLValueCallIndex())
2067     return false;
2068   const Expr *E = Value.Base.dyn_cast<const Expr*>();
2069   return E && !isa<MaterializeTemporaryExpr>(E);
2070 }
2071 
2072 static bool IsWeakLValue(const LValue &Value) {
2073   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2074   return Decl && Decl->isWeak();
2075 }
2076 
2077 static bool isZeroSized(const LValue &Value) {
2078   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2079   if (Decl && isa<VarDecl>(Decl)) {
2080     QualType Ty = Decl->getType();
2081     if (Ty->isArrayType())
2082       return Ty->isIncompleteType() ||
2083              Decl->getASTContext().getTypeSize(Ty) == 0;
2084   }
2085   return false;
2086 }
2087 
2088 static bool HasSameBase(const LValue &A, const LValue &B) {
2089   if (!A.getLValueBase())
2090     return !B.getLValueBase();
2091   if (!B.getLValueBase())
2092     return false;
2093 
2094   if (A.getLValueBase().getOpaqueValue() !=
2095       B.getLValueBase().getOpaqueValue())
2096     return false;
2097 
2098   return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2099          A.getLValueVersion() == B.getLValueVersion();
2100 }
2101 
2102 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2103   assert(Base && "no location for a null lvalue");
2104   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2105 
2106   // For a parameter, find the corresponding call stack frame (if it still
2107   // exists), and point at the parameter of the function definition we actually
2108   // invoked.
2109   if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2110     unsigned Idx = PVD->getFunctionScopeIndex();
2111     for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2112       if (F->Arguments.CallIndex == Base.getCallIndex() &&
2113           F->Arguments.Version == Base.getVersion() && F->Callee &&
2114           Idx < F->Callee->getNumParams()) {
2115         VD = F->Callee->getParamDecl(Idx);
2116         break;
2117       }
2118     }
2119   }
2120 
2121   if (VD)
2122     Info.Note(VD->getLocation(), diag::note_declared_at);
2123   else if (const Expr *E = Base.dyn_cast<const Expr*>())
2124     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2125   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2126     // FIXME: Produce a note for dangling pointers too.
2127     if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2128       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2129                 diag::note_constexpr_dynamic_alloc_here);
2130   }
2131 
2132   // We have no information to show for a typeid(T) object.
2133 }
2134 
2135 enum class CheckEvaluationResultKind {
2136   ConstantExpression,
2137   FullyInitialized,
2138 };
2139 
2140 /// Materialized temporaries that we've already checked to determine if they're
2141 /// initializsed by a constant expression.
2142 using CheckedTemporaries =
2143     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2144 
2145 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2146                                   EvalInfo &Info, SourceLocation DiagLoc,
2147                                   QualType Type, const APValue &Value,
2148                                   ConstantExprKind Kind,
2149                                   const FieldDecl *SubobjectDecl,
2150                                   CheckedTemporaries &CheckedTemps);
2151 
2152 /// Check that this reference or pointer core constant expression is a valid
2153 /// value for an address or reference constant expression. Return true if we
2154 /// can fold this expression, whether or not it's a constant expression.
2155 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2156                                           QualType Type, const LValue &LVal,
2157                                           ConstantExprKind Kind,
2158                                           CheckedTemporaries &CheckedTemps) {
2159   bool IsReferenceType = Type->isReferenceType();
2160 
2161   APValue::LValueBase Base = LVal.getLValueBase();
2162   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2163 
2164   const Expr *BaseE = Base.dyn_cast<const Expr *>();
2165   const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2166 
2167   // Additional restrictions apply in a template argument. We only enforce the
2168   // C++20 restrictions here; additional syntactic and semantic restrictions
2169   // are applied elsewhere.
2170   if (isTemplateArgument(Kind)) {
2171     int InvalidBaseKind = -1;
2172     StringRef Ident;
2173     if (Base.is<TypeInfoLValue>())
2174       InvalidBaseKind = 0;
2175     else if (isa_and_nonnull<StringLiteral>(BaseE))
2176       InvalidBaseKind = 1;
2177     else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2178              isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2179       InvalidBaseKind = 2;
2180     else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2181       InvalidBaseKind = 3;
2182       Ident = PE->getIdentKindName();
2183     }
2184 
2185     if (InvalidBaseKind != -1) {
2186       Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2187           << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2188           << Ident;
2189       return false;
2190     }
2191   }
2192 
2193   if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD);
2194       FD && FD->isImmediateFunction()) {
2195     Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2196         << !Type->isAnyPointerType();
2197     Info.Note(FD->getLocation(), diag::note_declared_at);
2198     return false;
2199   }
2200 
2201   // Check that the object is a global. Note that the fake 'this' object we
2202   // manufacture when checking potential constant expressions is conservatively
2203   // assumed to be global here.
2204   if (!IsGlobalLValue(Base)) {
2205     if (Info.getLangOpts().CPlusPlus11) {
2206       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2207           << IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2208           << BaseVD;
2209       auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD);
2210       if (VarD && VarD->isConstexpr()) {
2211         // Non-static local constexpr variables have unintuitive semantics:
2212         //   constexpr int a = 1;
2213         //   constexpr const int *p = &a;
2214         // ... is invalid because the address of 'a' is not constant. Suggest
2215         // adding a 'static' in this case.
2216         Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2217             << VarD
2218             << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2219       } else {
2220         NoteLValueLocation(Info, Base);
2221       }
2222     } else {
2223       Info.FFDiag(Loc);
2224     }
2225     // Don't allow references to temporaries to escape.
2226     return false;
2227   }
2228   assert((Info.checkingPotentialConstantExpression() ||
2229           LVal.getLValueCallIndex() == 0) &&
2230          "have call index for global lvalue");
2231 
2232   if (Base.is<DynamicAllocLValue>()) {
2233     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2234         << IsReferenceType << !Designator.Entries.empty();
2235     NoteLValueLocation(Info, Base);
2236     return false;
2237   }
2238 
2239   if (BaseVD) {
2240     if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2241       // Check if this is a thread-local variable.
2242       if (Var->getTLSKind())
2243         // FIXME: Diagnostic!
2244         return false;
2245 
2246       // A dllimport variable never acts like a constant, unless we're
2247       // evaluating a value for use only in name mangling.
2248       if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2249         // FIXME: Diagnostic!
2250         return false;
2251 
2252       // In CUDA/HIP device compilation, only device side variables have
2253       // constant addresses.
2254       if (Info.getCtx().getLangOpts().CUDA &&
2255           Info.getCtx().getLangOpts().CUDAIsDevice &&
2256           Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2257         if ((!Var->hasAttr<CUDADeviceAttr>() &&
2258              !Var->hasAttr<CUDAConstantAttr>() &&
2259              !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2260              !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2261             Var->hasAttr<HIPManagedAttr>())
2262           return false;
2263       }
2264     }
2265     if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2266       // __declspec(dllimport) must be handled very carefully:
2267       // We must never initialize an expression with the thunk in C++.
2268       // Doing otherwise would allow the same id-expression to yield
2269       // different addresses for the same function in different translation
2270       // units.  However, this means that we must dynamically initialize the
2271       // expression with the contents of the import address table at runtime.
2272       //
2273       // The C language has no notion of ODR; furthermore, it has no notion of
2274       // dynamic initialization.  This means that we are permitted to
2275       // perform initialization with the address of the thunk.
2276       if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2277           FD->hasAttr<DLLImportAttr>())
2278         // FIXME: Diagnostic!
2279         return false;
2280     }
2281   } else if (const auto *MTE =
2282                  dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2283     if (CheckedTemps.insert(MTE).second) {
2284       QualType TempType = getType(Base);
2285       if (TempType.isDestructedType()) {
2286         Info.FFDiag(MTE->getExprLoc(),
2287                     diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2288             << TempType;
2289         return false;
2290       }
2291 
2292       APValue *V = MTE->getOrCreateValue(false);
2293       assert(V && "evasluation result refers to uninitialised temporary");
2294       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2295                                  Info, MTE->getExprLoc(), TempType, *V, Kind,
2296                                  /*SubobjectDecl=*/nullptr, CheckedTemps))
2297         return false;
2298     }
2299   }
2300 
2301   // Allow address constant expressions to be past-the-end pointers. This is
2302   // an extension: the standard requires them to point to an object.
2303   if (!IsReferenceType)
2304     return true;
2305 
2306   // A reference constant expression must refer to an object.
2307   if (!Base) {
2308     // FIXME: diagnostic
2309     Info.CCEDiag(Loc);
2310     return true;
2311   }
2312 
2313   // Does this refer one past the end of some object?
2314   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2315     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2316       << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2317     NoteLValueLocation(Info, Base);
2318   }
2319 
2320   return true;
2321 }
2322 
2323 /// Member pointers are constant expressions unless they point to a
2324 /// non-virtual dllimport member function.
2325 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2326                                                  SourceLocation Loc,
2327                                                  QualType Type,
2328                                                  const APValue &Value,
2329                                                  ConstantExprKind Kind) {
2330   const ValueDecl *Member = Value.getMemberPointerDecl();
2331   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2332   if (!FD)
2333     return true;
2334   if (FD->isImmediateFunction()) {
2335     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2336     Info.Note(FD->getLocation(), diag::note_declared_at);
2337     return false;
2338   }
2339   return isForManglingOnly(Kind) || FD->isVirtual() ||
2340          !FD->hasAttr<DLLImportAttr>();
2341 }
2342 
2343 /// Check that this core constant expression is of literal type, and if not,
2344 /// produce an appropriate diagnostic.
2345 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2346                              const LValue *This = nullptr) {
2347   if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2348     return true;
2349 
2350   // C++1y: A constant initializer for an object o [...] may also invoke
2351   // constexpr constructors for o and its subobjects even if those objects
2352   // are of non-literal class types.
2353   //
2354   // C++11 missed this detail for aggregates, so classes like this:
2355   //   struct foo_t { union { int i; volatile int j; } u; };
2356   // are not (obviously) initializable like so:
2357   //   __attribute__((__require_constant_initialization__))
2358   //   static const foo_t x = {{0}};
2359   // because "i" is a subobject with non-literal initialization (due to the
2360   // volatile member of the union). See:
2361   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2362   // Therefore, we use the C++1y behavior.
2363   if (This && Info.EvaluatingDecl == This->getLValueBase())
2364     return true;
2365 
2366   // Prvalue constant expressions must be of literal types.
2367   if (Info.getLangOpts().CPlusPlus11)
2368     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2369       << E->getType();
2370   else
2371     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2372   return false;
2373 }
2374 
2375 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2376                                   EvalInfo &Info, SourceLocation DiagLoc,
2377                                   QualType Type, const APValue &Value,
2378                                   ConstantExprKind Kind,
2379                                   const FieldDecl *SubobjectDecl,
2380                                   CheckedTemporaries &CheckedTemps) {
2381   if (!Value.hasValue()) {
2382     assert(SubobjectDecl && "SubobjectDecl shall be non-null");
2383     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) << SubobjectDecl;
2384     Info.Note(SubobjectDecl->getLocation(),
2385               diag::note_constexpr_subobject_declared_here);
2386     return false;
2387   }
2388 
2389   // We allow _Atomic(T) to be initialized from anything that T can be
2390   // initialized from.
2391   if (const AtomicType *AT = Type->getAs<AtomicType>())
2392     Type = AT->getValueType();
2393 
2394   // Core issue 1454: For a literal constant expression of array or class type,
2395   // each subobject of its value shall have been initialized by a constant
2396   // expression.
2397   if (Value.isArray()) {
2398     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2399     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2400       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2401                                  Value.getArrayInitializedElt(I), Kind,
2402                                  SubobjectDecl, CheckedTemps))
2403         return false;
2404     }
2405     if (!Value.hasArrayFiller())
2406       return true;
2407     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2408                                  Value.getArrayFiller(), Kind, SubobjectDecl,
2409                                  CheckedTemps);
2410   }
2411   if (Value.isUnion() && Value.getUnionField()) {
2412     return CheckEvaluationResult(
2413         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2414         Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps);
2415   }
2416   if (Value.isStruct()) {
2417     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2418     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2419       unsigned BaseIndex = 0;
2420       for (const CXXBaseSpecifier &BS : CD->bases()) {
2421         const APValue &BaseValue = Value.getStructBase(BaseIndex);
2422         if (!BaseValue.hasValue()) {
2423           SourceLocation TypeBeginLoc = BS.getBaseTypeLoc();
2424           Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base)
2425               << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc());
2426           return false;
2427         }
2428         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue,
2429                                    Kind, /*SubobjectDecl=*/nullptr,
2430                                    CheckedTemps))
2431           return false;
2432         ++BaseIndex;
2433       }
2434     }
2435     for (const auto *I : RD->fields()) {
2436       if (I->isUnnamedBitfield())
2437         continue;
2438 
2439       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2440                                  Value.getStructField(I->getFieldIndex()), Kind,
2441                                  I, CheckedTemps))
2442         return false;
2443     }
2444   }
2445 
2446   if (Value.isLValue() &&
2447       CERK == CheckEvaluationResultKind::ConstantExpression) {
2448     LValue LVal;
2449     LVal.setFrom(Info.Ctx, Value);
2450     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2451                                          CheckedTemps);
2452   }
2453 
2454   if (Value.isMemberPointer() &&
2455       CERK == CheckEvaluationResultKind::ConstantExpression)
2456     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2457 
2458   // Everything else is fine.
2459   return true;
2460 }
2461 
2462 /// Check that this core constant expression value is a valid value for a
2463 /// constant expression. If not, report an appropriate diagnostic. Does not
2464 /// check that the expression is of literal type.
2465 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2466                                     QualType Type, const APValue &Value,
2467                                     ConstantExprKind Kind) {
2468   // Nothing to check for a constant expression of type 'cv void'.
2469   if (Type->isVoidType())
2470     return true;
2471 
2472   CheckedTemporaries CheckedTemps;
2473   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2474                                Info, DiagLoc, Type, Value, Kind,
2475                                /*SubobjectDecl=*/nullptr, CheckedTemps);
2476 }
2477 
2478 /// Check that this evaluated value is fully-initialized and can be loaded by
2479 /// an lvalue-to-rvalue conversion.
2480 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2481                                   QualType Type, const APValue &Value) {
2482   CheckedTemporaries CheckedTemps;
2483   return CheckEvaluationResult(
2484       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2485       ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps);
2486 }
2487 
2488 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2489 /// "the allocated storage is deallocated within the evaluation".
2490 static bool CheckMemoryLeaks(EvalInfo &Info) {
2491   if (!Info.HeapAllocs.empty()) {
2492     // We can still fold to a constant despite a compile-time memory leak,
2493     // so long as the heap allocation isn't referenced in the result (we check
2494     // that in CheckConstantExpression).
2495     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2496                  diag::note_constexpr_memory_leak)
2497         << unsigned(Info.HeapAllocs.size() - 1);
2498   }
2499   return true;
2500 }
2501 
2502 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2503   // A null base expression indicates a null pointer.  These are always
2504   // evaluatable, and they are false unless the offset is zero.
2505   if (!Value.getLValueBase()) {
2506     // TODO: Should a non-null pointer with an offset of zero evaluate to true?
2507     Result = !Value.getLValueOffset().isZero();
2508     return true;
2509   }
2510 
2511   // We have a non-null base.  These are generally known to be true, but if it's
2512   // a weak declaration it can be null at runtime.
2513   Result = true;
2514   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2515   return !Decl || !Decl->isWeak();
2516 }
2517 
2518 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2519   // TODO: This function should produce notes if it fails.
2520   switch (Val.getKind()) {
2521   case APValue::None:
2522   case APValue::Indeterminate:
2523     return false;
2524   case APValue::Int:
2525     Result = Val.getInt().getBoolValue();
2526     return true;
2527   case APValue::FixedPoint:
2528     Result = Val.getFixedPoint().getBoolValue();
2529     return true;
2530   case APValue::Float:
2531     Result = !Val.getFloat().isZero();
2532     return true;
2533   case APValue::ComplexInt:
2534     Result = Val.getComplexIntReal().getBoolValue() ||
2535              Val.getComplexIntImag().getBoolValue();
2536     return true;
2537   case APValue::ComplexFloat:
2538     Result = !Val.getComplexFloatReal().isZero() ||
2539              !Val.getComplexFloatImag().isZero();
2540     return true;
2541   case APValue::LValue:
2542     return EvalPointerValueAsBool(Val, Result);
2543   case APValue::MemberPointer:
2544     if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2545       return false;
2546     }
2547     Result = Val.getMemberPointerDecl();
2548     return true;
2549   case APValue::Vector:
2550   case APValue::Array:
2551   case APValue::Struct:
2552   case APValue::Union:
2553   case APValue::AddrLabelDiff:
2554     return false;
2555   }
2556 
2557   llvm_unreachable("unknown APValue kind");
2558 }
2559 
2560 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2561                                        EvalInfo &Info) {
2562   assert(!E->isValueDependent());
2563   assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2564   APValue Val;
2565   if (!Evaluate(Val, Info, E))
2566     return false;
2567   return HandleConversionToBool(Val, Result);
2568 }
2569 
2570 template<typename T>
2571 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2572                            const T &SrcValue, QualType DestType) {
2573   Info.CCEDiag(E, diag::note_constexpr_overflow)
2574     << SrcValue << DestType;
2575   return Info.noteUndefinedBehavior();
2576 }
2577 
2578 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2579                                  QualType SrcType, const APFloat &Value,
2580                                  QualType DestType, APSInt &Result) {
2581   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2582   // Determine whether we are converting to unsigned or signed.
2583   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2584 
2585   Result = APSInt(DestWidth, !DestSigned);
2586   bool ignored;
2587   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2588       & APFloat::opInvalidOp)
2589     return HandleOverflow(Info, E, Value, DestType);
2590   return true;
2591 }
2592 
2593 /// Get rounding mode to use in evaluation of the specified expression.
2594 ///
2595 /// If rounding mode is unknown at compile time, still try to evaluate the
2596 /// expression. If the result is exact, it does not depend on rounding mode.
2597 /// So return "tonearest" mode instead of "dynamic".
2598 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2599   llvm::RoundingMode RM =
2600       E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2601   if (RM == llvm::RoundingMode::Dynamic)
2602     RM = llvm::RoundingMode::NearestTiesToEven;
2603   return RM;
2604 }
2605 
2606 /// Check if the given evaluation result is allowed for constant evaluation.
2607 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2608                                      APFloat::opStatus St) {
2609   // In a constant context, assume that any dynamic rounding mode or FP
2610   // exception state matches the default floating-point environment.
2611   if (Info.InConstantContext)
2612     return true;
2613 
2614   FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2615   if ((St & APFloat::opInexact) &&
2616       FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2617     // Inexact result means that it depends on rounding mode. If the requested
2618     // mode is dynamic, the evaluation cannot be made in compile time.
2619     Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2620     return false;
2621   }
2622 
2623   if ((St != APFloat::opOK) &&
2624       (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2625        FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2626        FPO.getAllowFEnvAccess())) {
2627     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2628     return false;
2629   }
2630 
2631   if ((St & APFloat::opStatus::opInvalidOp) &&
2632       FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2633     // There is no usefully definable result.
2634     Info.FFDiag(E);
2635     return false;
2636   }
2637 
2638   // FIXME: if:
2639   // - evaluation triggered other FP exception, and
2640   // - exception mode is not "ignore", and
2641   // - the expression being evaluated is not a part of global variable
2642   //   initializer,
2643   // the evaluation probably need to be rejected.
2644   return true;
2645 }
2646 
2647 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2648                                    QualType SrcType, QualType DestType,
2649                                    APFloat &Result) {
2650   assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2651   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2652   APFloat::opStatus St;
2653   APFloat Value = Result;
2654   bool ignored;
2655   St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2656   return checkFloatingPointResult(Info, E, St);
2657 }
2658 
2659 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2660                                  QualType DestType, QualType SrcType,
2661                                  const APSInt &Value) {
2662   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2663   // Figure out if this is a truncate, extend or noop cast.
2664   // If the input is signed, do a sign extend, noop, or truncate.
2665   APSInt Result = Value.extOrTrunc(DestWidth);
2666   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2667   if (DestType->isBooleanType())
2668     Result = Value.getBoolValue();
2669   return Result;
2670 }
2671 
2672 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2673                                  const FPOptions FPO,
2674                                  QualType SrcType, const APSInt &Value,
2675                                  QualType DestType, APFloat &Result) {
2676   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2677   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2678   APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM);
2679   return checkFloatingPointResult(Info, E, St);
2680 }
2681 
2682 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2683                                   APValue &Value, const FieldDecl *FD) {
2684   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2685 
2686   if (!Value.isInt()) {
2687     // Trying to store a pointer-cast-to-integer into a bitfield.
2688     // FIXME: In this case, we should provide the diagnostic for casting
2689     // a pointer to an integer.
2690     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2691     Info.FFDiag(E);
2692     return false;
2693   }
2694 
2695   APSInt &Int = Value.getInt();
2696   unsigned OldBitWidth = Int.getBitWidth();
2697   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2698   if (NewBitWidth < OldBitWidth)
2699     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2700   return true;
2701 }
2702 
2703 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2704                                   llvm::APInt &Res) {
2705   APValue SVal;
2706   if (!Evaluate(SVal, Info, E))
2707     return false;
2708   if (SVal.isInt()) {
2709     Res = SVal.getInt();
2710     return true;
2711   }
2712   if (SVal.isFloat()) {
2713     Res = SVal.getFloat().bitcastToAPInt();
2714     return true;
2715   }
2716   if (SVal.isVector()) {
2717     QualType VecTy = E->getType();
2718     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2719     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2720     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2721     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2722     Res = llvm::APInt::getZero(VecSize);
2723     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2724       APValue &Elt = SVal.getVectorElt(i);
2725       llvm::APInt EltAsInt;
2726       if (Elt.isInt()) {
2727         EltAsInt = Elt.getInt();
2728       } else if (Elt.isFloat()) {
2729         EltAsInt = Elt.getFloat().bitcastToAPInt();
2730       } else {
2731         // Don't try to handle vectors of anything other than int or float
2732         // (not sure if it's possible to hit this case).
2733         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2734         return false;
2735       }
2736       unsigned BaseEltSize = EltAsInt.getBitWidth();
2737       if (BigEndian)
2738         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2739       else
2740         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2741     }
2742     return true;
2743   }
2744   // Give up if the input isn't an int, float, or vector.  For example, we
2745   // reject "(v4i16)(intptr_t)&a".
2746   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2747   return false;
2748 }
2749 
2750 /// Perform the given integer operation, which is known to need at most BitWidth
2751 /// bits, and check for overflow in the original type (if that type was not an
2752 /// unsigned type).
2753 template<typename Operation>
2754 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2755                                  const APSInt &LHS, const APSInt &RHS,
2756                                  unsigned BitWidth, Operation Op,
2757                                  APSInt &Result) {
2758   if (LHS.isUnsigned()) {
2759     Result = Op(LHS, RHS);
2760     return true;
2761   }
2762 
2763   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2764   Result = Value.trunc(LHS.getBitWidth());
2765   if (Result.extend(BitWidth) != Value) {
2766     if (Info.checkingForUndefinedBehavior())
2767       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2768                                        diag::warn_integer_constant_overflow)
2769           << toString(Result, 10) << E->getType();
2770     return HandleOverflow(Info, E, Value, E->getType());
2771   }
2772   return true;
2773 }
2774 
2775 /// Perform the given binary integer operation.
2776 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2777                               BinaryOperatorKind Opcode, APSInt RHS,
2778                               APSInt &Result) {
2779   bool HandleOverflowResult = true;
2780   switch (Opcode) {
2781   default:
2782     Info.FFDiag(E);
2783     return false;
2784   case BO_Mul:
2785     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2786                                 std::multiplies<APSInt>(), Result);
2787   case BO_Add:
2788     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2789                                 std::plus<APSInt>(), Result);
2790   case BO_Sub:
2791     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2792                                 std::minus<APSInt>(), Result);
2793   case BO_And: Result = LHS & RHS; return true;
2794   case BO_Xor: Result = LHS ^ RHS; return true;
2795   case BO_Or:  Result = LHS | RHS; return true;
2796   case BO_Div:
2797   case BO_Rem:
2798     if (RHS == 0) {
2799       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2800       return false;
2801     }
2802     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2803     // this operation and gives the two's complement result.
2804     if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2805         LHS.isMinSignedValue())
2806       HandleOverflowResult = HandleOverflow(
2807           Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
2808     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2809     return HandleOverflowResult;
2810   case BO_Shl: {
2811     if (Info.getLangOpts().OpenCL)
2812       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2813       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2814                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2815                     RHS.isUnsigned());
2816     else if (RHS.isSigned() && RHS.isNegative()) {
2817       // During constant-folding, a negative shift is an opposite shift. Such
2818       // a shift is not a constant expression.
2819       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2820       RHS = -RHS;
2821       goto shift_right;
2822     }
2823   shift_left:
2824     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2825     // the shifted type.
2826     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2827     if (SA != RHS) {
2828       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2829         << RHS << E->getType() << LHS.getBitWidth();
2830     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2831       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2832       // operand, and must not overflow the corresponding unsigned type.
2833       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2834       // E1 x 2^E2 module 2^N.
2835       if (LHS.isNegative())
2836         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2837       else if (LHS.countl_zero() < SA)
2838         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2839     }
2840     Result = LHS << SA;
2841     return true;
2842   }
2843   case BO_Shr: {
2844     if (Info.getLangOpts().OpenCL)
2845       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2846       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2847                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2848                     RHS.isUnsigned());
2849     else if (RHS.isSigned() && RHS.isNegative()) {
2850       // During constant-folding, a negative shift is an opposite shift. Such a
2851       // shift is not a constant expression.
2852       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2853       RHS = -RHS;
2854       goto shift_left;
2855     }
2856   shift_right:
2857     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2858     // shifted type.
2859     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2860     if (SA != RHS)
2861       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2862         << RHS << E->getType() << LHS.getBitWidth();
2863     Result = LHS >> SA;
2864     return true;
2865   }
2866 
2867   case BO_LT: Result = LHS < RHS; return true;
2868   case BO_GT: Result = LHS > RHS; return true;
2869   case BO_LE: Result = LHS <= RHS; return true;
2870   case BO_GE: Result = LHS >= RHS; return true;
2871   case BO_EQ: Result = LHS == RHS; return true;
2872   case BO_NE: Result = LHS != RHS; return true;
2873   case BO_Cmp:
2874     llvm_unreachable("BO_Cmp should be handled elsewhere");
2875   }
2876 }
2877 
2878 /// Perform the given binary floating-point operation, in-place, on LHS.
2879 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2880                                   APFloat &LHS, BinaryOperatorKind Opcode,
2881                                   const APFloat &RHS) {
2882   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2883   APFloat::opStatus St;
2884   switch (Opcode) {
2885   default:
2886     Info.FFDiag(E);
2887     return false;
2888   case BO_Mul:
2889     St = LHS.multiply(RHS, RM);
2890     break;
2891   case BO_Add:
2892     St = LHS.add(RHS, RM);
2893     break;
2894   case BO_Sub:
2895     St = LHS.subtract(RHS, RM);
2896     break;
2897   case BO_Div:
2898     // [expr.mul]p4:
2899     //   If the second operand of / or % is zero the behavior is undefined.
2900     if (RHS.isZero())
2901       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2902     St = LHS.divide(RHS, RM);
2903     break;
2904   }
2905 
2906   // [expr.pre]p4:
2907   //   If during the evaluation of an expression, the result is not
2908   //   mathematically defined [...], the behavior is undefined.
2909   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2910   if (LHS.isNaN()) {
2911     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2912     return Info.noteUndefinedBehavior();
2913   }
2914 
2915   return checkFloatingPointResult(Info, E, St);
2916 }
2917 
2918 static bool handleLogicalOpForVector(const APInt &LHSValue,
2919                                      BinaryOperatorKind Opcode,
2920                                      const APInt &RHSValue, APInt &Result) {
2921   bool LHS = (LHSValue != 0);
2922   bool RHS = (RHSValue != 0);
2923 
2924   if (Opcode == BO_LAnd)
2925     Result = LHS && RHS;
2926   else
2927     Result = LHS || RHS;
2928   return true;
2929 }
2930 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2931                                      BinaryOperatorKind Opcode,
2932                                      const APFloat &RHSValue, APInt &Result) {
2933   bool LHS = !LHSValue.isZero();
2934   bool RHS = !RHSValue.isZero();
2935 
2936   if (Opcode == BO_LAnd)
2937     Result = LHS && RHS;
2938   else
2939     Result = LHS || RHS;
2940   return true;
2941 }
2942 
2943 static bool handleLogicalOpForVector(const APValue &LHSValue,
2944                                      BinaryOperatorKind Opcode,
2945                                      const APValue &RHSValue, APInt &Result) {
2946   // The result is always an int type, however operands match the first.
2947   if (LHSValue.getKind() == APValue::Int)
2948     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2949                                     RHSValue.getInt(), Result);
2950   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2951   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2952                                   RHSValue.getFloat(), Result);
2953 }
2954 
2955 template <typename APTy>
2956 static bool
2957 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2958                                const APTy &RHSValue, APInt &Result) {
2959   switch (Opcode) {
2960   default:
2961     llvm_unreachable("unsupported binary operator");
2962   case BO_EQ:
2963     Result = (LHSValue == RHSValue);
2964     break;
2965   case BO_NE:
2966     Result = (LHSValue != RHSValue);
2967     break;
2968   case BO_LT:
2969     Result = (LHSValue < RHSValue);
2970     break;
2971   case BO_GT:
2972     Result = (LHSValue > RHSValue);
2973     break;
2974   case BO_LE:
2975     Result = (LHSValue <= RHSValue);
2976     break;
2977   case BO_GE:
2978     Result = (LHSValue >= RHSValue);
2979     break;
2980   }
2981 
2982   // The boolean operations on these vector types use an instruction that
2983   // results in a mask of '-1' for the 'truth' value.  Ensure that we negate 1
2984   // to -1 to make sure that we produce the correct value.
2985   Result.negate();
2986 
2987   return true;
2988 }
2989 
2990 static bool handleCompareOpForVector(const APValue &LHSValue,
2991                                      BinaryOperatorKind Opcode,
2992                                      const APValue &RHSValue, APInt &Result) {
2993   // The result is always an int type, however operands match the first.
2994   if (LHSValue.getKind() == APValue::Int)
2995     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2996                                           RHSValue.getInt(), Result);
2997   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2998   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2999                                         RHSValue.getFloat(), Result);
3000 }
3001 
3002 // Perform binary operations for vector types, in place on the LHS.
3003 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
3004                                     BinaryOperatorKind Opcode,
3005                                     APValue &LHSValue,
3006                                     const APValue &RHSValue) {
3007   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
3008          "Operation not supported on vector types");
3009 
3010   const auto *VT = E->getType()->castAs<VectorType>();
3011   unsigned NumElements = VT->getNumElements();
3012   QualType EltTy = VT->getElementType();
3013 
3014   // In the cases (typically C as I've observed) where we aren't evaluating
3015   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
3016   // just give up.
3017   if (!LHSValue.isVector()) {
3018     assert(LHSValue.isLValue() &&
3019            "A vector result that isn't a vector OR uncalculated LValue");
3020     Info.FFDiag(E);
3021     return false;
3022   }
3023 
3024   assert(LHSValue.getVectorLength() == NumElements &&
3025          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
3026 
3027   SmallVector<APValue, 4> ResultElements;
3028 
3029   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3030     APValue LHSElt = LHSValue.getVectorElt(EltNum);
3031     APValue RHSElt = RHSValue.getVectorElt(EltNum);
3032 
3033     if (EltTy->isIntegerType()) {
3034       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3035                        EltTy->isUnsignedIntegerType()};
3036       bool Success = true;
3037 
3038       if (BinaryOperator::isLogicalOp(Opcode))
3039         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3040       else if (BinaryOperator::isComparisonOp(Opcode))
3041         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3042       else
3043         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3044                                     RHSElt.getInt(), EltResult);
3045 
3046       if (!Success) {
3047         Info.FFDiag(E);
3048         return false;
3049       }
3050       ResultElements.emplace_back(EltResult);
3051 
3052     } else if (EltTy->isFloatingType()) {
3053       assert(LHSElt.getKind() == APValue::Float &&
3054              RHSElt.getKind() == APValue::Float &&
3055              "Mismatched LHS/RHS/Result Type");
3056       APFloat LHSFloat = LHSElt.getFloat();
3057 
3058       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3059                                  RHSElt.getFloat())) {
3060         Info.FFDiag(E);
3061         return false;
3062       }
3063 
3064       ResultElements.emplace_back(LHSFloat);
3065     }
3066   }
3067 
3068   LHSValue = APValue(ResultElements.data(), ResultElements.size());
3069   return true;
3070 }
3071 
3072 /// Cast an lvalue referring to a base subobject to a derived class, by
3073 /// truncating the lvalue's path to the given length.
3074 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3075                                const RecordDecl *TruncatedType,
3076                                unsigned TruncatedElements) {
3077   SubobjectDesignator &D = Result.Designator;
3078 
3079   // Check we actually point to a derived class object.
3080   if (TruncatedElements == D.Entries.size())
3081     return true;
3082   assert(TruncatedElements >= D.MostDerivedPathLength &&
3083          "not casting to a derived class");
3084   if (!Result.checkSubobject(Info, E, CSK_Derived))
3085     return false;
3086 
3087   // Truncate the path to the subobject, and remove any derived-to-base offsets.
3088   const RecordDecl *RD = TruncatedType;
3089   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3090     if (RD->isInvalidDecl()) return false;
3091     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3092     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3093     if (isVirtualBaseClass(D.Entries[I]))
3094       Result.Offset -= Layout.getVBaseClassOffset(Base);
3095     else
3096       Result.Offset -= Layout.getBaseClassOffset(Base);
3097     RD = Base;
3098   }
3099   D.Entries.resize(TruncatedElements);
3100   return true;
3101 }
3102 
3103 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3104                                    const CXXRecordDecl *Derived,
3105                                    const CXXRecordDecl *Base,
3106                                    const ASTRecordLayout *RL = nullptr) {
3107   if (!RL) {
3108     if (Derived->isInvalidDecl()) return false;
3109     RL = &Info.Ctx.getASTRecordLayout(Derived);
3110   }
3111 
3112   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3113   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3114   return true;
3115 }
3116 
3117 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3118                              const CXXRecordDecl *DerivedDecl,
3119                              const CXXBaseSpecifier *Base) {
3120   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3121 
3122   if (!Base->isVirtual())
3123     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3124 
3125   SubobjectDesignator &D = Obj.Designator;
3126   if (D.Invalid)
3127     return false;
3128 
3129   // Extract most-derived object and corresponding type.
3130   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3131   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3132     return false;
3133 
3134   // Find the virtual base class.
3135   if (DerivedDecl->isInvalidDecl()) return false;
3136   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3137   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3138   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3139   return true;
3140 }
3141 
3142 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3143                                  QualType Type, LValue &Result) {
3144   for (CastExpr::path_const_iterator PathI = E->path_begin(),
3145                                      PathE = E->path_end();
3146        PathI != PathE; ++PathI) {
3147     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3148                           *PathI))
3149       return false;
3150     Type = (*PathI)->getType();
3151   }
3152   return true;
3153 }
3154 
3155 /// Cast an lvalue referring to a derived class to a known base subobject.
3156 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3157                             const CXXRecordDecl *DerivedRD,
3158                             const CXXRecordDecl *BaseRD) {
3159   CXXBasePaths Paths(/*FindAmbiguities=*/false,
3160                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
3161   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3162     llvm_unreachable("Class must be derived from the passed in base class!");
3163 
3164   for (CXXBasePathElement &Elem : Paths.front())
3165     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3166       return false;
3167   return true;
3168 }
3169 
3170 /// Update LVal to refer to the given field, which must be a member of the type
3171 /// currently described by LVal.
3172 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3173                                const FieldDecl *FD,
3174                                const ASTRecordLayout *RL = nullptr) {
3175   if (!RL) {
3176     if (FD->getParent()->isInvalidDecl()) return false;
3177     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3178   }
3179 
3180   unsigned I = FD->getFieldIndex();
3181   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3182   LVal.addDecl(Info, E, FD);
3183   return true;
3184 }
3185 
3186 /// Update LVal to refer to the given indirect field.
3187 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3188                                        LValue &LVal,
3189                                        const IndirectFieldDecl *IFD) {
3190   for (const auto *C : IFD->chain())
3191     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3192       return false;
3193   return true;
3194 }
3195 
3196 /// Get the size of the given type in char units.
3197 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3198                          QualType Type, CharUnits &Size) {
3199   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3200   // extension.
3201   if (Type->isVoidType() || Type->isFunctionType()) {
3202     Size = CharUnits::One();
3203     return true;
3204   }
3205 
3206   if (Type->isDependentType()) {
3207     Info.FFDiag(Loc);
3208     return false;
3209   }
3210 
3211   if (!Type->isConstantSizeType()) {
3212     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3213     // FIXME: Better diagnostic.
3214     Info.FFDiag(Loc);
3215     return false;
3216   }
3217 
3218   Size = Info.Ctx.getTypeSizeInChars(Type);
3219   return true;
3220 }
3221 
3222 /// Update a pointer value to model pointer arithmetic.
3223 /// \param Info - Information about the ongoing evaluation.
3224 /// \param E - The expression being evaluated, for diagnostic purposes.
3225 /// \param LVal - The pointer value to be updated.
3226 /// \param EltTy - The pointee type represented by LVal.
3227 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3228 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3229                                         LValue &LVal, QualType EltTy,
3230                                         APSInt Adjustment) {
3231   CharUnits SizeOfPointee;
3232   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3233     return false;
3234 
3235   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3236   return true;
3237 }
3238 
3239 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3240                                         LValue &LVal, QualType EltTy,
3241                                         int64_t Adjustment) {
3242   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3243                                      APSInt::get(Adjustment));
3244 }
3245 
3246 /// Update an lvalue to refer to a component of a complex number.
3247 /// \param Info - Information about the ongoing evaluation.
3248 /// \param LVal - The lvalue to be updated.
3249 /// \param EltTy - The complex number's component type.
3250 /// \param Imag - False for the real component, true for the imaginary.
3251 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3252                                        LValue &LVal, QualType EltTy,
3253                                        bool Imag) {
3254   if (Imag) {
3255     CharUnits SizeOfComponent;
3256     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3257       return false;
3258     LVal.Offset += SizeOfComponent;
3259   }
3260   LVal.addComplex(Info, E, EltTy, Imag);
3261   return true;
3262 }
3263 
3264 /// Try to evaluate the initializer for a variable declaration.
3265 ///
3266 /// \param Info   Information about the ongoing evaluation.
3267 /// \param E      An expression to be used when printing diagnostics.
3268 /// \param VD     The variable whose initializer should be obtained.
3269 /// \param Version The version of the variable within the frame.
3270 /// \param Frame  The frame in which the variable was created. Must be null
3271 ///               if this variable is not local to the evaluation.
3272 /// \param Result Filled in with a pointer to the value of the variable.
3273 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3274                                 const VarDecl *VD, CallStackFrame *Frame,
3275                                 unsigned Version, APValue *&Result) {
3276   APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3277 
3278   // If this is a local variable, dig out its value.
3279   if (Frame) {
3280     Result = Frame->getTemporary(VD, Version);
3281     if (Result)
3282       return true;
3283 
3284     if (!isa<ParmVarDecl>(VD)) {
3285       // Assume variables referenced within a lambda's call operator that were
3286       // not declared within the call operator are captures and during checking
3287       // of a potential constant expression, assume they are unknown constant
3288       // expressions.
3289       assert(isLambdaCallOperator(Frame->Callee) &&
3290              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3291              "missing value for local variable");
3292       if (Info.checkingPotentialConstantExpression())
3293         return false;
3294       // FIXME: This diagnostic is bogus; we do support captures. Is this code
3295       // still reachable at all?
3296       Info.FFDiag(E->getBeginLoc(),
3297                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3298           << "captures not currently allowed";
3299       return false;
3300     }
3301   }
3302 
3303   // If we're currently evaluating the initializer of this declaration, use that
3304   // in-flight value.
3305   if (Info.EvaluatingDecl == Base) {
3306     Result = Info.EvaluatingDeclValue;
3307     return true;
3308   }
3309 
3310   if (isa<ParmVarDecl>(VD)) {
3311     // Assume parameters of a potential constant expression are usable in
3312     // constant expressions.
3313     if (!Info.checkingPotentialConstantExpression() ||
3314         !Info.CurrentCall->Callee ||
3315         !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3316       if (Info.getLangOpts().CPlusPlus11) {
3317         Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3318             << VD;
3319         NoteLValueLocation(Info, Base);
3320       } else {
3321         Info.FFDiag(E);
3322       }
3323     }
3324     return false;
3325   }
3326 
3327   // Dig out the initializer, and use the declaration which it's attached to.
3328   // FIXME: We should eventually check whether the variable has a reachable
3329   // initializing declaration.
3330   const Expr *Init = VD->getAnyInitializer(VD);
3331   if (!Init) {
3332     // Don't diagnose during potential constant expression checking; an
3333     // initializer might be added later.
3334     if (!Info.checkingPotentialConstantExpression()) {
3335       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3336         << VD;
3337       NoteLValueLocation(Info, Base);
3338     }
3339     return false;
3340   }
3341 
3342   if (Init->isValueDependent()) {
3343     // The DeclRefExpr is not value-dependent, but the variable it refers to
3344     // has a value-dependent initializer. This should only happen in
3345     // constant-folding cases, where the variable is not actually of a suitable
3346     // type for use in a constant expression (otherwise the DeclRefExpr would
3347     // have been value-dependent too), so diagnose that.
3348     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3349     if (!Info.checkingPotentialConstantExpression()) {
3350       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3351                          ? diag::note_constexpr_ltor_non_constexpr
3352                          : diag::note_constexpr_ltor_non_integral, 1)
3353           << VD << VD->getType();
3354       NoteLValueLocation(Info, Base);
3355     }
3356     return false;
3357   }
3358 
3359   // Check that we can fold the initializer. In C++, we will have already done
3360   // this in the cases where it matters for conformance.
3361   if (!VD->evaluateValue()) {
3362     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3363     NoteLValueLocation(Info, Base);
3364     return false;
3365   }
3366 
3367   // Check that the variable is actually usable in constant expressions. For a
3368   // const integral variable or a reference, we might have a non-constant
3369   // initializer that we can nonetheless evaluate the initializer for. Such
3370   // variables are not usable in constant expressions. In C++98, the
3371   // initializer also syntactically needs to be an ICE.
3372   //
3373   // FIXME: We don't diagnose cases that aren't potentially usable in constant
3374   // expressions here; doing so would regress diagnostics for things like
3375   // reading from a volatile constexpr variable.
3376   if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3377        VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3378       ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3379        !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3380     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3381     NoteLValueLocation(Info, Base);
3382   }
3383 
3384   // Never use the initializer of a weak variable, not even for constant
3385   // folding. We can't be sure that this is the definition that will be used.
3386   if (VD->isWeak()) {
3387     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3388     NoteLValueLocation(Info, Base);
3389     return false;
3390   }
3391 
3392   Result = VD->getEvaluatedValue();
3393   return true;
3394 }
3395 
3396 /// Get the base index of the given base class within an APValue representing
3397 /// the given derived class.
3398 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3399                              const CXXRecordDecl *Base) {
3400   Base = Base->getCanonicalDecl();
3401   unsigned Index = 0;
3402   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3403          E = Derived->bases_end(); I != E; ++I, ++Index) {
3404     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3405       return Index;
3406   }
3407 
3408   llvm_unreachable("base class missing from derived class's bases list");
3409 }
3410 
3411 /// Extract the value of a character from a string literal.
3412 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3413                                             uint64_t Index) {
3414   assert(!isa<SourceLocExpr>(Lit) &&
3415          "SourceLocExpr should have already been converted to a StringLiteral");
3416 
3417   // FIXME: Support MakeStringConstant
3418   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3419     std::string Str;
3420     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3421     assert(Index <= Str.size() && "Index too large");
3422     return APSInt::getUnsigned(Str.c_str()[Index]);
3423   }
3424 
3425   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3426     Lit = PE->getFunctionName();
3427   const StringLiteral *S = cast<StringLiteral>(Lit);
3428   const ConstantArrayType *CAT =
3429       Info.Ctx.getAsConstantArrayType(S->getType());
3430   assert(CAT && "string literal isn't an array");
3431   QualType CharType = CAT->getElementType();
3432   assert(CharType->isIntegerType() && "unexpected character type");
3433 
3434   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3435                CharType->isUnsignedIntegerType());
3436   if (Index < S->getLength())
3437     Value = S->getCodeUnit(Index);
3438   return Value;
3439 }
3440 
3441 // Expand a string literal into an array of characters.
3442 //
3443 // FIXME: This is inefficient; we should probably introduce something similar
3444 // to the LLVM ConstantDataArray to make this cheaper.
3445 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3446                                 APValue &Result,
3447                                 QualType AllocType = QualType()) {
3448   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3449       AllocType.isNull() ? S->getType() : AllocType);
3450   assert(CAT && "string literal isn't an array");
3451   QualType CharType = CAT->getElementType();
3452   assert(CharType->isIntegerType() && "unexpected character type");
3453 
3454   unsigned Elts = CAT->getSize().getZExtValue();
3455   Result = APValue(APValue::UninitArray(),
3456                    std::min(S->getLength(), Elts), Elts);
3457   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3458                CharType->isUnsignedIntegerType());
3459   if (Result.hasArrayFiller())
3460     Result.getArrayFiller() = APValue(Value);
3461   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3462     Value = S->getCodeUnit(I);
3463     Result.getArrayInitializedElt(I) = APValue(Value);
3464   }
3465 }
3466 
3467 // Expand an array so that it has more than Index filled elements.
3468 static void expandArray(APValue &Array, unsigned Index) {
3469   unsigned Size = Array.getArraySize();
3470   assert(Index < Size);
3471 
3472   // Always at least double the number of elements for which we store a value.
3473   unsigned OldElts = Array.getArrayInitializedElts();
3474   unsigned NewElts = std::max(Index+1, OldElts * 2);
3475   NewElts = std::min(Size, std::max(NewElts, 8u));
3476 
3477   // Copy the data across.
3478   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3479   for (unsigned I = 0; I != OldElts; ++I)
3480     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3481   for (unsigned I = OldElts; I != NewElts; ++I)
3482     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3483   if (NewValue.hasArrayFiller())
3484     NewValue.getArrayFiller() = Array.getArrayFiller();
3485   Array.swap(NewValue);
3486 }
3487 
3488 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3489 /// conversion. If it's of class type, we may assume that the copy operation
3490 /// is trivial. Note that this is never true for a union type with fields
3491 /// (because the copy always "reads" the active member) and always true for
3492 /// a non-class type.
3493 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3494 static bool isReadByLvalueToRvalueConversion(QualType T) {
3495   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3496   return !RD || isReadByLvalueToRvalueConversion(RD);
3497 }
3498 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3499   // FIXME: A trivial copy of a union copies the object representation, even if
3500   // the union is empty.
3501   if (RD->isUnion())
3502     return !RD->field_empty();
3503   if (RD->isEmpty())
3504     return false;
3505 
3506   for (auto *Field : RD->fields())
3507     if (!Field->isUnnamedBitfield() &&
3508         isReadByLvalueToRvalueConversion(Field->getType()))
3509       return true;
3510 
3511   for (auto &BaseSpec : RD->bases())
3512     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3513       return true;
3514 
3515   return false;
3516 }
3517 
3518 /// Diagnose an attempt to read from any unreadable field within the specified
3519 /// type, which might be a class type.
3520 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3521                                   QualType T) {
3522   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3523   if (!RD)
3524     return false;
3525 
3526   if (!RD->hasMutableFields())
3527     return false;
3528 
3529   for (auto *Field : RD->fields()) {
3530     // If we're actually going to read this field in some way, then it can't
3531     // be mutable. If we're in a union, then assigning to a mutable field
3532     // (even an empty one) can change the active member, so that's not OK.
3533     // FIXME: Add core issue number for the union case.
3534     if (Field->isMutable() &&
3535         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3536       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3537       Info.Note(Field->getLocation(), diag::note_declared_at);
3538       return true;
3539     }
3540 
3541     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3542       return true;
3543   }
3544 
3545   for (auto &BaseSpec : RD->bases())
3546     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3547       return true;
3548 
3549   // All mutable fields were empty, and thus not actually read.
3550   return false;
3551 }
3552 
3553 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3554                                         APValue::LValueBase Base,
3555                                         bool MutableSubobject = false) {
3556   // A temporary or transient heap allocation we created.
3557   if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3558     return true;
3559 
3560   switch (Info.IsEvaluatingDecl) {
3561   case EvalInfo::EvaluatingDeclKind::None:
3562     return false;
3563 
3564   case EvalInfo::EvaluatingDeclKind::Ctor:
3565     // The variable whose initializer we're evaluating.
3566     if (Info.EvaluatingDecl == Base)
3567       return true;
3568 
3569     // A temporary lifetime-extended by the variable whose initializer we're
3570     // evaluating.
3571     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3572       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3573         return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3574     return false;
3575 
3576   case EvalInfo::EvaluatingDeclKind::Dtor:
3577     // C++2a [expr.const]p6:
3578     //   [during constant destruction] the lifetime of a and its non-mutable
3579     //   subobjects (but not its mutable subobjects) [are] considered to start
3580     //   within e.
3581     if (MutableSubobject || Base != Info.EvaluatingDecl)
3582       return false;
3583     // FIXME: We can meaningfully extend this to cover non-const objects, but
3584     // we will need special handling: we should be able to access only
3585     // subobjects of such objects that are themselves declared const.
3586     QualType T = getType(Base);
3587     return T.isConstQualified() || T->isReferenceType();
3588   }
3589 
3590   llvm_unreachable("unknown evaluating decl kind");
3591 }
3592 
3593 namespace {
3594 /// A handle to a complete object (an object that is not a subobject of
3595 /// another object).
3596 struct CompleteObject {
3597   /// The identity of the object.
3598   APValue::LValueBase Base;
3599   /// The value of the complete object.
3600   APValue *Value;
3601   /// The type of the complete object.
3602   QualType Type;
3603 
3604   CompleteObject() : Value(nullptr) {}
3605   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3606       : Base(Base), Value(Value), Type(Type) {}
3607 
3608   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3609     // If this isn't a "real" access (eg, if it's just accessing the type
3610     // info), allow it. We assume the type doesn't change dynamically for
3611     // subobjects of constexpr objects (even though we'd hit UB here if it
3612     // did). FIXME: Is this right?
3613     if (!isAnyAccess(AK))
3614       return true;
3615 
3616     // In C++14 onwards, it is permitted to read a mutable member whose
3617     // lifetime began within the evaluation.
3618     // FIXME: Should we also allow this in C++11?
3619     if (!Info.getLangOpts().CPlusPlus14)
3620       return false;
3621     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3622   }
3623 
3624   explicit operator bool() const { return !Type.isNull(); }
3625 };
3626 } // end anonymous namespace
3627 
3628 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3629                                  bool IsMutable = false) {
3630   // C++ [basic.type.qualifier]p1:
3631   // - A const object is an object of type const T or a non-mutable subobject
3632   //   of a const object.
3633   if (ObjType.isConstQualified() && !IsMutable)
3634     SubobjType.addConst();
3635   // - A volatile object is an object of type const T or a subobject of a
3636   //   volatile object.
3637   if (ObjType.isVolatileQualified())
3638     SubobjType.addVolatile();
3639   return SubobjType;
3640 }
3641 
3642 /// Find the designated sub-object of an rvalue.
3643 template<typename SubobjectHandler>
3644 typename SubobjectHandler::result_type
3645 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3646               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3647   if (Sub.Invalid)
3648     // A diagnostic will have already been produced.
3649     return handler.failed();
3650   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3651     if (Info.getLangOpts().CPlusPlus11)
3652       Info.FFDiag(E, Sub.isOnePastTheEnd()
3653                          ? diag::note_constexpr_access_past_end
3654                          : diag::note_constexpr_access_unsized_array)
3655           << handler.AccessKind;
3656     else
3657       Info.FFDiag(E);
3658     return handler.failed();
3659   }
3660 
3661   APValue *O = Obj.Value;
3662   QualType ObjType = Obj.Type;
3663   const FieldDecl *LastField = nullptr;
3664   const FieldDecl *VolatileField = nullptr;
3665 
3666   // Walk the designator's path to find the subobject.
3667   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3668     // Reading an indeterminate value is undefined, but assigning over one is OK.
3669     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3670         (O->isIndeterminate() &&
3671          !isValidIndeterminateAccess(handler.AccessKind))) {
3672       if (!Info.checkingPotentialConstantExpression())
3673         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3674             << handler.AccessKind << O->isIndeterminate();
3675       return handler.failed();
3676     }
3677 
3678     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3679     //    const and volatile semantics are not applied on an object under
3680     //    {con,de}struction.
3681     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3682         ObjType->isRecordType() &&
3683         Info.isEvaluatingCtorDtor(
3684             Obj.Base,
3685             llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3686             ConstructionPhase::None) {
3687       ObjType = Info.Ctx.getCanonicalType(ObjType);
3688       ObjType.removeLocalConst();
3689       ObjType.removeLocalVolatile();
3690     }
3691 
3692     // If this is our last pass, check that the final object type is OK.
3693     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3694       // Accesses to volatile objects are prohibited.
3695       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3696         if (Info.getLangOpts().CPlusPlus) {
3697           int DiagKind;
3698           SourceLocation Loc;
3699           const NamedDecl *Decl = nullptr;
3700           if (VolatileField) {
3701             DiagKind = 2;
3702             Loc = VolatileField->getLocation();
3703             Decl = VolatileField;
3704           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3705             DiagKind = 1;
3706             Loc = VD->getLocation();
3707             Decl = VD;
3708           } else {
3709             DiagKind = 0;
3710             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3711               Loc = E->getExprLoc();
3712           }
3713           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3714               << handler.AccessKind << DiagKind << Decl;
3715           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3716         } else {
3717           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3718         }
3719         return handler.failed();
3720       }
3721 
3722       // If we are reading an object of class type, there may still be more
3723       // things we need to check: if there are any mutable subobjects, we
3724       // cannot perform this read. (This only happens when performing a trivial
3725       // copy or assignment.)
3726       if (ObjType->isRecordType() &&
3727           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3728           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3729         return handler.failed();
3730     }
3731 
3732     if (I == N) {
3733       if (!handler.found(*O, ObjType))
3734         return false;
3735 
3736       // If we modified a bit-field, truncate it to the right width.
3737       if (isModification(handler.AccessKind) &&
3738           LastField && LastField->isBitField() &&
3739           !truncateBitfieldValue(Info, E, *O, LastField))
3740         return false;
3741 
3742       return true;
3743     }
3744 
3745     LastField = nullptr;
3746     if (ObjType->isArrayType()) {
3747       // Next subobject is an array element.
3748       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3749       assert(CAT && "vla in literal type?");
3750       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3751       if (CAT->getSize().ule(Index)) {
3752         // Note, it should not be possible to form a pointer with a valid
3753         // designator which points more than one past the end of the array.
3754         if (Info.getLangOpts().CPlusPlus11)
3755           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3756             << handler.AccessKind;
3757         else
3758           Info.FFDiag(E);
3759         return handler.failed();
3760       }
3761 
3762       ObjType = CAT->getElementType();
3763 
3764       if (O->getArrayInitializedElts() > Index)
3765         O = &O->getArrayInitializedElt(Index);
3766       else if (!isRead(handler.AccessKind)) {
3767         expandArray(*O, Index);
3768         O = &O->getArrayInitializedElt(Index);
3769       } else
3770         O = &O->getArrayFiller();
3771     } else if (ObjType->isAnyComplexType()) {
3772       // Next subobject is a complex number.
3773       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3774       if (Index > 1) {
3775         if (Info.getLangOpts().CPlusPlus11)
3776           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3777             << handler.AccessKind;
3778         else
3779           Info.FFDiag(E);
3780         return handler.failed();
3781       }
3782 
3783       ObjType = getSubobjectType(
3784           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3785 
3786       assert(I == N - 1 && "extracting subobject of scalar?");
3787       if (O->isComplexInt()) {
3788         return handler.found(Index ? O->getComplexIntImag()
3789                                    : O->getComplexIntReal(), ObjType);
3790       } else {
3791         assert(O->isComplexFloat());
3792         return handler.found(Index ? O->getComplexFloatImag()
3793                                    : O->getComplexFloatReal(), ObjType);
3794       }
3795     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3796       if (Field->isMutable() &&
3797           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3798         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3799           << handler.AccessKind << Field;
3800         Info.Note(Field->getLocation(), diag::note_declared_at);
3801         return handler.failed();
3802       }
3803 
3804       // Next subobject is a class, struct or union field.
3805       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3806       if (RD->isUnion()) {
3807         const FieldDecl *UnionField = O->getUnionField();
3808         if (!UnionField ||
3809             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3810           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3811             // Placement new onto an inactive union member makes it active.
3812             O->setUnion(Field, APValue());
3813           } else {
3814             // FIXME: If O->getUnionValue() is absent, report that there's no
3815             // active union member rather than reporting the prior active union
3816             // member. We'll need to fix nullptr_t to not use APValue() as its
3817             // representation first.
