xref: /freebsd/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "ExprConstShared.h"
36 #include "Interp/Context.h"
37 #include "Interp/Frame.h"
38 #include "Interp/State.h"
39 #include "clang/AST/APValue.h"
40 #include "clang/AST/ASTContext.h"
41 #include "clang/AST/ASTDiagnostic.h"
42 #include "clang/AST/ASTLambda.h"
43 #include "clang/AST/Attr.h"
44 #include "clang/AST/CXXInheritance.h"
45 #include "clang/AST/CharUnits.h"
46 #include "clang/AST/CurrentSourceLocExprScope.h"
47 #include "clang/AST/Expr.h"
48 #include "clang/AST/OSLog.h"
49 #include "clang/AST/OptionalDiagnostic.h"
50 #include "clang/AST/RecordLayout.h"
51 #include "clang/AST/StmtVisitor.h"
52 #include "clang/AST/TypeLoc.h"
53 #include "clang/Basic/Builtins.h"
54 #include "clang/Basic/DiagnosticSema.h"
55 #include "clang/Basic/TargetInfo.h"
56 #include "llvm/ADT/APFixedPoint.h"
57 #include "llvm/ADT/SmallBitVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/SaveAndRestore.h"
61 #include "llvm/Support/SipHash.h"
62 #include "llvm/Support/TimeProfiler.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <cstring>
65 #include <functional>
66 #include <optional>
67 
68 #define DEBUG_TYPE "exprconstant"
69 
70 using namespace clang;
71 using llvm::APFixedPoint;
72 using llvm::APInt;
73 using llvm::APSInt;
74 using llvm::APFloat;
75 using llvm::FixedPointSemantics;
76 
77 namespace {
78   struct LValue;
79   class CallStackFrame;
80   class EvalInfo;
81 
82   using SourceLocExprScopeGuard =
83       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
84 
85   static QualType getType(APValue::LValueBase B) {
86     return B.getType();
87   }
88 
89   /// Get an LValue path entry, which is known to not be an array index, as a
90   /// field declaration.
91   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
92     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
93   }
94   /// Get an LValue path entry, which is known to not be an array index, as a
95   /// base class declaration.
96   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
97     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
98   }
99   /// Determine whether this LValue path entry for a base class names a virtual
100   /// base class.
101   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
102     return E.getAsBaseOrMember().getInt();
103   }
104 
105   /// Given an expression, determine the type used to store the result of
106   /// evaluating that expression.
107   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
108     if (E->isPRValue())
109       return E->getType();
110     return Ctx.getLValueReferenceType(E->getType());
111   }
112 
113   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
114   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
115     if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
116       return DirectCallee->getAttr<AllocSizeAttr>();
117     if (const Decl *IndirectCallee = CE->getCalleeDecl())
118       return IndirectCallee->getAttr<AllocSizeAttr>();
119     return nullptr;
120   }
121 
122   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
123   /// This will look through a single cast.
124   ///
125   /// Returns null if we couldn't unwrap a function with alloc_size.
126   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
127     if (!E->getType()->isPointerType())
128       return nullptr;
129 
130     E = E->IgnoreParens();
131     // If we're doing a variable assignment from e.g. malloc(N), there will
132     // probably be a cast of some kind. In exotic cases, we might also see a
133     // top-level ExprWithCleanups. Ignore them either way.
134     if (const auto *FE = dyn_cast<FullExpr>(E))
135       E = FE->getSubExpr()->IgnoreParens();
136 
137     if (const auto *Cast = dyn_cast<CastExpr>(E))
138       E = Cast->getSubExpr()->IgnoreParens();
139 
140     if (const auto *CE = dyn_cast<CallExpr>(E))
141       return getAllocSizeAttr(CE) ? CE : nullptr;
142     return nullptr;
143   }
144 
145   /// Determines whether or not the given Base contains a call to a function
146   /// with the alloc_size attribute.
147   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
148     const auto *E = Base.dyn_cast<const Expr *>();
149     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
150   }
151 
152   /// Determines whether the given kind of constant expression is only ever
153   /// used for name mangling. If so, it's permitted to reference things that we
154   /// can't generate code for (in particular, dllimported functions).
155   static bool isForManglingOnly(ConstantExprKind Kind) {
156     switch (Kind) {
157     case ConstantExprKind::Normal:
158     case ConstantExprKind::ClassTemplateArgument:
159     case ConstantExprKind::ImmediateInvocation:
160       // Note that non-type template arguments of class type are emitted as
161       // template parameter objects.
162       return false;
163 
164     case ConstantExprKind::NonClassTemplateArgument:
165       return true;
166     }
167     llvm_unreachable("unknown ConstantExprKind");
168   }
169 
170   static bool isTemplateArgument(ConstantExprKind Kind) {
171     switch (Kind) {
172     case ConstantExprKind::Normal:
173     case ConstantExprKind::ImmediateInvocation:
174       return false;
175 
176     case ConstantExprKind::ClassTemplateArgument:
177     case ConstantExprKind::NonClassTemplateArgument:
178       return true;
179     }
180     llvm_unreachable("unknown ConstantExprKind");
181   }
182 
183   /// The bound to claim that an array of unknown bound has.
184   /// The value in MostDerivedArraySize is undefined in this case. So, set it
185   /// to an arbitrary value that's likely to loudly break things if it's used.
186   static const uint64_t AssumedSizeForUnsizedArray =
187       std::numeric_limits<uint64_t>::max() / 2;
188 
189   /// Determines if an LValue with the given LValueBase will have an unsized
190   /// array in its designator.
191   /// Find the path length and type of the most-derived subobject in the given
192   /// path, and find the size of the containing array, if any.
193   static unsigned
194   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
195                            ArrayRef<APValue::LValuePathEntry> Path,
196                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
197                            bool &FirstEntryIsUnsizedArray) {
198     // This only accepts LValueBases from APValues, and APValues don't support
199     // arrays that lack size info.
200     assert(!isBaseAnAllocSizeCall(Base) &&
201            "Unsized arrays shouldn't appear here");
202     unsigned MostDerivedLength = 0;
203     Type = getType(Base);
204 
205     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
206       if (Type->isArrayType()) {
207         const ArrayType *AT = Ctx.getAsArrayType(Type);
208         Type = AT->getElementType();
209         MostDerivedLength = I + 1;
210         IsArray = true;
211 
212         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
213           ArraySize = CAT->getZExtSize();
214         } else {
215           assert(I == 0 && "unexpected unsized array designator");
216           FirstEntryIsUnsizedArray = true;
217           ArraySize = AssumedSizeForUnsizedArray;
218         }
219       } else if (Type->isAnyComplexType()) {
220         const ComplexType *CT = Type->castAs<ComplexType>();
221         Type = CT->getElementType();
222         ArraySize = 2;
223         MostDerivedLength = I + 1;
224         IsArray = true;
225       } else if (const FieldDecl *FD = getAsField(Path[I])) {
226         Type = FD->getType();
227         ArraySize = 0;
228         MostDerivedLength = I + 1;
229         IsArray = false;
230       } else {
231         // Path[I] describes a base class.
232         ArraySize = 0;
233         IsArray = false;
234       }
235     }
236     return MostDerivedLength;
237   }
238 
239   /// A path from a glvalue to a subobject of that glvalue.
240   struct SubobjectDesignator {
241     /// True if the subobject was named in a manner not supported by C++11. Such
242     /// lvalues can still be folded, but they are not core constant expressions
243     /// and we cannot perform lvalue-to-rvalue conversions on them.
244     LLVM_PREFERRED_TYPE(bool)
245     unsigned Invalid : 1;
246 
247     /// Is this a pointer one past the end of an object?
248     LLVM_PREFERRED_TYPE(bool)
249     unsigned IsOnePastTheEnd : 1;
250 
251     /// Indicator of whether the first entry is an unsized array.
252     LLVM_PREFERRED_TYPE(bool)
253     unsigned FirstEntryIsAnUnsizedArray : 1;
254 
255     /// Indicator of whether the most-derived object is an array element.
256     LLVM_PREFERRED_TYPE(bool)
257     unsigned MostDerivedIsArrayElement : 1;
258 
259     /// The length of the path to the most-derived object of which this is a
260     /// subobject.
261     unsigned MostDerivedPathLength : 28;
262 
263     /// The size of the array of which the most-derived object is an element.
264     /// This will always be 0 if the most-derived object is not an array
265     /// element. 0 is not an indicator of whether or not the most-derived object
266     /// is an array, however, because 0-length arrays are allowed.
267     ///
268     /// If the current array is an unsized array, the value of this is
269     /// undefined.
270     uint64_t MostDerivedArraySize;
271 
272     /// The type of the most derived object referred to by this address.
273     QualType MostDerivedType;
274 
275     typedef APValue::LValuePathEntry PathEntry;
276 
277     /// The entries on the path from the glvalue to the designated subobject.
278     SmallVector<PathEntry, 8> Entries;
279 
280     SubobjectDesignator() : Invalid(true) {}
281 
282     explicit SubobjectDesignator(QualType T)
283         : Invalid(false), IsOnePastTheEnd(false),
284           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
285           MostDerivedPathLength(0), MostDerivedArraySize(0),
286           MostDerivedType(T) {}
287 
288     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
289         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
290           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
291           MostDerivedPathLength(0), MostDerivedArraySize(0) {
292       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
293       if (!Invalid) {
294         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
295         ArrayRef<PathEntry> VEntries = V.getLValuePath();
296         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
297         if (V.getLValueBase()) {
298           bool IsArray = false;
299           bool FirstIsUnsizedArray = false;
300           MostDerivedPathLength = findMostDerivedSubobject(
301               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
302               MostDerivedType, IsArray, FirstIsUnsizedArray);
303           MostDerivedIsArrayElement = IsArray;
304           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
305         }
306       }
307     }
308 
309     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
310                   unsigned NewLength) {
311       if (Invalid)
312         return;
313 
314       assert(Base && "cannot truncate path for null pointer");
315       assert(NewLength <= Entries.size() && "not a truncation");
316 
317       if (NewLength == Entries.size())
318         return;
319       Entries.resize(NewLength);
320 
321       bool IsArray = false;
322       bool FirstIsUnsizedArray = false;
323       MostDerivedPathLength = findMostDerivedSubobject(
324           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
325           FirstIsUnsizedArray);
326       MostDerivedIsArrayElement = IsArray;
327       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
328     }
329 
330     void setInvalid() {
331       Invalid = true;
332       Entries.clear();
333     }
334 
335     /// Determine whether the most derived subobject is an array without a
336     /// known bound.
337     bool isMostDerivedAnUnsizedArray() const {
338       assert(!Invalid && "Calling this makes no sense on invalid designators");
339       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
340     }
341 
342     /// Determine what the most derived array's size is. Results in an assertion
343     /// failure if the most derived array lacks a size.
344     uint64_t getMostDerivedArraySize() const {
345       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
346       return MostDerivedArraySize;
347     }
348 
349     /// Determine whether this is a one-past-the-end pointer.
350     bool isOnePastTheEnd() const {
351       assert(!Invalid);
352       if (IsOnePastTheEnd)
353         return true;
354       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
355           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
356               MostDerivedArraySize)
357         return true;
358       return false;
359     }
360 
361     /// Get the range of valid index adjustments in the form
362     ///   {maximum value that can be subtracted from this pointer,
363     ///    maximum value that can be added to this pointer}
364     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
365       if (Invalid || isMostDerivedAnUnsizedArray())
366         return {0, 0};
367 
368       // [expr.add]p4: For the purposes of these operators, a pointer to a
369       // nonarray object behaves the same as a pointer to the first element of
370       // an array of length one with the type of the object as its element type.
371       bool IsArray = MostDerivedPathLength == Entries.size() &&
372                      MostDerivedIsArrayElement;
373       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
374                                     : (uint64_t)IsOnePastTheEnd;
375       uint64_t ArraySize =
376           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
377       return {ArrayIndex, ArraySize - ArrayIndex};
378     }
379 
380     /// Check that this refers to a valid subobject.
381     bool isValidSubobject() const {
382       if (Invalid)
383         return false;
384       return !isOnePastTheEnd();
385     }
386     /// Check that this refers to a valid subobject, and if not, produce a
387     /// relevant diagnostic and set the designator as invalid.
388     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
389 
390     /// Get the type of the designated object.
391     QualType getType(ASTContext &Ctx) const {
392       assert(!Invalid && "invalid designator has no subobject type");
393       return MostDerivedPathLength == Entries.size()
394                  ? MostDerivedType
395                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
396     }
397 
398     /// Update this designator to refer to the first element within this array.
399     void addArrayUnchecked(const ConstantArrayType *CAT) {
400       Entries.push_back(PathEntry::ArrayIndex(0));
401 
402       // This is a most-derived object.
403       MostDerivedType = CAT->getElementType();
404       MostDerivedIsArrayElement = true;
405       MostDerivedArraySize = CAT->getZExtSize();
406       MostDerivedPathLength = Entries.size();
407     }
408     /// Update this designator to refer to the first element within the array of
409     /// elements of type T. This is an array of unknown size.
410     void addUnsizedArrayUnchecked(QualType ElemTy) {
411       Entries.push_back(PathEntry::ArrayIndex(0));
412 
413       MostDerivedType = ElemTy;
414       MostDerivedIsArrayElement = true;
415       // The value in MostDerivedArraySize is undefined in this case. So, set it
416       // to an arbitrary value that's likely to loudly break things if it's
417       // used.
418       MostDerivedArraySize = AssumedSizeForUnsizedArray;
419       MostDerivedPathLength = Entries.size();
420     }
421     /// Update this designator to refer to the given base or member of this
422     /// object.
423     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
424       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
425 
426       // If this isn't a base class, it's a new most-derived object.
427       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
428         MostDerivedType = FD->getType();
429         MostDerivedIsArrayElement = false;
430         MostDerivedArraySize = 0;
431         MostDerivedPathLength = Entries.size();
432       }
433     }
434     /// Update this designator to refer to the given complex component.
435     void addComplexUnchecked(QualType EltTy, bool Imag) {
436       Entries.push_back(PathEntry::ArrayIndex(Imag));
437 
438       // This is technically a most-derived object, though in practice this
439       // is unlikely to matter.
440       MostDerivedType = EltTy;
441       MostDerivedIsArrayElement = true;
442       MostDerivedArraySize = 2;
443       MostDerivedPathLength = Entries.size();
444     }
445     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
446     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
447                                    const APSInt &N);
448     /// Add N to the address of this subobject.
449     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
450       if (Invalid || !N) return;
451       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
452       if (isMostDerivedAnUnsizedArray()) {
453         diagnoseUnsizedArrayPointerArithmetic(Info, E);
454         // Can't verify -- trust that the user is doing the right thing (or if
455         // not, trust that the caller will catch the bad behavior).
456         // FIXME: Should we reject if this overflows, at least?
457         Entries.back() = PathEntry::ArrayIndex(
458             Entries.back().getAsArrayIndex() + TruncatedN);
459         return;
460       }
461 
462       // [expr.add]p4: For the purposes of these operators, a pointer to a
463       // nonarray object behaves the same as a pointer to the first element of
464       // an array of length one with the type of the object as its element type.
465       bool IsArray = MostDerivedPathLength == Entries.size() &&
466                      MostDerivedIsArrayElement;
467       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
468                                     : (uint64_t)IsOnePastTheEnd;
469       uint64_t ArraySize =
470           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
471 
472       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
473         // Calculate the actual index in a wide enough type, so we can include
474         // it in the note.
475         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
476         (llvm::APInt&)N += ArrayIndex;
477         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
478         diagnosePointerArithmetic(Info, E, N);
479         setInvalid();
480         return;
481       }
482 
483       ArrayIndex += TruncatedN;
484       assert(ArrayIndex <= ArraySize &&
485              "bounds check succeeded for out-of-bounds index");
486 
487       if (IsArray)
488         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
489       else
490         IsOnePastTheEnd = (ArrayIndex != 0);
491     }
492   };
493 
494   /// A scope at the end of which an object can need to be destroyed.
495   enum class ScopeKind {
496     Block,
497     FullExpression,
498     Call
499   };
500 
501   /// A reference to a particular call and its arguments.
502   struct CallRef {
503     CallRef() : OrigCallee(), CallIndex(0), Version() {}
504     CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
505         : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
506 
507     explicit operator bool() const { return OrigCallee; }
508 
509     /// Get the parameter that the caller initialized, corresponding to the
510     /// given parameter in the callee.
511     const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
512       return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
513                         : PVD;
514     }
515 
516     /// The callee at the point where the arguments were evaluated. This might
517     /// be different from the actual callee (a different redeclaration, or a
518     /// virtual override), but this function's parameters are the ones that
519     /// appear in the parameter map.
520     const FunctionDecl *OrigCallee;
521     /// The call index of the frame that holds the argument values.
522     unsigned CallIndex;
523     /// The version of the parameters corresponding to this call.
524     unsigned Version;
525   };
526 
527   /// A stack frame in the constexpr call stack.
528   class CallStackFrame : public interp::Frame {
529   public:
530     EvalInfo &Info;
531 
532     /// Parent - The caller of this stack frame.
533     CallStackFrame *Caller;
534 
535     /// Callee - The function which was called.
536     const FunctionDecl *Callee;
537 
538     /// This - The binding for the this pointer in this call, if any.
539     const LValue *This;
540 
541     /// CallExpr - The syntactical structure of member function calls
542     const Expr *CallExpr;
543 
544     /// Information on how to find the arguments to this call. Our arguments
545     /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
546     /// key and this value as the version.
547     CallRef Arguments;
548 
549     /// Source location information about the default argument or default
550     /// initializer expression we're evaluating, if any.
551     CurrentSourceLocExprScope CurSourceLocExprScope;
552 
553     // Note that we intentionally use std::map here so that references to
554     // values are stable.
555     typedef std::pair<const void *, unsigned> MapKeyTy;
556     typedef std::map<MapKeyTy, APValue> MapTy;
557     /// Temporaries - Temporary lvalues materialized within this stack frame.
558     MapTy Temporaries;
559 
560     /// CallRange - The source range of the call expression for this call.
561     SourceRange CallRange;
562 
563     /// Index - The call index of this call.
564     unsigned Index;
565 
566     /// The stack of integers for tracking version numbers for temporaries.
567     SmallVector<unsigned, 2> TempVersionStack = {1};
568     unsigned CurTempVersion = TempVersionStack.back();
569 
570     unsigned getTempVersion() const { return TempVersionStack.back(); }
571 
572     void pushTempVersion() {
573       TempVersionStack.push_back(++CurTempVersion);
574     }
575 
576     void popTempVersion() {
577       TempVersionStack.pop_back();
578     }
579 
580     CallRef createCall(const FunctionDecl *Callee) {
581       return {Callee, Index, ++CurTempVersion};
582     }
583 
584     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
585     // on the overall stack usage of deeply-recursing constexpr evaluations.
586     // (We should cache this map rather than recomputing it repeatedly.)
587     // But let's try this and see how it goes; we can look into caching the map
588     // as a later change.
589 
590     /// LambdaCaptureFields - Mapping from captured variables/this to
591     /// corresponding data members in the closure class.
592     llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
593     FieldDecl *LambdaThisCaptureField = nullptr;
594 
595     CallStackFrame(EvalInfo &Info, SourceRange CallRange,
596                    const FunctionDecl *Callee, const LValue *This,
597                    const Expr *CallExpr, CallRef Arguments);
598     ~CallStackFrame();
599 
600     // Return the temporary for Key whose version number is Version.
601     APValue *getTemporary(const void *Key, unsigned Version) {
602       MapKeyTy KV(Key, Version);
603       auto LB = Temporaries.lower_bound(KV);
604       if (LB != Temporaries.end() && LB->first == KV)
605         return &LB->second;
606       return nullptr;
607     }
608 
609     // Return the current temporary for Key in the map.
610     APValue *getCurrentTemporary(const void *Key) {
611       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
612       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
613         return &std::prev(UB)->second;
614       return nullptr;
615     }
616 
617     // Return the version number of the current temporary for Key.
618     unsigned getCurrentTemporaryVersion(const void *Key) const {
619       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
620       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
621         return std::prev(UB)->first.second;
622       return 0;
623     }
624 
625     /// Allocate storage for an object of type T in this stack frame.
626     /// Populates LV with a handle to the created object. Key identifies
627     /// the temporary within the stack frame, and must not be reused without
628     /// bumping the temporary version number.
629     template<typename KeyT>
630     APValue &createTemporary(const KeyT *Key, QualType T,
631                              ScopeKind Scope, LValue &LV);
632 
633     /// Allocate storage for a parameter of a function call made in this frame.
634     APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
635 
636     void describe(llvm::raw_ostream &OS) const override;
637 
638     Frame *getCaller() const override { return Caller; }
639     SourceRange getCallRange() const override { return CallRange; }
640     const FunctionDecl *getCallee() const override { return Callee; }
641 
642     bool isStdFunction() const {
643       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
644         if (DC->isStdNamespace())
645           return true;
646       return false;
647     }
648 
649     /// Whether we're in a context where [[msvc::constexpr]] evaluation is
650     /// permitted. See MSConstexprDocs for description of permitted contexts.
651     bool CanEvalMSConstexpr = false;
652 
653   private:
654     APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
655                          ScopeKind Scope);
656   };
657 
658   /// Temporarily override 'this'.
659   class ThisOverrideRAII {
660   public:
661     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
662         : Frame(Frame), OldThis(Frame.This) {
663       if (Enable)
664         Frame.This = NewThis;
665     }
666     ~ThisOverrideRAII() {
667       Frame.This = OldThis;
668     }
669   private:
670     CallStackFrame &Frame;
671     const LValue *OldThis;
672   };
673 
674   // A shorthand time trace scope struct, prints source range, for example
675   // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
676   class ExprTimeTraceScope {
677   public:
678     ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
679         : TimeScope(Name, [E, &Ctx] {
680             return E->getSourceRange().printToString(Ctx.getSourceManager());
681           }) {}
682 
683   private:
684     llvm::TimeTraceScope TimeScope;
685   };
686 
687   /// RAII object used to change the current ability of
688   /// [[msvc::constexpr]] evaulation.
689   struct MSConstexprContextRAII {
690     CallStackFrame &Frame;
691     bool OldValue;
692     explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value)
693         : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) {
694       Frame.CanEvalMSConstexpr = Value;
695     }
696 
697     ~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; }
698   };
699 }
700 
701 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
702                               const LValue &This, QualType ThisType);
703 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
704                               APValue::LValueBase LVBase, APValue &Value,
705                               QualType T);
706 
707 namespace {
708   /// A cleanup, and a flag indicating whether it is lifetime-extended.
709   class Cleanup {
710     llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
711     APValue::LValueBase Base;
712     QualType T;
713 
714   public:
715     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
716             ScopeKind Scope)
717         : Value(Val, Scope), Base(Base), T(T) {}
718 
719     /// Determine whether this cleanup should be performed at the end of the
720     /// given kind of scope.
721     bool isDestroyedAtEndOf(ScopeKind K) const {
722       return (int)Value.getInt() >= (int)K;
723     }
724     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
725       if (RunDestructors) {
726         SourceLocation Loc;
727         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
728           Loc = VD->getLocation();
729         else if (const Expr *E = Base.dyn_cast<const Expr*>())
730           Loc = E->getExprLoc();
731         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
732       }
733       *Value.getPointer() = APValue();
734       return true;
735     }
736 
737     bool hasSideEffect() {
738       return T.isDestructedType();
739     }
740   };
741 
742   /// A reference to an object whose construction we are currently evaluating.
743   struct ObjectUnderConstruction {
744     APValue::LValueBase Base;
745     ArrayRef<APValue::LValuePathEntry> Path;
746     friend bool operator==(const ObjectUnderConstruction &LHS,
747                            const ObjectUnderConstruction &RHS) {
748       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
749     }
750     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
751       return llvm::hash_combine(Obj.Base, Obj.Path);
752     }
753   };
754   enum class ConstructionPhase {
755     None,
756     Bases,
757     AfterBases,
758     AfterFields,
759     Destroying,
760     DestroyingBases
761   };
762 }
763 
764 namespace llvm {
765 template<> struct DenseMapInfo<ObjectUnderConstruction> {
766   using Base = DenseMapInfo<APValue::LValueBase>;
767   static ObjectUnderConstruction getEmptyKey() {
768     return {Base::getEmptyKey(), {}}; }
769   static ObjectUnderConstruction getTombstoneKey() {
770     return {Base::getTombstoneKey(), {}};
771   }
772   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
773     return hash_value(Object);
774   }
775   static bool isEqual(const ObjectUnderConstruction &LHS,
776                       const ObjectUnderConstruction &RHS) {
777     return LHS == RHS;
778   }
779 };
780 }
781 
782 namespace {
783   /// A dynamically-allocated heap object.
784   struct DynAlloc {
785     /// The value of this heap-allocated object.
786     APValue Value;
787     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
788     /// or a CallExpr (the latter is for direct calls to operator new inside
789     /// std::allocator<T>::allocate).
790     const Expr *AllocExpr = nullptr;
791 
792     enum Kind {
793       New,
794       ArrayNew,
795       StdAllocator
796     };
797 
798     /// Get the kind of the allocation. This must match between allocation
799     /// and deallocation.
800     Kind getKind() const {
801       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
802         return NE->isArray() ? ArrayNew : New;
803       assert(isa<CallExpr>(AllocExpr));
804       return StdAllocator;
805     }
806   };
807 
808   struct DynAllocOrder {
809     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
810       return L.getIndex() < R.getIndex();
811     }
812   };
813 
814   /// EvalInfo - This is a private struct used by the evaluator to capture
815   /// information about a subexpression as it is folded.  It retains information
816   /// about the AST context, but also maintains information about the folded
817   /// expression.
818   ///
819   /// If an expression could be evaluated, it is still possible it is not a C
820   /// "integer constant expression" or constant expression.  If not, this struct
821   /// captures information about how and why not.
822   ///
823   /// One bit of information passed *into* the request for constant folding
824   /// indicates whether the subexpression is "evaluated" or not according to C
825   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
826   /// evaluate the expression regardless of what the RHS is, but C only allows
827   /// certain things in certain situations.
828   class EvalInfo : public interp::State {
829   public:
830     ASTContext &Ctx;
831 
832     /// EvalStatus - Contains information about the evaluation.
833     Expr::EvalStatus &EvalStatus;
834 
835     /// CurrentCall - The top of the constexpr call stack.
836     CallStackFrame *CurrentCall;
837 
838     /// CallStackDepth - The number of calls in the call stack right now.
839     unsigned CallStackDepth;
840 
841     /// NextCallIndex - The next call index to assign.
842     unsigned NextCallIndex;
843 
844     /// StepsLeft - The remaining number of evaluation steps we're permitted
845     /// to perform. This is essentially a limit for the number of statements
846     /// we will evaluate.
847     unsigned StepsLeft;
848 
849     /// Enable the experimental new constant interpreter. If an expression is
850     /// not supported by the interpreter, an error is triggered.
851     bool EnableNewConstInterp;
852 
853     /// BottomFrame - The frame in which evaluation started. This must be
854     /// initialized after CurrentCall and CallStackDepth.
855     CallStackFrame BottomFrame;
856 
857     /// A stack of values whose lifetimes end at the end of some surrounding
858     /// evaluation frame.
859     llvm::SmallVector<Cleanup, 16> CleanupStack;
860 
861     /// EvaluatingDecl - This is the declaration whose initializer is being
862     /// evaluated, if any.
863     APValue::LValueBase EvaluatingDecl;
864 
865     enum class EvaluatingDeclKind {
866       None,
867       /// We're evaluating the construction of EvaluatingDecl.
868       Ctor,
869       /// We're evaluating the destruction of EvaluatingDecl.
870       Dtor,
871     };
872     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
873 
874     /// EvaluatingDeclValue - This is the value being constructed for the
875     /// declaration whose initializer is being evaluated, if any.
876     APValue *EvaluatingDeclValue;
877 
878     /// Set of objects that are currently being constructed.
879     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
880         ObjectsUnderConstruction;
881 
882     /// Current heap allocations, along with the location where each was
883     /// allocated. We use std::map here because we need stable addresses
884     /// for the stored APValues.
885     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
886 
887     /// The number of heap allocations performed so far in this evaluation.
888     unsigned NumHeapAllocs = 0;
889 
890     struct EvaluatingConstructorRAII {
891       EvalInfo &EI;
892       ObjectUnderConstruction Object;
893       bool DidInsert;
894       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
895                                 bool HasBases)
896           : EI(EI), Object(Object) {
897         DidInsert =
898             EI.ObjectsUnderConstruction
899                 .insert({Object, HasBases ? ConstructionPhase::Bases
900                                           : ConstructionPhase::AfterBases})
901                 .second;
902       }
903       void finishedConstructingBases() {
904         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
905       }
906       void finishedConstructingFields() {
907         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
908       }
909       ~EvaluatingConstructorRAII() {
910         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
911       }
912     };
913 
914     struct EvaluatingDestructorRAII {
915       EvalInfo &EI;
916       ObjectUnderConstruction Object;
917       bool DidInsert;
918       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
919           : EI(EI), Object(Object) {
920         DidInsert = EI.ObjectsUnderConstruction
921                         .insert({Object, ConstructionPhase::Destroying})
922                         .second;
923       }
924       void startedDestroyingBases() {
925         EI.ObjectsUnderConstruction[Object] =
926             ConstructionPhase::DestroyingBases;
927       }
928       ~EvaluatingDestructorRAII() {
929         if (DidInsert)
930           EI.ObjectsUnderConstruction.erase(Object);
931       }
932     };
933 
934     ConstructionPhase
935     isEvaluatingCtorDtor(APValue::LValueBase Base,
936                          ArrayRef<APValue::LValuePathEntry> Path) {
937       return ObjectsUnderConstruction.lookup({Base, Path});
938     }
939 
940     /// If we're currently speculatively evaluating, the outermost call stack
941     /// depth at which we can mutate state, otherwise 0.
942     unsigned SpeculativeEvaluationDepth = 0;
943 
944     /// The current array initialization index, if we're performing array
945     /// initialization.
946     uint64_t ArrayInitIndex = -1;
947 
948     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
949     /// notes attached to it will also be stored, otherwise they will not be.
950     bool HasActiveDiagnostic;
951 
952     /// Have we emitted a diagnostic explaining why we couldn't constant
953     /// fold (not just why it's not strictly a constant expression)?
954     bool HasFoldFailureDiagnostic;
955 
956     /// Whether we're checking that an expression is a potential constant
957     /// expression. If so, do not fail on constructs that could become constant
958     /// later on (such as a use of an undefined global).
959     bool CheckingPotentialConstantExpression = false;
960 
961     /// Whether we're checking for an expression that has undefined behavior.
962     /// If so, we will produce warnings if we encounter an operation that is
963     /// always undefined.
964     ///
965     /// Note that we still need to evaluate the expression normally when this
966     /// is set; this is used when evaluating ICEs in C.
967     bool CheckingForUndefinedBehavior = false;
968 
969     enum EvaluationMode {
970       /// Evaluate as a constant expression. Stop if we find that the expression
971       /// is not a constant expression.
972       EM_ConstantExpression,
973 
974       /// Evaluate as a constant expression. Stop if we find that the expression
975       /// is not a constant expression. Some expressions can be retried in the
976       /// optimizer if we don't constant fold them here, but in an unevaluated
977       /// context we try to fold them immediately since the optimizer never
978       /// gets a chance to look at it.
979       EM_ConstantExpressionUnevaluated,
980 
981       /// Fold the expression to a constant. Stop if we hit a side-effect that
982       /// we can't model.
983       EM_ConstantFold,
984 
985       /// Evaluate in any way we know how. Don't worry about side-effects that
986       /// can't be modeled.
987       EM_IgnoreSideEffects,
988     } EvalMode;
989 
990     /// Are we checking whether the expression is a potential constant
991     /// expression?
992     bool checkingPotentialConstantExpression() const override  {
993       return CheckingPotentialConstantExpression;
994     }
995 
996     /// Are we checking an expression for overflow?
997     // FIXME: We should check for any kind of undefined or suspicious behavior
998     // in such constructs, not just overflow.
999     bool checkingForUndefinedBehavior() const override {
1000       return CheckingForUndefinedBehavior;
1001     }
1002 
1003     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
1004         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
1005           CallStackDepth(0), NextCallIndex(1),
1006           StepsLeft(C.getLangOpts().ConstexprStepLimit),
1007           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
1008           BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr,
1009                       /*This=*/nullptr,
1010                       /*CallExpr=*/nullptr, CallRef()),
1011           EvaluatingDecl((const ValueDecl *)nullptr),
1012           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
1013           HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
1014 
1015     ~EvalInfo() {
1016       discardCleanups();
1017     }
1018 
1019     ASTContext &getCtx() const override { return Ctx; }
1020 
1021     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
1022                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
1023       EvaluatingDecl = Base;
1024       IsEvaluatingDecl = EDK;
1025       EvaluatingDeclValue = &Value;
1026     }
1027 
1028     bool CheckCallLimit(SourceLocation Loc) {
1029       // Don't perform any constexpr calls (other than the call we're checking)
1030       // when checking a potential constant expression.
1031       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1032         return false;
1033       if (NextCallIndex == 0) {
1034         // NextCallIndex has wrapped around.
1035         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1036         return false;
1037       }
1038       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1039         return true;
1040       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1041         << getLangOpts().ConstexprCallDepth;
1042       return false;
1043     }
1044 
1045     bool CheckArraySize(SourceLocation Loc, unsigned BitWidth,
1046                         uint64_t ElemCount, bool Diag) {
1047       // FIXME: GH63562
1048       // APValue stores array extents as unsigned,
1049       // so anything that is greater that unsigned would overflow when
1050       // constructing the array, we catch this here.
1051       if (BitWidth > ConstantArrayType::getMaxSizeBits(Ctx) ||
1052           ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) {
1053         if (Diag)
1054           FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount;
1055         return false;
1056       }
1057 
1058       // FIXME: GH63562
1059       // Arrays allocate an APValue per element.
1060       // We use the number of constexpr steps as a proxy for the maximum size
1061       // of arrays to avoid exhausting the system resources, as initialization
1062       // of each element is likely to take some number of steps anyway.
1063       uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit;
1064       if (ElemCount > Limit) {
1065         if (Diag)
1066           FFDiag(Loc, diag::note_constexpr_new_exceeds_limits)
1067               << ElemCount << Limit;
1068         return false;
1069       }
1070       return true;
1071     }
1072 
1073     std::pair<CallStackFrame *, unsigned>
1074     getCallFrameAndDepth(unsigned CallIndex) {
1075       assert(CallIndex && "no call index in getCallFrameAndDepth");
1076       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1077       // be null in this loop.
1078       unsigned Depth = CallStackDepth;
1079       CallStackFrame *Frame = CurrentCall;
1080       while (Frame->Index > CallIndex) {
1081         Frame = Frame->Caller;
1082         --Depth;
1083       }
1084       if (Frame->Index == CallIndex)
1085         return {Frame, Depth};
1086       return {nullptr, 0};
1087     }
1088 
1089     bool nextStep(const Stmt *S) {
1090       if (!StepsLeft) {
1091         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1092         return false;
1093       }
1094       --StepsLeft;
1095       return true;
1096     }
1097 
1098     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1099 
1100     std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1101       std::optional<DynAlloc *> Result;
1102       auto It = HeapAllocs.find(DA);
1103       if (It != HeapAllocs.end())
1104         Result = &It->second;
1105       return Result;
1106     }
1107 
1108     /// Get the allocated storage for the given parameter of the given call.
1109     APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1110       CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1111       return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1112                    : nullptr;
1113     }
1114 
1115     /// Information about a stack frame for std::allocator<T>::[de]allocate.
1116     struct StdAllocatorCaller {
1117       unsigned FrameIndex;
1118       QualType ElemType;
1119       explicit operator bool() const { return FrameIndex != 0; };
1120     };
1121 
1122     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1123       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1124            Call = Call->Caller) {
1125         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1126         if (!MD)
1127           continue;
1128         const IdentifierInfo *FnII = MD->getIdentifier();
1129         if (!FnII || !FnII->isStr(FnName))
1130           continue;
1131 
1132         const auto *CTSD =
1133             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1134         if (!CTSD)
1135           continue;
1136 
1137         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1138         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1139         if (CTSD->isInStdNamespace() && ClassII &&
1140             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1141             TAL[0].getKind() == TemplateArgument::Type)
1142           return {Call->Index, TAL[0].getAsType()};
1143       }
1144 
1145       return {};
1146     }
1147 
1148     void performLifetimeExtension() {
1149       // Disable the cleanups for lifetime-extended temporaries.
1150       llvm::erase_if(CleanupStack, [](Cleanup &C) {
1151         return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1152       });
1153     }
1154 
1155     /// Throw away any remaining cleanups at the end of evaluation. If any
1156     /// cleanups would have had a side-effect, note that as an unmodeled
1157     /// side-effect and return false. Otherwise, return true.
1158     bool discardCleanups() {
1159       for (Cleanup &C : CleanupStack) {
1160         if (C.hasSideEffect() && !noteSideEffect()) {
1161           CleanupStack.clear();
1162           return false;
1163         }
1164       }
1165       CleanupStack.clear();
1166       return true;
1167     }
1168 
1169   private:
1170     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1171     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1172 
1173     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1174     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1175 
1176     void setFoldFailureDiagnostic(bool Flag) override {
1177       HasFoldFailureDiagnostic = Flag;
1178     }
1179 
1180     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1181 
1182     // If we have a prior diagnostic, it will be noting that the expression
1183     // isn't a constant expression. This diagnostic is more important,
1184     // unless we require this evaluation to produce a constant expression.
1185     //
1186     // FIXME: We might want to show both diagnostics to the user in
1187     // EM_ConstantFold mode.
1188     bool hasPriorDiagnostic() override {
1189       if (!EvalStatus.Diag->empty()) {
1190         switch (EvalMode) {
1191         case EM_ConstantFold:
1192         case EM_IgnoreSideEffects:
1193           if (!HasFoldFailureDiagnostic)
1194             break;
1195           // We've already failed to fold something. Keep that diagnostic.
1196           [[fallthrough]];
1197         case EM_ConstantExpression:
1198         case EM_ConstantExpressionUnevaluated:
1199           setActiveDiagnostic(false);
1200           return true;
1201         }
1202       }
1203       return false;
1204     }
1205 
1206     unsigned getCallStackDepth() override { return CallStackDepth; }
1207 
1208   public:
1209     /// Should we continue evaluation after encountering a side-effect that we
1210     /// couldn't model?
1211     bool keepEvaluatingAfterSideEffect() {
1212       switch (EvalMode) {
1213       case EM_IgnoreSideEffects:
1214         return true;
1215 
1216       case EM_ConstantExpression:
1217       case EM_ConstantExpressionUnevaluated:
1218       case EM_ConstantFold:
1219         // By default, assume any side effect might be valid in some other
1220         // evaluation of this expression from a different context.
1221         return checkingPotentialConstantExpression() ||
1222                checkingForUndefinedBehavior();
1223       }
1224       llvm_unreachable("Missed EvalMode case");
1225     }
1226 
1227     /// Note that we have had a side-effect, and determine whether we should
1228     /// keep evaluating.
1229     bool noteSideEffect() {
1230       EvalStatus.HasSideEffects = true;
1231       return keepEvaluatingAfterSideEffect();
1232     }
1233 
1234     /// Should we continue evaluation after encountering undefined behavior?
1235     bool keepEvaluatingAfterUndefinedBehavior() {
1236       switch (EvalMode) {
1237       case EM_IgnoreSideEffects:
1238       case EM_ConstantFold:
1239         return true;
1240 
1241       case EM_ConstantExpression:
1242       case EM_ConstantExpressionUnevaluated:
1243         return checkingForUndefinedBehavior();
1244       }
1245       llvm_unreachable("Missed EvalMode case");
1246     }
1247 
1248     /// Note that we hit something that was technically undefined behavior, but
1249     /// that we can evaluate past it (such as signed overflow or floating-point
1250     /// division by zero.)
1251     bool noteUndefinedBehavior() override {
1252       EvalStatus.HasUndefinedBehavior = true;
1253       return keepEvaluatingAfterUndefinedBehavior();
1254     }
1255 
1256     /// Should we continue evaluation as much as possible after encountering a
1257     /// construct which can't be reduced to a value?
1258     bool keepEvaluatingAfterFailure() const override {
1259       if (!StepsLeft)
1260         return false;
1261 
1262       switch (EvalMode) {
1263       case EM_ConstantExpression:
1264       case EM_ConstantExpressionUnevaluated:
1265       case EM_ConstantFold:
1266       case EM_IgnoreSideEffects:
1267         return checkingPotentialConstantExpression() ||
1268                checkingForUndefinedBehavior();
1269       }
1270       llvm_unreachable("Missed EvalMode case");
1271     }
1272 
1273     /// Notes that we failed to evaluate an expression that other expressions
1274     /// directly depend on, and determine if we should keep evaluating. This
1275     /// should only be called if we actually intend to keep evaluating.
1276     ///
1277     /// Call noteSideEffect() instead if we may be able to ignore the value that
1278     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1279     ///
1280     /// (Foo(), 1)      // use noteSideEffect
1281     /// (Foo() || true) // use noteSideEffect
1282     /// Foo() + 1       // use noteFailure
1283     [[nodiscard]] bool noteFailure() {
1284       // Failure when evaluating some expression often means there is some
1285       // subexpression whose evaluation was skipped. Therefore, (because we
1286       // don't track whether we skipped an expression when unwinding after an
1287       // evaluation failure) every evaluation failure that bubbles up from a
1288       // subexpression implies that a side-effect has potentially happened. We
1289       // skip setting the HasSideEffects flag to true until we decide to
1290       // continue evaluating after that point, which happens here.
1291       bool KeepGoing = keepEvaluatingAfterFailure();
1292       EvalStatus.HasSideEffects |= KeepGoing;
1293       return KeepGoing;
1294     }
1295 
1296     class ArrayInitLoopIndex {
1297       EvalInfo &Info;
1298       uint64_t OuterIndex;
1299 
1300     public:
1301       ArrayInitLoopIndex(EvalInfo &Info)
1302           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1303         Info.ArrayInitIndex = 0;
1304       }
1305       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1306 
1307       operator uint64_t&() { return Info.ArrayInitIndex; }
1308     };
1309   };
1310 
1311   /// Object used to treat all foldable expressions as constant expressions.
1312   struct FoldConstant {
1313     EvalInfo &Info;
1314     bool Enabled;
1315     bool HadNoPriorDiags;
1316     EvalInfo::EvaluationMode OldMode;
1317 
1318     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1319       : Info(Info),
1320         Enabled(Enabled),
1321         HadNoPriorDiags(Info.EvalStatus.Diag &&
1322                         Info.EvalStatus.Diag->empty() &&
1323                         !Info.EvalStatus.HasSideEffects),
1324         OldMode(Info.EvalMode) {
1325       if (Enabled)
1326         Info.EvalMode = EvalInfo::EM_ConstantFold;
1327     }
1328     void keepDiagnostics() { Enabled = false; }
1329     ~FoldConstant() {
1330       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1331           !Info.EvalStatus.HasSideEffects)
1332         Info.EvalStatus.Diag->clear();
1333       Info.EvalMode = OldMode;
1334     }
1335   };
1336 
1337   /// RAII object used to set the current evaluation mode to ignore
1338   /// side-effects.
1339   struct IgnoreSideEffectsRAII {
1340     EvalInfo &Info;
1341     EvalInfo::EvaluationMode OldMode;
1342     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1343         : Info(Info), OldMode(Info.EvalMode) {
1344       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1345     }
1346 
1347     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1348   };
1349 
1350   /// RAII object used to optionally suppress diagnostics and side-effects from
1351   /// a speculative evaluation.
1352   class SpeculativeEvaluationRAII {
1353     EvalInfo *Info = nullptr;
1354     Expr::EvalStatus OldStatus;
1355     unsigned OldSpeculativeEvaluationDepth = 0;
1356 
1357     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1358       Info = Other.Info;
1359       OldStatus = Other.OldStatus;
1360       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1361       Other.Info = nullptr;
1362     }
1363 
1364     void maybeRestoreState() {
1365       if (!Info)
1366         return;
1367 
1368       Info->EvalStatus = OldStatus;
1369       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1370     }
1371 
1372   public:
1373     SpeculativeEvaluationRAII() = default;
1374 
1375     SpeculativeEvaluationRAII(
1376         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1377         : Info(&Info), OldStatus(Info.EvalStatus),
1378           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1379       Info.EvalStatus.Diag = NewDiag;
1380       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1381     }
1382 
1383     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1384     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1385       moveFromAndCancel(std::move(Other));
1386     }
1387 
1388     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1389       maybeRestoreState();
1390       moveFromAndCancel(std::move(Other));
1391       return *this;
1392     }
1393 
1394     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1395   };
1396 
1397   /// RAII object wrapping a full-expression or block scope, and handling
1398   /// the ending of the lifetime of temporaries created within it.
1399   template<ScopeKind Kind>
1400   class ScopeRAII {
1401     EvalInfo &Info;
1402     unsigned OldStackSize;
1403   public:
1404     ScopeRAII(EvalInfo &Info)
1405         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1406       // Push a new temporary version. This is needed to distinguish between
1407       // temporaries created in different iterations of a loop.
1408       Info.CurrentCall->pushTempVersion();
1409     }
1410     bool destroy(bool RunDestructors = true) {
1411       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1412       OldStackSize = -1U;
1413       return OK;
1414     }
1415     ~ScopeRAII() {
1416       if (OldStackSize != -1U)
1417         destroy(false);
1418       // Body moved to a static method to encourage the compiler to inline away
1419       // instances of this class.
1420       Info.CurrentCall->popTempVersion();
1421     }
1422   private:
1423     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1424                         unsigned OldStackSize) {
1425       assert(OldStackSize <= Info.CleanupStack.size() &&
1426              "running cleanups out of order?");
1427 
1428       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1429       // for a full-expression scope.
1430       bool Success = true;
1431       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1432         if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1433           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1434             Success = false;
1435             break;
1436           }
1437         }
1438       }
1439 
1440       // Compact any retained cleanups.
1441       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1442       if (Kind != ScopeKind::Block)
1443         NewEnd =
1444             std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1445               return C.isDestroyedAtEndOf(Kind);
1446             });
1447       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1448       return Success;
1449     }
1450   };
1451   typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1452   typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1453   typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1454 }
1455 
1456 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1457                                          CheckSubobjectKind CSK) {
1458   if (Invalid)
1459     return false;
1460   if (isOnePastTheEnd()) {
1461     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1462       << CSK;
1463     setInvalid();
1464     return false;
1465   }
1466   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1467   // must actually be at least one array element; even a VLA cannot have a
1468   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1469   return true;
1470 }
1471 
1472 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1473                                                                 const Expr *E) {
1474   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1475   // Do not set the designator as invalid: we can represent this situation,
1476   // and correct handling of __builtin_object_size requires us to do so.
1477 }
1478 
1479 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1480                                                     const Expr *E,
1481                                                     const APSInt &N) {
1482   // If we're complaining, we must be able to statically determine the size of
1483   // the most derived array.
1484   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1485     Info.CCEDiag(E, diag::note_constexpr_array_index)
1486       << N << /*array*/ 0
1487       << static_cast<unsigned>(getMostDerivedArraySize());
1488   else
1489     Info.CCEDiag(E, diag::note_constexpr_array_index)
1490       << N << /*non-array*/ 1;
1491   setInvalid();
1492 }
1493 
1494 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange,
1495                                const FunctionDecl *Callee, const LValue *This,
1496                                const Expr *CallExpr, CallRef Call)
1497     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1498       CallExpr(CallExpr), Arguments(Call), CallRange(CallRange),
1499       Index(Info.NextCallIndex++) {
1500   Info.CurrentCall = this;
1501   ++Info.CallStackDepth;
1502 }
1503 
1504 CallStackFrame::~CallStackFrame() {
1505   assert(Info.CurrentCall == this && "calls retired out of order");
1506   --Info.CallStackDepth;
1507   Info.CurrentCall = Caller;
1508 }
1509 
1510 static bool isRead(AccessKinds AK) {
1511   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1512 }
1513 
1514 static bool isModification(AccessKinds AK) {
1515   switch (AK) {
1516   case AK_Read:
1517   case AK_ReadObjectRepresentation:
1518   case AK_MemberCall:
1519   case AK_DynamicCast:
1520   case AK_TypeId:
1521     return false;
1522   case AK_Assign:
1523   case AK_Increment:
1524   case AK_Decrement:
1525   case AK_Construct:
1526   case AK_Destroy:
1527     return true;
1528   }
1529   llvm_unreachable("unknown access kind");
1530 }
1531 
1532 static bool isAnyAccess(AccessKinds AK) {
1533   return isRead(AK) || isModification(AK);
1534 }
1535 
1536 /// Is this an access per the C++ definition?
1537 static bool isFormalAccess(AccessKinds AK) {
1538   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1539 }
1540 
1541 /// Is this kind of axcess valid on an indeterminate object value?
1542 static bool isValidIndeterminateAccess(AccessKinds AK) {
1543   switch (AK) {
1544   case AK_Read:
1545   case AK_Increment:
1546   case AK_Decrement:
1547     // These need the object's value.
1548     return false;
1549 
1550   case AK_ReadObjectRepresentation:
1551   case AK_Assign:
1552   case AK_Construct:
1553   case AK_Destroy:
1554     // Construction and destruction don't need the value.
1555     return true;
1556 
1557   case AK_MemberCall:
1558   case AK_DynamicCast:
1559   case AK_TypeId:
1560     // These aren't really meaningful on scalars.
1561     return true;
1562   }
1563   llvm_unreachable("unknown access kind");
1564 }
1565 
1566 namespace {
1567   struct ComplexValue {
1568   private:
1569     bool IsInt;
1570 
1571   public:
1572     APSInt IntReal, IntImag;
1573     APFloat FloatReal, FloatImag;
1574 
1575     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1576 
1577     void makeComplexFloat() { IsInt = false; }
1578     bool isComplexFloat() const { return !IsInt; }
1579     APFloat &getComplexFloatReal() { return FloatReal; }
1580     APFloat &getComplexFloatImag() { return FloatImag; }
1581 
1582     void makeComplexInt() { IsInt = true; }
1583     bool isComplexInt() const { return IsInt; }
1584     APSInt &getComplexIntReal() { return IntReal; }
1585     APSInt &getComplexIntImag() { return IntImag; }
1586 
1587     void moveInto(APValue &v) const {
1588       if (isComplexFloat())
1589         v = APValue(FloatReal, FloatImag);
1590       else
1591         v = APValue(IntReal, IntImag);
1592     }
1593     void setFrom(const APValue &v) {
1594       assert(v.isComplexFloat() || v.isComplexInt());
1595       if (v.isComplexFloat()) {
1596         makeComplexFloat();
1597         FloatReal = v.getComplexFloatReal();
1598         FloatImag = v.getComplexFloatImag();
1599       } else {
1600         makeComplexInt();
1601         IntReal = v.getComplexIntReal();
1602         IntImag = v.getComplexIntImag();
1603       }
1604     }
1605   };
1606 
1607   struct LValue {
1608     APValue::LValueBase Base;
1609     CharUnits Offset;
1610     SubobjectDesignator Designator;
1611     bool IsNullPtr : 1;
1612     bool InvalidBase : 1;
1613 
1614     const APValue::LValueBase getLValueBase() const { return Base; }
1615     CharUnits &getLValueOffset() { return Offset; }
1616     const CharUnits &getLValueOffset() const { return Offset; }
1617     SubobjectDesignator &getLValueDesignator() { return Designator; }
1618     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1619     bool isNullPointer() const { return IsNullPtr;}
1620 
1621     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1622     unsigned getLValueVersion() const { return Base.getVersion(); }
1623 
1624     void moveInto(APValue &V) const {
1625       if (Designator.Invalid)
1626         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1627       else {
1628         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1629         V = APValue(Base, Offset, Designator.Entries,
1630                     Designator.IsOnePastTheEnd, IsNullPtr);
1631       }
1632     }
1633     void setFrom(ASTContext &Ctx, const APValue &V) {
1634       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1635       Base = V.getLValueBase();
1636       Offset = V.getLValueOffset();
1637       InvalidBase = false;
1638       Designator = SubobjectDesignator(Ctx, V);
1639       IsNullPtr = V.isNullPointer();
1640     }
1641 
1642     void set(APValue::LValueBase B, bool BInvalid = false) {
1643 #ifndef NDEBUG
1644       // We only allow a few types of invalid bases. Enforce that here.
1645       if (BInvalid) {
1646         const auto *E = B.get<const Expr *>();
1647         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1648                "Unexpected type of invalid base");
1649       }
1650 #endif
1651 
1652       Base = B;
1653       Offset = CharUnits::fromQuantity(0);
1654       InvalidBase = BInvalid;
1655       Designator = SubobjectDesignator(getType(B));
1656       IsNullPtr = false;
1657     }
1658 
1659     void setNull(ASTContext &Ctx, QualType PointerTy) {
1660       Base = (const ValueDecl *)nullptr;
1661       Offset =
1662           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1663       InvalidBase = false;
1664       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1665       IsNullPtr = true;
1666     }
1667 
1668     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1669       set(B, true);
1670     }
1671 
1672     std::string toString(ASTContext &Ctx, QualType T) const {
1673       APValue Printable;
1674       moveInto(Printable);
1675       return Printable.getAsString(Ctx, T);
1676     }
1677 
1678   private:
1679     // Check that this LValue is not based on a null pointer. If it is, produce
1680     // a diagnostic and mark the designator as invalid.
1681     template <typename GenDiagType>
1682     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1683       if (Designator.Invalid)
1684         return false;
1685       if (IsNullPtr) {
1686         GenDiag();
1687         Designator.setInvalid();
1688         return false;
1689       }
1690       return true;
1691     }
1692 
1693   public:
1694     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1695                           CheckSubobjectKind CSK) {
1696       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1697         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1698       });
1699     }
1700 
1701     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1702                                        AccessKinds AK) {
1703       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1704         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1705       });
1706     }
1707 
1708     // Check this LValue refers to an object. If not, set the designator to be
1709     // invalid and emit a diagnostic.
1710     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1711       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1712              Designator.checkSubobject(Info, E, CSK);
1713     }
1714 
1715     void addDecl(EvalInfo &Info, const Expr *E,
1716                  const Decl *D, bool Virtual = false) {
1717       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1718         Designator.addDeclUnchecked(D, Virtual);
1719     }
1720     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1721       if (!Designator.Entries.empty()) {
1722         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1723         Designator.setInvalid();
1724         return;
1725       }
1726       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1727         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1728         Designator.FirstEntryIsAnUnsizedArray = true;
1729         Designator.addUnsizedArrayUnchecked(ElemTy);
1730       }
1731     }
1732     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1733       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1734         Designator.addArrayUnchecked(CAT);
1735     }
1736     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1737       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1738         Designator.addComplexUnchecked(EltTy, Imag);
1739     }
1740     void clearIsNullPointer() {
1741       IsNullPtr = false;
1742     }
1743     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1744                               const APSInt &Index, CharUnits ElementSize) {
1745       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1746       // but we're not required to diagnose it and it's valid in C++.)
1747       if (!Index)
1748         return;
1749 
1750       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1751       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1752       // offsets.
1753       uint64_t Offset64 = Offset.getQuantity();
1754       uint64_t ElemSize64 = ElementSize.getQuantity();
1755       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1756       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1757 
1758       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1759         Designator.adjustIndex(Info, E, Index);
1760       clearIsNullPointer();
1761     }
1762     void adjustOffset(CharUnits N) {
1763       Offset += N;
1764       if (N.getQuantity())
1765         clearIsNullPointer();
1766     }
1767   };
1768 
1769   struct MemberPtr {
1770     MemberPtr() {}
1771     explicit MemberPtr(const ValueDecl *Decl)
1772         : DeclAndIsDerivedMember(Decl, false) {}
1773 
1774     /// The member or (direct or indirect) field referred to by this member
1775     /// pointer, or 0 if this is a null member pointer.
1776     const ValueDecl *getDecl() const {
1777       return DeclAndIsDerivedMember.getPointer();
1778     }
1779     /// Is this actually a member of some type derived from the relevant class?
1780     bool isDerivedMember() const {
1781       return DeclAndIsDerivedMember.getInt();
1782     }
1783     /// Get the class which the declaration actually lives in.
1784     const CXXRecordDecl *getContainingRecord() const {
1785       return cast<CXXRecordDecl>(
1786           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1787     }
1788 
1789     void moveInto(APValue &V) const {
1790       V = APValue(getDecl(), isDerivedMember(), Path);
1791     }
1792     void setFrom(const APValue &V) {
1793       assert(V.isMemberPointer());
1794       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1795       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1796       Path.clear();
1797       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1798       Path.insert(Path.end(), P.begin(), P.end());
1799     }
1800 
1801     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1802     /// whether the member is a member of some class derived from the class type
1803     /// of the member pointer.
1804     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1805     /// Path - The path of base/derived classes from the member declaration's
1806     /// class (exclusive) to the class type of the member pointer (inclusive).
1807     SmallVector<const CXXRecordDecl*, 4> Path;
1808 
1809     /// Perform a cast towards the class of the Decl (either up or down the
1810     /// hierarchy).
1811     bool castBack(const CXXRecordDecl *Class) {
1812       assert(!Path.empty());
1813       const CXXRecordDecl *Expected;
1814       if (Path.size() >= 2)
1815         Expected = Path[Path.size() - 2];
1816       else
1817         Expected = getContainingRecord();
1818       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1819         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1820         // if B does not contain the original member and is not a base or
1821         // derived class of the class containing the original member, the result
1822         // of the cast is undefined.
1823         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1824         // (D::*). We consider that to be a language defect.
1825         return false;
1826       }
1827       Path.pop_back();
1828       return true;
1829     }
1830     /// Perform a base-to-derived member pointer cast.
1831     bool castToDerived(const CXXRecordDecl *Derived) {
1832       if (!getDecl())
1833         return true;
1834       if (!isDerivedMember()) {
1835         Path.push_back(Derived);
1836         return true;
1837       }
1838       if (!castBack(Derived))
1839         return false;
1840       if (Path.empty())
1841         DeclAndIsDerivedMember.setInt(false);
1842       return true;
1843     }
1844     /// Perform a derived-to-base member pointer cast.
1845     bool castToBase(const CXXRecordDecl *Base) {
1846       if (!getDecl())
1847         return true;
1848       if (Path.empty())
1849         DeclAndIsDerivedMember.setInt(true);
1850       if (isDerivedMember()) {
1851         Path.push_back(Base);
1852         return true;
1853       }
1854       return castBack(Base);
1855     }
1856   };
1857 
1858   /// Compare two member pointers, which are assumed to be of the same type.
1859   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1860     if (!LHS.getDecl() || !RHS.getDecl())
1861       return !LHS.getDecl() && !RHS.getDecl();
1862     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1863       return false;
1864     return LHS.Path == RHS.Path;
1865   }
1866 }
1867 
1868 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1869 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1870                             const LValue &This, const Expr *E,
1871                             bool AllowNonLiteralTypes = false);
1872 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1873                            bool InvalidBaseOK = false);
1874 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1875                             bool InvalidBaseOK = false);
1876 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1877                                   EvalInfo &Info);
1878 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1879 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1880 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1881                                     EvalInfo &Info);
1882 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1883 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1884 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1885                            EvalInfo &Info);
1886 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1887 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1888                                   EvalInfo &Info,
1889                                   std::string *StringResult = nullptr);
1890 
1891 /// Evaluate an integer or fixed point expression into an APResult.
1892 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1893                                         EvalInfo &Info);
1894 
1895 /// Evaluate only a fixed point expression into an APResult.
1896 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1897                                EvalInfo &Info);
1898 
1899 //===----------------------------------------------------------------------===//
1900 // Misc utilities
1901 //===----------------------------------------------------------------------===//
1902 
1903 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1904 /// preserving its value (by extending by up to one bit as needed).
1905 static void negateAsSigned(APSInt &Int) {
1906   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1907     Int = Int.extend(Int.getBitWidth() + 1);
1908     Int.setIsSigned(true);
1909   }
1910   Int = -Int;
1911 }
1912 
1913 template<typename KeyT>
1914 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1915                                          ScopeKind Scope, LValue &LV) {
1916   unsigned Version = getTempVersion();
1917   APValue::LValueBase Base(Key, Index, Version);
1918   LV.set(Base);
1919   return createLocal(Base, Key, T, Scope);
1920 }
1921 
1922 /// Allocate storage for a parameter of a function call made in this frame.
1923 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1924                                      LValue &LV) {
1925   assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1926   APValue::LValueBase Base(PVD, Index, Args.Version);
1927   LV.set(Base);
1928   // We always destroy parameters at the end of the call, even if we'd allow
1929   // them to live to the end of the full-expression at runtime, in order to
1930   // give portable results and match other compilers.
1931   return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1932 }
1933 
1934 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1935                                      QualType T, ScopeKind Scope) {
1936   assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1937   unsigned Version = Base.getVersion();
1938   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1939   assert(Result.isAbsent() && "local created multiple times");
1940 
1941   // If we're creating a local immediately in the operand of a speculative
1942   // evaluation, don't register a cleanup to be run outside the speculative
1943   // evaluation context, since we won't actually be able to initialize this
1944   // object.
1945   if (Index <= Info.SpeculativeEvaluationDepth) {
1946     if (T.isDestructedType())
1947       Info.noteSideEffect();
1948   } else {
1949     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1950   }
1951   return Result;
1952 }
1953 
1954 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1955   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1956     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1957     return nullptr;
1958   }
1959 
1960   DynamicAllocLValue DA(NumHeapAllocs++);
1961   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1962   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1963                                    std::forward_as_tuple(DA), std::tuple<>());
1964   assert(Result.second && "reused a heap alloc index?");
1965   Result.first->second.AllocExpr = E;
1966   return &Result.first->second.Value;
1967 }
1968 
1969 /// Produce a string describing the given constexpr call.
1970 void CallStackFrame::describe(raw_ostream &Out) const {
1971   unsigned ArgIndex = 0;
1972   bool IsMemberCall =
1973       isa<CXXMethodDecl>(Callee) && !isa<CXXConstructorDecl>(Callee) &&
1974       cast<CXXMethodDecl>(Callee)->isImplicitObjectMemberFunction();
1975 
1976   if (!IsMemberCall)
1977     Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(),
1978                                  /*Qualified=*/false);
1979 
1980   if (This && IsMemberCall) {
1981     if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) {
1982       const Expr *Object = MCE->getImplicitObjectArgument();
1983       Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(),
1984                           /*Indentation=*/0);
1985       if (Object->getType()->isPointerType())
1986           Out << "->";
1987       else
1988           Out << ".";
1989     } else if (const auto *OCE =
1990                    dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) {
1991       OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr,
1992                                   Info.Ctx.getPrintingPolicy(),
1993                                   /*Indentation=*/0);
1994       Out << ".";
1995     } else {
1996       APValue Val;
1997       This->moveInto(Val);
1998       Val.printPretty(
1999           Out, Info.Ctx,
2000           Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType));
2001       Out << ".";
2002     }
2003     Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(),
2004                                  /*Qualified=*/false);
2005     IsMemberCall = false;
2006   }
2007 
2008   Out << '(';
2009 
2010   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
2011        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
2012     if (ArgIndex > (unsigned)IsMemberCall)
2013       Out << ", ";
2014 
2015     const ParmVarDecl *Param = *I;
2016     APValue *V = Info.getParamSlot(Arguments, Param);
2017     if (V)
2018       V->printPretty(Out, Info.Ctx, Param->getType());
2019     else
2020       Out << "<...>";
2021 
2022     if (ArgIndex == 0 && IsMemberCall)
2023       Out << "->" << *Callee << '(';
2024   }
2025 
2026   Out << ')';
2027 }
2028 
2029 /// Evaluate an expression to see if it had side-effects, and discard its
2030 /// result.
2031 /// \return \c true if the caller should keep evaluating.
2032 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
2033   assert(!E->isValueDependent());
2034   APValue Scratch;
2035   if (!Evaluate(Scratch, Info, E))
2036     // We don't need the value, but we might have skipped a side effect here.
2037     return Info.noteSideEffect();
2038   return true;
2039 }
2040 
2041 /// Should this call expression be treated as a no-op?
2042 static bool IsNoOpCall(const CallExpr *E) {
2043   unsigned Builtin = E->getBuiltinCallee();
2044   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
2045           Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
2046           Builtin == Builtin::BI__builtin_ptrauth_sign_constant ||
2047           Builtin == Builtin::BI__builtin_function_start);
2048 }
2049 
2050 static bool IsGlobalLValue(APValue::LValueBase B) {
2051   // C++11 [expr.const]p3 An address constant expression is a prvalue core
2052   // constant expression of pointer type that evaluates to...
2053 
2054   // ... a null pointer value, or a prvalue core constant expression of type
2055   // std::nullptr_t.
2056   if (!B)
2057     return true;
2058 
2059   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
2060     // ... the address of an object with static storage duration,
2061     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2062       return VD->hasGlobalStorage();
2063     if (isa<TemplateParamObjectDecl>(D))
2064       return true;
2065     // ... the address of a function,
2066     // ... the address of a GUID [MS extension],
2067     // ... the address of an unnamed global constant
2068     return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D);
2069   }
2070 
2071   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
2072     return true;
2073 
2074   const Expr *E = B.get<const Expr*>();
2075   switch (E->getStmtClass()) {
2076   default:
2077     return false;
2078   case Expr::CompoundLiteralExprClass: {
2079     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
2080     return CLE->isFileScope() && CLE->isLValue();
2081   }
2082   case Expr::MaterializeTemporaryExprClass:
2083     // A materialized temporary might have been lifetime-extended to static
2084     // storage duration.
2085     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2086   // A string literal has static storage duration.
2087   case Expr::StringLiteralClass:
2088   case Expr::PredefinedExprClass:
2089   case Expr::ObjCStringLiteralClass:
2090   case Expr::ObjCEncodeExprClass:
2091     return true;
2092   case Expr::ObjCBoxedExprClass:
2093     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2094   case Expr::CallExprClass:
2095     return IsNoOpCall(cast<CallExpr>(E));
2096   // For GCC compatibility, &&label has static storage duration.
2097   case Expr::AddrLabelExprClass:
2098     return true;
2099   // A Block literal expression may be used as the initialization value for
2100   // Block variables at global or local static scope.
2101   case Expr::BlockExprClass:
2102     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2103   // The APValue generated from a __builtin_source_location will be emitted as a
2104   // literal.
2105   case Expr::SourceLocExprClass:
2106     return true;
2107   case Expr::ImplicitValueInitExprClass:
2108     // FIXME:
2109     // We can never form an lvalue with an implicit value initialization as its
2110     // base through expression evaluation, so these only appear in one case: the
2111     // implicit variable declaration we invent when checking whether a constexpr
2112     // constructor can produce a constant expression. We must assume that such
2113     // an expression might be a global lvalue.
2114     return true;
2115   }
2116 }
2117 
2118 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2119   return LVal.Base.dyn_cast<const ValueDecl*>();
2120 }
2121 
2122 static bool IsLiteralLValue(const LValue &Value) {
2123   if (Value.getLValueCallIndex())
2124     return false;
2125   const Expr *E = Value.Base.dyn_cast<const Expr*>();
2126   return E && !isa<MaterializeTemporaryExpr>(E);
2127 }
2128 
2129 static bool IsWeakLValue(const LValue &Value) {
2130   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2131   return Decl && Decl->isWeak();
2132 }
2133 
2134 static bool isZeroSized(const LValue &Value) {
2135   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2136   if (isa_and_nonnull<VarDecl>(Decl)) {
2137     QualType Ty = Decl->getType();
2138     if (Ty->isArrayType())
2139       return Ty->isIncompleteType() ||
2140              Decl->getASTContext().getTypeSize(Ty) == 0;
2141   }
2142   return false;
2143 }
2144 
2145 static bool HasSameBase(const LValue &A, const LValue &B) {
2146   if (!A.getLValueBase())
2147     return !B.getLValueBase();
2148   if (!B.getLValueBase())
2149     return false;
2150 
2151   if (A.getLValueBase().getOpaqueValue() !=
2152       B.getLValueBase().getOpaqueValue())
2153     return false;
2154 
2155   return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2156          A.getLValueVersion() == B.getLValueVersion();
2157 }
2158 
2159 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2160   assert(Base && "no location for a null lvalue");
2161   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2162 
2163   // For a parameter, find the corresponding call stack frame (if it still
2164   // exists), and point at the parameter of the function definition we actually
2165   // invoked.
2166   if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2167     unsigned Idx = PVD->getFunctionScopeIndex();
2168     for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2169       if (F->Arguments.CallIndex == Base.getCallIndex() &&
2170           F->Arguments.Version == Base.getVersion() && F->Callee &&
2171           Idx < F->Callee->getNumParams()) {
2172         VD = F->Callee->getParamDecl(Idx);
2173         break;
2174       }
2175     }
2176   }
2177 
2178   if (VD)
2179     Info.Note(VD->getLocation(), diag::note_declared_at);
2180   else if (const Expr *E = Base.dyn_cast<const Expr*>())
2181     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2182   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2183     // FIXME: Produce a note for dangling pointers too.
2184     if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2185       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2186                 diag::note_constexpr_dynamic_alloc_here);
2187   }
2188 
2189   // We have no information to show for a typeid(T) object.
2190 }
2191 
2192 enum class CheckEvaluationResultKind {
2193   ConstantExpression,
2194   FullyInitialized,
2195 };
2196 
2197 /// Materialized temporaries that we've already checked to determine if they're
2198 /// initializsed by a constant expression.
2199 using CheckedTemporaries =
2200     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2201 
2202 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2203                                   EvalInfo &Info, SourceLocation DiagLoc,
2204                                   QualType Type, const APValue &Value,
2205                                   ConstantExprKind Kind,
2206                                   const FieldDecl *SubobjectDecl,
2207                                   CheckedTemporaries &CheckedTemps);
2208 
2209 /// Check that this reference or pointer core constant expression is a valid
2210 /// value for an address or reference constant expression. Return true if we
2211 /// can fold this expression, whether or not it's a constant expression.
