xref: /freebsd/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/DiagnosticSema.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "llvm/ADT/APFixedPoint.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/TimeProfiler.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cstring>
63 #include <functional>
64 #include <optional>
65 
66 #define DEBUG_TYPE "exprconstant"
67 
68 using namespace clang;
69 using llvm::APFixedPoint;
70 using llvm::APInt;
71 using llvm::APSInt;
72 using llvm::APFloat;
73 using llvm::FixedPointSemantics;
74 
75 namespace {
76   struct LValue;
77   class CallStackFrame;
78   class EvalInfo;
79 
80   using SourceLocExprScopeGuard =
81       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
82 
83   static QualType getType(APValue::LValueBase B) {
84     return B.getType();
85   }
86 
87   /// Get an LValue path entry, which is known to not be an array index, as a
88   /// field declaration.
89   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
90     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
91   }
92   /// Get an LValue path entry, which is known to not be an array index, as a
93   /// base class declaration.
94   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
95     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
96   }
97   /// Determine whether this LValue path entry for a base class names a virtual
98   /// base class.
99   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
100     return E.getAsBaseOrMember().getInt();
101   }
102 
103   /// Given an expression, determine the type used to store the result of
104   /// evaluating that expression.
105   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
106     if (E->isPRValue())
107       return E->getType();
108     return Ctx.getLValueReferenceType(E->getType());
109   }
110 
111   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
112   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
113     if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
114       return DirectCallee->getAttr<AllocSizeAttr>();
115     if (const Decl *IndirectCallee = CE->getCalleeDecl())
116       return IndirectCallee->getAttr<AllocSizeAttr>();
117     return nullptr;
118   }
119 
120   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
121   /// This will look through a single cast.
122   ///
123   /// Returns null if we couldn't unwrap a function with alloc_size.
124   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
125     if (!E->getType()->isPointerType())
126       return nullptr;
127 
128     E = E->IgnoreParens();
129     // If we're doing a variable assignment from e.g. malloc(N), there will
130     // probably be a cast of some kind. In exotic cases, we might also see a
131     // top-level ExprWithCleanups. Ignore them either way.
132     if (const auto *FE = dyn_cast<FullExpr>(E))
133       E = FE->getSubExpr()->IgnoreParens();
134 
135     if (const auto *Cast = dyn_cast<CastExpr>(E))
136       E = Cast->getSubExpr()->IgnoreParens();
137 
138     if (const auto *CE = dyn_cast<CallExpr>(E))
139       return getAllocSizeAttr(CE) ? CE : nullptr;
140     return nullptr;
141   }
142 
143   /// Determines whether or not the given Base contains a call to a function
144   /// with the alloc_size attribute.
145   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
146     const auto *E = Base.dyn_cast<const Expr *>();
147     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
148   }
149 
150   /// Determines whether the given kind of constant expression is only ever
151   /// used for name mangling. If so, it's permitted to reference things that we
152   /// can't generate code for (in particular, dllimported functions).
153   static bool isForManglingOnly(ConstantExprKind Kind) {
154     switch (Kind) {
155     case ConstantExprKind::Normal:
156     case ConstantExprKind::ClassTemplateArgument:
157     case ConstantExprKind::ImmediateInvocation:
158       // Note that non-type template arguments of class type are emitted as
159       // template parameter objects.
160       return false;
161 
162     case ConstantExprKind::NonClassTemplateArgument:
163       return true;
164     }
165     llvm_unreachable("unknown ConstantExprKind");
166   }
167 
168   static bool isTemplateArgument(ConstantExprKind Kind) {
169     switch (Kind) {
170     case ConstantExprKind::Normal:
171     case ConstantExprKind::ImmediateInvocation:
172       return false;
173 
174     case ConstantExprKind::ClassTemplateArgument:
175     case ConstantExprKind::NonClassTemplateArgument:
176       return true;
177     }
178     llvm_unreachable("unknown ConstantExprKind");
179   }
180 
181   /// The bound to claim that an array of unknown bound has.
182   /// The value in MostDerivedArraySize is undefined in this case. So, set it
183   /// to an arbitrary value that's likely to loudly break things if it's used.
184   static const uint64_t AssumedSizeForUnsizedArray =
185       std::numeric_limits<uint64_t>::max() / 2;
186 
187   /// Determines if an LValue with the given LValueBase will have an unsized
188   /// array in its designator.
189   /// Find the path length and type of the most-derived subobject in the given
190   /// path, and find the size of the containing array, if any.
191   static unsigned
192   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
193                            ArrayRef<APValue::LValuePathEntry> Path,
194                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
195                            bool &FirstEntryIsUnsizedArray) {
196     // This only accepts LValueBases from APValues, and APValues don't support
197     // arrays that lack size info.
198     assert(!isBaseAnAllocSizeCall(Base) &&
199            "Unsized arrays shouldn't appear here");
200     unsigned MostDerivedLength = 0;
201     Type = getType(Base);
202 
203     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
204       if (Type->isArrayType()) {
205         const ArrayType *AT = Ctx.getAsArrayType(Type);
206         Type = AT->getElementType();
207         MostDerivedLength = I + 1;
208         IsArray = true;
209 
210         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
211           ArraySize = CAT->getSize().getZExtValue();
212         } else {
213           assert(I == 0 && "unexpected unsized array designator");
214           FirstEntryIsUnsizedArray = true;
215           ArraySize = AssumedSizeForUnsizedArray;
216         }
217       } else if (Type->isAnyComplexType()) {
218         const ComplexType *CT = Type->castAs<ComplexType>();
219         Type = CT->getElementType();
220         ArraySize = 2;
221         MostDerivedLength = I + 1;
222         IsArray = true;
223       } else if (const FieldDecl *FD = getAsField(Path[I])) {
224         Type = FD->getType();
225         ArraySize = 0;
226         MostDerivedLength = I + 1;
227         IsArray = false;
228       } else {
229         // Path[I] describes a base class.
230         ArraySize = 0;
231         IsArray = false;
232       }
233     }
234     return MostDerivedLength;
235   }
236 
237   /// A path from a glvalue to a subobject of that glvalue.
238   struct SubobjectDesignator {
239     /// True if the subobject was named in a manner not supported by C++11. Such
240     /// lvalues can still be folded, but they are not core constant expressions
241     /// and we cannot perform lvalue-to-rvalue conversions on them.
242     unsigned Invalid : 1;
243 
244     /// Is this a pointer one past the end of an object?
245     unsigned IsOnePastTheEnd : 1;
246 
247     /// Indicator of whether the first entry is an unsized array.
248     unsigned FirstEntryIsAnUnsizedArray : 1;
249 
250     /// Indicator of whether the most-derived object is an array element.
251     unsigned MostDerivedIsArrayElement : 1;
252 
253     /// The length of the path to the most-derived object of which this is a
254     /// subobject.
255     unsigned MostDerivedPathLength : 28;
256 
257     /// The size of the array of which the most-derived object is an element.
258     /// This will always be 0 if the most-derived object is not an array
259     /// element. 0 is not an indicator of whether or not the most-derived object
260     /// is an array, however, because 0-length arrays are allowed.
261     ///
262     /// If the current array is an unsized array, the value of this is
263     /// undefined.
264     uint64_t MostDerivedArraySize;
265 
266     /// The type of the most derived object referred to by this address.
267     QualType MostDerivedType;
268 
269     typedef APValue::LValuePathEntry PathEntry;
270 
271     /// The entries on the path from the glvalue to the designated subobject.
272     SmallVector<PathEntry, 8> Entries;
273 
274     SubobjectDesignator() : Invalid(true) {}
275 
276     explicit SubobjectDesignator(QualType T)
277         : Invalid(false), IsOnePastTheEnd(false),
278           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
279           MostDerivedPathLength(0), MostDerivedArraySize(0),
280           MostDerivedType(T) {}
281 
282     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
283         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
284           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
285           MostDerivedPathLength(0), MostDerivedArraySize(0) {
286       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
287       if (!Invalid) {
288         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
289         ArrayRef<PathEntry> VEntries = V.getLValuePath();
290         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
291         if (V.getLValueBase()) {
292           bool IsArray = false;
293           bool FirstIsUnsizedArray = false;
294           MostDerivedPathLength = findMostDerivedSubobject(
295               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
296               MostDerivedType, IsArray, FirstIsUnsizedArray);
297           MostDerivedIsArrayElement = IsArray;
298           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
299         }
300       }
301     }
302 
303     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
304                   unsigned NewLength) {
305       if (Invalid)
306         return;
307 
308       assert(Base && "cannot truncate path for null pointer");
309       assert(NewLength <= Entries.size() && "not a truncation");
310 
311       if (NewLength == Entries.size())
312         return;
313       Entries.resize(NewLength);
314 
315       bool IsArray = false;
316       bool FirstIsUnsizedArray = false;
317       MostDerivedPathLength = findMostDerivedSubobject(
318           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
319           FirstIsUnsizedArray);
320       MostDerivedIsArrayElement = IsArray;
321       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
322     }
323 
324     void setInvalid() {
325       Invalid = true;
326       Entries.clear();
327     }
328 
329     /// Determine whether the most derived subobject is an array without a
330     /// known bound.
331     bool isMostDerivedAnUnsizedArray() const {
332       assert(!Invalid && "Calling this makes no sense on invalid designators");
333       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
334     }
335 
336     /// Determine what the most derived array's size is. Results in an assertion
337     /// failure if the most derived array lacks a size.
338     uint64_t getMostDerivedArraySize() const {
339       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
340       return MostDerivedArraySize;
341     }
342 
343     /// Determine whether this is a one-past-the-end pointer.
344     bool isOnePastTheEnd() const {
345       assert(!Invalid);
346       if (IsOnePastTheEnd)
347         return true;
348       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
349           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
350               MostDerivedArraySize)
351         return true;
352       return false;
353     }
354 
355     /// Get the range of valid index adjustments in the form
356     ///   {maximum value that can be subtracted from this pointer,
357     ///    maximum value that can be added to this pointer}
358     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
359       if (Invalid || isMostDerivedAnUnsizedArray())
360         return {0, 0};
361 
362       // [expr.add]p4: For the purposes of these operators, a pointer to a
363       // nonarray object behaves the same as a pointer to the first element of
364       // an array of length one with the type of the object as its element type.
365       bool IsArray = MostDerivedPathLength == Entries.size() &&
366                      MostDerivedIsArrayElement;
367       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
368                                     : (uint64_t)IsOnePastTheEnd;
369       uint64_t ArraySize =
370           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
371       return {ArrayIndex, ArraySize - ArrayIndex};
372     }
373 
374     /// Check that this refers to a valid subobject.
375     bool isValidSubobject() const {
376       if (Invalid)
377         return false;
378       return !isOnePastTheEnd();
379     }
380     /// Check that this refers to a valid subobject, and if not, produce a
381     /// relevant diagnostic and set the designator as invalid.
382     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
383 
384     /// Get the type of the designated object.
385     QualType getType(ASTContext &Ctx) const {
386       assert(!Invalid && "invalid designator has no subobject type");
387       return MostDerivedPathLength == Entries.size()
388                  ? MostDerivedType
389                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
390     }
391 
392     /// Update this designator to refer to the first element within this array.
393     void addArrayUnchecked(const ConstantArrayType *CAT) {
394       Entries.push_back(PathEntry::ArrayIndex(0));
395 
396       // This is a most-derived object.
397       MostDerivedType = CAT->getElementType();
398       MostDerivedIsArrayElement = true;
399       MostDerivedArraySize = CAT->getSize().getZExtValue();
400       MostDerivedPathLength = Entries.size();
401     }
402     /// Update this designator to refer to the first element within the array of
403     /// elements of type T. This is an array of unknown size.
404     void addUnsizedArrayUnchecked(QualType ElemTy) {
405       Entries.push_back(PathEntry::ArrayIndex(0));
406 
407       MostDerivedType = ElemTy;
408       MostDerivedIsArrayElement = true;
409       // The value in MostDerivedArraySize is undefined in this case. So, set it
410       // to an arbitrary value that's likely to loudly break things if it's
411       // used.
412       MostDerivedArraySize = AssumedSizeForUnsizedArray;
413       MostDerivedPathLength = Entries.size();
414     }
415     /// Update this designator to refer to the given base or member of this
416     /// object.
417     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
418       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
419 
420       // If this isn't a base class, it's a new most-derived object.
421       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
422         MostDerivedType = FD->getType();
423         MostDerivedIsArrayElement = false;
424         MostDerivedArraySize = 0;
425         MostDerivedPathLength = Entries.size();
426       }
427     }
428     /// Update this designator to refer to the given complex component.
429     void addComplexUnchecked(QualType EltTy, bool Imag) {
430       Entries.push_back(PathEntry::ArrayIndex(Imag));
431 
432       // This is technically a most-derived object, though in practice this
433       // is unlikely to matter.
434       MostDerivedType = EltTy;
435       MostDerivedIsArrayElement = true;
436       MostDerivedArraySize = 2;
437       MostDerivedPathLength = Entries.size();
438     }
439     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
440     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
441                                    const APSInt &N);
442     /// Add N to the address of this subobject.
443     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
444       if (Invalid || !N) return;
445       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
446       if (isMostDerivedAnUnsizedArray()) {
447         diagnoseUnsizedArrayPointerArithmetic(Info, E);
448         // Can't verify -- trust that the user is doing the right thing (or if
449         // not, trust that the caller will catch the bad behavior).
450         // FIXME: Should we reject if this overflows, at least?
451         Entries.back() = PathEntry::ArrayIndex(
452             Entries.back().getAsArrayIndex() + TruncatedN);
453         return;
454       }
455 
456       // [expr.add]p4: For the purposes of these operators, a pointer to a
457       // nonarray object behaves the same as a pointer to the first element of
458       // an array of length one with the type of the object as its element type.
459       bool IsArray = MostDerivedPathLength == Entries.size() &&
460                      MostDerivedIsArrayElement;
461       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
462                                     : (uint64_t)IsOnePastTheEnd;
463       uint64_t ArraySize =
464           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
465 
466       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
467         // Calculate the actual index in a wide enough type, so we can include
468         // it in the note.
469         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
470         (llvm::APInt&)N += ArrayIndex;
471         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
472         diagnosePointerArithmetic(Info, E, N);
473         setInvalid();
474         return;
475       }
476 
477       ArrayIndex += TruncatedN;
478       assert(ArrayIndex <= ArraySize &&
479              "bounds check succeeded for out-of-bounds index");
480 
481       if (IsArray)
482         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
483       else
484         IsOnePastTheEnd = (ArrayIndex != 0);
485     }
486   };
487 
488   /// A scope at the end of which an object can need to be destroyed.
489   enum class ScopeKind {
490     Block,
491     FullExpression,
492     Call
493   };
494 
495   /// A reference to a particular call and its arguments.
496   struct CallRef {
497     CallRef() : OrigCallee(), CallIndex(0), Version() {}
498     CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
499         : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
500 
501     explicit operator bool() const { return OrigCallee; }
502 
503     /// Get the parameter that the caller initialized, corresponding to the
504     /// given parameter in the callee.
505     const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
506       return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
507                         : PVD;
508     }
509 
510     /// The callee at the point where the arguments were evaluated. This might
511     /// be different from the actual callee (a different redeclaration, or a
512     /// virtual override), but this function's parameters are the ones that
513     /// appear in the parameter map.
514     const FunctionDecl *OrigCallee;
515     /// The call index of the frame that holds the argument values.
516     unsigned CallIndex;
517     /// The version of the parameters corresponding to this call.
518     unsigned Version;
519   };
520 
521   /// A stack frame in the constexpr call stack.
522   class CallStackFrame : public interp::Frame {
523   public:
524     EvalInfo &Info;
525 
526     /// Parent - The caller of this stack frame.
527     CallStackFrame *Caller;
528 
529     /// Callee - The function which was called.
530     const FunctionDecl *Callee;
531 
532     /// This - The binding for the this pointer in this call, if any.
533     const LValue *This;
534 
535     /// CallExpr - The syntactical structure of member function calls
536     const Expr *CallExpr;
537 
538     /// Information on how to find the arguments to this call. Our arguments
539     /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
540     /// key and this value as the version.
541     CallRef Arguments;
542 
543     /// Source location information about the default argument or default
544     /// initializer expression we're evaluating, if any.
545     CurrentSourceLocExprScope CurSourceLocExprScope;
546 
547     // Note that we intentionally use std::map here so that references to
548     // values are stable.
549     typedef std::pair<const void *, unsigned> MapKeyTy;
550     typedef std::map<MapKeyTy, APValue> MapTy;
551     /// Temporaries - Temporary lvalues materialized within this stack frame.
552     MapTy Temporaries;
553 
554     /// CallLoc - The location of the call expression for this call.
555     SourceLocation CallLoc;
556 
557     /// Index - The call index of this call.
558     unsigned Index;
559 
560     /// The stack of integers for tracking version numbers for temporaries.
561     SmallVector<unsigned, 2> TempVersionStack = {1};
562     unsigned CurTempVersion = TempVersionStack.back();
563 
564     unsigned getTempVersion() const { return TempVersionStack.back(); }
565 
566     void pushTempVersion() {
567       TempVersionStack.push_back(++CurTempVersion);
568     }
569 
570     void popTempVersion() {
571       TempVersionStack.pop_back();
572     }
573 
574     CallRef createCall(const FunctionDecl *Callee) {
575       return {Callee, Index, ++CurTempVersion};
576     }
577 
578     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
579     // on the overall stack usage of deeply-recursing constexpr evaluations.
580     // (We should cache this map rather than recomputing it repeatedly.)
581     // But let's try this and see how it goes; we can look into caching the map
582     // as a later change.
583 
584     /// LambdaCaptureFields - Mapping from captured variables/this to
585     /// corresponding data members in the closure class.
586     llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
587     FieldDecl *LambdaThisCaptureField = nullptr;
588 
589     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
590                    const FunctionDecl *Callee, const LValue *This,
591                    const Expr *CallExpr, CallRef Arguments);
592     ~CallStackFrame();
593 
594     // Return the temporary for Key whose version number is Version.
595     APValue *getTemporary(const void *Key, unsigned Version) {
596       MapKeyTy KV(Key, Version);
597       auto LB = Temporaries.lower_bound(KV);
598       if (LB != Temporaries.end() && LB->first == KV)
599         return &LB->second;
600       return nullptr;
601     }
602 
603     // Return the current temporary for Key in the map.
604     APValue *getCurrentTemporary(const void *Key) {
605       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
606       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607         return &std::prev(UB)->second;
608       return nullptr;
609     }
610 
611     // Return the version number of the current temporary for Key.
612     unsigned getCurrentTemporaryVersion(const void *Key) const {
613       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
614       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615         return std::prev(UB)->first.second;
616       return 0;
617     }
618 
619     /// Allocate storage for an object of type T in this stack frame.
620     /// Populates LV with a handle to the created object. Key identifies
621     /// the temporary within the stack frame, and must not be reused without
622     /// bumping the temporary version number.
623     template<typename KeyT>
624     APValue &createTemporary(const KeyT *Key, QualType T,
625                              ScopeKind Scope, LValue &LV);
626 
627     /// Allocate storage for a parameter of a function call made in this frame.
628     APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
629 
630     void describe(llvm::raw_ostream &OS) const override;
631 
632     Frame *getCaller() const override { return Caller; }
633     SourceLocation getCallLocation() const override { return CallLoc; }
634     const FunctionDecl *getCallee() const override { return Callee; }
635 
636     bool isStdFunction() const {
637       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638         if (DC->isStdNamespace())
639           return true;
640       return false;
641     }
642 
643   private:
644     APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645                          ScopeKind Scope);
646   };
647 
648   /// Temporarily override 'this'.
649   class ThisOverrideRAII {
650   public:
651     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652         : Frame(Frame), OldThis(Frame.This) {
653       if (Enable)
654         Frame.This = NewThis;
655     }
656     ~ThisOverrideRAII() {
657       Frame.This = OldThis;
658     }
659   private:
660     CallStackFrame &Frame;
661     const LValue *OldThis;
662   };
663 
664   // A shorthand time trace scope struct, prints source range, for example
665   // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
666   class ExprTimeTraceScope {
667   public:
668     ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
669         : TimeScope(Name, [E, &Ctx] {
670             return E->getSourceRange().printToString(Ctx.getSourceManager());
671           }) {}
672 
673   private:
674     llvm::TimeTraceScope TimeScope;
675   };
676 }
677 
678 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
679                               const LValue &This, QualType ThisType);
680 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
681                               APValue::LValueBase LVBase, APValue &Value,
682                               QualType T);
683 
684 namespace {
685   /// A cleanup, and a flag indicating whether it is lifetime-extended.
686   class Cleanup {
687     llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
688     APValue::LValueBase Base;
689     QualType T;
690 
691   public:
692     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
693             ScopeKind Scope)
694         : Value(Val, Scope), Base(Base), T(T) {}
695 
696     /// Determine whether this cleanup should be performed at the end of the
697     /// given kind of scope.
698     bool isDestroyedAtEndOf(ScopeKind K) const {
699       return (int)Value.getInt() >= (int)K;
700     }
701     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
702       if (RunDestructors) {
703         SourceLocation Loc;
704         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
705           Loc = VD->getLocation();
706         else if (const Expr *E = Base.dyn_cast<const Expr*>())
707           Loc = E->getExprLoc();
708         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
709       }
710       *Value.getPointer() = APValue();
711       return true;
712     }
713 
714     bool hasSideEffect() {
715       return T.isDestructedType();
716     }
717   };
718 
719   /// A reference to an object whose construction we are currently evaluating.
720   struct ObjectUnderConstruction {
721     APValue::LValueBase Base;
722     ArrayRef<APValue::LValuePathEntry> Path;
723     friend bool operator==(const ObjectUnderConstruction &LHS,
724                            const ObjectUnderConstruction &RHS) {
725       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
726     }
727     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
728       return llvm::hash_combine(Obj.Base, Obj.Path);
729     }
730   };
731   enum class ConstructionPhase {
732     None,
733     Bases,
734     AfterBases,
735     AfterFields,
736     Destroying,
737     DestroyingBases
738   };
739 }
740 
741 namespace llvm {
742 template<> struct DenseMapInfo<ObjectUnderConstruction> {
743   using Base = DenseMapInfo<APValue::LValueBase>;
744   static ObjectUnderConstruction getEmptyKey() {
745     return {Base::getEmptyKey(), {}}; }
746   static ObjectUnderConstruction getTombstoneKey() {
747     return {Base::getTombstoneKey(), {}};
748   }
749   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
750     return hash_value(Object);
751   }
752   static bool isEqual(const ObjectUnderConstruction &LHS,
753                       const ObjectUnderConstruction &RHS) {
754     return LHS == RHS;
755   }
756 };
757 }
758 
759 namespace {
760   /// A dynamically-allocated heap object.
761   struct DynAlloc {
762     /// The value of this heap-allocated object.
763     APValue Value;
764     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
765     /// or a CallExpr (the latter is for direct calls to operator new inside
766     /// std::allocator<T>::allocate).
767     const Expr *AllocExpr = nullptr;
768 
769     enum Kind {
770       New,
771       ArrayNew,
772       StdAllocator
773     };
774 
775     /// Get the kind of the allocation. This must match between allocation
776     /// and deallocation.
777     Kind getKind() const {
778       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
779         return NE->isArray() ? ArrayNew : New;
780       assert(isa<CallExpr>(AllocExpr));
781       return StdAllocator;
782     }
783   };
784 
785   struct DynAllocOrder {
786     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
787       return L.getIndex() < R.getIndex();
788     }
789   };
790 
791   /// EvalInfo - This is a private struct used by the evaluator to capture
792   /// information about a subexpression as it is folded.  It retains information
793   /// about the AST context, but also maintains information about the folded
794   /// expression.
795   ///
796   /// If an expression could be evaluated, it is still possible it is not a C
797   /// "integer constant expression" or constant expression.  If not, this struct
798   /// captures information about how and why not.
799   ///
800   /// One bit of information passed *into* the request for constant folding
801   /// indicates whether the subexpression is "evaluated" or not according to C
802   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
803   /// evaluate the expression regardless of what the RHS is, but C only allows
804   /// certain things in certain situations.
805   class EvalInfo : public interp::State {
806   public:
807     ASTContext &Ctx;
808 
809     /// EvalStatus - Contains information about the evaluation.
810     Expr::EvalStatus &EvalStatus;
811 
812     /// CurrentCall - The top of the constexpr call stack.
813     CallStackFrame *CurrentCall;
814 
815     /// CallStackDepth - The number of calls in the call stack right now.
816     unsigned CallStackDepth;
817 
818     /// NextCallIndex - The next call index to assign.
819     unsigned NextCallIndex;
820 
821     /// StepsLeft - The remaining number of evaluation steps we're permitted
822     /// to perform. This is essentially a limit for the number of statements
823     /// we will evaluate.
824     unsigned StepsLeft;
825 
826     /// Enable the experimental new constant interpreter. If an expression is
827     /// not supported by the interpreter, an error is triggered.
828     bool EnableNewConstInterp;
829 
830     /// BottomFrame - The frame in which evaluation started. This must be
831     /// initialized after CurrentCall and CallStackDepth.
832     CallStackFrame BottomFrame;
833 
834     /// A stack of values whose lifetimes end at the end of some surrounding
835     /// evaluation frame.
836     llvm::SmallVector<Cleanup, 16> CleanupStack;
837 
838     /// EvaluatingDecl - This is the declaration whose initializer is being
839     /// evaluated, if any.
840     APValue::LValueBase EvaluatingDecl;
841 
842     enum class EvaluatingDeclKind {
843       None,
844       /// We're evaluating the construction of EvaluatingDecl.
845       Ctor,
846       /// We're evaluating the destruction of EvaluatingDecl.
847       Dtor,
848     };
849     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
850 
851     /// EvaluatingDeclValue - This is the value being constructed for the
852     /// declaration whose initializer is being evaluated, if any.
853     APValue *EvaluatingDeclValue;
854 
855     /// Set of objects that are currently being constructed.
856     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
857         ObjectsUnderConstruction;
858 
859     /// Current heap allocations, along with the location where each was
860     /// allocated. We use std::map here because we need stable addresses
861     /// for the stored APValues.
862     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
863 
864     /// The number of heap allocations performed so far in this evaluation.
865     unsigned NumHeapAllocs = 0;
866 
867     struct EvaluatingConstructorRAII {
868       EvalInfo &EI;
869       ObjectUnderConstruction Object;
870       bool DidInsert;
871       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
872                                 bool HasBases)
873           : EI(EI), Object(Object) {
874         DidInsert =
875             EI.ObjectsUnderConstruction
876                 .insert({Object, HasBases ? ConstructionPhase::Bases
877                                           : ConstructionPhase::AfterBases})
878                 .second;
879       }
880       void finishedConstructingBases() {
881         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
882       }
883       void finishedConstructingFields() {
884         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
885       }
886       ~EvaluatingConstructorRAII() {
887         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
888       }
889     };
890 
891     struct EvaluatingDestructorRAII {
892       EvalInfo &EI;
893       ObjectUnderConstruction Object;
894       bool DidInsert;
895       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
896           : EI(EI), Object(Object) {
897         DidInsert = EI.ObjectsUnderConstruction
898                         .insert({Object, ConstructionPhase::Destroying})
899                         .second;
900       }
901       void startedDestroyingBases() {
902         EI.ObjectsUnderConstruction[Object] =
903             ConstructionPhase::DestroyingBases;
904       }
905       ~EvaluatingDestructorRAII() {
906         if (DidInsert)
907           EI.ObjectsUnderConstruction.erase(Object);
908       }
909     };
910 
911     ConstructionPhase
912     isEvaluatingCtorDtor(APValue::LValueBase Base,
913                          ArrayRef<APValue::LValuePathEntry> Path) {
914       return ObjectsUnderConstruction.lookup({Base, Path});
915     }
916 
917     /// If we're currently speculatively evaluating, the outermost call stack
918     /// depth at which we can mutate state, otherwise 0.
919     unsigned SpeculativeEvaluationDepth = 0;
920 
921     /// The current array initialization index, if we're performing array
922     /// initialization.
923     uint64_t ArrayInitIndex = -1;
924 
925     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
926     /// notes attached to it will also be stored, otherwise they will not be.
927     bool HasActiveDiagnostic;
928 
929     /// Have we emitted a diagnostic explaining why we couldn't constant
930     /// fold (not just why it's not strictly a constant expression)?
931     bool HasFoldFailureDiagnostic;
932 
933     /// Whether we're checking that an expression is a potential constant
934     /// expression. If so, do not fail on constructs that could become constant
935     /// later on (such as a use of an undefined global).
936     bool CheckingPotentialConstantExpression = false;
937 
938     /// Whether we're checking for an expression that has undefined behavior.
939     /// If so, we will produce warnings if we encounter an operation that is
940     /// always undefined.
941     ///
942     /// Note that we still need to evaluate the expression normally when this
943     /// is set; this is used when evaluating ICEs in C.
944     bool CheckingForUndefinedBehavior = false;
945 
946     enum EvaluationMode {
947       /// Evaluate as a constant expression. Stop if we find that the expression
948       /// is not a constant expression.
949       EM_ConstantExpression,
950 
951       /// Evaluate as a constant expression. Stop if we find that the expression
952       /// is not a constant expression. Some expressions can be retried in the
953       /// optimizer if we don't constant fold them here, but in an unevaluated
954       /// context we try to fold them immediately since the optimizer never
955       /// gets a chance to look at it.
956       EM_ConstantExpressionUnevaluated,
957 
958       /// Fold the expression to a constant. Stop if we hit a side-effect that
959       /// we can't model.
960       EM_ConstantFold,
961 
962       /// Evaluate in any way we know how. Don't worry about side-effects that
963       /// can't be modeled.
964       EM_IgnoreSideEffects,
965     } EvalMode;
966 
967     /// Are we checking whether the expression is a potential constant
968     /// expression?
969     bool checkingPotentialConstantExpression() const override  {
970       return CheckingPotentialConstantExpression;
971     }
972 
973     /// Are we checking an expression for overflow?
974     // FIXME: We should check for any kind of undefined or suspicious behavior
975     // in such constructs, not just overflow.
976     bool checkingForUndefinedBehavior() const override {
977       return CheckingForUndefinedBehavior;
978     }
979 
980     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
981         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
982           CallStackDepth(0), NextCallIndex(1),
983           StepsLeft(C.getLangOpts().ConstexprStepLimit),
984           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
985           BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr,
986                       /*This=*/nullptr,
987                       /*CallExpr=*/nullptr, CallRef()),
988           EvaluatingDecl((const ValueDecl *)nullptr),
989           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
990           HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
991 
992     ~EvalInfo() {
993       discardCleanups();
994     }
995 
996     ASTContext &getCtx() const override { return Ctx; }
997 
998     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
999                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
1000       EvaluatingDecl = Base;
1001       IsEvaluatingDecl = EDK;
1002       EvaluatingDeclValue = &Value;
1003     }
1004 
1005     bool CheckCallLimit(SourceLocation Loc) {
1006       // Don't perform any constexpr calls (other than the call we're checking)
1007       // when checking a potential constant expression.
1008       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1009         return false;
1010       if (NextCallIndex == 0) {
1011         // NextCallIndex has wrapped around.
1012         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1013         return false;
1014       }
1015       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1016         return true;
1017       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1018         << getLangOpts().ConstexprCallDepth;
1019       return false;
1020     }
1021 
1022     std::pair<CallStackFrame *, unsigned>
1023     getCallFrameAndDepth(unsigned CallIndex) {
1024       assert(CallIndex && "no call index in getCallFrameAndDepth");
1025       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1026       // be null in this loop.
1027       unsigned Depth = CallStackDepth;
1028       CallStackFrame *Frame = CurrentCall;
1029       while (Frame->Index > CallIndex) {
1030         Frame = Frame->Caller;
1031         --Depth;
1032       }
1033       if (Frame->Index == CallIndex)
1034         return {Frame, Depth};
1035       return {nullptr, 0};
1036     }
1037 
1038     bool nextStep(const Stmt *S) {
1039       if (!StepsLeft) {
1040         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1041         return false;
1042       }
1043       --StepsLeft;
1044       return true;
1045     }
1046 
1047     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1048 
1049     std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1050       std::optional<DynAlloc *> Result;
1051       auto It = HeapAllocs.find(DA);
1052       if (It != HeapAllocs.end())
1053         Result = &It->second;
1054       return Result;
1055     }
1056 
1057     /// Get the allocated storage for the given parameter of the given call.
1058     APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1059       CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1060       return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1061                    : nullptr;
1062     }
1063 
1064     /// Information about a stack frame for std::allocator<T>::[de]allocate.
1065     struct StdAllocatorCaller {
1066       unsigned FrameIndex;
1067       QualType ElemType;
1068       explicit operator bool() const { return FrameIndex != 0; };
1069     };
1070 
1071     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1072       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1073            Call = Call->Caller) {
1074         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1075         if (!MD)
1076           continue;
1077         const IdentifierInfo *FnII = MD->getIdentifier();
1078         if (!FnII || !FnII->isStr(FnName))
1079           continue;
1080 
1081         const auto *CTSD =
1082             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1083         if (!CTSD)
1084           continue;
1085 
1086         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1087         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1088         if (CTSD->isInStdNamespace() && ClassII &&
1089             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1090             TAL[0].getKind() == TemplateArgument::Type)
1091           return {Call->Index, TAL[0].getAsType()};
1092       }
1093 
1094       return {};
1095     }
1096 
1097     void performLifetimeExtension() {
1098       // Disable the cleanups for lifetime-extended temporaries.
1099       llvm::erase_if(CleanupStack, [](Cleanup &C) {
1100         return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1101       });
1102     }
1103 
1104     /// Throw away any remaining cleanups at the end of evaluation. If any
1105     /// cleanups would have had a side-effect, note that as an unmodeled
1106     /// side-effect and return false. Otherwise, return true.
1107     bool discardCleanups() {
1108       for (Cleanup &C : CleanupStack) {
1109         if (C.hasSideEffect() && !noteSideEffect()) {
1110           CleanupStack.clear();
1111           return false;
1112         }
1113       }
1114       CleanupStack.clear();
1115       return true;
1116     }
1117 
1118   private:
1119     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1120     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1121 
1122     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1123     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1124 
1125     void setFoldFailureDiagnostic(bool Flag) override {
1126       HasFoldFailureDiagnostic = Flag;
1127     }
1128 
1129     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1130 
1131     // If we have a prior diagnostic, it will be noting that the expression
1132     // isn't a constant expression. This diagnostic is more important,
1133     // unless we require this evaluation to produce a constant expression.
1134     //
1135     // FIXME: We might want to show both diagnostics to the user in
1136     // EM_ConstantFold mode.
1137     bool hasPriorDiagnostic() override {
1138       if (!EvalStatus.Diag->empty()) {
1139         switch (EvalMode) {
1140         case EM_ConstantFold:
1141         case EM_IgnoreSideEffects:
1142           if (!HasFoldFailureDiagnostic)
1143             break;
1144           // We've already failed to fold something. Keep that diagnostic.
1145           [[fallthrough]];
1146         case EM_ConstantExpression:
1147         case EM_ConstantExpressionUnevaluated:
1148           setActiveDiagnostic(false);
1149           return true;
1150         }
1151       }
1152       return false;
1153     }
1154 
1155     unsigned getCallStackDepth() override { return CallStackDepth; }
1156 
1157   public:
1158     /// Should we continue evaluation after encountering a side-effect that we
1159     /// couldn't model?
1160     bool keepEvaluatingAfterSideEffect() {
1161       switch (EvalMode) {
1162       case EM_IgnoreSideEffects:
1163         return true;
1164 
1165       case EM_ConstantExpression:
1166       case EM_ConstantExpressionUnevaluated:
1167       case EM_ConstantFold:
1168         // By default, assume any side effect might be valid in some other
1169         // evaluation of this expression from a different context.
1170         return checkingPotentialConstantExpression() ||
1171                checkingForUndefinedBehavior();
1172       }
1173       llvm_unreachable("Missed EvalMode case");
1174     }
1175 
1176     /// Note that we have had a side-effect, and determine whether we should
1177     /// keep evaluating.
1178     bool noteSideEffect() {
1179       EvalStatus.HasSideEffects = true;
1180       return keepEvaluatingAfterSideEffect();
1181     }
1182 
1183     /// Should we continue evaluation after encountering undefined behavior?
1184     bool keepEvaluatingAfterUndefinedBehavior() {
1185       switch (EvalMode) {
1186       case EM_IgnoreSideEffects:
1187       case EM_ConstantFold:
1188         return true;
1189 
1190       case EM_ConstantExpression:
1191       case EM_ConstantExpressionUnevaluated:
1192         return checkingForUndefinedBehavior();
1193       }
1194       llvm_unreachable("Missed EvalMode case");
1195     }
1196 
1197     /// Note that we hit something that was technically undefined behavior, but
1198     /// that we can evaluate past it (such as signed overflow or floating-point
1199     /// division by zero.)
1200     bool noteUndefinedBehavior() override {
1201       EvalStatus.HasUndefinedBehavior = true;
1202       return keepEvaluatingAfterUndefinedBehavior();
1203     }
1204 
1205     /// Should we continue evaluation as much as possible after encountering a
1206     /// construct which can't be reduced to a value?
1207     bool keepEvaluatingAfterFailure() const override {
1208       if (!StepsLeft)
1209         return false;
1210 
1211       switch (EvalMode) {
1212       case EM_ConstantExpression:
1213       case EM_ConstantExpressionUnevaluated:
1214       case EM_ConstantFold:
1215       case EM_IgnoreSideEffects:
1216         return checkingPotentialConstantExpression() ||
1217                checkingForUndefinedBehavior();
1218       }
1219       llvm_unreachable("Missed EvalMode case");
1220     }
1221 
1222     /// Notes that we failed to evaluate an expression that other expressions
1223     /// directly depend on, and determine if we should keep evaluating. This
1224     /// should only be called if we actually intend to keep evaluating.
1225     ///
1226     /// Call noteSideEffect() instead if we may be able to ignore the value that
1227     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1228     ///
1229     /// (Foo(), 1)      // use noteSideEffect
1230     /// (Foo() || true) // use noteSideEffect
1231     /// Foo() + 1       // use noteFailure
1232     [[nodiscard]] bool noteFailure() {
1233       // Failure when evaluating some expression often means there is some
1234       // subexpression whose evaluation was skipped. Therefore, (because we
1235       // don't track whether we skipped an expression when unwinding after an
1236       // evaluation failure) every evaluation failure that bubbles up from a
1237       // subexpression implies that a side-effect has potentially happened. We
1238       // skip setting the HasSideEffects flag to true until we decide to
1239       // continue evaluating after that point, which happens here.
1240       bool KeepGoing = keepEvaluatingAfterFailure();
1241       EvalStatus.HasSideEffects |= KeepGoing;
1242       return KeepGoing;
1243     }
1244 
1245     class ArrayInitLoopIndex {
1246       EvalInfo &Info;
1247       uint64_t OuterIndex;
1248 
1249     public:
1250       ArrayInitLoopIndex(EvalInfo &Info)
1251           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1252         Info.ArrayInitIndex = 0;
1253       }
1254       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1255 
1256       operator uint64_t&() { return Info.ArrayInitIndex; }
1257     };
1258   };
1259 
1260   /// Object used to treat all foldable expressions as constant expressions.
1261   struct FoldConstant {
1262     EvalInfo &Info;
1263     bool Enabled;
1264     bool HadNoPriorDiags;
1265     EvalInfo::EvaluationMode OldMode;
1266 
1267     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1268       : Info(Info),
1269         Enabled(Enabled),
1270         HadNoPriorDiags(Info.EvalStatus.Diag &&
1271                         Info.EvalStatus.Diag->empty() &&
1272                         !Info.EvalStatus.HasSideEffects),
1273         OldMode(Info.EvalMode) {
1274       if (Enabled)
1275         Info.EvalMode = EvalInfo::EM_ConstantFold;
1276     }
1277     void keepDiagnostics() { Enabled = false; }
1278     ~FoldConstant() {
1279       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1280           !Info.EvalStatus.HasSideEffects)
1281         Info.EvalStatus.Diag->clear();
1282       Info.EvalMode = OldMode;
1283     }
1284   };
1285 
1286   /// RAII object used to set the current evaluation mode to ignore
1287   /// side-effects.
1288   struct IgnoreSideEffectsRAII {
1289     EvalInfo &Info;
1290     EvalInfo::EvaluationMode OldMode;
1291     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1292         : Info(Info), OldMode(Info.EvalMode) {
1293       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1294     }
1295 
1296     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1297   };
1298 
1299   /// RAII object used to optionally suppress diagnostics and side-effects from
1300   /// a speculative evaluation.
1301   class SpeculativeEvaluationRAII {
1302     EvalInfo *Info = nullptr;
1303     Expr::EvalStatus OldStatus;
1304     unsigned OldSpeculativeEvaluationDepth = 0;
1305 
1306     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1307       Info = Other.Info;
1308       OldStatus = Other.OldStatus;
1309       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1310       Other.Info = nullptr;
1311     }
1312 
1313     void maybeRestoreState() {
1314       if (!Info)
1315         return;
1316 
1317       Info->EvalStatus = OldStatus;
1318       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1319     }
1320 
1321   public:
1322     SpeculativeEvaluationRAII() = default;
1323 
1324     SpeculativeEvaluationRAII(
1325         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1326         : Info(&Info), OldStatus(Info.EvalStatus),
1327           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1328       Info.EvalStatus.Diag = NewDiag;
1329       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1330     }
1331 
1332     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1333     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1334       moveFromAndCancel(std::move(Other));
1335     }
1336 
1337     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1338       maybeRestoreState();
1339       moveFromAndCancel(std::move(Other));
1340       return *this;
1341     }
1342 
1343     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1344   };
1345 
1346   /// RAII object wrapping a full-expression or block scope, and handling
1347   /// the ending of the lifetime of temporaries created within it.
1348   template<ScopeKind Kind>
1349   class ScopeRAII {
1350     EvalInfo &Info;
1351     unsigned OldStackSize;
1352   public:
1353     ScopeRAII(EvalInfo &Info)
1354         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1355       // Push a new temporary version. This is needed to distinguish between
1356       // temporaries created in different iterations of a loop.
1357       Info.CurrentCall->pushTempVersion();
1358     }
1359     bool destroy(bool RunDestructors = true) {
1360       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1361       OldStackSize = -1U;
1362       return OK;
1363     }
1364     ~ScopeRAII() {
1365       if (OldStackSize != -1U)
1366         destroy(false);
1367       // Body moved to a static method to encourage the compiler to inline away
1368       // instances of this class.
1369       Info.CurrentCall->popTempVersion();
1370     }
1371   private:
1372     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1373                         unsigned OldStackSize) {
1374       assert(OldStackSize <= Info.CleanupStack.size() &&
1375              "running cleanups out of order?");
1376 
1377       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1378       // for a full-expression scope.
1379       bool Success = true;
1380       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1381         if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1382           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1383             Success = false;
1384             break;
1385           }
1386         }
1387       }
1388 
1389       // Compact any retained cleanups.
1390       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1391       if (Kind != ScopeKind::Block)
1392         NewEnd =
1393             std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1394               return C.isDestroyedAtEndOf(Kind);
1395             });
1396       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1397       return Success;
1398     }
1399   };
1400   typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1401   typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1402   typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1403 }
1404 
1405 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1406                                          CheckSubobjectKind CSK) {
1407   if (Invalid)
1408     return false;
1409   if (isOnePastTheEnd()) {
1410     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1411       << CSK;
1412     setInvalid();
1413     return false;
1414   }
1415   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1416   // must actually be at least one array element; even a VLA cannot have a
1417   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1418   return true;
1419 }
1420 
1421 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1422                                                                 const Expr *E) {
1423   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1424   // Do not set the designator as invalid: we can represent this situation,
1425   // and correct handling of __builtin_object_size requires us to do so.
1426 }
1427 
1428 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1429                                                     const Expr *E,
1430                                                     const APSInt &N) {
1431   // If we're complaining, we must be able to statically determine the size of
1432   // the most derived array.
1433   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1434     Info.CCEDiag(E, diag::note_constexpr_array_index)
1435       << N << /*array*/ 0
1436       << static_cast<unsigned>(getMostDerivedArraySize());
1437   else
1438     Info.CCEDiag(E, diag::note_constexpr_array_index)
1439       << N << /*non-array*/ 1;
1440   setInvalid();
1441 }
1442 
1443 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1444                                const FunctionDecl *Callee, const LValue *This,
1445                                const Expr *CallExpr, CallRef Call)
1446     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1447       CallExpr(CallExpr), Arguments(Call), CallLoc(CallLoc),
1448       Index(Info.NextCallIndex++) {
1449   Info.CurrentCall = this;
1450   ++Info.CallStackDepth;
1451 }
1452 
1453 CallStackFrame::~CallStackFrame() {
1454   assert(Info.CurrentCall == this && "calls retired out of order");
1455   --Info.CallStackDepth;
1456   Info.CurrentCall = Caller;
1457 }
1458 
1459 static bool isRead(AccessKinds AK) {
1460   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1461 }
1462 
1463 static bool isModification(AccessKinds AK) {
1464   switch (AK) {
1465   case AK_Read:
1466   case AK_ReadObjectRepresentation:
1467   case AK_MemberCall:
1468   case AK_DynamicCast:
1469   case AK_TypeId:
1470     return false;
1471   case AK_Assign:
1472   case AK_Increment:
1473   case AK_Decrement:
1474   case AK_Construct:
1475   case AK_Destroy:
1476     return true;
1477   }
1478   llvm_unreachable("unknown access kind");
1479 }
1480 
1481 static bool isAnyAccess(AccessKinds AK) {
1482   return isRead(AK) || isModification(AK);
1483 }
1484 
1485 /// Is this an access per the C++ definition?
1486 static bool isFormalAccess(AccessKinds AK) {
1487   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1488 }
1489 
1490 /// Is this kind of axcess valid on an indeterminate object value?
1491 static bool isValidIndeterminateAccess(AccessKinds AK) {
1492   switch (AK) {
1493   case AK_Read:
1494   case AK_Increment:
1495   case AK_Decrement:
1496     // These need the object's value.
1497     return false;
1498 
1499   case AK_ReadObjectRepresentation:
1500   case AK_Assign:
1501   case AK_Construct:
1502   case AK_Destroy:
1503     // Construction and destruction don't need the value.
1504     return true;
1505 
1506   case AK_MemberCall:
1507   case AK_DynamicCast:
1508   case AK_TypeId:
1509     // These aren't really meaningful on scalars.
1510     return true;
1511   }
1512   llvm_unreachable("unknown access kind");
1513 }
1514 
1515 namespace {
1516   struct ComplexValue {
1517   private:
1518     bool IsInt;
1519 
1520   public:
1521     APSInt IntReal, IntImag;
1522     APFloat FloatReal, FloatImag;
1523 
1524     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1525 
1526     void makeComplexFloat() { IsInt = false; }
1527     bool isComplexFloat() const { return !IsInt; }
1528     APFloat &getComplexFloatReal() { return FloatReal; }
1529     APFloat &getComplexFloatImag() { return FloatImag; }
1530 
1531     void makeComplexInt() { IsInt = true; }
1532     bool isComplexInt() const { return IsInt; }
1533     APSInt &getComplexIntReal() { return IntReal; }
1534     APSInt &getComplexIntImag() { return IntImag; }
1535 
1536     void moveInto(APValue &v) const {
1537       if (isComplexFloat())
1538         v = APValue(FloatReal, FloatImag);
1539       else
1540         v = APValue(IntReal, IntImag);
1541     }
1542     void setFrom(const APValue &v) {
1543       assert(v.isComplexFloat() || v.isComplexInt());
1544       if (v.isComplexFloat()) {
1545         makeComplexFloat();
1546         FloatReal = v.getComplexFloatReal();
1547         FloatImag = v.getComplexFloatImag();
1548       } else {
1549         makeComplexInt();
1550         IntReal = v.getComplexIntReal();
1551         IntImag = v.getComplexIntImag();
1552       }
1553     }
1554   };
1555 
1556   struct LValue {
1557     APValue::LValueBase Base;
1558     CharUnits Offset;
1559     SubobjectDesignator Designator;
1560     bool IsNullPtr : 1;
1561     bool InvalidBase : 1;
1562 
1563     const APValue::LValueBase getLValueBase() const { return Base; }
1564     CharUnits &getLValueOffset() { return Offset; }
1565     const CharUnits &getLValueOffset() const { return Offset; }
1566     SubobjectDesignator &getLValueDesignator() { return Designator; }
1567     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1568     bool isNullPointer() const { return IsNullPtr;}
1569 
1570     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1571     unsigned getLValueVersion() const { return Base.getVersion(); }
1572 
1573     void moveInto(APValue &V) const {
1574       if (Designator.Invalid)
1575         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1576       else {
1577         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1578         V = APValue(Base, Offset, Designator.Entries,
1579                     Designator.IsOnePastTheEnd, IsNullPtr);
1580       }
1581     }
1582     void setFrom(ASTContext &Ctx, const APValue &V) {
1583       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1584       Base = V.getLValueBase();
1585       Offset = V.getLValueOffset();
1586       InvalidBase = false;
1587       Designator = SubobjectDesignator(Ctx, V);
1588       IsNullPtr = V.isNullPointer();
1589     }
1590 
1591     void set(APValue::LValueBase B, bool BInvalid = false) {
1592 #ifndef NDEBUG
1593       // We only allow a few types of invalid bases. Enforce that here.
1594       if (BInvalid) {
1595         const auto *E = B.get<const Expr *>();
1596         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1597                "Unexpected type of invalid base");
1598       }
1599 #endif
1600 
1601       Base = B;
1602       Offset = CharUnits::fromQuantity(0);
1603       InvalidBase = BInvalid;
1604       Designator = SubobjectDesignator(getType(B));
1605       IsNullPtr = false;
1606     }
1607 
1608     void setNull(ASTContext &Ctx, QualType PointerTy) {
1609       Base = (const ValueDecl *)nullptr;
1610       Offset =
1611           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1612       InvalidBase = false;
1613       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1614       IsNullPtr = true;
1615     }
1616 
1617     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1618       set(B, true);
1619     }
1620 
1621     std::string toString(ASTContext &Ctx, QualType T) const {
1622       APValue Printable;
1623       moveInto(Printable);
1624       return Printable.getAsString(Ctx, T);
1625     }
1626 
1627   private:
1628     // Check that this LValue is not based on a null pointer. If it is, produce
1629     // a diagnostic and mark the designator as invalid.
1630     template <typename GenDiagType>
1631     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1632       if (Designator.Invalid)
1633         return false;
1634       if (IsNullPtr) {
1635         GenDiag();
1636         Designator.setInvalid();
1637         return false;
1638       }
1639       return true;
1640     }
1641 
1642   public:
1643     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1644                           CheckSubobjectKind CSK) {
1645       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1646         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1647       });
1648     }
1649 
1650     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1651                                        AccessKinds AK) {
1652       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1653         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1654       });
1655     }
1656 
1657     // Check this LValue refers to an object. If not, set the designator to be
1658     // invalid and emit a diagnostic.
1659     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1660       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1661              Designator.checkSubobject(Info, E, CSK);
1662     }
1663 
1664     void addDecl(EvalInfo &Info, const Expr *E,
1665                  const Decl *D, bool Virtual = false) {
1666       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1667         Designator.addDeclUnchecked(D, Virtual);
1668     }
1669     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1670       if (!Designator.Entries.empty()) {
1671         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1672         Designator.setInvalid();
1673         return;
1674       }
1675       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1676         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1677         Designator.FirstEntryIsAnUnsizedArray = true;
1678         Designator.addUnsizedArrayUnchecked(ElemTy);
1679       }
1680     }
1681     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1682       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1683         Designator.addArrayUnchecked(CAT);
1684     }
1685     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1686       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1687         Designator.addComplexUnchecked(EltTy, Imag);
1688     }
1689     void clearIsNullPointer() {
1690       IsNullPtr = false;
1691     }
1692     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1693                               const APSInt &Index, CharUnits ElementSize) {
1694       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1695       // but we're not required to diagnose it and it's valid in C++.)
1696       if (!Index)
1697         return;
1698 
1699       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1700       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1701       // offsets.