3818             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3819                 << handler.AccessKind << Field << !UnionField << UnionField;
3820             return handler.failed();
3821           }
3822         }
3823         O = &O->getUnionValue();
3824       } else
3825         O = &O->getStructField(Field->getFieldIndex());
3826 
3827       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3828       LastField = Field;
3829       if (Field->getType().isVolatileQualified())
3830         VolatileField = Field;
3831     } else {
3832       // Next subobject is a base class.
3833       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3834       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3835       O = &O->getStructBase(getBaseIndex(Derived, Base));
3836 
3837       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3838     }
3839   }
3840 }
3841 
3842 namespace {
3843 struct ExtractSubobjectHandler {
3844   EvalInfo &Info;
3845   const Expr *E;
3846   APValue &Result;
3847   const AccessKinds AccessKind;
3848 
3849   typedef bool result_type;
3850   bool failed() { return false; }
3851   bool found(APValue &Subobj, QualType SubobjType) {
3852     Result = Subobj;
3853     if (AccessKind == AK_ReadObjectRepresentation)
3854       return true;
3855     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3856   }
3857   bool found(APSInt &Value, QualType SubobjType) {
3858     Result = APValue(Value);
3859     return true;
3860   }
3861   bool found(APFloat &Value, QualType SubobjType) {
3862     Result = APValue(Value);
3863     return true;
3864   }
3865 };
3866 } // end anonymous namespace
3867 
3868 /// Extract the designated sub-object of an rvalue.
3869 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3870                              const CompleteObject &Obj,
3871                              const SubobjectDesignator &Sub, APValue &Result,
3872                              AccessKinds AK = AK_Read) {
3873   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3874   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3875   return findSubobject(Info, E, Obj, Sub, Handler);
3876 }
3877 
3878 namespace {
3879 struct ModifySubobjectHandler {
3880   EvalInfo &Info;
3881   APValue &NewVal;
3882   const Expr *E;
3883 
3884   typedef bool result_type;
3885   static const AccessKinds AccessKind = AK_Assign;
3886 
3887   bool checkConst(QualType QT) {
3888     // Assigning to a const object has undefined behavior.
3889     if (QT.isConstQualified()) {
3890       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3891       return false;
3892     }
3893     return true;
3894   }
3895 
3896   bool failed() { return false; }
3897   bool found(APValue &Subobj, QualType SubobjType) {
3898     if (!checkConst(SubobjType))
3899       return false;
3900     // We've been given ownership of NewVal, so just swap it in.
3901     Subobj.swap(NewVal);
3902     return true;
3903   }
3904   bool found(APSInt &Value, QualType SubobjType) {
3905     if (!checkConst(SubobjType))
3906       return false;
3907     if (!NewVal.isInt()) {
3908       // Maybe trying to write a cast pointer value into a complex?
3909       Info.FFDiag(E);
3910       return false;
3911     }
3912     Value = NewVal.getInt();
3913     return true;
3914   }
3915   bool found(APFloat &Value, QualType SubobjType) {
3916     if (!checkConst(SubobjType))
3917       return false;
3918     Value = NewVal.getFloat();
3919     return true;
3920   }
3921 };
3922 } // end anonymous namespace
3923 
3924 const AccessKinds ModifySubobjectHandler::AccessKind;
3925 
3926 /// Update the designated sub-object of an rvalue to the given value.
3927 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3928                             const CompleteObject &Obj,
3929                             const SubobjectDesignator &Sub,
3930                             APValue &NewVal) {
3931   ModifySubobjectHandler Handler = { Info, NewVal, E };
3932   return findSubobject(Info, E, Obj, Sub, Handler);
3933 }
3934 
3935 /// Find the position where two subobject designators diverge, or equivalently
3936 /// the length of the common initial subsequence.
3937 static unsigned FindDesignatorMismatch(QualType ObjType,
3938                                        const SubobjectDesignator &A,
3939                                        const SubobjectDesignator &B,
3940                                        bool &WasArrayIndex) {
3941   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3942   for (/**/; I != N; ++I) {
3943     if (!ObjType.isNull() &&
3944         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3945       // Next subobject is an array element.
3946       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3947         WasArrayIndex = true;
3948         return I;
3949       }
3950       if (ObjType->isAnyComplexType())
3951         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3952       else
3953         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3954     } else {
3955       if (A.Entries[I].getAsBaseOrMember() !=
3956           B.Entries[I].getAsBaseOrMember()) {
3957         WasArrayIndex = false;
3958         return I;
3959       }
3960       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3961         // Next subobject is a field.
3962         ObjType = FD->getType();
3963       else
3964         // Next subobject is a base class.
3965         ObjType = QualType();
3966     }
3967   }
3968   WasArrayIndex = false;
3969   return I;
3970 }
3971 
3972 /// Determine whether the given subobject designators refer to elements of the
3973 /// same array object.
3974 static bool AreElementsOfSameArray(QualType ObjType,
3975                                    const SubobjectDesignator &A,
3976                                    const SubobjectDesignator &B) {
3977   if (A.Entries.size() != B.Entries.size())
3978     return false;
3979 
3980   bool IsArray = A.MostDerivedIsArrayElement;
3981   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3982     // A is a subobject of the array element.
3983     return false;
3984 
3985   // If A (and B) designates an array element, the last entry will be the array
3986   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3987   // of length 1' case, and the entire path must match.
3988   bool WasArrayIndex;
3989   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3990   return CommonLength >= A.Entries.size() - IsArray;
3991 }
3992 
3993 /// Find the complete object to which an LValue refers.
3994 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3995                                          AccessKinds AK, const LValue &LVal,
3996                                          QualType LValType) {
3997   if (LVal.InvalidBase) {
3998     Info.FFDiag(E);
3999     return CompleteObject();
4000   }
4001 
4002   if (!LVal.Base) {
4003     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
4004     return CompleteObject();
4005   }
4006 
4007   CallStackFrame *Frame = nullptr;
4008   unsigned Depth = 0;
4009   if (LVal.getLValueCallIndex()) {
4010     std::tie(Frame, Depth) =
4011         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
4012     if (!Frame) {
4013       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
4014         << AK << LVal.Base.is<const ValueDecl*>();
4015       NoteLValueLocation(Info, LVal.Base);
4016       return CompleteObject();
4017     }
4018   }
4019 
4020   bool IsAccess = isAnyAccess(AK);
4021 
4022   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4023   // is not a constant expression (even if the object is non-volatile). We also
4024   // apply this rule to C++98, in order to conform to the expected 'volatile'
4025   // semantics.
4026   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
4027     if (Info.getLangOpts().CPlusPlus)
4028       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4029         << AK << LValType;
4030     else
4031       Info.FFDiag(E);
4032     return CompleteObject();
4033   }
4034 
4035   // Compute value storage location and type of base object.
4036   APValue *BaseVal = nullptr;
4037   QualType BaseType = getType(LVal.Base);
4038 
4039   if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4040       lifetimeStartedInEvaluation(Info, LVal.Base)) {
4041     // This is the object whose initializer we're evaluating, so its lifetime
4042     // started in the current evaluation.
4043     BaseVal = Info.EvaluatingDeclValue;
4044   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4045     // Allow reading from a GUID declaration.
4046     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4047       if (isModification(AK)) {
4048         // All the remaining cases do not permit modification of the object.
4049         Info.FFDiag(E, diag::note_constexpr_modify_global);
4050         return CompleteObject();
4051       }
4052       APValue &V = GD->getAsAPValue();
4053       if (V.isAbsent()) {
4054         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4055             << GD->getType();
4056         return CompleteObject();
4057       }
4058       return CompleteObject(LVal.Base, &V, GD->getType());
4059     }
4060 
4061     // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4062     if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) {
4063       if (isModification(AK)) {
4064         Info.FFDiag(E, diag::note_constexpr_modify_global);
4065         return CompleteObject();
4066       }
4067       return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4068                             GCD->getType());
4069     }
4070 
4071     // Allow reading from template parameter objects.
4072     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4073       if (isModification(AK)) {
4074         Info.FFDiag(E, diag::note_constexpr_modify_global);
4075         return CompleteObject();
4076       }
4077       return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4078                             TPO->getType());
4079     }
4080 
4081     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4082     // In C++11, constexpr, non-volatile variables initialized with constant
4083     // expressions are constant expressions too. Inside constexpr functions,
4084     // parameters are constant expressions even if they're non-const.
4085     // In C++1y, objects local to a constant expression (those with a Frame) are
4086     // both readable and writable inside constant expressions.
4087     // In C, such things can also be folded, although they are not ICEs.
4088     const VarDecl *VD = dyn_cast<VarDecl>(D);
4089     if (VD) {
4090       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4091         VD = VDef;
4092     }
4093     if (!VD || VD->isInvalidDecl()) {
4094       Info.FFDiag(E);
4095       return CompleteObject();
4096     }
4097 
4098     bool IsConstant = BaseType.isConstant(Info.Ctx);
4099 
4100     // Unless we're looking at a local variable or argument in a constexpr call,
4101     // the variable we're reading must be const.
4102     if (!Frame) {
4103       if (IsAccess && isa<ParmVarDecl>(VD)) {
4104         // Access of a parameter that's not associated with a frame isn't going
4105         // to work out, but we can leave it to evaluateVarDeclInit to provide a
4106         // suitable diagnostic.
4107       } else if (Info.getLangOpts().CPlusPlus14 &&
4108                  lifetimeStartedInEvaluation(Info, LVal.Base)) {
4109         // OK, we can read and modify an object if we're in the process of
4110         // evaluating its initializer, because its lifetime began in this
4111         // evaluation.
4112       } else if (isModification(AK)) {
4113         // All the remaining cases do not permit modification of the object.
4114         Info.FFDiag(E, diag::note_constexpr_modify_global);
4115         return CompleteObject();
4116       } else if (VD->isConstexpr()) {
4117         // OK, we can read this variable.
4118       } else if (BaseType->isIntegralOrEnumerationType()) {
4119         if (!IsConstant) {
4120           if (!IsAccess)
4121             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4122           if (Info.getLangOpts().CPlusPlus) {
4123             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4124             Info.Note(VD->getLocation(), diag::note_declared_at);
4125           } else {
4126             Info.FFDiag(E);
4127           }
4128           return CompleteObject();
4129         }
4130       } else if (!IsAccess) {
4131         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4132       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4133                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4134         // This variable might end up being constexpr. Don't diagnose it yet.
4135       } else if (IsConstant) {
4136         // Keep evaluating to see what we can do. In particular, we support
4137         // folding of const floating-point types, in order to make static const
4138         // data members of such types (supported as an extension) more useful.
4139         if (Info.getLangOpts().CPlusPlus) {
4140           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4141                               ? diag::note_constexpr_ltor_non_constexpr
4142                               : diag::note_constexpr_ltor_non_integral, 1)
4143               << VD << BaseType;
4144           Info.Note(VD->getLocation(), diag::note_declared_at);
4145         } else {
4146           Info.CCEDiag(E);
4147         }
4148       } else {
4149         // Never allow reading a non-const value.
4150         if (Info.getLangOpts().CPlusPlus) {
4151           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4152                              ? diag::note_constexpr_ltor_non_constexpr
4153                              : diag::note_constexpr_ltor_non_integral, 1)
4154               << VD << BaseType;
4155           Info.Note(VD->getLocation(), diag::note_declared_at);
4156         } else {
4157           Info.FFDiag(E);
4158         }
4159         return CompleteObject();
4160       }
4161     }
4162 
4163     if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4164       return CompleteObject();
4165   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4166     std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4167     if (!Alloc) {
4168       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4169       return CompleteObject();
4170     }
4171     return CompleteObject(LVal.Base, &(*Alloc)->Value,
4172                           LVal.Base.getDynamicAllocType());
4173   } else {
4174     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4175 
4176     if (!Frame) {
4177       if (const MaterializeTemporaryExpr *MTE =
4178               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4179         assert(MTE->getStorageDuration() == SD_Static &&
4180                "should have a frame for a non-global materialized temporary");
4181 
4182         // C++20 [expr.const]p4: [DR2126]
4183         //   An object or reference is usable in constant expressions if it is
4184         //   - a temporary object of non-volatile const-qualified literal type
4185         //     whose lifetime is extended to that of a variable that is usable
4186         //     in constant expressions
4187         //
4188         // C++20 [expr.const]p5:
4189         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4190         //   - a non-volatile glvalue that refers to an object that is usable
4191         //     in constant expressions, or
4192         //   - a non-volatile glvalue of literal type that refers to a
4193         //     non-volatile object whose lifetime began within the evaluation
4194         //     of E;
4195         //
4196         // C++11 misses the 'began within the evaluation of e' check and
4197         // instead allows all temporaries, including things like:
4198         //   int &&r = 1;
4199         //   int x = ++r;
4200         //   constexpr int k = r;
4201         // Therefore we use the C++14-onwards rules in C++11 too.
4202         //
4203         // Note that temporaries whose lifetimes began while evaluating a
4204         // variable's constructor are not usable while evaluating the
4205         // corresponding destructor, not even if they're of const-qualified
4206         // types.
4207         if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4208             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4209           if (!IsAccess)
4210             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4211           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4212           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4213           return CompleteObject();
4214         }
4215 
4216         BaseVal = MTE->getOrCreateValue(false);
4217         assert(BaseVal && "got reference to unevaluated temporary");
4218       } else {
4219         if (!IsAccess)
4220           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4221         APValue Val;
4222         LVal.moveInto(Val);
4223         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4224             << AK
4225             << Val.getAsString(Info.Ctx,
4226                                Info.Ctx.getLValueReferenceType(LValType));
4227         NoteLValueLocation(Info, LVal.Base);
4228         return CompleteObject();
4229       }
4230     } else {
4231       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4232       assert(BaseVal && "missing value for temporary");
4233     }
4234   }
4235 
4236   // In C++14, we can't safely access any mutable state when we might be
4237   // evaluating after an unmodeled side effect. Parameters are modeled as state
4238   // in the caller, but aren't visible once the call returns, so they can be
4239   // modified in a speculatively-evaluated call.
4240   //
4241   // FIXME: Not all local state is mutable. Allow local constant subobjects
4242   // to be read here (but take care with 'mutable' fields).
4243   unsigned VisibleDepth = Depth;
4244   if (llvm::isa_and_nonnull<ParmVarDecl>(
4245           LVal.Base.dyn_cast<const ValueDecl *>()))
4246     ++VisibleDepth;
4247   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4248        Info.EvalStatus.HasSideEffects) ||
4249       (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4250     return CompleteObject();
4251 
4252   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4253 }
4254 
4255 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4256 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4257 /// glvalue referred to by an entity of reference type.
4258 ///
4259 /// \param Info - Information about the ongoing evaluation.
4260 /// \param Conv - The expression for which we are performing the conversion.
4261 ///               Used for diagnostics.
4262 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4263 ///               case of a non-class type).
4264 /// \param LVal - The glvalue on which we are attempting to perform this action.
4265 /// \param RVal - The produced value will be placed here.
4266 /// \param WantObjectRepresentation - If true, we're looking for the object
4267 ///               representation rather than the value, and in particular,
4268 ///               there is no requirement that the result be fully initialized.
4269 static bool
4270 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4271                                const LValue &LVal, APValue &RVal,
4272                                bool WantObjectRepresentation = false) {
4273   if (LVal.Designator.Invalid)
4274     return false;
4275 
4276   // Check for special cases where there is no existing APValue to look at.
4277   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4278 
4279   AccessKinds AK =
4280       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4281 
4282   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4283     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4284       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4285       // initializer until now for such expressions. Such an expression can't be
4286       // an ICE in C, so this only matters for fold.
4287       if (Type.isVolatileQualified()) {
4288         Info.FFDiag(Conv);
4289         return false;
4290       }
4291 
4292       APValue Lit;
4293       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4294         return false;
4295 
4296       // According to GCC info page:
4297       //
4298       // 6.28 Compound Literals
4299       //
4300       // As an optimization, G++ sometimes gives array compound literals longer
4301       // lifetimes: when the array either appears outside a function or has a
4302       // const-qualified type. If foo and its initializer had elements of type
4303       // char *const rather than char *, or if foo were a global variable, the
4304       // array would have static storage duration. But it is probably safest
4305       // just to avoid the use of array compound literals in C++ code.
4306       //
4307       // Obey that rule by checking constness for converted array types.
4308 
4309       QualType CLETy = CLE->getType();
4310       if (CLETy->isArrayType() && !Type->isArrayType()) {
4311         if (!CLETy.isConstant(Info.Ctx)) {
4312           Info.FFDiag(Conv);
4313           Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4314           return false;
4315         }
4316       }
4317 
4318       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4319       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4320     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4321       // Special-case character extraction so we don't have to construct an
4322       // APValue for the whole string.
4323       assert(LVal.Designator.Entries.size() <= 1 &&
4324              "Can only read characters from string literals");
4325       if (LVal.Designator.Entries.empty()) {
4326         // Fail for now for LValue to RValue conversion of an array.
4327         // (This shouldn't show up in C/C++, but it could be triggered by a
4328         // weird EvaluateAsRValue call from a tool.)
4329         Info.FFDiag(Conv);
4330         return false;
4331       }
4332       if (LVal.Designator.isOnePastTheEnd()) {
4333         if (Info.getLangOpts().CPlusPlus11)
4334           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4335         else
4336           Info.FFDiag(Conv);
4337         return false;
4338       }
4339       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4340       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4341       return true;
4342     }
4343   }
4344 
4345   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4346   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4347 }
4348 
4349 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4350 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4351                              QualType LValType, APValue &Val) {
4352   if (LVal.Designator.Invalid)
4353     return false;
4354 
4355   if (!Info.getLangOpts().CPlusPlus14) {
4356     Info.FFDiag(E);
4357     return false;
4358   }
4359 
4360   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4361   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4362 }
4363 
4364 namespace {
4365 struct CompoundAssignSubobjectHandler {
4366   EvalInfo &Info;
4367   const CompoundAssignOperator *E;
4368   QualType PromotedLHSType;
4369   BinaryOperatorKind Opcode;
4370   const APValue &RHS;
4371 
4372   static const AccessKinds AccessKind = AK_Assign;
4373 
4374   typedef bool result_type;
4375 
4376   bool checkConst(QualType QT) {
4377     // Assigning to a const object has undefined behavior.
4378     if (QT.isConstQualified()) {
4379       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4380       return false;
4381     }
4382     return true;
4383   }
4384 
4385   bool failed() { return false; }
4386   bool found(APValue &Subobj, QualType SubobjType) {
4387     switch (Subobj.getKind()) {
4388     case APValue::Int:
4389       return found(Subobj.getInt(), SubobjType);
4390     case APValue::Float:
4391       return found(Subobj.getFloat(), SubobjType);
4392     case APValue::ComplexInt:
4393     case APValue::ComplexFloat:
4394       // FIXME: Implement complex compound assignment.
4395       Info.FFDiag(E);
4396       return false;
4397     case APValue::LValue:
4398       return foundPointer(Subobj, SubobjType);
4399     case APValue::Vector:
4400       return foundVector(Subobj, SubobjType);
4401     default:
4402       // FIXME: can this happen?
4403       Info.FFDiag(E);
4404       return false;
4405     }
4406   }
4407 
4408   bool foundVector(APValue &Value, QualType SubobjType) {
4409     if (!checkConst(SubobjType))
4410       return false;
4411 
4412     if (!SubobjType->isVectorType()) {
4413       Info.FFDiag(E);
4414       return false;
4415     }
4416     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4417   }
4418 
4419   bool found(APSInt &Value, QualType SubobjType) {
4420     if (!checkConst(SubobjType))
4421       return false;
4422 
4423     if (!SubobjType->isIntegerType()) {
4424       // We don't support compound assignment on integer-cast-to-pointer
4425       // values.
4426       Info.FFDiag(E);
4427       return false;
4428     }
4429 
4430     if (RHS.isInt()) {
4431       APSInt LHS =
4432           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4433       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4434         return false;
4435       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4436       return true;
4437     } else if (RHS.isFloat()) {
4438       const FPOptions FPO = E->getFPFeaturesInEffect(
4439                                     Info.Ctx.getLangOpts());
4440       APFloat FValue(0.0);
4441       return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4442                                   PromotedLHSType, FValue) &&
4443              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4444              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4445                                   Value);
4446     }
4447 
4448     Info.FFDiag(E);
4449     return false;
4450   }
4451   bool found(APFloat &Value, QualType SubobjType) {
4452     return checkConst(SubobjType) &&
4453            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4454                                   Value) &&
4455            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4456            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4457   }
4458   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4459     if (!checkConst(SubobjType))
4460       return false;
4461 
4462     QualType PointeeType;
4463     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4464       PointeeType = PT->getPointeeType();
4465 
4466     if (PointeeType.isNull() || !RHS.isInt() ||
4467         (Opcode != BO_Add && Opcode != BO_Sub)) {
4468       Info.FFDiag(E);
4469       return false;
4470     }
4471 
4472     APSInt Offset = RHS.getInt();
4473     if (Opcode == BO_Sub)
4474       negateAsSigned(Offset);
4475 
4476     LValue LVal;
4477     LVal.setFrom(Info.Ctx, Subobj);
4478     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4479       return false;
4480     LVal.moveInto(Subobj);
4481     return true;
4482   }
4483 };
4484 } // end anonymous namespace
4485 
4486 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4487 
4488 /// Perform a compound assignment of LVal <op>= RVal.
4489 static bool handleCompoundAssignment(EvalInfo &Info,
4490                                      const CompoundAssignOperator *E,
4491                                      const LValue &LVal, QualType LValType,
4492                                      QualType PromotedLValType,
4493                                      BinaryOperatorKind Opcode,
4494                                      const APValue &RVal) {
4495   if (LVal.Designator.Invalid)
4496     return false;
4497 
4498   if (!Info.getLangOpts().CPlusPlus14) {
4499     Info.FFDiag(E);
4500     return false;
4501   }
4502 
4503   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4504   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4505                                              RVal };
4506   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4507 }
4508 
4509 namespace {
4510 struct IncDecSubobjectHandler {
4511   EvalInfo &Info;
4512   const UnaryOperator *E;
4513   AccessKinds AccessKind;
4514   APValue *Old;
4515 
4516   typedef bool result_type;
4517 
4518   bool checkConst(QualType QT) {
4519     // Assigning to a const object has undefined behavior.
4520     if (QT.isConstQualified()) {
4521       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4522       return false;
4523     }
4524     return true;
4525   }
4526 
4527   bool failed() { return false; }
4528   bool found(APValue &Subobj, QualType SubobjType) {
4529     // Stash the old value. Also clear Old, so we don't clobber it later
4530     // if we're post-incrementing a complex.
4531     if (Old) {
4532       *Old = Subobj;
4533       Old = nullptr;
4534     }
4535 
4536     switch (Subobj.getKind()) {
4537     case APValue::Int:
4538       return found(Subobj.getInt(), SubobjType);
4539     case APValue::Float:
4540       return found(Subobj.getFloat(), SubobjType);
4541     case APValue::ComplexInt:
4542       return found(Subobj.getComplexIntReal(),
4543                    SubobjType->castAs<ComplexType>()->getElementType()
4544                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4545     case APValue::ComplexFloat:
4546       return found(Subobj.getComplexFloatReal(),
4547                    SubobjType->castAs<ComplexType>()->getElementType()
4548                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4549     case APValue::LValue:
4550       return foundPointer(Subobj, SubobjType);
4551     default:
4552       // FIXME: can this happen?
4553       Info.FFDiag(E);
4554       return false;
4555     }
4556   }
4557   bool found(APSInt &Value, QualType SubobjType) {
4558     if (!checkConst(SubobjType))
4559       return false;
4560 
4561     if (!SubobjType->isIntegerType()) {
4562       // We don't support increment / decrement on integer-cast-to-pointer
4563       // values.
4564       Info.FFDiag(E);
4565       return false;
4566     }
4567 
4568     if (Old) *Old = APValue(Value);
4569 
4570     // bool arithmetic promotes to int, and the conversion back to bool
4571     // doesn't reduce mod 2^n, so special-case it.
4572     if (SubobjType->isBooleanType()) {
4573       if (AccessKind == AK_Increment)
4574         Value = 1;
4575       else
4576         Value = !Value;
4577       return true;
4578     }
4579 
4580     bool WasNegative = Value.isNegative();
4581     if (AccessKind == AK_Increment) {
4582       ++Value;
4583 
4584       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4585         APSInt ActualValue(Value, /*IsUnsigned*/true);
4586         return HandleOverflow(Info, E, ActualValue, SubobjType);
4587       }
4588     } else {
4589       --Value;
4590 
4591       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4592         unsigned BitWidth = Value.getBitWidth();
4593         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4594         ActualValue.setBit(BitWidth);
4595         return HandleOverflow(Info, E, ActualValue, SubobjType);
4596       }
4597     }
4598     return true;
4599   }
4600   bool found(APFloat &Value, QualType SubobjType) {
4601     if (!checkConst(SubobjType))
4602       return false;
4603 
4604     if (Old) *Old = APValue(Value);
4605 
4606     APFloat One(Value.getSemantics(), 1);
4607     if (AccessKind == AK_Increment)
4608       Value.add(One, APFloat::rmNearestTiesToEven);
4609     else
4610       Value.subtract(One, APFloat::rmNearestTiesToEven);
4611     return true;
4612   }
4613   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4614     if (!checkConst(SubobjType))
4615       return false;
4616 
4617     QualType PointeeType;
4618     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4619       PointeeType = PT->getPointeeType();
4620     else {
4621       Info.FFDiag(E);
4622       return false;
4623     }
4624 
4625     LValue LVal;
4626     LVal.setFrom(Info.Ctx, Subobj);
4627     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4628                                      AccessKind == AK_Increment ? 1 : -1))
4629       return false;
4630     LVal.moveInto(Subobj);
4631     return true;
4632   }
4633 };
4634 } // end anonymous namespace
4635 
4636 /// Perform an increment or decrement on LVal.
4637 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4638                          QualType LValType, bool IsIncrement, APValue *Old) {
4639   if (LVal.Designator.Invalid)
4640     return false;
4641 
4642   if (!Info.getLangOpts().CPlusPlus14) {
4643     Info.FFDiag(E);
4644     return false;
4645   }
4646 
4647   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4648   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4649   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4650   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4651 }
4652 
4653 /// Build an lvalue for the object argument of a member function call.
4654 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4655                                    LValue &This) {
4656   if (Object->getType()->isPointerType() && Object->isPRValue())
4657     return EvaluatePointer(Object, This, Info);
4658 
4659   if (Object->isGLValue())
4660     return EvaluateLValue(Object, This, Info);
4661 
4662   if (Object->getType()->isLiteralType(Info.Ctx))
4663     return EvaluateTemporary(Object, This, Info);
4664 
4665   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4666   return false;
4667 }
4668 
4669 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4670 /// lvalue referring to the result.
4671 ///
4672 /// \param Info - Information about the ongoing evaluation.
4673 /// \param LV - An lvalue referring to the base of the member pointer.
4674 /// \param RHS - The member pointer expression.
4675 /// \param IncludeMember - Specifies whether the member itself is included in
4676 ///        the resulting LValue subobject designator. This is not possible when
4677 ///        creating a bound member function.
4678 /// \return The field or method declaration to which the member pointer refers,
4679 ///         or 0 if evaluation fails.
4680 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4681                                                   QualType LVType,
4682                                                   LValue &LV,
4683                                                   const Expr *RHS,
4684                                                   bool IncludeMember = true) {
4685   MemberPtr MemPtr;
4686   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4687     return nullptr;
4688 
4689   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4690   // member value, the behavior is undefined.
4691   if (!MemPtr.getDecl()) {
4692     // FIXME: Specific diagnostic.
4693     Info.FFDiag(RHS);
4694     return nullptr;
4695   }
4696 
4697   if (MemPtr.isDerivedMember()) {
4698     // This is a member of some derived class. Truncate LV appropriately.
4699     // The end of the derived-to-base path for the base object must match the
4700     // derived-to-base path for the member pointer.
4701     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4702         LV.Designator.Entries.size()) {
4703       Info.FFDiag(RHS);
4704       return nullptr;
4705     }
4706     unsigned PathLengthToMember =
4707         LV.Designator.Entries.size() - MemPtr.Path.size();
4708     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4709       const CXXRecordDecl *LVDecl = getAsBaseClass(
4710           LV.Designator.Entries[PathLengthToMember + I]);
4711       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4712       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4713         Info.FFDiag(RHS);
4714         return nullptr;
4715       }
4716     }
4717 
4718     // Truncate the lvalue to the appropriate derived class.
4719     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4720                             PathLengthToMember))
4721       return nullptr;
4722   } else if (!MemPtr.Path.empty()) {
4723     // Extend the LValue path with the member pointer's path.
4724     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4725                                   MemPtr.Path.size() + IncludeMember);
4726 
4727     // Walk down to the appropriate base class.
4728     if (const PointerType *PT = LVType->getAs<PointerType>())
4729       LVType = PT->getPointeeType();
4730     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4731     assert(RD && "member pointer access on non-class-type expression");
4732     // The first class in the path is that of the lvalue.
4733     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4734       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4735       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4736         return nullptr;
4737       RD = Base;
4738     }
4739     // Finally cast to the class containing the member.
4740     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4741                                 MemPtr.getContainingRecord()))
4742       return nullptr;
4743   }
4744 
4745   // Add the member. Note that we cannot build bound member functions here.
4746   if (IncludeMember) {
4747     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4748       if (!HandleLValueMember(Info, RHS, LV, FD))
4749         return nullptr;
4750     } else if (const IndirectFieldDecl *IFD =
4751                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4752       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4753         return nullptr;
4754     } else {
4755       llvm_unreachable("can't construct reference to bound member function");
4756     }
4757   }
4758 
4759   return MemPtr.getDecl();
4760 }
4761 
4762 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4763                                                   const BinaryOperator *BO,
4764                                                   LValue &LV,
4765                                                   bool IncludeMember = true) {
4766   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4767 
4768   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4769     if (Info.noteFailure()) {
4770       MemberPtr MemPtr;
4771       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4772     }
4773     return nullptr;
4774   }
4775 
4776   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4777                                    BO->getRHS(), IncludeMember);
4778 }
4779 
4780 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4781 /// the provided lvalue, which currently refers to the base object.
4782 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4783                                     LValue &Result) {
4784   SubobjectDesignator &D = Result.Designator;
4785   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4786     return false;
4787 
4788   QualType TargetQT = E->getType();
4789   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4790     TargetQT = PT->getPointeeType();
4791 
4792   // Check this cast lands within the final derived-to-base subobject path.
4793   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4794     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4795       << D.MostDerivedType << TargetQT;
4796     return false;
4797   }
4798 
4799   // Check the type of the final cast. We don't need to check the path,
4800   // since a cast can only be formed if the path is unique.
4801   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4802   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4803   const CXXRecordDecl *FinalType;
4804   if (NewEntriesSize == D.MostDerivedPathLength)
4805     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4806   else
4807     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4808   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4809     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4810       << D.MostDerivedType << TargetQT;
4811     return false;
4812   }
4813 
4814   // Truncate the lvalue to the appropriate derived class.
4815   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4816 }
4817 
4818 /// Get the value to use for a default-initialized object of type T.
4819 /// Return false if it encounters something invalid.
4820 static bool getDefaultInitValue(QualType T, APValue &Result) {
4821   bool Success = true;
4822   if (auto *RD = T->getAsCXXRecordDecl()) {
4823     if (RD->isInvalidDecl()) {
4824       Result = APValue();
4825       return false;
4826     }
4827     if (RD->isUnion()) {
4828       Result = APValue((const FieldDecl *)nullptr);
4829       return true;
4830     }
4831     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4832                      std::distance(RD->field_begin(), RD->field_end()));
4833 
4834     unsigned Index = 0;
4835     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4836                                                   End = RD->bases_end();
4837          I != End; ++I, ++Index)
4838       Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4839 
4840     for (const auto *I : RD->fields()) {
4841       if (I->isUnnamedBitfield())
4842         continue;
4843       Success &= getDefaultInitValue(I->getType(),
4844                                      Result.getStructField(I->getFieldIndex()));
4845     }
4846     return Success;
4847   }
4848 
4849   if (auto *AT =
4850           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4851     Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4852     if (Result.hasArrayFiller())
4853       Success &=
4854           getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4855 
4856     return Success;
4857   }
4858 
4859   Result = APValue::IndeterminateValue();
4860   return true;
4861 }
4862 
4863 namespace {
4864 enum EvalStmtResult {
4865   /// Evaluation failed.
4866   ESR_Failed,
4867   /// Hit a 'return' statement.
4868   ESR_Returned,
4869   /// Evaluation succeeded.
4870   ESR_Succeeded,
4871   /// Hit a 'continue' statement.
4872   ESR_Continue,
4873   /// Hit a 'break' statement.
4874   ESR_Break,
4875   /// Still scanning for 'case' or 'default' statement.
4876   ESR_CaseNotFound
4877 };
4878 }
4879 
4880 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4881   if (VD->isInvalidDecl())
4882     return false;
4883   // We don't need to evaluate the initializer for a static local.
4884   if (!VD->hasLocalStorage())
4885     return true;
4886 
4887   LValue Result;
4888   APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4889                                                    ScopeKind::Block, Result);
4890 
4891   const Expr *InitE = VD->getInit();
4892   if (!InitE) {
4893     if (VD->getType()->isDependentType())
4894       return Info.noteSideEffect();
4895     return getDefaultInitValue(VD->getType(), Val);
4896   }
4897   if (InitE->isValueDependent())
4898     return false;
4899 
4900   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4901     // Wipe out any partially-computed value, to allow tracking that this
4902     // evaluation failed.
4903     Val = APValue();
4904     return false;
4905   }
4906 
4907   return true;
4908 }
4909 
4910 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4911   bool OK = true;
4912 
4913   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4914     OK &= EvaluateVarDecl(Info, VD);
4915 
4916   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4917     for (auto *BD : DD->bindings())
4918       if (auto *VD = BD->getHoldingVar())
4919         OK &= EvaluateDecl(Info, VD);
4920 
4921   return OK;
4922 }
4923 
4924 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4925   assert(E->isValueDependent());
4926   if (Info.noteSideEffect())
4927     return true;
4928   assert(E->containsErrors() && "valid value-dependent expression should never "
4929                                 "reach invalid code path.");
4930   return false;
4931 }
4932 
4933 /// Evaluate a condition (either a variable declaration or an expression).
4934 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4935                          const Expr *Cond, bool &Result) {
4936   if (Cond->isValueDependent())
4937     return false;
4938   FullExpressionRAII Scope(Info);
4939   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4940     return false;
4941   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4942     return false;
4943   return Scope.destroy();
4944 }
4945 
4946 namespace {
4947 /// A location where the result (returned value) of evaluating a
4948 /// statement should be stored.
4949 struct StmtResult {
4950   /// The APValue that should be filled in with the returned value.
4951   APValue &Value;
4952   /// The location containing the result, if any (used to support RVO).
4953   const LValue *Slot;
4954 };
4955 
4956 struct TempVersionRAII {
4957   CallStackFrame &Frame;
4958 
4959   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4960     Frame.pushTempVersion();
4961   }
4962 
4963   ~TempVersionRAII() {
4964     Frame.popTempVersion();
4965   }
4966 };
4967 
4968 }
4969 
4970 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4971                                    const Stmt *S,
4972                                    const SwitchCase *SC = nullptr);
4973 
4974 /// Evaluate the body of a loop, and translate the result as appropriate.
4975 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4976                                        const Stmt *Body,
4977                                        const SwitchCase *Case = nullptr) {
4978   BlockScopeRAII Scope(Info);
4979 
4980   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4981   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4982     ESR = ESR_Failed;
4983 
4984   switch (ESR) {
4985   case ESR_Break:
4986     return ESR_Succeeded;
4987   case ESR_Succeeded:
4988   case ESR_Continue:
4989     return ESR_Continue;
4990   case ESR_Failed:
4991   case ESR_Returned:
4992   case ESR_CaseNotFound:
4993     return ESR;
4994   }
4995   llvm_unreachable("Invalid EvalStmtResult!");
4996 }
4997 
4998 /// Evaluate a switch statement.
4999 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
5000                                      const SwitchStmt *SS) {
5001   BlockScopeRAII Scope(Info);
5002 
5003   // Evaluate the switch condition.
5004   APSInt Value;
5005   {
5006     if (const Stmt *Init = SS->getInit()) {
5007       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5008       if (ESR != ESR_Succeeded) {
5009         if (ESR != ESR_Failed && !Scope.destroy())
5010           ESR = ESR_Failed;
5011         return ESR;
5012       }
5013     }
5014 
5015     FullExpressionRAII CondScope(Info);
5016     if (SS->getConditionVariable() &&
5017         !EvaluateDecl(Info, SS->getConditionVariable()))
5018       return ESR_Failed;
5019     if (SS->getCond()->isValueDependent()) {
5020       // We don't know what the value is, and which branch should jump to.
5021       EvaluateDependentExpr(SS->getCond(), Info);
5022       return ESR_Failed;
5023     }
5024     if (!EvaluateInteger(SS->getCond(), Value, Info))
5025       return ESR_Failed;
5026 
5027     if (!CondScope.destroy())
5028       return ESR_Failed;
5029   }
5030 
5031   // Find the switch case corresponding to the value of the condition.
5032   // FIXME: Cache this lookup.
5033   const SwitchCase *Found = nullptr;
5034   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5035        SC = SC->getNextSwitchCase()) {
5036     if (isa<DefaultStmt>(SC)) {
5037       Found = SC;
5038       continue;
5039     }
5040 
5041     const CaseStmt *CS = cast<CaseStmt>(SC);
5042     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
5043     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
5044                               : LHS;
5045     if (LHS <= Value && Value <= RHS) {
5046       Found = SC;
5047       break;
5048     }
5049   }
5050 
5051   if (!Found)
5052     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5053 
5054   // Search the switch body for the switch case and evaluate it from there.
5055   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
5056   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5057     return ESR_Failed;
5058 
5059   switch (ESR) {
5060   case ESR_Break:
5061     return ESR_Succeeded;
5062   case ESR_Succeeded:
5063   case ESR_Continue:
5064   case ESR_Failed:
5065   case ESR_Returned:
5066     return ESR;
5067   case ESR_CaseNotFound:
5068     // This can only happen if the switch case is nested within a statement
5069     // expression. We have no intention of supporting that.
5070     Info.FFDiag(Found->getBeginLoc(),
5071                 diag::note_constexpr_stmt_expr_unsupported);
5072     return ESR_Failed;
5073   }
5074   llvm_unreachable("Invalid EvalStmtResult!");
5075 }
5076 
5077 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5078   // An expression E is a core constant expression unless the evaluation of E
5079   // would evaluate one of the following: [C++23] - a control flow that passes
5080   // through a declaration of a variable with static or thread storage duration
5081   // unless that variable is usable in constant expressions.
5082   if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5083       !VD->isUsableInConstantExpressions(Info.Ctx)) {
5084     Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5085         << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5086     return false;
5087   }
5088   return true;
5089 }
5090 
5091 // Evaluate a statement.
5092 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5093                                    const Stmt *S, const SwitchCase *Case) {
5094   if (!Info.nextStep(S))
5095     return ESR_Failed;
5096 
5097   // If we're hunting down a 'case' or 'default' label, recurse through
5098   // substatements until we hit the label.
5099   if (Case) {
5100     switch (S->getStmtClass()) {
5101     case Stmt::CompoundStmtClass:
5102       // FIXME: Precompute which substatement of a compound statement we
5103       // would jump to, and go straight there rather than performing a
5104       // linear scan each time.
5105     case Stmt::LabelStmtClass:
5106     case Stmt::AttributedStmtClass:
5107     case Stmt::DoStmtClass:
5108       break;
5109 
5110     case Stmt::CaseStmtClass:
5111     case Stmt::DefaultStmtClass:
5112       if (Case == S)
5113         Case = nullptr;
5114       break;
5115 
5116     case Stmt::IfStmtClass: {
5117       // FIXME: Precompute which side of an 'if' we would jump to, and go
5118       // straight there rather than scanning both sides.
5119       const IfStmt *IS = cast<IfStmt>(S);
5120 
5121       // Wrap the evaluation in a block scope, in case it's a DeclStmt
5122       // preceded by our switch label.
5123       BlockScopeRAII Scope(Info);
5124 
5125       // Step into the init statement in case it brings an (uninitialized)
5126       // variable into scope.
5127       if (const Stmt *Init = IS->getInit()) {
5128         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5129         if (ESR != ESR_CaseNotFound) {
5130           assert(ESR != ESR_Succeeded);
5131           return ESR;
5132         }
5133       }
5134 
5135       // Condition variable must be initialized if it exists.
5136       // FIXME: We can skip evaluating the body if there's a condition
5137       // variable, as there can't be any case labels within it.
5138       // (The same is true for 'for' statements.)
5139 
5140       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5141       if (ESR == ESR_Failed)
5142         return ESR;
5143       if (ESR != ESR_CaseNotFound)
5144         return Scope.destroy() ? ESR : ESR_Failed;
5145       if (!IS->getElse())
5146         return ESR_CaseNotFound;
5147 
5148       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5149       if (ESR == ESR_Failed)
5150         return ESR;
5151       if (ESR != ESR_CaseNotFound)
5152         return Scope.destroy() ? ESR : ESR_Failed;
5153       return ESR_CaseNotFound;
5154     }
5155 
5156     case Stmt::WhileStmtClass: {
5157       EvalStmtResult ESR =
5158           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5159       if (ESR != ESR_Continue)
5160         return ESR;
5161       break;
5162     }
5163 
5164     case Stmt::ForStmtClass: {
5165       const ForStmt *FS = cast<ForStmt>(S);
5166       BlockScopeRAII Scope(Info);
5167 
5168       // Step into the init statement in case it brings an (uninitialized)
5169       // variable into scope.
5170       if (const Stmt *Init = FS->getInit()) {
5171         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5172         if (ESR != ESR_CaseNotFound) {
5173           assert(ESR != ESR_Succeeded);
5174           return ESR;
5175         }
5176       }
5177 
5178       EvalStmtResult ESR =
5179           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5180       if (ESR != ESR_Continue)
5181         return ESR;
5182       if (const auto *Inc = FS->getInc()) {
5183         if (Inc->isValueDependent()) {
5184           if (!EvaluateDependentExpr(Inc, Info))
5185             return ESR_Failed;
5186         } else {
5187           FullExpressionRAII IncScope(Info);
5188           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5189             return ESR_Failed;
5190         }
5191       }
5192       break;
5193     }
5194 
5195     case Stmt::DeclStmtClass: {
5196       // Start the lifetime of any uninitialized variables we encounter. They
5197       // might be used by the selected branch of the switch.
5198       const DeclStmt *DS = cast<DeclStmt>(S);
5199       for (const auto *D : DS->decls()) {
5200         if (const auto *VD = dyn_cast<VarDecl>(D)) {
5201           if (!CheckLocalVariableDeclaration(Info, VD))
5202             return ESR_Failed;
5203           if (VD->hasLocalStorage() && !VD->getInit())
5204             if (!EvaluateVarDecl(Info, VD))
5205               return ESR_Failed;
5206           // FIXME: If the variable has initialization that can't be jumped
5207           // over, bail out of any immediately-surrounding compound-statement
5208           // too. There can't be any case labels here.
5209         }
5210       }
5211       return ESR_CaseNotFound;
5212     }
5213 
5214     default:
5215       return ESR_CaseNotFound;
5216     }
5217   }
5218 
5219   switch (S->getStmtClass()) {
5220   default:
5221     if (const Expr *E = dyn_cast<Expr>(S)) {
5222       if (E->isValueDependent()) {
5223         if (!EvaluateDependentExpr(E, Info))
5224           return ESR_Failed;
5225       } else {
5226         // Don't bother evaluating beyond an expression-statement which couldn't
5227         // be evaluated.
5228         // FIXME: Do we need the FullExpressionRAII object here?
5229         // VisitExprWithCleanups should create one when necessary.
5230         FullExpressionRAII Scope(Info);
5231         if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5232           return ESR_Failed;
5233       }
5234       return ESR_Succeeded;
5235     }
5236 
5237     Info.FFDiag(S->getBeginLoc());
5238     return ESR_Failed;
5239 
5240   case Stmt::NullStmtClass:
5241     return ESR_Succeeded;
5242 
5243   case Stmt::DeclStmtClass: {
5244     const DeclStmt *DS = cast<DeclStmt>(S);
5245     for (const auto *D : DS->decls()) {
5246       const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
5247       if (VD && !CheckLocalVariableDeclaration(Info, VD))
5248         return ESR_Failed;
5249       // Each declaration initialization is its own full-expression.
5250       FullExpressionRAII Scope(Info);
5251       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5252         return ESR_Failed;
5253       if (!Scope.destroy())
5254         return ESR_Failed;
5255     }
5256     return ESR_Succeeded;
5257   }
5258 
5259   case Stmt::ReturnStmtClass: {
5260     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5261     FullExpressionRAII Scope(Info);
5262     if (RetExpr && RetExpr->isValueDependent()) {
5263       EvaluateDependentExpr(RetExpr, Info);
5264       // We know we returned, but we don't know what the value is.
5265       return ESR_Failed;
5266     }
5267     if (RetExpr &&
5268         !(Result.Slot
5269               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5270               : Evaluate(Result.Value, Info, RetExpr)))
5271       return ESR_Failed;
5272     return Scope.destroy() ? ESR_Returned : ESR_Failed;
5273   }
5274 
5275   case Stmt::CompoundStmtClass: {
5276     BlockScopeRAII Scope(Info);
5277 
5278     const CompoundStmt *CS = cast<CompoundStmt>(S);
5279     for (const auto *BI : CS->body()) {
5280       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5281       if (ESR == ESR_Succeeded)
5282         Case = nullptr;
5283       else if (ESR != ESR_CaseNotFound) {
5284         if (ESR != ESR_Failed && !Scope.destroy())
5285           return ESR_Failed;
5286         return ESR;
5287       }
5288     }
5289     if (Case)
5290       return ESR_CaseNotFound;
5291     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5292   }
5293 
5294   case Stmt::IfStmtClass: {
5295     const IfStmt *IS = cast<IfStmt>(S);
5296 
5297     // Evaluate the condition, as either a var decl or as an expression.
5298     BlockScopeRAII Scope(Info);
5299     if (const Stmt *Init = IS->getInit()) {
5300       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5301       if (ESR != ESR_Succeeded) {
5302         if (ESR != ESR_Failed && !Scope.destroy())
5303           return ESR_Failed;
5304         return ESR;
5305       }
5306     }
5307     bool Cond;
5308     if (IS->isConsteval()) {
5309       Cond = IS->isNonNegatedConsteval();
5310       // If we are not in a constant context, if consteval should not evaluate
5311       // to true.
5312       if (!Info.InConstantContext)
5313         Cond = !Cond;
5314     } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5315                              Cond))
5316       return ESR_Failed;
5317 
5318     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5319       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5320       if (ESR != ESR_Succeeded) {
5321         if (ESR != ESR_Failed && !Scope.destroy())
5322           return ESR_Failed;
5323         return ESR;
5324       }
5325     }
5326     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5327   }
5328 
5329   case Stmt::WhileStmtClass: {
5330     const WhileStmt *WS = cast<WhileStmt>(S);
5331     while (true) {
5332       BlockScopeRAII Scope(Info);
5333       bool Continue;
5334       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5335                         Continue))
5336         return ESR_Failed;
5337       if (!Continue)
5338         break;
5339 
5340       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5341       if (ESR != ESR_Continue) {
5342         if (ESR != ESR_Failed && !Scope.destroy())
5343           return ESR_Failed;
5344         return ESR;
5345       }
5346       if (!Scope.destroy())
5347         return ESR_Failed;
5348     }
5349     return ESR_Succeeded;
5350   }
5351 
5352   case Stmt::DoStmtClass: {
5353     const DoStmt *DS = cast<DoStmt>(S);
5354     bool Continue;
5355     do {
5356       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5357       if (ESR != ESR_Continue)
5358         return ESR;
5359       Case = nullptr;
5360 
5361       if (DS->getCond()->isValueDependent()) {
5362         EvaluateDependentExpr(DS->getCond(), Info);
5363         // Bailout as we don't know whether to keep going or terminate the loop.
5364         return ESR_Failed;
5365       }
5366       FullExpressionRAII CondScope(Info);
5367       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5368           !CondScope.destroy())
5369         return ESR_Failed;
5370     } while (Continue);
5371     return ESR_Succeeded;
5372   }
5373 
5374   case Stmt::ForStmtClass: {
5375     const ForStmt *FS = cast<ForStmt>(S);
5376     BlockScopeRAII ForScope(Info);
5377     if (FS->getInit()) {
5378       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5379       if (ESR != ESR_Succeeded) {
5380         if (ESR != ESR_Failed && !ForScope.destroy())
5381           return ESR_Failed;
5382         return ESR;
5383       }
5384     }
5385     while (true) {
5386       BlockScopeRAII IterScope(Info);
5387       bool Continue = true;
5388       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5389                                          FS->getCond(), Continue))
5390         return ESR_Failed;
5391       if (!Continue)
5392         break;
5393 
5394       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5395       if (ESR != ESR_Continue) {
5396         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5397           return ESR_Failed;
5398         return ESR;
5399       }
5400 
5401       if (const auto *Inc = FS->getInc()) {
5402         if (Inc->isValueDependent()) {
5403           if (!EvaluateDependentExpr(Inc, Info))
5404             return ESR_Failed;
5405         } else {
5406           FullExpressionRAII IncScope(Info);
5407           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5408             return ESR_Failed;
5409         }
5410       }
5411 
5412       if (!IterScope.destroy())
5413         return ESR_Failed;
5414     }
5415     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5416   }
5417 
5418   case Stmt::CXXForRangeStmtClass: {
5419     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5420     BlockScopeRAII Scope(Info);
5421 
5422     // Evaluate the init-statement if present.
5423     if (FS->getInit()) {
5424       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5425       if (ESR != ESR_Succeeded) {
5426         if (ESR != ESR_Failed && !Scope.destroy())
5427           return ESR_Failed;
5428         return ESR;
5429       }
5430     }
5431 
5432     // Initialize the __range variable.
5433     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5434     if (ESR != ESR_Succeeded) {
5435       if (ESR != ESR_Failed && !Scope.destroy())
5436         return ESR_Failed;
5437       return ESR;
5438     }
5439 
5440     // In error-recovery cases it's possible to get here even if we failed to
5441     // synthesize the __begin and __end variables.
5442     if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5443       return ESR_Failed;
5444 
5445     // Create the __begin and __end iterators.
5446     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5447     if (ESR != ESR_Succeeded) {
5448       if (ESR != ESR_Failed && !Scope.destroy())
5449         return ESR_Failed;
5450       return ESR;
5451     }
5452     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5453     if (ESR != ESR_Succeeded) {
5454       if (ESR != ESR_Failed && !Scope.destroy())
5455         return ESR_Failed;
5456       return ESR;
5457     }
5458 
5459     while (true) {
5460       // Condition: __begin != __end.
5461       {
5462         if (FS->getCond()->isValueDependent()) {
5463           EvaluateDependentExpr(FS->getCond(), Info);
5464           // We don't know whether to keep going or terminate the loop.
5465           return ESR_Failed;
5466         }
5467         bool Continue = true;
5468         FullExpressionRAII CondExpr(Info);
5469         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5470           return ESR_Failed;
5471         if (!Continue)
5472           break;
5473       }
5474 
5475       // User's variable declaration, initialized by *__begin.
5476       BlockScopeRAII InnerScope(Info);
5477       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5478       if (ESR != ESR_Succeeded) {
5479         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5480           return ESR_Failed;
5481         return ESR;
5482       }
5483 
5484       // Loop body.
5485       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5486       if (ESR != ESR_Continue) {
5487         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5488           return ESR_Failed;
5489         return ESR;
5490       }
5491       if (FS->getInc()->isValueDependent()) {
5492         if (!EvaluateDependentExpr(FS->getInc(), Info))
5493           return ESR_Failed;
5494       } else {
5495         // Increment: ++__begin
5496         if (!EvaluateIgnoredValue(Info, FS->getInc()))
5497           return ESR_Failed;
5498       }
5499 
5500       if (!InnerScope.destroy())
5501         return ESR_Failed;
5502     }
5503 
5504     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5505   }
5506 
5507   case Stmt::SwitchStmtClass:
5508     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5509 
5510   case Stmt::ContinueStmtClass:
5511     return ESR_Continue;
5512 
5513   case Stmt::BreakStmtClass:
5514     return ESR_Break;
5515 
5516   case Stmt::LabelStmtClass:
5517     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5518 
5519   case Stmt::AttributedStmtClass:
5520     // As a general principle, C++11 attributes can be ignored without
5521     // any semantic impact.
5522     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5523                         Case);
5524 
5525   case Stmt::CaseStmtClass:
5526   case Stmt::DefaultStmtClass:
5527     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5528   case Stmt::CXXTryStmtClass:
5529     // Evaluate try blocks by evaluating all sub statements.
5530     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5531   }
5532 }
5533 
5534 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5535 /// default constructor. If so, we'll fold it whether or not it's marked as
5536 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5537 /// so we need special handling.
5538 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5539                                            const CXXConstructorDecl *CD,
5540                                            bool IsValueInitialization) {
5541   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5542     return false;
5543 
5544   // Value-initialization does not call a trivial default constructor, so such a
5545   // call is a core constant expression whether or not the constructor is
5546   // constexpr.
5547   if (!CD->isConstexpr() && !IsValueInitialization) {
5548     if (Info.getLangOpts().CPlusPlus11) {
5549       // FIXME: If DiagDecl is an implicitly-declared special member function,
5550       // we should be much more explicit about why it's not constexpr.
5551       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5552         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5553       Info.Note(CD->getLocation(), diag::note_declared_at);
5554     } else {
5555       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5556     }
5557   }
5558   return true;
5559 }
5560 
5561 /// CheckConstexprFunction - Check that a function can be called in a constant
5562 /// expression.
5563 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5564                                    const FunctionDecl *Declaration,
5565                                    const FunctionDecl *Definition,
5566                                    const Stmt *Body) {
5567   // Potential constant expressions can contain calls to declared, but not yet
5568   // defined, constexpr functions.
5569   if (Info.checkingPotentialConstantExpression() && !Definition &&
5570       Declaration->isConstexpr())
5571     return false;
5572 
5573   // Bail out if the function declaration itself is invalid.  We will
5574   // have produced a relevant diagnostic while parsing it, so just
5575   // note the problematic sub-expression.
5576   if (Declaration->isInvalidDecl()) {
5577     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5578     return false;
5579   }
5580 
5581   // DR1872: An instantiated virtual constexpr function can't be called in a
5582   // constant expression (prior to C++20). We can still constant-fold such a
5583   // call.
5584   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5585       cast<CXXMethodDecl>(Declaration)->isVirtual())
5586     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5587 
5588   if (Definition && Definition->isInvalidDecl()) {
5589     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5590     return false;
5591   }
5592 
5593   // Can we evaluate this function call?
5594   if (Definition && Definition->isConstexpr() && Body)
5595     return true;
5596 
5597   if (Info.getLangOpts().CPlusPlus11) {
5598     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5599 
5600     // If this function is not constexpr because it is an inherited
5601     // non-constexpr constructor, diagnose that directly.
5602     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5603     if (CD && CD->isInheritingConstructor()) {
5604       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5605       if (!Inherited->isConstexpr())
5606         DiagDecl = CD = Inherited;
5607     }
5608 
5609     // FIXME: If DiagDecl is an implicitly-declared special member function
5610     // or an inheriting constructor, we should be much more explicit about why
5611     // it's not constexpr.
5612     if (CD && CD->isInheritingConstructor())
5613       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5614         << CD->getInheritedConstructor().getConstructor()->getParent();
5615     else
5616       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5617         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5618     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5619   } else {
5620     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5621   }
5622   return false;
5623 }
5624 
5625 namespace {
5626 struct CheckDynamicTypeHandler {
5627   AccessKinds AccessKind;
5628   typedef bool result_type;
5629   bool failed() { return false; }
5630   bool found(APValue &Subobj, QualType SubobjType) { return true; }
5631   bool found(APSInt &Value, QualType SubobjType) { return true; }
5632   bool found(APFloat &Value, QualType SubobjType) { return true; }
5633 };
5634 } // end anonymous namespace
5635 
5636 /// Check that we can access the notional vptr of an object / determine its
5637 /// dynamic type.
5638 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5639                              AccessKinds AK, bool Polymorphic) {
5640   if (This.Designator.Invalid)
5641     return false;
5642 
5643   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5644 
5645   if (!Obj)
5646     return false;
5647 
5648   if (!Obj.Value) {
5649     // The object is not usable in constant expressions, so we can't inspect
5650     // its value to see if it's in-lifetime or what the active union members
5651     // are. We can still check for a one-past-the-end lvalue.
5652     if (This.Designator.isOnePastTheEnd() ||
5653         This.Designator.isMostDerivedAnUnsizedArray()) {
5654       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5655                          ? diag::note_constexpr_access_past_end
5656                          : diag::note_constexpr_access_unsized_array)
5657           << AK;
5658       return false;
5659     } else if (Polymorphic) {
5660       // Conservatively refuse to perform a polymorphic operation if we would
5661       // not be able to read a notional 'vptr' value.