2212 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2213                                           QualType Type, const LValue &LVal,
2214                                           ConstantExprKind Kind,
2215                                           CheckedTemporaries &CheckedTemps) {
2216   bool IsReferenceType = Type->isReferenceType();
2217 
2218   APValue::LValueBase Base = LVal.getLValueBase();
2219   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2220 
2221   const Expr *BaseE = Base.dyn_cast<const Expr *>();
2222   const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2223 
2224   // Additional restrictions apply in a template argument. We only enforce the
2225   // C++20 restrictions here; additional syntactic and semantic restrictions
2226   // are applied elsewhere.
2227   if (isTemplateArgument(Kind)) {
2228     int InvalidBaseKind = -1;
2229     StringRef Ident;
2230     if (Base.is<TypeInfoLValue>())
2231       InvalidBaseKind = 0;
2232     else if (isa_and_nonnull<StringLiteral>(BaseE))
2233       InvalidBaseKind = 1;
2234     else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2235              isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2236       InvalidBaseKind = 2;
2237     else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2238       InvalidBaseKind = 3;
2239       Ident = PE->getIdentKindName();
2240     }
2241 
2242     if (InvalidBaseKind != -1) {
2243       Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2244           << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2245           << Ident;
2246       return false;
2247     }
2248   }
2249 
2250   if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD);
2251       FD && FD->isImmediateFunction()) {
2252     Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2253         << !Type->isAnyPointerType();
2254     Info.Note(FD->getLocation(), diag::note_declared_at);
2255     return false;
2256   }
2257 
2258   // Check that the object is a global. Note that the fake 'this' object we
2259   // manufacture when checking potential constant expressions is conservatively
2260   // assumed to be global here.
2261   if (!IsGlobalLValue(Base)) {
2262     if (Info.getLangOpts().CPlusPlus11) {
2263       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2264           << IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2265           << BaseVD;
2266       auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD);
2267       if (VarD && VarD->isConstexpr()) {
2268         // Non-static local constexpr variables have unintuitive semantics:
2269         //   constexpr int a = 1;
2270         //   constexpr const int *p = &a;
2271         // ... is invalid because the address of 'a' is not constant. Suggest
2272         // adding a 'static' in this case.
2273         Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2274             << VarD
2275             << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2276       } else {
2277         NoteLValueLocation(Info, Base);
2278       }
2279     } else {
2280       Info.FFDiag(Loc);
2281     }
2282     // Don't allow references to temporaries to escape.
2283     return false;
2284   }
2285   assert((Info.checkingPotentialConstantExpression() ||
2286           LVal.getLValueCallIndex() == 0) &&
2287          "have call index for global lvalue");
2288 
2289   if (Base.is<DynamicAllocLValue>()) {
2290     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2291         << IsReferenceType << !Designator.Entries.empty();
2292     NoteLValueLocation(Info, Base);
2293     return false;
2294   }
2295 
2296   if (BaseVD) {
2297     if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2298       // Check if this is a thread-local variable.
2299       if (Var->getTLSKind())
2300         // FIXME: Diagnostic!
2301         return false;
2302 
2303       // A dllimport variable never acts like a constant, unless we're
2304       // evaluating a value for use only in name mangling.
2305       if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2306         // FIXME: Diagnostic!
2307         return false;
2308 
2309       // In CUDA/HIP device compilation, only device side variables have
2310       // constant addresses.
2311       if (Info.getCtx().getLangOpts().CUDA &&
2312           Info.getCtx().getLangOpts().CUDAIsDevice &&
2313           Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2314         if ((!Var->hasAttr<CUDADeviceAttr>() &&
2315              !Var->hasAttr<CUDAConstantAttr>() &&
2316              !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2317              !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2318             Var->hasAttr<HIPManagedAttr>())
2319           return false;
2320       }
2321     }
2322     if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2323       // __declspec(dllimport) must be handled very carefully:
2324       // We must never initialize an expression with the thunk in C++.
2325       // Doing otherwise would allow the same id-expression to yield
2326       // different addresses for the same function in different translation
2327       // units.  However, this means that we must dynamically initialize the
2328       // expression with the contents of the import address table at runtime.
2329       //
2330       // The C language has no notion of ODR; furthermore, it has no notion of
2331       // dynamic initialization.  This means that we are permitted to
2332       // perform initialization with the address of the thunk.
2333       if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2334           FD->hasAttr<DLLImportAttr>())
2335         // FIXME: Diagnostic!
2336         return false;
2337     }
2338   } else if (const auto *MTE =
2339                  dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2340     if (CheckedTemps.insert(MTE).second) {
2341       QualType TempType = getType(Base);
2342       if (TempType.isDestructedType()) {
2343         Info.FFDiag(MTE->getExprLoc(),
2344                     diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2345             << TempType;
2346         return false;
2347       }
2348 
2349       APValue *V = MTE->getOrCreateValue(false);
2350       assert(V && "evasluation result refers to uninitialised temporary");
2351       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2352                                  Info, MTE->getExprLoc(), TempType, *V, Kind,
2353                                  /*SubobjectDecl=*/nullptr, CheckedTemps))
2354         return false;
2355     }
2356   }
2357 
2358   // Allow address constant expressions to be past-the-end pointers. This is
2359   // an extension: the standard requires them to point to an object.
2360   if (!IsReferenceType)
2361     return true;
2362 
2363   // A reference constant expression must refer to an object.
2364   if (!Base) {
2365     // FIXME: diagnostic
2366     Info.CCEDiag(Loc);
2367     return true;
2368   }
2369 
2370   // Does this refer one past the end of some object?
2371   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2372     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2373       << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2374     NoteLValueLocation(Info, Base);
2375   }
2376 
2377   return true;
2378 }
2379 
2380 /// Member pointers are constant expressions unless they point to a
2381 /// non-virtual dllimport member function.
2382 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2383                                                  SourceLocation Loc,
2384                                                  QualType Type,
2385                                                  const APValue &Value,
2386                                                  ConstantExprKind Kind) {
2387   const ValueDecl *Member = Value.getMemberPointerDecl();
2388   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2389   if (!FD)
2390     return true;
2391   if (FD->isImmediateFunction()) {
2392     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2393     Info.Note(FD->getLocation(), diag::note_declared_at);
2394     return false;
2395   }
2396   return isForManglingOnly(Kind) || FD->isVirtual() ||
2397          !FD->hasAttr<DLLImportAttr>();
2398 }
2399 
2400 /// Check that this core constant expression is of literal type, and if not,
2401 /// produce an appropriate diagnostic.
2402 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2403                              const LValue *This = nullptr) {
2404   if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2405     return true;
2406 
2407   // C++1y: A constant initializer for an object o [...] may also invoke
2408   // constexpr constructors for o and its subobjects even if those objects
2409   // are of non-literal class types.
2410   //
2411   // C++11 missed this detail for aggregates, so classes like this:
2412   //   struct foo_t { union { int i; volatile int j; } u; };
2413   // are not (obviously) initializable like so:
2414   //   __attribute__((__require_constant_initialization__))
2415   //   static const foo_t x = {{0}};
2416   // because "i" is a subobject with non-literal initialization (due to the
2417   // volatile member of the union). See:
2418   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2419   // Therefore, we use the C++1y behavior.
2420   if (This && Info.EvaluatingDecl == This->getLValueBase())
2421     return true;
2422 
2423   // Prvalue constant expressions must be of literal types.
2424   if (Info.getLangOpts().CPlusPlus11)
2425     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2426       << E->getType();
2427   else
2428     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2429   return false;
2430 }
2431 
2432 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2433                                   EvalInfo &Info, SourceLocation DiagLoc,
2434                                   QualType Type, const APValue &Value,
2435                                   ConstantExprKind Kind,
2436                                   const FieldDecl *SubobjectDecl,
2437                                   CheckedTemporaries &CheckedTemps) {
2438   if (!Value.hasValue()) {
2439     if (SubobjectDecl) {
2440       Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2441           << /*(name)*/ 1 << SubobjectDecl;
2442       Info.Note(SubobjectDecl->getLocation(),
2443                 diag::note_constexpr_subobject_declared_here);
2444     } else {
2445       Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2446           << /*of type*/ 0 << Type;
2447     }
2448     return false;
2449   }
2450 
2451   // We allow _Atomic(T) to be initialized from anything that T can be
2452   // initialized from.
2453   if (const AtomicType *AT = Type->getAs<AtomicType>())
2454     Type = AT->getValueType();
2455 
2456   // Core issue 1454: For a literal constant expression of array or class type,
2457   // each subobject of its value shall have been initialized by a constant
2458   // expression.
2459   if (Value.isArray()) {
2460     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2461     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2462       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2463                                  Value.getArrayInitializedElt(I), Kind,
2464                                  SubobjectDecl, CheckedTemps))
2465         return false;
2466     }
2467     if (!Value.hasArrayFiller())
2468       return true;
2469     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2470                                  Value.getArrayFiller(), Kind, SubobjectDecl,
2471                                  CheckedTemps);
2472   }
2473   if (Value.isUnion() && Value.getUnionField()) {
2474     return CheckEvaluationResult(
2475         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2476         Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps);
2477   }
2478   if (Value.isStruct()) {
2479     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2480     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2481       unsigned BaseIndex = 0;
2482       for (const CXXBaseSpecifier &BS : CD->bases()) {
2483         const APValue &BaseValue = Value.getStructBase(BaseIndex);
2484         if (!BaseValue.hasValue()) {
2485           SourceLocation TypeBeginLoc = BS.getBaseTypeLoc();
2486           Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base)
2487               << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc());
2488           return false;
2489         }
2490         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue,
2491                                    Kind, /*SubobjectDecl=*/nullptr,
2492                                    CheckedTemps))
2493           return false;
2494         ++BaseIndex;
2495       }
2496     }
2497     for (const auto *I : RD->fields()) {
2498       if (I->isUnnamedBitField())
2499         continue;
2500 
2501       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2502                                  Value.getStructField(I->getFieldIndex()), Kind,
2503                                  I, CheckedTemps))
2504         return false;
2505     }
2506   }
2507 
2508   if (Value.isLValue() &&
2509       CERK == CheckEvaluationResultKind::ConstantExpression) {
2510     LValue LVal;
2511     LVal.setFrom(Info.Ctx, Value);
2512     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2513                                          CheckedTemps);
2514   }
2515 
2516   if (Value.isMemberPointer() &&
2517       CERK == CheckEvaluationResultKind::ConstantExpression)
2518     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2519 
2520   // Everything else is fine.
2521   return true;
2522 }
2523 
2524 /// Check that this core constant expression value is a valid value for a
2525 /// constant expression. If not, report an appropriate diagnostic. Does not
2526 /// check that the expression is of literal type.
2527 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2528                                     QualType Type, const APValue &Value,
2529                                     ConstantExprKind Kind) {
2530   // Nothing to check for a constant expression of type 'cv void'.
2531   if (Type->isVoidType())
2532     return true;
2533 
2534   CheckedTemporaries CheckedTemps;
2535   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2536                                Info, DiagLoc, Type, Value, Kind,
2537                                /*SubobjectDecl=*/nullptr, CheckedTemps);
2538 }
2539 
2540 /// Check that this evaluated value is fully-initialized and can be loaded by
2541 /// an lvalue-to-rvalue conversion.
2542 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2543                                   QualType Type, const APValue &Value) {
2544   CheckedTemporaries CheckedTemps;
2545   return CheckEvaluationResult(
2546       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2547       ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps);
2548 }
2549 
2550 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2551 /// "the allocated storage is deallocated within the evaluation".
2552 static bool CheckMemoryLeaks(EvalInfo &Info) {
2553   if (!Info.HeapAllocs.empty()) {
2554     // We can still fold to a constant despite a compile-time memory leak,
2555     // so long as the heap allocation isn't referenced in the result (we check
2556     // that in CheckConstantExpression).
2557     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2558                  diag::note_constexpr_memory_leak)
2559         << unsigned(Info.HeapAllocs.size() - 1);
2560   }
2561   return true;
2562 }
2563 
2564 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2565   // A null base expression indicates a null pointer.  These are always
2566   // evaluatable, and they are false unless the offset is zero.
2567   if (!Value.getLValueBase()) {
2568     // TODO: Should a non-null pointer with an offset of zero evaluate to true?
2569     Result = !Value.getLValueOffset().isZero();
2570     return true;
2571   }
2572 
2573   // We have a non-null base.  These are generally known to be true, but if it's
2574   // a weak declaration it can be null at runtime.
2575   Result = true;
2576   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2577   return !Decl || !Decl->isWeak();
2578 }
2579 
2580 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2581   // TODO: This function should produce notes if it fails.
2582   switch (Val.getKind()) {
2583   case APValue::None:
2584   case APValue::Indeterminate:
2585     return false;
2586   case APValue::Int:
2587     Result = Val.getInt().getBoolValue();
2588     return true;
2589   case APValue::FixedPoint:
2590     Result = Val.getFixedPoint().getBoolValue();
2591     return true;
2592   case APValue::Float:
2593     Result = !Val.getFloat().isZero();
2594     return true;
2595   case APValue::ComplexInt:
2596     Result = Val.getComplexIntReal().getBoolValue() ||
2597              Val.getComplexIntImag().getBoolValue();
2598     return true;
2599   case APValue::ComplexFloat:
2600     Result = !Val.getComplexFloatReal().isZero() ||
2601              !Val.getComplexFloatImag().isZero();
2602     return true;
2603   case APValue::LValue:
2604     return EvalPointerValueAsBool(Val, Result);
2605   case APValue::MemberPointer:
2606     if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2607       return false;
2608     }
2609     Result = Val.getMemberPointerDecl();
2610     return true;
2611   case APValue::Vector:
2612   case APValue::Array:
2613   case APValue::Struct:
2614   case APValue::Union:
2615   case APValue::AddrLabelDiff:
2616     return false;
2617   }
2618 
2619   llvm_unreachable("unknown APValue kind");
2620 }
2621 
2622 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2623                                        EvalInfo &Info) {
2624   assert(!E->isValueDependent());
2625   assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2626   APValue Val;
2627   if (!Evaluate(Val, Info, E))
2628     return false;
2629   return HandleConversionToBool(Val, Result);
2630 }
2631 
2632 template<typename T>
2633 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2634                            const T &SrcValue, QualType DestType) {
2635   Info.CCEDiag(E, diag::note_constexpr_overflow)
2636     << SrcValue << DestType;
2637   return Info.noteUndefinedBehavior();
2638 }
2639 
2640 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2641                                  QualType SrcType, const APFloat &Value,
2642                                  QualType DestType, APSInt &Result) {
2643   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2644   // Determine whether we are converting to unsigned or signed.
2645   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2646 
2647   Result = APSInt(DestWidth, !DestSigned);
2648   bool ignored;
2649   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2650       & APFloat::opInvalidOp)
2651     return HandleOverflow(Info, E, Value, DestType);
2652   return true;
2653 }
2654 
2655 /// Get rounding mode to use in evaluation of the specified expression.
2656 ///
2657 /// If rounding mode is unknown at compile time, still try to evaluate the
2658 /// expression. If the result is exact, it does not depend on rounding mode.
2659 /// So return "tonearest" mode instead of "dynamic".
2660 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2661   llvm::RoundingMode RM =
2662       E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2663   if (RM == llvm::RoundingMode::Dynamic)
2664     RM = llvm::RoundingMode::NearestTiesToEven;
2665   return RM;
2666 }
2667 
2668 /// Check if the given evaluation result is allowed for constant evaluation.
2669 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2670                                      APFloat::opStatus St) {
2671   // In a constant context, assume that any dynamic rounding mode or FP
2672   // exception state matches the default floating-point environment.
2673   if (Info.InConstantContext)
2674     return true;
2675 
2676   FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2677   if ((St & APFloat::opInexact) &&
2678       FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2679     // Inexact result means that it depends on rounding mode. If the requested
2680     // mode is dynamic, the evaluation cannot be made in compile time.
2681     Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2682     return false;
2683   }
2684 
2685   if ((St != APFloat::opOK) &&
2686       (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2687        FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2688        FPO.getAllowFEnvAccess())) {
2689     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2690     return false;
2691   }
2692 
2693   if ((St & APFloat::opStatus::opInvalidOp) &&
2694       FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2695     // There is no usefully definable result.
2696     Info.FFDiag(E);
2697     return false;
2698   }
2699 
2700   // FIXME: if:
2701   // - evaluation triggered other FP exception, and
2702   // - exception mode is not "ignore", and
2703   // - the expression being evaluated is not a part of global variable
2704   //   initializer,
2705   // the evaluation probably need to be rejected.
2706   return true;
2707 }
2708 
2709 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2710                                    QualType SrcType, QualType DestType,
2711                                    APFloat &Result) {
2712   assert((isa<CastExpr>(E) || isa<CompoundAssignOperator>(E) ||
2713           isa<ConvertVectorExpr>(E)) &&
2714          "HandleFloatToFloatCast has been checked with only CastExpr, "
2715          "CompoundAssignOperator and ConvertVectorExpr. Please either validate "
2716          "the new expression or address the root cause of this usage.");
2717   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2718   APFloat::opStatus St;
2719   APFloat Value = Result;
2720   bool ignored;
2721   St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2722   return checkFloatingPointResult(Info, E, St);
2723 }
2724 
2725 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2726                                  QualType DestType, QualType SrcType,
2727                                  const APSInt &Value) {
2728   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2729   // Figure out if this is a truncate, extend or noop cast.
2730   // If the input is signed, do a sign extend, noop, or truncate.
2731   APSInt Result = Value.extOrTrunc(DestWidth);
2732   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2733   if (DestType->isBooleanType())
2734     Result = Value.getBoolValue();
2735   return Result;
2736 }
2737 
2738 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2739                                  const FPOptions FPO,
2740                                  QualType SrcType, const APSInt &Value,
2741                                  QualType DestType, APFloat &Result) {
2742   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2743   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2744   APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM);
2745   return checkFloatingPointResult(Info, E, St);
2746 }
2747 
2748 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2749                                   APValue &Value, const FieldDecl *FD) {
2750   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2751 
2752   if (!Value.isInt()) {
2753     // Trying to store a pointer-cast-to-integer into a bitfield.
2754     // FIXME: In this case, we should provide the diagnostic for casting
2755     // a pointer to an integer.
2756     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2757     Info.FFDiag(E);
2758     return false;
2759   }
2760 
2761   APSInt &Int = Value.getInt();
2762   unsigned OldBitWidth = Int.getBitWidth();
2763   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2764   if (NewBitWidth < OldBitWidth)
2765     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2766   return true;
2767 }
2768 
2769 /// Perform the given integer operation, which is known to need at most BitWidth
2770 /// bits, and check for overflow in the original type (if that type was not an
2771 /// unsigned type).
2772 template<typename Operation>
2773 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2774                                  const APSInt &LHS, const APSInt &RHS,
2775                                  unsigned BitWidth, Operation Op,
2776                                  APSInt &Result) {
2777   if (LHS.isUnsigned()) {
2778     Result = Op(LHS, RHS);
2779     return true;
2780   }
2781 
2782   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2783   Result = Value.trunc(LHS.getBitWidth());
2784   if (Result.extend(BitWidth) != Value) {
2785     if (Info.checkingForUndefinedBehavior())
2786       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2787                                        diag::warn_integer_constant_overflow)
2788           << toString(Result, 10, Result.isSigned(), /*formatAsCLiteral=*/false,
2789                       /*UpperCase=*/true, /*InsertSeparators=*/true)
2790           << E->getType() << E->getSourceRange();
2791     return HandleOverflow(Info, E, Value, E->getType());
2792   }
2793   return true;
2794 }
2795 
2796 /// Perform the given binary integer operation.
2797 static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E,
2798                               const APSInt &LHS, BinaryOperatorKind Opcode,
2799                               APSInt RHS, APSInt &Result) {
2800   bool HandleOverflowResult = true;
2801   switch (Opcode) {
2802   default:
2803     Info.FFDiag(E);
2804     return false;
2805   case BO_Mul:
2806     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2807                                 std::multiplies<APSInt>(), Result);
2808   case BO_Add:
2809     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2810                                 std::plus<APSInt>(), Result);
2811   case BO_Sub:
2812     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2813                                 std::minus<APSInt>(), Result);
2814   case BO_And: Result = LHS & RHS; return true;
2815   case BO_Xor: Result = LHS ^ RHS; return true;
2816   case BO_Or:  Result = LHS | RHS; return true;
2817   case BO_Div:
2818   case BO_Rem:
2819     if (RHS == 0) {
2820       Info.FFDiag(E, diag::note_expr_divide_by_zero)
2821           << E->getRHS()->getSourceRange();
2822       return false;
2823     }
2824     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2825     // this operation and gives the two's complement result.
2826     if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2827         LHS.isMinSignedValue())
2828       HandleOverflowResult = HandleOverflow(
2829           Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
2830     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2831     return HandleOverflowResult;
2832   case BO_Shl: {
2833     if (Info.getLangOpts().OpenCL)
2834       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2835       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2836                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2837                     RHS.isUnsigned());
2838     else if (RHS.isSigned() && RHS.isNegative()) {
2839       // During constant-folding, a negative shift is an opposite shift. Such
2840       // a shift is not a constant expression.
2841       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2842       if (!Info.noteUndefinedBehavior())
2843         return false;
2844       RHS = -RHS;
2845       goto shift_right;
2846     }
2847   shift_left:
2848     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2849     // the shifted type.
2850     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2851     if (SA != RHS) {
2852       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2853         << RHS << E->getType() << LHS.getBitWidth();
2854       if (!Info.noteUndefinedBehavior())
2855         return false;
2856     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2857       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2858       // operand, and must not overflow the corresponding unsigned type.
2859       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2860       // E1 x 2^E2 module 2^N.
2861       if (LHS.isNegative()) {
2862         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2863         if (!Info.noteUndefinedBehavior())
2864           return false;
2865       } else if (LHS.countl_zero() < SA) {
2866         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2867         if (!Info.noteUndefinedBehavior())
2868           return false;
2869       }
2870     }
2871     Result = LHS << SA;
2872     return true;
2873   }
2874   case BO_Shr: {
2875     if (Info.getLangOpts().OpenCL)
2876       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2877       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2878                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2879                     RHS.isUnsigned());
2880     else if (RHS.isSigned() && RHS.isNegative()) {
2881       // During constant-folding, a negative shift is an opposite shift. Such a
2882       // shift is not a constant expression.
2883       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2884       if (!Info.noteUndefinedBehavior())
2885         return false;
2886       RHS = -RHS;
2887       goto shift_left;
2888     }
2889   shift_right:
2890     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2891     // shifted type.
2892     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2893     if (SA != RHS) {
2894       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2895         << RHS << E->getType() << LHS.getBitWidth();
2896       if (!Info.noteUndefinedBehavior())
2897         return false;
2898     }
2899 
2900     Result = LHS >> SA;
2901     return true;
2902   }
2903 
2904   case BO_LT: Result = LHS < RHS; return true;
2905   case BO_GT: Result = LHS > RHS; return true;
2906   case BO_LE: Result = LHS <= RHS; return true;
2907   case BO_GE: Result = LHS >= RHS; return true;
2908   case BO_EQ: Result = LHS == RHS; return true;
2909   case BO_NE: Result = LHS != RHS; return true;
2910   case BO_Cmp:
2911     llvm_unreachable("BO_Cmp should be handled elsewhere");
2912   }
2913 }
2914 
2915 /// Perform the given binary floating-point operation, in-place, on LHS.
2916 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2917                                   APFloat &LHS, BinaryOperatorKind Opcode,
2918                                   const APFloat &RHS) {
2919   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2920   APFloat::opStatus St;
2921   switch (Opcode) {
2922   default:
2923     Info.FFDiag(E);
2924     return false;
2925   case BO_Mul:
2926     St = LHS.multiply(RHS, RM);
2927     break;
2928   case BO_Add:
2929     St = LHS.add(RHS, RM);
2930     break;
2931   case BO_Sub:
2932     St = LHS.subtract(RHS, RM);
2933     break;
2934   case BO_Div:
2935     // [expr.mul]p4:
2936     //   If the second operand of / or % is zero the behavior is undefined.
2937     if (RHS.isZero())
2938       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2939     St = LHS.divide(RHS, RM);
2940     break;
2941   }
2942 
2943   // [expr.pre]p4:
2944   //   If during the evaluation of an expression, the result is not
2945   //   mathematically defined [...], the behavior is undefined.
2946   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2947   if (LHS.isNaN()) {
2948     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2949     return Info.noteUndefinedBehavior();
2950   }
2951 
2952   return checkFloatingPointResult(Info, E, St);
2953 }
2954 
2955 static bool handleLogicalOpForVector(const APInt &LHSValue,
2956                                      BinaryOperatorKind Opcode,
2957                                      const APInt &RHSValue, APInt &Result) {
2958   bool LHS = (LHSValue != 0);
2959   bool RHS = (RHSValue != 0);
2960 
2961   if (Opcode == BO_LAnd)
2962     Result = LHS && RHS;
2963   else
2964     Result = LHS || RHS;
2965   return true;
2966 }
2967 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2968                                      BinaryOperatorKind Opcode,
2969                                      const APFloat &RHSValue, APInt &Result) {
2970   bool LHS = !LHSValue.isZero();
2971   bool RHS = !RHSValue.isZero();
2972 
2973   if (Opcode == BO_LAnd)
2974     Result = LHS && RHS;
2975   else
2976     Result = LHS || RHS;
2977   return true;
2978 }
2979 
2980 static bool handleLogicalOpForVector(const APValue &LHSValue,
2981                                      BinaryOperatorKind Opcode,
2982                                      const APValue &RHSValue, APInt &Result) {
2983   // The result is always an int type, however operands match the first.
2984   if (LHSValue.getKind() == APValue::Int)
2985     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2986                                     RHSValue.getInt(), Result);
2987   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2988   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2989                                   RHSValue.getFloat(), Result);
2990 }
2991 
2992 template <typename APTy>
2993 static bool
2994 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2995                                const APTy &RHSValue, APInt &Result) {
2996   switch (Opcode) {
2997   default:
2998     llvm_unreachable("unsupported binary operator");
2999   case BO_EQ:
3000     Result = (LHSValue == RHSValue);
3001     break;
3002   case BO_NE:
3003     Result = (LHSValue != RHSValue);
3004     break;
3005   case BO_LT:
3006     Result = (LHSValue < RHSValue);
3007     break;
3008   case BO_GT:
3009     Result = (LHSValue > RHSValue);
3010     break;
3011   case BO_LE:
3012     Result = (LHSValue <= RHSValue);
3013     break;
3014   case BO_GE:
3015     Result = (LHSValue >= RHSValue);
3016     break;
3017   }
3018 
3019   // The boolean operations on these vector types use an instruction that
3020   // results in a mask of '-1' for the 'truth' value.  Ensure that we negate 1
3021   // to -1 to make sure that we produce the correct value.
3022   Result.negate();
3023 
3024   return true;
3025 }
3026 
3027 static bool handleCompareOpForVector(const APValue &LHSValue,
3028                                      BinaryOperatorKind Opcode,
3029                                      const APValue &RHSValue, APInt &Result) {
3030   // The result is always an int type, however operands match the first.
3031   if (LHSValue.getKind() == APValue::Int)
3032     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
3033                                           RHSValue.getInt(), Result);
3034   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
3035   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
3036                                         RHSValue.getFloat(), Result);
3037 }
3038 
3039 // Perform binary operations for vector types, in place on the LHS.
3040 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
3041                                     BinaryOperatorKind Opcode,
3042                                     APValue &LHSValue,
3043                                     const APValue &RHSValue) {
3044   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
3045          "Operation not supported on vector types");
3046 
3047   const auto *VT = E->getType()->castAs<VectorType>();
3048   unsigned NumElements = VT->getNumElements();
3049   QualType EltTy = VT->getElementType();
3050 
3051   // In the cases (typically C as I've observed) where we aren't evaluating
3052   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
3053   // just give up.
3054   if (!LHSValue.isVector()) {
3055     assert(LHSValue.isLValue() &&
3056            "A vector result that isn't a vector OR uncalculated LValue");
3057     Info.FFDiag(E);
3058     return false;
3059   }
3060 
3061   assert(LHSValue.getVectorLength() == NumElements &&
3062          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
3063 
3064   SmallVector<APValue, 4> ResultElements;
3065 
3066   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3067     APValue LHSElt = LHSValue.getVectorElt(EltNum);
3068     APValue RHSElt = RHSValue.getVectorElt(EltNum);
3069 
3070     if (EltTy->isIntegerType()) {
3071       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3072                        EltTy->isUnsignedIntegerType()};
3073       bool Success = true;
3074 
3075       if (BinaryOperator::isLogicalOp(Opcode))
3076         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3077       else if (BinaryOperator::isComparisonOp(Opcode))
3078         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3079       else
3080         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3081                                     RHSElt.getInt(), EltResult);
3082 
3083       if (!Success) {
3084         Info.FFDiag(E);
3085         return false;
3086       }
3087       ResultElements.emplace_back(EltResult);
3088 
3089     } else if (EltTy->isFloatingType()) {
3090       assert(LHSElt.getKind() == APValue::Float &&
3091              RHSElt.getKind() == APValue::Float &&
3092              "Mismatched LHS/RHS/Result Type");
3093       APFloat LHSFloat = LHSElt.getFloat();
3094 
3095       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3096                                  RHSElt.getFloat())) {
3097         Info.FFDiag(E);
3098         return false;
3099       }
3100 
3101       ResultElements.emplace_back(LHSFloat);
3102     }
3103   }
3104 
3105   LHSValue = APValue(ResultElements.data(), ResultElements.size());
3106   return true;
3107 }
3108 
3109 /// Cast an lvalue referring to a base subobject to a derived class, by
3110 /// truncating the lvalue's path to the given length.
3111 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3112                                const RecordDecl *TruncatedType,
3113                                unsigned TruncatedElements) {
3114   SubobjectDesignator &D = Result.Designator;
3115 
3116   // Check we actually point to a derived class object.
3117   if (TruncatedElements == D.Entries.size())
3118     return true;
3119   assert(TruncatedElements >= D.MostDerivedPathLength &&
3120          "not casting to a derived class");
3121   if (!Result.checkSubobject(Info, E, CSK_Derived))
3122     return false;
3123 
3124   // Truncate the path to the subobject, and remove any derived-to-base offsets.
3125   const RecordDecl *RD = TruncatedType;
3126   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3127     if (RD->isInvalidDecl()) return false;
3128     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3129     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3130     if (isVirtualBaseClass(D.Entries[I]))
3131       Result.Offset -= Layout.getVBaseClassOffset(Base);
3132     else
3133       Result.Offset -= Layout.getBaseClassOffset(Base);
3134     RD = Base;
3135   }
3136   D.Entries.resize(TruncatedElements);
3137   return true;
3138 }
3139 
3140 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3141                                    const CXXRecordDecl *Derived,
3142                                    const CXXRecordDecl *Base,
3143                                    const ASTRecordLayout *RL = nullptr) {
3144   if (!RL) {
3145     if (Derived->isInvalidDecl()) return false;
3146     RL = &Info.Ctx.getASTRecordLayout(Derived);
3147   }
3148 
3149   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3150   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3151   return true;
3152 }
3153 
3154 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3155                              const CXXRecordDecl *DerivedDecl,
3156                              const CXXBaseSpecifier *Base) {
3157   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3158 
3159   if (!Base->isVirtual())
3160     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3161 
3162   SubobjectDesignator &D = Obj.Designator;
3163   if (D.Invalid)
3164     return false;
3165 
3166   // Extract most-derived object and corresponding type.
3167   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3168   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3169     return false;
3170 
3171   // Find the virtual base class.
3172   if (DerivedDecl->isInvalidDecl()) return false;
3173   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3174   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3175   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3176   return true;
3177 }
3178 
3179 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3180                                  QualType Type, LValue &Result) {
3181   for (CastExpr::path_const_iterator PathI = E->path_begin(),
3182                                      PathE = E->path_end();
3183        PathI != PathE; ++PathI) {
3184     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3185                           *PathI))
3186       return false;
3187     Type = (*PathI)->getType();
3188   }
3189   return true;
3190 }
3191 
3192 /// Cast an lvalue referring to a derived class to a known base subobject.
3193 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3194                             const CXXRecordDecl *DerivedRD,
3195                             const CXXRecordDecl *BaseRD) {
3196   CXXBasePaths Paths(/*FindAmbiguities=*/false,
3197                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
3198   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3199     llvm_unreachable("Class must be derived from the passed in base class!");
3200 
3201   for (CXXBasePathElement &Elem : Paths.front())
3202     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3203       return false;
3204   return true;
3205 }
3206 
3207 /// Update LVal to refer to the given field, which must be a member of the type
3208 /// currently described by LVal.
3209 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3210                                const FieldDecl *FD,
3211                                const ASTRecordLayout *RL = nullptr) {
3212   if (!RL) {
3213     if (FD->getParent()->isInvalidDecl()) return false;
3214     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3215   }
3216 
3217   unsigned I = FD->getFieldIndex();
3218   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3219   LVal.addDecl(Info, E, FD);
3220   return true;
3221 }
3222 
3223 /// Update LVal to refer to the given indirect field.
3224 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3225                                        LValue &LVal,
3226                                        const IndirectFieldDecl *IFD) {
3227   for (const auto *C : IFD->chain())
3228     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3229       return false;
3230   return true;
3231 }
3232 
3233 enum class SizeOfType {
3234   SizeOf,
3235   DataSizeOf,
3236 };
3237 
3238 /// Get the size of the given type in char units.
3239 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type,
3240                          CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) {
3241   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3242   // extension.
3243   if (Type->isVoidType() || Type->isFunctionType()) {
3244     Size = CharUnits::One();
3245     return true;
3246   }
3247 
3248   if (Type->isDependentType()) {
3249     Info.FFDiag(Loc);
3250     return false;
3251   }
3252 
3253   if (!Type->isConstantSizeType()) {
3254     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3255     // FIXME: Better diagnostic.
3256     Info.FFDiag(Loc);
3257     return false;
3258   }
3259 
3260   if (SOT == SizeOfType::SizeOf)
3261     Size = Info.Ctx.getTypeSizeInChars(Type);
3262   else
3263     Size = Info.Ctx.getTypeInfoDataSizeInChars(Type).Width;
3264   return true;
3265 }
3266 
3267 /// Update a pointer value to model pointer arithmetic.
3268 /// \param Info - Information about the ongoing evaluation.
3269 /// \param E - The expression being evaluated, for diagnostic purposes.
3270 /// \param LVal - The pointer value to be updated.
3271 /// \param EltTy - The pointee type represented by LVal.
3272 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3273 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3274                                         LValue &LVal, QualType EltTy,
3275                                         APSInt Adjustment) {
3276   CharUnits SizeOfPointee;
3277   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3278     return false;
3279 
3280   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3281   return true;
3282 }
3283 
3284 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3285                                         LValue &LVal, QualType EltTy,
3286                                         int64_t Adjustment) {
3287   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3288                                      APSInt::get(Adjustment));
3289 }
3290 
3291 /// Update an lvalue to refer to a component of a complex number.
3292 /// \param Info - Information about the ongoing evaluation.
3293 /// \param LVal - The lvalue to be updated.
3294 /// \param EltTy - The complex number's component type.
3295 /// \param Imag - False for the real component, true for the imaginary.
3296 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3297                                        LValue &LVal, QualType EltTy,
3298                                        bool Imag) {
3299   if (Imag) {
3300     CharUnits SizeOfComponent;
3301     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3302       return false;
3303     LVal.Offset += SizeOfComponent;
3304   }
3305   LVal.addComplex(Info, E, EltTy, Imag);
3306   return true;
3307 }
3308 
3309 /// Try to evaluate the initializer for a variable declaration.
3310 ///
3311 /// \param Info   Information about the ongoing evaluation.
3312 /// \param E      An expression to be used when printing diagnostics.
3313 /// \param VD     The variable whose initializer should be obtained.
3314 /// \param Version The version of the variable within the frame.
3315 /// \param Frame  The frame in which the variable was created. Must be null
3316 ///               if this variable is not local to the evaluation.
3317 /// \param Result Filled in with a pointer to the value of the variable.
3318 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3319                                 const VarDecl *VD, CallStackFrame *Frame,
3320                                 unsigned Version, APValue *&Result) {
3321   APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3322 
3323   // If this is a local variable, dig out its value.
3324   if (Frame) {
3325     Result = Frame->getTemporary(VD, Version);
3326     if (Result)
3327       return true;
3328 
3329     if (!isa<ParmVarDecl>(VD)) {
3330       // Assume variables referenced within a lambda's call operator that were
3331       // not declared within the call operator are captures and during checking
3332       // of a potential constant expression, assume they are unknown constant
3333       // expressions.
3334       assert(isLambdaCallOperator(Frame->Callee) &&
3335              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3336              "missing value for local variable");
3337       if (Info.checkingPotentialConstantExpression())
3338         return false;
3339       // FIXME: This diagnostic is bogus; we do support captures. Is this code
3340       // still reachable at all?
3341       Info.FFDiag(E->getBeginLoc(),
3342                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3343           << "captures not currently allowed";
3344       return false;
3345     }
3346   }
3347 
3348   // If we're currently evaluating the initializer of this declaration, use that
3349   // in-flight value.
3350   if (Info.EvaluatingDecl == Base) {
3351     Result = Info.EvaluatingDeclValue;
3352     return true;
3353   }
3354 
3355   if (isa<ParmVarDecl>(VD)) {
3356     // Assume parameters of a potential constant expression are usable in
3357     // constant expressions.
3358     if (!Info.checkingPotentialConstantExpression() ||
3359         !Info.CurrentCall->Callee ||
3360         !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3361       if (Info.getLangOpts().CPlusPlus11) {
3362         Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3363             << VD;
3364         NoteLValueLocation(Info, Base);
3365       } else {
3366         Info.FFDiag(E);
3367       }
3368     }
3369     return false;
3370   }
3371 
3372   if (E->isValueDependent())
3373     return false;
3374 
3375   // Dig out the initializer, and use the declaration which it's attached to.
3376   // FIXME: We should eventually check whether the variable has a reachable
3377   // initializing declaration.
3378   const Expr *Init = VD->getAnyInitializer(VD);
3379   if (!Init) {
3380     // Don't diagnose during potential constant expression checking; an
3381     // initializer might be added later.
3382     if (!Info.checkingPotentialConstantExpression()) {
3383       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3384         << VD;
3385       NoteLValueLocation(Info, Base);
3386     }
3387     return false;
3388   }
3389 
3390   if (Init->isValueDependent()) {
3391     // The DeclRefExpr is not value-dependent, but the variable it refers to
3392     // has a value-dependent initializer. This should only happen in
3393     // constant-folding cases, where the variable is not actually of a suitable
3394     // type for use in a constant expression (otherwise the DeclRefExpr would
3395     // have been value-dependent too), so diagnose that.
3396     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3397     if (!Info.checkingPotentialConstantExpression()) {
3398       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3399                          ? diag::note_constexpr_ltor_non_constexpr
3400                          : diag::note_constexpr_ltor_non_integral, 1)
3401           << VD << VD->getType();
3402       NoteLValueLocation(Info, Base);
3403     }
3404     return false;
3405   }
3406 
3407   // Check that we can fold the initializer. In C++, we will have already done
3408   // this in the cases where it matters for conformance.
3409   if (!VD->evaluateValue()) {
3410     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3411     NoteLValueLocation(Info, Base);
3412     return false;
3413   }
3414 
3415   // Check that the variable is actually usable in constant expressions. For a
3416   // const integral variable or a reference, we might have a non-constant
3417   // initializer that we can nonetheless evaluate the initializer for. Such
3418   // variables are not usable in constant expressions. In C++98, the
3419   // initializer also syntactically needs to be an ICE.
3420   //
3421   // FIXME: We don't diagnose cases that aren't potentially usable in constant
3422   // expressions here; doing so would regress diagnostics for things like
3423   // reading from a volatile constexpr variable.
3424   if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3425        VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3426       ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3427        !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3428     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3429     NoteLValueLocation(Info, Base);
3430   }
3431 
3432   // Never use the initializer of a weak variable, not even for constant
3433   // folding. We can't be sure that this is the definition that will be used.
3434   if (VD->isWeak()) {
3435     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3436     NoteLValueLocation(Info, Base);
3437     return false;
3438   }
3439 
3440   Result = VD->getEvaluatedValue();
3441   return true;
3442 }
3443 
3444 /// Get the base index of the given base class within an APValue representing
3445 /// the given derived class.
3446 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3447                              const CXXRecordDecl *Base) {
3448   Base = Base->getCanonicalDecl();
3449   unsigned Index = 0;
3450   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3451          E = Derived->bases_end(); I != E; ++I, ++Index) {
3452     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3453       return Index;
3454   }
3455 
3456   llvm_unreachable("base class missing from derived class's bases list");
3457 }
3458 
3459 /// Extract the value of a character from a string literal.
3460 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3461                                             uint64_t Index) {
3462   assert(!isa<SourceLocExpr>(Lit) &&
3463          "SourceLocExpr should have already been converted to a StringLiteral");
3464 
3465   // FIXME: Support MakeStringConstant
3466   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3467     std::string Str;
3468     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3469     assert(Index <= Str.size() && "Index too large");
3470     return APSInt::getUnsigned(Str.c_str()[Index]);
3471   }
3472 
3473   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3474     Lit = PE->getFunctionName();
3475   const StringLiteral *S = cast<StringLiteral>(Lit);
3476   const ConstantArrayType *CAT =
3477       Info.Ctx.getAsConstantArrayType(S->getType());
3478   assert(CAT && "string literal isn't an array");
3479   QualType CharType = CAT->getElementType();
3480   assert(CharType->isIntegerType() && "unexpected character type");
3481   APSInt Value(Info.Ctx.getTypeSize(CharType),
3482                CharType->isUnsignedIntegerType());
3483   if (Index < S->getLength())
3484     Value = S->getCodeUnit(Index);
3485   return Value;
3486 }
3487 
3488 // Expand a string literal into an array of characters.
3489 //
3490 // FIXME: This is inefficient; we should probably introduce something similar
3491 // to the LLVM ConstantDataArray to make this cheaper.
3492 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3493                                 APValue &Result,
3494                                 QualType AllocType = QualType()) {
3495   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3496       AllocType.isNull() ? S->getType() : AllocType);
3497   assert(CAT && "string literal isn't an array");
3498   QualType CharType = CAT->getElementType();
3499   assert(CharType->isIntegerType() && "unexpected character type");
3500 
3501   unsigned Elts = CAT->getZExtSize();
3502   Result = APValue(APValue::UninitArray(),
3503                    std::min(S->getLength(), Elts), Elts);
3504   APSInt Value(Info.Ctx.getTypeSize(CharType),
3505                CharType->isUnsignedIntegerType());
3506   if (Result.hasArrayFiller())
3507     Result.getArrayFiller() = APValue(Value);
3508   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3509     Value = S->getCodeUnit(I);
3510     Result.getArrayInitializedElt(I) = APValue(Value);
3511   }
3512 }
3513 
3514 // Expand an array so that it has more than Index filled elements.
3515 static void expandArray(APValue &Array, unsigned Index) {
3516   unsigned Size = Array.getArraySize();
3517   assert(Index < Size);
3518 
3519   // Always at least double the number of elements for which we store a value.
3520   unsigned OldElts = Array.getArrayInitializedElts();
3521   unsigned NewElts = std::max(Index+1, OldElts * 2);
3522   NewElts = std::min(Size, std::max(NewElts, 8u));
3523 
3524   // Copy the data across.
3525   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3526   for (unsigned I = 0; I != OldElts; ++I)
3527     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3528   for (unsigned I = OldElts; I != NewElts; ++I)
3529     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3530   if (NewValue.hasArrayFiller())
3531     NewValue.getArrayFiller() = Array.getArrayFiller();
3532   Array.swap(NewValue);
3533 }
3534 
3535 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3536 /// conversion. If it's of class type, we may assume that the copy operation
3537 /// is trivial. Note that this is never true for a union type with fields
3538 /// (because the copy always "reads" the active member) and always true for
3539 /// a non-class type.
3540 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3541 static bool isReadByLvalueToRvalueConversion(QualType T) {
3542   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3543   return !RD || isReadByLvalueToRvalueConversion(RD);
3544 }
3545 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3546   // FIXME: A trivial copy of a union copies the object representation, even if
3547   // the union is empty.
3548   if (RD->isUnion())
3549     return !RD->field_empty();
3550   if (RD->isEmpty())
3551     return false;
3552 
3553   for (auto *Field : RD->fields())
3554     if (!Field->isUnnamedBitField() &&
3555         isReadByLvalueToRvalueConversion(Field->getType()))
3556       return true;
3557 
3558   for (auto &BaseSpec : RD->bases())
3559     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3560       return true;
3561 
3562   return false;
3563 }
3564 
3565 /// Diagnose an attempt to read from any unreadable field within the specified
3566 /// type, which might be a class type.
3567 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3568                                   QualType T) {
3569   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3570   if (!RD)
3571     return false;
3572 
3573   if (!RD->hasMutableFields())
3574     return false;
3575 
3576   for (auto *Field : RD->fields()) {
3577     // If we're actually going to read this field in some way, then it can't
3578     // be mutable. If we're in a union, then assigning to a mutable field
3579     // (even an empty one) can change the active member, so that's not OK.
3580     // FIXME: Add core issue number for the union case.
3581     if (Field->isMutable() &&
3582         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3583       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3584       Info.Note(Field->getLocation(), diag::note_declared_at);
3585       return true;
3586     }
3587 
3588     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3589       return true;
3590   }
3591 
3592   for (auto &BaseSpec : RD->bases())
3593     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3594       return true;
3595 
3596   // All mutable fields were empty, and thus not actually read.
3597   return false;
3598 }
3599 
3600 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3601                                         APValue::LValueBase Base,
3602                                         bool MutableSubobject = false) {
3603   // A temporary or transient heap allocation we created.
3604   if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3605     return true;
3606 
3607   switch (Info.IsEvaluatingDecl) {
3608   case EvalInfo::EvaluatingDeclKind::None:
3609     return false;
3610 
3611   case EvalInfo::EvaluatingDeclKind::Ctor:
3612     // The variable whose initializer we're evaluating.
3613     if (Info.EvaluatingDecl == Base)
3614       return true;
3615 
3616     // A temporary lifetime-extended by the variable whose initializer we're
3617     // evaluating.
3618     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3619       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3620         return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3621     return false;
3622 
3623   case EvalInfo::EvaluatingDeclKind::Dtor:
3624     // C++2a [expr.const]p6:
3625     //   [during constant destruction] the lifetime of a and its non-mutable
3626     //   subobjects (but not its mutable subobjects) [are] considered to start
3627     //   within e.
3628     if (MutableSubobject || Base != Info.EvaluatingDecl)
3629       return false;
3630     // FIXME: We can meaningfully extend this to cover non-const objects, but
3631     // we will need special handling: we should be able to access only
3632     // subobjects of such objects that are themselves declared const.
3633     QualType T = getType(Base);
3634     return T.isConstQualified() || T->isReferenceType();
3635   }
3636 
3637   llvm_unreachable("unknown evaluating decl kind");
3638 }
3639 
3640 static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT,
3641                            SourceLocation CallLoc = {}) {
3642   return Info.CheckArraySize(
3643       CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc,
3644       CAT->getNumAddressingBits(Info.Ctx), CAT->getZExtSize(),
3645       /*Diag=*/true);
3646 }
3647 
3648 namespace {
3649 /// A handle to a complete object (an object that is not a subobject of
3650 /// another object).
3651 struct CompleteObject {
3652   /// The identity of the object.
3653   APValue::LValueBase Base;
3654   /// The value of the complete object.
3655   APValue *Value;
3656   /// The type of the complete object.
3657   QualType Type;
3658 
3659   CompleteObject() : Value(nullptr) {}
3660   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3661       : Base(Base), Value(Value), Type(Type) {}
3662 
3663   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3664     // If this isn't a "real" access (eg, if it's just accessing the type
3665     // info), allow it. We assume the type doesn't change dynamically for
3666     // subobjects of constexpr objects (even though we'd hit UB here if it
3667     // did). FIXME: Is this right?
3668     if (!isAnyAccess(AK))
3669       return true;
3670 
3671     // In C++14 onwards, it is permitted to read a mutable member whose
3672     // lifetime began within the evaluation.
3673     // FIXME: Should we also allow this in C++11?
3674     if (!Info.getLangOpts().CPlusPlus14)
3675       return false;
3676     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3677   }
3678 
3679   explicit operator bool() const { return !Type.isNull(); }
3680 };
3681 } // end anonymous namespace
3682 
3683 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3684                                  bool IsMutable = false) {
3685   // C++ [basic.type.qualifier]p1:
3686   // - A const object is an object of type const T or a non-mutable subobject
3687   //   of a const object.
3688   if (ObjType.isConstQualified() && !IsMutable)
3689     SubobjType.addConst();
3690   // - A volatile object is an object of type const T or a subobject of a
3691   //   volatile object.
3692   if (ObjType.isVolatileQualified())
3693     SubobjType.addVolatile();
3694   return SubobjType;
3695 }
3696 
3697 /// Find the designated sub-object of an rvalue.
3698 template<typename SubobjectHandler>
3699 typename SubobjectHandler::result_type
3700 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3701               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3702   if (Sub.Invalid)
3703     // A diagnostic will have already been produced.
3704     return handler.failed();
3705   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3706     if (Info.getLangOpts().CPlusPlus11)
3707       Info.FFDiag(E, Sub.isOnePastTheEnd()
3708                          ? diag::note_constexpr_access_past_end
3709                          : diag::note_constexpr_access_unsized_array)
3710           << handler.AccessKind;
3711     else
3712       Info.FFDiag(E);
3713     return handler.failed();
3714   }
3715 
3716   APValue *O = Obj.Value;
3717   QualType ObjType = Obj.Type;
3718   const FieldDecl *LastField = nullptr;
3719   const FieldDecl *VolatileField = nullptr;
3720 
3721   // Walk the designator's path to find the subobject.
3722   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3723     // Reading an indeterminate value is undefined, but assigning over one is OK.
3724     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3725         (O->isIndeterminate() &&
3726          !isValidIndeterminateAccess(handler.AccessKind))) {
3727       if (!Info.checkingPotentialConstantExpression())
3728         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3729             << handler.AccessKind << O->isIndeterminate()
3730             << E->getSourceRange();
3731       return handler.failed();
3732     }
3733 
3734     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3735     //    const and volatile semantics are not applied on an object under
3736     //    {con,de}struction.
3737     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3738         ObjType->isRecordType() &&
3739         Info.isEvaluatingCtorDtor(
3740             Obj.Base,
3741             llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3742             ConstructionPhase::None) {
3743       ObjType = Info.Ctx.getCanonicalType(ObjType);
3744       ObjType.removeLocalConst();
3745       ObjType.removeLocalVolatile();
3746     }
3747 
3748     // If this is our last pass, check that the final object type is OK.
3749     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3750       // Accesses to volatile objects are prohibited.
3751       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3752         if (Info.getLangOpts().CPlusPlus) {
3753           int DiagKind;
3754           SourceLocation Loc;
3755           const NamedDecl *Decl = nullptr;
3756           if (VolatileField) {
3757             DiagKind = 2;
3758             Loc = VolatileField->getLocation();
3759             Decl = VolatileField;
3760           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3761             DiagKind = 1;
3762             Loc = VD->getLocation();
3763             Decl = VD;
3764           } else {
3765             DiagKind = 0;
3766             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3767               Loc = E->getExprLoc();
3768           }
3769           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3770               << handler.AccessKind << DiagKind << Decl;
3771           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3772         } else {
3773           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3774         }
3775         return handler.failed();
3776       }
3777 
3778       // If we are reading an object of class type, there may still be more
3779       // things we need to check: if there are any mutable subobjects, we
3780       // cannot perform this read. (This only happens when performing a trivial
3781       // copy or assignment.)
3782       if (ObjType->isRecordType() &&
3783           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3784           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3785         return handler.failed();
3786     }
3787 
3788     if (I == N) {
3789       if (!handler.found(*O, ObjType))
3790         return false;
3791 
3792       // If we modified a bit-field, truncate it to the right width.
3793       if (isModification(handler.AccessKind) &&
3794           LastField && LastField->isBitField() &&
3795           !truncateBitfieldValue(Info, E, *O, LastField))
3796         return false;
3797 
3798       return true;
3799     }
3800 
3801     LastField = nullptr;
3802     if (ObjType->isArrayType()) {
3803       // Next subobject is an array element.
3804       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3805       assert(CAT && "vla in literal type?");
3806       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3807       if (CAT->getSize().ule(Index)) {
3808         // Note, it should not be possible to form a pointer with a valid
3809         // designator which points more than one past the end of the array.
3810         if (Info.getLangOpts().CPlusPlus11)
3811           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3812             << handler.AccessKind;
3813         else
3814           Info.FFDiag(E);
3815         return handler.failed();
3816       }
3817 
3818       ObjType = CAT->getElementType();
3819 
3820       if (O->getArrayInitializedElts() > Index)
3821         O = &O->getArrayInitializedElt(Index);
3822       else if (!isRead(handler.AccessKind)) {
3823         if (!CheckArraySize(Info, CAT, E->getExprLoc()))
3824           return handler.failed();
3825 
3826         expandArray(*O, Index);
3827         O = &O->getArrayInitializedElt(Index);
3828       } else
3829         O = &O->getArrayFiller();
3830     } else if (ObjType->isAnyComplexType()) {
3831       // Next subobject is a complex number.
3832       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3833       if (Index > 1) {
3834         if (Info.getLangOpts().CPlusPlus11)
3835           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3836             << handler.AccessKind;
3837         else
3838           Info.FFDiag(E);
3839         return handler.failed();
3840       }
3841 
3842       ObjType = getSubobjectType(
3843           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3844 
3845       assert(I == N - 1 && "extracting subobject of scalar?");
3846       if (O->isComplexInt()) {
3847         return handler.found(Index ? O->getComplexIntImag()
3848                                    : O->getComplexIntReal(), ObjType);
3849       } else {
3850         assert(O->isComplexFloat());
3851         return handler.found(Index ? O->getComplexFloatImag()
3852                                    : O->getComplexFloatReal(), ObjType);
3853       }
3854     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3855       if (Field->isMutable() &&
3856           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3857         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3858           << handler.AccessKind << Field;
3859         Info.Note(Field->getLocation(), diag::note_declared_at);
3860         return handler.failed();
3861       }
3862 
3863       // Next subobject is a class, struct or union field.
3864       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3865       if (RD->isUnion()) {
3866         const FieldDecl *UnionField = O->getUnionField();
3867         if (!UnionField ||
3868             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3869           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3870             // Placement new onto an inactive union member makes it active.
3871             O->setUnion(Field, APValue());
3872           } else {
3873             // FIXME: If O->getUnionValue() is absent, report that there's no
3874             // active union member rather than reporting the prior active union
3875             // member. We'll need to fix nullptr_t to not use APValue() as its
3876             // representation first.
3877             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3878                 << handler.AccessKind << Field << !UnionField << UnionField;
3879             return handler.failed();
3880           }
3881         }
3882         O = &O->getUnionValue();
3883       } else
3884         O = &O->getStructField(Field->getFieldIndex());
3885 
3886       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3887       LastField = Field;
3888       if (Field->getType().isVolatileQualified())
3889         VolatileField = Field;
3890     } else {
3891       // Next subobject is a base class.
3892       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3893       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3894       O = &O->getStructBase(getBaseIndex(Derived, Base));
3895 
3896       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3897     }
3898   }
3899 }
3900 
3901 namespace {
3902 struct ExtractSubobjectHandler {
3903   EvalInfo &Info;
3904   const Expr *E;
3905   APValue &Result;
3906   const AccessKinds AccessKind;
3907 
3908   typedef bool result_type;
3909   bool failed() { return false; }
3910   bool found(APValue &Subobj, QualType SubobjType) {
3911     Result = Subobj;
3912     if (AccessKind == AK_ReadObjectRepresentation)
3913       return true;
3914     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3915   }
3916   bool found(APSInt &Value, QualType SubobjType) {
3917     Result = APValue(Value);
3918     return true;
3919   }
3920   bool found(APFloat &Value, QualType SubobjType) {
3921     Result = APValue(Value);
3922     return true;
3923   }
3924 };
3925 } // end anonymous namespace
3926 
3927 /// Extract the designated sub-object of an rvalue.
3928 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3929                              const CompleteObject &Obj,
3930                              const SubobjectDesignator &Sub, APValue &Result,
3931                              AccessKinds AK = AK_Read) {
3932   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3933   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3934   return findSubobject(Info, E, Obj, Sub, Handler);
3935 }
3936 
3937 namespace {
3938 struct ModifySubobjectHandler {
3939   EvalInfo &Info;
3940   APValue &NewVal;
3941   const Expr *E;
3942 
3943   typedef bool result_type;
3944   static const AccessKinds AccessKind = AK_Assign;
3945 
3946   bool checkConst(QualType QT) {
3947     // Assigning to a const object has undefined behavior.
3948     if (QT.isConstQualified()) {
3949       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3950       return false;
3951     }
3952     return true;
3953   }
3954 
3955   bool failed() { return false; }
3956   bool found(APValue &Subobj, QualType SubobjType) {
3957     if (!checkConst(SubobjType))
3958       return false;
3959     // We've been given ownership of NewVal, so just swap it in.
3960     Subobj.swap(NewVal);
3961     return true;
3962   }
3963   bool found(APSInt &Value, QualType SubobjType) {
3964     if (!checkConst(SubobjType))
3965       return false;
3966     if (!NewVal.isInt()) {
3967       // Maybe trying to write a cast pointer value into a complex?
3968       Info.FFDiag(E);
3969       return false;
3970     }
3971     Value = NewVal.getInt();
3972     return true;
3973   }
3974   bool found(APFloat &Value, QualType SubobjType) {
3975     if (!checkConst(SubobjType))
3976       return false;
3977     Value = NewVal.getFloat();
3978     return true;
3979   }
3980 };
3981 } // end anonymous namespace
3982 
3983 const AccessKinds ModifySubobjectHandler::AccessKind;
3984 
3985 /// Update the designated sub-object of an rvalue to the given value.
3986 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3987                             const CompleteObject &Obj,
3988                             const SubobjectDesignator &Sub,
3989                             APValue &NewVal) {
3990   ModifySubobjectHandler Handler = { Info, NewVal, E };
3991   return findSubobject(Info, E, Obj, Sub, Handler);
3992 }
3993 
3994 /// Find the position where two subobject designators diverge, or equivalently
3995 /// the length of the common initial subsequence.
3996 static unsigned FindDesignatorMismatch(QualType ObjType,
3997                                        const SubobjectDesignator &A,
3998                                        const SubobjectDesignator &B,
3999                                        bool &WasArrayIndex) {
4000   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
4001   for (/**/; I != N; ++I) {
4002     if (!ObjType.isNull() &&
4003         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
4004       // Next subobject is an array element.
4005       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
4006         WasArrayIndex = true;
4007         return I;
4008       }
4009       if (ObjType->isAnyComplexType())
4010         ObjType = ObjType->castAs<ComplexType>()->getElementType();
4011       else
4012         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
4013     } else {
4014       if (A.Entries[I].getAsBaseOrMember() !=
4015           B.Entries[I].getAsBaseOrMember()) {
4016         WasArrayIndex = false;
4017         return I;
4018       }
4019       if (const FieldDecl *FD = getAsField(A.Entries[I]))
4020         // Next subobject is a field.
4021         ObjType = FD->getType();
4022       else
4023         // Next subobject is a base class.
4024         ObjType = QualType();
4025     }
4026   }
4027   WasArrayIndex = false;
4028   return I;
4029 }
4030 
4031 /// Determine whether the given subobject designators refer to elements of the
4032 /// same array object.
4033 static bool AreElementsOfSameArray(QualType ObjType,
4034                                    const SubobjectDesignator &A,
4035                                    const SubobjectDesignator &B) {
4036   if (A.Entries.size() != B.Entries.size())
4037     return false;
4038 
4039   bool IsArray = A.MostDerivedIsArrayElement;
4040   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
4041     // A is a subobject of the array element.
4042     return false;
4043 
4044   // If A (and B) designates an array element, the last entry will be the array
4045   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
4046   // of length 1' case, and the entire path must match.
4047   bool WasArrayIndex;
4048   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
4049   return CommonLength >= A.Entries.size() - IsArray;
4050 }
4051 
4052 /// Find the complete object to which an LValue refers.
4053 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
4054                                          AccessKinds AK, const LValue &LVal,
4055                                          QualType LValType) {
4056   if (LVal.InvalidBase) {
4057     Info.FFDiag(E);
4058     return CompleteObject();
4059   }
4060 
4061   if (!LVal.Base) {
4062     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
4063     return CompleteObject();
4064   }
4065 
4066   CallStackFrame *Frame = nullptr;
4067   unsigned Depth = 0;
4068   if (LVal.getLValueCallIndex()) {
4069     std::tie(Frame, Depth) =
4070         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
4071     if (!Frame) {
4072       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
4073         << AK << LVal.Base.is<const ValueDecl*>();
4074       NoteLValueLocation(Info, LVal.Base);
4075       return CompleteObject();
4076     }
4077   }
4078 
4079   bool IsAccess = isAnyAccess(AK);
4080 
4081   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4082   // is not a constant expression (even if the object is non-volatile). We also
4083   // apply this rule to C++98, in order to conform to the expected 'volatile'
4084   // semantics.
4085   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
4086     if (Info.getLangOpts().CPlusPlus)
4087       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4088         << AK << LValType;
4089     else
4090       Info.FFDiag(E);
4091     return CompleteObject();
4092   }
4093 
4094   // Compute value storage location and type of base object.
4095   APValue *BaseVal = nullptr;
4096   QualType BaseType = getType(LVal.Base);
4097 
4098   if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4099       lifetimeStartedInEvaluation(Info, LVal.Base)) {
4100     // This is the object whose initializer we're evaluating, so its lifetime
4101     // started in the current evaluation.
4102     BaseVal = Info.EvaluatingDeclValue;
4103   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4104     // Allow reading from a GUID declaration.
4105     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4106       if (isModification(AK)) {
4107         // All the remaining cases do not permit modification of the object.
4108         Info.FFDiag(E, diag::note_constexpr_modify_global);
4109         return CompleteObject();
4110       }
4111       APValue &V = GD->getAsAPValue();
4112       if (V.isAbsent()) {
4113         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4114             << GD->getType();
4115         return CompleteObject();
4116       }
4117       return CompleteObject(LVal.Base, &V, GD->getType());
4118     }
4119 
4120     // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4121     if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) {
4122       if (isModification(AK)) {
4123         Info.FFDiag(E, diag::note_constexpr_modify_global);
4124         return CompleteObject();
4125       }
4126       return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4127                             GCD->getType());
4128     }
4129 
4130     // Allow reading from template parameter objects.
4131     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4132       if (isModification(AK)) {
4133         Info.FFDiag(E, diag::note_constexpr_modify_global);
4134         return CompleteObject();
4135       }
4136       return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4137                             TPO->getType());
4138     }
4139 
4140     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4141     // In C++11, constexpr, non-volatile variables initialized with constant
4142     // expressions are constant expressions too. Inside constexpr functions,
4143     // parameters are constant expressions even if they're non-const.
4144     // In C++1y, objects local to a constant expression (those with a Frame) are
4145     // both readable and writable inside constant expressions.
4146     // In C, such things can also be folded, although they are not ICEs.
4147     const VarDecl *VD = dyn_cast<VarDecl>(D);
4148     if (VD) {
4149       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4150         VD = VDef;
4151     }
4152     if (!VD || VD->isInvalidDecl()) {
4153       Info.FFDiag(E);
4154       return CompleteObject();
4155     }
4156 
4157     bool IsConstant = BaseType.isConstant(Info.Ctx);
4158     bool ConstexprVar = false;
4159     if (const auto *VD = dyn_cast_if_present<VarDecl>(
4160             Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
4161       ConstexprVar = VD->isConstexpr();
4162 
4163     // Unless we're looking at a local variable or argument in a constexpr call,
4164     // the variable we're reading must be const.
4165     if (!Frame) {
4166       if (IsAccess && isa<ParmVarDecl>(VD)) {
4167         // Access of a parameter that's not associated with a frame isn't going
4168         // to work out, but we can leave it to evaluateVarDeclInit to provide a
4169         // suitable diagnostic.
4170       } else if (Info.getLangOpts().CPlusPlus14 &&
4171                  lifetimeStartedInEvaluation(Info, LVal.Base)) {
4172         // OK, we can read and modify an object if we're in the process of
4173         // evaluating its initializer, because its lifetime began in this
4174         // evaluation.
4175       } else if (isModification(AK)) {
4176         // All the remaining cases do not permit modification of the object.
4177         Info.FFDiag(E, diag::note_constexpr_modify_global);
4178         return CompleteObject();
4179       } else if (VD->isConstexpr()) {
4180         // OK, we can read this variable.
4181       } else if (Info.getLangOpts().C23 && ConstexprVar) {
4182         Info.FFDiag(E);
4183         return CompleteObject();
4184       } else if (BaseType->isIntegralOrEnumerationType()) {
4185         if (!IsConstant) {
4186           if (!IsAccess)
4187             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4188           if (Info.getLangOpts().CPlusPlus) {
4189             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4190             Info.Note(VD->getLocation(), diag::note_declared_at);
4191           } else {
4192             Info.FFDiag(E);
4193           }
4194           return CompleteObject();
4195         }
4196       } else if (!IsAccess) {
4197         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4198       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4199                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4200         // This variable might end up being constexpr. Don't diagnose it yet.
4201       } else if (IsConstant) {
4202         // Keep evaluating to see what we can do. In particular, we support
4203         // folding of const floating-point types, in order to make static const
4204         // data members of such types (supported as an extension) more useful.
4205         if (Info.getLangOpts().CPlusPlus) {
4206           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4207                               ? diag::note_constexpr_ltor_non_constexpr
4208                               : diag::note_constexpr_ltor_non_integral, 1)
4209               << VD << BaseType;
4210           Info.Note(VD->getLocation(), diag::note_declared_at);
4211         } else {
4212           Info.CCEDiag(E);
4213         }
4214       } else {
4215         // Never allow reading a non-const value.
4216         if (Info.getLangOpts().CPlusPlus) {
4217           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4218                              ? diag::note_constexpr_ltor_non_constexpr
4219                              : diag::note_constexpr_ltor_non_integral, 1)
4220               << VD << BaseType;
4221           Info.Note(VD->getLocation(), diag::note_declared_at);
4222         } else {
4223           Info.FFDiag(E);
4224         }
4225         return CompleteObject();
4226       }
4227     }
4228 
4229     if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4230       return CompleteObject();
4231   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4232     std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4233     if (!Alloc) {
4234       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4235       return CompleteObject();
4236     }
4237     return CompleteObject(LVal.Base, &(*Alloc)->Value,
4238                           LVal.Base.getDynamicAllocType());
4239   } else {
4240     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4241 
4242     if (!Frame) {
4243       if (const MaterializeTemporaryExpr *MTE =
4244               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4245         assert(MTE->getStorageDuration() == SD_Static &&
4246                "should have a frame for a non-global materialized temporary");
4247 
4248         // C++20 [expr.const]p4: [DR2126]
4249         //   An object or reference is usable in constant expressions if it is
4250         //   - a temporary object of non-volatile const-qualified literal type
4251         //     whose lifetime is extended to that of a variable that is usable
4252         //     in constant expressions
4253         //
4254         // C++20 [expr.const]p5:
4255         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4256         //   - a non-volatile glvalue that refers to an object that is usable
4257         //     in constant expressions, or
4258         //   - a non-volatile glvalue of literal type that refers to a
4259         //     non-volatile object whose lifetime began within the evaluation
4260         //     of E;
4261         //
4262         // C++11 misses the 'began within the evaluation of e' check and
4263         // instead allows all temporaries, including things like:
4264         //   int &&r = 1;
4265         //   int x = ++r;
4266         //   constexpr int k = r;
4267         // Therefore we use the C++14-onwards rules in C++11 too.
4268         //
4269         // Note that temporaries whose lifetimes began while evaluating a
4270         // variable's constructor are not usable while evaluating the
4271         // corresponding destructor, not even if they're of const-qualified
4272         // types.
4273         if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4274             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4275           if (!IsAccess)
4276             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4277           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4278           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4279           return CompleteObject();
4280         }
4281 
4282         BaseVal = MTE->getOrCreateValue(false);
4283         assert(BaseVal && "got reference to unevaluated temporary");
4284       } else {
4285         if (!IsAccess)
4286           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4287         APValue Val;
4288         LVal.moveInto(Val);
4289         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4290             << AK
4291             << Val.getAsString(Info.Ctx,
4292                                Info.Ctx.getLValueReferenceType(LValType));
4293         NoteLValueLocation(Info, LVal.Base);
4294         return CompleteObject();
4295       }
4296     } else {
4297       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4298       assert(BaseVal && "missing value for temporary");
4299     }
4300   }
4301 
4302   // In C++14, we can't safely access any mutable state when we might be
4303   // evaluating after an unmodeled side effect. Parameters are modeled as state
4304   // in the caller, but aren't visible once the call returns, so they can be
4305   // modified in a speculatively-evaluated call.
4306   //
4307   // FIXME: Not all local state is mutable. Allow local constant subobjects
4308   // to be read here (but take care with 'mutable' fields).
4309   unsigned VisibleDepth = Depth;
4310   if (llvm::isa_and_nonnull<ParmVarDecl>(
4311           LVal.Base.dyn_cast<const ValueDecl *>()))
4312     ++VisibleDepth;
4313   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4314        Info.EvalStatus.HasSideEffects) ||
4315       (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4316     return CompleteObject();
4317 
4318   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4319 }
4320 
4321 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4322 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4323 /// glvalue referred to by an entity of reference type.