1702       uint64_t Offset64 = Offset.getQuantity();
1703       uint64_t ElemSize64 = ElementSize.getQuantity();
1704       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1705       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1706 
1707       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1708         Designator.adjustIndex(Info, E, Index);
1709       clearIsNullPointer();
1710     }
1711     void adjustOffset(CharUnits N) {
1712       Offset += N;
1713       if (N.getQuantity())
1714         clearIsNullPointer();
1715     }
1716   };
1717 
1718   struct MemberPtr {
1719     MemberPtr() {}
1720     explicit MemberPtr(const ValueDecl *Decl)
1721         : DeclAndIsDerivedMember(Decl, false) {}
1722 
1723     /// The member or (direct or indirect) field referred to by this member
1724     /// pointer, or 0 if this is a null member pointer.
1725     const ValueDecl *getDecl() const {
1726       return DeclAndIsDerivedMember.getPointer();
1727     }
1728     /// Is this actually a member of some type derived from the relevant class?
1729     bool isDerivedMember() const {
1730       return DeclAndIsDerivedMember.getInt();
1731     }
1732     /// Get the class which the declaration actually lives in.
1733     const CXXRecordDecl *getContainingRecord() const {
1734       return cast<CXXRecordDecl>(
1735           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1736     }
1737 
1738     void moveInto(APValue &V) const {
1739       V = APValue(getDecl(), isDerivedMember(), Path);
1740     }
1741     void setFrom(const APValue &V) {
1742       assert(V.isMemberPointer());
1743       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1744       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1745       Path.clear();
1746       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1747       Path.insert(Path.end(), P.begin(), P.end());
1748     }
1749 
1750     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1751     /// whether the member is a member of some class derived from the class type
1752     /// of the member pointer.
1753     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1754     /// Path - The path of base/derived classes from the member declaration's
1755     /// class (exclusive) to the class type of the member pointer (inclusive).
1756     SmallVector<const CXXRecordDecl*, 4> Path;
1757 
1758     /// Perform a cast towards the class of the Decl (either up or down the
1759     /// hierarchy).
1760     bool castBack(const CXXRecordDecl *Class) {
1761       assert(!Path.empty());
1762       const CXXRecordDecl *Expected;
1763       if (Path.size() >= 2)
1764         Expected = Path[Path.size() - 2];
1765       else
1766         Expected = getContainingRecord();
1767       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1768         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1769         // if B does not contain the original member and is not a base or
1770         // derived class of the class containing the original member, the result
1771         // of the cast is undefined.
1772         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1773         // (D::*). We consider that to be a language defect.
1774         return false;
1775       }
1776       Path.pop_back();
1777       return true;
1778     }
1779     /// Perform a base-to-derived member pointer cast.
1780     bool castToDerived(const CXXRecordDecl *Derived) {
1781       if (!getDecl())
1782         return true;
1783       if (!isDerivedMember()) {
1784         Path.push_back(Derived);
1785         return true;
1786       }
1787       if (!castBack(Derived))
1788         return false;
1789       if (Path.empty())
1790         DeclAndIsDerivedMember.setInt(false);
1791       return true;
1792     }
1793     /// Perform a derived-to-base member pointer cast.
1794     bool castToBase(const CXXRecordDecl *Base) {
1795       if (!getDecl())
1796         return true;
1797       if (Path.empty())
1798         DeclAndIsDerivedMember.setInt(true);
1799       if (isDerivedMember()) {
1800         Path.push_back(Base);
1801         return true;
1802       }
1803       return castBack(Base);
1804     }
1805   };
1806 
1807   /// Compare two member pointers, which are assumed to be of the same type.
1808   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1809     if (!LHS.getDecl() || !RHS.getDecl())
1810       return !LHS.getDecl() && !RHS.getDecl();
1811     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1812       return false;
1813     return LHS.Path == RHS.Path;
1814   }
1815 }
1816 
1817 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1818 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1819                             const LValue &This, const Expr *E,
1820                             bool AllowNonLiteralTypes = false);
1821 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1822                            bool InvalidBaseOK = false);
1823 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1824                             bool InvalidBaseOK = false);
1825 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1826                                   EvalInfo &Info);
1827 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1828 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1829 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1830                                     EvalInfo &Info);
1831 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1832 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1833 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1834                            EvalInfo &Info);
1835 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1836 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1837                                   EvalInfo &Info);
1838 
1839 /// Evaluate an integer or fixed point expression into an APResult.
1840 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1841                                         EvalInfo &Info);
1842 
1843 /// Evaluate only a fixed point expression into an APResult.
1844 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1845                                EvalInfo &Info);
1846 
1847 //===----------------------------------------------------------------------===//
1848 // Misc utilities
1849 //===----------------------------------------------------------------------===//
1850 
1851 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1852 /// preserving its value (by extending by up to one bit as needed).
1853 static void negateAsSigned(APSInt &Int) {
1854   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1855     Int = Int.extend(Int.getBitWidth() + 1);
1856     Int.setIsSigned(true);
1857   }
1858   Int = -Int;
1859 }
1860 
1861 template<typename KeyT>
1862 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1863                                          ScopeKind Scope, LValue &LV) {
1864   unsigned Version = getTempVersion();
1865   APValue::LValueBase Base(Key, Index, Version);
1866   LV.set(Base);
1867   return createLocal(Base, Key, T, Scope);
1868 }
1869 
1870 /// Allocate storage for a parameter of a function call made in this frame.
1871 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1872                                      LValue &LV) {
1873   assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1874   APValue::LValueBase Base(PVD, Index, Args.Version);
1875   LV.set(Base);
1876   // We always destroy parameters at the end of the call, even if we'd allow
1877   // them to live to the end of the full-expression at runtime, in order to
1878   // give portable results and match other compilers.
1879   return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1880 }
1881 
1882 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1883                                      QualType T, ScopeKind Scope) {
1884   assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1885   unsigned Version = Base.getVersion();
1886   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1887   assert(Result.isAbsent() && "local created multiple times");
1888 
1889   // If we're creating a local immediately in the operand of a speculative
1890   // evaluation, don't register a cleanup to be run outside the speculative
1891   // evaluation context, since we won't actually be able to initialize this
1892   // object.
1893   if (Index <= Info.SpeculativeEvaluationDepth) {
1894     if (T.isDestructedType())
1895       Info.noteSideEffect();
1896   } else {
1897     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1898   }
1899   return Result;
1900 }
1901 
1902 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1903   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1904     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1905     return nullptr;
1906   }
1907 
1908   DynamicAllocLValue DA(NumHeapAllocs++);
1909   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1910   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1911                                    std::forward_as_tuple(DA), std::tuple<>());
1912   assert(Result.second && "reused a heap alloc index?");
1913   Result.first->second.AllocExpr = E;
1914   return &Result.first->second.Value;
1915 }
1916 
1917 /// Produce a string describing the given constexpr call.
1918 void CallStackFrame::describe(raw_ostream &Out) const {
1919   unsigned ArgIndex = 0;
1920   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1921                       !isa<CXXConstructorDecl>(Callee) &&
1922                       cast<CXXMethodDecl>(Callee)->isInstance();
1923 
1924   if (!IsMemberCall)
1925     Out << *Callee << '(';
1926 
1927   if (This && IsMemberCall) {
1928     if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) {
1929       const Expr *Object = MCE->getImplicitObjectArgument();
1930       Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(),
1931                           /*Indentation=*/0);
1932       if (Object->getType()->isPointerType())
1933           Out << "->";
1934       else
1935           Out << ".";
1936     } else if (const auto *OCE =
1937                    dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) {
1938       OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr,
1939                                   Info.Ctx.getPrintingPolicy(),
1940                                   /*Indentation=*/0);
1941       Out << ".";
1942     } else {
1943       APValue Val;
1944       This->moveInto(Val);
1945       Val.printPretty(
1946           Out, Info.Ctx,
1947           Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType));
1948       Out << ".";
1949     }
1950     Out << *Callee << '(';
1951     IsMemberCall = false;
1952   }
1953 
1954   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1955        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1956     if (ArgIndex > (unsigned)IsMemberCall)
1957       Out << ", ";
1958 
1959     const ParmVarDecl *Param = *I;
1960     APValue *V = Info.getParamSlot(Arguments, Param);
1961     if (V)
1962       V->printPretty(Out, Info.Ctx, Param->getType());
1963     else
1964       Out << "<...>";
1965 
1966     if (ArgIndex == 0 && IsMemberCall)
1967       Out << "->" << *Callee << '(';
1968   }
1969 
1970   Out << ')';
1971 }
1972 
1973 /// Evaluate an expression to see if it had side-effects, and discard its
1974 /// result.
1975 /// \return \c true if the caller should keep evaluating.
1976 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1977   assert(!E->isValueDependent());
1978   APValue Scratch;
1979   if (!Evaluate(Scratch, Info, E))
1980     // We don't need the value, but we might have skipped a side effect here.
1981     return Info.noteSideEffect();
1982   return true;
1983 }
1984 
1985 /// Should this call expression be treated as a no-op?
1986 static bool IsNoOpCall(const CallExpr *E) {
1987   unsigned Builtin = E->getBuiltinCallee();
1988   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1989           Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
1990           Builtin == Builtin::BI__builtin_function_start);
1991 }
1992 
1993 static bool IsGlobalLValue(APValue::LValueBase B) {
1994   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1995   // constant expression of pointer type that evaluates to...
1996 
1997   // ... a null pointer value, or a prvalue core constant expression of type
1998   // std::nullptr_t.
1999   if (!B)
2000     return true;
2001 
2002   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
2003     // ... the address of an object with static storage duration,
2004     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2005       return VD->hasGlobalStorage();
2006     if (isa<TemplateParamObjectDecl>(D))
2007       return true;
2008     // ... the address of a function,
2009     // ... the address of a GUID [MS extension],
2010     // ... the address of an unnamed global constant
2011     return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D);
2012   }
2013 
2014   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
2015     return true;
2016 
2017   const Expr *E = B.get<const Expr*>();
2018   switch (E->getStmtClass()) {
2019   default:
2020     return false;
2021   case Expr::CompoundLiteralExprClass: {
2022     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
2023     return CLE->isFileScope() && CLE->isLValue();
2024   }
2025   case Expr::MaterializeTemporaryExprClass:
2026     // A materialized temporary might have been lifetime-extended to static
2027     // storage duration.
2028     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2029   // A string literal has static storage duration.
2030   case Expr::StringLiteralClass:
2031   case Expr::PredefinedExprClass:
2032   case Expr::ObjCStringLiteralClass:
2033   case Expr::ObjCEncodeExprClass:
2034     return true;
2035   case Expr::ObjCBoxedExprClass:
2036     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2037   case Expr::CallExprClass:
2038     return IsNoOpCall(cast<CallExpr>(E));
2039   // For GCC compatibility, &&label has static storage duration.
2040   case Expr::AddrLabelExprClass:
2041     return true;
2042   // A Block literal expression may be used as the initialization value for
2043   // Block variables at global or local static scope.
2044   case Expr::BlockExprClass:
2045     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2046   // The APValue generated from a __builtin_source_location will be emitted as a
2047   // literal.
2048   case Expr::SourceLocExprClass:
2049     return true;
2050   case Expr::ImplicitValueInitExprClass:
2051     // FIXME:
2052     // We can never form an lvalue with an implicit value initialization as its
2053     // base through expression evaluation, so these only appear in one case: the
2054     // implicit variable declaration we invent when checking whether a constexpr
2055     // constructor can produce a constant expression. We must assume that such
2056     // an expression might be a global lvalue.
2057     return true;
2058   }
2059 }
2060 
2061 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2062   return LVal.Base.dyn_cast<const ValueDecl*>();
2063 }
2064 
2065 static bool IsLiteralLValue(const LValue &Value) {
2066   if (Value.getLValueCallIndex())
2067     return false;
2068   const Expr *E = Value.Base.dyn_cast<const Expr*>();
2069   return E && !isa<MaterializeTemporaryExpr>(E);
2070 }
2071 
2072 static bool IsWeakLValue(const LValue &Value) {
2073   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2074   return Decl && Decl->isWeak();
2075 }
2076 
2077 static bool isZeroSized(const LValue &Value) {
2078   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2079   if (Decl && isa<VarDecl>(Decl)) {
2080     QualType Ty = Decl->getType();
2081     if (Ty->isArrayType())
2082       return Ty->isIncompleteType() ||
2083              Decl->getASTContext().getTypeSize(Ty) == 0;
2084   }
2085   return false;
2086 }
2087 
2088 static bool HasSameBase(const LValue &A, const LValue &B) {
2089   if (!A.getLValueBase())
2090     return !B.getLValueBase();
2091   if (!B.getLValueBase())
2092     return false;
2093 
2094   if (A.getLValueBase().getOpaqueValue() !=
2095       B.getLValueBase().getOpaqueValue())
2096     return false;
2097 
2098   return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2099          A.getLValueVersion() == B.getLValueVersion();
2100 }
2101 
2102 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2103   assert(Base && "no location for a null lvalue");
2104   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2105 
2106   // For a parameter, find the corresponding call stack frame (if it still
2107   // exists), and point at the parameter of the function definition we actually
2108   // invoked.
2109   if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2110     unsigned Idx = PVD->getFunctionScopeIndex();
2111     for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2112       if (F->Arguments.CallIndex == Base.getCallIndex() &&
2113           F->Arguments.Version == Base.getVersion() && F->Callee &&
2114           Idx < F->Callee->getNumParams()) {
2115         VD = F->Callee->getParamDecl(Idx);
2116         break;
2117       }
2118     }
2119   }
2120 
2121   if (VD)
2122     Info.Note(VD->getLocation(), diag::note_declared_at);
2123   else if (const Expr *E = Base.dyn_cast<const Expr*>())
2124     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2125   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2126     // FIXME: Produce a note for dangling pointers too.
2127     if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2128       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2129                 diag::note_constexpr_dynamic_alloc_here);
2130   }
2131 
2132   // We have no information to show for a typeid(T) object.
2133 }
2134 
2135 enum class CheckEvaluationResultKind {
2136   ConstantExpression,
2137   FullyInitialized,
2138 };
2139 
2140 /// Materialized temporaries that we've already checked to determine if they're
2141 /// initializsed by a constant expression.
2142 using CheckedTemporaries =
2143     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2144 
2145 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2146                                   EvalInfo &Info, SourceLocation DiagLoc,
2147                                   QualType Type, const APValue &Value,
2148                                   ConstantExprKind Kind,
2149                                   const FieldDecl *SubobjectDecl,
2150                                   CheckedTemporaries &CheckedTemps);
2151 
2152 /// Check that this reference or pointer core constant expression is a valid
2153 /// value for an address or reference constant expression. Return true if we
2154 /// can fold this expression, whether or not it's a constant expression.
2155 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2156                                           QualType Type, const LValue &LVal,
2157                                           ConstantExprKind Kind,
2158                                           CheckedTemporaries &CheckedTemps) {
2159   bool IsReferenceType = Type->isReferenceType();
2160 
2161   APValue::LValueBase Base = LVal.getLValueBase();
2162   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2163 
2164   const Expr *BaseE = Base.dyn_cast<const Expr *>();
2165   const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2166 
2167   // Additional restrictions apply in a template argument. We only enforce the
2168   // C++20 restrictions here; additional syntactic and semantic restrictions
2169   // are applied elsewhere.
2170   if (isTemplateArgument(Kind)) {
2171     int InvalidBaseKind = -1;
2172     StringRef Ident;
2173     if (Base.is<TypeInfoLValue>())
2174       InvalidBaseKind = 0;
2175     else if (isa_and_nonnull<StringLiteral>(BaseE))
2176       InvalidBaseKind = 1;
2177     else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2178              isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2179       InvalidBaseKind = 2;
2180     else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2181       InvalidBaseKind = 3;
2182       Ident = PE->getIdentKindName();
2183     }
2184 
2185     if (InvalidBaseKind != -1) {
2186       Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2187           << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2188           << Ident;
2189       return false;
2190     }
2191   }
2192 
2193   if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD);
2194       FD && FD->isImmediateFunction()) {
2195     Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2196         << !Type->isAnyPointerType();
2197     Info.Note(FD->getLocation(), diag::note_declared_at);
2198     return false;
2199   }
2200 
2201   // Check that the object is a global. Note that the fake 'this' object we
2202   // manufacture when checking potential constant expressions is conservatively
2203   // assumed to be global here.
2204   if (!IsGlobalLValue(Base)) {
2205     if (Info.getLangOpts().CPlusPlus11) {
2206       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2207           << IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2208           << BaseVD;
2209       auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD);
2210       if (VarD && VarD->isConstexpr()) {
2211         // Non-static local constexpr variables have unintuitive semantics:
2212         //   constexpr int a = 1;
2213         //   constexpr const int *p = &a;
2214         // ... is invalid because the address of 'a' is not constant. Suggest
2215         // adding a 'static' in this case.
2216         Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2217             << VarD
2218             << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2219       } else {
2220         NoteLValueLocation(Info, Base);
2221       }
2222     } else {
2223       Info.FFDiag(Loc);
2224     }
2225     // Don't allow references to temporaries to escape.
2226     return false;
2227   }
2228   assert((Info.checkingPotentialConstantExpression() ||
2229           LVal.getLValueCallIndex() == 0) &&
2230          "have call index for global lvalue");
2231 
2232   if (Base.is<DynamicAllocLValue>()) {
2233     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2234         << IsReferenceType << !Designator.Entries.empty();
2235     NoteLValueLocation(Info, Base);
2236     return false;
2237   }
2238 
2239   if (BaseVD) {
2240     if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2241       // Check if this is a thread-local variable.
2242       if (Var->getTLSKind())
2243         // FIXME: Diagnostic!
2244         return false;
2245 
2246       // A dllimport variable never acts like a constant, unless we're
2247       // evaluating a value for use only in name mangling.
2248       if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2249         // FIXME: Diagnostic!
2250         return false;
2251 
2252       // In CUDA/HIP device compilation, only device side variables have
2253       // constant addresses.
2254       if (Info.getCtx().getLangOpts().CUDA &&
2255           Info.getCtx().getLangOpts().CUDAIsDevice &&
2256           Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2257         if ((!Var->hasAttr<CUDADeviceAttr>() &&
2258              !Var->hasAttr<CUDAConstantAttr>() &&
2259              !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2260              !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2261             Var->hasAttr<HIPManagedAttr>())
2262           return false;
2263       }
2264     }
2265     if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2266       // __declspec(dllimport) must be handled very carefully:
2267       // We must never initialize an expression with the thunk in C++.
2268       // Doing otherwise would allow the same id-expression to yield
2269       // different addresses for the same function in different translation
2270       // units.  However, this means that we must dynamically initialize the
2271       // expression with the contents of the import address table at runtime.
2272       //
2273       // The C language has no notion of ODR; furthermore, it has no notion of
2274       // dynamic initialization.  This means that we are permitted to
2275       // perform initialization with the address of the thunk.
2276       if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2277           FD->hasAttr<DLLImportAttr>())
2278         // FIXME: Diagnostic!
2279         return false;
2280     }
2281   } else if (const auto *MTE =
2282                  dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2283     if (CheckedTemps.insert(MTE).second) {
2284       QualType TempType = getType(Base);
2285       if (TempType.isDestructedType()) {
2286         Info.FFDiag(MTE->getExprLoc(),
2287                     diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2288             << TempType;
2289         return false;
2290       }
2291 
2292       APValue *V = MTE->getOrCreateValue(false);
2293       assert(V && "evasluation result refers to uninitialised temporary");
2294       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2295                                  Info, MTE->getExprLoc(), TempType, *V, Kind,
2296                                  /*SubobjectDecl=*/nullptr, CheckedTemps))
2297         return false;
2298     }
2299   }
2300 
2301   // Allow address constant expressions to be past-the-end pointers. This is
2302   // an extension: the standard requires them to point to an object.
2303   if (!IsReferenceType)
2304     return true;
2305 
2306   // A reference constant expression must refer to an object.
2307   if (!Base) {
2308     // FIXME: diagnostic
2309     Info.CCEDiag(Loc);
2310     return true;
2311   }
2312 
2313   // Does this refer one past the end of some object?
2314   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2315     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2316       << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2317     NoteLValueLocation(Info, Base);
2318   }
2319 
2320   return true;
2321 }
2322 
2323 /// Member pointers are constant expressions unless they point to a
2324 /// non-virtual dllimport member function.
2325 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2326                                                  SourceLocation Loc,
2327                                                  QualType Type,
2328                                                  const APValue &Value,
2329                                                  ConstantExprKind Kind) {
2330   const ValueDecl *Member = Value.getMemberPointerDecl();
2331   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2332   if (!FD)
2333     return true;
2334   if (FD->isImmediateFunction()) {
2335     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2336     Info.Note(FD->getLocation(), diag::note_declared_at);
2337     return false;
2338   }
2339   return isForManglingOnly(Kind) || FD->isVirtual() ||
2340          !FD->hasAttr<DLLImportAttr>();
2341 }
2342 
2343 /// Check that this core constant expression is of literal type, and if not,
2344 /// produce an appropriate diagnostic.
2345 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2346                              const LValue *This = nullptr) {
2347   if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2348     return true;
2349 
2350   // C++1y: A constant initializer for an object o [...] may also invoke
2351   // constexpr constructors for o and its subobjects even if those objects
2352   // are of non-literal class types.
2353   //
2354   // C++11 missed this detail for aggregates, so classes like this:
2355   //   struct foo_t { union { int i; volatile int j; } u; };
2356   // are not (obviously) initializable like so:
2357   //   __attribute__((__require_constant_initialization__))
2358   //   static const foo_t x = {{0}};
2359   // because "i" is a subobject with non-literal initialization (due to the
2360   // volatile member of the union). See:
2361   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2362   // Therefore, we use the C++1y behavior.
2363   if (This && Info.EvaluatingDecl == This->getLValueBase())
2364     return true;
2365 
2366   // Prvalue constant expressions must be of literal types.
2367   if (Info.getLangOpts().CPlusPlus11)
2368     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2369       << E->getType();
2370   else
2371     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2372   return false;
2373 }
2374 
2375 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2376                                   EvalInfo &Info, SourceLocation DiagLoc,
2377                                   QualType Type, const APValue &Value,
2378                                   ConstantExprKind Kind,
2379                                   const FieldDecl *SubobjectDecl,
2380                                   CheckedTemporaries &CheckedTemps) {
2381   if (!Value.hasValue()) {
2382     assert(SubobjectDecl && "SubobjectDecl shall be non-null");
2383     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) << SubobjectDecl;
2384     Info.Note(SubobjectDecl->getLocation(),
2385               diag::note_constexpr_subobject_declared_here);
2386     return false;
2387   }
2388 
2389   // We allow _Atomic(T) to be initialized from anything that T can be
2390   // initialized from.
2391   if (const AtomicType *AT = Type->getAs<AtomicType>())
2392     Type = AT->getValueType();
2393 
2394   // Core issue 1454: For a literal constant expression of array or class type,
2395   // each subobject of its value shall have been initialized by a constant
2396   // expression.
2397   if (Value.isArray()) {
2398     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2399     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2400       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2401                                  Value.getArrayInitializedElt(I), Kind,
2402                                  SubobjectDecl, CheckedTemps))
2403         return false;
2404     }
2405     if (!Value.hasArrayFiller())
2406       return true;
2407     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2408                                  Value.getArrayFiller(), Kind, SubobjectDecl,
2409                                  CheckedTemps);
2410   }
2411   if (Value.isUnion() && Value.getUnionField()) {
2412     return CheckEvaluationResult(
2413         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2414         Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps);
2415   }
2416   if (Value.isStruct()) {
2417     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2418     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2419       unsigned BaseIndex = 0;
2420       for (const CXXBaseSpecifier &BS : CD->bases()) {
2421         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2422                                    Value.getStructBase(BaseIndex), Kind,
2423                                    /*SubobjectDecl=*/nullptr, CheckedTemps))
2424           return false;
2425         ++BaseIndex;
2426       }
2427     }
2428     for (const auto *I : RD->fields()) {
2429       if (I->isUnnamedBitfield())
2430         continue;
2431 
2432       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2433                                  Value.getStructField(I->getFieldIndex()), Kind,
2434                                  I, CheckedTemps))
2435         return false;
2436     }
2437   }
2438 
2439   if (Value.isLValue() &&
2440       CERK == CheckEvaluationResultKind::ConstantExpression) {
2441     LValue LVal;
2442     LVal.setFrom(Info.Ctx, Value);
2443     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2444                                          CheckedTemps);
2445   }
2446 
2447   if (Value.isMemberPointer() &&
2448       CERK == CheckEvaluationResultKind::ConstantExpression)
2449     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2450 
2451   // Everything else is fine.
2452   return true;
2453 }
2454 
2455 /// Check that this core constant expression value is a valid value for a
2456 /// constant expression. If not, report an appropriate diagnostic. Does not
2457 /// check that the expression is of literal type.
2458 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2459                                     QualType Type, const APValue &Value,
2460                                     ConstantExprKind Kind) {
2461   // Nothing to check for a constant expression of type 'cv void'.
2462   if (Type->isVoidType())
2463     return true;
2464 
2465   CheckedTemporaries CheckedTemps;
2466   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2467                                Info, DiagLoc, Type, Value, Kind,
2468                                /*SubobjectDecl=*/nullptr, CheckedTemps);
2469 }
2470 
2471 /// Check that this evaluated value is fully-initialized and can be loaded by
2472 /// an lvalue-to-rvalue conversion.
2473 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2474                                   QualType Type, const APValue &Value) {
2475   CheckedTemporaries CheckedTemps;
2476   return CheckEvaluationResult(
2477       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2478       ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps);
2479 }
2480 
2481 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2482 /// "the allocated storage is deallocated within the evaluation".
2483 static bool CheckMemoryLeaks(EvalInfo &Info) {
2484   if (!Info.HeapAllocs.empty()) {
2485     // We can still fold to a constant despite a compile-time memory leak,
2486     // so long as the heap allocation isn't referenced in the result (we check
2487     // that in CheckConstantExpression).
2488     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2489                  diag::note_constexpr_memory_leak)
2490         << unsigned(Info.HeapAllocs.size() - 1);
2491   }
2492   return true;
2493 }
2494 
2495 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2496   // A null base expression indicates a null pointer.  These are always
2497   // evaluatable, and they are false unless the offset is zero.
2498   if (!Value.getLValueBase()) {
2499     // TODO: Should a non-null pointer with an offset of zero evaluate to true?
2500     Result = !Value.getLValueOffset().isZero();
2501     return true;
2502   }
2503 
2504   // We have a non-null base.  These are generally known to be true, but if it's
2505   // a weak declaration it can be null at runtime.
2506   Result = true;
2507   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2508   return !Decl || !Decl->isWeak();
2509 }
2510 
2511 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2512   // TODO: This function should produce notes if it fails.
2513   switch (Val.getKind()) {
2514   case APValue::None:
2515   case APValue::Indeterminate:
2516     return false;
2517   case APValue::Int:
2518     Result = Val.getInt().getBoolValue();
2519     return true;
2520   case APValue::FixedPoint:
2521     Result = Val.getFixedPoint().getBoolValue();
2522     return true;
2523   case APValue::Float:
2524     Result = !Val.getFloat().isZero();
2525     return true;
2526   case APValue::ComplexInt:
2527     Result = Val.getComplexIntReal().getBoolValue() ||
2528              Val.getComplexIntImag().getBoolValue();
2529     return true;
2530   case APValue::ComplexFloat:
2531     Result = !Val.getComplexFloatReal().isZero() ||
2532              !Val.getComplexFloatImag().isZero();
2533     return true;
2534   case APValue::LValue:
2535     return EvalPointerValueAsBool(Val, Result);
2536   case APValue::MemberPointer:
2537     if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2538       return false;
2539     }
2540     Result = Val.getMemberPointerDecl();
2541     return true;
2542   case APValue::Vector:
2543   case APValue::Array:
2544   case APValue::Struct:
2545   case APValue::Union:
2546   case APValue::AddrLabelDiff:
2547     return false;
2548   }
2549 
2550   llvm_unreachable("unknown APValue kind");
2551 }
2552 
2553 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2554                                        EvalInfo &Info) {
2555   assert(!E->isValueDependent());
2556   assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2557   APValue Val;
2558   if (!Evaluate(Val, Info, E))
2559     return false;
2560   return HandleConversionToBool(Val, Result);
2561 }
2562 
2563 template<typename T>
2564 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2565                            const T &SrcValue, QualType DestType) {
2566   Info.CCEDiag(E, diag::note_constexpr_overflow)
2567     << SrcValue << DestType;
2568   return Info.noteUndefinedBehavior();
2569 }
2570 
2571 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2572                                  QualType SrcType, const APFloat &Value,
2573                                  QualType DestType, APSInt &Result) {
2574   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2575   // Determine whether we are converting to unsigned or signed.
2576   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2577 
2578   Result = APSInt(DestWidth, !DestSigned);
2579   bool ignored;
2580   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2581       & APFloat::opInvalidOp)
2582     return HandleOverflow(Info, E, Value, DestType);
2583   return true;
2584 }
2585 
2586 /// Get rounding mode to use in evaluation of the specified expression.
2587 ///
2588 /// If rounding mode is unknown at compile time, still try to evaluate the
2589 /// expression. If the result is exact, it does not depend on rounding mode.
2590 /// So return "tonearest" mode instead of "dynamic".
2591 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2592   llvm::RoundingMode RM =
2593       E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2594   if (RM == llvm::RoundingMode::Dynamic)
2595     RM = llvm::RoundingMode::NearestTiesToEven;
2596   return RM;
2597 }
2598 
2599 /// Check if the given evaluation result is allowed for constant evaluation.
2600 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2601                                      APFloat::opStatus St) {
2602   // In a constant context, assume that any dynamic rounding mode or FP
2603   // exception state matches the default floating-point environment.
2604   if (Info.InConstantContext)
2605     return true;
2606 
2607   FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2608   if ((St & APFloat::opInexact) &&
2609       FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2610     // Inexact result means that it depends on rounding mode. If the requested
2611     // mode is dynamic, the evaluation cannot be made in compile time.
2612     Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2613     return false;
2614   }
2615 
2616   if ((St != APFloat::opOK) &&
2617       (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2618        FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2619        FPO.getAllowFEnvAccess())) {
2620     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2621     return false;
2622   }
2623 
2624   if ((St & APFloat::opStatus::opInvalidOp) &&
2625       FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2626     // There is no usefully definable result.
2627     Info.FFDiag(E);
2628     return false;
2629   }
2630 
2631   // FIXME: if:
2632   // - evaluation triggered other FP exception, and
2633   // - exception mode is not "ignore", and
2634   // - the expression being evaluated is not a part of global variable
2635   //   initializer,
2636   // the evaluation probably need to be rejected.
2637   return true;
2638 }
2639 
2640 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2641                                    QualType SrcType, QualType DestType,
2642                                    APFloat &Result) {
2643   assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2644   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2645   APFloat::opStatus St;
2646   APFloat Value = Result;
2647   bool ignored;
2648   St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2649   return checkFloatingPointResult(Info, E, St);
2650 }
2651 
2652 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2653                                  QualType DestType, QualType SrcType,
2654                                  const APSInt &Value) {
2655   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2656   // Figure out if this is a truncate, extend or noop cast.
2657   // If the input is signed, do a sign extend, noop, or truncate.
2658   APSInt Result = Value.extOrTrunc(DestWidth);
2659   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2660   if (DestType->isBooleanType())
2661     Result = Value.getBoolValue();
2662   return Result;
2663 }
2664 
2665 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2666                                  const FPOptions FPO,
2667                                  QualType SrcType, const APSInt &Value,
2668                                  QualType DestType, APFloat &Result) {
2669   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2670   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2671   APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM);
2672   return checkFloatingPointResult(Info, E, St);
2673 }
2674 
2675 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2676                                   APValue &Value, const FieldDecl *FD) {
2677   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2678 
2679   if (!Value.isInt()) {
2680     // Trying to store a pointer-cast-to-integer into a bitfield.
2681     // FIXME: In this case, we should provide the diagnostic for casting
2682     // a pointer to an integer.
2683     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2684     Info.FFDiag(E);
2685     return false;
2686   }
2687 
2688   APSInt &Int = Value.getInt();
2689   unsigned OldBitWidth = Int.getBitWidth();
2690   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2691   if (NewBitWidth < OldBitWidth)
2692     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2693   return true;
2694 }
2695 
2696 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2697                                   llvm::APInt &Res) {
2698   APValue SVal;
2699   if (!Evaluate(SVal, Info, E))
2700     return false;
2701   if (SVal.isInt()) {
2702     Res = SVal.getInt();
2703     return true;
2704   }
2705   if (SVal.isFloat()) {
2706     Res = SVal.getFloat().bitcastToAPInt();
2707     return true;
2708   }
2709   if (SVal.isVector()) {
2710     QualType VecTy = E->getType();
2711     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2712     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2713     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2714     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2715     Res = llvm::APInt::getZero(VecSize);
2716     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2717       APValue &Elt = SVal.getVectorElt(i);
2718       llvm::APInt EltAsInt;
2719       if (Elt.isInt()) {
2720         EltAsInt = Elt.getInt();
2721       } else if (Elt.isFloat()) {
2722         EltAsInt = Elt.getFloat().bitcastToAPInt();
2723       } else {
2724         // Don't try to handle vectors of anything other than int or float
2725         // (not sure if it's possible to hit this case).
2726         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2727         return false;
2728       }
2729       unsigned BaseEltSize = EltAsInt.getBitWidth();
2730       if (BigEndian)
2731         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2732       else
2733         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2734     }
2735     return true;
2736   }
2737   // Give up if the input isn't an int, float, or vector.  For example, we
2738   // reject "(v4i16)(intptr_t)&a".
2739   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2740   return false;
2741 }
2742 
2743 /// Perform the given integer operation, which is known to need at most BitWidth
2744 /// bits, and check for overflow in the original type (if that type was not an
2745 /// unsigned type).
2746 template<typename Operation>
2747 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2748                                  const APSInt &LHS, const APSInt &RHS,
2749                                  unsigned BitWidth, Operation Op,
2750                                  APSInt &Result) {
2751   if (LHS.isUnsigned()) {
2752     Result = Op(LHS, RHS);
2753     return true;
2754   }
2755 
2756   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2757   Result = Value.trunc(LHS.getBitWidth());
2758   if (Result.extend(BitWidth) != Value) {
2759     if (Info.checkingForUndefinedBehavior())
2760       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2761                                        diag::warn_integer_constant_overflow)
2762           << toString(Result, 10) << E->getType();
2763     return HandleOverflow(Info, E, Value, E->getType());
2764   }
2765   return true;
2766 }
2767 
2768 /// Perform the given binary integer operation.
2769 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2770                               BinaryOperatorKind Opcode, APSInt RHS,
2771                               APSInt &Result) {
2772   bool HandleOverflowResult = true;
2773   switch (Opcode) {
2774   default:
2775     Info.FFDiag(E);
2776     return false;
2777   case BO_Mul:
2778     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2779                                 std::multiplies<APSInt>(), Result);
2780   case BO_Add:
2781     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2782                                 std::plus<APSInt>(), Result);
2783   case BO_Sub:
2784     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2785                                 std::minus<APSInt>(), Result);
2786   case BO_And: Result = LHS & RHS; return true;
2787   case BO_Xor: Result = LHS ^ RHS; return true;
2788   case BO_Or:  Result = LHS | RHS; return true;
2789   case BO_Div:
2790   case BO_Rem:
2791     if (RHS == 0) {
2792       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2793       return false;
2794     }
2795     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2796     // this operation and gives the two's complement result.
2797     if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2798         LHS.isMinSignedValue())
2799       HandleOverflowResult = HandleOverflow(
2800           Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
2801     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2802     return HandleOverflowResult;
2803   case BO_Shl: {
2804     if (Info.getLangOpts().OpenCL)
2805       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2806       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2807                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2808                     RHS.isUnsigned());
2809     else if (RHS.isSigned() && RHS.isNegative()) {
2810       // During constant-folding, a negative shift is an opposite shift. Such
2811       // a shift is not a constant expression.
2812       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2813       RHS = -RHS;
2814       goto shift_right;
2815     }
2816   shift_left:
2817     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2818     // the shifted type.
2819     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2820     if (SA != RHS) {
2821       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2822         << RHS << E->getType() << LHS.getBitWidth();
2823     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2824       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2825       // operand, and must not overflow the corresponding unsigned type.
2826       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2827       // E1 x 2^E2 module 2^N.
2828       if (LHS.isNegative())
2829         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2830       else if (LHS.countl_zero() < SA)
2831         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2832     }
2833     Result = LHS << SA;
2834     return true;
2835   }
2836   case BO_Shr: {
2837     if (Info.getLangOpts().OpenCL)
2838       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2839       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2840                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2841                     RHS.isUnsigned());
2842     else if (RHS.isSigned() && RHS.isNegative()) {
2843       // During constant-folding, a negative shift is an opposite shift. Such a
2844       // shift is not a constant expression.
2845       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2846       RHS = -RHS;
2847       goto shift_left;
2848     }
2849   shift_right:
2850     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2851     // shifted type.
2852     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2853     if (SA != RHS)
2854       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2855         << RHS << E->getType() << LHS.getBitWidth();
2856     Result = LHS >> SA;
2857     return true;
2858   }
2859 
2860   case BO_LT: Result = LHS < RHS; return true;
2861   case BO_GT: Result = LHS > RHS; return true;
2862   case BO_LE: Result = LHS <= RHS; return true;
2863   case BO_GE: Result = LHS >= RHS; return true;
2864   case BO_EQ: Result = LHS == RHS; return true;
2865   case BO_NE: Result = LHS != RHS; return true;
2866   case BO_Cmp:
2867     llvm_unreachable("BO_Cmp should be handled elsewhere");
2868   }
2869 }
2870 
2871 /// Perform the given binary floating-point operation, in-place, on LHS.
2872 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2873                                   APFloat &LHS, BinaryOperatorKind Opcode,
2874                                   const APFloat &RHS) {
2875   llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2876   APFloat::opStatus St;
2877   switch (Opcode) {
2878   default:
2879     Info.FFDiag(E);
2880     return false;
2881   case BO_Mul:
2882     St = LHS.multiply(RHS, RM);
2883     break;
2884   case BO_Add:
2885     St = LHS.add(RHS, RM);
2886     break;
2887   case BO_Sub:
2888     St = LHS.subtract(RHS, RM);
2889     break;
2890   case BO_Div:
2891     // [expr.mul]p4:
2892     //   If the second operand of / or % is zero the behavior is undefined.
2893     if (RHS.isZero())
2894       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2895     St = LHS.divide(RHS, RM);
2896     break;
2897   }
2898 
2899   // [expr.pre]p4:
2900   //   If during the evaluation of an expression, the result is not
2901   //   mathematically defined [...], the behavior is undefined.
2902   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2903   if (LHS.isNaN()) {
2904     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2905     return Info.noteUndefinedBehavior();
2906   }
2907 
2908   return checkFloatingPointResult(Info, E, St);
2909 }
2910 
2911 static bool handleLogicalOpForVector(const APInt &LHSValue,
2912                                      BinaryOperatorKind Opcode,
2913                                      const APInt &RHSValue, APInt &Result) {
2914   bool LHS = (LHSValue != 0);
2915   bool RHS = (RHSValue != 0);
2916 
2917   if (Opcode == BO_LAnd)
2918     Result = LHS && RHS;
2919   else
2920     Result = LHS || RHS;
2921   return true;
2922 }
2923 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2924                                      BinaryOperatorKind Opcode,
2925                                      const APFloat &RHSValue, APInt &Result) {
2926   bool LHS = !LHSValue.isZero();
2927   bool RHS = !RHSValue.isZero();
2928 
2929   if (Opcode == BO_LAnd)
2930     Result = LHS && RHS;
2931   else
2932     Result = LHS || RHS;
2933   return true;
2934 }
2935 
2936 static bool handleLogicalOpForVector(const APValue &LHSValue,
2937                                      BinaryOperatorKind Opcode,
2938                                      const APValue &RHSValue, APInt &Result) {
2939   // The result is always an int type, however operands match the first.
2940   if (LHSValue.getKind() == APValue::Int)
2941     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2942                                     RHSValue.getInt(), Result);
2943   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2944   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2945                                   RHSValue.getFloat(), Result);
2946 }
2947 
2948 template <typename APTy>
2949 static bool
2950 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2951                                const APTy &RHSValue, APInt &Result) {
2952   switch (Opcode) {
2953   default:
2954     llvm_unreachable("unsupported binary operator");
2955   case BO_EQ:
2956     Result = (LHSValue == RHSValue);
2957     break;
2958   case BO_NE:
2959     Result = (LHSValue != RHSValue);
2960     break;
2961   case BO_LT:
2962     Result = (LHSValue < RHSValue);
2963     break;
2964   case BO_GT:
2965     Result = (LHSValue > RHSValue);
2966     break;
2967   case BO_LE:
2968     Result = (LHSValue <= RHSValue);
2969     break;
2970   case BO_GE:
2971     Result = (LHSValue >= RHSValue);
2972     break;
2973   }
2974 
2975   // The boolean operations on these vector types use an instruction that
2976   // results in a mask of '-1' for the 'truth' value.  Ensure that we negate 1
2977   // to -1 to make sure that we produce the correct value.
2978   Result.negate();
2979 
2980   return true;
2981 }
2982 
2983 static bool handleCompareOpForVector(const APValue &LHSValue,
2984                                      BinaryOperatorKind Opcode,
2985                                      const APValue &RHSValue, APInt &Result) {
2986   // The result is always an int type, however operands match the first.
2987   if (LHSValue.getKind() == APValue::Int)
2988     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2989                                           RHSValue.getInt(), Result);
2990   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2991   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2992                                         RHSValue.getFloat(), Result);
2993 }
2994 
2995 // Perform binary operations for vector types, in place on the LHS.
2996 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2997                                     BinaryOperatorKind Opcode,
2998                                     APValue &LHSValue,
2999                                     const APValue &RHSValue) {
3000   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
3001          "Operation not supported on vector types");
3002 
3003   const auto *VT = E->getType()->castAs<VectorType>();
3004   unsigned NumElements = VT->getNumElements();
3005   QualType EltTy = VT->getElementType();
3006 
3007   // In the cases (typically C as I've observed) where we aren't evaluating
3008   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
3009   // just give up.
3010   if (!LHSValue.isVector()) {
3011     assert(LHSValue.isLValue() &&
3012            "A vector result that isn't a vector OR uncalculated LValue");
3013     Info.FFDiag(E);
3014     return false;
3015   }
3016 
3017   assert(LHSValue.getVectorLength() == NumElements &&
3018          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
3019 
3020   SmallVector<APValue, 4> ResultElements;
3021 
3022   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3023     APValue LHSElt = LHSValue.getVectorElt(EltNum);
3024     APValue RHSElt = RHSValue.getVectorElt(EltNum);
3025 
3026     if (EltTy->isIntegerType()) {
3027       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3028                        EltTy->isUnsignedIntegerType()};
3029       bool Success = true;
3030 
3031       if (BinaryOperator::isLogicalOp(Opcode))
3032         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3033       else if (BinaryOperator::isComparisonOp(Opcode))
3034         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3035       else
3036         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3037                                     RHSElt.getInt(), EltResult);
3038 
3039       if (!Success) {
3040         Info.FFDiag(E);
3041         return false;
3042       }
3043       ResultElements.emplace_back(EltResult);
3044 
3045     } else if (EltTy->isFloatingType()) {
3046       assert(LHSElt.getKind() == APValue::Float &&
3047              RHSElt.getKind() == APValue::Float &&
3048              "Mismatched LHS/RHS/Result Type");
3049       APFloat LHSFloat = LHSElt.getFloat();
3050 
3051       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3052                                  RHSElt.getFloat())) {
3053         Info.FFDiag(E);
3054         return false;
3055       }
3056 
3057       ResultElements.emplace_back(LHSFloat);
3058     }
3059   }
3060 
3061   LHSValue = APValue(ResultElements.data(), ResultElements.size());
3062   return true;
3063 }
3064 
3065 /// Cast an lvalue referring to a base subobject to a derived class, by
3066 /// truncating the lvalue's path to the given length.
3067 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3068                                const RecordDecl *TruncatedType,
3069                                unsigned TruncatedElements) {
3070   SubobjectDesignator &D = Result.Designator;
3071 
3072   // Check we actually point to a derived class object.
3073   if (TruncatedElements == D.Entries.size())
3074     return true;
3075   assert(TruncatedElements >= D.MostDerivedPathLength &&
3076          "not casting to a derived class");
3077   if (!Result.checkSubobject(Info, E, CSK_Derived))
3078     return false;
3079 
3080   // Truncate the path to the subobject, and remove any derived-to-base offsets.
3081   const RecordDecl *RD = TruncatedType;
3082   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3083     if (RD->isInvalidDecl()) return false;
3084     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3085     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3086     if (isVirtualBaseClass(D.Entries[I]))
3087       Result.Offset -= Layout.getVBaseClassOffset(Base);
3088     else
3089       Result.Offset -= Layout.getBaseClassOffset(Base);
3090     RD = Base;
3091   }
3092   D.Entries.resize(TruncatedElements);
3093   return true;
3094 }
3095 
3096 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3097                                    const CXXRecordDecl *Derived,
3098                                    const CXXRecordDecl *Base,
3099                                    const ASTRecordLayout *RL = nullptr) {
3100   if (!RL) {
3101     if (Derived->isInvalidDecl()) return false;
3102     RL = &Info.Ctx.getASTRecordLayout(Derived);
3103   }
3104 
3105   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3106   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3107   return true;
3108 }
3109 
3110 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3111                              const CXXRecordDecl *DerivedDecl,
3112                              const CXXBaseSpecifier *Base) {
3113   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3114 
3115   if (!Base->isVirtual())
3116     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3117 
3118   SubobjectDesignator &D = Obj.Designator;
3119   if (D.Invalid)
3120     return false;
3121 
3122   // Extract most-derived object and corresponding type.
3123   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3124   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3125     return false;
3126 
3127   // Find the virtual base class.
3128   if (DerivedDecl->isInvalidDecl()) return false;
3129   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3130   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3131   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3132   return true;
3133 }
3134 
3135 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3136                                  QualType Type, LValue &Result) {
3137   for (CastExpr::path_const_iterator PathI = E->path_begin(),
3138                                      PathE = E->path_end();
3139        PathI != PathE; ++PathI) {
3140     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3141                           *PathI))
3142       return false;
3143     Type = (*PathI)->getType();
3144   }
3145   return true;
3146 }
3147 
3148 /// Cast an lvalue referring to a derived class to a known base subobject.
3149 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3150                             const CXXRecordDecl *DerivedRD,
3151                             const CXXRecordDecl *BaseRD) {
3152   CXXBasePaths Paths(/*FindAmbiguities=*/false,
3153                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
3154   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3155     llvm_unreachable("Class must be derived from the passed in base class!");
3156 
3157   for (CXXBasePathElement &Elem : Paths.front())
3158     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3159       return false;
3160   return true;
3161 }
3162 
3163 /// Update LVal to refer to the given field, which must be a member of the type
3164 /// currently described by LVal.
3165 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3166                                const FieldDecl *FD,
3167                                const ASTRecordLayout *RL = nullptr) {
3168   if (!RL) {
3169     if (FD->getParent()->isInvalidDecl()) return false;
3170     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3171   }
3172 
3173   unsigned I = FD->getFieldIndex();
3174   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3175   LVal.addDecl(Info, E, FD);
3176   return true;
3177 }
3178 
3179 /// Update LVal to refer to the given indirect field.
3180 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3181                                        LValue &LVal,
3182                                        const IndirectFieldDecl *IFD) {
3183   for (const auto *C : IFD->chain())
3184     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3185       return false;
3186   return true;
3187 }
3188 
3189 /// Get the size of the given type in char units.
3190 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3191                          QualType Type, CharUnits &Size) {
3192   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3193   // extension.
3194   if (Type->isVoidType() || Type->isFunctionType()) {
3195     Size = CharUnits::One();
3196     return true;
3197   }
3198 
3199   if (Type->isDependentType()) {
3200     Info.FFDiag(Loc);
3201     return false;
3202   }
3203 
3204   if (!Type->isConstantSizeType()) {
3205     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3206     // FIXME: Better diagnostic.
3207     Info.FFDiag(Loc);
3208     return false;
3209   }
3210 
3211   Size = Info.Ctx.getTypeSizeInChars(Type);
3212   return true;
3213 }
3214 
3215 /// Update a pointer value to model pointer arithmetic.
3216 /// \param Info - Information about the ongoing evaluation.
3217 /// \param E - The expression being evaluated, for diagnostic purposes.
3218 /// \param LVal - The pointer value to be updated.
3219 /// \param EltTy - The pointee type represented by LVal.
3220 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3221 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3222                                         LValue &LVal, QualType EltTy,
3223                                         APSInt Adjustment) {
3224   CharUnits SizeOfPointee;
3225   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3226     return false;
3227 
3228   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3229   return true;
3230 }
3231 
3232 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3233                                         LValue &LVal, QualType EltTy,
3234                                         int64_t Adjustment) {
3235   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3236                                      APSInt::get(Adjustment));
3237 }
3238 
3239 /// Update an lvalue to refer to a component of a complex number.
3240 /// \param Info - Information about the ongoing evaluation.
3241 /// \param LVal - The lvalue to be updated.
3242 /// \param EltTy - The complex number's component type.
3243 /// \param Imag - False for the real component, true for the imaginary.
3244 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3245                                        LValue &LVal, QualType EltTy,
3246                                        bool Imag) {
3247   if (Imag) {
3248     CharUnits SizeOfComponent;
3249     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3250       return false;
3251     LVal.Offset += SizeOfComponent;
3252   }
3253   LVal.addComplex(Info, E, EltTy, Imag);
3254   return true;
3255 }
3256 
3257 /// Try to evaluate the initializer for a variable declaration.
3258 ///
3259 /// \param Info   Information about the ongoing evaluation.
3260 /// \param E      An expression to be used when printing diagnostics.
3261 /// \param VD     The variable whose initializer should be obtained.
3262 /// \param Version The version of the variable within the frame.
3263 /// \param Frame  The frame in which the variable was created. Must be null
3264 ///               if this variable is not local to the evaluation.
3265 /// \param Result Filled in with a pointer to the value of the variable.
3266 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3267                                 const VarDecl *VD, CallStackFrame *Frame,
3268                                 unsigned Version, APValue *&Result) {
3269   APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3270 
3271   // If this is a local variable, dig out its value.
3272   if (Frame) {
3273     Result = Frame->getTemporary(VD, Version);
3274     if (Result)
3275       return true;
3276 
3277     if (!isa<ParmVarDecl>(VD)) {
3278       // Assume variables referenced within a lambda's call operator that were
3279       // not declared within the call operator are captures and during checking
3280       // of a potential constant expression, assume they are unknown constant
3281       // expressions.
3282       assert(isLambdaCallOperator(Frame->Callee) &&
3283              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3284              "missing value for local variable");
3285       if (Info.checkingPotentialConstantExpression())
3286         return false;
3287       // FIXME: This diagnostic is bogus; we do support captures. Is this code
3288       // still reachable at all?
3289       Info.FFDiag(E->getBeginLoc(),
3290                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3291           << "captures not currently allowed";
3292       return false;
3293     }
3294   }
3295 
3296   // If we're currently evaluating the initializer of this declaration, use that
3297   // in-flight value.
3298   if (Info.EvaluatingDecl == Base) {
3299     Result = Info.EvaluatingDeclValue;
3300     return true;
3301   }
3302 
3303   if (isa<ParmVarDecl>(VD)) {
3304     // Assume parameters of a potential constant expression are usable in
3305     // constant expressions.
3306     if (!Info.checkingPotentialConstantExpression() ||
3307         !Info.CurrentCall->Callee ||
3308         !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3309       if (Info.getLangOpts().CPlusPlus11) {
3310         Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3311             << VD;
3312         NoteLValueLocation(Info, Base);
3313       } else {
3314         Info.FFDiag(E);
3315       }
3316     }
3317     return false;
3318   }
3319 
3320   // Dig out the initializer, and use the declaration which it's attached to.
3321   // FIXME: We should eventually check whether the variable has a reachable
3322   // initializing declaration.
3323   const Expr *Init = VD->getAnyInitializer(VD);
3324   if (!Init) {
3325     // Don't diagnose during potential constant expression checking; an
3326     // initializer might be added later.
3327     if (!Info.checkingPotentialConstantExpression()) {
3328       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3329         << VD;
3330       NoteLValueLocation(Info, Base);
3331     }
3332     return false;
3333   }
3334 
3335   if (Init->isValueDependent()) {
3336     // The DeclRefExpr is not value-dependent, but the variable it refers to
3337     // has a value-dependent initializer. This should only happen in
3338     // constant-folding cases, where the variable is not actually of a suitable
3339     // type for use in a constant expression (otherwise the DeclRefExpr would
3340     // have been value-dependent too), so diagnose that.