5662       APValue Val;
5663       This.moveInto(Val);
5664       QualType StarThisType =
5665           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5666       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5667           << AK << Val.getAsString(Info.Ctx, StarThisType);
5668       return false;
5669     }
5670     return true;
5671   }
5672 
5673   CheckDynamicTypeHandler Handler{AK};
5674   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5675 }
5676 
5677 /// Check that the pointee of the 'this' pointer in a member function call is
5678 /// either within its lifetime or in its period of construction or destruction.
5679 static bool
5680 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5681                                      const LValue &This,
5682                                      const CXXMethodDecl *NamedMember) {
5683   return checkDynamicType(
5684       Info, E, This,
5685       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5686 }
5687 
5688 struct DynamicType {
5689   /// The dynamic class type of the object.
5690   const CXXRecordDecl *Type;
5691   /// The corresponding path length in the lvalue.
5692   unsigned PathLength;
5693 };
5694 
5695 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5696                                              unsigned PathLength) {
5697   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5698       Designator.Entries.size() && "invalid path length");
5699   return (PathLength == Designator.MostDerivedPathLength)
5700              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5701              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5702 }
5703 
5704 /// Determine the dynamic type of an object.
5705 static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
5706                                                      const Expr *E,
5707                                                      LValue &This,
5708                                                      AccessKinds AK) {
5709   // If we don't have an lvalue denoting an object of class type, there is no
5710   // meaningful dynamic type. (We consider objects of non-class type to have no
5711   // dynamic type.)
5712   if (!checkDynamicType(Info, E, This, AK, true))
5713     return std::nullopt;
5714 
5715   // Refuse to compute a dynamic type in the presence of virtual bases. This
5716   // shouldn't happen other than in constant-folding situations, since literal
5717   // types can't have virtual bases.
5718   //
5719   // Note that consumers of DynamicType assume that the type has no virtual
5720   // bases, and will need modifications if this restriction is relaxed.
5721   const CXXRecordDecl *Class =
5722       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5723   if (!Class || Class->getNumVBases()) {
5724     Info.FFDiag(E);
5725     return std::nullopt;
5726   }
5727 
5728   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5729   // binary search here instead. But the overwhelmingly common case is that
5730   // we're not in the middle of a constructor, so it probably doesn't matter
5731   // in practice.
5732   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5733   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5734        PathLength <= Path.size(); ++PathLength) {
5735     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5736                                       Path.slice(0, PathLength))) {
5737     case ConstructionPhase::Bases:
5738     case ConstructionPhase::DestroyingBases:
5739       // We're constructing or destroying a base class. This is not the dynamic
5740       // type.
5741       break;
5742 
5743     case ConstructionPhase::None:
5744     case ConstructionPhase::AfterBases:
5745     case ConstructionPhase::AfterFields:
5746     case ConstructionPhase::Destroying:
5747       // We've finished constructing the base classes and not yet started
5748       // destroying them again, so this is the dynamic type.
5749       return DynamicType{getBaseClassType(This.Designator, PathLength),
5750                          PathLength};
5751     }
5752   }
5753 
5754   // CWG issue 1517: we're constructing a base class of the object described by
5755   // 'This', so that object has not yet begun its period of construction and
5756   // any polymorphic operation on it results in undefined behavior.
5757   Info.FFDiag(E);
5758   return std::nullopt;
5759 }
5760 
5761 /// Perform virtual dispatch.
5762 static const CXXMethodDecl *HandleVirtualDispatch(
5763     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5764     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5765   std::optional<DynamicType> DynType = ComputeDynamicType(
5766       Info, E, This,
5767       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5768   if (!DynType)
5769     return nullptr;
5770 
5771   // Find the final overrider. It must be declared in one of the classes on the
5772   // path from the dynamic type to the static type.
5773   // FIXME: If we ever allow literal types to have virtual base classes, that
5774   // won't be true.
5775   const CXXMethodDecl *Callee = Found;
5776   unsigned PathLength = DynType->PathLength;
5777   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5778     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5779     const CXXMethodDecl *Overrider =
5780         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5781     if (Overrider) {
5782       Callee = Overrider;
5783       break;
5784     }
5785   }
5786 
5787   // C++2a [class.abstract]p6:
5788   //   the effect of making a virtual call to a pure virtual function [...] is
5789   //   undefined
5790   if (Callee->isPure()) {
5791     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5792     Info.Note(Callee->getLocation(), diag::note_declared_at);
5793     return nullptr;
5794   }
5795 
5796   // If necessary, walk the rest of the path to determine the sequence of
5797   // covariant adjustment steps to apply.
5798   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5799                                        Found->getReturnType())) {
5800     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5801     for (unsigned CovariantPathLength = PathLength + 1;
5802          CovariantPathLength != This.Designator.Entries.size();
5803          ++CovariantPathLength) {
5804       const CXXRecordDecl *NextClass =
5805           getBaseClassType(This.Designator, CovariantPathLength);
5806       const CXXMethodDecl *Next =
5807           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5808       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5809                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5810         CovariantAdjustmentPath.push_back(Next->getReturnType());
5811     }
5812     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5813                                          CovariantAdjustmentPath.back()))
5814       CovariantAdjustmentPath.push_back(Found->getReturnType());
5815   }
5816 
5817   // Perform 'this' adjustment.
5818   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5819     return nullptr;
5820 
5821   return Callee;
5822 }
5823 
5824 /// Perform the adjustment from a value returned by a virtual function to
5825 /// a value of the statically expected type, which may be a pointer or
5826 /// reference to a base class of the returned type.
5827 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5828                                             APValue &Result,
5829                                             ArrayRef<QualType> Path) {
5830   assert(Result.isLValue() &&
5831          "unexpected kind of APValue for covariant return");
5832   if (Result.isNullPointer())
5833     return true;
5834 
5835   LValue LVal;
5836   LVal.setFrom(Info.Ctx, Result);
5837 
5838   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5839   for (unsigned I = 1; I != Path.size(); ++I) {
5840     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5841     assert(OldClass && NewClass && "unexpected kind of covariant return");
5842     if (OldClass != NewClass &&
5843         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5844       return false;
5845     OldClass = NewClass;
5846   }
5847 
5848   LVal.moveInto(Result);
5849   return true;
5850 }
5851 
5852 /// Determine whether \p Base, which is known to be a direct base class of
5853 /// \p Derived, is a public base class.
5854 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5855                               const CXXRecordDecl *Base) {
5856   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5857     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5858     if (BaseClass && declaresSameEntity(BaseClass, Base))
5859       return BaseSpec.getAccessSpecifier() == AS_public;
5860   }
5861   llvm_unreachable("Base is not a direct base of Derived");
5862 }
5863 
5864 /// Apply the given dynamic cast operation on the provided lvalue.
5865 ///
5866 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5867 /// to find a suitable target subobject.
5868 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5869                               LValue &Ptr) {
5870   // We can't do anything with a non-symbolic pointer value.
5871   SubobjectDesignator &D = Ptr.Designator;
5872   if (D.Invalid)
5873     return false;
5874 
5875   // C++ [expr.dynamic.cast]p6:
5876   //   If v is a null pointer value, the result is a null pointer value.
5877   if (Ptr.isNullPointer() && !E->isGLValue())
5878     return true;
5879 
5880   // For all the other cases, we need the pointer to point to an object within
5881   // its lifetime / period of construction / destruction, and we need to know
5882   // its dynamic type.
5883   std::optional<DynamicType> DynType =
5884       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5885   if (!DynType)
5886     return false;
5887 
5888   // C++ [expr.dynamic.cast]p7:
5889   //   If T is "pointer to cv void", then the result is a pointer to the most
5890   //   derived object
5891   if (E->getType()->isVoidPointerType())
5892     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5893 
5894   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5895   assert(C && "dynamic_cast target is not void pointer nor class");
5896   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5897 
5898   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5899     // C++ [expr.dynamic.cast]p9:
5900     if (!E->isGLValue()) {
5901       //   The value of a failed cast to pointer type is the null pointer value
5902       //   of the required result type.
5903       Ptr.setNull(Info.Ctx, E->getType());
5904       return true;
5905     }
5906 
5907     //   A failed cast to reference type throws [...] std::bad_cast.
5908     unsigned DiagKind;
5909     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5910                    DynType->Type->isDerivedFrom(C)))
5911       DiagKind = 0;
5912     else if (!Paths || Paths->begin() == Paths->end())
5913       DiagKind = 1;
5914     else if (Paths->isAmbiguous(CQT))
5915       DiagKind = 2;
5916     else {
5917       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5918       DiagKind = 3;
5919     }
5920     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5921         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5922         << Info.Ctx.getRecordType(DynType->Type)
5923         << E->getType().getUnqualifiedType();
5924     return false;
5925   };
5926 
5927   // Runtime check, phase 1:
5928   //   Walk from the base subobject towards the derived object looking for the
5929   //   target type.
5930   for (int PathLength = Ptr.Designator.Entries.size();
5931        PathLength >= (int)DynType->PathLength; --PathLength) {
5932     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5933     if (declaresSameEntity(Class, C))
5934       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5935     // We can only walk across public inheritance edges.
5936     if (PathLength > (int)DynType->PathLength &&
5937         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5938                            Class))
5939       return RuntimeCheckFailed(nullptr);
5940   }
5941 
5942   // Runtime check, phase 2:
5943   //   Search the dynamic type for an unambiguous public base of type C.
5944   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5945                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5946   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5947       Paths.front().Access == AS_public) {
5948     // Downcast to the dynamic type...
5949     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5950       return false;
5951     // ... then upcast to the chosen base class subobject.
5952     for (CXXBasePathElement &Elem : Paths.front())
5953       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5954         return false;
5955     return true;
5956   }
5957 
5958   // Otherwise, the runtime check fails.
5959   return RuntimeCheckFailed(&Paths);
5960 }
5961 
5962 namespace {
5963 struct StartLifetimeOfUnionMemberHandler {
5964   EvalInfo &Info;
5965   const Expr *LHSExpr;
5966   const FieldDecl *Field;
5967   bool DuringInit;
5968   bool Failed = false;
5969   static const AccessKinds AccessKind = AK_Assign;
5970 
5971   typedef bool result_type;
5972   bool failed() { return Failed; }
5973   bool found(APValue &Subobj, QualType SubobjType) {
5974     // We are supposed to perform no initialization but begin the lifetime of
5975     // the object. We interpret that as meaning to do what default
5976     // initialization of the object would do if all constructors involved were
5977     // trivial:
5978     //  * All base, non-variant member, and array element subobjects' lifetimes
5979     //    begin
5980     //  * No variant members' lifetimes begin
5981     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5982     assert(SubobjType->isUnionType());
5983     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5984       // This union member is already active. If it's also in-lifetime, there's
5985       // nothing to do.
5986       if (Subobj.getUnionValue().hasValue())
5987         return true;
5988     } else if (DuringInit) {
5989       // We're currently in the process of initializing a different union
5990       // member.  If we carried on, that initialization would attempt to
5991       // store to an inactive union member, resulting in undefined behavior.
5992       Info.FFDiag(LHSExpr,
5993                   diag::note_constexpr_union_member_change_during_init);
5994       return false;
5995     }
5996     APValue Result;
5997     Failed = !getDefaultInitValue(Field->getType(), Result);
5998     Subobj.setUnion(Field, Result);
5999     return true;
6000   }
6001   bool found(APSInt &Value, QualType SubobjType) {
6002     llvm_unreachable("wrong value kind for union object");
6003   }
6004   bool found(APFloat &Value, QualType SubobjType) {
6005     llvm_unreachable("wrong value kind for union object");
6006   }
6007 };
6008 } // end anonymous namespace
6009 
6010 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
6011 
6012 /// Handle a builtin simple-assignment or a call to a trivial assignment
6013 /// operator whose left-hand side might involve a union member access. If it
6014 /// does, implicitly start the lifetime of any accessed union elements per
6015 /// C++20 [class.union]5.
6016 static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info,
6017                                                const Expr *LHSExpr,
6018                                                const LValue &LHS) {
6019   if (LHS.InvalidBase || LHS.Designator.Invalid)
6020     return false;
6021 
6022   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
6023   // C++ [class.union]p5:
6024   //   define the set S(E) of subexpressions of E as follows:
6025   unsigned PathLength = LHS.Designator.Entries.size();
6026   for (const Expr *E = LHSExpr; E != nullptr;) {
6027     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
6028     if (auto *ME = dyn_cast<MemberExpr>(E)) {
6029       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
6030       // Note that we can't implicitly start the lifetime of a reference,
6031       // so we don't need to proceed any further if we reach one.
6032       if (!FD || FD->getType()->isReferenceType())
6033         break;
6034 
6035       //    ... and also contains A.B if B names a union member ...
6036       if (FD->getParent()->isUnion()) {
6037         //    ... of a non-class, non-array type, or of a class type with a
6038         //    trivial default constructor that is not deleted, or an array of
6039         //    such types.
6040         auto *RD =
6041             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6042         if (!RD || RD->hasTrivialDefaultConstructor())
6043           UnionPathLengths.push_back({PathLength - 1, FD});
6044       }
6045 
6046       E = ME->getBase();
6047       --PathLength;
6048       assert(declaresSameEntity(FD,
6049                                 LHS.Designator.Entries[PathLength]
6050                                     .getAsBaseOrMember().getPointer()));
6051 
6052       //   -- If E is of the form A[B] and is interpreted as a built-in array
6053       //      subscripting operator, S(E) is [S(the array operand, if any)].
6054     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
6055       // Step over an ArrayToPointerDecay implicit cast.
6056       auto *Base = ASE->getBase()->IgnoreImplicit();
6057       if (!Base->getType()->isArrayType())
6058         break;
6059 
6060       E = Base;
6061       --PathLength;
6062 
6063     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6064       // Step over a derived-to-base conversion.
6065       E = ICE->getSubExpr();
6066       if (ICE->getCastKind() == CK_NoOp)
6067         continue;
6068       if (ICE->getCastKind() != CK_DerivedToBase &&
6069           ICE->getCastKind() != CK_UncheckedDerivedToBase)
6070         break;
6071       // Walk path backwards as we walk up from the base to the derived class.
6072       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6073         if (Elt->isVirtual()) {
6074           // A class with virtual base classes never has a trivial default
6075           // constructor, so S(E) is empty in this case.
6076           E = nullptr;
6077           break;
6078         }
6079 
6080         --PathLength;
6081         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6082                                   LHS.Designator.Entries[PathLength]
6083                                       .getAsBaseOrMember().getPointer()));
6084       }
6085 
6086     //   -- Otherwise, S(E) is empty.
6087     } else {
6088       break;
6089     }
6090   }
6091 
6092   // Common case: no unions' lifetimes are started.
6093   if (UnionPathLengths.empty())
6094     return true;
6095 
6096   //   if modification of X [would access an inactive union member], an object
6097   //   of the type of X is implicitly created
6098   CompleteObject Obj =
6099       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6100   if (!Obj)
6101     return false;
6102   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6103            llvm::reverse(UnionPathLengths)) {
6104     // Form a designator for the union object.
6105     SubobjectDesignator D = LHS.Designator;
6106     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6107 
6108     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6109                       ConstructionPhase::AfterBases;
6110     StartLifetimeOfUnionMemberHandler StartLifetime{
6111         Info, LHSExpr, LengthAndField.second, DuringInit};
6112     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6113       return false;
6114   }
6115 
6116   return true;
6117 }
6118 
6119 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6120                             CallRef Call, EvalInfo &Info,
6121                             bool NonNull = false) {
6122   LValue LV;
6123   // Create the parameter slot and register its destruction. For a vararg
6124   // argument, create a temporary.
6125   // FIXME: For calling conventions that destroy parameters in the callee,
6126   // should we consider performing destruction when the function returns
6127   // instead?
6128   APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6129                    : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6130                                                        ScopeKind::Call, LV);
6131   if (!EvaluateInPlace(V, Info, LV, Arg))
6132     return false;
6133 
6134   // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6135   // undefined behavior, so is non-constant.
6136   if (NonNull && V.isLValue() && V.isNullPointer()) {
6137     Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6138     return false;
6139   }
6140 
6141   return true;
6142 }
6143 
6144 /// Evaluate the arguments to a function call.
6145 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6146                          EvalInfo &Info, const FunctionDecl *Callee,
6147                          bool RightToLeft = false) {
6148   bool Success = true;
6149   llvm::SmallBitVector ForbiddenNullArgs;
6150   if (Callee->hasAttr<NonNullAttr>()) {
6151     ForbiddenNullArgs.resize(Args.size());
6152     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6153       if (!Attr->args_size()) {
6154         ForbiddenNullArgs.set();
6155         break;
6156       } else
6157         for (auto Idx : Attr->args()) {
6158           unsigned ASTIdx = Idx.getASTIndex();
6159           if (ASTIdx >= Args.size())
6160             continue;
6161           ForbiddenNullArgs[ASTIdx] = true;
6162         }
6163     }
6164   }
6165   for (unsigned I = 0; I < Args.size(); I++) {
6166     unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6167     const ParmVarDecl *PVD =
6168         Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6169     bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6170     if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6171       // If we're checking for a potential constant expression, evaluate all
6172       // initializers even if some of them fail.
6173       if (!Info.noteFailure())
6174         return false;
6175       Success = false;
6176     }
6177   }
6178   return Success;
6179 }
6180 
6181 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6182 /// constructor or assignment operator.
6183 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6184                               const Expr *E, APValue &Result,
6185                               bool CopyObjectRepresentation) {
6186   // Find the reference argument.
6187   CallStackFrame *Frame = Info.CurrentCall;
6188   APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6189   if (!RefValue) {
6190     Info.FFDiag(E);
6191     return false;
6192   }
6193 
6194   // Copy out the contents of the RHS object.
6195   LValue RefLValue;
6196   RefLValue.setFrom(Info.Ctx, *RefValue);
6197   return handleLValueToRValueConversion(
6198       Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6199       CopyObjectRepresentation);
6200 }
6201 
6202 /// Evaluate a function call.
6203 static bool HandleFunctionCall(SourceLocation CallLoc,
6204                                const FunctionDecl *Callee, const LValue *This,
6205                                const Expr *E, ArrayRef<const Expr *> Args,
6206                                CallRef Call, const Stmt *Body, EvalInfo &Info,
6207                                APValue &Result, const LValue *ResultSlot) {
6208   if (!Info.CheckCallLimit(CallLoc))
6209     return false;
6210 
6211   CallStackFrame Frame(Info, CallLoc, Callee, This, E, Call);
6212 
6213   // For a trivial copy or move assignment, perform an APValue copy. This is
6214   // essential for unions, where the operations performed by the assignment
6215   // operator cannot be represented as statements.
6216   //
6217   // Skip this for non-union classes with no fields; in that case, the defaulted
6218   // copy/move does not actually read the object.
6219   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6220   if (MD && MD->isDefaulted() &&
6221       (MD->getParent()->isUnion() ||
6222        (MD->isTrivial() &&
6223         isReadByLvalueToRvalueConversion(MD->getParent())))) {
6224     assert(This &&
6225            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6226     APValue RHSValue;
6227     if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6228                            MD->getParent()->isUnion()))
6229       return false;
6230     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6231                           RHSValue))
6232       return false;
6233     This->moveInto(Result);
6234     return true;
6235   } else if (MD && isLambdaCallOperator(MD)) {
6236     // We're in a lambda; determine the lambda capture field maps unless we're
6237     // just constexpr checking a lambda's call operator. constexpr checking is
6238     // done before the captures have been added to the closure object (unless
6239     // we're inferring constexpr-ness), so we don't have access to them in this
6240     // case. But since we don't need the captures to constexpr check, we can
6241     // just ignore them.
6242     if (!Info.checkingPotentialConstantExpression())
6243       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6244                                         Frame.LambdaThisCaptureField);
6245   }
6246 
6247   StmtResult Ret = {Result, ResultSlot};
6248   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6249   if (ESR == ESR_Succeeded) {
6250     if (Callee->getReturnType()->isVoidType())
6251       return true;
6252     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6253   }
6254   return ESR == ESR_Returned;
6255 }
6256 
6257 /// Evaluate a constructor call.
6258 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6259                                   CallRef Call,
6260                                   const CXXConstructorDecl *Definition,
6261                                   EvalInfo &Info, APValue &Result) {
6262   SourceLocation CallLoc = E->getExprLoc();
6263   if (!Info.CheckCallLimit(CallLoc))
6264     return false;
6265 
6266   const CXXRecordDecl *RD = Definition->getParent();
6267   if (RD->getNumVBases()) {
6268     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6269     return false;
6270   }
6271 
6272   EvalInfo::EvaluatingConstructorRAII EvalObj(
6273       Info,
6274       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6275       RD->getNumBases());
6276   CallStackFrame Frame(Info, CallLoc, Definition, &This, E, Call);
6277 
6278   // FIXME: Creating an APValue just to hold a nonexistent return value is
6279   // wasteful.
6280   APValue RetVal;
6281   StmtResult Ret = {RetVal, nullptr};
6282 
6283   // If it's a delegating constructor, delegate.
6284   if (Definition->isDelegatingConstructor()) {
6285     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6286     if ((*I)->getInit()->isValueDependent()) {
6287       if (!EvaluateDependentExpr((*I)->getInit(), Info))
6288         return false;
6289     } else {
6290       FullExpressionRAII InitScope(Info);
6291       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6292           !InitScope.destroy())
6293         return false;
6294     }
6295     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6296   }
6297 
6298   // For a trivial copy or move constructor, perform an APValue copy. This is
6299   // essential for unions (or classes with anonymous union members), where the
6300   // operations performed by the constructor cannot be represented by
6301   // ctor-initializers.
6302   //
6303   // Skip this for empty non-union classes; we should not perform an
6304   // lvalue-to-rvalue conversion on them because their copy constructor does not
6305   // actually read them.
6306   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6307       (Definition->getParent()->isUnion() ||
6308        (Definition->isTrivial() &&
6309         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6310     return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6311                              Definition->getParent()->isUnion());
6312   }
6313 
6314   // Reserve space for the struct members.
6315   if (!Result.hasValue()) {
6316     if (!RD->isUnion())
6317       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6318                        std::distance(RD->field_begin(), RD->field_end()));
6319     else
6320       // A union starts with no active member.
6321       Result = APValue((const FieldDecl*)nullptr);
6322   }
6323 
6324   if (RD->isInvalidDecl()) return false;
6325   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6326 
6327   // A scope for temporaries lifetime-extended by reference members.
6328   BlockScopeRAII LifetimeExtendedScope(Info);
6329 
6330   bool Success = true;
6331   unsigned BasesSeen = 0;
6332 #ifndef NDEBUG
6333   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6334 #endif
6335   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6336   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6337     // We might be initializing the same field again if this is an indirect
6338     // field initialization.
6339     if (FieldIt == RD->field_end() ||
6340         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6341       assert(Indirect && "fields out of order?");
6342       return;
6343     }
6344 
6345     // Default-initialize any fields with no explicit initializer.
6346     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6347       assert(FieldIt != RD->field_end() && "missing field?");
6348       if (!FieldIt->isUnnamedBitfield())
6349         Success &= getDefaultInitValue(
6350             FieldIt->getType(),
6351             Result.getStructField(FieldIt->getFieldIndex()));
6352     }
6353     ++FieldIt;
6354   };
6355   for (const auto *I : Definition->inits()) {
6356     LValue Subobject = This;
6357     LValue SubobjectParent = This;
6358     APValue *Value = &Result;
6359 
6360     // Determine the subobject to initialize.
6361     FieldDecl *FD = nullptr;
6362     if (I->isBaseInitializer()) {
6363       QualType BaseType(I->getBaseClass(), 0);
6364 #ifndef NDEBUG
6365       // Non-virtual base classes are initialized in the order in the class
6366       // definition. We have already checked for virtual base classes.
6367       assert(!BaseIt->isVirtual() && "virtual base for literal type");
6368       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6369              "base class initializers not in expected order");
6370       ++BaseIt;
6371 #endif
6372       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6373                                   BaseType->getAsCXXRecordDecl(), &Layout))
6374         return false;
6375       Value = &Result.getStructBase(BasesSeen++);
6376     } else if ((FD = I->getMember())) {
6377       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6378         return false;
6379       if (RD->isUnion()) {
6380         Result = APValue(FD);
6381         Value = &Result.getUnionValue();
6382       } else {
6383         SkipToField(FD, false);
6384         Value = &Result.getStructField(FD->getFieldIndex());
6385       }
6386     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6387       // Walk the indirect field decl's chain to find the object to initialize,
6388       // and make sure we've initialized every step along it.
6389       auto IndirectFieldChain = IFD->chain();
6390       for (auto *C : IndirectFieldChain) {
6391         FD = cast<FieldDecl>(C);
6392         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6393         // Switch the union field if it differs. This happens if we had
6394         // preceding zero-initialization, and we're now initializing a union
6395         // subobject other than the first.
6396         // FIXME: In this case, the values of the other subobjects are
6397         // specified, since zero-initialization sets all padding bits to zero.
6398         if (!Value->hasValue() ||
6399             (Value->isUnion() && Value->getUnionField() != FD)) {
6400           if (CD->isUnion())
6401             *Value = APValue(FD);
6402           else
6403             // FIXME: This immediately starts the lifetime of all members of
6404             // an anonymous struct. It would be preferable to strictly start
6405             // member lifetime in initialization order.
6406             Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6407         }
6408         // Store Subobject as its parent before updating it for the last element
6409         // in the chain.
6410         if (C == IndirectFieldChain.back())
6411           SubobjectParent = Subobject;
6412         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6413           return false;
6414         if (CD->isUnion())
6415           Value = &Value->getUnionValue();
6416         else {
6417           if (C == IndirectFieldChain.front() && !RD->isUnion())
6418             SkipToField(FD, true);
6419           Value = &Value->getStructField(FD->getFieldIndex());
6420         }
6421       }
6422     } else {
6423       llvm_unreachable("unknown base initializer kind");
6424     }
6425 
6426     // Need to override This for implicit field initializers as in this case
6427     // This refers to innermost anonymous struct/union containing initializer,
6428     // not to currently constructed class.
6429     const Expr *Init = I->getInit();
6430     if (Init->isValueDependent()) {
6431       if (!EvaluateDependentExpr(Init, Info))
6432         return false;
6433     } else {
6434       ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6435                                     isa<CXXDefaultInitExpr>(Init));
6436       FullExpressionRAII InitScope(Info);
6437       if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6438           (FD && FD->isBitField() &&
6439            !truncateBitfieldValue(Info, Init, *Value, FD))) {
6440         // If we're checking for a potential constant expression, evaluate all
6441         // initializers even if some of them fail.
6442         if (!Info.noteFailure())
6443           return false;
6444         Success = false;
6445       }
6446     }
6447 
6448     // This is the point at which the dynamic type of the object becomes this
6449     // class type.
6450     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6451       EvalObj.finishedConstructingBases();
6452   }
6453 
6454   // Default-initialize any remaining fields.
6455   if (!RD->isUnion()) {
6456     for (; FieldIt != RD->field_end(); ++FieldIt) {
6457       if (!FieldIt->isUnnamedBitfield())
6458         Success &= getDefaultInitValue(
6459             FieldIt->getType(),
6460             Result.getStructField(FieldIt->getFieldIndex()));
6461     }
6462   }
6463 
6464   EvalObj.finishedConstructingFields();
6465 
6466   return Success &&
6467          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6468          LifetimeExtendedScope.destroy();
6469 }
6470 
6471 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6472                                   ArrayRef<const Expr*> Args,
6473                                   const CXXConstructorDecl *Definition,
6474                                   EvalInfo &Info, APValue &Result) {
6475   CallScopeRAII CallScope(Info);
6476   CallRef Call = Info.CurrentCall->createCall(Definition);
6477   if (!EvaluateArgs(Args, Call, Info, Definition))
6478     return false;
6479 
6480   return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6481          CallScope.destroy();
6482 }
6483 
6484 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6485                                   const LValue &This, APValue &Value,
6486                                   QualType T) {
6487   // Objects can only be destroyed while they're within their lifetimes.
6488   // FIXME: We have no representation for whether an object of type nullptr_t
6489   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6490   // as indeterminate instead?
6491   if (Value.isAbsent() && !T->isNullPtrType()) {
6492     APValue Printable;
6493     This.moveInto(Printable);
6494     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6495       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6496     return false;
6497   }
6498 
6499   // Invent an expression for location purposes.
6500   // FIXME: We shouldn't need to do this.
6501   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);
6502 
6503   // For arrays, destroy elements right-to-left.
6504   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6505     uint64_t Size = CAT->getSize().getZExtValue();
6506     QualType ElemT = CAT->getElementType();
6507 
6508     LValue ElemLV = This;
6509     ElemLV.addArray(Info, &LocE, CAT);
6510     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6511       return false;
6512 
6513     // Ensure that we have actual array elements available to destroy; the
6514     // destructors might mutate the value, so we can't run them on the array
6515     // filler.
6516     if (Size && Size > Value.getArrayInitializedElts())
6517       expandArray(Value, Value.getArraySize() - 1);
6518 
6519     for (; Size != 0; --Size) {
6520       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6521       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6522           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6523         return false;
6524     }
6525 
6526     // End the lifetime of this array now.
6527     Value = APValue();
6528     return true;
6529   }
6530 
6531   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6532   if (!RD) {
6533     if (T.isDestructedType()) {
6534       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6535       return false;
6536     }
6537 
6538     Value = APValue();
6539     return true;
6540   }
6541 
6542   if (RD->getNumVBases()) {
6543     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6544     return false;
6545   }
6546 
6547   const CXXDestructorDecl *DD = RD->getDestructor();
6548   if (!DD && !RD->hasTrivialDestructor()) {
6549     Info.FFDiag(CallLoc);
6550     return false;
6551   }
6552 
6553   if (!DD || DD->isTrivial() ||
6554       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6555     // A trivial destructor just ends the lifetime of the object. Check for
6556     // this case before checking for a body, because we might not bother
6557     // building a body for a trivial destructor. Note that it doesn't matter
6558     // whether the destructor is constexpr in this case; all trivial
6559     // destructors are constexpr.
6560     //
6561     // If an anonymous union would be destroyed, some enclosing destructor must
6562     // have been explicitly defined, and the anonymous union destruction should
6563     // have no effect.
6564     Value = APValue();
6565     return true;
6566   }
6567 
6568   if (!Info.CheckCallLimit(CallLoc))
6569     return false;
6570 
6571   const FunctionDecl *Definition = nullptr;
6572   const Stmt *Body = DD->getBody(Definition);
6573 
6574   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6575     return false;
6576 
6577   CallStackFrame Frame(Info, CallLoc, Definition, &This, /*CallExpr=*/nullptr,
6578                        CallRef());
6579 
6580   // We're now in the period of destruction of this object.
6581   unsigned BasesLeft = RD->getNumBases();
6582   EvalInfo::EvaluatingDestructorRAII EvalObj(
6583       Info,
6584       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6585   if (!EvalObj.DidInsert) {
6586     // C++2a [class.dtor]p19:
6587     //   the behavior is undefined if the destructor is invoked for an object
6588     //   whose lifetime has ended
6589     // (Note that formally the lifetime ends when the period of destruction
6590     // begins, even though certain uses of the object remain valid until the
6591     // period of destruction ends.)
6592     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6593     return false;
6594   }
6595 
6596   // FIXME: Creating an APValue just to hold a nonexistent return value is
6597   // wasteful.
6598   APValue RetVal;
6599   StmtResult Ret = {RetVal, nullptr};
6600   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6601     return false;
6602 
6603   // A union destructor does not implicitly destroy its members.
6604   if (RD->isUnion())
6605     return true;
6606 
6607   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6608 
6609   // We don't have a good way to iterate fields in reverse, so collect all the
6610   // fields first and then walk them backwards.
6611   SmallVector<FieldDecl*, 16> Fields(RD->fields());
6612   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6613     if (FD->isUnnamedBitfield())
6614       continue;
6615 
6616     LValue Subobject = This;
6617     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6618       return false;
6619 
6620     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6621     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6622                                FD->getType()))
6623       return false;
6624   }
6625 
6626   if (BasesLeft != 0)
6627     EvalObj.startedDestroyingBases();
6628 
6629   // Destroy base classes in reverse order.
6630   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6631     --BasesLeft;
6632 
6633     QualType BaseType = Base.getType();
6634     LValue Subobject = This;
6635     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6636                                 BaseType->getAsCXXRecordDecl(), &Layout))
6637       return false;
6638 
6639     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6640     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6641                                BaseType))
6642       return false;
6643   }
6644   assert(BasesLeft == 0 && "NumBases was wrong?");
6645 
6646   // The period of destruction ends now. The object is gone.
6647   Value = APValue();
6648   return true;
6649 }
6650 
6651 namespace {
6652 struct DestroyObjectHandler {
6653   EvalInfo &Info;
6654   const Expr *E;
6655   const LValue &This;
6656   const AccessKinds AccessKind;
6657 
6658   typedef bool result_type;
6659   bool failed() { return false; }
6660   bool found(APValue &Subobj, QualType SubobjType) {
6661     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6662                                  SubobjType);
6663   }
6664   bool found(APSInt &Value, QualType SubobjType) {
6665     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6666     return false;
6667   }
6668   bool found(APFloat &Value, QualType SubobjType) {
6669     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6670     return false;
6671   }
6672 };
6673 }
6674 
6675 /// Perform a destructor or pseudo-destructor call on the given object, which
6676 /// might in general not be a complete object.
6677 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6678                               const LValue &This, QualType ThisType) {
6679   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6680   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6681   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6682 }
6683 
6684 /// Destroy and end the lifetime of the given complete object.
6685 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6686                               APValue::LValueBase LVBase, APValue &Value,
6687                               QualType T) {
6688   // If we've had an unmodeled side-effect, we can't rely on mutable state
6689   // (such as the object we're about to destroy) being correct.
6690   if (Info.EvalStatus.HasSideEffects)
6691     return false;
6692 
6693   LValue LV;
6694   LV.set({LVBase});
6695   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6696 }
6697 
6698 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
6699 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6700                                   LValue &Result) {
6701   if (Info.checkingPotentialConstantExpression() ||
6702       Info.SpeculativeEvaluationDepth)
6703     return false;
6704 
6705   // This is permitted only within a call to std::allocator<T>::allocate.
6706   auto Caller = Info.getStdAllocatorCaller("allocate");
6707   if (!Caller) {
6708     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6709                                      ? diag::note_constexpr_new_untyped
6710                                      : diag::note_constexpr_new);
6711     return false;
6712   }
6713 
6714   QualType ElemType = Caller.ElemType;
6715   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6716     Info.FFDiag(E->getExprLoc(),
6717                 diag::note_constexpr_new_not_complete_object_type)
6718         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6719     return false;
6720   }
6721 
6722   APSInt ByteSize;
6723   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6724     return false;
6725   bool IsNothrow = false;
6726   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6727     EvaluateIgnoredValue(Info, E->getArg(I));
6728     IsNothrow |= E->getType()->isNothrowT();
6729   }
6730 
6731   CharUnits ElemSize;
6732   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6733     return false;
6734   APInt Size, Remainder;
6735   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6736   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6737   if (Remainder != 0) {
6738     // This likely indicates a bug in the implementation of 'std::allocator'.
6739     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6740         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6741     return false;
6742   }
6743 
6744   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6745     if (IsNothrow) {
6746       Result.setNull(Info.Ctx, E->getType());
6747       return true;
6748     }
6749 
6750     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6751     return false;
6752   }
6753 
6754   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6755                                                      ArrayType::Normal, 0);
6756   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6757   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6758   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6759   return true;
6760 }
6761 
6762 static bool hasVirtualDestructor(QualType T) {
6763   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6764     if (CXXDestructorDecl *DD = RD->getDestructor())
6765       return DD->isVirtual();
6766   return false;
6767 }
6768 
6769 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6770   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6771     if (CXXDestructorDecl *DD = RD->getDestructor())
6772       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6773   return nullptr;
6774 }
6775 
6776 /// Check that the given object is a suitable pointer to a heap allocation that
6777 /// still exists and is of the right kind for the purpose of a deletion.
6778 ///
6779 /// On success, returns the heap allocation to deallocate. On failure, produces
6780 /// a diagnostic and returns std::nullopt.
6781 static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6782                                                  const LValue &Pointer,
6783                                                  DynAlloc::Kind DeallocKind) {
6784   auto PointerAsString = [&] {
6785     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6786   };
6787 
6788   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6789   if (!DA) {
6790     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6791         << PointerAsString();
6792     if (Pointer.Base)
6793       NoteLValueLocation(Info, Pointer.Base);
6794     return std::nullopt;
6795   }
6796 
6797   std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6798   if (!Alloc) {
6799     Info.FFDiag(E, diag::note_constexpr_double_delete);
6800     return std::nullopt;
6801   }
6802 
6803   QualType AllocType = Pointer.Base.getDynamicAllocType();
6804   if (DeallocKind != (*Alloc)->getKind()) {
6805     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6806         << DeallocKind << (*Alloc)->getKind() << AllocType;
6807     NoteLValueLocation(Info, Pointer.Base);
6808     return std::nullopt;
6809   }
6810 
6811   bool Subobject = false;
6812   if (DeallocKind == DynAlloc::New) {
6813     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6814                 Pointer.Designator.isOnePastTheEnd();
6815   } else {
6816     Subobject = Pointer.Designator.Entries.size() != 1 ||
6817                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6818   }
6819   if (Subobject) {
6820     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6821         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6822     return std::nullopt;
6823   }
6824 
6825   return Alloc;
6826 }
6827 
6828 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6829 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6830   if (Info.checkingPotentialConstantExpression() ||
6831       Info.SpeculativeEvaluationDepth)
6832     return false;
6833 
6834   // This is permitted only within a call to std::allocator<T>::deallocate.
6835   if (!Info.getStdAllocatorCaller("deallocate")) {
6836     Info.FFDiag(E->getExprLoc());
6837     return true;
6838   }
6839 
6840   LValue Pointer;
6841   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6842     return false;
6843   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6844     EvaluateIgnoredValue(Info, E->getArg(I));
6845 
6846   if (Pointer.Designator.Invalid)
6847     return false;
6848 
6849   // Deleting a null pointer would have no effect, but it's not permitted by
6850   // std::allocator<T>::deallocate's contract.
6851   if (Pointer.isNullPointer()) {
6852     Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6853     return true;
6854   }
6855 
6856   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6857     return false;
6858 
6859   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6860   return true;
6861 }
6862 
6863 //===----------------------------------------------------------------------===//
6864 // Generic Evaluation
6865 //===----------------------------------------------------------------------===//
6866 namespace {
6867 
6868 class BitCastBuffer {
6869   // FIXME: We're going to need bit-level granularity when we support
6870   // bit-fields.
6871   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6872   // we don't support a host or target where that is the case. Still, we should
6873   // use a more generic type in case we ever do.
6874   SmallVector<std::optional<unsigned char>, 32> Bytes;
6875 
6876   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6877                 "Need at least 8 bit unsigned char");
6878 
6879   bool TargetIsLittleEndian;
6880 
6881 public:
6882   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6883       : Bytes(Width.getQuantity()),
6884         TargetIsLittleEndian(TargetIsLittleEndian) {}
6885 
6886   [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
6887                                 SmallVectorImpl<unsigned char> &Output) const {
6888     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6889       // If a byte of an integer is uninitialized, then the whole integer is
6890       // uninitialized.
6891       if (!Bytes[I.getQuantity()])
6892         return false;
6893       Output.push_back(*Bytes[I.getQuantity()]);
6894     }
6895     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6896       std::reverse(Output.begin(), Output.end());
6897     return true;
6898   }
6899 
6900   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6901     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6902       std::reverse(Input.begin(), Input.end());
6903 
6904     size_t Index = 0;
6905     for (unsigned char Byte : Input) {
6906       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6907       Bytes[Offset.getQuantity() + Index] = Byte;
6908       ++Index;
6909     }
6910   }
6911 
6912   size_t size() { return Bytes.size(); }
6913 };
6914 
6915 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6916 /// target would represent the value at runtime.
6917 class APValueToBufferConverter {
6918   EvalInfo &Info;
6919   BitCastBuffer Buffer;
6920   const CastExpr *BCE;
6921 
6922   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6923                            const CastExpr *BCE)
6924       : Info(Info),
6925         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6926         BCE(BCE) {}
6927 
6928   bool visit(const APValue &Val, QualType Ty) {
6929     return visit(Val, Ty, CharUnits::fromQuantity(0));
6930   }
6931 
6932   // Write out Val with type Ty into Buffer starting at Offset.
6933   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6934     assert((size_t)Offset.getQuantity() <= Buffer.size());
6935 
6936     // As a special case, nullptr_t has an indeterminate value.
6937     if (Ty->isNullPtrType())
6938       return true;
6939 
6940     // Dig through Src to find the byte at SrcOffset.
6941     switch (Val.getKind()) {
6942     case APValue::Indeterminate:
6943     case APValue::None:
6944       return true;
6945 
6946     case APValue::Int:
6947       return visitInt(Val.getInt(), Ty, Offset);
6948     case APValue::Float:
6949       return visitFloat(Val.getFloat(), Ty, Offset);
6950     case APValue::Array:
6951       return visitArray(Val, Ty, Offset);
6952     case APValue::Struct:
6953       return visitRecord(Val, Ty, Offset);
6954 
6955     case APValue::ComplexInt:
6956     case APValue::ComplexFloat:
6957     case APValue::Vector:
6958     case APValue::FixedPoint:
6959       // FIXME: We should support these.
6960 
6961     case APValue::Union:
6962     case APValue::MemberPointer:
6963     case APValue::AddrLabelDiff: {
6964       Info.FFDiag(BCE->getBeginLoc(),
6965                   diag::note_constexpr_bit_cast_unsupported_type)
6966           << Ty;
6967       return false;
6968     }
6969 
6970     case APValue::LValue:
6971       llvm_unreachable("LValue subobject in bit_cast?");
6972     }
6973     llvm_unreachable("Unhandled APValue::ValueKind");
6974   }
6975 
6976   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6977     const RecordDecl *RD = Ty->getAsRecordDecl();
6978     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6979 
6980     // Visit the base classes.
6981     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6982       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6983         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6984         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6985 
6986         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6987                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6988           return false;
6989       }
6990     }
6991 
6992     // Visit the fields.
6993     unsigned FieldIdx = 0;
6994     for (FieldDecl *FD : RD->fields()) {
6995       if (FD->isBitField()) {
6996         Info.FFDiag(BCE->getBeginLoc(),
6997                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6998         return false;
6999       }
7000 
7001       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7002 
7003       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
7004              "only bit-fields can have sub-char alignment");
7005       CharUnits FieldOffset =
7006           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
7007       QualType FieldTy = FD->getType();
7008       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
7009         return false;
7010       ++FieldIdx;
7011     }
7012 
7013     return true;
7014   }
7015 
7016   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
7017     const auto *CAT =
7018         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
7019     if (!CAT)
7020       return false;
7021 
7022     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
7023     unsigned NumInitializedElts = Val.getArrayInitializedElts();
7024     unsigned ArraySize = Val.getArraySize();
7025     // First, initialize the initialized elements.
7026     for (unsigned I = 0; I != NumInitializedElts; ++I) {
7027       const APValue &SubObj = Val.getArrayInitializedElt(I);
7028       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
7029         return false;
7030     }
7031 
7032     // Next, initialize the rest of the array using the filler.
7033     if (Val.hasArrayFiller()) {
7034       const APValue &Filler = Val.getArrayFiller();
7035       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
7036         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
7037           return false;
7038       }
7039     }
7040 
7041     return true;
7042   }
7043 
7044   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7045     APSInt AdjustedVal = Val;
7046     unsigned Width = AdjustedVal.getBitWidth();
7047     if (Ty->isBooleanType()) {
7048       Width = Info.Ctx.getTypeSize(Ty);
7049       AdjustedVal = AdjustedVal.extend(Width);
7050     }
7051 
7052     SmallVector<unsigned char, 8> Bytes(Width / 8);
7053     llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
7054     Buffer.writeObject(Offset, Bytes);
7055     return true;
7056   }
7057 
7058   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7059     APSInt AsInt(Val.bitcastToAPInt());
7060     return visitInt(AsInt, Ty, Offset);
7061   }
7062 
7063 public:
7064   static std::optional<BitCastBuffer>
7065   convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7066     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7067     APValueToBufferConverter Converter(Info, DstSize, BCE);
7068     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
7069       return std::nullopt;
7070     return Converter.Buffer;
7071   }
7072 };
7073 
7074 /// Write an BitCastBuffer into an APValue.
7075 class BufferToAPValueConverter {
7076   EvalInfo &Info;
7077   const BitCastBuffer &Buffer;
7078   const CastExpr *BCE;
7079 
7080   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7081                            const CastExpr *BCE)
7082       : Info(Info), Buffer(Buffer), BCE(BCE) {}
7083 
7084   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7085   // with an invalid type, so anything left is a deficiency on our part (FIXME).
7086   // Ideally this will be unreachable.
7087   std::nullopt_t unsupportedType(QualType Ty) {
7088     Info.FFDiag(BCE->getBeginLoc(),
7089                 diag::note_constexpr_bit_cast_unsupported_type)
7090         << Ty;
7091     return std::nullopt;
7092   }
7093 
7094   std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7095     Info.FFDiag(BCE->getBeginLoc(),
7096                 diag::note_constexpr_bit_cast_unrepresentable_value)
7097         << Ty << toString(Val, /*Radix=*/10);
7098     return std::nullopt;
7099   }
7100 
7101   std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7102                                const EnumType *EnumSugar = nullptr) {
7103     if (T->isNullPtrType()) {
7104       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7105       return APValue((Expr *)nullptr,
7106                      /*Offset=*/CharUnits::fromQuantity(NullValue),
7107                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7108     }
7109 
7110     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7111 
7112     // Work around floating point types that contain unused padding bytes. This
7113     // is really just `long double` on x86, which is the only fundamental type
7114     // with padding bytes.
7115     if (T->isRealFloatingType()) {
7116       const llvm::fltSemantics &Semantics =
7117           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7118       unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7119       assert(NumBits % 8 == 0);
7120       CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7121       if (NumBytes != SizeOf)
7122         SizeOf = NumBytes;
7123     }
7124 
7125     SmallVector<uint8_t, 8> Bytes;
7126     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7127       // If this is std::byte or unsigned char, then its okay to store an
7128       // indeterminate value.
7129       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7130       bool IsUChar =
7131           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7132                          T->isSpecificBuiltinType(BuiltinType::Char_U));
7133       if (!IsStdByte && !IsUChar) {
7134         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7135         Info.FFDiag(BCE->getExprLoc(),
7136                     diag::note_constexpr_bit_cast_indet_dest)
7137             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7138         return std::nullopt;
7139       }
7140 
7141       return APValue::IndeterminateValue();
7142     }
7143 
7144     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7145     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7146 
7147     if (T->isIntegralOrEnumerationType()) {
7148       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7149 
7150       unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7151       if (IntWidth != Val.getBitWidth()) {
7152         APSInt Truncated = Val.trunc(IntWidth);
7153         if (Truncated.extend(Val.getBitWidth()) != Val)
7154           return unrepresentableValue(QualType(T, 0), Val);
7155         Val = Truncated;
7156       }
7157 
7158       return APValue(Val);
7159     }
7160 
7161     if (T->isRealFloatingType()) {
7162       const llvm::fltSemantics &Semantics =
7163           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7164       return APValue(APFloat(Semantics, Val));
7165     }
7166 
7167     return unsupportedType(QualType(T, 0));
7168   }
7169 
7170   std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7171     const RecordDecl *RD = RTy->getAsRecordDecl();
7172     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7173 
7174     unsigned NumBases = 0;
7175     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7176       NumBases = CXXRD->getNumBases();
7177 
7178     APValue ResultVal(APValue::UninitStruct(), NumBases,
7179                       std::distance(RD->field_begin(), RD->field_end()));
7180 
7181     // Visit the base classes.
7182     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7183       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7184         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7185         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7186         if (BaseDecl->isEmpty() ||
7187             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7188           continue;
7189 
7190         std::optional<APValue> SubObj = visitType(
7191             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7192         if (!SubObj)
7193           return std::nullopt;
7194         ResultVal.getStructBase(I) = *SubObj;
7195       }
7196     }
7197 
7198     // Visit the fields.
7199     unsigned FieldIdx = 0;
7200     for (FieldDecl *FD : RD->fields()) {
7201       // FIXME: We don't currently support bit-fields. A lot of the logic for
7202       // this is in CodeGen, so we need to factor it around.
7203       if (FD->isBitField()) {
7204         Info.FFDiag(BCE->getBeginLoc(),
7205                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7206         return std::nullopt;
7207       }
7208 
7209       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7210       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7211 
7212       CharUnits FieldOffset =
7213           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7214           Offset;
7215       QualType FieldTy = FD->getType();
7216       std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7217       if (!SubObj)
7218         return std::nullopt;
7219       ResultVal.getStructField(FieldIdx) = *SubObj;
7220       ++FieldIdx;
7221     }
7222 
7223     return ResultVal;
7224   }
7225 
7226   std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7227     QualType RepresentationType = Ty->getDecl()->getIntegerType();
7228     assert(!RepresentationType.isNull() &&
7229            "enum forward decl should be caught by Sema");
7230     const auto *AsBuiltin =
7231         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7232     // Recurse into the underlying type. Treat std::byte transparently as
7233     // unsigned char.
7234     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7235   }
7236 
7237   std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7238     size_t Size = Ty->getSize().getLimitedValue();
7239     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7240 
7241     APValue ArrayValue(APValue::UninitArray(), Size, Size);
7242     for (size_t I = 0; I != Size; ++I) {
7243       std::optional<APValue> ElementValue =
7244           visitType(Ty->getElementType(), Offset + I * ElementWidth);
7245       if (!ElementValue)
7246         return std::nullopt;
7247       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7248     }
7249 
7250     return ArrayValue;
7251   }
7252 
7253   std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7254     return unsupportedType(QualType(Ty, 0));
7255   }
7256 
7257   std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7258     QualType Can = Ty.getCanonicalType();
7259 
7260     switch (Can->getTypeClass()) {
7261 #define TYPE(Class, Base)                                                      \
7262   case Type::Class:                                                            \
7263     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7264 #define ABSTRACT_TYPE(Class, Base)
7265 #define NON_CANONICAL_TYPE(Class, Base)                                        \
7266   case Type::Class:                                                            \
7267     llvm_unreachable("non-canonical type should be impossible!");
7268 #define DEPENDENT_TYPE(Class, Base)                                            \
7269   case Type::Class:                                                            \
7270     llvm_unreachable(                                                          \
7271         "dependent types aren't supported in the constant evaluator!");
7272 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
7273   case Type::Class:                                                            \
7274     llvm_unreachable("either dependent or not canonical!");
7275 #include "clang/AST/TypeNodes.inc"
7276     }
7277     llvm_unreachable("Unhandled Type::TypeClass");
7278   }
7279 
7280 public:
7281   // Pull out a full value of type DstType.
7282   static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7283                                         const CastExpr *BCE) {
7284     BufferToAPValueConverter Converter(Info, Buffer, BCE);
7285     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7286   }
7287 };
7288 
7289 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7290                                                  QualType Ty, EvalInfo *Info,
7291                                                  const ASTContext &Ctx,
7292                                                  bool CheckingDest) {
7293   Ty = Ty.getCanonicalType();
7294 
7295   auto diag = [&](int Reason) {
7296     if (Info)
7297       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7298           << CheckingDest << (Reason == 4) << Reason;
7299     return false;
7300   };
7301   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7302     if (Info)
7303       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7304           << NoteTy << Construct << Ty;
7305     return false;
7306   };
7307 
7308   if (Ty->isUnionType())
7309     return diag(0);
7310   if (Ty->isPointerType())
7311     return diag(1);
7312   if (Ty->isMemberPointerType())
7313     return diag(2);
7314   if (Ty.isVolatileQualified())
7315     return diag(3);
7316 
7317   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7318     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7319       for (CXXBaseSpecifier &BS : CXXRD->bases())
7320         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7321                                                   CheckingDest))
7322           return note(1, BS.getType(), BS.getBeginLoc());
7323     }
7324     for (FieldDecl *FD : Record->fields()) {
7325       if (FD->getType()->isReferenceType())
7326         return diag(4);
7327       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7328                                                 CheckingDest))
7329         return note(0, FD->getType(), FD->getBeginLoc());
7330     }
7331   }
7332 
7333   if (Ty->isArrayType() &&
7334       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7335                                             Info, Ctx, CheckingDest))
7336     return false;
7337 
7338   return true;
7339 }
7340 
7341 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7342                                              const ASTContext &Ctx,
7343                                              const CastExpr *BCE) {
7344   bool DestOK = checkBitCastConstexprEligibilityType(
7345       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7346   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7347                                 BCE->getBeginLoc(),
7348                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
7349   return SourceOK;
7350 }
7351 
7352 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7353                                         APValue &SourceValue,
7354                                         const CastExpr *BCE) {
7355   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7356          "no host or target supports non 8-bit chars");
7357   assert(SourceValue.isLValue() &&
7358          "LValueToRValueBitcast requires an lvalue operand!");
7359 
7360   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7361     return false;
7362 
7363   LValue SourceLValue;
7364   APValue SourceRValue;
7365   SourceLValue.setFrom(Info.Ctx, SourceValue);
7366   if (!handleLValueToRValueConversion(
7367           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7368           SourceRValue, /*WantObjectRepresentation=*/true))
7369     return false;
7370 
7371   // Read out SourceValue into a char buffer.
7372   std::optional<BitCastBuffer> Buffer =
7373       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7374   if (!Buffer)
7375     return false;
7376 
7377   // Write out the buffer into a new APValue.
7378   std::optional<APValue> MaybeDestValue =
7379       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7380   if (!MaybeDestValue)
7381     return false;
7382 
7383   DestValue = std::move(*MaybeDestValue);
7384   return true;
7385 }
7386 
7387 template <class Derived>
7388 class ExprEvaluatorBase
7389   : public ConstStmtVisitor<Derived, bool> {
7390 private:
7391   Derived &getDerived() { return static_cast<Derived&>(*this); }
7392   bool DerivedSuccess(const APValue &V, const Expr *E) {
7393     return getDerived().Success(V, E);
7394   }
7395   bool DerivedZeroInitialization(const Expr *E) {
7396     return getDerived().ZeroInitialization(E);
7397   }
7398 
7399   // Check whether a conditional operator with a non-constant condition is a
7400   // potential constant expression. If neither arm is a potential constant
7401   // expression, then the conditional operator is not either.
7402   template<typename ConditionalOperator>
7403   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7404     assert(Info.checkingPotentialConstantExpression());
7405 
7406     // Speculatively evaluate both arms.
7407     SmallVector<PartialDiagnosticAt, 8> Diag;
7408     {
7409       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7410       StmtVisitorTy::Visit(E->getFalseExpr());
7411       if (Diag.empty())
7412         return;
7413     }
7414 
7415     {
7416       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7417       Diag.clear();
7418       StmtVisitorTy::Visit(E->getTrueExpr());
7419       if (Diag.empty())
7420         return;
7421     }
7422 
7423     Error(E, diag::note_constexpr_conditional_never_const);
7424   }
7425 
7426 
7427   template<typename ConditionalOperator>
7428   bool HandleConditionalOperator(const ConditionalOperator *E) {
7429     bool BoolResult;
7430     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7431       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7432         CheckPotentialConstantConditional(E);
7433         return false;
7434       }
7435       if (Info.noteFailure()) {
7436         StmtVisitorTy::Visit(E->getTrueExpr());
7437         StmtVisitorTy::Visit(E->getFalseExpr());
7438       }
7439       return false;
7440     }
7441 
7442     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7443     return StmtVisitorTy::Visit(EvalExpr);
7444   }
7445 
7446 protected:
7447   EvalInfo &Info;
7448   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7449   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7450 
7451   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7452     return Info.CCEDiag(E, D);
7453   }
7454 
7455   bool ZeroInitialization(const Expr *E) { return Error(E); }
7456 
7457   bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
7458     unsigned BuiltinOp = E->getBuiltinCallee();
7459     return BuiltinOp != 0 &&
7460            Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp);
7461   }
7462 
7463 public:
7464   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7465 
7466   EvalInfo &getEvalInfo() { return Info; }
7467 
7468   /// Report an evaluation error. This should only be called when an error is
7469   /// first discovered. When propagating an error, just return false.
7470   bool Error(const Expr *E, diag::kind D) {
7471     Info.FFDiag(E, D);
7472     return false;
7473   }
7474   bool Error(const Expr *E) {
7475     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7476   }
7477 
7478   bool VisitStmt(const Stmt *) {
7479     llvm_unreachable("Expression evaluator should not be called on stmts");
7480   }
7481   bool VisitExpr(const Expr *E) {
7482     return Error(E);
7483   }
7484 
7485   bool VisitConstantExpr(const ConstantExpr *E) {
7486     if (E->hasAPValueResult())
7487       return DerivedSuccess(E->getAPValueResult(), E);
7488 
7489     return StmtVisitorTy::Visit(E->getSubExpr());
7490   }
7491 
7492   bool VisitParenExpr(const ParenExpr *E)
7493     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7494   bool VisitUnaryExtension(const UnaryOperator *E)
7495     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7496   bool VisitUnaryPlus(const UnaryOperator *E)
7497     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7498   bool VisitChooseExpr(const ChooseExpr *E)
7499     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7500   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7501     { return StmtVisitorTy::Visit(E->getResultExpr()); }
7502   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7503     { return StmtVisitorTy::Visit(E->getReplacement()); }
7504   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7505     TempVersionRAII RAII(*Info.CurrentCall);
7506     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7507     return StmtVisitorTy::Visit(E->getExpr());
7508   }
7509   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7510     TempVersionRAII RAII(*Info.CurrentCall);
7511     // The initializer may not have been parsed yet, or might be erroneous.