4324 ///
4325 /// \param Info - Information about the ongoing evaluation.
4326 /// \param Conv - The expression for which we are performing the conversion.
4327 ///               Used for diagnostics.
4328 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4329 ///               case of a non-class type).
4330 /// \param LVal - The glvalue on which we are attempting to perform this action.
4331 /// \param RVal - The produced value will be placed here.
4332 /// \param WantObjectRepresentation - If true, we're looking for the object
4333 ///               representation rather than the value, and in particular,
4334 ///               there is no requirement that the result be fully initialized.
4335 static bool
4336 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4337                                const LValue &LVal, APValue &RVal,
4338                                bool WantObjectRepresentation = false) {
4339   if (LVal.Designator.Invalid)
4340     return false;
4341 
4342   // Check for special cases where there is no existing APValue to look at.
4343   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4344 
4345   AccessKinds AK =
4346       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4347 
4348   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4349     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4350       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4351       // initializer until now for such expressions. Such an expression can't be
4352       // an ICE in C, so this only matters for fold.
4353       if (Type.isVolatileQualified()) {
4354         Info.FFDiag(Conv);
4355         return false;
4356       }
4357 
4358       APValue Lit;
4359       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4360         return false;
4361 
4362       // According to GCC info page:
4363       //
4364       // 6.28 Compound Literals
4365       //
4366       // As an optimization, G++ sometimes gives array compound literals longer
4367       // lifetimes: when the array either appears outside a function or has a
4368       // const-qualified type. If foo and its initializer had elements of type
4369       // char *const rather than char *, or if foo were a global variable, the
4370       // array would have static storage duration. But it is probably safest
4371       // just to avoid the use of array compound literals in C++ code.
4372       //
4373       // Obey that rule by checking constness for converted array types.
4374 
4375       QualType CLETy = CLE->getType();
4376       if (CLETy->isArrayType() && !Type->isArrayType()) {
4377         if (!CLETy.isConstant(Info.Ctx)) {
4378           Info.FFDiag(Conv);
4379           Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4380           return false;
4381         }
4382       }
4383 
4384       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4385       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4386     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4387       // Special-case character extraction so we don't have to construct an
4388       // APValue for the whole string.
4389       assert(LVal.Designator.Entries.size() <= 1 &&
4390              "Can only read characters from string literals");
4391       if (LVal.Designator.Entries.empty()) {
4392         // Fail for now for LValue to RValue conversion of an array.
4393         // (This shouldn't show up in C/C++, but it could be triggered by a
4394         // weird EvaluateAsRValue call from a tool.)
4395         Info.FFDiag(Conv);
4396         return false;
4397       }
4398       if (LVal.Designator.isOnePastTheEnd()) {
4399         if (Info.getLangOpts().CPlusPlus11)
4400           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4401         else
4402           Info.FFDiag(Conv);
4403         return false;
4404       }
4405       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4406       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4407       return true;
4408     }
4409   }
4410 
4411   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4412   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4413 }
4414 
4415 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4416 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4417                              QualType LValType, APValue &Val) {
4418   if (LVal.Designator.Invalid)
4419     return false;
4420 
4421   if (!Info.getLangOpts().CPlusPlus14) {
4422     Info.FFDiag(E);
4423     return false;
4424   }
4425 
4426   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4427   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4428 }
4429 
4430 namespace {
4431 struct CompoundAssignSubobjectHandler {
4432   EvalInfo &Info;
4433   const CompoundAssignOperator *E;
4434   QualType PromotedLHSType;
4435   BinaryOperatorKind Opcode;
4436   const APValue &RHS;
4437 
4438   static const AccessKinds AccessKind = AK_Assign;
4439 
4440   typedef bool result_type;
4441 
4442   bool checkConst(QualType QT) {
4443     // Assigning to a const object has undefined behavior.
4444     if (QT.isConstQualified()) {
4445       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4446       return false;
4447     }
4448     return true;
4449   }
4450 
4451   bool failed() { return false; }
4452   bool found(APValue &Subobj, QualType SubobjType) {
4453     switch (Subobj.getKind()) {
4454     case APValue::Int:
4455       return found(Subobj.getInt(), SubobjType);
4456     case APValue::Float:
4457       return found(Subobj.getFloat(), SubobjType);
4458     case APValue::ComplexInt:
4459     case APValue::ComplexFloat:
4460       // FIXME: Implement complex compound assignment.
4461       Info.FFDiag(E);
4462       return false;
4463     case APValue::LValue:
4464       return foundPointer(Subobj, SubobjType);
4465     case APValue::Vector:
4466       return foundVector(Subobj, SubobjType);
4467     case APValue::Indeterminate:
4468       Info.FFDiag(E, diag::note_constexpr_access_uninit)
4469           << /*read of=*/0 << /*uninitialized object=*/1
4470           << E->getLHS()->getSourceRange();
4471       return false;
4472     default:
4473       // FIXME: can this happen?
4474       Info.FFDiag(E);
4475       return false;
4476     }
4477   }
4478 
4479   bool foundVector(APValue &Value, QualType SubobjType) {
4480     if (!checkConst(SubobjType))
4481       return false;
4482 
4483     if (!SubobjType->isVectorType()) {
4484       Info.FFDiag(E);
4485       return false;
4486     }
4487     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4488   }
4489 
4490   bool found(APSInt &Value, QualType SubobjType) {
4491     if (!checkConst(SubobjType))
4492       return false;
4493 
4494     if (!SubobjType->isIntegerType()) {
4495       // We don't support compound assignment on integer-cast-to-pointer
4496       // values.
4497       Info.FFDiag(E);
4498       return false;
4499     }
4500 
4501     if (RHS.isInt()) {
4502       APSInt LHS =
4503           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4504       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4505         return false;
4506       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4507       return true;
4508     } else if (RHS.isFloat()) {
4509       const FPOptions FPO = E->getFPFeaturesInEffect(
4510                                     Info.Ctx.getLangOpts());
4511       APFloat FValue(0.0);
4512       return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4513                                   PromotedLHSType, FValue) &&
4514              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4515              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4516                                   Value);
4517     }
4518 
4519     Info.FFDiag(E);
4520     return false;
4521   }
4522   bool found(APFloat &Value, QualType SubobjType) {
4523     return checkConst(SubobjType) &&
4524            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4525                                   Value) &&
4526            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4527            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4528   }
4529   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4530     if (!checkConst(SubobjType))
4531       return false;
4532 
4533     QualType PointeeType;
4534     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4535       PointeeType = PT->getPointeeType();
4536 
4537     if (PointeeType.isNull() || !RHS.isInt() ||
4538         (Opcode != BO_Add && Opcode != BO_Sub)) {
4539       Info.FFDiag(E);
4540       return false;
4541     }
4542 
4543     APSInt Offset = RHS.getInt();
4544     if (Opcode == BO_Sub)
4545       negateAsSigned(Offset);
4546 
4547     LValue LVal;
4548     LVal.setFrom(Info.Ctx, Subobj);
4549     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4550       return false;
4551     LVal.moveInto(Subobj);
4552     return true;
4553   }
4554 };
4555 } // end anonymous namespace
4556 
4557 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4558 
4559 /// Perform a compound assignment of LVal <op>= RVal.
4560 static bool handleCompoundAssignment(EvalInfo &Info,
4561                                      const CompoundAssignOperator *E,
4562                                      const LValue &LVal, QualType LValType,
4563                                      QualType PromotedLValType,
4564                                      BinaryOperatorKind Opcode,
4565                                      const APValue &RVal) {
4566   if (LVal.Designator.Invalid)
4567     return false;
4568 
4569   if (!Info.getLangOpts().CPlusPlus14) {
4570     Info.FFDiag(E);
4571     return false;
4572   }
4573 
4574   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4575   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4576                                              RVal };
4577   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4578 }
4579 
4580 namespace {
4581 struct IncDecSubobjectHandler {
4582   EvalInfo &Info;
4583   const UnaryOperator *E;
4584   AccessKinds AccessKind;
4585   APValue *Old;
4586 
4587   typedef bool result_type;
4588 
4589   bool checkConst(QualType QT) {
4590     // Assigning to a const object has undefined behavior.
4591     if (QT.isConstQualified()) {
4592       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4593       return false;
4594     }
4595     return true;
4596   }
4597 
4598   bool failed() { return false; }
4599   bool found(APValue &Subobj, QualType SubobjType) {
4600     // Stash the old value. Also clear Old, so we don't clobber it later
4601     // if we're post-incrementing a complex.
4602     if (Old) {
4603       *Old = Subobj;
4604       Old = nullptr;
4605     }
4606 
4607     switch (Subobj.getKind()) {
4608     case APValue::Int:
4609       return found(Subobj.getInt(), SubobjType);
4610     case APValue::Float:
4611       return found(Subobj.getFloat(), SubobjType);
4612     case APValue::ComplexInt:
4613       return found(Subobj.getComplexIntReal(),
4614                    SubobjType->castAs<ComplexType>()->getElementType()
4615                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4616     case APValue::ComplexFloat:
4617       return found(Subobj.getComplexFloatReal(),
4618                    SubobjType->castAs<ComplexType>()->getElementType()
4619                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4620     case APValue::LValue:
4621       return foundPointer(Subobj, SubobjType);
4622     default:
4623       // FIXME: can this happen?
4624       Info.FFDiag(E);
4625       return false;
4626     }
4627   }
4628   bool found(APSInt &Value, QualType SubobjType) {
4629     if (!checkConst(SubobjType))
4630       return false;
4631 
4632     if (!SubobjType->isIntegerType()) {
4633       // We don't support increment / decrement on integer-cast-to-pointer
4634       // values.
4635       Info.FFDiag(E);
4636       return false;
4637     }
4638 
4639     if (Old) *Old = APValue(Value);
4640 
4641     // bool arithmetic promotes to int, and the conversion back to bool
4642     // doesn't reduce mod 2^n, so special-case it.
4643     if (SubobjType->isBooleanType()) {
4644       if (AccessKind == AK_Increment)
4645         Value = 1;
4646       else
4647         Value = !Value;
4648       return true;
4649     }
4650 
4651     bool WasNegative = Value.isNegative();
4652     if (AccessKind == AK_Increment) {
4653       ++Value;
4654 
4655       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4656         APSInt ActualValue(Value, /*IsUnsigned*/true);
4657         return HandleOverflow(Info, E, ActualValue, SubobjType);
4658       }
4659     } else {
4660       --Value;
4661 
4662       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4663         unsigned BitWidth = Value.getBitWidth();
4664         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4665         ActualValue.setBit(BitWidth);
4666         return HandleOverflow(Info, E, ActualValue, SubobjType);
4667       }
4668     }
4669     return true;
4670   }
4671   bool found(APFloat &Value, QualType SubobjType) {
4672     if (!checkConst(SubobjType))
4673       return false;
4674 
4675     if (Old) *Old = APValue(Value);
4676 
4677     APFloat One(Value.getSemantics(), 1);
4678     llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
4679     APFloat::opStatus St;
4680     if (AccessKind == AK_Increment)
4681       St = Value.add(One, RM);
4682     else
4683       St = Value.subtract(One, RM);
4684     return checkFloatingPointResult(Info, E, St);
4685   }
4686   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4687     if (!checkConst(SubobjType))
4688       return false;
4689 
4690     QualType PointeeType;
4691     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4692       PointeeType = PT->getPointeeType();
4693     else {
4694       Info.FFDiag(E);
4695       return false;
4696     }
4697 
4698     LValue LVal;
4699     LVal.setFrom(Info.Ctx, Subobj);
4700     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4701                                      AccessKind == AK_Increment ? 1 : -1))
4702       return false;
4703     LVal.moveInto(Subobj);
4704     return true;
4705   }
4706 };
4707 } // end anonymous namespace
4708 
4709 /// Perform an increment or decrement on LVal.
4710 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4711                          QualType LValType, bool IsIncrement, APValue *Old) {
4712   if (LVal.Designator.Invalid)
4713     return false;
4714 
4715   if (!Info.getLangOpts().CPlusPlus14) {
4716     Info.FFDiag(E);
4717     return false;
4718   }
4719 
4720   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4721   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4722   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4723   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4724 }
4725 
4726 /// Build an lvalue for the object argument of a member function call.
4727 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4728                                    LValue &This) {
4729   if (Object->getType()->isPointerType() && Object->isPRValue())
4730     return EvaluatePointer(Object, This, Info);
4731 
4732   if (Object->isGLValue())
4733     return EvaluateLValue(Object, This, Info);
4734 
4735   if (Object->getType()->isLiteralType(Info.Ctx))
4736     return EvaluateTemporary(Object, This, Info);
4737 
4738   if (Object->getType()->isRecordType() && Object->isPRValue())
4739     return EvaluateTemporary(Object, This, Info);
4740 
4741   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4742   return false;
4743 }
4744 
4745 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4746 /// lvalue referring to the result.
4747 ///
4748 /// \param Info - Information about the ongoing evaluation.
4749 /// \param LV - An lvalue referring to the base of the member pointer.
4750 /// \param RHS - The member pointer expression.
4751 /// \param IncludeMember - Specifies whether the member itself is included in
4752 ///        the resulting LValue subobject designator. This is not possible when
4753 ///        creating a bound member function.
4754 /// \return The field or method declaration to which the member pointer refers,
4755 ///         or 0 if evaluation fails.
4756 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4757                                                   QualType LVType,
4758                                                   LValue &LV,
4759                                                   const Expr *RHS,
4760                                                   bool IncludeMember = true) {
4761   MemberPtr MemPtr;
4762   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4763     return nullptr;
4764 
4765   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4766   // member value, the behavior is undefined.
4767   if (!MemPtr.getDecl()) {
4768     // FIXME: Specific diagnostic.
4769     Info.FFDiag(RHS);
4770     return nullptr;
4771   }
4772 
4773   if (MemPtr.isDerivedMember()) {
4774     // This is a member of some derived class. Truncate LV appropriately.
4775     // The end of the derived-to-base path for the base object must match the
4776     // derived-to-base path for the member pointer.
4777     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4778         LV.Designator.Entries.size()) {
4779       Info.FFDiag(RHS);
4780       return nullptr;
4781     }
4782     unsigned PathLengthToMember =
4783         LV.Designator.Entries.size() - MemPtr.Path.size();
4784     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4785       const CXXRecordDecl *LVDecl = getAsBaseClass(
4786           LV.Designator.Entries[PathLengthToMember + I]);
4787       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4788       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4789         Info.FFDiag(RHS);
4790         return nullptr;
4791       }
4792     }
4793 
4794     // Truncate the lvalue to the appropriate derived class.
4795     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4796                             PathLengthToMember))
4797       return nullptr;
4798   } else if (!MemPtr.Path.empty()) {
4799     // Extend the LValue path with the member pointer's path.
4800     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4801                                   MemPtr.Path.size() + IncludeMember);
4802 
4803     // Walk down to the appropriate base class.
4804     if (const PointerType *PT = LVType->getAs<PointerType>())
4805       LVType = PT->getPointeeType();
4806     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4807     assert(RD && "member pointer access on non-class-type expression");
4808     // The first class in the path is that of the lvalue.
4809     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4810       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4811       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4812         return nullptr;
4813       RD = Base;
4814     }
4815     // Finally cast to the class containing the member.
4816     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4817                                 MemPtr.getContainingRecord()))
4818       return nullptr;
4819   }
4820 
4821   // Add the member. Note that we cannot build bound member functions here.
4822   if (IncludeMember) {
4823     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4824       if (!HandleLValueMember(Info, RHS, LV, FD))
4825         return nullptr;
4826     } else if (const IndirectFieldDecl *IFD =
4827                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4828       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4829         return nullptr;
4830     } else {
4831       llvm_unreachable("can't construct reference to bound member function");
4832     }
4833   }
4834 
4835   return MemPtr.getDecl();
4836 }
4837 
4838 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4839                                                   const BinaryOperator *BO,
4840                                                   LValue &LV,
4841                                                   bool IncludeMember = true) {
4842   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4843 
4844   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4845     if (Info.noteFailure()) {
4846       MemberPtr MemPtr;
4847       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4848     }
4849     return nullptr;
4850   }
4851 
4852   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4853                                    BO->getRHS(), IncludeMember);
4854 }
4855 
4856 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4857 /// the provided lvalue, which currently refers to the base object.
4858 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4859                                     LValue &Result) {
4860   SubobjectDesignator &D = Result.Designator;
4861   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4862     return false;
4863 
4864   QualType TargetQT = E->getType();
4865   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4866     TargetQT = PT->getPointeeType();
4867 
4868   // Check this cast lands within the final derived-to-base subobject path.
4869   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4870     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4871       << D.MostDerivedType << TargetQT;
4872     return false;
4873   }
4874 
4875   // Check the type of the final cast. We don't need to check the path,
4876   // since a cast can only be formed if the path is unique.
4877   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4878   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4879   const CXXRecordDecl *FinalType;
4880   if (NewEntriesSize == D.MostDerivedPathLength)
4881     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4882   else
4883     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4884   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4885     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4886       << D.MostDerivedType << TargetQT;
4887     return false;
4888   }
4889 
4890   // Truncate the lvalue to the appropriate derived class.
4891   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4892 }
4893 
4894 /// Get the value to use for a default-initialized object of type T.
4895 /// Return false if it encounters something invalid.
4896 static bool handleDefaultInitValue(QualType T, APValue &Result) {
4897   bool Success = true;
4898 
4899   // If there is already a value present don't overwrite it.
4900   if (!Result.isAbsent())
4901     return true;
4902 
4903   if (auto *RD = T->getAsCXXRecordDecl()) {
4904     if (RD->isInvalidDecl()) {
4905       Result = APValue();
4906       return false;
4907     }
4908     if (RD->isUnion()) {
4909       Result = APValue((const FieldDecl *)nullptr);
4910       return true;
4911     }
4912     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4913                      std::distance(RD->field_begin(), RD->field_end()));
4914 
4915     unsigned Index = 0;
4916     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4917                                                   End = RD->bases_end();
4918          I != End; ++I, ++Index)
4919       Success &=
4920           handleDefaultInitValue(I->getType(), Result.getStructBase(Index));
4921 
4922     for (const auto *I : RD->fields()) {
4923       if (I->isUnnamedBitField())
4924         continue;
4925       Success &= handleDefaultInitValue(
4926           I->getType(), Result.getStructField(I->getFieldIndex()));
4927     }
4928     return Success;
4929   }
4930 
4931   if (auto *AT =
4932           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4933     Result = APValue(APValue::UninitArray(), 0, AT->getZExtSize());
4934     if (Result.hasArrayFiller())
4935       Success &=
4936           handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4937 
4938     return Success;
4939   }
4940 
4941   Result = APValue::IndeterminateValue();
4942   return true;
4943 }
4944 
4945 namespace {
4946 enum EvalStmtResult {
4947   /// Evaluation failed.
4948   ESR_Failed,
4949   /// Hit a 'return' statement.
4950   ESR_Returned,
4951   /// Evaluation succeeded.
4952   ESR_Succeeded,
4953   /// Hit a 'continue' statement.
4954   ESR_Continue,
4955   /// Hit a 'break' statement.
4956   ESR_Break,
4957   /// Still scanning for 'case' or 'default' statement.
4958   ESR_CaseNotFound
4959 };
4960 }
4961 
4962 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4963   if (VD->isInvalidDecl())
4964     return false;
4965   // We don't need to evaluate the initializer for a static local.
4966   if (!VD->hasLocalStorage())
4967     return true;
4968 
4969   LValue Result;
4970   APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4971                                                    ScopeKind::Block, Result);
4972 
4973   const Expr *InitE = VD->getInit();
4974   if (!InitE) {
4975     if (VD->getType()->isDependentType())
4976       return Info.noteSideEffect();
4977     return handleDefaultInitValue(VD->getType(), Val);
4978   }
4979   if (InitE->isValueDependent())
4980     return false;
4981 
4982   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4983     // Wipe out any partially-computed value, to allow tracking that this
4984     // evaluation failed.
4985     Val = APValue();
4986     return false;
4987   }
4988 
4989   return true;
4990 }
4991 
4992 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4993   bool OK = true;
4994 
4995   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4996     OK &= EvaluateVarDecl(Info, VD);
4997 
4998   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4999     for (auto *BD : DD->bindings())
5000       if (auto *VD = BD->getHoldingVar())
5001         OK &= EvaluateDecl(Info, VD);
5002 
5003   return OK;
5004 }
5005 
5006 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
5007   assert(E->isValueDependent());
5008   if (Info.noteSideEffect())
5009     return true;
5010   assert(E->containsErrors() && "valid value-dependent expression should never "
5011                                 "reach invalid code path.");
5012   return false;
5013 }
5014 
5015 /// Evaluate a condition (either a variable declaration or an expression).
5016 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
5017                          const Expr *Cond, bool &Result) {
5018   if (Cond->isValueDependent())
5019     return false;
5020   FullExpressionRAII Scope(Info);
5021   if (CondDecl && !EvaluateDecl(Info, CondDecl))
5022     return false;
5023   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
5024     return false;
5025   return Scope.destroy();
5026 }
5027 
5028 namespace {
5029 /// A location where the result (returned value) of evaluating a
5030 /// statement should be stored.
5031 struct StmtResult {
5032   /// The APValue that should be filled in with the returned value.
5033   APValue &Value;
5034   /// The location containing the result, if any (used to support RVO).
5035   const LValue *Slot;
5036 };
5037 
5038 struct TempVersionRAII {
5039   CallStackFrame &Frame;
5040 
5041   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
5042     Frame.pushTempVersion();
5043   }
5044 
5045   ~TempVersionRAII() {
5046     Frame.popTempVersion();
5047   }
5048 };
5049 
5050 }
5051 
5052 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5053                                    const Stmt *S,
5054                                    const SwitchCase *SC = nullptr);
5055 
5056 /// Evaluate the body of a loop, and translate the result as appropriate.
5057 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
5058                                        const Stmt *Body,
5059                                        const SwitchCase *Case = nullptr) {
5060   BlockScopeRAII Scope(Info);
5061 
5062   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
5063   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5064     ESR = ESR_Failed;
5065 
5066   switch (ESR) {
5067   case ESR_Break:
5068     return ESR_Succeeded;
5069   case ESR_Succeeded:
5070   case ESR_Continue:
5071     return ESR_Continue;
5072   case ESR_Failed:
5073   case ESR_Returned:
5074   case ESR_CaseNotFound:
5075     return ESR;
5076   }
5077   llvm_unreachable("Invalid EvalStmtResult!");
5078 }
5079 
5080 /// Evaluate a switch statement.
5081 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
5082                                      const SwitchStmt *SS) {
5083   BlockScopeRAII Scope(Info);
5084 
5085   // Evaluate the switch condition.
5086   APSInt Value;
5087   {
5088     if (const Stmt *Init = SS->getInit()) {
5089       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5090       if (ESR != ESR_Succeeded) {
5091         if (ESR != ESR_Failed && !Scope.destroy())
5092           ESR = ESR_Failed;
5093         return ESR;
5094       }
5095     }
5096 
5097     FullExpressionRAII CondScope(Info);
5098     if (SS->getConditionVariable() &&
5099         !EvaluateDecl(Info, SS->getConditionVariable()))
5100       return ESR_Failed;
5101     if (SS->getCond()->isValueDependent()) {
5102       // We don't know what the value is, and which branch should jump to.
5103       EvaluateDependentExpr(SS->getCond(), Info);
5104       return ESR_Failed;
5105     }
5106     if (!EvaluateInteger(SS->getCond(), Value, Info))
5107       return ESR_Failed;
5108 
5109     if (!CondScope.destroy())
5110       return ESR_Failed;
5111   }
5112 
5113   // Find the switch case corresponding to the value of the condition.
5114   // FIXME: Cache this lookup.
5115   const SwitchCase *Found = nullptr;
5116   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5117        SC = SC->getNextSwitchCase()) {
5118     if (isa<DefaultStmt>(SC)) {
5119       Found = SC;
5120       continue;
5121     }
5122 
5123     const CaseStmt *CS = cast<CaseStmt>(SC);
5124     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
5125     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
5126                               : LHS;
5127     if (LHS <= Value && Value <= RHS) {
5128       Found = SC;
5129       break;
5130     }
5131   }
5132 
5133   if (!Found)
5134     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5135 
5136   // Search the switch body for the switch case and evaluate it from there.
5137   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
5138   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5139     return ESR_Failed;
5140 
5141   switch (ESR) {
5142   case ESR_Break:
5143     return ESR_Succeeded;
5144   case ESR_Succeeded:
5145   case ESR_Continue:
5146   case ESR_Failed:
5147   case ESR_Returned:
5148     return ESR;
5149   case ESR_CaseNotFound:
5150     // This can only happen if the switch case is nested within a statement
5151     // expression. We have no intention of supporting that.
5152     Info.FFDiag(Found->getBeginLoc(),
5153                 diag::note_constexpr_stmt_expr_unsupported);
5154     return ESR_Failed;
5155   }
5156   llvm_unreachable("Invalid EvalStmtResult!");
5157 }
5158 
5159 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5160   // An expression E is a core constant expression unless the evaluation of E
5161   // would evaluate one of the following: [C++23] - a control flow that passes
5162   // through a declaration of a variable with static or thread storage duration
5163   // unless that variable is usable in constant expressions.
5164   if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5165       !VD->isUsableInConstantExpressions(Info.Ctx)) {
5166     Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5167         << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5168     return false;
5169   }
5170   return true;
5171 }
5172 
5173 // Evaluate a statement.
5174 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5175                                    const Stmt *S, const SwitchCase *Case) {
5176   if (!Info.nextStep(S))
5177     return ESR_Failed;
5178 
5179   // If we're hunting down a 'case' or 'default' label, recurse through
5180   // substatements until we hit the label.
5181   if (Case) {
5182     switch (S->getStmtClass()) {
5183     case Stmt::CompoundStmtClass:
5184       // FIXME: Precompute which substatement of a compound statement we
5185       // would jump to, and go straight there rather than performing a
5186       // linear scan each time.
5187     case Stmt::LabelStmtClass:
5188     case Stmt::AttributedStmtClass:
5189     case Stmt::DoStmtClass:
5190       break;
5191 
5192     case Stmt::CaseStmtClass:
5193     case Stmt::DefaultStmtClass:
5194       if (Case == S)
5195         Case = nullptr;
5196       break;
5197 
5198     case Stmt::IfStmtClass: {
5199       // FIXME: Precompute which side of an 'if' we would jump to, and go
5200       // straight there rather than scanning both sides.
5201       const IfStmt *IS = cast<IfStmt>(S);
5202 
5203       // Wrap the evaluation in a block scope, in case it's a DeclStmt
5204       // preceded by our switch label.
5205       BlockScopeRAII Scope(Info);
5206 
5207       // Step into the init statement in case it brings an (uninitialized)
5208       // variable into scope.
5209       if (const Stmt *Init = IS->getInit()) {
5210         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5211         if (ESR != ESR_CaseNotFound) {
5212           assert(ESR != ESR_Succeeded);
5213           return ESR;
5214         }
5215       }
5216 
5217       // Condition variable must be initialized if it exists.
5218       // FIXME: We can skip evaluating the body if there's a condition
5219       // variable, as there can't be any case labels within it.
5220       // (The same is true for 'for' statements.)
5221 
5222       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5223       if (ESR == ESR_Failed)
5224         return ESR;
5225       if (ESR != ESR_CaseNotFound)
5226         return Scope.destroy() ? ESR : ESR_Failed;
5227       if (!IS->getElse())
5228         return ESR_CaseNotFound;
5229 
5230       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5231       if (ESR == ESR_Failed)
5232         return ESR;
5233       if (ESR != ESR_CaseNotFound)
5234         return Scope.destroy() ? ESR : ESR_Failed;
5235       return ESR_CaseNotFound;
5236     }
5237 
5238     case Stmt::WhileStmtClass: {
5239       EvalStmtResult ESR =
5240           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5241       if (ESR != ESR_Continue)
5242         return ESR;
5243       break;
5244     }
5245 
5246     case Stmt::ForStmtClass: {
5247       const ForStmt *FS = cast<ForStmt>(S);
5248       BlockScopeRAII Scope(Info);
5249 
5250       // Step into the init statement in case it brings an (uninitialized)
5251       // variable into scope.
5252       if (const Stmt *Init = FS->getInit()) {
5253         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5254         if (ESR != ESR_CaseNotFound) {
5255           assert(ESR != ESR_Succeeded);
5256           return ESR;
5257         }
5258       }
5259 
5260       EvalStmtResult ESR =
5261           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5262       if (ESR != ESR_Continue)
5263         return ESR;
5264       if (const auto *Inc = FS->getInc()) {
5265         if (Inc->isValueDependent()) {
5266           if (!EvaluateDependentExpr(Inc, Info))
5267             return ESR_Failed;
5268         } else {
5269           FullExpressionRAII IncScope(Info);
5270           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5271             return ESR_Failed;
5272         }
5273       }
5274       break;
5275     }
5276 
5277     case Stmt::DeclStmtClass: {
5278       // Start the lifetime of any uninitialized variables we encounter. They
5279       // might be used by the selected branch of the switch.
5280       const DeclStmt *DS = cast<DeclStmt>(S);
5281       for (const auto *D : DS->decls()) {
5282         if (const auto *VD = dyn_cast<VarDecl>(D)) {
5283           if (!CheckLocalVariableDeclaration(Info, VD))
5284             return ESR_Failed;
5285           if (VD->hasLocalStorage() && !VD->getInit())
5286             if (!EvaluateVarDecl(Info, VD))
5287               return ESR_Failed;
5288           // FIXME: If the variable has initialization that can't be jumped
5289           // over, bail out of any immediately-surrounding compound-statement
5290           // too. There can't be any case labels here.
5291         }
5292       }
5293       return ESR_CaseNotFound;
5294     }
5295 
5296     default:
5297       return ESR_CaseNotFound;
5298     }
5299   }
5300 
5301   switch (S->getStmtClass()) {
5302   default:
5303     if (const Expr *E = dyn_cast<Expr>(S)) {
5304       if (E->isValueDependent()) {
5305         if (!EvaluateDependentExpr(E, Info))
5306           return ESR_Failed;
5307       } else {
5308         // Don't bother evaluating beyond an expression-statement which couldn't
5309         // be evaluated.
5310         // FIXME: Do we need the FullExpressionRAII object here?
5311         // VisitExprWithCleanups should create one when necessary.
5312         FullExpressionRAII Scope(Info);
5313         if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5314           return ESR_Failed;
5315       }
5316       return ESR_Succeeded;
5317     }
5318 
5319     Info.FFDiag(S->getBeginLoc()) << S->getSourceRange();
5320     return ESR_Failed;
5321 
5322   case Stmt::NullStmtClass:
5323     return ESR_Succeeded;
5324 
5325   case Stmt::DeclStmtClass: {
5326     const DeclStmt *DS = cast<DeclStmt>(S);
5327     for (const auto *D : DS->decls()) {
5328       const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
5329       if (VD && !CheckLocalVariableDeclaration(Info, VD))
5330         return ESR_Failed;
5331       // Each declaration initialization is its own full-expression.
5332       FullExpressionRAII Scope(Info);
5333       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5334         return ESR_Failed;
5335       if (!Scope.destroy())
5336         return ESR_Failed;
5337     }
5338     return ESR_Succeeded;
5339   }
5340 
5341   case Stmt::ReturnStmtClass: {
5342     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5343     FullExpressionRAII Scope(Info);
5344     if (RetExpr && RetExpr->isValueDependent()) {
5345       EvaluateDependentExpr(RetExpr, Info);
5346       // We know we returned, but we don't know what the value is.
5347       return ESR_Failed;
5348     }
5349     if (RetExpr &&
5350         !(Result.Slot
5351               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5352               : Evaluate(Result.Value, Info, RetExpr)))
5353       return ESR_Failed;
5354     return Scope.destroy() ? ESR_Returned : ESR_Failed;
5355   }
5356 
5357   case Stmt::CompoundStmtClass: {
5358     BlockScopeRAII Scope(Info);
5359 
5360     const CompoundStmt *CS = cast<CompoundStmt>(S);
5361     for (const auto *BI : CS->body()) {
5362       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5363       if (ESR == ESR_Succeeded)
5364         Case = nullptr;
5365       else if (ESR != ESR_CaseNotFound) {
5366         if (ESR != ESR_Failed && !Scope.destroy())
5367           return ESR_Failed;
5368         return ESR;
5369       }
5370     }
5371     if (Case)
5372       return ESR_CaseNotFound;
5373     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5374   }
5375 
5376   case Stmt::IfStmtClass: {
5377     const IfStmt *IS = cast<IfStmt>(S);
5378 
5379     // Evaluate the condition, as either a var decl or as an expression.
5380     BlockScopeRAII Scope(Info);
5381     if (const Stmt *Init = IS->getInit()) {
5382       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5383       if (ESR != ESR_Succeeded) {
5384         if (ESR != ESR_Failed && !Scope.destroy())
5385           return ESR_Failed;
5386         return ESR;
5387       }
5388     }
5389     bool Cond;
5390     if (IS->isConsteval()) {
5391       Cond = IS->isNonNegatedConsteval();
5392       // If we are not in a constant context, if consteval should not evaluate
5393       // to true.
5394       if (!Info.InConstantContext)
5395         Cond = !Cond;
5396     } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5397                              Cond))
5398       return ESR_Failed;
5399 
5400     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5401       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5402       if (ESR != ESR_Succeeded) {
5403         if (ESR != ESR_Failed && !Scope.destroy())
5404           return ESR_Failed;
5405         return ESR;
5406       }
5407     }
5408     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5409   }
5410 
5411   case Stmt::WhileStmtClass: {
5412     const WhileStmt *WS = cast<WhileStmt>(S);
5413     while (true) {
5414       BlockScopeRAII Scope(Info);
5415       bool Continue;
5416       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5417                         Continue))
5418         return ESR_Failed;
5419       if (!Continue)
5420         break;
5421 
5422       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5423       if (ESR != ESR_Continue) {
5424         if (ESR != ESR_Failed && !Scope.destroy())
5425           return ESR_Failed;
5426         return ESR;
5427       }
5428       if (!Scope.destroy())
5429         return ESR_Failed;
5430     }
5431     return ESR_Succeeded;
5432   }
5433 
5434   case Stmt::DoStmtClass: {
5435     const DoStmt *DS = cast<DoStmt>(S);
5436     bool Continue;
5437     do {
5438       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5439       if (ESR != ESR_Continue)
5440         return ESR;
5441       Case = nullptr;
5442 
5443       if (DS->getCond()->isValueDependent()) {
5444         EvaluateDependentExpr(DS->getCond(), Info);
5445         // Bailout as we don't know whether to keep going or terminate the loop.
5446         return ESR_Failed;
5447       }
5448       FullExpressionRAII CondScope(Info);
5449       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5450           !CondScope.destroy())
5451         return ESR_Failed;
5452     } while (Continue);
5453     return ESR_Succeeded;
5454   }
5455 
5456   case Stmt::ForStmtClass: {
5457     const ForStmt *FS = cast<ForStmt>(S);
5458     BlockScopeRAII ForScope(Info);
5459     if (FS->getInit()) {
5460       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5461       if (ESR != ESR_Succeeded) {
5462         if (ESR != ESR_Failed && !ForScope.destroy())
5463           return ESR_Failed;
5464         return ESR;
5465       }
5466     }
5467     while (true) {
5468       BlockScopeRAII IterScope(Info);
5469       bool Continue = true;
5470       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5471                                          FS->getCond(), Continue))
5472         return ESR_Failed;
5473       if (!Continue)
5474         break;
5475 
5476       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5477       if (ESR != ESR_Continue) {
5478         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5479           return ESR_Failed;
5480         return ESR;
5481       }
5482 
5483       if (const auto *Inc = FS->getInc()) {
5484         if (Inc->isValueDependent()) {
5485           if (!EvaluateDependentExpr(Inc, Info))
5486             return ESR_Failed;
5487         } else {
5488           FullExpressionRAII IncScope(Info);
5489           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5490             return ESR_Failed;
5491         }
5492       }
5493 
5494       if (!IterScope.destroy())
5495         return ESR_Failed;
5496     }
5497     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5498   }
5499 
5500   case Stmt::CXXForRangeStmtClass: {
5501     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5502     BlockScopeRAII Scope(Info);
5503 
5504     // Evaluate the init-statement if present.
5505     if (FS->getInit()) {
5506       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5507       if (ESR != ESR_Succeeded) {
5508         if (ESR != ESR_Failed && !Scope.destroy())
5509           return ESR_Failed;
5510         return ESR;
5511       }
5512     }
5513 
5514     // Initialize the __range variable.
5515     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5516     if (ESR != ESR_Succeeded) {
5517       if (ESR != ESR_Failed && !Scope.destroy())
5518         return ESR_Failed;
5519       return ESR;
5520     }
5521 
5522     // In error-recovery cases it's possible to get here even if we failed to
5523     // synthesize the __begin and __end variables.
5524     if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5525       return ESR_Failed;
5526 
5527     // Create the __begin and __end iterators.
5528     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5529     if (ESR != ESR_Succeeded) {
5530       if (ESR != ESR_Failed && !Scope.destroy())
5531         return ESR_Failed;
5532       return ESR;
5533     }
5534     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5535     if (ESR != ESR_Succeeded) {
5536       if (ESR != ESR_Failed && !Scope.destroy())
5537         return ESR_Failed;
5538       return ESR;
5539     }
5540 
5541     while (true) {
5542       // Condition: __begin != __end.
5543       {
5544         if (FS->getCond()->isValueDependent()) {
5545           EvaluateDependentExpr(FS->getCond(), Info);
5546           // We don't know whether to keep going or terminate the loop.
5547           return ESR_Failed;
5548         }
5549         bool Continue = true;
5550         FullExpressionRAII CondExpr(Info);
5551         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5552           return ESR_Failed;
5553         if (!Continue)
5554           break;
5555       }
5556 
5557       // User's variable declaration, initialized by *__begin.
5558       BlockScopeRAII InnerScope(Info);
5559       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5560       if (ESR != ESR_Succeeded) {
5561         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5562           return ESR_Failed;
5563         return ESR;
5564       }
5565 
5566       // Loop body.
5567       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5568       if (ESR != ESR_Continue) {
5569         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5570           return ESR_Failed;
5571         return ESR;
5572       }
5573       if (FS->getInc()->isValueDependent()) {
5574         if (!EvaluateDependentExpr(FS->getInc(), Info))
5575           return ESR_Failed;
5576       } else {
5577         // Increment: ++__begin
5578         if (!EvaluateIgnoredValue(Info, FS->getInc()))
5579           return ESR_Failed;
5580       }
5581 
5582       if (!InnerScope.destroy())
5583         return ESR_Failed;
5584     }
5585 
5586     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5587   }
5588 
5589   case Stmt::SwitchStmtClass:
5590     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5591 
5592   case Stmt::ContinueStmtClass:
5593     return ESR_Continue;
5594 
5595   case Stmt::BreakStmtClass:
5596     return ESR_Break;
5597 
5598   case Stmt::LabelStmtClass:
5599     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5600 
5601   case Stmt::AttributedStmtClass: {
5602     const auto *AS = cast<AttributedStmt>(S);
5603     const auto *SS = AS->getSubStmt();
5604     MSConstexprContextRAII ConstexprContext(
5605         *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) &&
5606                                isa<ReturnStmt>(SS));
5607 
5608     auto LO = Info.getCtx().getLangOpts();
5609     if (LO.CXXAssumptions && !LO.MSVCCompat) {
5610       for (auto *Attr : AS->getAttrs()) {
5611         auto *AA = dyn_cast<CXXAssumeAttr>(Attr);
5612         if (!AA)
5613           continue;
5614 
5615         auto *Assumption = AA->getAssumption();
5616         if (Assumption->isValueDependent())
5617           return ESR_Failed;
5618 
5619         if (Assumption->HasSideEffects(Info.getCtx()))
5620           continue;
5621 
5622         bool Value;
5623         if (!EvaluateAsBooleanCondition(Assumption, Value, Info))
5624           return ESR_Failed;
5625         if (!Value) {
5626           Info.CCEDiag(Assumption->getExprLoc(),
5627                        diag::note_constexpr_assumption_failed);
5628           return ESR_Failed;
5629         }
5630       }
5631     }
5632 
5633     return EvaluateStmt(Result, Info, SS, Case);
5634   }
5635 
5636   case Stmt::CaseStmtClass:
5637   case Stmt::DefaultStmtClass:
5638     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5639   case Stmt::CXXTryStmtClass:
5640     // Evaluate try blocks by evaluating all sub statements.
5641     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5642   }
5643 }
5644 
5645 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5646 /// default constructor. If so, we'll fold it whether or not it's marked as
5647 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5648 /// so we need special handling.
5649 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5650                                            const CXXConstructorDecl *CD,
5651                                            bool IsValueInitialization) {
5652   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5653     return false;
5654 
5655   // Value-initialization does not call a trivial default constructor, so such a
5656   // call is a core constant expression whether or not the constructor is
5657   // constexpr.
5658   if (!CD->isConstexpr() && !IsValueInitialization) {
5659     if (Info.getLangOpts().CPlusPlus11) {
5660       // FIXME: If DiagDecl is an implicitly-declared special member function,
5661       // we should be much more explicit about why it's not constexpr.
5662       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5663         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5664       Info.Note(CD->getLocation(), diag::note_declared_at);
5665     } else {
5666       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5667     }
5668   }
5669   return true;
5670 }
5671 
5672 /// CheckConstexprFunction - Check that a function can be called in a constant
5673 /// expression.
5674 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5675                                    const FunctionDecl *Declaration,
5676                                    const FunctionDecl *Definition,
5677                                    const Stmt *Body) {
5678   // Potential constant expressions can contain calls to declared, but not yet
5679   // defined, constexpr functions.
5680   if (Info.checkingPotentialConstantExpression() && !Definition &&
5681       Declaration->isConstexpr())
5682     return false;
5683 
5684   // Bail out if the function declaration itself is invalid.  We will
5685   // have produced a relevant diagnostic while parsing it, so just
5686   // note the problematic sub-expression.
5687   if (Declaration->isInvalidDecl()) {
5688     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5689     return false;
5690   }
5691 
5692   // DR1872: An instantiated virtual constexpr function can't be called in a
5693   // constant expression (prior to C++20). We can still constant-fold such a
5694   // call.
5695   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5696       cast<CXXMethodDecl>(Declaration)->isVirtual())
5697     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5698 
5699   if (Definition && Definition->isInvalidDecl()) {
5700     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5701     return false;
5702   }
5703 
5704   // Can we evaluate this function call?
5705   if (Definition && Body &&
5706       (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr &&
5707                                         Definition->hasAttr<MSConstexprAttr>())))
5708     return true;
5709 
5710   if (Info.getLangOpts().CPlusPlus11) {
5711     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5712 
5713     // If this function is not constexpr because it is an inherited
5714     // non-constexpr constructor, diagnose that directly.
5715     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5716     if (CD && CD->isInheritingConstructor()) {
5717       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5718       if (!Inherited->isConstexpr())
5719         DiagDecl = CD = Inherited;
5720     }
5721 
5722     // FIXME: If DiagDecl is an implicitly-declared special member function
5723     // or an inheriting constructor, we should be much more explicit about why
5724     // it's not constexpr.
5725     if (CD && CD->isInheritingConstructor())
5726       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5727         << CD->getInheritedConstructor().getConstructor()->getParent();
5728     else
5729       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5730         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5731     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5732   } else {
5733     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5734   }
5735   return false;
5736 }
5737 
5738 namespace {
5739 struct CheckDynamicTypeHandler {
5740   AccessKinds AccessKind;
5741   typedef bool result_type;
5742   bool failed() { return false; }
5743   bool found(APValue &Subobj, QualType SubobjType) { return true; }
5744   bool found(APSInt &Value, QualType SubobjType) { return true; }
5745   bool found(APFloat &Value, QualType SubobjType) { return true; }
5746 };
5747 } // end anonymous namespace
5748 
5749 /// Check that we can access the notional vptr of an object / determine its
5750 /// dynamic type.
5751 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5752                              AccessKinds AK, bool Polymorphic) {
5753   if (This.Designator.Invalid)
5754     return false;
5755 
5756   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5757 
5758   if (!Obj)
5759     return false;
5760 
5761   if (!Obj.Value) {
5762     // The object is not usable in constant expressions, so we can't inspect
5763     // its value to see if it's in-lifetime or what the active union members
5764     // are. We can still check for a one-past-the-end lvalue.
5765     if (This.Designator.isOnePastTheEnd() ||
5766         This.Designator.isMostDerivedAnUnsizedArray()) {
5767       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5768                          ? diag::note_constexpr_access_past_end
5769                          : diag::note_constexpr_access_unsized_array)
5770           << AK;
5771       return false;
5772     } else if (Polymorphic) {
5773       // Conservatively refuse to perform a polymorphic operation if we would
5774       // not be able to read a notional 'vptr' value.
5775       APValue Val;
5776       This.moveInto(Val);
5777       QualType StarThisType =
5778           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5779       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5780           << AK << Val.getAsString(Info.Ctx, StarThisType);
5781       return false;
5782     }
5783     return true;
5784   }
5785 
5786   CheckDynamicTypeHandler Handler{AK};
5787   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5788 }
5789 
5790 /// Check that the pointee of the 'this' pointer in a member function call is
5791 /// either within its lifetime or in its period of construction or destruction.
5792 static bool
5793 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5794                                      const LValue &This,
5795                                      const CXXMethodDecl *NamedMember) {
5796   return checkDynamicType(
5797       Info, E, This,
5798       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5799 }
5800 
5801 struct DynamicType {
5802   /// The dynamic class type of the object.
5803   const CXXRecordDecl *Type;
5804   /// The corresponding path length in the lvalue.
5805   unsigned PathLength;
5806 };
5807 
5808 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5809                                              unsigned PathLength) {
5810   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5811       Designator.Entries.size() && "invalid path length");
5812   return (PathLength == Designator.MostDerivedPathLength)
5813              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5814              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5815 }
5816 
5817 /// Determine the dynamic type of an object.
5818 static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
5819                                                      const Expr *E,
5820                                                      LValue &This,
5821                                                      AccessKinds AK) {
5822   // If we don't have an lvalue denoting an object of class type, there is no
5823   // meaningful dynamic type. (We consider objects of non-class type to have no
5824   // dynamic type.)
5825   if (!checkDynamicType(Info, E, This, AK, true))
5826     return std::nullopt;
5827 
5828   // Refuse to compute a dynamic type in the presence of virtual bases. This
5829   // shouldn't happen other than in constant-folding situations, since literal
5830   // types can't have virtual bases.
5831   //
5832   // Note that consumers of DynamicType assume that the type has no virtual
5833   // bases, and will need modifications if this restriction is relaxed.
5834   const CXXRecordDecl *Class =
5835       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5836   if (!Class || Class->getNumVBases()) {
5837     Info.FFDiag(E);
5838     return std::nullopt;
5839   }
5840 
5841   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5842   // binary search here instead. But the overwhelmingly common case is that
5843   // we're not in the middle of a constructor, so it probably doesn't matter
5844   // in practice.
5845   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5846   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5847        PathLength <= Path.size(); ++PathLength) {
5848     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5849                                       Path.slice(0, PathLength))) {
5850     case ConstructionPhase::Bases:
5851     case ConstructionPhase::DestroyingBases:
5852       // We're constructing or destroying a base class. This is not the dynamic
5853       // type.
5854       break;
5855 
5856     case ConstructionPhase::None:
5857     case ConstructionPhase::AfterBases:
5858     case ConstructionPhase::AfterFields:
5859     case ConstructionPhase::Destroying:
5860       // We've finished constructing the base classes and not yet started
5861       // destroying them again, so this is the dynamic type.
5862       return DynamicType{getBaseClassType(This.Designator, PathLength),
5863                          PathLength};
5864     }
5865   }
5866 
5867   // CWG issue 1517: we're constructing a base class of the object described by
5868   // 'This', so that object has not yet begun its period of construction and
5869   // any polymorphic operation on it results in undefined behavior.
5870   Info.FFDiag(E);
5871   return std::nullopt;
5872 }
5873 
5874 /// Perform virtual dispatch.
5875 static const CXXMethodDecl *HandleVirtualDispatch(
5876     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5877     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5878   std::optional<DynamicType> DynType = ComputeDynamicType(
5879       Info, E, This,
5880       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5881   if (!DynType)
5882     return nullptr;
5883 
5884   // Find the final overrider. It must be declared in one of the classes on the
5885   // path from the dynamic type to the static type.
5886   // FIXME: If we ever allow literal types to have virtual base classes, that
5887   // won't be true.
5888   const CXXMethodDecl *Callee = Found;
5889   unsigned PathLength = DynType->PathLength;
5890   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5891     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5892     const CXXMethodDecl *Overrider =
5893         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5894     if (Overrider) {
5895       Callee = Overrider;
5896       break;
5897     }
5898   }
5899 
5900   // C++2a [class.abstract]p6:
5901   //   the effect of making a virtual call to a pure virtual function [...] is
5902   //   undefined
5903   if (Callee->isPureVirtual()) {
5904     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5905     Info.Note(Callee->getLocation(), diag::note_declared_at);
5906     return nullptr;
5907   }
5908 
5909   // If necessary, walk the rest of the path to determine the sequence of
5910   // covariant adjustment steps to apply.
5911   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5912                                        Found->getReturnType())) {
5913     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5914     for (unsigned CovariantPathLength = PathLength + 1;
5915          CovariantPathLength != This.Designator.Entries.size();
5916          ++CovariantPathLength) {
5917       const CXXRecordDecl *NextClass =
5918           getBaseClassType(This.Designator, CovariantPathLength);
5919       const CXXMethodDecl *Next =
5920           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5921       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5922                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5923         CovariantAdjustmentPath.push_back(Next->getReturnType());
5924     }
5925     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5926                                          CovariantAdjustmentPath.back()))
5927       CovariantAdjustmentPath.push_back(Found->getReturnType());
5928   }
5929 
5930   // Perform 'this' adjustment.
5931   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5932     return nullptr;
5933 
5934   return Callee;
5935 }
5936 
5937 /// Perform the adjustment from a value returned by a virtual function to
5938 /// a value of the statically expected type, which may be a pointer or
5939 /// reference to a base class of the returned type.
5940 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5941                                             APValue &Result,
5942                                             ArrayRef<QualType> Path) {
5943   assert(Result.isLValue() &&
5944          "unexpected kind of APValue for covariant return");
5945   if (Result.isNullPointer())
5946     return true;
5947 
5948   LValue LVal;
5949   LVal.setFrom(Info.Ctx, Result);
5950 
5951   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5952   for (unsigned I = 1; I != Path.size(); ++I) {
5953     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5954     assert(OldClass && NewClass && "unexpected kind of covariant return");
5955     if (OldClass != NewClass &&
5956         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5957       return false;
5958     OldClass = NewClass;
5959   }
5960 
5961   LVal.moveInto(Result);
5962   return true;
5963 }
5964 
5965 /// Determine whether \p Base, which is known to be a direct base class of
5966 /// \p Derived, is a public base class.
5967 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5968                               const CXXRecordDecl *Base) {
5969   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5970     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5971     if (BaseClass && declaresSameEntity(BaseClass, Base))
5972       return BaseSpec.getAccessSpecifier() == AS_public;
5973   }
5974   llvm_unreachable("Base is not a direct base of Derived");
5975 }
5976 
5977 /// Apply the given dynamic cast operation on the provided lvalue.
5978 ///
5979 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5980 /// to find a suitable target subobject.
5981 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5982                               LValue &Ptr) {
5983   // We can't do anything with a non-symbolic pointer value.
5984   SubobjectDesignator &D = Ptr.Designator;
5985   if (D.Invalid)
5986     return false;
5987 
5988   // C++ [expr.dynamic.cast]p6:
5989   //   If v is a null pointer value, the result is a null pointer value.
5990   if (Ptr.isNullPointer() && !E->isGLValue())
5991     return true;
5992 
5993   // For all the other cases, we need the pointer to point to an object within
5994   // its lifetime / period of construction / destruction, and we need to know
5995   // its dynamic type.
5996   std::optional<DynamicType> DynType =
5997       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5998   if (!DynType)
5999     return false;
6000 
6001   // C++ [expr.dynamic.cast]p7:
6002   //   If T is "pointer to cv void", then the result is a pointer to the most
6003   //   derived object
6004   if (E->getType()->isVoidPointerType())
6005     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
6006 
6007   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
6008   assert(C && "dynamic_cast target is not void pointer nor class");
6009   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
6010 
6011   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
6012     // C++ [expr.dynamic.cast]p9:
6013     if (!E->isGLValue()) {
6014       //   The value of a failed cast to pointer type is the null pointer value
6015       //   of the required result type.
6016       Ptr.setNull(Info.Ctx, E->getType());
6017       return true;
6018     }
6019 
6020     //   A failed cast to reference type throws [...] std::bad_cast.
6021     unsigned DiagKind;
6022     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
6023                    DynType->Type->isDerivedFrom(C)))
6024       DiagKind = 0;
6025     else if (!Paths || Paths->begin() == Paths->end())
6026       DiagKind = 1;
6027     else if (Paths->isAmbiguous(CQT))
6028       DiagKind = 2;
6029     else {
6030       assert(Paths->front().Access != AS_public && "why did the cast fail?");
6031       DiagKind = 3;
6032     }
6033     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
6034         << DiagKind << Ptr.Designator.getType(Info.Ctx)
6035         << Info.Ctx.getRecordType(DynType->Type)
6036         << E->getType().getUnqualifiedType();
6037     return false;
6038   };
6039 
6040   // Runtime check, phase 1:
6041   //   Walk from the base subobject towards the derived object looking for the
6042   //   target type.
6043   for (int PathLength = Ptr.Designator.Entries.size();
6044        PathLength >= (int)DynType->PathLength; --PathLength) {
6045     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
6046     if (declaresSameEntity(Class, C))
6047       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
6048     // We can only walk across public inheritance edges.
6049     if (PathLength > (int)DynType->PathLength &&
6050         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
6051                            Class))
6052       return RuntimeCheckFailed(nullptr);
6053   }
6054 
6055   // Runtime check, phase 2:
6056   //   Search the dynamic type for an unambiguous public base of type C.
6057   CXXBasePaths Paths(/*FindAmbiguities=*/true,
6058                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
6059   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
6060       Paths.front().Access == AS_public) {
6061     // Downcast to the dynamic type...
6062     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
6063       return false;
6064     // ... then upcast to the chosen base class subobject.
6065     for (CXXBasePathElement &Elem : Paths.front())
6066       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
6067         return false;
6068     return true;
6069   }
6070 
6071   // Otherwise, the runtime check fails.
6072   return RuntimeCheckFailed(&Paths);
6073 }
6074 
6075 namespace {
6076 struct StartLifetimeOfUnionMemberHandler {
6077   EvalInfo &Info;
6078   const Expr *LHSExpr;
6079   const FieldDecl *Field;
6080   bool DuringInit;
6081   bool Failed = false;
6082   static const AccessKinds AccessKind = AK_Assign;
6083 
6084   typedef bool result_type;
6085   bool failed() { return Failed; }
6086   bool found(APValue &Subobj, QualType SubobjType) {
6087     // We are supposed to perform no initialization but begin the lifetime of
6088     // the object. We interpret that as meaning to do what default
6089     // initialization of the object would do if all constructors involved were
6090     // trivial:
6091     //  * All base, non-variant member, and array element subobjects' lifetimes
6092     //    begin
6093     //  * No variant members' lifetimes begin
6094     //  * All scalar subobjects whose lifetimes begin have indeterminate values
6095     assert(SubobjType->isUnionType());
6096     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
6097       // This union member is already active. If it's also in-lifetime, there's
6098       // nothing to do.
6099       if (Subobj.getUnionValue().hasValue())
6100         return true;
6101     } else if (DuringInit) {
6102       // We're currently in the process of initializing a different union
6103       // member.  If we carried on, that initialization would attempt to
6104       // store to an inactive union member, resulting in undefined behavior.
6105       Info.FFDiag(LHSExpr,
6106                   diag::note_constexpr_union_member_change_during_init);
6107       return false;
6108     }
6109     APValue Result;
6110     Failed = !handleDefaultInitValue(Field->getType(), Result);
6111     Subobj.setUnion(Field, Result);
6112     return true;
6113   }
6114   bool found(APSInt &Value, QualType SubobjType) {
6115     llvm_unreachable("wrong value kind for union object");
6116   }
6117   bool found(APFloat &Value, QualType SubobjType) {
6118     llvm_unreachable("wrong value kind for union object");
6119   }
6120 };
6121 } // end anonymous namespace
6122 
6123 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
6124 
6125 /// Handle a builtin simple-assignment or a call to a trivial assignment
6126 /// operator whose left-hand side might involve a union member access. If it
6127 /// does, implicitly start the lifetime of any accessed union elements per
6128 /// C++20 [class.union]5.
6129 static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info,
6130                                                const Expr *LHSExpr,
6131                                                const LValue &LHS) {
6132   if (LHS.InvalidBase || LHS.Designator.Invalid)
6133     return false;
6134 
6135   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
6136   // C++ [class.union]p5:
6137   //   define the set S(E) of subexpressions of E as follows:
6138   unsigned PathLength = LHS.Designator.Entries.size();
6139   for (const Expr *E = LHSExpr; E != nullptr;) {
6140     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
6141     if (auto *ME = dyn_cast<MemberExpr>(E)) {
6142       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
6143       // Note that we can't implicitly start the lifetime of a reference,
6144       // so we don't need to proceed any further if we reach one.
6145       if (!FD || FD->getType()->isReferenceType())
6146         break;
6147 
6148       //    ... and also contains A.B if B names a union member ...
6149       if (FD->getParent()->isUnion()) {
6150         //    ... of a non-class, non-array type, or of a class type with a
6151         //    trivial default constructor that is not deleted, or an array of
6152         //    such types.
6153         auto *RD =
6154             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6155         if (!RD || RD->hasTrivialDefaultConstructor())
6156           UnionPathLengths.push_back({PathLength - 1, FD});
6157       }
6158 
6159       E = ME->getBase();
6160       --PathLength;
6161       assert(declaresSameEntity(FD,
6162                                 LHS.Designator.Entries[PathLength]
6163                                     .getAsBaseOrMember().getPointer()));
6164 
6165       //   -- If E is of the form A[B] and is interpreted as a built-in array
6166       //      subscripting operator, S(E) is [S(the array operand, if any)].
6167     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
6168       // Step over an ArrayToPointerDecay implicit cast.
6169       auto *Base = ASE->getBase()->IgnoreImplicit();
6170       if (!Base->getType()->isArrayType())
6171         break;
6172 
6173       E = Base;
6174       --PathLength;
6175 
6176     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6177       // Step over a derived-to-base conversion.
6178       E = ICE->getSubExpr();
6179       if (ICE->getCastKind() == CK_NoOp)
6180         continue;
6181       if (ICE->getCastKind() != CK_DerivedToBase &&
6182           ICE->getCastKind() != CK_UncheckedDerivedToBase)
6183         break;
6184       // Walk path backwards as we walk up from the base to the derived class.
6185       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6186         if (Elt->isVirtual()) {
6187           // A class with virtual base classes never has a trivial default
6188           // constructor, so S(E) is empty in this case.
6189           E = nullptr;
6190           break;
6191         }
6192 
6193         --PathLength;
6194         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6195                                   LHS.Designator.Entries[PathLength]
6196                                       .getAsBaseOrMember().getPointer()));
6197       }
6198 
6199     //   -- Otherwise, S(E) is empty.
6200     } else {
6201       break;
6202     }
6203   }
6204 
6205   // Common case: no unions' lifetimes are started.
6206   if (UnionPathLengths.empty())
6207     return true;
6208 
6209   //   if modification of X [would access an inactive union member], an object
6210   //   of the type of X is implicitly created
6211   CompleteObject Obj =
6212       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6213   if (!Obj)
6214     return false;
6215   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6216            llvm::reverse(UnionPathLengths)) {
6217     // Form a designator for the union object.
6218     SubobjectDesignator D = LHS.Designator;
6219     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6220 
6221     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6222                       ConstructionPhase::AfterBases;
6223     StartLifetimeOfUnionMemberHandler StartLifetime{
6224         Info, LHSExpr, LengthAndField.second, DuringInit};
6225     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6226       return false;
6227   }
6228 
6229   return true;
6230 }
6231 
6232 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6233                             CallRef Call, EvalInfo &Info,
6234                             bool NonNull = false) {
6235   LValue LV;
6236   // Create the parameter slot and register its destruction. For a vararg
6237   // argument, create a temporary.
6238   // FIXME: For calling conventions that destroy parameters in the callee,
6239   // should we consider performing destruction when the function returns
6240   // instead?
6241   APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6242                    : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6243                                                        ScopeKind::Call, LV);
6244   if (!EvaluateInPlace(V, Info, LV, Arg))
6245     return false;
6246 
6247   // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6248   // undefined behavior, so is non-constant.
6249   if (NonNull && V.isLValue() && V.isNullPointer()) {
6250     Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6251     return false;
6252   }
6253 
6254   return true;
6255 }
6256 
6257 /// Evaluate the arguments to a function call.
6258 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6259                          EvalInfo &Info, const FunctionDecl *Callee,
6260                          bool RightToLeft = false) {
6261   bool Success = true;
6262   llvm::SmallBitVector ForbiddenNullArgs;
6263   if (Callee->hasAttr<NonNullAttr>()) {
6264     ForbiddenNullArgs.resize(Args.size());
6265     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6266       if (!Attr->args_size()) {
6267         ForbiddenNullArgs.set();
6268         break;
6269       } else
6270         for (auto Idx : Attr->args()) {
6271           unsigned ASTIdx = Idx.getASTIndex();
6272           if (ASTIdx >= Args.size())
6273             continue;
6274           ForbiddenNullArgs[ASTIdx] = true;
6275         }
6276     }
6277   }
6278   for (unsigned I = 0; I < Args.size(); I++) {
6279     unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6280     const ParmVarDecl *PVD =
6281         Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6282     bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6283     if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6284       // If we're checking for a potential constant expression, evaluate all
6285       // initializers even if some of them fail.
6286       if (!Info.noteFailure())
6287         return false;
6288       Success = false;
6289     }
6290   }
6291   return Success;
6292 }
6293 
6294 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6295 /// constructor or assignment operator.
6296 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6297                               const Expr *E, APValue &Result,
6298                               bool CopyObjectRepresentation) {
6299   // Find the reference argument.
6300   CallStackFrame *Frame = Info.CurrentCall;
6301   APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6302   if (!RefValue) {
6303     Info.FFDiag(E);
6304     return false;
6305   }
6306 
6307   // Copy out the contents of the RHS object.
6308   LValue RefLValue;
6309   RefLValue.setFrom(Info.Ctx, *RefValue);
6310   return handleLValueToRValueConversion(
6311       Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6312       CopyObjectRepresentation);
6313 }
6314 
6315 /// Evaluate a function call.
6316 static bool HandleFunctionCall(SourceLocation CallLoc,
6317                                const FunctionDecl *Callee, const LValue *This,
6318                                const Expr *E, ArrayRef<const Expr *> Args,
6319                                CallRef Call, const Stmt *Body, EvalInfo &Info,
6320                                APValue &Result, const LValue *ResultSlot) {
6321   if (!Info.CheckCallLimit(CallLoc))
6322     return false;
6323 
6324   CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call);
6325 
6326   // For a trivial copy or move assignment, perform an APValue copy. This is
6327   // essential for unions, where the operations performed by the assignment
6328   // operator cannot be represented as statements.
6329   //
6330   // Skip this for non-union classes with no fields; in that case, the defaulted
6331   // copy/move does not actually read the object.
6332   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6333   if (MD && MD->isDefaulted() &&
6334       (MD->getParent()->isUnion() ||
6335        (MD->isTrivial() &&
6336         isReadByLvalueToRvalueConversion(MD->getParent())))) {
6337     assert(This &&
6338            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6339     APValue RHSValue;
6340     if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6341                            MD->getParent()->isUnion()))
6342       return false;
6343     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6344                           RHSValue))
6345       return false;
6346     This->moveInto(Result);
6347     return true;
6348   } else if (MD && isLambdaCallOperator(MD)) {
6349     // We're in a lambda; determine the lambda capture field maps unless we're
6350     // just constexpr checking a lambda's call operator. constexpr checking is
6351     // done before the captures have been added to the closure object (unless
6352     // we're inferring constexpr-ness), so we don't have access to them in this
6353     // case. But since we don't need the captures to constexpr check, we can
6354     // just ignore them.
6355     if (!Info.checkingPotentialConstantExpression())
6356       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6357                                         Frame.LambdaThisCaptureField);
6358   }
6359 
6360   StmtResult Ret = {Result, ResultSlot};
6361   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6362   if (ESR == ESR_Succeeded) {
6363     if (Callee->getReturnType()->isVoidType())
6364       return true;
6365     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6366   }
6367   return ESR == ESR_Returned;
6368 }
6369 
6370 /// Evaluate a constructor call.
6371 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6372                                   CallRef Call,
6373                                   const CXXConstructorDecl *Definition,
6374                                   EvalInfo &Info, APValue &Result) {
6375   SourceLocation CallLoc = E->getExprLoc();
6376   if (!Info.CheckCallLimit(CallLoc))
6377     return false;
6378 
6379   const CXXRecordDecl *RD = Definition->getParent();
6380   if (RD->getNumVBases()) {
6381     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6382     return false;
6383   }
6384 
6385   EvalInfo::EvaluatingConstructorRAII EvalObj(
6386       Info,
6387       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6388       RD->getNumBases());
6389   CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call);
6390 
6391   // FIXME: Creating an APValue just to hold a nonexistent return value is
6392   // wasteful.
6393   APValue RetVal;
6394   StmtResult Ret = {RetVal, nullptr};
6395 
6396   // If it's a delegating constructor, delegate.
6397   if (Definition->isDelegatingConstructor()) {
6398     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6399     if ((*I)->getInit()->isValueDependent()) {
6400       if (!EvaluateDependentExpr((*I)->getInit(), Info))
6401         return false;
6402     } else {
6403       FullExpressionRAII InitScope(Info);
6404       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6405           !InitScope.destroy())
6406         return false;
6407     }
6408     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6409   }
6410 
6411   // For a trivial copy or move constructor, perform an APValue copy. This is
6412   // essential for unions (or classes with anonymous union members), where the
6413   // operations performed by the constructor cannot be represented by
6414   // ctor-initializers.
6415   //
6416   // Skip this for empty non-union classes; we should not perform an
6417   // lvalue-to-rvalue conversion on them because their copy constructor does not
6418   // actually read them.
6419   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6420       (Definition->getParent()->isUnion() ||
6421        (Definition->isTrivial() &&
6422         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6423     return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6424                              Definition->getParent()->isUnion());
6425   }
6426 
6427   // Reserve space for the struct members.
6428   if (!Result.hasValue()) {
6429     if (!RD->isUnion())
6430       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6431                        std::distance(RD->field_begin(), RD->field_end()));
6432     else
6433       // A union starts with no active member.
6434       Result = APValue((const FieldDecl*)nullptr);
6435   }
6436 
6437   if (RD->isInvalidDecl()) return false;
6438   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6439 
6440   // A scope for temporaries lifetime-extended by reference members.
6441   BlockScopeRAII LifetimeExtendedScope(Info);
6442 
6443   bool Success = true;
6444   unsigned BasesSeen = 0;
6445 #ifndef NDEBUG
6446   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6447 #endif
6448   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6449   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6450     // We might be initializing the same field again if this is an indirect
6451     // field initialization.
6452     if (FieldIt == RD->field_end() ||
6453         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6454       assert(Indirect && "fields out of order?");
6455       return;
6456     }
6457 
6458     // Default-initialize any fields with no explicit initializer.
6459     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6460       assert(FieldIt != RD->field_end() && "missing field?");
6461       if (!FieldIt->isUnnamedBitField())
6462         Success &= handleDefaultInitValue(
6463             FieldIt->getType(),
6464             Result.getStructField(FieldIt->getFieldIndex()));
6465     }
6466     ++FieldIt;
6467   };
6468   for (const auto *I : Definition->inits()) {
6469     LValue Subobject = This;
6470     LValue SubobjectParent = This;
6471     APValue *Value = &Result;
6472 
6473     // Determine the subobject to initialize.
6474     FieldDecl *FD = nullptr;
6475     if (I->isBaseInitializer()) {
6476       QualType BaseType(I->getBaseClass(), 0);
6477 #ifndef NDEBUG
6478       // Non-virtual base classes are initialized in the order in the class
6479       // definition. We have already checked for virtual base classes.
6480       assert(!BaseIt->isVirtual() && "virtual base for literal type");
6481       assert(Info.Ctx.hasSameUnqualifiedType(BaseIt->getType(), BaseType) &&
6482              "base class initializers not in expected order");
6483       ++BaseIt;
6484 #endif
6485       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6486                                   BaseType->getAsCXXRecordDecl(), &Layout))
6487         return false;
6488       Value = &Result.getStructBase(BasesSeen++);
6489     } else if ((FD = I->getMember())) {
6490       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6491         return false;
6492       if (RD->isUnion()) {
6493         Result = APValue(FD);
6494         Value = &Result.getUnionValue();
6495       } else {
6496         SkipToField(FD, false);
6497         Value = &Result.getStructField(FD->getFieldIndex());
6498       }
6499     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6500       // Walk the indirect field decl's chain to find the object to initialize,
6501       // and make sure we've initialized every step along it.
6502       auto IndirectFieldChain = IFD->chain();
6503       for (auto *C : IndirectFieldChain) {
6504         FD = cast<FieldDecl>(C);
6505         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6506         // Switch the union field if it differs. This happens if we had
6507         // preceding zero-initialization, and we're now initializing a union
6508         // subobject other than the first.
6509         // FIXME: In this case, the values of the other subobjects are
6510         // specified, since zero-initialization sets all padding bits to zero.