3341     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3342     if (!Info.checkingPotentialConstantExpression()) {
3343       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3344                          ? diag::note_constexpr_ltor_non_constexpr
3345                          : diag::note_constexpr_ltor_non_integral, 1)
3346           << VD << VD->getType();
3347       NoteLValueLocation(Info, Base);
3348     }
3349     return false;
3350   }
3351 
3352   // Check that we can fold the initializer. In C++, we will have already done
3353   // this in the cases where it matters for conformance.
3354   if (!VD->evaluateValue()) {
3355     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3356     NoteLValueLocation(Info, Base);
3357     return false;
3358   }
3359 
3360   // Check that the variable is actually usable in constant expressions. For a
3361   // const integral variable or a reference, we might have a non-constant
3362   // initializer that we can nonetheless evaluate the initializer for. Such
3363   // variables are not usable in constant expressions. In C++98, the
3364   // initializer also syntactically needs to be an ICE.
3365   //
3366   // FIXME: We don't diagnose cases that aren't potentially usable in constant
3367   // expressions here; doing so would regress diagnostics for things like
3368   // reading from a volatile constexpr variable.
3369   if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3370        VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3371       ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3372        !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3373     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3374     NoteLValueLocation(Info, Base);
3375   }
3376 
3377   // Never use the initializer of a weak variable, not even for constant
3378   // folding. We can't be sure that this is the definition that will be used.
3379   if (VD->isWeak()) {
3380     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3381     NoteLValueLocation(Info, Base);
3382     return false;
3383   }
3384 
3385   Result = VD->getEvaluatedValue();
3386   return true;
3387 }
3388 
3389 /// Get the base index of the given base class within an APValue representing
3390 /// the given derived class.
3391 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3392                              const CXXRecordDecl *Base) {
3393   Base = Base->getCanonicalDecl();
3394   unsigned Index = 0;
3395   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3396          E = Derived->bases_end(); I != E; ++I, ++Index) {
3397     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3398       return Index;
3399   }
3400 
3401   llvm_unreachable("base class missing from derived class's bases list");
3402 }
3403 
3404 /// Extract the value of a character from a string literal.
3405 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3406                                             uint64_t Index) {
3407   assert(!isa<SourceLocExpr>(Lit) &&
3408          "SourceLocExpr should have already been converted to a StringLiteral");
3409 
3410   // FIXME: Support MakeStringConstant
3411   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3412     std::string Str;
3413     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3414     assert(Index <= Str.size() && "Index too large");
3415     return APSInt::getUnsigned(Str.c_str()[Index]);
3416   }
3417 
3418   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3419     Lit = PE->getFunctionName();
3420   const StringLiteral *S = cast<StringLiteral>(Lit);
3421   const ConstantArrayType *CAT =
3422       Info.Ctx.getAsConstantArrayType(S->getType());
3423   assert(CAT && "string literal isn't an array");
3424   QualType CharType = CAT->getElementType();
3425   assert(CharType->isIntegerType() && "unexpected character type");
3426 
3427   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3428                CharType->isUnsignedIntegerType());
3429   if (Index < S->getLength())
3430     Value = S->getCodeUnit(Index);
3431   return Value;
3432 }
3433 
3434 // Expand a string literal into an array of characters.
3435 //
3436 // FIXME: This is inefficient; we should probably introduce something similar
3437 // to the LLVM ConstantDataArray to make this cheaper.
3438 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3439                                 APValue &Result,
3440                                 QualType AllocType = QualType()) {
3441   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3442       AllocType.isNull() ? S->getType() : AllocType);
3443   assert(CAT && "string literal isn't an array");
3444   QualType CharType = CAT->getElementType();
3445   assert(CharType->isIntegerType() && "unexpected character type");
3446 
3447   unsigned Elts = CAT->getSize().getZExtValue();
3448   Result = APValue(APValue::UninitArray(),
3449                    std::min(S->getLength(), Elts), Elts);
3450   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3451                CharType->isUnsignedIntegerType());
3452   if (Result.hasArrayFiller())
3453     Result.getArrayFiller() = APValue(Value);
3454   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3455     Value = S->getCodeUnit(I);
3456     Result.getArrayInitializedElt(I) = APValue(Value);
3457   }
3458 }
3459 
3460 // Expand an array so that it has more than Index filled elements.
3461 static void expandArray(APValue &Array, unsigned Index) {
3462   unsigned Size = Array.getArraySize();
3463   assert(Index < Size);
3464 
3465   // Always at least double the number of elements for which we store a value.
3466   unsigned OldElts = Array.getArrayInitializedElts();
3467   unsigned NewElts = std::max(Index+1, OldElts * 2);
3468   NewElts = std::min(Size, std::max(NewElts, 8u));
3469 
3470   // Copy the data across.
3471   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3472   for (unsigned I = 0; I != OldElts; ++I)
3473     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3474   for (unsigned I = OldElts; I != NewElts; ++I)
3475     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3476   if (NewValue.hasArrayFiller())
3477     NewValue.getArrayFiller() = Array.getArrayFiller();
3478   Array.swap(NewValue);
3479 }
3480 
3481 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3482 /// conversion. If it's of class type, we may assume that the copy operation
3483 /// is trivial. Note that this is never true for a union type with fields
3484 /// (because the copy always "reads" the active member) and always true for
3485 /// a non-class type.
3486 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3487 static bool isReadByLvalueToRvalueConversion(QualType T) {
3488   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3489   return !RD || isReadByLvalueToRvalueConversion(RD);
3490 }
3491 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3492   // FIXME: A trivial copy of a union copies the object representation, even if
3493   // the union is empty.
3494   if (RD->isUnion())
3495     return !RD->field_empty();
3496   if (RD->isEmpty())
3497     return false;
3498 
3499   for (auto *Field : RD->fields())
3500     if (!Field->isUnnamedBitfield() &&
3501         isReadByLvalueToRvalueConversion(Field->getType()))
3502       return true;
3503 
3504   for (auto &BaseSpec : RD->bases())
3505     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3506       return true;
3507 
3508   return false;
3509 }
3510 
3511 /// Diagnose an attempt to read from any unreadable field within the specified
3512 /// type, which might be a class type.
3513 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3514                                   QualType T) {
3515   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3516   if (!RD)
3517     return false;
3518 
3519   if (!RD->hasMutableFields())
3520     return false;
3521 
3522   for (auto *Field : RD->fields()) {
3523     // If we're actually going to read this field in some way, then it can't
3524     // be mutable. If we're in a union, then assigning to a mutable field
3525     // (even an empty one) can change the active member, so that's not OK.
3526     // FIXME: Add core issue number for the union case.
3527     if (Field->isMutable() &&
3528         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3529       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3530       Info.Note(Field->getLocation(), diag::note_declared_at);
3531       return true;
3532     }
3533 
3534     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3535       return true;
3536   }
3537 
3538   for (auto &BaseSpec : RD->bases())
3539     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3540       return true;
3541 
3542   // All mutable fields were empty, and thus not actually read.
3543   return false;
3544 }
3545 
3546 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3547                                         APValue::LValueBase Base,
3548                                         bool MutableSubobject = false) {
3549   // A temporary or transient heap allocation we created.
3550   if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3551     return true;
3552 
3553   switch (Info.IsEvaluatingDecl) {
3554   case EvalInfo::EvaluatingDeclKind::None:
3555     return false;
3556 
3557   case EvalInfo::EvaluatingDeclKind::Ctor:
3558     // The variable whose initializer we're evaluating.
3559     if (Info.EvaluatingDecl == Base)
3560       return true;
3561 
3562     // A temporary lifetime-extended by the variable whose initializer we're
3563     // evaluating.
3564     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3565       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3566         return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3567     return false;
3568 
3569   case EvalInfo::EvaluatingDeclKind::Dtor:
3570     // C++2a [expr.const]p6:
3571     //   [during constant destruction] the lifetime of a and its non-mutable
3572     //   subobjects (but not its mutable subobjects) [are] considered to start
3573     //   within e.
3574     if (MutableSubobject || Base != Info.EvaluatingDecl)
3575       return false;
3576     // FIXME: We can meaningfully extend this to cover non-const objects, but
3577     // we will need special handling: we should be able to access only
3578     // subobjects of such objects that are themselves declared const.
3579     QualType T = getType(Base);
3580     return T.isConstQualified() || T->isReferenceType();
3581   }
3582 
3583   llvm_unreachable("unknown evaluating decl kind");
3584 }
3585 
3586 namespace {
3587 /// A handle to a complete object (an object that is not a subobject of
3588 /// another object).
3589 struct CompleteObject {
3590   /// The identity of the object.
3591   APValue::LValueBase Base;
3592   /// The value of the complete object.
3593   APValue *Value;
3594   /// The type of the complete object.
3595   QualType Type;
3596 
3597   CompleteObject() : Value(nullptr) {}
3598   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3599       : Base(Base), Value(Value), Type(Type) {}
3600 
3601   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3602     // If this isn't a "real" access (eg, if it's just accessing the type
3603     // info), allow it. We assume the type doesn't change dynamically for
3604     // subobjects of constexpr objects (even though we'd hit UB here if it
3605     // did). FIXME: Is this right?
3606     if (!isAnyAccess(AK))
3607       return true;
3608 
3609     // In C++14 onwards, it is permitted to read a mutable member whose
3610     // lifetime began within the evaluation.
3611     // FIXME: Should we also allow this in C++11?
3612     if (!Info.getLangOpts().CPlusPlus14)
3613       return false;
3614     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3615   }
3616 
3617   explicit operator bool() const { return !Type.isNull(); }
3618 };
3619 } // end anonymous namespace
3620 
3621 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3622                                  bool IsMutable = false) {
3623   // C++ [basic.type.qualifier]p1:
3624   // - A const object is an object of type const T or a non-mutable subobject
3625   //   of a const object.
3626   if (ObjType.isConstQualified() && !IsMutable)
3627     SubobjType.addConst();
3628   // - A volatile object is an object of type const T or a subobject of a
3629   //   volatile object.
3630   if (ObjType.isVolatileQualified())
3631     SubobjType.addVolatile();
3632   return SubobjType;
3633 }
3634 
3635 /// Find the designated sub-object of an rvalue.
3636 template<typename SubobjectHandler>
3637 typename SubobjectHandler::result_type
3638 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3639               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3640   if (Sub.Invalid)
3641     // A diagnostic will have already been produced.
3642     return handler.failed();
3643   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3644     if (Info.getLangOpts().CPlusPlus11)
3645       Info.FFDiag(E, Sub.isOnePastTheEnd()
3646                          ? diag::note_constexpr_access_past_end
3647                          : diag::note_constexpr_access_unsized_array)
3648           << handler.AccessKind;
3649     else
3650       Info.FFDiag(E);
3651     return handler.failed();
3652   }
3653 
3654   APValue *O = Obj.Value;
3655   QualType ObjType = Obj.Type;
3656   const FieldDecl *LastField = nullptr;
3657   const FieldDecl *VolatileField = nullptr;
3658 
3659   // Walk the designator's path to find the subobject.
3660   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3661     // Reading an indeterminate value is undefined, but assigning over one is OK.
3662     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3663         (O->isIndeterminate() &&
3664          !isValidIndeterminateAccess(handler.AccessKind))) {
3665       if (!Info.checkingPotentialConstantExpression())
3666         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3667             << handler.AccessKind << O->isIndeterminate();
3668       return handler.failed();
3669     }
3670 
3671     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3672     //    const and volatile semantics are not applied on an object under
3673     //    {con,de}struction.
3674     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3675         ObjType->isRecordType() &&
3676         Info.isEvaluatingCtorDtor(
3677             Obj.Base,
3678             llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3679             ConstructionPhase::None) {
3680       ObjType = Info.Ctx.getCanonicalType(ObjType);
3681       ObjType.removeLocalConst();
3682       ObjType.removeLocalVolatile();
3683     }
3684 
3685     // If this is our last pass, check that the final object type is OK.
3686     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3687       // Accesses to volatile objects are prohibited.
3688       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3689         if (Info.getLangOpts().CPlusPlus) {
3690           int DiagKind;
3691           SourceLocation Loc;
3692           const NamedDecl *Decl = nullptr;
3693           if (VolatileField) {
3694             DiagKind = 2;
3695             Loc = VolatileField->getLocation();
3696             Decl = VolatileField;
3697           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3698             DiagKind = 1;
3699             Loc = VD->getLocation();
3700             Decl = VD;
3701           } else {
3702             DiagKind = 0;
3703             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3704               Loc = E->getExprLoc();
3705           }
3706           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3707               << handler.AccessKind << DiagKind << Decl;
3708           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3709         } else {
3710           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3711         }
3712         return handler.failed();
3713       }
3714 
3715       // If we are reading an object of class type, there may still be more
3716       // things we need to check: if there are any mutable subobjects, we
3717       // cannot perform this read. (This only happens when performing a trivial
3718       // copy or assignment.)
3719       if (ObjType->isRecordType() &&
3720           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3721           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3722         return handler.failed();
3723     }
3724 
3725     if (I == N) {
3726       if (!handler.found(*O, ObjType))
3727         return false;
3728 
3729       // If we modified a bit-field, truncate it to the right width.
3730       if (isModification(handler.AccessKind) &&
3731           LastField && LastField->isBitField() &&
3732           !truncateBitfieldValue(Info, E, *O, LastField))
3733         return false;
3734 
3735       return true;
3736     }
3737 
3738     LastField = nullptr;
3739     if (ObjType->isArrayType()) {
3740       // Next subobject is an array element.
3741       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3742       assert(CAT && "vla in literal type?");
3743       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3744       if (CAT->getSize().ule(Index)) {
3745         // Note, it should not be possible to form a pointer with a valid
3746         // designator which points more than one past the end of the array.
3747         if (Info.getLangOpts().CPlusPlus11)
3748           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3749             << handler.AccessKind;
3750         else
3751           Info.FFDiag(E);
3752         return handler.failed();
3753       }
3754 
3755       ObjType = CAT->getElementType();
3756 
3757       if (O->getArrayInitializedElts() > Index)
3758         O = &O->getArrayInitializedElt(Index);
3759       else if (!isRead(handler.AccessKind)) {
3760         expandArray(*O, Index);
3761         O = &O->getArrayInitializedElt(Index);
3762       } else
3763         O = &O->getArrayFiller();
3764     } else if (ObjType->isAnyComplexType()) {
3765       // Next subobject is a complex number.
3766       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3767       if (Index > 1) {
3768         if (Info.getLangOpts().CPlusPlus11)
3769           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3770             << handler.AccessKind;
3771         else
3772           Info.FFDiag(E);
3773         return handler.failed();
3774       }
3775 
3776       ObjType = getSubobjectType(
3777           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3778 
3779       assert(I == N - 1 && "extracting subobject of scalar?");
3780       if (O->isComplexInt()) {
3781         return handler.found(Index ? O->getComplexIntImag()
3782                                    : O->getComplexIntReal(), ObjType);
3783       } else {
3784         assert(O->isComplexFloat());
3785         return handler.found(Index ? O->getComplexFloatImag()
3786                                    : O->getComplexFloatReal(), ObjType);
3787       }
3788     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3789       if (Field->isMutable() &&
3790           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3791         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3792           << handler.AccessKind << Field;
3793         Info.Note(Field->getLocation(), diag::note_declared_at);
3794         return handler.failed();
3795       }
3796 
3797       // Next subobject is a class, struct or union field.
3798       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3799       if (RD->isUnion()) {
3800         const FieldDecl *UnionField = O->getUnionField();
3801         if (!UnionField ||
3802             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3803           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3804             // Placement new onto an inactive union member makes it active.
3805             O->setUnion(Field, APValue());
3806           } else {
3807             // FIXME: If O->getUnionValue() is absent, report that there's no
3808             // active union member rather than reporting the prior active union
3809             // member. We'll need to fix nullptr_t to not use APValue() as its
3810             // representation first.
3811             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3812                 << handler.AccessKind << Field << !UnionField << UnionField;
3813             return handler.failed();
3814           }
3815         }
3816         O = &O->getUnionValue();
3817       } else
3818         O = &O->getStructField(Field->getFieldIndex());
3819 
3820       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3821       LastField = Field;
3822       if (Field->getType().isVolatileQualified())
3823         VolatileField = Field;
3824     } else {
3825       // Next subobject is a base class.
3826       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3827       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3828       O = &O->getStructBase(getBaseIndex(Derived, Base));
3829 
3830       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3831     }
3832   }
3833 }
3834 
3835 namespace {
3836 struct ExtractSubobjectHandler {
3837   EvalInfo &Info;
3838   const Expr *E;
3839   APValue &Result;
3840   const AccessKinds AccessKind;
3841 
3842   typedef bool result_type;
3843   bool failed() { return false; }
3844   bool found(APValue &Subobj, QualType SubobjType) {
3845     Result = Subobj;
3846     if (AccessKind == AK_ReadObjectRepresentation)
3847       return true;
3848     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3849   }
3850   bool found(APSInt &Value, QualType SubobjType) {
3851     Result = APValue(Value);
3852     return true;
3853   }
3854   bool found(APFloat &Value, QualType SubobjType) {
3855     Result = APValue(Value);
3856     return true;
3857   }
3858 };
3859 } // end anonymous namespace
3860 
3861 /// Extract the designated sub-object of an rvalue.
3862 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3863                              const CompleteObject &Obj,
3864                              const SubobjectDesignator &Sub, APValue &Result,
3865                              AccessKinds AK = AK_Read) {
3866   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3867   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3868   return findSubobject(Info, E, Obj, Sub, Handler);
3869 }
3870 
3871 namespace {
3872 struct ModifySubobjectHandler {
3873   EvalInfo &Info;
3874   APValue &NewVal;
3875   const Expr *E;
3876 
3877   typedef bool result_type;
3878   static const AccessKinds AccessKind = AK_Assign;
3879 
3880   bool checkConst(QualType QT) {
3881     // Assigning to a const object has undefined behavior.
3882     if (QT.isConstQualified()) {
3883       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3884       return false;
3885     }
3886     return true;
3887   }
3888 
3889   bool failed() { return false; }
3890   bool found(APValue &Subobj, QualType SubobjType) {
3891     if (!checkConst(SubobjType))
3892       return false;
3893     // We've been given ownership of NewVal, so just swap it in.
3894     Subobj.swap(NewVal);
3895     return true;
3896   }
3897   bool found(APSInt &Value, QualType SubobjType) {
3898     if (!checkConst(SubobjType))
3899       return false;
3900     if (!NewVal.isInt()) {
3901       // Maybe trying to write a cast pointer value into a complex?
3902       Info.FFDiag(E);
3903       return false;
3904     }
3905     Value = NewVal.getInt();
3906     return true;
3907   }
3908   bool found(APFloat &Value, QualType SubobjType) {
3909     if (!checkConst(SubobjType))
3910       return false;
3911     Value = NewVal.getFloat();
3912     return true;
3913   }
3914 };
3915 } // end anonymous namespace
3916 
3917 const AccessKinds ModifySubobjectHandler::AccessKind;
3918 
3919 /// Update the designated sub-object of an rvalue to the given value.
3920 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3921                             const CompleteObject &Obj,
3922                             const SubobjectDesignator &Sub,
3923                             APValue &NewVal) {
3924   ModifySubobjectHandler Handler = { Info, NewVal, E };
3925   return findSubobject(Info, E, Obj, Sub, Handler);
3926 }
3927 
3928 /// Find the position where two subobject designators diverge, or equivalently
3929 /// the length of the common initial subsequence.
3930 static unsigned FindDesignatorMismatch(QualType ObjType,
3931                                        const SubobjectDesignator &A,
3932                                        const SubobjectDesignator &B,
3933                                        bool &WasArrayIndex) {
3934   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3935   for (/**/; I != N; ++I) {
3936     if (!ObjType.isNull() &&
3937         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3938       // Next subobject is an array element.
3939       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3940         WasArrayIndex = true;
3941         return I;
3942       }
3943       if (ObjType->isAnyComplexType())
3944         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3945       else
3946         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3947     } else {
3948       if (A.Entries[I].getAsBaseOrMember() !=
3949           B.Entries[I].getAsBaseOrMember()) {
3950         WasArrayIndex = false;
3951         return I;
3952       }
3953       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3954         // Next subobject is a field.
3955         ObjType = FD->getType();
3956       else
3957         // Next subobject is a base class.
3958         ObjType = QualType();
3959     }
3960   }
3961   WasArrayIndex = false;
3962   return I;
3963 }
3964 
3965 /// Determine whether the given subobject designators refer to elements of the
3966 /// same array object.
3967 static bool AreElementsOfSameArray(QualType ObjType,
3968                                    const SubobjectDesignator &A,
3969                                    const SubobjectDesignator &B) {
3970   if (A.Entries.size() != B.Entries.size())
3971     return false;
3972 
3973   bool IsArray = A.MostDerivedIsArrayElement;
3974   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3975     // A is a subobject of the array element.
3976     return false;
3977 
3978   // If A (and B) designates an array element, the last entry will be the array
3979   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3980   // of length 1' case, and the entire path must match.
3981   bool WasArrayIndex;
3982   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3983   return CommonLength >= A.Entries.size() - IsArray;
3984 }
3985 
3986 /// Find the complete object to which an LValue refers.
3987 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3988                                          AccessKinds AK, const LValue &LVal,
3989                                          QualType LValType) {
3990   if (LVal.InvalidBase) {
3991     Info.FFDiag(E);
3992     return CompleteObject();
3993   }
3994 
3995   if (!LVal.Base) {
3996     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3997     return CompleteObject();
3998   }
3999 
4000   CallStackFrame *Frame = nullptr;
4001   unsigned Depth = 0;
4002   if (LVal.getLValueCallIndex()) {
4003     std::tie(Frame, Depth) =
4004         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
4005     if (!Frame) {
4006       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
4007         << AK << LVal.Base.is<const ValueDecl*>();
4008       NoteLValueLocation(Info, LVal.Base);
4009       return CompleteObject();
4010     }
4011   }
4012 
4013   bool IsAccess = isAnyAccess(AK);
4014 
4015   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4016   // is not a constant expression (even if the object is non-volatile). We also
4017   // apply this rule to C++98, in order to conform to the expected 'volatile'
4018   // semantics.
4019   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
4020     if (Info.getLangOpts().CPlusPlus)
4021       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4022         << AK << LValType;
4023     else
4024       Info.FFDiag(E);
4025     return CompleteObject();
4026   }
4027 
4028   // Compute value storage location and type of base object.
4029   APValue *BaseVal = nullptr;
4030   QualType BaseType = getType(LVal.Base);
4031 
4032   if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4033       lifetimeStartedInEvaluation(Info, LVal.Base)) {
4034     // This is the object whose initializer we're evaluating, so its lifetime
4035     // started in the current evaluation.
4036     BaseVal = Info.EvaluatingDeclValue;
4037   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4038     // Allow reading from a GUID declaration.
4039     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4040       if (isModification(AK)) {
4041         // All the remaining cases do not permit modification of the object.
4042         Info.FFDiag(E, diag::note_constexpr_modify_global);
4043         return CompleteObject();
4044       }
4045       APValue &V = GD->getAsAPValue();
4046       if (V.isAbsent()) {
4047         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4048             << GD->getType();
4049         return CompleteObject();
4050       }
4051       return CompleteObject(LVal.Base, &V, GD->getType());
4052     }
4053 
4054     // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4055     if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) {
4056       if (isModification(AK)) {
4057         Info.FFDiag(E, diag::note_constexpr_modify_global);
4058         return CompleteObject();
4059       }
4060       return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4061                             GCD->getType());
4062     }
4063 
4064     // Allow reading from template parameter objects.
4065     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4066       if (isModification(AK)) {
4067         Info.FFDiag(E, diag::note_constexpr_modify_global);
4068         return CompleteObject();
4069       }
4070       return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4071                             TPO->getType());
4072     }
4073 
4074     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4075     // In C++11, constexpr, non-volatile variables initialized with constant
4076     // expressions are constant expressions too. Inside constexpr functions,
4077     // parameters are constant expressions even if they're non-const.
4078     // In C++1y, objects local to a constant expression (those with a Frame) are
4079     // both readable and writable inside constant expressions.
4080     // In C, such things can also be folded, although they are not ICEs.
4081     const VarDecl *VD = dyn_cast<VarDecl>(D);
4082     if (VD) {
4083       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4084         VD = VDef;
4085     }
4086     if (!VD || VD->isInvalidDecl()) {
4087       Info.FFDiag(E);
4088       return CompleteObject();
4089     }
4090 
4091     bool IsConstant = BaseType.isConstant(Info.Ctx);
4092 
4093     // Unless we're looking at a local variable or argument in a constexpr call,
4094     // the variable we're reading must be const.
4095     if (!Frame) {
4096       if (IsAccess && isa<ParmVarDecl>(VD)) {
4097         // Access of a parameter that's not associated with a frame isn't going
4098         // to work out, but we can leave it to evaluateVarDeclInit to provide a
4099         // suitable diagnostic.
4100       } else if (Info.getLangOpts().CPlusPlus14 &&
4101                  lifetimeStartedInEvaluation(Info, LVal.Base)) {
4102         // OK, we can read and modify an object if we're in the process of
4103         // evaluating its initializer, because its lifetime began in this
4104         // evaluation.
4105       } else if (isModification(AK)) {
4106         // All the remaining cases do not permit modification of the object.
4107         Info.FFDiag(E, diag::note_constexpr_modify_global);
4108         return CompleteObject();
4109       } else if (VD->isConstexpr()) {
4110         // OK, we can read this variable.
4111       } else if (BaseType->isIntegralOrEnumerationType()) {
4112         if (!IsConstant) {
4113           if (!IsAccess)
4114             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4115           if (Info.getLangOpts().CPlusPlus) {
4116             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4117             Info.Note(VD->getLocation(), diag::note_declared_at);
4118           } else {
4119             Info.FFDiag(E);
4120           }
4121           return CompleteObject();
4122         }
4123       } else if (!IsAccess) {
4124         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4125       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4126                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4127         // This variable might end up being constexpr. Don't diagnose it yet.
4128       } else if (IsConstant) {
4129         // Keep evaluating to see what we can do. In particular, we support
4130         // folding of const floating-point types, in order to make static const
4131         // data members of such types (supported as an extension) more useful.
4132         if (Info.getLangOpts().CPlusPlus) {
4133           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4134                               ? diag::note_constexpr_ltor_non_constexpr
4135                               : diag::note_constexpr_ltor_non_integral, 1)
4136               << VD << BaseType;
4137           Info.Note(VD->getLocation(), diag::note_declared_at);
4138         } else {
4139           Info.CCEDiag(E);
4140         }
4141       } else {
4142         // Never allow reading a non-const value.
4143         if (Info.getLangOpts().CPlusPlus) {
4144           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4145                              ? diag::note_constexpr_ltor_non_constexpr
4146                              : diag::note_constexpr_ltor_non_integral, 1)
4147               << VD << BaseType;
4148           Info.Note(VD->getLocation(), diag::note_declared_at);
4149         } else {
4150           Info.FFDiag(E);
4151         }
4152         return CompleteObject();
4153       }
4154     }
4155 
4156     if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4157       return CompleteObject();
4158   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4159     std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4160     if (!Alloc) {
4161       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4162       return CompleteObject();
4163     }
4164     return CompleteObject(LVal.Base, &(*Alloc)->Value,
4165                           LVal.Base.getDynamicAllocType());
4166   } else {
4167     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4168 
4169     if (!Frame) {
4170       if (const MaterializeTemporaryExpr *MTE =
4171               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4172         assert(MTE->getStorageDuration() == SD_Static &&
4173                "should have a frame for a non-global materialized temporary");
4174 
4175         // C++20 [expr.const]p4: [DR2126]
4176         //   An object or reference is usable in constant expressions if it is
4177         //   - a temporary object of non-volatile const-qualified literal type
4178         //     whose lifetime is extended to that of a variable that is usable
4179         //     in constant expressions
4180         //
4181         // C++20 [expr.const]p5:
4182         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4183         //   - a non-volatile glvalue that refers to an object that is usable
4184         //     in constant expressions, or
4185         //   - a non-volatile glvalue of literal type that refers to a
4186         //     non-volatile object whose lifetime began within the evaluation
4187         //     of E;
4188         //
4189         // C++11 misses the 'began within the evaluation of e' check and
4190         // instead allows all temporaries, including things like:
4191         //   int &&r = 1;
4192         //   int x = ++r;
4193         //   constexpr int k = r;
4194         // Therefore we use the C++14-onwards rules in C++11 too.
4195         //
4196         // Note that temporaries whose lifetimes began while evaluating a
4197         // variable's constructor are not usable while evaluating the
4198         // corresponding destructor, not even if they're of const-qualified
4199         // types.
4200         if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4201             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4202           if (!IsAccess)
4203             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4204           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4205           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4206           return CompleteObject();
4207         }
4208 
4209         BaseVal = MTE->getOrCreateValue(false);
4210         assert(BaseVal && "got reference to unevaluated temporary");
4211       } else {
4212         if (!IsAccess)
4213           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4214         APValue Val;
4215         LVal.moveInto(Val);
4216         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4217             << AK
4218             << Val.getAsString(Info.Ctx,
4219                                Info.Ctx.getLValueReferenceType(LValType));
4220         NoteLValueLocation(Info, LVal.Base);
4221         return CompleteObject();
4222       }
4223     } else {
4224       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4225       assert(BaseVal && "missing value for temporary");
4226     }
4227   }
4228 
4229   // In C++14, we can't safely access any mutable state when we might be
4230   // evaluating after an unmodeled side effect. Parameters are modeled as state
4231   // in the caller, but aren't visible once the call returns, so they can be
4232   // modified in a speculatively-evaluated call.
4233   //
4234   // FIXME: Not all local state is mutable. Allow local constant subobjects
4235   // to be read here (but take care with 'mutable' fields).
4236   unsigned VisibleDepth = Depth;
4237   if (llvm::isa_and_nonnull<ParmVarDecl>(
4238           LVal.Base.dyn_cast<const ValueDecl *>()))
4239     ++VisibleDepth;
4240   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4241        Info.EvalStatus.HasSideEffects) ||
4242       (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4243     return CompleteObject();
4244 
4245   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4246 }
4247 
4248 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4249 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4250 /// glvalue referred to by an entity of reference type.
4251 ///
4252 /// \param Info - Information about the ongoing evaluation.
4253 /// \param Conv - The expression for which we are performing the conversion.
4254 ///               Used for diagnostics.
4255 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4256 ///               case of a non-class type).
4257 /// \param LVal - The glvalue on which we are attempting to perform this action.
4258 /// \param RVal - The produced value will be placed here.
4259 /// \param WantObjectRepresentation - If true, we're looking for the object
4260 ///               representation rather than the value, and in particular,
4261 ///               there is no requirement that the result be fully initialized.
4262 static bool
4263 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4264                                const LValue &LVal, APValue &RVal,
4265                                bool WantObjectRepresentation = false) {
4266   if (LVal.Designator.Invalid)
4267     return false;
4268 
4269   // Check for special cases where there is no existing APValue to look at.
4270   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4271 
4272   AccessKinds AK =
4273       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4274 
4275   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4276     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4277       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4278       // initializer until now for such expressions. Such an expression can't be
4279       // an ICE in C, so this only matters for fold.
4280       if (Type.isVolatileQualified()) {
4281         Info.FFDiag(Conv);
4282         return false;
4283       }
4284 
4285       APValue Lit;
4286       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4287         return false;
4288 
4289       // According to GCC info page:
4290       //
4291       // 6.28 Compound Literals
4292       //
4293       // As an optimization, G++ sometimes gives array compound literals longer
4294       // lifetimes: when the array either appears outside a function or has a
4295       // const-qualified type. If foo and its initializer had elements of type
4296       // char *const rather than char *, or if foo were a global variable, the
4297       // array would have static storage duration. But it is probably safest
4298       // just to avoid the use of array compound literals in C++ code.
4299       //
4300       // Obey that rule by checking constness for converted array types.
4301 
4302       QualType CLETy = CLE->getType();
4303       if (CLETy->isArrayType() && !Type->isArrayType()) {
4304         if (!CLETy.isConstant(Info.Ctx)) {
4305           Info.FFDiag(Conv);
4306           Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4307           return false;
4308         }
4309       }
4310 
4311       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4312       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4313     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4314       // Special-case character extraction so we don't have to construct an
4315       // APValue for the whole string.
4316       assert(LVal.Designator.Entries.size() <= 1 &&
4317              "Can only read characters from string literals");
4318       if (LVal.Designator.Entries.empty()) {
4319         // Fail for now for LValue to RValue conversion of an array.
4320         // (This shouldn't show up in C/C++, but it could be triggered by a
4321         // weird EvaluateAsRValue call from a tool.)
4322         Info.FFDiag(Conv);
4323         return false;
4324       }
4325       if (LVal.Designator.isOnePastTheEnd()) {
4326         if (Info.getLangOpts().CPlusPlus11)
4327           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4328         else
4329           Info.FFDiag(Conv);
4330         return false;
4331       }
4332       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4333       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4334       return true;
4335     }
4336   }
4337 
4338   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4339   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4340 }
4341 
4342 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4343 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4344                              QualType LValType, APValue &Val) {
4345   if (LVal.Designator.Invalid)
4346     return false;
4347 
4348   if (!Info.getLangOpts().CPlusPlus14) {
4349     Info.FFDiag(E);
4350     return false;
4351   }
4352 
4353   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4354   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4355 }
4356 
4357 namespace {
4358 struct CompoundAssignSubobjectHandler {
4359   EvalInfo &Info;
4360   const CompoundAssignOperator *E;
4361   QualType PromotedLHSType;
4362   BinaryOperatorKind Opcode;
4363   const APValue &RHS;
4364 
4365   static const AccessKinds AccessKind = AK_Assign;
4366 
4367   typedef bool result_type;
4368 
4369   bool checkConst(QualType QT) {
4370     // Assigning to a const object has undefined behavior.
4371     if (QT.isConstQualified()) {
4372       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4373       return false;
4374     }
4375     return true;
4376   }
4377 
4378   bool failed() { return false; }
4379   bool found(APValue &Subobj, QualType SubobjType) {
4380     switch (Subobj.getKind()) {
4381     case APValue::Int:
4382       return found(Subobj.getInt(), SubobjType);
4383     case APValue::Float:
4384       return found(Subobj.getFloat(), SubobjType);
4385     case APValue::ComplexInt:
4386     case APValue::ComplexFloat:
4387       // FIXME: Implement complex compound assignment.
4388       Info.FFDiag(E);
4389       return false;
4390     case APValue::LValue:
4391       return foundPointer(Subobj, SubobjType);
4392     case APValue::Vector:
4393       return foundVector(Subobj, SubobjType);
4394     default:
4395       // FIXME: can this happen?
4396       Info.FFDiag(E);
4397       return false;
4398     }
4399   }
4400 
4401   bool foundVector(APValue &Value, QualType SubobjType) {
4402     if (!checkConst(SubobjType))
4403       return false;
4404 
4405     if (!SubobjType->isVectorType()) {
4406       Info.FFDiag(E);
4407       return false;
4408     }
4409     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4410   }
4411 
4412   bool found(APSInt &Value, QualType SubobjType) {
4413     if (!checkConst(SubobjType))
4414       return false;
4415 
4416     if (!SubobjType->isIntegerType()) {
4417       // We don't support compound assignment on integer-cast-to-pointer
4418       // values.
4419       Info.FFDiag(E);
4420       return false;
4421     }
4422 
4423     if (RHS.isInt()) {
4424       APSInt LHS =
4425           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4426       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4427         return false;
4428       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4429       return true;
4430     } else if (RHS.isFloat()) {
4431       const FPOptions FPO = E->getFPFeaturesInEffect(
4432                                     Info.Ctx.getLangOpts());
4433       APFloat FValue(0.0);
4434       return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4435                                   PromotedLHSType, FValue) &&
4436              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4437              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4438                                   Value);
4439     }
4440 
4441     Info.FFDiag(E);
4442     return false;
4443   }
4444   bool found(APFloat &Value, QualType SubobjType) {
4445     return checkConst(SubobjType) &&
4446            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4447                                   Value) &&
4448            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4449            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4450   }
4451   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4452     if (!checkConst(SubobjType))
4453       return false;
4454 
4455     QualType PointeeType;
4456     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4457       PointeeType = PT->getPointeeType();
4458 
4459     if (PointeeType.isNull() || !RHS.isInt() ||
4460         (Opcode != BO_Add && Opcode != BO_Sub)) {
4461       Info.FFDiag(E);
4462       return false;
4463     }
4464 
4465     APSInt Offset = RHS.getInt();
4466     if (Opcode == BO_Sub)
4467       negateAsSigned(Offset);
4468 
4469     LValue LVal;
4470     LVal.setFrom(Info.Ctx, Subobj);
4471     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4472       return false;
4473     LVal.moveInto(Subobj);
4474     return true;
4475   }
4476 };
4477 } // end anonymous namespace
4478 
4479 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4480 
4481 /// Perform a compound assignment of LVal <op>= RVal.
4482 static bool handleCompoundAssignment(EvalInfo &Info,
4483                                      const CompoundAssignOperator *E,
4484                                      const LValue &LVal, QualType LValType,
4485                                      QualType PromotedLValType,
4486                                      BinaryOperatorKind Opcode,
4487                                      const APValue &RVal) {
4488   if (LVal.Designator.Invalid)
4489     return false;
4490 
4491   if (!Info.getLangOpts().CPlusPlus14) {
4492     Info.FFDiag(E);
4493     return false;
4494   }
4495 
4496   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4497   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4498                                              RVal };
4499   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4500 }
4501 
4502 namespace {
4503 struct IncDecSubobjectHandler {
4504   EvalInfo &Info;
4505   const UnaryOperator *E;
4506   AccessKinds AccessKind;
4507   APValue *Old;
4508 
4509   typedef bool result_type;
4510 
4511   bool checkConst(QualType QT) {
4512     // Assigning to a const object has undefined behavior.
4513     if (QT.isConstQualified()) {
4514       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4515       return false;
4516     }
4517     return true;
4518   }
4519 
4520   bool failed() { return false; }
4521   bool found(APValue &Subobj, QualType SubobjType) {
4522     // Stash the old value. Also clear Old, so we don't clobber it later
4523     // if we're post-incrementing a complex.
4524     if (Old) {
4525       *Old = Subobj;
4526       Old = nullptr;
4527     }
4528 
4529     switch (Subobj.getKind()) {
4530     case APValue::Int:
4531       return found(Subobj.getInt(), SubobjType);
4532     case APValue::Float:
4533       return found(Subobj.getFloat(), SubobjType);
4534     case APValue::ComplexInt:
4535       return found(Subobj.getComplexIntReal(),
4536                    SubobjType->castAs<ComplexType>()->getElementType()
4537                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4538     case APValue::ComplexFloat:
4539       return found(Subobj.getComplexFloatReal(),
4540                    SubobjType->castAs<ComplexType>()->getElementType()
4541                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4542     case APValue::LValue:
4543       return foundPointer(Subobj, SubobjType);
4544     default:
4545       // FIXME: can this happen?
4546       Info.FFDiag(E);
4547       return false;
4548     }
4549   }
4550   bool found(APSInt &Value, QualType SubobjType) {
4551     if (!checkConst(SubobjType))
4552       return false;
4553 
4554     if (!SubobjType->isIntegerType()) {
4555       // We don't support increment / decrement on integer-cast-to-pointer
4556       // values.
4557       Info.FFDiag(E);
4558       return false;
4559     }
4560 
4561     if (Old) *Old = APValue(Value);
4562 
4563     // bool arithmetic promotes to int, and the conversion back to bool
4564     // doesn't reduce mod 2^n, so special-case it.
4565     if (SubobjType->isBooleanType()) {
4566       if (AccessKind == AK_Increment)
4567         Value = 1;
4568       else
4569         Value = !Value;
4570       return true;
4571     }
4572 
4573     bool WasNegative = Value.isNegative();
4574     if (AccessKind == AK_Increment) {
4575       ++Value;
4576 
4577       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4578         APSInt ActualValue(Value, /*IsUnsigned*/true);
4579         return HandleOverflow(Info, E, ActualValue, SubobjType);
4580       }
4581     } else {
4582       --Value;
4583 
4584       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4585         unsigned BitWidth = Value.getBitWidth();
4586         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4587         ActualValue.setBit(BitWidth);
4588         return HandleOverflow(Info, E, ActualValue, SubobjType);
4589       }
4590     }
4591     return true;
4592   }
4593   bool found(APFloat &Value, QualType SubobjType) {
4594     if (!checkConst(SubobjType))
4595       return false;
4596 
4597     if (Old) *Old = APValue(Value);
4598 
4599     APFloat One(Value.getSemantics(), 1);
4600     if (AccessKind == AK_Increment)
4601       Value.add(One, APFloat::rmNearestTiesToEven);
4602     else
4603       Value.subtract(One, APFloat::rmNearestTiesToEven);
4604     return true;
4605   }
4606   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4607     if (!checkConst(SubobjType))
4608       return false;
4609 
4610     QualType PointeeType;
4611     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4612       PointeeType = PT->getPointeeType();
4613     else {
4614       Info.FFDiag(E);
4615       return false;
4616     }
4617 
4618     LValue LVal;
4619     LVal.setFrom(Info.Ctx, Subobj);
4620     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4621                                      AccessKind == AK_Increment ? 1 : -1))
4622       return false;
4623     LVal.moveInto(Subobj);
4624     return true;
4625   }
4626 };
4627 } // end anonymous namespace
4628 
4629 /// Perform an increment or decrement on LVal.
4630 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4631                          QualType LValType, bool IsIncrement, APValue *Old) {
4632   if (LVal.Designator.Invalid)
4633     return false;
4634 
4635   if (!Info.getLangOpts().CPlusPlus14) {
4636     Info.FFDiag(E);
4637     return false;
4638   }
4639 
4640   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4641   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4642   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4643   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4644 }
4645 
4646 /// Build an lvalue for the object argument of a member function call.
4647 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4648                                    LValue &This) {
4649   if (Object->getType()->isPointerType() && Object->isPRValue())
4650     return EvaluatePointer(Object, This, Info);
4651 
4652   if (Object->isGLValue())
4653     return EvaluateLValue(Object, This, Info);
4654 
4655   if (Object->getType()->isLiteralType(Info.Ctx))
4656     return EvaluateTemporary(Object, This, Info);
4657 
4658   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4659   return false;
4660 }
4661 
4662 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4663 /// lvalue referring to the result.
4664 ///
4665 /// \param Info - Information about the ongoing evaluation.
4666 /// \param LV - An lvalue referring to the base of the member pointer.
4667 /// \param RHS - The member pointer expression.
4668 /// \param IncludeMember - Specifies whether the member itself is included in
4669 ///        the resulting LValue subobject designator. This is not possible when
4670 ///        creating a bound member function.
4671 /// \return The field or method declaration to which the member pointer refers,
4672 ///         or 0 if evaluation fails.
4673 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4674                                                   QualType LVType,
4675                                                   LValue &LV,
4676                                                   const Expr *RHS,
4677                                                   bool IncludeMember = true) {
4678   MemberPtr MemPtr;
4679   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4680     return nullptr;
4681 
4682   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4683   // member value, the behavior is undefined.
4684   if (!MemPtr.getDecl()) {
4685     // FIXME: Specific diagnostic.
4686     Info.FFDiag(RHS);
4687     return nullptr;
4688   }
4689 
4690   if (MemPtr.isDerivedMember()) {
4691     // This is a member of some derived class. Truncate LV appropriately.
4692     // The end of the derived-to-base path for the base object must match the
4693     // derived-to-base path for the member pointer.
4694     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4695         LV.Designator.Entries.size()) {
4696       Info.FFDiag(RHS);
4697       return nullptr;
4698     }
4699     unsigned PathLengthToMember =
4700         LV.Designator.Entries.size() - MemPtr.Path.size();
4701     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4702       const CXXRecordDecl *LVDecl = getAsBaseClass(
4703           LV.Designator.Entries[PathLengthToMember + I]);
4704       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4705       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4706         Info.FFDiag(RHS);
4707         return nullptr;
4708       }
4709     }
4710 
4711     // Truncate the lvalue to the appropriate derived class.
4712     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4713                             PathLengthToMember))
4714       return nullptr;
4715   } else if (!MemPtr.Path.empty()) {
4716     // Extend the LValue path with the member pointer's path.
4717     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4718                                   MemPtr.Path.size() + IncludeMember);
4719 
4720     // Walk down to the appropriate base class.
4721     if (const PointerType *PT = LVType->getAs<PointerType>())
4722       LVType = PT->getPointeeType();
4723     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4724     assert(RD && "member pointer access on non-class-type expression");
4725     // The first class in the path is that of the lvalue.
4726     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4727       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4728       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4729         return nullptr;
4730       RD = Base;
4731     }
4732     // Finally cast to the class containing the member.
4733     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4734                                 MemPtr.getContainingRecord()))
4735       return nullptr;
4736   }
4737 
4738   // Add the member. Note that we cannot build bound member functions here.
4739   if (IncludeMember) {
4740     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4741       if (!HandleLValueMember(Info, RHS, LV, FD))
4742         return nullptr;
4743     } else if (const IndirectFieldDecl *IFD =
4744                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4745       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4746         return nullptr;
4747     } else {
4748       llvm_unreachable("can't construct reference to bound member function");
4749     }
4750   }
4751 
4752   return MemPtr.getDecl();
4753 }
4754 
4755 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4756                                                   const BinaryOperator *BO,
4757                                                   LValue &LV,
4758                                                   bool IncludeMember = true) {
4759   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4760 
4761   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4762     if (Info.noteFailure()) {
4763       MemberPtr MemPtr;
4764       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4765     }
4766     return nullptr;
4767   }
4768 
4769   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4770                                    BO->getRHS(), IncludeMember);
4771 }
4772 
4773 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4774 /// the provided lvalue, which currently refers to the base object.
4775 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4776                                     LValue &Result) {
4777   SubobjectDesignator &D = Result.Designator;
4778   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4779     return false;
4780 
4781   QualType TargetQT = E->getType();
4782   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4783     TargetQT = PT->getPointeeType();
4784 
4785   // Check this cast lands within the final derived-to-base subobject path.
4786   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4787     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4788       << D.MostDerivedType << TargetQT;
4789     return false;
4790   }
4791 
4792   // Check the type of the final cast. We don't need to check the path,
4793   // since a cast can only be formed if the path is unique.
4794   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4795   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4796   const CXXRecordDecl *FinalType;
4797   if (NewEntriesSize == D.MostDerivedPathLength)
4798     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4799   else
4800     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4801   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4802     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4803       << D.MostDerivedType << TargetQT;
4804     return false;
4805   }
4806 
4807   // Truncate the lvalue to the appropriate derived class.
4808   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4809 }
4810 
4811 /// Get the value to use for a default-initialized object of type T.
4812 /// Return false if it encounters something invalid.
4813 static bool getDefaultInitValue(QualType T, APValue &Result) {
4814   bool Success = true;
4815   if (auto *RD = T->getAsCXXRecordDecl()) {
4816     if (RD->isInvalidDecl()) {
4817       Result = APValue();
4818       return false;
4819     }
4820     if (RD->isUnion()) {
4821       Result = APValue((const FieldDecl *)nullptr);
4822       return true;
4823     }
4824     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4825                      std::distance(RD->field_begin(), RD->field_end()));
4826 
4827     unsigned Index = 0;
4828     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4829                                                   End = RD->bases_end();
4830          I != End; ++I, ++Index)
4831       Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4832 
4833     for (const auto *I : RD->fields()) {
4834       if (I->isUnnamedBitfield())
4835         continue;
4836       Success &= getDefaultInitValue(I->getType(),
4837                                      Result.getStructField(I->getFieldIndex()));
4838     }
4839     return Success;
4840   }
4841 
4842   if (auto *AT =
4843           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4844     Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4845     if (Result.hasArrayFiller())
4846       Success &=
4847           getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4848 
4849     return Success;
4850   }
4851 
4852   Result = APValue::IndeterminateValue();
4853   return true;
4854 }
4855 
4856 namespace {
4857 enum EvalStmtResult {
4858   /// Evaluation failed.
4859   ESR_Failed,
4860   /// Hit a 'return' statement.
4861   ESR_Returned,
4862   /// Evaluation succeeded.
4863   ESR_Succeeded,
4864   /// Hit a 'continue' statement.
4865   ESR_Continue,
4866   /// Hit a 'break' statement.
4867   ESR_Break,
4868   /// Still scanning for 'case' or 'default' statement.
4869   ESR_CaseNotFound
4870 };
4871 }
4872 
4873 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4874   if (VD->isInvalidDecl())
4875     return false;
4876   // We don't need to evaluate the initializer for a static local.
4877   if (!VD->hasLocalStorage())
4878     return true;
4879 
4880   LValue Result;
4881   APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4882                                                    ScopeKind::Block, Result);
4883 
4884   const Expr *InitE = VD->getInit();
4885   if (!InitE) {
4886     if (VD->getType()->isDependentType())
4887       return Info.noteSideEffect();
4888     return getDefaultInitValue(VD->getType(), Val);
4889   }
4890   if (InitE->isValueDependent())
4891     return false;
4892 
4893   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4894     // Wipe out any partially-computed value, to allow tracking that this
4895     // evaluation failed.
4896     Val = APValue();
4897     return false;
4898   }
4899 
4900   return true;
4901 }
4902 
4903 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4904   bool OK = true;
4905 
4906   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4907     OK &= EvaluateVarDecl(Info, VD);
4908 
4909   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4910     for (auto *BD : DD->bindings())
4911       if (auto *VD = BD->getHoldingVar())
4912         OK &= EvaluateDecl(Info, VD);
4913 
4914   return OK;
4915 }
4916 
4917 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4918   assert(E->isValueDependent());
4919   if (Info.noteSideEffect())
4920     return true;
4921   assert(E->containsErrors() && "valid value-dependent expression should never "
4922                                 "reach invalid code path.");
4923   return false;
4924 }
4925 
4926 /// Evaluate a condition (either a variable declaration or an expression).
4927 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4928                          const Expr *Cond, bool &Result) {
4929   if (Cond->isValueDependent())
4930     return false;
4931   FullExpressionRAII Scope(Info);
4932   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4933     return false;
4934   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4935     return false;
4936   return Scope.destroy();
4937 }
4938 
4939 namespace {
4940 /// A location where the result (returned value) of evaluating a
4941 /// statement should be stored.
4942 struct StmtResult {
4943   /// The APValue that should be filled in with the returned value.
4944   APValue &Value;
4945   /// The location containing the result, if any (used to support RVO).
4946   const LValue *Slot;
4947 };
4948 
4949 struct TempVersionRAII {
4950   CallStackFrame &Frame;
4951 
4952   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4953     Frame.pushTempVersion();
4954   }
4955 
4956   ~TempVersionRAII() {
4957     Frame.popTempVersion();
4958   }
4959 };
4960 
4961 }
4962 
4963 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4964                                    const Stmt *S,
4965                                    const SwitchCase *SC = nullptr);
4966 
4967 /// Evaluate the body of a loop, and translate the result as appropriate.
4968 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4969                                        const Stmt *Body,
4970                                        const SwitchCase *Case = nullptr) {
4971   BlockScopeRAII Scope(Info);
4972 
4973   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4974   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4975     ESR = ESR_Failed;
4976 
4977   switch (ESR) {
4978   case ESR_Break:
4979     return ESR_Succeeded;
4980   case ESR_Succeeded:
4981   case ESR_Continue:
4982     return ESR_Continue;
4983   case ESR_Failed:
4984   case ESR_Returned:
4985   case ESR_CaseNotFound:
4986     return ESR;
4987   }
4988   llvm_unreachable("Invalid EvalStmtResult!");
4989 }
4990 
4991 /// Evaluate a switch statement.
4992 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4993                                      const SwitchStmt *SS) {
4994   BlockScopeRAII Scope(Info);
4995 
4996   // Evaluate the switch condition.
4997   APSInt Value;
4998   {
4999     if (const Stmt *Init = SS->getInit()) {
5000       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5001       if (ESR != ESR_Succeeded) {
5002         if (ESR != ESR_Failed && !Scope.destroy())
5003           ESR = ESR_Failed;
5004         return ESR;
5005       }
5006     }
5007 
5008     FullExpressionRAII CondScope(Info);
5009     if (SS->getConditionVariable() &&
5010         !EvaluateDecl(Info, SS->getConditionVariable()))
5011       return ESR_Failed;
5012     if (SS->getCond()->isValueDependent()) {
5013       // We don't know what the value is, and which branch should jump to.