7512     if (!E->getExpr())
7513       return Error(E);
7514     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7515     return StmtVisitorTy::Visit(E->getExpr());
7516   }
7517 
7518   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7519     FullExpressionRAII Scope(Info);
7520     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7521   }
7522 
7523   // Temporaries are registered when created, so we don't care about
7524   // CXXBindTemporaryExpr.
7525   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7526     return StmtVisitorTy::Visit(E->getSubExpr());
7527   }
7528 
7529   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7530     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7531     return static_cast<Derived*>(this)->VisitCastExpr(E);
7532   }
7533   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7534     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7535       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7536     return static_cast<Derived*>(this)->VisitCastExpr(E);
7537   }
7538   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7539     return static_cast<Derived*>(this)->VisitCastExpr(E);
7540   }
7541 
7542   bool VisitBinaryOperator(const BinaryOperator *E) {
7543     switch (E->getOpcode()) {
7544     default:
7545       return Error(E);
7546 
7547     case BO_Comma:
7548       VisitIgnoredValue(E->getLHS());
7549       return StmtVisitorTy::Visit(E->getRHS());
7550 
7551     case BO_PtrMemD:
7552     case BO_PtrMemI: {
7553       LValue Obj;
7554       if (!HandleMemberPointerAccess(Info, E, Obj))
7555         return false;
7556       APValue Result;
7557       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7558         return false;
7559       return DerivedSuccess(Result, E);
7560     }
7561     }
7562   }
7563 
7564   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7565     return StmtVisitorTy::Visit(E->getSemanticForm());
7566   }
7567 
7568   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7569     // Evaluate and cache the common expression. We treat it as a temporary,
7570     // even though it's not quite the same thing.
7571     LValue CommonLV;
7572     if (!Evaluate(Info.CurrentCall->createTemporary(
7573                       E->getOpaqueValue(),
7574                       getStorageType(Info.Ctx, E->getOpaqueValue()),
7575                       ScopeKind::FullExpression, CommonLV),
7576                   Info, E->getCommon()))
7577       return false;
7578 
7579     return HandleConditionalOperator(E);
7580   }
7581 
7582   bool VisitConditionalOperator(const ConditionalOperator *E) {
7583     bool IsBcpCall = false;
7584     // If the condition (ignoring parens) is a __builtin_constant_p call,
7585     // the result is a constant expression if it can be folded without
7586     // side-effects. This is an important GNU extension. See GCC PR38377
7587     // for discussion.
7588     if (const CallExpr *CallCE =
7589           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7590       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7591         IsBcpCall = true;
7592 
7593     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7594     // constant expression; we can't check whether it's potentially foldable.
7595     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7596     // it would return 'false' in this mode.
7597     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7598       return false;
7599 
7600     FoldConstant Fold(Info, IsBcpCall);
7601     if (!HandleConditionalOperator(E)) {
7602       Fold.keepDiagnostics();
7603       return false;
7604     }
7605 
7606     return true;
7607   }
7608 
7609   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7610     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7611       return DerivedSuccess(*Value, E);
7612 
7613     const Expr *Source = E->getSourceExpr();
7614     if (!Source)
7615       return Error(E);
7616     if (Source == E) {
7617       assert(0 && "OpaqueValueExpr recursively refers to itself");
7618       return Error(E);
7619     }
7620     return StmtVisitorTy::Visit(Source);
7621   }
7622 
7623   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7624     for (const Expr *SemE : E->semantics()) {
7625       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7626         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7627         // result expression: there could be two different LValues that would
7628         // refer to the same object in that case, and we can't model that.
7629         if (SemE == E->getResultExpr())
7630           return Error(E);
7631 
7632         // Unique OVEs get evaluated if and when we encounter them when
7633         // emitting the rest of the semantic form, rather than eagerly.
7634         if (OVE->isUnique())
7635           continue;
7636 
7637         LValue LV;
7638         if (!Evaluate(Info.CurrentCall->createTemporary(
7639                           OVE, getStorageType(Info.Ctx, OVE),
7640                           ScopeKind::FullExpression, LV),
7641                       Info, OVE->getSourceExpr()))
7642           return false;
7643       } else if (SemE == E->getResultExpr()) {
7644         if (!StmtVisitorTy::Visit(SemE))
7645           return false;
7646       } else {
7647         if (!EvaluateIgnoredValue(Info, SemE))
7648           return false;
7649       }
7650     }
7651     return true;
7652   }
7653 
7654   bool VisitCallExpr(const CallExpr *E) {
7655     APValue Result;
7656     if (!handleCallExpr(E, Result, nullptr))
7657       return false;
7658     return DerivedSuccess(Result, E);
7659   }
7660 
7661   bool handleCallExpr(const CallExpr *E, APValue &Result,
7662                      const LValue *ResultSlot) {
7663     CallScopeRAII CallScope(Info);
7664 
7665     const Expr *Callee = E->getCallee()->IgnoreParens();
7666     QualType CalleeType = Callee->getType();
7667 
7668     const FunctionDecl *FD = nullptr;
7669     LValue *This = nullptr, ThisVal;
7670     auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
7671     bool HasQualifier = false;
7672 
7673     CallRef Call;
7674 
7675     // Extract function decl and 'this' pointer from the callee.
7676     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7677       const CXXMethodDecl *Member = nullptr;
7678       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7679         // Explicit bound member calls, such as x.f() or p->g();
7680         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7681           return false;
7682         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7683         if (!Member)
7684           return Error(Callee);
7685         This = &ThisVal;
7686         HasQualifier = ME->hasQualifier();
7687       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7688         // Indirect bound member calls ('.*' or '->*').
7689         const ValueDecl *D =
7690             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7691         if (!D)
7692           return false;
7693         Member = dyn_cast<CXXMethodDecl>(D);
7694         if (!Member)
7695           return Error(Callee);
7696         This = &ThisVal;
7697       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7698         if (!Info.getLangOpts().CPlusPlus20)
7699           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7700         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7701                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7702       } else
7703         return Error(Callee);
7704       FD = Member;
7705     } else if (CalleeType->isFunctionPointerType()) {
7706       LValue CalleeLV;
7707       if (!EvaluatePointer(Callee, CalleeLV, Info))
7708         return false;
7709 
7710       if (!CalleeLV.getLValueOffset().isZero())
7711         return Error(Callee);
7712       if (CalleeLV.isNullPointer()) {
7713         Info.FFDiag(Callee, diag::note_constexpr_null_callee)
7714             << const_cast<Expr *>(Callee);
7715         return false;
7716       }
7717       FD = dyn_cast_or_null<FunctionDecl>(
7718           CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7719       if (!FD)
7720         return Error(Callee);
7721       // Don't call function pointers which have been cast to some other type.
7722       // Per DR (no number yet), the caller and callee can differ in noexcept.
7723       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7724         CalleeType->getPointeeType(), FD->getType())) {
7725         return Error(E);
7726       }
7727 
7728       // For an (overloaded) assignment expression, evaluate the RHS before the
7729       // LHS.
7730       auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7731       if (OCE && OCE->isAssignmentOp()) {
7732         assert(Args.size() == 2 && "wrong number of arguments in assignment");
7733         Call = Info.CurrentCall->createCall(FD);
7734         if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7735                           Info, FD, /*RightToLeft=*/true))
7736           return false;
7737       }
7738 
7739       // Overloaded operator calls to member functions are represented as normal
7740       // calls with '*this' as the first argument.
7741       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7742       if (MD && !MD->isStatic()) {
7743         // FIXME: When selecting an implicit conversion for an overloaded
7744         // operator delete, we sometimes try to evaluate calls to conversion
7745         // operators without a 'this' parameter!
7746         if (Args.empty())
7747           return Error(E);
7748 
7749         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7750           return false;
7751         This = &ThisVal;
7752 
7753         // If this is syntactically a simple assignment using a trivial
7754         // assignment operator, start the lifetimes of union members as needed,
7755         // per C++20 [class.union]5.
7756         if (Info.getLangOpts().CPlusPlus20 && OCE &&
7757             OCE->getOperator() == OO_Equal && MD->isTrivial() &&
7758             !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal))
7759           return false;
7760 
7761         Args = Args.slice(1);
7762       } else if (MD && MD->isLambdaStaticInvoker()) {
7763         // Map the static invoker for the lambda back to the call operator.
7764         // Conveniently, we don't have to slice out the 'this' argument (as is
7765         // being done for the non-static case), since a static member function
7766         // doesn't have an implicit argument passed in.
7767         const CXXRecordDecl *ClosureClass = MD->getParent();
7768         assert(
7769             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7770             "Number of captures must be zero for conversion to function-ptr");
7771 
7772         const CXXMethodDecl *LambdaCallOp =
7773             ClosureClass->getLambdaCallOperator();
7774 
7775         // Set 'FD', the function that will be called below, to the call
7776         // operator.  If the closure object represents a generic lambda, find
7777         // the corresponding specialization of the call operator.
7778 
7779         if (ClosureClass->isGenericLambda()) {
7780           assert(MD->isFunctionTemplateSpecialization() &&
7781                  "A generic lambda's static-invoker function must be a "
7782                  "template specialization");
7783           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7784           FunctionTemplateDecl *CallOpTemplate =
7785               LambdaCallOp->getDescribedFunctionTemplate();
7786           void *InsertPos = nullptr;
7787           FunctionDecl *CorrespondingCallOpSpecialization =
7788               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7789           assert(CorrespondingCallOpSpecialization &&
7790                  "We must always have a function call operator specialization "
7791                  "that corresponds to our static invoker specialization");
7792           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7793         } else
7794           FD = LambdaCallOp;
7795       } else if (FD->isReplaceableGlobalAllocationFunction()) {
7796         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7797             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7798           LValue Ptr;
7799           if (!HandleOperatorNewCall(Info, E, Ptr))
7800             return false;
7801           Ptr.moveInto(Result);
7802           return CallScope.destroy();
7803         } else {
7804           return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7805         }
7806       }
7807     } else
7808       return Error(E);
7809 
7810     // Evaluate the arguments now if we've not already done so.
7811     if (!Call) {
7812       Call = Info.CurrentCall->createCall(FD);
7813       if (!EvaluateArgs(Args, Call, Info, FD))
7814         return false;
7815     }
7816 
7817     SmallVector<QualType, 4> CovariantAdjustmentPath;
7818     if (This) {
7819       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7820       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7821         // Perform virtual dispatch, if necessary.
7822         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7823                                    CovariantAdjustmentPath);
7824         if (!FD)
7825           return false;
7826       } else {
7827         // Check that the 'this' pointer points to an object of the right type.
7828         // FIXME: If this is an assignment operator call, we may need to change
7829         // the active union member before we check this.
7830         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7831           return false;
7832       }
7833     }
7834 
7835     // Destructor calls are different enough that they have their own codepath.
7836     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7837       assert(This && "no 'this' pointer for destructor call");
7838       return HandleDestruction(Info, E, *This,
7839                                Info.Ctx.getRecordType(DD->getParent())) &&
7840              CallScope.destroy();
7841     }
7842 
7843     const FunctionDecl *Definition = nullptr;
7844     Stmt *Body = FD->getBody(Definition);
7845 
7846     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7847         !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call,
7848                             Body, Info, Result, ResultSlot))
7849       return false;
7850 
7851     if (!CovariantAdjustmentPath.empty() &&
7852         !HandleCovariantReturnAdjustment(Info, E, Result,
7853                                          CovariantAdjustmentPath))
7854       return false;
7855 
7856     return CallScope.destroy();
7857   }
7858 
7859   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7860     return StmtVisitorTy::Visit(E->getInitializer());
7861   }
7862   bool VisitInitListExpr(const InitListExpr *E) {
7863     if (E->getNumInits() == 0)
7864       return DerivedZeroInitialization(E);
7865     if (E->getNumInits() == 1)
7866       return StmtVisitorTy::Visit(E->getInit(0));
7867     return Error(E);
7868   }
7869   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7870     return DerivedZeroInitialization(E);
7871   }
7872   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7873     return DerivedZeroInitialization(E);
7874   }
7875   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7876     return DerivedZeroInitialization(E);
7877   }
7878 
7879   /// A member expression where the object is a prvalue is itself a prvalue.
7880   bool VisitMemberExpr(const MemberExpr *E) {
7881     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7882            "missing temporary materialization conversion");
7883     assert(!E->isArrow() && "missing call to bound member function?");
7884 
7885     APValue Val;
7886     if (!Evaluate(Val, Info, E->getBase()))
7887       return false;
7888 
7889     QualType BaseTy = E->getBase()->getType();
7890 
7891     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7892     if (!FD) return Error(E);
7893     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7894     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7895            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7896 
7897     // Note: there is no lvalue base here. But this case should only ever
7898     // happen in C or in C++98, where we cannot be evaluating a constexpr
7899     // constructor, which is the only case the base matters.
7900     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7901     SubobjectDesignator Designator(BaseTy);
7902     Designator.addDeclUnchecked(FD);
7903 
7904     APValue Result;
7905     return extractSubobject(Info, E, Obj, Designator, Result) &&
7906            DerivedSuccess(Result, E);
7907   }
7908 
7909   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7910     APValue Val;
7911     if (!Evaluate(Val, Info, E->getBase()))
7912       return false;
7913 
7914     if (Val.isVector()) {
7915       SmallVector<uint32_t, 4> Indices;
7916       E->getEncodedElementAccess(Indices);
7917       if (Indices.size() == 1) {
7918         // Return scalar.
7919         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7920       } else {
7921         // Construct new APValue vector.
7922         SmallVector<APValue, 4> Elts;
7923         for (unsigned I = 0; I < Indices.size(); ++I) {
7924           Elts.push_back(Val.getVectorElt(Indices[I]));
7925         }
7926         APValue VecResult(Elts.data(), Indices.size());
7927         return DerivedSuccess(VecResult, E);
7928       }
7929     }
7930 
7931     return false;
7932   }
7933 
7934   bool VisitCastExpr(const CastExpr *E) {
7935     switch (E->getCastKind()) {
7936     default:
7937       break;
7938 
7939     case CK_AtomicToNonAtomic: {
7940       APValue AtomicVal;
7941       // This does not need to be done in place even for class/array types:
7942       // atomic-to-non-atomic conversion implies copying the object
7943       // representation.
7944       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7945         return false;
7946       return DerivedSuccess(AtomicVal, E);
7947     }
7948 
7949     case CK_NoOp:
7950     case CK_UserDefinedConversion:
7951       return StmtVisitorTy::Visit(E->getSubExpr());
7952 
7953     case CK_LValueToRValue: {
7954       LValue LVal;
7955       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7956         return false;
7957       APValue RVal;
7958       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7959       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7960                                           LVal, RVal))
7961         return false;
7962       return DerivedSuccess(RVal, E);
7963     }
7964     case CK_LValueToRValueBitCast: {
7965       APValue DestValue, SourceValue;
7966       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7967         return false;
7968       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7969         return false;
7970       return DerivedSuccess(DestValue, E);
7971     }
7972 
7973     case CK_AddressSpaceConversion: {
7974       APValue Value;
7975       if (!Evaluate(Value, Info, E->getSubExpr()))
7976         return false;
7977       return DerivedSuccess(Value, E);
7978     }
7979     }
7980 
7981     return Error(E);
7982   }
7983 
7984   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7985     return VisitUnaryPostIncDec(UO);
7986   }
7987   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7988     return VisitUnaryPostIncDec(UO);
7989   }
7990   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7991     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7992       return Error(UO);
7993 
7994     LValue LVal;
7995     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7996       return false;
7997     APValue RVal;
7998     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7999                       UO->isIncrementOp(), &RVal))
8000       return false;
8001     return DerivedSuccess(RVal, UO);
8002   }
8003 
8004   bool VisitStmtExpr(const StmtExpr *E) {
8005     // We will have checked the full-expressions inside the statement expression
8006     // when they were completed, and don't need to check them again now.
8007     llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
8008                                           false);
8009 
8010     const CompoundStmt *CS = E->getSubStmt();
8011     if (CS->body_empty())
8012       return true;
8013 
8014     BlockScopeRAII Scope(Info);
8015     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
8016                                            BE = CS->body_end();
8017          /**/; ++BI) {
8018       if (BI + 1 == BE) {
8019         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
8020         if (!FinalExpr) {
8021           Info.FFDiag((*BI)->getBeginLoc(),
8022                       diag::note_constexpr_stmt_expr_unsupported);
8023           return false;
8024         }
8025         return this->Visit(FinalExpr) && Scope.destroy();
8026       }
8027 
8028       APValue ReturnValue;
8029       StmtResult Result = { ReturnValue, nullptr };
8030       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
8031       if (ESR != ESR_Succeeded) {
8032         // FIXME: If the statement-expression terminated due to 'return',
8033         // 'break', or 'continue', it would be nice to propagate that to
8034         // the outer statement evaluation rather than bailing out.
8035         if (ESR != ESR_Failed)
8036           Info.FFDiag((*BI)->getBeginLoc(),
8037                       diag::note_constexpr_stmt_expr_unsupported);
8038         return false;
8039       }
8040     }
8041 
8042     llvm_unreachable("Return from function from the loop above.");
8043   }
8044 
8045   /// Visit a value which is evaluated, but whose value is ignored.
8046   void VisitIgnoredValue(const Expr *E) {
8047     EvaluateIgnoredValue(Info, E);
8048   }
8049 
8050   /// Potentially visit a MemberExpr's base expression.
8051   void VisitIgnoredBaseExpression(const Expr *E) {
8052     // While MSVC doesn't evaluate the base expression, it does diagnose the
8053     // presence of side-effecting behavior.
8054     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
8055       return;
8056     VisitIgnoredValue(E);
8057   }
8058 };
8059 
8060 } // namespace
8061 
8062 //===----------------------------------------------------------------------===//
8063 // Common base class for lvalue and temporary evaluation.
8064 //===----------------------------------------------------------------------===//
8065 namespace {
8066 template<class Derived>
8067 class LValueExprEvaluatorBase
8068   : public ExprEvaluatorBase<Derived> {
8069 protected:
8070   LValue &Result;
8071   bool InvalidBaseOK;
8072   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8073   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8074 
8075   bool Success(APValue::LValueBase B) {
8076     Result.set(B);
8077     return true;
8078   }
8079 
8080   bool evaluatePointer(const Expr *E, LValue &Result) {
8081     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8082   }
8083 
8084 public:
8085   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8086       : ExprEvaluatorBaseTy(Info), Result(Result),
8087         InvalidBaseOK(InvalidBaseOK) {}
8088 
8089   bool Success(const APValue &V, const Expr *E) {
8090     Result.setFrom(this->Info.Ctx, V);
8091     return true;
8092   }
8093 
8094   bool VisitMemberExpr(const MemberExpr *E) {
8095     // Handle non-static data members.
8096     QualType BaseTy;
8097     bool EvalOK;
8098     if (E->isArrow()) {
8099       EvalOK = evaluatePointer(E->getBase(), Result);
8100       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8101     } else if (E->getBase()->isPRValue()) {
8102       assert(E->getBase()->getType()->isRecordType());
8103       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8104       BaseTy = E->getBase()->getType();
8105     } else {
8106       EvalOK = this->Visit(E->getBase());
8107       BaseTy = E->getBase()->getType();
8108     }
8109     if (!EvalOK) {
8110       if (!InvalidBaseOK)
8111         return false;
8112       Result.setInvalid(E);
8113       return true;
8114     }
8115 
8116     const ValueDecl *MD = E->getMemberDecl();
8117     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8118       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8119              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8120       (void)BaseTy;
8121       if (!HandleLValueMember(this->Info, E, Result, FD))
8122         return false;
8123     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8124       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8125         return false;
8126     } else
8127       return this->Error(E);
8128 
8129     if (MD->getType()->isReferenceType()) {
8130       APValue RefValue;
8131       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8132                                           RefValue))
8133         return false;
8134       return Success(RefValue, E);
8135     }
8136     return true;
8137   }
8138 
8139   bool VisitBinaryOperator(const BinaryOperator *E) {
8140     switch (E->getOpcode()) {
8141     default:
8142       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8143 
8144     case BO_PtrMemD:
8145     case BO_PtrMemI:
8146       return HandleMemberPointerAccess(this->Info, E, Result);
8147     }
8148   }
8149 
8150   bool VisitCastExpr(const CastExpr *E) {
8151     switch (E->getCastKind()) {
8152     default:
8153       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8154 
8155     case CK_DerivedToBase:
8156     case CK_UncheckedDerivedToBase:
8157       if (!this->Visit(E->getSubExpr()))
8158         return false;
8159 
8160       // Now figure out the necessary offset to add to the base LV to get from
8161       // the derived class to the base class.
8162       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8163                                   Result);
8164     }
8165   }
8166 };
8167 }
8168 
8169 //===----------------------------------------------------------------------===//
8170 // LValue Evaluation
8171 //
8172 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8173 // function designators (in C), decl references to void objects (in C), and
8174 // temporaries (if building with -Wno-address-of-temporary).
8175 //
8176 // LValue evaluation produces values comprising a base expression of one of the
8177 // following types:
8178 // - Declarations
8179 //  * VarDecl
8180 //  * FunctionDecl
8181 // - Literals
8182 //  * CompoundLiteralExpr in C (and in global scope in C++)
8183 //  * StringLiteral
8184 //  * PredefinedExpr
8185 //  * ObjCStringLiteralExpr
8186 //  * ObjCEncodeExpr
8187 //  * AddrLabelExpr
8188 //  * BlockExpr
8189 //  * CallExpr for a MakeStringConstant builtin
8190 // - typeid(T) expressions, as TypeInfoLValues
8191 // - Locals and temporaries
8192 //  * MaterializeTemporaryExpr
8193 //  * Any Expr, with a CallIndex indicating the function in which the temporary
8194 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
8195 //    from the AST (FIXME).
8196 //  * A MaterializeTemporaryExpr that has static storage duration, with no
8197 //    CallIndex, for a lifetime-extended temporary.
8198 //  * The ConstantExpr that is currently being evaluated during evaluation of an
8199 //    immediate invocation.
8200 // plus an offset in bytes.
8201 //===----------------------------------------------------------------------===//
8202 namespace {
8203 class LValueExprEvaluator
8204   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8205 public:
8206   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8207     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8208 
8209   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8210   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8211 
8212   bool VisitCallExpr(const CallExpr *E);
8213   bool VisitDeclRefExpr(const DeclRefExpr *E);
8214   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8215   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8216   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8217   bool VisitMemberExpr(const MemberExpr *E);
8218   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8219   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8220   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8221   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8222   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8223   bool VisitUnaryDeref(const UnaryOperator *E);
8224   bool VisitUnaryReal(const UnaryOperator *E);
8225   bool VisitUnaryImag(const UnaryOperator *E);
8226   bool VisitUnaryPreInc(const UnaryOperator *UO) {
8227     return VisitUnaryPreIncDec(UO);
8228   }
8229   bool VisitUnaryPreDec(const UnaryOperator *UO) {
8230     return VisitUnaryPreIncDec(UO);
8231   }
8232   bool VisitBinAssign(const BinaryOperator *BO);
8233   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8234 
8235   bool VisitCastExpr(const CastExpr *E) {
8236     switch (E->getCastKind()) {
8237     default:
8238       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8239 
8240     case CK_LValueBitCast:
8241       this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8242           << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8243       if (!Visit(E->getSubExpr()))
8244         return false;
8245       Result.Designator.setInvalid();
8246       return true;
8247 
8248     case CK_BaseToDerived:
8249       if (!Visit(E->getSubExpr()))
8250         return false;
8251       return HandleBaseToDerivedCast(Info, E, Result);
8252 
8253     case CK_Dynamic:
8254       if (!Visit(E->getSubExpr()))
8255         return false;
8256       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8257     }
8258   }
8259 };
8260 } // end anonymous namespace
8261 
8262 /// Evaluate an expression as an lvalue. This can be legitimately called on
8263 /// expressions which are not glvalues, in three cases:
8264 ///  * function designators in C, and
8265 ///  * "extern void" objects
8266 ///  * @selector() expressions in Objective-C
8267 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8268                            bool InvalidBaseOK) {
8269   assert(!E->isValueDependent());
8270   assert(E->isGLValue() || E->getType()->isFunctionType() ||
8271          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8272   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8273 }
8274 
8275 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8276   const NamedDecl *D = E->getDecl();
8277   if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8278           UnnamedGlobalConstantDecl>(D))
8279     return Success(cast<ValueDecl>(D));
8280   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8281     return VisitVarDecl(E, VD);
8282   if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8283     return Visit(BD->getBinding());
8284   return Error(E);
8285 }
8286 
8287 
8288 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8289 
8290   // If we are within a lambda's call operator, check whether the 'VD' referred
8291   // to within 'E' actually represents a lambda-capture that maps to a
8292   // data-member/field within the closure object, and if so, evaluate to the
8293   // field or what the field refers to.
8294   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8295       isa<DeclRefExpr>(E) &&
8296       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8297     // We don't always have a complete capture-map when checking or inferring if
8298     // the function call operator meets the requirements of a constexpr function
8299     // - but we don't need to evaluate the captures to determine constexprness
8300     // (dcl.constexpr C++17).
8301     if (Info.checkingPotentialConstantExpression())
8302       return false;
8303 
8304     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8305       // Start with 'Result' referring to the complete closure object...
8306       Result = *Info.CurrentCall->This;
8307       // ... then update it to refer to the field of the closure object
8308       // that represents the capture.
8309       if (!HandleLValueMember(Info, E, Result, FD))
8310         return false;
8311       // And if the field is of reference type, update 'Result' to refer to what
8312       // the field refers to.
8313       if (FD->getType()->isReferenceType()) {
8314         APValue RVal;
8315         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8316                                             RVal))
8317           return false;
8318         Result.setFrom(Info.Ctx, RVal);
8319       }
8320       return true;
8321     }
8322   }
8323 
8324   CallStackFrame *Frame = nullptr;
8325   unsigned Version = 0;
8326   if (VD->hasLocalStorage()) {
8327     // Only if a local variable was declared in the function currently being
8328     // evaluated, do we expect to be able to find its value in the current
8329     // frame. (Otherwise it was likely declared in an enclosing context and
8330     // could either have a valid evaluatable value (for e.g. a constexpr
8331     // variable) or be ill-formed (and trigger an appropriate evaluation
8332     // diagnostic)).
8333     CallStackFrame *CurrFrame = Info.CurrentCall;
8334     if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8335       // Function parameters are stored in some caller's frame. (Usually the
8336       // immediate caller, but for an inherited constructor they may be more
8337       // distant.)
8338       if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8339         if (CurrFrame->Arguments) {
8340           VD = CurrFrame->Arguments.getOrigParam(PVD);
8341           Frame =
8342               Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8343           Version = CurrFrame->Arguments.Version;
8344         }
8345       } else {
8346         Frame = CurrFrame;
8347         Version = CurrFrame->getCurrentTemporaryVersion(VD);
8348       }
8349     }
8350   }
8351 
8352   if (!VD->getType()->isReferenceType()) {
8353     if (Frame) {
8354       Result.set({VD, Frame->Index, Version});
8355       return true;
8356     }
8357     return Success(VD);
8358   }
8359 
8360   if (!Info.getLangOpts().CPlusPlus11) {
8361     Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8362         << VD << VD->getType();
8363     Info.Note(VD->getLocation(), diag::note_declared_at);
8364   }
8365 
8366   APValue *V;
8367   if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8368     return false;
8369   if (!V->hasValue()) {
8370     // FIXME: Is it possible for V to be indeterminate here? If so, we should
8371     // adjust the diagnostic to say that.
8372     if (!Info.checkingPotentialConstantExpression())
8373       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8374     return false;
8375   }
8376   return Success(*V, E);
8377 }
8378 
8379 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8380   if (!IsConstantEvaluatedBuiltinCall(E))
8381     return ExprEvaluatorBaseTy::VisitCallExpr(E);
8382 
8383   switch (E->getBuiltinCallee()) {
8384   default:
8385     return false;
8386   case Builtin::BIas_const:
8387   case Builtin::BIforward:
8388   case Builtin::BIforward_like:
8389   case Builtin::BImove:
8390   case Builtin::BImove_if_noexcept:
8391     if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr())
8392       return Visit(E->getArg(0));
8393     break;
8394   }
8395 
8396   return ExprEvaluatorBaseTy::VisitCallExpr(E);
8397 }
8398 
8399 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8400     const MaterializeTemporaryExpr *E) {
8401   // Walk through the expression to find the materialized temporary itself.
8402   SmallVector<const Expr *, 2> CommaLHSs;
8403   SmallVector<SubobjectAdjustment, 2> Adjustments;
8404   const Expr *Inner =
8405       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8406 
8407   // If we passed any comma operators, evaluate their LHSs.
8408   for (const Expr *E : CommaLHSs)
8409     if (!EvaluateIgnoredValue(Info, E))
8410       return false;
8411 
8412   // A materialized temporary with static storage duration can appear within the
8413   // result of a constant expression evaluation, so we need to preserve its
8414   // value for use outside this evaluation.
8415   APValue *Value;
8416   if (E->getStorageDuration() == SD_Static) {
8417     if (Info.EvalMode == EvalInfo::EM_ConstantFold)
8418       return false;
8419     // FIXME: What about SD_Thread?
8420     Value = E->getOrCreateValue(true);
8421     *Value = APValue();
8422     Result.set(E);
8423   } else {
8424     Value = &Info.CurrentCall->createTemporary(
8425         E, E->getType(),
8426         E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8427                                                      : ScopeKind::Block,
8428         Result);
8429   }
8430 
8431   QualType Type = Inner->getType();
8432 
8433   // Materialize the temporary itself.
8434   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8435     *Value = APValue();
8436     return false;
8437   }
8438 
8439   // Adjust our lvalue to refer to the desired subobject.
8440   for (unsigned I = Adjustments.size(); I != 0; /**/) {
8441     --I;
8442     switch (Adjustments[I].Kind) {
8443     case SubobjectAdjustment::DerivedToBaseAdjustment:
8444       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8445                                 Type, Result))
8446         return false;
8447       Type = Adjustments[I].DerivedToBase.BasePath->getType();
8448       break;
8449 
8450     case SubobjectAdjustment::FieldAdjustment:
8451       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8452         return false;
8453       Type = Adjustments[I].Field->getType();
8454       break;
8455 
8456     case SubobjectAdjustment::MemberPointerAdjustment:
8457       if (!HandleMemberPointerAccess(this->Info, Type, Result,
8458                                      Adjustments[I].Ptr.RHS))
8459         return false;
8460       Type = Adjustments[I].Ptr.MPT->getPointeeType();
8461       break;
8462     }
8463   }
8464 
8465   return true;
8466 }
8467 
8468 bool
8469 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8470   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8471          "lvalue compound literal in c++?");
8472   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8473   // only see this when folding in C, so there's no standard to follow here.
8474   return Success(E);
8475 }
8476 
8477 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8478   TypeInfoLValue TypeInfo;
8479 
8480   if (!E->isPotentiallyEvaluated()) {
8481     if (E->isTypeOperand())
8482       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8483     else
8484       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8485   } else {
8486     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8487       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8488         << E->getExprOperand()->getType()
8489         << E->getExprOperand()->getSourceRange();
8490     }
8491 
8492     if (!Visit(E->getExprOperand()))
8493       return false;
8494 
8495     std::optional<DynamicType> DynType =
8496         ComputeDynamicType(Info, E, Result, AK_TypeId);
8497     if (!DynType)
8498       return false;
8499 
8500     TypeInfo =
8501         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8502   }
8503 
8504   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8505 }
8506 
8507 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8508   return Success(E->getGuidDecl());
8509 }
8510 
8511 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8512   // Handle static data members.
8513   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8514     VisitIgnoredBaseExpression(E->getBase());
8515     return VisitVarDecl(E, VD);
8516   }
8517 
8518   // Handle static member functions.
8519   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8520     if (MD->isStatic()) {
8521       VisitIgnoredBaseExpression(E->getBase());
8522       return Success(MD);
8523     }
8524   }
8525 
8526   // Handle non-static data members.
8527   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8528 }
8529 
8530 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8531   // FIXME: Deal with vectors as array subscript bases.
8532   if (E->getBase()->getType()->isVectorType() ||
8533       E->getBase()->getType()->isVLSTBuiltinType())
8534     return Error(E);
8535 
8536   APSInt Index;
8537   bool Success = true;
8538 
8539   // C++17's rules require us to evaluate the LHS first, regardless of which
8540   // side is the base.
8541   for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8542     if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8543                                 : !EvaluateInteger(SubExpr, Index, Info)) {
8544       if (!Info.noteFailure())
8545         return false;
8546       Success = false;
8547     }
8548   }
8549 
8550   return Success &&
8551          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8552 }
8553 
8554 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8555   return evaluatePointer(E->getSubExpr(), Result);
8556 }
8557 
8558 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8559   if (!Visit(E->getSubExpr()))
8560     return false;
8561   // __real is a no-op on scalar lvalues.
8562   if (E->getSubExpr()->getType()->isAnyComplexType())
8563     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8564   return true;
8565 }
8566 
8567 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8568   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8569          "lvalue __imag__ on scalar?");
8570   if (!Visit(E->getSubExpr()))
8571     return false;
8572   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8573   return true;
8574 }
8575 
8576 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8577   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8578     return Error(UO);
8579 
8580   if (!this->Visit(UO->getSubExpr()))
8581     return false;
8582 
8583   return handleIncDec(
8584       this->Info, UO, Result, UO->getSubExpr()->getType(),
8585       UO->isIncrementOp(), nullptr);
8586 }
8587 
8588 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8589     const CompoundAssignOperator *CAO) {
8590   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8591     return Error(CAO);
8592 
8593   bool Success = true;
8594 
8595   // C++17 onwards require that we evaluate the RHS first.
8596   APValue RHS;
8597   if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8598     if (!Info.noteFailure())
8599       return false;
8600     Success = false;
8601   }
8602 
8603   // The overall lvalue result is the result of evaluating the LHS.
8604   if (!this->Visit(CAO->getLHS()) || !Success)
8605     return false;
8606 
8607   return handleCompoundAssignment(
8608       this->Info, CAO,
8609       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8610       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8611 }
8612 
8613 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8614   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8615     return Error(E);
8616 
8617   bool Success = true;
8618 
8619   // C++17 onwards require that we evaluate the RHS first.
8620   APValue NewVal;
8621   if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8622     if (!Info.noteFailure())
8623       return false;
8624     Success = false;
8625   }
8626 
8627   if (!this->Visit(E->getLHS()) || !Success)
8628     return false;
8629 
8630   if (Info.getLangOpts().CPlusPlus20 &&
8631       !MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8632     return false;
8633 
8634   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8635                           NewVal);
8636 }
8637 
8638 //===----------------------------------------------------------------------===//
8639 // Pointer Evaluation
8640 //===----------------------------------------------------------------------===//
8641 
8642 /// Attempts to compute the number of bytes available at the pointer
8643 /// returned by a function with the alloc_size attribute. Returns true if we
8644 /// were successful. Places an unsigned number into `Result`.
8645 ///
8646 /// This expects the given CallExpr to be a call to a function with an
8647 /// alloc_size attribute.
8648 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8649                                             const CallExpr *Call,
8650                                             llvm::APInt &Result) {
8651   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8652 
8653   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8654   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8655   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8656   if (Call->getNumArgs() <= SizeArgNo)
8657     return false;
8658 
8659   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8660     Expr::EvalResult ExprResult;
8661     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8662       return false;
8663     Into = ExprResult.Val.getInt();
8664     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8665       return false;
8666     Into = Into.zext(BitsInSizeT);
8667     return true;
8668   };
8669 
8670   APSInt SizeOfElem;
8671   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8672     return false;
8673 
8674   if (!AllocSize->getNumElemsParam().isValid()) {
8675     Result = std::move(SizeOfElem);
8676     return true;
8677   }
8678 
8679   APSInt NumberOfElems;
8680   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8681   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8682     return false;
8683 
8684   bool Overflow;
8685   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8686   if (Overflow)
8687     return false;
8688 
8689   Result = std::move(BytesAvailable);
8690   return true;
8691 }
8692 
8693 /// Convenience function. LVal's base must be a call to an alloc_size
8694 /// function.
8695 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8696                                             const LValue &LVal,
8697                                             llvm::APInt &Result) {
8698   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8699          "Can't get the size of a non alloc_size function");
8700   const auto *Base = LVal.getLValueBase().get<const Expr *>();
8701   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8702   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8703 }
8704 
8705 /// Attempts to evaluate the given LValueBase as the result of a call to
8706 /// a function with the alloc_size attribute. If it was possible to do so, this
8707 /// function will return true, make Result's Base point to said function call,
8708 /// and mark Result's Base as invalid.
8709 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8710                                       LValue &Result) {
8711   if (Base.isNull())
8712     return false;
8713 
8714   // Because we do no form of static analysis, we only support const variables.
8715   //
8716   // Additionally, we can't support parameters, nor can we support static
8717   // variables (in the latter case, use-before-assign isn't UB; in the former,
8718   // we have no clue what they'll be assigned to).
8719   const auto *VD =
8720       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8721   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8722     return false;
8723 
8724   const Expr *Init = VD->getAnyInitializer();
8725   if (!Init || Init->getType().isNull())
8726     return false;
8727 
8728   const Expr *E = Init->IgnoreParens();
8729   if (!tryUnwrapAllocSizeCall(E))
8730     return false;
8731 
8732   // Store E instead of E unwrapped so that the type of the LValue's base is
8733   // what the user wanted.
8734   Result.setInvalid(E);
8735 
8736   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8737   Result.addUnsizedArray(Info, E, Pointee);
8738   return true;
8739 }
8740 
8741 namespace {
8742 class PointerExprEvaluator
8743   : public ExprEvaluatorBase<PointerExprEvaluator> {
8744   LValue &Result;
8745   bool InvalidBaseOK;
8746 
8747   bool Success(const Expr *E) {
8748     Result.set(E);
8749     return true;
8750   }
8751 
8752   bool evaluateLValue(const Expr *E, LValue &Result) {
8753     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8754   }
8755 
8756   bool evaluatePointer(const Expr *E, LValue &Result) {
8757     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8758   }
8759 
8760   bool visitNonBuiltinCallExpr(const CallExpr *E);
8761 public:
8762 
8763   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8764       : ExprEvaluatorBaseTy(info), Result(Result),
8765         InvalidBaseOK(InvalidBaseOK) {}
8766 
8767   bool Success(const APValue &V, const Expr *E) {
8768     Result.setFrom(Info.Ctx, V);
8769     return true;
8770   }
8771   bool ZeroInitialization(const Expr *E) {
8772     Result.setNull(Info.Ctx, E->getType());
8773     return true;
8774   }
8775 
8776   bool VisitBinaryOperator(const BinaryOperator *E);
8777   bool VisitCastExpr(const CastExpr* E);
8778   bool VisitUnaryAddrOf(const UnaryOperator *E);
8779   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8780       { return Success(E); }
8781   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8782     if (E->isExpressibleAsConstantInitializer())
8783       return Success(E);
8784     if (Info.noteFailure())
8785       EvaluateIgnoredValue(Info, E->getSubExpr());
8786     return Error(E);
8787   }
8788   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8789       { return Success(E); }
8790   bool VisitCallExpr(const CallExpr *E);
8791   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
8792   bool VisitBlockExpr(const BlockExpr *E) {
8793     if (!E->getBlockDecl()->hasCaptures())
8794       return Success(E);
8795     return Error(E);
8796   }
8797   bool VisitCXXThisExpr(const CXXThisExpr *E) {
8798     // Can't look at 'this' when checking a potential constant expression.
8799     if (Info.checkingPotentialConstantExpression())
8800       return false;
8801     if (!Info.CurrentCall->This) {
8802       if (Info.getLangOpts().CPlusPlus11)
8803         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8804       else
8805         Info.FFDiag(E);
8806       return false;
8807     }
8808     Result = *Info.CurrentCall->This;
8809 
8810     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8811       // Ensure we actually have captured 'this'. If something was wrong with
8812       // 'this' capture, the error would have been previously reported.
8813       // Otherwise we can be inside of a default initialization of an object
8814       // declared by lambda's body, so no need to return false.
8815       if (!Info.CurrentCall->LambdaThisCaptureField)
8816         return true;
8817 
8818       // If we have captured 'this',  the 'this' expression refers
8819       // to the enclosing '*this' object (either by value or reference) which is
8820       // either copied into the closure object's field that represents the
8821       // '*this' or refers to '*this'.
8822       // Update 'Result' to refer to the data member/field of the closure object
8823       // that represents the '*this' capture.
8824       if (!HandleLValueMember(Info, E, Result,
8825                              Info.CurrentCall->LambdaThisCaptureField))
8826         return false;
8827       // If we captured '*this' by reference, replace the field with its referent.
8828       if (Info.CurrentCall->LambdaThisCaptureField->getType()
8829               ->isPointerType()) {
8830         APValue RVal;
8831         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8832                                             RVal))
8833           return false;
8834 
8835         Result.setFrom(Info.Ctx, RVal);
8836       }
8837     }
8838     return true;
8839   }
8840 
8841   bool VisitCXXNewExpr(const CXXNewExpr *E);
8842 
8843   bool VisitSourceLocExpr(const SourceLocExpr *E) {
8844     assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
8845     APValue LValResult = E->EvaluateInContext(
8846         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8847     Result.setFrom(Info.Ctx, LValResult);
8848     return true;
8849   }
8850 
8851   bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
8852     std::string ResultStr = E->ComputeName(Info.Ctx);
8853 
8854     QualType CharTy = Info.Ctx.CharTy.withConst();
8855     APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
8856                ResultStr.size() + 1);
8857     QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
8858                                                      ArrayType::Normal, 0);
8859 
8860     StringLiteral *SL =
8861         StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ordinary,
8862                               /*Pascal*/ false, ArrayTy, E->getLocation());
8863 
8864     evaluateLValue(SL, Result);
8865     Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
8866     return true;
8867   }
8868 
8869   // FIXME: Missing: @protocol, @selector
8870 };
8871 } // end anonymous namespace
8872 
8873 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8874                             bool InvalidBaseOK) {
8875   assert(!E->isValueDependent());
8876   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
8877   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8878 }
8879 
8880 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8881   if (E->getOpcode() != BO_Add &&
8882       E->getOpcode() != BO_Sub)
8883     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8884 
8885   const Expr *PExp = E->getLHS();
8886   const Expr *IExp = E->getRHS();
8887   if (IExp->getType()->isPointerType())
8888     std::swap(PExp, IExp);
8889 
8890   bool EvalPtrOK = evaluatePointer(PExp, Result);
8891   if (!EvalPtrOK && !Info.noteFailure())
8892     return false;
8893 
8894   llvm::APSInt Offset;
8895   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8896     return false;
8897 
8898   if (E->getOpcode() == BO_Sub)
8899     negateAsSigned(Offset);
8900 
8901   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8902   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8903 }
8904 
8905 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8906   return evaluateLValue(E->getSubExpr(), Result);
8907 }
8908 
8909 // Is the provided decl 'std::source_location::current'?
8910 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
8911   if (!FD)
8912     return false;
8913   const IdentifierInfo *FnII = FD->getIdentifier();
8914   if (!FnII || !FnII->isStr("current"))
8915     return false;
8916 
8917   const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
8918   if (!RD)
8919     return false;
8920 
8921   const IdentifierInfo *ClassII = RD->getIdentifier();
8922   return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location");
8923 }
8924 
8925 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8926   const Expr *SubExpr = E->getSubExpr();
8927 
8928   switch (E->getCastKind()) {
8929   default:
8930     break;
8931   case CK_BitCast:
8932   case CK_CPointerToObjCPointerCast:
8933   case CK_BlockPointerToObjCPointerCast:
8934   case CK_AnyPointerToBlockPointerCast:
8935   case CK_AddressSpaceConversion:
8936     if (!Visit(SubExpr))
8937       return false;
8938     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8939     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8940     // also static_casts, but we disallow them as a resolution to DR1312.
8941     if (!E->getType()->isVoidPointerType()) {
8942       // In some circumstances, we permit casting from void* to cv1 T*, when the
8943       // actual pointee object is actually a cv2 T.
8944       bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid &&
8945                             !Result.IsNullPtr;
8946       bool VoidPtrCastMaybeOK =
8947           HasValidResult &&
8948           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8949                                           E->getType()->getPointeeType());
8950       // 1. We'll allow it in std::allocator::allocate, and anything which that
8951       //    calls.
8952       // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
8953       //    <source_location> header. Fixed in GCC 12 and later (2022-04-??).
8954       //    We'll allow it in the body of std::source_location::current.  GCC's
8955       //    implementation had a parameter of type `void*`, and casts from
8956       //    that back to `const __impl*` in its body.
8957       if (VoidPtrCastMaybeOK &&
8958           (Info.getStdAllocatorCaller("allocate") ||
8959            IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) ||
8960            Info.getLangOpts().CPlusPlus26)) {
8961         // Permitted.
8962       } else {
8963         if (SubExpr->getType()->isVoidPointerType()) {
8964           if (HasValidResult)
8965             CCEDiag(E, diag::note_constexpr_invalid_void_star_cast)
8966                 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26
8967                 << Result.Designator.getType(Info.Ctx).getCanonicalType()
8968                 << E->getType()->getPointeeType();
8969           else
8970             CCEDiag(E, diag::note_constexpr_invalid_cast)
8971                 << 3 << SubExpr->getType();
8972         } else
8973           CCEDiag(E, diag::note_constexpr_invalid_cast)
8974               << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8975         Result.Designator.setInvalid();
8976       }
8977     }
8978     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8979       ZeroInitialization(E);
8980     return true;
8981 
8982   case CK_DerivedToBase:
8983   case CK_UncheckedDerivedToBase:
8984     if (!evaluatePointer(E->getSubExpr(), Result))
8985       return false;
8986     if (!Result.Base && Result.Offset.isZero())
8987       return true;
8988 
8989     // Now figure out the necessary offset to add to the base LV to get from
8990     // the derived class to the base class.
8991     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8992                                   castAs<PointerType>()->getPointeeType(),
8993                                 Result);
8994 
8995   case CK_BaseToDerived:
8996     if (!Visit(E->getSubExpr()))
8997       return false;
8998     if (!Result.Base && Result.Offset.isZero())
8999       return true;
9000     return HandleBaseToDerivedCast(Info, E, Result);
9001 
9002   case CK_Dynamic:
9003     if (!Visit(E->getSubExpr()))
9004       return false;
9005     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
9006 
9007   case CK_NullToPointer:
9008     VisitIgnoredValue(E->getSubExpr());
9009     return ZeroInitialization(E);
9010 
9011   case CK_IntegralToPointer: {
9012     CCEDiag(E, diag::note_constexpr_invalid_cast)
9013         << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9014 
9015     APValue Value;
9016     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
9017       break;
9018 
9019     if (Value.isInt()) {
9020       unsigned Size = Info.Ctx.getTypeSize(E->getType());
9021       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
9022       Result.Base = (Expr*)nullptr;
9023       Result.InvalidBase = false;
9024       Result.Offset = CharUnits::fromQuantity(N);
9025       Result.Designator.setInvalid();
9026       Result.IsNullPtr = false;
9027       return true;
9028     } else {
9029       // Cast is of an lvalue, no need to change value.
9030       Result.setFrom(Info.Ctx, Value);
9031       return true;
9032     }
9033   }
9034 
9035   case CK_ArrayToPointerDecay: {
9036     if (SubExpr->isGLValue()) {
9037       if (!evaluateLValue(SubExpr, Result))
9038         return false;
9039     } else {
9040       APValue &Value = Info.CurrentCall->createTemporary(
9041           SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
9042       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
9043         return false;
9044     }
9045     // The result is a pointer to the first element of the array.
9046     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
9047     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
9048       Result.addArray(Info, E, CAT);
9049     else
9050       Result.addUnsizedArray(Info, E, AT->getElementType());
9051     return true;
9052   }
9053 
9054   case CK_FunctionToPointerDecay:
9055     return evaluateLValue(SubExpr, Result);
9056 
9057   case CK_LValueToRValue: {
9058     LValue LVal;
9059     if (!evaluateLValue(E->getSubExpr(), LVal))
9060       return false;
9061 
9062     APValue RVal;
9063     // Note, we use the subexpression's type in order to retain cv-qualifiers.
9064     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9065                                         LVal, RVal))
9066       return InvalidBaseOK &&
9067              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
9068     return Success(RVal, E);
9069   }
9070   }
9071 
9072   return ExprEvaluatorBaseTy::VisitCastExpr(E);
9073 }
9074 
9075 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
9076                                 UnaryExprOrTypeTrait ExprKind) {
9077   // C++ [expr.alignof]p3:
9078   //     When alignof is applied to a reference type, the result is the
9079   //     alignment of the referenced type.
9080   T = T.getNonReferenceType();
9081 
9082   if (T.getQualifiers().hasUnaligned())
9083     return CharUnits::One();
9084 
9085   const bool AlignOfReturnsPreferred =
9086       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9087 
9088   // __alignof is defined to return the preferred alignment.
9089   // Before 8, clang returned the preferred alignment for alignof and _Alignof
9090   // as well.
9091   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9092     return Info.Ctx.toCharUnitsFromBits(
9093       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
9094   // alignof and _Alignof are defined to return the ABI alignment.
9095   else if (ExprKind == UETT_AlignOf)
9096     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
9097   else
9098     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9099 }
9100 
9101 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9102                                 UnaryExprOrTypeTrait ExprKind) {
9103   E = E->IgnoreParens();
9104 
9105   // The kinds of expressions that we have special-case logic here for
9106   // should be kept up to date with the special checks for those
9107   // expressions in Sema.
9108 
9109   // alignof decl is always accepted, even if it doesn't make sense: we default
9110   // to 1 in those cases.
9111   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9112     return Info.Ctx.getDeclAlign(DRE->getDecl(),
9113                                  /*RefAsPointee*/true);
9114 
9115   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
9116     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9117                                  /*RefAsPointee*/true);
9118 
9119   return GetAlignOfType(Info, E->getType(), ExprKind);
9120 }
9121 
9122 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9123   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9124     return Info.Ctx.getDeclAlign(VD);
9125   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9126     return GetAlignOfExpr(Info, E, UETT_AlignOf);
9127   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
9128 }
9129 
9130 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9131 /// __builtin_is_aligned and __builtin_assume_aligned.
9132 static bool getAlignmentArgument(const Expr *E, QualType ForType,
9133                                  EvalInfo &Info, APSInt &Alignment) {
9134   if (!EvaluateInteger(E, Alignment, Info))
9135     return false;
9136   if (Alignment < 0 || !Alignment.isPowerOf2()) {
9137     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9138     return false;
9139   }
9140   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
9141   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
9142   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
9143     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9144         << MaxValue << ForType << Alignment;
9145     return false;
9146   }
9147   // Ensure both alignment and source value have the same bit width so that we
9148   // don't assert when computing the resulting value.
9149   APSInt ExtAlignment =
9150       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
9151   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9152          "Alignment should not be changed by ext/trunc");
9153   Alignment = ExtAlignment;
9154   assert(Alignment.getBitWidth() == SrcWidth);
9155   return true;
9156 }
9157 
9158 // To be clear: this happily visits unsupported builtins. Better name welcomed.
9159 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9160   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9161     return true;
9162 
9163   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9164     return false;
9165 
9166   Result.setInvalid(E);
9167   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9168   Result.addUnsizedArray(Info, E, PointeeTy);
9169   return true;
9170 }
9171 
9172 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9173   if (!IsConstantEvaluatedBuiltinCall(E))
9174     return visitNonBuiltinCallExpr(E);
9175   return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
9176 }
9177 
9178 // Determine if T is a character type for which we guarantee that
9179 // sizeof(T) == 1.
9180 static bool isOneByteCharacterType(QualType T) {
9181   return T->isCharType() || T->isChar8Type();
9182 }
9183 
9184 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9185                                                 unsigned BuiltinOp) {
9186   if (IsNoOpCall(E))
9187     return Success(E);
9188 
9189   switch (BuiltinOp) {
9190   case Builtin::BIaddressof:
9191   case Builtin::BI__addressof:
9192   case Builtin::BI__builtin_addressof:
9193     return evaluateLValue(E->getArg(0), Result);
9194   case Builtin::BI__builtin_assume_aligned: {
9195     // We need to be very careful here because: if the pointer does not have the
9196     // asserted alignment, then the behavior is undefined, and undefined
9197     // behavior is non-constant.
9198     if (!evaluatePointer(E->getArg(0), Result))
9199       return false;
9200 
9201     LValue OffsetResult(Result);
9202     APSInt Alignment;
9203     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9204                               Alignment))
9205       return false;
9206     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9207 
9208     if (E->getNumArgs() > 2) {
9209       APSInt Offset;
9210       if (!EvaluateInteger(E->getArg(2), Offset, Info))
9211         return false;
9212 
9213       int64_t AdditionalOffset = -Offset.getZExtValue();
9214       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9215     }
9216 
9217     // If there is a base object, then it must have the correct alignment.
9218     if (OffsetResult.Base) {
9219       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9220 
9221       if (BaseAlignment < Align) {
9222         Result.Designator.setInvalid();
9223         // FIXME: Add support to Diagnostic for long / long long.
9224         CCEDiag(E->getArg(0),
9225                 diag::note_constexpr_baa_insufficient_alignment) << 0
9226           << (unsigned)BaseAlignment.getQuantity()
9227           << (unsigned)Align.getQuantity();
9228         return false;
9229       }
9230     }
9231 
9232     // The offset must also have the correct alignment.
9233     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9234       Result.Designator.setInvalid();
9235 
9236       (OffsetResult.Base
9237            ? CCEDiag(E->getArg(0),
9238                      diag::note_constexpr_baa_insufficient_alignment) << 1
9239            : CCEDiag(E->getArg(0),
9240                      diag::note_constexpr_baa_value_insufficient_alignment))
9241         << (int)OffsetResult.Offset.getQuantity()
9242         << (unsigned)Align.getQuantity();
9243       return false;
9244     }
9245 
9246     return true;
9247   }
9248   case Builtin::BI__builtin_align_up:
9249   case Builtin::BI__builtin_align_down: {
9250     if (!evaluatePointer(E->getArg(0), Result))
9251       return false;
9252     APSInt Alignment;
9253     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9254                               Alignment))
9255       return false;
9256     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9257     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9258     // For align_up/align_down, we can return the same value if the alignment
9259     // is known to be greater or equal to the requested value.
9260     if (PtrAlign.getQuantity() >= Alignment)
9261       return true;
9262 
9263     // The alignment could be greater than the minimum at run-time, so we cannot
9264     // infer much about the resulting pointer value. One case is possible:
9265     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9266     // can infer the correct index if the requested alignment is smaller than
9267     // the base alignment so we can perform the computation on the offset.
9268     if (BaseAlignment.getQuantity() >= Alignment) {
9269       assert(Alignment.getBitWidth() <= 64 &&
9270              "Cannot handle > 64-bit address-space");
9271       uint64_t Alignment64 = Alignment.getZExtValue();
9272       CharUnits NewOffset = CharUnits::fromQuantity(
9273           BuiltinOp == Builtin::BI__builtin_align_down
9274               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9275               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9276       Result.adjustOffset(NewOffset - Result.Offset);
9277       // TODO: diagnose out-of-bounds values/only allow for arrays?
9278       return true;
9279     }
9280     // Otherwise, we cannot constant-evaluate the result.
9281     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9282         << Alignment;
9283     return false;
9284   }
9285   case Builtin::BI__builtin_operator_new:
9286     return HandleOperatorNewCall(Info, E, Result);
9287   case Builtin::BI__builtin_launder:
9288     return evaluatePointer(E->getArg(0), Result);
9289   case Builtin::BIstrchr:
9290   case Builtin::BIwcschr:
9291   case Builtin::BImemchr:
9292   case Builtin::BIwmemchr:
9293     if (Info.getLangOpts().CPlusPlus11)
9294       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9295           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9296           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9297     else
9298       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9299     [[fallthrough]];
9300   case Builtin::BI__builtin_strchr:
9301   case Builtin::BI__builtin_wcschr:
9302   case Builtin::BI__builtin_memchr:
9303   case Builtin::BI__builtin_char_memchr:
9304   case Builtin::BI__builtin_wmemchr: {
9305     if (!Visit(E->getArg(0)))
9306       return false;
9307     APSInt Desired;
9308     if (!EvaluateInteger(E->getArg(1), Desired, Info))
9309       return false;
9310     uint64_t MaxLength = uint64_t(-1);
9311     if (BuiltinOp != Builtin::BIstrchr &&
9312         BuiltinOp != Builtin::BIwcschr &&
9313         BuiltinOp != Builtin::BI__builtin_strchr &&
9314         BuiltinOp != Builtin::BI__builtin_wcschr) {
9315       APSInt N;
9316       if (!EvaluateInteger(E->getArg(2), N, Info))
9317         return false;
9318       MaxLength = N.getExtValue();
9319     }
9320     // We cannot find the value if there are no candidates to match against.