6511         if (!Value->hasValue() ||
6512             (Value->isUnion() && Value->getUnionField() != FD)) {
6513           if (CD->isUnion())
6514             *Value = APValue(FD);
6515           else
6516             // FIXME: This immediately starts the lifetime of all members of
6517             // an anonymous struct. It would be preferable to strictly start
6518             // member lifetime in initialization order.
6519             Success &=
6520                 handleDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6521         }
6522         // Store Subobject as its parent before updating it for the last element
6523         // in the chain.
6524         if (C == IndirectFieldChain.back())
6525           SubobjectParent = Subobject;
6526         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6527           return false;
6528         if (CD->isUnion())
6529           Value = &Value->getUnionValue();
6530         else {
6531           if (C == IndirectFieldChain.front() && !RD->isUnion())
6532             SkipToField(FD, true);
6533           Value = &Value->getStructField(FD->getFieldIndex());
6534         }
6535       }
6536     } else {
6537       llvm_unreachable("unknown base initializer kind");
6538     }
6539 
6540     // Need to override This for implicit field initializers as in this case
6541     // This refers to innermost anonymous struct/union containing initializer,
6542     // not to currently constructed class.
6543     const Expr *Init = I->getInit();
6544     if (Init->isValueDependent()) {
6545       if (!EvaluateDependentExpr(Init, Info))
6546         return false;
6547     } else {
6548       ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6549                                     isa<CXXDefaultInitExpr>(Init));
6550       FullExpressionRAII InitScope(Info);
6551       if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6552           (FD && FD->isBitField() &&
6553            !truncateBitfieldValue(Info, Init, *Value, FD))) {
6554         // If we're checking for a potential constant expression, evaluate all
6555         // initializers even if some of them fail.
6556         if (!Info.noteFailure())
6557           return false;
6558         Success = false;
6559       }
6560     }
6561 
6562     // This is the point at which the dynamic type of the object becomes this
6563     // class type.
6564     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6565       EvalObj.finishedConstructingBases();
6566   }
6567 
6568   // Default-initialize any remaining fields.
6569   if (!RD->isUnion()) {
6570     for (; FieldIt != RD->field_end(); ++FieldIt) {
6571       if (!FieldIt->isUnnamedBitField())
6572         Success &= handleDefaultInitValue(
6573             FieldIt->getType(),
6574             Result.getStructField(FieldIt->getFieldIndex()));
6575     }
6576   }
6577 
6578   EvalObj.finishedConstructingFields();
6579 
6580   return Success &&
6581          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6582          LifetimeExtendedScope.destroy();
6583 }
6584 
6585 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6586                                   ArrayRef<const Expr*> Args,
6587                                   const CXXConstructorDecl *Definition,
6588                                   EvalInfo &Info, APValue &Result) {
6589   CallScopeRAII CallScope(Info);
6590   CallRef Call = Info.CurrentCall->createCall(Definition);
6591   if (!EvaluateArgs(Args, Call, Info, Definition))
6592     return false;
6593 
6594   return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6595          CallScope.destroy();
6596 }
6597 
6598 static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange,
6599                                   const LValue &This, APValue &Value,
6600                                   QualType T) {
6601   // Objects can only be destroyed while they're within their lifetimes.
6602   // FIXME: We have no representation for whether an object of type nullptr_t
6603   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6604   // as indeterminate instead?
6605   if (Value.isAbsent() && !T->isNullPtrType()) {
6606     APValue Printable;
6607     This.moveInto(Printable);
6608     Info.FFDiag(CallRange.getBegin(),
6609                 diag::note_constexpr_destroy_out_of_lifetime)
6610         << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6611     return false;
6612   }
6613 
6614   // Invent an expression for location purposes.
6615   // FIXME: We shouldn't need to do this.
6616   OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue);
6617 
6618   // For arrays, destroy elements right-to-left.
6619   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6620     uint64_t Size = CAT->getZExtSize();
6621     QualType ElemT = CAT->getElementType();
6622 
6623     if (!CheckArraySize(Info, CAT, CallRange.getBegin()))
6624       return false;
6625 
6626     LValue ElemLV = This;
6627     ElemLV.addArray(Info, &LocE, CAT);
6628     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6629       return false;
6630 
6631     // Ensure that we have actual array elements available to destroy; the
6632     // destructors might mutate the value, so we can't run them on the array
6633     // filler.
6634     if (Size && Size > Value.getArrayInitializedElts())
6635       expandArray(Value, Value.getArraySize() - 1);
6636 
6637     for (; Size != 0; --Size) {
6638       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6639       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6640           !HandleDestructionImpl(Info, CallRange, ElemLV, Elem, ElemT))
6641         return false;
6642     }
6643 
6644     // End the lifetime of this array now.
6645     Value = APValue();
6646     return true;
6647   }
6648 
6649   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6650   if (!RD) {
6651     if (T.isDestructedType()) {
6652       Info.FFDiag(CallRange.getBegin(),
6653                   diag::note_constexpr_unsupported_destruction)
6654           << T;
6655       return false;
6656     }
6657 
6658     Value = APValue();
6659     return true;
6660   }
6661 
6662   if (RD->getNumVBases()) {
6663     Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD;
6664     return false;
6665   }
6666 
6667   const CXXDestructorDecl *DD = RD->getDestructor();
6668   if (!DD && !RD->hasTrivialDestructor()) {
6669     Info.FFDiag(CallRange.getBegin());
6670     return false;
6671   }
6672 
6673   if (!DD || DD->isTrivial() ||
6674       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6675     // A trivial destructor just ends the lifetime of the object. Check for
6676     // this case before checking for a body, because we might not bother
6677     // building a body for a trivial destructor. Note that it doesn't matter
6678     // whether the destructor is constexpr in this case; all trivial
6679     // destructors are constexpr.
6680     //
6681     // If an anonymous union would be destroyed, some enclosing destructor must
6682     // have been explicitly defined, and the anonymous union destruction should
6683     // have no effect.
6684     Value = APValue();
6685     return true;
6686   }
6687 
6688   if (!Info.CheckCallLimit(CallRange.getBegin()))
6689     return false;
6690 
6691   const FunctionDecl *Definition = nullptr;
6692   const Stmt *Body = DD->getBody(Definition);
6693 
6694   if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body))
6695     return false;
6696 
6697   CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr,
6698                        CallRef());
6699 
6700   // We're now in the period of destruction of this object.
6701   unsigned BasesLeft = RD->getNumBases();
6702   EvalInfo::EvaluatingDestructorRAII EvalObj(
6703       Info,
6704       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6705   if (!EvalObj.DidInsert) {
6706     // C++2a [class.dtor]p19:
6707     //   the behavior is undefined if the destructor is invoked for an object
6708     //   whose lifetime has ended
6709     // (Note that formally the lifetime ends when the period of destruction
6710     // begins, even though certain uses of the object remain valid until the
6711     // period of destruction ends.)
6712     Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy);
6713     return false;
6714   }
6715 
6716   // FIXME: Creating an APValue just to hold a nonexistent return value is
6717   // wasteful.
6718   APValue RetVal;
6719   StmtResult Ret = {RetVal, nullptr};
6720   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6721     return false;
6722 
6723   // A union destructor does not implicitly destroy its members.
6724   if (RD->isUnion())
6725     return true;
6726 
6727   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6728 
6729   // We don't have a good way to iterate fields in reverse, so collect all the
6730   // fields first and then walk them backwards.
6731   SmallVector<FieldDecl*, 16> Fields(RD->fields());
6732   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6733     if (FD->isUnnamedBitField())
6734       continue;
6735 
6736     LValue Subobject = This;
6737     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6738       return false;
6739 
6740     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6741     if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
6742                                FD->getType()))
6743       return false;
6744   }
6745 
6746   if (BasesLeft != 0)
6747     EvalObj.startedDestroyingBases();
6748 
6749   // Destroy base classes in reverse order.
6750   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6751     --BasesLeft;
6752 
6753     QualType BaseType = Base.getType();
6754     LValue Subobject = This;
6755     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6756                                 BaseType->getAsCXXRecordDecl(), &Layout))
6757       return false;
6758 
6759     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6760     if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
6761                                BaseType))
6762       return false;
6763   }
6764   assert(BasesLeft == 0 && "NumBases was wrong?");
6765 
6766   // The period of destruction ends now. The object is gone.
6767   Value = APValue();
6768   return true;
6769 }
6770 
6771 namespace {
6772 struct DestroyObjectHandler {
6773   EvalInfo &Info;
6774   const Expr *E;
6775   const LValue &This;
6776   const AccessKinds AccessKind;
6777 
6778   typedef bool result_type;
6779   bool failed() { return false; }
6780   bool found(APValue &Subobj, QualType SubobjType) {
6781     return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj,
6782                                  SubobjType);
6783   }
6784   bool found(APSInt &Value, QualType SubobjType) {
6785     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6786     return false;
6787   }
6788   bool found(APFloat &Value, QualType SubobjType) {
6789     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6790     return false;
6791   }
6792 };
6793 }
6794 
6795 /// Perform a destructor or pseudo-destructor call on the given object, which
6796 /// might in general not be a complete object.
6797 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6798                               const LValue &This, QualType ThisType) {
6799   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6800   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6801   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6802 }
6803 
6804 /// Destroy and end the lifetime of the given complete object.
6805 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6806                               APValue::LValueBase LVBase, APValue &Value,
6807                               QualType T) {
6808   // If we've had an unmodeled side-effect, we can't rely on mutable state
6809   // (such as the object we're about to destroy) being correct.
6810   if (Info.EvalStatus.HasSideEffects)
6811     return false;
6812 
6813   LValue LV;
6814   LV.set({LVBase});
6815   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6816 }
6817 
6818 /// Perform a call to 'operator new' or to `__builtin_operator_new'.
6819 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6820                                   LValue &Result) {
6821   if (Info.checkingPotentialConstantExpression() ||
6822       Info.SpeculativeEvaluationDepth)
6823     return false;
6824 
6825   // This is permitted only within a call to std::allocator<T>::allocate.
6826   auto Caller = Info.getStdAllocatorCaller("allocate");
6827   if (!Caller) {
6828     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6829                                      ? diag::note_constexpr_new_untyped
6830                                      : diag::note_constexpr_new);
6831     return false;
6832   }
6833 
6834   QualType ElemType = Caller.ElemType;
6835   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6836     Info.FFDiag(E->getExprLoc(),
6837                 diag::note_constexpr_new_not_complete_object_type)
6838         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6839     return false;
6840   }
6841 
6842   APSInt ByteSize;
6843   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6844     return false;
6845   bool IsNothrow = false;
6846   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6847     EvaluateIgnoredValue(Info, E->getArg(I));
6848     IsNothrow |= E->getType()->isNothrowT();
6849   }
6850 
6851   CharUnits ElemSize;
6852   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6853     return false;
6854   APInt Size, Remainder;
6855   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6856   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6857   if (Remainder != 0) {
6858     // This likely indicates a bug in the implementation of 'std::allocator'.
6859     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6860         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6861     return false;
6862   }
6863 
6864   if (!Info.CheckArraySize(E->getBeginLoc(), ByteSize.getActiveBits(),
6865                            Size.getZExtValue(), /*Diag=*/!IsNothrow)) {
6866     if (IsNothrow) {
6867       Result.setNull(Info.Ctx, E->getType());
6868       return true;
6869     }
6870     return false;
6871   }
6872 
6873   QualType AllocType = Info.Ctx.getConstantArrayType(
6874       ElemType, Size, nullptr, ArraySizeModifier::Normal, 0);
6875   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6876   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6877   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6878   return true;
6879 }
6880 
6881 static bool hasVirtualDestructor(QualType T) {
6882   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6883     if (CXXDestructorDecl *DD = RD->getDestructor())
6884       return DD->isVirtual();
6885   return false;
6886 }
6887 
6888 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6889   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6890     if (CXXDestructorDecl *DD = RD->getDestructor())
6891       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6892   return nullptr;
6893 }
6894 
6895 /// Check that the given object is a suitable pointer to a heap allocation that
6896 /// still exists and is of the right kind for the purpose of a deletion.
6897 ///
6898 /// On success, returns the heap allocation to deallocate. On failure, produces
6899 /// a diagnostic and returns std::nullopt.
6900 static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6901                                                  const LValue &Pointer,
6902                                                  DynAlloc::Kind DeallocKind) {
6903   auto PointerAsString = [&] {
6904     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6905   };
6906 
6907   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6908   if (!DA) {
6909     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6910         << PointerAsString();
6911     if (Pointer.Base)
6912       NoteLValueLocation(Info, Pointer.Base);
6913     return std::nullopt;
6914   }
6915 
6916   std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6917   if (!Alloc) {
6918     Info.FFDiag(E, diag::note_constexpr_double_delete);
6919     return std::nullopt;
6920   }
6921 
6922   if (DeallocKind != (*Alloc)->getKind()) {
6923     QualType AllocType = Pointer.Base.getDynamicAllocType();
6924     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6925         << DeallocKind << (*Alloc)->getKind() << AllocType;
6926     NoteLValueLocation(Info, Pointer.Base);
6927     return std::nullopt;
6928   }
6929 
6930   bool Subobject = false;
6931   if (DeallocKind == DynAlloc::New) {
6932     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6933                 Pointer.Designator.isOnePastTheEnd();
6934   } else {
6935     Subobject = Pointer.Designator.Entries.size() != 1 ||
6936                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6937   }
6938   if (Subobject) {
6939     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6940         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6941     return std::nullopt;
6942   }
6943 
6944   return Alloc;
6945 }
6946 
6947 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6948 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6949   if (Info.checkingPotentialConstantExpression() ||
6950       Info.SpeculativeEvaluationDepth)
6951     return false;
6952 
6953   // This is permitted only within a call to std::allocator<T>::deallocate.
6954   if (!Info.getStdAllocatorCaller("deallocate")) {
6955     Info.FFDiag(E->getExprLoc());
6956     return true;
6957   }
6958 
6959   LValue Pointer;
6960   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6961     return false;
6962   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6963     EvaluateIgnoredValue(Info, E->getArg(I));
6964 
6965   if (Pointer.Designator.Invalid)
6966     return false;
6967 
6968   // Deleting a null pointer would have no effect, but it's not permitted by
6969   // std::allocator<T>::deallocate's contract.
6970   if (Pointer.isNullPointer()) {
6971     Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6972     return true;
6973   }
6974 
6975   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6976     return false;
6977 
6978   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6979   return true;
6980 }
6981 
6982 //===----------------------------------------------------------------------===//
6983 // Generic Evaluation
6984 //===----------------------------------------------------------------------===//
6985 namespace {
6986 
6987 class BitCastBuffer {
6988   // FIXME: We're going to need bit-level granularity when we support
6989   // bit-fields.
6990   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6991   // we don't support a host or target where that is the case. Still, we should
6992   // use a more generic type in case we ever do.
6993   SmallVector<std::optional<unsigned char>, 32> Bytes;
6994 
6995   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6996                 "Need at least 8 bit unsigned char");
6997 
6998   bool TargetIsLittleEndian;
6999 
7000 public:
7001   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
7002       : Bytes(Width.getQuantity()),
7003         TargetIsLittleEndian(TargetIsLittleEndian) {}
7004 
7005   [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
7006                                 SmallVectorImpl<unsigned char> &Output) const {
7007     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
7008       // If a byte of an integer is uninitialized, then the whole integer is
7009       // uninitialized.
7010       if (!Bytes[I.getQuantity()])
7011         return false;
7012       Output.push_back(*Bytes[I.getQuantity()]);
7013     }
7014     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
7015       std::reverse(Output.begin(), Output.end());
7016     return true;
7017   }
7018 
7019   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
7020     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
7021       std::reverse(Input.begin(), Input.end());
7022 
7023     size_t Index = 0;
7024     for (unsigned char Byte : Input) {
7025       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
7026       Bytes[Offset.getQuantity() + Index] = Byte;
7027       ++Index;
7028     }
7029   }
7030 
7031   size_t size() { return Bytes.size(); }
7032 };
7033 
7034 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
7035 /// target would represent the value at runtime.
7036 class APValueToBufferConverter {
7037   EvalInfo &Info;
7038   BitCastBuffer Buffer;
7039   const CastExpr *BCE;
7040 
7041   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
7042                            const CastExpr *BCE)
7043       : Info(Info),
7044         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
7045         BCE(BCE) {}
7046 
7047   bool visit(const APValue &Val, QualType Ty) {
7048     return visit(Val, Ty, CharUnits::fromQuantity(0));
7049   }
7050 
7051   // Write out Val with type Ty into Buffer starting at Offset.
7052   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
7053     assert((size_t)Offset.getQuantity() <= Buffer.size());
7054 
7055     // As a special case, nullptr_t has an indeterminate value.
7056     if (Ty->isNullPtrType())
7057       return true;
7058 
7059     // Dig through Src to find the byte at SrcOffset.
7060     switch (Val.getKind()) {
7061     case APValue::Indeterminate:
7062     case APValue::None:
7063       return true;
7064 
7065     case APValue::Int:
7066       return visitInt(Val.getInt(), Ty, Offset);
7067     case APValue::Float:
7068       return visitFloat(Val.getFloat(), Ty, Offset);
7069     case APValue::Array:
7070       return visitArray(Val, Ty, Offset);
7071     case APValue::Struct:
7072       return visitRecord(Val, Ty, Offset);
7073     case APValue::Vector:
7074       return visitVector(Val, Ty, Offset);
7075 
7076     case APValue::ComplexInt:
7077     case APValue::ComplexFloat:
7078     case APValue::FixedPoint:
7079       // FIXME: We should support these.
7080 
7081     case APValue::Union:
7082     case APValue::MemberPointer:
7083     case APValue::AddrLabelDiff: {
7084       Info.FFDiag(BCE->getBeginLoc(),
7085                   diag::note_constexpr_bit_cast_unsupported_type)
7086           << Ty;
7087       return false;
7088     }
7089 
7090     case APValue::LValue:
7091       llvm_unreachable("LValue subobject in bit_cast?");
7092     }
7093     llvm_unreachable("Unhandled APValue::ValueKind");
7094   }
7095 
7096   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
7097     const RecordDecl *RD = Ty->getAsRecordDecl();
7098     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7099 
7100     // Visit the base classes.
7101     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7102       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7103         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7104         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7105 
7106         if (!visitRecord(Val.getStructBase(I), BS.getType(),
7107                          Layout.getBaseClassOffset(BaseDecl) + Offset))
7108           return false;
7109       }
7110     }
7111 
7112     // Visit the fields.
7113     unsigned FieldIdx = 0;
7114     for (FieldDecl *FD : RD->fields()) {
7115       if (FD->isBitField()) {
7116         Info.FFDiag(BCE->getBeginLoc(),
7117                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7118         return false;
7119       }
7120 
7121       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7122 
7123       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
7124              "only bit-fields can have sub-char alignment");
7125       CharUnits FieldOffset =
7126           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
7127       QualType FieldTy = FD->getType();
7128       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
7129         return false;
7130       ++FieldIdx;
7131     }
7132 
7133     return true;
7134   }
7135 
7136   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
7137     const auto *CAT =
7138         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
7139     if (!CAT)
7140       return false;
7141 
7142     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
7143     unsigned NumInitializedElts = Val.getArrayInitializedElts();
7144     unsigned ArraySize = Val.getArraySize();
7145     // First, initialize the initialized elements.
7146     for (unsigned I = 0; I != NumInitializedElts; ++I) {
7147       const APValue &SubObj = Val.getArrayInitializedElt(I);
7148       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
7149         return false;
7150     }
7151 
7152     // Next, initialize the rest of the array using the filler.
7153     if (Val.hasArrayFiller()) {
7154       const APValue &Filler = Val.getArrayFiller();
7155       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
7156         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
7157           return false;
7158       }
7159     }
7160 
7161     return true;
7162   }
7163 
7164   bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) {
7165     const VectorType *VTy = Ty->castAs<VectorType>();
7166     QualType EltTy = VTy->getElementType();
7167     unsigned NElts = VTy->getNumElements();
7168     unsigned EltSize =
7169         VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy);
7170 
7171     if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7172       // The vector's size in bits is not a multiple of the target's byte size,
7173       // so its layout is unspecified. For now, we'll simply treat these cases
7174       // as unsupported (this should only be possible with OpenCL bool vectors
7175       // whose element count isn't a multiple of the byte size).
7176       Info.FFDiag(BCE->getBeginLoc(),
7177                   diag::note_constexpr_bit_cast_invalid_vector)
7178           << Ty.getCanonicalType() << EltSize << NElts
7179           << Info.Ctx.getCharWidth();
7180       return false;
7181     }
7182 
7183     if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) ==
7184                                            &APFloat::x87DoubleExtended()) {
7185       // The layout for x86_fp80 vectors seems to be handled very inconsistently
7186       // by both clang and LLVM, so for now we won't allow bit_casts involving
7187       // it in a constexpr context.
7188       Info.FFDiag(BCE->getBeginLoc(),
7189                   diag::note_constexpr_bit_cast_unsupported_type)
7190           << EltTy;
7191       return false;
7192     }
7193 
7194     if (VTy->isExtVectorBoolType()) {
7195       // Special handling for OpenCL bool vectors:
7196       // Since these vectors are stored as packed bits, but we can't write
7197       // individual bits to the BitCastBuffer, we'll buffer all of the elements
7198       // together into an appropriately sized APInt and write them all out at
7199       // once. Because we don't accept vectors where NElts * EltSize isn't a
7200       // multiple of the char size, there will be no padding space, so we don't
7201       // have to worry about writing data which should have been left
7202       // uninitialized.
7203       bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7204 
7205       llvm::APInt Res = llvm::APInt::getZero(NElts);
7206       for (unsigned I = 0; I < NElts; ++I) {
7207         const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt();
7208         assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 &&
7209                "bool vector element must be 1-bit unsigned integer!");
7210 
7211         Res.insertBits(EltAsInt, BigEndian ? (NElts - I - 1) : I);
7212       }
7213 
7214       SmallVector<uint8_t, 8> Bytes(NElts / 8);
7215       llvm::StoreIntToMemory(Res, &*Bytes.begin(), NElts / 8);
7216       Buffer.writeObject(Offset, Bytes);
7217     } else {
7218       // Iterate over each of the elements and write them out to the buffer at
7219       // the appropriate offset.
7220       CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy);
7221       for (unsigned I = 0; I < NElts; ++I) {
7222         if (!visit(Val.getVectorElt(I), EltTy, Offset + I * EltSizeChars))
7223           return false;
7224       }
7225     }
7226 
7227     return true;
7228   }
7229 
7230   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7231     APSInt AdjustedVal = Val;
7232     unsigned Width = AdjustedVal.getBitWidth();
7233     if (Ty->isBooleanType()) {
7234       Width = Info.Ctx.getTypeSize(Ty);
7235       AdjustedVal = AdjustedVal.extend(Width);
7236     }
7237 
7238     SmallVector<uint8_t, 8> Bytes(Width / 8);
7239     llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
7240     Buffer.writeObject(Offset, Bytes);
7241     return true;
7242   }
7243 
7244   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7245     APSInt AsInt(Val.bitcastToAPInt());
7246     return visitInt(AsInt, Ty, Offset);
7247   }
7248 
7249 public:
7250   static std::optional<BitCastBuffer>
7251   convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7252     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7253     APValueToBufferConverter Converter(Info, DstSize, BCE);
7254     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
7255       return std::nullopt;
7256     return Converter.Buffer;
7257   }
7258 };
7259 
7260 /// Write an BitCastBuffer into an APValue.
7261 class BufferToAPValueConverter {
7262   EvalInfo &Info;
7263   const BitCastBuffer &Buffer;
7264   const CastExpr *BCE;
7265 
7266   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7267                            const CastExpr *BCE)
7268       : Info(Info), Buffer(Buffer), BCE(BCE) {}
7269 
7270   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7271   // with an invalid type, so anything left is a deficiency on our part (FIXME).
7272   // Ideally this will be unreachable.
7273   std::nullopt_t unsupportedType(QualType Ty) {
7274     Info.FFDiag(BCE->getBeginLoc(),
7275                 diag::note_constexpr_bit_cast_unsupported_type)
7276         << Ty;
7277     return std::nullopt;
7278   }
7279 
7280   std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7281     Info.FFDiag(BCE->getBeginLoc(),
7282                 diag::note_constexpr_bit_cast_unrepresentable_value)
7283         << Ty << toString(Val, /*Radix=*/10);
7284     return std::nullopt;
7285   }
7286 
7287   std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7288                                const EnumType *EnumSugar = nullptr) {
7289     if (T->isNullPtrType()) {
7290       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7291       return APValue((Expr *)nullptr,
7292                      /*Offset=*/CharUnits::fromQuantity(NullValue),
7293                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7294     }
7295 
7296     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7297 
7298     // Work around floating point types that contain unused padding bytes. This
7299     // is really just `long double` on x86, which is the only fundamental type
7300     // with padding bytes.
7301     if (T->isRealFloatingType()) {
7302       const llvm::fltSemantics &Semantics =
7303           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7304       unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7305       assert(NumBits % 8 == 0);
7306       CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7307       if (NumBytes != SizeOf)
7308         SizeOf = NumBytes;
7309     }
7310 
7311     SmallVector<uint8_t, 8> Bytes;
7312     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7313       // If this is std::byte or unsigned char, then its okay to store an
7314       // indeterminate value.
7315       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7316       bool IsUChar =
7317           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7318                          T->isSpecificBuiltinType(BuiltinType::Char_U));
7319       if (!IsStdByte && !IsUChar) {
7320         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7321         Info.FFDiag(BCE->getExprLoc(),
7322                     diag::note_constexpr_bit_cast_indet_dest)
7323             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7324         return std::nullopt;
7325       }
7326 
7327       return APValue::IndeterminateValue();
7328     }
7329 
7330     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7331     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7332 
7333     if (T->isIntegralOrEnumerationType()) {
7334       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7335 
7336       unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7337       if (IntWidth != Val.getBitWidth()) {
7338         APSInt Truncated = Val.trunc(IntWidth);
7339         if (Truncated.extend(Val.getBitWidth()) != Val)
7340           return unrepresentableValue(QualType(T, 0), Val);
7341         Val = Truncated;
7342       }
7343 
7344       return APValue(Val);
7345     }
7346 
7347     if (T->isRealFloatingType()) {
7348       const llvm::fltSemantics &Semantics =
7349           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7350       return APValue(APFloat(Semantics, Val));
7351     }
7352 
7353     return unsupportedType(QualType(T, 0));
7354   }
7355 
7356   std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7357     const RecordDecl *RD = RTy->getAsRecordDecl();
7358     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7359 
7360     unsigned NumBases = 0;
7361     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7362       NumBases = CXXRD->getNumBases();
7363 
7364     APValue ResultVal(APValue::UninitStruct(), NumBases,
7365                       std::distance(RD->field_begin(), RD->field_end()));
7366 
7367     // Visit the base classes.
7368     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7369       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7370         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7371         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7372 
7373         std::optional<APValue> SubObj = visitType(
7374             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7375         if (!SubObj)
7376           return std::nullopt;
7377         ResultVal.getStructBase(I) = *SubObj;
7378       }
7379     }
7380 
7381     // Visit the fields.
7382     unsigned FieldIdx = 0;
7383     for (FieldDecl *FD : RD->fields()) {
7384       // FIXME: We don't currently support bit-fields. A lot of the logic for
7385       // this is in CodeGen, so we need to factor it around.
7386       if (FD->isBitField()) {
7387         Info.FFDiag(BCE->getBeginLoc(),
7388                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7389         return std::nullopt;
7390       }
7391 
7392       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7393       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7394 
7395       CharUnits FieldOffset =
7396           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7397           Offset;
7398       QualType FieldTy = FD->getType();
7399       std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7400       if (!SubObj)
7401         return std::nullopt;
7402       ResultVal.getStructField(FieldIdx) = *SubObj;
7403       ++FieldIdx;
7404     }
7405 
7406     return ResultVal;
7407   }
7408 
7409   std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7410     QualType RepresentationType = Ty->getDecl()->getIntegerType();
7411     assert(!RepresentationType.isNull() &&
7412            "enum forward decl should be caught by Sema");
7413     const auto *AsBuiltin =
7414         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7415     // Recurse into the underlying type. Treat std::byte transparently as
7416     // unsigned char.
7417     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7418   }
7419 
7420   std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7421     size_t Size = Ty->getLimitedSize();
7422     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7423 
7424     APValue ArrayValue(APValue::UninitArray(), Size, Size);
7425     for (size_t I = 0; I != Size; ++I) {
7426       std::optional<APValue> ElementValue =
7427           visitType(Ty->getElementType(), Offset + I * ElementWidth);
7428       if (!ElementValue)
7429         return std::nullopt;
7430       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7431     }
7432 
7433     return ArrayValue;
7434   }
7435 
7436   std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) {
7437     QualType EltTy = VTy->getElementType();
7438     unsigned NElts = VTy->getNumElements();
7439     unsigned EltSize =
7440         VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy);
7441 
7442     if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7443       // The vector's size in bits is not a multiple of the target's byte size,
7444       // so its layout is unspecified. For now, we'll simply treat these cases
7445       // as unsupported (this should only be possible with OpenCL bool vectors
7446       // whose element count isn't a multiple of the byte size).
7447       Info.FFDiag(BCE->getBeginLoc(),
7448                   diag::note_constexpr_bit_cast_invalid_vector)
7449           << QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth();
7450       return std::nullopt;
7451     }
7452 
7453     if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) ==
7454                                            &APFloat::x87DoubleExtended()) {
7455       // The layout for x86_fp80 vectors seems to be handled very inconsistently
7456       // by both clang and LLVM, so for now we won't allow bit_casts involving
7457       // it in a constexpr context.
7458       Info.FFDiag(BCE->getBeginLoc(),
7459                   diag::note_constexpr_bit_cast_unsupported_type)
7460           << EltTy;
7461       return std::nullopt;
7462     }
7463 
7464     SmallVector<APValue, 4> Elts;
7465     Elts.reserve(NElts);
7466     if (VTy->isExtVectorBoolType()) {
7467       // Special handling for OpenCL bool vectors:
7468       // Since these vectors are stored as packed bits, but we can't read
7469       // individual bits from the BitCastBuffer, we'll buffer all of the
7470       // elements together into an appropriately sized APInt and write them all
7471       // out at once. Because we don't accept vectors where NElts * EltSize
7472       // isn't a multiple of the char size, there will be no padding space, so
7473       // we don't have to worry about reading any padding data which didn't
7474       // actually need to be accessed.
7475       bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7476 
7477       SmallVector<uint8_t, 8> Bytes;
7478       Bytes.reserve(NElts / 8);
7479       if (!Buffer.readObject(Offset, CharUnits::fromQuantity(NElts / 8), Bytes))
7480         return std::nullopt;
7481 
7482       APSInt SValInt(NElts, true);
7483       llvm::LoadIntFromMemory(SValInt, &*Bytes.begin(), Bytes.size());
7484 
7485       for (unsigned I = 0; I < NElts; ++I) {
7486         llvm::APInt Elt =
7487             SValInt.extractBits(1, (BigEndian ? NElts - I - 1 : I) * EltSize);
7488         Elts.emplace_back(
7489             APSInt(std::move(Elt), !EltTy->isSignedIntegerType()));
7490       }
7491     } else {
7492       // Iterate over each of the elements and read them from the buffer at
7493       // the appropriate offset.
7494       CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy);
7495       for (unsigned I = 0; I < NElts; ++I) {
7496         std::optional<APValue> EltValue =
7497             visitType(EltTy, Offset + I * EltSizeChars);
7498         if (!EltValue)
7499           return std::nullopt;
7500         Elts.push_back(std::move(*EltValue));
7501       }
7502     }
7503 
7504     return APValue(Elts.data(), Elts.size());
7505   }
7506 
7507   std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7508     return unsupportedType(QualType(Ty, 0));
7509   }
7510 
7511   std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7512     QualType Can = Ty.getCanonicalType();
7513 
7514     switch (Can->getTypeClass()) {
7515 #define TYPE(Class, Base)                                                      \
7516   case Type::Class:                                                            \
7517     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7518 #define ABSTRACT_TYPE(Class, Base)
7519 #define NON_CANONICAL_TYPE(Class, Base)                                        \
7520   case Type::Class:                                                            \
7521     llvm_unreachable("non-canonical type should be impossible!");
7522 #define DEPENDENT_TYPE(Class, Base)                                            \
7523   case Type::Class:                                                            \
7524     llvm_unreachable(                                                          \
7525         "dependent types aren't supported in the constant evaluator!");
7526 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
7527   case Type::Class:                                                            \
7528     llvm_unreachable("either dependent or not canonical!");
7529 #include "clang/AST/TypeNodes.inc"
7530     }
7531     llvm_unreachable("Unhandled Type::TypeClass");
7532   }
7533 
7534 public:
7535   // Pull out a full value of type DstType.
7536   static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7537                                         const CastExpr *BCE) {
7538     BufferToAPValueConverter Converter(Info, Buffer, BCE);
7539     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7540   }
7541 };
7542 
7543 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7544                                                  QualType Ty, EvalInfo *Info,
7545                                                  const ASTContext &Ctx,
7546                                                  bool CheckingDest) {
7547   Ty = Ty.getCanonicalType();
7548 
7549   auto diag = [&](int Reason) {
7550     if (Info)
7551       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7552           << CheckingDest << (Reason == 4) << Reason;
7553     return false;
7554   };
7555   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7556     if (Info)
7557       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7558           << NoteTy << Construct << Ty;
7559     return false;
7560   };
7561 
7562   if (Ty->isUnionType())
7563     return diag(0);
7564   if (Ty->isPointerType())
7565     return diag(1);
7566   if (Ty->isMemberPointerType())
7567     return diag(2);
7568   if (Ty.isVolatileQualified())
7569     return diag(3);
7570 
7571   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7572     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7573       for (CXXBaseSpecifier &BS : CXXRD->bases())
7574         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7575                                                   CheckingDest))
7576           return note(1, BS.getType(), BS.getBeginLoc());
7577     }
7578     for (FieldDecl *FD : Record->fields()) {
7579       if (FD->getType()->isReferenceType())
7580         return diag(4);
7581       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7582                                                 CheckingDest))
7583         return note(0, FD->getType(), FD->getBeginLoc());
7584     }
7585   }
7586 
7587   if (Ty->isArrayType() &&
7588       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7589                                             Info, Ctx, CheckingDest))
7590     return false;
7591 
7592   return true;
7593 }
7594 
7595 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7596                                              const ASTContext &Ctx,
7597                                              const CastExpr *BCE) {
7598   bool DestOK = checkBitCastConstexprEligibilityType(
7599       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7600   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7601                                 BCE->getBeginLoc(),
7602                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
7603   return SourceOK;
7604 }
7605 
7606 static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7607                                         const APValue &SourceRValue,
7608                                         const CastExpr *BCE) {
7609   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7610          "no host or target supports non 8-bit chars");
7611 
7612   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7613     return false;
7614 
7615   // Read out SourceValue into a char buffer.
7616   std::optional<BitCastBuffer> Buffer =
7617       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7618   if (!Buffer)
7619     return false;
7620 
7621   // Write out the buffer into a new APValue.
7622   std::optional<APValue> MaybeDestValue =
7623       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7624   if (!MaybeDestValue)
7625     return false;
7626 
7627   DestValue = std::move(*MaybeDestValue);
7628   return true;
7629 }
7630 
7631 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7632                                         APValue &SourceValue,
7633                                         const CastExpr *BCE) {
7634   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7635          "no host or target supports non 8-bit chars");
7636   assert(SourceValue.isLValue() &&
7637          "LValueToRValueBitcast requires an lvalue operand!");
7638 
7639   LValue SourceLValue;
7640   APValue SourceRValue;
7641   SourceLValue.setFrom(Info.Ctx, SourceValue);
7642   if (!handleLValueToRValueConversion(
7643           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7644           SourceRValue, /*WantObjectRepresentation=*/true))
7645     return false;
7646 
7647   return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE);
7648 }
7649 
7650 template <class Derived>
7651 class ExprEvaluatorBase
7652   : public ConstStmtVisitor<Derived, bool> {
7653 private:
7654   Derived &getDerived() { return static_cast<Derived&>(*this); }
7655   bool DerivedSuccess(const APValue &V, const Expr *E) {
7656     return getDerived().Success(V, E);
7657   }
7658   bool DerivedZeroInitialization(const Expr *E) {
7659     return getDerived().ZeroInitialization(E);
7660   }
7661 
7662   // Check whether a conditional operator with a non-constant condition is a
7663   // potential constant expression. If neither arm is a potential constant
7664   // expression, then the conditional operator is not either.
7665   template<typename ConditionalOperator>
7666   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7667     assert(Info.checkingPotentialConstantExpression());
7668 
7669     // Speculatively evaluate both arms.
7670     SmallVector<PartialDiagnosticAt, 8> Diag;
7671     {
7672       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7673       StmtVisitorTy::Visit(E->getFalseExpr());
7674       if (Diag.empty())
7675         return;
7676     }
7677 
7678     {
7679       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7680       Diag.clear();
7681       StmtVisitorTy::Visit(E->getTrueExpr());
7682       if (Diag.empty())
7683         return;
7684     }
7685 
7686     Error(E, diag::note_constexpr_conditional_never_const);
7687   }
7688 
7689 
7690   template<typename ConditionalOperator>
7691   bool HandleConditionalOperator(const ConditionalOperator *E) {
7692     bool BoolResult;
7693     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7694       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7695         CheckPotentialConstantConditional(E);
7696         return false;
7697       }
7698       if (Info.noteFailure()) {
7699         StmtVisitorTy::Visit(E->getTrueExpr());
7700         StmtVisitorTy::Visit(E->getFalseExpr());
7701       }
7702       return false;
7703     }
7704 
7705     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7706     return StmtVisitorTy::Visit(EvalExpr);
7707   }
7708 
7709 protected:
7710   EvalInfo &Info;
7711   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7712   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7713 
7714   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7715     return Info.CCEDiag(E, D);
7716   }
7717 
7718   bool ZeroInitialization(const Expr *E) { return Error(E); }
7719 
7720   bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
7721     unsigned BuiltinOp = E->getBuiltinCallee();
7722     return BuiltinOp != 0 &&
7723            Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp);
7724   }
7725 
7726 public:
7727   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7728 
7729   EvalInfo &getEvalInfo() { return Info; }
7730 
7731   /// Report an evaluation error. This should only be called when an error is
7732   /// first discovered. When propagating an error, just return false.
7733   bool Error(const Expr *E, diag::kind D) {
7734     Info.FFDiag(E, D) << E->getSourceRange();
7735     return false;
7736   }
7737   bool Error(const Expr *E) {
7738     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7739   }
7740 
7741   bool VisitStmt(const Stmt *) {
7742     llvm_unreachable("Expression evaluator should not be called on stmts");
7743   }
7744   bool VisitExpr(const Expr *E) {
7745     return Error(E);
7746   }
7747 
7748   bool VisitEmbedExpr(const EmbedExpr *E) {
7749     const auto It = E->begin();
7750     return StmtVisitorTy::Visit(*It);
7751   }
7752 
7753   bool VisitPredefinedExpr(const PredefinedExpr *E) {
7754     return StmtVisitorTy::Visit(E->getFunctionName());
7755   }
7756   bool VisitConstantExpr(const ConstantExpr *E) {
7757     if (E->hasAPValueResult())
7758       return DerivedSuccess(E->getAPValueResult(), E);
7759 
7760     return StmtVisitorTy::Visit(E->getSubExpr());
7761   }
7762 
7763   bool VisitParenExpr(const ParenExpr *E)
7764     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7765   bool VisitUnaryExtension(const UnaryOperator *E)
7766     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7767   bool VisitUnaryPlus(const UnaryOperator *E)
7768     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7769   bool VisitChooseExpr(const ChooseExpr *E)
7770     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7771   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7772     { return StmtVisitorTy::Visit(E->getResultExpr()); }
7773   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7774     { return StmtVisitorTy::Visit(E->getReplacement()); }
7775   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7776     TempVersionRAII RAII(*Info.CurrentCall);
7777     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7778     return StmtVisitorTy::Visit(E->getExpr());
7779   }
7780   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7781     TempVersionRAII RAII(*Info.CurrentCall);
7782     // The initializer may not have been parsed yet, or might be erroneous.
7783     if (!E->getExpr())
7784       return Error(E);
7785     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7786     return StmtVisitorTy::Visit(E->getExpr());
7787   }
7788 
7789   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7790     FullExpressionRAII Scope(Info);
7791     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7792   }
7793 
7794   // Temporaries are registered when created, so we don't care about
7795   // CXXBindTemporaryExpr.
7796   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7797     return StmtVisitorTy::Visit(E->getSubExpr());
7798   }
7799 
7800   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7801     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7802     return static_cast<Derived*>(this)->VisitCastExpr(E);
7803   }
7804   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7805     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7806       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7807     return static_cast<Derived*>(this)->VisitCastExpr(E);
7808   }
7809   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7810     return static_cast<Derived*>(this)->VisitCastExpr(E);
7811   }
7812 
7813   bool VisitBinaryOperator(const BinaryOperator *E) {
7814     switch (E->getOpcode()) {
7815     default:
7816       return Error(E);
7817 
7818     case BO_Comma:
7819       VisitIgnoredValue(E->getLHS());
7820       return StmtVisitorTy::Visit(E->getRHS());
7821 
7822     case BO_PtrMemD:
7823     case BO_PtrMemI: {
7824       LValue Obj;
7825       if (!HandleMemberPointerAccess(Info, E, Obj))
7826         return false;
7827       APValue Result;
7828       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7829         return false;
7830       return DerivedSuccess(Result, E);
7831     }
7832     }
7833   }
7834 
7835   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7836     return StmtVisitorTy::Visit(E->getSemanticForm());
7837   }
7838 
7839   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7840     // Evaluate and cache the common expression. We treat it as a temporary,
7841     // even though it's not quite the same thing.
7842     LValue CommonLV;
7843     if (!Evaluate(Info.CurrentCall->createTemporary(
7844                       E->getOpaqueValue(),
7845                       getStorageType(Info.Ctx, E->getOpaqueValue()),
7846                       ScopeKind::FullExpression, CommonLV),
7847                   Info, E->getCommon()))
7848       return false;
7849 
7850     return HandleConditionalOperator(E);
7851   }
7852 
7853   bool VisitConditionalOperator(const ConditionalOperator *E) {
7854     bool IsBcpCall = false;
7855     // If the condition (ignoring parens) is a __builtin_constant_p call,
7856     // the result is a constant expression if it can be folded without
7857     // side-effects. This is an important GNU extension. See GCC PR38377
7858     // for discussion.
7859     if (const CallExpr *CallCE =
7860           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7861       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7862         IsBcpCall = true;
7863 
7864     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7865     // constant expression; we can't check whether it's potentially foldable.
7866     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7867     // it would return 'false' in this mode.
7868     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7869       return false;
7870 
7871     FoldConstant Fold(Info, IsBcpCall);
7872     if (!HandleConditionalOperator(E)) {
7873       Fold.keepDiagnostics();
7874       return false;
7875     }
7876 
7877     return true;
7878   }
7879 
7880   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7881     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E);
7882         Value && !Value->isAbsent())
7883       return DerivedSuccess(*Value, E);
7884 
7885     const Expr *Source = E->getSourceExpr();
7886     if (!Source)
7887       return Error(E);
7888     if (Source == E) {
7889       assert(0 && "OpaqueValueExpr recursively refers to itself");
7890       return Error(E);
7891     }
7892     return StmtVisitorTy::Visit(Source);
7893   }
7894 
7895   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7896     for (const Expr *SemE : E->semantics()) {
7897       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7898         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7899         // result expression: there could be two different LValues that would
7900         // refer to the same object in that case, and we can't model that.
7901         if (SemE == E->getResultExpr())
7902           return Error(E);
7903 
7904         // Unique OVEs get evaluated if and when we encounter them when
7905         // emitting the rest of the semantic form, rather than eagerly.
7906         if (OVE->isUnique())
7907           continue;
7908 
7909         LValue LV;
7910         if (!Evaluate(Info.CurrentCall->createTemporary(
7911                           OVE, getStorageType(Info.Ctx, OVE),
7912                           ScopeKind::FullExpression, LV),
7913                       Info, OVE->getSourceExpr()))
7914           return false;
7915       } else if (SemE == E->getResultExpr()) {
7916         if (!StmtVisitorTy::Visit(SemE))
7917           return false;
7918       } else {
7919         if (!EvaluateIgnoredValue(Info, SemE))
7920           return false;
7921       }
7922     }
7923     return true;
7924   }
7925 
7926   bool VisitCallExpr(const CallExpr *E) {
7927     APValue Result;
7928     if (!handleCallExpr(E, Result, nullptr))
7929       return false;
7930     return DerivedSuccess(Result, E);
7931   }
7932 
7933   bool handleCallExpr(const CallExpr *E, APValue &Result,
7934                      const LValue *ResultSlot) {
7935     CallScopeRAII CallScope(Info);
7936 
7937     const Expr *Callee = E->getCallee()->IgnoreParens();
7938     QualType CalleeType = Callee->getType();
7939 
7940     const FunctionDecl *FD = nullptr;
7941     LValue *This = nullptr, ThisVal;
7942     auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
7943     bool HasQualifier = false;
7944 
7945     CallRef Call;
7946 
7947     // Extract function decl and 'this' pointer from the callee.
7948     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7949       const CXXMethodDecl *Member = nullptr;
7950       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7951         // Explicit bound member calls, such as x.f() or p->g();
7952         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7953           return false;
7954         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7955         if (!Member)
7956           return Error(Callee);
7957         This = &ThisVal;
7958         HasQualifier = ME->hasQualifier();
7959       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7960         // Indirect bound member calls ('.*' or '->*').
7961         const ValueDecl *D =
7962             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7963         if (!D)
7964           return false;
7965         Member = dyn_cast<CXXMethodDecl>(D);
7966         if (!Member)
7967           return Error(Callee);
7968         This = &ThisVal;
7969       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7970         if (!Info.getLangOpts().CPlusPlus20)
7971           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7972         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7973                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7974       } else
7975         return Error(Callee);
7976       FD = Member;
7977     } else if (CalleeType->isFunctionPointerType()) {
7978       LValue CalleeLV;
7979       if (!EvaluatePointer(Callee, CalleeLV, Info))
7980         return false;
7981 
7982       if (!CalleeLV.getLValueOffset().isZero())
7983         return Error(Callee);
7984       if (CalleeLV.isNullPointer()) {
7985         Info.FFDiag(Callee, diag::note_constexpr_null_callee)
7986             << const_cast<Expr *>(Callee);
7987         return false;
7988       }
7989       FD = dyn_cast_or_null<FunctionDecl>(
7990           CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7991       if (!FD)
7992         return Error(Callee);
7993       // Don't call function pointers which have been cast to some other type.
7994       // Per DR (no number yet), the caller and callee can differ in noexcept.
7995       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7996         CalleeType->getPointeeType(), FD->getType())) {
7997         return Error(E);
7998       }
7999 
8000       // For an (overloaded) assignment expression, evaluate the RHS before the
8001       // LHS.
8002       auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
8003       if (OCE && OCE->isAssignmentOp()) {
8004         assert(Args.size() == 2 && "wrong number of arguments in assignment");
8005         Call = Info.CurrentCall->createCall(FD);
8006         bool HasThis = false;
8007         if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
8008           HasThis = MD->isImplicitObjectMemberFunction();
8009         if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD,
8010                           /*RightToLeft=*/true))
8011           return false;
8012       }
8013 
8014       // Overloaded operator calls to member functions are represented as normal
8015       // calls with '*this' as the first argument.
8016       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8017       if (MD &&
8018           (MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) {
8019         // FIXME: When selecting an implicit conversion for an overloaded
8020         // operator delete, we sometimes try to evaluate calls to conversion
8021         // operators without a 'this' parameter!
8022         if (Args.empty())
8023           return Error(E);
8024 
8025         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
8026           return false;
8027 
8028         // If we are calling a static operator, the 'this' argument needs to be
8029         // ignored after being evaluated.
8030         if (MD->isInstance())
8031           This = &ThisVal;
8032 
8033         // If this is syntactically a simple assignment using a trivial
8034         // assignment operator, start the lifetimes of union members as needed,
8035         // per C++20 [class.union]5.
8036         if (Info.getLangOpts().CPlusPlus20 && OCE &&
8037             OCE->getOperator() == OO_Equal && MD->isTrivial() &&
8038             !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal))
8039           return false;
8040 
8041         Args = Args.slice(1);
8042       } else if (MD && MD->isLambdaStaticInvoker()) {
8043         // Map the static invoker for the lambda back to the call operator.
8044         // Conveniently, we don't have to slice out the 'this' argument (as is
8045         // being done for the non-static case), since a static member function
8046         // doesn't have an implicit argument passed in.
8047         const CXXRecordDecl *ClosureClass = MD->getParent();
8048         assert(
8049             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
8050             "Number of captures must be zero for conversion to function-ptr");
8051 
8052         const CXXMethodDecl *LambdaCallOp =
8053             ClosureClass->getLambdaCallOperator();
8054 
8055         // Set 'FD', the function that will be called below, to the call
8056         // operator.  If the closure object represents a generic lambda, find
8057         // the corresponding specialization of the call operator.
8058 
8059         if (ClosureClass->isGenericLambda()) {
8060           assert(MD->isFunctionTemplateSpecialization() &&
8061                  "A generic lambda's static-invoker function must be a "
8062                  "template specialization");
8063           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
8064           FunctionTemplateDecl *CallOpTemplate =
8065               LambdaCallOp->getDescribedFunctionTemplate();
8066           void *InsertPos = nullptr;
8067           FunctionDecl *CorrespondingCallOpSpecialization =
8068               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
8069           assert(CorrespondingCallOpSpecialization &&
8070                  "We must always have a function call operator specialization "
8071                  "that corresponds to our static invoker specialization");
8072           assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization));
8073           FD = CorrespondingCallOpSpecialization;
8074         } else
8075           FD = LambdaCallOp;
8076       } else if (FD->isReplaceableGlobalAllocationFunction()) {
8077         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
8078             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
8079           LValue Ptr;
8080           if (!HandleOperatorNewCall(Info, E, Ptr))
8081             return false;
8082           Ptr.moveInto(Result);
8083           return CallScope.destroy();
8084         } else {
8085           return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
8086         }
8087       }
8088     } else
8089       return Error(E);
8090 
8091     // Evaluate the arguments now if we've not already done so.
8092     if (!Call) {
8093       Call = Info.CurrentCall->createCall(FD);
8094       if (!EvaluateArgs(Args, Call, Info, FD))
8095         return false;
8096     }
8097 
8098     SmallVector<QualType, 4> CovariantAdjustmentPath;
8099     if (This) {
8100       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
8101       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
8102         // Perform virtual dispatch, if necessary.
8103         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
8104                                    CovariantAdjustmentPath);
8105         if (!FD)
8106           return false;
8107       } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) {
8108         // Check that the 'this' pointer points to an object of the right type.
8109         // FIXME: If this is an assignment operator call, we may need to change
8110         // the active union member before we check this.
8111         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
8112           return false;
8113       }
8114     }
8115 
8116     // Destructor calls are different enough that they have their own codepath.
8117     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
8118       assert(This && "no 'this' pointer for destructor call");
8119       return HandleDestruction(Info, E, *This,
8120                                Info.Ctx.getRecordType(DD->getParent())) &&
8121              CallScope.destroy();
8122     }
8123 
8124     const FunctionDecl *Definition = nullptr;
8125     Stmt *Body = FD->getBody(Definition);
8126 
8127     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
8128         !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call,
8129                             Body, Info, Result, ResultSlot))
8130       return false;
8131 
8132     if (!CovariantAdjustmentPath.empty() &&
8133         !HandleCovariantReturnAdjustment(Info, E, Result,
8134                                          CovariantAdjustmentPath))
8135       return false;
8136 
8137     return CallScope.destroy();
8138   }
8139 
8140   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8141     return StmtVisitorTy::Visit(E->getInitializer());
8142   }
8143   bool VisitInitListExpr(const InitListExpr *E) {
8144     if (E->getNumInits() == 0)
8145       return DerivedZeroInitialization(E);
8146     if (E->getNumInits() == 1)
8147       return StmtVisitorTy::Visit(E->getInit(0));
8148     return Error(E);
8149   }
8150   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
8151     return DerivedZeroInitialization(E);
8152   }
8153   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
8154     return DerivedZeroInitialization(E);
8155   }
8156   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
8157     return DerivedZeroInitialization(E);
8158   }
8159 
8160   /// A member expression where the object is a prvalue is itself a prvalue.
8161   bool VisitMemberExpr(const MemberExpr *E) {
8162     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
8163            "missing temporary materialization conversion");
8164     assert(!E->isArrow() && "missing call to bound member function?");
8165 
8166     APValue Val;
8167     if (!Evaluate(Val, Info, E->getBase()))
8168       return false;
8169 
8170     QualType BaseTy = E->getBase()->getType();
8171 
8172     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
8173     if (!FD) return Error(E);
8174     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
8175     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8176            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8177 
8178     // Note: there is no lvalue base here. But this case should only ever
8179     // happen in C or in C++98, where we cannot be evaluating a constexpr
8180     // constructor, which is the only case the base matters.
8181     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
8182     SubobjectDesignator Designator(BaseTy);
8183     Designator.addDeclUnchecked(FD);
8184 
8185     APValue Result;
8186     return extractSubobject(Info, E, Obj, Designator, Result) &&
8187            DerivedSuccess(Result, E);
8188   }
8189 
8190   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
8191     APValue Val;
8192     if (!Evaluate(Val, Info, E->getBase()))
8193       return false;
8194 
8195     if (Val.isVector()) {
8196       SmallVector<uint32_t, 4> Indices;
8197       E->getEncodedElementAccess(Indices);
8198       if (Indices.size() == 1) {
8199         // Return scalar.
8200         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
8201       } else {
8202         // Construct new APValue vector.
8203         SmallVector<APValue, 4> Elts;
8204         for (unsigned I = 0; I < Indices.size(); ++I) {
8205           Elts.push_back(Val.getVectorElt(Indices[I]));
8206         }
8207         APValue VecResult(Elts.data(), Indices.size());
8208         return DerivedSuccess(VecResult, E);
8209       }
8210     }
8211 
8212     return false;
8213   }
8214 
8215   bool VisitCastExpr(const CastExpr *E) {
8216     switch (E->getCastKind()) {
8217     default:
8218       break;
8219 
8220     case CK_AtomicToNonAtomic: {
8221       APValue AtomicVal;
8222       // This does not need to be done in place even for class/array types:
8223       // atomic-to-non-atomic conversion implies copying the object
8224       // representation.
8225       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
8226         return false;
8227       return DerivedSuccess(AtomicVal, E);
8228     }
8229 
8230     case CK_NoOp:
8231     case CK_UserDefinedConversion:
8232       return StmtVisitorTy::Visit(E->getSubExpr());
8233 
8234     case CK_LValueToRValue: {
8235       LValue LVal;
8236       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
8237         return false;
8238       APValue RVal;
8239       // Note, we use the subexpression's type in order to retain cv-qualifiers.
8240       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8241                                           LVal, RVal))
8242         return false;
8243       return DerivedSuccess(RVal, E);
8244     }
8245     case CK_LValueToRValueBitCast: {
8246       APValue DestValue, SourceValue;
8247       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
8248         return false;
8249       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
8250         return false;
8251       return DerivedSuccess(DestValue, E);
8252     }
8253 
8254     case CK_AddressSpaceConversion: {
8255       APValue Value;
8256       if (!Evaluate(Value, Info, E->getSubExpr()))
8257         return false;
8258       return DerivedSuccess(Value, E);
8259     }
8260     }
8261 
8262     return Error(E);
8263   }
8264 
8265   bool VisitUnaryPostInc(const UnaryOperator *UO) {
8266     return VisitUnaryPostIncDec(UO);
8267   }
8268   bool VisitUnaryPostDec(const UnaryOperator *UO) {
8269     return VisitUnaryPostIncDec(UO);
8270   }
8271   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
8272     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8273       return Error(UO);
8274 
8275     LValue LVal;
8276     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
8277       return false;
8278     APValue RVal;
8279     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
8280                       UO->isIncrementOp(), &RVal))
8281       return false;
8282     return DerivedSuccess(RVal, UO);
8283   }
8284 
8285   bool VisitStmtExpr(const StmtExpr *E) {
8286     // We will have checked the full-expressions inside the statement expression
8287     // when they were completed, and don't need to check them again now.
8288     llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
8289                                           false);
8290 
8291     const CompoundStmt *CS = E->getSubStmt();
8292     if (CS->body_empty())
8293       return true;
8294 
8295     BlockScopeRAII Scope(Info);
8296     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
8297                                            BE = CS->body_end();
8298          /**/; ++BI) {
8299       if (BI + 1 == BE) {
8300         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
8301         if (!FinalExpr) {
8302           Info.FFDiag((*BI)->getBeginLoc(),
8303                       diag::note_constexpr_stmt_expr_unsupported);
8304           return false;
8305         }
8306         return this->Visit(FinalExpr) && Scope.destroy();
8307       }
8308 
8309       APValue ReturnValue;
8310       StmtResult Result = { ReturnValue, nullptr };
8311       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
8312       if (ESR != ESR_Succeeded) {
8313         // FIXME: If the statement-expression terminated due to 'return',
8314         // 'break', or 'continue', it would be nice to propagate that to
8315         // the outer statement evaluation rather than bailing out.
8316         if (ESR != ESR_Failed)
8317           Info.FFDiag((*BI)->getBeginLoc(),
8318                       diag::note_constexpr_stmt_expr_unsupported);
8319         return false;
8320       }
8321     }
8322 
8323     llvm_unreachable("Return from function from the loop above.");
8324   }
8325 
8326   bool VisitPackIndexingExpr(const PackIndexingExpr *E) {
8327     return StmtVisitorTy::Visit(E->getSelectedExpr());
8328   }
8329 
8330   /// Visit a value which is evaluated, but whose value is ignored.
8331   void VisitIgnoredValue(const Expr *E) {
8332     EvaluateIgnoredValue(Info, E);
8333   }
8334 
8335   /// Potentially visit a MemberExpr's base expression.
8336   void VisitIgnoredBaseExpression(const Expr *E) {
8337     // While MSVC doesn't evaluate the base expression, it does diagnose the
8338     // presence of side-effecting behavior.
8339     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
8340       return;
8341     VisitIgnoredValue(E);
8342   }
8343 };
8344 
8345 } // namespace
8346 
8347 //===----------------------------------------------------------------------===//
8348 // Common base class for lvalue and temporary evaluation.
8349 //===----------------------------------------------------------------------===//
8350 namespace {
8351 template<class Derived>
8352 class LValueExprEvaluatorBase
8353   : public ExprEvaluatorBase<Derived> {
8354 protected:
8355   LValue &Result;
8356   bool InvalidBaseOK;
8357   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8358   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8359 
8360   bool Success(APValue::LValueBase B) {
8361     Result.set(B);
8362     return true;
8363   }
8364 
8365   bool evaluatePointer(const Expr *E, LValue &Result) {
8366     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8367   }
8368 
8369 public:
8370   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8371       : ExprEvaluatorBaseTy(Info), Result(Result),
8372         InvalidBaseOK(InvalidBaseOK) {}
8373 
8374   bool Success(const APValue &V, const Expr *E) {
8375     Result.setFrom(this->Info.Ctx, V);
8376     return true;
8377   }
8378 
8379   bool VisitMemberExpr(const MemberExpr *E) {
8380     // Handle non-static data members.
8381     QualType BaseTy;
8382     bool EvalOK;
8383     if (E->isArrow()) {
8384       EvalOK = evaluatePointer(E->getBase(), Result);
8385       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8386     } else if (E->getBase()->isPRValue()) {
8387       assert(E->getBase()->getType()->isRecordType());
8388       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8389       BaseTy = E->getBase()->getType();
8390     } else {
8391       EvalOK = this->Visit(E->getBase());
8392       BaseTy = E->getBase()->getType();
8393     }
8394     if (!EvalOK) {
8395       if (!InvalidBaseOK)
8396         return false;
8397       Result.setInvalid(E);
8398       return true;
8399     }
8400 
8401     const ValueDecl *MD = E->getMemberDecl();
8402     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8403       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8404              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8405       (void)BaseTy;
8406       if (!HandleLValueMember(this->Info, E, Result, FD))
8407         return false;
8408     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8409       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8410         return false;
8411     } else
8412       return this->Error(E);
8413 
8414     if (MD->getType()->isReferenceType()) {
8415       APValue RefValue;
8416       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8417                                           RefValue))
8418         return false;
8419       return Success(RefValue, E);
8420     }
8421     return true;
8422   }
8423 
8424   bool VisitBinaryOperator(const BinaryOperator *E) {
8425     switch (E->getOpcode()) {
8426     default:
8427       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8428 
8429     case BO_PtrMemD:
8430     case BO_PtrMemI:
8431       return HandleMemberPointerAccess(this->Info, E, Result);
8432     }
8433   }
8434 
8435   bool VisitCastExpr(const CastExpr *E) {
8436     switch (E->getCastKind()) {
8437     default:
8438       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8439 
8440     case CK_DerivedToBase:
8441     case CK_UncheckedDerivedToBase:
8442       if (!this->Visit(E->getSubExpr()))
8443         return false;
8444 
8445       // Now figure out the necessary offset to add to the base LV to get from
8446       // the derived class to the base class.
8447       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8448                                   Result);
8449     }
8450   }
8451 };
8452 }
8453 
8454 //===----------------------------------------------------------------------===//
8455 // LValue Evaluation
8456 //
8457 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8458 // function designators (in C), decl references to void objects (in C), and
8459 // temporaries (if building with -Wno-address-of-temporary).
8460 //
8461 // LValue evaluation produces values comprising a base expression of one of the
8462 // following types:
8463 // - Declarations
8464 //  * VarDecl
8465 //  * FunctionDecl
8466 // - Literals
8467 //  * CompoundLiteralExpr in C (and in global scope in C++)
8468 //  * StringLiteral
8469 //  * PredefinedExpr
8470 //  * ObjCStringLiteralExpr
8471 //  * ObjCEncodeExpr
8472 //  * AddrLabelExpr
8473 //  * BlockExpr
8474 //  * CallExpr for a MakeStringConstant builtin
8475 // - typeid(T) expressions, as TypeInfoLValues
8476 // - Locals and temporaries
8477 //  * MaterializeTemporaryExpr
8478 //  * Any Expr, with a CallIndex indicating the function in which the temporary
8479 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
8480 //    from the AST (FIXME).
8481 //  * A MaterializeTemporaryExpr that has static storage duration, with no
8482 //    CallIndex, for a lifetime-extended temporary.
8483 //  * The ConstantExpr that is currently being evaluated during evaluation of an
8484 //    immediate invocation.
8485 // plus an offset in bytes.
8486 //===----------------------------------------------------------------------===//
8487 namespace {
8488 class LValueExprEvaluator
8489   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8490 public:
8491   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8492     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8493 
8494   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8495   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8496 
8497   bool VisitCallExpr(const CallExpr *E);
8498   bool VisitDeclRefExpr(const DeclRefExpr *E);
8499   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8500   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8501   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8502   bool VisitMemberExpr(const MemberExpr *E);
8503   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8504   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8505   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8506   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8507   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8508   bool VisitUnaryDeref(const UnaryOperator *E);
8509   bool VisitUnaryReal(const UnaryOperator *E);
8510   bool VisitUnaryImag(const UnaryOperator *E);
8511   bool VisitUnaryPreInc(const UnaryOperator *UO) {
8512     return VisitUnaryPreIncDec(UO);
8513   }
8514   bool VisitUnaryPreDec(const UnaryOperator *UO) {
8515     return VisitUnaryPreIncDec(UO);
8516   }
8517   bool VisitBinAssign(const BinaryOperator *BO);
8518   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8519 
8520   bool VisitCastExpr(const CastExpr *E) {
8521     switch (E->getCastKind()) {
8522     default:
8523       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8524 
8525     case CK_LValueBitCast:
8526       this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8527           << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8528       if (!Visit(E->getSubExpr()))
8529         return false;
8530       Result.Designator.setInvalid();
8531       return true;
8532 
8533     case CK_BaseToDerived:
8534       if (!Visit(E->getSubExpr()))
8535         return false;
8536       return HandleBaseToDerivedCast(Info, E, Result);
8537 
8538     case CK_Dynamic:
8539       if (!Visit(E->getSubExpr()))
8540         return false;
8541       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8542     }
8543   }
8544 };
8545 } // end anonymous namespace
8546 
8547 /// Get an lvalue to a field of a lambda's closure type.
8548 static bool HandleLambdaCapture(EvalInfo &Info, const Expr *E, LValue &Result,
8549                                 const CXXMethodDecl *MD, const FieldDecl *FD,
8550                                 bool LValueToRValueConversion) {
8551   // Static lambda function call operators can't have captures. We already
8552   // diagnosed this, so bail out here.
8553   if (MD->isStatic()) {
8554     assert(Info.CurrentCall->This == nullptr &&
8555            "This should not be set for a static call operator");
8556     return false;
8557   }
8558 
8559   // Start with 'Result' referring to the complete closure object...
8560   if (MD->isExplicitObjectMemberFunction()) {
8561     // Self may be passed by reference or by value.
8562     const ParmVarDecl *Self = MD->getParamDecl(0);
8563     if (Self->getType()->isReferenceType()) {
8564       APValue *RefValue = Info.getParamSlot(Info.CurrentCall->Arguments, Self);
8565       Result.setFrom(Info.Ctx, *RefValue);
8566     } else {
8567       const ParmVarDecl *VD = Info.CurrentCall->Arguments.getOrigParam(Self);
8568       CallStackFrame *Frame =
8569           Info.getCallFrameAndDepth(Info.CurrentCall->Arguments.CallIndex)
8570               .first;
8571       unsigned Version = Info.CurrentCall->Arguments.Version;
8572       Result.set({VD, Frame->Index, Version});
8573     }
8574   } else
8575     Result = *Info.CurrentCall->This;
8576 
8577   // ... then update it to refer to the field of the closure object
8578   // that represents the capture.
8579   if (!HandleLValueMember(Info, E, Result, FD))
8580     return false;
8581 
8582   // And if the field is of reference type (or if we captured '*this' by
8583   // reference), update 'Result' to refer to what
8584   // the field refers to.
8585   if (LValueToRValueConversion) {
8586     APValue RVal;
8587     if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, RVal))
8588       return false;
8589     Result.setFrom(Info.Ctx, RVal);
8590   }
8591   return true;
8592 }
8593 
8594 /// Evaluate an expression as an lvalue. This can be legitimately called on
8595 /// expressions which are not glvalues, in three cases:
8596 ///  * function designators in C, and
8597 ///  * "extern void" objects
8598 ///  * @selector() expressions in Objective-C
8599 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8600                            bool InvalidBaseOK) {
8601   assert(!E->isValueDependent());
8602   assert(E->isGLValue() || E->getType()->isFunctionType() ||
8603          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8604   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8605 }
8606 
8607 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8608   const NamedDecl *D = E->getDecl();
8609   if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8610           UnnamedGlobalConstantDecl>(D))
8611     return Success(cast<ValueDecl>(D));
8612   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8613     return VisitVarDecl(E, VD);
8614   if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8615     return Visit(BD->getBinding());
8616   return Error(E);
8617 }
8618 
8619 
8620 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8621 
8622   // If we are within a lambda's call operator, check whether the 'VD' referred
8623   // to within 'E' actually represents a lambda-capture that maps to a
8624   // data-member/field within the closure object, and if so, evaluate to the
8625   // field or what the field refers to.
8626   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8627       isa<DeclRefExpr>(E) &&
8628       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8629     // We don't always have a complete capture-map when checking or inferring if
8630     // the function call operator meets the requirements of a constexpr function
8631     // - but we don't need to evaluate the captures to determine constexprness
8632     // (dcl.constexpr C++17).
8633     if (Info.checkingPotentialConstantExpression())
8634       return false;
8635 
8636     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8637       const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee);
8638       return HandleLambdaCapture(Info, E, Result, MD, FD,
8639                                  FD->getType()->isReferenceType());
8640     }
8641   }
8642 
8643   CallStackFrame *Frame = nullptr;
8644   unsigned Version = 0;
8645   if (VD->hasLocalStorage()) {
8646     // Only if a local variable was declared in the function currently being
8647     // evaluated, do we expect to be able to find its value in the current
8648     // frame. (Otherwise it was likely declared in an enclosing context and
8649     // could either have a valid evaluatable value (for e.g. a constexpr
8650     // variable) or be ill-formed (and trigger an appropriate evaluation
8651     // diagnostic)).
8652     CallStackFrame *CurrFrame = Info.CurrentCall;
8653     if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8654       // Function parameters are stored in some caller's frame. (Usually the
8655       // immediate caller, but for an inherited constructor they may be more
8656       // distant.)
8657       if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8658         if (CurrFrame->Arguments) {
8659           VD = CurrFrame->Arguments.getOrigParam(PVD);
8660           Frame =
8661               Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8662           Version = CurrFrame->Arguments.Version;
8663         }
8664       } else {
8665         Frame = CurrFrame;
8666         Version = CurrFrame->getCurrentTemporaryVersion(VD);
8667       }
8668     }
8669   }
8670 
8671   if (!VD->getType()->isReferenceType()) {
8672     if (Frame) {
8673       Result.set({VD, Frame->Index, Version});
8674       return true;
8675     }
8676     return Success(VD);
8677   }
8678 
8679   if (!Info.getLangOpts().CPlusPlus11) {
8680     Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8681         << VD << VD->getType();
8682     Info.Note(VD->getLocation(), diag::note_declared_at);
8683   }
8684 
8685   APValue *V;
8686   if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8687     return false;
8688   if (!V->hasValue()) {
8689     // FIXME: Is it possible for V to be indeterminate here? If so, we should
8690     // adjust the diagnostic to say that.