5014       EvaluateDependentExpr(SS->getCond(), Info);
5015       return ESR_Failed;
5016     }
5017     if (!EvaluateInteger(SS->getCond(), Value, Info))
5018       return ESR_Failed;
5019 
5020     if (!CondScope.destroy())
5021       return ESR_Failed;
5022   }
5023 
5024   // Find the switch case corresponding to the value of the condition.
5025   // FIXME: Cache this lookup.
5026   const SwitchCase *Found = nullptr;
5027   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5028        SC = SC->getNextSwitchCase()) {
5029     if (isa<DefaultStmt>(SC)) {
5030       Found = SC;
5031       continue;
5032     }
5033 
5034     const CaseStmt *CS = cast<CaseStmt>(SC);
5035     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
5036     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
5037                               : LHS;
5038     if (LHS <= Value && Value <= RHS) {
5039       Found = SC;
5040       break;
5041     }
5042   }
5043 
5044   if (!Found)
5045     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5046 
5047   // Search the switch body for the switch case and evaluate it from there.
5048   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
5049   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5050     return ESR_Failed;
5051 
5052   switch (ESR) {
5053   case ESR_Break:
5054     return ESR_Succeeded;
5055   case ESR_Succeeded:
5056   case ESR_Continue:
5057   case ESR_Failed:
5058   case ESR_Returned:
5059     return ESR;
5060   case ESR_CaseNotFound:
5061     // This can only happen if the switch case is nested within a statement
5062     // expression. We have no intention of supporting that.
5063     Info.FFDiag(Found->getBeginLoc(),
5064                 diag::note_constexpr_stmt_expr_unsupported);
5065     return ESR_Failed;
5066   }
5067   llvm_unreachable("Invalid EvalStmtResult!");
5068 }
5069 
5070 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5071   // An expression E is a core constant expression unless the evaluation of E
5072   // would evaluate one of the following: [C++23] - a control flow that passes
5073   // through a declaration of a variable with static or thread storage duration
5074   // unless that variable is usable in constant expressions.
5075   if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5076       !VD->isUsableInConstantExpressions(Info.Ctx)) {
5077     Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5078         << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5079     return false;
5080   }
5081   return true;
5082 }
5083 
5084 // Evaluate a statement.
5085 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5086                                    const Stmt *S, const SwitchCase *Case) {
5087   if (!Info.nextStep(S))
5088     return ESR_Failed;
5089 
5090   // If we're hunting down a 'case' or 'default' label, recurse through
5091   // substatements until we hit the label.
5092   if (Case) {
5093     switch (S->getStmtClass()) {
5094     case Stmt::CompoundStmtClass:
5095       // FIXME: Precompute which substatement of a compound statement we
5096       // would jump to, and go straight there rather than performing a
5097       // linear scan each time.
5098     case Stmt::LabelStmtClass:
5099     case Stmt::AttributedStmtClass:
5100     case Stmt::DoStmtClass:
5101       break;
5102 
5103     case Stmt::CaseStmtClass:
5104     case Stmt::DefaultStmtClass:
5105       if (Case == S)
5106         Case = nullptr;
5107       break;
5108 
5109     case Stmt::IfStmtClass: {
5110       // FIXME: Precompute which side of an 'if' we would jump to, and go
5111       // straight there rather than scanning both sides.
5112       const IfStmt *IS = cast<IfStmt>(S);
5113 
5114       // Wrap the evaluation in a block scope, in case it's a DeclStmt
5115       // preceded by our switch label.
5116       BlockScopeRAII Scope(Info);
5117 
5118       // Step into the init statement in case it brings an (uninitialized)
5119       // variable into scope.
5120       if (const Stmt *Init = IS->getInit()) {
5121         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5122         if (ESR != ESR_CaseNotFound) {
5123           assert(ESR != ESR_Succeeded);
5124           return ESR;
5125         }
5126       }
5127 
5128       // Condition variable must be initialized if it exists.
5129       // FIXME: We can skip evaluating the body if there's a condition
5130       // variable, as there can't be any case labels within it.
5131       // (The same is true for 'for' statements.)
5132 
5133       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5134       if (ESR == ESR_Failed)
5135         return ESR;
5136       if (ESR != ESR_CaseNotFound)
5137         return Scope.destroy() ? ESR : ESR_Failed;
5138       if (!IS->getElse())
5139         return ESR_CaseNotFound;
5140 
5141       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5142       if (ESR == ESR_Failed)
5143         return ESR;
5144       if (ESR != ESR_CaseNotFound)
5145         return Scope.destroy() ? ESR : ESR_Failed;
5146       return ESR_CaseNotFound;
5147     }
5148 
5149     case Stmt::WhileStmtClass: {
5150       EvalStmtResult ESR =
5151           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5152       if (ESR != ESR_Continue)
5153         return ESR;
5154       break;
5155     }
5156 
5157     case Stmt::ForStmtClass: {
5158       const ForStmt *FS = cast<ForStmt>(S);
5159       BlockScopeRAII Scope(Info);
5160 
5161       // Step into the init statement in case it brings an (uninitialized)
5162       // variable into scope.
5163       if (const Stmt *Init = FS->getInit()) {
5164         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5165         if (ESR != ESR_CaseNotFound) {
5166           assert(ESR != ESR_Succeeded);
5167           return ESR;
5168         }
5169       }
5170 
5171       EvalStmtResult ESR =
5172           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5173       if (ESR != ESR_Continue)
5174         return ESR;
5175       if (const auto *Inc = FS->getInc()) {
5176         if (Inc->isValueDependent()) {
5177           if (!EvaluateDependentExpr(Inc, Info))
5178             return ESR_Failed;
5179         } else {
5180           FullExpressionRAII IncScope(Info);
5181           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5182             return ESR_Failed;
5183         }
5184       }
5185       break;
5186     }
5187 
5188     case Stmt::DeclStmtClass: {
5189       // Start the lifetime of any uninitialized variables we encounter. They
5190       // might be used by the selected branch of the switch.
5191       const DeclStmt *DS = cast<DeclStmt>(S);
5192       for (const auto *D : DS->decls()) {
5193         if (const auto *VD = dyn_cast<VarDecl>(D)) {
5194           if (!CheckLocalVariableDeclaration(Info, VD))
5195             return ESR_Failed;
5196           if (VD->hasLocalStorage() && !VD->getInit())
5197             if (!EvaluateVarDecl(Info, VD))
5198               return ESR_Failed;
5199           // FIXME: If the variable has initialization that can't be jumped
5200           // over, bail out of any immediately-surrounding compound-statement
5201           // too. There can't be any case labels here.
5202         }
5203       }
5204       return ESR_CaseNotFound;
5205     }
5206 
5207     default:
5208       return ESR_CaseNotFound;
5209     }
5210   }
5211 
5212   switch (S->getStmtClass()) {
5213   default:
5214     if (const Expr *E = dyn_cast<Expr>(S)) {
5215       if (E->isValueDependent()) {
5216         if (!EvaluateDependentExpr(E, Info))
5217           return ESR_Failed;
5218       } else {
5219         // Don't bother evaluating beyond an expression-statement which couldn't
5220         // be evaluated.
5221         // FIXME: Do we need the FullExpressionRAII object here?
5222         // VisitExprWithCleanups should create one when necessary.
5223         FullExpressionRAII Scope(Info);
5224         if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5225           return ESR_Failed;
5226       }
5227       return ESR_Succeeded;
5228     }
5229 
5230     Info.FFDiag(S->getBeginLoc());
5231     return ESR_Failed;
5232 
5233   case Stmt::NullStmtClass:
5234     return ESR_Succeeded;
5235 
5236   case Stmt::DeclStmtClass: {
5237     const DeclStmt *DS = cast<DeclStmt>(S);
5238     for (const auto *D : DS->decls()) {
5239       const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
5240       if (VD && !CheckLocalVariableDeclaration(Info, VD))
5241         return ESR_Failed;
5242       // Each declaration initialization is its own full-expression.
5243       FullExpressionRAII Scope(Info);
5244       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5245         return ESR_Failed;
5246       if (!Scope.destroy())
5247         return ESR_Failed;
5248     }
5249     return ESR_Succeeded;
5250   }
5251 
5252   case Stmt::ReturnStmtClass: {
5253     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5254     FullExpressionRAII Scope(Info);
5255     if (RetExpr && RetExpr->isValueDependent()) {
5256       EvaluateDependentExpr(RetExpr, Info);
5257       // We know we returned, but we don't know what the value is.
5258       return ESR_Failed;
5259     }
5260     if (RetExpr &&
5261         !(Result.Slot
5262               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5263               : Evaluate(Result.Value, Info, RetExpr)))
5264       return ESR_Failed;
5265     return Scope.destroy() ? ESR_Returned : ESR_Failed;
5266   }
5267 
5268   case Stmt::CompoundStmtClass: {
5269     BlockScopeRAII Scope(Info);
5270 
5271     const CompoundStmt *CS = cast<CompoundStmt>(S);
5272     for (const auto *BI : CS->body()) {
5273       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5274       if (ESR == ESR_Succeeded)
5275         Case = nullptr;
5276       else if (ESR != ESR_CaseNotFound) {
5277         if (ESR != ESR_Failed && !Scope.destroy())
5278           return ESR_Failed;
5279         return ESR;
5280       }
5281     }
5282     if (Case)
5283       return ESR_CaseNotFound;
5284     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5285   }
5286 
5287   case Stmt::IfStmtClass: {
5288     const IfStmt *IS = cast<IfStmt>(S);
5289 
5290     // Evaluate the condition, as either a var decl or as an expression.
5291     BlockScopeRAII Scope(Info);
5292     if (const Stmt *Init = IS->getInit()) {
5293       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5294       if (ESR != ESR_Succeeded) {
5295         if (ESR != ESR_Failed && !Scope.destroy())
5296           return ESR_Failed;
5297         return ESR;
5298       }
5299     }
5300     bool Cond;
5301     if (IS->isConsteval()) {
5302       Cond = IS->isNonNegatedConsteval();
5303       // If we are not in a constant context, if consteval should not evaluate
5304       // to true.
5305       if (!Info.InConstantContext)
5306         Cond = !Cond;
5307     } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5308                              Cond))
5309       return ESR_Failed;
5310 
5311     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5312       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5313       if (ESR != ESR_Succeeded) {
5314         if (ESR != ESR_Failed && !Scope.destroy())
5315           return ESR_Failed;
5316         return ESR;
5317       }
5318     }
5319     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5320   }
5321 
5322   case Stmt::WhileStmtClass: {
5323     const WhileStmt *WS = cast<WhileStmt>(S);
5324     while (true) {
5325       BlockScopeRAII Scope(Info);
5326       bool Continue;
5327       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5328                         Continue))
5329         return ESR_Failed;
5330       if (!Continue)
5331         break;
5332 
5333       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5334       if (ESR != ESR_Continue) {
5335         if (ESR != ESR_Failed && !Scope.destroy())
5336           return ESR_Failed;
5337         return ESR;
5338       }
5339       if (!Scope.destroy())
5340         return ESR_Failed;
5341     }
5342     return ESR_Succeeded;
5343   }
5344 
5345   case Stmt::DoStmtClass: {
5346     const DoStmt *DS = cast<DoStmt>(S);
5347     bool Continue;
5348     do {
5349       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5350       if (ESR != ESR_Continue)
5351         return ESR;
5352       Case = nullptr;
5353 
5354       if (DS->getCond()->isValueDependent()) {
5355         EvaluateDependentExpr(DS->getCond(), Info);
5356         // Bailout as we don't know whether to keep going or terminate the loop.
5357         return ESR_Failed;
5358       }
5359       FullExpressionRAII CondScope(Info);
5360       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5361           !CondScope.destroy())
5362         return ESR_Failed;
5363     } while (Continue);
5364     return ESR_Succeeded;
5365   }
5366 
5367   case Stmt::ForStmtClass: {
5368     const ForStmt *FS = cast<ForStmt>(S);
5369     BlockScopeRAII ForScope(Info);
5370     if (FS->getInit()) {
5371       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5372       if (ESR != ESR_Succeeded) {
5373         if (ESR != ESR_Failed && !ForScope.destroy())
5374           return ESR_Failed;
5375         return ESR;
5376       }
5377     }
5378     while (true) {
5379       BlockScopeRAII IterScope(Info);
5380       bool Continue = true;
5381       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5382                                          FS->getCond(), Continue))
5383         return ESR_Failed;
5384       if (!Continue)
5385         break;
5386 
5387       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5388       if (ESR != ESR_Continue) {
5389         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5390           return ESR_Failed;
5391         return ESR;
5392       }
5393 
5394       if (const auto *Inc = FS->getInc()) {
5395         if (Inc->isValueDependent()) {
5396           if (!EvaluateDependentExpr(Inc, Info))
5397             return ESR_Failed;
5398         } else {
5399           FullExpressionRAII IncScope(Info);
5400           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5401             return ESR_Failed;
5402         }
5403       }
5404 
5405       if (!IterScope.destroy())
5406         return ESR_Failed;
5407     }
5408     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5409   }
5410 
5411   case Stmt::CXXForRangeStmtClass: {
5412     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5413     BlockScopeRAII Scope(Info);
5414 
5415     // Evaluate the init-statement if present.
5416     if (FS->getInit()) {
5417       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5418       if (ESR != ESR_Succeeded) {
5419         if (ESR != ESR_Failed && !Scope.destroy())
5420           return ESR_Failed;
5421         return ESR;
5422       }
5423     }
5424 
5425     // Initialize the __range variable.
5426     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5427     if (ESR != ESR_Succeeded) {
5428       if (ESR != ESR_Failed && !Scope.destroy())
5429         return ESR_Failed;
5430       return ESR;
5431     }
5432 
5433     // In error-recovery cases it's possible to get here even if we failed to
5434     // synthesize the __begin and __end variables.
5435     if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5436       return ESR_Failed;
5437 
5438     // Create the __begin and __end iterators.
5439     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5440     if (ESR != ESR_Succeeded) {
5441       if (ESR != ESR_Failed && !Scope.destroy())
5442         return ESR_Failed;
5443       return ESR;
5444     }
5445     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5446     if (ESR != ESR_Succeeded) {
5447       if (ESR != ESR_Failed && !Scope.destroy())
5448         return ESR_Failed;
5449       return ESR;
5450     }
5451 
5452     while (true) {
5453       // Condition: __begin != __end.
5454       {
5455         if (FS->getCond()->isValueDependent()) {
5456           EvaluateDependentExpr(FS->getCond(), Info);
5457           // We don't know whether to keep going or terminate the loop.
5458           return ESR_Failed;
5459         }
5460         bool Continue = true;
5461         FullExpressionRAII CondExpr(Info);
5462         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5463           return ESR_Failed;
5464         if (!Continue)
5465           break;
5466       }
5467 
5468       // User's variable declaration, initialized by *__begin.
5469       BlockScopeRAII InnerScope(Info);
5470       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5471       if (ESR != ESR_Succeeded) {
5472         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5473           return ESR_Failed;
5474         return ESR;
5475       }
5476 
5477       // Loop body.
5478       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5479       if (ESR != ESR_Continue) {
5480         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5481           return ESR_Failed;
5482         return ESR;
5483       }
5484       if (FS->getInc()->isValueDependent()) {
5485         if (!EvaluateDependentExpr(FS->getInc(), Info))
5486           return ESR_Failed;
5487       } else {
5488         // Increment: ++__begin
5489         if (!EvaluateIgnoredValue(Info, FS->getInc()))
5490           return ESR_Failed;
5491       }
5492 
5493       if (!InnerScope.destroy())
5494         return ESR_Failed;
5495     }
5496 
5497     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5498   }
5499 
5500   case Stmt::SwitchStmtClass:
5501     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5502 
5503   case Stmt::ContinueStmtClass:
5504     return ESR_Continue;
5505 
5506   case Stmt::BreakStmtClass:
5507     return ESR_Break;
5508 
5509   case Stmt::LabelStmtClass:
5510     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5511 
5512   case Stmt::AttributedStmtClass:
5513     // As a general principle, C++11 attributes can be ignored without
5514     // any semantic impact.
5515     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5516                         Case);
5517 
5518   case Stmt::CaseStmtClass:
5519   case Stmt::DefaultStmtClass:
5520     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5521   case Stmt::CXXTryStmtClass:
5522     // Evaluate try blocks by evaluating all sub statements.
5523     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5524   }
5525 }
5526 
5527 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5528 /// default constructor. If so, we'll fold it whether or not it's marked as
5529 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5530 /// so we need special handling.
5531 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5532                                            const CXXConstructorDecl *CD,
5533                                            bool IsValueInitialization) {
5534   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5535     return false;
5536 
5537   // Value-initialization does not call a trivial default constructor, so such a
5538   // call is a core constant expression whether or not the constructor is
5539   // constexpr.
5540   if (!CD->isConstexpr() && !IsValueInitialization) {
5541     if (Info.getLangOpts().CPlusPlus11) {
5542       // FIXME: If DiagDecl is an implicitly-declared special member function,
5543       // we should be much more explicit about why it's not constexpr.
5544       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5545         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5546       Info.Note(CD->getLocation(), diag::note_declared_at);
5547     } else {
5548       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5549     }
5550   }
5551   return true;
5552 }
5553 
5554 /// CheckConstexprFunction - Check that a function can be called in a constant
5555 /// expression.
5556 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5557                                    const FunctionDecl *Declaration,
5558                                    const FunctionDecl *Definition,
5559                                    const Stmt *Body) {
5560   // Potential constant expressions can contain calls to declared, but not yet
5561   // defined, constexpr functions.
5562   if (Info.checkingPotentialConstantExpression() && !Definition &&
5563       Declaration->isConstexpr())
5564     return false;
5565 
5566   // Bail out if the function declaration itself is invalid.  We will
5567   // have produced a relevant diagnostic while parsing it, so just
5568   // note the problematic sub-expression.
5569   if (Declaration->isInvalidDecl()) {
5570     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5571     return false;
5572   }
5573 
5574   // DR1872: An instantiated virtual constexpr function can't be called in a
5575   // constant expression (prior to C++20). We can still constant-fold such a
5576   // call.
5577   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5578       cast<CXXMethodDecl>(Declaration)->isVirtual())
5579     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5580 
5581   if (Definition && Definition->isInvalidDecl()) {
5582     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5583     return false;
5584   }
5585 
5586   // Can we evaluate this function call?
5587   if (Definition && Definition->isConstexpr() && Body)
5588     return true;
5589 
5590   if (Info.getLangOpts().CPlusPlus11) {
5591     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5592 
5593     // If this function is not constexpr because it is an inherited
5594     // non-constexpr constructor, diagnose that directly.
5595     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5596     if (CD && CD->isInheritingConstructor()) {
5597       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5598       if (!Inherited->isConstexpr())
5599         DiagDecl = CD = Inherited;
5600     }
5601 
5602     // FIXME: If DiagDecl is an implicitly-declared special member function
5603     // or an inheriting constructor, we should be much more explicit about why
5604     // it's not constexpr.
5605     if (CD && CD->isInheritingConstructor())
5606       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5607         << CD->getInheritedConstructor().getConstructor()->getParent();
5608     else
5609       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5610         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5611     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5612   } else {
5613     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5614   }
5615   return false;
5616 }
5617 
5618 namespace {
5619 struct CheckDynamicTypeHandler {
5620   AccessKinds AccessKind;
5621   typedef bool result_type;
5622   bool failed() { return false; }
5623   bool found(APValue &Subobj, QualType SubobjType) { return true; }
5624   bool found(APSInt &Value, QualType SubobjType) { return true; }
5625   bool found(APFloat &Value, QualType SubobjType) { return true; }
5626 };
5627 } // end anonymous namespace
5628 
5629 /// Check that we can access the notional vptr of an object / determine its
5630 /// dynamic type.
5631 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5632                              AccessKinds AK, bool Polymorphic) {
5633   if (This.Designator.Invalid)
5634     return false;
5635 
5636   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5637 
5638   if (!Obj)
5639     return false;
5640 
5641   if (!Obj.Value) {
5642     // The object is not usable in constant expressions, so we can't inspect
5643     // its value to see if it's in-lifetime or what the active union members
5644     // are. We can still check for a one-past-the-end lvalue.
5645     if (This.Designator.isOnePastTheEnd() ||
5646         This.Designator.isMostDerivedAnUnsizedArray()) {
5647       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5648                          ? diag::note_constexpr_access_past_end
5649                          : diag::note_constexpr_access_unsized_array)
5650           << AK;
5651       return false;
5652     } else if (Polymorphic) {
5653       // Conservatively refuse to perform a polymorphic operation if we would
5654       // not be able to read a notional 'vptr' value.
5655       APValue Val;
5656       This.moveInto(Val);
5657       QualType StarThisType =
5658           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5659       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5660           << AK << Val.getAsString(Info.Ctx, StarThisType);
5661       return false;
5662     }
5663     return true;
5664   }
5665 
5666   CheckDynamicTypeHandler Handler{AK};
5667   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5668 }
5669 
5670 /// Check that the pointee of the 'this' pointer in a member function call is
5671 /// either within its lifetime or in its period of construction or destruction.
5672 static bool
5673 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5674                                      const LValue &This,
5675                                      const CXXMethodDecl *NamedMember) {
5676   return checkDynamicType(
5677       Info, E, This,
5678       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5679 }
5680 
5681 struct DynamicType {
5682   /// The dynamic class type of the object.
5683   const CXXRecordDecl *Type;
5684   /// The corresponding path length in the lvalue.
5685   unsigned PathLength;
5686 };
5687 
5688 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5689                                              unsigned PathLength) {
5690   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5691       Designator.Entries.size() && "invalid path length");
5692   return (PathLength == Designator.MostDerivedPathLength)
5693              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5694              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5695 }
5696 
5697 /// Determine the dynamic type of an object.
5698 static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
5699                                                      const Expr *E,
5700                                                      LValue &This,
5701                                                      AccessKinds AK) {
5702   // If we don't have an lvalue denoting an object of class type, there is no
5703   // meaningful dynamic type. (We consider objects of non-class type to have no
5704   // dynamic type.)
5705   if (!checkDynamicType(Info, E, This, AK, true))
5706     return std::nullopt;
5707 
5708   // Refuse to compute a dynamic type in the presence of virtual bases. This
5709   // shouldn't happen other than in constant-folding situations, since literal
5710   // types can't have virtual bases.
5711   //
5712   // Note that consumers of DynamicType assume that the type has no virtual
5713   // bases, and will need modifications if this restriction is relaxed.
5714   const CXXRecordDecl *Class =
5715       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5716   if (!Class || Class->getNumVBases()) {
5717     Info.FFDiag(E);
5718     return std::nullopt;
5719   }
5720 
5721   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5722   // binary search here instead. But the overwhelmingly common case is that
5723   // we're not in the middle of a constructor, so it probably doesn't matter
5724   // in practice.
5725   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5726   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5727        PathLength <= Path.size(); ++PathLength) {
5728     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5729                                       Path.slice(0, PathLength))) {
5730     case ConstructionPhase::Bases:
5731     case ConstructionPhase::DestroyingBases:
5732       // We're constructing or destroying a base class. This is not the dynamic
5733       // type.
5734       break;
5735 
5736     case ConstructionPhase::None:
5737     case ConstructionPhase::AfterBases:
5738     case ConstructionPhase::AfterFields:
5739     case ConstructionPhase::Destroying:
5740       // We've finished constructing the base classes and not yet started
5741       // destroying them again, so this is the dynamic type.
5742       return DynamicType{getBaseClassType(This.Designator, PathLength),
5743                          PathLength};
5744     }
5745   }
5746 
5747   // CWG issue 1517: we're constructing a base class of the object described by
5748   // 'This', so that object has not yet begun its period of construction and
5749   // any polymorphic operation on it results in undefined behavior.
5750   Info.FFDiag(E);
5751   return std::nullopt;
5752 }
5753 
5754 /// Perform virtual dispatch.
5755 static const CXXMethodDecl *HandleVirtualDispatch(
5756     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5757     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5758   std::optional<DynamicType> DynType = ComputeDynamicType(
5759       Info, E, This,
5760       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5761   if (!DynType)
5762     return nullptr;
5763 
5764   // Find the final overrider. It must be declared in one of the classes on the
5765   // path from the dynamic type to the static type.
5766   // FIXME: If we ever allow literal types to have virtual base classes, that
5767   // won't be true.
5768   const CXXMethodDecl *Callee = Found;
5769   unsigned PathLength = DynType->PathLength;
5770   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5771     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5772     const CXXMethodDecl *Overrider =
5773         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5774     if (Overrider) {
5775       Callee = Overrider;
5776       break;
5777     }
5778   }
5779 
5780   // C++2a [class.abstract]p6:
5781   //   the effect of making a virtual call to a pure virtual function [...] is
5782   //   undefined
5783   if (Callee->isPure()) {
5784     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5785     Info.Note(Callee->getLocation(), diag::note_declared_at);
5786     return nullptr;
5787   }
5788 
5789   // If necessary, walk the rest of the path to determine the sequence of
5790   // covariant adjustment steps to apply.
5791   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5792                                        Found->getReturnType())) {
5793     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5794     for (unsigned CovariantPathLength = PathLength + 1;
5795          CovariantPathLength != This.Designator.Entries.size();
5796          ++CovariantPathLength) {
5797       const CXXRecordDecl *NextClass =
5798           getBaseClassType(This.Designator, CovariantPathLength);
5799       const CXXMethodDecl *Next =
5800           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5801       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5802                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5803         CovariantAdjustmentPath.push_back(Next->getReturnType());
5804     }
5805     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5806                                          CovariantAdjustmentPath.back()))
5807       CovariantAdjustmentPath.push_back(Found->getReturnType());
5808   }
5809 
5810   // Perform 'this' adjustment.
5811   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5812     return nullptr;
5813 
5814   return Callee;
5815 }
5816 
5817 /// Perform the adjustment from a value returned by a virtual function to
5818 /// a value of the statically expected type, which may be a pointer or
5819 /// reference to a base class of the returned type.
5820 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5821                                             APValue &Result,
5822                                             ArrayRef<QualType> Path) {
5823   assert(Result.isLValue() &&
5824          "unexpected kind of APValue for covariant return");
5825   if (Result.isNullPointer())
5826     return true;
5827 
5828   LValue LVal;
5829   LVal.setFrom(Info.Ctx, Result);
5830 
5831   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5832   for (unsigned I = 1; I != Path.size(); ++I) {
5833     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5834     assert(OldClass && NewClass && "unexpected kind of covariant return");
5835     if (OldClass != NewClass &&
5836         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5837       return false;
5838     OldClass = NewClass;
5839   }
5840 
5841   LVal.moveInto(Result);
5842   return true;
5843 }
5844 
5845 /// Determine whether \p Base, which is known to be a direct base class of
5846 /// \p Derived, is a public base class.
5847 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5848                               const CXXRecordDecl *Base) {
5849   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5850     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5851     if (BaseClass && declaresSameEntity(BaseClass, Base))
5852       return BaseSpec.getAccessSpecifier() == AS_public;
5853   }
5854   llvm_unreachable("Base is not a direct base of Derived");
5855 }
5856 
5857 /// Apply the given dynamic cast operation on the provided lvalue.
5858 ///
5859 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5860 /// to find a suitable target subobject.
5861 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5862                               LValue &Ptr) {
5863   // We can't do anything with a non-symbolic pointer value.
5864   SubobjectDesignator &D = Ptr.Designator;
5865   if (D.Invalid)
5866     return false;
5867 
5868   // C++ [expr.dynamic.cast]p6:
5869   //   If v is a null pointer value, the result is a null pointer value.
5870   if (Ptr.isNullPointer() && !E->isGLValue())
5871     return true;
5872 
5873   // For all the other cases, we need the pointer to point to an object within
5874   // its lifetime / period of construction / destruction, and we need to know
5875   // its dynamic type.
5876   std::optional<DynamicType> DynType =
5877       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5878   if (!DynType)
5879     return false;
5880 
5881   // C++ [expr.dynamic.cast]p7:
5882   //   If T is "pointer to cv void", then the result is a pointer to the most
5883   //   derived object
5884   if (E->getType()->isVoidPointerType())
5885     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5886 
5887   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5888   assert(C && "dynamic_cast target is not void pointer nor class");
5889   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5890 
5891   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5892     // C++ [expr.dynamic.cast]p9:
5893     if (!E->isGLValue()) {
5894       //   The value of a failed cast to pointer type is the null pointer value
5895       //   of the required result type.
5896       Ptr.setNull(Info.Ctx, E->getType());
5897       return true;
5898     }
5899 
5900     //   A failed cast to reference type throws [...] std::bad_cast.
5901     unsigned DiagKind;
5902     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5903                    DynType->Type->isDerivedFrom(C)))
5904       DiagKind = 0;
5905     else if (!Paths || Paths->begin() == Paths->end())
5906       DiagKind = 1;
5907     else if (Paths->isAmbiguous(CQT))
5908       DiagKind = 2;
5909     else {
5910       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5911       DiagKind = 3;
5912     }
5913     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5914         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5915         << Info.Ctx.getRecordType(DynType->Type)
5916         << E->getType().getUnqualifiedType();
5917     return false;
5918   };
5919 
5920   // Runtime check, phase 1:
5921   //   Walk from the base subobject towards the derived object looking for the
5922   //   target type.
5923   for (int PathLength = Ptr.Designator.Entries.size();
5924        PathLength >= (int)DynType->PathLength; --PathLength) {
5925     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5926     if (declaresSameEntity(Class, C))
5927       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5928     // We can only walk across public inheritance edges.
5929     if (PathLength > (int)DynType->PathLength &&
5930         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5931                            Class))
5932       return RuntimeCheckFailed(nullptr);
5933   }
5934 
5935   // Runtime check, phase 2:
5936   //   Search the dynamic type for an unambiguous public base of type C.
5937   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5938                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5939   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5940       Paths.front().Access == AS_public) {
5941     // Downcast to the dynamic type...
5942     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5943       return false;
5944     // ... then upcast to the chosen base class subobject.
5945     for (CXXBasePathElement &Elem : Paths.front())
5946       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5947         return false;
5948     return true;
5949   }
5950 
5951   // Otherwise, the runtime check fails.
5952   return RuntimeCheckFailed(&Paths);
5953 }
5954 
5955 namespace {
5956 struct StartLifetimeOfUnionMemberHandler {
5957   EvalInfo &Info;
5958   const Expr *LHSExpr;
5959   const FieldDecl *Field;
5960   bool DuringInit;
5961   bool Failed = false;
5962   static const AccessKinds AccessKind = AK_Assign;
5963 
5964   typedef bool result_type;
5965   bool failed() { return Failed; }
5966   bool found(APValue &Subobj, QualType SubobjType) {
5967     // We are supposed to perform no initialization but begin the lifetime of
5968     // the object. We interpret that as meaning to do what default
5969     // initialization of the object would do if all constructors involved were
5970     // trivial:
5971     //  * All base, non-variant member, and array element subobjects' lifetimes
5972     //    begin
5973     //  * No variant members' lifetimes begin
5974     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5975     assert(SubobjType->isUnionType());
5976     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5977       // This union member is already active. If it's also in-lifetime, there's
5978       // nothing to do.
5979       if (Subobj.getUnionValue().hasValue())
5980         return true;
5981     } else if (DuringInit) {
5982       // We're currently in the process of initializing a different union
5983       // member.  If we carried on, that initialization would attempt to
5984       // store to an inactive union member, resulting in undefined behavior.
5985       Info.FFDiag(LHSExpr,
5986                   diag::note_constexpr_union_member_change_during_init);
5987       return false;
5988     }
5989     APValue Result;
5990     Failed = !getDefaultInitValue(Field->getType(), Result);
5991     Subobj.setUnion(Field, Result);
5992     return true;
5993   }
5994   bool found(APSInt &Value, QualType SubobjType) {
5995     llvm_unreachable("wrong value kind for union object");
5996   }
5997   bool found(APFloat &Value, QualType SubobjType) {
5998     llvm_unreachable("wrong value kind for union object");
5999   }
6000 };
6001 } // end anonymous namespace
6002 
6003 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
6004 
6005 /// Handle a builtin simple-assignment or a call to a trivial assignment
6006 /// operator whose left-hand side might involve a union member access. If it
6007 /// does, implicitly start the lifetime of any accessed union elements per
6008 /// C++20 [class.union]5.
6009 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
6010                                           const LValue &LHS) {
6011   if (LHS.InvalidBase || LHS.Designator.Invalid)
6012     return false;
6013 
6014   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
6015   // C++ [class.union]p5:
6016   //   define the set S(E) of subexpressions of E as follows:
6017   unsigned PathLength = LHS.Designator.Entries.size();
6018   for (const Expr *E = LHSExpr; E != nullptr;) {
6019     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
6020     if (auto *ME = dyn_cast<MemberExpr>(E)) {
6021       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
6022       // Note that we can't implicitly start the lifetime of a reference,
6023       // so we don't need to proceed any further if we reach one.
6024       if (!FD || FD->getType()->isReferenceType())
6025         break;
6026 
6027       //    ... and also contains A.B if B names a union member ...
6028       if (FD->getParent()->isUnion()) {
6029         //    ... of a non-class, non-array type, or of a class type with a
6030         //    trivial default constructor that is not deleted, or an array of
6031         //    such types.
6032         auto *RD =
6033             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6034         if (!RD || RD->hasTrivialDefaultConstructor())
6035           UnionPathLengths.push_back({PathLength - 1, FD});
6036       }
6037 
6038       E = ME->getBase();
6039       --PathLength;
6040       assert(declaresSameEntity(FD,
6041                                 LHS.Designator.Entries[PathLength]
6042                                     .getAsBaseOrMember().getPointer()));
6043 
6044       //   -- If E is of the form A[B] and is interpreted as a built-in array
6045       //      subscripting operator, S(E) is [S(the array operand, if any)].
6046     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
6047       // Step over an ArrayToPointerDecay implicit cast.
6048       auto *Base = ASE->getBase()->IgnoreImplicit();
6049       if (!Base->getType()->isArrayType())
6050         break;
6051 
6052       E = Base;
6053       --PathLength;
6054 
6055     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6056       // Step over a derived-to-base conversion.
6057       E = ICE->getSubExpr();
6058       if (ICE->getCastKind() == CK_NoOp)
6059         continue;
6060       if (ICE->getCastKind() != CK_DerivedToBase &&
6061           ICE->getCastKind() != CK_UncheckedDerivedToBase)
6062         break;
6063       // Walk path backwards as we walk up from the base to the derived class.
6064       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6065         --PathLength;
6066         (void)Elt;
6067         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6068                                   LHS.Designator.Entries[PathLength]
6069                                       .getAsBaseOrMember().getPointer()));
6070       }
6071 
6072     //   -- Otherwise, S(E) is empty.
6073     } else {
6074       break;
6075     }
6076   }
6077 
6078   // Common case: no unions' lifetimes are started.
6079   if (UnionPathLengths.empty())
6080     return true;
6081 
6082   //   if modification of X [would access an inactive union member], an object
6083   //   of the type of X is implicitly created
6084   CompleteObject Obj =
6085       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6086   if (!Obj)
6087     return false;
6088   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6089            llvm::reverse(UnionPathLengths)) {
6090     // Form a designator for the union object.
6091     SubobjectDesignator D = LHS.Designator;
6092     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6093 
6094     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6095                       ConstructionPhase::AfterBases;
6096     StartLifetimeOfUnionMemberHandler StartLifetime{
6097         Info, LHSExpr, LengthAndField.second, DuringInit};
6098     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6099       return false;
6100   }
6101 
6102   return true;
6103 }
6104 
6105 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6106                             CallRef Call, EvalInfo &Info,
6107                             bool NonNull = false) {
6108   LValue LV;
6109   // Create the parameter slot and register its destruction. For a vararg
6110   // argument, create a temporary.
6111   // FIXME: For calling conventions that destroy parameters in the callee,
6112   // should we consider performing destruction when the function returns
6113   // instead?
6114   APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6115                    : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6116                                                        ScopeKind::Call, LV);
6117   if (!EvaluateInPlace(V, Info, LV, Arg))
6118     return false;
6119 
6120   // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6121   // undefined behavior, so is non-constant.
6122   if (NonNull && V.isLValue() && V.isNullPointer()) {
6123     Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6124     return false;
6125   }
6126 
6127   return true;
6128 }
6129 
6130 /// Evaluate the arguments to a function call.
6131 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6132                          EvalInfo &Info, const FunctionDecl *Callee,
6133                          bool RightToLeft = false) {
6134   bool Success = true;
6135   llvm::SmallBitVector ForbiddenNullArgs;
6136   if (Callee->hasAttr<NonNullAttr>()) {
6137     ForbiddenNullArgs.resize(Args.size());
6138     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6139       if (!Attr->args_size()) {
6140         ForbiddenNullArgs.set();
6141         break;
6142       } else
6143         for (auto Idx : Attr->args()) {
6144           unsigned ASTIdx = Idx.getASTIndex();
6145           if (ASTIdx >= Args.size())
6146             continue;
6147           ForbiddenNullArgs[ASTIdx] = true;
6148         }
6149     }
6150   }
6151   for (unsigned I = 0; I < Args.size(); I++) {
6152     unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6153     const ParmVarDecl *PVD =
6154         Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6155     bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6156     if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6157       // If we're checking for a potential constant expression, evaluate all
6158       // initializers even if some of them fail.
6159       if (!Info.noteFailure())
6160         return false;
6161       Success = false;
6162     }
6163   }
6164   return Success;
6165 }
6166 
6167 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6168 /// constructor or assignment operator.
6169 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6170                               const Expr *E, APValue &Result,
6171                               bool CopyObjectRepresentation) {
6172   // Find the reference argument.
6173   CallStackFrame *Frame = Info.CurrentCall;
6174   APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6175   if (!RefValue) {
6176     Info.FFDiag(E);
6177     return false;
6178   }
6179 
6180   // Copy out the contents of the RHS object.
6181   LValue RefLValue;
6182   RefLValue.setFrom(Info.Ctx, *RefValue);
6183   return handleLValueToRValueConversion(
6184       Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6185       CopyObjectRepresentation);
6186 }
6187 
6188 /// Evaluate a function call.
6189 static bool HandleFunctionCall(SourceLocation CallLoc,
6190                                const FunctionDecl *Callee, const LValue *This,
6191                                const Expr *E, ArrayRef<const Expr *> Args,
6192                                CallRef Call, const Stmt *Body, EvalInfo &Info,
6193                                APValue &Result, const LValue *ResultSlot) {
6194   if (!Info.CheckCallLimit(CallLoc))
6195     return false;
6196 
6197   CallStackFrame Frame(Info, CallLoc, Callee, This, E, Call);
6198 
6199   // For a trivial copy or move assignment, perform an APValue copy. This is
6200   // essential for unions, where the operations performed by the assignment
6201   // operator cannot be represented as statements.
6202   //
6203   // Skip this for non-union classes with no fields; in that case, the defaulted
6204   // copy/move does not actually read the object.
6205   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6206   if (MD && MD->isDefaulted() &&
6207       (MD->getParent()->isUnion() ||
6208        (MD->isTrivial() &&
6209         isReadByLvalueToRvalueConversion(MD->getParent())))) {
6210     assert(This &&
6211            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6212     APValue RHSValue;
6213     if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6214                            MD->getParent()->isUnion()))
6215       return false;
6216     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6217                           RHSValue))
6218       return false;
6219     This->moveInto(Result);
6220     return true;
6221   } else if (MD && isLambdaCallOperator(MD)) {
6222     // We're in a lambda; determine the lambda capture field maps unless we're
6223     // just constexpr checking a lambda's call operator. constexpr checking is
6224     // done before the captures have been added to the closure object (unless
6225     // we're inferring constexpr-ness), so we don't have access to them in this
6226     // case. But since we don't need the captures to constexpr check, we can
6227     // just ignore them.
6228     if (!Info.checkingPotentialConstantExpression())
6229       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6230                                         Frame.LambdaThisCaptureField);
6231   }
6232 
6233   StmtResult Ret = {Result, ResultSlot};
6234   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6235   if (ESR == ESR_Succeeded) {
6236     if (Callee->getReturnType()->isVoidType())
6237       return true;
6238     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6239   }
6240   return ESR == ESR_Returned;
6241 }
6242 
6243 /// Evaluate a constructor call.
6244 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6245                                   CallRef Call,
6246                                   const CXXConstructorDecl *Definition,
6247                                   EvalInfo &Info, APValue &Result) {
6248   SourceLocation CallLoc = E->getExprLoc();
6249   if (!Info.CheckCallLimit(CallLoc))
6250     return false;
6251 
6252   const CXXRecordDecl *RD = Definition->getParent();
6253   if (RD->getNumVBases()) {
6254     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6255     return false;
6256   }
6257 
6258   EvalInfo::EvaluatingConstructorRAII EvalObj(
6259       Info,
6260       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6261       RD->getNumBases());
6262   CallStackFrame Frame(Info, CallLoc, Definition, &This, E, Call);
6263 
6264   // FIXME: Creating an APValue just to hold a nonexistent return value is
6265   // wasteful.
6266   APValue RetVal;
6267   StmtResult Ret = {RetVal, nullptr};
6268 
6269   // If it's a delegating constructor, delegate.
6270   if (Definition->isDelegatingConstructor()) {
6271     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6272     if ((*I)->getInit()->isValueDependent()) {
6273       if (!EvaluateDependentExpr((*I)->getInit(), Info))
6274         return false;
6275     } else {
6276       FullExpressionRAII InitScope(Info);
6277       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6278           !InitScope.destroy())
6279         return false;
6280     }
6281     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6282   }
6283 
6284   // For a trivial copy or move constructor, perform an APValue copy. This is
6285   // essential for unions (or classes with anonymous union members), where the
6286   // operations performed by the constructor cannot be represented by
6287   // ctor-initializers.
6288   //
6289   // Skip this for empty non-union classes; we should not perform an
6290   // lvalue-to-rvalue conversion on them because their copy constructor does not
6291   // actually read them.
6292   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6293       (Definition->getParent()->isUnion() ||
6294        (Definition->isTrivial() &&
6295         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6296     return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6297                              Definition->getParent()->isUnion());
6298   }
6299 
6300   // Reserve space for the struct members.
6301   if (!Result.hasValue()) {
6302     if (!RD->isUnion())
6303       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6304                        std::distance(RD->field_begin(), RD->field_end()));
6305     else
6306       // A union starts with no active member.
6307       Result = APValue((const FieldDecl*)nullptr);
6308   }
6309 
6310   if (RD->isInvalidDecl()) return false;
6311   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6312 
6313   // A scope for temporaries lifetime-extended by reference members.
6314   BlockScopeRAII LifetimeExtendedScope(Info);
6315 
6316   bool Success = true;
6317   unsigned BasesSeen = 0;
6318 #ifndef NDEBUG
6319   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6320 #endif
6321   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6322   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6323     // We might be initializing the same field again if this is an indirect
6324     // field initialization.
6325     if (FieldIt == RD->field_end() ||
6326         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6327       assert(Indirect && "fields out of order?");
6328       return;
6329     }
6330 
6331     // Default-initialize any fields with no explicit initializer.
6332     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6333       assert(FieldIt != RD->field_end() && "missing field?");
6334       if (!FieldIt->isUnnamedBitfield())
6335         Success &= getDefaultInitValue(
6336             FieldIt->getType(),
6337             Result.getStructField(FieldIt->getFieldIndex()));
6338     }
6339     ++FieldIt;
6340   };
6341   for (const auto *I : Definition->inits()) {
6342     LValue Subobject = This;
6343     LValue SubobjectParent = This;
6344     APValue *Value = &Result;
6345 
6346     // Determine the subobject to initialize.
6347     FieldDecl *FD = nullptr;
6348     if (I->isBaseInitializer()) {
6349       QualType BaseType(I->getBaseClass(), 0);
6350 #ifndef NDEBUG
6351       // Non-virtual base classes are initialized in the order in the class
6352       // definition. We have already checked for virtual base classes.
6353       assert(!BaseIt->isVirtual() && "virtual base for literal type");
6354       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6355              "base class initializers not in expected order");
6356       ++BaseIt;
6357 #endif
6358       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6359                                   BaseType->getAsCXXRecordDecl(), &Layout))
6360         return false;
6361       Value = &Result.getStructBase(BasesSeen++);
6362     } else if ((FD = I->getMember())) {
6363       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6364         return false;
6365       if (RD->isUnion()) {
6366         Result = APValue(FD);
6367         Value = &Result.getUnionValue();
6368       } else {
6369         SkipToField(FD, false);
6370         Value = &Result.getStructField(FD->getFieldIndex());
6371       }
6372     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6373       // Walk the indirect field decl's chain to find the object to initialize,
6374       // and make sure we've initialized every step along it.
6375       auto IndirectFieldChain = IFD->chain();
6376       for (auto *C : IndirectFieldChain) {
6377         FD = cast<FieldDecl>(C);
6378         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6379         // Switch the union field if it differs. This happens if we had
6380         // preceding zero-initialization, and we're now initializing a union
6381         // subobject other than the first.
6382         // FIXME: In this case, the values of the other subobjects are
6383         // specified, since zero-initialization sets all padding bits to zero.
6384         if (!Value->hasValue() ||
6385             (Value->isUnion() && Value->getUnionField() != FD)) {
6386           if (CD->isUnion())
6387             *Value = APValue(FD);
6388           else
6389             // FIXME: This immediately starts the lifetime of all members of
6390             // an anonymous struct. It would be preferable to strictly start
6391             // member lifetime in initialization order.
6392             Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6393         }
6394         // Store Subobject as its parent before updating it for the last element
6395         // in the chain.
6396         if (C == IndirectFieldChain.back())
6397           SubobjectParent = Subobject;
6398         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6399           return false;
6400         if (CD->isUnion())
6401           Value = &Value->getUnionValue();
6402         else {
6403           if (C == IndirectFieldChain.front() && !RD->isUnion())
6404             SkipToField(FD, true);
6405           Value = &Value->getStructField(FD->getFieldIndex());
6406         }
6407       }
6408     } else {
6409       llvm_unreachable("unknown base initializer kind");
6410     }
6411 
6412     // Need to override This for implicit field initializers as in this case
6413     // This refers to innermost anonymous struct/union containing initializer,
6414     // not to currently constructed class.
6415     const Expr *Init = I->getInit();
6416     if (Init->isValueDependent()) {
6417       if (!EvaluateDependentExpr(Init, Info))
6418         return false;
6419     } else {
6420       ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6421                                     isa<CXXDefaultInitExpr>(Init));
6422       FullExpressionRAII InitScope(Info);
6423       if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6424           (FD && FD->isBitField() &&
6425            !truncateBitfieldValue(Info, Init, *Value, FD))) {
6426         // If we're checking for a potential constant expression, evaluate all
6427         // initializers even if some of them fail.
6428         if (!Info.noteFailure())
6429           return false;
6430         Success = false;
6431       }
6432     }
6433 
6434     // This is the point at which the dynamic type of the object becomes this
6435     // class type.
6436     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6437       EvalObj.finishedConstructingBases();
6438   }
6439 
6440   // Default-initialize any remaining fields.
6441   if (!RD->isUnion()) {
6442     for (; FieldIt != RD->field_end(); ++FieldIt) {
6443       if (!FieldIt->isUnnamedBitfield())
6444         Success &= getDefaultInitValue(
6445             FieldIt->getType(),
6446             Result.getStructField(FieldIt->getFieldIndex()));
6447     }
6448   }
6449 
6450   EvalObj.finishedConstructingFields();
6451 
6452   return Success &&
6453          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6454          LifetimeExtendedScope.destroy();
6455 }
6456 
6457 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6458                                   ArrayRef<const Expr*> Args,
6459                                   const CXXConstructorDecl *Definition,
6460                                   EvalInfo &Info, APValue &Result) {
6461   CallScopeRAII CallScope(Info);
6462   CallRef Call = Info.CurrentCall->createCall(Definition);
6463   if (!EvaluateArgs(Args, Call, Info, Definition))
6464     return false;
6465 
6466   return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6467          CallScope.destroy();
6468 }
6469 
6470 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6471                                   const LValue &This, APValue &Value,
6472                                   QualType T) {
6473   // Objects can only be destroyed while they're within their lifetimes.
6474   // FIXME: We have no representation for whether an object of type nullptr_t
6475   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6476   // as indeterminate instead?
6477   if (Value.isAbsent() && !T->isNullPtrType()) {
6478     APValue Printable;
6479     This.moveInto(Printable);
6480     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6481       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6482     return false;
6483   }
6484 
6485   // Invent an expression for location purposes.
6486   // FIXME: We shouldn't need to do this.
6487   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);
6488 
6489   // For arrays, destroy elements right-to-left.
6490   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6491     uint64_t Size = CAT->getSize().getZExtValue();
6492     QualType ElemT = CAT->getElementType();
6493 
6494     LValue ElemLV = This;
6495     ElemLV.addArray(Info, &LocE, CAT);
6496     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6497       return false;
6498 
6499     // Ensure that we have actual array elements available to destroy; the
6500     // destructors might mutate the value, so we can't run them on the array
6501     // filler.
6502     if (Size && Size > Value.getArrayInitializedElts())
6503       expandArray(Value, Value.getArraySize() - 1);
6504 
6505     for (; Size != 0; --Size) {
6506       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6507       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6508           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6509         return false;
6510     }
6511 
6512     // End the lifetime of this array now.
6513     Value = APValue();
6514     return true;
6515   }
6516 
6517   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6518   if (!RD) {
6519     if (T.isDestructedType()) {
6520       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6521       return false;
6522     }
6523 
6524     Value = APValue();
6525     return true;
6526   }
6527 
6528   if (RD->getNumVBases()) {
6529     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6530     return false;
6531   }
6532 
6533   const CXXDestructorDecl *DD = RD->getDestructor();
6534   if (!DD && !RD->hasTrivialDestructor()) {
6535     Info.FFDiag(CallLoc);
6536     return false;
6537   }
6538 
6539   if (!DD || DD->isTrivial() ||
6540       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6541     // A trivial destructor just ends the lifetime of the object. Check for
6542     // this case before checking for a body, because we might not bother
6543     // building a body for a trivial destructor. Note that it doesn't matter
6544     // whether the destructor is constexpr in this case; all trivial
6545     // destructors are constexpr.
6546     //
6547     // If an anonymous union would be destroyed, some enclosing destructor must
6548     // have been explicitly defined, and the anonymous union destruction should
6549     // have no effect.
6550     Value = APValue();
6551     return true;
6552   }
6553 
6554   if (!Info.CheckCallLimit(CallLoc))
6555     return false;
6556 
6557   const FunctionDecl *Definition = nullptr;
6558   const Stmt *Body = DD->getBody(Definition);
6559 
6560   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6561     return false;
6562 
6563   CallStackFrame Frame(Info, CallLoc, Definition, &This, /*CallExpr=*/nullptr,
6564                        CallRef());
6565 
6566   // We're now in the period of destruction of this object.
6567   unsigned BasesLeft = RD->getNumBases();
6568   EvalInfo::EvaluatingDestructorRAII EvalObj(
6569       Info,
6570       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6571   if (!EvalObj.DidInsert) {
6572     // C++2a [class.dtor]p19:
6573     //   the behavior is undefined if the destructor is invoked for an object
6574     //   whose lifetime has ended
6575     // (Note that formally the lifetime ends when the period of destruction
6576     // begins, even though certain uses of the object remain valid until the
6577     // period of destruction ends.)
6578     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6579     return false;
6580   }
6581 
6582   // FIXME: Creating an APValue just to hold a nonexistent return value is
6583   // wasteful.
6584   APValue RetVal;
6585   StmtResult Ret = {RetVal, nullptr};
6586   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6587     return false;
6588 
6589   // A union destructor does not implicitly destroy its members.
6590   if (RD->isUnion())
6591     return true;
6592 
6593   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6594 
6595   // We don't have a good way to iterate fields in reverse, so collect all the
6596   // fields first and then walk them backwards.
6597   SmallVector<FieldDecl*, 16> Fields(RD->fields());
6598   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6599     if (FD->isUnnamedBitfield())
6600       continue;
6601 
6602     LValue Subobject = This;
6603     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6604       return false;
6605 
6606     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6607     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6608                                FD->getType()))
6609       return false;
6610   }
6611 
6612   if (BasesLeft != 0)
6613     EvalObj.startedDestroyingBases();
6614 
6615   // Destroy base classes in reverse order.