9321     if (MaxLength == 0u)
9322       return ZeroInitialization(E);
9323     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9324         Result.Designator.Invalid)
9325       return false;
9326     QualType CharTy = Result.Designator.getType(Info.Ctx);
9327     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9328                      BuiltinOp == Builtin::BI__builtin_memchr;
9329     assert(IsRawByte ||
9330            Info.Ctx.hasSameUnqualifiedType(
9331                CharTy, E->getArg(0)->getType()->getPointeeType()));
9332     // Pointers to const void may point to objects of incomplete type.
9333     if (IsRawByte && CharTy->isIncompleteType()) {
9334       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9335       return false;
9336     }
9337     // Give up on byte-oriented matching against multibyte elements.
9338     // FIXME: We can compare the bytes in the correct order.
9339     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9340       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9341           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
9342           << CharTy;
9343       return false;
9344     }
9345     // Figure out what value we're actually looking for (after converting to
9346     // the corresponding unsigned type if necessary).
9347     uint64_t DesiredVal;
9348     bool StopAtNull = false;
9349     switch (BuiltinOp) {
9350     case Builtin::BIstrchr:
9351     case Builtin::BI__builtin_strchr:
9352       // strchr compares directly to the passed integer, and therefore
9353       // always fails if given an int that is not a char.
9354       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9355                                                   E->getArg(1)->getType(),
9356                                                   Desired),
9357                                Desired))
9358         return ZeroInitialization(E);
9359       StopAtNull = true;
9360       [[fallthrough]];
9361     case Builtin::BImemchr:
9362     case Builtin::BI__builtin_memchr:
9363     case Builtin::BI__builtin_char_memchr:
9364       // memchr compares by converting both sides to unsigned char. That's also
9365       // correct for strchr if we get this far (to cope with plain char being
9366       // unsigned in the strchr case).
9367       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9368       break;
9369 
9370     case Builtin::BIwcschr:
9371     case Builtin::BI__builtin_wcschr:
9372       StopAtNull = true;
9373       [[fallthrough]];
9374     case Builtin::BIwmemchr:
9375     case Builtin::BI__builtin_wmemchr:
9376       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9377       DesiredVal = Desired.getZExtValue();
9378       break;
9379     }
9380 
9381     for (; MaxLength; --MaxLength) {
9382       APValue Char;
9383       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9384           !Char.isInt())
9385         return false;
9386       if (Char.getInt().getZExtValue() == DesiredVal)
9387         return true;
9388       if (StopAtNull && !Char.getInt())
9389         break;
9390       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9391         return false;
9392     }
9393     // Not found: return nullptr.
9394     return ZeroInitialization(E);
9395   }
9396 
9397   case Builtin::BImemcpy:
9398   case Builtin::BImemmove:
9399   case Builtin::BIwmemcpy:
9400   case Builtin::BIwmemmove:
9401     if (Info.getLangOpts().CPlusPlus11)
9402       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9403           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9404           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9405     else
9406       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9407     [[fallthrough]];
9408   case Builtin::BI__builtin_memcpy:
9409   case Builtin::BI__builtin_memmove:
9410   case Builtin::BI__builtin_wmemcpy:
9411   case Builtin::BI__builtin_wmemmove: {
9412     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9413                  BuiltinOp == Builtin::BIwmemmove ||
9414                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9415                  BuiltinOp == Builtin::BI__builtin_wmemmove;
9416     bool Move = BuiltinOp == Builtin::BImemmove ||
9417                 BuiltinOp == Builtin::BIwmemmove ||
9418                 BuiltinOp == Builtin::BI__builtin_memmove ||
9419                 BuiltinOp == Builtin::BI__builtin_wmemmove;
9420 
9421     // The result of mem* is the first argument.
9422     if (!Visit(E->getArg(0)))
9423       return false;
9424     LValue Dest = Result;
9425 
9426     LValue Src;
9427     if (!EvaluatePointer(E->getArg(1), Src, Info))
9428       return false;
9429 
9430     APSInt N;
9431     if (!EvaluateInteger(E->getArg(2), N, Info))
9432       return false;
9433     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9434 
9435     // If the size is zero, we treat this as always being a valid no-op.
9436     // (Even if one of the src and dest pointers is null.)
9437     if (!N)
9438       return true;
9439 
9440     // Otherwise, if either of the operands is null, we can't proceed. Don't
9441     // try to determine the type of the copied objects, because there aren't
9442     // any.
9443     if (!Src.Base || !Dest.Base) {
9444       APValue Val;
9445       (!Src.Base ? Src : Dest).moveInto(Val);
9446       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9447           << Move << WChar << !!Src.Base
9448           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9449       return false;
9450     }
9451     if (Src.Designator.Invalid || Dest.Designator.Invalid)
9452       return false;
9453 
9454     // We require that Src and Dest are both pointers to arrays of
9455     // trivially-copyable type. (For the wide version, the designator will be
9456     // invalid if the designated object is not a wchar_t.)
9457     QualType T = Dest.Designator.getType(Info.Ctx);
9458     QualType SrcT = Src.Designator.getType(Info.Ctx);
9459     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9460       // FIXME: Consider using our bit_cast implementation to support this.
9461       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9462       return false;
9463     }
9464     if (T->isIncompleteType()) {
9465       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9466       return false;
9467     }
9468     if (!T.isTriviallyCopyableType(Info.Ctx)) {
9469       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9470       return false;
9471     }
9472 
9473     // Figure out how many T's we're copying.
9474     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9475     if (!WChar) {
9476       uint64_t Remainder;
9477       llvm::APInt OrigN = N;
9478       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9479       if (Remainder) {
9480         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9481             << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9482             << (unsigned)TSize;
9483         return false;
9484       }
9485     }
9486 
9487     // Check that the copying will remain within the arrays, just so that we
9488     // can give a more meaningful diagnostic. This implicitly also checks that
9489     // N fits into 64 bits.
9490     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9491     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9492     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9493       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9494           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9495           << toString(N, 10, /*Signed*/false);
9496       return false;
9497     }
9498     uint64_t NElems = N.getZExtValue();
9499     uint64_t NBytes = NElems * TSize;
9500 
9501     // Check for overlap.
9502     int Direction = 1;
9503     if (HasSameBase(Src, Dest)) {
9504       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9505       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9506       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9507         // Dest is inside the source region.
9508         if (!Move) {
9509           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9510           return false;
9511         }
9512         // For memmove and friends, copy backwards.
9513         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9514             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9515           return false;
9516         Direction = -1;
9517       } else if (!Move && SrcOffset >= DestOffset &&
9518                  SrcOffset - DestOffset < NBytes) {
9519         // Src is inside the destination region for memcpy: invalid.
9520         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9521         return false;
9522       }
9523     }
9524 
9525     while (true) {
9526       APValue Val;
9527       // FIXME: Set WantObjectRepresentation to true if we're copying a
9528       // char-like type?
9529       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9530           !handleAssignment(Info, E, Dest, T, Val))
9531         return false;
9532       // Do not iterate past the last element; if we're copying backwards, that
9533       // might take us off the start of the array.
9534       if (--NElems == 0)
9535         return true;
9536       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9537           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9538         return false;
9539     }
9540   }
9541 
9542   default:
9543     return false;
9544   }
9545 }
9546 
9547 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9548                                      APValue &Result, const InitListExpr *ILE,
9549                                      QualType AllocType);
9550 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9551                                           APValue &Result,
9552                                           const CXXConstructExpr *CCE,
9553                                           QualType AllocType);
9554 
9555 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9556   if (!Info.getLangOpts().CPlusPlus20)
9557     Info.CCEDiag(E, diag::note_constexpr_new);
9558 
9559   // We cannot speculatively evaluate a delete expression.
9560   if (Info.SpeculativeEvaluationDepth)
9561     return false;
9562 
9563   FunctionDecl *OperatorNew = E->getOperatorNew();
9564 
9565   bool IsNothrow = false;
9566   bool IsPlacement = false;
9567   if (OperatorNew->isReservedGlobalPlacementOperator() &&
9568       Info.CurrentCall->isStdFunction() && !E->isArray()) {
9569     // FIXME Support array placement new.
9570     assert(E->getNumPlacementArgs() == 1);
9571     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9572       return false;
9573     if (Result.Designator.Invalid)
9574       return false;
9575     IsPlacement = true;
9576   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9577     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9578         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9579     return false;
9580   } else if (E->getNumPlacementArgs()) {
9581     // The only new-placement list we support is of the form (std::nothrow).
9582     //
9583     // FIXME: There is no restriction on this, but it's not clear that any
9584     // other form makes any sense. We get here for cases such as:
9585     //
9586     //   new (std::align_val_t{N}) X(int)
9587     //
9588     // (which should presumably be valid only if N is a multiple of
9589     // alignof(int), and in any case can't be deallocated unless N is
9590     // alignof(X) and X has new-extended alignment).
9591     if (E->getNumPlacementArgs() != 1 ||
9592         !E->getPlacementArg(0)->getType()->isNothrowT())
9593       return Error(E, diag::note_constexpr_new_placement);
9594 
9595     LValue Nothrow;
9596     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9597       return false;
9598     IsNothrow = true;
9599   }
9600 
9601   const Expr *Init = E->getInitializer();
9602   const InitListExpr *ResizedArrayILE = nullptr;
9603   const CXXConstructExpr *ResizedArrayCCE = nullptr;
9604   bool ValueInit = false;
9605 
9606   QualType AllocType = E->getAllocatedType();
9607   if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
9608     const Expr *Stripped = *ArraySize;
9609     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9610          Stripped = ICE->getSubExpr())
9611       if (ICE->getCastKind() != CK_NoOp &&
9612           ICE->getCastKind() != CK_IntegralCast)
9613         break;
9614 
9615     llvm::APSInt ArrayBound;
9616     if (!EvaluateInteger(Stripped, ArrayBound, Info))
9617       return false;
9618 
9619     // C++ [expr.new]p9:
9620     //   The expression is erroneous if:
9621     //   -- [...] its value before converting to size_t [or] applying the
9622     //      second standard conversion sequence is less than zero
9623     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9624       if (IsNothrow)
9625         return ZeroInitialization(E);
9626 
9627       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9628           << ArrayBound << (*ArraySize)->getSourceRange();
9629       return false;
9630     }
9631 
9632     //   -- its value is such that the size of the allocated object would
9633     //      exceed the implementation-defined limit
9634     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9635                                                 ArrayBound) >
9636         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9637       if (IsNothrow)
9638         return ZeroInitialization(E);
9639 
9640       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9641         << ArrayBound << (*ArraySize)->getSourceRange();
9642       return false;
9643     }
9644 
9645     //   -- the new-initializer is a braced-init-list and the number of
9646     //      array elements for which initializers are provided [...]
9647     //      exceeds the number of elements to initialize
9648     if (!Init) {
9649       // No initialization is performed.
9650     } else if (isa<CXXScalarValueInitExpr>(Init) ||
9651                isa<ImplicitValueInitExpr>(Init)) {
9652       ValueInit = true;
9653     } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9654       ResizedArrayCCE = CCE;
9655     } else {
9656       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9657       assert(CAT && "unexpected type for array initializer");
9658 
9659       unsigned Bits =
9660           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9661       llvm::APInt InitBound = CAT->getSize().zext(Bits);
9662       llvm::APInt AllocBound = ArrayBound.zext(Bits);
9663       if (InitBound.ugt(AllocBound)) {
9664         if (IsNothrow)
9665           return ZeroInitialization(E);
9666 
9667         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9668             << toString(AllocBound, 10, /*Signed=*/false)
9669             << toString(InitBound, 10, /*Signed=*/false)
9670             << (*ArraySize)->getSourceRange();
9671         return false;
9672       }
9673 
9674       // If the sizes differ, we must have an initializer list, and we need
9675       // special handling for this case when we initialize.
9676       if (InitBound != AllocBound)
9677         ResizedArrayILE = cast<InitListExpr>(Init);
9678     }
9679 
9680     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9681                                               ArrayType::Normal, 0);
9682   } else {
9683     assert(!AllocType->isArrayType() &&
9684            "array allocation with non-array new");
9685   }
9686 
9687   APValue *Val;
9688   if (IsPlacement) {
9689     AccessKinds AK = AK_Construct;
9690     struct FindObjectHandler {
9691       EvalInfo &Info;
9692       const Expr *E;
9693       QualType AllocType;
9694       const AccessKinds AccessKind;
9695       APValue *Value;
9696 
9697       typedef bool result_type;
9698       bool failed() { return false; }
9699       bool found(APValue &Subobj, QualType SubobjType) {
9700         // FIXME: Reject the cases where [basic.life]p8 would not permit the
9701         // old name of the object to be used to name the new object.
9702         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9703           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9704             SubobjType << AllocType;
9705           return false;
9706         }
9707         Value = &Subobj;
9708         return true;
9709       }
9710       bool found(APSInt &Value, QualType SubobjType) {
9711         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9712         return false;
9713       }
9714       bool found(APFloat &Value, QualType SubobjType) {
9715         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9716         return false;
9717       }
9718     } Handler = {Info, E, AllocType, AK, nullptr};
9719 
9720     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9721     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9722       return false;
9723 
9724     Val = Handler.Value;
9725 
9726     // [basic.life]p1:
9727     //   The lifetime of an object o of type T ends when [...] the storage
9728     //   which the object occupies is [...] reused by an object that is not
9729     //   nested within o (6.6.2).
9730     *Val = APValue();
9731   } else {
9732     // Perform the allocation and obtain a pointer to the resulting object.
9733     Val = Info.createHeapAlloc(E, AllocType, Result);
9734     if (!Val)
9735       return false;
9736   }
9737 
9738   if (ValueInit) {
9739     ImplicitValueInitExpr VIE(AllocType);
9740     if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9741       return false;
9742   } else if (ResizedArrayILE) {
9743     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9744                                   AllocType))
9745       return false;
9746   } else if (ResizedArrayCCE) {
9747     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9748                                        AllocType))
9749       return false;
9750   } else if (Init) {
9751     if (!EvaluateInPlace(*Val, Info, Result, Init))
9752       return false;
9753   } else if (!getDefaultInitValue(AllocType, *Val)) {
9754     return false;
9755   }
9756 
9757   // Array new returns a pointer to the first element, not a pointer to the
9758   // array.
9759   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9760     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9761 
9762   return true;
9763 }
9764 //===----------------------------------------------------------------------===//
9765 // Member Pointer Evaluation
9766 //===----------------------------------------------------------------------===//
9767 
9768 namespace {
9769 class MemberPointerExprEvaluator
9770   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9771   MemberPtr &Result;
9772 
9773   bool Success(const ValueDecl *D) {
9774     Result = MemberPtr(D);
9775     return true;
9776   }
9777 public:
9778 
9779   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9780     : ExprEvaluatorBaseTy(Info), Result(Result) {}
9781 
9782   bool Success(const APValue &V, const Expr *E) {
9783     Result.setFrom(V);
9784     return true;
9785   }
9786   bool ZeroInitialization(const Expr *E) {
9787     return Success((const ValueDecl*)nullptr);
9788   }
9789 
9790   bool VisitCastExpr(const CastExpr *E);
9791   bool VisitUnaryAddrOf(const UnaryOperator *E);
9792 };
9793 } // end anonymous namespace
9794 
9795 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9796                                   EvalInfo &Info) {
9797   assert(!E->isValueDependent());
9798   assert(E->isPRValue() && E->getType()->isMemberPointerType());
9799   return MemberPointerExprEvaluator(Info, Result).Visit(E);
9800 }
9801 
9802 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9803   switch (E->getCastKind()) {
9804   default:
9805     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9806 
9807   case CK_NullToMemberPointer:
9808     VisitIgnoredValue(E->getSubExpr());
9809     return ZeroInitialization(E);
9810 
9811   case CK_BaseToDerivedMemberPointer: {
9812     if (!Visit(E->getSubExpr()))
9813       return false;
9814     if (E->path_empty())
9815       return true;
9816     // Base-to-derived member pointer casts store the path in derived-to-base
9817     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9818     // the wrong end of the derived->base arc, so stagger the path by one class.
9819     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9820     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9821          PathI != PathE; ++PathI) {
9822       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9823       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9824       if (!Result.castToDerived(Derived))
9825         return Error(E);
9826     }
9827     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9828     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9829       return Error(E);
9830     return true;
9831   }
9832 
9833   case CK_DerivedToBaseMemberPointer:
9834     if (!Visit(E->getSubExpr()))
9835       return false;
9836     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9837          PathE = E->path_end(); PathI != PathE; ++PathI) {
9838       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9839       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9840       if (!Result.castToBase(Base))
9841         return Error(E);
9842     }
9843     return true;
9844   }
9845 }
9846 
9847 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9848   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9849   // member can be formed.
9850   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9851 }
9852 
9853 //===----------------------------------------------------------------------===//
9854 // Record Evaluation
9855 //===----------------------------------------------------------------------===//
9856 
9857 namespace {
9858   class RecordExprEvaluator
9859   : public ExprEvaluatorBase<RecordExprEvaluator> {
9860     const LValue &This;
9861     APValue &Result;
9862   public:
9863 
9864     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9865       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9866 
9867     bool Success(const APValue &V, const Expr *E) {
9868       Result = V;
9869       return true;
9870     }
9871     bool ZeroInitialization(const Expr *E) {
9872       return ZeroInitialization(E, E->getType());
9873     }
9874     bool ZeroInitialization(const Expr *E, QualType T);
9875 
9876     bool VisitCallExpr(const CallExpr *E) {
9877       return handleCallExpr(E, Result, &This);
9878     }
9879     bool VisitCastExpr(const CastExpr *E);
9880     bool VisitInitListExpr(const InitListExpr *E);
9881     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9882       return VisitCXXConstructExpr(E, E->getType());
9883     }
9884     bool VisitLambdaExpr(const LambdaExpr *E);
9885     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9886     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9887     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9888     bool VisitBinCmp(const BinaryOperator *E);
9889     bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
9890     bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
9891                                          ArrayRef<Expr *> Args);
9892   };
9893 }
9894 
9895 /// Perform zero-initialization on an object of non-union class type.
9896 /// C++11 [dcl.init]p5:
9897 ///  To zero-initialize an object or reference of type T means:
9898 ///    [...]
9899 ///    -- if T is a (possibly cv-qualified) non-union class type,
9900 ///       each non-static data member and each base-class subobject is
9901 ///       zero-initialized
9902 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9903                                           const RecordDecl *RD,
9904                                           const LValue &This, APValue &Result) {
9905   assert(!RD->isUnion() && "Expected non-union class type");
9906   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9907   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9908                    std::distance(RD->field_begin(), RD->field_end()));
9909 
9910   if (RD->isInvalidDecl()) return false;
9911   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9912 
9913   if (CD) {
9914     unsigned Index = 0;
9915     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9916            End = CD->bases_end(); I != End; ++I, ++Index) {
9917       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9918       LValue Subobject = This;
9919       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9920         return false;
9921       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9922                                          Result.getStructBase(Index)))
9923         return false;
9924     }
9925   }
9926 
9927   for (const auto *I : RD->fields()) {
9928     // -- if T is a reference type, no initialization is performed.
9929     if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9930       continue;
9931 
9932     LValue Subobject = This;
9933     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9934       return false;
9935 
9936     ImplicitValueInitExpr VIE(I->getType());
9937     if (!EvaluateInPlace(
9938           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9939       return false;
9940   }
9941 
9942   return true;
9943 }
9944 
9945 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9946   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9947   if (RD->isInvalidDecl()) return false;
9948   if (RD->isUnion()) {
9949     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9950     // object's first non-static named data member is zero-initialized
9951     RecordDecl::field_iterator I = RD->field_begin();
9952     while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9953       ++I;
9954     if (I == RD->field_end()) {
9955       Result = APValue((const FieldDecl*)nullptr);
9956       return true;
9957     }
9958 
9959     LValue Subobject = This;
9960     if (!HandleLValueMember(Info, E, Subobject, *I))
9961       return false;
9962     Result = APValue(*I);
9963     ImplicitValueInitExpr VIE(I->getType());
9964     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9965   }
9966 
9967   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9968     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9969     return false;
9970   }
9971 
9972   return HandleClassZeroInitialization(Info, E, RD, This, Result);
9973 }
9974 
9975 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9976   switch (E->getCastKind()) {
9977   default:
9978     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9979 
9980   case CK_ConstructorConversion:
9981     return Visit(E->getSubExpr());
9982 
9983   case CK_DerivedToBase:
9984   case CK_UncheckedDerivedToBase: {
9985     APValue DerivedObject;
9986     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9987       return false;
9988     if (!DerivedObject.isStruct())
9989       return Error(E->getSubExpr());
9990 
9991     // Derived-to-base rvalue conversion: just slice off the derived part.
9992     APValue *Value = &DerivedObject;
9993     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9994     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9995          PathE = E->path_end(); PathI != PathE; ++PathI) {
9996       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9997       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9998       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9999       RD = Base;
10000     }
10001     Result = *Value;
10002     return true;
10003   }
10004   }
10005 }
10006 
10007 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10008   if (E->isTransparent())
10009     return Visit(E->getInit(0));
10010   return VisitCXXParenListOrInitListExpr(E, E->inits());
10011 }
10012 
10013 bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
10014     const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
10015   const RecordDecl *RD =
10016       ExprToVisit->getType()->castAs<RecordType>()->getDecl();
10017   if (RD->isInvalidDecl()) return false;
10018   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
10019   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
10020 
10021   EvalInfo::EvaluatingConstructorRAII EvalObj(
10022       Info,
10023       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
10024       CXXRD && CXXRD->getNumBases());
10025 
10026   if (RD->isUnion()) {
10027     const FieldDecl *Field;
10028     if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) {
10029       Field = ILE->getInitializedFieldInUnion();
10030     } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) {
10031       Field = PLIE->getInitializedFieldInUnion();
10032     } else {
10033       llvm_unreachable(
10034           "Expression is neither an init list nor a C++ paren list");
10035     }
10036 
10037     Result = APValue(Field);
10038     if (!Field)
10039       return true;
10040 
10041     // If the initializer list for a union does not contain any elements, the
10042     // first element of the union is value-initialized.
10043     // FIXME: The element should be initialized from an initializer list.
10044     //        Is this difference ever observable for initializer lists which
10045     //        we don't build?
10046     ImplicitValueInitExpr VIE(Field->getType());
10047     const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
10048 
10049     LValue Subobject = This;
10050     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
10051       return false;
10052 
10053     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10054     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10055                                   isa<CXXDefaultInitExpr>(InitExpr));
10056 
10057     if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
10058       if (Field->isBitField())
10059         return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
10060                                      Field);
10061       return true;
10062     }
10063 
10064     return false;
10065   }
10066 
10067   if (!Result.hasValue())
10068     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10069                      std::distance(RD->field_begin(), RD->field_end()));
10070   unsigned ElementNo = 0;
10071   bool Success = true;
10072 
10073   // Initialize base classes.
10074   if (CXXRD && CXXRD->getNumBases()) {
10075     for (const auto &Base : CXXRD->bases()) {
10076       assert(ElementNo < Args.size() && "missing init for base class");
10077       const Expr *Init = Args[ElementNo];
10078 
10079       LValue Subobject = This;
10080       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
10081         return false;
10082 
10083       APValue &FieldVal = Result.getStructBase(ElementNo);
10084       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
10085         if (!Info.noteFailure())
10086           return false;
10087         Success = false;
10088       }
10089       ++ElementNo;
10090     }
10091 
10092     EvalObj.finishedConstructingBases();
10093   }
10094 
10095   // Initialize members.
10096   for (const auto *Field : RD->fields()) {
10097     // Anonymous bit-fields are not considered members of the class for
10098     // purposes of aggregate initialization.
10099     if (Field->isUnnamedBitfield())
10100       continue;
10101 
10102     LValue Subobject = This;
10103 
10104     bool HaveInit = ElementNo < Args.size();
10105 
10106     // FIXME: Diagnostics here should point to the end of the initializer
10107     // list, not the start.
10108     if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit,
10109                             Subobject, Field, &Layout))
10110       return false;
10111 
10112     // Perform an implicit value-initialization for members beyond the end of
10113     // the initializer list.
10114     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10115     const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10116 
10117     if (Field->getType()->isIncompleteArrayType()) {
10118       if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10119         if (!CAT->getSize().isZero()) {
10120           // Bail out for now. This might sort of "work", but the rest of the
10121           // code isn't really prepared to handle it.
10122           Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10123           return false;
10124         }
10125       }
10126     }
10127 
10128     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10129     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10130                                   isa<CXXDefaultInitExpr>(Init));
10131 
10132     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10133     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
10134         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
10135                                                        FieldVal, Field))) {
10136       if (!Info.noteFailure())
10137         return false;
10138       Success = false;
10139     }
10140   }
10141 
10142   EvalObj.finishedConstructingFields();
10143 
10144   return Success;
10145 }
10146 
10147 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10148                                                 QualType T) {
10149   // Note that E's type is not necessarily the type of our class here; we might
10150   // be initializing an array element instead.
10151   const CXXConstructorDecl *FD = E->getConstructor();
10152   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10153 
10154   bool ZeroInit = E->requiresZeroInitialization();
10155   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10156     // If we've already performed zero-initialization, we're already done.
10157     if (Result.hasValue())
10158       return true;
10159 
10160     if (ZeroInit)
10161       return ZeroInitialization(E, T);
10162 
10163     return getDefaultInitValue(T, Result);
10164   }
10165 
10166   const FunctionDecl *Definition = nullptr;
10167   auto Body = FD->getBody(Definition);
10168 
10169   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10170     return false;
10171 
10172   // Avoid materializing a temporary for an elidable copy/move constructor.
10173   if (E->isElidable() && !ZeroInit) {
10174     // FIXME: This only handles the simplest case, where the source object
10175     //        is passed directly as the first argument to the constructor.
10176     //        This should also handle stepping though implicit casts and
10177     //        and conversion sequences which involve two steps, with a
10178     //        conversion operator followed by a converting constructor.
10179     const Expr *SrcObj = E->getArg(0);
10180     assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10181     assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10182     if (const MaterializeTemporaryExpr *ME =
10183             dyn_cast<MaterializeTemporaryExpr>(SrcObj))
10184       return Visit(ME->getSubExpr());
10185   }
10186 
10187   if (ZeroInit && !ZeroInitialization(E, T))
10188     return false;
10189 
10190   auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10191   return HandleConstructorCall(E, This, Args,
10192                                cast<CXXConstructorDecl>(Definition), Info,
10193                                Result);
10194 }
10195 
10196 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10197     const CXXInheritedCtorInitExpr *E) {
10198   if (!Info.CurrentCall) {
10199     assert(Info.checkingPotentialConstantExpression());
10200     return false;
10201   }
10202 
10203   const CXXConstructorDecl *FD = E->getConstructor();
10204   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10205     return false;
10206 
10207   const FunctionDecl *Definition = nullptr;
10208   auto Body = FD->getBody(Definition);
10209 
10210   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10211     return false;
10212 
10213   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10214                                cast<CXXConstructorDecl>(Definition), Info,
10215                                Result);
10216 }
10217 
10218 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10219     const CXXStdInitializerListExpr *E) {
10220   const ConstantArrayType *ArrayType =
10221       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10222 
10223   LValue Array;
10224   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10225     return false;
10226 
10227   assert(ArrayType && "unexpected type for array initializer");
10228 
10229   // Get a pointer to the first element of the array.
10230   Array.addArray(Info, E, ArrayType);
10231 
10232   auto InvalidType = [&] {
10233     Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10234       << E->getType();
10235     return false;
10236   };
10237 
10238   // FIXME: Perform the checks on the field types in SemaInit.
10239   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10240   RecordDecl::field_iterator Field = Record->field_begin();
10241   if (Field == Record->field_end())
10242     return InvalidType();
10243 
10244   // Start pointer.
10245   if (!Field->getType()->isPointerType() ||
10246       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10247                             ArrayType->getElementType()))
10248     return InvalidType();
10249 
10250   // FIXME: What if the initializer_list type has base classes, etc?
10251   Result = APValue(APValue::UninitStruct(), 0, 2);
10252   Array.moveInto(Result.getStructField(0));
10253 
10254   if (++Field == Record->field_end())
10255     return InvalidType();
10256 
10257   if (Field->getType()->isPointerType() &&
10258       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10259                            ArrayType->getElementType())) {
10260     // End pointer.
10261     if (!HandleLValueArrayAdjustment(Info, E, Array,
10262                                      ArrayType->getElementType(),
10263                                      ArrayType->getSize().getZExtValue()))
10264       return false;
10265     Array.moveInto(Result.getStructField(1));
10266   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10267     // Length.
10268     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10269   else
10270     return InvalidType();
10271 
10272   if (++Field != Record->field_end())
10273     return InvalidType();
10274 
10275   return true;
10276 }
10277 
10278 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10279   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10280   if (ClosureClass->isInvalidDecl())
10281     return false;
10282 
10283   const size_t NumFields =
10284       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10285 
10286   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10287                                             E->capture_init_end()) &&
10288          "The number of lambda capture initializers should equal the number of "
10289          "fields within the closure type");
10290 
10291   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10292   // Iterate through all the lambda's closure object's fields and initialize
10293   // them.
10294   auto *CaptureInitIt = E->capture_init_begin();
10295   bool Success = true;
10296   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10297   for (const auto *Field : ClosureClass->fields()) {
10298     assert(CaptureInitIt != E->capture_init_end());
10299     // Get the initializer for this field
10300     Expr *const CurFieldInit = *CaptureInitIt++;
10301 
10302     // If there is no initializer, either this is a VLA or an error has
10303     // occurred.
10304     if (!CurFieldInit)
10305       return Error(E);
10306 
10307     LValue Subobject = This;
10308 
10309     if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10310       return false;
10311 
10312     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10313     if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10314       if (!Info.keepEvaluatingAfterFailure())
10315         return false;
10316       Success = false;
10317     }
10318   }
10319   return Success;
10320 }
10321 
10322 static bool EvaluateRecord(const Expr *E, const LValue &This,
10323                            APValue &Result, EvalInfo &Info) {
10324   assert(!E->isValueDependent());
10325   assert(E->isPRValue() && E->getType()->isRecordType() &&
10326          "can't evaluate expression as a record rvalue");
10327   return RecordExprEvaluator(Info, This, Result).Visit(E);
10328 }
10329 
10330 //===----------------------------------------------------------------------===//
10331 // Temporary Evaluation
10332 //
10333 // Temporaries are represented in the AST as rvalues, but generally behave like
10334 // lvalues. The full-object of which the temporary is a subobject is implicitly
10335 // materialized so that a reference can bind to it.
10336 //===----------------------------------------------------------------------===//
10337 namespace {
10338 class TemporaryExprEvaluator
10339   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10340 public:
10341   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10342     LValueExprEvaluatorBaseTy(Info, Result, false) {}
10343 
10344   /// Visit an expression which constructs the value of this temporary.
10345   bool VisitConstructExpr(const Expr *E) {
10346     APValue &Value = Info.CurrentCall->createTemporary(
10347         E, E->getType(), ScopeKind::FullExpression, Result);
10348     return EvaluateInPlace(Value, Info, Result, E);
10349   }
10350 
10351   bool VisitCastExpr(const CastExpr *E) {
10352     switch (E->getCastKind()) {
10353     default:
10354       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10355 
10356     case CK_ConstructorConversion:
10357       return VisitConstructExpr(E->getSubExpr());
10358     }
10359   }
10360   bool VisitInitListExpr(const InitListExpr *E) {
10361     return VisitConstructExpr(E);
10362   }
10363   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10364     return VisitConstructExpr(E);
10365   }
10366   bool VisitCallExpr(const CallExpr *E) {
10367     return VisitConstructExpr(E);
10368   }
10369   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10370     return VisitConstructExpr(E);
10371   }
10372   bool VisitLambdaExpr(const LambdaExpr *E) {
10373     return VisitConstructExpr(E);
10374   }
10375 };
10376 } // end anonymous namespace
10377 
10378 /// Evaluate an expression of record type as a temporary.
10379 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10380   assert(!E->isValueDependent());
10381   assert(E->isPRValue() && E->getType()->isRecordType());
10382   return TemporaryExprEvaluator(Info, Result).Visit(E);
10383 }
10384 
10385 //===----------------------------------------------------------------------===//
10386 // Vector Evaluation
10387 //===----------------------------------------------------------------------===//
10388 
10389 namespace {
10390   class VectorExprEvaluator
10391   : public ExprEvaluatorBase<VectorExprEvaluator> {
10392     APValue &Result;
10393   public:
10394 
10395     VectorExprEvaluator(EvalInfo &info, APValue &Result)
10396       : ExprEvaluatorBaseTy(info), Result(Result) {}
10397 
10398     bool Success(ArrayRef<APValue> V, const Expr *E) {
10399       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10400       // FIXME: remove this APValue copy.
10401       Result = APValue(V.data(), V.size());
10402       return true;
10403     }
10404     bool Success(const APValue &V, const Expr *E) {
10405       assert(V.isVector());
10406       Result = V;
10407       return true;
10408     }
10409     bool ZeroInitialization(const Expr *E);
10410 
10411     bool VisitUnaryReal(const UnaryOperator *E)
10412       { return Visit(E->getSubExpr()); }
10413     bool VisitCastExpr(const CastExpr* E);
10414     bool VisitInitListExpr(const InitListExpr *E);
10415     bool VisitUnaryImag(const UnaryOperator *E);
10416     bool VisitBinaryOperator(const BinaryOperator *E);
10417     bool VisitUnaryOperator(const UnaryOperator *E);
10418     // FIXME: Missing: conditional operator (for GNU
10419     //                 conditional select), shufflevector, ExtVectorElementExpr
10420   };
10421 } // end anonymous namespace
10422 
10423 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10424   assert(E->isPRValue() && E->getType()->isVectorType() &&
10425          "not a vector prvalue");
10426   return VectorExprEvaluator(Info, Result).Visit(E);
10427 }
10428 
10429 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10430   const VectorType *VTy = E->getType()->castAs<VectorType>();
10431   unsigned NElts = VTy->getNumElements();
10432 
10433   const Expr *SE = E->getSubExpr();
10434   QualType SETy = SE->getType();
10435 
10436   switch (E->getCastKind()) {
10437   case CK_VectorSplat: {
10438     APValue Val = APValue();
10439     if (SETy->isIntegerType()) {
10440       APSInt IntResult;
10441       if (!EvaluateInteger(SE, IntResult, Info))
10442         return false;
10443       Val = APValue(std::move(IntResult));
10444     } else if (SETy->isRealFloatingType()) {
10445       APFloat FloatResult(0.0);
10446       if (!EvaluateFloat(SE, FloatResult, Info))
10447         return false;
10448       Val = APValue(std::move(FloatResult));
10449     } else {
10450       return Error(E);
10451     }
10452 
10453     // Splat and create vector APValue.
10454     SmallVector<APValue, 4> Elts(NElts, Val);
10455     return Success(Elts, E);
10456   }
10457   case CK_BitCast: {
10458     // Evaluate the operand into an APInt we can extract from.
10459     llvm::APInt SValInt;
10460     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10461       return false;
10462     // Extract the elements
10463     QualType EltTy = VTy->getElementType();
10464     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10465     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10466     SmallVector<APValue, 4> Elts;
10467     if (EltTy->isRealFloatingType()) {
10468       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10469       unsigned FloatEltSize = EltSize;
10470       if (&Sem == &APFloat::x87DoubleExtended())
10471         FloatEltSize = 80;
10472       for (unsigned i = 0; i < NElts; i++) {
10473         llvm::APInt Elt;
10474         if (BigEndian)
10475           Elt = SValInt.rotl(i * EltSize + FloatEltSize).trunc(FloatEltSize);
10476         else
10477           Elt = SValInt.rotr(i * EltSize).trunc(FloatEltSize);
10478         Elts.push_back(APValue(APFloat(Sem, Elt)));
10479       }
10480     } else if (EltTy->isIntegerType()) {
10481       for (unsigned i = 0; i < NElts; i++) {
10482         llvm::APInt Elt;
10483         if (BigEndian)
10484           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10485         else
10486           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10487         Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10488       }
10489     } else {
10490       return Error(E);
10491     }
10492     return Success(Elts, E);
10493   }
10494   default:
10495     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10496   }
10497 }
10498 
10499 bool
10500 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10501   const VectorType *VT = E->getType()->castAs<VectorType>();
10502   unsigned NumInits = E->getNumInits();
10503   unsigned NumElements = VT->getNumElements();
10504 
10505   QualType EltTy = VT->getElementType();
10506   SmallVector<APValue, 4> Elements;
10507 
10508   // The number of initializers can be less than the number of
10509   // vector elements. For OpenCL, this can be due to nested vector
10510   // initialization. For GCC compatibility, missing trailing elements
10511   // should be initialized with zeroes.
10512   unsigned CountInits = 0, CountElts = 0;
10513   while (CountElts < NumElements) {
10514     // Handle nested vector initialization.
10515     if (CountInits < NumInits
10516         && E->getInit(CountInits)->getType()->isVectorType()) {
10517       APValue v;
10518       if (!EvaluateVector(E->getInit(CountInits), v, Info))
10519         return Error(E);
10520       unsigned vlen = v.getVectorLength();
10521       for (unsigned j = 0; j < vlen; j++)
10522         Elements.push_back(v.getVectorElt(j));
10523       CountElts += vlen;
10524     } else if (EltTy->isIntegerType()) {
10525       llvm::APSInt sInt(32);
10526       if (CountInits < NumInits) {
10527         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10528           return false;
10529       } else // trailing integer zero.
10530         sInt = Info.Ctx.MakeIntValue(0, EltTy);
10531       Elements.push_back(APValue(sInt));
10532       CountElts++;
10533     } else {
10534       llvm::APFloat f(0.0);
10535       if (CountInits < NumInits) {
10536         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10537           return false;
10538       } else // trailing float zero.
10539         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10540       Elements.push_back(APValue(f));
10541       CountElts++;
10542     }
10543     CountInits++;
10544   }
10545   return Success(Elements, E);
10546 }
10547 
10548 bool
10549 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10550   const auto *VT = E->getType()->castAs<VectorType>();
10551   QualType EltTy = VT->getElementType();
10552   APValue ZeroElement;
10553   if (EltTy->isIntegerType())
10554     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10555   else
10556     ZeroElement =
10557         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10558 
10559   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10560   return Success(Elements, E);
10561 }
10562 
10563 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10564   VisitIgnoredValue(E->getSubExpr());
10565   return ZeroInitialization(E);
10566 }
10567 
10568 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10569   BinaryOperatorKind Op = E->getOpcode();
10570   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10571          "Operation not supported on vector types");
10572 
10573   if (Op == BO_Comma)
10574     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10575 
10576   Expr *LHS = E->getLHS();
10577   Expr *RHS = E->getRHS();
10578 
10579   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10580          "Must both be vector types");
10581   // Checking JUST the types are the same would be fine, except shifts don't
10582   // need to have their types be the same (since you always shift by an int).
10583   assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10584              E->getType()->castAs<VectorType>()->getNumElements() &&
10585          RHS->getType()->castAs<VectorType>()->getNumElements() ==
10586              E->getType()->castAs<VectorType>()->getNumElements() &&
10587          "All operands must be the same size.");
10588 
10589   APValue LHSValue;
10590   APValue RHSValue;
10591   bool LHSOK = Evaluate(LHSValue, Info, LHS);
10592   if (!LHSOK && !Info.noteFailure())
10593     return false;
10594   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10595     return false;
10596 
10597   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10598     return false;
10599 
10600   return Success(LHSValue, E);
10601 }
10602 
10603 static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10604                                                         QualType ResultTy,
10605                                                         UnaryOperatorKind Op,
10606                                                         APValue Elt) {
10607   switch (Op) {
10608   case UO_Plus:
10609     // Nothing to do here.
10610     return Elt;
10611   case UO_Minus:
10612     if (Elt.getKind() == APValue::Int) {
10613       Elt.getInt().negate();
10614     } else {
10615       assert(Elt.getKind() == APValue::Float &&
10616              "Vector can only be int or float type");
10617       Elt.getFloat().changeSign();
10618     }
10619     return Elt;
10620   case UO_Not:
10621     // This is only valid for integral types anyway, so we don't have to handle
10622     // float here.
10623     assert(Elt.getKind() == APValue::Int &&
10624            "Vector operator ~ can only be int");
10625     Elt.getInt().flipAllBits();
10626     return Elt;
10627   case UO_LNot: {
10628     if (Elt.getKind() == APValue::Int) {
10629       Elt.getInt() = !Elt.getInt();
10630       // operator ! on vectors returns -1 for 'truth', so negate it.
10631       Elt.getInt().negate();
10632       return Elt;
10633     }
10634     assert(Elt.getKind() == APValue::Float &&
10635            "Vector can only be int or float type");
10636     // Float types result in an int of the same size, but -1 for true, or 0 for
10637     // false.
10638     APSInt EltResult{Ctx.getIntWidth(ResultTy),
10639                      ResultTy->isUnsignedIntegerType()};
10640     if (Elt.getFloat().isZero())
10641       EltResult.setAllBits();
10642     else
10643       EltResult.clearAllBits();
10644 
10645     return APValue{EltResult};
10646   }
10647   default:
10648     // FIXME: Implement the rest of the unary operators.
10649     return std::nullopt;
10650   }
10651 }
10652 
10653 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10654   Expr *SubExpr = E->getSubExpr();
10655   const auto *VD = SubExpr->getType()->castAs<VectorType>();
10656   // This result element type differs in the case of negating a floating point
10657   // vector, since the result type is the a vector of the equivilant sized
10658   // integer.
10659   const QualType ResultEltTy = VD->getElementType();
10660   UnaryOperatorKind Op = E->getOpcode();
10661 
10662   APValue SubExprValue;
10663   if (!Evaluate(SubExprValue, Info, SubExpr))
10664     return false;
10665 
10666   // FIXME: This vector evaluator someday needs to be changed to be LValue
10667   // aware/keep LValue information around, rather than dealing with just vector
10668   // types directly. Until then, we cannot handle cases where the operand to
10669   // these unary operators is an LValue. The only case I've been able to see
10670   // cause this is operator++ assigning to a member expression (only valid in
10671   // altivec compilations) in C mode, so this shouldn't limit us too much.
10672   if (SubExprValue.isLValue())
10673     return false;
10674 
10675   assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10676          "Vector length doesn't match type?");
10677 
10678   SmallVector<APValue, 4> ResultElements;
10679   for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10680     std::optional<APValue> Elt = handleVectorUnaryOperator(
10681         Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10682     if (!Elt)
10683       return false;
10684     ResultElements.push_back(*Elt);
10685   }
10686   return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10687 }
10688 
10689 //===----------------------------------------------------------------------===//
10690 // Array Evaluation
10691 //===----------------------------------------------------------------------===//
10692 
10693 namespace {
10694   class ArrayExprEvaluator
10695   : public ExprEvaluatorBase<ArrayExprEvaluator> {
10696     const LValue &This;
10697     APValue &Result;
10698   public:
10699 
10700     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10701       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10702 
10703     bool Success(const APValue &V, const Expr *E) {
10704       assert(V.isArray() && "expected array");
10705       Result = V;
10706       return true;
10707     }
10708 
10709     bool ZeroInitialization(const Expr *E) {
10710       const ConstantArrayType *CAT =
10711           Info.Ctx.getAsConstantArrayType(E->getType());
10712       if (!CAT) {
10713         if (E->getType()->isIncompleteArrayType()) {
10714           // We can be asked to zero-initialize a flexible array member; this
10715           // is represented as an ImplicitValueInitExpr of incomplete array
10716           // type. In this case, the array has zero elements.
10717           Result = APValue(APValue::UninitArray(), 0, 0);
10718           return true;
10719         }
10720         // FIXME: We could handle VLAs here.
10721         return Error(E);
10722       }
10723 
10724       Result = APValue(APValue::UninitArray(), 0,
10725                        CAT->getSize().getZExtValue());
10726       if (!Result.hasArrayFiller())
10727         return true;
10728 
10729       // Zero-initialize all elements.
10730       LValue Subobject = This;
10731       Subobject.addArray(Info, E, CAT);
10732       ImplicitValueInitExpr VIE(CAT->getElementType());
10733       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10734     }
10735 
10736     bool VisitCallExpr(const CallExpr *E) {
10737       return handleCallExpr(E, Result, &This);
10738     }
10739     bool VisitInitListExpr(const InitListExpr *E,
10740                            QualType AllocType = QualType());
10741     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10742     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10743     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10744                                const LValue &Subobject,
10745                                APValue *Value, QualType Type);
10746     bool VisitStringLiteral(const StringLiteral *E,
10747                             QualType AllocType = QualType()) {
10748       expandStringLiteral(Info, E, Result, AllocType);
10749       return true;
10750     }
10751     bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10752     bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10753                                          ArrayRef<Expr *> Args,
10754                                          const Expr *ArrayFiller,
10755                                          QualType AllocType = QualType());
10756   };
10757 } // end anonymous namespace
10758 
10759 static bool EvaluateArray(const Expr *E, const LValue &This,
10760                           APValue &Result, EvalInfo &Info) {
10761   assert(!E->isValueDependent());
10762   assert(E->isPRValue() && E->getType()->isArrayType() &&
10763          "not an array prvalue");
10764   return ArrayExprEvaluator(Info, This, Result).Visit(E);
10765 }
10766 
10767 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10768                                      APValue &Result, const InitListExpr *ILE,
10769                                      QualType AllocType) {
10770   assert(!ILE->isValueDependent());
10771   assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10772          "not an array prvalue");
10773   return ArrayExprEvaluator(Info, This, Result)
10774       .VisitInitListExpr(ILE, AllocType);
10775 }
10776 
10777 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10778                                           APValue &Result,
10779                                           const CXXConstructExpr *CCE,
10780                                           QualType AllocType) {
10781   assert(!CCE->isValueDependent());
10782   assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
10783          "not an array prvalue");
10784   return ArrayExprEvaluator(Info, This, Result)
10785       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10786 }
10787 
10788 // Return true iff the given array filler may depend on the element index.
10789 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10790   // For now, just allow non-class value-initialization and initialization
10791   // lists comprised of them.
10792   if (isa<ImplicitValueInitExpr>(FillerExpr))
10793     return false;
10794   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10795     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10796       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10797         return true;
10798     }
10799 
10800     if (ILE->hasArrayFiller() &&
10801         MaybeElementDependentArrayFiller(ILE->getArrayFiller()))
10802       return true;
10803 
10804     return false;
10805   }
10806   return true;
10807 }
10808 
10809 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10810                                            QualType AllocType) {
10811   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10812       AllocType.isNull() ? E->getType() : AllocType);
10813   if (!CAT)
10814     return Error(E);
10815 
10816   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10817   // an appropriately-typed string literal enclosed in braces.
10818   if (E->isStringLiteralInit()) {
10819     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10820     // FIXME: Support ObjCEncodeExpr here once we support it in
10821     // ArrayExprEvaluator generally.
10822     if (!SL)
10823       return Error(E);
10824     return VisitStringLiteral(SL, AllocType);
10825   }
10826   // Any other transparent list init will need proper handling of the
10827   // AllocType; we can't just recurse to the inner initializer.
10828   assert(!E->isTransparent() &&
10829          "transparent array list initialization is not string literal init?");
10830 
10831   return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
10832                                          AllocType);
10833 }
10834 
10835 bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
10836     const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
10837     QualType AllocType) {
10838   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10839       AllocType.isNull() ? ExprToVisit->getType() : AllocType);
10840 
10841   bool Success = true;
10842 
10843   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10844          "zero-initialized array shouldn't have any initialized elts");
10845   APValue Filler;
10846   if (Result.isArray() && Result.hasArrayFiller())
10847     Filler = Result.getArrayFiller();
10848 
10849   unsigned NumEltsToInit = Args.size();
10850   unsigned NumElts = CAT->getSize().getZExtValue();
10851 
10852   // If the initializer might depend on the array index, run it for each
10853   // array element.
10854   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(ArrayFiller))
10855     NumEltsToInit = NumElts;
10856 
10857   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10858                           << NumEltsToInit << ".\n");
10859 
10860   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10861 
10862   // If the array was previously zero-initialized, preserve the
10863   // zero-initialized values.
10864   if (Filler.hasValue()) {
10865     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10866       Result.getArrayInitializedElt(I) = Filler;
10867     if (Result.hasArrayFiller())
10868       Result.getArrayFiller() = Filler;
10869   }
10870 
10871   LValue Subobject = This;
10872   Subobject.addArray(Info, ExprToVisit, CAT);
10873   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10874     const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
10875     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10876                          Info, Subobject, Init) ||
10877         !HandleLValueArrayAdjustment(Info, Init, Subobject,
10878                                      CAT->getElementType(), 1)) {
10879       if (!Info.noteFailure())
10880         return false;
10881       Success = false;
10882     }
10883   }
10884 
10885   if (!Result.hasArrayFiller())
10886     return Success;
10887 
10888   // If we get here, we have a trivial filler, which we can just evaluate
10889   // once and splat over the rest of the array elements.
10890   assert(ArrayFiller && "no array filler for incomplete init list");
10891   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10892                          ArrayFiller) &&
10893          Success;
10894 }
10895 
10896 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10897   LValue CommonLV;
10898   if (E->getCommonExpr() &&
10899       !Evaluate(Info.CurrentCall->createTemporary(
10900                     E->getCommonExpr(),
10901                     getStorageType(Info.Ctx, E->getCommonExpr()),
10902                     ScopeKind::FullExpression, CommonLV),
10903                 Info, E->getCommonExpr()->getSourceExpr()))
10904     return false;
10905 
10906   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10907 
10908   uint64_t Elements = CAT->getSize().getZExtValue();
10909   Result = APValue(APValue::UninitArray(), Elements, Elements);
10910 
10911   LValue Subobject = This;
10912   Subobject.addArray(Info, E, CAT);
10913 
10914   bool Success = true;
10915   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10916     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10917                          Info, Subobject, E->getSubExpr()) ||
10918         !HandleLValueArrayAdjustment(Info, E, Subobject,
10919                                      CAT->getElementType(), 1)) {
10920       if (!Info.noteFailure())
10921         return false;
10922       Success = false;
10923     }
10924   }
10925 
10926   return Success;
10927 }
10928 
10929 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10930   return VisitCXXConstructExpr(E, This, &Result, E->getType());
10931 }
10932 
10933 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10934                                                const LValue &Subobject,
10935                                                APValue *Value,
10936                                                QualType Type) {
10937   bool HadZeroInit = Value->hasValue();
10938 
10939   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10940     unsigned FinalSize = CAT->getSize().getZExtValue();
10941 
10942     // Preserve the array filler if we had prior zero-initialization.
10943     APValue Filler =
10944       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10945                                              : APValue();
10946 
10947     *Value = APValue(APValue::UninitArray(), 0, FinalSize);
10948     if (FinalSize == 0)
10949       return true;
10950 
10951     bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
10952         Info, E->getExprLoc(), E->getConstructor(),
10953         E->requiresZeroInitialization());
10954     LValue ArrayElt = Subobject;
10955     ArrayElt.addArray(Info, E, CAT);
10956     // We do the whole initialization in two passes, first for just one element,
10957     // then for the whole array. It's possible we may find out we can't do const
10958     // init in the first pass, in which case we avoid allocating a potentially
10959     // large array. We don't do more passes because expanding array requires
10960     // copying the data, which is wasteful.
10961     for (const unsigned N : {1u, FinalSize}) {
10962       unsigned OldElts = Value->getArrayInitializedElts();
10963       if (OldElts == N)
10964         break;
10965 
10966       // Expand the array to appropriate size.
10967       APValue NewValue(APValue::UninitArray(), N, FinalSize);
10968       for (unsigned I = 0; I < OldElts; ++I)
10969         NewValue.getArrayInitializedElt(I).swap(
10970             Value->getArrayInitializedElt(I));
10971       Value->swap(NewValue);
10972 
10973       if (HadZeroInit)
10974         for (unsigned I = OldElts; I < N; ++I)
10975           Value->getArrayInitializedElt(I) = Filler;
10976 
10977       if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
10978         // If we have a trivial constructor, only evaluate it once and copy
10979         // the result into all the array elements.
10980         APValue &FirstResult = Value->getArrayInitializedElt(0);
10981         for (unsigned I = OldElts; I < FinalSize; ++I)
10982           Value->getArrayInitializedElt(I) = FirstResult;
10983       } else {
10984         for (unsigned I = OldElts; I < N; ++I) {
10985           if (!VisitCXXConstructExpr(E, ArrayElt,
10986                                      &Value->getArrayInitializedElt(I),
10987                                      CAT->getElementType()) ||
10988               !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10989                                            CAT->getElementType(), 1))
10990             return false;
10991           // When checking for const initilization any diagnostic is considered
10992           // an error.
10993           if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
10994               !Info.keepEvaluatingAfterFailure())
10995             return false;
10996         }
10997       }
10998     }
10999 
11000     return true;
11001   }
11002 
11003   if (!Type->isRecordType())
11004     return Error(E);
11005 
11006   return RecordExprEvaluator(Info, Subobject, *Value)
11007              .VisitCXXConstructExpr(E, Type);
11008 }
11009 
11010 bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
11011     const CXXParenListInitExpr *E) {
11012   assert(dyn_cast<ConstantArrayType>(E->getType()) &&
11013          "Expression result is not a constant array type");
11014 
11015   return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
11016                                          E->getArrayFiller());
11017 }
11018 
11019 //===----------------------------------------------------------------------===//
11020 // Integer Evaluation
11021 //
11022 // As a GNU extension, we support casting pointers to sufficiently-wide integer
11023 // types and back in constant folding. Integer values are thus represented
11024 // either as an integer-valued APValue, or as an lvalue-valued APValue.
11025 //===----------------------------------------------------------------------===//
11026 
11027 namespace {
11028 class IntExprEvaluator
11029         : public ExprEvaluatorBase<IntExprEvaluator> {
11030   APValue &Result;
11031 public:
11032   IntExprEvaluator(EvalInfo &info, APValue &result)
11033       : ExprEvaluatorBaseTy(info), Result(result) {}
11034 
11035   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
11036     assert(E->getType()->isIntegralOrEnumerationType() &&
11037            "Invalid evaluation result.");
11038     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
11039            "Invalid evaluation result.");
11040     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11041            "Invalid evaluation result.");
11042     Result = APValue(SI);
11043     return true;
11044   }
11045   bool Success(const llvm::APSInt &SI, const Expr *E) {
11046     return Success(SI, E, Result);
11047   }
11048 
11049   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
11050     assert(E->getType()->isIntegralOrEnumerationType() &&
11051            "Invalid evaluation result.");
11052     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11053            "Invalid evaluation result.");
11054     Result = APValue(APSInt(I));
11055     Result.getInt().setIsUnsigned(
11056                             E->getType()->isUnsignedIntegerOrEnumerationType());
11057     return true;
11058   }
11059   bool Success(const llvm::APInt &I, const Expr *E) {
11060     return Success(I, E, Result);
11061   }
11062 
11063   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11064     assert(E->getType()->isIntegralOrEnumerationType() &&
11065            "Invalid evaluation result.");
11066     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
11067     return true;
11068   }
11069   bool Success(uint64_t Value, const Expr *E) {
11070     return Success(Value, E, Result);
11071   }
11072 
11073   bool Success(CharUnits Size, const Expr *E) {
11074     return Success(Size.getQuantity(), E);
11075   }
11076 
11077   bool Success(const APValue &V, const Expr *E) {
11078     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
11079       Result = V;
11080       return true;
11081     }
11082     return Success(V.getInt(), E);
11083   }
11084 
11085   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
11086 
11087   //===--------------------------------------------------------------------===//
11088   //                            Visitor Methods
11089   //===--------------------------------------------------------------------===//
11090 
11091   bool VisitIntegerLiteral(const IntegerLiteral *E) {
11092     return Success(E->getValue(), E);
11093   }
11094   bool VisitCharacterLiteral(const CharacterLiteral *E) {
11095     return Success(E->getValue(), E);
11096   }
11097 
11098   bool CheckReferencedDecl(const Expr *E, const Decl *D);
11099   bool VisitDeclRefExpr(const DeclRefExpr *E) {
11100     if (CheckReferencedDecl(E, E->getDecl()))
11101       return true;
11102 
11103     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
11104   }
11105   bool VisitMemberExpr(const MemberExpr *E) {
11106     if (CheckReferencedDecl(E, E->getMemberDecl())) {
11107       VisitIgnoredBaseExpression(E->getBase());
11108       return true;
11109     }
11110 
11111     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
11112   }
11113 
11114   bool VisitCallExpr(const CallExpr *E);
11115   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
11116   bool VisitBinaryOperator(const BinaryOperator *E);
11117   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
11118   bool VisitUnaryOperator(const UnaryOperator *E);
11119 
11120   bool VisitCastExpr(const CastExpr* E);
11121   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
11122 
11123   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
11124     return Success(E->getValue(), E);
11125   }
11126 
11127   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
11128     return Success(E->getValue(), E);
11129   }
11130 
11131   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
11132     if (Info.ArrayInitIndex == uint64_t(-1)) {
11133       // We were asked to evaluate this subexpression independent of the
11134       // enclosing ArrayInitLoopExpr. We can't do that.
11135       Info.FFDiag(E);
11136       return false;
11137     }
11138     return Success(Info.ArrayInitIndex, E);
11139   }
11140 
11141   // Note, GNU defines __null as an integer, not a pointer.