8691     if (!Info.checkingPotentialConstantExpression())
8692       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8693     return false;
8694   }
8695   return Success(*V, E);
8696 }
8697 
8698 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8699   if (!IsConstantEvaluatedBuiltinCall(E))
8700     return ExprEvaluatorBaseTy::VisitCallExpr(E);
8701 
8702   switch (E->getBuiltinCallee()) {
8703   default:
8704     return false;
8705   case Builtin::BIas_const:
8706   case Builtin::BIforward:
8707   case Builtin::BIforward_like:
8708   case Builtin::BImove:
8709   case Builtin::BImove_if_noexcept:
8710     if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr())
8711       return Visit(E->getArg(0));
8712     break;
8713   }
8714 
8715   return ExprEvaluatorBaseTy::VisitCallExpr(E);
8716 }
8717 
8718 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8719     const MaterializeTemporaryExpr *E) {
8720   // Walk through the expression to find the materialized temporary itself.
8721   SmallVector<const Expr *, 2> CommaLHSs;
8722   SmallVector<SubobjectAdjustment, 2> Adjustments;
8723   const Expr *Inner =
8724       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8725 
8726   // If we passed any comma operators, evaluate their LHSs.
8727   for (const Expr *E : CommaLHSs)
8728     if (!EvaluateIgnoredValue(Info, E))
8729       return false;
8730 
8731   // A materialized temporary with static storage duration can appear within the
8732   // result of a constant expression evaluation, so we need to preserve its
8733   // value for use outside this evaluation.
8734   APValue *Value;
8735   if (E->getStorageDuration() == SD_Static) {
8736     if (Info.EvalMode == EvalInfo::EM_ConstantFold)
8737       return false;
8738     // FIXME: What about SD_Thread?
8739     Value = E->getOrCreateValue(true);
8740     *Value = APValue();
8741     Result.set(E);
8742   } else {
8743     Value = &Info.CurrentCall->createTemporary(
8744         E, Inner->getType(),
8745         E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8746                                                      : ScopeKind::Block,
8747         Result);
8748   }
8749 
8750   QualType Type = Inner->getType();
8751 
8752   // Materialize the temporary itself.
8753   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8754     *Value = APValue();
8755     return false;
8756   }
8757 
8758   // Adjust our lvalue to refer to the desired subobject.
8759   for (unsigned I = Adjustments.size(); I != 0; /**/) {
8760     --I;
8761     switch (Adjustments[I].Kind) {
8762     case SubobjectAdjustment::DerivedToBaseAdjustment:
8763       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8764                                 Type, Result))
8765         return false;
8766       Type = Adjustments[I].DerivedToBase.BasePath->getType();
8767       break;
8768 
8769     case SubobjectAdjustment::FieldAdjustment:
8770       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8771         return false;
8772       Type = Adjustments[I].Field->getType();
8773       break;
8774 
8775     case SubobjectAdjustment::MemberPointerAdjustment:
8776       if (!HandleMemberPointerAccess(this->Info, Type, Result,
8777                                      Adjustments[I].Ptr.RHS))
8778         return false;
8779       Type = Adjustments[I].Ptr.MPT->getPointeeType();
8780       break;
8781     }
8782   }
8783 
8784   return true;
8785 }
8786 
8787 bool
8788 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8789   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8790          "lvalue compound literal in c++?");
8791   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8792   // only see this when folding in C, so there's no standard to follow here.
8793   return Success(E);
8794 }
8795 
8796 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8797   TypeInfoLValue TypeInfo;
8798 
8799   if (!E->isPotentiallyEvaluated()) {
8800     if (E->isTypeOperand())
8801       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8802     else
8803       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8804   } else {
8805     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8806       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8807         << E->getExprOperand()->getType()
8808         << E->getExprOperand()->getSourceRange();
8809     }
8810 
8811     if (!Visit(E->getExprOperand()))
8812       return false;
8813 
8814     std::optional<DynamicType> DynType =
8815         ComputeDynamicType(Info, E, Result, AK_TypeId);
8816     if (!DynType)
8817       return false;
8818 
8819     TypeInfo =
8820         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8821   }
8822 
8823   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8824 }
8825 
8826 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8827   return Success(E->getGuidDecl());
8828 }
8829 
8830 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8831   // Handle static data members.
8832   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8833     VisitIgnoredBaseExpression(E->getBase());
8834     return VisitVarDecl(E, VD);
8835   }
8836 
8837   // Handle static member functions.
8838   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8839     if (MD->isStatic()) {
8840       VisitIgnoredBaseExpression(E->getBase());
8841       return Success(MD);
8842     }
8843   }
8844 
8845   // Handle non-static data members.
8846   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8847 }
8848 
8849 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8850   // FIXME: Deal with vectors as array subscript bases.
8851   if (E->getBase()->getType()->isVectorType() ||
8852       E->getBase()->getType()->isSveVLSBuiltinType())
8853     return Error(E);
8854 
8855   APSInt Index;
8856   bool Success = true;
8857 
8858   // C++17's rules require us to evaluate the LHS first, regardless of which
8859   // side is the base.
8860   for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8861     if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8862                                 : !EvaluateInteger(SubExpr, Index, Info)) {
8863       if (!Info.noteFailure())
8864         return false;
8865       Success = false;
8866     }
8867   }
8868 
8869   return Success &&
8870          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8871 }
8872 
8873 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8874   return evaluatePointer(E->getSubExpr(), Result);
8875 }
8876 
8877 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8878   if (!Visit(E->getSubExpr()))
8879     return false;
8880   // __real is a no-op on scalar lvalues.
8881   if (E->getSubExpr()->getType()->isAnyComplexType())
8882     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8883   return true;
8884 }
8885 
8886 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8887   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8888          "lvalue __imag__ on scalar?");
8889   if (!Visit(E->getSubExpr()))
8890     return false;
8891   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8892   return true;
8893 }
8894 
8895 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8896   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8897     return Error(UO);
8898 
8899   if (!this->Visit(UO->getSubExpr()))
8900     return false;
8901 
8902   return handleIncDec(
8903       this->Info, UO, Result, UO->getSubExpr()->getType(),
8904       UO->isIncrementOp(), nullptr);
8905 }
8906 
8907 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8908     const CompoundAssignOperator *CAO) {
8909   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8910     return Error(CAO);
8911 
8912   bool Success = true;
8913 
8914   // C++17 onwards require that we evaluate the RHS first.
8915   APValue RHS;
8916   if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8917     if (!Info.noteFailure())
8918       return false;
8919     Success = false;
8920   }
8921 
8922   // The overall lvalue result is the result of evaluating the LHS.
8923   if (!this->Visit(CAO->getLHS()) || !Success)
8924     return false;
8925 
8926   return handleCompoundAssignment(
8927       this->Info, CAO,
8928       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8929       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8930 }
8931 
8932 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8933   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8934     return Error(E);
8935 
8936   bool Success = true;
8937 
8938   // C++17 onwards require that we evaluate the RHS first.
8939   APValue NewVal;
8940   if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8941     if (!Info.noteFailure())
8942       return false;
8943     Success = false;
8944   }
8945 
8946   if (!this->Visit(E->getLHS()) || !Success)
8947     return false;
8948 
8949   if (Info.getLangOpts().CPlusPlus20 &&
8950       !MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8951     return false;
8952 
8953   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8954                           NewVal);
8955 }
8956 
8957 //===----------------------------------------------------------------------===//
8958 // Pointer Evaluation
8959 //===----------------------------------------------------------------------===//
8960 
8961 /// Attempts to compute the number of bytes available at the pointer
8962 /// returned by a function with the alloc_size attribute. Returns true if we
8963 /// were successful. Places an unsigned number into `Result`.
8964 ///
8965 /// This expects the given CallExpr to be a call to a function with an
8966 /// alloc_size attribute.
8967 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8968                                             const CallExpr *Call,
8969                                             llvm::APInt &Result) {
8970   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8971 
8972   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8973   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8974   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8975   if (Call->getNumArgs() <= SizeArgNo)
8976     return false;
8977 
8978   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8979     Expr::EvalResult ExprResult;
8980     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8981       return false;
8982     Into = ExprResult.Val.getInt();
8983     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8984       return false;
8985     Into = Into.zext(BitsInSizeT);
8986     return true;
8987   };
8988 
8989   APSInt SizeOfElem;
8990   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8991     return false;
8992 
8993   if (!AllocSize->getNumElemsParam().isValid()) {
8994     Result = std::move(SizeOfElem);
8995     return true;
8996   }
8997 
8998   APSInt NumberOfElems;
8999   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
9000   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
9001     return false;
9002 
9003   bool Overflow;
9004   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
9005   if (Overflow)
9006     return false;
9007 
9008   Result = std::move(BytesAvailable);
9009   return true;
9010 }
9011 
9012 /// Convenience function. LVal's base must be a call to an alloc_size
9013 /// function.
9014 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
9015                                             const LValue &LVal,
9016                                             llvm::APInt &Result) {
9017   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
9018          "Can't get the size of a non alloc_size function");
9019   const auto *Base = LVal.getLValueBase().get<const Expr *>();
9020   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
9021   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
9022 }
9023 
9024 /// Attempts to evaluate the given LValueBase as the result of a call to
9025 /// a function with the alloc_size attribute. If it was possible to do so, this
9026 /// function will return true, make Result's Base point to said function call,
9027 /// and mark Result's Base as invalid.
9028 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
9029                                       LValue &Result) {
9030   if (Base.isNull())
9031     return false;
9032 
9033   // Because we do no form of static analysis, we only support const variables.
9034   //
9035   // Additionally, we can't support parameters, nor can we support static
9036   // variables (in the latter case, use-before-assign isn't UB; in the former,
9037   // we have no clue what they'll be assigned to).
9038   const auto *VD =
9039       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
9040   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
9041     return false;
9042 
9043   const Expr *Init = VD->getAnyInitializer();
9044   if (!Init || Init->getType().isNull())
9045     return false;
9046 
9047   const Expr *E = Init->IgnoreParens();
9048   if (!tryUnwrapAllocSizeCall(E))
9049     return false;
9050 
9051   // Store E instead of E unwrapped so that the type of the LValue's base is
9052   // what the user wanted.
9053   Result.setInvalid(E);
9054 
9055   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
9056   Result.addUnsizedArray(Info, E, Pointee);
9057   return true;
9058 }
9059 
9060 namespace {
9061 class PointerExprEvaluator
9062   : public ExprEvaluatorBase<PointerExprEvaluator> {
9063   LValue &Result;
9064   bool InvalidBaseOK;
9065 
9066   bool Success(const Expr *E) {
9067     Result.set(E);
9068     return true;
9069   }
9070 
9071   bool evaluateLValue(const Expr *E, LValue &Result) {
9072     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
9073   }
9074 
9075   bool evaluatePointer(const Expr *E, LValue &Result) {
9076     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
9077   }
9078 
9079   bool visitNonBuiltinCallExpr(const CallExpr *E);
9080 public:
9081 
9082   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
9083       : ExprEvaluatorBaseTy(info), Result(Result),
9084         InvalidBaseOK(InvalidBaseOK) {}
9085 
9086   bool Success(const APValue &V, const Expr *E) {
9087     Result.setFrom(Info.Ctx, V);
9088     return true;
9089   }
9090   bool ZeroInitialization(const Expr *E) {
9091     Result.setNull(Info.Ctx, E->getType());
9092     return true;
9093   }
9094 
9095   bool VisitBinaryOperator(const BinaryOperator *E);
9096   bool VisitCastExpr(const CastExpr* E);
9097   bool VisitUnaryAddrOf(const UnaryOperator *E);
9098   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
9099       { return Success(E); }
9100   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
9101     if (E->isExpressibleAsConstantInitializer())
9102       return Success(E);
9103     if (Info.noteFailure())
9104       EvaluateIgnoredValue(Info, E->getSubExpr());
9105     return Error(E);
9106   }
9107   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
9108       { return Success(E); }
9109   bool VisitCallExpr(const CallExpr *E);
9110   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
9111   bool VisitBlockExpr(const BlockExpr *E) {
9112     if (!E->getBlockDecl()->hasCaptures())
9113       return Success(E);
9114     return Error(E);
9115   }
9116   bool VisitCXXThisExpr(const CXXThisExpr *E) {
9117     auto DiagnoseInvalidUseOfThis = [&] {
9118       if (Info.getLangOpts().CPlusPlus11)
9119         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
9120       else
9121         Info.FFDiag(E);
9122     };
9123 
9124     // Can't look at 'this' when checking a potential constant expression.
9125     if (Info.checkingPotentialConstantExpression())
9126       return false;
9127 
9128     bool IsExplicitLambda =
9129         isLambdaCallWithExplicitObjectParameter(Info.CurrentCall->Callee);
9130     if (!IsExplicitLambda) {
9131       if (!Info.CurrentCall->This) {
9132         DiagnoseInvalidUseOfThis();
9133         return false;
9134       }
9135 
9136       Result = *Info.CurrentCall->This;
9137     }
9138 
9139     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
9140       // Ensure we actually have captured 'this'. If something was wrong with
9141       // 'this' capture, the error would have been previously reported.
9142       // Otherwise we can be inside of a default initialization of an object
9143       // declared by lambda's body, so no need to return false.
9144       if (!Info.CurrentCall->LambdaThisCaptureField) {
9145         if (IsExplicitLambda && !Info.CurrentCall->This) {
9146           DiagnoseInvalidUseOfThis();
9147           return false;
9148         }
9149 
9150         return true;
9151       }
9152 
9153       const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee);
9154       return HandleLambdaCapture(
9155           Info, E, Result, MD, Info.CurrentCall->LambdaThisCaptureField,
9156           Info.CurrentCall->LambdaThisCaptureField->getType()->isPointerType());
9157     }
9158     return true;
9159   }
9160 
9161   bool VisitCXXNewExpr(const CXXNewExpr *E);
9162 
9163   bool VisitSourceLocExpr(const SourceLocExpr *E) {
9164     assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
9165     APValue LValResult = E->EvaluateInContext(
9166         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9167     Result.setFrom(Info.Ctx, LValResult);
9168     return true;
9169   }
9170 
9171   bool VisitEmbedExpr(const EmbedExpr *E) {
9172     llvm::report_fatal_error("Not yet implemented for ExprConstant.cpp");
9173     return true;
9174   }
9175 
9176   bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
9177     std::string ResultStr = E->ComputeName(Info.Ctx);
9178 
9179     QualType CharTy = Info.Ctx.CharTy.withConst();
9180     APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
9181                ResultStr.size() + 1);
9182     QualType ArrayTy = Info.Ctx.getConstantArrayType(
9183         CharTy, Size, nullptr, ArraySizeModifier::Normal, 0);
9184 
9185     StringLiteral *SL =
9186         StringLiteral::Create(Info.Ctx, ResultStr, StringLiteralKind::Ordinary,
9187                               /*Pascal*/ false, ArrayTy, E->getLocation());
9188 
9189     evaluateLValue(SL, Result);
9190     Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
9191     return true;
9192   }
9193 
9194   // FIXME: Missing: @protocol, @selector
9195 };
9196 } // end anonymous namespace
9197 
9198 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
9199                             bool InvalidBaseOK) {
9200   assert(!E->isValueDependent());
9201   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
9202   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
9203 }
9204 
9205 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9206   if (E->getOpcode() != BO_Add &&
9207       E->getOpcode() != BO_Sub)
9208     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9209 
9210   const Expr *PExp = E->getLHS();
9211   const Expr *IExp = E->getRHS();
9212   if (IExp->getType()->isPointerType())
9213     std::swap(PExp, IExp);
9214 
9215   bool EvalPtrOK = evaluatePointer(PExp, Result);
9216   if (!EvalPtrOK && !Info.noteFailure())
9217     return false;
9218 
9219   llvm::APSInt Offset;
9220   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
9221     return false;
9222 
9223   if (E->getOpcode() == BO_Sub)
9224     negateAsSigned(Offset);
9225 
9226   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
9227   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
9228 }
9229 
9230 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9231   return evaluateLValue(E->getSubExpr(), Result);
9232 }
9233 
9234 // Is the provided decl 'std::source_location::current'?
9235 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
9236   if (!FD)
9237     return false;
9238   const IdentifierInfo *FnII = FD->getIdentifier();
9239   if (!FnII || !FnII->isStr("current"))
9240     return false;
9241 
9242   const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
9243   if (!RD)
9244     return false;
9245 
9246   const IdentifierInfo *ClassII = RD->getIdentifier();
9247   return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location");
9248 }
9249 
9250 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9251   const Expr *SubExpr = E->getSubExpr();
9252 
9253   switch (E->getCastKind()) {
9254   default:
9255     break;
9256   case CK_BitCast:
9257   case CK_CPointerToObjCPointerCast:
9258   case CK_BlockPointerToObjCPointerCast:
9259   case CK_AnyPointerToBlockPointerCast:
9260   case CK_AddressSpaceConversion:
9261     if (!Visit(SubExpr))
9262       return false;
9263     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
9264     // permitted in constant expressions in C++11. Bitcasts from cv void* are
9265     // also static_casts, but we disallow them as a resolution to DR1312.
9266     if (!E->getType()->isVoidPointerType()) {
9267       // In some circumstances, we permit casting from void* to cv1 T*, when the
9268       // actual pointee object is actually a cv2 T.
9269       bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid &&
9270                             !Result.IsNullPtr;
9271       bool VoidPtrCastMaybeOK =
9272           Result.IsNullPtr ||
9273           (HasValidResult &&
9274            Info.Ctx.hasSimilarType(Result.Designator.getType(Info.Ctx),
9275                                    E->getType()->getPointeeType()));
9276       // 1. We'll allow it in std::allocator::allocate, and anything which that
9277       //    calls.
9278       // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
9279       //    <source_location> header. Fixed in GCC 12 and later (2022-04-??).
9280       //    We'll allow it in the body of std::source_location::current.  GCC's
9281       //    implementation had a parameter of type `void*`, and casts from
9282       //    that back to `const __impl*` in its body.
9283       if (VoidPtrCastMaybeOK &&
9284           (Info.getStdAllocatorCaller("allocate") ||
9285            IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) ||
9286            Info.getLangOpts().CPlusPlus26)) {
9287         // Permitted.
9288       } else {
9289         if (SubExpr->getType()->isVoidPointerType() &&
9290             Info.getLangOpts().CPlusPlus) {
9291           if (HasValidResult)
9292             CCEDiag(E, diag::note_constexpr_invalid_void_star_cast)
9293                 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26
9294                 << Result.Designator.getType(Info.Ctx).getCanonicalType()
9295                 << E->getType()->getPointeeType();
9296           else
9297             CCEDiag(E, diag::note_constexpr_invalid_cast)
9298                 << 3 << SubExpr->getType();
9299         } else
9300           CCEDiag(E, diag::note_constexpr_invalid_cast)
9301               << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9302         Result.Designator.setInvalid();
9303       }
9304     }
9305     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
9306       ZeroInitialization(E);
9307     return true;
9308 
9309   case CK_DerivedToBase:
9310   case CK_UncheckedDerivedToBase:
9311     if (!evaluatePointer(E->getSubExpr(), Result))
9312       return false;
9313     if (!Result.Base && Result.Offset.isZero())
9314       return true;
9315 
9316     // Now figure out the necessary offset to add to the base LV to get from
9317     // the derived class to the base class.
9318     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
9319                                   castAs<PointerType>()->getPointeeType(),
9320                                 Result);
9321 
9322   case CK_BaseToDerived:
9323     if (!Visit(E->getSubExpr()))
9324       return false;
9325     if (!Result.Base && Result.Offset.isZero())
9326       return true;
9327     return HandleBaseToDerivedCast(Info, E, Result);
9328 
9329   case CK_Dynamic:
9330     if (!Visit(E->getSubExpr()))
9331       return false;
9332     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
9333 
9334   case CK_NullToPointer:
9335     VisitIgnoredValue(E->getSubExpr());
9336     return ZeroInitialization(E);
9337 
9338   case CK_IntegralToPointer: {
9339     CCEDiag(E, diag::note_constexpr_invalid_cast)
9340         << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9341 
9342     APValue Value;
9343     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
9344       break;
9345 
9346     if (Value.isInt()) {
9347       unsigned Size = Info.Ctx.getTypeSize(E->getType());
9348       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
9349       Result.Base = (Expr*)nullptr;
9350       Result.InvalidBase = false;
9351       Result.Offset = CharUnits::fromQuantity(N);
9352       Result.Designator.setInvalid();
9353       Result.IsNullPtr = false;
9354       return true;
9355     } else {
9356       // In rare instances, the value isn't an lvalue.
9357       // For example, when the value is the difference between the addresses of
9358       // two labels. We reject that as a constant expression because we can't
9359       // compute a valid offset to convert into a pointer.
9360       if (!Value.isLValue())
9361         return false;
9362 
9363       // Cast is of an lvalue, no need to change value.
9364       Result.setFrom(Info.Ctx, Value);
9365       return true;
9366     }
9367   }
9368 
9369   case CK_ArrayToPointerDecay: {
9370     if (SubExpr->isGLValue()) {
9371       if (!evaluateLValue(SubExpr, Result))
9372         return false;
9373     } else {
9374       APValue &Value = Info.CurrentCall->createTemporary(
9375           SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
9376       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
9377         return false;
9378     }
9379     // The result is a pointer to the first element of the array.
9380     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
9381     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
9382       Result.addArray(Info, E, CAT);
9383     else
9384       Result.addUnsizedArray(Info, E, AT->getElementType());
9385     return true;
9386   }
9387 
9388   case CK_FunctionToPointerDecay:
9389     return evaluateLValue(SubExpr, Result);
9390 
9391   case CK_LValueToRValue: {
9392     LValue LVal;
9393     if (!evaluateLValue(E->getSubExpr(), LVal))
9394       return false;
9395 
9396     APValue RVal;
9397     // Note, we use the subexpression's type in order to retain cv-qualifiers.
9398     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9399                                         LVal, RVal))
9400       return InvalidBaseOK &&
9401              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
9402     return Success(RVal, E);
9403   }
9404   }
9405 
9406   return ExprEvaluatorBaseTy::VisitCastExpr(E);
9407 }
9408 
9409 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
9410                                 UnaryExprOrTypeTrait ExprKind) {
9411   // C++ [expr.alignof]p3:
9412   //     When alignof is applied to a reference type, the result is the
9413   //     alignment of the referenced type.
9414   T = T.getNonReferenceType();
9415 
9416   if (T.getQualifiers().hasUnaligned())
9417     return CharUnits::One();
9418 
9419   const bool AlignOfReturnsPreferred =
9420       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9421 
9422   // __alignof is defined to return the preferred alignment.
9423   // Before 8, clang returned the preferred alignment for alignof and _Alignof
9424   // as well.
9425   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9426     return Info.Ctx.toCharUnitsFromBits(
9427       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
9428   // alignof and _Alignof are defined to return the ABI alignment.
9429   else if (ExprKind == UETT_AlignOf)
9430     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
9431   else
9432     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9433 }
9434 
9435 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9436                                 UnaryExprOrTypeTrait ExprKind) {
9437   E = E->IgnoreParens();
9438 
9439   // The kinds of expressions that we have special-case logic here for
9440   // should be kept up to date with the special checks for those
9441   // expressions in Sema.
9442 
9443   // alignof decl is always accepted, even if it doesn't make sense: we default
9444   // to 1 in those cases.
9445   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9446     return Info.Ctx.getDeclAlign(DRE->getDecl(),
9447                                  /*RefAsPointee*/true);
9448 
9449   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
9450     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9451                                  /*RefAsPointee*/true);
9452 
9453   return GetAlignOfType(Info, E->getType(), ExprKind);
9454 }
9455 
9456 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9457   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9458     return Info.Ctx.getDeclAlign(VD);
9459   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9460     return GetAlignOfExpr(Info, E, UETT_AlignOf);
9461   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
9462 }
9463 
9464 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9465 /// __builtin_is_aligned and __builtin_assume_aligned.
9466 static bool getAlignmentArgument(const Expr *E, QualType ForType,
9467                                  EvalInfo &Info, APSInt &Alignment) {
9468   if (!EvaluateInteger(E, Alignment, Info))
9469     return false;
9470   if (Alignment < 0 || !Alignment.isPowerOf2()) {
9471     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9472     return false;
9473   }
9474   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
9475   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
9476   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
9477     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9478         << MaxValue << ForType << Alignment;
9479     return false;
9480   }
9481   // Ensure both alignment and source value have the same bit width so that we
9482   // don't assert when computing the resulting value.
9483   APSInt ExtAlignment =
9484       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
9485   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9486          "Alignment should not be changed by ext/trunc");
9487   Alignment = ExtAlignment;
9488   assert(Alignment.getBitWidth() == SrcWidth);
9489   return true;
9490 }
9491 
9492 // To be clear: this happily visits unsupported builtins. Better name welcomed.
9493 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9494   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9495     return true;
9496 
9497   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9498     return false;
9499 
9500   Result.setInvalid(E);
9501   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9502   Result.addUnsizedArray(Info, E, PointeeTy);
9503   return true;
9504 }
9505 
9506 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9507   if (!IsConstantEvaluatedBuiltinCall(E))
9508     return visitNonBuiltinCallExpr(E);
9509   return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
9510 }
9511 
9512 // Determine if T is a character type for which we guarantee that
9513 // sizeof(T) == 1.
9514 static bool isOneByteCharacterType(QualType T) {
9515   return T->isCharType() || T->isChar8Type();
9516 }
9517 
9518 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9519                                                 unsigned BuiltinOp) {
9520   if (IsNoOpCall(E))
9521     return Success(E);
9522 
9523   switch (BuiltinOp) {
9524   case Builtin::BIaddressof:
9525   case Builtin::BI__addressof:
9526   case Builtin::BI__builtin_addressof:
9527     return evaluateLValue(E->getArg(0), Result);
9528   case Builtin::BI__builtin_assume_aligned: {
9529     // We need to be very careful here because: if the pointer does not have the
9530     // asserted alignment, then the behavior is undefined, and undefined
9531     // behavior is non-constant.
9532     if (!evaluatePointer(E->getArg(0), Result))
9533       return false;
9534 
9535     LValue OffsetResult(Result);
9536     APSInt Alignment;
9537     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9538                               Alignment))
9539       return false;
9540     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9541 
9542     if (E->getNumArgs() > 2) {
9543       APSInt Offset;
9544       if (!EvaluateInteger(E->getArg(2), Offset, Info))
9545         return false;
9546 
9547       int64_t AdditionalOffset = -Offset.getZExtValue();
9548       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9549     }
9550 
9551     // If there is a base object, then it must have the correct alignment.
9552     if (OffsetResult.Base) {
9553       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9554 
9555       if (BaseAlignment < Align) {
9556         Result.Designator.setInvalid();
9557         // FIXME: Add support to Diagnostic for long / long long.
9558         CCEDiag(E->getArg(0),
9559                 diag::note_constexpr_baa_insufficient_alignment) << 0
9560           << (unsigned)BaseAlignment.getQuantity()
9561           << (unsigned)Align.getQuantity();
9562         return false;
9563       }
9564     }
9565 
9566     // The offset must also have the correct alignment.
9567     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9568       Result.Designator.setInvalid();
9569 
9570       (OffsetResult.Base
9571            ? CCEDiag(E->getArg(0),
9572                      diag::note_constexpr_baa_insufficient_alignment) << 1
9573            : CCEDiag(E->getArg(0),
9574                      diag::note_constexpr_baa_value_insufficient_alignment))
9575         << (int)OffsetResult.Offset.getQuantity()
9576         << (unsigned)Align.getQuantity();
9577       return false;
9578     }
9579 
9580     return true;
9581   }
9582   case Builtin::BI__builtin_align_up:
9583   case Builtin::BI__builtin_align_down: {
9584     if (!evaluatePointer(E->getArg(0), Result))
9585       return false;
9586     APSInt Alignment;
9587     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9588                               Alignment))
9589       return false;
9590     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9591     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9592     // For align_up/align_down, we can return the same value if the alignment
9593     // is known to be greater or equal to the requested value.
9594     if (PtrAlign.getQuantity() >= Alignment)
9595       return true;
9596 
9597     // The alignment could be greater than the minimum at run-time, so we cannot
9598     // infer much about the resulting pointer value. One case is possible:
9599     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9600     // can infer the correct index if the requested alignment is smaller than
9601     // the base alignment so we can perform the computation on the offset.
9602     if (BaseAlignment.getQuantity() >= Alignment) {
9603       assert(Alignment.getBitWidth() <= 64 &&
9604              "Cannot handle > 64-bit address-space");
9605       uint64_t Alignment64 = Alignment.getZExtValue();
9606       CharUnits NewOffset = CharUnits::fromQuantity(
9607           BuiltinOp == Builtin::BI__builtin_align_down
9608               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9609               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9610       Result.adjustOffset(NewOffset - Result.Offset);
9611       // TODO: diagnose out-of-bounds values/only allow for arrays?
9612       return true;
9613     }
9614     // Otherwise, we cannot constant-evaluate the result.
9615     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9616         << Alignment;
9617     return false;
9618   }
9619   case Builtin::BI__builtin_operator_new:
9620     return HandleOperatorNewCall(Info, E, Result);
9621   case Builtin::BI__builtin_launder:
9622     return evaluatePointer(E->getArg(0), Result);
9623   case Builtin::BIstrchr:
9624   case Builtin::BIwcschr:
9625   case Builtin::BImemchr:
9626   case Builtin::BIwmemchr:
9627     if (Info.getLangOpts().CPlusPlus11)
9628       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9629           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9630           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9631     else
9632       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9633     [[fallthrough]];
9634   case Builtin::BI__builtin_strchr:
9635   case Builtin::BI__builtin_wcschr:
9636   case Builtin::BI__builtin_memchr:
9637   case Builtin::BI__builtin_char_memchr:
9638   case Builtin::BI__builtin_wmemchr: {
9639     if (!Visit(E->getArg(0)))
9640       return false;
9641     APSInt Desired;
9642     if (!EvaluateInteger(E->getArg(1), Desired, Info))
9643       return false;
9644     uint64_t MaxLength = uint64_t(-1);
9645     if (BuiltinOp != Builtin::BIstrchr &&
9646         BuiltinOp != Builtin::BIwcschr &&
9647         BuiltinOp != Builtin::BI__builtin_strchr &&
9648         BuiltinOp != Builtin::BI__builtin_wcschr) {
9649       APSInt N;
9650       if (!EvaluateInteger(E->getArg(2), N, Info))
9651         return false;
9652       MaxLength = N.getZExtValue();
9653     }
9654     // We cannot find the value if there are no candidates to match against.
9655     if (MaxLength == 0u)
9656       return ZeroInitialization(E);
9657     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9658         Result.Designator.Invalid)
9659       return false;
9660     QualType CharTy = Result.Designator.getType(Info.Ctx);
9661     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9662                      BuiltinOp == Builtin::BI__builtin_memchr;
9663     assert(IsRawByte ||
9664            Info.Ctx.hasSameUnqualifiedType(
9665                CharTy, E->getArg(0)->getType()->getPointeeType()));
9666     // Pointers to const void may point to objects of incomplete type.
9667     if (IsRawByte && CharTy->isIncompleteType()) {
9668       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9669       return false;
9670     }
9671     // Give up on byte-oriented matching against multibyte elements.
9672     // FIXME: We can compare the bytes in the correct order.
9673     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9674       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9675           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
9676           << CharTy;
9677       return false;
9678     }
9679     // Figure out what value we're actually looking for (after converting to
9680     // the corresponding unsigned type if necessary).
9681     uint64_t DesiredVal;
9682     bool StopAtNull = false;
9683     switch (BuiltinOp) {
9684     case Builtin::BIstrchr:
9685     case Builtin::BI__builtin_strchr:
9686       // strchr compares directly to the passed integer, and therefore
9687       // always fails if given an int that is not a char.
9688       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9689                                                   E->getArg(1)->getType(),
9690                                                   Desired),
9691                                Desired))
9692         return ZeroInitialization(E);
9693       StopAtNull = true;
9694       [[fallthrough]];
9695     case Builtin::BImemchr:
9696     case Builtin::BI__builtin_memchr:
9697     case Builtin::BI__builtin_char_memchr:
9698       // memchr compares by converting both sides to unsigned char. That's also
9699       // correct for strchr if we get this far (to cope with plain char being
9700       // unsigned in the strchr case).
9701       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9702       break;
9703 
9704     case Builtin::BIwcschr:
9705     case Builtin::BI__builtin_wcschr:
9706       StopAtNull = true;
9707       [[fallthrough]];
9708     case Builtin::BIwmemchr:
9709     case Builtin::BI__builtin_wmemchr:
9710       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9711       DesiredVal = Desired.getZExtValue();
9712       break;
9713     }
9714 
9715     for (; MaxLength; --MaxLength) {
9716       APValue Char;
9717       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9718           !Char.isInt())
9719         return false;
9720       if (Char.getInt().getZExtValue() == DesiredVal)
9721         return true;
9722       if (StopAtNull && !Char.getInt())
9723         break;
9724       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9725         return false;
9726     }
9727     // Not found: return nullptr.
9728     return ZeroInitialization(E);
9729   }
9730 
9731   case Builtin::BImemcpy:
9732   case Builtin::BImemmove:
9733   case Builtin::BIwmemcpy:
9734   case Builtin::BIwmemmove:
9735     if (Info.getLangOpts().CPlusPlus11)
9736       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9737           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9738           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9739     else
9740       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9741     [[fallthrough]];
9742   case Builtin::BI__builtin_memcpy:
9743   case Builtin::BI__builtin_memmove:
9744   case Builtin::BI__builtin_wmemcpy:
9745   case Builtin::BI__builtin_wmemmove: {
9746     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9747                  BuiltinOp == Builtin::BIwmemmove ||
9748                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9749                  BuiltinOp == Builtin::BI__builtin_wmemmove;
9750     bool Move = BuiltinOp == Builtin::BImemmove ||
9751                 BuiltinOp == Builtin::BIwmemmove ||
9752                 BuiltinOp == Builtin::BI__builtin_memmove ||
9753                 BuiltinOp == Builtin::BI__builtin_wmemmove;
9754 
9755     // The result of mem* is the first argument.
9756     if (!Visit(E->getArg(0)))
9757       return false;
9758     LValue Dest = Result;
9759 
9760     LValue Src;
9761     if (!EvaluatePointer(E->getArg(1), Src, Info))
9762       return false;
9763 
9764     APSInt N;
9765     if (!EvaluateInteger(E->getArg(2), N, Info))
9766       return false;
9767     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9768 
9769     // If the size is zero, we treat this as always being a valid no-op.
9770     // (Even if one of the src and dest pointers is null.)
9771     if (!N)
9772       return true;
9773 
9774     // Otherwise, if either of the operands is null, we can't proceed. Don't
9775     // try to determine the type of the copied objects, because there aren't
9776     // any.
9777     if (!Src.Base || !Dest.Base) {
9778       APValue Val;
9779       (!Src.Base ? Src : Dest).moveInto(Val);
9780       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9781           << Move << WChar << !!Src.Base
9782           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9783       return false;
9784     }
9785     if (Src.Designator.Invalid || Dest.Designator.Invalid)
9786       return false;
9787 
9788     // We require that Src and Dest are both pointers to arrays of
9789     // trivially-copyable type. (For the wide version, the designator will be
9790     // invalid if the designated object is not a wchar_t.)
9791     QualType T = Dest.Designator.getType(Info.Ctx);
9792     QualType SrcT = Src.Designator.getType(Info.Ctx);
9793     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9794       // FIXME: Consider using our bit_cast implementation to support this.
9795       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9796       return false;
9797     }
9798     if (T->isIncompleteType()) {
9799       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9800       return false;
9801     }
9802     if (!T.isTriviallyCopyableType(Info.Ctx)) {
9803       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9804       return false;
9805     }
9806 
9807     // Figure out how many T's we're copying.
9808     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9809     if (TSize == 0)
9810       return false;
9811     if (!WChar) {
9812       uint64_t Remainder;
9813       llvm::APInt OrigN = N;
9814       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9815       if (Remainder) {
9816         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9817             << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9818             << (unsigned)TSize;
9819         return false;
9820       }
9821     }
9822 
9823     // Check that the copying will remain within the arrays, just so that we
9824     // can give a more meaningful diagnostic. This implicitly also checks that
9825     // N fits into 64 bits.
9826     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9827     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9828     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9829       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9830           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9831           << toString(N, 10, /*Signed*/false);
9832       return false;
9833     }
9834     uint64_t NElems = N.getZExtValue();
9835     uint64_t NBytes = NElems * TSize;
9836 
9837     // Check for overlap.
9838     int Direction = 1;
9839     if (HasSameBase(Src, Dest)) {
9840       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9841       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9842       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9843         // Dest is inside the source region.
9844         if (!Move) {
9845           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9846           return false;
9847         }
9848         // For memmove and friends, copy backwards.
9849         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9850             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9851           return false;
9852         Direction = -1;
9853       } else if (!Move && SrcOffset >= DestOffset &&
9854                  SrcOffset - DestOffset < NBytes) {
9855         // Src is inside the destination region for memcpy: invalid.
9856         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9857         return false;
9858       }
9859     }
9860 
9861     while (true) {
9862       APValue Val;
9863       // FIXME: Set WantObjectRepresentation to true if we're copying a
9864       // char-like type?
9865       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9866           !handleAssignment(Info, E, Dest, T, Val))
9867         return false;
9868       // Do not iterate past the last element; if we're copying backwards, that
9869       // might take us off the start of the array.
9870       if (--NElems == 0)
9871         return true;
9872       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9873           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9874         return false;
9875     }
9876   }
9877 
9878   default:
9879     return false;
9880   }
9881 }
9882 
9883 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9884                                      APValue &Result, const InitListExpr *ILE,
9885                                      QualType AllocType);
9886 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9887                                           APValue &Result,
9888                                           const CXXConstructExpr *CCE,
9889                                           QualType AllocType);
9890 
9891 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9892   if (!Info.getLangOpts().CPlusPlus20)
9893     Info.CCEDiag(E, diag::note_constexpr_new);
9894 
9895   // We cannot speculatively evaluate a delete expression.
9896   if (Info.SpeculativeEvaluationDepth)
9897     return false;
9898 
9899   FunctionDecl *OperatorNew = E->getOperatorNew();
9900 
9901   bool IsNothrow = false;
9902   bool IsPlacement = false;
9903   if (OperatorNew->isReservedGlobalPlacementOperator() &&
9904       Info.CurrentCall->isStdFunction() && !E->isArray()) {
9905     // FIXME Support array placement new.
9906     assert(E->getNumPlacementArgs() == 1);
9907     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9908       return false;
9909     if (Result.Designator.Invalid)
9910       return false;
9911     IsPlacement = true;
9912   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9913     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9914         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9915     return false;
9916   } else if (E->getNumPlacementArgs()) {
9917     // The only new-placement list we support is of the form (std::nothrow).
9918     //
9919     // FIXME: There is no restriction on this, but it's not clear that any
9920     // other form makes any sense. We get here for cases such as:
9921     //
9922     //   new (std::align_val_t{N}) X(int)
9923     //
9924     // (which should presumably be valid only if N is a multiple of
9925     // alignof(int), and in any case can't be deallocated unless N is
9926     // alignof(X) and X has new-extended alignment).
9927     if (E->getNumPlacementArgs() != 1 ||
9928         !E->getPlacementArg(0)->getType()->isNothrowT())
9929       return Error(E, diag::note_constexpr_new_placement);
9930 
9931     LValue Nothrow;
9932     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9933       return false;
9934     IsNothrow = true;
9935   }
9936 
9937   const Expr *Init = E->getInitializer();
9938   const InitListExpr *ResizedArrayILE = nullptr;
9939   const CXXConstructExpr *ResizedArrayCCE = nullptr;
9940   bool ValueInit = false;
9941 
9942   QualType AllocType = E->getAllocatedType();
9943   if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
9944     const Expr *Stripped = *ArraySize;
9945     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9946          Stripped = ICE->getSubExpr())
9947       if (ICE->getCastKind() != CK_NoOp &&
9948           ICE->getCastKind() != CK_IntegralCast)
9949         break;
9950 
9951     llvm::APSInt ArrayBound;
9952     if (!EvaluateInteger(Stripped, ArrayBound, Info))
9953       return false;
9954 
9955     // C++ [expr.new]p9:
9956     //   The expression is erroneous if:
9957     //   -- [...] its value before converting to size_t [or] applying the
9958     //      second standard conversion sequence is less than zero
9959     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9960       if (IsNothrow)
9961         return ZeroInitialization(E);
9962 
9963       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9964           << ArrayBound << (*ArraySize)->getSourceRange();
9965       return false;
9966     }
9967 
9968     //   -- its value is such that the size of the allocated object would
9969     //      exceed the implementation-defined limit
9970     if (!Info.CheckArraySize(ArraySize.value()->getExprLoc(),
9971                              ConstantArrayType::getNumAddressingBits(
9972                                  Info.Ctx, AllocType, ArrayBound),
9973                              ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) {
9974       if (IsNothrow)
9975         return ZeroInitialization(E);
9976       return false;
9977     }
9978 
9979     //   -- the new-initializer is a braced-init-list and the number of
9980     //      array elements for which initializers are provided [...]
9981     //      exceeds the number of elements to initialize
9982     if (!Init) {
9983       // No initialization is performed.
9984     } else if (isa<CXXScalarValueInitExpr>(Init) ||
9985                isa<ImplicitValueInitExpr>(Init)) {
9986       ValueInit = true;
9987     } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9988       ResizedArrayCCE = CCE;
9989     } else {
9990       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9991       assert(CAT && "unexpected type for array initializer");
9992 
9993       unsigned Bits =
9994           std::max(CAT->getSizeBitWidth(), ArrayBound.getBitWidth());
9995       llvm::APInt InitBound = CAT->getSize().zext(Bits);
9996       llvm::APInt AllocBound = ArrayBound.zext(Bits);
9997       if (InitBound.ugt(AllocBound)) {
9998         if (IsNothrow)
9999           return ZeroInitialization(E);
10000 
10001         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
10002             << toString(AllocBound, 10, /*Signed=*/false)
10003             << toString(InitBound, 10, /*Signed=*/false)
10004             << (*ArraySize)->getSourceRange();
10005         return false;
10006       }
10007 
10008       // If the sizes differ, we must have an initializer list, and we need
10009       // special handling for this case when we initialize.
10010       if (InitBound != AllocBound)
10011         ResizedArrayILE = cast<InitListExpr>(Init);
10012     }
10013 
10014     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
10015                                               ArraySizeModifier::Normal, 0);
10016   } else {
10017     assert(!AllocType->isArrayType() &&
10018            "array allocation with non-array new");
10019   }
10020 
10021   APValue *Val;
10022   if (IsPlacement) {
10023     AccessKinds AK = AK_Construct;
10024     struct FindObjectHandler {
10025       EvalInfo &Info;
10026       const Expr *E;
10027       QualType AllocType;
10028       const AccessKinds AccessKind;
10029       APValue *Value;
10030 
10031       typedef bool result_type;
10032       bool failed() { return false; }
10033       bool found(APValue &Subobj, QualType SubobjType) {
10034         // FIXME: Reject the cases where [basic.life]p8 would not permit the
10035         // old name of the object to be used to name the new object.
10036         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
10037           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
10038             SubobjType << AllocType;
10039           return false;
10040         }
10041         Value = &Subobj;
10042         return true;
10043       }
10044       bool found(APSInt &Value, QualType SubobjType) {
10045         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
10046         return false;
10047       }
10048       bool found(APFloat &Value, QualType SubobjType) {
10049         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
10050         return false;
10051       }
10052     } Handler = {Info, E, AllocType, AK, nullptr};
10053 
10054     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
10055     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
10056       return false;
10057 
10058     Val = Handler.Value;
10059 
10060     // [basic.life]p1:
10061     //   The lifetime of an object o of type T ends when [...] the storage
10062     //   which the object occupies is [...] reused by an object that is not
10063     //   nested within o (6.6.2).
10064     *Val = APValue();
10065   } else {
10066     // Perform the allocation and obtain a pointer to the resulting object.
10067     Val = Info.createHeapAlloc(E, AllocType, Result);
10068     if (!Val)
10069       return false;
10070   }
10071 
10072   if (ValueInit) {
10073     ImplicitValueInitExpr VIE(AllocType);
10074     if (!EvaluateInPlace(*Val, Info, Result, &VIE))
10075       return false;
10076   } else if (ResizedArrayILE) {
10077     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
10078                                   AllocType))
10079       return false;
10080   } else if (ResizedArrayCCE) {
10081     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
10082                                        AllocType))
10083       return false;
10084   } else if (Init) {
10085     if (!EvaluateInPlace(*Val, Info, Result, Init))
10086       return false;
10087   } else if (!handleDefaultInitValue(AllocType, *Val)) {
10088     return false;
10089   }
10090 
10091   // Array new returns a pointer to the first element, not a pointer to the
10092   // array.
10093   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
10094     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
10095 
10096   return true;
10097 }
10098 //===----------------------------------------------------------------------===//
10099 // Member Pointer Evaluation
10100 //===----------------------------------------------------------------------===//
10101 
10102 namespace {
10103 class MemberPointerExprEvaluator
10104   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
10105   MemberPtr &Result;
10106 
10107   bool Success(const ValueDecl *D) {
10108     Result = MemberPtr(D);
10109     return true;
10110   }
10111 public:
10112 
10113   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
10114     : ExprEvaluatorBaseTy(Info), Result(Result) {}
10115 
10116   bool Success(const APValue &V, const Expr *E) {
10117     Result.setFrom(V);
10118     return true;
10119   }
10120   bool ZeroInitialization(const Expr *E) {
10121     return Success((const ValueDecl*)nullptr);
10122   }
10123 
10124   bool VisitCastExpr(const CastExpr *E);
10125   bool VisitUnaryAddrOf(const UnaryOperator *E);
10126 };
10127 } // end anonymous namespace
10128 
10129 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
10130                                   EvalInfo &Info) {
10131   assert(!E->isValueDependent());
10132   assert(E->isPRValue() && E->getType()->isMemberPointerType());
10133   return MemberPointerExprEvaluator(Info, Result).Visit(E);
10134 }
10135 
10136 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
10137   switch (E->getCastKind()) {
10138   default:
10139     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10140 
10141   case CK_NullToMemberPointer:
10142     VisitIgnoredValue(E->getSubExpr());
10143     return ZeroInitialization(E);
10144 
10145   case CK_BaseToDerivedMemberPointer: {
10146     if (!Visit(E->getSubExpr()))
10147       return false;
10148     if (E->path_empty())
10149       return true;
10150     // Base-to-derived member pointer casts store the path in derived-to-base
10151     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
10152     // the wrong end of the derived->base arc, so stagger the path by one class.
10153     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
10154     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
10155          PathI != PathE; ++PathI) {
10156       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10157       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
10158       if (!Result.castToDerived(Derived))
10159         return Error(E);
10160     }
10161     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
10162     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
10163       return Error(E);
10164     return true;
10165   }
10166 
10167   case CK_DerivedToBaseMemberPointer:
10168     if (!Visit(E->getSubExpr()))
10169       return false;
10170     for (CastExpr::path_const_iterator PathI = E->path_begin(),
10171          PathE = E->path_end(); PathI != PathE; ++PathI) {
10172       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10173       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10174       if (!Result.castToBase(Base))
10175         return Error(E);
10176     }
10177     return true;
10178   }
10179 }
10180 
10181 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
10182   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
10183   // member can be formed.
10184   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
10185 }
10186 
10187 //===----------------------------------------------------------------------===//
10188 // Record Evaluation
10189 //===----------------------------------------------------------------------===//
10190 
10191 namespace {
10192   class RecordExprEvaluator
10193   : public ExprEvaluatorBase<RecordExprEvaluator> {
10194     const LValue &This;
10195     APValue &Result;
10196   public:
10197 
10198     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
10199       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
10200 
10201     bool Success(const APValue &V, const Expr *E) {
10202       Result = V;
10203       return true;
10204     }
10205     bool ZeroInitialization(const Expr *E) {
10206       return ZeroInitialization(E, E->getType());
10207     }
10208     bool ZeroInitialization(const Expr *E, QualType T);
10209 
10210     bool VisitCallExpr(const CallExpr *E) {
10211       return handleCallExpr(E, Result, &This);
10212     }
10213     bool VisitCastExpr(const CastExpr *E);
10214     bool VisitInitListExpr(const InitListExpr *E);
10215     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10216       return VisitCXXConstructExpr(E, E->getType());
10217     }
10218     bool VisitLambdaExpr(const LambdaExpr *E);
10219     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
10220     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
10221     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
10222     bool VisitBinCmp(const BinaryOperator *E);
10223     bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10224     bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10225                                          ArrayRef<Expr *> Args);
10226   };
10227 }
10228 
10229 /// Perform zero-initialization on an object of non-union class type.
10230 /// C++11 [dcl.init]p5:
10231 ///  To zero-initialize an object or reference of type T means:
10232 ///    [...]
10233 ///    -- if T is a (possibly cv-qualified) non-union class type,
10234 ///       each non-static data member and each base-class subobject is
10235 ///       zero-initialized
10236 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
10237                                           const RecordDecl *RD,
10238                                           const LValue &This, APValue &Result) {
10239   assert(!RD->isUnion() && "Expected non-union class type");
10240   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
10241   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
10242                    std::distance(RD->field_begin(), RD->field_end()));
10243 
10244   if (RD->isInvalidDecl()) return false;
10245   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
10246 
10247   if (CD) {
10248     unsigned Index = 0;
10249     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
10250            End = CD->bases_end(); I != End; ++I, ++Index) {
10251       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
10252       LValue Subobject = This;
10253       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
10254         return false;
10255       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
10256                                          Result.getStructBase(Index)))
10257         return false;
10258     }
10259   }
10260 
10261   for (const auto *I : RD->fields()) {
10262     // -- if T is a reference type, no initialization is performed.
10263     if (I->isUnnamedBitField() || I->getType()->isReferenceType())
10264       continue;
10265 
10266     LValue Subobject = This;
10267     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
10268       return false;
10269 
10270     ImplicitValueInitExpr VIE(I->getType());
10271     if (!EvaluateInPlace(
10272           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
10273       return false;
10274   }
10275 
10276   return true;
10277 }
10278 
10279 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
10280   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
10281   if (RD->isInvalidDecl()) return false;
10282   if (RD->isUnion()) {
10283     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
10284     // object's first non-static named data member is zero-initialized
10285     RecordDecl::field_iterator I = RD->field_begin();
10286     while (I != RD->field_end() && (*I)->isUnnamedBitField())
10287       ++I;
10288     if (I == RD->field_end()) {
10289       Result = APValue((const FieldDecl*)nullptr);
10290       return true;
10291     }
10292 
10293     LValue Subobject = This;
10294     if (!HandleLValueMember(Info, E, Subobject, *I))
10295       return false;
10296     Result = APValue(*I);
10297     ImplicitValueInitExpr VIE(I->getType());
10298     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
10299   }
10300 
10301   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
10302     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
10303     return false;
10304   }
10305 
10306   return HandleClassZeroInitialization(Info, E, RD, This, Result);
10307 }
10308 
10309 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
10310   switch (E->getCastKind()) {
10311   default:
10312     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10313 
10314   case CK_ConstructorConversion:
10315     return Visit(E->getSubExpr());
10316 
10317   case CK_DerivedToBase:
10318   case CK_UncheckedDerivedToBase: {
10319     APValue DerivedObject;
10320     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
10321       return false;
10322     if (!DerivedObject.isStruct())
10323       return Error(E->getSubExpr());
10324 
10325     // Derived-to-base rvalue conversion: just slice off the derived part.
10326     APValue *Value = &DerivedObject;
10327     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
10328     for (CastExpr::path_const_iterator PathI = E->path_begin(),
10329          PathE = E->path_end(); PathI != PathE; ++PathI) {
10330       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
10331       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10332       Value = &Value->getStructBase(getBaseIndex(RD, Base));
10333       RD = Base;
10334     }
10335     Result = *Value;
10336     return true;
10337   }
10338   }
10339 }
10340 
10341 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10342   if (E->isTransparent())
10343     return Visit(E->getInit(0));
10344   return VisitCXXParenListOrInitListExpr(E, E->inits());
10345 }
10346 
10347 bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
10348     const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
10349   const RecordDecl *RD =
10350       ExprToVisit->getType()->castAs<RecordType>()->getDecl();
10351   if (RD->isInvalidDecl()) return false;
10352   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
10353   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
10354 
10355   EvalInfo::EvaluatingConstructorRAII EvalObj(
10356       Info,
10357       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
10358       CXXRD && CXXRD->getNumBases());
10359 
10360   if (RD->isUnion()) {
10361     const FieldDecl *Field;
10362     if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) {
10363       Field = ILE->getInitializedFieldInUnion();
10364     } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) {
10365       Field = PLIE->getInitializedFieldInUnion();
10366     } else {
10367       llvm_unreachable(
10368           "Expression is neither an init list nor a C++ paren list");
10369     }
10370 
10371     Result = APValue(Field);
10372     if (!Field)
10373       return true;
10374 
10375     // If the initializer list for a union does not contain any elements, the
10376     // first element of the union is value-initialized.
10377     // FIXME: The element should be initialized from an initializer list.
10378     //        Is this difference ever observable for initializer lists which
10379     //        we don't build?
10380     ImplicitValueInitExpr VIE(Field->getType());
10381     const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
10382 
10383     LValue Subobject = This;
10384     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
10385       return false;
10386 
10387     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10388     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10389                                   isa<CXXDefaultInitExpr>(InitExpr));
10390 
10391     if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
10392       if (Field->isBitField())
10393         return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
10394                                      Field);
10395       return true;
10396     }
10397 
10398     return false;
10399   }
10400 
10401   if (!Result.hasValue())
10402     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10403                      std::distance(RD->field_begin(), RD->field_end()));
10404   unsigned ElementNo = 0;
10405   bool Success = true;
10406 
10407   // Initialize base classes.
10408   if (CXXRD && CXXRD->getNumBases()) {
10409     for (const auto &Base : CXXRD->bases()) {
10410       assert(ElementNo < Args.size() && "missing init for base class");
10411       const Expr *Init = Args[ElementNo];
10412 
10413       LValue Subobject = This;
10414       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
10415         return false;
10416 
10417       APValue &FieldVal = Result.getStructBase(ElementNo);
10418       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
10419         if (!Info.noteFailure())
10420           return false;
10421         Success = false;
10422       }
10423       ++ElementNo;
10424     }
10425 
10426     EvalObj.finishedConstructingBases();
10427   }
10428 
10429   // Initialize members.
10430   for (const auto *Field : RD->fields()) {
10431     // Anonymous bit-fields are not considered members of the class for
10432     // purposes of aggregate initialization.
10433     if (Field->isUnnamedBitField())
10434       continue;
10435 
10436     LValue Subobject = This;
10437 
10438     bool HaveInit = ElementNo < Args.size();
10439 
10440     // FIXME: Diagnostics here should point to the end of the initializer
10441     // list, not the start.
10442     if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit,
10443                             Subobject, Field, &Layout))
10444       return false;
10445 
10446     // Perform an implicit value-initialization for members beyond the end of
10447     // the initializer list.
10448     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10449     const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10450 
10451     if (Field->getType()->isIncompleteArrayType()) {
10452       if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10453         if (!CAT->isZeroSize()) {
10454           // Bail out for now. This might sort of "work", but the rest of the
10455           // code isn't really prepared to handle it.
10456           Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10457           return false;
10458         }
10459       }
10460     }
10461 
10462     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10463     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10464                                   isa<CXXDefaultInitExpr>(Init));
10465 
10466     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10467     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
10468         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
10469                                                        FieldVal, Field))) {
10470       if (!Info.noteFailure())
10471         return false;
10472       Success = false;
10473     }
10474   }
10475 
10476   EvalObj.finishedConstructingFields();
10477 
10478   return Success;
10479 }
10480 
10481 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10482                                                 QualType T) {
10483   // Note that E's type is not necessarily the type of our class here; we might
10484   // be initializing an array element instead.
10485   const CXXConstructorDecl *FD = E->getConstructor();
10486   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10487 
10488   bool ZeroInit = E->requiresZeroInitialization();
10489   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10490     // If we've already performed zero-initialization, we're already done.
10491     if (Result.hasValue())
10492       return true;
10493 
10494     if (ZeroInit)
10495       return ZeroInitialization(E, T);
10496 
10497     return handleDefaultInitValue(T, Result);
10498   }
10499 
10500   const FunctionDecl *Definition = nullptr;
10501   auto Body = FD->getBody(Definition);
10502 
10503   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10504     return false;
10505 
10506   // Avoid materializing a temporary for an elidable copy/move constructor.
10507   if (E->isElidable() && !ZeroInit) {
10508     // FIXME: This only handles the simplest case, where the source object
10509     //        is passed directly as the first argument to the constructor.
10510     //        This should also handle stepping though implicit casts and
10511     //        and conversion sequences which involve two steps, with a
10512     //        conversion operator followed by a converting constructor.
10513     const Expr *SrcObj = E->getArg(0);
10514     assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10515     assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10516     if (const MaterializeTemporaryExpr *ME =
10517             dyn_cast<MaterializeTemporaryExpr>(SrcObj))
10518       return Visit(ME->getSubExpr());
10519   }
10520 
10521   if (ZeroInit && !ZeroInitialization(E, T))
10522     return false;
10523 
10524   auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10525   return HandleConstructorCall(E, This, Args,
10526                                cast<CXXConstructorDecl>(Definition), Info,
10527                                Result);
10528 }
10529 
10530 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10531     const CXXInheritedCtorInitExpr *E) {
10532   if (!Info.CurrentCall) {
10533     assert(Info.checkingPotentialConstantExpression());
10534     return false;
10535   }
10536 
10537   const CXXConstructorDecl *FD = E->getConstructor();
10538   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10539     return false;
10540 
10541   const FunctionDecl *Definition = nullptr;
10542   auto Body = FD->getBody(Definition);
10543 
10544   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10545     return false;
10546 
10547   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10548                                cast<CXXConstructorDecl>(Definition), Info,
10549                                Result);
10550 }
10551 
10552 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10553     const CXXStdInitializerListExpr *E) {
10554   const ConstantArrayType *ArrayType =
10555       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10556 
10557   LValue Array;
10558   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10559     return false;
10560 
10561   assert(ArrayType && "unexpected type for array initializer");
10562 
10563   // Get a pointer to the first element of the array.
10564   Array.addArray(Info, E, ArrayType);
10565 
10566   // FIXME: What if the initializer_list type has base classes, etc?
10567   Result = APValue(APValue::UninitStruct(), 0, 2);
10568   Array.moveInto(Result.getStructField(0));
10569 
10570   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10571   RecordDecl::field_iterator Field = Record->field_begin();
10572   assert(Field != Record->field_end() &&
10573          Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10574                               ArrayType->getElementType()) &&
10575          "Expected std::initializer_list first field to be const E *");
10576   ++Field;
10577   assert(Field != Record->field_end() &&
10578          "Expected std::initializer_list to have two fields");
10579 
10580   if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) {
10581     // Length.
10582     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10583   } else {
10584     // End pointer.
10585     assert(Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10586                                 ArrayType->getElementType()) &&
10587            "Expected std::initializer_list second field to be const E *");
10588     if (!HandleLValueArrayAdjustment(Info, E, Array,
10589                                      ArrayType->getElementType(),
10590                                      ArrayType->getZExtSize()))
10591       return false;
10592     Array.moveInto(Result.getStructField(1));
10593   }
10594 
10595   assert(++Field == Record->field_end() &&
10596          "Expected std::initializer_list to only have two fields");
10597 
10598   return true;
10599 }
10600 
10601 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10602   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10603   if (ClosureClass->isInvalidDecl())
10604     return false;
10605 
10606   const size_t NumFields =
10607       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10608 
10609   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10610                                             E->capture_init_end()) &&
10611          "The number of lambda capture initializers should equal the number of "
10612          "fields within the closure type");
10613 
10614   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10615   // Iterate through all the lambda's closure object's fields and initialize
10616   // them.
10617   auto *CaptureInitIt = E->capture_init_begin();
10618   bool Success = true;
10619   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10620   for (const auto *Field : ClosureClass->fields()) {
10621     assert(CaptureInitIt != E->capture_init_end());
10622     // Get the initializer for this field
10623     Expr *const CurFieldInit = *CaptureInitIt++;
10624 
10625     // If there is no initializer, either this is a VLA or an error has
10626     // occurred.
10627     if (!CurFieldInit)
10628       return Error(E);
10629 
10630     LValue Subobject = This;
10631 
10632     if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10633       return false;
10634 
10635     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10636     if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10637       if (!Info.keepEvaluatingAfterFailure())
10638         return false;
10639       Success = false;
10640     }
10641   }
10642   return Success;
10643 }
10644 
10645 static bool EvaluateRecord(const Expr *E, const LValue &This,
10646                            APValue &Result, EvalInfo &Info) {
10647   assert(!E->isValueDependent());
10648   assert(E->isPRValue() && E->getType()->isRecordType() &&
10649          "can't evaluate expression as a record rvalue");
10650   return RecordExprEvaluator(Info, This, Result).Visit(E);
10651 }
10652 
10653 //===----------------------------------------------------------------------===//
10654 // Temporary Evaluation
10655 //
10656 // Temporaries are represented in the AST as rvalues, but generally behave like
10657 // lvalues. The full-object of which the temporary is a subobject is implicitly
10658 // materialized so that a reference can bind to it.
10659 //===----------------------------------------------------------------------===//
10660 namespace {
10661 class TemporaryExprEvaluator
10662   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10663 public:
10664   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10665     LValueExprEvaluatorBaseTy(Info, Result, false) {}
10666 
10667   /// Visit an expression which constructs the value of this temporary.
10668   bool VisitConstructExpr(const Expr *E) {
10669     APValue &Value = Info.CurrentCall->createTemporary(
10670         E, E->getType(), ScopeKind::FullExpression, Result);
10671     return EvaluateInPlace(Value, Info, Result, E);
10672   }
10673 
10674   bool VisitCastExpr(const CastExpr *E) {
10675     switch (E->getCastKind()) {
10676     default:
10677       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10678 
10679     case CK_ConstructorConversion:
10680       return VisitConstructExpr(E->getSubExpr());
10681     }
10682   }
10683   bool VisitInitListExpr(const InitListExpr *E) {
10684     return VisitConstructExpr(E);
10685   }
10686   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10687     return VisitConstructExpr(E);
10688   }
10689   bool VisitCallExpr(const CallExpr *E) {
10690     return VisitConstructExpr(E);
10691   }
10692   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10693     return VisitConstructExpr(E);
10694   }
10695   bool VisitLambdaExpr(const LambdaExpr *E) {
10696     return VisitConstructExpr(E);
10697   }
10698 };
10699 } // end anonymous namespace
10700 
10701 /// Evaluate an expression of record type as a temporary.
10702 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10703   assert(!E->isValueDependent());
10704   assert(E->isPRValue() && E->getType()->isRecordType());
10705   return TemporaryExprEvaluator(Info, Result).Visit(E);
10706 }
10707 
10708 //===----------------------------------------------------------------------===//
10709 // Vector Evaluation
10710 //===----------------------------------------------------------------------===//
10711 
10712 namespace {
10713   class VectorExprEvaluator
10714   : public ExprEvaluatorBase<VectorExprEvaluator> {
10715     APValue &Result;
10716   public:
10717 
10718     VectorExprEvaluator(EvalInfo &info, APValue &Result)
10719       : ExprEvaluatorBaseTy(info), Result(Result) {}
10720 
10721     bool Success(ArrayRef<APValue> V, const Expr *E) {
10722       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10723       // FIXME: remove this APValue copy.
10724       Result = APValue(V.data(), V.size());
10725       return true;
10726     }
10727     bool Success(const APValue &V, const Expr *E) {
10728       assert(V.isVector());
10729       Result = V;
10730       return true;
10731     }
10732     bool ZeroInitialization(const Expr *E);
10733 
10734     bool VisitUnaryReal(const UnaryOperator *E)
10735       { return Visit(E->getSubExpr()); }
10736     bool VisitCastExpr(const CastExpr* E);
10737     bool VisitInitListExpr(const InitListExpr *E);
10738     bool VisitUnaryImag(const UnaryOperator *E);
10739     bool VisitBinaryOperator(const BinaryOperator *E);
10740     bool VisitUnaryOperator(const UnaryOperator *E);
10741     bool VisitConvertVectorExpr(const ConvertVectorExpr *E);
10742     bool VisitShuffleVectorExpr(const ShuffleVectorExpr *E);
10743 
10744     // FIXME: Missing: conditional operator (for GNU
10745     //                 conditional select), ExtVectorElementExpr
10746   };
10747 } // end anonymous namespace
10748 
10749 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10750   assert(E->isPRValue() && E->getType()->isVectorType() &&
10751          "not a vector prvalue");
10752   return VectorExprEvaluator(Info, Result).Visit(E);
10753 }
10754 
10755 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10756   const VectorType *VTy = E->getType()->castAs<VectorType>();
10757   unsigned NElts = VTy->getNumElements();
10758 
10759   const Expr *SE = E->getSubExpr();
10760   QualType SETy = SE->getType();
10761 
10762   switch (E->getCastKind()) {
10763   case CK_VectorSplat: {
10764     APValue Val = APValue();
10765     if (SETy->isIntegerType()) {
10766       APSInt IntResult;
10767       if (!EvaluateInteger(SE, IntResult, Info))
10768         return false;
10769       Val = APValue(std::move(IntResult));
10770     } else if (SETy->isRealFloatingType()) {
10771       APFloat FloatResult(0.0);
10772       if (!EvaluateFloat(SE, FloatResult, Info))
10773         return false;
10774       Val = APValue(std::move(FloatResult));
10775     } else {
10776       return Error(E);
10777     }
10778 
10779     // Splat and create vector APValue.
10780     SmallVector<APValue, 4> Elts(NElts, Val);
10781     return Success(Elts, E);
10782   }
10783   case CK_BitCast: {
10784     APValue SVal;
10785     if (!Evaluate(SVal, Info, SE))
10786       return false;
10787 
10788     if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) {
10789       // Give up if the input isn't an int, float, or vector.  For example, we
10790       // reject "(v4i16)(intptr_t)&a".
10791       Info.FFDiag(E, diag::note_constexpr_invalid_cast)
10792           << 2 << Info.Ctx.getLangOpts().CPlusPlus;
10793       return false;
10794     }
10795 
10796     if (!handleRValueToRValueBitCast(Info, Result, SVal, E))
10797       return false;
10798 
10799     return true;
10800   }
10801   default:
10802     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10803   }
10804 }
10805 
10806 bool
10807 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10808   const VectorType *VT = E->getType()->castAs<VectorType>();
10809   unsigned NumInits = E->getNumInits();
10810   unsigned NumElements = VT->getNumElements();
10811 
10812   QualType EltTy = VT->getElementType();
10813   SmallVector<APValue, 4> Elements;
10814 
10815   // The number of initializers can be less than the number of
10816   // vector elements. For OpenCL, this can be due to nested vector
10817   // initialization. For GCC compatibility, missing trailing elements
10818   // should be initialized with zeroes.
10819   unsigned CountInits = 0, CountElts = 0;
10820   while (CountElts < NumElements) {
10821     // Handle nested vector initialization.
10822     if (CountInits < NumInits
10823         && E->getInit(CountInits)->getType()->isVectorType()) {
10824       APValue v;
10825       if (!EvaluateVector(E->getInit(CountInits), v, Info))
10826         return Error(E);
10827       unsigned vlen = v.getVectorLength();
10828       for (unsigned j = 0; j < vlen; j++)
10829         Elements.push_back(v.getVectorElt(j));
10830       CountElts += vlen;
10831     } else if (EltTy->isIntegerType()) {
10832       llvm::APSInt sInt(32);
10833       if (CountInits < NumInits) {
10834         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10835           return false;
10836       } else // trailing integer zero.
10837         sInt = Info.Ctx.MakeIntValue(0, EltTy);
10838       Elements.push_back(APValue(sInt));
10839       CountElts++;
10840     } else {
10841       llvm::APFloat f(0.0);
10842       if (CountInits < NumInits) {
10843         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10844           return false;
10845       } else // trailing float zero.
10846         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10847       Elements.push_back(APValue(f));
10848       CountElts++;
10849     }
10850     CountInits++;
10851   }
10852   return Success(Elements, E);
10853 }
10854 
10855 bool
10856 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10857   const auto *VT = E->getType()->castAs<VectorType>();
10858   QualType EltTy = VT->getElementType();
10859   APValue ZeroElement;
10860   if (EltTy->isIntegerType())
10861     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10862   else
10863     ZeroElement =
10864         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10865 
10866   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10867   return Success(Elements, E);
10868 }
10869 
10870 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10871   VisitIgnoredValue(E->getSubExpr());
10872   return ZeroInitialization(E);
10873 }
10874 
10875 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10876   BinaryOperatorKind Op = E->getOpcode();
10877   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10878          "Operation not supported on vector types");
10879 
10880   if (Op == BO_Comma)
10881     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10882 
10883   Expr *LHS = E->getLHS();
10884   Expr *RHS = E->getRHS();
10885 
10886   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10887          "Must both be vector types");
10888   // Checking JUST the types are the same would be fine, except shifts don't
10889   // need to have their types be the same (since you always shift by an int).
10890   assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10891              E->getType()->castAs<VectorType>()->getNumElements() &&
10892          RHS->getType()->castAs<VectorType>()->getNumElements() ==
10893              E->getType()->castAs<VectorType>()->getNumElements() &&
10894          "All operands must be the same size.");
10895 
10896   APValue LHSValue;
10897   APValue RHSValue;
10898   bool LHSOK = Evaluate(LHSValue, Info, LHS);
10899   if (!LHSOK && !Info.noteFailure())
10900     return false;
10901   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10902     return false;
10903 
10904   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10905     return false;
10906 
10907   return Success(LHSValue, E);
10908 }
10909 
10910 static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10911                                                         QualType ResultTy,
10912                                                         UnaryOperatorKind Op,
10913                                                         APValue Elt) {
10914   switch (Op) {
10915   case UO_Plus:
10916     // Nothing to do here.