6616   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6617     --BasesLeft;
6618 
6619     QualType BaseType = Base.getType();
6620     LValue Subobject = This;
6621     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6622                                 BaseType->getAsCXXRecordDecl(), &Layout))
6623       return false;
6624 
6625     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6626     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6627                                BaseType))
6628       return false;
6629   }
6630   assert(BasesLeft == 0 && "NumBases was wrong?");
6631 
6632   // The period of destruction ends now. The object is gone.
6633   Value = APValue();
6634   return true;
6635 }
6636 
6637 namespace {
6638 struct DestroyObjectHandler {
6639   EvalInfo &Info;
6640   const Expr *E;
6641   const LValue &This;
6642   const AccessKinds AccessKind;
6643 
6644   typedef bool result_type;
6645   bool failed() { return false; }
6646   bool found(APValue &Subobj, QualType SubobjType) {
6647     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6648                                  SubobjType);
6649   }
6650   bool found(APSInt &Value, QualType SubobjType) {
6651     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6652     return false;
6653   }
6654   bool found(APFloat &Value, QualType SubobjType) {
6655     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6656     return false;
6657   }
6658 };
6659 }
6660 
6661 /// Perform a destructor or pseudo-destructor call on the given object, which
6662 /// might in general not be a complete object.
6663 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6664                               const LValue &This, QualType ThisType) {
6665   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6666   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6667   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6668 }
6669 
6670 /// Destroy and end the lifetime of the given complete object.
6671 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6672                               APValue::LValueBase LVBase, APValue &Value,
6673                               QualType T) {
6674   // If we've had an unmodeled side-effect, we can't rely on mutable state
6675   // (such as the object we're about to destroy) being correct.
6676   if (Info.EvalStatus.HasSideEffects)
6677     return false;
6678 
6679   LValue LV;
6680   LV.set({LVBase});
6681   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6682 }
6683 
6684 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
6685 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6686                                   LValue &Result) {
6687   if (Info.checkingPotentialConstantExpression() ||
6688       Info.SpeculativeEvaluationDepth)
6689     return false;
6690 
6691   // This is permitted only within a call to std::allocator<T>::allocate.
6692   auto Caller = Info.getStdAllocatorCaller("allocate");
6693   if (!Caller) {
6694     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6695                                      ? diag::note_constexpr_new_untyped
6696                                      : diag::note_constexpr_new);
6697     return false;
6698   }
6699 
6700   QualType ElemType = Caller.ElemType;
6701   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6702     Info.FFDiag(E->getExprLoc(),
6703                 diag::note_constexpr_new_not_complete_object_type)
6704         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6705     return false;
6706   }
6707 
6708   APSInt ByteSize;
6709   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6710     return false;
6711   bool IsNothrow = false;
6712   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6713     EvaluateIgnoredValue(Info, E->getArg(I));
6714     IsNothrow |= E->getType()->isNothrowT();
6715   }
6716 
6717   CharUnits ElemSize;
6718   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6719     return false;
6720   APInt Size, Remainder;
6721   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6722   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6723   if (Remainder != 0) {
6724     // This likely indicates a bug in the implementation of 'std::allocator'.
6725     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6726         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6727     return false;
6728   }
6729 
6730   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6731     if (IsNothrow) {
6732       Result.setNull(Info.Ctx, E->getType());
6733       return true;
6734     }
6735 
6736     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6737     return false;
6738   }
6739 
6740   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6741                                                      ArrayType::Normal, 0);
6742   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6743   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6744   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6745   return true;
6746 }
6747 
6748 static bool hasVirtualDestructor(QualType T) {
6749   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6750     if (CXXDestructorDecl *DD = RD->getDestructor())
6751       return DD->isVirtual();
6752   return false;
6753 }
6754 
6755 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6756   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6757     if (CXXDestructorDecl *DD = RD->getDestructor())
6758       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6759   return nullptr;
6760 }
6761 
6762 /// Check that the given object is a suitable pointer to a heap allocation that
6763 /// still exists and is of the right kind for the purpose of a deletion.
6764 ///
6765 /// On success, returns the heap allocation to deallocate. On failure, produces
6766 /// a diagnostic and returns std::nullopt.
6767 static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6768                                                  const LValue &Pointer,
6769                                                  DynAlloc::Kind DeallocKind) {
6770   auto PointerAsString = [&] {
6771     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6772   };
6773 
6774   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6775   if (!DA) {
6776     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6777         << PointerAsString();
6778     if (Pointer.Base)
6779       NoteLValueLocation(Info, Pointer.Base);
6780     return std::nullopt;
6781   }
6782 
6783   std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6784   if (!Alloc) {
6785     Info.FFDiag(E, diag::note_constexpr_double_delete);
6786     return std::nullopt;
6787   }
6788 
6789   QualType AllocType = Pointer.Base.getDynamicAllocType();
6790   if (DeallocKind != (*Alloc)->getKind()) {
6791     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6792         << DeallocKind << (*Alloc)->getKind() << AllocType;
6793     NoteLValueLocation(Info, Pointer.Base);
6794     return std::nullopt;
6795   }
6796 
6797   bool Subobject = false;
6798   if (DeallocKind == DynAlloc::New) {
6799     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6800                 Pointer.Designator.isOnePastTheEnd();
6801   } else {
6802     Subobject = Pointer.Designator.Entries.size() != 1 ||
6803                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6804   }
6805   if (Subobject) {
6806     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6807         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6808     return std::nullopt;
6809   }
6810 
6811   return Alloc;
6812 }
6813 
6814 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6815 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6816   if (Info.checkingPotentialConstantExpression() ||
6817       Info.SpeculativeEvaluationDepth)
6818     return false;
6819 
6820   // This is permitted only within a call to std::allocator<T>::deallocate.
6821   if (!Info.getStdAllocatorCaller("deallocate")) {
6822     Info.FFDiag(E->getExprLoc());
6823     return true;
6824   }
6825 
6826   LValue Pointer;
6827   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6828     return false;
6829   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6830     EvaluateIgnoredValue(Info, E->getArg(I));
6831 
6832   if (Pointer.Designator.Invalid)
6833     return false;
6834 
6835   // Deleting a null pointer would have no effect, but it's not permitted by
6836   // std::allocator<T>::deallocate's contract.
6837   if (Pointer.isNullPointer()) {
6838     Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6839     return true;
6840   }
6841 
6842   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6843     return false;
6844 
6845   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6846   return true;
6847 }
6848 
6849 //===----------------------------------------------------------------------===//
6850 // Generic Evaluation
6851 //===----------------------------------------------------------------------===//
6852 namespace {
6853 
6854 class BitCastBuffer {
6855   // FIXME: We're going to need bit-level granularity when we support
6856   // bit-fields.
6857   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6858   // we don't support a host or target where that is the case. Still, we should
6859   // use a more generic type in case we ever do.
6860   SmallVector<std::optional<unsigned char>, 32> Bytes;
6861 
6862   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6863                 "Need at least 8 bit unsigned char");
6864 
6865   bool TargetIsLittleEndian;
6866 
6867 public:
6868   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6869       : Bytes(Width.getQuantity()),
6870         TargetIsLittleEndian(TargetIsLittleEndian) {}
6871 
6872   [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
6873                                 SmallVectorImpl<unsigned char> &Output) const {
6874     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6875       // If a byte of an integer is uninitialized, then the whole integer is
6876       // uninitialized.
6877       if (!Bytes[I.getQuantity()])
6878         return false;
6879       Output.push_back(*Bytes[I.getQuantity()]);
6880     }
6881     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6882       std::reverse(Output.begin(), Output.end());
6883     return true;
6884   }
6885 
6886   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6887     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6888       std::reverse(Input.begin(), Input.end());
6889 
6890     size_t Index = 0;
6891     for (unsigned char Byte : Input) {
6892       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6893       Bytes[Offset.getQuantity() + Index] = Byte;
6894       ++Index;
6895     }
6896   }
6897 
6898   size_t size() { return Bytes.size(); }
6899 };
6900 
6901 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6902 /// target would represent the value at runtime.
6903 class APValueToBufferConverter {
6904   EvalInfo &Info;
6905   BitCastBuffer Buffer;
6906   const CastExpr *BCE;
6907 
6908   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6909                            const CastExpr *BCE)
6910       : Info(Info),
6911         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6912         BCE(BCE) {}
6913 
6914   bool visit(const APValue &Val, QualType Ty) {
6915     return visit(Val, Ty, CharUnits::fromQuantity(0));
6916   }
6917 
6918   // Write out Val with type Ty into Buffer starting at Offset.
6919   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6920     assert((size_t)Offset.getQuantity() <= Buffer.size());
6921 
6922     // As a special case, nullptr_t has an indeterminate value.
6923     if (Ty->isNullPtrType())
6924       return true;
6925 
6926     // Dig through Src to find the byte at SrcOffset.
6927     switch (Val.getKind()) {
6928     case APValue::Indeterminate:
6929     case APValue::None:
6930       return true;
6931 
6932     case APValue::Int:
6933       return visitInt(Val.getInt(), Ty, Offset);
6934     case APValue::Float:
6935       return visitFloat(Val.getFloat(), Ty, Offset);
6936     case APValue::Array:
6937       return visitArray(Val, Ty, Offset);
6938     case APValue::Struct:
6939       return visitRecord(Val, Ty, Offset);
6940 
6941     case APValue::ComplexInt:
6942     case APValue::ComplexFloat:
6943     case APValue::Vector:
6944     case APValue::FixedPoint:
6945       // FIXME: We should support these.
6946 
6947     case APValue::Union:
6948     case APValue::MemberPointer:
6949     case APValue::AddrLabelDiff: {
6950       Info.FFDiag(BCE->getBeginLoc(),
6951                   diag::note_constexpr_bit_cast_unsupported_type)
6952           << Ty;
6953       return false;
6954     }
6955 
6956     case APValue::LValue:
6957       llvm_unreachable("LValue subobject in bit_cast?");
6958     }
6959     llvm_unreachable("Unhandled APValue::ValueKind");
6960   }
6961 
6962   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6963     const RecordDecl *RD = Ty->getAsRecordDecl();
6964     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6965 
6966     // Visit the base classes.
6967     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6968       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6969         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6970         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6971 
6972         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6973                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6974           return false;
6975       }
6976     }
6977 
6978     // Visit the fields.
6979     unsigned FieldIdx = 0;
6980     for (FieldDecl *FD : RD->fields()) {
6981       if (FD->isBitField()) {
6982         Info.FFDiag(BCE->getBeginLoc(),
6983                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6984         return false;
6985       }
6986 
6987       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6988 
6989       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6990              "only bit-fields can have sub-char alignment");
6991       CharUnits FieldOffset =
6992           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6993       QualType FieldTy = FD->getType();
6994       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6995         return false;
6996       ++FieldIdx;
6997     }
6998 
6999     return true;
7000   }
7001 
7002   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
7003     const auto *CAT =
7004         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
7005     if (!CAT)
7006       return false;
7007 
7008     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
7009     unsigned NumInitializedElts = Val.getArrayInitializedElts();
7010     unsigned ArraySize = Val.getArraySize();
7011     // First, initialize the initialized elements.
7012     for (unsigned I = 0; I != NumInitializedElts; ++I) {
7013       const APValue &SubObj = Val.getArrayInitializedElt(I);
7014       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
7015         return false;
7016     }
7017 
7018     // Next, initialize the rest of the array using the filler.
7019     if (Val.hasArrayFiller()) {
7020       const APValue &Filler = Val.getArrayFiller();
7021       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
7022         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
7023           return false;
7024       }
7025     }
7026 
7027     return true;
7028   }
7029 
7030   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7031     APSInt AdjustedVal = Val;
7032     unsigned Width = AdjustedVal.getBitWidth();
7033     if (Ty->isBooleanType()) {
7034       Width = Info.Ctx.getTypeSize(Ty);
7035       AdjustedVal = AdjustedVal.extend(Width);
7036     }
7037 
7038     SmallVector<unsigned char, 8> Bytes(Width / 8);
7039     llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
7040     Buffer.writeObject(Offset, Bytes);
7041     return true;
7042   }
7043 
7044   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7045     APSInt AsInt(Val.bitcastToAPInt());
7046     return visitInt(AsInt, Ty, Offset);
7047   }
7048 
7049 public:
7050   static std::optional<BitCastBuffer>
7051   convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7052     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7053     APValueToBufferConverter Converter(Info, DstSize, BCE);
7054     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
7055       return std::nullopt;
7056     return Converter.Buffer;
7057   }
7058 };
7059 
7060 /// Write an BitCastBuffer into an APValue.
7061 class BufferToAPValueConverter {
7062   EvalInfo &Info;
7063   const BitCastBuffer &Buffer;
7064   const CastExpr *BCE;
7065 
7066   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7067                            const CastExpr *BCE)
7068       : Info(Info), Buffer(Buffer), BCE(BCE) {}
7069 
7070   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7071   // with an invalid type, so anything left is a deficiency on our part (FIXME).
7072   // Ideally this will be unreachable.
7073   std::nullopt_t unsupportedType(QualType Ty) {
7074     Info.FFDiag(BCE->getBeginLoc(),
7075                 diag::note_constexpr_bit_cast_unsupported_type)
7076         << Ty;
7077     return std::nullopt;
7078   }
7079 
7080   std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7081     Info.FFDiag(BCE->getBeginLoc(),
7082                 diag::note_constexpr_bit_cast_unrepresentable_value)
7083         << Ty << toString(Val, /*Radix=*/10);
7084     return std::nullopt;
7085   }
7086 
7087   std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7088                                const EnumType *EnumSugar = nullptr) {
7089     if (T->isNullPtrType()) {
7090       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7091       return APValue((Expr *)nullptr,
7092                      /*Offset=*/CharUnits::fromQuantity(NullValue),
7093                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7094     }
7095 
7096     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7097 
7098     // Work around floating point types that contain unused padding bytes. This
7099     // is really just `long double` on x86, which is the only fundamental type
7100     // with padding bytes.
7101     if (T->isRealFloatingType()) {
7102       const llvm::fltSemantics &Semantics =
7103           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7104       unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7105       assert(NumBits % 8 == 0);
7106       CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7107       if (NumBytes != SizeOf)
7108         SizeOf = NumBytes;
7109     }
7110 
7111     SmallVector<uint8_t, 8> Bytes;
7112     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7113       // If this is std::byte or unsigned char, then its okay to store an
7114       // indeterminate value.
7115       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7116       bool IsUChar =
7117           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7118                          T->isSpecificBuiltinType(BuiltinType::Char_U));
7119       if (!IsStdByte && !IsUChar) {
7120         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7121         Info.FFDiag(BCE->getExprLoc(),
7122                     diag::note_constexpr_bit_cast_indet_dest)
7123             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7124         return std::nullopt;
7125       }
7126 
7127       return APValue::IndeterminateValue();
7128     }
7129 
7130     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7131     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7132 
7133     if (T->isIntegralOrEnumerationType()) {
7134       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7135 
7136       unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7137       if (IntWidth != Val.getBitWidth()) {
7138         APSInt Truncated = Val.trunc(IntWidth);
7139         if (Truncated.extend(Val.getBitWidth()) != Val)
7140           return unrepresentableValue(QualType(T, 0), Val);
7141         Val = Truncated;
7142       }
7143 
7144       return APValue(Val);
7145     }
7146 
7147     if (T->isRealFloatingType()) {
7148       const llvm::fltSemantics &Semantics =
7149           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7150       return APValue(APFloat(Semantics, Val));
7151     }
7152 
7153     return unsupportedType(QualType(T, 0));
7154   }
7155 
7156   std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7157     const RecordDecl *RD = RTy->getAsRecordDecl();
7158     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7159 
7160     unsigned NumBases = 0;
7161     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7162       NumBases = CXXRD->getNumBases();
7163 
7164     APValue ResultVal(APValue::UninitStruct(), NumBases,
7165                       std::distance(RD->field_begin(), RD->field_end()));
7166 
7167     // Visit the base classes.
7168     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7169       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7170         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7171         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7172         if (BaseDecl->isEmpty() ||
7173             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7174           continue;
7175 
7176         std::optional<APValue> SubObj = visitType(
7177             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7178         if (!SubObj)
7179           return std::nullopt;
7180         ResultVal.getStructBase(I) = *SubObj;
7181       }
7182     }
7183 
7184     // Visit the fields.
7185     unsigned FieldIdx = 0;
7186     for (FieldDecl *FD : RD->fields()) {
7187       // FIXME: We don't currently support bit-fields. A lot of the logic for
7188       // this is in CodeGen, so we need to factor it around.
7189       if (FD->isBitField()) {
7190         Info.FFDiag(BCE->getBeginLoc(),
7191                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7192         return std::nullopt;
7193       }
7194 
7195       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7196       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7197 
7198       CharUnits FieldOffset =
7199           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7200           Offset;
7201       QualType FieldTy = FD->getType();
7202       std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7203       if (!SubObj)
7204         return std::nullopt;
7205       ResultVal.getStructField(FieldIdx) = *SubObj;
7206       ++FieldIdx;
7207     }
7208 
7209     return ResultVal;
7210   }
7211 
7212   std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7213     QualType RepresentationType = Ty->getDecl()->getIntegerType();
7214     assert(!RepresentationType.isNull() &&
7215            "enum forward decl should be caught by Sema");
7216     const auto *AsBuiltin =
7217         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7218     // Recurse into the underlying type. Treat std::byte transparently as
7219     // unsigned char.
7220     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7221   }
7222 
7223   std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7224     size_t Size = Ty->getSize().getLimitedValue();
7225     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7226 
7227     APValue ArrayValue(APValue::UninitArray(), Size, Size);
7228     for (size_t I = 0; I != Size; ++I) {
7229       std::optional<APValue> ElementValue =
7230           visitType(Ty->getElementType(), Offset + I * ElementWidth);
7231       if (!ElementValue)
7232         return std::nullopt;
7233       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7234     }
7235 
7236     return ArrayValue;
7237   }
7238 
7239   std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7240     return unsupportedType(QualType(Ty, 0));
7241   }
7242 
7243   std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7244     QualType Can = Ty.getCanonicalType();
7245 
7246     switch (Can->getTypeClass()) {
7247 #define TYPE(Class, Base)                                                      \
7248   case Type::Class:                                                            \
7249     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7250 #define ABSTRACT_TYPE(Class, Base)
7251 #define NON_CANONICAL_TYPE(Class, Base)                                        \
7252   case Type::Class:                                                            \
7253     llvm_unreachable("non-canonical type should be impossible!");
7254 #define DEPENDENT_TYPE(Class, Base)                                            \
7255   case Type::Class:                                                            \
7256     llvm_unreachable(                                                          \
7257         "dependent types aren't supported in the constant evaluator!");
7258 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
7259   case Type::Class:                                                            \
7260     llvm_unreachable("either dependent or not canonical!");
7261 #include "clang/AST/TypeNodes.inc"
7262     }
7263     llvm_unreachable("Unhandled Type::TypeClass");
7264   }
7265 
7266 public:
7267   // Pull out a full value of type DstType.
7268   static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7269                                         const CastExpr *BCE) {
7270     BufferToAPValueConverter Converter(Info, Buffer, BCE);
7271     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7272   }
7273 };
7274 
7275 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7276                                                  QualType Ty, EvalInfo *Info,
7277                                                  const ASTContext &Ctx,
7278                                                  bool CheckingDest) {
7279   Ty = Ty.getCanonicalType();
7280 
7281   auto diag = [&](int Reason) {
7282     if (Info)
7283       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7284           << CheckingDest << (Reason == 4) << Reason;
7285     return false;
7286   };
7287   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7288     if (Info)
7289       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7290           << NoteTy << Construct << Ty;
7291     return false;
7292   };
7293 
7294   if (Ty->isUnionType())
7295     return diag(0);
7296   if (Ty->isPointerType())
7297     return diag(1);
7298   if (Ty->isMemberPointerType())
7299     return diag(2);
7300   if (Ty.isVolatileQualified())
7301     return diag(3);
7302 
7303   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7304     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7305       for (CXXBaseSpecifier &BS : CXXRD->bases())
7306         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7307                                                   CheckingDest))
7308           return note(1, BS.getType(), BS.getBeginLoc());
7309     }
7310     for (FieldDecl *FD : Record->fields()) {
7311       if (FD->getType()->isReferenceType())
7312         return diag(4);
7313       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7314                                                 CheckingDest))
7315         return note(0, FD->getType(), FD->getBeginLoc());
7316     }
7317   }
7318 
7319   if (Ty->isArrayType() &&
7320       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7321                                             Info, Ctx, CheckingDest))
7322     return false;
7323 
7324   return true;
7325 }
7326 
7327 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7328                                              const ASTContext &Ctx,
7329                                              const CastExpr *BCE) {
7330   bool DestOK = checkBitCastConstexprEligibilityType(
7331       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7332   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7333                                 BCE->getBeginLoc(),
7334                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
7335   return SourceOK;
7336 }
7337 
7338 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7339                                         APValue &SourceValue,
7340                                         const CastExpr *BCE) {
7341   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7342          "no host or target supports non 8-bit chars");
7343   assert(SourceValue.isLValue() &&
7344          "LValueToRValueBitcast requires an lvalue operand!");
7345 
7346   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7347     return false;
7348 
7349   LValue SourceLValue;
7350   APValue SourceRValue;
7351   SourceLValue.setFrom(Info.Ctx, SourceValue);
7352   if (!handleLValueToRValueConversion(
7353           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7354           SourceRValue, /*WantObjectRepresentation=*/true))
7355     return false;
7356 
7357   // Read out SourceValue into a char buffer.
7358   std::optional<BitCastBuffer> Buffer =
7359       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7360   if (!Buffer)
7361     return false;
7362 
7363   // Write out the buffer into a new APValue.
7364   std::optional<APValue> MaybeDestValue =
7365       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7366   if (!MaybeDestValue)
7367     return false;
7368 
7369   DestValue = std::move(*MaybeDestValue);
7370   return true;
7371 }
7372 
7373 template <class Derived>
7374 class ExprEvaluatorBase
7375   : public ConstStmtVisitor<Derived, bool> {
7376 private:
7377   Derived &getDerived() { return static_cast<Derived&>(*this); }
7378   bool DerivedSuccess(const APValue &V, const Expr *E) {
7379     return getDerived().Success(V, E);
7380   }
7381   bool DerivedZeroInitialization(const Expr *E) {
7382     return getDerived().ZeroInitialization(E);
7383   }
7384 
7385   // Check whether a conditional operator with a non-constant condition is a
7386   // potential constant expression. If neither arm is a potential constant
7387   // expression, then the conditional operator is not either.
7388   template<typename ConditionalOperator>
7389   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7390     assert(Info.checkingPotentialConstantExpression());
7391 
7392     // Speculatively evaluate both arms.
7393     SmallVector<PartialDiagnosticAt, 8> Diag;
7394     {
7395       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7396       StmtVisitorTy::Visit(E->getFalseExpr());
7397       if (Diag.empty())
7398         return;
7399     }
7400 
7401     {
7402       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7403       Diag.clear();
7404       StmtVisitorTy::Visit(E->getTrueExpr());
7405       if (Diag.empty())
7406         return;
7407     }
7408 
7409     Error(E, diag::note_constexpr_conditional_never_const);
7410   }
7411 
7412 
7413   template<typename ConditionalOperator>
7414   bool HandleConditionalOperator(const ConditionalOperator *E) {
7415     bool BoolResult;
7416     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7417       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7418         CheckPotentialConstantConditional(E);
7419         return false;
7420       }
7421       if (Info.noteFailure()) {
7422         StmtVisitorTy::Visit(E->getTrueExpr());
7423         StmtVisitorTy::Visit(E->getFalseExpr());
7424       }
7425       return false;
7426     }
7427 
7428     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7429     return StmtVisitorTy::Visit(EvalExpr);
7430   }
7431 
7432 protected:
7433   EvalInfo &Info;
7434   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7435   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7436 
7437   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7438     return Info.CCEDiag(E, D);
7439   }
7440 
7441   bool ZeroInitialization(const Expr *E) { return Error(E); }
7442 
7443   bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
7444     unsigned BuiltinOp = E->getBuiltinCallee();
7445     return BuiltinOp != 0 &&
7446            Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp);
7447   }
7448 
7449 public:
7450   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7451 
7452   EvalInfo &getEvalInfo() { return Info; }
7453 
7454   /// Report an evaluation error. This should only be called when an error is
7455   /// first discovered. When propagating an error, just return false.
7456   bool Error(const Expr *E, diag::kind D) {
7457     Info.FFDiag(E, D);
7458     return false;
7459   }
7460   bool Error(const Expr *E) {
7461     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7462   }
7463 
7464   bool VisitStmt(const Stmt *) {
7465     llvm_unreachable("Expression evaluator should not be called on stmts");
7466   }
7467   bool VisitExpr(const Expr *E) {
7468     return Error(E);
7469   }
7470 
7471   bool VisitConstantExpr(const ConstantExpr *E) {
7472     if (E->hasAPValueResult())
7473       return DerivedSuccess(E->getAPValueResult(), E);
7474 
7475     return StmtVisitorTy::Visit(E->getSubExpr());
7476   }
7477 
7478   bool VisitParenExpr(const ParenExpr *E)
7479     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7480   bool VisitUnaryExtension(const UnaryOperator *E)
7481     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7482   bool VisitUnaryPlus(const UnaryOperator *E)
7483     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7484   bool VisitChooseExpr(const ChooseExpr *E)
7485     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7486   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7487     { return StmtVisitorTy::Visit(E->getResultExpr()); }
7488   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7489     { return StmtVisitorTy::Visit(E->getReplacement()); }
7490   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7491     TempVersionRAII RAII(*Info.CurrentCall);
7492     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7493     return StmtVisitorTy::Visit(E->getExpr());
7494   }
7495   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7496     TempVersionRAII RAII(*Info.CurrentCall);
7497     // The initializer may not have been parsed yet, or might be erroneous.
7498     if (!E->getExpr())
7499       return Error(E);
7500     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7501     return StmtVisitorTy::Visit(E->getExpr());
7502   }
7503 
7504   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7505     FullExpressionRAII Scope(Info);
7506     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7507   }
7508 
7509   // Temporaries are registered when created, so we don't care about
7510   // CXXBindTemporaryExpr.
7511   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7512     return StmtVisitorTy::Visit(E->getSubExpr());
7513   }
7514 
7515   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7516     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7517     return static_cast<Derived*>(this)->VisitCastExpr(E);
7518   }
7519   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7520     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7521       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7522     return static_cast<Derived*>(this)->VisitCastExpr(E);
7523   }
7524   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7525     return static_cast<Derived*>(this)->VisitCastExpr(E);
7526   }
7527 
7528   bool VisitBinaryOperator(const BinaryOperator *E) {
7529     switch (E->getOpcode()) {
7530     default:
7531       return Error(E);
7532 
7533     case BO_Comma:
7534       VisitIgnoredValue(E->getLHS());
7535       return StmtVisitorTy::Visit(E->getRHS());
7536 
7537     case BO_PtrMemD:
7538     case BO_PtrMemI: {
7539       LValue Obj;
7540       if (!HandleMemberPointerAccess(Info, E, Obj))
7541         return false;
7542       APValue Result;
7543       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7544         return false;
7545       return DerivedSuccess(Result, E);
7546     }
7547     }
7548   }
7549 
7550   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7551     return StmtVisitorTy::Visit(E->getSemanticForm());
7552   }
7553 
7554   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7555     // Evaluate and cache the common expression. We treat it as a temporary,
7556     // even though it's not quite the same thing.
7557     LValue CommonLV;
7558     if (!Evaluate(Info.CurrentCall->createTemporary(
7559                       E->getOpaqueValue(),
7560                       getStorageType(Info.Ctx, E->getOpaqueValue()),
7561                       ScopeKind::FullExpression, CommonLV),
7562                   Info, E->getCommon()))
7563       return false;
7564 
7565     return HandleConditionalOperator(E);
7566   }
7567 
7568   bool VisitConditionalOperator(const ConditionalOperator *E) {
7569     bool IsBcpCall = false;
7570     // If the condition (ignoring parens) is a __builtin_constant_p call,
7571     // the result is a constant expression if it can be folded without
7572     // side-effects. This is an important GNU extension. See GCC PR38377
7573     // for discussion.
7574     if (const CallExpr *CallCE =
7575           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7576       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7577         IsBcpCall = true;
7578 
7579     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7580     // constant expression; we can't check whether it's potentially foldable.
7581     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7582     // it would return 'false' in this mode.
7583     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7584       return false;
7585 
7586     FoldConstant Fold(Info, IsBcpCall);
7587     if (!HandleConditionalOperator(E)) {
7588       Fold.keepDiagnostics();
7589       return false;
7590     }
7591 
7592     return true;
7593   }
7594 
7595   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7596     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7597       return DerivedSuccess(*Value, E);
7598 
7599     const Expr *Source = E->getSourceExpr();
7600     if (!Source)
7601       return Error(E);
7602     if (Source == E) {
7603       assert(0 && "OpaqueValueExpr recursively refers to itself");
7604       return Error(E);
7605     }
7606     return StmtVisitorTy::Visit(Source);
7607   }
7608 
7609   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7610     for (const Expr *SemE : E->semantics()) {
7611       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7612         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7613         // result expression: there could be two different LValues that would
7614         // refer to the same object in that case, and we can't model that.
7615         if (SemE == E->getResultExpr())
7616           return Error(E);
7617 
7618         // Unique OVEs get evaluated if and when we encounter them when
7619         // emitting the rest of the semantic form, rather than eagerly.
7620         if (OVE->isUnique())
7621           continue;
7622 
7623         LValue LV;
7624         if (!Evaluate(Info.CurrentCall->createTemporary(
7625                           OVE, getStorageType(Info.Ctx, OVE),
7626                           ScopeKind::FullExpression, LV),
7627                       Info, OVE->getSourceExpr()))
7628           return false;
7629       } else if (SemE == E->getResultExpr()) {
7630         if (!StmtVisitorTy::Visit(SemE))
7631           return false;
7632       } else {
7633         if (!EvaluateIgnoredValue(Info, SemE))
7634           return false;
7635       }
7636     }
7637     return true;
7638   }
7639 
7640   bool VisitCallExpr(const CallExpr *E) {
7641     APValue Result;
7642     if (!handleCallExpr(E, Result, nullptr))
7643       return false;
7644     return DerivedSuccess(Result, E);
7645   }
7646 
7647   bool handleCallExpr(const CallExpr *E, APValue &Result,
7648                      const LValue *ResultSlot) {
7649     CallScopeRAII CallScope(Info);
7650 
7651     const Expr *Callee = E->getCallee()->IgnoreParens();
7652     QualType CalleeType = Callee->getType();
7653 
7654     const FunctionDecl *FD = nullptr;
7655     LValue *This = nullptr, ThisVal;
7656     auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
7657     bool HasQualifier = false;
7658 
7659     CallRef Call;
7660 
7661     // Extract function decl and 'this' pointer from the callee.
7662     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7663       const CXXMethodDecl *Member = nullptr;
7664       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7665         // Explicit bound member calls, such as x.f() or p->g();
7666         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7667           return false;
7668         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7669         if (!Member)
7670           return Error(Callee);
7671         This = &ThisVal;
7672         HasQualifier = ME->hasQualifier();
7673       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7674         // Indirect bound member calls ('.*' or '->*').
7675         const ValueDecl *D =
7676             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7677         if (!D)
7678           return false;
7679         Member = dyn_cast<CXXMethodDecl>(D);
7680         if (!Member)
7681           return Error(Callee);
7682         This = &ThisVal;
7683       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7684         if (!Info.getLangOpts().CPlusPlus20)
7685           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7686         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7687                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7688       } else
7689         return Error(Callee);
7690       FD = Member;
7691     } else if (CalleeType->isFunctionPointerType()) {
7692       LValue CalleeLV;
7693       if (!EvaluatePointer(Callee, CalleeLV, Info))
7694         return false;
7695 
7696       if (!CalleeLV.getLValueOffset().isZero())
7697         return Error(Callee);
7698       if (CalleeLV.isNullPointer()) {
7699         Info.FFDiag(Callee, diag::note_constexpr_null_callee)
7700             << const_cast<Expr *>(Callee);
7701         return false;
7702       }
7703       FD = dyn_cast_or_null<FunctionDecl>(
7704           CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7705       if (!FD)
7706         return Error(Callee);
7707       // Don't call function pointers which have been cast to some other type.
7708       // Per DR (no number yet), the caller and callee can differ in noexcept.
7709       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7710         CalleeType->getPointeeType(), FD->getType())) {
7711         return Error(E);
7712       }
7713 
7714       // For an (overloaded) assignment expression, evaluate the RHS before the
7715       // LHS.
7716       auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7717       if (OCE && OCE->isAssignmentOp()) {
7718         assert(Args.size() == 2 && "wrong number of arguments in assignment");
7719         Call = Info.CurrentCall->createCall(FD);
7720         if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7721                           Info, FD, /*RightToLeft=*/true))
7722           return false;
7723       }
7724 
7725       // Overloaded operator calls to member functions are represented as normal
7726       // calls with '*this' as the first argument.
7727       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7728       if (MD && !MD->isStatic()) {
7729         // FIXME: When selecting an implicit conversion for an overloaded
7730         // operator delete, we sometimes try to evaluate calls to conversion
7731         // operators without a 'this' parameter!
7732         if (Args.empty())
7733           return Error(E);
7734 
7735         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7736           return false;
7737         This = &ThisVal;
7738 
7739         // If this is syntactically a simple assignment using a trivial
7740         // assignment operator, start the lifetimes of union members as needed,
7741         // per C++20 [class.union]5.
7742         if (Info.getLangOpts().CPlusPlus20 && OCE &&
7743             OCE->getOperator() == OO_Equal && MD->isTrivial() &&
7744             !HandleUnionActiveMemberChange(Info, Args[0], ThisVal))
7745           return false;
7746 
7747         Args = Args.slice(1);
7748       } else if (MD && MD->isLambdaStaticInvoker()) {
7749         // Map the static invoker for the lambda back to the call operator.
7750         // Conveniently, we don't have to slice out the 'this' argument (as is
7751         // being done for the non-static case), since a static member function
7752         // doesn't have an implicit argument passed in.
7753         const CXXRecordDecl *ClosureClass = MD->getParent();
7754         assert(
7755             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7756             "Number of captures must be zero for conversion to function-ptr");
7757 
7758         const CXXMethodDecl *LambdaCallOp =
7759             ClosureClass->getLambdaCallOperator();
7760 
7761         // Set 'FD', the function that will be called below, to the call
7762         // operator.  If the closure object represents a generic lambda, find
7763         // the corresponding specialization of the call operator.
7764 
7765         if (ClosureClass->isGenericLambda()) {
7766           assert(MD->isFunctionTemplateSpecialization() &&
7767                  "A generic lambda's static-invoker function must be a "
7768                  "template specialization");
7769           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7770           FunctionTemplateDecl *CallOpTemplate =
7771               LambdaCallOp->getDescribedFunctionTemplate();
7772           void *InsertPos = nullptr;
7773           FunctionDecl *CorrespondingCallOpSpecialization =
7774               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7775           assert(CorrespondingCallOpSpecialization &&
7776                  "We must always have a function call operator specialization "
7777                  "that corresponds to our static invoker specialization");
7778           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7779         } else
7780           FD = LambdaCallOp;
7781       } else if (FD->isReplaceableGlobalAllocationFunction()) {
7782         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7783             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7784           LValue Ptr;
7785           if (!HandleOperatorNewCall(Info, E, Ptr))
7786             return false;
7787           Ptr.moveInto(Result);
7788           return CallScope.destroy();
7789         } else {
7790           return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7791         }
7792       }
7793     } else
7794       return Error(E);
7795 
7796     // Evaluate the arguments now if we've not already done so.
7797     if (!Call) {
7798       Call = Info.CurrentCall->createCall(FD);
7799       if (!EvaluateArgs(Args, Call, Info, FD))
7800         return false;
7801     }
7802 
7803     SmallVector<QualType, 4> CovariantAdjustmentPath;
7804     if (This) {
7805       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7806       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7807         // Perform virtual dispatch, if necessary.
7808         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7809                                    CovariantAdjustmentPath);
7810         if (!FD)
7811           return false;
7812       } else {
7813         // Check that the 'this' pointer points to an object of the right type.
7814         // FIXME: If this is an assignment operator call, we may need to change
7815         // the active union member before we check this.
7816         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7817           return false;
7818       }
7819     }
7820 
7821     // Destructor calls are different enough that they have their own codepath.
7822     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7823       assert(This && "no 'this' pointer for destructor call");
7824       return HandleDestruction(Info, E, *This,
7825                                Info.Ctx.getRecordType(DD->getParent())) &&
7826              CallScope.destroy();
7827     }
7828 
7829     const FunctionDecl *Definition = nullptr;
7830     Stmt *Body = FD->getBody(Definition);
7831 
7832     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7833         !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call,
7834                             Body, Info, Result, ResultSlot))
7835       return false;
7836 
7837     if (!CovariantAdjustmentPath.empty() &&
7838         !HandleCovariantReturnAdjustment(Info, E, Result,
7839                                          CovariantAdjustmentPath))
7840       return false;
7841 
7842     return CallScope.destroy();
7843   }
7844 
7845   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7846     return StmtVisitorTy::Visit(E->getInitializer());
7847   }
7848   bool VisitInitListExpr(const InitListExpr *E) {
7849     if (E->getNumInits() == 0)
7850       return DerivedZeroInitialization(E);
7851     if (E->getNumInits() == 1)
7852       return StmtVisitorTy::Visit(E->getInit(0));
7853     return Error(E);
7854   }
7855   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7856     return DerivedZeroInitialization(E);
7857   }
7858   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7859     return DerivedZeroInitialization(E);
7860   }
7861   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7862     return DerivedZeroInitialization(E);
7863   }
7864 
7865   /// A member expression where the object is a prvalue is itself a prvalue.
7866   bool VisitMemberExpr(const MemberExpr *E) {
7867     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7868            "missing temporary materialization conversion");
7869     assert(!E->isArrow() && "missing call to bound member function?");
7870 
7871     APValue Val;
7872     if (!Evaluate(Val, Info, E->getBase()))
7873       return false;
7874 
7875     QualType BaseTy = E->getBase()->getType();
7876 
7877     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7878     if (!FD) return Error(E);
7879     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7880     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7881            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7882 
7883     // Note: there is no lvalue base here. But this case should only ever
7884     // happen in C or in C++98, where we cannot be evaluating a constexpr
7885     // constructor, which is the only case the base matters.
7886     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7887     SubobjectDesignator Designator(BaseTy);
7888     Designator.addDeclUnchecked(FD);
7889 
7890     APValue Result;
7891     return extractSubobject(Info, E, Obj, Designator, Result) &&
7892            DerivedSuccess(Result, E);
7893   }
7894 
7895   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7896     APValue Val;
7897     if (!Evaluate(Val, Info, E->getBase()))
7898       return false;
7899 
7900     if (Val.isVector()) {
7901       SmallVector<uint32_t, 4> Indices;
7902       E->getEncodedElementAccess(Indices);
7903       if (Indices.size() == 1) {
7904         // Return scalar.
7905         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7906       } else {
7907         // Construct new APValue vector.
7908         SmallVector<APValue, 4> Elts;
7909         for (unsigned I = 0; I < Indices.size(); ++I) {
7910           Elts.push_back(Val.getVectorElt(Indices[I]));
7911         }
7912         APValue VecResult(Elts.data(), Indices.size());
7913         return DerivedSuccess(VecResult, E);
7914       }
7915     }
7916 
7917     return false;
7918   }
7919 
7920   bool VisitCastExpr(const CastExpr *E) {
7921     switch (E->getCastKind()) {
7922     default:
7923       break;
7924 
7925     case CK_AtomicToNonAtomic: {
7926       APValue AtomicVal;
7927       // This does not need to be done in place even for class/array types:
7928       // atomic-to-non-atomic conversion implies copying the object
7929       // representation.
7930       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7931         return false;
7932       return DerivedSuccess(AtomicVal, E);
7933     }
7934 
7935     case CK_NoOp:
7936     case CK_UserDefinedConversion:
7937       return StmtVisitorTy::Visit(E->getSubExpr());
7938 
7939     case CK_LValueToRValue: {
7940       LValue LVal;
7941       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7942         return false;
7943       APValue RVal;
7944       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7945       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7946                                           LVal, RVal))
7947         return false;
7948       return DerivedSuccess(RVal, E);
7949     }
7950     case CK_LValueToRValueBitCast: {
7951       APValue DestValue, SourceValue;
7952       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7953         return false;
7954       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7955         return false;
7956       return DerivedSuccess(DestValue, E);
7957     }
7958 
7959     case CK_AddressSpaceConversion: {
7960       APValue Value;
7961       if (!Evaluate(Value, Info, E->getSubExpr()))
7962         return false;
7963       return DerivedSuccess(Value, E);
7964     }
7965     }
7966 
7967     return Error(E);
7968   }
7969 
7970   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7971     return VisitUnaryPostIncDec(UO);
7972   }
7973   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7974     return VisitUnaryPostIncDec(UO);
7975   }
7976   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7977     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7978       return Error(UO);
7979 
7980     LValue LVal;
7981     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7982       return false;
7983     APValue RVal;
7984     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7985                       UO->isIncrementOp(), &RVal))
7986       return false;
7987     return DerivedSuccess(RVal, UO);
7988   }
7989 
7990   bool VisitStmtExpr(const StmtExpr *E) {
7991     // We will have checked the full-expressions inside the statement expression
7992     // when they were completed, and don't need to check them again now.
7993     llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
7994                                           false);
7995 
7996     const CompoundStmt *CS = E->getSubStmt();
7997     if (CS->body_empty())
7998       return true;
7999 
8000     BlockScopeRAII Scope(Info);
8001     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
8002                                            BE = CS->body_end();
8003          /**/; ++BI) {
8004       if (BI + 1 == BE) {
8005         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
8006         if (!FinalExpr) {
8007           Info.FFDiag((*BI)->getBeginLoc(),
8008                       diag::note_constexpr_stmt_expr_unsupported);
8009           return false;
8010         }
8011         return this->Visit(FinalExpr) && Scope.destroy();
8012       }
8013 
8014       APValue ReturnValue;
8015       StmtResult Result = { ReturnValue, nullptr };
8016       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
8017       if (ESR != ESR_Succeeded) {
8018         // FIXME: If the statement-expression terminated due to 'return',
8019         // 'break', or 'continue', it would be nice to propagate that to
8020         // the outer statement evaluation rather than bailing out.
8021         if (ESR != ESR_Failed)
8022           Info.FFDiag((*BI)->getBeginLoc(),
8023                       diag::note_constexpr_stmt_expr_unsupported);
8024         return false;
8025       }
8026     }
8027 
8028     llvm_unreachable("Return from function from the loop above.");
8029   }
8030 
8031   /// Visit a value which is evaluated, but whose value is ignored.
8032   void VisitIgnoredValue(const Expr *E) {
8033     EvaluateIgnoredValue(Info, E);
8034   }
8035 
8036   /// Potentially visit a MemberExpr's base expression.
8037   void VisitIgnoredBaseExpression(const Expr *E) {
8038     // While MSVC doesn't evaluate the base expression, it does diagnose the
8039     // presence of side-effecting behavior.
8040     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
8041       return;
8042     VisitIgnoredValue(E);
8043   }
8044 };
8045 
8046 } // namespace
8047 
8048 //===----------------------------------------------------------------------===//
8049 // Common base class for lvalue and temporary evaluation.
8050 //===----------------------------------------------------------------------===//
8051 namespace {
8052 template<class Derived>
8053 class LValueExprEvaluatorBase
8054   : public ExprEvaluatorBase<Derived> {
8055 protected:
8056   LValue &Result;
8057   bool InvalidBaseOK;
8058   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8059   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8060 
8061   bool Success(APValue::LValueBase B) {
8062     Result.set(B);
8063     return true;
8064   }
8065 
8066   bool evaluatePointer(const Expr *E, LValue &Result) {
8067     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8068   }
8069 
8070 public:
8071   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8072       : ExprEvaluatorBaseTy(Info), Result(Result),
8073         InvalidBaseOK(InvalidBaseOK) {}
8074 
8075   bool Success(const APValue &V, const Expr *E) {
8076     Result.setFrom(this->Info.Ctx, V);
8077     return true;
8078   }
8079 
8080   bool VisitMemberExpr(const MemberExpr *E) {
8081     // Handle non-static data members.
8082     QualType BaseTy;
8083     bool EvalOK;
8084     if (E->isArrow()) {
8085       EvalOK = evaluatePointer(E->getBase(), Result);
8086       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8087     } else if (E->getBase()->isPRValue()) {
8088       assert(E->getBase()->getType()->isRecordType());
8089       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8090       BaseTy = E->getBase()->getType();
8091     } else {
8092       EvalOK = this->Visit(E->getBase());
8093       BaseTy = E->getBase()->getType();
8094     }
8095     if (!EvalOK) {
8096       if (!InvalidBaseOK)
8097         return false;
8098       Result.setInvalid(E);
8099       return true;
8100     }
8101 
8102     const ValueDecl *MD = E->getMemberDecl();
8103     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8104       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8105              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8106       (void)BaseTy;
8107       if (!HandleLValueMember(this->Info, E, Result, FD))
8108         return false;
8109     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8110       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8111         return false;
8112     } else
8113       return this->Error(E);
8114 
8115     if (MD->getType()->isReferenceType()) {
8116       APValue RefValue;
8117       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8118                                           RefValue))
8119         return false;
8120       return Success(RefValue, E);
8121     }
8122     return true;
8123   }
8124 
8125   bool VisitBinaryOperator(const BinaryOperator *E) {
8126     switch (E->getOpcode()) {
8127     default:
8128       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8129 
8130     case BO_PtrMemD:
8131     case BO_PtrMemI:
8132       return HandleMemberPointerAccess(this->Info, E, Result);
8133     }
8134   }
8135 
8136   bool VisitCastExpr(const CastExpr *E) {
8137     switch (E->getCastKind()) {
8138     default:
8139       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8140 
8141     case CK_DerivedToBase:
8142     case CK_UncheckedDerivedToBase:
8143       if (!this->Visit(E->getSubExpr()))
8144         return false;
8145 
8146       // Now figure out the necessary offset to add to the base LV to get from
8147       // the derived class to the base class.
8148       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8149                                   Result);
8150     }
8151   }
8152 };
8153 }
8154 
8155 //===----------------------------------------------------------------------===//
8156 // LValue Evaluation
8157 //
8158 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8159 // function designators (in C), decl references to void objects (in C), and
8160 // temporaries (if building with -Wno-address-of-temporary).
8161 //
8162 // LValue evaluation produces values comprising a base expression of one of the
8163 // following types:
8164 // - Declarations
8165 //  * VarDecl
8166 //  * FunctionDecl
8167 // - Literals
8168 //  * CompoundLiteralExpr in C (and in global scope in C++)
8169 //  * StringLiteral
8170 //  * PredefinedExpr
8171 //  * ObjCStringLiteralExpr
8172 //  * ObjCEncodeExpr
8173 //  * AddrLabelExpr
8174 //  * BlockExpr
8175 //  * CallExpr for a MakeStringConstant builtin
8176 // - typeid(T) expressions, as TypeInfoLValues
8177 // - Locals and temporaries
8178 //  * MaterializeTemporaryExpr
8179 //  * Any Expr, with a CallIndex indicating the function in which the temporary
8180 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
8181 //    from the AST (FIXME).
8182 //  * A MaterializeTemporaryExpr that has static storage duration, with no
8183 //    CallIndex, for a lifetime-extended temporary.
8184 //  * The ConstantExpr that is currently being evaluated during evaluation of an
8185 //    immediate invocation.
8186 // plus an offset in bytes.
8187 //===----------------------------------------------------------------------===//
8188 namespace {
8189 class LValueExprEvaluator
8190   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8191 public:
8192   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8193     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8194 
8195   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8196   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8197 
8198   bool VisitCallExpr(const CallExpr *E);
8199   bool VisitDeclRefExpr(const DeclRefExpr *E);
8200   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8201   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8202   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8203   bool VisitMemberExpr(const MemberExpr *E);
8204   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8205   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8206   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8207   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8208   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8209   bool VisitUnaryDeref(const UnaryOperator *E);
8210   bool VisitUnaryReal(const UnaryOperator *E);
8211   bool VisitUnaryImag(const UnaryOperator *E);
8212   bool VisitUnaryPreInc(const UnaryOperator *UO) {
8213     return VisitUnaryPreIncDec(UO);
8214   }
8215   bool VisitUnaryPreDec(const UnaryOperator *UO) {
8216     return VisitUnaryPreIncDec(UO);
8217   }
8218   bool VisitBinAssign(const BinaryOperator *BO);
8219   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8220 
8221   bool VisitCastExpr(const CastExpr *E) {
8222     switch (E->getCastKind()) {
8223     default:
8224       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8225 
8226     case CK_LValueBitCast:
8227       this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8228           << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8229       if (!Visit(E->getSubExpr()))
8230         return false;
8231       Result.Designator.setInvalid();
8232       return true;
8233 
8234     case CK_BaseToDerived:
8235       if (!Visit(E->getSubExpr()))
8236         return false;
8237       return HandleBaseToDerivedCast(Info, E, Result);
8238 
8239     case CK_Dynamic:
8240       if (!Visit(E->getSubExpr()))
8241         return false;
8242       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8243     }
8244   }
8245 };
8246 } // end anonymous namespace
8247 
8248 /// Evaluate an expression as an lvalue. This can be legitimately called on
8249 /// expressions which are not glvalues, in three cases:
8250 ///  * function designators in C, and
8251 ///  * "extern void" objects
8252 ///  * @selector() expressions in Objective-C
8253 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8254                            bool InvalidBaseOK) {
8255   assert(!E->isValueDependent());
8256   assert(E->isGLValue() || E->getType()->isFunctionType() ||
8257          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8258   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8259 }
8260 
8261 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8262   const NamedDecl *D = E->getDecl();
8263   if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8264           UnnamedGlobalConstantDecl>(D))
8265     return Success(cast<ValueDecl>(D));
8266   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8267     return VisitVarDecl(E, VD);
8268   if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8269     return Visit(BD->getBinding());
8270   return Error(E);
8271 }
8272 
8273 
8274 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8275 
8276   // If we are within a lambda's call operator, check whether the 'VD' referred
8277   // to within 'E' actually represents a lambda-capture that maps to a
8278   // data-member/field within the closure object, and if so, evaluate to the
8279   // field or what the field refers to.
8280   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8281       isa<DeclRefExpr>(E) &&
8282       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8283     // We don't always have a complete capture-map when checking or inferring if
8284     // the function call operator meets the requirements of a constexpr function
8285     // - but we don't need to evaluate the captures to determine constexprness
8286     // (dcl.constexpr C++17).
8287     if (Info.checkingPotentialConstantExpression())
8288       return false;
8289 
8290     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8291       // Start with 'Result' referring to the complete closure object...
8292       Result = *Info.CurrentCall->This;
8293       // ... then update it to refer to the field of the closure object
8294       // that represents the capture.
8295       if (!HandleLValueMember(Info, E, Result, FD))
8296         return false;
8297       // And if the field is of reference type, update 'Result' to refer to what
8298       // the field refers to.
8299       if (FD->getType()->isReferenceType()) {
8300         APValue RVal;
8301         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8302                                             RVal))
8303           return false;
8304         Result.setFrom(Info.Ctx, RVal);
8305       }
8306       return true;
8307     }
8308   }
8309 
8310   CallStackFrame *Frame = nullptr;
8311   unsigned Version = 0;
8312   if (VD->hasLocalStorage()) {
8313     // Only if a local variable was declared in the function currently being
8314     // evaluated, do we expect to be able to find its value in the current
8315     // frame. (Otherwise it was likely declared in an enclosing context and
8316     // could either have a valid evaluatable value (for e.g. a constexpr
8317     // variable) or be ill-formed (and trigger an appropriate evaluation
8318     // diagnostic)).
8319     CallStackFrame *CurrFrame = Info.CurrentCall;
8320     if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8321       // Function parameters are stored in some caller's frame. (Usually the
8322       // immediate caller, but for an inherited constructor they may be more
8323       // distant.)