11142   bool VisitGNUNullExpr(const GNUNullExpr *E) {
11143     return ZeroInitialization(E);
11144   }
11145 
11146   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11147     return Success(E->getValue(), E);
11148   }
11149 
11150   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11151     return Success(E->getValue(), E);
11152   }
11153 
11154   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11155     return Success(E->getValue(), E);
11156   }
11157 
11158   bool VisitUnaryReal(const UnaryOperator *E);
11159   bool VisitUnaryImag(const UnaryOperator *E);
11160 
11161   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11162   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11163   bool VisitSourceLocExpr(const SourceLocExpr *E);
11164   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11165   bool VisitRequiresExpr(const RequiresExpr *E);
11166   // FIXME: Missing: array subscript of vector, member of vector
11167 };
11168 
11169 class FixedPointExprEvaluator
11170     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11171   APValue &Result;
11172 
11173  public:
11174   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11175       : ExprEvaluatorBaseTy(info), Result(result) {}
11176 
11177   bool Success(const llvm::APInt &I, const Expr *E) {
11178     return Success(
11179         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11180   }
11181 
11182   bool Success(uint64_t Value, const Expr *E) {
11183     return Success(
11184         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11185   }
11186 
11187   bool Success(const APValue &V, const Expr *E) {
11188     return Success(V.getFixedPoint(), E);
11189   }
11190 
11191   bool Success(const APFixedPoint &V, const Expr *E) {
11192     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11193     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11194            "Invalid evaluation result.");
11195     Result = APValue(V);
11196     return true;
11197   }
11198 
11199   //===--------------------------------------------------------------------===//
11200   //                            Visitor Methods
11201   //===--------------------------------------------------------------------===//
11202 
11203   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11204     return Success(E->getValue(), E);
11205   }
11206 
11207   bool VisitCastExpr(const CastExpr *E);
11208   bool VisitUnaryOperator(const UnaryOperator *E);
11209   bool VisitBinaryOperator(const BinaryOperator *E);
11210 };
11211 } // end anonymous namespace
11212 
11213 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11214 /// produce either the integer value or a pointer.
11215 ///
11216 /// GCC has a heinous extension which folds casts between pointer types and
11217 /// pointer-sized integral types. We support this by allowing the evaluation of
11218 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11219 /// Some simple arithmetic on such values is supported (they are treated much
11220 /// like char*).
11221 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11222                                     EvalInfo &Info) {
11223   assert(!E->isValueDependent());
11224   assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11225   return IntExprEvaluator(Info, Result).Visit(E);
11226 }
11227 
11228 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11229   assert(!E->isValueDependent());
11230   APValue Val;
11231   if (!EvaluateIntegerOrLValue(E, Val, Info))
11232     return false;
11233   if (!Val.isInt()) {
11234     // FIXME: It would be better to produce the diagnostic for casting
11235     //        a pointer to an integer.
11236     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11237     return false;
11238   }
11239   Result = Val.getInt();
11240   return true;
11241 }
11242 
11243 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11244   APValue Evaluated = E->EvaluateInContext(
11245       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11246   return Success(Evaluated, E);
11247 }
11248 
11249 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11250                                EvalInfo &Info) {
11251   assert(!E->isValueDependent());
11252   if (E->getType()->isFixedPointType()) {
11253     APValue Val;
11254     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11255       return false;
11256     if (!Val.isFixedPoint())
11257       return false;
11258 
11259     Result = Val.getFixedPoint();
11260     return true;
11261   }
11262   return false;
11263 }
11264 
11265 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11266                                         EvalInfo &Info) {
11267   assert(!E->isValueDependent());
11268   if (E->getType()->isIntegerType()) {
11269     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11270     APSInt Val;
11271     if (!EvaluateInteger(E, Val, Info))
11272       return false;
11273     Result = APFixedPoint(Val, FXSema);
11274     return true;
11275   } else if (E->getType()->isFixedPointType()) {
11276     return EvaluateFixedPoint(E, Result, Info);
11277   }
11278   return false;
11279 }
11280 
11281 /// Check whether the given declaration can be directly converted to an integral
11282 /// rvalue. If not, no diagnostic is produced; there are other things we can
11283 /// try.
11284 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11285   // Enums are integer constant exprs.
11286   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11287     // Check for signedness/width mismatches between E type and ECD value.
11288     bool SameSign = (ECD->getInitVal().isSigned()
11289                      == E->getType()->isSignedIntegerOrEnumerationType());
11290     bool SameWidth = (ECD->getInitVal().getBitWidth()
11291                       == Info.Ctx.getIntWidth(E->getType()));
11292     if (SameSign && SameWidth)
11293       return Success(ECD->getInitVal(), E);
11294     else {
11295       // Get rid of mismatch (otherwise Success assertions will fail)
11296       // by computing a new value matching the type of E.
11297       llvm::APSInt Val = ECD->getInitVal();
11298       if (!SameSign)
11299         Val.setIsSigned(!ECD->getInitVal().isSigned());
11300       if (!SameWidth)
11301         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11302       return Success(Val, E);
11303     }
11304   }
11305   return false;
11306 }
11307 
11308 /// Values returned by __builtin_classify_type, chosen to match the values
11309 /// produced by GCC's builtin.
11310 enum class GCCTypeClass {
11311   None = -1,
11312   Void = 0,
11313   Integer = 1,
11314   // GCC reserves 2 for character types, but instead classifies them as
11315   // integers.
11316   Enum = 3,
11317   Bool = 4,
11318   Pointer = 5,
11319   // GCC reserves 6 for references, but appears to never use it (because
11320   // expressions never have reference type, presumably).
11321   PointerToDataMember = 7,
11322   RealFloat = 8,
11323   Complex = 9,
11324   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11325   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11326   // GCC claims to reserve 11 for pointers to member functions, but *actually*
11327   // uses 12 for that purpose, same as for a class or struct. Maybe it
11328   // internally implements a pointer to member as a struct?  Who knows.
11329   PointerToMemberFunction = 12, // Not a bug, see above.
11330   ClassOrStruct = 12,
11331   Union = 13,
11332   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11333   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11334   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11335   // literals.
11336 };
11337 
11338 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11339 /// as GCC.
11340 static GCCTypeClass
11341 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11342   assert(!T->isDependentType() && "unexpected dependent type");
11343 
11344   QualType CanTy = T.getCanonicalType();
11345 
11346   switch (CanTy->getTypeClass()) {
11347 #define TYPE(ID, BASE)
11348 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11349 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11350 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11351 #include "clang/AST/TypeNodes.inc"
11352   case Type::Auto:
11353   case Type::DeducedTemplateSpecialization:
11354       llvm_unreachable("unexpected non-canonical or dependent type");
11355 
11356   case Type::Builtin:
11357       switch (cast<BuiltinType>(CanTy)->getKind()) {
11358 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11359 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11360     case BuiltinType::ID: return GCCTypeClass::Integer;
11361 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11362     case BuiltinType::ID: return GCCTypeClass::RealFloat;
11363 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11364     case BuiltinType::ID: break;
11365 #include "clang/AST/BuiltinTypes.def"
11366     case BuiltinType::Void:
11367       return GCCTypeClass::Void;
11368 
11369     case BuiltinType::Bool:
11370       return GCCTypeClass::Bool;
11371 
11372     case BuiltinType::Char_U:
11373     case BuiltinType::UChar:
11374     case BuiltinType::WChar_U:
11375     case BuiltinType::Char8:
11376     case BuiltinType::Char16:
11377     case BuiltinType::Char32:
11378     case BuiltinType::UShort:
11379     case BuiltinType::UInt:
11380     case BuiltinType::ULong:
11381     case BuiltinType::ULongLong:
11382     case BuiltinType::UInt128:
11383       return GCCTypeClass::Integer;
11384 
11385     case BuiltinType::UShortAccum:
11386     case BuiltinType::UAccum:
11387     case BuiltinType::ULongAccum:
11388     case BuiltinType::UShortFract:
11389     case BuiltinType::UFract:
11390     case BuiltinType::ULongFract:
11391     case BuiltinType::SatUShortAccum:
11392     case BuiltinType::SatUAccum:
11393     case BuiltinType::SatULongAccum:
11394     case BuiltinType::SatUShortFract:
11395     case BuiltinType::SatUFract:
11396     case BuiltinType::SatULongFract:
11397       return GCCTypeClass::None;
11398 
11399     case BuiltinType::NullPtr:
11400 
11401     case BuiltinType::ObjCId:
11402     case BuiltinType::ObjCClass:
11403     case BuiltinType::ObjCSel:
11404 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11405     case BuiltinType::Id:
11406 #include "clang/Basic/OpenCLImageTypes.def"
11407 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11408     case BuiltinType::Id:
11409 #include "clang/Basic/OpenCLExtensionTypes.def"
11410     case BuiltinType::OCLSampler:
11411     case BuiltinType::OCLEvent:
11412     case BuiltinType::OCLClkEvent:
11413     case BuiltinType::OCLQueue:
11414     case BuiltinType::OCLReserveID:
11415 #define SVE_TYPE(Name, Id, SingletonId) \
11416     case BuiltinType::Id:
11417 #include "clang/Basic/AArch64SVEACLETypes.def"
11418 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11419     case BuiltinType::Id:
11420 #include "clang/Basic/PPCTypes.def"
11421 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11422 #include "clang/Basic/RISCVVTypes.def"
11423 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11424 #include "clang/Basic/WebAssemblyReferenceTypes.def"
11425       return GCCTypeClass::None;
11426 
11427     case BuiltinType::Dependent:
11428       llvm_unreachable("unexpected dependent type");
11429     };
11430     llvm_unreachable("unexpected placeholder type");
11431 
11432   case Type::Enum:
11433     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11434 
11435   case Type::Pointer:
11436   case Type::ConstantArray:
11437   case Type::VariableArray:
11438   case Type::IncompleteArray:
11439   case Type::FunctionNoProto:
11440   case Type::FunctionProto:
11441     return GCCTypeClass::Pointer;
11442 
11443   case Type::MemberPointer:
11444     return CanTy->isMemberDataPointerType()
11445                ? GCCTypeClass::PointerToDataMember
11446                : GCCTypeClass::PointerToMemberFunction;
11447 
11448   case Type::Complex:
11449     return GCCTypeClass::Complex;
11450 
11451   case Type::Record:
11452     return CanTy->isUnionType() ? GCCTypeClass::Union
11453                                 : GCCTypeClass::ClassOrStruct;
11454 
11455   case Type::Atomic:
11456     // GCC classifies _Atomic T the same as T.
11457     return EvaluateBuiltinClassifyType(
11458         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11459 
11460   case Type::BlockPointer:
11461   case Type::Vector:
11462   case Type::ExtVector:
11463   case Type::ConstantMatrix:
11464   case Type::ObjCObject:
11465   case Type::ObjCInterface:
11466   case Type::ObjCObjectPointer:
11467   case Type::Pipe:
11468   case Type::BitInt:
11469     // GCC classifies vectors as None. We follow its lead and classify all
11470     // other types that don't fit into the regular classification the same way.
11471     return GCCTypeClass::None;
11472 
11473   case Type::LValueReference:
11474   case Type::RValueReference:
11475     llvm_unreachable("invalid type for expression");
11476   }
11477 
11478   llvm_unreachable("unexpected type class");
11479 }
11480 
11481 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11482 /// as GCC.
11483 static GCCTypeClass
11484 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11485   // If no argument was supplied, default to None. This isn't
11486   // ideal, however it is what gcc does.
11487   if (E->getNumArgs() == 0)
11488     return GCCTypeClass::None;
11489 
11490   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11491   // being an ICE, but still folds it to a constant using the type of the first
11492   // argument.
11493   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11494 }
11495 
11496 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11497 /// __builtin_constant_p when applied to the given pointer.
11498 ///
11499 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11500 /// or it points to the first character of a string literal.
11501 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11502   APValue::LValueBase Base = LV.getLValueBase();
11503   if (Base.isNull()) {
11504     // A null base is acceptable.
11505     return true;
11506   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11507     if (!isa<StringLiteral>(E))
11508       return false;
11509     return LV.getLValueOffset().isZero();
11510   } else if (Base.is<TypeInfoLValue>()) {
11511     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11512     // evaluate to true.
11513     return true;
11514   } else {
11515     // Any other base is not constant enough for GCC.
11516     return false;
11517   }
11518 }
11519 
11520 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11521 /// GCC as we can manage.
11522 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11523   // This evaluation is not permitted to have side-effects, so evaluate it in
11524   // a speculative evaluation context.
11525   SpeculativeEvaluationRAII SpeculativeEval(Info);
11526 
11527   // Constant-folding is always enabled for the operand of __builtin_constant_p
11528   // (even when the enclosing evaluation context otherwise requires a strict
11529   // language-specific constant expression).
11530   FoldConstant Fold(Info, true);
11531 
11532   QualType ArgType = Arg->getType();
11533 
11534   // __builtin_constant_p always has one operand. The rules which gcc follows
11535   // are not precisely documented, but are as follows:
11536   //
11537   //  - If the operand is of integral, floating, complex or enumeration type,
11538   //    and can be folded to a known value of that type, it returns 1.
11539   //  - If the operand can be folded to a pointer to the first character
11540   //    of a string literal (or such a pointer cast to an integral type)
11541   //    or to a null pointer or an integer cast to a pointer, it returns 1.
11542   //
11543   // Otherwise, it returns 0.
11544   //
11545   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11546   // its support for this did not work prior to GCC 9 and is not yet well
11547   // understood.
11548   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11549       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11550       ArgType->isNullPtrType()) {
11551     APValue V;
11552     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11553       Fold.keepDiagnostics();
11554       return false;
11555     }
11556 
11557     // For a pointer (possibly cast to integer), there are special rules.
11558     if (V.getKind() == APValue::LValue)
11559       return EvaluateBuiltinConstantPForLValue(V);
11560 
11561     // Otherwise, any constant value is good enough.
11562     return V.hasValue();
11563   }
11564 
11565   // Anything else isn't considered to be sufficiently constant.
11566   return false;
11567 }
11568 
11569 /// Retrieves the "underlying object type" of the given expression,
11570 /// as used by __builtin_object_size.
11571 static QualType getObjectType(APValue::LValueBase B) {
11572   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11573     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11574       return VD->getType();
11575   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11576     if (isa<CompoundLiteralExpr>(E))
11577       return E->getType();
11578   } else if (B.is<TypeInfoLValue>()) {
11579     return B.getTypeInfoType();
11580   } else if (B.is<DynamicAllocLValue>()) {
11581     return B.getDynamicAllocType();
11582   }
11583 
11584   return QualType();
11585 }
11586 
11587 /// A more selective version of E->IgnoreParenCasts for
11588 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11589 /// to change the type of E.
11590 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11591 ///
11592 /// Always returns an RValue with a pointer representation.
11593 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11594   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11595 
11596   auto *NoParens = E->IgnoreParens();
11597   auto *Cast = dyn_cast<CastExpr>(NoParens);
11598   if (Cast == nullptr)
11599     return NoParens;
11600 
11601   // We only conservatively allow a few kinds of casts, because this code is
11602   // inherently a simple solution that seeks to support the common case.
11603   auto CastKind = Cast->getCastKind();
11604   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11605       CastKind != CK_AddressSpaceConversion)
11606     return NoParens;
11607 
11608   auto *SubExpr = Cast->getSubExpr();
11609   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11610     return NoParens;
11611   return ignorePointerCastsAndParens(SubExpr);
11612 }
11613 
11614 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11615 /// record layout. e.g.
11616 ///   struct { struct { int a, b; } fst, snd; } obj;
11617 ///   obj.fst   // no
11618 ///   obj.snd   // yes
11619 ///   obj.fst.a // no
11620 ///   obj.fst.b // no
11621 ///   obj.snd.a // no
11622 ///   obj.snd.b // yes
11623 ///
11624 /// Please note: this function is specialized for how __builtin_object_size
11625 /// views "objects".
11626 ///
11627 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11628 /// correct result, it will always return true.
11629 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11630   assert(!LVal.Designator.Invalid);
11631 
11632   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11633     const RecordDecl *Parent = FD->getParent();
11634     Invalid = Parent->isInvalidDecl();
11635     if (Invalid || Parent->isUnion())
11636       return true;
11637     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11638     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11639   };
11640 
11641   auto &Base = LVal.getLValueBase();
11642   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11643     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11644       bool Invalid;
11645       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11646         return Invalid;
11647     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11648       for (auto *FD : IFD->chain()) {
11649         bool Invalid;
11650         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11651           return Invalid;
11652       }
11653     }
11654   }
11655 
11656   unsigned I = 0;
11657   QualType BaseType = getType(Base);
11658   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11659     // If we don't know the array bound, conservatively assume we're looking at
11660     // the final array element.
11661     ++I;
11662     if (BaseType->isIncompleteArrayType())
11663       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11664     else
11665       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11666   }
11667 
11668   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11669     const auto &Entry = LVal.Designator.Entries[I];
11670     if (BaseType->isArrayType()) {
11671       // Because __builtin_object_size treats arrays as objects, we can ignore
11672       // the index iff this is the last array in the Designator.
11673       if (I + 1 == E)
11674         return true;
11675       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11676       uint64_t Index = Entry.getAsArrayIndex();
11677       if (Index + 1 != CAT->getSize())
11678         return false;
11679       BaseType = CAT->getElementType();
11680     } else if (BaseType->isAnyComplexType()) {
11681       const auto *CT = BaseType->castAs<ComplexType>();
11682       uint64_t Index = Entry.getAsArrayIndex();
11683       if (Index != 1)
11684         return false;
11685       BaseType = CT->getElementType();
11686     } else if (auto *FD = getAsField(Entry)) {
11687       bool Invalid;
11688       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11689         return Invalid;
11690       BaseType = FD->getType();
11691     } else {
11692       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11693       return false;
11694     }
11695   }
11696   return true;
11697 }
11698 
11699 /// Tests to see if the LValue has a user-specified designator (that isn't
11700 /// necessarily valid). Note that this always returns 'true' if the LValue has
11701 /// an unsized array as its first designator entry, because there's currently no
11702 /// way to tell if the user typed *foo or foo[0].
11703 static bool refersToCompleteObject(const LValue &LVal) {
11704   if (LVal.Designator.Invalid)
11705     return false;
11706 
11707   if (!LVal.Designator.Entries.empty())
11708     return LVal.Designator.isMostDerivedAnUnsizedArray();
11709 
11710   if (!LVal.InvalidBase)
11711     return true;
11712 
11713   // If `E` is a MemberExpr, then the first part of the designator is hiding in
11714   // the LValueBase.
11715   const auto *E = LVal.Base.dyn_cast<const Expr *>();
11716   return !E || !isa<MemberExpr>(E);
11717 }
11718 
11719 /// Attempts to detect a user writing into a piece of memory that's impossible
11720 /// to figure out the size of by just using types.
11721 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11722   const SubobjectDesignator &Designator = LVal.Designator;
11723   // Notes:
11724   // - Users can only write off of the end when we have an invalid base. Invalid
11725   //   bases imply we don't know where the memory came from.
11726   // - We used to be a bit more aggressive here; we'd only be conservative if
11727   //   the array at the end was flexible, or if it had 0 or 1 elements. This
11728   //   broke some common standard library extensions (PR30346), but was
11729   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
11730   //   with some sort of list. OTOH, it seems that GCC is always
11731   //   conservative with the last element in structs (if it's an array), so our
11732   //   current behavior is more compatible than an explicit list approach would
11733   //   be.
11734   auto isFlexibleArrayMember = [&] {
11735     using FAMKind = LangOptions::StrictFlexArraysLevelKind;
11736     FAMKind StrictFlexArraysLevel =
11737         Ctx.getLangOpts().getStrictFlexArraysLevel();
11738 
11739     if (Designator.isMostDerivedAnUnsizedArray())
11740       return true;
11741 
11742     if (StrictFlexArraysLevel == FAMKind::Default)
11743       return true;
11744 
11745     if (Designator.getMostDerivedArraySize() == 0 &&
11746         StrictFlexArraysLevel != FAMKind::IncompleteOnly)
11747       return true;
11748 
11749     if (Designator.getMostDerivedArraySize() == 1 &&
11750         StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
11751       return true;
11752 
11753     return false;
11754   };
11755 
11756   return LVal.InvalidBase &&
11757          Designator.Entries.size() == Designator.MostDerivedPathLength &&
11758          Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
11759          isDesignatorAtObjectEnd(Ctx, LVal);
11760 }
11761 
11762 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11763 /// Fails if the conversion would cause loss of precision.
11764 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11765                                             CharUnits &Result) {
11766   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11767   if (Int.ugt(CharUnitsMax))
11768     return false;
11769   Result = CharUnits::fromQuantity(Int.getZExtValue());
11770   return true;
11771 }
11772 
11773 /// If we're evaluating the object size of an instance of a struct that
11774 /// contains a flexible array member, add the size of the initializer.
11775 static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T,
11776                                            const LValue &LV, CharUnits &Size) {
11777   if (!T.isNull() && T->isStructureType() &&
11778       T->getAsStructureType()->getDecl()->hasFlexibleArrayMember())
11779     if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>())
11780       if (const auto *VD = dyn_cast<VarDecl>(V))
11781         if (VD->hasInit())
11782           Size += VD->getFlexibleArrayInitChars(Info.Ctx);
11783 }
11784 
11785 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11786 /// determine how many bytes exist from the beginning of the object to either
11787 /// the end of the current subobject, or the end of the object itself, depending
11788 /// on what the LValue looks like + the value of Type.
11789 ///
11790 /// If this returns false, the value of Result is undefined.
11791 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11792                                unsigned Type, const LValue &LVal,
11793                                CharUnits &EndOffset) {
11794   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11795 
11796   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11797     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11798       return false;
11799     return HandleSizeof(Info, ExprLoc, Ty, Result);
11800   };
11801 
11802   // We want to evaluate the size of the entire object. This is a valid fallback
11803   // for when Type=1 and the designator is invalid, because we're asked for an
11804   // upper-bound.
11805   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11806     // Type=3 wants a lower bound, so we can't fall back to this.
11807     if (Type == 3 && !DetermineForCompleteObject)
11808       return false;
11809 
11810     llvm::APInt APEndOffset;
11811     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11812         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11813       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11814 
11815     if (LVal.InvalidBase)
11816       return false;
11817 
11818     QualType BaseTy = getObjectType(LVal.getLValueBase());
11819     const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset);
11820     addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset);
11821     return Ret;
11822   }
11823 
11824   // We want to evaluate the size of a subobject.
11825   const SubobjectDesignator &Designator = LVal.Designator;
11826 
11827   // The following is a moderately common idiom in C:
11828   //
11829   // struct Foo { int a; char c[1]; };
11830   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11831   // strcpy(&F->c[0], Bar);
11832   //
11833   // In order to not break too much legacy code, we need to support it.
11834   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11835     // If we can resolve this to an alloc_size call, we can hand that back,
11836     // because we know for certain how many bytes there are to write to.
11837     llvm::APInt APEndOffset;
11838     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11839         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11840       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11841 
11842     // If we cannot determine the size of the initial allocation, then we can't
11843     // given an accurate upper-bound. However, we are still able to give
11844     // conservative lower-bounds for Type=3.
11845     if (Type == 1)
11846       return false;
11847   }
11848 
11849   CharUnits BytesPerElem;
11850   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11851     return false;
11852 
11853   // According to the GCC documentation, we want the size of the subobject
11854   // denoted by the pointer. But that's not quite right -- what we actually
11855   // want is the size of the immediately-enclosing array, if there is one.
11856   int64_t ElemsRemaining;
11857   if (Designator.MostDerivedIsArrayElement &&
11858       Designator.Entries.size() == Designator.MostDerivedPathLength) {
11859     uint64_t ArraySize = Designator.getMostDerivedArraySize();
11860     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11861     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11862   } else {
11863     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11864   }
11865 
11866   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11867   return true;
11868 }
11869 
11870 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11871 /// returns true and stores the result in @p Size.
11872 ///
11873 /// If @p WasError is non-null, this will report whether the failure to evaluate
11874 /// is to be treated as an Error in IntExprEvaluator.
11875 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11876                                          EvalInfo &Info, uint64_t &Size) {
11877   // Determine the denoted object.
11878   LValue LVal;
11879   {
11880     // The operand of __builtin_object_size is never evaluated for side-effects.
11881     // If there are any, but we can determine the pointed-to object anyway, then
11882     // ignore the side-effects.
11883     SpeculativeEvaluationRAII SpeculativeEval(Info);
11884     IgnoreSideEffectsRAII Fold(Info);
11885 
11886     if (E->isGLValue()) {
11887       // It's possible for us to be given GLValues if we're called via
11888       // Expr::tryEvaluateObjectSize.
11889       APValue RVal;
11890       if (!EvaluateAsRValue(Info, E, RVal))
11891         return false;
11892       LVal.setFrom(Info.Ctx, RVal);
11893     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11894                                 /*InvalidBaseOK=*/true))
11895       return false;
11896   }
11897 
11898   // If we point to before the start of the object, there are no accessible
11899   // bytes.
11900   if (LVal.getLValueOffset().isNegative()) {
11901     Size = 0;
11902     return true;
11903   }
11904 
11905   CharUnits EndOffset;
11906   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11907     return false;
11908 
11909   // If we've fallen outside of the end offset, just pretend there's nothing to
11910   // write to/read from.
11911   if (EndOffset <= LVal.getLValueOffset())
11912     Size = 0;
11913   else
11914     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11915   return true;
11916 }
11917 
11918 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11919   if (!IsConstantEvaluatedBuiltinCall(E))
11920     return ExprEvaluatorBaseTy::VisitCallExpr(E);
11921   return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
11922 }
11923 
11924 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11925                                      APValue &Val, APSInt &Alignment) {
11926   QualType SrcTy = E->getArg(0)->getType();
11927   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11928     return false;
11929   // Even though we are evaluating integer expressions we could get a pointer
11930   // argument for the __builtin_is_aligned() case.
11931   if (SrcTy->isPointerType()) {
11932     LValue Ptr;
11933     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11934       return false;
11935     Ptr.moveInto(Val);
11936   } else if (!SrcTy->isIntegralOrEnumerationType()) {
11937     Info.FFDiag(E->getArg(0));
11938     return false;
11939   } else {
11940     APSInt SrcInt;
11941     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11942       return false;
11943     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11944            "Bit widths must be the same");
11945     Val = APValue(SrcInt);
11946   }
11947   assert(Val.hasValue());
11948   return true;
11949 }
11950 
11951 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11952                                             unsigned BuiltinOp) {
11953   switch (BuiltinOp) {
11954   default:
11955     return false;
11956 
11957   case Builtin::BI__builtin_dynamic_object_size:
11958   case Builtin::BI__builtin_object_size: {
11959     // The type was checked when we built the expression.
11960     unsigned Type =
11961         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11962     assert(Type <= 3 && "unexpected type");
11963 
11964     uint64_t Size;
11965     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11966       return Success(Size, E);
11967 
11968     if (E->getArg(0)->HasSideEffects(Info.Ctx))
11969       return Success((Type & 2) ? 0 : -1, E);
11970 
11971     // Expression had no side effects, but we couldn't statically determine the
11972     // size of the referenced object.
11973     switch (Info.EvalMode) {
11974     case EvalInfo::EM_ConstantExpression:
11975     case EvalInfo::EM_ConstantFold:
11976     case EvalInfo::EM_IgnoreSideEffects:
11977       // Leave it to IR generation.
11978       return Error(E);
11979     case EvalInfo::EM_ConstantExpressionUnevaluated:
11980       // Reduce it to a constant now.
11981       return Success((Type & 2) ? 0 : -1, E);
11982     }
11983 
11984     llvm_unreachable("unexpected EvalMode");
11985   }
11986 
11987   case Builtin::BI__builtin_os_log_format_buffer_size: {
11988     analyze_os_log::OSLogBufferLayout Layout;
11989     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11990     return Success(Layout.size().getQuantity(), E);
11991   }
11992 
11993   case Builtin::BI__builtin_is_aligned: {
11994     APValue Src;
11995     APSInt Alignment;
11996     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11997       return false;
11998     if (Src.isLValue()) {
11999       // If we evaluated a pointer, check the minimum known alignment.
12000       LValue Ptr;
12001       Ptr.setFrom(Info.Ctx, Src);
12002       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
12003       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
12004       // We can return true if the known alignment at the computed offset is
12005       // greater than the requested alignment.
12006       assert(PtrAlign.isPowerOfTwo());
12007       assert(Alignment.isPowerOf2());
12008       if (PtrAlign.getQuantity() >= Alignment)
12009         return Success(1, E);
12010       // If the alignment is not known to be sufficient, some cases could still
12011       // be aligned at run time. However, if the requested alignment is less or
12012       // equal to the base alignment and the offset is not aligned, we know that
12013       // the run-time value can never be aligned.
12014       if (BaseAlignment.getQuantity() >= Alignment &&
12015           PtrAlign.getQuantity() < Alignment)
12016         return Success(0, E);
12017       // Otherwise we can't infer whether the value is sufficiently aligned.
12018       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
12019       //  in cases where we can't fully evaluate the pointer.
12020       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
12021           << Alignment;
12022       return false;
12023     }
12024     assert(Src.isInt());
12025     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
12026   }
12027   case Builtin::BI__builtin_align_up: {
12028     APValue Src;
12029     APSInt Alignment;
12030     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12031       return false;
12032     if (!Src.isInt())
12033       return Error(E);
12034     APSInt AlignedVal =
12035         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
12036                Src.getInt().isUnsigned());
12037     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12038     return Success(AlignedVal, E);
12039   }
12040   case Builtin::BI__builtin_align_down: {
12041     APValue Src;
12042     APSInt Alignment;
12043     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12044       return false;
12045     if (!Src.isInt())
12046       return Error(E);
12047     APSInt AlignedVal =
12048         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
12049     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12050     return Success(AlignedVal, E);
12051   }
12052 
12053   case Builtin::BI__builtin_bitreverse8:
12054   case Builtin::BI__builtin_bitreverse16:
12055   case Builtin::BI__builtin_bitreverse32:
12056   case Builtin::BI__builtin_bitreverse64: {
12057     APSInt Val;
12058     if (!EvaluateInteger(E->getArg(0), Val, Info))
12059       return false;
12060 
12061     return Success(Val.reverseBits(), E);
12062   }
12063 
12064   case Builtin::BI__builtin_bswap16:
12065   case Builtin::BI__builtin_bswap32:
12066   case Builtin::BI__builtin_bswap64: {
12067     APSInt Val;
12068     if (!EvaluateInteger(E->getArg(0), Val, Info))
12069       return false;
12070 
12071     return Success(Val.byteSwap(), E);
12072   }
12073 
12074   case Builtin::BI__builtin_classify_type:
12075     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
12076 
12077   case Builtin::BI__builtin_clrsb:
12078   case Builtin::BI__builtin_clrsbl:
12079   case Builtin::BI__builtin_clrsbll: {
12080     APSInt Val;
12081     if (!EvaluateInteger(E->getArg(0), Val, Info))
12082       return false;
12083 
12084     return Success(Val.getBitWidth() - Val.getSignificantBits(), E);
12085   }
12086 
12087   case Builtin::BI__builtin_clz:
12088   case Builtin::BI__builtin_clzl:
12089   case Builtin::BI__builtin_clzll:
12090   case Builtin::BI__builtin_clzs: {
12091     APSInt Val;
12092     if (!EvaluateInteger(E->getArg(0), Val, Info))
12093       return false;
12094     if (!Val)
12095       return Error(E);
12096 
12097     return Success(Val.countl_zero(), E);
12098   }
12099 
12100   case Builtin::BI__builtin_constant_p: {
12101     const Expr *Arg = E->getArg(0);
12102     if (EvaluateBuiltinConstantP(Info, Arg))
12103       return Success(true, E);
12104     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
12105       // Outside a constant context, eagerly evaluate to false in the presence
12106       // of side-effects in order to avoid -Wunsequenced false-positives in
12107       // a branch on __builtin_constant_p(expr).
12108       return Success(false, E);
12109     }
12110     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12111     return false;
12112   }
12113 
12114   case Builtin::BI__builtin_is_constant_evaluated: {
12115     const auto *Callee = Info.CurrentCall->getCallee();
12116     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
12117         (Info.CallStackDepth == 1 ||
12118          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
12119           Callee->getIdentifier() &&
12120           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
12121       // FIXME: Find a better way to avoid duplicated diagnostics.
12122       if (Info.EvalStatus.Diag)
12123         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
12124                                                : Info.CurrentCall->CallLoc,
12125                     diag::warn_is_constant_evaluated_always_true_constexpr)
12126             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
12127                                          : "std::is_constant_evaluated");
12128     }
12129 
12130     return Success(Info.InConstantContext, E);
12131   }
12132 
12133   case Builtin::BI__builtin_ctz:
12134   case Builtin::BI__builtin_ctzl:
12135   case Builtin::BI__builtin_ctzll:
12136   case Builtin::BI__builtin_ctzs: {
12137     APSInt Val;
12138     if (!EvaluateInteger(E->getArg(0), Val, Info))
12139       return false;
12140     if (!Val)
12141       return Error(E);
12142 
12143     return Success(Val.countr_zero(), E);
12144   }
12145 
12146   case Builtin::BI__builtin_eh_return_data_regno: {
12147     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12148     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
12149     return Success(Operand, E);
12150   }
12151 
12152   case Builtin::BI__builtin_expect:
12153   case Builtin::BI__builtin_expect_with_probability:
12154     return Visit(E->getArg(0));
12155 
12156   case Builtin::BI__builtin_ffs:
12157   case Builtin::BI__builtin_ffsl:
12158   case Builtin::BI__builtin_ffsll: {
12159     APSInt Val;
12160     if (!EvaluateInteger(E->getArg(0), Val, Info))
12161       return false;
12162 
12163     unsigned N = Val.countr_zero();
12164     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12165   }
12166 
12167   case Builtin::BI__builtin_fpclassify: {
12168     APFloat Val(0.0);
12169     if (!EvaluateFloat(E->getArg(5), Val, Info))
12170       return false;
12171     unsigned Arg;
12172     switch (Val.getCategory()) {
12173     case APFloat::fcNaN: Arg = 0; break;
12174     case APFloat::fcInfinity: Arg = 1; break;
12175     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12176     case APFloat::fcZero: Arg = 4; break;
12177     }
12178     return Visit(E->getArg(Arg));
12179   }
12180 
12181   case Builtin::BI__builtin_isinf_sign: {
12182     APFloat Val(0.0);
12183     return EvaluateFloat(E->getArg(0), Val, Info) &&
12184            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12185   }
12186 
12187   case Builtin::BI__builtin_isinf: {
12188     APFloat Val(0.0);
12189     return EvaluateFloat(E->getArg(0), Val, Info) &&
12190            Success(Val.isInfinity() ? 1 : 0, E);
12191   }
12192 
12193   case Builtin::BI__builtin_isfinite: {
12194     APFloat Val(0.0);
12195     return EvaluateFloat(E->getArg(0), Val, Info) &&
12196            Success(Val.isFinite() ? 1 : 0, E);
12197   }
12198 
12199   case Builtin::BI__builtin_isnan: {
12200     APFloat Val(0.0);
12201     return EvaluateFloat(E->getArg(0), Val, Info) &&
12202            Success(Val.isNaN() ? 1 : 0, E);
12203   }
12204 
12205   case Builtin::BI__builtin_isnormal: {
12206     APFloat Val(0.0);
12207     return EvaluateFloat(E->getArg(0), Val, Info) &&
12208            Success(Val.isNormal() ? 1 : 0, E);
12209   }
12210 
12211   case Builtin::BI__builtin_isfpclass: {
12212     APSInt MaskVal;
12213     if (!EvaluateInteger(E->getArg(1), MaskVal, Info))
12214       return false;
12215     unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue());
12216     APFloat Val(0.0);
12217     return EvaluateFloat(E->getArg(0), Val, Info) &&
12218            Success((Val.classify() & Test) ? 1 : 0, E);
12219   }
12220 
12221   case Builtin::BI__builtin_parity:
12222   case Builtin::BI__builtin_parityl:
12223   case Builtin::BI__builtin_parityll: {
12224     APSInt Val;
12225     if (!EvaluateInteger(E->getArg(0), Val, Info))
12226       return false;
12227 
12228     return Success(Val.popcount() % 2, E);
12229   }
12230 
12231   case Builtin::BI__builtin_popcount:
12232   case Builtin::BI__builtin_popcountl:
12233   case Builtin::BI__builtin_popcountll: {
12234     APSInt Val;
12235     if (!EvaluateInteger(E->getArg(0), Val, Info))
12236       return false;
12237 
12238     return Success(Val.popcount(), E);
12239   }
12240 
12241   case Builtin::BI__builtin_rotateleft8:
12242   case Builtin::BI__builtin_rotateleft16:
12243   case Builtin::BI__builtin_rotateleft32:
12244   case Builtin::BI__builtin_rotateleft64:
12245   case Builtin::BI_rotl8: // Microsoft variants of rotate right
12246   case Builtin::BI_rotl16:
12247   case Builtin::BI_rotl:
12248   case Builtin::BI_lrotl:
12249   case Builtin::BI_rotl64: {
12250     APSInt Val, Amt;
12251     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12252         !EvaluateInteger(E->getArg(1), Amt, Info))
12253       return false;
12254 
12255     return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
12256   }
12257 
12258   case Builtin::BI__builtin_rotateright8:
12259   case Builtin::BI__builtin_rotateright16:
12260   case Builtin::BI__builtin_rotateright32:
12261   case Builtin::BI__builtin_rotateright64:
12262   case Builtin::BI_rotr8: // Microsoft variants of rotate right
12263   case Builtin::BI_rotr16:
12264   case Builtin::BI_rotr:
12265   case Builtin::BI_lrotr:
12266   case Builtin::BI_rotr64: {
12267     APSInt Val, Amt;
12268     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12269         !EvaluateInteger(E->getArg(1), Amt, Info))
12270       return false;
12271 
12272     return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
12273   }
12274 
12275   case Builtin::BIstrlen:
12276   case Builtin::BIwcslen:
12277     // A call to strlen is not a constant expression.
12278     if (Info.getLangOpts().CPlusPlus11)
12279       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12280           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12281           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12282     else
12283       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12284     [[fallthrough]];
12285   case Builtin::BI__builtin_strlen:
12286   case Builtin::BI__builtin_wcslen: {
12287     // As an extension, we support __builtin_strlen() as a constant expression,
12288     // and support folding strlen() to a constant.
12289     uint64_t StrLen;
12290     if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
12291       return Success(StrLen, E);
12292     return false;
12293   }
12294 
12295   case Builtin::BIstrcmp:
12296   case Builtin::BIwcscmp:
12297   case Builtin::BIstrncmp:
12298   case Builtin::BIwcsncmp:
12299   case Builtin::BImemcmp:
12300   case Builtin::BIbcmp:
12301   case Builtin::BIwmemcmp:
12302     // A call to strlen is not a constant expression.
12303     if (Info.getLangOpts().CPlusPlus11)
12304       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12305           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12306           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12307     else
12308       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12309     [[fallthrough]];
12310   case Builtin::BI__builtin_strcmp:
12311   case Builtin::BI__builtin_wcscmp:
12312   case Builtin::BI__builtin_strncmp:
12313   case Builtin::BI__builtin_wcsncmp:
12314   case Builtin::BI__builtin_memcmp:
12315   case Builtin::BI__builtin_bcmp:
12316   case Builtin::BI__builtin_wmemcmp: {
12317     LValue String1, String2;
12318     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12319         !EvaluatePointer(E->getArg(1), String2, Info))
12320       return false;
12321 
12322     uint64_t MaxLength = uint64_t(-1);
12323     if (BuiltinOp != Builtin::BIstrcmp &&
12324         BuiltinOp != Builtin::BIwcscmp &&
12325         BuiltinOp != Builtin::BI__builtin_strcmp &&
12326         BuiltinOp != Builtin::BI__builtin_wcscmp) {
12327       APSInt N;
12328       if (!EvaluateInteger(E->getArg(2), N, Info))
12329         return false;
12330       MaxLength = N.getExtValue();
12331     }
12332 
12333     // Empty substrings compare equal by definition.
12334     if (MaxLength == 0u)
12335       return Success(0, E);
12336 
12337     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12338         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12339         String1.Designator.Invalid || String2.Designator.Invalid)
12340       return false;
12341 
12342     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12343     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12344 
12345     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12346                      BuiltinOp == Builtin::BIbcmp ||
12347                      BuiltinOp == Builtin::BI__builtin_memcmp ||
12348                      BuiltinOp == Builtin::BI__builtin_bcmp;
12349 
12350     assert(IsRawByte ||
12351            (Info.Ctx.hasSameUnqualifiedType(
12352                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12353             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12354 
12355     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12356     // 'char8_t', but no other types.
12357     if (IsRawByte &&
12358         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12359       // FIXME: Consider using our bit_cast implementation to support this.
12360       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12361           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
12362           << CharTy1 << CharTy2;
12363       return false;
12364     }
12365 
12366     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12367       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12368              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12369              Char1.isInt() && Char2.isInt();
12370     };
12371     const auto &AdvanceElems = [&] {
12372       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12373              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12374     };
12375 
12376     bool StopAtNull =
12377         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12378          BuiltinOp != Builtin::BIwmemcmp &&
12379          BuiltinOp != Builtin::BI__builtin_memcmp &&
12380          BuiltinOp != Builtin::BI__builtin_bcmp &&
12381          BuiltinOp != Builtin::BI__builtin_wmemcmp);
12382     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12383                   BuiltinOp == Builtin::BIwcsncmp ||
12384                   BuiltinOp == Builtin::BIwmemcmp ||
12385                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
12386                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12387                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
12388 
12389     for (; MaxLength; --MaxLength) {
12390       APValue Char1, Char2;
12391       if (!ReadCurElems(Char1, Char2))
12392         return false;
12393       if (Char1.getInt().ne(Char2.getInt())) {
12394         if (IsWide) // wmemcmp compares with wchar_t signedness.
12395           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12396         // memcmp always compares unsigned chars.
12397         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12398       }
12399       if (StopAtNull && !Char1.getInt())
12400         return Success(0, E);
12401       assert(!(StopAtNull && !Char2.getInt()));
12402       if (!AdvanceElems())
12403         return false;
12404     }
12405     // We hit the strncmp / memcmp limit.
12406     return Success(0, E);
12407   }
12408 
12409   case Builtin::BI__atomic_always_lock_free:
12410   case Builtin::BI__atomic_is_lock_free:
12411   case Builtin::BI__c11_atomic_is_lock_free: {
12412     APSInt SizeVal;
12413     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12414       return false;
12415 
12416     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12417     // of two less than or equal to the maximum inline atomic width, we know it
12418     // is lock-free.  If the size isn't a power of two, or greater than the
12419     // maximum alignment where we promote atomics, we know it is not lock-free
12420     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
12421     // the answer can only be determined at runtime; for example, 16-byte
12422     // atomics have lock-free implementations on some, but not all,
12423     // x86-64 processors.
12424 
12425     // Check power-of-two.
12426     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12427     if (Size.isPowerOfTwo()) {
12428       // Check against inlining width.
12429       unsigned InlineWidthBits =
12430           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12431       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12432         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12433             Size == CharUnits::One() ||
12434             E->getArg(1)->isNullPointerConstant(Info.Ctx,
12435                                                 Expr::NPC_NeverValueDependent))
12436           // OK, we will inline appropriately-aligned operations of this size,
12437           // and _Atomic(T) is appropriately-aligned.
12438           return Success(1, E);
12439 
12440         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12441           castAs<PointerType>()->getPointeeType();
12442         if (!PointeeType->isIncompleteType() &&
12443             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12444           // OK, we will inline operations on this object.
12445           return Success(1, E);
12446         }
12447       }
12448     }
12449 
12450     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12451         Success(0, E) : Error(E);
12452   }
12453   case Builtin::BI__builtin_add_overflow:
12454   case Builtin::BI__builtin_sub_overflow:
12455   case Builtin::BI__builtin_mul_overflow:
12456   case Builtin::BI__builtin_sadd_overflow:
12457   case Builtin::BI__builtin_uadd_overflow:
12458   case Builtin::BI__builtin_uaddl_overflow:
12459   case Builtin::BI__builtin_uaddll_overflow:
12460   case Builtin::BI__builtin_usub_overflow:
12461   case Builtin::BI__builtin_usubl_overflow:
12462   case Builtin::BI__builtin_usubll_overflow:
12463   case Builtin::BI__builtin_umul_overflow:
12464   case Builtin::BI__builtin_umull_overflow:
12465   case Builtin::BI__builtin_umulll_overflow:
12466   case Builtin::BI__builtin_saddl_overflow:
12467   case Builtin::BI__builtin_saddll_overflow:
12468   case Builtin::BI__builtin_ssub_overflow:
12469   case Builtin::BI__builtin_ssubl_overflow:
12470   case Builtin::BI__builtin_ssubll_overflow:
12471   case Builtin::BI__builtin_smul_overflow:
12472   case Builtin::BI__builtin_smull_overflow:
12473   case Builtin::BI__builtin_smulll_overflow: {
12474     LValue ResultLValue;
12475     APSInt LHS, RHS;
12476 
12477     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12478     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12479         !EvaluateInteger(E->getArg(1), RHS, Info) ||
12480         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12481       return false;
12482 
12483     APSInt Result;
12484     bool DidOverflow = false;
12485 
12486     // If the types don't have to match, enlarge all 3 to the largest of them.
12487     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12488         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12489         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12490       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12491                       ResultType->isSignedIntegerOrEnumerationType();
12492       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12493                       ResultType->isSignedIntegerOrEnumerationType();
12494       uint64_t LHSSize = LHS.getBitWidth();
12495       uint64_t RHSSize = RHS.getBitWidth();
12496       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12497       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12498 
12499       // Add an additional bit if the signedness isn't uniformly agreed to. We
12500       // could do this ONLY if there is a signed and an unsigned that both have
12501       // MaxBits, but the code to check that is pretty nasty.  The issue will be
12502       // caught in the shrink-to-result later anyway.
12503       if (IsSigned && !AllSigned)
12504         ++MaxBits;
12505 
12506       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12507       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12508       Result = APSInt(MaxBits, !IsSigned);
12509     }
12510 
12511     // Find largest int.
12512     switch (BuiltinOp) {
12513     default:
12514       llvm_unreachable("Invalid value for BuiltinOp");
12515     case Builtin::BI__builtin_add_overflow:
12516     case Builtin::BI__builtin_sadd_overflow:
12517     case Builtin::BI__builtin_saddl_overflow:
12518     case Builtin::BI__builtin_saddll_overflow:
12519     case Builtin::BI__builtin_uadd_overflow:
12520     case Builtin::BI__builtin_uaddl_overflow:
12521     case Builtin::BI__builtin_uaddll_overflow:
12522       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12523                               : LHS.uadd_ov(RHS, DidOverflow);
12524       break;
12525     case Builtin::BI__builtin_sub_overflow:
12526     case Builtin::BI__builtin_ssub_overflow:
12527     case Builtin::BI__builtin_ssubl_overflow:
12528     case Builtin::BI__builtin_ssubll_overflow:
12529     case Builtin::BI__builtin_usub_overflow:
12530     case Builtin::BI__builtin_usubl_overflow:
12531     case Builtin::BI__builtin_usubll_overflow:
12532       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12533                               : LHS.usub_ov(RHS, DidOverflow);
12534       break;
12535     case Builtin::BI__builtin_mul_overflow:
12536     case Builtin::BI__builtin_smul_overflow:
12537     case Builtin::BI__builtin_smull_overflow:
12538     case Builtin::BI__builtin_smulll_overflow:
12539     case Builtin::BI__builtin_umul_overflow:
12540     case Builtin::BI__builtin_umull_overflow:
12541     case Builtin::BI__builtin_umulll_overflow:
12542       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12543                               : LHS.umul_ov(RHS, DidOverflow);
12544       break;
12545     }
12546 
12547     // In the case where multiple sizes are allowed, truncate and see if
12548     // the values are the same.
12549     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12550         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12551         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12552       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12553       // since it will give us the behavior of a TruncOrSelf in the case where
12554       // its parameter <= its size.  We previously set Result to be at least the
12555       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12556       // will work exactly like TruncOrSelf.
12557       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12558       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12559 
12560       if (!APSInt::isSameValue(Temp, Result))
12561         DidOverflow = true;
12562       Result = Temp;
12563     }
12564 
12565     APValue APV{Result};
12566     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12567       return false;
12568     return Success(DidOverflow, E);
12569   }
12570   }
12571 }
12572 
12573 /// Determine whether this is a pointer past the end of the complete
12574 /// object referred to by the lvalue.
12575 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12576                                             const LValue &LV) {
12577   // A null pointer can be viewed as being "past the end" but we don't
12578   // choose to look at it that way here.
12579   if (!LV.getLValueBase())
12580     return false;
12581 
12582   // If the designator is valid and refers to a subobject, we're not pointing
12583   // past the end.
12584   if (!LV.getLValueDesignator().Invalid &&
12585       !LV.getLValueDesignator().isOnePastTheEnd())
12586     return false;
12587 
12588   // A pointer to an incomplete type might be past-the-end if the type's size is
12589   // zero.  We cannot tell because the type is incomplete.
12590   QualType Ty = getType(LV.getLValueBase());
12591   if (Ty->isIncompleteType())
12592     return true;
12593 
12594   // We're a past-the-end pointer if we point to the byte after the object,
12595   // no matter what our type or path is.
12596   auto Size = Ctx.getTypeSizeInChars(Ty);
12597   return LV.getLValueOffset() == Size;
12598 }
12599 
12600 namespace {
12601 
12602 /// Data recursive integer evaluator of certain binary operators.
12603 ///
12604 /// We use a data recursive algorithm for binary operators so that we are able
12605 /// to handle extreme cases of chained binary operators without causing stack
12606 /// overflow.
12607 class DataRecursiveIntBinOpEvaluator {
12608   struct EvalResult {
12609     APValue Val;
12610     bool Failed;
12611 
12612     EvalResult() : Failed(false) { }
12613 
12614     void swap(EvalResult &RHS) {
12615       Val.swap(RHS.Val);
12616       Failed = RHS.Failed;
12617       RHS.Failed = false;
12618     }
12619   };
12620 
12621   struct Job {
12622     const Expr *E;
12623     EvalResult LHSResult; // meaningful only for binary operator expression.
12624     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12625 
12626     Job() = default;
12627     Job(Job &&) = default;
12628 
12629     void startSpeculativeEval(EvalInfo &Info) {
12630       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12631     }
12632 
12633   private:
12634     SpeculativeEvaluationRAII SpecEvalRAII;
12635   };
12636 
12637   SmallVector<Job, 16> Queue;
12638 
12639   IntExprEvaluator &IntEval;
12640   EvalInfo &Info;
12641   APValue &FinalResult;
12642 
12643 public:
12644   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12645     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12646 
12647   /// True if \param E is a binary operator that we are going to handle
12648   /// data recursively.
12649   /// We handle binary operators that are comma, logical, or that have operands
12650   /// with integral or enumeration type.
12651   static bool shouldEnqueue(const BinaryOperator *E) {
12652     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12653            (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12654             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12655             E->getRHS()->getType()->isIntegralOrEnumerationType());
12656   }
12657 
12658   bool Traverse(const BinaryOperator *E) {
12659     enqueue(E);
12660     EvalResult PrevResult;
12661     while (!Queue.empty())
12662       process(PrevResult);
12663 
12664     if (PrevResult.Failed) return false;
12665 
12666     FinalResult.swap(PrevResult.Val);
12667     return true;
12668   }
12669 
12670 private:
12671   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12672     return IntEval.Success(Value, E, Result);
12673   }
12674   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12675     return IntEval.Success(Value, E, Result);
12676   }
12677   bool Error(const Expr *E) {
12678     return IntEval.Error(E);
12679   }
12680   bool Error(const Expr *E, diag::kind D) {
12681     return IntEval.Error(E, D);
12682   }
12683 
12684   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12685     return Info.CCEDiag(E, D);
12686   }
12687 
12688   // Returns true if visiting the RHS is necessary, false otherwise.
12689   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12690                          bool &SuppressRHSDiags);
12691 
12692   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12693                   const BinaryOperator *E, APValue &Result);
12694 
12695   void EvaluateExpr(const Expr *E, EvalResult &Result) {
12696     Result.Failed = !Evaluate(Result.Val, Info, E);
12697     if (Result.Failed)
12698       Result.Val = APValue();
12699   }
12700 
12701   void process(EvalResult &Result);
12702 
12703   void enqueue(const Expr *E) {
12704     E = E->IgnoreParens();
12705     Queue.resize(Queue.size()+1);
12706     Queue.back().E = E;
12707     Queue.back().Kind = Job::AnyExprKind;
12708   }
12709 };
12710 
12711 }
12712 
12713 bool DataRecursiveIntBinOpEvaluator::
12714        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12715                          bool &SuppressRHSDiags) {
12716   if (E->getOpcode() == BO_Comma) {
12717     // Ignore LHS but note if we could not evaluate it.
12718     if (LHSResult.Failed)
12719       return Info.noteSideEffect();
12720     return true;
12721   }
12722 
12723   if (E->isLogicalOp()) {
12724     bool LHSAsBool;
12725     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12726       // We were able to evaluate the LHS, see if we can get away with not
12727       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12728       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12729         Success(LHSAsBool, E, LHSResult.Val);
12730         return false; // Ignore RHS
12731       }
12732     } else {
12733       LHSResult.Failed = true;
12734 
12735       // Since we weren't able to evaluate the left hand side, it
12736       // might have had side effects.
12737       if (!Info.noteSideEffect())
12738         return false;
12739 
12740       // We can't evaluate the LHS; however, sometimes the result
12741       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12742       // Don't ignore RHS and suppress diagnostics from this arm.
12743       SuppressRHSDiags = true;
12744     }
12745 
12746     return true;
12747   }
12748 
12749   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12750          E->getRHS()->getType()->isIntegralOrEnumerationType());
12751 
12752   if (LHSResult.Failed && !Info.noteFailure())
12753     return false; // Ignore RHS;
12754 
12755   return true;
12756 }
12757 
12758 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12759                                     bool IsSub) {
12760   // Compute the new offset in the appropriate width, wrapping at 64 bits.
12761   // FIXME: When compiling for a 32-bit target, we should use 32-bit
12762   // offsets.
12763   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12764   CharUnits &Offset = LVal.getLValueOffset();
12765   uint64_t Offset64 = Offset.getQuantity();
12766   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12767   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12768                                          : Offset64 + Index64);
12769 }
12770 
12771 bool DataRecursiveIntBinOpEvaluator::
12772        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12773                   const BinaryOperator *E, APValue &Result) {
12774   if (E->getOpcode() == BO_Comma) {
12775     if (RHSResult.Failed)
12776       return false;
12777     Result = RHSResult.Val;
12778     return true;
12779   }
12780 
12781   if (E->isLogicalOp()) {
12782     bool lhsResult, rhsResult;
12783     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12784     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12785 
12786     if (LHSIsOK) {
12787       if (RHSIsOK) {
12788         if (E->getOpcode() == BO_LOr)
12789           return Success(lhsResult || rhsResult, E, Result);
12790         else
12791           return Success(lhsResult && rhsResult, E, Result);
12792       }
12793     } else {
12794       if (RHSIsOK) {
12795         // We can't evaluate the LHS; however, sometimes the result
12796         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12797         if (rhsResult == (E->getOpcode() == BO_LOr))
12798           return Success(rhsResult, E, Result);
12799       }
12800     }
12801 
12802     return false;
12803   }
12804 
12805   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12806          E->getRHS()->getType()->isIntegralOrEnumerationType());
12807 
12808   if (LHSResult.Failed || RHSResult.Failed)
12809     return false;
12810 
12811   const APValue &LHSVal = LHSResult.Val;
12812   const APValue &RHSVal = RHSResult.Val;
12813 
12814   // Handle cases like (unsigned long)&a + 4.
12815   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12816     Result = LHSVal;
12817     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12818     return true;
12819   }
12820 
12821   // Handle cases like 4 + (unsigned long)&a
12822   if (E->getOpcode() == BO_Add &&
12823       RHSVal.isLValue() && LHSVal.isInt()) {
12824     Result = RHSVal;
12825     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12826     return true;
12827   }
12828 
12829   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12830     // Handle (intptr_t)&&A - (intptr_t)&&B.
12831     if (!LHSVal.getLValueOffset().isZero() ||
12832         !RHSVal.getLValueOffset().isZero())
12833       return false;
12834     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12835     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12836     if (!LHSExpr || !RHSExpr)
12837       return false;
12838     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12839     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12840     if (!LHSAddrExpr || !RHSAddrExpr)
12841       return false;
12842     // Make sure both labels come from the same function.
12843     if (LHSAddrExpr->getLabel()->getDeclContext() !=
12844         RHSAddrExpr->getLabel()->getDeclContext())
12845       return false;
12846     Result = APValue(LHSAddrExpr, RHSAddrExpr);
12847     return true;
12848   }
12849 
12850   // All the remaining cases expect both operands to be an integer
12851   if (!LHSVal.isInt() || !RHSVal.isInt())
12852     return Error(E);
12853 
12854   // Set up the width and signedness manually, in case it can't be deduced
12855   // from the operation we're performing.
12856   // FIXME: Don't do this in the cases where we can deduce it.