10917     return Elt;
10918   case UO_Minus:
10919     if (Elt.getKind() == APValue::Int) {
10920       Elt.getInt().negate();
10921     } else {
10922       assert(Elt.getKind() == APValue::Float &&
10923              "Vector can only be int or float type");
10924       Elt.getFloat().changeSign();
10925     }
10926     return Elt;
10927   case UO_Not:
10928     // This is only valid for integral types anyway, so we don't have to handle
10929     // float here.
10930     assert(Elt.getKind() == APValue::Int &&
10931            "Vector operator ~ can only be int");
10932     Elt.getInt().flipAllBits();
10933     return Elt;
10934   case UO_LNot: {
10935     if (Elt.getKind() == APValue::Int) {
10936       Elt.getInt() = !Elt.getInt();
10937       // operator ! on vectors returns -1 for 'truth', so negate it.
10938       Elt.getInt().negate();
10939       return Elt;
10940     }
10941     assert(Elt.getKind() == APValue::Float &&
10942            "Vector can only be int or float type");
10943     // Float types result in an int of the same size, but -1 for true, or 0 for
10944     // false.
10945     APSInt EltResult{Ctx.getIntWidth(ResultTy),
10946                      ResultTy->isUnsignedIntegerType()};
10947     if (Elt.getFloat().isZero())
10948       EltResult.setAllBits();
10949     else
10950       EltResult.clearAllBits();
10951 
10952     return APValue{EltResult};
10953   }
10954   default:
10955     // FIXME: Implement the rest of the unary operators.
10956     return std::nullopt;
10957   }
10958 }
10959 
10960 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10961   Expr *SubExpr = E->getSubExpr();
10962   const auto *VD = SubExpr->getType()->castAs<VectorType>();
10963   // This result element type differs in the case of negating a floating point
10964   // vector, since the result type is the a vector of the equivilant sized
10965   // integer.
10966   const QualType ResultEltTy = VD->getElementType();
10967   UnaryOperatorKind Op = E->getOpcode();
10968 
10969   APValue SubExprValue;
10970   if (!Evaluate(SubExprValue, Info, SubExpr))
10971     return false;
10972 
10973   // FIXME: This vector evaluator someday needs to be changed to be LValue
10974   // aware/keep LValue information around, rather than dealing with just vector
10975   // types directly. Until then, we cannot handle cases where the operand to
10976   // these unary operators is an LValue. The only case I've been able to see
10977   // cause this is operator++ assigning to a member expression (only valid in
10978   // altivec compilations) in C mode, so this shouldn't limit us too much.
10979   if (SubExprValue.isLValue())
10980     return false;
10981 
10982   assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10983          "Vector length doesn't match type?");
10984 
10985   SmallVector<APValue, 4> ResultElements;
10986   for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10987     std::optional<APValue> Elt = handleVectorUnaryOperator(
10988         Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10989     if (!Elt)
10990       return false;
10991     ResultElements.push_back(*Elt);
10992   }
10993   return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10994 }
10995 
10996 static bool handleVectorElementCast(EvalInfo &Info, const FPOptions FPO,
10997                                     const Expr *E, QualType SourceTy,
10998                                     QualType DestTy, APValue const &Original,
10999                                     APValue &Result) {
11000   if (SourceTy->isIntegerType()) {
11001     if (DestTy->isRealFloatingType()) {
11002       Result = APValue(APFloat(0.0));
11003       return HandleIntToFloatCast(Info, E, FPO, SourceTy, Original.getInt(),
11004                                   DestTy, Result.getFloat());
11005     }
11006     if (DestTy->isIntegerType()) {
11007       Result = APValue(
11008           HandleIntToIntCast(Info, E, DestTy, SourceTy, Original.getInt()));
11009       return true;
11010     }
11011   } else if (SourceTy->isRealFloatingType()) {
11012     if (DestTy->isRealFloatingType()) {
11013       Result = Original;
11014       return HandleFloatToFloatCast(Info, E, SourceTy, DestTy,
11015                                     Result.getFloat());
11016     }
11017     if (DestTy->isIntegerType()) {
11018       Result = APValue(APSInt());
11019       return HandleFloatToIntCast(Info, E, SourceTy, Original.getFloat(),
11020                                   DestTy, Result.getInt());
11021     }
11022   }
11023 
11024   Info.FFDiag(E, diag::err_convertvector_constexpr_unsupported_vector_cast)
11025       << SourceTy << DestTy;
11026   return false;
11027 }
11028 
11029 bool VectorExprEvaluator::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
11030   APValue Source;
11031   QualType SourceVecType = E->getSrcExpr()->getType();
11032   if (!EvaluateAsRValue(Info, E->getSrcExpr(), Source))
11033     return false;
11034 
11035   QualType DestTy = E->getType()->castAs<VectorType>()->getElementType();
11036   QualType SourceTy = SourceVecType->castAs<VectorType>()->getElementType();
11037 
11038   const FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
11039 
11040   auto SourceLen = Source.getVectorLength();
11041   SmallVector<APValue, 4> ResultElements;
11042   ResultElements.reserve(SourceLen);
11043   for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) {
11044     APValue Elt;
11045     if (!handleVectorElementCast(Info, FPO, E, SourceTy, DestTy,
11046                                  Source.getVectorElt(EltNum), Elt))
11047       return false;
11048     ResultElements.push_back(std::move(Elt));
11049   }
11050 
11051   return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11052 }
11053 
11054 static bool handleVectorShuffle(EvalInfo &Info, const ShuffleVectorExpr *E,
11055                                 QualType ElemType, APValue const &VecVal1,
11056                                 APValue const &VecVal2, unsigned EltNum,
11057                                 APValue &Result) {
11058   unsigned const TotalElementsInInputVector1 = VecVal1.getVectorLength();
11059   unsigned const TotalElementsInInputVector2 = VecVal2.getVectorLength();
11060 
11061   APSInt IndexVal = E->getShuffleMaskIdx(Info.Ctx, EltNum);
11062   int64_t index = IndexVal.getExtValue();
11063   // The spec says that -1 should be treated as undef for optimizations,
11064   // but in constexpr we'd have to produce an APValue::Indeterminate,
11065   // which is prohibited from being a top-level constant value. Emit a
11066   // diagnostic instead.
11067   if (index == -1) {
11068     Info.FFDiag(
11069         E, diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr)
11070         << EltNum;
11071     return false;
11072   }
11073 
11074   if (index < 0 ||
11075       index >= TotalElementsInInputVector1 + TotalElementsInInputVector2)
11076     llvm_unreachable("Out of bounds shuffle index");
11077 
11078   if (index >= TotalElementsInInputVector1)
11079     Result = VecVal2.getVectorElt(index - TotalElementsInInputVector1);
11080   else
11081     Result = VecVal1.getVectorElt(index);
11082   return true;
11083 }
11084 
11085 bool VectorExprEvaluator::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
11086   APValue VecVal1;
11087   const Expr *Vec1 = E->getExpr(0);
11088   if (!EvaluateAsRValue(Info, Vec1, VecVal1))
11089     return false;
11090   APValue VecVal2;
11091   const Expr *Vec2 = E->getExpr(1);
11092   if (!EvaluateAsRValue(Info, Vec2, VecVal2))
11093     return false;
11094 
11095   VectorType const *DestVecTy = E->getType()->castAs<VectorType>();
11096   QualType DestElTy = DestVecTy->getElementType();
11097 
11098   auto TotalElementsInOutputVector = DestVecTy->getNumElements();
11099 
11100   SmallVector<APValue, 4> ResultElements;
11101   ResultElements.reserve(TotalElementsInOutputVector);
11102   for (unsigned EltNum = 0; EltNum < TotalElementsInOutputVector; ++EltNum) {
11103     APValue Elt;
11104     if (!handleVectorShuffle(Info, E, DestElTy, VecVal1, VecVal2, EltNum, Elt))
11105       return false;
11106     ResultElements.push_back(std::move(Elt));
11107   }
11108 
11109   return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11110 }
11111 
11112 //===----------------------------------------------------------------------===//
11113 // Array Evaluation
11114 //===----------------------------------------------------------------------===//
11115 
11116 namespace {
11117   class ArrayExprEvaluator
11118   : public ExprEvaluatorBase<ArrayExprEvaluator> {
11119     const LValue &This;
11120     APValue &Result;
11121   public:
11122 
11123     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
11124       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
11125 
11126     bool Success(const APValue &V, const Expr *E) {
11127       assert(V.isArray() && "expected array");
11128       Result = V;
11129       return true;
11130     }
11131 
11132     bool ZeroInitialization(const Expr *E) {
11133       const ConstantArrayType *CAT =
11134           Info.Ctx.getAsConstantArrayType(E->getType());
11135       if (!CAT) {
11136         if (E->getType()->isIncompleteArrayType()) {
11137           // We can be asked to zero-initialize a flexible array member; this
11138           // is represented as an ImplicitValueInitExpr of incomplete array
11139           // type. In this case, the array has zero elements.
11140           Result = APValue(APValue::UninitArray(), 0, 0);
11141           return true;
11142         }
11143         // FIXME: We could handle VLAs here.
11144         return Error(E);
11145       }
11146 
11147       Result = APValue(APValue::UninitArray(), 0, CAT->getZExtSize());
11148       if (!Result.hasArrayFiller())
11149         return true;
11150 
11151       // Zero-initialize all elements.
11152       LValue Subobject = This;
11153       Subobject.addArray(Info, E, CAT);
11154       ImplicitValueInitExpr VIE(CAT->getElementType());
11155       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
11156     }
11157 
11158     bool VisitCallExpr(const CallExpr *E) {
11159       return handleCallExpr(E, Result, &This);
11160     }
11161     bool VisitInitListExpr(const InitListExpr *E,
11162                            QualType AllocType = QualType());
11163     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
11164     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
11165     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
11166                                const LValue &Subobject,
11167                                APValue *Value, QualType Type);
11168     bool VisitStringLiteral(const StringLiteral *E,
11169                             QualType AllocType = QualType()) {
11170       expandStringLiteral(Info, E, Result, AllocType);
11171       return true;
11172     }
11173     bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
11174     bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
11175                                          ArrayRef<Expr *> Args,
11176                                          const Expr *ArrayFiller,
11177                                          QualType AllocType = QualType());
11178   };
11179 } // end anonymous namespace
11180 
11181 static bool EvaluateArray(const Expr *E, const LValue &This,
11182                           APValue &Result, EvalInfo &Info) {
11183   assert(!E->isValueDependent());
11184   assert(E->isPRValue() && E->getType()->isArrayType() &&
11185          "not an array prvalue");
11186   return ArrayExprEvaluator(Info, This, Result).Visit(E);
11187 }
11188 
11189 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
11190                                      APValue &Result, const InitListExpr *ILE,
11191                                      QualType AllocType) {
11192   assert(!ILE->isValueDependent());
11193   assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
11194          "not an array prvalue");
11195   return ArrayExprEvaluator(Info, This, Result)
11196       .VisitInitListExpr(ILE, AllocType);
11197 }
11198 
11199 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
11200                                           APValue &Result,
11201                                           const CXXConstructExpr *CCE,
11202                                           QualType AllocType) {
11203   assert(!CCE->isValueDependent());
11204   assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
11205          "not an array prvalue");
11206   return ArrayExprEvaluator(Info, This, Result)
11207       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
11208 }
11209 
11210 // Return true iff the given array filler may depend on the element index.
11211 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
11212   // For now, just allow non-class value-initialization and initialization
11213   // lists comprised of them.
11214   if (isa<ImplicitValueInitExpr>(FillerExpr))
11215     return false;
11216   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
11217     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
11218       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
11219         return true;
11220     }
11221 
11222     if (ILE->hasArrayFiller() &&
11223         MaybeElementDependentArrayFiller(ILE->getArrayFiller()))
11224       return true;
11225 
11226     return false;
11227   }
11228   return true;
11229 }
11230 
11231 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
11232                                            QualType AllocType) {
11233   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11234       AllocType.isNull() ? E->getType() : AllocType);
11235   if (!CAT)
11236     return Error(E);
11237 
11238   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
11239   // an appropriately-typed string literal enclosed in braces.
11240   if (E->isStringLiteralInit()) {
11241     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
11242     // FIXME: Support ObjCEncodeExpr here once we support it in
11243     // ArrayExprEvaluator generally.
11244     if (!SL)
11245       return Error(E);
11246     return VisitStringLiteral(SL, AllocType);
11247   }
11248   // Any other transparent list init will need proper handling of the
11249   // AllocType; we can't just recurse to the inner initializer.
11250   assert(!E->isTransparent() &&
11251          "transparent array list initialization is not string literal init?");
11252 
11253   return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
11254                                          AllocType);
11255 }
11256 
11257 bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
11258     const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
11259     QualType AllocType) {
11260   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11261       AllocType.isNull() ? ExprToVisit->getType() : AllocType);
11262 
11263   bool Success = true;
11264 
11265   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
11266          "zero-initialized array shouldn't have any initialized elts");
11267   APValue Filler;
11268   if (Result.isArray() && Result.hasArrayFiller())
11269     Filler = Result.getArrayFiller();
11270 
11271   unsigned NumEltsToInit = Args.size();
11272   unsigned NumElts = CAT->getZExtSize();
11273 
11274   // If the initializer might depend on the array index, run it for each
11275   // array element.
11276   if (NumEltsToInit != NumElts &&
11277       MaybeElementDependentArrayFiller(ArrayFiller)) {
11278     NumEltsToInit = NumElts;
11279   } else {
11280     for (auto *Init : Args) {
11281       if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts()))
11282         NumEltsToInit += EmbedS->getDataElementCount() - 1;
11283     }
11284     if (NumEltsToInit > NumElts)
11285       NumEltsToInit = NumElts;
11286   }
11287 
11288   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
11289                           << NumEltsToInit << ".\n");
11290 
11291   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
11292 
11293   // If the array was previously zero-initialized, preserve the
11294   // zero-initialized values.
11295   if (Filler.hasValue()) {
11296     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
11297       Result.getArrayInitializedElt(I) = Filler;
11298     if (Result.hasArrayFiller())
11299       Result.getArrayFiller() = Filler;
11300   }
11301 
11302   LValue Subobject = This;
11303   Subobject.addArray(Info, ExprToVisit, CAT);
11304   auto Eval = [&](const Expr *Init, unsigned ArrayIndex) {
11305     if (!EvaluateInPlace(Result.getArrayInitializedElt(ArrayIndex), Info,
11306                          Subobject, Init) ||
11307         !HandleLValueArrayAdjustment(Info, Init, Subobject,
11308                                      CAT->getElementType(), 1)) {
11309       if (!Info.noteFailure())
11310         return false;
11311       Success = false;
11312     }
11313     return true;
11314   };
11315   unsigned ArrayIndex = 0;
11316   QualType DestTy = CAT->getElementType();
11317   APSInt Value(Info.Ctx.getTypeSize(DestTy), DestTy->isUnsignedIntegerType());
11318   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
11319     const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
11320     if (ArrayIndex >= NumEltsToInit)
11321       break;
11322     if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
11323       StringLiteral *SL = EmbedS->getDataStringLiteral();
11324       for (unsigned I = EmbedS->getStartingElementPos(),
11325                     N = EmbedS->getDataElementCount();
11326            I != EmbedS->getStartingElementPos() + N; ++I) {
11327         Value = SL->getCodeUnit(I);
11328         if (DestTy->isIntegerType()) {
11329           Result.getArrayInitializedElt(ArrayIndex) = APValue(Value);
11330         } else {
11331           assert(DestTy->isFloatingType() && "unexpected type");
11332           const FPOptions FPO =
11333               Init->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
11334           APFloat FValue(0.0);
11335           if (!HandleIntToFloatCast(Info, Init, FPO, EmbedS->getType(), Value,
11336                                     DestTy, FValue))
11337             return false;
11338           Result.getArrayInitializedElt(ArrayIndex) = APValue(FValue);
11339         }
11340         ArrayIndex++;
11341       }
11342     } else {
11343       if (!Eval(Init, ArrayIndex))
11344         return false;
11345       ++ArrayIndex;
11346     }
11347   }
11348 
11349   if (!Result.hasArrayFiller())
11350     return Success;
11351 
11352   // If we get here, we have a trivial filler, which we can just evaluate
11353   // once and splat over the rest of the array elements.
11354   assert(ArrayFiller && "no array filler for incomplete init list");
11355   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
11356                          ArrayFiller) &&
11357          Success;
11358 }
11359 
11360 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
11361   LValue CommonLV;
11362   if (E->getCommonExpr() &&
11363       !Evaluate(Info.CurrentCall->createTemporary(
11364                     E->getCommonExpr(),
11365                     getStorageType(Info.Ctx, E->getCommonExpr()),
11366                     ScopeKind::FullExpression, CommonLV),
11367                 Info, E->getCommonExpr()->getSourceExpr()))
11368     return false;
11369 
11370   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
11371 
11372   uint64_t Elements = CAT->getZExtSize();
11373   Result = APValue(APValue::UninitArray(), Elements, Elements);
11374 
11375   LValue Subobject = This;
11376   Subobject.addArray(Info, E, CAT);
11377 
11378   bool Success = true;
11379   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
11380     // C++ [class.temporary]/5
11381     // There are four contexts in which temporaries are destroyed at a different
11382     // point than the end of the full-expression. [...] The second context is
11383     // when a copy constructor is called to copy an element of an array while
11384     // the entire array is copied [...]. In either case, if the constructor has
11385     // one or more default arguments, the destruction of every temporary created
11386     // in a default argument is sequenced before the construction of the next
11387     // array element, if any.
11388     FullExpressionRAII Scope(Info);
11389 
11390     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
11391                          Info, Subobject, E->getSubExpr()) ||
11392         !HandleLValueArrayAdjustment(Info, E, Subobject,
11393                                      CAT->getElementType(), 1)) {
11394       if (!Info.noteFailure())
11395         return false;
11396       Success = false;
11397     }
11398 
11399     // Make sure we run the destructors too.
11400     Scope.destroy();
11401   }
11402 
11403   return Success;
11404 }
11405 
11406 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
11407   return VisitCXXConstructExpr(E, This, &Result, E->getType());
11408 }
11409 
11410 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
11411                                                const LValue &Subobject,
11412                                                APValue *Value,
11413                                                QualType Type) {
11414   bool HadZeroInit = Value->hasValue();
11415 
11416   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
11417     unsigned FinalSize = CAT->getZExtSize();
11418 
11419     // Preserve the array filler if we had prior zero-initialization.
11420     APValue Filler =
11421       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
11422                                              : APValue();
11423 
11424     *Value = APValue(APValue::UninitArray(), 0, FinalSize);
11425     if (FinalSize == 0)
11426       return true;
11427 
11428     bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
11429         Info, E->getExprLoc(), E->getConstructor(),
11430         E->requiresZeroInitialization());
11431     LValue ArrayElt = Subobject;
11432     ArrayElt.addArray(Info, E, CAT);
11433     // We do the whole initialization in two passes, first for just one element,
11434     // then for the whole array. It's possible we may find out we can't do const
11435     // init in the first pass, in which case we avoid allocating a potentially
11436     // large array. We don't do more passes because expanding array requires
11437     // copying the data, which is wasteful.
11438     for (const unsigned N : {1u, FinalSize}) {
11439       unsigned OldElts = Value->getArrayInitializedElts();
11440       if (OldElts == N)
11441         break;
11442 
11443       // Expand the array to appropriate size.
11444       APValue NewValue(APValue::UninitArray(), N, FinalSize);
11445       for (unsigned I = 0; I < OldElts; ++I)
11446         NewValue.getArrayInitializedElt(I).swap(
11447             Value->getArrayInitializedElt(I));
11448       Value->swap(NewValue);
11449 
11450       if (HadZeroInit)
11451         for (unsigned I = OldElts; I < N; ++I)
11452           Value->getArrayInitializedElt(I) = Filler;
11453 
11454       if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
11455         // If we have a trivial constructor, only evaluate it once and copy
11456         // the result into all the array elements.
11457         APValue &FirstResult = Value->getArrayInitializedElt(0);
11458         for (unsigned I = OldElts; I < FinalSize; ++I)
11459           Value->getArrayInitializedElt(I) = FirstResult;
11460       } else {
11461         for (unsigned I = OldElts; I < N; ++I) {
11462           if (!VisitCXXConstructExpr(E, ArrayElt,
11463                                      &Value->getArrayInitializedElt(I),
11464                                      CAT->getElementType()) ||
11465               !HandleLValueArrayAdjustment(Info, E, ArrayElt,
11466                                            CAT->getElementType(), 1))
11467             return false;
11468           // When checking for const initilization any diagnostic is considered
11469           // an error.
11470           if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
11471               !Info.keepEvaluatingAfterFailure())
11472             return false;
11473         }
11474       }
11475     }
11476 
11477     return true;
11478   }
11479 
11480   if (!Type->isRecordType())
11481     return Error(E);
11482 
11483   return RecordExprEvaluator(Info, Subobject, *Value)
11484              .VisitCXXConstructExpr(E, Type);
11485 }
11486 
11487 bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
11488     const CXXParenListInitExpr *E) {
11489   assert(E->getType()->isConstantArrayType() &&
11490          "Expression result is not a constant array type");
11491 
11492   return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
11493                                          E->getArrayFiller());
11494 }
11495 
11496 //===----------------------------------------------------------------------===//
11497 // Integer Evaluation
11498 //
11499 // As a GNU extension, we support casting pointers to sufficiently-wide integer
11500 // types and back in constant folding. Integer values are thus represented
11501 // either as an integer-valued APValue, or as an lvalue-valued APValue.
11502 //===----------------------------------------------------------------------===//
11503 
11504 namespace {
11505 class IntExprEvaluator
11506         : public ExprEvaluatorBase<IntExprEvaluator> {
11507   APValue &Result;
11508 public:
11509   IntExprEvaluator(EvalInfo &info, APValue &result)
11510       : ExprEvaluatorBaseTy(info), Result(result) {}
11511 
11512   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
11513     assert(E->getType()->isIntegralOrEnumerationType() &&
11514            "Invalid evaluation result.");
11515     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
11516            "Invalid evaluation result.");
11517     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11518            "Invalid evaluation result.");
11519     Result = APValue(SI);
11520     return true;
11521   }
11522   bool Success(const llvm::APSInt &SI, const Expr *E) {
11523     return Success(SI, E, Result);
11524   }
11525 
11526   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
11527     assert(E->getType()->isIntegralOrEnumerationType() &&
11528            "Invalid evaluation result.");
11529     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11530            "Invalid evaluation result.");
11531     Result = APValue(APSInt(I));
11532     Result.getInt().setIsUnsigned(
11533                             E->getType()->isUnsignedIntegerOrEnumerationType());
11534     return true;
11535   }
11536   bool Success(const llvm::APInt &I, const Expr *E) {
11537     return Success(I, E, Result);
11538   }
11539 
11540   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11541     assert(E->getType()->isIntegralOrEnumerationType() &&
11542            "Invalid evaluation result.");
11543     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
11544     return true;
11545   }
11546   bool Success(uint64_t Value, const Expr *E) {
11547     return Success(Value, E, Result);
11548   }
11549 
11550   bool Success(CharUnits Size, const Expr *E) {
11551     return Success(Size.getQuantity(), E);
11552   }
11553 
11554   bool Success(const APValue &V, const Expr *E) {
11555     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
11556       Result = V;
11557       return true;
11558     }
11559     return Success(V.getInt(), E);
11560   }
11561 
11562   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
11563 
11564   //===--------------------------------------------------------------------===//
11565   //                            Visitor Methods
11566   //===--------------------------------------------------------------------===//
11567 
11568   bool VisitIntegerLiteral(const IntegerLiteral *E) {
11569     return Success(E->getValue(), E);
11570   }
11571   bool VisitCharacterLiteral(const CharacterLiteral *E) {
11572     return Success(E->getValue(), E);
11573   }
11574 
11575   bool CheckReferencedDecl(const Expr *E, const Decl *D);
11576   bool VisitDeclRefExpr(const DeclRefExpr *E) {
11577     if (CheckReferencedDecl(E, E->getDecl()))
11578       return true;
11579 
11580     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
11581   }
11582   bool VisitMemberExpr(const MemberExpr *E) {
11583     if (CheckReferencedDecl(E, E->getMemberDecl())) {
11584       VisitIgnoredBaseExpression(E->getBase());
11585       return true;
11586     }
11587 
11588     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
11589   }
11590 
11591   bool VisitCallExpr(const CallExpr *E);
11592   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
11593   bool VisitBinaryOperator(const BinaryOperator *E);
11594   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
11595   bool VisitUnaryOperator(const UnaryOperator *E);
11596 
11597   bool VisitCastExpr(const CastExpr* E);
11598   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
11599 
11600   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
11601     return Success(E->getValue(), E);
11602   }
11603 
11604   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
11605     return Success(E->getValue(), E);
11606   }
11607 
11608   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
11609     if (Info.ArrayInitIndex == uint64_t(-1)) {
11610       // We were asked to evaluate this subexpression independent of the
11611       // enclosing ArrayInitLoopExpr. We can't do that.
11612       Info.FFDiag(E);
11613       return false;
11614     }
11615     return Success(Info.ArrayInitIndex, E);
11616   }
11617 
11618   // Note, GNU defines __null as an integer, not a pointer.
11619   bool VisitGNUNullExpr(const GNUNullExpr *E) {
11620     return ZeroInitialization(E);
11621   }
11622 
11623   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11624     return Success(E->getValue(), E);
11625   }
11626 
11627   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11628     return Success(E->getValue(), E);
11629   }
11630 
11631   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11632     return Success(E->getValue(), E);
11633   }
11634 
11635   bool VisitUnaryReal(const UnaryOperator *E);
11636   bool VisitUnaryImag(const UnaryOperator *E);
11637 
11638   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11639   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11640   bool VisitSourceLocExpr(const SourceLocExpr *E);
11641   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11642   bool VisitRequiresExpr(const RequiresExpr *E);
11643   // FIXME: Missing: array subscript of vector, member of vector
11644 };
11645 
11646 class FixedPointExprEvaluator
11647     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11648   APValue &Result;
11649 
11650  public:
11651   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11652       : ExprEvaluatorBaseTy(info), Result(result) {}
11653 
11654   bool Success(const llvm::APInt &I, const Expr *E) {
11655     return Success(
11656         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11657   }
11658 
11659   bool Success(uint64_t Value, const Expr *E) {
11660     return Success(
11661         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11662   }
11663 
11664   bool Success(const APValue &V, const Expr *E) {
11665     return Success(V.getFixedPoint(), E);
11666   }
11667 
11668   bool Success(const APFixedPoint &V, const Expr *E) {
11669     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11670     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11671            "Invalid evaluation result.");
11672     Result = APValue(V);
11673     return true;
11674   }
11675 
11676   bool ZeroInitialization(const Expr *E) {
11677     return Success(0, E);
11678   }
11679 
11680   //===--------------------------------------------------------------------===//
11681   //                            Visitor Methods
11682   //===--------------------------------------------------------------------===//
11683 
11684   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11685     return Success(E->getValue(), E);
11686   }
11687 
11688   bool VisitCastExpr(const CastExpr *E);
11689   bool VisitUnaryOperator(const UnaryOperator *E);
11690   bool VisitBinaryOperator(const BinaryOperator *E);
11691 };
11692 } // end anonymous namespace
11693 
11694 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11695 /// produce either the integer value or a pointer.
11696 ///
11697 /// GCC has a heinous extension which folds casts between pointer types and
11698 /// pointer-sized integral types. We support this by allowing the evaluation of
11699 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11700 /// Some simple arithmetic on such values is supported (they are treated much
11701 /// like char*).
11702 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11703                                     EvalInfo &Info) {
11704   assert(!E->isValueDependent());
11705   assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11706   return IntExprEvaluator(Info, Result).Visit(E);
11707 }
11708 
11709 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11710   assert(!E->isValueDependent());
11711   APValue Val;
11712   if (!EvaluateIntegerOrLValue(E, Val, Info))
11713     return false;
11714   if (!Val.isInt()) {
11715     // FIXME: It would be better to produce the diagnostic for casting
11716     //        a pointer to an integer.
11717     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11718     return false;
11719   }
11720   Result = Val.getInt();
11721   return true;
11722 }
11723 
11724 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11725   APValue Evaluated = E->EvaluateInContext(
11726       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11727   return Success(Evaluated, E);
11728 }
11729 
11730 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11731                                EvalInfo &Info) {
11732   assert(!E->isValueDependent());
11733   if (E->getType()->isFixedPointType()) {
11734     APValue Val;
11735     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11736       return false;
11737     if (!Val.isFixedPoint())
11738       return false;
11739 
11740     Result = Val.getFixedPoint();
11741     return true;
11742   }
11743   return false;
11744 }
11745 
11746 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11747                                         EvalInfo &Info) {
11748   assert(!E->isValueDependent());
11749   if (E->getType()->isIntegerType()) {
11750     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11751     APSInt Val;
11752     if (!EvaluateInteger(E, Val, Info))
11753       return false;
11754     Result = APFixedPoint(Val, FXSema);
11755     return true;
11756   } else if (E->getType()->isFixedPointType()) {
11757     return EvaluateFixedPoint(E, Result, Info);
11758   }
11759   return false;
11760 }
11761 
11762 /// Check whether the given declaration can be directly converted to an integral
11763 /// rvalue. If not, no diagnostic is produced; there are other things we can
11764 /// try.
11765 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11766   // Enums are integer constant exprs.
11767   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11768     // Check for signedness/width mismatches between E type and ECD value.
11769     bool SameSign = (ECD->getInitVal().isSigned()
11770                      == E->getType()->isSignedIntegerOrEnumerationType());
11771     bool SameWidth = (ECD->getInitVal().getBitWidth()
11772                       == Info.Ctx.getIntWidth(E->getType()));
11773     if (SameSign && SameWidth)
11774       return Success(ECD->getInitVal(), E);
11775     else {
11776       // Get rid of mismatch (otherwise Success assertions will fail)
11777       // by computing a new value matching the type of E.
11778       llvm::APSInt Val = ECD->getInitVal();
11779       if (!SameSign)
11780         Val.setIsSigned(!ECD->getInitVal().isSigned());
11781       if (!SameWidth)
11782         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11783       return Success(Val, E);
11784     }
11785   }
11786   return false;
11787 }
11788 
11789 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11790 /// as GCC.
11791 GCCTypeClass EvaluateBuiltinClassifyType(QualType T,
11792                                          const LangOptions &LangOpts) {
11793   assert(!T->isDependentType() && "unexpected dependent type");
11794 
11795   QualType CanTy = T.getCanonicalType();
11796 
11797   switch (CanTy->getTypeClass()) {
11798 #define TYPE(ID, BASE)
11799 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11800 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11801 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11802 #include "clang/AST/TypeNodes.inc"
11803   case Type::Auto:
11804   case Type::DeducedTemplateSpecialization:
11805       llvm_unreachable("unexpected non-canonical or dependent type");
11806 
11807   case Type::Builtin:
11808       switch (cast<BuiltinType>(CanTy)->getKind()) {
11809 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11810 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11811     case BuiltinType::ID: return GCCTypeClass::Integer;
11812 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11813     case BuiltinType::ID: return GCCTypeClass::RealFloat;
11814 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11815     case BuiltinType::ID: break;
11816 #include "clang/AST/BuiltinTypes.def"
11817     case BuiltinType::Void:
11818       return GCCTypeClass::Void;
11819 
11820     case BuiltinType::Bool:
11821       return GCCTypeClass::Bool;
11822 
11823     case BuiltinType::Char_U:
11824     case BuiltinType::UChar:
11825     case BuiltinType::WChar_U:
11826     case BuiltinType::Char8:
11827     case BuiltinType::Char16:
11828     case BuiltinType::Char32:
11829     case BuiltinType::UShort:
11830     case BuiltinType::UInt:
11831     case BuiltinType::ULong:
11832     case BuiltinType::ULongLong:
11833     case BuiltinType::UInt128:
11834       return GCCTypeClass::Integer;
11835 
11836     case BuiltinType::UShortAccum:
11837     case BuiltinType::UAccum:
11838     case BuiltinType::ULongAccum:
11839     case BuiltinType::UShortFract:
11840     case BuiltinType::UFract:
11841     case BuiltinType::ULongFract:
11842     case BuiltinType::SatUShortAccum:
11843     case BuiltinType::SatUAccum:
11844     case BuiltinType::SatULongAccum:
11845     case BuiltinType::SatUShortFract:
11846     case BuiltinType::SatUFract:
11847     case BuiltinType::SatULongFract:
11848       return GCCTypeClass::None;
11849 
11850     case BuiltinType::NullPtr:
11851 
11852     case BuiltinType::ObjCId:
11853     case BuiltinType::ObjCClass:
11854     case BuiltinType::ObjCSel:
11855 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11856     case BuiltinType::Id:
11857 #include "clang/Basic/OpenCLImageTypes.def"
11858 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11859     case BuiltinType::Id:
11860 #include "clang/Basic/OpenCLExtensionTypes.def"
11861     case BuiltinType::OCLSampler:
11862     case BuiltinType::OCLEvent:
11863     case BuiltinType::OCLClkEvent:
11864     case BuiltinType::OCLQueue:
11865     case BuiltinType::OCLReserveID:
11866 #define SVE_TYPE(Name, Id, SingletonId) \
11867     case BuiltinType::Id:
11868 #include "clang/Basic/AArch64SVEACLETypes.def"
11869 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11870     case BuiltinType::Id:
11871 #include "clang/Basic/PPCTypes.def"
11872 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11873 #include "clang/Basic/RISCVVTypes.def"
11874 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11875 #include "clang/Basic/WebAssemblyReferenceTypes.def"
11876 #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11877 #include "clang/Basic/AMDGPUTypes.def"
11878       return GCCTypeClass::None;
11879 
11880     case BuiltinType::Dependent:
11881       llvm_unreachable("unexpected dependent type");
11882     };
11883     llvm_unreachable("unexpected placeholder type");
11884 
11885   case Type::Enum:
11886     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11887 
11888   case Type::Pointer:
11889   case Type::ConstantArray:
11890   case Type::VariableArray:
11891   case Type::IncompleteArray:
11892   case Type::FunctionNoProto:
11893   case Type::FunctionProto:
11894   case Type::ArrayParameter:
11895     return GCCTypeClass::Pointer;
11896 
11897   case Type::MemberPointer:
11898     return CanTy->isMemberDataPointerType()
11899                ? GCCTypeClass::PointerToDataMember
11900                : GCCTypeClass::PointerToMemberFunction;
11901 
11902   case Type::Complex:
11903     return GCCTypeClass::Complex;
11904 
11905   case Type::Record:
11906     return CanTy->isUnionType() ? GCCTypeClass::Union
11907                                 : GCCTypeClass::ClassOrStruct;
11908 
11909   case Type::Atomic:
11910     // GCC classifies _Atomic T the same as T.
11911     return EvaluateBuiltinClassifyType(
11912         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11913 
11914   case Type::Vector:
11915   case Type::ExtVector:
11916     return GCCTypeClass::Vector;
11917 
11918   case Type::BlockPointer:
11919   case Type::ConstantMatrix:
11920   case Type::ObjCObject:
11921   case Type::ObjCInterface:
11922   case Type::ObjCObjectPointer:
11923   case Type::Pipe:
11924     // Classify all other types that don't fit into the regular
11925     // classification the same way.
11926     return GCCTypeClass::None;
11927 
11928   case Type::BitInt:
11929     return GCCTypeClass::BitInt;
11930 
11931   case Type::LValueReference:
11932   case Type::RValueReference:
11933     llvm_unreachable("invalid type for expression");
11934   }
11935 
11936   llvm_unreachable("unexpected type class");
11937 }
11938 
11939 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11940 /// as GCC.
11941 static GCCTypeClass
11942 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11943   // If no argument was supplied, default to None. This isn't
11944   // ideal, however it is what gcc does.
11945   if (E->getNumArgs() == 0)
11946     return GCCTypeClass::None;
11947 
11948   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11949   // being an ICE, but still folds it to a constant using the type of the first
11950   // argument.
11951   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11952 }
11953 
11954 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11955 /// __builtin_constant_p when applied to the given pointer.
11956 ///
11957 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11958 /// or it points to the first character of a string literal.
11959 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11960   APValue::LValueBase Base = LV.getLValueBase();
11961   if (Base.isNull()) {
11962     // A null base is acceptable.
11963     return true;
11964   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11965     if (!isa<StringLiteral>(E))
11966       return false;
11967     return LV.getLValueOffset().isZero();
11968   } else if (Base.is<TypeInfoLValue>()) {
11969     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11970     // evaluate to true.
11971     return true;
11972   } else {
11973     // Any other base is not constant enough for GCC.
11974     return false;
11975   }
11976 }
11977 
11978 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11979 /// GCC as we can manage.
11980 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11981   // This evaluation is not permitted to have side-effects, so evaluate it in
11982   // a speculative evaluation context.
11983   SpeculativeEvaluationRAII SpeculativeEval(Info);
11984 
11985   // Constant-folding is always enabled for the operand of __builtin_constant_p
11986   // (even when the enclosing evaluation context otherwise requires a strict
11987   // language-specific constant expression).
11988   FoldConstant Fold(Info, true);
11989 
11990   QualType ArgType = Arg->getType();
11991 
11992   // __builtin_constant_p always has one operand. The rules which gcc follows
11993   // are not precisely documented, but are as follows:
11994   //
11995   //  - If the operand is of integral, floating, complex or enumeration type,
11996   //    and can be folded to a known value of that type, it returns 1.
11997   //  - If the operand can be folded to a pointer to the first character
11998   //    of a string literal (or such a pointer cast to an integral type)
11999   //    or to a null pointer or an integer cast to a pointer, it returns 1.
12000   //
12001   // Otherwise, it returns 0.
12002   //
12003   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
12004   // its support for this did not work prior to GCC 9 and is not yet well
12005   // understood.
12006   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
12007       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
12008       ArgType->isNullPtrType()) {
12009     APValue V;
12010     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
12011       Fold.keepDiagnostics();
12012       return false;
12013     }
12014 
12015     // For a pointer (possibly cast to integer), there are special rules.
12016     if (V.getKind() == APValue::LValue)
12017       return EvaluateBuiltinConstantPForLValue(V);
12018 
12019     // Otherwise, any constant value is good enough.
12020     return V.hasValue();
12021   }
12022 
12023   // Anything else isn't considered to be sufficiently constant.
12024   return false;
12025 }
12026 
12027 /// Retrieves the "underlying object type" of the given expression,
12028 /// as used by __builtin_object_size.
12029 static QualType getObjectType(APValue::LValueBase B) {
12030   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
12031     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
12032       return VD->getType();
12033   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
12034     if (isa<CompoundLiteralExpr>(E))
12035       return E->getType();
12036   } else if (B.is<TypeInfoLValue>()) {
12037     return B.getTypeInfoType();
12038   } else if (B.is<DynamicAllocLValue>()) {
12039     return B.getDynamicAllocType();
12040   }
12041 
12042   return QualType();
12043 }
12044 
12045 /// A more selective version of E->IgnoreParenCasts for
12046 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
12047 /// to change the type of E.
12048 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
12049 ///
12050 /// Always returns an RValue with a pointer representation.
12051 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
12052   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
12053 
12054   const Expr *NoParens = E->IgnoreParens();
12055   const auto *Cast = dyn_cast<CastExpr>(NoParens);
12056   if (Cast == nullptr)
12057     return NoParens;
12058 
12059   // We only conservatively allow a few kinds of casts, because this code is
12060   // inherently a simple solution that seeks to support the common case.
12061   auto CastKind = Cast->getCastKind();
12062   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
12063       CastKind != CK_AddressSpaceConversion)
12064     return NoParens;
12065 
12066   const auto *SubExpr = Cast->getSubExpr();
12067   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
12068     return NoParens;
12069   return ignorePointerCastsAndParens(SubExpr);
12070 }
12071 
12072 /// Checks to see if the given LValue's Designator is at the end of the LValue's
12073 /// record layout. e.g.
12074 ///   struct { struct { int a, b; } fst, snd; } obj;
12075 ///   obj.fst   // no
12076 ///   obj.snd   // yes
12077 ///   obj.fst.a // no
12078 ///   obj.fst.b // no
12079 ///   obj.snd.a // no
12080 ///   obj.snd.b // yes
12081 ///
12082 /// Please note: this function is specialized for how __builtin_object_size
12083 /// views "objects".
12084 ///
12085 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
12086 /// correct result, it will always return true.
12087 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
12088   assert(!LVal.Designator.Invalid);
12089 
12090   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
12091     const RecordDecl *Parent = FD->getParent();
12092     Invalid = Parent->isInvalidDecl();
12093     if (Invalid || Parent->isUnion())
12094       return true;
12095     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
12096     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
12097   };
12098 
12099   auto &Base = LVal.getLValueBase();
12100   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
12101     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
12102       bool Invalid;
12103       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
12104         return Invalid;
12105     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
12106       for (auto *FD : IFD->chain()) {
12107         bool Invalid;
12108         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
12109           return Invalid;
12110       }
12111     }
12112   }
12113 
12114   unsigned I = 0;
12115   QualType BaseType = getType(Base);
12116   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
12117     // If we don't know the array bound, conservatively assume we're looking at
12118     // the final array element.
12119     ++I;
12120     if (BaseType->isIncompleteArrayType())
12121       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
12122     else
12123       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
12124   }
12125 
12126   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
12127     const auto &Entry = LVal.Designator.Entries[I];
12128     if (BaseType->isArrayType()) {
12129       // Because __builtin_object_size treats arrays as objects, we can ignore
12130       // the index iff this is the last array in the Designator.
12131       if (I + 1 == E)
12132         return true;
12133       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
12134       uint64_t Index = Entry.getAsArrayIndex();
12135       if (Index + 1 != CAT->getZExtSize())
12136         return false;
12137       BaseType = CAT->getElementType();
12138     } else if (BaseType->isAnyComplexType()) {
12139       const auto *CT = BaseType->castAs<ComplexType>();
12140       uint64_t Index = Entry.getAsArrayIndex();
12141       if (Index != 1)
12142         return false;
12143       BaseType = CT->getElementType();
12144     } else if (auto *FD = getAsField(Entry)) {
12145       bool Invalid;
12146       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
12147         return Invalid;
12148       BaseType = FD->getType();
12149     } else {
12150       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
12151       return false;
12152     }
12153   }
12154   return true;
12155 }
12156 
12157 /// Tests to see if the LValue has a user-specified designator (that isn't
12158 /// necessarily valid). Note that this always returns 'true' if the LValue has
12159 /// an unsized array as its first designator entry, because there's currently no
12160 /// way to tell if the user typed *foo or foo[0].
12161 static bool refersToCompleteObject(const LValue &LVal) {
12162   if (LVal.Designator.Invalid)
12163     return false;
12164 
12165   if (!LVal.Designator.Entries.empty())
12166     return LVal.Designator.isMostDerivedAnUnsizedArray();
12167 
12168   if (!LVal.InvalidBase)
12169     return true;
12170 
12171   // If `E` is a MemberExpr, then the first part of the designator is hiding in
12172   // the LValueBase.
12173   const auto *E = LVal.Base.dyn_cast<const Expr *>();
12174   return !E || !isa<MemberExpr>(E);
12175 }
12176 
12177 /// Attempts to detect a user writing into a piece of memory that's impossible
12178 /// to figure out the size of by just using types.
12179 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
12180   const SubobjectDesignator &Designator = LVal.Designator;
12181   // Notes:
12182   // - Users can only write off of the end when we have an invalid base. Invalid
12183   //   bases imply we don't know where the memory came from.
12184   // - We used to be a bit more aggressive here; we'd only be conservative if
12185   //   the array at the end was flexible, or if it had 0 or 1 elements. This
12186   //   broke some common standard library extensions (PR30346), but was
12187   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
12188   //   with some sort of list. OTOH, it seems that GCC is always
12189   //   conservative with the last element in structs (if it's an array), so our
12190   //   current behavior is more compatible than an explicit list approach would
12191   //   be.
12192   auto isFlexibleArrayMember = [&] {
12193     using FAMKind = LangOptions::StrictFlexArraysLevelKind;
12194     FAMKind StrictFlexArraysLevel =
12195         Ctx.getLangOpts().getStrictFlexArraysLevel();
12196 
12197     if (Designator.isMostDerivedAnUnsizedArray())
12198       return true;
12199 
12200     if (StrictFlexArraysLevel == FAMKind::Default)
12201       return true;
12202 
12203     if (Designator.getMostDerivedArraySize() == 0 &&
12204         StrictFlexArraysLevel != FAMKind::IncompleteOnly)
12205       return true;
12206 
12207     if (Designator.getMostDerivedArraySize() == 1 &&
12208         StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
12209       return true;
12210 
12211     return false;
12212   };
12213 
12214   return LVal.InvalidBase &&
12215          Designator.Entries.size() == Designator.MostDerivedPathLength &&
12216          Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
12217          isDesignatorAtObjectEnd(Ctx, LVal);
12218 }
12219 
12220 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
12221 /// Fails if the conversion would cause loss of precision.
12222 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
12223                                             CharUnits &Result) {
12224   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
12225   if (Int.ugt(CharUnitsMax))
12226     return false;
12227   Result = CharUnits::fromQuantity(Int.getZExtValue());
12228   return true;
12229 }
12230 
12231 /// If we're evaluating the object size of an instance of a struct that
12232 /// contains a flexible array member, add the size of the initializer.
12233 static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T,
12234                                            const LValue &LV, CharUnits &Size) {
12235   if (!T.isNull() && T->isStructureType() &&
12236       T->getAsStructureType()->getDecl()->hasFlexibleArrayMember())
12237     if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>())
12238       if (const auto *VD = dyn_cast<VarDecl>(V))
12239         if (VD->hasInit())
12240           Size += VD->getFlexibleArrayInitChars(Info.Ctx);
12241 }
12242 
12243 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
12244 /// determine how many bytes exist from the beginning of the object to either
12245 /// the end of the current subobject, or the end of the object itself, depending
12246 /// on what the LValue looks like + the value of Type.
12247 ///
12248 /// If this returns false, the value of Result is undefined.
12249 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
12250                                unsigned Type, const LValue &LVal,
12251                                CharUnits &EndOffset) {
12252   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
12253 
12254   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
12255     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
12256       return false;
12257     return HandleSizeof(Info, ExprLoc, Ty, Result);
12258   };
12259 
12260   // We want to evaluate the size of the entire object. This is a valid fallback
12261   // for when Type=1 and the designator is invalid, because we're asked for an
12262   // upper-bound.
12263   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
12264     // Type=3 wants a lower bound, so we can't fall back to this.
12265     if (Type == 3 && !DetermineForCompleteObject)
12266       return false;
12267 
12268     llvm::APInt APEndOffset;
12269     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
12270         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
12271       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
12272 
12273     if (LVal.InvalidBase)
12274       return false;
12275 
12276     QualType BaseTy = getObjectType(LVal.getLValueBase());
12277     const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset);
12278     addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset);
12279     return Ret;
12280   }
12281 
12282   // We want to evaluate the size of a subobject.
12283   const SubobjectDesignator &Designator = LVal.Designator;
12284 
12285   // The following is a moderately common idiom in C:
12286   //
12287   // struct Foo { int a; char c[1]; };
12288   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
12289   // strcpy(&F->c[0], Bar);
12290   //
12291   // In order to not break too much legacy code, we need to support it.
12292   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
12293     // If we can resolve this to an alloc_size call, we can hand that back,
12294     // because we know for certain how many bytes there are to write to.
12295     llvm::APInt APEndOffset;
12296     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
12297         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
12298       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
12299 
12300     // If we cannot determine the size of the initial allocation, then we can't
12301     // given an accurate upper-bound. However, we are still able to give
12302     // conservative lower-bounds for Type=3.
12303     if (Type == 1)
12304       return false;
12305   }
12306 
12307   CharUnits BytesPerElem;
12308   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
12309     return false;
12310 
12311   // According to the GCC documentation, we want the size of the subobject
12312   // denoted by the pointer. But that's not quite right -- what we actually
12313   // want is the size of the immediately-enclosing array, if there is one.
12314   int64_t ElemsRemaining;
12315   if (Designator.MostDerivedIsArrayElement &&
12316       Designator.Entries.size() == Designator.MostDerivedPathLength) {
12317     uint64_t ArraySize = Designator.getMostDerivedArraySize();
12318     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
12319     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
12320   } else {
12321     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
12322   }
12323 
12324   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
12325   return true;
12326 }
12327 
12328 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
12329 /// returns true and stores the result in @p Size.
12330 ///
12331 /// If @p WasError is non-null, this will report whether the failure to evaluate
12332 /// is to be treated as an Error in IntExprEvaluator.
12333 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
12334                                          EvalInfo &Info, uint64_t &Size) {
12335   // Determine the denoted object.
12336   LValue LVal;
12337   {
12338     // The operand of __builtin_object_size is never evaluated for side-effects.
12339     // If there are any, but we can determine the pointed-to object anyway, then
12340     // ignore the side-effects.
12341     SpeculativeEvaluationRAII SpeculativeEval(Info);
12342     IgnoreSideEffectsRAII Fold(Info);
12343 
12344     if (E->isGLValue()) {
12345       // It's possible for us to be given GLValues if we're called via
12346       // Expr::tryEvaluateObjectSize.
12347       APValue RVal;
12348       if (!EvaluateAsRValue(Info, E, RVal))
12349         return false;
12350       LVal.setFrom(Info.Ctx, RVal);
12351     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
12352                                 /*InvalidBaseOK=*/true))
12353       return false;
12354   }
12355 
12356   // If we point to before the start of the object, there are no accessible
12357   // bytes.
12358   if (LVal.getLValueOffset().isNegative()) {
12359     Size = 0;
12360     return true;
12361   }
12362 
12363   CharUnits EndOffset;
12364   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
12365     return false;
12366 
12367   // If we've fallen outside of the end offset, just pretend there's nothing to
12368   // write to/read from.
12369   if (EndOffset <= LVal.getLValueOffset())
12370     Size = 0;
12371   else
12372     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
12373   return true;
12374 }
12375 
12376 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
12377   if (!IsConstantEvaluatedBuiltinCall(E))
12378     return ExprEvaluatorBaseTy::VisitCallExpr(E);
12379   return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
12380 }
12381 
12382 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
12383                                      APValue &Val, APSInt &Alignment) {
12384   QualType SrcTy = E->getArg(0)->getType();
12385   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
12386     return false;
12387   // Even though we are evaluating integer expressions we could get a pointer
12388   // argument for the __builtin_is_aligned() case.
12389   if (SrcTy->isPointerType()) {
12390     LValue Ptr;
12391     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
12392       return false;
12393     Ptr.moveInto(Val);
12394   } else if (!SrcTy->isIntegralOrEnumerationType()) {
12395     Info.FFDiag(E->getArg(0));
12396     return false;
12397   } else {
12398     APSInt SrcInt;
12399     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
12400       return false;
12401     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
12402            "Bit widths must be the same");
12403     Val = APValue(SrcInt);
12404   }
12405   assert(Val.hasValue());
12406   return true;
12407 }
12408 
12409 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
12410                                             unsigned BuiltinOp) {
12411   switch (BuiltinOp) {
12412   default:
12413     return false;
12414 
12415   case Builtin::BI__builtin_dynamic_object_size:
12416   case Builtin::BI__builtin_object_size: {
12417     // The type was checked when we built the expression.
12418     unsigned Type =
12419         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12420     assert(Type <= 3 && "unexpected type");
12421 
12422     uint64_t Size;
12423     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
12424       return Success(Size, E);
12425 
12426     if (E->getArg(0)->HasSideEffects(Info.Ctx))
12427       return Success((Type & 2) ? 0 : -1, E);
12428 
12429     // Expression had no side effects, but we couldn't statically determine the
12430     // size of the referenced object.
12431     switch (Info.EvalMode) {
12432     case EvalInfo::EM_ConstantExpression:
12433     case EvalInfo::EM_ConstantFold:
12434     case EvalInfo::EM_IgnoreSideEffects:
12435       // Leave it to IR generation.
12436       return Error(E);
12437     case EvalInfo::EM_ConstantExpressionUnevaluated:
12438       // Reduce it to a constant now.
12439       return Success((Type & 2) ? 0 : -1, E);
12440     }
12441 
12442     llvm_unreachable("unexpected EvalMode");
12443   }
12444 
12445   case Builtin::BI__builtin_os_log_format_buffer_size: {
12446     analyze_os_log::OSLogBufferLayout Layout;
12447     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
12448     return Success(Layout.size().getQuantity(), E);
12449   }
12450 
12451   case Builtin::BI__builtin_is_aligned: {
12452     APValue Src;
12453     APSInt Alignment;
12454     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12455       return false;
12456     if (Src.isLValue()) {
12457       // If we evaluated a pointer, check the minimum known alignment.
12458       LValue Ptr;
12459       Ptr.setFrom(Info.Ctx, Src);
12460       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
12461       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
12462       // We can return true if the known alignment at the computed offset is
12463       // greater than the requested alignment.
12464       assert(PtrAlign.isPowerOfTwo());
12465       assert(Alignment.isPowerOf2());
12466       if (PtrAlign.getQuantity() >= Alignment)
12467         return Success(1, E);
12468       // If the alignment is not known to be sufficient, some cases could still
12469       // be aligned at run time. However, if the requested alignment is less or
12470       // equal to the base alignment and the offset is not aligned, we know that
12471       // the run-time value can never be aligned.
12472       if (BaseAlignment.getQuantity() >= Alignment &&
12473           PtrAlign.getQuantity() < Alignment)
12474         return Success(0, E);
12475       // Otherwise we can't infer whether the value is sufficiently aligned.
12476       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
12477       //  in cases where we can't fully evaluate the pointer.
12478       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
12479           << Alignment;
12480       return false;
12481     }
12482     assert(Src.isInt());
12483     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
12484   }
12485   case Builtin::BI__builtin_align_up: {
12486     APValue Src;
12487     APSInt Alignment;
12488     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12489       return false;
12490     if (!Src.isInt())
12491       return Error(E);
12492     APSInt AlignedVal =
12493         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
12494                Src.getInt().isUnsigned());
12495     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12496     return Success(AlignedVal, E);
12497   }
12498   case Builtin::BI__builtin_align_down: {
12499     APValue Src;
12500     APSInt Alignment;
12501     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12502       return false;
12503     if (!Src.isInt())
12504       return Error(E);
12505     APSInt AlignedVal =
12506         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
12507     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12508     return Success(AlignedVal, E);
12509   }
12510 
12511   case Builtin::BI__builtin_bitreverse8:
12512   case Builtin::BI__builtin_bitreverse16:
12513   case Builtin::BI__builtin_bitreverse32:
12514   case Builtin::BI__builtin_bitreverse64: {
12515     APSInt Val;
12516     if (!EvaluateInteger(E->getArg(0), Val, Info))
12517       return false;
12518 
12519     return Success(Val.reverseBits(), E);
12520   }
12521 
12522   case Builtin::BI__builtin_bswap16:
12523   case Builtin::BI__builtin_bswap32:
12524   case Builtin::BI__builtin_bswap64: {
12525     APSInt Val;
12526     if (!EvaluateInteger(E->getArg(0), Val, Info))
12527       return false;
12528 
12529     return Success(Val.byteSwap(), E);
12530   }
12531 
12532   case Builtin::BI__builtin_classify_type:
12533     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
12534 
12535   case Builtin::BI__builtin_clrsb:
12536   case Builtin::BI__builtin_clrsbl:
12537   case Builtin::BI__builtin_clrsbll: {
12538     APSInt Val;
12539     if (!EvaluateInteger(E->getArg(0), Val, Info))
12540       return false;
12541 
12542     return Success(Val.getBitWidth() - Val.getSignificantBits(), E);
12543   }
12544 
12545   case Builtin::BI__builtin_clz:
12546   case Builtin::BI__builtin_clzl:
12547   case Builtin::BI__builtin_clzll:
12548   case Builtin::BI__builtin_clzs:
12549   case Builtin::BI__builtin_clzg:
12550   case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes
12551   case Builtin::BI__lzcnt:
12552   case Builtin::BI__lzcnt64: {
12553     APSInt Val;
12554     if (!EvaluateInteger(E->getArg(0), Val, Info))
12555       return false;
12556 
12557     std::optional<APSInt> Fallback;
12558     if (BuiltinOp == Builtin::BI__builtin_clzg && E->getNumArgs() > 1) {
12559       APSInt FallbackTemp;
12560       if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info))
12561         return false;
12562       Fallback = FallbackTemp;
12563     }
12564 
12565     if (!Val) {
12566       if (Fallback)
12567         return Success(*Fallback, E);
12568 
12569       // When the argument is 0, the result of GCC builtins is undefined,
12570       // whereas for Microsoft intrinsics, the result is the bit-width of the
12571       // argument.
12572       bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 &&
12573                              BuiltinOp != Builtin::BI__lzcnt &&
12574                              BuiltinOp != Builtin::BI__lzcnt64;
12575 
12576       if (ZeroIsUndefined)
12577         return Error(E);
12578     }
12579 
12580     return Success(Val.countl_zero(), E);
12581   }
12582 
12583   case Builtin::BI__builtin_constant_p: {
12584     const Expr *Arg = E->getArg(0);
12585     if (EvaluateBuiltinConstantP(Info, Arg))
12586       return Success(true, E);
12587     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
12588       // Outside a constant context, eagerly evaluate to false in the presence
12589       // of side-effects in order to avoid -Wunsequenced false-positives in
12590       // a branch on __builtin_constant_p(expr).
12591       return Success(false, E);
12592     }
12593     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12594     return false;
12595   }
12596 
12597   case Builtin::BI__builtin_is_constant_evaluated: {
12598     const auto *Callee = Info.CurrentCall->getCallee();
12599     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
12600         (Info.CallStackDepth == 1 ||
12601          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
12602           Callee->getIdentifier() &&
12603           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
12604       // FIXME: Find a better way to avoid duplicated diagnostics.
12605       if (Info.EvalStatus.Diag)
12606         Info.report((Info.CallStackDepth == 1)
12607                         ? E->getExprLoc()
12608                         : Info.CurrentCall->getCallRange().getBegin(),
12609                     diag::warn_is_constant_evaluated_always_true_constexpr)
12610             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
12611                                          : "std::is_constant_evaluated");
12612     }
12613 
12614     return Success(Info.InConstantContext, E);
12615   }
12616 
12617   case Builtin::BI__builtin_ctz:
12618   case Builtin::BI__builtin_ctzl:
12619   case Builtin::BI__builtin_ctzll:
12620   case Builtin::BI__builtin_ctzs:
12621   case Builtin::BI__builtin_ctzg: {
12622     APSInt Val;
12623     if (!EvaluateInteger(E->getArg(0), Val, Info))
12624       return false;
12625 
12626     std::optional<APSInt> Fallback;
12627     if (BuiltinOp == Builtin::BI__builtin_ctzg && E->getNumArgs() > 1) {
12628       APSInt FallbackTemp;
12629       if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info))
12630         return false;
12631       Fallback = FallbackTemp;
12632     }
12633 
12634     if (!Val) {
12635       if (Fallback)
12636         return Success(*Fallback, E);
12637 
12638       return Error(E);
12639     }
12640 
12641     return Success(Val.countr_zero(), E);
12642   }
12643 
12644   case Builtin::BI__builtin_eh_return_data_regno: {
12645     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12646     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
12647     return Success(Operand, E);
12648   }
12649 
12650   case Builtin::BI__builtin_expect:
12651   case Builtin::BI__builtin_expect_with_probability:
12652     return Visit(E->getArg(0));
12653 
12654   case Builtin::BI__builtin_ptrauth_string_discriminator: {
12655     const auto *Literal =
12656         cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts());
12657     uint64_t Result = getPointerAuthStableSipHash(Literal->getString());
12658     return Success(Result, E);
12659   }
12660 
12661   case Builtin::BI__builtin_ffs:
12662   case Builtin::BI__builtin_ffsl:
12663   case Builtin::BI__builtin_ffsll: {
12664     APSInt Val;
12665     if (!EvaluateInteger(E->getArg(0), Val, Info))
12666       return false;
12667 
12668     unsigned N = Val.countr_zero();
12669     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12670   }
12671 
12672   case Builtin::BI__builtin_fpclassify: {
12673     APFloat Val(0.0);
12674     if (!EvaluateFloat(E->getArg(5), Val, Info))
12675       return false;
12676     unsigned Arg;
12677     switch (Val.getCategory()) {
12678     case APFloat::fcNaN: Arg = 0; break;
12679     case APFloat::fcInfinity: Arg = 1; break;
12680     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12681     case APFloat::fcZero: Arg = 4; break;
12682     }
12683     return Visit(E->getArg(Arg));
12684   }
12685 
12686   case Builtin::BI__builtin_isinf_sign: {
12687     APFloat Val(0.0);
12688     return EvaluateFloat(E->getArg(0), Val, Info) &&
12689            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12690   }
12691 
12692   case Builtin::BI__builtin_isinf: {
12693     APFloat Val(0.0);
12694     return EvaluateFloat(E->getArg(0), Val, Info) &&
12695            Success(Val.isInfinity() ? 1 : 0, E);
12696   }
12697 
12698   case Builtin::BI__builtin_isfinite: {
12699     APFloat Val(0.0);
12700     return EvaluateFloat(E->getArg(0), Val, Info) &&
12701            Success(Val.isFinite() ? 1 : 0, E);
12702   }
12703 
12704   case Builtin::BI__builtin_isnan: {
12705     APFloat Val(0.0);
12706     return EvaluateFloat(E->getArg(0), Val, Info) &&
12707            Success(Val.isNaN() ? 1 : 0, E);
12708   }
12709 
12710   case Builtin::BI__builtin_isnormal: {
12711     APFloat Val(0.0);
12712     return EvaluateFloat(E->getArg(0), Val, Info) &&
12713            Success(Val.isNormal() ? 1 : 0, E);
12714   }
12715 
12716   case Builtin::BI__builtin_issubnormal: {
12717     APFloat Val(0.0);
12718     return EvaluateFloat(E->getArg(0), Val, Info) &&
12719            Success(Val.isDenormal() ? 1 : 0, E);
12720   }
12721 
12722   case Builtin::BI__builtin_iszero: {
12723     APFloat Val(0.0);
12724     return EvaluateFloat(E->getArg(0), Val, Info) &&
12725            Success(Val.isZero() ? 1 : 0, E);
12726   }
12727 
12728   case Builtin::BI__builtin_issignaling: {
12729     APFloat Val(0.0);
12730     return EvaluateFloat(E->getArg(0), Val, Info) &&
12731            Success(Val.isSignaling() ? 1 : 0, E);
12732   }
12733 
12734   case Builtin::BI__builtin_isfpclass: {
12735     APSInt MaskVal;
12736     if (!EvaluateInteger(E->getArg(1), MaskVal, Info))
12737       return false;
12738     unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue());
12739     APFloat Val(0.0);
12740     return EvaluateFloat(E->getArg(0), Val, Info) &&
12741            Success((Val.classify() & Test) ? 1 : 0, E);
12742   }
12743 
12744   case Builtin::BI__builtin_parity:
12745   case Builtin::BI__builtin_parityl:
12746   case Builtin::BI__builtin_parityll: {
12747     APSInt Val;
12748     if (!EvaluateInteger(E->getArg(0), Val, Info))
12749       return false;
12750 
12751     return Success(Val.popcount() % 2, E);
12752   }
12753 
12754   case Builtin::BI__builtin_popcount:
12755   case Builtin::BI__builtin_popcountl:
12756   case Builtin::BI__builtin_popcountll:
12757   case Builtin::BI__builtin_popcountg:
12758   case Builtin::BI__popcnt16: // Microsoft variants of popcount
12759   case Builtin::BI__popcnt:
12760   case Builtin::BI__popcnt64: {
12761     APSInt Val;
12762     if (!EvaluateInteger(E->getArg(0), Val, Info))
12763       return false;
12764 
12765     return Success(Val.popcount(), E);
12766   }
12767 
12768   case Builtin::BI__builtin_rotateleft8:
12769   case Builtin::BI__builtin_rotateleft16:
12770   case Builtin::BI__builtin_rotateleft32:
12771   case Builtin::BI__builtin_rotateleft64:
12772   case Builtin::BI_rotl8: // Microsoft variants of rotate right
12773   case Builtin::BI_rotl16:
12774   case Builtin::BI_rotl:
12775   case Builtin::BI_lrotl:
12776   case Builtin::BI_rotl64: {
12777     APSInt Val, Amt;
12778     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12779         !EvaluateInteger(E->getArg(1), Amt, Info))
12780       return false;
12781 
12782     return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
12783   }
12784 
12785   case Builtin::BI__builtin_rotateright8:
12786   case Builtin::BI__builtin_rotateright16:
12787   case Builtin::BI__builtin_rotateright32:
12788   case Builtin::BI__builtin_rotateright64:
12789   case Builtin::BI_rotr8: // Microsoft variants of rotate right
12790   case Builtin::BI_rotr16:
12791   case Builtin::BI_rotr:
12792   case Builtin::BI_lrotr:
12793   case Builtin::BI_rotr64: {
12794     APSInt Val, Amt;
12795     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12796         !EvaluateInteger(E->getArg(1), Amt, Info))
12797       return false;
12798 
12799     return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
12800   }
12801 
12802   case Builtin::BIstrlen:
12803   case Builtin::BIwcslen:
12804     // A call to strlen is not a constant expression.
12805     if (Info.getLangOpts().CPlusPlus11)
12806       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12807           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12808           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12809     else
12810       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12811     [[fallthrough]];
12812   case Builtin::BI__builtin_strlen:
12813   case Builtin::BI__builtin_wcslen: {
12814     // As an extension, we support __builtin_strlen() as a constant expression,
12815     // and support folding strlen() to a constant.
12816     uint64_t StrLen;
12817     if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
12818       return Success(StrLen, E);
12819     return false;
12820   }
12821 
12822   case Builtin::BIstrcmp:
12823   case Builtin::BIwcscmp:
12824   case Builtin::BIstrncmp:
12825   case Builtin::BIwcsncmp:
12826   case Builtin::BImemcmp:
12827   case Builtin::BIbcmp:
12828   case Builtin::BIwmemcmp:
12829     // A call to strlen is not a constant expression.
12830     if (Info.getLangOpts().CPlusPlus11)
12831       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12832           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12833           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12834     else
12835       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12836     [[fallthrough]];
12837   case Builtin::BI__builtin_strcmp:
12838   case Builtin::BI__builtin_wcscmp:
12839   case Builtin::BI__builtin_strncmp:
12840   case Builtin::BI__builtin_wcsncmp:
12841   case Builtin::BI__builtin_memcmp:
12842   case Builtin::BI__builtin_bcmp:
12843   case Builtin::BI__builtin_wmemcmp: {
12844     LValue String1, String2;
12845     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12846         !EvaluatePointer(E->getArg(1), String2, Info))
12847       return false;
12848 
12849     uint64_t MaxLength = uint64_t(-1);
12850     if (BuiltinOp != Builtin::BIstrcmp &&
12851         BuiltinOp != Builtin::BIwcscmp &&
12852         BuiltinOp != Builtin::BI__builtin_strcmp &&
12853         BuiltinOp != Builtin::BI__builtin_wcscmp) {
12854       APSInt N;
12855       if (!EvaluateInteger(E->getArg(2), N, Info))
12856         return false;
12857       MaxLength = N.getZExtValue();
12858     }
12859 
12860     // Empty substrings compare equal by definition.
12861     if (MaxLength == 0u)
12862       return Success(0, E);
12863 
12864     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12865         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12866         String1.Designator.Invalid || String2.Designator.Invalid)
12867       return false;
12868 
12869     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12870     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12871 
12872     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12873                      BuiltinOp == Builtin::BIbcmp ||
12874                      BuiltinOp == Builtin::BI__builtin_memcmp ||
12875                      BuiltinOp == Builtin::BI__builtin_bcmp;
12876 
12877     assert(IsRawByte ||
12878            (Info.Ctx.hasSameUnqualifiedType(
12879                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12880             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12881 
12882     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12883     // 'char8_t', but no other types.
12884     if (IsRawByte &&
12885         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12886       // FIXME: Consider using our bit_cast implementation to support this.
12887       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12888           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
12889           << CharTy1 << CharTy2;
12890       return false;
12891     }
12892 
12893     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12894       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12895              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12896              Char1.isInt() && Char2.isInt();
12897     };
12898     const auto &AdvanceElems = [&] {
12899       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12900              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12901     };
12902 
12903     bool StopAtNull =
12904         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12905          BuiltinOp != Builtin::BIwmemcmp &&
12906          BuiltinOp != Builtin::BI__builtin_memcmp &&
12907          BuiltinOp != Builtin::BI__builtin_bcmp &&
12908          BuiltinOp != Builtin::BI__builtin_wmemcmp);
12909     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12910                   BuiltinOp == Builtin::BIwcsncmp ||
12911                   BuiltinOp == Builtin::BIwmemcmp ||
12912                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
12913                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12914                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
12915 
12916     for (; MaxLength; --MaxLength) {
12917       APValue Char1, Char2;
12918       if (!ReadCurElems(Char1, Char2))
12919         return false;
12920       if (Char1.getInt().ne(Char2.getInt())) {
12921         if (IsWide) // wmemcmp compares with wchar_t signedness.
12922           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12923         // memcmp always compares unsigned chars.
12924         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12925       }
12926       if (StopAtNull && !Char1.getInt())
12927         return Success(0, E);
12928       assert(!(StopAtNull && !Char2.getInt()));
12929       if (!AdvanceElems())
12930         return false;
12931     }
12932     // We hit the strncmp / memcmp limit.