8324       if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8325         if (CurrFrame->Arguments) {
8326           VD = CurrFrame->Arguments.getOrigParam(PVD);
8327           Frame =
8328               Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8329           Version = CurrFrame->Arguments.Version;
8330         }
8331       } else {
8332         Frame = CurrFrame;
8333         Version = CurrFrame->getCurrentTemporaryVersion(VD);
8334       }
8335     }
8336   }
8337 
8338   if (!VD->getType()->isReferenceType()) {
8339     if (Frame) {
8340       Result.set({VD, Frame->Index, Version});
8341       return true;
8342     }
8343     return Success(VD);
8344   }
8345 
8346   if (!Info.getLangOpts().CPlusPlus11) {
8347     Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8348         << VD << VD->getType();
8349     Info.Note(VD->getLocation(), diag::note_declared_at);
8350   }
8351 
8352   APValue *V;
8353   if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8354     return false;
8355   if (!V->hasValue()) {
8356     // FIXME: Is it possible for V to be indeterminate here? If so, we should
8357     // adjust the diagnostic to say that.
8358     if (!Info.checkingPotentialConstantExpression())
8359       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8360     return false;
8361   }
8362   return Success(*V, E);
8363 }
8364 
8365 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8366   if (!IsConstantEvaluatedBuiltinCall(E))
8367     return ExprEvaluatorBaseTy::VisitCallExpr(E);
8368 
8369   switch (E->getBuiltinCallee()) {
8370   default:
8371     return false;
8372   case Builtin::BIas_const:
8373   case Builtin::BIforward:
8374   case Builtin::BIforward_like:
8375   case Builtin::BImove:
8376   case Builtin::BImove_if_noexcept:
8377     if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr())
8378       return Visit(E->getArg(0));
8379     break;
8380   }
8381 
8382   return ExprEvaluatorBaseTy::VisitCallExpr(E);
8383 }
8384 
8385 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8386     const MaterializeTemporaryExpr *E) {
8387   // Walk through the expression to find the materialized temporary itself.
8388   SmallVector<const Expr *, 2> CommaLHSs;
8389   SmallVector<SubobjectAdjustment, 2> Adjustments;
8390   const Expr *Inner =
8391       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8392 
8393   // If we passed any comma operators, evaluate their LHSs.
8394   for (const Expr *E : CommaLHSs)
8395     if (!EvaluateIgnoredValue(Info, E))
8396       return false;
8397 
8398   // A materialized temporary with static storage duration can appear within the
8399   // result of a constant expression evaluation, so we need to preserve its
8400   // value for use outside this evaluation.
8401   APValue *Value;
8402   if (E->getStorageDuration() == SD_Static) {
8403     if (Info.EvalMode == EvalInfo::EM_ConstantFold)
8404       return false;
8405     // FIXME: What about SD_Thread?
8406     Value = E->getOrCreateValue(true);
8407     *Value = APValue();
8408     Result.set(E);
8409   } else {
8410     Value = &Info.CurrentCall->createTemporary(
8411         E, E->getType(),
8412         E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8413                                                      : ScopeKind::Block,
8414         Result);
8415   }
8416 
8417   QualType Type = Inner->getType();
8418 
8419   // Materialize the temporary itself.
8420   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8421     *Value = APValue();
8422     return false;
8423   }
8424 
8425   // Adjust our lvalue to refer to the desired subobject.
8426   for (unsigned I = Adjustments.size(); I != 0; /**/) {
8427     --I;
8428     switch (Adjustments[I].Kind) {
8429     case SubobjectAdjustment::DerivedToBaseAdjustment:
8430       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8431                                 Type, Result))
8432         return false;
8433       Type = Adjustments[I].DerivedToBase.BasePath->getType();
8434       break;
8435 
8436     case SubobjectAdjustment::FieldAdjustment:
8437       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8438         return false;
8439       Type = Adjustments[I].Field->getType();
8440       break;
8441 
8442     case SubobjectAdjustment::MemberPointerAdjustment:
8443       if (!HandleMemberPointerAccess(this->Info, Type, Result,
8444                                      Adjustments[I].Ptr.RHS))
8445         return false;
8446       Type = Adjustments[I].Ptr.MPT->getPointeeType();
8447       break;
8448     }
8449   }
8450 
8451   return true;
8452 }
8453 
8454 bool
8455 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8456   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8457          "lvalue compound literal in c++?");
8458   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8459   // only see this when folding in C, so there's no standard to follow here.
8460   return Success(E);
8461 }
8462 
8463 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8464   TypeInfoLValue TypeInfo;
8465 
8466   if (!E->isPotentiallyEvaluated()) {
8467     if (E->isTypeOperand())
8468       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8469     else
8470       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8471   } else {
8472     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8473       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8474         << E->getExprOperand()->getType()
8475         << E->getExprOperand()->getSourceRange();
8476     }
8477 
8478     if (!Visit(E->getExprOperand()))
8479       return false;
8480 
8481     std::optional<DynamicType> DynType =
8482         ComputeDynamicType(Info, E, Result, AK_TypeId);
8483     if (!DynType)
8484       return false;
8485 
8486     TypeInfo =
8487         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8488   }
8489 
8490   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8491 }
8492 
8493 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8494   return Success(E->getGuidDecl());
8495 }
8496 
8497 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8498   // Handle static data members.
8499   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8500     VisitIgnoredBaseExpression(E->getBase());
8501     return VisitVarDecl(E, VD);
8502   }
8503 
8504   // Handle static member functions.
8505   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8506     if (MD->isStatic()) {
8507       VisitIgnoredBaseExpression(E->getBase());
8508       return Success(MD);
8509     }
8510   }
8511 
8512   // Handle non-static data members.
8513   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8514 }
8515 
8516 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8517   // FIXME: Deal with vectors as array subscript bases.
8518   if (E->getBase()->getType()->isVectorType() ||
8519       E->getBase()->getType()->isVLSTBuiltinType())
8520     return Error(E);
8521 
8522   APSInt Index;
8523   bool Success = true;
8524 
8525   // C++17's rules require us to evaluate the LHS first, regardless of which
8526   // side is the base.
8527   for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8528     if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8529                                 : !EvaluateInteger(SubExpr, Index, Info)) {
8530       if (!Info.noteFailure())
8531         return false;
8532       Success = false;
8533     }
8534   }
8535 
8536   return Success &&
8537          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8538 }
8539 
8540 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8541   return evaluatePointer(E->getSubExpr(), Result);
8542 }
8543 
8544 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8545   if (!Visit(E->getSubExpr()))
8546     return false;
8547   // __real is a no-op on scalar lvalues.
8548   if (E->getSubExpr()->getType()->isAnyComplexType())
8549     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8550   return true;
8551 }
8552 
8553 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8554   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8555          "lvalue __imag__ on scalar?");
8556   if (!Visit(E->getSubExpr()))
8557     return false;
8558   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8559   return true;
8560 }
8561 
8562 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8563   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8564     return Error(UO);
8565 
8566   if (!this->Visit(UO->getSubExpr()))
8567     return false;
8568 
8569   return handleIncDec(
8570       this->Info, UO, Result, UO->getSubExpr()->getType(),
8571       UO->isIncrementOp(), nullptr);
8572 }
8573 
8574 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8575     const CompoundAssignOperator *CAO) {
8576   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8577     return Error(CAO);
8578 
8579   bool Success = true;
8580 
8581   // C++17 onwards require that we evaluate the RHS first.
8582   APValue RHS;
8583   if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8584     if (!Info.noteFailure())
8585       return false;
8586     Success = false;
8587   }
8588 
8589   // The overall lvalue result is the result of evaluating the LHS.
8590   if (!this->Visit(CAO->getLHS()) || !Success)
8591     return false;
8592 
8593   return handleCompoundAssignment(
8594       this->Info, CAO,
8595       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8596       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8597 }
8598 
8599 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8600   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8601     return Error(E);
8602 
8603   bool Success = true;
8604 
8605   // C++17 onwards require that we evaluate the RHS first.
8606   APValue NewVal;
8607   if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8608     if (!Info.noteFailure())
8609       return false;
8610     Success = false;
8611   }
8612 
8613   if (!this->Visit(E->getLHS()) || !Success)
8614     return false;
8615 
8616   if (Info.getLangOpts().CPlusPlus20 &&
8617       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8618     return false;
8619 
8620   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8621                           NewVal);
8622 }
8623 
8624 //===----------------------------------------------------------------------===//
8625 // Pointer Evaluation
8626 //===----------------------------------------------------------------------===//
8627 
8628 /// Attempts to compute the number of bytes available at the pointer
8629 /// returned by a function with the alloc_size attribute. Returns true if we
8630 /// were successful. Places an unsigned number into `Result`.
8631 ///
8632 /// This expects the given CallExpr to be a call to a function with an
8633 /// alloc_size attribute.
8634 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8635                                             const CallExpr *Call,
8636                                             llvm::APInt &Result) {
8637   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8638 
8639   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8640   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8641   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8642   if (Call->getNumArgs() <= SizeArgNo)
8643     return false;
8644 
8645   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8646     Expr::EvalResult ExprResult;
8647     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8648       return false;
8649     Into = ExprResult.Val.getInt();
8650     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8651       return false;
8652     Into = Into.zext(BitsInSizeT);
8653     return true;
8654   };
8655 
8656   APSInt SizeOfElem;
8657   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8658     return false;
8659 
8660   if (!AllocSize->getNumElemsParam().isValid()) {
8661     Result = std::move(SizeOfElem);
8662     return true;
8663   }
8664 
8665   APSInt NumberOfElems;
8666   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8667   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8668     return false;
8669 
8670   bool Overflow;
8671   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8672   if (Overflow)
8673     return false;
8674 
8675   Result = std::move(BytesAvailable);
8676   return true;
8677 }
8678 
8679 /// Convenience function. LVal's base must be a call to an alloc_size
8680 /// function.
8681 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8682                                             const LValue &LVal,
8683                                             llvm::APInt &Result) {
8684   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8685          "Can't get the size of a non alloc_size function");
8686   const auto *Base = LVal.getLValueBase().get<const Expr *>();
8687   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8688   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8689 }
8690 
8691 /// Attempts to evaluate the given LValueBase as the result of a call to
8692 /// a function with the alloc_size attribute. If it was possible to do so, this
8693 /// function will return true, make Result's Base point to said function call,
8694 /// and mark Result's Base as invalid.
8695 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8696                                       LValue &Result) {
8697   if (Base.isNull())
8698     return false;
8699 
8700   // Because we do no form of static analysis, we only support const variables.
8701   //
8702   // Additionally, we can't support parameters, nor can we support static
8703   // variables (in the latter case, use-before-assign isn't UB; in the former,
8704   // we have no clue what they'll be assigned to).
8705   const auto *VD =
8706       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8707   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8708     return false;
8709 
8710   const Expr *Init = VD->getAnyInitializer();
8711   if (!Init || Init->getType().isNull())
8712     return false;
8713 
8714   const Expr *E = Init->IgnoreParens();
8715   if (!tryUnwrapAllocSizeCall(E))
8716     return false;
8717 
8718   // Store E instead of E unwrapped so that the type of the LValue's base is
8719   // what the user wanted.
8720   Result.setInvalid(E);
8721 
8722   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8723   Result.addUnsizedArray(Info, E, Pointee);
8724   return true;
8725 }
8726 
8727 namespace {
8728 class PointerExprEvaluator
8729   : public ExprEvaluatorBase<PointerExprEvaluator> {
8730   LValue &Result;
8731   bool InvalidBaseOK;
8732 
8733   bool Success(const Expr *E) {
8734     Result.set(E);
8735     return true;
8736   }
8737 
8738   bool evaluateLValue(const Expr *E, LValue &Result) {
8739     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8740   }
8741 
8742   bool evaluatePointer(const Expr *E, LValue &Result) {
8743     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8744   }
8745 
8746   bool visitNonBuiltinCallExpr(const CallExpr *E);
8747 public:
8748 
8749   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8750       : ExprEvaluatorBaseTy(info), Result(Result),
8751         InvalidBaseOK(InvalidBaseOK) {}
8752 
8753   bool Success(const APValue &V, const Expr *E) {
8754     Result.setFrom(Info.Ctx, V);
8755     return true;
8756   }
8757   bool ZeroInitialization(const Expr *E) {
8758     Result.setNull(Info.Ctx, E->getType());
8759     return true;
8760   }
8761 
8762   bool VisitBinaryOperator(const BinaryOperator *E);
8763   bool VisitCastExpr(const CastExpr* E);
8764   bool VisitUnaryAddrOf(const UnaryOperator *E);
8765   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8766       { return Success(E); }
8767   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8768     if (E->isExpressibleAsConstantInitializer())
8769       return Success(E);
8770     if (Info.noteFailure())
8771       EvaluateIgnoredValue(Info, E->getSubExpr());
8772     return Error(E);
8773   }
8774   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8775       { return Success(E); }
8776   bool VisitCallExpr(const CallExpr *E);
8777   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
8778   bool VisitBlockExpr(const BlockExpr *E) {
8779     if (!E->getBlockDecl()->hasCaptures())
8780       return Success(E);
8781     return Error(E);
8782   }
8783   bool VisitCXXThisExpr(const CXXThisExpr *E) {
8784     // Can't look at 'this' when checking a potential constant expression.
8785     if (Info.checkingPotentialConstantExpression())
8786       return false;
8787     if (!Info.CurrentCall->This) {
8788       if (Info.getLangOpts().CPlusPlus11)
8789         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8790       else
8791         Info.FFDiag(E);
8792       return false;
8793     }
8794     Result = *Info.CurrentCall->This;
8795 
8796     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8797       // Ensure we actually have captured 'this'. If something was wrong with
8798       // 'this' capture, the error would have been previously reported.
8799       // Otherwise we can be inside of a default initialization of an object
8800       // declared by lambda's body, so no need to return false.
8801       if (!Info.CurrentCall->LambdaThisCaptureField)
8802         return true;
8803 
8804       // If we have captured 'this',  the 'this' expression refers
8805       // to the enclosing '*this' object (either by value or reference) which is
8806       // either copied into the closure object's field that represents the
8807       // '*this' or refers to '*this'.
8808       // Update 'Result' to refer to the data member/field of the closure object
8809       // that represents the '*this' capture.
8810       if (!HandleLValueMember(Info, E, Result,
8811                              Info.CurrentCall->LambdaThisCaptureField))
8812         return false;
8813       // If we captured '*this' by reference, replace the field with its referent.
8814       if (Info.CurrentCall->LambdaThisCaptureField->getType()
8815               ->isPointerType()) {
8816         APValue RVal;
8817         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8818                                             RVal))
8819           return false;
8820 
8821         Result.setFrom(Info.Ctx, RVal);
8822       }
8823     }
8824     return true;
8825   }
8826 
8827   bool VisitCXXNewExpr(const CXXNewExpr *E);
8828 
8829   bool VisitSourceLocExpr(const SourceLocExpr *E) {
8830     assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
8831     APValue LValResult = E->EvaluateInContext(
8832         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8833     Result.setFrom(Info.Ctx, LValResult);
8834     return true;
8835   }
8836 
8837   bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
8838     std::string ResultStr = E->ComputeName(Info.Ctx);
8839 
8840     QualType CharTy = Info.Ctx.CharTy.withConst();
8841     APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
8842                ResultStr.size() + 1);
8843     QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
8844                                                      ArrayType::Normal, 0);
8845 
8846     StringLiteral *SL =
8847         StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ordinary,
8848                               /*Pascal*/ false, ArrayTy, E->getLocation());
8849 
8850     evaluateLValue(SL, Result);
8851     Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
8852     return true;
8853   }
8854 
8855   // FIXME: Missing: @protocol, @selector
8856 };
8857 } // end anonymous namespace
8858 
8859 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8860                             bool InvalidBaseOK) {
8861   assert(!E->isValueDependent());
8862   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
8863   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8864 }
8865 
8866 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8867   if (E->getOpcode() != BO_Add &&
8868       E->getOpcode() != BO_Sub)
8869     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8870 
8871   const Expr *PExp = E->getLHS();
8872   const Expr *IExp = E->getRHS();
8873   if (IExp->getType()->isPointerType())
8874     std::swap(PExp, IExp);
8875 
8876   bool EvalPtrOK = evaluatePointer(PExp, Result);
8877   if (!EvalPtrOK && !Info.noteFailure())
8878     return false;
8879 
8880   llvm::APSInt Offset;
8881   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8882     return false;
8883 
8884   if (E->getOpcode() == BO_Sub)
8885     negateAsSigned(Offset);
8886 
8887   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8888   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8889 }
8890 
8891 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8892   return evaluateLValue(E->getSubExpr(), Result);
8893 }
8894 
8895 // Is the provided decl 'std::source_location::current'?
8896 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
8897   if (!FD)
8898     return false;
8899   const IdentifierInfo *FnII = FD->getIdentifier();
8900   if (!FnII || !FnII->isStr("current"))
8901     return false;
8902 
8903   const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
8904   if (!RD)
8905     return false;
8906 
8907   const IdentifierInfo *ClassII = RD->getIdentifier();
8908   return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location");
8909 }
8910 
8911 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8912   const Expr *SubExpr = E->getSubExpr();
8913 
8914   switch (E->getCastKind()) {
8915   default:
8916     break;
8917   case CK_BitCast:
8918   case CK_CPointerToObjCPointerCast:
8919   case CK_BlockPointerToObjCPointerCast:
8920   case CK_AnyPointerToBlockPointerCast:
8921   case CK_AddressSpaceConversion:
8922     if (!Visit(SubExpr))
8923       return false;
8924     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8925     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8926     // also static_casts, but we disallow them as a resolution to DR1312.
8927     if (!E->getType()->isVoidPointerType()) {
8928       // In some circumstances, we permit casting from void* to cv1 T*, when the
8929       // actual pointee object is actually a cv2 T.
8930       bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid &&
8931                             !Result.IsNullPtr;
8932       bool VoidPtrCastMaybeOK =
8933           HasValidResult &&
8934           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8935                                           E->getType()->getPointeeType());
8936       // 1. We'll allow it in std::allocator::allocate, and anything which that
8937       //    calls.
8938       // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
8939       //    <source_location> header. Fixed in GCC 12 and later (2022-04-??).
8940       //    We'll allow it in the body of std::source_location::current.  GCC's
8941       //    implementation had a parameter of type `void*`, and casts from
8942       //    that back to `const __impl*` in its body.
8943       if (VoidPtrCastMaybeOK &&
8944           (Info.getStdAllocatorCaller("allocate") ||
8945            IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) ||
8946            Info.getLangOpts().CPlusPlus26)) {
8947         // Permitted.
8948       } else {
8949         if (SubExpr->getType()->isVoidPointerType()) {
8950           if (HasValidResult)
8951             CCEDiag(E, diag::note_constexpr_invalid_void_star_cast)
8952                 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26
8953                 << Result.Designator.getType(Info.Ctx).getCanonicalType()
8954                 << E->getType()->getPointeeType();
8955           else
8956             CCEDiag(E, diag::note_constexpr_invalid_cast)
8957                 << 3 << SubExpr->getType();
8958         } else
8959           CCEDiag(E, diag::note_constexpr_invalid_cast)
8960               << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8961         Result.Designator.setInvalid();
8962       }
8963     }
8964     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8965       ZeroInitialization(E);
8966     return true;
8967 
8968   case CK_DerivedToBase:
8969   case CK_UncheckedDerivedToBase:
8970     if (!evaluatePointer(E->getSubExpr(), Result))
8971       return false;
8972     if (!Result.Base && Result.Offset.isZero())
8973       return true;
8974 
8975     // Now figure out the necessary offset to add to the base LV to get from
8976     // the derived class to the base class.
8977     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8978                                   castAs<PointerType>()->getPointeeType(),
8979                                 Result);
8980 
8981   case CK_BaseToDerived:
8982     if (!Visit(E->getSubExpr()))
8983       return false;
8984     if (!Result.Base && Result.Offset.isZero())
8985       return true;
8986     return HandleBaseToDerivedCast(Info, E, Result);
8987 
8988   case CK_Dynamic:
8989     if (!Visit(E->getSubExpr()))
8990       return false;
8991     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8992 
8993   case CK_NullToPointer:
8994     VisitIgnoredValue(E->getSubExpr());
8995     return ZeroInitialization(E);
8996 
8997   case CK_IntegralToPointer: {
8998     CCEDiag(E, diag::note_constexpr_invalid_cast)
8999         << 2 << Info.Ctx.getLangOpts().CPlusPlus;
9000 
9001     APValue Value;
9002     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
9003       break;
9004 
9005     if (Value.isInt()) {
9006       unsigned Size = Info.Ctx.getTypeSize(E->getType());
9007       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
9008       Result.Base = (Expr*)nullptr;
9009       Result.InvalidBase = false;
9010       Result.Offset = CharUnits::fromQuantity(N);
9011       Result.Designator.setInvalid();
9012       Result.IsNullPtr = false;
9013       return true;
9014     } else {
9015       // Cast is of an lvalue, no need to change value.
9016       Result.setFrom(Info.Ctx, Value);
9017       return true;
9018     }
9019   }
9020 
9021   case CK_ArrayToPointerDecay: {
9022     if (SubExpr->isGLValue()) {
9023       if (!evaluateLValue(SubExpr, Result))
9024         return false;
9025     } else {
9026       APValue &Value = Info.CurrentCall->createTemporary(
9027           SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
9028       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
9029         return false;
9030     }
9031     // The result is a pointer to the first element of the array.
9032     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
9033     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
9034       Result.addArray(Info, E, CAT);
9035     else
9036       Result.addUnsizedArray(Info, E, AT->getElementType());
9037     return true;
9038   }
9039 
9040   case CK_FunctionToPointerDecay:
9041     return evaluateLValue(SubExpr, Result);
9042 
9043   case CK_LValueToRValue: {
9044     LValue LVal;
9045     if (!evaluateLValue(E->getSubExpr(), LVal))
9046       return false;
9047 
9048     APValue RVal;
9049     // Note, we use the subexpression's type in order to retain cv-qualifiers.
9050     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9051                                         LVal, RVal))
9052       return InvalidBaseOK &&
9053              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
9054     return Success(RVal, E);
9055   }
9056   }
9057 
9058   return ExprEvaluatorBaseTy::VisitCastExpr(E);
9059 }
9060 
9061 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
9062                                 UnaryExprOrTypeTrait ExprKind) {
9063   // C++ [expr.alignof]p3:
9064   //     When alignof is applied to a reference type, the result is the
9065   //     alignment of the referenced type.
9066   T = T.getNonReferenceType();
9067 
9068   if (T.getQualifiers().hasUnaligned())
9069     return CharUnits::One();
9070 
9071   const bool AlignOfReturnsPreferred =
9072       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9073 
9074   // __alignof is defined to return the preferred alignment.
9075   // Before 8, clang returned the preferred alignment for alignof and _Alignof
9076   // as well.
9077   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9078     return Info.Ctx.toCharUnitsFromBits(
9079       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
9080   // alignof and _Alignof are defined to return the ABI alignment.
9081   else if (ExprKind == UETT_AlignOf)
9082     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
9083   else
9084     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9085 }
9086 
9087 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9088                                 UnaryExprOrTypeTrait ExprKind) {
9089   E = E->IgnoreParens();
9090 
9091   // The kinds of expressions that we have special-case logic here for
9092   // should be kept up to date with the special checks for those
9093   // expressions in Sema.
9094 
9095   // alignof decl is always accepted, even if it doesn't make sense: we default
9096   // to 1 in those cases.
9097   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9098     return Info.Ctx.getDeclAlign(DRE->getDecl(),
9099                                  /*RefAsPointee*/true);
9100 
9101   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
9102     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9103                                  /*RefAsPointee*/true);
9104 
9105   return GetAlignOfType(Info, E->getType(), ExprKind);
9106 }
9107 
9108 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9109   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9110     return Info.Ctx.getDeclAlign(VD);
9111   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9112     return GetAlignOfExpr(Info, E, UETT_AlignOf);
9113   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
9114 }
9115 
9116 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9117 /// __builtin_is_aligned and __builtin_assume_aligned.
9118 static bool getAlignmentArgument(const Expr *E, QualType ForType,
9119                                  EvalInfo &Info, APSInt &Alignment) {
9120   if (!EvaluateInteger(E, Alignment, Info))
9121     return false;
9122   if (Alignment < 0 || !Alignment.isPowerOf2()) {
9123     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9124     return false;
9125   }
9126   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
9127   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
9128   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
9129     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9130         << MaxValue << ForType << Alignment;
9131     return false;
9132   }
9133   // Ensure both alignment and source value have the same bit width so that we
9134   // don't assert when computing the resulting value.
9135   APSInt ExtAlignment =
9136       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
9137   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9138          "Alignment should not be changed by ext/trunc");
9139   Alignment = ExtAlignment;
9140   assert(Alignment.getBitWidth() == SrcWidth);
9141   return true;
9142 }
9143 
9144 // To be clear: this happily visits unsupported builtins. Better name welcomed.
9145 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9146   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9147     return true;
9148 
9149   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9150     return false;
9151 
9152   Result.setInvalid(E);
9153   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9154   Result.addUnsizedArray(Info, E, PointeeTy);
9155   return true;
9156 }
9157 
9158 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9159   if (!IsConstantEvaluatedBuiltinCall(E))
9160     return visitNonBuiltinCallExpr(E);
9161   return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
9162 }
9163 
9164 // Determine if T is a character type for which we guarantee that
9165 // sizeof(T) == 1.
9166 static bool isOneByteCharacterType(QualType T) {
9167   return T->isCharType() || T->isChar8Type();
9168 }
9169 
9170 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9171                                                 unsigned BuiltinOp) {
9172   if (IsNoOpCall(E))
9173     return Success(E);
9174 
9175   switch (BuiltinOp) {
9176   case Builtin::BIaddressof:
9177   case Builtin::BI__addressof:
9178   case Builtin::BI__builtin_addressof:
9179     return evaluateLValue(E->getArg(0), Result);
9180   case Builtin::BI__builtin_assume_aligned: {
9181     // We need to be very careful here because: if the pointer does not have the
9182     // asserted alignment, then the behavior is undefined, and undefined
9183     // behavior is non-constant.
9184     if (!evaluatePointer(E->getArg(0), Result))
9185       return false;
9186 
9187     LValue OffsetResult(Result);
9188     APSInt Alignment;
9189     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9190                               Alignment))
9191       return false;
9192     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9193 
9194     if (E->getNumArgs() > 2) {
9195       APSInt Offset;
9196       if (!EvaluateInteger(E->getArg(2), Offset, Info))
9197         return false;
9198 
9199       int64_t AdditionalOffset = -Offset.getZExtValue();
9200       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9201     }
9202 
9203     // If there is a base object, then it must have the correct alignment.
9204     if (OffsetResult.Base) {
9205       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9206 
9207       if (BaseAlignment < Align) {
9208         Result.Designator.setInvalid();
9209         // FIXME: Add support to Diagnostic for long / long long.
9210         CCEDiag(E->getArg(0),
9211                 diag::note_constexpr_baa_insufficient_alignment) << 0
9212           << (unsigned)BaseAlignment.getQuantity()
9213           << (unsigned)Align.getQuantity();
9214         return false;
9215       }
9216     }
9217 
9218     // The offset must also have the correct alignment.
9219     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9220       Result.Designator.setInvalid();
9221 
9222       (OffsetResult.Base
9223            ? CCEDiag(E->getArg(0),
9224                      diag::note_constexpr_baa_insufficient_alignment) << 1
9225            : CCEDiag(E->getArg(0),
9226                      diag::note_constexpr_baa_value_insufficient_alignment))
9227         << (int)OffsetResult.Offset.getQuantity()
9228         << (unsigned)Align.getQuantity();
9229       return false;
9230     }
9231 
9232     return true;
9233   }
9234   case Builtin::BI__builtin_align_up:
9235   case Builtin::BI__builtin_align_down: {
9236     if (!evaluatePointer(E->getArg(0), Result))
9237       return false;
9238     APSInt Alignment;
9239     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9240                               Alignment))
9241       return false;
9242     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9243     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9244     // For align_up/align_down, we can return the same value if the alignment
9245     // is known to be greater or equal to the requested value.
9246     if (PtrAlign.getQuantity() >= Alignment)
9247       return true;
9248 
9249     // The alignment could be greater than the minimum at run-time, so we cannot
9250     // infer much about the resulting pointer value. One case is possible:
9251     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9252     // can infer the correct index if the requested alignment is smaller than
9253     // the base alignment so we can perform the computation on the offset.
9254     if (BaseAlignment.getQuantity() >= Alignment) {
9255       assert(Alignment.getBitWidth() <= 64 &&
9256              "Cannot handle > 64-bit address-space");
9257       uint64_t Alignment64 = Alignment.getZExtValue();
9258       CharUnits NewOffset = CharUnits::fromQuantity(
9259           BuiltinOp == Builtin::BI__builtin_align_down
9260               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9261               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9262       Result.adjustOffset(NewOffset - Result.Offset);
9263       // TODO: diagnose out-of-bounds values/only allow for arrays?
9264       return true;
9265     }
9266     // Otherwise, we cannot constant-evaluate the result.
9267     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9268         << Alignment;
9269     return false;
9270   }
9271   case Builtin::BI__builtin_operator_new:
9272     return HandleOperatorNewCall(Info, E, Result);
9273   case Builtin::BI__builtin_launder:
9274     return evaluatePointer(E->getArg(0), Result);
9275   case Builtin::BIstrchr:
9276   case Builtin::BIwcschr:
9277   case Builtin::BImemchr:
9278   case Builtin::BIwmemchr:
9279     if (Info.getLangOpts().CPlusPlus11)
9280       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9281           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9282           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9283     else
9284       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9285     [[fallthrough]];
9286   case Builtin::BI__builtin_strchr:
9287   case Builtin::BI__builtin_wcschr:
9288   case Builtin::BI__builtin_memchr:
9289   case Builtin::BI__builtin_char_memchr:
9290   case Builtin::BI__builtin_wmemchr: {
9291     if (!Visit(E->getArg(0)))
9292       return false;
9293     APSInt Desired;
9294     if (!EvaluateInteger(E->getArg(1), Desired, Info))
9295       return false;
9296     uint64_t MaxLength = uint64_t(-1);
9297     if (BuiltinOp != Builtin::BIstrchr &&
9298         BuiltinOp != Builtin::BIwcschr &&
9299         BuiltinOp != Builtin::BI__builtin_strchr &&
9300         BuiltinOp != Builtin::BI__builtin_wcschr) {
9301       APSInt N;
9302       if (!EvaluateInteger(E->getArg(2), N, Info))
9303         return false;
9304       MaxLength = N.getExtValue();
9305     }
9306     // We cannot find the value if there are no candidates to match against.
9307     if (MaxLength == 0u)
9308       return ZeroInitialization(E);
9309     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9310         Result.Designator.Invalid)
9311       return false;
9312     QualType CharTy = Result.Designator.getType(Info.Ctx);
9313     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9314                      BuiltinOp == Builtin::BI__builtin_memchr;
9315     assert(IsRawByte ||
9316            Info.Ctx.hasSameUnqualifiedType(
9317                CharTy, E->getArg(0)->getType()->getPointeeType()));
9318     // Pointers to const void may point to objects of incomplete type.
9319     if (IsRawByte && CharTy->isIncompleteType()) {
9320       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9321       return false;
9322     }
9323     // Give up on byte-oriented matching against multibyte elements.
9324     // FIXME: We can compare the bytes in the correct order.
9325     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9326       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9327           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
9328           << CharTy;
9329       return false;
9330     }
9331     // Figure out what value we're actually looking for (after converting to
9332     // the corresponding unsigned type if necessary).
9333     uint64_t DesiredVal;
9334     bool StopAtNull = false;
9335     switch (BuiltinOp) {
9336     case Builtin::BIstrchr:
9337     case Builtin::BI__builtin_strchr:
9338       // strchr compares directly to the passed integer, and therefore
9339       // always fails if given an int that is not a char.
9340       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9341                                                   E->getArg(1)->getType(),
9342                                                   Desired),
9343                                Desired))
9344         return ZeroInitialization(E);
9345       StopAtNull = true;
9346       [[fallthrough]];
9347     case Builtin::BImemchr:
9348     case Builtin::BI__builtin_memchr:
9349     case Builtin::BI__builtin_char_memchr:
9350       // memchr compares by converting both sides to unsigned char. That's also
9351       // correct for strchr if we get this far (to cope with plain char being
9352       // unsigned in the strchr case).
9353       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9354       break;
9355 
9356     case Builtin::BIwcschr:
9357     case Builtin::BI__builtin_wcschr:
9358       StopAtNull = true;
9359       [[fallthrough]];
9360     case Builtin::BIwmemchr:
9361     case Builtin::BI__builtin_wmemchr:
9362       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9363       DesiredVal = Desired.getZExtValue();
9364       break;
9365     }
9366 
9367     for (; MaxLength; --MaxLength) {
9368       APValue Char;
9369       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9370           !Char.isInt())
9371         return false;
9372       if (Char.getInt().getZExtValue() == DesiredVal)
9373         return true;
9374       if (StopAtNull && !Char.getInt())
9375         break;
9376       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9377         return false;
9378     }
9379     // Not found: return nullptr.
9380     return ZeroInitialization(E);
9381   }
9382 
9383   case Builtin::BImemcpy:
9384   case Builtin::BImemmove:
9385   case Builtin::BIwmemcpy:
9386   case Builtin::BIwmemmove:
9387     if (Info.getLangOpts().CPlusPlus11)
9388       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9389           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9390           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9391     else
9392       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9393     [[fallthrough]];
9394   case Builtin::BI__builtin_memcpy:
9395   case Builtin::BI__builtin_memmove:
9396   case Builtin::BI__builtin_wmemcpy:
9397   case Builtin::BI__builtin_wmemmove: {
9398     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9399                  BuiltinOp == Builtin::BIwmemmove ||
9400                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9401                  BuiltinOp == Builtin::BI__builtin_wmemmove;
9402     bool Move = BuiltinOp == Builtin::BImemmove ||
9403                 BuiltinOp == Builtin::BIwmemmove ||
9404                 BuiltinOp == Builtin::BI__builtin_memmove ||
9405                 BuiltinOp == Builtin::BI__builtin_wmemmove;
9406 
9407     // The result of mem* is the first argument.
9408     if (!Visit(E->getArg(0)))
9409       return false;
9410     LValue Dest = Result;
9411 
9412     LValue Src;
9413     if (!EvaluatePointer(E->getArg(1), Src, Info))
9414       return false;
9415 
9416     APSInt N;
9417     if (!EvaluateInteger(E->getArg(2), N, Info))
9418       return false;
9419     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9420 
9421     // If the size is zero, we treat this as always being a valid no-op.
9422     // (Even if one of the src and dest pointers is null.)
9423     if (!N)
9424       return true;
9425 
9426     // Otherwise, if either of the operands is null, we can't proceed. Don't
9427     // try to determine the type of the copied objects, because there aren't
9428     // any.
9429     if (!Src.Base || !Dest.Base) {
9430       APValue Val;
9431       (!Src.Base ? Src : Dest).moveInto(Val);
9432       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9433           << Move << WChar << !!Src.Base
9434           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9435       return false;
9436     }
9437     if (Src.Designator.Invalid || Dest.Designator.Invalid)
9438       return false;
9439 
9440     // We require that Src and Dest are both pointers to arrays of
9441     // trivially-copyable type. (For the wide version, the designator will be
9442     // invalid if the designated object is not a wchar_t.)
9443     QualType T = Dest.Designator.getType(Info.Ctx);
9444     QualType SrcT = Src.Designator.getType(Info.Ctx);
9445     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9446       // FIXME: Consider using our bit_cast implementation to support this.
9447       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9448       return false;
9449     }
9450     if (T->isIncompleteType()) {
9451       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9452       return false;
9453     }
9454     if (!T.isTriviallyCopyableType(Info.Ctx)) {
9455       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9456       return false;
9457     }
9458 
9459     // Figure out how many T's we're copying.
9460     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9461     if (!WChar) {
9462       uint64_t Remainder;
9463       llvm::APInt OrigN = N;
9464       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9465       if (Remainder) {
9466         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9467             << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9468             << (unsigned)TSize;
9469         return false;
9470       }
9471     }
9472 
9473     // Check that the copying will remain within the arrays, just so that we
9474     // can give a more meaningful diagnostic. This implicitly also checks that
9475     // N fits into 64 bits.
9476     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9477     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9478     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9479       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9480           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9481           << toString(N, 10, /*Signed*/false);
9482       return false;
9483     }
9484     uint64_t NElems = N.getZExtValue();
9485     uint64_t NBytes = NElems * TSize;
9486 
9487     // Check for overlap.
9488     int Direction = 1;
9489     if (HasSameBase(Src, Dest)) {
9490       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9491       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9492       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9493         // Dest is inside the source region.
9494         if (!Move) {
9495           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9496           return false;
9497         }
9498         // For memmove and friends, copy backwards.
9499         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9500             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9501           return false;
9502         Direction = -1;
9503       } else if (!Move && SrcOffset >= DestOffset &&
9504                  SrcOffset - DestOffset < NBytes) {
9505         // Src is inside the destination region for memcpy: invalid.
9506         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9507         return false;
9508       }
9509     }
9510 
9511     while (true) {
9512       APValue Val;
9513       // FIXME: Set WantObjectRepresentation to true if we're copying a
9514       // char-like type?
9515       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9516           !handleAssignment(Info, E, Dest, T, Val))
9517         return false;
9518       // Do not iterate past the last element; if we're copying backwards, that
9519       // might take us off the start of the array.
9520       if (--NElems == 0)
9521         return true;
9522       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9523           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9524         return false;
9525     }
9526   }
9527 
9528   default:
9529     return false;
9530   }
9531 }
9532 
9533 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9534                                      APValue &Result, const InitListExpr *ILE,
9535                                      QualType AllocType);
9536 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9537                                           APValue &Result,
9538                                           const CXXConstructExpr *CCE,
9539                                           QualType AllocType);
9540 
9541 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9542   if (!Info.getLangOpts().CPlusPlus20)
9543     Info.CCEDiag(E, diag::note_constexpr_new);
9544 
9545   // We cannot speculatively evaluate a delete expression.
9546   if (Info.SpeculativeEvaluationDepth)
9547     return false;
9548 
9549   FunctionDecl *OperatorNew = E->getOperatorNew();
9550 
9551   bool IsNothrow = false;
9552   bool IsPlacement = false;
9553   if (OperatorNew->isReservedGlobalPlacementOperator() &&
9554       Info.CurrentCall->isStdFunction() && !E->isArray()) {
9555     // FIXME Support array placement new.
9556     assert(E->getNumPlacementArgs() == 1);
9557     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9558       return false;
9559     if (Result.Designator.Invalid)
9560       return false;
9561     IsPlacement = true;
9562   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9563     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9564         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9565     return false;
9566   } else if (E->getNumPlacementArgs()) {
9567     // The only new-placement list we support is of the form (std::nothrow).
9568     //
9569     // FIXME: There is no restriction on this, but it's not clear that any
9570     // other form makes any sense. We get here for cases such as:
9571     //
9572     //   new (std::align_val_t{N}) X(int)
9573     //
9574     // (which should presumably be valid only if N is a multiple of
9575     // alignof(int), and in any case can't be deallocated unless N is
9576     // alignof(X) and X has new-extended alignment).
9577     if (E->getNumPlacementArgs() != 1 ||
9578         !E->getPlacementArg(0)->getType()->isNothrowT())
9579       return Error(E, diag::note_constexpr_new_placement);
9580 
9581     LValue Nothrow;
9582     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9583       return false;
9584     IsNothrow = true;
9585   }
9586 
9587   const Expr *Init = E->getInitializer();
9588   const InitListExpr *ResizedArrayILE = nullptr;
9589   const CXXConstructExpr *ResizedArrayCCE = nullptr;
9590   bool ValueInit = false;
9591 
9592   QualType AllocType = E->getAllocatedType();
9593   if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
9594     const Expr *Stripped = *ArraySize;
9595     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9596          Stripped = ICE->getSubExpr())
9597       if (ICE->getCastKind() != CK_NoOp &&
9598           ICE->getCastKind() != CK_IntegralCast)
9599         break;
9600 
9601     llvm::APSInt ArrayBound;
9602     if (!EvaluateInteger(Stripped, ArrayBound, Info))
9603       return false;
9604 
9605     // C++ [expr.new]p9:
9606     //   The expression is erroneous if:
9607     //   -- [...] its value before converting to size_t [or] applying the
9608     //      second standard conversion sequence is less than zero
9609     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9610       if (IsNothrow)
9611         return ZeroInitialization(E);
9612 
9613       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9614           << ArrayBound << (*ArraySize)->getSourceRange();
9615       return false;
9616     }
9617 
9618     //   -- its value is such that the size of the allocated object would
9619     //      exceed the implementation-defined limit
9620     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9621                                                 ArrayBound) >
9622         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9623       if (IsNothrow)
9624         return ZeroInitialization(E);
9625 
9626       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9627         << ArrayBound << (*ArraySize)->getSourceRange();
9628       return false;
9629     }
9630 
9631     //   -- the new-initializer is a braced-init-list and the number of
9632     //      array elements for which initializers are provided [...]
9633     //      exceeds the number of elements to initialize
9634     if (!Init) {
9635       // No initialization is performed.
9636     } else if (isa<CXXScalarValueInitExpr>(Init) ||
9637                isa<ImplicitValueInitExpr>(Init)) {
9638       ValueInit = true;
9639     } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9640       ResizedArrayCCE = CCE;
9641     } else {
9642       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9643       assert(CAT && "unexpected type for array initializer");
9644 
9645       unsigned Bits =
9646           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9647       llvm::APInt InitBound = CAT->getSize().zext(Bits);
9648       llvm::APInt AllocBound = ArrayBound.zext(Bits);
9649       if (InitBound.ugt(AllocBound)) {
9650         if (IsNothrow)
9651           return ZeroInitialization(E);
9652 
9653         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9654             << toString(AllocBound, 10, /*Signed=*/false)
9655             << toString(InitBound, 10, /*Signed=*/false)
9656             << (*ArraySize)->getSourceRange();
9657         return false;
9658       }
9659 
9660       // If the sizes differ, we must have an initializer list, and we need
9661       // special handling for this case when we initialize.
9662       if (InitBound != AllocBound)
9663         ResizedArrayILE = cast<InitListExpr>(Init);
9664     }
9665 
9666     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9667                                               ArrayType::Normal, 0);
9668   } else {
9669     assert(!AllocType->isArrayType() &&
9670            "array allocation with non-array new");
9671   }
9672 
9673   APValue *Val;
9674   if (IsPlacement) {
9675     AccessKinds AK = AK_Construct;
9676     struct FindObjectHandler {
9677       EvalInfo &Info;
9678       const Expr *E;
9679       QualType AllocType;
9680       const AccessKinds AccessKind;
9681       APValue *Value;
9682 
9683       typedef bool result_type;
9684       bool failed() { return false; }
9685       bool found(APValue &Subobj, QualType SubobjType) {
9686         // FIXME: Reject the cases where [basic.life]p8 would not permit the
9687         // old name of the object to be used to name the new object.
9688         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9689           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9690             SubobjType << AllocType;
9691           return false;
9692         }
9693         Value = &Subobj;
9694         return true;
9695       }
9696       bool found(APSInt &Value, QualType SubobjType) {
9697         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9698         return false;
9699       }
9700       bool found(APFloat &Value, QualType SubobjType) {
9701         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9702         return false;
9703       }
9704     } Handler = {Info, E, AllocType, AK, nullptr};
9705 
9706     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9707     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9708       return false;
9709 
9710     Val = Handler.Value;
9711 
9712     // [basic.life]p1:
9713     //   The lifetime of an object o of type T ends when [...] the storage
9714     //   which the object occupies is [...] reused by an object that is not
9715     //   nested within o (6.6.2).
9716     *Val = APValue();
9717   } else {
9718     // Perform the allocation and obtain a pointer to the resulting object.
9719     Val = Info.createHeapAlloc(E, AllocType, Result);
9720     if (!Val)
9721       return false;
9722   }
9723 
9724   if (ValueInit) {
9725     ImplicitValueInitExpr VIE(AllocType);
9726     if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9727       return false;
9728   } else if (ResizedArrayILE) {
9729     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9730                                   AllocType))
9731       return false;
9732   } else if (ResizedArrayCCE) {
9733     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9734                                        AllocType))
9735       return false;
9736   } else if (Init) {
9737     if (!EvaluateInPlace(*Val, Info, Result, Init))
9738       return false;
9739   } else if (!getDefaultInitValue(AllocType, *Val)) {
9740     return false;
9741   }
9742 
9743   // Array new returns a pointer to the first element, not a pointer to the
9744   // array.
9745   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9746     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9747 
9748   return true;
9749 }
9750 //===----------------------------------------------------------------------===//
9751 // Member Pointer Evaluation
9752 //===----------------------------------------------------------------------===//
9753 
9754 namespace {
9755 class MemberPointerExprEvaluator
9756   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9757   MemberPtr &Result;
9758 
9759   bool Success(const ValueDecl *D) {
9760     Result = MemberPtr(D);
9761     return true;
9762   }
9763 public:
9764 
9765   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9766     : ExprEvaluatorBaseTy(Info), Result(Result) {}
9767 
9768   bool Success(const APValue &V, const Expr *E) {
9769     Result.setFrom(V);
9770     return true;
9771   }
9772   bool ZeroInitialization(const Expr *E) {
9773     return Success((const ValueDecl*)nullptr);
9774   }
9775 
9776   bool VisitCastExpr(const CastExpr *E);
9777   bool VisitUnaryAddrOf(const UnaryOperator *E);
9778 };
9779 } // end anonymous namespace
9780 
9781 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9782                                   EvalInfo &Info) {
9783   assert(!E->isValueDependent());
9784   assert(E->isPRValue() && E->getType()->isMemberPointerType());
9785   return MemberPointerExprEvaluator(Info, Result).Visit(E);
9786 }
9787 
9788 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9789   switch (E->getCastKind()) {
9790   default:
9791     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9792 
9793   case CK_NullToMemberPointer:
9794     VisitIgnoredValue(E->getSubExpr());
9795     return ZeroInitialization(E);
9796 
9797   case CK_BaseToDerivedMemberPointer: {
9798     if (!Visit(E->getSubExpr()))
9799       return false;
9800     if (E->path_empty())
9801       return true;
9802     // Base-to-derived member pointer casts store the path in derived-to-base
9803     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9804     // the wrong end of the derived->base arc, so stagger the path by one class.
9805     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9806     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9807          PathI != PathE; ++PathI) {
9808       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9809       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9810       if (!Result.castToDerived(Derived))
9811         return Error(E);
9812     }
9813     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9814     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9815       return Error(E);
9816     return true;
9817   }
9818 
9819   case CK_DerivedToBaseMemberPointer:
9820     if (!Visit(E->getSubExpr()))
9821       return false;
9822     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9823          PathE = E->path_end(); PathI != PathE; ++PathI) {
9824       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9825       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9826       if (!Result.castToBase(Base))
9827         return Error(E);
9828     }
9829     return true;
9830   }
9831 }
9832 
9833 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9834   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9835   // member can be formed.
9836   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9837 }
9838 
9839 //===----------------------------------------------------------------------===//
9840 // Record Evaluation
9841 //===----------------------------------------------------------------------===//
9842 
9843 namespace {
9844   class RecordExprEvaluator
9845   : public ExprEvaluatorBase<RecordExprEvaluator> {
9846     const LValue &This;
9847     APValue &Result;
9848   public:
9849 
9850     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9851       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9852 
9853     bool Success(const APValue &V, const Expr *E) {
9854       Result = V;
9855       return true;
9856     }
9857     bool ZeroInitialization(const Expr *E) {
9858       return ZeroInitialization(E, E->getType());
9859     }
9860     bool ZeroInitialization(const Expr *E, QualType T);
9861 
9862     bool VisitCallExpr(const CallExpr *E) {
9863       return handleCallExpr(E, Result, &This);
9864     }
9865     bool VisitCastExpr(const CastExpr *E);
9866     bool VisitInitListExpr(const InitListExpr *E);
9867     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9868       return VisitCXXConstructExpr(E, E->getType());
9869     }
9870     bool VisitLambdaExpr(const LambdaExpr *E);
9871     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9872     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9873     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9874     bool VisitBinCmp(const BinaryOperator *E);
9875     bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
9876     bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
9877                                          ArrayRef<Expr *> Args);
9878   };
9879 }
9880 
9881 /// Perform zero-initialization on an object of non-union class type.
9882 /// C++11 [dcl.init]p5:
9883 ///  To zero-initialize an object or reference of type T means:
9884 ///    [...]
9885 ///    -- if T is a (possibly cv-qualified) non-union class type,
9886 ///       each non-static data member and each base-class subobject is
9887 ///       zero-initialized
9888 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9889                                           const RecordDecl *RD,
9890                                           const LValue &This, APValue &Result) {
9891   assert(!RD->isUnion() && "Expected non-union class type");
9892   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9893   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9894                    std::distance(RD->field_begin(), RD->field_end()));
9895 
9896   if (RD->isInvalidDecl()) return false;
9897   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9898 
9899   if (CD) {
9900     unsigned Index = 0;
9901     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9902            End = CD->bases_end(); I != End; ++I, ++Index) {
9903       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9904       LValue Subobject = This;
9905       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9906         return false;
9907       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9908                                          Result.getStructBase(Index)))
9909         return false;
9910     }
9911   }
9912 
9913   for (const auto *I : RD->fields()) {
9914     // -- if T is a reference type, no initialization is performed.
9915     if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9916       continue;
9917 
9918     LValue Subobject = This;
9919     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9920       return false;
9921 
9922     ImplicitValueInitExpr VIE(I->getType());
9923     if (!EvaluateInPlace(
9924           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9925       return false;
9926   }
9927 
9928   return true;
9929 }
9930 
9931 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9932   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9933   if (RD->isInvalidDecl()) return false;
9934   if (RD->isUnion()) {
9935     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9936     // object's first non-static named data member is zero-initialized
9937     RecordDecl::field_iterator I = RD->field_begin();
9938     while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9939       ++I;
9940     if (I == RD->field_end()) {
9941       Result = APValue((const FieldDecl*)nullptr);
9942       return true;
9943     }
9944 
9945     LValue Subobject = This;
9946     if (!HandleLValueMember(Info, E, Subobject, *I))
9947       return false;
9948     Result = APValue(*I);
9949     ImplicitValueInitExpr VIE(I->getType());
9950     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9951   }
9952 
9953   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9954     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9955     return false;
9956   }
9957 
9958   return HandleClassZeroInitialization(Info, E, RD, This, Result);
9959 }
9960 
9961 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9962   switch (E->getCastKind()) {
9963   default:
9964     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9965 
9966   case CK_ConstructorConversion:
9967     return Visit(E->getSubExpr());
9968 
9969   case CK_DerivedToBase:
9970   case CK_UncheckedDerivedToBase: {
9971     APValue DerivedObject;
9972     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9973       return false;
9974     if (!DerivedObject.isStruct())
9975       return Error(E->getSubExpr());
9976 
9977     // Derived-to-base rvalue conversion: just slice off the derived part.
9978     APValue *Value = &DerivedObject;
9979     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9980     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9981          PathE = E->path_end(); PathI != PathE; ++PathI) {
9982       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9983       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9984       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9985       RD = Base;
9986     }
9987     Result = *Value;
9988     return true;
9989   }
9990   }
9991 }
9992 
9993 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9994   if (E->isTransparent())
9995     return Visit(E->getInit(0));
9996   return VisitCXXParenListOrInitListExpr(E, E->inits());
9997 }
9998 
9999 bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
10000     const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
10001   const RecordDecl *RD =
10002       ExprToVisit->getType()->castAs<RecordType>()->getDecl();
10003   if (RD->isInvalidDecl()) return false;
10004   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
10005   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
10006 
10007   EvalInfo::EvaluatingConstructorRAII EvalObj(
10008       Info,
10009       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
10010       CXXRD && CXXRD->getNumBases());
10011 
10012   if (RD->isUnion()) {
10013     const FieldDecl *Field;
10014     if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) {
10015       Field = ILE->getInitializedFieldInUnion();
10016     } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) {
10017       Field = PLIE->getInitializedFieldInUnion();
10018     } else {
10019       llvm_unreachable(
10020           "Expression is neither an init list nor a C++ paren list");
10021     }
10022 
10023     Result = APValue(Field);
10024     if (!Field)
10025       return true;
10026 
10027     // If the initializer list for a union does not contain any elements, the
10028     // first element of the union is value-initialized.
10029     // FIXME: The element should be initialized from an initializer list.
10030     //        Is this difference ever observable for initializer lists which
10031     //        we don't build?