12857   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12858                E->getType()->isUnsignedIntegerOrEnumerationType());
12859   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12860                          RHSVal.getInt(), Value))
12861     return false;
12862   return Success(Value, E, Result);
12863 }
12864 
12865 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12866   Job &job = Queue.back();
12867 
12868   switch (job.Kind) {
12869     case Job::AnyExprKind: {
12870       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12871         if (shouldEnqueue(Bop)) {
12872           job.Kind = Job::BinOpKind;
12873           enqueue(Bop->getLHS());
12874           return;
12875         }
12876       }
12877 
12878       EvaluateExpr(job.E, Result);
12879       Queue.pop_back();
12880       return;
12881     }
12882 
12883     case Job::BinOpKind: {
12884       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12885       bool SuppressRHSDiags = false;
12886       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12887         Queue.pop_back();
12888         return;
12889       }
12890       if (SuppressRHSDiags)
12891         job.startSpeculativeEval(Info);
12892       job.LHSResult.swap(Result);
12893       job.Kind = Job::BinOpVisitedLHSKind;
12894       enqueue(Bop->getRHS());
12895       return;
12896     }
12897 
12898     case Job::BinOpVisitedLHSKind: {
12899       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12900       EvalResult RHS;
12901       RHS.swap(Result);
12902       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12903       Queue.pop_back();
12904       return;
12905     }
12906   }
12907 
12908   llvm_unreachable("Invalid Job::Kind!");
12909 }
12910 
12911 namespace {
12912 enum class CmpResult {
12913   Unequal,
12914   Less,
12915   Equal,
12916   Greater,
12917   Unordered,
12918 };
12919 }
12920 
12921 template <class SuccessCB, class AfterCB>
12922 static bool
12923 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12924                                  SuccessCB &&Success, AfterCB &&DoAfter) {
12925   assert(!E->isValueDependent());
12926   assert(E->isComparisonOp() && "expected comparison operator");
12927   assert((E->getOpcode() == BO_Cmp ||
12928           E->getType()->isIntegralOrEnumerationType()) &&
12929          "unsupported binary expression evaluation");
12930   auto Error = [&](const Expr *E) {
12931     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12932     return false;
12933   };
12934 
12935   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12936   bool IsEquality = E->isEqualityOp();
12937 
12938   QualType LHSTy = E->getLHS()->getType();
12939   QualType RHSTy = E->getRHS()->getType();
12940 
12941   if (LHSTy->isIntegralOrEnumerationType() &&
12942       RHSTy->isIntegralOrEnumerationType()) {
12943     APSInt LHS, RHS;
12944     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12945     if (!LHSOK && !Info.noteFailure())
12946       return false;
12947     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12948       return false;
12949     if (LHS < RHS)
12950       return Success(CmpResult::Less, E);
12951     if (LHS > RHS)
12952       return Success(CmpResult::Greater, E);
12953     return Success(CmpResult::Equal, E);
12954   }
12955 
12956   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12957     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12958     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12959 
12960     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12961     if (!LHSOK && !Info.noteFailure())
12962       return false;
12963     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12964       return false;
12965     if (LHSFX < RHSFX)
12966       return Success(CmpResult::Less, E);
12967     if (LHSFX > RHSFX)
12968       return Success(CmpResult::Greater, E);
12969     return Success(CmpResult::Equal, E);
12970   }
12971 
12972   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12973     ComplexValue LHS, RHS;
12974     bool LHSOK;
12975     if (E->isAssignmentOp()) {
12976       LValue LV;
12977       EvaluateLValue(E->getLHS(), LV, Info);
12978       LHSOK = false;
12979     } else if (LHSTy->isRealFloatingType()) {
12980       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12981       if (LHSOK) {
12982         LHS.makeComplexFloat();
12983         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12984       }
12985     } else {
12986       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12987     }
12988     if (!LHSOK && !Info.noteFailure())
12989       return false;
12990 
12991     if (E->getRHS()->getType()->isRealFloatingType()) {
12992       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12993         return false;
12994       RHS.makeComplexFloat();
12995       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12996     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12997       return false;
12998 
12999     if (LHS.isComplexFloat()) {
13000       APFloat::cmpResult CR_r =
13001         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
13002       APFloat::cmpResult CR_i =
13003         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
13004       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
13005       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13006     } else {
13007       assert(IsEquality && "invalid complex comparison");
13008       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
13009                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
13010       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13011     }
13012   }
13013 
13014   if (LHSTy->isRealFloatingType() &&
13015       RHSTy->isRealFloatingType()) {
13016     APFloat RHS(0.0), LHS(0.0);
13017 
13018     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
13019     if (!LHSOK && !Info.noteFailure())
13020       return false;
13021 
13022     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
13023       return false;
13024 
13025     assert(E->isComparisonOp() && "Invalid binary operator!");
13026     llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
13027     if (!Info.InConstantContext &&
13028         APFloatCmpResult == APFloat::cmpUnordered &&
13029         E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
13030       // Note: Compares may raise invalid in some cases involving NaN or sNaN.
13031       Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
13032       return false;
13033     }
13034     auto GetCmpRes = [&]() {
13035       switch (APFloatCmpResult) {
13036       case APFloat::cmpEqual:
13037         return CmpResult::Equal;
13038       case APFloat::cmpLessThan:
13039         return CmpResult::Less;
13040       case APFloat::cmpGreaterThan:
13041         return CmpResult::Greater;
13042       case APFloat::cmpUnordered:
13043         return CmpResult::Unordered;
13044       }
13045       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
13046     };
13047     return Success(GetCmpRes(), E);
13048   }
13049 
13050   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
13051     LValue LHSValue, RHSValue;
13052 
13053     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13054     if (!LHSOK && !Info.noteFailure())
13055       return false;
13056 
13057     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13058       return false;
13059 
13060     // Reject differing bases from the normal codepath; we special-case
13061     // comparisons to null.
13062     if (!HasSameBase(LHSValue, RHSValue)) {
13063       auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
13064         std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType());
13065         std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType());
13066         Info.FFDiag(E, DiagID)
13067             << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
13068         return false;
13069       };
13070       // Inequalities and subtractions between unrelated pointers have
13071       // unspecified or undefined behavior.
13072       if (!IsEquality)
13073         return DiagComparison(
13074             diag::note_constexpr_pointer_comparison_unspecified);
13075       // A constant address may compare equal to the address of a symbol.
13076       // The one exception is that address of an object cannot compare equal
13077       // to a null pointer constant.
13078       // TODO: Should we restrict this to actual null pointers, and exclude the
13079       // case of zero cast to pointer type?
13080       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
13081           (!RHSValue.Base && !RHSValue.Offset.isZero()))
13082         return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
13083                               !RHSValue.Base);
13084       // It's implementation-defined whether distinct literals will have
13085       // distinct addresses. In clang, the result of such a comparison is
13086       // unspecified, so it is not a constant expression. However, we do know
13087       // that the address of a literal will be non-null.
13088       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
13089           LHSValue.Base && RHSValue.Base)
13090         return DiagComparison(diag::note_constexpr_literal_comparison);
13091       // We can't tell whether weak symbols will end up pointing to the same
13092       // object.
13093       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
13094         return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
13095                               !IsWeakLValue(LHSValue));
13096       // We can't compare the address of the start of one object with the
13097       // past-the-end address of another object, per C++ DR1652.
13098       if (LHSValue.Base && LHSValue.Offset.isZero() &&
13099           isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
13100         return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13101                               true);
13102       if (RHSValue.Base && RHSValue.Offset.isZero() &&
13103            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
13104         return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13105                               false);
13106       // We can't tell whether an object is at the same address as another
13107       // zero sized object.
13108       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
13109           (LHSValue.Base && isZeroSized(RHSValue)))
13110         return DiagComparison(
13111             diag::note_constexpr_pointer_comparison_zero_sized);
13112       return Success(CmpResult::Unequal, E);
13113     }
13114 
13115     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13116     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13117 
13118     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13119     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13120 
13121     // C++11 [expr.rel]p3:
13122     //   Pointers to void (after pointer conversions) can be compared, with a
13123     //   result defined as follows: If both pointers represent the same
13124     //   address or are both the null pointer value, the result is true if the
13125     //   operator is <= or >= and false otherwise; otherwise the result is
13126     //   unspecified.
13127     // We interpret this as applying to pointers to *cv* void.
13128     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
13129       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
13130 
13131     // C++11 [expr.rel]p2:
13132     // - If two pointers point to non-static data members of the same object,
13133     //   or to subobjects or array elements fo such members, recursively, the
13134     //   pointer to the later declared member compares greater provided the
13135     //   two members have the same access control and provided their class is
13136     //   not a union.
13137     //   [...]
13138     // - Otherwise pointer comparisons are unspecified.
13139     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
13140       bool WasArrayIndex;
13141       unsigned Mismatch = FindDesignatorMismatch(
13142           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
13143       // At the point where the designators diverge, the comparison has a
13144       // specified value if:
13145       //  - we are comparing array indices
13146       //  - we are comparing fields of a union, or fields with the same access
13147       // Otherwise, the result is unspecified and thus the comparison is not a
13148       // constant expression.
13149       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
13150           Mismatch < RHSDesignator.Entries.size()) {
13151         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
13152         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
13153         if (!LF && !RF)
13154           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
13155         else if (!LF)
13156           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13157               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
13158               << RF->getParent() << RF;
13159         else if (!RF)
13160           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13161               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
13162               << LF->getParent() << LF;
13163         else if (!LF->getParent()->isUnion() &&
13164                  LF->getAccess() != RF->getAccess())
13165           Info.CCEDiag(E,
13166                        diag::note_constexpr_pointer_comparison_differing_access)
13167               << LF << LF->getAccess() << RF << RF->getAccess()
13168               << LF->getParent();
13169       }
13170     }
13171 
13172     // The comparison here must be unsigned, and performed with the same
13173     // width as the pointer.
13174     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
13175     uint64_t CompareLHS = LHSOffset.getQuantity();
13176     uint64_t CompareRHS = RHSOffset.getQuantity();
13177     assert(PtrSize <= 64 && "Unexpected pointer width");
13178     uint64_t Mask = ~0ULL >> (64 - PtrSize);
13179     CompareLHS &= Mask;
13180     CompareRHS &= Mask;
13181 
13182     // If there is a base and this is a relational operator, we can only
13183     // compare pointers within the object in question; otherwise, the result
13184     // depends on where the object is located in memory.
13185     if (!LHSValue.Base.isNull() && IsRelational) {
13186       QualType BaseTy = getType(LHSValue.Base);
13187       if (BaseTy->isIncompleteType())
13188         return Error(E);
13189       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
13190       uint64_t OffsetLimit = Size.getQuantity();
13191       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13192         return Error(E);
13193     }
13194 
13195     if (CompareLHS < CompareRHS)
13196       return Success(CmpResult::Less, E);
13197     if (CompareLHS > CompareRHS)
13198       return Success(CmpResult::Greater, E);
13199     return Success(CmpResult::Equal, E);
13200   }
13201 
13202   if (LHSTy->isMemberPointerType()) {
13203     assert(IsEquality && "unexpected member pointer operation");
13204     assert(RHSTy->isMemberPointerType() && "invalid comparison");
13205 
13206     MemberPtr LHSValue, RHSValue;
13207 
13208     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
13209     if (!LHSOK && !Info.noteFailure())
13210       return false;
13211 
13212     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13213       return false;
13214 
13215     // If either operand is a pointer to a weak function, the comparison is not
13216     // constant.
13217     if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
13218       Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13219           << LHSValue.getDecl();
13220       return false;
13221     }
13222     if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
13223       Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13224           << RHSValue.getDecl();
13225       return false;
13226     }
13227 
13228     // C++11 [expr.eq]p2:
13229     //   If both operands are null, they compare equal. Otherwise if only one is
13230     //   null, they compare unequal.
13231     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13232       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13233       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13234     }
13235 
13236     //   Otherwise if either is a pointer to a virtual member function, the
13237     //   result is unspecified.
13238     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13239       if (MD->isVirtual())
13240         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13241     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13242       if (MD->isVirtual())
13243         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13244 
13245     //   Otherwise they compare equal if and only if they would refer to the
13246     //   same member of the same most derived object or the same subobject if
13247     //   they were dereferenced with a hypothetical object of the associated
13248     //   class type.
13249     bool Equal = LHSValue == RHSValue;
13250     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13251   }
13252 
13253   if (LHSTy->isNullPtrType()) {
13254     assert(E->isComparisonOp() && "unexpected nullptr operation");
13255     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13256     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13257     // are compared, the result is true of the operator is <=, >= or ==, and
13258     // false otherwise.
13259     return Success(CmpResult::Equal, E);
13260   }
13261 
13262   return DoAfter();
13263 }
13264 
13265 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13266   if (!CheckLiteralType(Info, E))
13267     return false;
13268 
13269   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13270     ComparisonCategoryResult CCR;
13271     switch (CR) {
13272     case CmpResult::Unequal:
13273       llvm_unreachable("should never produce Unequal for three-way comparison");
13274     case CmpResult::Less:
13275       CCR = ComparisonCategoryResult::Less;
13276       break;
13277     case CmpResult::Equal:
13278       CCR = ComparisonCategoryResult::Equal;
13279       break;
13280     case CmpResult::Greater:
13281       CCR = ComparisonCategoryResult::Greater;
13282       break;
13283     case CmpResult::Unordered:
13284       CCR = ComparisonCategoryResult::Unordered;
13285       break;
13286     }
13287     // Evaluation succeeded. Lookup the information for the comparison category
13288     // type and fetch the VarDecl for the result.
13289     const ComparisonCategoryInfo &CmpInfo =
13290         Info.Ctx.CompCategories.getInfoForType(E->getType());
13291     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
13292     // Check and evaluate the result as a constant expression.
13293     LValue LV;
13294     LV.set(VD);
13295     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13296       return false;
13297     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13298                                    ConstantExprKind::Normal);
13299   };
13300   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13301     return ExprEvaluatorBaseTy::VisitBinCmp(E);
13302   });
13303 }
13304 
13305 bool RecordExprEvaluator::VisitCXXParenListInitExpr(
13306     const CXXParenListInitExpr *E) {
13307   return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
13308 }
13309 
13310 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13311   // We don't support assignment in C. C++ assignments don't get here because
13312   // assignment is an lvalue in C++.
13313   if (E->isAssignmentOp()) {
13314     Error(E);
13315     if (!Info.noteFailure())
13316       return false;
13317   }
13318 
13319   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13320     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13321 
13322   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13323           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13324          "DataRecursiveIntBinOpEvaluator should have handled integral types");
13325 
13326   if (E->isComparisonOp()) {
13327     // Evaluate builtin binary comparisons by evaluating them as three-way
13328     // comparisons and then translating the result.
13329     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13330       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13331              "should only produce Unequal for equality comparisons");
13332       bool IsEqual   = CR == CmpResult::Equal,
13333            IsLess    = CR == CmpResult::Less,
13334            IsGreater = CR == CmpResult::Greater;
13335       auto Op = E->getOpcode();
13336       switch (Op) {
13337       default:
13338         llvm_unreachable("unsupported binary operator");
13339       case BO_EQ:
13340       case BO_NE:
13341         return Success(IsEqual == (Op == BO_EQ), E);
13342       case BO_LT:
13343         return Success(IsLess, E);
13344       case BO_GT:
13345         return Success(IsGreater, E);
13346       case BO_LE:
13347         return Success(IsEqual || IsLess, E);
13348       case BO_GE:
13349         return Success(IsEqual || IsGreater, E);
13350       }
13351     };
13352     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13353       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13354     });
13355   }
13356 
13357   QualType LHSTy = E->getLHS()->getType();
13358   QualType RHSTy = E->getRHS()->getType();
13359 
13360   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13361       E->getOpcode() == BO_Sub) {
13362     LValue LHSValue, RHSValue;
13363 
13364     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13365     if (!LHSOK && !Info.noteFailure())
13366       return false;
13367 
13368     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13369       return false;
13370 
13371     // Reject differing bases from the normal codepath; we special-case
13372     // comparisons to null.
13373     if (!HasSameBase(LHSValue, RHSValue)) {
13374       // Handle &&A - &&B.
13375       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13376         return Error(E);
13377       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13378       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13379       if (!LHSExpr || !RHSExpr)
13380         return Error(E);
13381       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13382       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13383       if (!LHSAddrExpr || !RHSAddrExpr)
13384         return Error(E);
13385       // Make sure both labels come from the same function.
13386       if (LHSAddrExpr->getLabel()->getDeclContext() !=
13387           RHSAddrExpr->getLabel()->getDeclContext())
13388         return Error(E);
13389       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13390     }
13391     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13392     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13393 
13394     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13395     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13396 
13397     // C++11 [expr.add]p6:
13398     //   Unless both pointers point to elements of the same array object, or
13399     //   one past the last element of the array object, the behavior is
13400     //   undefined.
13401     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13402         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13403                                 RHSDesignator))
13404       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13405 
13406     QualType Type = E->getLHS()->getType();
13407     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13408 
13409     CharUnits ElementSize;
13410     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13411       return false;
13412 
13413     // As an extension, a type may have zero size (empty struct or union in
13414     // C, array of zero length). Pointer subtraction in such cases has
13415     // undefined behavior, so is not constant.
13416     if (ElementSize.isZero()) {
13417       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13418           << ElementType;
13419       return false;
13420     }
13421 
13422     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13423     // and produce incorrect results when it overflows. Such behavior
13424     // appears to be non-conforming, but is common, so perhaps we should
13425     // assume the standard intended for such cases to be undefined behavior
13426     // and check for them.
13427 
13428     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13429     // overflow in the final conversion to ptrdiff_t.
13430     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13431     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13432     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13433                     false);
13434     APSInt TrueResult = (LHS - RHS) / ElemSize;
13435     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13436 
13437     if (Result.extend(65) != TrueResult &&
13438         !HandleOverflow(Info, E, TrueResult, E->getType()))
13439       return false;
13440     return Success(Result, E);
13441   }
13442 
13443   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13444 }
13445 
13446 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13447 /// a result as the expression's type.
13448 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13449                                     const UnaryExprOrTypeTraitExpr *E) {
13450   switch(E->getKind()) {
13451   case UETT_PreferredAlignOf:
13452   case UETT_AlignOf: {
13453     if (E->isArgumentType())
13454       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13455                      E);
13456     else
13457       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13458                      E);
13459   }
13460 
13461   case UETT_VecStep: {
13462     QualType Ty = E->getTypeOfArgument();
13463 
13464     if (Ty->isVectorType()) {
13465       unsigned n = Ty->castAs<VectorType>()->getNumElements();
13466 
13467       // The vec_step built-in functions that take a 3-component
13468       // vector return 4. (OpenCL 1.1 spec 6.11.12)
13469       if (n == 3)
13470         n = 4;
13471 
13472       return Success(n, E);
13473     } else
13474       return Success(1, E);
13475   }
13476 
13477   case UETT_SizeOf: {
13478     QualType SrcTy = E->getTypeOfArgument();
13479     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13480     //   the result is the size of the referenced type."
13481     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13482       SrcTy = Ref->getPointeeType();
13483 
13484     CharUnits Sizeof;
13485     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13486       return false;
13487     return Success(Sizeof, E);
13488   }
13489   case UETT_OpenMPRequiredSimdAlign:
13490     assert(E->isArgumentType());
13491     return Success(
13492         Info.Ctx.toCharUnitsFromBits(
13493                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13494             .getQuantity(),
13495         E);
13496   }
13497 
13498   llvm_unreachable("unknown expr/type trait");
13499 }
13500 
13501 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13502   CharUnits Result;
13503   unsigned n = OOE->getNumComponents();
13504   if (n == 0)
13505     return Error(OOE);
13506   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13507   for (unsigned i = 0; i != n; ++i) {
13508     OffsetOfNode ON = OOE->getComponent(i);
13509     switch (ON.getKind()) {
13510     case OffsetOfNode::Array: {
13511       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13512       APSInt IdxResult;
13513       if (!EvaluateInteger(Idx, IdxResult, Info))
13514         return false;
13515       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13516       if (!AT)
13517         return Error(OOE);
13518       CurrentType = AT->getElementType();
13519       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13520       Result += IdxResult.getSExtValue() * ElementSize;
13521       break;
13522     }
13523 
13524     case OffsetOfNode::Field: {
13525       FieldDecl *MemberDecl = ON.getField();
13526       const RecordType *RT = CurrentType->getAs<RecordType>();
13527       if (!RT)
13528         return Error(OOE);
13529       RecordDecl *RD = RT->getDecl();
13530       if (RD->isInvalidDecl()) return false;
13531       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13532       unsigned i = MemberDecl->getFieldIndex();
13533       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13534       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13535       CurrentType = MemberDecl->getType().getNonReferenceType();
13536       break;
13537     }
13538 
13539     case OffsetOfNode::Identifier:
13540       llvm_unreachable("dependent __builtin_offsetof");
13541 
13542     case OffsetOfNode::Base: {
13543       CXXBaseSpecifier *BaseSpec = ON.getBase();
13544       if (BaseSpec->isVirtual())
13545         return Error(OOE);
13546 
13547       // Find the layout of the class whose base we are looking into.
13548       const RecordType *RT = CurrentType->getAs<RecordType>();
13549       if (!RT)
13550         return Error(OOE);
13551       RecordDecl *RD = RT->getDecl();
13552       if (RD->isInvalidDecl()) return false;
13553       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13554 
13555       // Find the base class itself.
13556       CurrentType = BaseSpec->getType();
13557       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13558       if (!BaseRT)
13559         return Error(OOE);
13560 
13561       // Add the offset to the base.
13562       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13563       break;
13564     }
13565     }
13566   }
13567   return Success(Result, OOE);
13568 }
13569 
13570 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13571   switch (E->getOpcode()) {
13572   default:
13573     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13574     // See C99 6.6p3.
13575     return Error(E);
13576   case UO_Extension:
13577     // FIXME: Should extension allow i-c-e extension expressions in its scope?
13578     // If so, we could clear the diagnostic ID.
13579     return Visit(E->getSubExpr());
13580   case UO_Plus:
13581     // The result is just the value.
13582     return Visit(E->getSubExpr());
13583   case UO_Minus: {
13584     if (!Visit(E->getSubExpr()))
13585       return false;
13586     if (!Result.isInt()) return Error(E);
13587     const APSInt &Value = Result.getInt();
13588     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
13589       if (Info.checkingForUndefinedBehavior())
13590         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13591                                          diag::warn_integer_constant_overflow)
13592             << toString(Value, 10) << E->getType();
13593 
13594       if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13595                           E->getType()))
13596         return false;
13597     }
13598     return Success(-Value, E);
13599   }
13600   case UO_Not: {
13601     if (!Visit(E->getSubExpr()))
13602       return false;
13603     if (!Result.isInt()) return Error(E);
13604     return Success(~Result.getInt(), E);
13605   }
13606   case UO_LNot: {
13607     bool bres;
13608     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13609       return false;
13610     return Success(!bres, E);
13611   }
13612   }
13613 }
13614 
13615 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13616 /// result type is integer.
13617 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13618   const Expr *SubExpr = E->getSubExpr();
13619   QualType DestType = E->getType();
13620   QualType SrcType = SubExpr->getType();
13621 
13622   switch (E->getCastKind()) {
13623   case CK_BaseToDerived:
13624   case CK_DerivedToBase:
13625   case CK_UncheckedDerivedToBase:
13626   case CK_Dynamic:
13627   case CK_ToUnion:
13628   case CK_ArrayToPointerDecay:
13629   case CK_FunctionToPointerDecay:
13630   case CK_NullToPointer:
13631   case CK_NullToMemberPointer:
13632   case CK_BaseToDerivedMemberPointer:
13633   case CK_DerivedToBaseMemberPointer:
13634   case CK_ReinterpretMemberPointer:
13635   case CK_ConstructorConversion:
13636   case CK_IntegralToPointer:
13637   case CK_ToVoid:
13638   case CK_VectorSplat:
13639   case CK_IntegralToFloating:
13640   case CK_FloatingCast:
13641   case CK_CPointerToObjCPointerCast:
13642   case CK_BlockPointerToObjCPointerCast:
13643   case CK_AnyPointerToBlockPointerCast:
13644   case CK_ObjCObjectLValueCast:
13645   case CK_FloatingRealToComplex:
13646   case CK_FloatingComplexToReal:
13647   case CK_FloatingComplexCast:
13648   case CK_FloatingComplexToIntegralComplex:
13649   case CK_IntegralRealToComplex:
13650   case CK_IntegralComplexCast:
13651   case CK_IntegralComplexToFloatingComplex:
13652   case CK_BuiltinFnToFnPtr:
13653   case CK_ZeroToOCLOpaqueType:
13654   case CK_NonAtomicToAtomic:
13655   case CK_AddressSpaceConversion:
13656   case CK_IntToOCLSampler:
13657   case CK_FloatingToFixedPoint:
13658   case CK_FixedPointToFloating:
13659   case CK_FixedPointCast:
13660   case CK_IntegralToFixedPoint:
13661   case CK_MatrixCast:
13662     llvm_unreachable("invalid cast kind for integral value");
13663 
13664   case CK_BitCast:
13665   case CK_Dependent:
13666   case CK_LValueBitCast:
13667   case CK_ARCProduceObject:
13668   case CK_ARCConsumeObject:
13669   case CK_ARCReclaimReturnedObject:
13670   case CK_ARCExtendBlockObject:
13671   case CK_CopyAndAutoreleaseBlockObject:
13672     return Error(E);
13673 
13674   case CK_UserDefinedConversion:
13675   case CK_LValueToRValue:
13676   case CK_AtomicToNonAtomic:
13677   case CK_NoOp:
13678   case CK_LValueToRValueBitCast:
13679     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13680 
13681   case CK_MemberPointerToBoolean:
13682   case CK_PointerToBoolean:
13683   case CK_IntegralToBoolean:
13684   case CK_FloatingToBoolean:
13685   case CK_BooleanToSignedIntegral:
13686   case CK_FloatingComplexToBoolean:
13687   case CK_IntegralComplexToBoolean: {
13688     bool BoolResult;
13689     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13690       return false;
13691     uint64_t IntResult = BoolResult;
13692     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13693       IntResult = (uint64_t)-1;
13694     return Success(IntResult, E);
13695   }
13696 
13697   case CK_FixedPointToIntegral: {
13698     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13699     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13700       return false;
13701     bool Overflowed;
13702     llvm::APSInt Result = Src.convertToInt(
13703         Info.Ctx.getIntWidth(DestType),
13704         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13705     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13706       return false;
13707     return Success(Result, E);
13708   }
13709 
13710   case CK_FixedPointToBoolean: {
13711     // Unsigned padding does not affect this.
13712     APValue Val;
13713     if (!Evaluate(Val, Info, SubExpr))
13714       return false;
13715     return Success(Val.getFixedPoint().getBoolValue(), E);
13716   }
13717 
13718   case CK_IntegralCast: {
13719     if (!Visit(SubExpr))
13720       return false;
13721 
13722     if (!Result.isInt()) {
13723       // Allow casts of address-of-label differences if they are no-ops
13724       // or narrowing.  (The narrowing case isn't actually guaranteed to
13725       // be constant-evaluatable except in some narrow cases which are hard
13726       // to detect here.  We let it through on the assumption the user knows
13727       // what they are doing.)
13728       if (Result.isAddrLabelDiff())
13729         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13730       // Only allow casts of lvalues if they are lossless.
13731       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13732     }
13733 
13734     if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext &&
13735         Info.EvalMode == EvalInfo::EM_ConstantExpression &&
13736         DestType->isEnumeralType()) {
13737 
13738       bool ConstexprVar = true;
13739 
13740       // We know if we are here that we are in a context that we might require
13741       // a constant expression or a context that requires a constant
13742       // value. But if we are initializing a value we don't know if it is a
13743       // constexpr variable or not. We can check the EvaluatingDecl to determine
13744       // if it constexpr or not. If not then we don't want to emit a diagnostic.
13745       if (const auto *VD = dyn_cast_or_null<VarDecl>(
13746               Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
13747         ConstexprVar = VD->isConstexpr();
13748 
13749       const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType());
13750       const EnumDecl *ED = ET->getDecl();
13751       // Check that the value is within the range of the enumeration values.
13752       //
13753       // This corressponds to [expr.static.cast]p10 which says:
13754       // A value of integral or enumeration type can be explicitly converted
13755       // to a complete enumeration type ... If the enumeration type does not
13756       // have a fixed underlying type, the value is unchanged if the original
13757       // value is within the range of the enumeration values ([dcl.enum]), and
13758       // otherwise, the behavior is undefined.
13759       //
13760       // This was resolved as part of DR2338 which has CD5 status.
13761       if (!ED->isFixed()) {
13762         llvm::APInt Min;
13763         llvm::APInt Max;
13764 
13765         ED->getValueRange(Max, Min);
13766         --Max;
13767 
13768         if (ED->getNumNegativeBits() && ConstexprVar &&
13769             (Max.slt(Result.getInt().getSExtValue()) ||
13770              Min.sgt(Result.getInt().getSExtValue())))
13771           Info.Ctx.getDiagnostics().Report(
13772               E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
13773               << llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
13774               << Max.getSExtValue() << ED;
13775         else if (!ED->getNumNegativeBits() && ConstexprVar &&
13776                  Max.ult(Result.getInt().getZExtValue()))
13777           Info.Ctx.getDiagnostics().Report(
13778               E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
13779               << llvm::toString(Result.getInt(), 10) << Min.getZExtValue()
13780               << Max.getZExtValue() << ED;
13781       }
13782     }
13783 
13784     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13785                                       Result.getInt()), E);
13786   }
13787 
13788   case CK_PointerToIntegral: {
13789     CCEDiag(E, diag::note_constexpr_invalid_cast)
13790         << 2 << Info.Ctx.getLangOpts().CPlusPlus;
13791 
13792     LValue LV;
13793     if (!EvaluatePointer(SubExpr, LV, Info))
13794       return false;
13795 
13796     if (LV.getLValueBase()) {
13797       // Only allow based lvalue casts if they are lossless.
13798       // FIXME: Allow a larger integer size than the pointer size, and allow
13799       // narrowing back down to pointer width in subsequent integral casts.
13800       // FIXME: Check integer type's active bits, not its type size.
13801       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13802         return Error(E);
13803 
13804       LV.Designator.setInvalid();
13805       LV.moveInto(Result);
13806       return true;
13807     }
13808 
13809     APSInt AsInt;
13810     APValue V;
13811     LV.moveInto(V);
13812     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13813       llvm_unreachable("Can't cast this!");
13814 
13815     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13816   }
13817 
13818   case CK_IntegralComplexToReal: {
13819     ComplexValue C;
13820     if (!EvaluateComplex(SubExpr, C, Info))
13821       return false;
13822     return Success(C.getComplexIntReal(), E);
13823   }
13824 
13825   case CK_FloatingToIntegral: {
13826     APFloat F(0.0);
13827     if (!EvaluateFloat(SubExpr, F, Info))
13828       return false;
13829 
13830     APSInt Value;
13831     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13832       return false;
13833     return Success(Value, E);
13834   }
13835   }
13836 
13837   llvm_unreachable("unknown cast resulting in integral value");
13838 }
13839 
13840 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13841   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13842     ComplexValue LV;
13843     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13844       return false;
13845     if (!LV.isComplexInt())
13846       return Error(E);
13847     return Success(LV.getComplexIntReal(), E);
13848   }
13849 
13850   return Visit(E->getSubExpr());
13851 }
13852 
13853 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13854   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13855     ComplexValue LV;
13856     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13857       return false;
13858     if (!LV.isComplexInt())
13859       return Error(E);
13860     return Success(LV.getComplexIntImag(), E);
13861   }
13862 
13863   VisitIgnoredValue(E->getSubExpr());
13864   return Success(0, E);
13865 }
13866 
13867 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13868   return Success(E->getPackLength(), E);
13869 }
13870 
13871 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13872   return Success(E->getValue(), E);
13873 }
13874 
13875 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13876        const ConceptSpecializationExpr *E) {
13877   return Success(E->isSatisfied(), E);
13878 }
13879 
13880 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13881   return Success(E->isSatisfied(), E);
13882 }
13883 
13884 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13885   switch (E->getOpcode()) {
13886     default:
13887       // Invalid unary operators
13888       return Error(E);
13889     case UO_Plus:
13890       // The result is just the value.
13891       return Visit(E->getSubExpr());
13892     case UO_Minus: {
13893       if (!Visit(E->getSubExpr())) return false;
13894       if (!Result.isFixedPoint())
13895         return Error(E);
13896       bool Overflowed;
13897       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13898       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13899         return false;
13900       return Success(Negated, E);
13901     }
13902     case UO_LNot: {
13903       bool bres;
13904       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13905         return false;
13906       return Success(!bres, E);
13907     }
13908   }
13909 }
13910 
13911 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13912   const Expr *SubExpr = E->getSubExpr();
13913   QualType DestType = E->getType();
13914   assert(DestType->isFixedPointType() &&
13915          "Expected destination type to be a fixed point type");
13916   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13917 
13918   switch (E->getCastKind()) {
13919   case CK_FixedPointCast: {
13920     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13921     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13922       return false;
13923     bool Overflowed;
13924     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13925     if (Overflowed) {
13926       if (Info.checkingForUndefinedBehavior())
13927         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13928                                          diag::warn_fixedpoint_constant_overflow)
13929           << Result.toString() << E->getType();
13930       if (!HandleOverflow(Info, E, Result, E->getType()))
13931         return false;
13932     }
13933     return Success(Result, E);
13934   }
13935   case CK_IntegralToFixedPoint: {
13936     APSInt Src;
13937     if (!EvaluateInteger(SubExpr, Src, Info))
13938       return false;
13939 
13940     bool Overflowed;
13941     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13942         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13943 
13944     if (Overflowed) {
13945       if (Info.checkingForUndefinedBehavior())
13946         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13947                                          diag::warn_fixedpoint_constant_overflow)
13948           << IntResult.toString() << E->getType();
13949       if (!HandleOverflow(Info, E, IntResult, E->getType()))
13950         return false;
13951     }
13952 
13953     return Success(IntResult, E);
13954   }
13955   case CK_FloatingToFixedPoint: {
13956     APFloat Src(0.0);
13957     if (!EvaluateFloat(SubExpr, Src, Info))
13958       return false;
13959 
13960     bool Overflowed;
13961     APFixedPoint Result = APFixedPoint::getFromFloatValue(
13962         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13963 
13964     if (Overflowed) {
13965       if (Info.checkingForUndefinedBehavior())
13966         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13967                                          diag::warn_fixedpoint_constant_overflow)
13968           << Result.toString() << E->getType();
13969       if (!HandleOverflow(Info, E, Result, E->getType()))
13970         return false;
13971     }
13972 
13973     return Success(Result, E);
13974   }
13975   case CK_NoOp:
13976   case CK_LValueToRValue:
13977     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13978   default:
13979     return Error(E);
13980   }
13981 }
13982 
13983 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13984   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13985     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13986 
13987   const Expr *LHS = E->getLHS();
13988   const Expr *RHS = E->getRHS();
13989   FixedPointSemantics ResultFXSema =
13990       Info.Ctx.getFixedPointSemantics(E->getType());
13991 
13992   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13993   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13994     return false;
13995   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13996   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13997     return false;
13998 
13999   bool OpOverflow = false, ConversionOverflow = false;
14000   APFixedPoint Result(LHSFX.getSemantics());
14001   switch (E->getOpcode()) {
14002   case BO_Add: {
14003     Result = LHSFX.add(RHSFX, &OpOverflow)
14004                   .convert(ResultFXSema, &ConversionOverflow);
14005     break;
14006   }
14007   case BO_Sub: {
14008     Result = LHSFX.sub(RHSFX, &OpOverflow)
14009                   .convert(ResultFXSema, &ConversionOverflow);
14010     break;
14011   }
14012   case BO_Mul: {
14013     Result = LHSFX.mul(RHSFX, &OpOverflow)
14014                   .convert(ResultFXSema, &ConversionOverflow);
14015     break;
14016   }
14017   case BO_Div: {
14018     if (RHSFX.getValue() == 0) {
14019       Info.FFDiag(E, diag::note_expr_divide_by_zero);
14020       return false;
14021     }
14022     Result = LHSFX.div(RHSFX, &OpOverflow)
14023                   .convert(ResultFXSema, &ConversionOverflow);
14024     break;
14025   }
14026   case BO_Shl:
14027   case BO_Shr: {
14028     FixedPointSemantics LHSSema = LHSFX.getSemantics();
14029     llvm::APSInt RHSVal = RHSFX.getValue();
14030 
14031     unsigned ShiftBW =
14032         LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
14033     unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
14034     // Embedded-C 4.1.6.2.2:
14035     //   The right operand must be nonnegative and less than the total number
14036     //   of (nonpadding) bits of the fixed-point operand ...
14037     if (RHSVal.isNegative())
14038       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
14039     else if (Amt != RHSVal)
14040       Info.CCEDiag(E, diag::note_constexpr_large_shift)
14041           << RHSVal << E->getType() << ShiftBW;
14042 
14043     if (E->getOpcode() == BO_Shl)
14044       Result = LHSFX.shl(Amt, &OpOverflow);
14045     else
14046       Result = LHSFX.shr(Amt, &OpOverflow);
14047     break;
14048   }
14049   default:
14050     return false;
14051   }
14052   if (OpOverflow || ConversionOverflow) {
14053     if (Info.checkingForUndefinedBehavior())
14054       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14055                                        diag::warn_fixedpoint_constant_overflow)
14056         << Result.toString() << E->getType();
14057     if (!HandleOverflow(Info, E, Result, E->getType()))
14058       return false;
14059   }
14060   return Success(Result, E);
14061 }
14062 
14063 //===----------------------------------------------------------------------===//
14064 // Float Evaluation
14065 //===----------------------------------------------------------------------===//
14066 
14067 namespace {
14068 class FloatExprEvaluator
14069   : public ExprEvaluatorBase<FloatExprEvaluator> {
14070   APFloat &Result;
14071 public:
14072   FloatExprEvaluator(EvalInfo &info, APFloat &result)
14073     : ExprEvaluatorBaseTy(info), Result(result) {}
14074 
14075   bool Success(const APValue &V, const Expr *e) {
14076     Result = V.getFloat();
14077     return true;
14078   }
14079 
14080   bool ZeroInitialization(const Expr *E) {
14081     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
14082     return true;
14083   }
14084 
14085   bool VisitCallExpr(const CallExpr *E);
14086 
14087   bool VisitUnaryOperator(const UnaryOperator *E);
14088   bool VisitBinaryOperator(const BinaryOperator *E);
14089   bool VisitFloatingLiteral(const FloatingLiteral *E);
14090   bool VisitCastExpr(const CastExpr *E);
14091 
14092   bool VisitUnaryReal(const UnaryOperator *E);
14093   bool VisitUnaryImag(const UnaryOperator *E);
14094 
14095   // FIXME: Missing: array subscript of vector, member of vector
14096 };
14097 } // end anonymous namespace
14098 
14099 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
14100   assert(!E->isValueDependent());
14101   assert(E->isPRValue() && E->getType()->isRealFloatingType());
14102   return FloatExprEvaluator(Info, Result).Visit(E);
14103 }
14104 
14105 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
14106                                   QualType ResultTy,
14107                                   const Expr *Arg,
14108                                   bool SNaN,
14109                                   llvm::APFloat &Result) {
14110   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
14111   if (!S) return false;
14112 
14113   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
14114 
14115   llvm::APInt fill;
14116 
14117   // Treat empty strings as if they were zero.
14118   if (S->getString().empty())
14119     fill = llvm::APInt(32, 0);
14120   else if (S->getString().getAsInteger(0, fill))
14121     return false;
14122 
14123   if (Context.getTargetInfo().isNan2008()) {
14124     if (SNaN)
14125       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14126     else
14127       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14128   } else {
14129     // Prior to IEEE 754-2008, architectures were allowed to choose whether
14130     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
14131     // a different encoding to what became a standard in 2008, and for pre-
14132     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
14133     // sNaN. This is now known as "legacy NaN" encoding.
14134     if (SNaN)
14135       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14136     else
14137       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14138   }
14139 
14140   return true;
14141 }
14142 
14143 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
14144   if (!IsConstantEvaluatedBuiltinCall(E))
14145     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14146 
14147   switch (E->getBuiltinCallee()) {
14148   default:
14149     return false;
14150 
14151   case Builtin::BI__builtin_huge_val:
14152   case Builtin::BI__builtin_huge_valf:
14153   case Builtin::BI__builtin_huge_vall:
14154   case Builtin::BI__builtin_huge_valf16:
14155   case Builtin::BI__builtin_huge_valf128:
14156   case Builtin::BI__builtin_inf:
14157   case Builtin::BI__builtin_inff:
14158   case Builtin::BI__builtin_infl:
14159   case Builtin::BI__builtin_inff16:
14160   case Builtin::BI__builtin_inff128: {
14161     const llvm::fltSemantics &Sem =
14162       Info.Ctx.getFloatTypeSemantics(E->getType());
14163     Result = llvm::APFloat::getInf(Sem);
14164     return true;
14165   }
14166 
14167   case Builtin::BI__builtin_nans:
14168   case Builtin::BI__builtin_nansf:
14169   case Builtin::BI__builtin_nansl:
14170   case Builtin::BI__builtin_nansf16:
14171   case Builtin::BI__builtin_nansf128:
14172     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14173                                true, Result))
14174       return Error(E);
14175     return true;
14176 
14177   case Builtin::BI__builtin_nan:
14178   case Builtin::BI__builtin_nanf:
14179   case Builtin::BI__builtin_nanl:
14180   case Builtin::BI__builtin_nanf16:
14181   case Builtin::BI__builtin_nanf128:
14182     // If this is __builtin_nan() turn this into a nan, otherwise we
14183     // can't constant fold it.
14184     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14185                                false, Result))
14186       return Error(E);
14187     return true;
14188 
14189   case Builtin::BI__builtin_fabs:
14190   case Builtin::BI__builtin_fabsf:
14191   case Builtin::BI__builtin_fabsl:
14192   case Builtin::BI__builtin_fabsf128:
14193     // The C standard says "fabs raises no floating-point exceptions,
14194     // even if x is a signaling NaN. The returned value is independent of
14195     // the current rounding direction mode."  Therefore constant folding can
14196     // proceed without regard to the floating point settings.
14197     // Reference, WG14 N2478 F.10.4.3
14198     if (!EvaluateFloat(E->getArg(0), Result, Info))
14199       return false;
14200 
14201     if (Result.isNegative())
14202       Result.changeSign();
14203     return true;
14204 
14205   case Builtin::BI__arithmetic_fence:
14206     return EvaluateFloat(E->getArg(0), Result, Info);
14207 
14208   // FIXME: Builtin::BI__builtin_powi
14209   // FIXME: Builtin::BI__builtin_powif
14210   // FIXME: Builtin::BI__builtin_powil
14211 
14212   case Builtin::BI__builtin_copysign:
14213   case Builtin::BI__builtin_copysignf:
14214   case Builtin::BI__builtin_copysignl:
14215   case Builtin::BI__builtin_copysignf128: {
14216     APFloat RHS(0.);
14217     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14218         !EvaluateFloat(E->getArg(1), RHS, Info))
14219       return false;
14220     Result.copySign(RHS);
14221     return true;
14222   }
14223 
14224   case Builtin::BI__builtin_fmax:
14225   case Builtin::BI__builtin_fmaxf:
14226   case Builtin::BI__builtin_fmaxl:
14227   case Builtin::BI__builtin_fmaxf16:
14228   case Builtin::BI__builtin_fmaxf128: {
14229     // TODO: Handle sNaN.
14230     APFloat RHS(0.);
14231     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14232         !EvaluateFloat(E->getArg(1), RHS, Info))
14233       return false;
14234     // When comparing zeroes, return +0.0 if one of the zeroes is positive.
14235     if (Result.isZero() && RHS.isZero() && Result.isNegative())
14236       Result = RHS;
14237     else if (Result.isNaN() || RHS > Result)
14238       Result = RHS;
14239     return true;
14240   }
14241 
14242   case Builtin::BI__builtin_fmin:
14243   case Builtin::BI__builtin_fminf:
14244   case Builtin::BI__builtin_fminl:
14245   case Builtin::BI__builtin_fminf16:
14246   case Builtin::BI__builtin_fminf128: {
14247     // TODO: Handle sNaN.
14248     APFloat RHS(0.);
14249     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14250         !EvaluateFloat(E->getArg(1), RHS, Info))
14251       return false;
14252     // When comparing zeroes, return -0.0 if one of the zeroes is negative.
14253     if (Result.isZero() && RHS.isZero() && RHS.isNegative())
14254       Result = RHS;
14255     else if (Result.isNaN() || RHS < Result)
14256       Result = RHS;
14257     return true;
14258   }
14259   }
14260 }
14261 
14262 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14263   if (E->getSubExpr()->getType()->isAnyComplexType()) {
14264     ComplexValue CV;
14265     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14266       return false;
14267     Result = CV.FloatReal;
14268     return true;
14269   }
14270 
14271   return Visit(E->getSubExpr());
14272 }
14273 
14274 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14275   if (E->getSubExpr()->getType()->isAnyComplexType()) {
14276     ComplexValue CV;
14277     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14278       return false;
14279     Result = CV.FloatImag;
14280     return true;
14281   }
14282 
14283   VisitIgnoredValue(E->getSubExpr());
14284   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
14285   Result = llvm::APFloat::getZero(Sem);
14286   return true;
14287 }
14288 
14289 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14290   switch (E->getOpcode()) {
14291   default: return Error(E);
14292   case UO_Plus:
14293     return EvaluateFloat(E->getSubExpr(), Result, Info);
14294   case UO_Minus:
14295     // In C standard, WG14 N2478 F.3 p4
14296     // "the unary - raises no floating point exceptions,
14297     // even if the operand is signalling."
14298     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
14299       return false;
14300     Result.changeSign();
14301     return true;
14302   }
14303 }
14304 
14305 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14306   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14307     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14308 
14309   APFloat RHS(0.0);
14310   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
14311   if (!LHSOK && !Info.noteFailure())
14312     return false;
14313   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
14314          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
14315 }
14316 
14317 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14318   Result = E->getValue();
14319   return true;
14320 }
14321 
14322 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14323   const Expr* SubExpr = E->getSubExpr();
14324 
14325   switch (E->getCastKind()) {
14326   default:
14327     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14328 
14329   case CK_IntegralToFloating: {
14330     APSInt IntResult;
14331     const FPOptions FPO = E->getFPFeaturesInEffect(
14332                                   Info.Ctx.getLangOpts());
14333     return EvaluateInteger(SubExpr, IntResult, Info) &&
14334            HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14335                                 IntResult, E->getType(), Result);
14336   }
14337 
14338   case CK_FixedPointToFloating: {
14339     APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14340     if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
14341       return false;
14342     Result =
14343         FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
14344     return true;
14345   }
14346 
14347   case CK_FloatingCast: {
14348     if (!Visit(SubExpr))
14349       return false;
14350     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14351                                   Result);
14352   }
14353 
14354   case CK_FloatingComplexToReal: {
14355     ComplexValue V;
14356     if (!EvaluateComplex(SubExpr, V, Info))
14357       return false;
14358     Result = V.getComplexFloatReal();
14359     return true;
14360   }
14361   }
14362 }
14363 
14364 //===----------------------------------------------------------------------===//
14365 // Complex Evaluation (for float and integer)
14366 //===----------------------------------------------------------------------===//
14367 
14368 namespace {
14369 class ComplexExprEvaluator
14370   : public ExprEvaluatorBase<ComplexExprEvaluator> {
14371   ComplexValue &Result;
14372 
14373 public:
14374   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
14375     : ExprEvaluatorBaseTy(info), Result(Result) {}
14376 
14377   bool Success(const APValue &V, const Expr *e) {
14378     Result.setFrom(V);
14379     return true;
14380   }
14381 
14382   bool ZeroInitialization(const Expr *E);
14383 
14384   //===--------------------------------------------------------------------===//
14385   //                            Visitor Methods
14386   //===--------------------------------------------------------------------===//
14387 
14388   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
14389   bool VisitCastExpr(const CastExpr *E);
14390   bool VisitBinaryOperator(const BinaryOperator *E);
14391   bool VisitUnaryOperator(const UnaryOperator *E);
14392   bool VisitInitListExpr(const InitListExpr *E);
14393   bool VisitCallExpr(const CallExpr *E);
14394 };
14395 } // end anonymous namespace
14396 
14397 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
14398                             EvalInfo &Info) {
14399   assert(!E->isValueDependent());
14400   assert(E->isPRValue() && E->getType()->isAnyComplexType());
14401   return ComplexExprEvaluator(Info, Result).Visit(E);
14402 }
14403 
14404 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
14405   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
14406   if (ElemTy->isRealFloatingType()) {
14407     Result.makeComplexFloat();
14408     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
14409     Result.FloatReal = Zero;
14410     Result.FloatImag = Zero;
14411   } else {
14412     Result.makeComplexInt();
14413     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
14414     Result.IntReal = Zero;
14415     Result.IntImag = Zero;
14416   }
14417   return true;
14418 }
14419 
14420 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
14421   const Expr* SubExpr = E->getSubExpr();
14422 
14423   if (SubExpr->getType()->isRealFloatingType()) {
14424     Result.makeComplexFloat();
14425     APFloat &Imag = Result.FloatImag;
14426     if (!EvaluateFloat(SubExpr, Imag, Info))
14427       return false;
14428 
14429     Result.FloatReal = APFloat(Imag.getSemantics());
14430     return true;
14431   } else {
14432     assert(SubExpr->getType()->isIntegerType() &&
14433            "Unexpected imaginary literal.");
14434 
14435     Result.makeComplexInt();
14436     APSInt &Imag = Result.IntImag;
14437     if (!EvaluateInteger(SubExpr, Imag, Info))
14438       return false;
14439 
14440     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14441     return true;
14442   }
14443 }
14444 
14445 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14446 
14447   switch (E->getCastKind()) {
14448   case CK_BitCast:
14449   case CK_BaseToDerived:
14450   case CK_DerivedToBase:
14451   case CK_UncheckedDerivedToBase:
14452   case CK_Dynamic:
14453   case CK_ToUnion:
14454   case CK_ArrayToPointerDecay:
14455   case CK_FunctionToPointerDecay:
14456   case CK_NullToPointer:
14457   case CK_NullToMemberPointer:
14458   case CK_BaseToDerivedMemberPointer:
14459   case CK_DerivedToBaseMemberPointer:
14460   case CK_MemberPointerToBoolean:
14461   case CK_ReinterpretMemberPointer:
14462   case CK_ConstructorConversion:
14463   case CK_IntegralToPointer:
14464   case CK_PointerToIntegral:
14465   case CK_PointerToBoolean:
14466   case CK_ToVoid:
14467   case CK_VectorSplat:
14468   case CK_IntegralCast:
14469   case CK_BooleanToSignedIntegral:
14470   case CK_IntegralToBoolean:
14471   case CK_IntegralToFloating:
14472   case CK_FloatingToIntegral:
14473   case CK_FloatingToBoolean:
14474   case CK_FloatingCast:
14475   case CK_CPointerToObjCPointerCast:
14476   case CK_BlockPointerToObjCPointerCast:
14477   case CK_AnyPointerToBlockPointerCast:
14478   case CK_ObjCObjectLValueCast:
14479   case CK_FloatingComplexToReal:
14480   case CK_FloatingComplexToBoolean:
14481   case CK_IntegralComplexToReal:
14482   case CK_IntegralComplexToBoolean:
14483   case CK_ARCProduceObject:
14484   case CK_ARCConsumeObject:
14485   case CK_ARCReclaimReturnedObject:
14486   case CK_ARCExtendBlockObject:
14487   case CK_CopyAndAutoreleaseBlockObject:
14488   case CK_BuiltinFnToFnPtr:
14489   case CK_ZeroToOCLOpaqueType:
14490   case CK_NonAtomicToAtomic:
14491   case CK_AddressSpaceConversion:
14492   case CK_IntToOCLSampler:
14493   case CK_FloatingToFixedPoint:
14494   case CK_FixedPointToFloating:
14495   case CK_FixedPointCast:
14496   case CK_FixedPointToBoolean:
14497   case CK_FixedPointToIntegral:
14498   case CK_IntegralToFixedPoint:
14499   case CK_MatrixCast:
14500     llvm_unreachable("invalid cast kind for complex value");
14501 
14502   case CK_LValueToRValue:
14503   case CK_AtomicToNonAtomic:
14504   case CK_NoOp:
14505   case CK_LValueToRValueBitCast:
14506     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14507 
14508   case CK_Dependent:
14509   case CK_LValueBitCast:
14510   case CK_UserDefinedConversion:
14511     return Error(E);
14512 
14513   case CK_FloatingRealToComplex: {
14514     APFloat &Real = Result.FloatReal;
14515     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14516       return false;
14517 
14518     Result.makeComplexFloat();
14519     Result.FloatImag = APFloat(Real.getSemantics());
14520     return true;
14521   }
14522 
14523   case CK_FloatingComplexCast: {
14524     if (!Visit(E->getSubExpr()))
14525       return false;
14526 
14527     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14528     QualType From
14529       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14530 
14531     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14532            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14533   }
14534 
14535   case CK_FloatingComplexToIntegralComplex: {
14536     if (!Visit(E->getSubExpr()))
14537       return false;
14538 
14539     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14540     QualType From
14541       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14542     Result.makeComplexInt();
14543     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14544                                 To, Result.IntReal) &&
14545            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14546                                 To, Result.IntImag);
14547   }
14548 
14549   case CK_IntegralRealToComplex: {
14550     APSInt &Real = Result.IntReal;
14551     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14552       return false;
14553 
14554     Result.makeComplexInt();
14555     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14556     return true;
14557   }
14558 
14559   case CK_IntegralComplexCast: {
14560     if (!Visit(E->getSubExpr()))
14561       return false;
14562 
14563     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14564     QualType From
14565       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14566 
14567     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14568     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14569     return true;
14570   }
14571 
14572   case CK_IntegralComplexToFloatingComplex: {
14573     if (!Visit(E->getSubExpr()))
14574       return false;
14575 
14576     const FPOptions FPO = E->getFPFeaturesInEffect(
14577                                   Info.Ctx.getLangOpts());
14578     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14579     QualType From
14580       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14581     Result.makeComplexFloat();
14582     return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14583                                 To, Result.FloatReal) &&
14584            HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14585                                 To, Result.FloatImag);
14586   }
14587   }
14588 
14589   llvm_unreachable("unknown cast resulting in complex value");
14590 }
14591 
14592 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14593   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14594     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14595 
14596   // Track whether the LHS or RHS is real at the type system level. When this is
14597   // the case we can simplify our evaluation strategy.
14598   bool LHSReal = false, RHSReal = false;
14599 
14600   bool LHSOK;
14601   if (E->getLHS()->getType()->isRealFloatingType()) {
14602     LHSReal = true;
14603     APFloat &Real = Result.FloatReal;
14604     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14605     if (LHSOK) {
14606       Result.makeComplexFloat();
14607       Result.FloatImag = APFloat(Real.getSemantics());
14608     }
14609   } else {
14610     LHSOK = Visit(E->getLHS());
14611   }
14612   if (!LHSOK && !Info.noteFailure())
14613     return false;
14614 
14615   ComplexValue RHS;
14616   if (E->getRHS()->getType()->isRealFloatingType()) {
14617     RHSReal = true;
14618     APFloat &Real = RHS.FloatReal;
14619     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14620       return false;
14621     RHS.makeComplexFloat();
14622     RHS.FloatImag = APFloat(Real.getSemantics());
14623   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14624     return false;
14625 
14626   assert(!(LHSReal && RHSReal) &&
14627          "Cannot have both operands of a complex operation be real.");
14628   switch (E->getOpcode()) {
14629   default: return Error(E);
14630   case BO_Add:
14631     if (Result.isComplexFloat()) {
14632       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14633                                        APFloat::rmNearestTiesToEven);
14634       if (LHSReal)
14635         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14636       else if (!RHSReal)
14637         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14638                                          APFloat::rmNearestTiesToEven);
14639     } else {
14640       Result.getComplexIntReal() += RHS.getComplexIntReal();
14641       Result.getComplexIntImag() += RHS.getComplexIntImag();
14642     }
14643     break;
14644   case BO_Sub:
14645     if (Result.isComplexFloat()) {
14646       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14647                                             APFloat::rmNearestTiesToEven);
14648       if (LHSReal) {
14649         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14650         Result.getComplexFloatImag().changeSign();
14651       } else if (!RHSReal) {
14652         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14653                                               APFloat::rmNearestTiesToEven);
14654       }
14655     } else {
14656       Result.getComplexIntReal() -= RHS.getComplexIntReal();
14657       Result.getComplexIntImag() -= RHS.getComplexIntImag();
14658     }
14659     break;
14660   case BO_Mul:
14661     if (Result.isComplexFloat()) {
14662       // This is an implementation of complex multiplication according to the
14663       // constraints laid out in C11 Annex G. The implementation uses the
14664       // following naming scheme:
14665       //   (a + ib) * (c + id)
14666       ComplexValue LHS = Result;
14667       APFloat &A = LHS.getComplexFloatReal();
14668       APFloat &B = LHS.getComplexFloatImag();
14669       APFloat &C = RHS.getComplexFloatReal();
14670       APFloat &D = RHS.getComplexFloatImag();
14671       APFloat &ResR = Result.getComplexFloatReal();
14672       APFloat &ResI = Result.getComplexFloatImag();
14673       if (LHSReal) {
14674         assert(!RHSReal && "Cannot have two real operands for a complex op!");
14675         ResR = A * C;
14676         ResI = A * D;
14677       } else if (RHSReal) {
14678         ResR = C * A;
14679         ResI = C * B;
14680       } else {
14681         // In the fully general case, we need to handle NaNs and infinities
14682         // robustly.