12933     return Success(0, E);
12934   }
12935 
12936   case Builtin::BI__atomic_always_lock_free:
12937   case Builtin::BI__atomic_is_lock_free:
12938   case Builtin::BI__c11_atomic_is_lock_free: {
12939     APSInt SizeVal;
12940     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12941       return false;
12942 
12943     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12944     // of two less than or equal to the maximum inline atomic width, we know it
12945     // is lock-free.  If the size isn't a power of two, or greater than the
12946     // maximum alignment where we promote atomics, we know it is not lock-free
12947     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
12948     // the answer can only be determined at runtime; for example, 16-byte
12949     // atomics have lock-free implementations on some, but not all,
12950     // x86-64 processors.
12951 
12952     // Check power-of-two.
12953     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12954     if (Size.isPowerOfTwo()) {
12955       // Check against inlining width.
12956       unsigned InlineWidthBits =
12957           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12958       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12959         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12960             Size == CharUnits::One())
12961           return Success(1, E);
12962 
12963         // If the pointer argument can be evaluated to a compile-time constant
12964         // integer (or nullptr), check if that value is appropriately aligned.
12965         const Expr *PtrArg = E->getArg(1);
12966         Expr::EvalResult ExprResult;
12967         APSInt IntResult;
12968         if (PtrArg->EvaluateAsRValue(ExprResult, Info.Ctx) &&
12969             ExprResult.Val.toIntegralConstant(IntResult, PtrArg->getType(),
12970                                               Info.Ctx) &&
12971             IntResult.isAligned(Size.getAsAlign()))
12972           return Success(1, E);
12973 
12974         // Otherwise, check if the type's alignment against Size.
12975         if (auto *ICE = dyn_cast<ImplicitCastExpr>(PtrArg)) {
12976           // Drop the potential implicit-cast to 'const volatile void*', getting
12977           // the underlying type.
12978           if (ICE->getCastKind() == CK_BitCast)
12979             PtrArg = ICE->getSubExpr();
12980         }
12981 
12982         if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) {
12983           QualType PointeeType = PtrTy->getPointeeType();
12984           if (!PointeeType->isIncompleteType() &&
12985               Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12986             // OK, we will inline operations on this object.
12987             return Success(1, E);
12988           }
12989         }
12990       }
12991     }
12992 
12993     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12994         Success(0, E) : Error(E);
12995   }
12996   case Builtin::BI__builtin_addcb:
12997   case Builtin::BI__builtin_addcs:
12998   case Builtin::BI__builtin_addc:
12999   case Builtin::BI__builtin_addcl:
13000   case Builtin::BI__builtin_addcll:
13001   case Builtin::BI__builtin_subcb:
13002   case Builtin::BI__builtin_subcs:
13003   case Builtin::BI__builtin_subc:
13004   case Builtin::BI__builtin_subcl:
13005   case Builtin::BI__builtin_subcll: {
13006     LValue CarryOutLValue;
13007     APSInt LHS, RHS, CarryIn, CarryOut, Result;
13008     QualType ResultType = E->getArg(0)->getType();
13009     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
13010         !EvaluateInteger(E->getArg(1), RHS, Info) ||
13011         !EvaluateInteger(E->getArg(2), CarryIn, Info) ||
13012         !EvaluatePointer(E->getArg(3), CarryOutLValue, Info))
13013       return false;
13014     // Copy the number of bits and sign.
13015     Result = LHS;
13016     CarryOut = LHS;
13017 
13018     bool FirstOverflowed = false;
13019     bool SecondOverflowed = false;
13020     switch (BuiltinOp) {
13021     default:
13022       llvm_unreachable("Invalid value for BuiltinOp");
13023     case Builtin::BI__builtin_addcb:
13024     case Builtin::BI__builtin_addcs:
13025     case Builtin::BI__builtin_addc:
13026     case Builtin::BI__builtin_addcl:
13027     case Builtin::BI__builtin_addcll:
13028       Result =
13029           LHS.uadd_ov(RHS, FirstOverflowed).uadd_ov(CarryIn, SecondOverflowed);
13030       break;
13031     case Builtin::BI__builtin_subcb:
13032     case Builtin::BI__builtin_subcs:
13033     case Builtin::BI__builtin_subc:
13034     case Builtin::BI__builtin_subcl:
13035     case Builtin::BI__builtin_subcll:
13036       Result =
13037           LHS.usub_ov(RHS, FirstOverflowed).usub_ov(CarryIn, SecondOverflowed);
13038       break;
13039     }
13040 
13041     // It is possible for both overflows to happen but CGBuiltin uses an OR so
13042     // this is consistent.
13043     CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed);
13044     APValue APV{CarryOut};
13045     if (!handleAssignment(Info, E, CarryOutLValue, ResultType, APV))
13046       return false;
13047     return Success(Result, E);
13048   }
13049   case Builtin::BI__builtin_add_overflow:
13050   case Builtin::BI__builtin_sub_overflow:
13051   case Builtin::BI__builtin_mul_overflow:
13052   case Builtin::BI__builtin_sadd_overflow:
13053   case Builtin::BI__builtin_uadd_overflow:
13054   case Builtin::BI__builtin_uaddl_overflow:
13055   case Builtin::BI__builtin_uaddll_overflow:
13056   case Builtin::BI__builtin_usub_overflow:
13057   case Builtin::BI__builtin_usubl_overflow:
13058   case Builtin::BI__builtin_usubll_overflow:
13059   case Builtin::BI__builtin_umul_overflow:
13060   case Builtin::BI__builtin_umull_overflow:
13061   case Builtin::BI__builtin_umulll_overflow:
13062   case Builtin::BI__builtin_saddl_overflow:
13063   case Builtin::BI__builtin_saddll_overflow:
13064   case Builtin::BI__builtin_ssub_overflow:
13065   case Builtin::BI__builtin_ssubl_overflow:
13066   case Builtin::BI__builtin_ssubll_overflow:
13067   case Builtin::BI__builtin_smul_overflow:
13068   case Builtin::BI__builtin_smull_overflow:
13069   case Builtin::BI__builtin_smulll_overflow: {
13070     LValue ResultLValue;
13071     APSInt LHS, RHS;
13072 
13073     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
13074     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
13075         !EvaluateInteger(E->getArg(1), RHS, Info) ||
13076         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
13077       return false;
13078 
13079     APSInt Result;
13080     bool DidOverflow = false;
13081 
13082     // If the types don't have to match, enlarge all 3 to the largest of them.
13083     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
13084         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
13085         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
13086       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
13087                       ResultType->isSignedIntegerOrEnumerationType();
13088       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
13089                       ResultType->isSignedIntegerOrEnumerationType();
13090       uint64_t LHSSize = LHS.getBitWidth();
13091       uint64_t RHSSize = RHS.getBitWidth();
13092       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
13093       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
13094 
13095       // Add an additional bit if the signedness isn't uniformly agreed to. We
13096       // could do this ONLY if there is a signed and an unsigned that both have
13097       // MaxBits, but the code to check that is pretty nasty.  The issue will be
13098       // caught in the shrink-to-result later anyway.
13099       if (IsSigned && !AllSigned)
13100         ++MaxBits;
13101 
13102       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
13103       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
13104       Result = APSInt(MaxBits, !IsSigned);
13105     }
13106 
13107     // Find largest int.
13108     switch (BuiltinOp) {
13109     default:
13110       llvm_unreachable("Invalid value for BuiltinOp");
13111     case Builtin::BI__builtin_add_overflow:
13112     case Builtin::BI__builtin_sadd_overflow:
13113     case Builtin::BI__builtin_saddl_overflow:
13114     case Builtin::BI__builtin_saddll_overflow:
13115     case Builtin::BI__builtin_uadd_overflow:
13116     case Builtin::BI__builtin_uaddl_overflow:
13117     case Builtin::BI__builtin_uaddll_overflow:
13118       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
13119                               : LHS.uadd_ov(RHS, DidOverflow);
13120       break;
13121     case Builtin::BI__builtin_sub_overflow:
13122     case Builtin::BI__builtin_ssub_overflow:
13123     case Builtin::BI__builtin_ssubl_overflow:
13124     case Builtin::BI__builtin_ssubll_overflow:
13125     case Builtin::BI__builtin_usub_overflow:
13126     case Builtin::BI__builtin_usubl_overflow:
13127     case Builtin::BI__builtin_usubll_overflow:
13128       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
13129                               : LHS.usub_ov(RHS, DidOverflow);
13130       break;
13131     case Builtin::BI__builtin_mul_overflow:
13132     case Builtin::BI__builtin_smul_overflow:
13133     case Builtin::BI__builtin_smull_overflow:
13134     case Builtin::BI__builtin_smulll_overflow:
13135     case Builtin::BI__builtin_umul_overflow:
13136     case Builtin::BI__builtin_umull_overflow:
13137     case Builtin::BI__builtin_umulll_overflow:
13138       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
13139                               : LHS.umul_ov(RHS, DidOverflow);
13140       break;
13141     }
13142 
13143     // In the case where multiple sizes are allowed, truncate and see if
13144     // the values are the same.
13145     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
13146         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
13147         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
13148       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
13149       // since it will give us the behavior of a TruncOrSelf in the case where
13150       // its parameter <= its size.  We previously set Result to be at least the
13151       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
13152       // will work exactly like TruncOrSelf.
13153       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
13154       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
13155 
13156       if (!APSInt::isSameValue(Temp, Result))
13157         DidOverflow = true;
13158       Result = Temp;
13159     }
13160 
13161     APValue APV{Result};
13162     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
13163       return false;
13164     return Success(DidOverflow, E);
13165   }
13166   }
13167 }
13168 
13169 /// Determine whether this is a pointer past the end of the complete
13170 /// object referred to by the lvalue.
13171 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
13172                                             const LValue &LV) {
13173   // A null pointer can be viewed as being "past the end" but we don't
13174   // choose to look at it that way here.
13175   if (!LV.getLValueBase())
13176     return false;
13177 
13178   // If the designator is valid and refers to a subobject, we're not pointing
13179   // past the end.
13180   if (!LV.getLValueDesignator().Invalid &&
13181       !LV.getLValueDesignator().isOnePastTheEnd())
13182     return false;
13183 
13184   // A pointer to an incomplete type might be past-the-end if the type's size is
13185   // zero.  We cannot tell because the type is incomplete.
13186   QualType Ty = getType(LV.getLValueBase());
13187   if (Ty->isIncompleteType())
13188     return true;
13189 
13190   // Can't be past the end of an invalid object.
13191   if (LV.getLValueDesignator().Invalid)
13192     return false;
13193 
13194   // We're a past-the-end pointer if we point to the byte after the object,
13195   // no matter what our type or path is.
13196   auto Size = Ctx.getTypeSizeInChars(Ty);
13197   return LV.getLValueOffset() == Size;
13198 }
13199 
13200 namespace {
13201 
13202 /// Data recursive integer evaluator of certain binary operators.
13203 ///
13204 /// We use a data recursive algorithm for binary operators so that we are able
13205 /// to handle extreme cases of chained binary operators without causing stack
13206 /// overflow.
13207 class DataRecursiveIntBinOpEvaluator {
13208   struct EvalResult {
13209     APValue Val;
13210     bool Failed = false;
13211 
13212     EvalResult() = default;
13213 
13214     void swap(EvalResult &RHS) {
13215       Val.swap(RHS.Val);
13216       Failed = RHS.Failed;
13217       RHS.Failed = false;
13218     }
13219   };
13220 
13221   struct Job {
13222     const Expr *E;
13223     EvalResult LHSResult; // meaningful only for binary operator expression.
13224     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
13225 
13226     Job() = default;
13227     Job(Job &&) = default;
13228 
13229     void startSpeculativeEval(EvalInfo &Info) {
13230       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
13231     }
13232 
13233   private:
13234     SpeculativeEvaluationRAII SpecEvalRAII;
13235   };
13236 
13237   SmallVector<Job, 16> Queue;
13238 
13239   IntExprEvaluator &IntEval;
13240   EvalInfo &Info;
13241   APValue &FinalResult;
13242 
13243 public:
13244   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
13245     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
13246 
13247   /// True if \param E is a binary operator that we are going to handle
13248   /// data recursively.
13249   /// We handle binary operators that are comma, logical, or that have operands
13250   /// with integral or enumeration type.
13251   static bool shouldEnqueue(const BinaryOperator *E) {
13252     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
13253            (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
13254             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13255             E->getRHS()->getType()->isIntegralOrEnumerationType());
13256   }
13257 
13258   bool Traverse(const BinaryOperator *E) {
13259     enqueue(E);
13260     EvalResult PrevResult;
13261     while (!Queue.empty())
13262       process(PrevResult);
13263 
13264     if (PrevResult.Failed) return false;
13265 
13266     FinalResult.swap(PrevResult.Val);
13267     return true;
13268   }
13269 
13270 private:
13271   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
13272     return IntEval.Success(Value, E, Result);
13273   }
13274   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
13275     return IntEval.Success(Value, E, Result);
13276   }
13277   bool Error(const Expr *E) {
13278     return IntEval.Error(E);
13279   }
13280   bool Error(const Expr *E, diag::kind D) {
13281     return IntEval.Error(E, D);
13282   }
13283 
13284   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
13285     return Info.CCEDiag(E, D);
13286   }
13287 
13288   // Returns true if visiting the RHS is necessary, false otherwise.
13289   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
13290                          bool &SuppressRHSDiags);
13291 
13292   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
13293                   const BinaryOperator *E, APValue &Result);
13294 
13295   void EvaluateExpr(const Expr *E, EvalResult &Result) {
13296     Result.Failed = !Evaluate(Result.Val, Info, E);
13297     if (Result.Failed)
13298       Result.Val = APValue();
13299   }
13300 
13301   void process(EvalResult &Result);
13302 
13303   void enqueue(const Expr *E) {
13304     E = E->IgnoreParens();
13305     Queue.resize(Queue.size()+1);
13306     Queue.back().E = E;
13307     Queue.back().Kind = Job::AnyExprKind;
13308   }
13309 };
13310 
13311 }
13312 
13313 bool DataRecursiveIntBinOpEvaluator::
13314        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
13315                          bool &SuppressRHSDiags) {
13316   if (E->getOpcode() == BO_Comma) {
13317     // Ignore LHS but note if we could not evaluate it.
13318     if (LHSResult.Failed)
13319       return Info.noteSideEffect();
13320     return true;
13321   }
13322 
13323   if (E->isLogicalOp()) {
13324     bool LHSAsBool;
13325     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
13326       // We were able to evaluate the LHS, see if we can get away with not
13327       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
13328       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
13329         Success(LHSAsBool, E, LHSResult.Val);
13330         return false; // Ignore RHS
13331       }
13332     } else {
13333       LHSResult.Failed = true;
13334 
13335       // Since we weren't able to evaluate the left hand side, it
13336       // might have had side effects.
13337       if (!Info.noteSideEffect())
13338         return false;
13339 
13340       // We can't evaluate the LHS; however, sometimes the result
13341       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
13342       // Don't ignore RHS and suppress diagnostics from this arm.
13343       SuppressRHSDiags = true;
13344     }
13345 
13346     return true;
13347   }
13348 
13349   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13350          E->getRHS()->getType()->isIntegralOrEnumerationType());
13351 
13352   if (LHSResult.Failed && !Info.noteFailure())
13353     return false; // Ignore RHS;
13354 
13355   return true;
13356 }
13357 
13358 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
13359                                     bool IsSub) {
13360   // Compute the new offset in the appropriate width, wrapping at 64 bits.
13361   // FIXME: When compiling for a 32-bit target, we should use 32-bit
13362   // offsets.
13363   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
13364   CharUnits &Offset = LVal.getLValueOffset();
13365   uint64_t Offset64 = Offset.getQuantity();
13366   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
13367   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
13368                                          : Offset64 + Index64);
13369 }
13370 
13371 bool DataRecursiveIntBinOpEvaluator::
13372        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
13373                   const BinaryOperator *E, APValue &Result) {
13374   if (E->getOpcode() == BO_Comma) {
13375     if (RHSResult.Failed)
13376       return false;
13377     Result = RHSResult.Val;
13378     return true;
13379   }
13380 
13381   if (E->isLogicalOp()) {
13382     bool lhsResult, rhsResult;
13383     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
13384     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
13385 
13386     if (LHSIsOK) {
13387       if (RHSIsOK) {
13388         if (E->getOpcode() == BO_LOr)
13389           return Success(lhsResult || rhsResult, E, Result);
13390         else
13391           return Success(lhsResult && rhsResult, E, Result);
13392       }
13393     } else {
13394       if (RHSIsOK) {
13395         // We can't evaluate the LHS; however, sometimes the result
13396         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
13397         if (rhsResult == (E->getOpcode() == BO_LOr))
13398           return Success(rhsResult, E, Result);
13399       }
13400     }
13401 
13402     return false;
13403   }
13404 
13405   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13406          E->getRHS()->getType()->isIntegralOrEnumerationType());
13407 
13408   if (LHSResult.Failed || RHSResult.Failed)
13409     return false;
13410 
13411   const APValue &LHSVal = LHSResult.Val;
13412   const APValue &RHSVal = RHSResult.Val;
13413 
13414   // Handle cases like (unsigned long)&a + 4.
13415   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
13416     Result = LHSVal;
13417     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
13418     return true;
13419   }
13420 
13421   // Handle cases like 4 + (unsigned long)&a
13422   if (E->getOpcode() == BO_Add &&
13423       RHSVal.isLValue() && LHSVal.isInt()) {
13424     Result = RHSVal;
13425     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
13426     return true;
13427   }
13428 
13429   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
13430     // Handle (intptr_t)&&A - (intptr_t)&&B.
13431     if (!LHSVal.getLValueOffset().isZero() ||
13432         !RHSVal.getLValueOffset().isZero())
13433       return false;
13434     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
13435     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
13436     if (!LHSExpr || !RHSExpr)
13437       return false;
13438     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13439     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13440     if (!LHSAddrExpr || !RHSAddrExpr)
13441       return false;
13442     // Make sure both labels come from the same function.
13443     if (LHSAddrExpr->getLabel()->getDeclContext() !=
13444         RHSAddrExpr->getLabel()->getDeclContext())
13445       return false;
13446     Result = APValue(LHSAddrExpr, RHSAddrExpr);
13447     return true;
13448   }
13449 
13450   // All the remaining cases expect both operands to be an integer
13451   if (!LHSVal.isInt() || !RHSVal.isInt())
13452     return Error(E);
13453 
13454   // Set up the width and signedness manually, in case it can't be deduced
13455   // from the operation we're performing.
13456   // FIXME: Don't do this in the cases where we can deduce it.
13457   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
13458                E->getType()->isUnsignedIntegerOrEnumerationType());
13459   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
13460                          RHSVal.getInt(), Value))
13461     return false;
13462   return Success(Value, E, Result);
13463 }
13464 
13465 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
13466   Job &job = Queue.back();
13467 
13468   switch (job.Kind) {
13469     case Job::AnyExprKind: {
13470       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
13471         if (shouldEnqueue(Bop)) {
13472           job.Kind = Job::BinOpKind;
13473           enqueue(Bop->getLHS());
13474           return;
13475         }
13476       }
13477 
13478       EvaluateExpr(job.E, Result);
13479       Queue.pop_back();
13480       return;
13481     }
13482 
13483     case Job::BinOpKind: {
13484       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
13485       bool SuppressRHSDiags = false;
13486       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
13487         Queue.pop_back();
13488         return;
13489       }
13490       if (SuppressRHSDiags)
13491         job.startSpeculativeEval(Info);
13492       job.LHSResult.swap(Result);
13493       job.Kind = Job::BinOpVisitedLHSKind;
13494       enqueue(Bop->getRHS());
13495       return;
13496     }
13497 
13498     case Job::BinOpVisitedLHSKind: {
13499       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
13500       EvalResult RHS;
13501       RHS.swap(Result);
13502       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
13503       Queue.pop_back();
13504       return;
13505     }
13506   }
13507 
13508   llvm_unreachable("Invalid Job::Kind!");
13509 }
13510 
13511 namespace {
13512 enum class CmpResult {
13513   Unequal,
13514   Less,
13515   Equal,
13516   Greater,
13517   Unordered,
13518 };
13519 }
13520 
13521 template <class SuccessCB, class AfterCB>
13522 static bool
13523 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
13524                                  SuccessCB &&Success, AfterCB &&DoAfter) {
13525   assert(!E->isValueDependent());
13526   assert(E->isComparisonOp() && "expected comparison operator");
13527   assert((E->getOpcode() == BO_Cmp ||
13528           E->getType()->isIntegralOrEnumerationType()) &&
13529          "unsupported binary expression evaluation");
13530   auto Error = [&](const Expr *E) {
13531     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13532     return false;
13533   };
13534 
13535   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
13536   bool IsEquality = E->isEqualityOp();
13537 
13538   QualType LHSTy = E->getLHS()->getType();
13539   QualType RHSTy = E->getRHS()->getType();
13540 
13541   if (LHSTy->isIntegralOrEnumerationType() &&
13542       RHSTy->isIntegralOrEnumerationType()) {
13543     APSInt LHS, RHS;
13544     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
13545     if (!LHSOK && !Info.noteFailure())
13546       return false;
13547     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
13548       return false;
13549     if (LHS < RHS)
13550       return Success(CmpResult::Less, E);
13551     if (LHS > RHS)
13552       return Success(CmpResult::Greater, E);
13553     return Success(CmpResult::Equal, E);
13554   }
13555 
13556   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
13557     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
13558     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
13559 
13560     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
13561     if (!LHSOK && !Info.noteFailure())
13562       return false;
13563     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
13564       return false;
13565     if (LHSFX < RHSFX)
13566       return Success(CmpResult::Less, E);
13567     if (LHSFX > RHSFX)
13568       return Success(CmpResult::Greater, E);
13569     return Success(CmpResult::Equal, E);
13570   }
13571 
13572   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
13573     ComplexValue LHS, RHS;
13574     bool LHSOK;
13575     if (E->isAssignmentOp()) {
13576       LValue LV;
13577       EvaluateLValue(E->getLHS(), LV, Info);
13578       LHSOK = false;
13579     } else if (LHSTy->isRealFloatingType()) {
13580       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
13581       if (LHSOK) {
13582         LHS.makeComplexFloat();
13583         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
13584       }
13585     } else {
13586       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
13587     }
13588     if (!LHSOK && !Info.noteFailure())
13589       return false;
13590 
13591     if (E->getRHS()->getType()->isRealFloatingType()) {
13592       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
13593         return false;
13594       RHS.makeComplexFloat();
13595       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
13596     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
13597       return false;
13598 
13599     if (LHS.isComplexFloat()) {
13600       APFloat::cmpResult CR_r =
13601         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
13602       APFloat::cmpResult CR_i =
13603         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
13604       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
13605       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13606     } else {
13607       assert(IsEquality && "invalid complex comparison");
13608       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
13609                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
13610       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13611     }
13612   }
13613 
13614   if (LHSTy->isRealFloatingType() &&
13615       RHSTy->isRealFloatingType()) {
13616     APFloat RHS(0.0), LHS(0.0);
13617 
13618     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
13619     if (!LHSOK && !Info.noteFailure())
13620       return false;
13621 
13622     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
13623       return false;
13624 
13625     assert(E->isComparisonOp() && "Invalid binary operator!");
13626     llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
13627     if (!Info.InConstantContext &&
13628         APFloatCmpResult == APFloat::cmpUnordered &&
13629         E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
13630       // Note: Compares may raise invalid in some cases involving NaN or sNaN.
13631       Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
13632       return false;
13633     }
13634     auto GetCmpRes = [&]() {
13635       switch (APFloatCmpResult) {
13636       case APFloat::cmpEqual:
13637         return CmpResult::Equal;
13638       case APFloat::cmpLessThan:
13639         return CmpResult::Less;
13640       case APFloat::cmpGreaterThan:
13641         return CmpResult::Greater;
13642       case APFloat::cmpUnordered:
13643         return CmpResult::Unordered;
13644       }
13645       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
13646     };
13647     return Success(GetCmpRes(), E);
13648   }
13649 
13650   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
13651     LValue LHSValue, RHSValue;
13652 
13653     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13654     if (!LHSOK && !Info.noteFailure())
13655       return false;
13656 
13657     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13658       return false;
13659 
13660     // Reject differing bases from the normal codepath; we special-case
13661     // comparisons to null.
13662     if (!HasSameBase(LHSValue, RHSValue)) {
13663       auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
13664         std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType());
13665         std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType());
13666         Info.FFDiag(E, DiagID)
13667             << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
13668         return false;
13669       };
13670       // Inequalities and subtractions between unrelated pointers have
13671       // unspecified or undefined behavior.
13672       if (!IsEquality)
13673         return DiagComparison(
13674             diag::note_constexpr_pointer_comparison_unspecified);
13675       // A constant address may compare equal to the address of a symbol.
13676       // The one exception is that address of an object cannot compare equal
13677       // to a null pointer constant.
13678       // TODO: Should we restrict this to actual null pointers, and exclude the
13679       // case of zero cast to pointer type?
13680       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
13681           (!RHSValue.Base && !RHSValue.Offset.isZero()))
13682         return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
13683                               !RHSValue.Base);
13684       // It's implementation-defined whether distinct literals will have
13685       // distinct addresses. In clang, the result of such a comparison is
13686       // unspecified, so it is not a constant expression. However, we do know
13687       // that the address of a literal will be non-null.
13688       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
13689           LHSValue.Base && RHSValue.Base)
13690         return DiagComparison(diag::note_constexpr_literal_comparison);
13691       // We can't tell whether weak symbols will end up pointing to the same
13692       // object.
13693       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
13694         return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
13695                               !IsWeakLValue(LHSValue));
13696       // We can't compare the address of the start of one object with the
13697       // past-the-end address of another object, per C++ DR1652.
13698       if (LHSValue.Base && LHSValue.Offset.isZero() &&
13699           isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
13700         return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13701                               true);
13702       if (RHSValue.Base && RHSValue.Offset.isZero() &&
13703            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
13704         return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13705                               false);
13706       // We can't tell whether an object is at the same address as another
13707       // zero sized object.
13708       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
13709           (LHSValue.Base && isZeroSized(RHSValue)))
13710         return DiagComparison(
13711             diag::note_constexpr_pointer_comparison_zero_sized);
13712       return Success(CmpResult::Unequal, E);
13713     }
13714 
13715     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13716     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13717 
13718     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13719     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13720 
13721     // C++11 [expr.rel]p3:
13722     //   Pointers to void (after pointer conversions) can be compared, with a
13723     //   result defined as follows: If both pointers represent the same
13724     //   address or are both the null pointer value, the result is true if the
13725     //   operator is <= or >= and false otherwise; otherwise the result is
13726     //   unspecified.
13727     // We interpret this as applying to pointers to *cv* void.
13728     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
13729       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
13730 
13731     // C++11 [expr.rel]p2:
13732     // - If two pointers point to non-static data members of the same object,
13733     //   or to subobjects or array elements fo such members, recursively, the
13734     //   pointer to the later declared member compares greater provided the
13735     //   two members have the same access control and provided their class is
13736     //   not a union.
13737     //   [...]
13738     // - Otherwise pointer comparisons are unspecified.
13739     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
13740       bool WasArrayIndex;
13741       unsigned Mismatch = FindDesignatorMismatch(
13742           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
13743       // At the point where the designators diverge, the comparison has a
13744       // specified value if:
13745       //  - we are comparing array indices
13746       //  - we are comparing fields of a union, or fields with the same access
13747       // Otherwise, the result is unspecified and thus the comparison is not a
13748       // constant expression.
13749       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
13750           Mismatch < RHSDesignator.Entries.size()) {
13751         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
13752         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
13753         if (!LF && !RF)
13754           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
13755         else if (!LF)
13756           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13757               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
13758               << RF->getParent() << RF;
13759         else if (!RF)
13760           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13761               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
13762               << LF->getParent() << LF;
13763         else if (!LF->getParent()->isUnion() &&
13764                  LF->getAccess() != RF->getAccess())
13765           Info.CCEDiag(E,
13766                        diag::note_constexpr_pointer_comparison_differing_access)
13767               << LF << LF->getAccess() << RF << RF->getAccess()
13768               << LF->getParent();
13769       }
13770     }
13771 
13772     // The comparison here must be unsigned, and performed with the same
13773     // width as the pointer.
13774     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
13775     uint64_t CompareLHS = LHSOffset.getQuantity();
13776     uint64_t CompareRHS = RHSOffset.getQuantity();
13777     assert(PtrSize <= 64 && "Unexpected pointer width");
13778     uint64_t Mask = ~0ULL >> (64 - PtrSize);
13779     CompareLHS &= Mask;
13780     CompareRHS &= Mask;
13781 
13782     // If there is a base and this is a relational operator, we can only
13783     // compare pointers within the object in question; otherwise, the result
13784     // depends on where the object is located in memory.
13785     if (!LHSValue.Base.isNull() && IsRelational) {
13786       QualType BaseTy = getType(LHSValue.Base);
13787       if (BaseTy->isIncompleteType())
13788         return Error(E);
13789       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
13790       uint64_t OffsetLimit = Size.getQuantity();
13791       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13792         return Error(E);
13793     }
13794 
13795     if (CompareLHS < CompareRHS)
13796       return Success(CmpResult::Less, E);
13797     if (CompareLHS > CompareRHS)
13798       return Success(CmpResult::Greater, E);
13799     return Success(CmpResult::Equal, E);
13800   }
13801 
13802   if (LHSTy->isMemberPointerType()) {
13803     assert(IsEquality && "unexpected member pointer operation");
13804     assert(RHSTy->isMemberPointerType() && "invalid comparison");
13805 
13806     MemberPtr LHSValue, RHSValue;
13807 
13808     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
13809     if (!LHSOK && !Info.noteFailure())
13810       return false;
13811 
13812     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13813       return false;
13814 
13815     // If either operand is a pointer to a weak function, the comparison is not
13816     // constant.
13817     if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
13818       Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13819           << LHSValue.getDecl();
13820       return false;
13821     }
13822     if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
13823       Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13824           << RHSValue.getDecl();
13825       return false;
13826     }
13827 
13828     // C++11 [expr.eq]p2:
13829     //   If both operands are null, they compare equal. Otherwise if only one is
13830     //   null, they compare unequal.
13831     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13832       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13833       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13834     }
13835 
13836     //   Otherwise if either is a pointer to a virtual member function, the
13837     //   result is unspecified.
13838     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13839       if (MD->isVirtual())
13840         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13841     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13842       if (MD->isVirtual())
13843         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13844 
13845     //   Otherwise they compare equal if and only if they would refer to the
13846     //   same member of the same most derived object or the same subobject if
13847     //   they were dereferenced with a hypothetical object of the associated
13848     //   class type.
13849     bool Equal = LHSValue == RHSValue;
13850     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13851   }
13852 
13853   if (LHSTy->isNullPtrType()) {
13854     assert(E->isComparisonOp() && "unexpected nullptr operation");
13855     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13856     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13857     // are compared, the result is true of the operator is <=, >= or ==, and
13858     // false otherwise.
13859     LValue Res;
13860     if (!EvaluatePointer(E->getLHS(), Res, Info) ||
13861         !EvaluatePointer(E->getRHS(), Res, Info))
13862       return false;
13863     return Success(CmpResult::Equal, E);
13864   }
13865 
13866   return DoAfter();
13867 }
13868 
13869 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13870   if (!CheckLiteralType(Info, E))
13871     return false;
13872 
13873   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13874     ComparisonCategoryResult CCR;
13875     switch (CR) {
13876     case CmpResult::Unequal:
13877       llvm_unreachable("should never produce Unequal for three-way comparison");
13878     case CmpResult::Less:
13879       CCR = ComparisonCategoryResult::Less;
13880       break;
13881     case CmpResult::Equal:
13882       CCR = ComparisonCategoryResult::Equal;
13883       break;
13884     case CmpResult::Greater:
13885       CCR = ComparisonCategoryResult::Greater;
13886       break;
13887     case CmpResult::Unordered:
13888       CCR = ComparisonCategoryResult::Unordered;
13889       break;
13890     }
13891     // Evaluation succeeded. Lookup the information for the comparison category
13892     // type and fetch the VarDecl for the result.
13893     const ComparisonCategoryInfo &CmpInfo =
13894         Info.Ctx.CompCategories.getInfoForType(E->getType());
13895     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
13896     // Check and evaluate the result as a constant expression.
13897     LValue LV;
13898     LV.set(VD);
13899     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13900       return false;
13901     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13902                                    ConstantExprKind::Normal);
13903   };
13904   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13905     return ExprEvaluatorBaseTy::VisitBinCmp(E);
13906   });
13907 }
13908 
13909 bool RecordExprEvaluator::VisitCXXParenListInitExpr(
13910     const CXXParenListInitExpr *E) {
13911   return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
13912 }
13913 
13914 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13915   // We don't support assignment in C. C++ assignments don't get here because
13916   // assignment is an lvalue in C++.
13917   if (E->isAssignmentOp()) {
13918     Error(E);
13919     if (!Info.noteFailure())
13920       return false;
13921   }
13922 
13923   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13924     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13925 
13926   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13927           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13928          "DataRecursiveIntBinOpEvaluator should have handled integral types");
13929 
13930   if (E->isComparisonOp()) {
13931     // Evaluate builtin binary comparisons by evaluating them as three-way
13932     // comparisons and then translating the result.
13933     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13934       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13935              "should only produce Unequal for equality comparisons");
13936       bool IsEqual   = CR == CmpResult::Equal,
13937            IsLess    = CR == CmpResult::Less,
13938            IsGreater = CR == CmpResult::Greater;
13939       auto Op = E->getOpcode();
13940       switch (Op) {
13941       default:
13942         llvm_unreachable("unsupported binary operator");
13943       case BO_EQ:
13944       case BO_NE:
13945         return Success(IsEqual == (Op == BO_EQ), E);
13946       case BO_LT:
13947         return Success(IsLess, E);
13948       case BO_GT:
13949         return Success(IsGreater, E);
13950       case BO_LE:
13951         return Success(IsEqual || IsLess, E);
13952       case BO_GE:
13953         return Success(IsEqual || IsGreater, E);
13954       }
13955     };
13956     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13957       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13958     });
13959   }
13960 
13961   QualType LHSTy = E->getLHS()->getType();
13962   QualType RHSTy = E->getRHS()->getType();
13963 
13964   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13965       E->getOpcode() == BO_Sub) {
13966     LValue LHSValue, RHSValue;
13967 
13968     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13969     if (!LHSOK && !Info.noteFailure())
13970       return false;
13971 
13972     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13973       return false;
13974 
13975     // Reject differing bases from the normal codepath; we special-case
13976     // comparisons to null.
13977     if (!HasSameBase(LHSValue, RHSValue)) {
13978       // Handle &&A - &&B.
13979       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13980         return Error(E);
13981       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13982       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13983       if (!LHSExpr || !RHSExpr)
13984         return Error(E);
13985       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13986       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13987       if (!LHSAddrExpr || !RHSAddrExpr)
13988         return Error(E);
13989       // Make sure both labels come from the same function.
13990       if (LHSAddrExpr->getLabel()->getDeclContext() !=
13991           RHSAddrExpr->getLabel()->getDeclContext())
13992         return Error(E);
13993       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13994     }
13995     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13996     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13997 
13998     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13999     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
14000 
14001     // C++11 [expr.add]p6:
14002     //   Unless both pointers point to elements of the same array object, or
14003     //   one past the last element of the array object, the behavior is
14004     //   undefined.
14005     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
14006         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
14007                                 RHSDesignator))
14008       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
14009 
14010     QualType Type = E->getLHS()->getType();
14011     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
14012 
14013     CharUnits ElementSize;
14014     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
14015       return false;
14016 
14017     // As an extension, a type may have zero size (empty struct or union in
14018     // C, array of zero length). Pointer subtraction in such cases has
14019     // undefined behavior, so is not constant.
14020     if (ElementSize.isZero()) {
14021       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
14022           << ElementType;
14023       return false;
14024     }
14025 
14026     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
14027     // and produce incorrect results when it overflows. Such behavior
14028     // appears to be non-conforming, but is common, so perhaps we should
14029     // assume the standard intended for such cases to be undefined behavior
14030     // and check for them.
14031 
14032     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
14033     // overflow in the final conversion to ptrdiff_t.
14034     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
14035     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
14036     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
14037                     false);
14038     APSInt TrueResult = (LHS - RHS) / ElemSize;
14039     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
14040 
14041     if (Result.extend(65) != TrueResult &&
14042         !HandleOverflow(Info, E, TrueResult, E->getType()))
14043       return false;
14044     return Success(Result, E);
14045   }
14046 
14047   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14048 }
14049 
14050 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
14051 /// a result as the expression's type.
14052 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
14053                                     const UnaryExprOrTypeTraitExpr *E) {
14054   switch(E->getKind()) {
14055   case UETT_PreferredAlignOf:
14056   case UETT_AlignOf: {
14057     if (E->isArgumentType())
14058       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
14059                      E);
14060     else
14061       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
14062                      E);
14063   }
14064 
14065   case UETT_PtrAuthTypeDiscriminator: {
14066     if (E->getArgumentType()->isDependentType())
14067       return false;
14068     return Success(
14069         Info.Ctx.getPointerAuthTypeDiscriminator(E->getArgumentType()), E);
14070   }
14071   case UETT_VecStep: {
14072     QualType Ty = E->getTypeOfArgument();
14073 
14074     if (Ty->isVectorType()) {
14075       unsigned n = Ty->castAs<VectorType>()->getNumElements();
14076 
14077       // The vec_step built-in functions that take a 3-component
14078       // vector return 4. (OpenCL 1.1 spec 6.11.12)
14079       if (n == 3)
14080         n = 4;
14081 
14082       return Success(n, E);
14083     } else
14084       return Success(1, E);
14085   }
14086 
14087   case UETT_DataSizeOf:
14088   case UETT_SizeOf: {
14089     QualType SrcTy = E->getTypeOfArgument();
14090     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
14091     //   the result is the size of the referenced type."
14092     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
14093       SrcTy = Ref->getPointeeType();
14094 
14095     CharUnits Sizeof;
14096     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof,
14097                       E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf
14098                                                       : SizeOfType::SizeOf)) {
14099       return false;
14100     }
14101     return Success(Sizeof, E);
14102   }
14103   case UETT_OpenMPRequiredSimdAlign:
14104     assert(E->isArgumentType());
14105     return Success(
14106         Info.Ctx.toCharUnitsFromBits(
14107                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
14108             .getQuantity(),
14109         E);
14110   case UETT_VectorElements: {
14111     QualType Ty = E->getTypeOfArgument();
14112     // If the vector has a fixed size, we can determine the number of elements
14113     // at compile time.
14114     if (const auto *VT = Ty->getAs<VectorType>())
14115       return Success(VT->getNumElements(), E);
14116 
14117     assert(Ty->isSizelessVectorType());
14118     if (Info.InConstantContext)
14119       Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements)
14120           << E->getSourceRange();
14121 
14122     return false;
14123   }
14124   }
14125 
14126   llvm_unreachable("unknown expr/type trait");
14127 }
14128 
14129 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
14130   CharUnits Result;
14131   unsigned n = OOE->getNumComponents();
14132   if (n == 0)
14133     return Error(OOE);
14134   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
14135   for (unsigned i = 0; i != n; ++i) {
14136     OffsetOfNode ON = OOE->getComponent(i);
14137     switch (ON.getKind()) {
14138     case OffsetOfNode::Array: {
14139       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
14140       APSInt IdxResult;
14141       if (!EvaluateInteger(Idx, IdxResult, Info))
14142         return false;
14143       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
14144       if (!AT)
14145         return Error(OOE);
14146       CurrentType = AT->getElementType();
14147       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
14148       Result += IdxResult.getSExtValue() * ElementSize;
14149       break;
14150     }
14151 
14152     case OffsetOfNode::Field: {
14153       FieldDecl *MemberDecl = ON.getField();
14154       const RecordType *RT = CurrentType->getAs<RecordType>();
14155       if (!RT)
14156         return Error(OOE);
14157       RecordDecl *RD = RT->getDecl();
14158       if (RD->isInvalidDecl()) return false;
14159       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
14160       unsigned i = MemberDecl->getFieldIndex();
14161       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
14162       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
14163       CurrentType = MemberDecl->getType().getNonReferenceType();
14164       break;
14165     }
14166 
14167     case OffsetOfNode::Identifier:
14168       llvm_unreachable("dependent __builtin_offsetof");
14169 
14170     case OffsetOfNode::Base: {
14171       CXXBaseSpecifier *BaseSpec = ON.getBase();
14172       if (BaseSpec->isVirtual())
14173         return Error(OOE);
14174 
14175       // Find the layout of the class whose base we are looking into.
14176       const RecordType *RT = CurrentType->getAs<RecordType>();
14177       if (!RT)
14178         return Error(OOE);
14179       RecordDecl *RD = RT->getDecl();
14180       if (RD->isInvalidDecl()) return false;
14181       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
14182 
14183       // Find the base class itself.
14184       CurrentType = BaseSpec->getType();
14185       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
14186       if (!BaseRT)
14187         return Error(OOE);
14188 
14189       // Add the offset to the base.
14190       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
14191       break;
14192     }
14193     }
14194   }
14195   return Success(Result, OOE);
14196 }
14197 
14198 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14199   switch (E->getOpcode()) {
14200   default:
14201     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
14202     // See C99 6.6p3.
14203     return Error(E);
14204   case UO_Extension:
14205     // FIXME: Should extension allow i-c-e extension expressions in its scope?
14206     // If so, we could clear the diagnostic ID.
14207     return Visit(E->getSubExpr());
14208   case UO_Plus:
14209     // The result is just the value.
14210     return Visit(E->getSubExpr());
14211   case UO_Minus: {
14212     if (!Visit(E->getSubExpr()))
14213       return false;
14214     if (!Result.isInt()) return Error(E);
14215     const APSInt &Value = Result.getInt();
14216     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
14217       if (Info.checkingForUndefinedBehavior())
14218         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14219                                          diag::warn_integer_constant_overflow)
14220             << toString(Value, 10, Value.isSigned(), /*formatAsCLiteral=*/false,
14221                         /*UpperCase=*/true, /*InsertSeparators=*/true)
14222             << E->getType() << E->getSourceRange();
14223 
14224       if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
14225                           E->getType()))
14226         return false;
14227     }
14228     return Success(-Value, E);
14229   }
14230   case UO_Not: {
14231     if (!Visit(E->getSubExpr()))
14232       return false;
14233     if (!Result.isInt()) return Error(E);
14234     return Success(~Result.getInt(), E);
14235   }
14236   case UO_LNot: {
14237     bool bres;
14238     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
14239       return false;
14240     return Success(!bres, E);
14241   }
14242   }
14243 }
14244 
14245 /// HandleCast - This is used to evaluate implicit or explicit casts where the
14246 /// result type is integer.
14247 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
14248   const Expr *SubExpr = E->getSubExpr();
14249   QualType DestType = E->getType();
14250   QualType SrcType = SubExpr->getType();
14251 
14252   switch (E->getCastKind()) {
14253   case CK_BaseToDerived:
14254   case CK_DerivedToBase:
14255   case CK_UncheckedDerivedToBase:
14256   case CK_Dynamic:
14257   case CK_ToUnion:
14258   case CK_ArrayToPointerDecay:
14259   case CK_FunctionToPointerDecay:
14260   case CK_NullToPointer:
14261   case CK_NullToMemberPointer:
14262   case CK_BaseToDerivedMemberPointer:
14263   case CK_DerivedToBaseMemberPointer:
14264   case CK_ReinterpretMemberPointer:
14265   case CK_ConstructorConversion:
14266   case CK_IntegralToPointer:
14267   case CK_ToVoid:
14268   case CK_VectorSplat:
14269   case CK_IntegralToFloating:
14270   case CK_FloatingCast:
14271   case CK_CPointerToObjCPointerCast:
14272   case CK_BlockPointerToObjCPointerCast:
14273   case CK_AnyPointerToBlockPointerCast:
14274   case CK_ObjCObjectLValueCast:
14275   case CK_FloatingRealToComplex:
14276   case CK_FloatingComplexToReal:
14277   case CK_FloatingComplexCast:
14278   case CK_FloatingComplexToIntegralComplex:
14279   case CK_IntegralRealToComplex:
14280   case CK_IntegralComplexCast:
14281   case CK_IntegralComplexToFloatingComplex:
14282   case CK_BuiltinFnToFnPtr:
14283   case CK_ZeroToOCLOpaqueType:
14284   case CK_NonAtomicToAtomic:
14285   case CK_AddressSpaceConversion:
14286   case CK_IntToOCLSampler:
14287   case CK_FloatingToFixedPoint:
14288   case CK_FixedPointToFloating:
14289   case CK_FixedPointCast:
14290   case CK_IntegralToFixedPoint:
14291   case CK_MatrixCast:
14292   case CK_HLSLVectorTruncation:
14293     llvm_unreachable("invalid cast kind for integral value");
14294 
14295   case CK_BitCast:
14296   case CK_Dependent:
14297   case CK_LValueBitCast:
14298   case CK_ARCProduceObject:
14299   case CK_ARCConsumeObject:
14300   case CK_ARCReclaimReturnedObject:
14301   case CK_ARCExtendBlockObject:
14302   case CK_CopyAndAutoreleaseBlockObject:
14303     return Error(E);
14304 
14305   case CK_UserDefinedConversion:
14306   case CK_LValueToRValue:
14307   case CK_AtomicToNonAtomic:
14308   case CK_NoOp:
14309   case CK_LValueToRValueBitCast:
14310   case CK_HLSLArrayRValue:
14311     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14312 
14313   case CK_MemberPointerToBoolean:
14314   case CK_PointerToBoolean:
14315   case CK_IntegralToBoolean:
14316   case CK_FloatingToBoolean:
14317   case CK_BooleanToSignedIntegral:
14318   case CK_FloatingComplexToBoolean:
14319   case CK_IntegralComplexToBoolean: {
14320     bool BoolResult;
14321     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
14322       return false;
14323     uint64_t IntResult = BoolResult;
14324     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
14325       IntResult = (uint64_t)-1;
14326     return Success(IntResult, E);
14327   }
14328 
14329   case CK_FixedPointToIntegral: {
14330     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
14331     if (!EvaluateFixedPoint(SubExpr, Src, Info))
14332       return false;
14333     bool Overflowed;
14334     llvm::APSInt Result = Src.convertToInt(
14335         Info.Ctx.getIntWidth(DestType),
14336         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
14337     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
14338       return false;
14339     return Success(Result, E);
14340   }
14341 
14342   case CK_FixedPointToBoolean: {
14343     // Unsigned padding does not affect this.
14344     APValue Val;
14345     if (!Evaluate(Val, Info, SubExpr))
14346       return false;
14347     return Success(Val.getFixedPoint().getBoolValue(), E);
14348   }
14349 
14350   case CK_IntegralCast: {
14351     if (!Visit(SubExpr))
14352       return false;
14353 
14354     if (!Result.isInt()) {
14355       // Allow casts of address-of-label differences if they are no-ops
14356       // or narrowing.  (The narrowing case isn't actually guaranteed to
14357       // be constant-evaluatable except in some narrow cases which are hard
14358       // to detect here.  We let it through on the assumption the user knows
14359       // what they are doing.)
14360       if (Result.isAddrLabelDiff())
14361         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
14362       // Only allow casts of lvalues if they are lossless.
14363       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
14364     }
14365 
14366     if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext &&
14367         Info.EvalMode == EvalInfo::EM_ConstantExpression &&
14368         DestType->isEnumeralType()) {
14369 
14370       bool ConstexprVar = true;
14371 
14372       // We know if we are here that we are in a context that we might require
14373       // a constant expression or a context that requires a constant
14374       // value. But if we are initializing a value we don't know if it is a
14375       // constexpr variable or not. We can check the EvaluatingDecl to determine
14376       // if it constexpr or not. If not then we don't want to emit a diagnostic.
14377       if (const auto *VD = dyn_cast_or_null<VarDecl>(
14378               Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
14379         ConstexprVar = VD->isConstexpr();
14380 
14381       const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType());
14382       const EnumDecl *ED = ET->getDecl();
14383       // Check that the value is within the range of the enumeration values.
14384       //
14385       // This corressponds to [expr.static.cast]p10 which says:
14386       // A value of integral or enumeration type can be explicitly converted
14387       // to a complete enumeration type ... If the enumeration type does not
14388       // have a fixed underlying type, the value is unchanged if the original
14389       // value is within the range of the enumeration values ([dcl.enum]), and
14390       // otherwise, the behavior is undefined.
14391       //
14392       // This was resolved as part of DR2338 which has CD5 status.
14393       if (!ED->isFixed()) {
14394         llvm::APInt Min;
14395         llvm::APInt Max;
14396 
14397         ED->getValueRange(Max, Min);
14398         --Max;
14399 
14400         if (ED->getNumNegativeBits() && ConstexprVar &&
14401             (Max.slt(Result.getInt().getSExtValue()) ||
14402              Min.sgt(Result.getInt().getSExtValue())))
14403           Info.Ctx.getDiagnostics().Report(
14404               E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14405               << llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
14406               << Max.getSExtValue() << ED;
14407         else if (!ED->getNumNegativeBits() && ConstexprVar &&
14408                  Max.ult(Result.getInt().getZExtValue()))
14409           Info.Ctx.getDiagnostics().Report(
14410               E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14411               << llvm::toString(Result.getInt(), 10) << Min.getZExtValue()
14412               << Max.getZExtValue() << ED;
14413       }
14414     }
14415 
14416     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
14417                                       Result.getInt()), E);
14418   }
14419 
14420   case CK_PointerToIntegral: {
14421     CCEDiag(E, diag::note_constexpr_invalid_cast)
14422         << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange();
14423 
14424     LValue LV;
14425     if (!EvaluatePointer(SubExpr, LV, Info))
14426       return false;
14427 
14428     if (LV.getLValueBase()) {
14429       // Only allow based lvalue casts if they are lossless.
14430       // FIXME: Allow a larger integer size than the pointer size, and allow
14431       // narrowing back down to pointer width in subsequent integral casts.
14432       // FIXME: Check integer type's active bits, not its type size.
14433       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
14434         return Error(E);
14435 
14436       LV.Designator.setInvalid();
14437       LV.moveInto(Result);
14438       return true;
14439     }
14440 
14441     APSInt AsInt;
14442     APValue V;
14443     LV.moveInto(V);
14444     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
14445       llvm_unreachable("Can't cast this!");
14446 
14447     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
14448   }
14449 
14450   case CK_IntegralComplexToReal: {
14451     ComplexValue C;
14452     if (!EvaluateComplex(SubExpr, C, Info))
14453       return false;
14454     return Success(C.getComplexIntReal(), E);
14455   }
14456 
14457   case CK_FloatingToIntegral: {
14458     APFloat F(0.0);
14459     if (!EvaluateFloat(SubExpr, F, Info))
14460       return false;
14461 
14462     APSInt Value;
14463     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
14464       return false;
14465     return Success(Value, E);
14466   }
14467   }
14468 
14469   llvm_unreachable("unknown cast resulting in integral value");
14470 }
14471 
14472 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14473   if (E->getSubExpr()->getType()->isAnyComplexType()) {
14474     ComplexValue LV;
14475     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
14476       return false;
14477     if (!LV.isComplexInt())
14478       return Error(E);
14479     return Success(LV.getComplexIntReal(), E);
14480   }
14481 
14482   return Visit(E->getSubExpr());
14483 }
14484 
14485 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14486   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
14487     ComplexValue LV;
14488     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
14489       return false;
14490     if (!LV.isComplexInt())
14491       return Error(E);
14492     return Success(LV.getComplexIntImag(), E);
14493   }
14494 
14495   VisitIgnoredValue(E->getSubExpr());
14496   return Success(0, E);
14497 }
14498 
14499 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
14500   return Success(E->getPackLength(), E);
14501 }
14502 
14503 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
14504   return Success(E->getValue(), E);
14505 }
14506 
14507 bool IntExprEvaluator::VisitConceptSpecializationExpr(
14508        const ConceptSpecializationExpr *E) {
14509   return Success(E->isSatisfied(), E);
14510 }
14511 
14512 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
14513   return Success(E->isSatisfied(), E);
14514 }
14515 
14516 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14517   switch (E->getOpcode()) {
14518     default:
14519       // Invalid unary operators
14520       return Error(E);
14521     case UO_Plus:
14522       // The result is just the value.
14523       return Visit(E->getSubExpr());
14524     case UO_Minus: {
14525       if (!Visit(E->getSubExpr())) return false;
14526       if (!Result.isFixedPoint())
14527         return Error(E);
14528       bool Overflowed;
14529       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
14530       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
14531         return false;
14532       return Success(Negated, E);
14533     }
14534     case UO_LNot: {
14535       bool bres;
14536       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
14537         return false;
14538       return Success(!bres, E);
14539     }
14540   }
14541 }
14542 
14543 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
14544   const Expr *SubExpr = E->getSubExpr();
14545   QualType DestType = E->getType();
14546   assert(DestType->isFixedPointType() &&
14547          "Expected destination type to be a fixed point type");
14548   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
14549 
14550   switch (E->getCastKind()) {
14551   case CK_FixedPointCast: {
14552     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14553     if (!EvaluateFixedPoint(SubExpr, Src, Info))
14554       return false;
14555     bool Overflowed;
14556     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
14557     if (Overflowed) {
14558       if (Info.checkingForUndefinedBehavior())
14559         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14560                                          diag::warn_fixedpoint_constant_overflow)
14561           << Result.toString() << E->getType();
14562       if (!HandleOverflow(Info, E, Result, E->getType()))
14563         return false;
14564     }
14565     return Success(Result, E);
14566   }
14567   case CK_IntegralToFixedPoint: {
14568     APSInt Src;
14569     if (!EvaluateInteger(SubExpr, Src, Info))
14570       return false;
14571 
14572     bool Overflowed;
14573     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
14574         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
14575 
14576     if (Overflowed) {
14577       if (Info.checkingForUndefinedBehavior())
14578         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14579                                          diag::warn_fixedpoint_constant_overflow)
14580           << IntResult.toString() << E->getType();
14581       if (!HandleOverflow(Info, E, IntResult, E->getType()))
14582         return false;
14583     }
14584 
14585     return Success(IntResult, E);
14586   }
14587   case CK_FloatingToFixedPoint: {
14588     APFloat Src(0.0);
14589     if (!EvaluateFloat(SubExpr, Src, Info))
14590       return false;
14591 
14592     bool Overflowed;
14593     APFixedPoint Result = APFixedPoint::getFromFloatValue(
14594         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
14595 
14596     if (Overflowed) {
14597       if (Info.checkingForUndefinedBehavior())
14598         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14599                                          diag::warn_fixedpoint_constant_overflow)
14600           << Result.toString() << E->getType();
14601       if (!HandleOverflow(Info, E, Result, E->getType()))
14602         return false;
14603     }
14604 
14605     return Success(Result, E);
14606   }
14607   case CK_NoOp:
14608   case CK_LValueToRValue:
14609     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14610   default:
14611     return Error(E);
14612   }
14613 }
14614 
14615 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14616   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14617     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14618 
14619   const Expr *LHS = E->getLHS();
14620   const Expr *RHS = E->getRHS();
14621   FixedPointSemantics ResultFXSema =
14622       Info.Ctx.getFixedPointSemantics(E->getType());
14623 
14624   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
14625   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
14626     return false;
14627   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
14628   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
14629     return false;
14630 
14631   bool OpOverflow = false, ConversionOverflow = false;
14632   APFixedPoint Result(LHSFX.getSemantics());
14633   switch (E->getOpcode()) {
14634   case BO_Add: {
14635     Result = LHSFX.add(RHSFX, &OpOverflow)
14636                   .convert(ResultFXSema, &ConversionOverflow);
14637     break;
14638   }
14639   case BO_Sub: {
14640     Result = LHSFX.sub(RHSFX, &OpOverflow)
14641                   .convert(ResultFXSema, &ConversionOverflow);
14642     break;
14643   }
14644   case BO_Mul: {
14645     Result = LHSFX.mul(RHSFX, &OpOverflow)
14646                   .convert(ResultFXSema, &ConversionOverflow);
14647     break;
14648   }
14649   case BO_Div: {
14650     if (RHSFX.getValue() == 0) {
14651       Info.FFDiag(E, diag::note_expr_divide_by_zero);
14652       return false;
14653     }
14654     Result = LHSFX.div(RHSFX, &OpOverflow)
14655                   .convert(ResultFXSema, &ConversionOverflow);
14656     break;
14657   }
14658   case BO_Shl:
14659   case BO_Shr: {
14660     FixedPointSemantics LHSSema = LHSFX.getSemantics();
14661     llvm::APSInt RHSVal = RHSFX.getValue();
14662 
14663     unsigned ShiftBW =
14664         LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
14665     unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
14666     // Embedded-C 4.1.6.2.2:
14667     //   The right operand must be nonnegative and less than the total number
14668     //   of (nonpadding) bits of the fixed-point operand ...
14669     if (RHSVal.isNegative())
14670       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
14671     else if (Amt != RHSVal)
14672       Info.CCEDiag(E, diag::note_constexpr_large_shift)
14673           << RHSVal << E->getType() << ShiftBW;
14674 
14675     if (E->getOpcode() == BO_Shl)
14676       Result = LHSFX.shl(Amt, &OpOverflow);
14677     else
14678       Result = LHSFX.shr(Amt, &OpOverflow);
14679     break;
14680   }
14681   default:
14682     return false;
14683   }
14684   if (OpOverflow || ConversionOverflow) {
14685     if (Info.checkingForUndefinedBehavior())
14686       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14687                                        diag::warn_fixedpoint_constant_overflow)
14688         << Result.toString() << E->getType();
14689     if (!HandleOverflow(Info, E, Result, E->getType()))
14690       return false;
14691   }
14692   return Success(Result, E);
14693 }
14694 
14695 //===----------------------------------------------------------------------===//
14696 // Float Evaluation
14697 //===----------------------------------------------------------------------===//
14698 
14699 namespace {
14700 class FloatExprEvaluator
14701   : public ExprEvaluatorBase<FloatExprEvaluator> {
14702   APFloat &Result;
14703 public:
14704   FloatExprEvaluator(EvalInfo &info, APFloat &result)
14705     : ExprEvaluatorBaseTy(info), Result(result) {}
14706 
14707   bool Success(const APValue &V, const Expr *e) {
14708     Result = V.getFloat();
14709     return true;
14710   }
14711 
14712   bool ZeroInitialization(const Expr *E) {
14713     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
14714     return true;
14715   }
14716 
14717   bool VisitCallExpr(const CallExpr *E);
14718 
14719   bool VisitUnaryOperator(const UnaryOperator *E);
14720   bool VisitBinaryOperator(const BinaryOperator *E);
14721   bool VisitFloatingLiteral(const FloatingLiteral *E);
14722   bool VisitCastExpr(const CastExpr *E);
14723 
14724   bool VisitUnaryReal(const UnaryOperator *E);
14725   bool VisitUnaryImag(const UnaryOperator *E);
14726 
14727   // FIXME: Missing: array subscript of vector, member of vector
14728 };
14729 } // end anonymous namespace
14730 
14731 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
14732   assert(!E->isValueDependent());
14733   assert(E->isPRValue() && E->getType()->isRealFloatingType());
14734   return FloatExprEvaluator(Info, Result).Visit(E);
14735 }
14736 
14737 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
14738                                   QualType ResultTy,
14739                                   const Expr *Arg,
14740                                   bool SNaN,
14741                                   llvm::APFloat &Result) {
14742   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
14743   if (!S) return false;
14744 
14745   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
14746 
14747   llvm::APInt fill;
14748 
14749   // Treat empty strings as if they were zero.
14750   if (S->getString().empty())
14751     fill = llvm::APInt(32, 0);
14752   else if (S->getString().getAsInteger(0, fill))
14753     return false;
14754 
14755   if (Context.getTargetInfo().isNan2008()) {
14756     if (SNaN)
14757       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14758     else
14759       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14760   } else {
14761     // Prior to IEEE 754-2008, architectures were allowed to choose whether
14762     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
14763     // a different encoding to what became a standard in 2008, and for pre-
14764     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
14765     // sNaN. This is now known as "legacy NaN" encoding.
14766     if (SNaN)
14767       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14768     else
14769       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14770   }
14771 
14772   return true;
14773 }
14774 
14775 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
14776   if (!IsConstantEvaluatedBuiltinCall(E))
14777     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14778 
14779   switch (E->getBuiltinCallee()) {
14780   default:
14781     return false;
14782 
14783   case Builtin::BI__builtin_huge_val:
14784   case Builtin::BI__builtin_huge_valf:
14785   case Builtin::BI__builtin_huge_vall:
14786   case Builtin::BI__builtin_huge_valf16:
14787   case Builtin::BI__builtin_huge_valf128:
14788   case Builtin::BI__builtin_inf:
14789   case Builtin::BI__builtin_inff:
14790   case Builtin::BI__builtin_infl:
14791   case Builtin::BI__builtin_inff16:
14792   case Builtin::BI__builtin_inff128: {
14793     const llvm::fltSemantics &Sem =
14794       Info.Ctx.getFloatTypeSemantics(E->getType());
14795     Result = llvm::APFloat::getInf(Sem);
14796     return true;
14797   }
14798 
14799   case Builtin::BI__builtin_nans:
14800   case Builtin::BI__builtin_nansf:
14801   case Builtin::BI__builtin_nansl:
14802   case Builtin::BI__builtin_nansf16:
14803   case Builtin::BI__builtin_nansf128:
14804     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14805                                true, Result))
14806       return Error(E);
14807     return true;
14808 
14809   case Builtin::BI__builtin_nan:
14810   case Builtin::BI__builtin_nanf:
14811   case Builtin::BI__builtin_nanl:
14812   case Builtin::BI__builtin_nanf16:
14813   case Builtin::BI__builtin_nanf128:
14814     // If this is __builtin_nan() turn this into a nan, otherwise we
14815     // can't constant fold it.
14816     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14817                                false, Result))
14818       return Error(E);
14819     return true;
14820 
14821   case Builtin::BI__builtin_fabs:
14822   case Builtin::BI__builtin_fabsf:
14823   case Builtin::BI__builtin_fabsl:
14824   case Builtin::BI__builtin_fabsf128:
14825     // The C standard says "fabs raises no floating-point exceptions,
14826     // even if x is a signaling NaN. The returned value is independent of
14827     // the current rounding direction mode."  Therefore constant folding can
14828     // proceed without regard to the floating point settings.
14829     // Reference, WG14 N2478 F.10.4.3
14830     if (!EvaluateFloat(E->getArg(0), Result, Info))
14831       return false;
14832 
14833     if (Result.isNegative())
14834       Result.changeSign();
14835     return true;
14836 
14837   case Builtin::BI__arithmetic_fence:
14838     return EvaluateFloat(E->getArg(0), Result, Info);
14839 
14840   // FIXME: Builtin::BI__builtin_powi
14841   // FIXME: Builtin::BI__builtin_powif
14842   // FIXME: Builtin::BI__builtin_powil
14843 
14844   case Builtin::BI__builtin_copysign:
14845   case Builtin::BI__builtin_copysignf:
14846   case Builtin::BI__builtin_copysignl:
14847   case Builtin::BI__builtin_copysignf128: {
14848     APFloat RHS(0.);
14849     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14850         !EvaluateFloat(E->getArg(1), RHS, Info))
14851       return false;
14852     Result.copySign(RHS);
14853     return true;
14854   }
14855 
14856   case Builtin::BI__builtin_fmax:
14857   case Builtin::BI__builtin_fmaxf:
14858   case Builtin::BI__builtin_fmaxl:
14859   case Builtin::BI__builtin_fmaxf16:
14860   case Builtin::BI__builtin_fmaxf128: {
14861     // TODO: Handle sNaN.
14862     APFloat RHS(0.);
14863     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14864         !EvaluateFloat(E->getArg(1), RHS, Info))
14865       return false;
14866     // When comparing zeroes, return +0.0 if one of the zeroes is positive.
14867     if (Result.isZero() && RHS.isZero() && Result.isNegative())
14868       Result = RHS;
14869     else if (Result.isNaN() || RHS > Result)
14870       Result = RHS;
14871     return true;
14872   }
14873 
14874   case Builtin::BI__builtin_fmin:
14875   case Builtin::BI__builtin_fminf:
14876   case Builtin::BI__builtin_fminl:
14877   case Builtin::BI__builtin_fminf16:
14878   case Builtin::BI__builtin_fminf128: {
14879     // TODO: Handle sNaN.
14880     APFloat RHS(0.);
14881     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14882         !EvaluateFloat(E->getArg(1), RHS, Info))
14883       return false;
14884     // When comparing zeroes, return -0.0 if one of the zeroes is negative.
14885     if (Result.isZero() && RHS.isZero() && RHS.isNegative())
14886       Result = RHS;
14887     else if (Result.isNaN() || RHS < Result)
14888       Result = RHS;
14889     return true;
14890   }
14891   }
14892 }
14893 
14894 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14895   if (E->getSubExpr()->getType()->isAnyComplexType()) {
14896     ComplexValue CV;
14897     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14898       return false;
14899     Result = CV.FloatReal;
14900     return true;
14901   }
14902 
14903   return Visit(E->getSubExpr());
14904 }
14905 
14906 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14907   if (E->getSubExpr()->getType()->isAnyComplexType()) {
14908     ComplexValue CV;
14909     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14910       return false;
14911     Result = CV.FloatImag;
14912     return true;
14913   }
14914 
14915   VisitIgnoredValue(E->getSubExpr());
14916   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
14917   Result = llvm::APFloat::getZero(Sem);
14918   return true;
14919 }
14920 
14921 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14922   switch (E->getOpcode()) {
14923   default: return Error(E);
14924   case UO_Plus:
14925     return EvaluateFloat(E->getSubExpr(), Result, Info);
14926   case UO_Minus:
14927     // In C standard, WG14 N2478 F.3 p4
14928     // "the unary - raises no floating point exceptions,
14929     // even if the operand is signalling."