10032     ImplicitValueInitExpr VIE(Field->getType());
10033     const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
10034 
10035     LValue Subobject = This;
10036     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
10037       return false;
10038 
10039     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10040     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10041                                   isa<CXXDefaultInitExpr>(InitExpr));
10042 
10043     if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
10044       if (Field->isBitField())
10045         return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
10046                                      Field);
10047       return true;
10048     }
10049 
10050     return false;
10051   }
10052 
10053   if (!Result.hasValue())
10054     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10055                      std::distance(RD->field_begin(), RD->field_end()));
10056   unsigned ElementNo = 0;
10057   bool Success = true;
10058 
10059   // Initialize base classes.
10060   if (CXXRD && CXXRD->getNumBases()) {
10061     for (const auto &Base : CXXRD->bases()) {
10062       assert(ElementNo < Args.size() && "missing init for base class");
10063       const Expr *Init = Args[ElementNo];
10064 
10065       LValue Subobject = This;
10066       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
10067         return false;
10068 
10069       APValue &FieldVal = Result.getStructBase(ElementNo);
10070       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
10071         if (!Info.noteFailure())
10072           return false;
10073         Success = false;
10074       }
10075       ++ElementNo;
10076     }
10077 
10078     EvalObj.finishedConstructingBases();
10079   }
10080 
10081   // Initialize members.
10082   for (const auto *Field : RD->fields()) {
10083     // Anonymous bit-fields are not considered members of the class for
10084     // purposes of aggregate initialization.
10085     if (Field->isUnnamedBitfield())
10086       continue;
10087 
10088     LValue Subobject = This;
10089 
10090     bool HaveInit = ElementNo < Args.size();
10091 
10092     // FIXME: Diagnostics here should point to the end of the initializer
10093     // list, not the start.
10094     if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit,
10095                             Subobject, Field, &Layout))
10096       return false;
10097 
10098     // Perform an implicit value-initialization for members beyond the end of
10099     // the initializer list.
10100     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10101     const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10102 
10103     if (Field->getType()->isIncompleteArrayType()) {
10104       if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10105         if (!CAT->getSize().isZero()) {
10106           // Bail out for now. This might sort of "work", but the rest of the
10107           // code isn't really prepared to handle it.
10108           Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10109           return false;
10110         }
10111       }
10112     }
10113 
10114     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10115     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10116                                   isa<CXXDefaultInitExpr>(Init));
10117 
10118     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10119     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
10120         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
10121                                                        FieldVal, Field))) {
10122       if (!Info.noteFailure())
10123         return false;
10124       Success = false;
10125     }
10126   }
10127 
10128   EvalObj.finishedConstructingFields();
10129 
10130   return Success;
10131 }
10132 
10133 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10134                                                 QualType T) {
10135   // Note that E's type is not necessarily the type of our class here; we might
10136   // be initializing an array element instead.
10137   const CXXConstructorDecl *FD = E->getConstructor();
10138   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10139 
10140   bool ZeroInit = E->requiresZeroInitialization();
10141   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10142     // If we've already performed zero-initialization, we're already done.
10143     if (Result.hasValue())
10144       return true;
10145 
10146     if (ZeroInit)
10147       return ZeroInitialization(E, T);
10148 
10149     return getDefaultInitValue(T, Result);
10150   }
10151 
10152   const FunctionDecl *Definition = nullptr;
10153   auto Body = FD->getBody(Definition);
10154 
10155   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10156     return false;
10157 
10158   // Avoid materializing a temporary for an elidable copy/move constructor.
10159   if (E->isElidable() && !ZeroInit) {
10160     // FIXME: This only handles the simplest case, where the source object
10161     //        is passed directly as the first argument to the constructor.
10162     //        This should also handle stepping though implicit casts and
10163     //        and conversion sequences which involve two steps, with a
10164     //        conversion operator followed by a converting constructor.
10165     const Expr *SrcObj = E->getArg(0);
10166     assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10167     assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10168     if (const MaterializeTemporaryExpr *ME =
10169             dyn_cast<MaterializeTemporaryExpr>(SrcObj))
10170       return Visit(ME->getSubExpr());
10171   }
10172 
10173   if (ZeroInit && !ZeroInitialization(E, T))
10174     return false;
10175 
10176   auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10177   return HandleConstructorCall(E, This, Args,
10178                                cast<CXXConstructorDecl>(Definition), Info,
10179                                Result);
10180 }
10181 
10182 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10183     const CXXInheritedCtorInitExpr *E) {
10184   if (!Info.CurrentCall) {
10185     assert(Info.checkingPotentialConstantExpression());
10186     return false;
10187   }
10188 
10189   const CXXConstructorDecl *FD = E->getConstructor();
10190   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10191     return false;
10192 
10193   const FunctionDecl *Definition = nullptr;
10194   auto Body = FD->getBody(Definition);
10195 
10196   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10197     return false;
10198 
10199   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10200                                cast<CXXConstructorDecl>(Definition), Info,
10201                                Result);
10202 }
10203 
10204 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10205     const CXXStdInitializerListExpr *E) {
10206   const ConstantArrayType *ArrayType =
10207       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10208 
10209   LValue Array;
10210   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10211     return false;
10212 
10213   assert(ArrayType && "unexpected type for array initializer");
10214 
10215   // Get a pointer to the first element of the array.
10216   Array.addArray(Info, E, ArrayType);
10217 
10218   auto InvalidType = [&] {
10219     Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10220       << E->getType();
10221     return false;
10222   };
10223 
10224   // FIXME: Perform the checks on the field types in SemaInit.
10225   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10226   RecordDecl::field_iterator Field = Record->field_begin();
10227   if (Field == Record->field_end())
10228     return InvalidType();
10229 
10230   // Start pointer.
10231   if (!Field->getType()->isPointerType() ||
10232       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10233                             ArrayType->getElementType()))
10234     return InvalidType();
10235 
10236   // FIXME: What if the initializer_list type has base classes, etc?
10237   Result = APValue(APValue::UninitStruct(), 0, 2);
10238   Array.moveInto(Result.getStructField(0));
10239 
10240   if (++Field == Record->field_end())
10241     return InvalidType();
10242 
10243   if (Field->getType()->isPointerType() &&
10244       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10245                            ArrayType->getElementType())) {
10246     // End pointer.
10247     if (!HandleLValueArrayAdjustment(Info, E, Array,
10248                                      ArrayType->getElementType(),
10249                                      ArrayType->getSize().getZExtValue()))
10250       return false;
10251     Array.moveInto(Result.getStructField(1));
10252   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10253     // Length.
10254     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10255   else
10256     return InvalidType();
10257 
10258   if (++Field != Record->field_end())
10259     return InvalidType();
10260 
10261   return true;
10262 }
10263 
10264 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10265   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10266   if (ClosureClass->isInvalidDecl())
10267     return false;
10268 
10269   const size_t NumFields =
10270       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10271 
10272   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10273                                             E->capture_init_end()) &&
10274          "The number of lambda capture initializers should equal the number of "
10275          "fields within the closure type");
10276 
10277   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10278   // Iterate through all the lambda's closure object's fields and initialize
10279   // them.
10280   auto *CaptureInitIt = E->capture_init_begin();
10281   bool Success = true;
10282   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10283   for (const auto *Field : ClosureClass->fields()) {
10284     assert(CaptureInitIt != E->capture_init_end());
10285     // Get the initializer for this field
10286     Expr *const CurFieldInit = *CaptureInitIt++;
10287 
10288     // If there is no initializer, either this is a VLA or an error has
10289     // occurred.
10290     if (!CurFieldInit)
10291       return Error(E);
10292 
10293     LValue Subobject = This;
10294 
10295     if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10296       return false;
10297 
10298     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10299     if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10300       if (!Info.keepEvaluatingAfterFailure())
10301         return false;
10302       Success = false;
10303     }
10304   }
10305   return Success;
10306 }
10307 
10308 static bool EvaluateRecord(const Expr *E, const LValue &This,
10309                            APValue &Result, EvalInfo &Info) {
10310   assert(!E->isValueDependent());
10311   assert(E->isPRValue() && E->getType()->isRecordType() &&
10312          "can't evaluate expression as a record rvalue");
10313   return RecordExprEvaluator(Info, This, Result).Visit(E);
10314 }
10315 
10316 //===----------------------------------------------------------------------===//
10317 // Temporary Evaluation
10318 //
10319 // Temporaries are represented in the AST as rvalues, but generally behave like
10320 // lvalues. The full-object of which the temporary is a subobject is implicitly
10321 // materialized so that a reference can bind to it.
10322 //===----------------------------------------------------------------------===//
10323 namespace {
10324 class TemporaryExprEvaluator
10325   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10326 public:
10327   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10328     LValueExprEvaluatorBaseTy(Info, Result, false) {}
10329 
10330   /// Visit an expression which constructs the value of this temporary.
10331   bool VisitConstructExpr(const Expr *E) {
10332     APValue &Value = Info.CurrentCall->createTemporary(
10333         E, E->getType(), ScopeKind::FullExpression, Result);
10334     return EvaluateInPlace(Value, Info, Result, E);
10335   }
10336 
10337   bool VisitCastExpr(const CastExpr *E) {
10338     switch (E->getCastKind()) {
10339     default:
10340       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10341 
10342     case CK_ConstructorConversion:
10343       return VisitConstructExpr(E->getSubExpr());
10344     }
10345   }
10346   bool VisitInitListExpr(const InitListExpr *E) {
10347     return VisitConstructExpr(E);
10348   }
10349   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10350     return VisitConstructExpr(E);
10351   }
10352   bool VisitCallExpr(const CallExpr *E) {
10353     return VisitConstructExpr(E);
10354   }
10355   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10356     return VisitConstructExpr(E);
10357   }
10358   bool VisitLambdaExpr(const LambdaExpr *E) {
10359     return VisitConstructExpr(E);
10360   }
10361 };
10362 } // end anonymous namespace
10363 
10364 /// Evaluate an expression of record type as a temporary.
10365 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10366   assert(!E->isValueDependent());
10367   assert(E->isPRValue() && E->getType()->isRecordType());
10368   return TemporaryExprEvaluator(Info, Result).Visit(E);
10369 }
10370 
10371 //===----------------------------------------------------------------------===//
10372 // Vector Evaluation
10373 //===----------------------------------------------------------------------===//
10374 
10375 namespace {
10376   class VectorExprEvaluator
10377   : public ExprEvaluatorBase<VectorExprEvaluator> {
10378     APValue &Result;
10379   public:
10380 
10381     VectorExprEvaluator(EvalInfo &info, APValue &Result)
10382       : ExprEvaluatorBaseTy(info), Result(Result) {}
10383 
10384     bool Success(ArrayRef<APValue> V, const Expr *E) {
10385       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10386       // FIXME: remove this APValue copy.
10387       Result = APValue(V.data(), V.size());
10388       return true;
10389     }
10390     bool Success(const APValue &V, const Expr *E) {
10391       assert(V.isVector());
10392       Result = V;
10393       return true;
10394     }
10395     bool ZeroInitialization(const Expr *E);
10396 
10397     bool VisitUnaryReal(const UnaryOperator *E)
10398       { return Visit(E->getSubExpr()); }
10399     bool VisitCastExpr(const CastExpr* E);
10400     bool VisitInitListExpr(const InitListExpr *E);
10401     bool VisitUnaryImag(const UnaryOperator *E);
10402     bool VisitBinaryOperator(const BinaryOperator *E);
10403     bool VisitUnaryOperator(const UnaryOperator *E);
10404     // FIXME: Missing: conditional operator (for GNU
10405     //                 conditional select), shufflevector, ExtVectorElementExpr
10406   };
10407 } // end anonymous namespace
10408 
10409 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10410   assert(E->isPRValue() && E->getType()->isVectorType() &&
10411          "not a vector prvalue");
10412   return VectorExprEvaluator(Info, Result).Visit(E);
10413 }
10414 
10415 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10416   const VectorType *VTy = E->getType()->castAs<VectorType>();
10417   unsigned NElts = VTy->getNumElements();
10418 
10419   const Expr *SE = E->getSubExpr();
10420   QualType SETy = SE->getType();
10421 
10422   switch (E->getCastKind()) {
10423   case CK_VectorSplat: {
10424     APValue Val = APValue();
10425     if (SETy->isIntegerType()) {
10426       APSInt IntResult;
10427       if (!EvaluateInteger(SE, IntResult, Info))
10428         return false;
10429       Val = APValue(std::move(IntResult));
10430     } else if (SETy->isRealFloatingType()) {
10431       APFloat FloatResult(0.0);
10432       if (!EvaluateFloat(SE, FloatResult, Info))
10433         return false;
10434       Val = APValue(std::move(FloatResult));
10435     } else {
10436       return Error(E);
10437     }
10438 
10439     // Splat and create vector APValue.
10440     SmallVector<APValue, 4> Elts(NElts, Val);
10441     return Success(Elts, E);
10442   }
10443   case CK_BitCast: {
10444     // Evaluate the operand into an APInt we can extract from.
10445     llvm::APInt SValInt;
10446     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10447       return false;
10448     // Extract the elements
10449     QualType EltTy = VTy->getElementType();
10450     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10451     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10452     SmallVector<APValue, 4> Elts;
10453     if (EltTy->isRealFloatingType()) {
10454       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10455       unsigned FloatEltSize = EltSize;
10456       if (&Sem == &APFloat::x87DoubleExtended())
10457         FloatEltSize = 80;
10458       for (unsigned i = 0; i < NElts; i++) {
10459         llvm::APInt Elt;
10460         if (BigEndian)
10461           Elt = SValInt.rotl(i * EltSize + FloatEltSize).trunc(FloatEltSize);
10462         else
10463           Elt = SValInt.rotr(i * EltSize).trunc(FloatEltSize);
10464         Elts.push_back(APValue(APFloat(Sem, Elt)));
10465       }
10466     } else if (EltTy->isIntegerType()) {
10467       for (unsigned i = 0; i < NElts; i++) {
10468         llvm::APInt Elt;
10469         if (BigEndian)
10470           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10471         else
10472           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10473         Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10474       }
10475     } else {
10476       return Error(E);
10477     }
10478     return Success(Elts, E);
10479   }
10480   default:
10481     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10482   }
10483 }
10484 
10485 bool
10486 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10487   const VectorType *VT = E->getType()->castAs<VectorType>();
10488   unsigned NumInits = E->getNumInits();
10489   unsigned NumElements = VT->getNumElements();
10490 
10491   QualType EltTy = VT->getElementType();
10492   SmallVector<APValue, 4> Elements;
10493 
10494   // The number of initializers can be less than the number of
10495   // vector elements. For OpenCL, this can be due to nested vector
10496   // initialization. For GCC compatibility, missing trailing elements
10497   // should be initialized with zeroes.
10498   unsigned CountInits = 0, CountElts = 0;
10499   while (CountElts < NumElements) {
10500     // Handle nested vector initialization.
10501     if (CountInits < NumInits
10502         && E->getInit(CountInits)->getType()->isVectorType()) {
10503       APValue v;
10504       if (!EvaluateVector(E->getInit(CountInits), v, Info))
10505         return Error(E);
10506       unsigned vlen = v.getVectorLength();
10507       for (unsigned j = 0; j < vlen; j++)
10508         Elements.push_back(v.getVectorElt(j));
10509       CountElts += vlen;
10510     } else if (EltTy->isIntegerType()) {
10511       llvm::APSInt sInt(32);
10512       if (CountInits < NumInits) {
10513         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10514           return false;
10515       } else // trailing integer zero.
10516         sInt = Info.Ctx.MakeIntValue(0, EltTy);
10517       Elements.push_back(APValue(sInt));
10518       CountElts++;
10519     } else {
10520       llvm::APFloat f(0.0);
10521       if (CountInits < NumInits) {
10522         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10523           return false;
10524       } else // trailing float zero.
10525         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10526       Elements.push_back(APValue(f));
10527       CountElts++;
10528     }
10529     CountInits++;
10530   }
10531   return Success(Elements, E);
10532 }
10533 
10534 bool
10535 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10536   const auto *VT = E->getType()->castAs<VectorType>();
10537   QualType EltTy = VT->getElementType();
10538   APValue ZeroElement;
10539   if (EltTy->isIntegerType())
10540     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10541   else
10542     ZeroElement =
10543         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10544 
10545   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10546   return Success(Elements, E);
10547 }
10548 
10549 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10550   VisitIgnoredValue(E->getSubExpr());
10551   return ZeroInitialization(E);
10552 }
10553 
10554 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10555   BinaryOperatorKind Op = E->getOpcode();
10556   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10557          "Operation not supported on vector types");
10558 
10559   if (Op == BO_Comma)
10560     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10561 
10562   Expr *LHS = E->getLHS();
10563   Expr *RHS = E->getRHS();
10564 
10565   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10566          "Must both be vector types");
10567   // Checking JUST the types are the same would be fine, except shifts don't
10568   // need to have their types be the same (since you always shift by an int).
10569   assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10570              E->getType()->castAs<VectorType>()->getNumElements() &&
10571          RHS->getType()->castAs<VectorType>()->getNumElements() ==
10572              E->getType()->castAs<VectorType>()->getNumElements() &&
10573          "All operands must be the same size.");
10574 
10575   APValue LHSValue;
10576   APValue RHSValue;
10577   bool LHSOK = Evaluate(LHSValue, Info, LHS);
10578   if (!LHSOK && !Info.noteFailure())
10579     return false;
10580   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10581     return false;
10582 
10583   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10584     return false;
10585 
10586   return Success(LHSValue, E);
10587 }
10588 
10589 static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10590                                                         QualType ResultTy,
10591                                                         UnaryOperatorKind Op,
10592                                                         APValue Elt) {
10593   switch (Op) {
10594   case UO_Plus:
10595     // Nothing to do here.
10596     return Elt;
10597   case UO_Minus:
10598     if (Elt.getKind() == APValue::Int) {
10599       Elt.getInt().negate();
10600     } else {
10601       assert(Elt.getKind() == APValue::Float &&
10602              "Vector can only be int or float type");
10603       Elt.getFloat().changeSign();
10604     }
10605     return Elt;
10606   case UO_Not:
10607     // This is only valid for integral types anyway, so we don't have to handle
10608     // float here.
10609     assert(Elt.getKind() == APValue::Int &&
10610            "Vector operator ~ can only be int");
10611     Elt.getInt().flipAllBits();
10612     return Elt;
10613   case UO_LNot: {
10614     if (Elt.getKind() == APValue::Int) {
10615       Elt.getInt() = !Elt.getInt();
10616       // operator ! on vectors returns -1 for 'truth', so negate it.
10617       Elt.getInt().negate();
10618       return Elt;
10619     }
10620     assert(Elt.getKind() == APValue::Float &&
10621            "Vector can only be int or float type");
10622     // Float types result in an int of the same size, but -1 for true, or 0 for
10623     // false.
10624     APSInt EltResult{Ctx.getIntWidth(ResultTy),
10625                      ResultTy->isUnsignedIntegerType()};
10626     if (Elt.getFloat().isZero())
10627       EltResult.setAllBits();
10628     else
10629       EltResult.clearAllBits();
10630 
10631     return APValue{EltResult};
10632   }
10633   default:
10634     // FIXME: Implement the rest of the unary operators.
10635     return std::nullopt;
10636   }
10637 }
10638 
10639 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10640   Expr *SubExpr = E->getSubExpr();
10641   const auto *VD = SubExpr->getType()->castAs<VectorType>();
10642   // This result element type differs in the case of negating a floating point
10643   // vector, since the result type is the a vector of the equivilant sized
10644   // integer.
10645   const QualType ResultEltTy = VD->getElementType();
10646   UnaryOperatorKind Op = E->getOpcode();
10647 
10648   APValue SubExprValue;
10649   if (!Evaluate(SubExprValue, Info, SubExpr))
10650     return false;
10651 
10652   // FIXME: This vector evaluator someday needs to be changed to be LValue
10653   // aware/keep LValue information around, rather than dealing with just vector
10654   // types directly. Until then, we cannot handle cases where the operand to
10655   // these unary operators is an LValue. The only case I've been able to see
10656   // cause this is operator++ assigning to a member expression (only valid in
10657   // altivec compilations) in C mode, so this shouldn't limit us too much.
10658   if (SubExprValue.isLValue())
10659     return false;
10660 
10661   assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10662          "Vector length doesn't match type?");
10663 
10664   SmallVector<APValue, 4> ResultElements;
10665   for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10666     std::optional<APValue> Elt = handleVectorUnaryOperator(
10667         Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10668     if (!Elt)
10669       return false;
10670     ResultElements.push_back(*Elt);
10671   }
10672   return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10673 }
10674 
10675 //===----------------------------------------------------------------------===//
10676 // Array Evaluation
10677 //===----------------------------------------------------------------------===//
10678 
10679 namespace {
10680   class ArrayExprEvaluator
10681   : public ExprEvaluatorBase<ArrayExprEvaluator> {
10682     const LValue &This;
10683     APValue &Result;
10684   public:
10685 
10686     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10687       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10688 
10689     bool Success(const APValue &V, const Expr *E) {
10690       assert(V.isArray() && "expected array");
10691       Result = V;
10692       return true;
10693     }
10694 
10695     bool ZeroInitialization(const Expr *E) {
10696       const ConstantArrayType *CAT =
10697           Info.Ctx.getAsConstantArrayType(E->getType());
10698       if (!CAT) {
10699         if (E->getType()->isIncompleteArrayType()) {
10700           // We can be asked to zero-initialize a flexible array member; this
10701           // is represented as an ImplicitValueInitExpr of incomplete array
10702           // type. In this case, the array has zero elements.
10703           Result = APValue(APValue::UninitArray(), 0, 0);
10704           return true;
10705         }
10706         // FIXME: We could handle VLAs here.
10707         return Error(E);
10708       }
10709 
10710       Result = APValue(APValue::UninitArray(), 0,
10711                        CAT->getSize().getZExtValue());
10712       if (!Result.hasArrayFiller())
10713         return true;
10714 
10715       // Zero-initialize all elements.
10716       LValue Subobject = This;
10717       Subobject.addArray(Info, E, CAT);
10718       ImplicitValueInitExpr VIE(CAT->getElementType());
10719       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10720     }
10721 
10722     bool VisitCallExpr(const CallExpr *E) {
10723       return handleCallExpr(E, Result, &This);
10724     }
10725     bool VisitInitListExpr(const InitListExpr *E,
10726                            QualType AllocType = QualType());
10727     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10728     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10729     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10730                                const LValue &Subobject,
10731                                APValue *Value, QualType Type);
10732     bool VisitStringLiteral(const StringLiteral *E,
10733                             QualType AllocType = QualType()) {
10734       expandStringLiteral(Info, E, Result, AllocType);
10735       return true;
10736     }
10737     bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10738     bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10739                                          ArrayRef<Expr *> Args,
10740                                          const Expr *ArrayFiller,
10741                                          QualType AllocType = QualType());
10742   };
10743 } // end anonymous namespace
10744 
10745 static bool EvaluateArray(const Expr *E, const LValue &This,
10746                           APValue &Result, EvalInfo &Info) {
10747   assert(!E->isValueDependent());
10748   assert(E->isPRValue() && E->getType()->isArrayType() &&
10749          "not an array prvalue");
10750   return ArrayExprEvaluator(Info, This, Result).Visit(E);
10751 }
10752 
10753 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10754                                      APValue &Result, const InitListExpr *ILE,
10755                                      QualType AllocType) {
10756   assert(!ILE->isValueDependent());
10757   assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10758          "not an array prvalue");
10759   return ArrayExprEvaluator(Info, This, Result)
10760       .VisitInitListExpr(ILE, AllocType);
10761 }
10762 
10763 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10764                                           APValue &Result,
10765                                           const CXXConstructExpr *CCE,
10766                                           QualType AllocType) {
10767   assert(!CCE->isValueDependent());
10768   assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
10769          "not an array prvalue");
10770   return ArrayExprEvaluator(Info, This, Result)
10771       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10772 }
10773 
10774 // Return true iff the given array filler may depend on the element index.
10775 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10776   // For now, just allow non-class value-initialization and initialization
10777   // lists comprised of them.
10778   if (isa<ImplicitValueInitExpr>(FillerExpr))
10779     return false;
10780   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10781     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10782       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10783         return true;
10784     }
10785 
10786     if (ILE->hasArrayFiller() &&
10787         MaybeElementDependentArrayFiller(ILE->getArrayFiller()))
10788       return true;
10789 
10790     return false;
10791   }
10792   return true;
10793 }
10794 
10795 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10796                                            QualType AllocType) {
10797   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10798       AllocType.isNull() ? E->getType() : AllocType);
10799   if (!CAT)
10800     return Error(E);
10801 
10802   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10803   // an appropriately-typed string literal enclosed in braces.
10804   if (E->isStringLiteralInit()) {
10805     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10806     // FIXME: Support ObjCEncodeExpr here once we support it in
10807     // ArrayExprEvaluator generally.
10808     if (!SL)
10809       return Error(E);
10810     return VisitStringLiteral(SL, AllocType);
10811   }
10812   // Any other transparent list init will need proper handling of the
10813   // AllocType; we can't just recurse to the inner initializer.
10814   assert(!E->isTransparent() &&
10815          "transparent array list initialization is not string literal init?");
10816 
10817   return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
10818                                          AllocType);
10819 }
10820 
10821 bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
10822     const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
10823     QualType AllocType) {
10824   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10825       AllocType.isNull() ? ExprToVisit->getType() : AllocType);
10826 
10827   bool Success = true;
10828 
10829   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10830          "zero-initialized array shouldn't have any initialized elts");
10831   APValue Filler;
10832   if (Result.isArray() && Result.hasArrayFiller())
10833     Filler = Result.getArrayFiller();
10834 
10835   unsigned NumEltsToInit = Args.size();
10836   unsigned NumElts = CAT->getSize().getZExtValue();
10837 
10838   // If the initializer might depend on the array index, run it for each
10839   // array element.
10840   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(ArrayFiller))
10841     NumEltsToInit = NumElts;
10842 
10843   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10844                           << NumEltsToInit << ".\n");
10845 
10846   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10847 
10848   // If the array was previously zero-initialized, preserve the
10849   // zero-initialized values.
10850   if (Filler.hasValue()) {
10851     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10852       Result.getArrayInitializedElt(I) = Filler;
10853     if (Result.hasArrayFiller())
10854       Result.getArrayFiller() = Filler;
10855   }
10856 
10857   LValue Subobject = This;
10858   Subobject.addArray(Info, ExprToVisit, CAT);
10859   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10860     const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
10861     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10862                          Info, Subobject, Init) ||
10863         !HandleLValueArrayAdjustment(Info, Init, Subobject,
10864                                      CAT->getElementType(), 1)) {
10865       if (!Info.noteFailure())
10866         return false;
10867       Success = false;
10868     }
10869   }
10870 
10871   if (!Result.hasArrayFiller())
10872     return Success;
10873 
10874   // If we get here, we have a trivial filler, which we can just evaluate
10875   // once and splat over the rest of the array elements.
10876   assert(ArrayFiller && "no array filler for incomplete init list");
10877   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10878                          ArrayFiller) &&
10879          Success;
10880 }
10881 
10882 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10883   LValue CommonLV;
10884   if (E->getCommonExpr() &&
10885       !Evaluate(Info.CurrentCall->createTemporary(
10886                     E->getCommonExpr(),
10887                     getStorageType(Info.Ctx, E->getCommonExpr()),
10888                     ScopeKind::FullExpression, CommonLV),
10889                 Info, E->getCommonExpr()->getSourceExpr()))
10890     return false;
10891 
10892   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10893 
10894   uint64_t Elements = CAT->getSize().getZExtValue();
10895   Result = APValue(APValue::UninitArray(), Elements, Elements);
10896 
10897   LValue Subobject = This;
10898   Subobject.addArray(Info, E, CAT);
10899 
10900   bool Success = true;
10901   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10902     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10903                          Info, Subobject, E->getSubExpr()) ||
10904         !HandleLValueArrayAdjustment(Info, E, Subobject,
10905                                      CAT->getElementType(), 1)) {
10906       if (!Info.noteFailure())
10907         return false;
10908       Success = false;
10909     }
10910   }
10911 
10912   return Success;
10913 }
10914 
10915 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10916   return VisitCXXConstructExpr(E, This, &Result, E->getType());
10917 }
10918 
10919 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10920                                                const LValue &Subobject,
10921                                                APValue *Value,
10922                                                QualType Type) {
10923   bool HadZeroInit = Value->hasValue();
10924 
10925   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10926     unsigned FinalSize = CAT->getSize().getZExtValue();
10927 
10928     // Preserve the array filler if we had prior zero-initialization.
10929     APValue Filler =
10930       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10931                                              : APValue();
10932 
10933     *Value = APValue(APValue::UninitArray(), 0, FinalSize);
10934     if (FinalSize == 0)
10935       return true;
10936 
10937     bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
10938         Info, E->getExprLoc(), E->getConstructor(),
10939         E->requiresZeroInitialization());
10940     LValue ArrayElt = Subobject;
10941     ArrayElt.addArray(Info, E, CAT);
10942     // We do the whole initialization in two passes, first for just one element,
10943     // then for the whole array. It's possible we may find out we can't do const
10944     // init in the first pass, in which case we avoid allocating a potentially
10945     // large array. We don't do more passes because expanding array requires
10946     // copying the data, which is wasteful.
10947     for (const unsigned N : {1u, FinalSize}) {
10948       unsigned OldElts = Value->getArrayInitializedElts();
10949       if (OldElts == N)
10950         break;
10951 
10952       // Expand the array to appropriate size.
10953       APValue NewValue(APValue::UninitArray(), N, FinalSize);
10954       for (unsigned I = 0; I < OldElts; ++I)
10955         NewValue.getArrayInitializedElt(I).swap(
10956             Value->getArrayInitializedElt(I));
10957       Value->swap(NewValue);
10958 
10959       if (HadZeroInit)
10960         for (unsigned I = OldElts; I < N; ++I)
10961           Value->getArrayInitializedElt(I) = Filler;
10962 
10963       if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
10964         // If we have a trivial constructor, only evaluate it once and copy
10965         // the result into all the array elements.
10966         APValue &FirstResult = Value->getArrayInitializedElt(0);
10967         for (unsigned I = OldElts; I < FinalSize; ++I)
10968           Value->getArrayInitializedElt(I) = FirstResult;
10969       } else {
10970         for (unsigned I = OldElts; I < N; ++I) {
10971           if (!VisitCXXConstructExpr(E, ArrayElt,
10972                                      &Value->getArrayInitializedElt(I),
10973                                      CAT->getElementType()) ||
10974               !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10975                                            CAT->getElementType(), 1))
10976             return false;
10977           // When checking for const initilization any diagnostic is considered
10978           // an error.
10979           if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
10980               !Info.keepEvaluatingAfterFailure())
10981             return false;
10982         }
10983       }
10984     }
10985 
10986     return true;
10987   }
10988 
10989   if (!Type->isRecordType())
10990     return Error(E);
10991 
10992   return RecordExprEvaluator(Info, Subobject, *Value)
10993              .VisitCXXConstructExpr(E, Type);
10994 }
10995 
10996 bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
10997     const CXXParenListInitExpr *E) {
10998   assert(dyn_cast<ConstantArrayType>(E->getType()) &&
10999          "Expression result is not a constant array type");
11000 
11001   return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
11002                                          E->getArrayFiller());
11003 }
11004 
11005 //===----------------------------------------------------------------------===//
11006 // Integer Evaluation
11007 //
11008 // As a GNU extension, we support casting pointers to sufficiently-wide integer
11009 // types and back in constant folding. Integer values are thus represented
11010 // either as an integer-valued APValue, or as an lvalue-valued APValue.
11011 //===----------------------------------------------------------------------===//
11012 
11013 namespace {
11014 class IntExprEvaluator
11015         : public ExprEvaluatorBase<IntExprEvaluator> {
11016   APValue &Result;
11017 public:
11018   IntExprEvaluator(EvalInfo &info, APValue &result)
11019       : ExprEvaluatorBaseTy(info), Result(result) {}
11020 
11021   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
11022     assert(E->getType()->isIntegralOrEnumerationType() &&
11023            "Invalid evaluation result.");
11024     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
11025            "Invalid evaluation result.");
11026     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11027            "Invalid evaluation result.");
11028     Result = APValue(SI);
11029     return true;
11030   }
11031   bool Success(const llvm::APSInt &SI, const Expr *E) {
11032     return Success(SI, E, Result);
11033   }
11034 
11035   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
11036     assert(E->getType()->isIntegralOrEnumerationType() &&
11037            "Invalid evaluation result.");
11038     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11039            "Invalid evaluation result.");
11040     Result = APValue(APSInt(I));
11041     Result.getInt().setIsUnsigned(
11042                             E->getType()->isUnsignedIntegerOrEnumerationType());
11043     return true;
11044   }
11045   bool Success(const llvm::APInt &I, const Expr *E) {
11046     return Success(I, E, Result);
11047   }
11048 
11049   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11050     assert(E->getType()->isIntegralOrEnumerationType() &&
11051            "Invalid evaluation result.");
11052     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
11053     return true;
11054   }
11055   bool Success(uint64_t Value, const Expr *E) {
11056     return Success(Value, E, Result);
11057   }
11058 
11059   bool Success(CharUnits Size, const Expr *E) {
11060     return Success(Size.getQuantity(), E);
11061   }
11062 
11063   bool Success(const APValue &V, const Expr *E) {
11064     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
11065       Result = V;
11066       return true;
11067     }
11068     return Success(V.getInt(), E);
11069   }
11070 
11071   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
11072 
11073   //===--------------------------------------------------------------------===//
11074   //                            Visitor Methods
11075   //===--------------------------------------------------------------------===//
11076 
11077   bool VisitIntegerLiteral(const IntegerLiteral *E) {
11078     return Success(E->getValue(), E);
11079   }
11080   bool VisitCharacterLiteral(const CharacterLiteral *E) {
11081     return Success(E->getValue(), E);
11082   }
11083 
11084   bool CheckReferencedDecl(const Expr *E, const Decl *D);
11085   bool VisitDeclRefExpr(const DeclRefExpr *E) {
11086     if (CheckReferencedDecl(E, E->getDecl()))
11087       return true;
11088 
11089     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
11090   }
11091   bool VisitMemberExpr(const MemberExpr *E) {
11092     if (CheckReferencedDecl(E, E->getMemberDecl())) {
11093       VisitIgnoredBaseExpression(E->getBase());
11094       return true;
11095     }
11096 
11097     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
11098   }
11099 
11100   bool VisitCallExpr(const CallExpr *E);
11101   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
11102   bool VisitBinaryOperator(const BinaryOperator *E);
11103   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
11104   bool VisitUnaryOperator(const UnaryOperator *E);
11105 
11106   bool VisitCastExpr(const CastExpr* E);
11107   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
11108 
11109   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
11110     return Success(E->getValue(), E);
11111   }
11112 
11113   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
11114     return Success(E->getValue(), E);
11115   }
11116 
11117   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
11118     if (Info.ArrayInitIndex == uint64_t(-1)) {
11119       // We were asked to evaluate this subexpression independent of the
11120       // enclosing ArrayInitLoopExpr. We can't do that.
11121       Info.FFDiag(E);
11122       return false;
11123     }
11124     return Success(Info.ArrayInitIndex, E);
11125   }
11126 
11127   // Note, GNU defines __null as an integer, not a pointer.
11128   bool VisitGNUNullExpr(const GNUNullExpr *E) {
11129     return ZeroInitialization(E);
11130   }
11131 
11132   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11133     return Success(E->getValue(), E);
11134   }
11135 
11136   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11137     return Success(E->getValue(), E);
11138   }
11139 
11140   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11141     return Success(E->getValue(), E);
11142   }
11143 
11144   bool VisitUnaryReal(const UnaryOperator *E);
11145   bool VisitUnaryImag(const UnaryOperator *E);
11146 
11147   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11148   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11149   bool VisitSourceLocExpr(const SourceLocExpr *E);
11150   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11151   bool VisitRequiresExpr(const RequiresExpr *E);
11152   // FIXME: Missing: array subscript of vector, member of vector
11153 };
11154 
11155 class FixedPointExprEvaluator
11156     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11157   APValue &Result;
11158 
11159  public:
11160   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11161       : ExprEvaluatorBaseTy(info), Result(result) {}
11162 
11163   bool Success(const llvm::APInt &I, const Expr *E) {
11164     return Success(
11165         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11166   }
11167 
11168   bool Success(uint64_t Value, const Expr *E) {
11169     return Success(
11170         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11171   }
11172 
11173   bool Success(const APValue &V, const Expr *E) {
11174     return Success(V.getFixedPoint(), E);
11175   }
11176 
11177   bool Success(const APFixedPoint &V, const Expr *E) {
11178     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11179     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11180            "Invalid evaluation result.");
11181     Result = APValue(V);
11182     return true;
11183   }
11184 
11185   //===--------------------------------------------------------------------===//
11186   //                            Visitor Methods
11187   //===--------------------------------------------------------------------===//
11188 
11189   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11190     return Success(E->getValue(), E);
11191   }
11192 
11193   bool VisitCastExpr(const CastExpr *E);
11194   bool VisitUnaryOperator(const UnaryOperator *E);
11195   bool VisitBinaryOperator(const BinaryOperator *E);
11196 };
11197 } // end anonymous namespace
11198 
11199 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11200 /// produce either the integer value or a pointer.
11201 ///
11202 /// GCC has a heinous extension which folds casts between pointer types and
11203 /// pointer-sized integral types. We support this by allowing the evaluation of
11204 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11205 /// Some simple arithmetic on such values is supported (they are treated much
11206 /// like char*).
11207 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11208                                     EvalInfo &Info) {
11209   assert(!E->isValueDependent());
11210   assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11211   return IntExprEvaluator(Info, Result).Visit(E);
11212 }
11213 
11214 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11215   assert(!E->isValueDependent());
11216   APValue Val;
11217   if (!EvaluateIntegerOrLValue(E, Val, Info))
11218     return false;
11219   if (!Val.isInt()) {
11220     // FIXME: It would be better to produce the diagnostic for casting
11221     //        a pointer to an integer.
11222     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11223     return false;
11224   }
11225   Result = Val.getInt();
11226   return true;
11227 }
11228 
11229 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11230   APValue Evaluated = E->EvaluateInContext(
11231       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11232   return Success(Evaluated, E);
11233 }
11234 
11235 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11236                                EvalInfo &Info) {
11237   assert(!E->isValueDependent());
11238   if (E->getType()->isFixedPointType()) {
11239     APValue Val;
11240     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11241       return false;
11242     if (!Val.isFixedPoint())
11243       return false;
11244 
11245     Result = Val.getFixedPoint();
11246     return true;
11247   }
11248   return false;
11249 }
11250 
11251 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11252                                         EvalInfo &Info) {
11253   assert(!E->isValueDependent());
11254   if (E->getType()->isIntegerType()) {
11255     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11256     APSInt Val;
11257     if (!EvaluateInteger(E, Val, Info))
11258       return false;
11259     Result = APFixedPoint(Val, FXSema);
11260     return true;
11261   } else if (E->getType()->isFixedPointType()) {
11262     return EvaluateFixedPoint(E, Result, Info);
11263   }
11264   return false;
11265 }
11266 
11267 /// Check whether the given declaration can be directly converted to an integral
11268 /// rvalue. If not, no diagnostic is produced; there are other things we can
11269 /// try.
11270 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11271   // Enums are integer constant exprs.
11272   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11273     // Check for signedness/width mismatches between E type and ECD value.
11274     bool SameSign = (ECD->getInitVal().isSigned()
11275                      == E->getType()->isSignedIntegerOrEnumerationType());
11276     bool SameWidth = (ECD->getInitVal().getBitWidth()
11277                       == Info.Ctx.getIntWidth(E->getType()));
11278     if (SameSign && SameWidth)
11279       return Success(ECD->getInitVal(), E);
11280     else {
11281       // Get rid of mismatch (otherwise Success assertions will fail)
11282       // by computing a new value matching the type of E.
11283       llvm::APSInt Val = ECD->getInitVal();
11284       if (!SameSign)
11285         Val.setIsSigned(!ECD->getInitVal().isSigned());
11286       if (!SameWidth)
11287         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11288       return Success(Val, E);
11289     }
11290   }
11291   return false;
11292 }
11293 
11294 /// Values returned by __builtin_classify_type, chosen to match the values
11295 /// produced by GCC's builtin.
11296 enum class GCCTypeClass {
11297   None = -1,
11298   Void = 0,
11299   Integer = 1,
11300   // GCC reserves 2 for character types, but instead classifies them as
11301   // integers.
11302   Enum = 3,
11303   Bool = 4,
11304   Pointer = 5,
11305   // GCC reserves 6 for references, but appears to never use it (because
11306   // expressions never have reference type, presumably).
11307   PointerToDataMember = 7,
11308   RealFloat = 8,
11309   Complex = 9,
11310   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11311   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11312   // GCC claims to reserve 11 for pointers to member functions, but *actually*
11313   // uses 12 for that purpose, same as for a class or struct. Maybe it
11314   // internally implements a pointer to member as a struct?  Who knows.
11315   PointerToMemberFunction = 12, // Not a bug, see above.
11316   ClassOrStruct = 12,
11317   Union = 13,
11318   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11319   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11320   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11321   // literals.
11322 };
11323 
11324 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11325 /// as GCC.
11326 static GCCTypeClass
11327 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11328   assert(!T->isDependentType() && "unexpected dependent type");
11329 
11330   QualType CanTy = T.getCanonicalType();
11331 
11332   switch (CanTy->getTypeClass()) {
11333 #define TYPE(ID, BASE)
11334 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11335 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11336 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11337 #include "clang/AST/TypeNodes.inc"
11338   case Type::Auto:
11339   case Type::DeducedTemplateSpecialization:
11340       llvm_unreachable("unexpected non-canonical or dependent type");
11341 
11342   case Type::Builtin:
11343       switch (cast<BuiltinType>(CanTy)->getKind()) {
11344 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11345 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11346     case BuiltinType::ID: return GCCTypeClass::Integer;
11347 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11348     case BuiltinType::ID: return GCCTypeClass::RealFloat;
11349 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11350     case BuiltinType::ID: break;
11351 #include "clang/AST/BuiltinTypes.def"
11352     case BuiltinType::Void:
11353       return GCCTypeClass::Void;
11354 
11355     case BuiltinType::Bool:
11356       return GCCTypeClass::Bool;
11357 
11358     case BuiltinType::Char_U:
11359     case BuiltinType::UChar:
11360     case BuiltinType::WChar_U:
11361     case BuiltinType::Char8:
11362     case BuiltinType::Char16:
11363     case BuiltinType::Char32:
11364     case BuiltinType::UShort:
11365     case BuiltinType::UInt:
11366     case BuiltinType::ULong:
11367     case BuiltinType::ULongLong:
11368     case BuiltinType::UInt128:
11369       return GCCTypeClass::Integer;
11370 
11371     case BuiltinType::UShortAccum:
11372     case BuiltinType::UAccum:
11373     case BuiltinType::ULongAccum:
11374     case BuiltinType::UShortFract:
11375     case BuiltinType::UFract:
11376     case BuiltinType::ULongFract:
11377     case BuiltinType::SatUShortAccum:
11378     case BuiltinType::SatUAccum:
11379     case BuiltinType::SatULongAccum:
11380     case BuiltinType::SatUShortFract:
11381     case BuiltinType::SatUFract:
11382     case BuiltinType::SatULongFract:
11383       return GCCTypeClass::None;
11384 
11385     case BuiltinType::NullPtr:
11386 
11387     case BuiltinType::ObjCId:
11388     case BuiltinType::ObjCClass:
11389     case BuiltinType::ObjCSel:
11390 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11391     case BuiltinType::Id:
11392 #include "clang/Basic/OpenCLImageTypes.def"
11393 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11394     case BuiltinType::Id:
11395 #include "clang/Basic/OpenCLExtensionTypes.def"
11396     case BuiltinType::OCLSampler:
11397     case BuiltinType::OCLEvent:
11398     case BuiltinType::OCLClkEvent:
11399     case BuiltinType::OCLQueue:
11400     case BuiltinType::OCLReserveID:
11401 #define SVE_TYPE(Name, Id, SingletonId) \
11402     case BuiltinType::Id:
11403 #include "clang/Basic/AArch64SVEACLETypes.def"
11404 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11405     case BuiltinType::Id:
11406 #include "clang/Basic/PPCTypes.def"
11407 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11408 #include "clang/Basic/RISCVVTypes.def"
11409 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11410 #include "clang/Basic/WebAssemblyReferenceTypes.def"
11411       return GCCTypeClass::None;
11412 
11413     case BuiltinType::Dependent:
11414       llvm_unreachable("unexpected dependent type");
11415     };
11416     llvm_unreachable("unexpected placeholder type");
11417 
11418   case Type::Enum:
11419     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11420 
11421   case Type::Pointer:
11422   case Type::ConstantArray:
11423   case Type::VariableArray:
11424   case Type::IncompleteArray:
11425   case Type::FunctionNoProto:
11426   case Type::FunctionProto:
11427     return GCCTypeClass::Pointer;
11428 
11429   case Type::MemberPointer:
11430     return CanTy->isMemberDataPointerType()
11431                ? GCCTypeClass::PointerToDataMember
11432                : GCCTypeClass::PointerToMemberFunction;
11433 
11434   case Type::Complex:
11435     return GCCTypeClass::Complex;
11436 
11437   case Type::Record:
11438     return CanTy->isUnionType() ? GCCTypeClass::Union
11439                                 : GCCTypeClass::ClassOrStruct;
11440 
11441   case Type::Atomic:
11442     // GCC classifies _Atomic T the same as T.
11443     return EvaluateBuiltinClassifyType(
11444         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11445 
11446   case Type::BlockPointer:
11447   case Type::Vector:
11448   case Type::ExtVector:
11449   case Type::ConstantMatrix:
11450   case Type::ObjCObject:
11451   case Type::ObjCInterface:
11452   case Type::ObjCObjectPointer:
11453   case Type::Pipe:
11454   case Type::BitInt:
11455     // GCC classifies vectors as None. We follow its lead and classify all
11456     // other types that don't fit into the regular classification the same way.
11457     return GCCTypeClass::None;
11458 
11459   case Type::LValueReference:
11460   case Type::RValueReference:
11461     llvm_unreachable("invalid type for expression");
11462   }
11463 
11464   llvm_unreachable("unexpected type class");
11465 }
11466 
11467 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11468 /// as GCC.
11469 static GCCTypeClass
11470 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11471   // If no argument was supplied, default to None. This isn't
11472   // ideal, however it is what gcc does.
11473   if (E->getNumArgs() == 0)
11474     return GCCTypeClass::None;
11475 
11476   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11477   // being an ICE, but still folds it to a constant using the type of the first
11478   // argument.
11479   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11480 }
11481 
11482 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11483 /// __builtin_constant_p when applied to the given pointer.
11484 ///
11485 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11486 /// or it points to the first character of a string literal.
11487 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11488   APValue::LValueBase Base = LV.getLValueBase();
11489   if (Base.isNull()) {
11490     // A null base is acceptable.
11491     return true;
11492   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11493     if (!isa<StringLiteral>(E))
11494       return false;
11495     return LV.getLValueOffset().isZero();
11496   } else if (Base.is<TypeInfoLValue>()) {
11497     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11498     // evaluate to true.
11499     return true;
11500   } else {
11501     // Any other base is not constant enough for GCC.
11502     return false;
11503   }
11504 }
11505 
11506 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11507 /// GCC as we can manage.
11508 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11509   // This evaluation is not permitted to have side-effects, so evaluate it in
11510   // a speculative evaluation context.
11511   SpeculativeEvaluationRAII SpeculativeEval(Info);
11512 
11513   // Constant-folding is always enabled for the operand of __builtin_constant_p
11514   // (even when the enclosing evaluation context otherwise requires a strict
11515   // language-specific constant expression).
11516   FoldConstant Fold(Info, true);
11517 
11518   QualType ArgType = Arg->getType();
11519 
11520   // __builtin_constant_p always has one operand. The rules which gcc follows
11521   // are not precisely documented, but are as follows:
11522   //
11523   //  - If the operand is of integral, floating, complex or enumeration type,
11524   //    and can be folded to a known value of that type, it returns 1.
11525   //  - If the operand can be folded to a pointer to the first character
11526   //    of a string literal (or such a pointer cast to an integral type)
11527   //    or to a null pointer or an integer cast to a pointer, it returns 1.
11528   //
11529   // Otherwise, it returns 0.
11530   //
11531   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11532   // its support for this did not work prior to GCC 9 and is not yet well
11533   // understood.
11534   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11535       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11536       ArgType->isNullPtrType()) {
11537     APValue V;
11538     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11539       Fold.keepDiagnostics();
11540       return false;
11541     }
11542 
11543     // For a pointer (possibly cast to integer), there are special rules.
11544     if (V.getKind() == APValue::LValue)
11545       return EvaluateBuiltinConstantPForLValue(V);
11546 
11547     // Otherwise, any constant value is good enough.
11548     return V.hasValue();
11549   }
11550 
11551   // Anything else isn't considered to be sufficiently constant.
11552   return false;
11553 }
11554 
11555 /// Retrieves the "underlying object type" of the given expression,
11556 /// as used by __builtin_object_size.
11557 static QualType getObjectType(APValue::LValueBase B) {
11558   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11559     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11560       return VD->getType();
11561   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11562     if (isa<CompoundLiteralExpr>(E))
11563       return E->getType();
11564   } else if (B.is<TypeInfoLValue>()) {
11565     return B.getTypeInfoType();
11566   } else if (B.is<DynamicAllocLValue>()) {
11567     return B.getDynamicAllocType();
11568   }
11569 
11570   return QualType();
11571 }
11572 
11573 /// A more selective version of E->IgnoreParenCasts for
11574 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11575 /// to change the type of E.
11576 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11577 ///
11578 /// Always returns an RValue with a pointer representation.
11579 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11580   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11581 
11582   auto *NoParens = E->IgnoreParens();
11583   auto *Cast = dyn_cast<CastExpr>(NoParens);
11584   if (Cast == nullptr)
11585     return NoParens;
11586 
11587   // We only conservatively allow a few kinds of casts, because this code is
11588   // inherently a simple solution that seeks to support the common case.
11589   auto CastKind = Cast->getCastKind();
11590   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11591       CastKind != CK_AddressSpaceConversion)
11592     return NoParens;
11593 
11594   auto *SubExpr = Cast->getSubExpr();
11595   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11596     return NoParens;
11597   return ignorePointerCastsAndParens(SubExpr);
11598 }
11599 
11600 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11601 /// record layout. e.g.
11602 ///   struct { struct { int a, b; } fst, snd; } obj;
11603 ///   obj.fst   // no
11604 ///   obj.snd   // yes
11605 ///   obj.fst.a // no
11606 ///   obj.fst.b // no
11607 ///   obj.snd.a // no
11608 ///   obj.snd.b // yes
11609 ///
11610 /// Please note: this function is specialized for how __builtin_object_size
11611 /// views "objects".
11612 ///
11613 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11614 /// correct result, it will always return true.
11615 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11616   assert(!LVal.Designator.Invalid);
11617 
11618   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11619     const RecordDecl *Parent = FD->getParent();
11620     Invalid = Parent->isInvalidDecl();
11621     if (Invalid || Parent->isUnion())
11622       return true;
11623     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11624     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11625   };
11626 
11627   auto &Base = LVal.getLValueBase();
11628   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11629     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11630       bool Invalid;
11631       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11632         return Invalid;
11633     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11634       for (auto *FD : IFD->chain()) {
11635         bool Invalid;
11636         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11637           return Invalid;
11638       }
11639     }
11640   }
11641 
11642   unsigned I = 0;
11643   QualType BaseType = getType(Base);
11644   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11645     // If we don't know the array bound, conservatively assume we're looking at
11646     // the final array element.
11647     ++I;
11648     if (BaseType->isIncompleteArrayType())
11649       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11650     else
11651       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11652   }
11653 
11654   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11655     const auto &Entry = LVal.Designator.Entries[I];
11656     if (BaseType->isArrayType()) {
11657       // Because __builtin_object_size treats arrays as objects, we can ignore
11658       // the index iff this is the last array in the Designator.