14683         APFloat AC = A * C;
14684         APFloat BD = B * D;
14685         APFloat AD = A * D;
14686         APFloat BC = B * C;
14687         ResR = AC - BD;
14688         ResI = AD + BC;
14689         if (ResR.isNaN() && ResI.isNaN()) {
14690           bool Recalc = false;
14691           if (A.isInfinity() || B.isInfinity()) {
14692             A = APFloat::copySign(
14693                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14694             B = APFloat::copySign(
14695                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14696             if (C.isNaN())
14697               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14698             if (D.isNaN())
14699               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14700             Recalc = true;
14701           }
14702           if (C.isInfinity() || D.isInfinity()) {
14703             C = APFloat::copySign(
14704                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14705             D = APFloat::copySign(
14706                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14707             if (A.isNaN())
14708               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14709             if (B.isNaN())
14710               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14711             Recalc = true;
14712           }
14713           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14714                           AD.isInfinity() || BC.isInfinity())) {
14715             if (A.isNaN())
14716               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14717             if (B.isNaN())
14718               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14719             if (C.isNaN())
14720               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14721             if (D.isNaN())
14722               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14723             Recalc = true;
14724           }
14725           if (Recalc) {
14726             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14727             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14728           }
14729         }
14730       }
14731     } else {
14732       ComplexValue LHS = Result;
14733       Result.getComplexIntReal() =
14734         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14735          LHS.getComplexIntImag() * RHS.getComplexIntImag());
14736       Result.getComplexIntImag() =
14737         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14738          LHS.getComplexIntImag() * RHS.getComplexIntReal());
14739     }
14740     break;
14741   case BO_Div:
14742     if (Result.isComplexFloat()) {
14743       // This is an implementation of complex division according to the
14744       // constraints laid out in C11 Annex G. The implementation uses the
14745       // following naming scheme:
14746       //   (a + ib) / (c + id)
14747       ComplexValue LHS = Result;
14748       APFloat &A = LHS.getComplexFloatReal();
14749       APFloat &B = LHS.getComplexFloatImag();
14750       APFloat &C = RHS.getComplexFloatReal();
14751       APFloat &D = RHS.getComplexFloatImag();
14752       APFloat &ResR = Result.getComplexFloatReal();
14753       APFloat &ResI = Result.getComplexFloatImag();
14754       if (RHSReal) {
14755         ResR = A / C;
14756         ResI = B / C;
14757       } else {
14758         if (LHSReal) {
14759           // No real optimizations we can do here, stub out with zero.
14760           B = APFloat::getZero(A.getSemantics());
14761         }
14762         int DenomLogB = 0;
14763         APFloat MaxCD = maxnum(abs(C), abs(D));
14764         if (MaxCD.isFinite()) {
14765           DenomLogB = ilogb(MaxCD);
14766           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14767           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14768         }
14769         APFloat Denom = C * C + D * D;
14770         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14771                       APFloat::rmNearestTiesToEven);
14772         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14773                       APFloat::rmNearestTiesToEven);
14774         if (ResR.isNaN() && ResI.isNaN()) {
14775           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14776             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14777             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14778           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14779                      D.isFinite()) {
14780             A = APFloat::copySign(
14781                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14782             B = APFloat::copySign(
14783                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14784             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14785             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14786           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14787             C = APFloat::copySign(
14788                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14789             D = APFloat::copySign(
14790                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14791             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14792             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14793           }
14794         }
14795       }
14796     } else {
14797       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14798         return Error(E, diag::note_expr_divide_by_zero);
14799 
14800       ComplexValue LHS = Result;
14801       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14802         RHS.getComplexIntImag() * RHS.getComplexIntImag();
14803       Result.getComplexIntReal() =
14804         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14805          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14806       Result.getComplexIntImag() =
14807         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14808          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14809     }
14810     break;
14811   }
14812 
14813   return true;
14814 }
14815 
14816 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14817   // Get the operand value into 'Result'.
14818   if (!Visit(E->getSubExpr()))
14819     return false;
14820 
14821   switch (E->getOpcode()) {
14822   default:
14823     return Error(E);
14824   case UO_Extension:
14825     return true;
14826   case UO_Plus:
14827     // The result is always just the subexpr.
14828     return true;
14829   case UO_Minus:
14830     if (Result.isComplexFloat()) {
14831       Result.getComplexFloatReal().changeSign();
14832       Result.getComplexFloatImag().changeSign();
14833     }
14834     else {
14835       Result.getComplexIntReal() = -Result.getComplexIntReal();
14836       Result.getComplexIntImag() = -Result.getComplexIntImag();
14837     }
14838     return true;
14839   case UO_Not:
14840     if (Result.isComplexFloat())
14841       Result.getComplexFloatImag().changeSign();
14842     else
14843       Result.getComplexIntImag() = -Result.getComplexIntImag();
14844     return true;
14845   }
14846 }
14847 
14848 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14849   if (E->getNumInits() == 2) {
14850     if (E->getType()->isComplexType()) {
14851       Result.makeComplexFloat();
14852       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14853         return false;
14854       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14855         return false;
14856     } else {
14857       Result.makeComplexInt();
14858       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14859         return false;
14860       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14861         return false;
14862     }
14863     return true;
14864   }
14865   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14866 }
14867 
14868 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14869   if (!IsConstantEvaluatedBuiltinCall(E))
14870     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14871 
14872   switch (E->getBuiltinCallee()) {
14873   case Builtin::BI__builtin_complex:
14874     Result.makeComplexFloat();
14875     if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14876       return false;
14877     if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14878       return false;
14879     return true;
14880 
14881   default:
14882     return false;
14883   }
14884 }
14885 
14886 //===----------------------------------------------------------------------===//
14887 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14888 // implicit conversion.
14889 //===----------------------------------------------------------------------===//
14890 
14891 namespace {
14892 class AtomicExprEvaluator :
14893     public ExprEvaluatorBase<AtomicExprEvaluator> {
14894   const LValue *This;
14895   APValue &Result;
14896 public:
14897   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14898       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14899 
14900   bool Success(const APValue &V, const Expr *E) {
14901     Result = V;
14902     return true;
14903   }
14904 
14905   bool ZeroInitialization(const Expr *E) {
14906     ImplicitValueInitExpr VIE(
14907         E->getType()->castAs<AtomicType>()->getValueType());
14908     // For atomic-qualified class (and array) types in C++, initialize the
14909     // _Atomic-wrapped subobject directly, in-place.
14910     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14911                 : Evaluate(Result, Info, &VIE);
14912   }
14913 
14914   bool VisitCastExpr(const CastExpr *E) {
14915     switch (E->getCastKind()) {
14916     default:
14917       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14918     case CK_NullToPointer:
14919       VisitIgnoredValue(E->getSubExpr());
14920       return ZeroInitialization(E);
14921     case CK_NonAtomicToAtomic:
14922       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14923                   : Evaluate(Result, Info, E->getSubExpr());
14924     }
14925   }
14926 };
14927 } // end anonymous namespace
14928 
14929 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14930                            EvalInfo &Info) {
14931   assert(!E->isValueDependent());
14932   assert(E->isPRValue() && E->getType()->isAtomicType());
14933   return AtomicExprEvaluator(Info, This, Result).Visit(E);
14934 }
14935 
14936 //===----------------------------------------------------------------------===//
14937 // Void expression evaluation, primarily for a cast to void on the LHS of a
14938 // comma operator
14939 //===----------------------------------------------------------------------===//
14940 
14941 namespace {
14942 class VoidExprEvaluator
14943   : public ExprEvaluatorBase<VoidExprEvaluator> {
14944 public:
14945   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14946 
14947   bool Success(const APValue &V, const Expr *e) { return true; }
14948 
14949   bool ZeroInitialization(const Expr *E) { return true; }
14950 
14951   bool VisitCastExpr(const CastExpr *E) {
14952     switch (E->getCastKind()) {
14953     default:
14954       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14955     case CK_ToVoid:
14956       VisitIgnoredValue(E->getSubExpr());
14957       return true;
14958     }
14959   }
14960 
14961   bool VisitCallExpr(const CallExpr *E) {
14962     if (!IsConstantEvaluatedBuiltinCall(E))
14963       return ExprEvaluatorBaseTy::VisitCallExpr(E);
14964 
14965     switch (E->getBuiltinCallee()) {
14966     case Builtin::BI__assume:
14967     case Builtin::BI__builtin_assume:
14968       // The argument is not evaluated!
14969       return true;
14970 
14971     case Builtin::BI__builtin_operator_delete:
14972       return HandleOperatorDeleteCall(Info, E);
14973 
14974     default:
14975       return false;
14976     }
14977   }
14978 
14979   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14980 };
14981 } // end anonymous namespace
14982 
14983 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14984   // We cannot speculatively evaluate a delete expression.
14985   if (Info.SpeculativeEvaluationDepth)
14986     return false;
14987 
14988   FunctionDecl *OperatorDelete = E->getOperatorDelete();
14989   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14990     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14991         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14992     return false;
14993   }
14994 
14995   const Expr *Arg = E->getArgument();
14996 
14997   LValue Pointer;
14998   if (!EvaluatePointer(Arg, Pointer, Info))
14999     return false;
15000   if (Pointer.Designator.Invalid)
15001     return false;
15002 
15003   // Deleting a null pointer has no effect.
15004   if (Pointer.isNullPointer()) {
15005     // This is the only case where we need to produce an extension warning:
15006     // the only other way we can succeed is if we find a dynamic allocation,
15007     // and we will have warned when we allocated it in that case.
15008     if (!Info.getLangOpts().CPlusPlus20)
15009       Info.CCEDiag(E, diag::note_constexpr_new);
15010     return true;
15011   }
15012 
15013   std::optional<DynAlloc *> Alloc = CheckDeleteKind(
15014       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
15015   if (!Alloc)
15016     return false;
15017   QualType AllocType = Pointer.Base.getDynamicAllocType();
15018 
15019   // For the non-array case, the designator must be empty if the static type
15020   // does not have a virtual destructor.
15021   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
15022       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
15023     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
15024         << Arg->getType()->getPointeeType() << AllocType;
15025     return false;
15026   }
15027 
15028   // For a class type with a virtual destructor, the selected operator delete
15029   // is the one looked up when building the destructor.
15030   if (!E->isArrayForm() && !E->isGlobalDelete()) {
15031     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
15032     if (VirtualDelete &&
15033         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
15034       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15035           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
15036       return false;
15037     }
15038   }
15039 
15040   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
15041                          (*Alloc)->Value, AllocType))
15042     return false;
15043 
15044   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
15045     // The element was already erased. This means the destructor call also
15046     // deleted the object.
15047     // FIXME: This probably results in undefined behavior before we get this
15048     // far, and should be diagnosed elsewhere first.
15049     Info.FFDiag(E, diag::note_constexpr_double_delete);
15050     return false;
15051   }
15052 
15053   return true;
15054 }
15055 
15056 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
15057   assert(!E->isValueDependent());
15058   assert(E->isPRValue() && E->getType()->isVoidType());
15059   return VoidExprEvaluator(Info).Visit(E);
15060 }
15061 
15062 //===----------------------------------------------------------------------===//
15063 // Top level Expr::EvaluateAsRValue method.
15064 //===----------------------------------------------------------------------===//
15065 
15066 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
15067   assert(!E->isValueDependent());
15068   // In C, function designators are not lvalues, but we evaluate them as if they
15069   // are.
15070   QualType T = E->getType();
15071   if (E->isGLValue() || T->isFunctionType()) {
15072     LValue LV;
15073     if (!EvaluateLValue(E, LV, Info))
15074       return false;
15075     LV.moveInto(Result);
15076   } else if (T->isVectorType()) {
15077     if (!EvaluateVector(E, Result, Info))
15078       return false;
15079   } else if (T->isIntegralOrEnumerationType()) {
15080     if (!IntExprEvaluator(Info, Result).Visit(E))
15081       return false;
15082   } else if (T->hasPointerRepresentation()) {
15083     LValue LV;
15084     if (!EvaluatePointer(E, LV, Info))
15085       return false;
15086     LV.moveInto(Result);
15087   } else if (T->isRealFloatingType()) {
15088     llvm::APFloat F(0.0);
15089     if (!EvaluateFloat(E, F, Info))
15090       return false;
15091     Result = APValue(F);
15092   } else if (T->isAnyComplexType()) {
15093     ComplexValue C;
15094     if (!EvaluateComplex(E, C, Info))
15095       return false;
15096     C.moveInto(Result);
15097   } else if (T->isFixedPointType()) {
15098     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
15099   } else if (T->isMemberPointerType()) {
15100     MemberPtr P;
15101     if (!EvaluateMemberPointer(E, P, Info))
15102       return false;
15103     P.moveInto(Result);
15104     return true;
15105   } else if (T->isArrayType()) {
15106     LValue LV;
15107     APValue &Value =
15108         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15109     if (!EvaluateArray(E, LV, Value, Info))
15110       return false;
15111     Result = Value;
15112   } else if (T->isRecordType()) {
15113     LValue LV;
15114     APValue &Value =
15115         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15116     if (!EvaluateRecord(E, LV, Value, Info))
15117       return false;
15118     Result = Value;
15119   } else if (T->isVoidType()) {
15120     if (!Info.getLangOpts().CPlusPlus11)
15121       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
15122         << E->getType();
15123     if (!EvaluateVoid(E, Info))
15124       return false;
15125   } else if (T->isAtomicType()) {
15126     QualType Unqual = T.getAtomicUnqualifiedType();
15127     if (Unqual->isArrayType() || Unqual->isRecordType()) {
15128       LValue LV;
15129       APValue &Value = Info.CurrentCall->createTemporary(
15130           E, Unqual, ScopeKind::FullExpression, LV);
15131       if (!EvaluateAtomic(E, &LV, Value, Info))
15132         return false;
15133       Result = Value;
15134     } else {
15135       if (!EvaluateAtomic(E, nullptr, Result, Info))
15136         return false;
15137     }
15138   } else if (Info.getLangOpts().CPlusPlus11) {
15139     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
15140     return false;
15141   } else {
15142     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
15143     return false;
15144   }
15145 
15146   return true;
15147 }
15148 
15149 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
15150 /// cases, the in-place evaluation is essential, since later initializers for
15151 /// an object can indirectly refer to subobjects which were initialized earlier.
15152 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
15153                             const Expr *E, bool AllowNonLiteralTypes) {
15154   assert(!E->isValueDependent());
15155 
15156   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
15157     return false;
15158 
15159   if (E->isPRValue()) {
15160     // Evaluate arrays and record types in-place, so that later initializers can
15161     // refer to earlier-initialized members of the object.
15162     QualType T = E->getType();
15163     if (T->isArrayType())
15164       return EvaluateArray(E, This, Result, Info);
15165     else if (T->isRecordType())
15166       return EvaluateRecord(E, This, Result, Info);
15167     else if (T->isAtomicType()) {
15168       QualType Unqual = T.getAtomicUnqualifiedType();
15169       if (Unqual->isArrayType() || Unqual->isRecordType())
15170         return EvaluateAtomic(E, &This, Result, Info);
15171     }
15172   }
15173 
15174   // For any other type, in-place evaluation is unimportant.
15175   return Evaluate(Result, Info, E);
15176 }
15177 
15178 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15179 /// lvalue-to-rvalue cast if it is an lvalue.
15180 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
15181   assert(!E->isValueDependent());
15182 
15183   if (E->getType().isNull())
15184     return false;
15185 
15186   if (!CheckLiteralType(Info, E))
15187     return false;
15188 
15189   if (Info.EnableNewConstInterp) {
15190     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
15191       return false;
15192   } else {
15193     if (!::Evaluate(Result, Info, E))
15194       return false;
15195   }
15196 
15197   // Implicit lvalue-to-rvalue cast.
15198   if (E->isGLValue()) {
15199     LValue LV;
15200     LV.setFrom(Info.Ctx, Result);
15201     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
15202       return false;
15203   }
15204 
15205   // Check this core constant expression is a constant expression.
15206   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
15207                                  ConstantExprKind::Normal) &&
15208          CheckMemoryLeaks(Info);
15209 }
15210 
15211 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
15212                                  const ASTContext &Ctx, bool &IsConst) {
15213   // Fast-path evaluations of integer literals, since we sometimes see files
15214   // containing vast quantities of these.
15215   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
15216     Result.Val = APValue(APSInt(L->getValue(),
15217                                 L->getType()->isUnsignedIntegerType()));
15218     IsConst = true;
15219     return true;
15220   }
15221 
15222   if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) {
15223     Result.Val = APValue(APSInt(APInt(1, L->getValue())));
15224     IsConst = true;
15225     return true;
15226   }
15227 
15228   // This case should be rare, but we need to check it before we check on
15229   // the type below.
15230   if (Exp->getType().isNull()) {
15231     IsConst = false;
15232     return true;
15233   }
15234 
15235   return false;
15236 }
15237 
15238 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
15239                                       Expr::SideEffectsKind SEK) {
15240   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
15241          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
15242 }
15243 
15244 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
15245                              const ASTContext &Ctx, EvalInfo &Info) {
15246   assert(!E->isValueDependent());
15247   bool IsConst;
15248   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
15249     return IsConst;
15250 
15251   return EvaluateAsRValue(Info, E, Result.Val);
15252 }
15253 
15254 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
15255                           const ASTContext &Ctx,
15256                           Expr::SideEffectsKind AllowSideEffects,
15257                           EvalInfo &Info) {
15258   assert(!E->isValueDependent());
15259   if (!E->getType()->isIntegralOrEnumerationType())
15260     return false;
15261 
15262   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
15263       !ExprResult.Val.isInt() ||
15264       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15265     return false;
15266 
15267   return true;
15268 }
15269 
15270 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
15271                                  const ASTContext &Ctx,
15272                                  Expr::SideEffectsKind AllowSideEffects,
15273                                  EvalInfo &Info) {
15274   assert(!E->isValueDependent());
15275   if (!E->getType()->isFixedPointType())
15276     return false;
15277 
15278   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
15279     return false;
15280 
15281   if (!ExprResult.Val.isFixedPoint() ||
15282       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15283     return false;
15284 
15285   return true;
15286 }
15287 
15288 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
15289 /// any crazy technique (that has nothing to do with language standards) that
15290 /// we want to.  If this function returns true, it returns the folded constant
15291 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15292 /// will be applied to the result.
15293 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
15294                             bool InConstantContext) const {
15295   assert(!isValueDependent() &&
15296          "Expression evaluator can't be called on a dependent expression.");
15297   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
15298   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15299   Info.InConstantContext = InConstantContext;
15300   return ::EvaluateAsRValue(this, Result, Ctx, Info);
15301 }
15302 
15303 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
15304                                       bool InConstantContext) const {
15305   assert(!isValueDependent() &&
15306          "Expression evaluator can't be called on a dependent expression.");
15307   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
15308   EvalResult Scratch;
15309   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
15310          HandleConversionToBool(Scratch.Val, Result);
15311 }
15312 
15313 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15314                          SideEffectsKind AllowSideEffects,
15315                          bool InConstantContext) const {
15316   assert(!isValueDependent() &&
15317          "Expression evaluator can't be called on a dependent expression.");
15318   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
15319   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15320   Info.InConstantContext = InConstantContext;
15321   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
15322 }
15323 
15324 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
15325                                 SideEffectsKind AllowSideEffects,
15326                                 bool InConstantContext) const {
15327   assert(!isValueDependent() &&
15328          "Expression evaluator can't be called on a dependent expression.");
15329   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
15330   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15331   Info.InConstantContext = InConstantContext;
15332   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
15333 }
15334 
15335 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
15336                            SideEffectsKind AllowSideEffects,
15337                            bool InConstantContext) const {
15338   assert(!isValueDependent() &&
15339          "Expression evaluator can't be called on a dependent expression.");
15340 
15341   if (!getType()->isRealFloatingType())
15342     return false;
15343 
15344   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
15345   EvalResult ExprResult;
15346   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
15347       !ExprResult.Val.isFloat() ||
15348       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15349     return false;
15350 
15351   Result = ExprResult.Val.getFloat();
15352   return true;
15353 }
15354 
15355 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
15356                             bool InConstantContext) const {
15357   assert(!isValueDependent() &&
15358          "Expression evaluator can't be called on a dependent expression.");
15359 
15360   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
15361   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
15362   Info.InConstantContext = InConstantContext;
15363   LValue LV;
15364   CheckedTemporaries CheckedTemps;
15365   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
15366       Result.HasSideEffects ||
15367       !CheckLValueConstantExpression(Info, getExprLoc(),
15368                                      Ctx.getLValueReferenceType(getType()), LV,
15369                                      ConstantExprKind::Normal, CheckedTemps))
15370     return false;
15371 
15372   LV.moveInto(Result.Val);
15373   return true;
15374 }
15375 
15376 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
15377                                 APValue DestroyedValue, QualType Type,
15378                                 SourceLocation Loc, Expr::EvalStatus &EStatus,
15379                                 bool IsConstantDestruction) {
15380   EvalInfo Info(Ctx, EStatus,
15381                 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
15382                                       : EvalInfo::EM_ConstantFold);
15383   Info.setEvaluatingDecl(Base, DestroyedValue,
15384                          EvalInfo::EvaluatingDeclKind::Dtor);
15385   Info.InConstantContext = IsConstantDestruction;
15386 
15387   LValue LVal;
15388   LVal.set(Base);
15389 
15390   if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
15391       EStatus.HasSideEffects)
15392     return false;
15393 
15394   if (!Info.discardCleanups())
15395     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15396 
15397   return true;
15398 }
15399 
15400 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
15401                                   ConstantExprKind Kind) const {
15402   assert(!isValueDependent() &&
15403          "Expression evaluator can't be called on a dependent expression.");
15404   bool IsConst;
15405   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue())
15406     return true;
15407 
15408   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
15409   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
15410   EvalInfo Info(Ctx, Result, EM);
15411   Info.InConstantContext = true;
15412 
15413   // The type of the object we're initializing is 'const T' for a class NTTP.
15414   QualType T = getType();
15415   if (Kind == ConstantExprKind::ClassTemplateArgument)
15416     T.addConst();
15417 
15418   // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15419   // represent the result of the evaluation. CheckConstantExpression ensures
15420   // this doesn't escape.
15421   MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
15422   APValue::LValueBase Base(&BaseMTE);
15423 
15424   Info.setEvaluatingDecl(Base, Result.Val);
15425   LValue LVal;
15426   LVal.set(Base);
15427 
15428   {
15429     // C++23 [intro.execution]/p5
15430     // A full-expression is [...] a constant-expression
15431     // So we need to make sure temporary objects are destroyed after having
15432     // evaluating the expression (per C++23 [class.temporary]/p4).
15433     FullExpressionRAII Scope(Info);
15434     if (!::EvaluateInPlace(Result.Val, Info, LVal, this) ||
15435         Result.HasSideEffects || !Scope.destroy())
15436       return false;
15437   }
15438 
15439   if (!Info.discardCleanups())
15440     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15441 
15442   if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
15443                                Result.Val, Kind))
15444     return false;
15445   if (!CheckMemoryLeaks(Info))
15446     return false;
15447 
15448   // If this is a class template argument, it's required to have constant
15449   // destruction too.
15450   if (Kind == ConstantExprKind::ClassTemplateArgument &&
15451       (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15452                             true) ||
15453        Result.HasSideEffects)) {
15454     // FIXME: Prefix a note to indicate that the problem is lack of constant
15455     // destruction.
15456     return false;
15457   }
15458 
15459   return true;
15460 }
15461 
15462 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15463                                  const VarDecl *VD,
15464                                  SmallVectorImpl<PartialDiagnosticAt> &Notes,
15465                                  bool IsConstantInitialization) const {
15466   assert(!isValueDependent() &&
15467          "Expression evaluator can't be called on a dependent expression.");
15468 
15469   llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
15470     std::string Name;
15471     llvm::raw_string_ostream OS(Name);
15472     VD->printQualifiedName(OS);
15473     return Name;
15474   });
15475 
15476   Expr::EvalStatus EStatus;
15477   EStatus.Diag = &Notes;
15478 
15479   EvalInfo Info(Ctx, EStatus,
15480                 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus)
15481                     ? EvalInfo::EM_ConstantExpression
15482                     : EvalInfo::EM_ConstantFold);
15483   Info.setEvaluatingDecl(VD, Value);
15484   Info.InConstantContext = IsConstantInitialization;
15485 
15486   if (Info.EnableNewConstInterp) {
15487     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15488     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
15489       return false;
15490   } else {
15491     LValue LVal;
15492     LVal.set(VD);
15493 
15494     if (!EvaluateInPlace(Value, Info, LVal, this,
15495                          /*AllowNonLiteralTypes=*/true) ||
15496         EStatus.HasSideEffects)
15497       return false;
15498 
15499     // At this point, any lifetime-extended temporaries are completely
15500     // initialized.
15501     Info.performLifetimeExtension();
15502 
15503     if (!Info.discardCleanups())
15504       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15505   }
15506 
15507   SourceLocation DeclLoc = VD->getLocation();
15508   QualType DeclTy = VD->getType();
15509   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15510                                  ConstantExprKind::Normal) &&
15511          CheckMemoryLeaks(Info);
15512 }
15513 
15514 bool VarDecl::evaluateDestruction(
15515     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15516   Expr::EvalStatus EStatus;
15517   EStatus.Diag = &Notes;
15518 
15519   // Only treat the destruction as constant destruction if we formally have
15520   // constant initialization (or are usable in a constant expression).
15521   bool IsConstantDestruction = hasConstantInitialization();
15522 
15523   // Make a copy of the value for the destructor to mutate, if we know it.
15524   // Otherwise, treat the value as default-initialized; if the destructor works
15525   // anyway, then the destruction is constant (and must be essentially empty).
15526   APValue DestroyedValue;
15527   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15528     DestroyedValue = *getEvaluatedValue();
15529   else if (!getDefaultInitValue(getType(), DestroyedValue))
15530     return false;
15531 
15532   if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15533                            getType(), getLocation(), EStatus,
15534                            IsConstantDestruction) ||
15535       EStatus.HasSideEffects)
15536     return false;
15537 
15538   ensureEvaluatedStmt()->HasConstantDestruction = true;
15539   return true;
15540 }
15541 
15542 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15543 /// constant folded, but discard the result.
15544 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15545   assert(!isValueDependent() &&
15546          "Expression evaluator can't be called on a dependent expression.");
15547 
15548   EvalResult Result;
15549   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15550          !hasUnacceptableSideEffect(Result, SEK);
15551 }
15552 
15553 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15554                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15555   assert(!isValueDependent() &&
15556          "Expression evaluator can't be called on a dependent expression.");
15557 
15558   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
15559   EvalResult EVResult;
15560   EVResult.Diag = Diag;
15561   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15562   Info.InConstantContext = true;
15563 
15564   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15565   (void)Result;
15566   assert(Result && "Could not evaluate expression");
15567   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15568 
15569   return EVResult.Val.getInt();
15570 }
15571 
15572 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15573     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15574   assert(!isValueDependent() &&
15575          "Expression evaluator can't be called on a dependent expression.");
15576 
15577   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
15578   EvalResult EVResult;
15579   EVResult.Diag = Diag;
15580   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15581   Info.InConstantContext = true;
15582   Info.CheckingForUndefinedBehavior = true;
15583 
15584   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15585   (void)Result;
15586   assert(Result && "Could not evaluate expression");
15587   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15588 
15589   return EVResult.Val.getInt();
15590 }
15591 
15592 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15593   assert(!isValueDependent() &&
15594          "Expression evaluator can't be called on a dependent expression.");
15595 
15596   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
15597   bool IsConst;
15598   EvalResult EVResult;
15599   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15600     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15601     Info.CheckingForUndefinedBehavior = true;
15602     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15603   }
15604 }
15605 
15606 bool Expr::EvalResult::isGlobalLValue() const {
15607   assert(Val.isLValue());
15608   return IsGlobalLValue(Val.getLValueBase());
15609 }
15610 
15611 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15612 /// an integer constant expression.
15613 
15614 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15615 /// comma, etc
15616 
15617 // CheckICE - This function does the fundamental ICE checking: the returned
15618 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15619 // and a (possibly null) SourceLocation indicating the location of the problem.
15620 //
15621 // Note that to reduce code duplication, this helper does no evaluation
15622 // itself; the caller checks whether the expression is evaluatable, and
15623 // in the rare cases where CheckICE actually cares about the evaluated
15624 // value, it calls into Evaluate.
15625 
15626 namespace {
15627 
15628 enum ICEKind {
15629   /// This expression is an ICE.
15630   IK_ICE,
15631   /// This expression is not an ICE, but if it isn't evaluated, it's
15632   /// a legal subexpression for an ICE. This return value is used to handle
15633   /// the comma operator in C99 mode, and non-constant subexpressions.
15634   IK_ICEIfUnevaluated,
15635   /// This expression is not an ICE, and is not a legal subexpression for one.
15636   IK_NotICE
15637 };
15638 
15639 struct ICEDiag {
15640   ICEKind Kind;
15641   SourceLocation Loc;
15642 
15643   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15644 };
15645 
15646 }
15647 
15648 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15649 
15650 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15651 
15652 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15653   Expr::EvalResult EVResult;
15654   Expr::EvalStatus Status;
15655   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15656 
15657   Info.InConstantContext = true;
15658   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15659       !EVResult.Val.isInt())
15660     return ICEDiag(IK_NotICE, E->getBeginLoc());
15661 
15662   return NoDiag();
15663 }
15664 
15665 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15666   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15667   if (!E->getType()->isIntegralOrEnumerationType())
15668     return ICEDiag(IK_NotICE, E->getBeginLoc());
15669 
15670   switch (E->getStmtClass()) {
15671 #define ABSTRACT_STMT(Node)
15672 #define STMT(Node, Base) case Expr::Node##Class:
15673 #define EXPR(Node, Base)
15674 #include "clang/AST/StmtNodes.inc"
15675   case Expr::PredefinedExprClass:
15676   case Expr::FloatingLiteralClass:
15677   case Expr::ImaginaryLiteralClass:
15678   case Expr::StringLiteralClass:
15679   case Expr::ArraySubscriptExprClass:
15680   case Expr::MatrixSubscriptExprClass:
15681   case Expr::OMPArraySectionExprClass:
15682   case Expr::OMPArrayShapingExprClass:
15683   case Expr::OMPIteratorExprClass:
15684   case Expr::MemberExprClass:
15685   case Expr::CompoundAssignOperatorClass:
15686   case Expr::CompoundLiteralExprClass:
15687   case Expr::ExtVectorElementExprClass:
15688   case Expr::DesignatedInitExprClass:
15689   case Expr::ArrayInitLoopExprClass:
15690   case Expr::ArrayInitIndexExprClass:
15691   case Expr::NoInitExprClass:
15692   case Expr::DesignatedInitUpdateExprClass:
15693   case Expr::ImplicitValueInitExprClass:
15694   case Expr::ParenListExprClass:
15695   case Expr::VAArgExprClass:
15696   case Expr::AddrLabelExprClass:
15697   case Expr::StmtExprClass:
15698   case Expr::CXXMemberCallExprClass:
15699   case Expr::CUDAKernelCallExprClass:
15700   case Expr::CXXAddrspaceCastExprClass:
15701   case Expr::CXXDynamicCastExprClass:
15702   case Expr::CXXTypeidExprClass:
15703   case Expr::CXXUuidofExprClass:
15704   case Expr::MSPropertyRefExprClass:
15705   case Expr::MSPropertySubscriptExprClass:
15706   case Expr::CXXNullPtrLiteralExprClass:
15707   case Expr::UserDefinedLiteralClass:
15708   case Expr::CXXThisExprClass:
15709   case Expr::CXXThrowExprClass:
15710   case Expr::CXXNewExprClass:
15711   case Expr::CXXDeleteExprClass:
15712   case Expr::CXXPseudoDestructorExprClass:
15713   case Expr::UnresolvedLookupExprClass:
15714   case Expr::TypoExprClass:
15715   case Expr::RecoveryExprClass:
15716   case Expr::DependentScopeDeclRefExprClass:
15717   case Expr::CXXConstructExprClass:
15718   case Expr::CXXInheritedCtorInitExprClass:
15719   case Expr::CXXStdInitializerListExprClass:
15720   case Expr::CXXBindTemporaryExprClass:
15721   case Expr::ExprWithCleanupsClass:
15722   case Expr::CXXTemporaryObjectExprClass:
15723   case Expr::CXXUnresolvedConstructExprClass:
15724   case Expr::CXXDependentScopeMemberExprClass:
15725   case Expr::UnresolvedMemberExprClass:
15726   case Expr::ObjCStringLiteralClass:
15727   case Expr::ObjCBoxedExprClass:
15728   case Expr::ObjCArrayLiteralClass:
15729   case Expr::ObjCDictionaryLiteralClass:
15730   case Expr::ObjCEncodeExprClass:
15731   case Expr::ObjCMessageExprClass:
15732   case Expr::ObjCSelectorExprClass:
15733   case Expr::ObjCProtocolExprClass:
15734   case Expr::ObjCIvarRefExprClass:
15735   case Expr::ObjCPropertyRefExprClass:
15736   case Expr::ObjCSubscriptRefExprClass:
15737   case Expr::ObjCIsaExprClass:
15738   case Expr::ObjCAvailabilityCheckExprClass:
15739   case Expr::ShuffleVectorExprClass:
15740   case Expr::ConvertVectorExprClass:
15741   case Expr::BlockExprClass:
15742   case Expr::NoStmtClass:
15743   case Expr::OpaqueValueExprClass:
15744   case Expr::PackExpansionExprClass:
15745   case Expr::SubstNonTypeTemplateParmPackExprClass:
15746   case Expr::FunctionParmPackExprClass:
15747   case Expr::AsTypeExprClass:
15748   case Expr::ObjCIndirectCopyRestoreExprClass:
15749   case Expr::MaterializeTemporaryExprClass:
15750   case Expr::PseudoObjectExprClass:
15751   case Expr::AtomicExprClass:
15752   case Expr::LambdaExprClass:
15753   case Expr::CXXFoldExprClass:
15754   case Expr::CoawaitExprClass:
15755   case Expr::DependentCoawaitExprClass:
15756   case Expr::CoyieldExprClass:
15757   case Expr::SYCLUniqueStableNameExprClass:
15758   case Expr::CXXParenListInitExprClass:
15759     return ICEDiag(IK_NotICE, E->getBeginLoc());
15760 
15761   case Expr::InitListExprClass: {
15762     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15763     // form "T x = { a };" is equivalent to "T x = a;".
15764     // Unless we're initializing a reference, T is a scalar as it is known to be
15765     // of integral or enumeration type.
15766     if (E->isPRValue())
15767       if (cast<InitListExpr>(E)->getNumInits() == 1)
15768         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15769     return ICEDiag(IK_NotICE, E->getBeginLoc());
15770   }
15771 
15772   case Expr::SizeOfPackExprClass:
15773   case Expr::GNUNullExprClass:
15774   case Expr::SourceLocExprClass:
15775     return NoDiag();
15776 
15777   case Expr::SubstNonTypeTemplateParmExprClass:
15778     return
15779       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15780 
15781   case Expr::ConstantExprClass:
15782     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15783 
15784   case Expr::ParenExprClass:
15785     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15786   case Expr::GenericSelectionExprClass:
15787     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15788   case Expr::IntegerLiteralClass:
15789   case Expr::FixedPointLiteralClass:
15790   case Expr::CharacterLiteralClass:
15791   case Expr::ObjCBoolLiteralExprClass:
15792   case Expr::CXXBoolLiteralExprClass:
15793   case Expr::CXXScalarValueInitExprClass:
15794   case Expr::TypeTraitExprClass:
15795   case Expr::ConceptSpecializationExprClass:
15796   case Expr::RequiresExprClass:
15797   case Expr::ArrayTypeTraitExprClass:
15798   case Expr::ExpressionTraitExprClass:
15799   case Expr::CXXNoexceptExprClass:
15800     return NoDiag();
15801   case Expr::CallExprClass:
15802   case Expr::CXXOperatorCallExprClass: {
15803     // C99 6.6/3 allows function calls within unevaluated subexpressions of
15804     // constant expressions, but they can never be ICEs because an ICE cannot
15805     // contain an operand of (pointer to) function type.
15806     const CallExpr *CE = cast<CallExpr>(E);
15807     if (CE->getBuiltinCallee())
15808       return CheckEvalInICE(E, Ctx);
15809     return ICEDiag(IK_NotICE, E->getBeginLoc());
15810   }
15811   case Expr::CXXRewrittenBinaryOperatorClass:
15812     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15813                     Ctx);
15814   case Expr::DeclRefExprClass: {
15815     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15816     if (isa<EnumConstantDecl>(D))
15817       return NoDiag();
15818 
15819     // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15820     // integer variables in constant expressions:
15821     //
15822     // C++ 7.1.5.1p2
15823     //   A variable of non-volatile const-qualified integral or enumeration
15824     //   type initialized by an ICE can be used in ICEs.
15825     //
15826     // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15827     // that mode, use of reference variables should not be allowed.
15828     const VarDecl *VD = dyn_cast<VarDecl>(D);
15829     if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15830         !VD->getType()->isReferenceType())
15831       return NoDiag();
15832 
15833     return ICEDiag(IK_NotICE, E->getBeginLoc());
15834   }
15835   case Expr::UnaryOperatorClass: {
15836     const UnaryOperator *Exp = cast<UnaryOperator>(E);
15837     switch (Exp->getOpcode()) {
15838     case UO_PostInc:
15839     case UO_PostDec:
15840     case UO_PreInc:
15841     case UO_PreDec:
15842     case UO_AddrOf:
15843     case UO_Deref:
15844     case UO_Coawait:
15845       // C99 6.6/3 allows increment and decrement within unevaluated
15846       // subexpressions of constant expressions, but they can never be ICEs
15847       // because an ICE cannot contain an lvalue operand.
15848       return ICEDiag(IK_NotICE, E->getBeginLoc());
15849     case UO_Extension:
15850     case UO_LNot:
15851     case UO_Plus:
15852     case UO_Minus:
15853     case UO_Not:
15854     case UO_Real:
15855     case UO_Imag:
15856       return CheckICE(Exp->getSubExpr(), Ctx);
15857     }
15858     llvm_unreachable("invalid unary operator class");
15859   }
15860   case Expr::OffsetOfExprClass: {
15861     // Note that per C99, offsetof must be an ICE. And AFAIK, using
15862     // EvaluateAsRValue matches the proposed gcc behavior for cases like
15863     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
15864     // compliance: we should warn earlier for offsetof expressions with
15865     // array subscripts that aren't ICEs, and if the array subscripts
15866     // are ICEs, the value of the offsetof must be an integer constant.
15867     return CheckEvalInICE(E, Ctx);
15868   }
15869   case Expr::UnaryExprOrTypeTraitExprClass: {
15870     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15871     if ((Exp->getKind() ==  UETT_SizeOf) &&
15872         Exp->getTypeOfArgument()->isVariableArrayType())
15873       return ICEDiag(IK_NotICE, E->getBeginLoc());
15874     return NoDiag();
15875   }
15876   case Expr::BinaryOperatorClass: {
15877     const BinaryOperator *Exp = cast<BinaryOperator>(E);
15878     switch (Exp->getOpcode()) {
15879     case BO_PtrMemD:
15880     case BO_PtrMemI:
15881     case BO_Assign:
15882     case BO_MulAssign:
15883     case BO_DivAssign:
15884     case BO_RemAssign:
15885     case BO_AddAssign:
15886     case BO_SubAssign:
15887     case BO_ShlAssign:
15888     case BO_ShrAssign:
15889     case BO_AndAssign:
15890     case BO_XorAssign:
15891     case BO_OrAssign:
15892       // C99 6.6/3 allows assignments within unevaluated subexpressions of
15893       // constant expressions, but they can never be ICEs because an ICE cannot
15894       // contain an lvalue operand.
15895       return ICEDiag(IK_NotICE, E->getBeginLoc());
15896 
15897     case BO_Mul:
15898     case BO_Div:
15899     case BO_Rem:
15900     case BO_Add:
15901     case BO_Sub:
15902     case BO_Shl:
15903     case BO_Shr:
15904     case BO_LT:
15905     case BO_GT:
15906     case BO_LE:
15907     case BO_GE:
15908     case BO_EQ:
15909     case BO_NE:
15910     case BO_And:
15911     case BO_Xor:
15912     case BO_Or:
15913     case BO_Comma:
15914     case BO_Cmp: {
15915       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15916       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15917       if (Exp->getOpcode() == BO_Div ||
15918           Exp->getOpcode() == BO_Rem) {
15919         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15920         // we don't evaluate one.
15921         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15922           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15923           if (REval == 0)
15924             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15925           if (REval.isSigned() && REval.isAllOnes()) {
15926             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15927             if (LEval.isMinSignedValue())
15928               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15929           }
15930         }
15931       }
15932       if (Exp->getOpcode() == BO_Comma) {
15933         if (Ctx.getLangOpts().C99) {
15934           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15935           // if it isn't evaluated.
15936           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15937             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15938         } else {
15939           // In both C89 and C++, commas in ICEs are illegal.
15940           return ICEDiag(IK_NotICE, E->getBeginLoc());
15941         }
15942       }
15943       return Worst(LHSResult, RHSResult);
15944     }
15945     case BO_LAnd:
15946     case BO_LOr: {
15947       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15948       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15949       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15950         // Rare case where the RHS has a comma "side-effect"; we need
15951         // to actually check the condition to see whether the side
15952         // with the comma is evaluated.
15953         if ((Exp->getOpcode() == BO_LAnd) !=
15954             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15955           return RHSResult;
15956         return NoDiag();
15957       }
15958 
15959       return Worst(LHSResult, RHSResult);
15960     }
15961     }
15962     llvm_unreachable("invalid binary operator kind");
15963   }
15964   case Expr::ImplicitCastExprClass:
15965   case Expr::CStyleCastExprClass:
15966   case Expr::CXXFunctionalCastExprClass:
15967   case Expr::CXXStaticCastExprClass:
15968   case Expr::CXXReinterpretCastExprClass:
15969   case Expr::CXXConstCastExprClass:
15970   case Expr::ObjCBridgedCastExprClass: {
15971     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15972     if (isa<ExplicitCastExpr>(E)) {
15973       if (const FloatingLiteral *FL
15974             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15975         unsigned DestWidth = Ctx.getIntWidth(E->getType());
15976         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15977         APSInt IgnoredVal(DestWidth, !DestSigned);
15978         bool Ignored;
15979         // If the value does not fit in the destination type, the behavior is
15980         // undefined, so we are not required to treat it as a constant
15981         // expression.
15982         if (FL->getValue().convertToInteger(IgnoredVal,
15983                                             llvm::APFloat::rmTowardZero,
15984                                             &Ignored) & APFloat::opInvalidOp)
15985           return ICEDiag(IK_NotICE, E->getBeginLoc());
15986         return NoDiag();
15987       }
15988     }
15989     switch (cast<CastExpr>(E)->getCastKind()) {
15990     case CK_LValueToRValue:
15991     case CK_AtomicToNonAtomic:
15992     case CK_NonAtomicToAtomic:
15993     case CK_NoOp:
15994     case CK_IntegralToBoolean:
15995     case CK_IntegralCast:
15996       return CheckICE(SubExpr, Ctx);
15997     default:
15998       return ICEDiag(IK_NotICE, E->getBeginLoc());
15999     }
16000   }
16001   case Expr::BinaryConditionalOperatorClass: {
16002     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
16003     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
16004     if (CommonResult.Kind == IK_NotICE) return CommonResult;
16005     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16006     if (FalseResult.Kind == IK_NotICE) return FalseResult;
16007     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
16008     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
16009         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
16010     return FalseResult;
16011   }
16012   case Expr::ConditionalOperatorClass: {
16013     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
16014     // If the condition (ignoring parens) is a __builtin_constant_p call,
16015     // then only the true side is actually considered in an integer constant
16016     // expression, and it is fully evaluated.  This is an important GNU
16017     // extension.  See GCC PR38377 for discussion.
16018     if (const CallExpr *CallCE
16019         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
16020       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
16021         return CheckEvalInICE(E, Ctx);
16022     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
16023     if (CondResult.Kind == IK_NotICE)
16024       return CondResult;
16025 
16026     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
16027     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16028 
16029     if (TrueResult.Kind == IK_NotICE)
16030       return TrueResult;
16031     if (FalseResult.Kind == IK_NotICE)
16032       return FalseResult;
16033     if (CondResult.Kind == IK_ICEIfUnevaluated)
16034       return CondResult;
16035     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
16036       return NoDiag();
16037     // Rare case where the diagnostics depend on which side is evaluated
16038     // Note that if we get here, CondResult is 0, and at least one of
16039     // TrueResult and FalseResult is non-zero.
16040     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
16041       return FalseResult;
16042     return TrueResult;
16043   }
16044   case Expr::CXXDefaultArgExprClass:
16045     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
16046   case Expr::CXXDefaultInitExprClass:
16047     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
16048   case Expr::ChooseExprClass: {
16049     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
16050   }
16051   case Expr::BuiltinBitCastExprClass: {
16052     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
16053       return ICEDiag(IK_NotICE, E->getBeginLoc());
16054     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
16055   }
16056   }
16057 
16058   llvm_unreachable("Invalid StmtClass!");
16059 }
16060 
16061 /// Evaluate an expression as a C++11 integral constant expression.
16062 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
16063                                                     const Expr *E,
16064                                                     llvm::APSInt *Value,
16065                                                     SourceLocation *Loc) {
16066   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16067     if (Loc) *Loc = E->getExprLoc();
16068     return false;
16069   }
16070 
16071   APValue Result;
16072   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
16073     return false;
16074 
16075   if (!Result.isInt()) {
16076     if (Loc) *Loc = E->getExprLoc();
16077     return false;
16078   }
16079 
16080   if (Value) *Value = Result.getInt();
16081   return true;
16082 }
16083 
16084 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
16085                                  SourceLocation *Loc) const {
16086   assert(!isValueDependent() &&
16087          "Expression evaluator can't be called on a dependent expression.");
16088 
16089   ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
16090 
16091   if (Ctx.getLangOpts().CPlusPlus11)
16092     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
16093 
16094   ICEDiag D = CheckICE(this, Ctx);
16095   if (D.Kind != IK_ICE) {
16096     if (Loc) *Loc = D.Loc;
16097     return false;
16098   }
16099   return true;
16100 }
16101 
16102 std::optional<llvm::APSInt>
16103 Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc,
16104                              bool isEvaluated) const {
16105   if (isValueDependent()) {
16106     // Expression evaluator can't succeed on a dependent expression.
16107     return std::nullopt;
16108   }
16109 
16110   APSInt Value;
16111 
16112   if (Ctx.getLangOpts().CPlusPlus11) {
16113     if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
16114       return Value;
16115     return std::nullopt;
16116   }
16117 
16118   if (!isIntegerConstantExpr(Ctx, Loc))
16119     return std::nullopt;
16120 
16121   // The only possible side-effects here are due to UB discovered in the
16122   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
16123   // required to treat the expression as an ICE, so we produce the folded
16124   // value.
16125   EvalResult ExprResult;
16126   Expr::EvalStatus Status;
16127   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
16128   Info.InConstantContext = true;
16129 
16130   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
16131     llvm_unreachable("ICE cannot be evaluated!");
16132 
16133   return ExprResult.Val.getInt();
16134 }
16135 
16136 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
16137   assert(!isValueDependent() &&
16138          "Expression evaluator can't be called on a dependent expression.");
16139 
16140   return CheckICE(this, Ctx).Kind == IK_ICE;
16141 }
16142 
16143 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
16144                                SourceLocation *Loc) const {
16145   assert(!isValueDependent() &&
16146          "Expression evaluator can't be called on a dependent expression.");
16147 
16148   // We support this checking in C++98 mode in order to diagnose compatibility
16149   // issues.
16150   assert(Ctx.getLangOpts().CPlusPlus);
16151 
16152   // Build evaluation settings.
16153   Expr::EvalStatus Status;
16154   SmallVector<PartialDiagnosticAt, 8> Diags;
16155   Status.Diag = &Diags;
16156   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16157 
16158   APValue Scratch;
16159   bool IsConstExpr =
16160       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
16161       // FIXME: We don't produce a diagnostic for this, but the callers that
16162       // call us on arbitrary full-expressions should generally not care.
16163       Info.discardCleanups() && !Status.HasSideEffects;
16164 
16165   if (!Diags.empty()) {
16166     IsConstExpr = false;
16167     if (Loc) *Loc = Diags[0].first;
16168   } else if (!IsConstExpr) {
16169     // FIXME: This shouldn't happen.
16170     if (Loc) *Loc = getExprLoc();
16171   }
16172 
16173   return IsConstExpr;
16174 }
16175 
16176 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
16177                                     const FunctionDecl *Callee,
16178                                     ArrayRef<const Expr*> Args,
16179                                     const Expr *This) const {
16180   assert(!isValueDependent() &&
16181          "Expression evaluator can't be called on a dependent expression.");
16182 
16183   llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
16184     std::string Name;
16185     llvm::raw_string_ostream OS(Name);
16186     Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(),
16187                                  /*Qualified=*/true);
16188     return Name;
16189   });
16190 
16191   Expr::EvalStatus Status;
16192   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
16193   Info.InConstantContext = true;
16194 
16195   LValue ThisVal;
16196   const LValue *ThisPtr = nullptr;
16197   if (This) {
16198 #ifndef NDEBUG
16199     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
16200     assert(MD && "Don't provide `this` for non-methods.");
16201     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
16202 #endif
16203     if (!This->isValueDependent() &&
16204         EvaluateObjectArgument(Info, This, ThisVal) &&
16205         !Info.EvalStatus.HasSideEffects)
16206       ThisPtr = &ThisVal;
16207 
16208     // Ignore any side-effects from a failed evaluation. This is safe because
16209     // they can't interfere with any other argument evaluation.
16210     Info.EvalStatus.HasSideEffects = false;
16211   }
16212 
16213   CallRef Call = Info.CurrentCall->createCall(Callee);
16214   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
16215        I != E; ++I) {
16216     unsigned Idx = I - Args.begin();
16217     if (Idx >= Callee->getNumParams())
16218       break;
16219     const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
16220     if ((*I)->isValueDependent() ||
16221         !EvaluateCallArg(PVD, *I, Call, Info) ||
16222         Info.EvalStatus.HasSideEffects) {
16223       // If evaluation fails, throw away the argument entirely.
16224       if (APValue *Slot = Info.getParamSlot(Call, PVD))
16225         *Slot = APValue();
16226     }
16227 
16228     // Ignore any side-effects from a failed evaluation. This is safe because
16229     // they can't interfere with any other argument evaluation.
16230     Info.EvalStatus.HasSideEffects = false;
16231   }
16232 
16233   // Parameter cleanups happen in the caller and are not part of this
16234   // evaluation.
16235   Info.discardCleanups();
16236   Info.EvalStatus.HasSideEffects = false;
16237 
16238   // Build fake call to Callee.
16239   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This,
16240                        Call);
16241   // FIXME: Missing ExprWithCleanups in enable_if conditions?
16242   FullExpressionRAII Scope(Info);
16243   return Evaluate(Value, Info, this) && Scope.destroy() &&
16244          !Info.EvalStatus.HasSideEffects;
16245 }
16246 
16247 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
16248                                    SmallVectorImpl<
16249                                      PartialDiagnosticAt> &Diags) {
16250   // FIXME: It would be useful to check constexpr function templates, but at the
16251   // moment the constant expression evaluator cannot cope with the non-rigorous
16252   // ASTs which we build for dependent expressions.
16253   if (FD->isDependentContext())
16254     return true;
16255 
16256   llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
16257     std::string Name;
16258     llvm::raw_string_ostream OS(Name);
16259     FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(),
16260                              /*Qualified=*/true);
16261     return Name;
16262   });
16263 
16264   Expr::EvalStatus Status;
16265   Status.Diag = &Diags;
16266 
16267   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
16268   Info.InConstantContext = true;
16269   Info.CheckingPotentialConstantExpression = true;
16270 
16271   // The constexpr VM attempts to compile all methods to bytecode here.
16272   if (Info.EnableNewConstInterp) {
16273     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
16274     return Diags.empty();
16275   }
16276 
16277   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
16278   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
16279 
16280   // Fabricate an arbitrary expression on the stack and pretend that it
16281   // is a temporary being used as the 'this' pointer.
16282   LValue This;
16283   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
16284   This.set({&VIE, Info.CurrentCall->Index});
16285 
16286   ArrayRef<const Expr*> Args;
16287 
16288   APValue Scratch;
16289   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
16290     // Evaluate the call as a constant initializer, to allow the construction
16291     // of objects of non-literal types.
16292     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
16293     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
16294   } else {
16295     SourceLocation Loc = FD->getLocation();
16296     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
16297                        &VIE, Args, CallRef(), FD->getBody(), Info, Scratch,
16298                        /*ResultSlot=*/nullptr);
16299   }
16300 
16301   return Diags.empty();
16302 }
16303 
16304 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
16305                                               const FunctionDecl *FD,
16306                                               SmallVectorImpl<
16307                                                 PartialDiagnosticAt> &Diags) {
16308   assert(!E->isValueDependent() &&
16309          "Expression evaluator can't be called on a dependent expression.");
16310 
16311   Expr::EvalStatus Status;
16312   Status.Diag = &Diags;
16313 
16314   EvalInfo Info(FD->getASTContext(), Status,
16315                 EvalInfo::EM_ConstantExpressionUnevaluated);
16316   Info.InConstantContext = true;
16317   Info.CheckingPotentialConstantExpression = true;
16318 
16319   // Fabricate a call stack frame to give the arguments a plausible cover story.
16320   CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr,
16321                        /*CallExpr=*/nullptr, CallRef());
16322 
16323   APValue ResultScratch;
16324   Evaluate(ResultScratch, Info, E);
16325   return Diags.empty();
16326 }
16327 
16328 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
16329                                  unsigned Type) const {
16330   if (!getType()->isPointerType())
16331     return false;
16332 
16333   Expr::EvalStatus Status;
16334   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16335   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
16336 }
16337 
16338 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
16339                                   EvalInfo &Info) {
16340   if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
16341     return false;
16342 
16343   LValue String;
16344 
16345   if (!EvaluatePointer(E, String, Info))
16346     return false;
16347 
16348   QualType CharTy = E->getType()->getPointeeType();
16349 
16350   // Fast path: if it's a string literal, search the string value.
16351   if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
16352           String.getLValueBase().dyn_cast<const Expr *>())) {
16353     StringRef Str = S->getBytes();
16354     int64_t Off = String.Offset.getQuantity();
16355     if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
16356         S->getCharByteWidth() == 1 &&
16357         // FIXME: Add fast-path for wchar_t too.
16358         Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
16359       Str = Str.substr(Off);
16360 
16361       StringRef::size_type Pos = Str.find(0);
16362       if (Pos != StringRef::npos)
16363         Str = Str.substr(0, Pos);
16364 
16365       Result = Str.size();
16366       return true;
16367     }
16368 
16369     // Fall through to slow path.
16370   }
16371 
16372   // Slow path: scan the bytes of the string looking for the terminating 0.
16373   for (uint64_t Strlen = 0; /**/; ++Strlen) {
16374     APValue Char;
16375     if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
16376         !Char.isInt())
16377       return false;
16378     if (!Char.getInt()) {
16379       Result = Strlen;
16380       return true;
16381     }
16382     if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
16383       return false;
16384   }
16385 }
16386 
16387 bool Expr::EvaluateCharRangeAsString(std::string &Result,
16388                                      const Expr *SizeExpression,
16389                                      const Expr *PtrExpression, ASTContext &Ctx,
16390                                      EvalResult &Status) const {
16391   LValue String;
16392   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16393   Info.InConstantContext = true;
16394 
16395   FullExpressionRAII Scope(Info);
16396   APSInt SizeValue;
16397   if (!::EvaluateInteger(SizeExpression, SizeValue, Info))
16398     return false;
16399 
16400   int64_t Size = SizeValue.getExtValue();
16401 
16402   if (!::EvaluatePointer(PtrExpression, String, Info))
16403     return false;
16404 
16405   QualType CharTy = PtrExpression->getType()->getPointeeType();
16406   for (int64_t I = 0; I < Size; ++I) {
16407     APValue Char;
16408     if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String,
16409                                         Char))
16410       return false;
16411 
16412     APSInt C = Char.getInt();
16413     Result.push_back(static_cast<char>(C.getExtValue()));
16414     if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1))
16415       return false;
16416   }
16417   if (!Scope.destroy())
16418     return false;
16419 
16420   if (!CheckMemoryLeaks(Info))
16421     return false;
16422 
16423   return true;
16424 }
16425 
16426 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
16427   Expr::EvalStatus Status;
16428   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16429   return EvaluateBuiltinStrLen(this, Result, Info);
16430 }
16431