14930     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
14931       return false;
14932     Result.changeSign();
14933     return true;
14934   }
14935 }
14936 
14937 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14938   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14939     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14940 
14941   APFloat RHS(0.0);
14942   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
14943   if (!LHSOK && !Info.noteFailure())
14944     return false;
14945   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
14946          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
14947 }
14948 
14949 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14950   Result = E->getValue();
14951   return true;
14952 }
14953 
14954 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14955   const Expr* SubExpr = E->getSubExpr();
14956 
14957   switch (E->getCastKind()) {
14958   default:
14959     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14960 
14961   case CK_IntegralToFloating: {
14962     APSInt IntResult;
14963     const FPOptions FPO = E->getFPFeaturesInEffect(
14964                                   Info.Ctx.getLangOpts());
14965     return EvaluateInteger(SubExpr, IntResult, Info) &&
14966            HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14967                                 IntResult, E->getType(), Result);
14968   }
14969 
14970   case CK_FixedPointToFloating: {
14971     APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14972     if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
14973       return false;
14974     Result =
14975         FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
14976     return true;
14977   }
14978 
14979   case CK_FloatingCast: {
14980     if (!Visit(SubExpr))
14981       return false;
14982     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14983                                   Result);
14984   }
14985 
14986   case CK_FloatingComplexToReal: {
14987     ComplexValue V;
14988     if (!EvaluateComplex(SubExpr, V, Info))
14989       return false;
14990     Result = V.getComplexFloatReal();
14991     return true;
14992   }
14993   }
14994 }
14995 
14996 //===----------------------------------------------------------------------===//
14997 // Complex Evaluation (for float and integer)
14998 //===----------------------------------------------------------------------===//
14999 
15000 namespace {
15001 class ComplexExprEvaluator
15002   : public ExprEvaluatorBase<ComplexExprEvaluator> {
15003   ComplexValue &Result;
15004 
15005 public:
15006   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
15007     : ExprEvaluatorBaseTy(info), Result(Result) {}
15008 
15009   bool Success(const APValue &V, const Expr *e) {
15010     Result.setFrom(V);
15011     return true;
15012   }
15013 
15014   bool ZeroInitialization(const Expr *E);
15015 
15016   //===--------------------------------------------------------------------===//
15017   //                            Visitor Methods
15018   //===--------------------------------------------------------------------===//
15019 
15020   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
15021   bool VisitCastExpr(const CastExpr *E);
15022   bool VisitBinaryOperator(const BinaryOperator *E);
15023   bool VisitUnaryOperator(const UnaryOperator *E);
15024   bool VisitInitListExpr(const InitListExpr *E);
15025   bool VisitCallExpr(const CallExpr *E);
15026 };
15027 } // end anonymous namespace
15028 
15029 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
15030                             EvalInfo &Info) {
15031   assert(!E->isValueDependent());
15032   assert(E->isPRValue() && E->getType()->isAnyComplexType());
15033   return ComplexExprEvaluator(Info, Result).Visit(E);
15034 }
15035 
15036 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
15037   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
15038   if (ElemTy->isRealFloatingType()) {
15039     Result.makeComplexFloat();
15040     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
15041     Result.FloatReal = Zero;
15042     Result.FloatImag = Zero;
15043   } else {
15044     Result.makeComplexInt();
15045     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
15046     Result.IntReal = Zero;
15047     Result.IntImag = Zero;
15048   }
15049   return true;
15050 }
15051 
15052 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
15053   const Expr* SubExpr = E->getSubExpr();
15054 
15055   if (SubExpr->getType()->isRealFloatingType()) {
15056     Result.makeComplexFloat();
15057     APFloat &Imag = Result.FloatImag;
15058     if (!EvaluateFloat(SubExpr, Imag, Info))
15059       return false;
15060 
15061     Result.FloatReal = APFloat(Imag.getSemantics());
15062     return true;
15063   } else {
15064     assert(SubExpr->getType()->isIntegerType() &&
15065            "Unexpected imaginary literal.");
15066 
15067     Result.makeComplexInt();
15068     APSInt &Imag = Result.IntImag;
15069     if (!EvaluateInteger(SubExpr, Imag, Info))
15070       return false;
15071 
15072     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
15073     return true;
15074   }
15075 }
15076 
15077 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
15078 
15079   switch (E->getCastKind()) {
15080   case CK_BitCast:
15081   case CK_BaseToDerived:
15082   case CK_DerivedToBase:
15083   case CK_UncheckedDerivedToBase:
15084   case CK_Dynamic:
15085   case CK_ToUnion:
15086   case CK_ArrayToPointerDecay:
15087   case CK_FunctionToPointerDecay:
15088   case CK_NullToPointer:
15089   case CK_NullToMemberPointer:
15090   case CK_BaseToDerivedMemberPointer:
15091   case CK_DerivedToBaseMemberPointer:
15092   case CK_MemberPointerToBoolean:
15093   case CK_ReinterpretMemberPointer:
15094   case CK_ConstructorConversion:
15095   case CK_IntegralToPointer:
15096   case CK_PointerToIntegral:
15097   case CK_PointerToBoolean:
15098   case CK_ToVoid:
15099   case CK_VectorSplat:
15100   case CK_IntegralCast:
15101   case CK_BooleanToSignedIntegral:
15102   case CK_IntegralToBoolean:
15103   case CK_IntegralToFloating:
15104   case CK_FloatingToIntegral:
15105   case CK_FloatingToBoolean:
15106   case CK_FloatingCast:
15107   case CK_CPointerToObjCPointerCast:
15108   case CK_BlockPointerToObjCPointerCast:
15109   case CK_AnyPointerToBlockPointerCast:
15110   case CK_ObjCObjectLValueCast:
15111   case CK_FloatingComplexToReal:
15112   case CK_FloatingComplexToBoolean:
15113   case CK_IntegralComplexToReal:
15114   case CK_IntegralComplexToBoolean:
15115   case CK_ARCProduceObject:
15116   case CK_ARCConsumeObject:
15117   case CK_ARCReclaimReturnedObject:
15118   case CK_ARCExtendBlockObject:
15119   case CK_CopyAndAutoreleaseBlockObject:
15120   case CK_BuiltinFnToFnPtr:
15121   case CK_ZeroToOCLOpaqueType:
15122   case CK_NonAtomicToAtomic:
15123   case CK_AddressSpaceConversion:
15124   case CK_IntToOCLSampler:
15125   case CK_FloatingToFixedPoint:
15126   case CK_FixedPointToFloating:
15127   case CK_FixedPointCast:
15128   case CK_FixedPointToBoolean:
15129   case CK_FixedPointToIntegral:
15130   case CK_IntegralToFixedPoint:
15131   case CK_MatrixCast:
15132   case CK_HLSLVectorTruncation:
15133     llvm_unreachable("invalid cast kind for complex value");
15134 
15135   case CK_LValueToRValue:
15136   case CK_AtomicToNonAtomic:
15137   case CK_NoOp:
15138   case CK_LValueToRValueBitCast:
15139   case CK_HLSLArrayRValue:
15140     return ExprEvaluatorBaseTy::VisitCastExpr(E);
15141 
15142   case CK_Dependent:
15143   case CK_LValueBitCast:
15144   case CK_UserDefinedConversion:
15145     return Error(E);
15146 
15147   case CK_FloatingRealToComplex: {
15148     APFloat &Real = Result.FloatReal;
15149     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
15150       return false;
15151 
15152     Result.makeComplexFloat();
15153     Result.FloatImag = APFloat(Real.getSemantics());
15154     return true;
15155   }
15156 
15157   case CK_FloatingComplexCast: {
15158     if (!Visit(E->getSubExpr()))
15159       return false;
15160 
15161     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
15162     QualType From
15163       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
15164 
15165     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
15166            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
15167   }
15168 
15169   case CK_FloatingComplexToIntegralComplex: {
15170     if (!Visit(E->getSubExpr()))
15171       return false;
15172 
15173     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
15174     QualType From
15175       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
15176     Result.makeComplexInt();
15177     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
15178                                 To, Result.IntReal) &&
15179            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
15180                                 To, Result.IntImag);
15181   }
15182 
15183   case CK_IntegralRealToComplex: {
15184     APSInt &Real = Result.IntReal;
15185     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
15186       return false;
15187 
15188     Result.makeComplexInt();
15189     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
15190     return true;
15191   }
15192 
15193   case CK_IntegralComplexCast: {
15194     if (!Visit(E->getSubExpr()))
15195       return false;
15196 
15197     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
15198     QualType From
15199       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
15200 
15201     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
15202     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
15203     return true;
15204   }
15205 
15206   case CK_IntegralComplexToFloatingComplex: {
15207     if (!Visit(E->getSubExpr()))
15208       return false;
15209 
15210     const FPOptions FPO = E->getFPFeaturesInEffect(
15211                                   Info.Ctx.getLangOpts());
15212     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
15213     QualType From
15214       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
15215     Result.makeComplexFloat();
15216     return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
15217                                 To, Result.FloatReal) &&
15218            HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
15219                                 To, Result.FloatImag);
15220   }
15221   }
15222 
15223   llvm_unreachable("unknown cast resulting in complex value");
15224 }
15225 
15226 void HandleComplexComplexMul(APFloat A, APFloat B, APFloat C, APFloat D,
15227                              APFloat &ResR, APFloat &ResI) {
15228   // This is an implementation of complex multiplication according to the
15229   // constraints laid out in C11 Annex G. The implementation uses the
15230   // following naming scheme:
15231   //   (a + ib) * (c + id)
15232 
15233   APFloat AC = A * C;
15234   APFloat BD = B * D;
15235   APFloat AD = A * D;
15236   APFloat BC = B * C;
15237   ResR = AC - BD;
15238   ResI = AD + BC;
15239   if (ResR.isNaN() && ResI.isNaN()) {
15240     bool Recalc = false;
15241     if (A.isInfinity() || B.isInfinity()) {
15242       A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0),
15243                             A);
15244       B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0),
15245                             B);
15246       if (C.isNaN())
15247         C = APFloat::copySign(APFloat(C.getSemantics()), C);
15248       if (D.isNaN())
15249         D = APFloat::copySign(APFloat(D.getSemantics()), D);
15250       Recalc = true;
15251     }
15252     if (C.isInfinity() || D.isInfinity()) {
15253       C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0),
15254                             C);
15255       D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0),
15256                             D);
15257       if (A.isNaN())
15258         A = APFloat::copySign(APFloat(A.getSemantics()), A);
15259       if (B.isNaN())
15260         B = APFloat::copySign(APFloat(B.getSemantics()), B);
15261       Recalc = true;
15262     }
15263     if (!Recalc && (AC.isInfinity() || BD.isInfinity() || AD.isInfinity() ||
15264                     BC.isInfinity())) {
15265       if (A.isNaN())
15266         A = APFloat::copySign(APFloat(A.getSemantics()), A);
15267       if (B.isNaN())
15268         B = APFloat::copySign(APFloat(B.getSemantics()), B);
15269       if (C.isNaN())
15270         C = APFloat::copySign(APFloat(C.getSemantics()), C);
15271       if (D.isNaN())
15272         D = APFloat::copySign(APFloat(D.getSemantics()), D);
15273       Recalc = true;
15274     }
15275     if (Recalc) {
15276       ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
15277       ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
15278     }
15279   }
15280 }
15281 
15282 void HandleComplexComplexDiv(APFloat A, APFloat B, APFloat C, APFloat D,
15283                              APFloat &ResR, APFloat &ResI) {
15284   // This is an implementation of complex division according to the
15285   // constraints laid out in C11 Annex G. The implementation uses the
15286   // following naming scheme:
15287   //   (a + ib) / (c + id)
15288 
15289   int DenomLogB = 0;
15290   APFloat MaxCD = maxnum(abs(C), abs(D));
15291   if (MaxCD.isFinite()) {
15292     DenomLogB = ilogb(MaxCD);
15293     C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
15294     D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
15295   }
15296   APFloat Denom = C * C + D * D;
15297   ResR =
15298       scalbn((A * C + B * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven);
15299   ResI =
15300       scalbn((B * C - A * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven);
15301   if (ResR.isNaN() && ResI.isNaN()) {
15302     if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
15303       ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
15304       ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
15305     } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
15306                D.isFinite()) {
15307       A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0),
15308                             A);
15309       B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0),
15310                             B);
15311       ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
15312       ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
15313     } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
15314       C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0),
15315                             C);
15316       D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0),
15317                             D);
15318       ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
15319       ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
15320     }
15321   }
15322 }
15323 
15324 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
15325   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
15326     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
15327 
15328   // Track whether the LHS or RHS is real at the type system level. When this is
15329   // the case we can simplify our evaluation strategy.
15330   bool LHSReal = false, RHSReal = false;
15331 
15332   bool LHSOK;
15333   if (E->getLHS()->getType()->isRealFloatingType()) {
15334     LHSReal = true;
15335     APFloat &Real = Result.FloatReal;
15336     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
15337     if (LHSOK) {
15338       Result.makeComplexFloat();
15339       Result.FloatImag = APFloat(Real.getSemantics());
15340     }
15341   } else {
15342     LHSOK = Visit(E->getLHS());
15343   }
15344   if (!LHSOK && !Info.noteFailure())
15345     return false;
15346 
15347   ComplexValue RHS;
15348   if (E->getRHS()->getType()->isRealFloatingType()) {
15349     RHSReal = true;
15350     APFloat &Real = RHS.FloatReal;
15351     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
15352       return false;
15353     RHS.makeComplexFloat();
15354     RHS.FloatImag = APFloat(Real.getSemantics());
15355   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
15356     return false;
15357 
15358   assert(!(LHSReal && RHSReal) &&
15359          "Cannot have both operands of a complex operation be real.");
15360   switch (E->getOpcode()) {
15361   default: return Error(E);
15362   case BO_Add:
15363     if (Result.isComplexFloat()) {
15364       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
15365                                        APFloat::rmNearestTiesToEven);
15366       if (LHSReal)
15367         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
15368       else if (!RHSReal)
15369         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
15370                                          APFloat::rmNearestTiesToEven);
15371     } else {
15372       Result.getComplexIntReal() += RHS.getComplexIntReal();
15373       Result.getComplexIntImag() += RHS.getComplexIntImag();
15374     }
15375     break;
15376   case BO_Sub:
15377     if (Result.isComplexFloat()) {
15378       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
15379                                             APFloat::rmNearestTiesToEven);
15380       if (LHSReal) {
15381         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
15382         Result.getComplexFloatImag().changeSign();
15383       } else if (!RHSReal) {
15384         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
15385                                               APFloat::rmNearestTiesToEven);
15386       }
15387     } else {
15388       Result.getComplexIntReal() -= RHS.getComplexIntReal();
15389       Result.getComplexIntImag() -= RHS.getComplexIntImag();
15390     }
15391     break;
15392   case BO_Mul:
15393     if (Result.isComplexFloat()) {
15394       // This is an implementation of complex multiplication according to the
15395       // constraints laid out in C11 Annex G. The implementation uses the
15396       // following naming scheme:
15397       //   (a + ib) * (c + id)
15398       ComplexValue LHS = Result;
15399       APFloat &A = LHS.getComplexFloatReal();
15400       APFloat &B = LHS.getComplexFloatImag();
15401       APFloat &C = RHS.getComplexFloatReal();
15402       APFloat &D = RHS.getComplexFloatImag();
15403       APFloat &ResR = Result.getComplexFloatReal();
15404       APFloat &ResI = Result.getComplexFloatImag();
15405       if (LHSReal) {
15406         assert(!RHSReal && "Cannot have two real operands for a complex op!");
15407         ResR = A;
15408         ResI = A;
15409         // ResR = A * C;
15410         // ResI = A * D;
15411         if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, C) ||
15412             !handleFloatFloatBinOp(Info, E, ResI, BO_Mul, D))
15413           return false;
15414       } else if (RHSReal) {
15415         // ResR = C * A;
15416         // ResI = C * B;
15417         ResR = C;
15418         ResI = C;
15419         if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, A) ||
15420             !handleFloatFloatBinOp(Info, E, ResI, BO_Mul, B))
15421           return false;
15422       } else {
15423         HandleComplexComplexMul(A, B, C, D, ResR, ResI);
15424       }
15425     } else {
15426       ComplexValue LHS = Result;
15427       Result.getComplexIntReal() =
15428         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
15429          LHS.getComplexIntImag() * RHS.getComplexIntImag());
15430       Result.getComplexIntImag() =
15431         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
15432          LHS.getComplexIntImag() * RHS.getComplexIntReal());
15433     }
15434     break;
15435   case BO_Div:
15436     if (Result.isComplexFloat()) {
15437       // This is an implementation of complex division according to the
15438       // constraints laid out in C11 Annex G. The implementation uses the
15439       // following naming scheme:
15440       //   (a + ib) / (c + id)
15441       ComplexValue LHS = Result;
15442       APFloat &A = LHS.getComplexFloatReal();
15443       APFloat &B = LHS.getComplexFloatImag();
15444       APFloat &C = RHS.getComplexFloatReal();
15445       APFloat &D = RHS.getComplexFloatImag();
15446       APFloat &ResR = Result.getComplexFloatReal();
15447       APFloat &ResI = Result.getComplexFloatImag();
15448       if (RHSReal) {
15449         ResR = A;
15450         ResI = B;
15451         // ResR = A / C;
15452         // ResI = B / C;
15453         if (!handleFloatFloatBinOp(Info, E, ResR, BO_Div, C) ||
15454             !handleFloatFloatBinOp(Info, E, ResI, BO_Div, C))
15455           return false;
15456       } else {
15457         if (LHSReal) {
15458           // No real optimizations we can do here, stub out with zero.
15459           B = APFloat::getZero(A.getSemantics());
15460         }
15461         HandleComplexComplexDiv(A, B, C, D, ResR, ResI);
15462       }
15463     } else {
15464       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
15465         return Error(E, diag::note_expr_divide_by_zero);
15466 
15467       ComplexValue LHS = Result;
15468       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
15469         RHS.getComplexIntImag() * RHS.getComplexIntImag();
15470       Result.getComplexIntReal() =
15471         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
15472          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
15473       Result.getComplexIntImag() =
15474         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
15475          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
15476     }
15477     break;
15478   }
15479 
15480   return true;
15481 }
15482 
15483 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
15484   // Get the operand value into 'Result'.
15485   if (!Visit(E->getSubExpr()))
15486     return false;
15487 
15488   switch (E->getOpcode()) {
15489   default:
15490     return Error(E);
15491   case UO_Extension:
15492     return true;
15493   case UO_Plus:
15494     // The result is always just the subexpr.
15495     return true;
15496   case UO_Minus:
15497     if (Result.isComplexFloat()) {
15498       Result.getComplexFloatReal().changeSign();
15499       Result.getComplexFloatImag().changeSign();
15500     }
15501     else {
15502       Result.getComplexIntReal() = -Result.getComplexIntReal();
15503       Result.getComplexIntImag() = -Result.getComplexIntImag();
15504     }
15505     return true;
15506   case UO_Not:
15507     if (Result.isComplexFloat())
15508       Result.getComplexFloatImag().changeSign();
15509     else
15510       Result.getComplexIntImag() = -Result.getComplexIntImag();
15511     return true;
15512   }
15513 }
15514 
15515 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
15516   if (E->getNumInits() == 2) {
15517     if (E->getType()->isComplexType()) {
15518       Result.makeComplexFloat();
15519       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
15520         return false;
15521       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
15522         return false;
15523     } else {
15524       Result.makeComplexInt();
15525       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
15526         return false;
15527       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
15528         return false;
15529     }
15530     return true;
15531   }
15532   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
15533 }
15534 
15535 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
15536   if (!IsConstantEvaluatedBuiltinCall(E))
15537     return ExprEvaluatorBaseTy::VisitCallExpr(E);
15538 
15539   switch (E->getBuiltinCallee()) {
15540   case Builtin::BI__builtin_complex:
15541     Result.makeComplexFloat();
15542     if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
15543       return false;
15544     if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
15545       return false;
15546     return true;
15547 
15548   default:
15549     return false;
15550   }
15551 }
15552 
15553 //===----------------------------------------------------------------------===//
15554 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
15555 // implicit conversion.
15556 //===----------------------------------------------------------------------===//
15557 
15558 namespace {
15559 class AtomicExprEvaluator :
15560     public ExprEvaluatorBase<AtomicExprEvaluator> {
15561   const LValue *This;
15562   APValue &Result;
15563 public:
15564   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
15565       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
15566 
15567   bool Success(const APValue &V, const Expr *E) {
15568     Result = V;
15569     return true;
15570   }
15571 
15572   bool ZeroInitialization(const Expr *E) {
15573     ImplicitValueInitExpr VIE(
15574         E->getType()->castAs<AtomicType>()->getValueType());
15575     // For atomic-qualified class (and array) types in C++, initialize the
15576     // _Atomic-wrapped subobject directly, in-place.
15577     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
15578                 : Evaluate(Result, Info, &VIE);
15579   }
15580 
15581   bool VisitCastExpr(const CastExpr *E) {
15582     switch (E->getCastKind()) {
15583     default:
15584       return ExprEvaluatorBaseTy::VisitCastExpr(E);
15585     case CK_NullToPointer:
15586       VisitIgnoredValue(E->getSubExpr());
15587       return ZeroInitialization(E);
15588     case CK_NonAtomicToAtomic:
15589       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
15590                   : Evaluate(Result, Info, E->getSubExpr());
15591     }
15592   }
15593 };
15594 } // end anonymous namespace
15595 
15596 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
15597                            EvalInfo &Info) {
15598   assert(!E->isValueDependent());
15599   assert(E->isPRValue() && E->getType()->isAtomicType());
15600   return AtomicExprEvaluator(Info, This, Result).Visit(E);
15601 }
15602 
15603 //===----------------------------------------------------------------------===//
15604 // Void expression evaluation, primarily for a cast to void on the LHS of a
15605 // comma operator
15606 //===----------------------------------------------------------------------===//
15607 
15608 namespace {
15609 class VoidExprEvaluator
15610   : public ExprEvaluatorBase<VoidExprEvaluator> {
15611 public:
15612   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
15613 
15614   bool Success(const APValue &V, const Expr *e) { return true; }
15615 
15616   bool ZeroInitialization(const Expr *E) { return true; }
15617 
15618   bool VisitCastExpr(const CastExpr *E) {
15619     switch (E->getCastKind()) {
15620     default:
15621       return ExprEvaluatorBaseTy::VisitCastExpr(E);
15622     case CK_ToVoid:
15623       VisitIgnoredValue(E->getSubExpr());
15624       return true;
15625     }
15626   }
15627 
15628   bool VisitCallExpr(const CallExpr *E) {
15629     if (!IsConstantEvaluatedBuiltinCall(E))
15630       return ExprEvaluatorBaseTy::VisitCallExpr(E);
15631 
15632     switch (E->getBuiltinCallee()) {
15633     case Builtin::BI__assume:
15634     case Builtin::BI__builtin_assume:
15635       // The argument is not evaluated!
15636       return true;
15637 
15638     case Builtin::BI__builtin_operator_delete:
15639       return HandleOperatorDeleteCall(Info, E);
15640 
15641     default:
15642       return false;
15643     }
15644   }
15645 
15646   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
15647 };
15648 } // end anonymous namespace
15649 
15650 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
15651   // We cannot speculatively evaluate a delete expression.
15652   if (Info.SpeculativeEvaluationDepth)
15653     return false;
15654 
15655   FunctionDecl *OperatorDelete = E->getOperatorDelete();
15656   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
15657     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15658         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
15659     return false;
15660   }
15661 
15662   const Expr *Arg = E->getArgument();
15663 
15664   LValue Pointer;
15665   if (!EvaluatePointer(Arg, Pointer, Info))
15666     return false;
15667   if (Pointer.Designator.Invalid)
15668     return false;
15669 
15670   // Deleting a null pointer has no effect.
15671   if (Pointer.isNullPointer()) {
15672     // This is the only case where we need to produce an extension warning:
15673     // the only other way we can succeed is if we find a dynamic allocation,
15674     // and we will have warned when we allocated it in that case.
15675     if (!Info.getLangOpts().CPlusPlus20)
15676       Info.CCEDiag(E, diag::note_constexpr_new);
15677     return true;
15678   }
15679 
15680   std::optional<DynAlloc *> Alloc = CheckDeleteKind(
15681       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
15682   if (!Alloc)
15683     return false;
15684   QualType AllocType = Pointer.Base.getDynamicAllocType();
15685 
15686   // For the non-array case, the designator must be empty if the static type
15687   // does not have a virtual destructor.
15688   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
15689       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
15690     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
15691         << Arg->getType()->getPointeeType() << AllocType;
15692     return false;
15693   }
15694 
15695   // For a class type with a virtual destructor, the selected operator delete
15696   // is the one looked up when building the destructor.
15697   if (!E->isArrayForm() && !E->isGlobalDelete()) {
15698     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
15699     if (VirtualDelete &&
15700         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
15701       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15702           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
15703       return false;
15704     }
15705   }
15706 
15707   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
15708                          (*Alloc)->Value, AllocType))
15709     return false;
15710 
15711   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
15712     // The element was already erased. This means the destructor call also
15713     // deleted the object.
15714     // FIXME: This probably results in undefined behavior before we get this
15715     // far, and should be diagnosed elsewhere first.
15716     Info.FFDiag(E, diag::note_constexpr_double_delete);
15717     return false;
15718   }
15719 
15720   return true;
15721 }
15722 
15723 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
15724   assert(!E->isValueDependent());
15725   assert(E->isPRValue() && E->getType()->isVoidType());
15726   return VoidExprEvaluator(Info).Visit(E);
15727 }
15728 
15729 //===----------------------------------------------------------------------===//
15730 // Top level Expr::EvaluateAsRValue method.
15731 //===----------------------------------------------------------------------===//
15732 
15733 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
15734   assert(!E->isValueDependent());
15735   // In C, function designators are not lvalues, but we evaluate them as if they
15736   // are.
15737   QualType T = E->getType();
15738   if (E->isGLValue() || T->isFunctionType()) {
15739     LValue LV;
15740     if (!EvaluateLValue(E, LV, Info))
15741       return false;
15742     LV.moveInto(Result);
15743   } else if (T->isVectorType()) {
15744     if (!EvaluateVector(E, Result, Info))
15745       return false;
15746   } else if (T->isIntegralOrEnumerationType()) {
15747     if (!IntExprEvaluator(Info, Result).Visit(E))
15748       return false;
15749   } else if (T->hasPointerRepresentation()) {
15750     LValue LV;
15751     if (!EvaluatePointer(E, LV, Info))
15752       return false;
15753     LV.moveInto(Result);
15754   } else if (T->isRealFloatingType()) {
15755     llvm::APFloat F(0.0);
15756     if (!EvaluateFloat(E, F, Info))
15757       return false;
15758     Result = APValue(F);
15759   } else if (T->isAnyComplexType()) {
15760     ComplexValue C;
15761     if (!EvaluateComplex(E, C, Info))
15762       return false;
15763     C.moveInto(Result);
15764   } else if (T->isFixedPointType()) {
15765     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
15766   } else if (T->isMemberPointerType()) {
15767     MemberPtr P;
15768     if (!EvaluateMemberPointer(E, P, Info))
15769       return false;
15770     P.moveInto(Result);
15771     return true;
15772   } else if (T->isArrayType()) {
15773     LValue LV;
15774     APValue &Value =
15775         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15776     if (!EvaluateArray(E, LV, Value, Info))
15777       return false;
15778     Result = Value;
15779   } else if (T->isRecordType()) {
15780     LValue LV;
15781     APValue &Value =
15782         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15783     if (!EvaluateRecord(E, LV, Value, Info))
15784       return false;
15785     Result = Value;
15786   } else if (T->isVoidType()) {
15787     if (!Info.getLangOpts().CPlusPlus11)
15788       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
15789         << E->getType();
15790     if (!EvaluateVoid(E, Info))
15791       return false;
15792   } else if (T->isAtomicType()) {
15793     QualType Unqual = T.getAtomicUnqualifiedType();
15794     if (Unqual->isArrayType() || Unqual->isRecordType()) {
15795       LValue LV;
15796       APValue &Value = Info.CurrentCall->createTemporary(
15797           E, Unqual, ScopeKind::FullExpression, LV);
15798       if (!EvaluateAtomic(E, &LV, Value, Info))
15799         return false;
15800       Result = Value;
15801     } else {
15802       if (!EvaluateAtomic(E, nullptr, Result, Info))
15803         return false;
15804     }
15805   } else if (Info.getLangOpts().CPlusPlus11) {
15806     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
15807     return false;
15808   } else {
15809     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
15810     return false;
15811   }
15812 
15813   return true;
15814 }
15815 
15816 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
15817 /// cases, the in-place evaluation is essential, since later initializers for
15818 /// an object can indirectly refer to subobjects which were initialized earlier.
15819 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
15820                             const Expr *E, bool AllowNonLiteralTypes) {
15821   assert(!E->isValueDependent());
15822 
15823   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
15824     return false;
15825 
15826   if (E->isPRValue()) {
15827     // Evaluate arrays and record types in-place, so that later initializers can
15828     // refer to earlier-initialized members of the object.
15829     QualType T = E->getType();
15830     if (T->isArrayType())
15831       return EvaluateArray(E, This, Result, Info);
15832     else if (T->isRecordType())
15833       return EvaluateRecord(E, This, Result, Info);
15834     else if (T->isAtomicType()) {
15835       QualType Unqual = T.getAtomicUnqualifiedType();
15836       if (Unqual->isArrayType() || Unqual->isRecordType())
15837         return EvaluateAtomic(E, &This, Result, Info);
15838     }
15839   }
15840 
15841   // For any other type, in-place evaluation is unimportant.
15842   return Evaluate(Result, Info, E);
15843 }
15844 
15845 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15846 /// lvalue-to-rvalue cast if it is an lvalue.
15847 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
15848   assert(!E->isValueDependent());
15849 
15850   if (E->getType().isNull())
15851     return false;
15852 
15853   if (!CheckLiteralType(Info, E))
15854     return false;
15855 
15856   if (Info.EnableNewConstInterp) {
15857     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
15858       return false;
15859     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
15860                                    ConstantExprKind::Normal);
15861   }
15862 
15863   if (!::Evaluate(Result, Info, E))
15864     return false;
15865 
15866   // Implicit lvalue-to-rvalue cast.
15867   if (E->isGLValue()) {
15868     LValue LV;
15869     LV.setFrom(Info.Ctx, Result);
15870     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
15871       return false;
15872   }
15873 
15874   // Check this core constant expression is a constant expression.
15875   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
15876                                  ConstantExprKind::Normal) &&
15877          CheckMemoryLeaks(Info);
15878 }
15879 
15880 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
15881                                  const ASTContext &Ctx, bool &IsConst) {
15882   // Fast-path evaluations of integer literals, since we sometimes see files
15883   // containing vast quantities of these.
15884   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
15885     Result.Val = APValue(APSInt(L->getValue(),
15886                                 L->getType()->isUnsignedIntegerType()));
15887     IsConst = true;
15888     return true;
15889   }
15890 
15891   if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) {
15892     Result.Val = APValue(APSInt(APInt(1, L->getValue())));
15893     IsConst = true;
15894     return true;
15895   }
15896 
15897   if (const auto *CE = dyn_cast<ConstantExpr>(Exp)) {
15898     if (CE->hasAPValueResult()) {
15899       APValue APV = CE->getAPValueResult();
15900       if (!APV.isLValue()) {
15901         Result.Val = std::move(APV);
15902         IsConst = true;
15903         return true;
15904       }
15905     }
15906 
15907     // The SubExpr is usually just an IntegerLiteral.
15908     return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst);
15909   }
15910 
15911   // This case should be rare, but we need to check it before we check on
15912   // the type below.
15913   if (Exp->getType().isNull()) {
15914     IsConst = false;
15915     return true;
15916   }
15917 
15918   return false;
15919 }
15920 
15921 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
15922                                       Expr::SideEffectsKind SEK) {
15923   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
15924          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
15925 }
15926 
15927 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
15928                              const ASTContext &Ctx, EvalInfo &Info) {
15929   assert(!E->isValueDependent());
15930   bool IsConst;
15931   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
15932     return IsConst;
15933 
15934   return EvaluateAsRValue(Info, E, Result.Val);
15935 }
15936 
15937 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
15938                           const ASTContext &Ctx,
15939                           Expr::SideEffectsKind AllowSideEffects,
15940                           EvalInfo &Info) {
15941   assert(!E->isValueDependent());
15942   if (!E->getType()->isIntegralOrEnumerationType())
15943     return false;
15944 
15945   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
15946       !ExprResult.Val.isInt() ||
15947       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15948     return false;
15949 
15950   return true;
15951 }
15952 
15953 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
15954                                  const ASTContext &Ctx,
15955                                  Expr::SideEffectsKind AllowSideEffects,
15956                                  EvalInfo &Info) {
15957   assert(!E->isValueDependent());
15958   if (!E->getType()->isFixedPointType())
15959     return false;
15960 
15961   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
15962     return false;
15963 
15964   if (!ExprResult.Val.isFixedPoint() ||
15965       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15966     return false;
15967 
15968   return true;
15969 }
15970 
15971 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
15972 /// any crazy technique (that has nothing to do with language standards) that
15973 /// we want to.  If this function returns true, it returns the folded constant
15974 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15975 /// will be applied to the result.
15976 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
15977                             bool InConstantContext) const {
15978   assert(!isValueDependent() &&
15979          "Expression evaluator can't be called on a dependent expression.");
15980   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
15981   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15982   Info.InConstantContext = InConstantContext;
15983   return ::EvaluateAsRValue(this, Result, Ctx, Info);
15984 }
15985 
15986 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
15987                                       bool InConstantContext) const {
15988   assert(!isValueDependent() &&
15989          "Expression evaluator can't be called on a dependent expression.");
15990   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
15991   EvalResult Scratch;
15992   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
15993          HandleConversionToBool(Scratch.Val, Result);
15994 }
15995 
15996 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15997                          SideEffectsKind AllowSideEffects,
15998                          bool InConstantContext) const {
15999   assert(!isValueDependent() &&
16000          "Expression evaluator can't be called on a dependent expression.");
16001   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
16002   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
16003   Info.InConstantContext = InConstantContext;
16004   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
16005 }
16006 
16007 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
16008                                 SideEffectsKind AllowSideEffects,
16009                                 bool InConstantContext) const {
16010   assert(!isValueDependent() &&
16011          "Expression evaluator can't be called on a dependent expression.");
16012   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
16013   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
16014   Info.InConstantContext = InConstantContext;
16015   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
16016 }
16017 
16018 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
16019                            SideEffectsKind AllowSideEffects,
16020                            bool InConstantContext) const {
16021   assert(!isValueDependent() &&
16022          "Expression evaluator can't be called on a dependent expression.");
16023 
16024   if (!getType()->isRealFloatingType())
16025     return false;
16026 
16027   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
16028   EvalResult ExprResult;
16029   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
16030       !ExprResult.Val.isFloat() ||
16031       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
16032     return false;
16033 
16034   Result = ExprResult.Val.getFloat();
16035   return true;
16036 }
16037 
16038 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
16039                             bool InConstantContext) const {
16040   assert(!isValueDependent() &&
16041          "Expression evaluator can't be called on a dependent expression.");
16042 
16043   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
16044   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
16045   Info.InConstantContext = InConstantContext;
16046   LValue LV;
16047   CheckedTemporaries CheckedTemps;
16048   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
16049       Result.HasSideEffects ||
16050       !CheckLValueConstantExpression(Info, getExprLoc(),
16051                                      Ctx.getLValueReferenceType(getType()), LV,
16052                                      ConstantExprKind::Normal, CheckedTemps))
16053     return false;
16054 
16055   LV.moveInto(Result.Val);
16056   return true;
16057 }
16058 
16059 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
16060                                 APValue DestroyedValue, QualType Type,
16061                                 SourceLocation Loc, Expr::EvalStatus &EStatus,
16062                                 bool IsConstantDestruction) {
16063   EvalInfo Info(Ctx, EStatus,
16064                 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
16065                                       : EvalInfo::EM_ConstantFold);
16066   Info.setEvaluatingDecl(Base, DestroyedValue,
16067                          EvalInfo::EvaluatingDeclKind::Dtor);
16068   Info.InConstantContext = IsConstantDestruction;
16069 
16070   LValue LVal;
16071   LVal.set(Base);
16072 
16073   if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
16074       EStatus.HasSideEffects)
16075     return false;
16076 
16077   if (!Info.discardCleanups())
16078     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
16079 
16080   return true;
16081 }
16082 
16083 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
16084                                   ConstantExprKind Kind) const {
16085   assert(!isValueDependent() &&
16086          "Expression evaluator can't be called on a dependent expression.");
16087   bool IsConst;
16088   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue())
16089     return true;
16090 
16091   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
16092   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
16093   EvalInfo Info(Ctx, Result, EM);
16094   Info.InConstantContext = true;
16095 
16096   if (Info.EnableNewConstInterp) {
16097     if (!Info.Ctx.getInterpContext().evaluate(Info, this, Result.Val))
16098       return false;
16099     return CheckConstantExpression(Info, getExprLoc(),
16100                                    getStorageType(Ctx, this), Result.Val, Kind);
16101   }
16102 
16103   // The type of the object we're initializing is 'const T' for a class NTTP.
16104   QualType T = getType();
16105   if (Kind == ConstantExprKind::ClassTemplateArgument)
16106     T.addConst();
16107 
16108   // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
16109   // represent the result of the evaluation. CheckConstantExpression ensures
16110   // this doesn't escape.
16111   MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
16112   APValue::LValueBase Base(&BaseMTE);
16113   Info.setEvaluatingDecl(Base, Result.Val);
16114 
16115   if (Info.EnableNewConstInterp) {
16116     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, this, Result.Val))
16117       return false;
16118   } else {
16119     LValue LVal;
16120     LVal.set(Base);
16121     // C++23 [intro.execution]/p5
16122     // A full-expression is [...] a constant-expression
16123     // So we need to make sure temporary objects are destroyed after having
16124     // evaluating the expression (per C++23 [class.temporary]/p4).
16125     FullExpressionRAII Scope(Info);
16126     if (!::EvaluateInPlace(Result.Val, Info, LVal, this) ||
16127         Result.HasSideEffects || !Scope.destroy())
16128       return false;
16129 
16130     if (!Info.discardCleanups())
16131       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
16132   }
16133 
16134   if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
16135                                Result.Val, Kind))
16136     return false;
16137   if (!CheckMemoryLeaks(Info))
16138     return false;
16139 
16140   // If this is a class template argument, it's required to have constant
16141   // destruction too.
16142   if (Kind == ConstantExprKind::ClassTemplateArgument &&
16143       (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
16144                             true) ||
16145        Result.HasSideEffects)) {
16146     // FIXME: Prefix a note to indicate that the problem is lack of constant
16147     // destruction.
16148     return false;
16149   }
16150 
16151   return true;
16152 }
16153 
16154 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
16155                                  const VarDecl *VD,
16156                                  SmallVectorImpl<PartialDiagnosticAt> &Notes,
16157                                  bool IsConstantInitialization) const {
16158   assert(!isValueDependent() &&
16159          "Expression evaluator can't be called on a dependent expression.");
16160 
16161   llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
16162     std::string Name;
16163     llvm::raw_string_ostream OS(Name);
16164     VD->printQualifiedName(OS);
16165     return Name;
16166   });
16167 
16168   Expr::EvalStatus EStatus;
16169   EStatus.Diag = &Notes;
16170 
16171   EvalInfo Info(Ctx, EStatus,
16172                 (IsConstantInitialization &&
16173                  (Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23))
16174                     ? EvalInfo::EM_ConstantExpression
16175                     : EvalInfo::EM_ConstantFold);
16176   Info.setEvaluatingDecl(VD, Value);
16177   Info.InConstantContext = IsConstantInitialization;
16178 
16179   SourceLocation DeclLoc = VD->getLocation();
16180   QualType DeclTy = VD->getType();
16181 
16182   if (Info.EnableNewConstInterp) {
16183     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
16184     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
16185       return false;
16186 
16187     return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
16188                                    ConstantExprKind::Normal);
16189   } else {
16190     LValue LVal;
16191     LVal.set(VD);
16192 
16193     {
16194       // C++23 [intro.execution]/p5
16195       // A full-expression is ... an init-declarator ([dcl.decl]) or a
16196       // mem-initializer.
16197       // So we need to make sure temporary objects are destroyed after having
16198       // evaluated the expression (per C++23 [class.temporary]/p4).
16199       //
16200       // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the
16201       // serialization code calls ParmVarDecl::getDefaultArg() which strips the
16202       // outermost FullExpr, such as ExprWithCleanups.
16203       FullExpressionRAII Scope(Info);
16204       if (!EvaluateInPlace(Value, Info, LVal, this,
16205                            /*AllowNonLiteralTypes=*/true) ||
16206           EStatus.HasSideEffects)
16207         return false;
16208     }
16209 
16210     // At this point, any lifetime-extended temporaries are completely
16211     // initialized.
16212     Info.performLifetimeExtension();
16213 
16214     if (!Info.discardCleanups())
16215       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
16216   }
16217 
16218   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
16219                                  ConstantExprKind::Normal) &&
16220          CheckMemoryLeaks(Info);
16221 }
16222 
16223 bool VarDecl::evaluateDestruction(
16224     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
16225   Expr::EvalStatus EStatus;
16226   EStatus.Diag = &Notes;
16227 
16228   // Only treat the destruction as constant destruction if we formally have
16229   // constant initialization (or are usable in a constant expression).
16230   bool IsConstantDestruction = hasConstantInitialization();
16231 
16232   // Make a copy of the value for the destructor to mutate, if we know it.
16233   // Otherwise, treat the value as default-initialized; if the destructor works
16234   // anyway, then the destruction is constant (and must be essentially empty).
16235   APValue DestroyedValue;
16236   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
16237     DestroyedValue = *getEvaluatedValue();
16238   else if (!handleDefaultInitValue(getType(), DestroyedValue))
16239     return false;
16240 
16241   if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
16242                            getType(), getLocation(), EStatus,
16243                            IsConstantDestruction) ||
16244       EStatus.HasSideEffects)
16245     return false;
16246 
16247   ensureEvaluatedStmt()->HasConstantDestruction = true;
16248   return true;
16249 }
16250 
16251 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
16252 /// constant folded, but discard the result.
16253 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
16254   assert(!isValueDependent() &&
16255          "Expression evaluator can't be called on a dependent expression.");
16256 
16257   EvalResult Result;
16258   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
16259          !hasUnacceptableSideEffect(Result, SEK);
16260 }
16261 
16262 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
16263                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
16264   assert(!isValueDependent() &&
16265          "Expression evaluator can't be called on a dependent expression.");
16266 
16267   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
16268   EvalResult EVResult;
16269   EVResult.Diag = Diag;
16270   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16271   Info.InConstantContext = true;
16272 
16273   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
16274   (void)Result;
16275   assert(Result && "Could not evaluate expression");
16276   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
16277 
16278   return EVResult.Val.getInt();
16279 }
16280 
16281 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
16282     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
16283   assert(!isValueDependent() &&
16284          "Expression evaluator can't be called on a dependent expression.");
16285 
16286   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
16287   EvalResult EVResult;
16288   EVResult.Diag = Diag;
16289   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16290   Info.InConstantContext = true;
16291   Info.CheckingForUndefinedBehavior = true;
16292 
16293   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
16294   (void)Result;
16295   assert(Result && "Could not evaluate expression");
16296   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
16297 
16298   return EVResult.Val.getInt();
16299 }
16300 
16301 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
16302   assert(!isValueDependent() &&
16303          "Expression evaluator can't be called on a dependent expression.");
16304 
16305   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
16306   bool IsConst;
16307   EvalResult EVResult;
16308   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
16309     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16310     Info.CheckingForUndefinedBehavior = true;
16311     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
16312   }
16313 }
16314 
16315 bool Expr::EvalResult::isGlobalLValue() const {
16316   assert(Val.isLValue());
16317   return IsGlobalLValue(Val.getLValueBase());
16318 }
16319 
16320 /// isIntegerConstantExpr - this recursive routine will test if an expression is
16321 /// an integer constant expression.
16322 
16323 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
16324 /// comma, etc
16325 
16326 // CheckICE - This function does the fundamental ICE checking: the returned
16327 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
16328 // and a (possibly null) SourceLocation indicating the location of the problem.
16329 //
16330 // Note that to reduce code duplication, this helper does no evaluation
16331 // itself; the caller checks whether the expression is evaluatable, and
16332 // in the rare cases where CheckICE actually cares about the evaluated
16333 // value, it calls into Evaluate.
16334 
16335 namespace {
16336 
16337 enum ICEKind {
16338   /// This expression is an ICE.
16339   IK_ICE,
16340   /// This expression is not an ICE, but if it isn't evaluated, it's
16341   /// a legal subexpression for an ICE. This return value is used to handle
16342   /// the comma operator in C99 mode, and non-constant subexpressions.
16343   IK_ICEIfUnevaluated,
16344   /// This expression is not an ICE, and is not a legal subexpression for one.
16345   IK_NotICE
16346 };
16347 
16348 struct ICEDiag {
16349   ICEKind Kind;
16350   SourceLocation Loc;
16351 
16352   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
16353 };
16354 
16355 }
16356 
16357 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
16358 
16359 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
16360 
16361 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
16362   Expr::EvalResult EVResult;
16363   Expr::EvalStatus Status;
16364   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16365 
16366   Info.InConstantContext = true;
16367   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
16368       !EVResult.Val.isInt())
16369     return ICEDiag(IK_NotICE, E->getBeginLoc());
16370 
16371   return NoDiag();
16372 }
16373 
16374 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
16375   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
16376   if (!E->getType()->isIntegralOrEnumerationType())
16377     return ICEDiag(IK_NotICE, E->getBeginLoc());
16378 
16379   switch (E->getStmtClass()) {
16380 #define ABSTRACT_STMT(Node)
16381 #define STMT(Node, Base) case Expr::Node##Class:
16382 #define EXPR(Node, Base)
16383 #include "clang/AST/StmtNodes.inc"
16384   case Expr::PredefinedExprClass:
16385   case Expr::FloatingLiteralClass:
16386   case Expr::ImaginaryLiteralClass:
16387   case Expr::StringLiteralClass:
16388   case Expr::ArraySubscriptExprClass:
16389   case Expr::MatrixSubscriptExprClass:
16390   case Expr::ArraySectionExprClass:
16391   case Expr::OMPArrayShapingExprClass:
16392   case Expr::OMPIteratorExprClass:
16393   case Expr::MemberExprClass:
16394   case Expr::CompoundAssignOperatorClass:
16395   case Expr::CompoundLiteralExprClass:
16396   case Expr::ExtVectorElementExprClass:
16397   case Expr::DesignatedInitExprClass:
16398   case Expr::ArrayInitLoopExprClass:
16399   case Expr::ArrayInitIndexExprClass:
16400   case Expr::NoInitExprClass:
16401   case Expr::DesignatedInitUpdateExprClass:
16402   case Expr::ImplicitValueInitExprClass:
16403   case Expr::ParenListExprClass:
16404   case Expr::VAArgExprClass:
16405   case Expr::AddrLabelExprClass:
16406   case Expr::StmtExprClass:
16407   case Expr::CXXMemberCallExprClass:
16408   case Expr::CUDAKernelCallExprClass:
16409   case Expr::CXXAddrspaceCastExprClass:
16410   case Expr::CXXDynamicCastExprClass:
16411   case Expr::CXXTypeidExprClass:
16412   case Expr::CXXUuidofExprClass:
16413   case Expr::MSPropertyRefExprClass:
16414   case Expr::MSPropertySubscriptExprClass:
16415   case Expr::CXXNullPtrLiteralExprClass:
16416   case Expr::UserDefinedLiteralClass:
16417   case Expr::CXXThisExprClass:
16418   case Expr::CXXThrowExprClass:
16419   case Expr::CXXNewExprClass:
16420   case Expr::CXXDeleteExprClass:
16421   case Expr::CXXPseudoDestructorExprClass:
16422   case Expr::UnresolvedLookupExprClass:
16423   case Expr::TypoExprClass:
16424   case Expr::RecoveryExprClass:
16425   case Expr::DependentScopeDeclRefExprClass:
16426   case Expr::CXXConstructExprClass:
16427   case Expr::CXXInheritedCtorInitExprClass:
16428   case Expr::CXXStdInitializerListExprClass:
16429   case Expr::CXXBindTemporaryExprClass:
16430   case Expr::ExprWithCleanupsClass:
16431   case Expr::CXXTemporaryObjectExprClass:
16432   case Expr::CXXUnresolvedConstructExprClass:
16433   case Expr::CXXDependentScopeMemberExprClass:
16434   case Expr::UnresolvedMemberExprClass:
16435   case Expr::ObjCStringLiteralClass:
16436   case Expr::ObjCBoxedExprClass:
16437   case Expr::ObjCArrayLiteralClass:
16438   case Expr::ObjCDictionaryLiteralClass:
16439   case Expr::ObjCEncodeExprClass:
16440   case Expr::ObjCMessageExprClass:
16441   case Expr::ObjCSelectorExprClass:
16442   case Expr::ObjCProtocolExprClass:
16443   case Expr::ObjCIvarRefExprClass:
16444   case Expr::ObjCPropertyRefExprClass:
16445   case Expr::ObjCSubscriptRefExprClass:
16446   case Expr::ObjCIsaExprClass:
16447   case Expr::ObjCAvailabilityCheckExprClass:
16448   case Expr::ShuffleVectorExprClass:
16449   case Expr::ConvertVectorExprClass:
16450   case Expr::BlockExprClass:
16451   case Expr::NoStmtClass:
16452   case Expr::OpaqueValueExprClass:
16453   case Expr::PackExpansionExprClass:
16454   case Expr::SubstNonTypeTemplateParmPackExprClass:
16455   case Expr::FunctionParmPackExprClass:
16456   case Expr::AsTypeExprClass:
16457   case Expr::ObjCIndirectCopyRestoreExprClass:
16458   case Expr::MaterializeTemporaryExprClass:
16459   case Expr::PseudoObjectExprClass:
16460   case Expr::AtomicExprClass:
16461   case Expr::LambdaExprClass:
16462   case Expr::CXXFoldExprClass:
16463   case Expr::CoawaitExprClass:
16464   case Expr::DependentCoawaitExprClass:
16465   case Expr::CoyieldExprClass:
16466   case Expr::SYCLUniqueStableNameExprClass:
16467   case Expr::CXXParenListInitExprClass:
16468     return ICEDiag(IK_NotICE, E->getBeginLoc());
16469 
16470   case Expr::InitListExprClass: {
16471     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
16472     // form "T x = { a };" is equivalent to "T x = a;".
16473     // Unless we're initializing a reference, T is a scalar as it is known to be
16474     // of integral or enumeration type.
16475     if (E->isPRValue())
16476       if (cast<InitListExpr>(E)->getNumInits() == 1)
16477         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
16478     return ICEDiag(IK_NotICE, E->getBeginLoc());
16479   }
16480 
16481   case Expr::SizeOfPackExprClass:
16482   case Expr::GNUNullExprClass:
16483   case Expr::SourceLocExprClass:
16484   case Expr::EmbedExprClass:
16485     return NoDiag();
16486 
16487   case Expr::PackIndexingExprClass:
16488     return CheckICE(cast<PackIndexingExpr>(E)->getSelectedExpr(), Ctx);
16489 
16490   case Expr::SubstNonTypeTemplateParmExprClass:
16491     return
16492       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
16493 
16494   case Expr::ConstantExprClass:
16495     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
16496 
16497   case Expr::ParenExprClass:
16498     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
16499   case Expr::GenericSelectionExprClass:
16500     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
16501   case Expr::IntegerLiteralClass:
16502   case Expr::FixedPointLiteralClass:
16503   case Expr::CharacterLiteralClass:
16504   case Expr::ObjCBoolLiteralExprClass:
16505   case Expr::CXXBoolLiteralExprClass:
16506   case Expr::CXXScalarValueInitExprClass:
16507   case Expr::TypeTraitExprClass:
16508   case Expr::ConceptSpecializationExprClass:
16509   case Expr::RequiresExprClass:
16510   case Expr::ArrayTypeTraitExprClass:
16511   case Expr::ExpressionTraitExprClass:
16512   case Expr::CXXNoexceptExprClass:
16513     return NoDiag();
16514   case Expr::CallExprClass:
16515   case Expr::CXXOperatorCallExprClass: {
16516     // C99 6.6/3 allows function calls within unevaluated subexpressions of
16517     // constant expressions, but they can never be ICEs because an ICE cannot
16518     // contain an operand of (pointer to) function type.
16519     const CallExpr *CE = cast<CallExpr>(E);
16520     if (CE->getBuiltinCallee())
16521       return CheckEvalInICE(E, Ctx);
16522     return ICEDiag(IK_NotICE, E->getBeginLoc());
16523   }
16524   case Expr::CXXRewrittenBinaryOperatorClass:
16525     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
16526                     Ctx);
16527   case Expr::DeclRefExprClass: {
16528     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
16529     if (isa<EnumConstantDecl>(D))
16530       return NoDiag();
16531 
16532     // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
16533     // integer variables in constant expressions:
16534     //
16535     // C++ 7.1.5.1p2
16536     //   A variable of non-volatile const-qualified integral or enumeration
16537     //   type initialized by an ICE can be used in ICEs.
16538     //
16539     // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
16540     // that mode, use of reference variables should not be allowed.
16541     const VarDecl *VD = dyn_cast<VarDecl>(D);
16542     if (VD && VD->isUsableInConstantExpressions(Ctx) &&
16543         !VD->getType()->isReferenceType())
16544       return NoDiag();
16545 
16546     return ICEDiag(IK_NotICE, E->getBeginLoc());
16547   }
16548   case Expr::UnaryOperatorClass: {
16549     const UnaryOperator *Exp = cast<UnaryOperator>(E);
16550     switch (Exp->getOpcode()) {
16551     case UO_PostInc:
16552     case UO_PostDec:
16553     case UO_PreInc:
16554     case UO_PreDec:
16555     case UO_AddrOf:
16556     case UO_Deref:
16557     case UO_Coawait:
16558       // C99 6.6/3 allows increment and decrement within unevaluated
16559       // subexpressions of constant expressions, but they can never be ICEs
16560       // because an ICE cannot contain an lvalue operand.
16561       return ICEDiag(IK_NotICE, E->getBeginLoc());
16562     case UO_Extension:
16563     case UO_LNot:
16564     case UO_Plus:
16565     case UO_Minus:
16566     case UO_Not:
16567     case UO_Real:
16568     case UO_Imag:
16569       return CheckICE(Exp->getSubExpr(), Ctx);
16570     }
16571     llvm_unreachable("invalid unary operator class");
16572   }
16573   case Expr::OffsetOfExprClass: {
16574     // Note that per C99, offsetof must be an ICE. And AFAIK, using
16575     // EvaluateAsRValue matches the proposed gcc behavior for cases like
16576     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
16577     // compliance: we should warn earlier for offsetof expressions with
16578     // array subscripts that aren't ICEs, and if the array subscripts
16579     // are ICEs, the value of the offsetof must be an integer constant.
16580     return CheckEvalInICE(E, Ctx);
16581   }
16582   case Expr::UnaryExprOrTypeTraitExprClass: {
16583     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
16584     if ((Exp->getKind() ==  UETT_SizeOf) &&
16585         Exp->getTypeOfArgument()->isVariableArrayType())
16586       return ICEDiag(IK_NotICE, E->getBeginLoc());
16587     return NoDiag();
16588   }
16589   case Expr::BinaryOperatorClass: {
16590     const BinaryOperator *Exp = cast<BinaryOperator>(E);
16591     switch (Exp->getOpcode()) {
16592     case BO_PtrMemD:
16593     case BO_PtrMemI:
16594     case BO_Assign:
16595     case BO_MulAssign:
16596     case BO_DivAssign:
16597     case BO_RemAssign:
16598     case BO_AddAssign:
16599     case BO_SubAssign:
16600     case BO_ShlAssign:
16601     case BO_ShrAssign:
16602     case BO_AndAssign:
16603     case BO_XorAssign:
16604     case BO_OrAssign:
16605       // C99 6.6/3 allows assignments within unevaluated subexpressions of
16606       // constant expressions, but they can never be ICEs because an ICE cannot
16607       // contain an lvalue operand.
16608       return ICEDiag(IK_NotICE, E->getBeginLoc());
16609 
16610     case BO_Mul:
16611     case BO_Div:
16612     case BO_Rem:
16613     case BO_Add:
16614     case BO_Sub:
16615     case BO_Shl:
16616     case BO_Shr:
16617     case BO_LT:
16618     case BO_GT:
16619     case BO_LE:
16620     case BO_GE:
16621     case BO_EQ:
16622     case BO_NE:
16623     case BO_And:
16624     case BO_Xor:
16625     case BO_Or:
16626     case BO_Comma:
16627     case BO_Cmp: {
16628       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
16629       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
16630       if (Exp->getOpcode() == BO_Div ||
16631           Exp->getOpcode() == BO_Rem) {
16632         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
16633         // we don't evaluate one.
16634         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
16635           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
16636           if (REval == 0)
16637             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16638           if (REval.isSigned() && REval.isAllOnes()) {
16639             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
16640             if (LEval.isMinSignedValue())
16641               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16642           }
16643         }
16644       }
16645       if (Exp->getOpcode() == BO_Comma) {
16646         if (Ctx.getLangOpts().C99) {
16647           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
16648           // if it isn't evaluated.
16649           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
16650             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16651         } else {
16652           // In both C89 and C++, commas in ICEs are illegal.
16653           return ICEDiag(IK_NotICE, E->getBeginLoc());
16654         }
16655       }
16656       return Worst(LHSResult, RHSResult);
16657     }
16658     case BO_LAnd:
16659     case BO_LOr: {
16660       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
16661       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
16662       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
16663         // Rare case where the RHS has a comma "side-effect"; we need
16664         // to actually check the condition to see whether the side
16665         // with the comma is evaluated.
16666         if ((Exp->getOpcode() == BO_LAnd) !=
16667             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
16668           return RHSResult;
16669         return NoDiag();
16670       }
16671 
16672       return Worst(LHSResult, RHSResult);
16673     }
16674     }
16675     llvm_unreachable("invalid binary operator kind");
16676   }
16677   case Expr::ImplicitCastExprClass:
16678   case Expr::CStyleCastExprClass:
16679   case Expr::CXXFunctionalCastExprClass:
16680   case Expr::CXXStaticCastExprClass:
16681   case Expr::CXXReinterpretCastExprClass:
16682   case Expr::CXXConstCastExprClass:
16683   case Expr::ObjCBridgedCastExprClass: {
16684     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
16685     if (isa<ExplicitCastExpr>(E)) {
16686       if (const FloatingLiteral *FL
16687             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
16688         unsigned DestWidth = Ctx.getIntWidth(E->getType());
16689         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
16690         APSInt IgnoredVal(DestWidth, !DestSigned);
16691         bool Ignored;
16692         // If the value does not fit in the destination type, the behavior is
16693         // undefined, so we are not required to treat it as a constant
16694         // expression.
16695         if (FL->getValue().convertToInteger(IgnoredVal,
16696                                             llvm::APFloat::rmTowardZero,
16697                                             &Ignored) & APFloat::opInvalidOp)
16698           return ICEDiag(IK_NotICE, E->getBeginLoc());
16699         return NoDiag();
16700       }
16701     }
16702     switch (cast<CastExpr>(E)->getCastKind()) {
16703     case CK_LValueToRValue:
16704     case CK_AtomicToNonAtomic:
16705     case CK_NonAtomicToAtomic:
16706     case CK_NoOp:
16707     case CK_IntegralToBoolean:
16708     case CK_IntegralCast:
16709       return CheckICE(SubExpr, Ctx);
16710     default:
16711       return ICEDiag(IK_NotICE, E->getBeginLoc());
16712     }
16713   }
16714   case Expr::BinaryConditionalOperatorClass: {
16715     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
16716     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
16717     if (CommonResult.Kind == IK_NotICE) return CommonResult;
16718     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16719     if (FalseResult.Kind == IK_NotICE) return FalseResult;
16720     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
16721     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
16722         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
16723     return FalseResult;
16724   }
16725   case Expr::ConditionalOperatorClass: {
16726     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
16727     // If the condition (ignoring parens) is a __builtin_constant_p call,
16728     // then only the true side is actually considered in an integer constant
16729     // expression, and it is fully evaluated.  This is an important GNU
16730     // extension.  See GCC PR38377 for discussion.
16731     if (const CallExpr *CallCE
16732         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
16733       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
16734         return CheckEvalInICE(E, Ctx);
16735     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
16736     if (CondResult.Kind == IK_NotICE)
16737       return CondResult;
16738 
16739     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
16740     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16741 
16742     if (TrueResult.Kind == IK_NotICE)
16743       return TrueResult;
16744     if (FalseResult.Kind == IK_NotICE)
16745       return FalseResult;
16746     if (CondResult.Kind == IK_ICEIfUnevaluated)
16747       return CondResult;
16748     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
16749       return NoDiag();
16750     // Rare case where the diagnostics depend on which side is evaluated
16751     // Note that if we get here, CondResult is 0, and at least one of
16752     // TrueResult and FalseResult is non-zero.
16753     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
16754       return FalseResult;
16755     return TrueResult;
16756   }
16757   case Expr::CXXDefaultArgExprClass:
16758     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
16759   case Expr::CXXDefaultInitExprClass:
16760     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
16761   case Expr::ChooseExprClass: {
16762     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
16763   }
16764   case Expr::BuiltinBitCastExprClass: {
16765     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
16766       return ICEDiag(IK_NotICE, E->getBeginLoc());
16767     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
16768   }
16769   }
16770 
16771   llvm_unreachable("Invalid StmtClass!");
16772 }
16773 
16774 /// Evaluate an expression as a C++11 integral constant expression.
16775 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
16776                                                     const Expr *E,
16777                                                     llvm::APSInt *Value,
16778                                                     SourceLocation *Loc) {
16779   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16780     if (Loc) *Loc = E->getExprLoc();
16781     return false;
16782   }
16783 
16784   APValue Result;
16785   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
16786     return false;
16787 
16788   if (!Result.isInt()) {
16789     if (Loc) *Loc = E->getExprLoc();
16790     return false;
16791   }
16792 
16793   if (Value) *Value = Result.getInt();
16794   return true;
16795 }
16796 
16797 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
16798                                  SourceLocation *Loc) const {
16799   assert(!isValueDependent() &&
16800          "Expression evaluator can't be called on a dependent expression.");
16801 
16802   ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
16803 
16804   if (Ctx.getLangOpts().CPlusPlus11)
16805     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
16806 
16807   ICEDiag D = CheckICE(this, Ctx);
16808   if (D.Kind != IK_ICE) {
16809     if (Loc) *Loc = D.Loc;
16810     return false;
16811   }
16812   return true;
16813 }
16814 
16815 std::optional<llvm::APSInt>
16816 Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const {
16817   if (isValueDependent()) {
16818     // Expression evaluator can't succeed on a dependent expression.
16819     return std::nullopt;
16820   }
16821 
16822   APSInt Value;
16823 
16824   if (Ctx.getLangOpts().CPlusPlus11) {
16825     if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
16826       return Value;
16827     return std::nullopt;
16828   }
16829 
16830   if (!isIntegerConstantExpr(Ctx, Loc))
16831     return std::nullopt;
16832 
16833   // The only possible side-effects here are due to UB discovered in the
16834   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
16835   // required to treat the expression as an ICE, so we produce the folded
16836   // value.
16837   EvalResult ExprResult;
16838   Expr::EvalStatus Status;
16839   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
16840   Info.InConstantContext = true;
16841 
16842   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
16843     llvm_unreachable("ICE cannot be evaluated!");
16844 
16845   return ExprResult.Val.getInt();
16846 }
16847 
16848 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
16849   assert(!isValueDependent() &&
16850          "Expression evaluator can't be called on a dependent expression.");
16851 
16852   return CheckICE(this, Ctx).Kind == IK_ICE;
16853 }
16854 
16855 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
16856                                SourceLocation *Loc) const {
16857   assert(!isValueDependent() &&
16858          "Expression evaluator can't be called on a dependent expression.");
16859 
16860   // We support this checking in C++98 mode in order to diagnose compatibility
16861   // issues.
16862   assert(Ctx.getLangOpts().CPlusPlus);
16863 
16864   // Build evaluation settings.
16865   Expr::EvalStatus Status;
16866   SmallVector<PartialDiagnosticAt, 8> Diags;
16867   Status.Diag = &Diags;
16868   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16869 
16870   APValue Scratch;
16871   bool IsConstExpr =
16872       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
16873       // FIXME: We don't produce a diagnostic for this, but the callers that
16874       // call us on arbitrary full-expressions should generally not care.
16875       Info.discardCleanups() && !Status.HasSideEffects;
16876 
16877   if (!Diags.empty()) {
16878     IsConstExpr = false;
16879     if (Loc) *Loc = Diags[0].first;
16880   } else if (!IsConstExpr) {
16881     // FIXME: This shouldn't happen.
16882     if (Loc) *Loc = getExprLoc();
16883   }
16884 
16885   return IsConstExpr;
16886 }
16887 
16888 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
16889                                     const FunctionDecl *Callee,
16890                                     ArrayRef<const Expr*> Args,
16891                                     const Expr *This) const {
16892   assert(!isValueDependent() &&
16893          "Expression evaluator can't be called on a dependent expression.");
16894 
16895   llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
16896     std::string Name;
16897     llvm::raw_string_ostream OS(Name);
16898     Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(),
16899                                  /*Qualified=*/true);
16900     return Name;
16901   });
16902 
16903   Expr::EvalStatus Status;
16904   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
16905   Info.InConstantContext = true;
16906 
16907   LValue ThisVal;
16908   const LValue *ThisPtr = nullptr;
16909   if (This) {
16910 #ifndef NDEBUG
16911     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
16912     assert(MD && "Don't provide `this` for non-methods.");
16913     assert(MD->isImplicitObjectMemberFunction() &&
16914            "Don't provide `this` for methods without an implicit object.");
16915 #endif
16916     if (!This->isValueDependent() &&
16917         EvaluateObjectArgument(Info, This, ThisVal) &&
16918         !Info.EvalStatus.HasSideEffects)
16919       ThisPtr = &ThisVal;
16920 
16921     // Ignore any side-effects from a failed evaluation. This is safe because
16922     // they can't interfere with any other argument evaluation.
16923     Info.EvalStatus.HasSideEffects = false;
16924   }
16925 
16926   CallRef Call = Info.CurrentCall->createCall(Callee);
16927   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
16928        I != E; ++I) {
16929     unsigned Idx = I - Args.begin();
16930     if (Idx >= Callee->getNumParams())
16931       break;
16932     const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
16933     if ((*I)->isValueDependent() ||
16934         !EvaluateCallArg(PVD, *I, Call, Info) ||
16935         Info.EvalStatus.HasSideEffects) {
16936       // If evaluation fails, throw away the argument entirely.
16937       if (APValue *Slot = Info.getParamSlot(Call, PVD))
16938         *Slot = APValue();
16939     }
16940 
16941     // Ignore any side-effects from a failed evaluation. This is safe because
16942     // they can't interfere with any other argument evaluation.
16943     Info.EvalStatus.HasSideEffects = false;
16944   }
16945 
16946   // Parameter cleanups happen in the caller and are not part of this
16947   // evaluation.
16948   Info.discardCleanups();
16949   Info.EvalStatus.HasSideEffects = false;
16950 
16951   // Build fake call to Callee.
16952   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This,
16953                        Call);
16954   // FIXME: Missing ExprWithCleanups in enable_if conditions?
16955   FullExpressionRAII Scope(Info);
16956   return Evaluate(Value, Info, this) && Scope.destroy() &&
16957          !Info.EvalStatus.HasSideEffects;
16958 }
16959 
16960 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
16961                                    SmallVectorImpl<
16962                                      PartialDiagnosticAt> &Diags) {
16963   // FIXME: It would be useful to check constexpr function templates, but at the
16964   // moment the constant expression evaluator cannot cope with the non-rigorous
16965   // ASTs which we build for dependent expressions.
16966   if (FD->isDependentContext())
16967     return true;
16968 
16969   llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
16970     std::string Name;
16971     llvm::raw_string_ostream OS(Name);
16972     FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(),
16973                              /*Qualified=*/true);
16974     return Name;
16975   });
16976 
16977   Expr::EvalStatus Status;
16978   Status.Diag = &Diags;
16979 
16980   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
16981   Info.InConstantContext = true;
16982   Info.CheckingPotentialConstantExpression = true;
16983 
16984   // The constexpr VM attempts to compile all methods to bytecode here.
16985   if (Info.EnableNewConstInterp) {
16986     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
16987     return Diags.empty();
16988   }
16989 
16990   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
16991   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
16992 
16993   // Fabricate an arbitrary expression on the stack and pretend that it
16994   // is a temporary being used as the 'this' pointer.
16995   LValue This;
16996   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
16997   This.set({&VIE, Info.CurrentCall->Index});
16998 
16999   ArrayRef<const Expr*> Args;
17000 
17001   APValue Scratch;
17002   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
17003     // Evaluate the call as a constant initializer, to allow the construction
17004     // of objects of non-literal types.
17005     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
17006     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
17007   } else {
17008     SourceLocation Loc = FD->getLocation();
17009     HandleFunctionCall(
17010         Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr,
17011         &VIE, Args, CallRef(), FD->getBody(), Info, Scratch,
17012         /*ResultSlot=*/nullptr);
17013   }
17014 
17015   return Diags.empty();
17016 }
17017 
17018 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
17019                                               const FunctionDecl *FD,
17020                                               SmallVectorImpl<
17021                                                 PartialDiagnosticAt> &Diags) {
17022   assert(!E->isValueDependent() &&
17023          "Expression evaluator can't be called on a dependent expression.");
17024 
17025   Expr::EvalStatus Status;
17026   Status.Diag = &Diags;
17027 
17028   EvalInfo Info(FD->getASTContext(), Status,
17029                 EvalInfo::EM_ConstantExpressionUnevaluated);
17030   Info.InConstantContext = true;
17031   Info.CheckingPotentialConstantExpression = true;
17032 
17033   // Fabricate a call stack frame to give the arguments a plausible cover story.
17034   CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr,
17035                        /*CallExpr=*/nullptr, CallRef());
17036 
17037   APValue ResultScratch;
17038   Evaluate(ResultScratch, Info, E);
17039   return Diags.empty();
17040 }
17041 
17042 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
17043                                  unsigned Type) const {
17044   if (!getType()->isPointerType())
17045     return false;
17046 
17047   Expr::EvalStatus Status;
17048   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
17049   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
17050 }
17051 
17052 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
17053                                   EvalInfo &Info, std::string *StringResult) {
17054   if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
17055     return false;
17056 
17057   LValue String;
17058 
17059   if (!EvaluatePointer(E, String, Info))
17060     return false;
17061 
17062   QualType CharTy = E->getType()->getPointeeType();
17063 
17064   // Fast path: if it's a string literal, search the string value.
17065   if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
17066           String.getLValueBase().dyn_cast<const Expr *>())) {
17067     StringRef Str = S->getBytes();
17068     int64_t Off = String.Offset.getQuantity();
17069     if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
17070         S->getCharByteWidth() == 1 &&
17071         // FIXME: Add fast-path for wchar_t too.
17072         Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
17073       Str = Str.substr(Off);
17074 
17075       StringRef::size_type Pos = Str.find(0);
17076       if (Pos != StringRef::npos)
17077         Str = Str.substr(0, Pos);
17078 
17079       Result = Str.size();
17080       if (StringResult)
17081         *StringResult = Str;
17082       return true;
17083     }
17084 
17085     // Fall through to slow path.
17086   }
17087 
17088   // Slow path: scan the bytes of the string looking for the terminating 0.
17089   for (uint64_t Strlen = 0; /**/; ++Strlen) {
17090     APValue Char;
17091     if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
17092         !Char.isInt())
17093       return false;
17094     if (!Char.getInt()) {
17095       Result = Strlen;
17096       return true;
17097     } else if (StringResult)
17098       StringResult->push_back(Char.getInt().getExtValue());
17099     if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
17100       return false;
17101   }
17102 }
17103 
17104 std::optional<std::string> Expr::tryEvaluateString(ASTContext &Ctx) const {
17105   Expr::EvalStatus Status;
17106   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
17107   uint64_t Result;
17108   std::string StringResult;
17109 
17110   if (EvaluateBuiltinStrLen(this, Result, Info, &StringResult))
17111     return StringResult;
17112   return {};
17113 }
17114 
17115 bool Expr::EvaluateCharRangeAsString(std::string &Result,
17116                                      const Expr *SizeExpression,
17117                                      const Expr *PtrExpression, ASTContext &Ctx,
17118                                      EvalResult &Status) const {
17119   LValue String;
17120   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
17121   Info.InConstantContext = true;
17122 
17123   FullExpressionRAII Scope(Info);
17124   APSInt SizeValue;
17125   if (!::EvaluateInteger(SizeExpression, SizeValue, Info))
17126     return false;
17127 
17128   uint64_t Size = SizeValue.getZExtValue();
17129 
17130   if (!::EvaluatePointer(PtrExpression, String, Info))
17131     return false;
17132 
17133   QualType CharTy = PtrExpression->getType()->getPointeeType();
17134   for (uint64_t I = 0; I < Size; ++I) {
17135     APValue Char;
17136     if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String,
17137                                         Char))
17138       return false;
17139 
17140     APSInt C = Char.getInt();
17141     Result.push_back(static_cast<char>(C.getExtValue()));
17142     if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1))
17143       return false;
17144   }
17145   if (!Scope.destroy())
17146     return false;
17147 
17148   if (!CheckMemoryLeaks(Info))
17149     return false;
17150 
17151   return true;
17152 }
17153 
17154 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
17155   Expr::EvalStatus Status;
17156   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
17157   return EvaluateBuiltinStrLen(this, Result, Info);
17158 }
17159