11659       if (I + 1 == E)
11660         return true;
11661       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11662       uint64_t Index = Entry.getAsArrayIndex();
11663       if (Index + 1 != CAT->getSize())
11664         return false;
11665       BaseType = CAT->getElementType();
11666     } else if (BaseType->isAnyComplexType()) {
11667       const auto *CT = BaseType->castAs<ComplexType>();
11668       uint64_t Index = Entry.getAsArrayIndex();
11669       if (Index != 1)
11670         return false;
11671       BaseType = CT->getElementType();
11672     } else if (auto *FD = getAsField(Entry)) {
11673       bool Invalid;
11674       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11675         return Invalid;
11676       BaseType = FD->getType();
11677     } else {
11678       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11679       return false;
11680     }
11681   }
11682   return true;
11683 }
11684 
11685 /// Tests to see if the LValue has a user-specified designator (that isn't
11686 /// necessarily valid). Note that this always returns 'true' if the LValue has
11687 /// an unsized array as its first designator entry, because there's currently no
11688 /// way to tell if the user typed *foo or foo[0].
11689 static bool refersToCompleteObject(const LValue &LVal) {
11690   if (LVal.Designator.Invalid)
11691     return false;
11692 
11693   if (!LVal.Designator.Entries.empty())
11694     return LVal.Designator.isMostDerivedAnUnsizedArray();
11695 
11696   if (!LVal.InvalidBase)
11697     return true;
11698 
11699   // If `E` is a MemberExpr, then the first part of the designator is hiding in
11700   // the LValueBase.
11701   const auto *E = LVal.Base.dyn_cast<const Expr *>();
11702   return !E || !isa<MemberExpr>(E);
11703 }
11704 
11705 /// Attempts to detect a user writing into a piece of memory that's impossible
11706 /// to figure out the size of by just using types.
11707 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11708   const SubobjectDesignator &Designator = LVal.Designator;
11709   // Notes:
11710   // - Users can only write off of the end when we have an invalid base. Invalid
11711   //   bases imply we don't know where the memory came from.
11712   // - We used to be a bit more aggressive here; we'd only be conservative if
11713   //   the array at the end was flexible, or if it had 0 or 1 elements. This
11714   //   broke some common standard library extensions (PR30346), but was
11715   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
11716   //   with some sort of list. OTOH, it seems that GCC is always
11717   //   conservative with the last element in structs (if it's an array), so our
11718   //   current behavior is more compatible than an explicit list approach would
11719   //   be.
11720   auto isFlexibleArrayMember = [&] {
11721     using FAMKind = LangOptions::StrictFlexArraysLevelKind;
11722     FAMKind StrictFlexArraysLevel =
11723         Ctx.getLangOpts().getStrictFlexArraysLevel();
11724 
11725     if (Designator.isMostDerivedAnUnsizedArray())
11726       return true;
11727 
11728     if (StrictFlexArraysLevel == FAMKind::Default)
11729       return true;
11730 
11731     if (Designator.getMostDerivedArraySize() == 0 &&
11732         StrictFlexArraysLevel != FAMKind::IncompleteOnly)
11733       return true;
11734 
11735     if (Designator.getMostDerivedArraySize() == 1 &&
11736         StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
11737       return true;
11738 
11739     return false;
11740   };
11741 
11742   return LVal.InvalidBase &&
11743          Designator.Entries.size() == Designator.MostDerivedPathLength &&
11744          Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
11745          isDesignatorAtObjectEnd(Ctx, LVal);
11746 }
11747 
11748 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11749 /// Fails if the conversion would cause loss of precision.
11750 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11751                                             CharUnits &Result) {
11752   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11753   if (Int.ugt(CharUnitsMax))
11754     return false;
11755   Result = CharUnits::fromQuantity(Int.getZExtValue());
11756   return true;
11757 }
11758 
11759 /// If we're evaluating the object size of an instance of a struct that
11760 /// contains a flexible array member, add the size of the initializer.
11761 static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T,
11762                                            const LValue &LV, CharUnits &Size) {
11763   if (!T.isNull() && T->isStructureType() &&
11764       T->getAsStructureType()->getDecl()->hasFlexibleArrayMember())
11765     if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>())
11766       if (const auto *VD = dyn_cast<VarDecl>(V))
11767         if (VD->hasInit())
11768           Size += VD->getFlexibleArrayInitChars(Info.Ctx);
11769 }
11770 
11771 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11772 /// determine how many bytes exist from the beginning of the object to either
11773 /// the end of the current subobject, or the end of the object itself, depending
11774 /// on what the LValue looks like + the value of Type.
11775 ///
11776 /// If this returns false, the value of Result is undefined.
11777 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11778                                unsigned Type, const LValue &LVal,
11779                                CharUnits &EndOffset) {
11780   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11781 
11782   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11783     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11784       return false;
11785     return HandleSizeof(Info, ExprLoc, Ty, Result);
11786   };
11787 
11788   // We want to evaluate the size of the entire object. This is a valid fallback
11789   // for when Type=1 and the designator is invalid, because we're asked for an
11790   // upper-bound.
11791   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11792     // Type=3 wants a lower bound, so we can't fall back to this.
11793     if (Type == 3 && !DetermineForCompleteObject)
11794       return false;
11795 
11796     llvm::APInt APEndOffset;
11797     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11798         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11799       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11800 
11801     if (LVal.InvalidBase)
11802       return false;
11803 
11804     QualType BaseTy = getObjectType(LVal.getLValueBase());
11805     const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset);
11806     addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset);
11807     return Ret;
11808   }
11809 
11810   // We want to evaluate the size of a subobject.
11811   const SubobjectDesignator &Designator = LVal.Designator;
11812 
11813   // The following is a moderately common idiom in C:
11814   //
11815   // struct Foo { int a; char c[1]; };
11816   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11817   // strcpy(&F->c[0], Bar);
11818   //
11819   // In order to not break too much legacy code, we need to support it.
11820   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11821     // If we can resolve this to an alloc_size call, we can hand that back,
11822     // because we know for certain how many bytes there are to write to.
11823     llvm::APInt APEndOffset;
11824     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11825         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11826       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11827 
11828     // If we cannot determine the size of the initial allocation, then we can't
11829     // given an accurate upper-bound. However, we are still able to give
11830     // conservative lower-bounds for Type=3.
11831     if (Type == 1)
11832       return false;
11833   }
11834 
11835   CharUnits BytesPerElem;
11836   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11837     return false;
11838 
11839   // According to the GCC documentation, we want the size of the subobject
11840   // denoted by the pointer. But that's not quite right -- what we actually
11841   // want is the size of the immediately-enclosing array, if there is one.
11842   int64_t ElemsRemaining;
11843   if (Designator.MostDerivedIsArrayElement &&
11844       Designator.Entries.size() == Designator.MostDerivedPathLength) {
11845     uint64_t ArraySize = Designator.getMostDerivedArraySize();
11846     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11847     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11848   } else {
11849     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11850   }
11851 
11852   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11853   return true;
11854 }
11855 
11856 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11857 /// returns true and stores the result in @p Size.
11858 ///
11859 /// If @p WasError is non-null, this will report whether the failure to evaluate
11860 /// is to be treated as an Error in IntExprEvaluator.
11861 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11862                                          EvalInfo &Info, uint64_t &Size) {
11863   // Determine the denoted object.
11864   LValue LVal;
11865   {
11866     // The operand of __builtin_object_size is never evaluated for side-effects.
11867     // If there are any, but we can determine the pointed-to object anyway, then
11868     // ignore the side-effects.
11869     SpeculativeEvaluationRAII SpeculativeEval(Info);
11870     IgnoreSideEffectsRAII Fold(Info);
11871 
11872     if (E->isGLValue()) {
11873       // It's possible for us to be given GLValues if we're called via
11874       // Expr::tryEvaluateObjectSize.
11875       APValue RVal;
11876       if (!EvaluateAsRValue(Info, E, RVal))
11877         return false;
11878       LVal.setFrom(Info.Ctx, RVal);
11879     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11880                                 /*InvalidBaseOK=*/true))
11881       return false;
11882   }
11883 
11884   // If we point to before the start of the object, there are no accessible
11885   // bytes.
11886   if (LVal.getLValueOffset().isNegative()) {
11887     Size = 0;
11888     return true;
11889   }
11890 
11891   CharUnits EndOffset;
11892   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11893     return false;
11894 
11895   // If we've fallen outside of the end offset, just pretend there's nothing to
11896   // write to/read from.
11897   if (EndOffset <= LVal.getLValueOffset())
11898     Size = 0;
11899   else
11900     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11901   return true;
11902 }
11903 
11904 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11905   if (!IsConstantEvaluatedBuiltinCall(E))
11906     return ExprEvaluatorBaseTy::VisitCallExpr(E);
11907   return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
11908 }
11909 
11910 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11911                                      APValue &Val, APSInt &Alignment) {
11912   QualType SrcTy = E->getArg(0)->getType();
11913   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11914     return false;
11915   // Even though we are evaluating integer expressions we could get a pointer
11916   // argument for the __builtin_is_aligned() case.
11917   if (SrcTy->isPointerType()) {
11918     LValue Ptr;
11919     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11920       return false;
11921     Ptr.moveInto(Val);
11922   } else if (!SrcTy->isIntegralOrEnumerationType()) {
11923     Info.FFDiag(E->getArg(0));
11924     return false;
11925   } else {
11926     APSInt SrcInt;
11927     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11928       return false;
11929     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11930            "Bit widths must be the same");
11931     Val = APValue(SrcInt);
11932   }
11933   assert(Val.hasValue());
11934   return true;
11935 }
11936 
11937 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11938                                             unsigned BuiltinOp) {
11939   switch (BuiltinOp) {
11940   default:
11941     return false;
11942 
11943   case Builtin::BI__builtin_dynamic_object_size:
11944   case Builtin::BI__builtin_object_size: {
11945     // The type was checked when we built the expression.
11946     unsigned Type =
11947         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11948     assert(Type <= 3 && "unexpected type");
11949 
11950     uint64_t Size;
11951     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11952       return Success(Size, E);
11953 
11954     if (E->getArg(0)->HasSideEffects(Info.Ctx))
11955       return Success((Type & 2) ? 0 : -1, E);
11956 
11957     // Expression had no side effects, but we couldn't statically determine the
11958     // size of the referenced object.
11959     switch (Info.EvalMode) {
11960     case EvalInfo::EM_ConstantExpression:
11961     case EvalInfo::EM_ConstantFold:
11962     case EvalInfo::EM_IgnoreSideEffects:
11963       // Leave it to IR generation.
11964       return Error(E);
11965     case EvalInfo::EM_ConstantExpressionUnevaluated:
11966       // Reduce it to a constant now.
11967       return Success((Type & 2) ? 0 : -1, E);
11968     }
11969 
11970     llvm_unreachable("unexpected EvalMode");
11971   }
11972 
11973   case Builtin::BI__builtin_os_log_format_buffer_size: {
11974     analyze_os_log::OSLogBufferLayout Layout;
11975     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11976     return Success(Layout.size().getQuantity(), E);
11977   }
11978 
11979   case Builtin::BI__builtin_is_aligned: {
11980     APValue Src;
11981     APSInt Alignment;
11982     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11983       return false;
11984     if (Src.isLValue()) {
11985       // If we evaluated a pointer, check the minimum known alignment.
11986       LValue Ptr;
11987       Ptr.setFrom(Info.Ctx, Src);
11988       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11989       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11990       // We can return true if the known alignment at the computed offset is
11991       // greater than the requested alignment.
11992       assert(PtrAlign.isPowerOfTwo());
11993       assert(Alignment.isPowerOf2());
11994       if (PtrAlign.getQuantity() >= Alignment)
11995         return Success(1, E);
11996       // If the alignment is not known to be sufficient, some cases could still
11997       // be aligned at run time. However, if the requested alignment is less or
11998       // equal to the base alignment and the offset is not aligned, we know that
11999       // the run-time value can never be aligned.
12000       if (BaseAlignment.getQuantity() >= Alignment &&
12001           PtrAlign.getQuantity() < Alignment)
12002         return Success(0, E);
12003       // Otherwise we can't infer whether the value is sufficiently aligned.
12004       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
12005       //  in cases where we can't fully evaluate the pointer.
12006       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
12007           << Alignment;
12008       return false;
12009     }
12010     assert(Src.isInt());
12011     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
12012   }
12013   case Builtin::BI__builtin_align_up: {
12014     APValue Src;
12015     APSInt Alignment;
12016     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12017       return false;
12018     if (!Src.isInt())
12019       return Error(E);
12020     APSInt AlignedVal =
12021         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
12022                Src.getInt().isUnsigned());
12023     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12024     return Success(AlignedVal, E);
12025   }
12026   case Builtin::BI__builtin_align_down: {
12027     APValue Src;
12028     APSInt Alignment;
12029     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12030       return false;
12031     if (!Src.isInt())
12032       return Error(E);
12033     APSInt AlignedVal =
12034         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
12035     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12036     return Success(AlignedVal, E);
12037   }
12038 
12039   case Builtin::BI__builtin_bitreverse8:
12040   case Builtin::BI__builtin_bitreverse16:
12041   case Builtin::BI__builtin_bitreverse32:
12042   case Builtin::BI__builtin_bitreverse64: {
12043     APSInt Val;
12044     if (!EvaluateInteger(E->getArg(0), Val, Info))
12045       return false;
12046 
12047     return Success(Val.reverseBits(), E);
12048   }
12049 
12050   case Builtin::BI__builtin_bswap16:
12051   case Builtin::BI__builtin_bswap32:
12052   case Builtin::BI__builtin_bswap64: {
12053     APSInt Val;
12054     if (!EvaluateInteger(E->getArg(0), Val, Info))
12055       return false;
12056 
12057     return Success(Val.byteSwap(), E);
12058   }
12059 
12060   case Builtin::BI__builtin_classify_type:
12061     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
12062 
12063   case Builtin::BI__builtin_clrsb:
12064   case Builtin::BI__builtin_clrsbl:
12065   case Builtin::BI__builtin_clrsbll: {
12066     APSInt Val;
12067     if (!EvaluateInteger(E->getArg(0), Val, Info))
12068       return false;
12069 
12070     return Success(Val.getBitWidth() - Val.getSignificantBits(), E);
12071   }
12072 
12073   case Builtin::BI__builtin_clz:
12074   case Builtin::BI__builtin_clzl:
12075   case Builtin::BI__builtin_clzll:
12076   case Builtin::BI__builtin_clzs: {
12077     APSInt Val;
12078     if (!EvaluateInteger(E->getArg(0), Val, Info))
12079       return false;
12080     if (!Val)
12081       return Error(E);
12082 
12083     return Success(Val.countl_zero(), E);
12084   }
12085 
12086   case Builtin::BI__builtin_constant_p: {
12087     const Expr *Arg = E->getArg(0);
12088     if (EvaluateBuiltinConstantP(Info, Arg))
12089       return Success(true, E);
12090     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
12091       // Outside a constant context, eagerly evaluate to false in the presence
12092       // of side-effects in order to avoid -Wunsequenced false-positives in
12093       // a branch on __builtin_constant_p(expr).
12094       return Success(false, E);
12095     }
12096     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12097     return false;
12098   }
12099 
12100   case Builtin::BI__builtin_is_constant_evaluated: {
12101     const auto *Callee = Info.CurrentCall->getCallee();
12102     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
12103         (Info.CallStackDepth == 1 ||
12104          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
12105           Callee->getIdentifier() &&
12106           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
12107       // FIXME: Find a better way to avoid duplicated diagnostics.
12108       if (Info.EvalStatus.Diag)
12109         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
12110                                                : Info.CurrentCall->CallLoc,
12111                     diag::warn_is_constant_evaluated_always_true_constexpr)
12112             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
12113                                          : "std::is_constant_evaluated");
12114     }
12115 
12116     return Success(Info.InConstantContext, E);
12117   }
12118 
12119   case Builtin::BI__builtin_ctz:
12120   case Builtin::BI__builtin_ctzl:
12121   case Builtin::BI__builtin_ctzll:
12122   case Builtin::BI__builtin_ctzs: {
12123     APSInt Val;
12124     if (!EvaluateInteger(E->getArg(0), Val, Info))
12125       return false;
12126     if (!Val)
12127       return Error(E);
12128 
12129     return Success(Val.countr_zero(), E);
12130   }
12131 
12132   case Builtin::BI__builtin_eh_return_data_regno: {
12133     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12134     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
12135     return Success(Operand, E);
12136   }
12137 
12138   case Builtin::BI__builtin_expect:
12139   case Builtin::BI__builtin_expect_with_probability:
12140     return Visit(E->getArg(0));
12141 
12142   case Builtin::BI__builtin_ffs:
12143   case Builtin::BI__builtin_ffsl:
12144   case Builtin::BI__builtin_ffsll: {
12145     APSInt Val;
12146     if (!EvaluateInteger(E->getArg(0), Val, Info))
12147       return false;
12148 
12149     unsigned N = Val.countr_zero();
12150     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12151   }
12152 
12153   case Builtin::BI__builtin_fpclassify: {
12154     APFloat Val(0.0);
12155     if (!EvaluateFloat(E->getArg(5), Val, Info))
12156       return false;
12157     unsigned Arg;
12158     switch (Val.getCategory()) {
12159     case APFloat::fcNaN: Arg = 0; break;
12160     case APFloat::fcInfinity: Arg = 1; break;
12161     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12162     case APFloat::fcZero: Arg = 4; break;
12163     }
12164     return Visit(E->getArg(Arg));
12165   }
12166 
12167   case Builtin::BI__builtin_isinf_sign: {
12168     APFloat Val(0.0);
12169     return EvaluateFloat(E->getArg(0), Val, Info) &&
12170            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12171   }
12172 
12173   case Builtin::BI__builtin_isinf: {
12174     APFloat Val(0.0);
12175     return EvaluateFloat(E->getArg(0), Val, Info) &&
12176            Success(Val.isInfinity() ? 1 : 0, E);
12177   }
12178 
12179   case Builtin::BI__builtin_isfinite: {
12180     APFloat Val(0.0);
12181     return EvaluateFloat(E->getArg(0), Val, Info) &&
12182            Success(Val.isFinite() ? 1 : 0, E);
12183   }
12184 
12185   case Builtin::BI__builtin_isnan: {
12186     APFloat Val(0.0);
12187     return EvaluateFloat(E->getArg(0), Val, Info) &&
12188            Success(Val.isNaN() ? 1 : 0, E);
12189   }
12190 
12191   case Builtin::BI__builtin_isnormal: {
12192     APFloat Val(0.0);
12193     return EvaluateFloat(E->getArg(0), Val, Info) &&
12194            Success(Val.isNormal() ? 1 : 0, E);
12195   }
12196 
12197   case Builtin::BI__builtin_isfpclass: {
12198     APSInt MaskVal;
12199     if (!EvaluateInteger(E->getArg(1), MaskVal, Info))
12200       return false;
12201     unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue());
12202     APFloat Val(0.0);
12203     return EvaluateFloat(E->getArg(0), Val, Info) &&
12204            Success((Val.classify() & Test) ? 1 : 0, E);
12205   }
12206 
12207   case Builtin::BI__builtin_parity:
12208   case Builtin::BI__builtin_parityl:
12209   case Builtin::BI__builtin_parityll: {
12210     APSInt Val;
12211     if (!EvaluateInteger(E->getArg(0), Val, Info))
12212       return false;
12213 
12214     return Success(Val.popcount() % 2, E);
12215   }
12216 
12217   case Builtin::BI__builtin_popcount:
12218   case Builtin::BI__builtin_popcountl:
12219   case Builtin::BI__builtin_popcountll: {
12220     APSInt Val;
12221     if (!EvaluateInteger(E->getArg(0), Val, Info))
12222       return false;
12223 
12224     return Success(Val.popcount(), E);
12225   }
12226 
12227   case Builtin::BI__builtin_rotateleft8:
12228   case Builtin::BI__builtin_rotateleft16:
12229   case Builtin::BI__builtin_rotateleft32:
12230   case Builtin::BI__builtin_rotateleft64:
12231   case Builtin::BI_rotl8: // Microsoft variants of rotate right
12232   case Builtin::BI_rotl16:
12233   case Builtin::BI_rotl:
12234   case Builtin::BI_lrotl:
12235   case Builtin::BI_rotl64: {
12236     APSInt Val, Amt;
12237     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12238         !EvaluateInteger(E->getArg(1), Amt, Info))
12239       return false;
12240 
12241     return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
12242   }
12243 
12244   case Builtin::BI__builtin_rotateright8:
12245   case Builtin::BI__builtin_rotateright16:
12246   case Builtin::BI__builtin_rotateright32:
12247   case Builtin::BI__builtin_rotateright64:
12248   case Builtin::BI_rotr8: // Microsoft variants of rotate right
12249   case Builtin::BI_rotr16:
12250   case Builtin::BI_rotr:
12251   case Builtin::BI_lrotr:
12252   case Builtin::BI_rotr64: {
12253     APSInt Val, Amt;
12254     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12255         !EvaluateInteger(E->getArg(1), Amt, Info))
12256       return false;
12257 
12258     return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
12259   }
12260 
12261   case Builtin::BIstrlen:
12262   case Builtin::BIwcslen:
12263     // A call to strlen is not a constant expression.
12264     if (Info.getLangOpts().CPlusPlus11)
12265       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12266           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12267           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12268     else
12269       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12270     [[fallthrough]];
12271   case Builtin::BI__builtin_strlen:
12272   case Builtin::BI__builtin_wcslen: {
12273     // As an extension, we support __builtin_strlen() as a constant expression,
12274     // and support folding strlen() to a constant.
12275     uint64_t StrLen;
12276     if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
12277       return Success(StrLen, E);
12278     return false;
12279   }
12280 
12281   case Builtin::BIstrcmp:
12282   case Builtin::BIwcscmp:
12283   case Builtin::BIstrncmp:
12284   case Builtin::BIwcsncmp:
12285   case Builtin::BImemcmp:
12286   case Builtin::BIbcmp:
12287   case Builtin::BIwmemcmp:
12288     // A call to strlen is not a constant expression.
12289     if (Info.getLangOpts().CPlusPlus11)
12290       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12291           << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12292           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12293     else
12294       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12295     [[fallthrough]];
12296   case Builtin::BI__builtin_strcmp:
12297   case Builtin::BI__builtin_wcscmp:
12298   case Builtin::BI__builtin_strncmp:
12299   case Builtin::BI__builtin_wcsncmp:
12300   case Builtin::BI__builtin_memcmp:
12301   case Builtin::BI__builtin_bcmp:
12302   case Builtin::BI__builtin_wmemcmp: {
12303     LValue String1, String2;
12304     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12305         !EvaluatePointer(E->getArg(1), String2, Info))
12306       return false;
12307 
12308     uint64_t MaxLength = uint64_t(-1);
12309     if (BuiltinOp != Builtin::BIstrcmp &&
12310         BuiltinOp != Builtin::BIwcscmp &&
12311         BuiltinOp != Builtin::BI__builtin_strcmp &&
12312         BuiltinOp != Builtin::BI__builtin_wcscmp) {
12313       APSInt N;
12314       if (!EvaluateInteger(E->getArg(2), N, Info))
12315         return false;
12316       MaxLength = N.getExtValue();
12317     }
12318 
12319     // Empty substrings compare equal by definition.
12320     if (MaxLength == 0u)
12321       return Success(0, E);
12322 
12323     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12324         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12325         String1.Designator.Invalid || String2.Designator.Invalid)
12326       return false;
12327 
12328     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12329     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12330 
12331     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12332                      BuiltinOp == Builtin::BIbcmp ||
12333                      BuiltinOp == Builtin::BI__builtin_memcmp ||
12334                      BuiltinOp == Builtin::BI__builtin_bcmp;
12335 
12336     assert(IsRawByte ||
12337            (Info.Ctx.hasSameUnqualifiedType(
12338                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12339             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12340 
12341     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12342     // 'char8_t', but no other types.
12343     if (IsRawByte &&
12344         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12345       // FIXME: Consider using our bit_cast implementation to support this.
12346       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12347           << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
12348           << CharTy1 << CharTy2;
12349       return false;
12350     }
12351 
12352     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12353       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12354              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12355              Char1.isInt() && Char2.isInt();
12356     };
12357     const auto &AdvanceElems = [&] {
12358       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12359              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12360     };
12361 
12362     bool StopAtNull =
12363         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12364          BuiltinOp != Builtin::BIwmemcmp &&
12365          BuiltinOp != Builtin::BI__builtin_memcmp &&
12366          BuiltinOp != Builtin::BI__builtin_bcmp &&
12367          BuiltinOp != Builtin::BI__builtin_wmemcmp);
12368     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12369                   BuiltinOp == Builtin::BIwcsncmp ||
12370                   BuiltinOp == Builtin::BIwmemcmp ||
12371                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
12372                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12373                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
12374 
12375     for (; MaxLength; --MaxLength) {
12376       APValue Char1, Char2;
12377       if (!ReadCurElems(Char1, Char2))
12378         return false;
12379       if (Char1.getInt().ne(Char2.getInt())) {
12380         if (IsWide) // wmemcmp compares with wchar_t signedness.
12381           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12382         // memcmp always compares unsigned chars.
12383         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12384       }
12385       if (StopAtNull && !Char1.getInt())
12386         return Success(0, E);
12387       assert(!(StopAtNull && !Char2.getInt()));
12388       if (!AdvanceElems())
12389         return false;
12390     }
12391     // We hit the strncmp / memcmp limit.
12392     return Success(0, E);
12393   }
12394 
12395   case Builtin::BI__atomic_always_lock_free:
12396   case Builtin::BI__atomic_is_lock_free:
12397   case Builtin::BI__c11_atomic_is_lock_free: {
12398     APSInt SizeVal;
12399     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12400       return false;
12401 
12402     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12403     // of two less than or equal to the maximum inline atomic width, we know it
12404     // is lock-free.  If the size isn't a power of two, or greater than the
12405     // maximum alignment where we promote atomics, we know it is not lock-free
12406     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
12407     // the answer can only be determined at runtime; for example, 16-byte
12408     // atomics have lock-free implementations on some, but not all,
12409     // x86-64 processors.
12410 
12411     // Check power-of-two.
12412     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12413     if (Size.isPowerOfTwo()) {
12414       // Check against inlining width.
12415       unsigned InlineWidthBits =
12416           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12417       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12418         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12419             Size == CharUnits::One() ||
12420             E->getArg(1)->isNullPointerConstant(Info.Ctx,
12421                                                 Expr::NPC_NeverValueDependent))
12422           // OK, we will inline appropriately-aligned operations of this size,
12423           // and _Atomic(T) is appropriately-aligned.
12424           return Success(1, E);
12425 
12426         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12427           castAs<PointerType>()->getPointeeType();
12428         if (!PointeeType->isIncompleteType() &&
12429             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12430           // OK, we will inline operations on this object.
12431           return Success(1, E);
12432         }
12433       }
12434     }
12435 
12436     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12437         Success(0, E) : Error(E);
12438   }
12439   case Builtin::BI__builtin_add_overflow:
12440   case Builtin::BI__builtin_sub_overflow:
12441   case Builtin::BI__builtin_mul_overflow:
12442   case Builtin::BI__builtin_sadd_overflow:
12443   case Builtin::BI__builtin_uadd_overflow:
12444   case Builtin::BI__builtin_uaddl_overflow:
12445   case Builtin::BI__builtin_uaddll_overflow:
12446   case Builtin::BI__builtin_usub_overflow:
12447   case Builtin::BI__builtin_usubl_overflow:
12448   case Builtin::BI__builtin_usubll_overflow:
12449   case Builtin::BI__builtin_umul_overflow:
12450   case Builtin::BI__builtin_umull_overflow:
12451   case Builtin::BI__builtin_umulll_overflow:
12452   case Builtin::BI__builtin_saddl_overflow:
12453   case Builtin::BI__builtin_saddll_overflow:
12454   case Builtin::BI__builtin_ssub_overflow:
12455   case Builtin::BI__builtin_ssubl_overflow:
12456   case Builtin::BI__builtin_ssubll_overflow:
12457   case Builtin::BI__builtin_smul_overflow:
12458   case Builtin::BI__builtin_smull_overflow:
12459   case Builtin::BI__builtin_smulll_overflow: {
12460     LValue ResultLValue;
12461     APSInt LHS, RHS;
12462 
12463     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12464     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12465         !EvaluateInteger(E->getArg(1), RHS, Info) ||
12466         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12467       return false;
12468 
12469     APSInt Result;
12470     bool DidOverflow = false;
12471 
12472     // If the types don't have to match, enlarge all 3 to the largest of them.
12473     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12474         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12475         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12476       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12477                       ResultType->isSignedIntegerOrEnumerationType();
12478       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12479                       ResultType->isSignedIntegerOrEnumerationType();
12480       uint64_t LHSSize = LHS.getBitWidth();
12481       uint64_t RHSSize = RHS.getBitWidth();
12482       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12483       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12484 
12485       // Add an additional bit if the signedness isn't uniformly agreed to. We
12486       // could do this ONLY if there is a signed and an unsigned that both have
12487       // MaxBits, but the code to check that is pretty nasty.  The issue will be
12488       // caught in the shrink-to-result later anyway.
12489       if (IsSigned && !AllSigned)
12490         ++MaxBits;
12491 
12492       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12493       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12494       Result = APSInt(MaxBits, !IsSigned);
12495     }
12496 
12497     // Find largest int.
12498     switch (BuiltinOp) {
12499     default:
12500       llvm_unreachable("Invalid value for BuiltinOp");
12501     case Builtin::BI__builtin_add_overflow:
12502     case Builtin::BI__builtin_sadd_overflow:
12503     case Builtin::BI__builtin_saddl_overflow:
12504     case Builtin::BI__builtin_saddll_overflow:
12505     case Builtin::BI__builtin_uadd_overflow:
12506     case Builtin::BI__builtin_uaddl_overflow:
12507     case Builtin::BI__builtin_uaddll_overflow:
12508       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12509                               : LHS.uadd_ov(RHS, DidOverflow);
12510       break;
12511     case Builtin::BI__builtin_sub_overflow:
12512     case Builtin::BI__builtin_ssub_overflow:
12513     case Builtin::BI__builtin_ssubl_overflow:
12514     case Builtin::BI__builtin_ssubll_overflow:
12515     case Builtin::BI__builtin_usub_overflow:
12516     case Builtin::BI__builtin_usubl_overflow:
12517     case Builtin::BI__builtin_usubll_overflow:
12518       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12519                               : LHS.usub_ov(RHS, DidOverflow);
12520       break;
12521     case Builtin::BI__builtin_mul_overflow:
12522     case Builtin::BI__builtin_smul_overflow:
12523     case Builtin::BI__builtin_smull_overflow:
12524     case Builtin::BI__builtin_smulll_overflow:
12525     case Builtin::BI__builtin_umul_overflow:
12526     case Builtin::BI__builtin_umull_overflow:
12527     case Builtin::BI__builtin_umulll_overflow:
12528       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12529                               : LHS.umul_ov(RHS, DidOverflow);
12530       break;
12531     }
12532 
12533     // In the case where multiple sizes are allowed, truncate and see if
12534     // the values are the same.
12535     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12536         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12537         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12538       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12539       // since it will give us the behavior of a TruncOrSelf in the case where
12540       // its parameter <= its size.  We previously set Result to be at least the
12541       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12542       // will work exactly like TruncOrSelf.
12543       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12544       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12545 
12546       if (!APSInt::isSameValue(Temp, Result))
12547         DidOverflow = true;
12548       Result = Temp;
12549     }
12550 
12551     APValue APV{Result};
12552     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12553       return false;
12554     return Success(DidOverflow, E);
12555   }
12556   }
12557 }
12558 
12559 /// Determine whether this is a pointer past the end of the complete
12560 /// object referred to by the lvalue.
12561 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12562                                             const LValue &LV) {
12563   // A null pointer can be viewed as being "past the end" but we don't
12564   // choose to look at it that way here.
12565   if (!LV.getLValueBase())
12566     return false;
12567 
12568   // If the designator is valid and refers to a subobject, we're not pointing
12569   // past the end.
12570   if (!LV.getLValueDesignator().Invalid &&
12571       !LV.getLValueDesignator().isOnePastTheEnd())
12572     return false;
12573 
12574   // A pointer to an incomplete type might be past-the-end if the type's size is
12575   // zero.  We cannot tell because the type is incomplete.
12576   QualType Ty = getType(LV.getLValueBase());
12577   if (Ty->isIncompleteType())
12578     return true;
12579 
12580   // We're a past-the-end pointer if we point to the byte after the object,
12581   // no matter what our type or path is.
12582   auto Size = Ctx.getTypeSizeInChars(Ty);
12583   return LV.getLValueOffset() == Size;
12584 }
12585 
12586 namespace {
12587 
12588 /// Data recursive integer evaluator of certain binary operators.
12589 ///
12590 /// We use a data recursive algorithm for binary operators so that we are able
12591 /// to handle extreme cases of chained binary operators without causing stack
12592 /// overflow.
12593 class DataRecursiveIntBinOpEvaluator {
12594   struct EvalResult {
12595     APValue Val;
12596     bool Failed;
12597 
12598     EvalResult() : Failed(false) { }
12599 
12600     void swap(EvalResult &RHS) {
12601       Val.swap(RHS.Val);
12602       Failed = RHS.Failed;
12603       RHS.Failed = false;
12604     }
12605   };
12606 
12607   struct Job {
12608     const Expr *E;
12609     EvalResult LHSResult; // meaningful only for binary operator expression.
12610     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12611 
12612     Job() = default;
12613     Job(Job &&) = default;
12614 
12615     void startSpeculativeEval(EvalInfo &Info) {
12616       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12617     }
12618 
12619   private:
12620     SpeculativeEvaluationRAII SpecEvalRAII;
12621   };
12622 
12623   SmallVector<Job, 16> Queue;
12624 
12625   IntExprEvaluator &IntEval;
12626   EvalInfo &Info;
12627   APValue &FinalResult;
12628 
12629 public:
12630   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12631     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12632 
12633   /// True if \param E is a binary operator that we are going to handle
12634   /// data recursively.
12635   /// We handle binary operators that are comma, logical, or that have operands
12636   /// with integral or enumeration type.
12637   static bool shouldEnqueue(const BinaryOperator *E) {
12638     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12639            (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12640             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12641             E->getRHS()->getType()->isIntegralOrEnumerationType());
12642   }
12643 
12644   bool Traverse(const BinaryOperator *E) {
12645     enqueue(E);
12646     EvalResult PrevResult;
12647     while (!Queue.empty())
12648       process(PrevResult);
12649 
12650     if (PrevResult.Failed) return false;
12651 
12652     FinalResult.swap(PrevResult.Val);
12653     return true;
12654   }
12655 
12656 private:
12657   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12658     return IntEval.Success(Value, E, Result);
12659   }
12660   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12661     return IntEval.Success(Value, E, Result);
12662   }
12663   bool Error(const Expr *E) {
12664     return IntEval.Error(E);
12665   }
12666   bool Error(const Expr *E, diag::kind D) {
12667     return IntEval.Error(E, D);
12668   }
12669 
12670   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12671     return Info.CCEDiag(E, D);
12672   }
12673 
12674   // Returns true if visiting the RHS is necessary, false otherwise.
12675   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12676                          bool &SuppressRHSDiags);
12677 
12678   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12679                   const BinaryOperator *E, APValue &Result);
12680 
12681   void EvaluateExpr(const Expr *E, EvalResult &Result) {
12682     Result.Failed = !Evaluate(Result.Val, Info, E);
12683     if (Result.Failed)
12684       Result.Val = APValue();
12685   }
12686 
12687   void process(EvalResult &Result);
12688 
12689   void enqueue(const Expr *E) {
12690     E = E->IgnoreParens();
12691     Queue.resize(Queue.size()+1);
12692     Queue.back().E = E;
12693     Queue.back().Kind = Job::AnyExprKind;
12694   }
12695 };
12696 
12697 }
12698 
12699 bool DataRecursiveIntBinOpEvaluator::
12700        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12701                          bool &SuppressRHSDiags) {
12702   if (E->getOpcode() == BO_Comma) {
12703     // Ignore LHS but note if we could not evaluate it.
12704     if (LHSResult.Failed)
12705       return Info.noteSideEffect();
12706     return true;
12707   }
12708 
12709   if (E->isLogicalOp()) {
12710     bool LHSAsBool;
12711     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12712       // We were able to evaluate the LHS, see if we can get away with not
12713       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12714       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12715         Success(LHSAsBool, E, LHSResult.Val);
12716         return false; // Ignore RHS
12717       }
12718     } else {
12719       LHSResult.Failed = true;
12720 
12721       // Since we weren't able to evaluate the left hand side, it
12722       // might have had side effects.
12723       if (!Info.noteSideEffect())
12724         return false;
12725 
12726       // We can't evaluate the LHS; however, sometimes the result
12727       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12728       // Don't ignore RHS and suppress diagnostics from this arm.
12729       SuppressRHSDiags = true;
12730     }
12731 
12732     return true;
12733   }
12734 
12735   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12736          E->getRHS()->getType()->isIntegralOrEnumerationType());
12737 
12738   if (LHSResult.Failed && !Info.noteFailure())
12739     return false; // Ignore RHS;
12740 
12741   return true;
12742 }
12743 
12744 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12745                                     bool IsSub) {
12746   // Compute the new offset in the appropriate width, wrapping at 64 bits.
12747   // FIXME: When compiling for a 32-bit target, we should use 32-bit
12748   // offsets.
12749   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12750   CharUnits &Offset = LVal.getLValueOffset();
12751   uint64_t Offset64 = Offset.getQuantity();
12752   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12753   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12754                                          : Offset64 + Index64);
12755 }
12756 
12757 bool DataRecursiveIntBinOpEvaluator::
12758        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12759                   const BinaryOperator *E, APValue &Result) {
12760   if (E->getOpcode() == BO_Comma) {
12761     if (RHSResult.Failed)
12762       return false;
12763     Result = RHSResult.Val;
12764     return true;
12765   }
12766 
12767   if (E->isLogicalOp()) {
12768     bool lhsResult, rhsResult;
12769     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12770     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12771 
12772     if (LHSIsOK) {
12773       if (RHSIsOK) {
12774         if (E->getOpcode() == BO_LOr)
12775           return Success(lhsResult || rhsResult, E, Result);
12776         else
12777           return Success(lhsResult && rhsResult, E, Result);
12778       }
12779     } else {
12780       if (RHSIsOK) {
12781         // We can't evaluate the LHS; however, sometimes the result
12782         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12783         if (rhsResult == (E->getOpcode() == BO_LOr))
12784           return Success(rhsResult, E, Result);
12785       }
12786     }
12787 
12788     return false;
12789   }
12790 
12791   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12792          E->getRHS()->getType()->isIntegralOrEnumerationType());
12793 
12794   if (LHSResult.Failed || RHSResult.Failed)
12795     return false;
12796 
12797   const APValue &LHSVal = LHSResult.Val;
12798   const APValue &RHSVal = RHSResult.Val;
12799 
12800   // Handle cases like (unsigned long)&a + 4.
12801   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12802     Result = LHSVal;
12803     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12804     return true;
12805   }
12806 
12807   // Handle cases like 4 + (unsigned long)&a
12808   if (E->getOpcode() == BO_Add &&
12809       RHSVal.isLValue() && LHSVal.isInt()) {
12810     Result = RHSVal;
12811     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12812     return true;
12813   }
12814 
12815   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12816     // Handle (intptr_t)&&A - (intptr_t)&&B.
12817     if (!LHSVal.getLValueOffset().isZero() ||
12818         !RHSVal.getLValueOffset().isZero())
12819       return false;
12820     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12821     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12822     if (!LHSExpr || !RHSExpr)
12823       return false;
12824     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12825     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12826     if (!LHSAddrExpr || !RHSAddrExpr)
12827       return false;
12828     // Make sure both labels come from the same function.
12829     if (LHSAddrExpr->getLabel()->getDeclContext() !=
12830         RHSAddrExpr->getLabel()->getDeclContext())
12831       return false;
12832     Result = APValue(LHSAddrExpr, RHSAddrExpr);
12833     return true;
12834   }
12835 
12836   // All the remaining cases expect both operands to be an integer
12837   if (!LHSVal.isInt() || !RHSVal.isInt())
12838     return Error(E);
12839 
12840   // Set up the width and signedness manually, in case it can't be deduced
12841   // from the operation we're performing.
12842   // FIXME: Don't do this in the cases where we can deduce it.
12843   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12844                E->getType()->isUnsignedIntegerOrEnumerationType());
12845   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12846                          RHSVal.getInt(), Value))
12847     return false;
12848   return Success(Value, E, Result);
12849 }
12850 
12851 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12852   Job &job = Queue.back();
12853 
12854   switch (job.Kind) {
12855     case Job::AnyExprKind: {
12856       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12857         if (shouldEnqueue(Bop)) {
12858           job.Kind = Job::BinOpKind;
12859           enqueue(Bop->getLHS());
12860           return;
12861         }
12862       }
12863 
12864       EvaluateExpr(job.E, Result);
12865       Queue.pop_back();
12866       return;
12867     }
12868 
12869     case Job::BinOpKind: {
12870       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12871       bool SuppressRHSDiags = false;
12872       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12873         Queue.pop_back();
12874         return;
12875       }
12876       if (SuppressRHSDiags)
12877         job.startSpeculativeEval(Info);
12878       job.LHSResult.swap(Result);
12879       job.Kind = Job::BinOpVisitedLHSKind;
12880       enqueue(Bop->getRHS());
12881       return;
12882     }
12883 
12884     case Job::BinOpVisitedLHSKind: {
12885       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12886       EvalResult RHS;
12887       RHS.swap(Result);
12888       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12889       Queue.pop_back();
12890       return;
12891     }
12892   }
12893 
12894   llvm_unreachable("Invalid Job::Kind!");
12895 }
12896 
12897 namespace {
12898 enum class CmpResult {
12899   Unequal,
12900   Less,
12901   Equal,
12902   Greater,
12903   Unordered,
12904 };
12905 }
12906 
12907 template <class SuccessCB, class AfterCB>
12908 static bool
12909 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12910                                  SuccessCB &&Success, AfterCB &&DoAfter) {
12911   assert(!E->isValueDependent());
12912   assert(E->isComparisonOp() && "expected comparison operator");
12913   assert((E->getOpcode() == BO_Cmp ||
12914           E->getType()->isIntegralOrEnumerationType()) &&
12915          "unsupported binary expression evaluation");
12916   auto Error = [&](const Expr *E) {
12917     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12918     return false;
12919   };
12920 
12921   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12922   bool IsEquality = E->isEqualityOp();
12923 
12924   QualType LHSTy = E->getLHS()->getType();
12925   QualType RHSTy = E->getRHS()->getType();
12926 
12927   if (LHSTy->isIntegralOrEnumerationType() &&
12928       RHSTy->isIntegralOrEnumerationType()) {
12929     APSInt LHS, RHS;
12930     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12931     if (!LHSOK && !Info.noteFailure())
12932       return false;
12933     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12934       return false;
12935     if (LHS < RHS)
12936       return Success(CmpResult::Less, E);
12937     if (LHS > RHS)
12938       return Success(CmpResult::Greater, E);
12939     return Success(CmpResult::Equal, E);
12940   }
12941 
12942   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12943     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12944     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12945 
12946     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12947     if (!LHSOK && !Info.noteFailure())
12948       return false;
12949     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12950       return false;
12951     if (LHSFX < RHSFX)
12952       return Success(CmpResult::Less, E);
12953     if (LHSFX > RHSFX)
12954       return Success(CmpResult::Greater, E);
12955     return Success(CmpResult::Equal, E);
12956   }
12957 
12958   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12959     ComplexValue LHS, RHS;
12960     bool LHSOK;
12961     if (E->isAssignmentOp()) {
12962       LValue LV;
12963       EvaluateLValue(E->getLHS(), LV, Info);
12964       LHSOK = false;
12965     } else if (LHSTy->isRealFloatingType()) {
12966       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12967       if (LHSOK) {
12968         LHS.makeComplexFloat();
12969         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12970       }
12971     } else {
12972       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12973     }
12974     if (!LHSOK && !Info.noteFailure())
12975       return false;
12976 
12977     if (E->getRHS()->getType()->isRealFloatingType()) {
12978       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12979         return false;
12980       RHS.makeComplexFloat();
12981       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12982     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12983       return false;
12984 
12985     if (LHS.isComplexFloat()) {
12986       APFloat::cmpResult CR_r =
12987         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12988       APFloat::cmpResult CR_i =
12989         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12990       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12991       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12992     } else {
12993       assert(IsEquality && "invalid complex comparison");
12994       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12995                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
12996       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12997     }
12998   }
12999 
13000   if (LHSTy->isRealFloatingType() &&
13001       RHSTy->isRealFloatingType()) {
13002     APFloat RHS(0.0), LHS(0.0);
13003 
13004     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
13005     if (!LHSOK && !Info.noteFailure())
13006       return false;
13007 
13008     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
13009       return false;
13010 
13011     assert(E->isComparisonOp() && "Invalid binary operator!");
13012     llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
13013     if (!Info.InConstantContext &&
13014         APFloatCmpResult == APFloat::cmpUnordered &&
13015         E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
13016       // Note: Compares may raise invalid in some cases involving NaN or sNaN.
13017       Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
13018       return false;
13019     }
13020     auto GetCmpRes = [&]() {
13021       switch (APFloatCmpResult) {
13022       case APFloat::cmpEqual:
13023         return CmpResult::Equal;
13024       case APFloat::cmpLessThan:
13025         return CmpResult::Less;
13026       case APFloat::cmpGreaterThan:
13027         return CmpResult::Greater;
13028       case APFloat::cmpUnordered:
13029         return CmpResult::Unordered;
13030       }
13031       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
13032     };
13033     return Success(GetCmpRes(), E);
13034   }
13035 
13036   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
13037     LValue LHSValue, RHSValue;
13038 
13039     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13040     if (!LHSOK && !Info.noteFailure())
13041       return false;
13042 
13043     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13044       return false;
13045 
13046     // Reject differing bases from the normal codepath; we special-case
13047     // comparisons to null.
13048     if (!HasSameBase(LHSValue, RHSValue)) {
13049       auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
13050         std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType());
13051         std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType());
13052         Info.FFDiag(E, DiagID)
13053             << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
13054         return false;
13055       };
13056       // Inequalities and subtractions between unrelated pointers have
13057       // unspecified or undefined behavior.
13058       if (!IsEquality)
13059         return DiagComparison(
13060             diag::note_constexpr_pointer_comparison_unspecified);
13061       // A constant address may compare equal to the address of a symbol.
13062       // The one exception is that address of an object cannot compare equal
13063       // to a null pointer constant.
13064       // TODO: Should we restrict this to actual null pointers, and exclude the
13065       // case of zero cast to pointer type?
13066       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
13067           (!RHSValue.Base && !RHSValue.Offset.isZero()))
13068         return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
13069                               !RHSValue.Base);
13070       // It's implementation-defined whether distinct literals will have
13071       // distinct addresses. In clang, the result of such a comparison is
13072       // unspecified, so it is not a constant expression. However, we do know
13073       // that the address of a literal will be non-null.
13074       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
13075           LHSValue.Base && RHSValue.Base)
13076         return DiagComparison(diag::note_constexpr_literal_comparison);
13077       // We can't tell whether weak symbols will end up pointing to the same
13078       // object.
13079       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
13080         return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
13081                               !IsWeakLValue(LHSValue));
13082       // We can't compare the address of the start of one object with the
13083       // past-the-end address of another object, per C++ DR1652.
13084       if (LHSValue.Base && LHSValue.Offset.isZero() &&
13085           isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
13086         return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13087                               true);
13088       if (RHSValue.Base && RHSValue.Offset.isZero() &&
13089            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
13090         return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13091                               false);
13092       // We can't tell whether an object is at the same address as another
13093       // zero sized object.
13094       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
13095           (LHSValue.Base && isZeroSized(RHSValue)))
13096         return DiagComparison(
13097             diag::note_constexpr_pointer_comparison_zero_sized);
13098       return Success(CmpResult::Unequal, E);
13099     }
13100 
13101     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13102     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13103 
13104     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13105     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13106 
13107     // C++11 [expr.rel]p3:
13108     //   Pointers to void (after pointer conversions) can be compared, with a
13109     //   result defined as follows: If both pointers represent the same
13110     //   address or are both the null pointer value, the result is true if the
13111     //   operator is <= or >= and false otherwise; otherwise the result is
13112     //   unspecified.
13113     // We interpret this as applying to pointers to *cv* void.
13114     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
13115       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
13116 
13117     // C++11 [expr.rel]p2:
13118     // - If two pointers point to non-static data members of the same object,
13119     //   or to subobjects or array elements fo such members, recursively, the
13120     //   pointer to the later declared member compares greater provided the
13121     //   two members have the same access control and provided their class is
13122     //   not a union.
13123     //   [...]
13124     // - Otherwise pointer comparisons are unspecified.
13125     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
13126       bool WasArrayIndex;
13127       unsigned Mismatch = FindDesignatorMismatch(
13128           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
13129       // At the point where the designators diverge, the comparison has a
13130       // specified value if:
13131       //  - we are comparing array indices
13132       //  - we are comparing fields of a union, or fields with the same access
13133       // Otherwise, the result is unspecified and thus the comparison is not a
13134       // constant expression.
13135       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
13136           Mismatch < RHSDesignator.Entries.size()) {
13137         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
13138         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
13139         if (!LF && !RF)
13140           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
13141         else if (!LF)
13142           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13143               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
13144               << RF->getParent() << RF;
13145         else if (!RF)
13146           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13147               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
13148               << LF->getParent() << LF;
13149         else if (!LF->getParent()->isUnion() &&
13150                  LF->getAccess() != RF->getAccess())
13151           Info.CCEDiag(E,
13152                        diag::note_constexpr_pointer_comparison_differing_access)
13153               << LF << LF->getAccess() << RF << RF->getAccess()
13154               << LF->getParent();
13155       }
13156     }
13157 
13158     // The comparison here must be unsigned, and performed with the same
13159     // width as the pointer.
13160     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
13161     uint64_t CompareLHS = LHSOffset.getQuantity();
13162     uint64_t CompareRHS = RHSOffset.getQuantity();
13163     assert(PtrSize <= 64 && "Unexpected pointer width");
13164     uint64_t Mask = ~0ULL >> (64 - PtrSize);
13165     CompareLHS &= Mask;
13166     CompareRHS &= Mask;
13167 
13168     // If there is a base and this is a relational operator, we can only
13169     // compare pointers within the object in question; otherwise, the result
13170     // depends on where the object is located in memory.
13171     if (!LHSValue.Base.isNull() && IsRelational) {
13172       QualType BaseTy = getType(LHSValue.Base);
13173       if (BaseTy->isIncompleteType())
13174         return Error(E);
13175       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
13176       uint64_t OffsetLimit = Size.getQuantity();
13177       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13178         return Error(E);
13179     }
13180 
13181     if (CompareLHS < CompareRHS)
13182       return Success(CmpResult::Less, E);
13183     if (CompareLHS > CompareRHS)
13184       return Success(CmpResult::Greater, E);
13185     return Success(CmpResult::Equal, E);
13186   }
13187 
13188   if (LHSTy->isMemberPointerType()) {
13189     assert(IsEquality && "unexpected member pointer operation");
13190     assert(RHSTy->isMemberPointerType() && "invalid comparison");
13191 
13192     MemberPtr LHSValue, RHSValue;
13193 
13194     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
13195     if (!LHSOK && !Info.noteFailure())
13196       return false;
13197 
13198     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13199       return false;
13200 
13201     // If either operand is a pointer to a weak function, the comparison is not
13202     // constant.
13203     if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
13204       Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13205           << LHSValue.getDecl();
13206       return false;
13207     }
13208     if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
13209       Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13210           << RHSValue.getDecl();
13211       return false;
13212     }
13213 
13214     // C++11 [expr.eq]p2:
13215     //   If both operands are null, they compare equal. Otherwise if only one is
13216     //   null, they compare unequal.
13217     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13218       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13219       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13220     }
13221 
13222     //   Otherwise if either is a pointer to a virtual member function, the
13223     //   result is unspecified.
13224     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13225       if (MD->isVirtual())
13226         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13227     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13228       if (MD->isVirtual())
13229         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13230 
13231     //   Otherwise they compare equal if and only if they would refer to the
13232     //   same member of the same most derived object or the same subobject if
13233     //   they were dereferenced with a hypothetical object of the associated
13234     //   class type.
13235     bool Equal = LHSValue == RHSValue;
13236     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13237   }
13238 
13239   if (LHSTy->isNullPtrType()) {
13240     assert(E->isComparisonOp() && "unexpected nullptr operation");
13241     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13242     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13243     // are compared, the result is true of the operator is <=, >= or ==, and
13244     // false otherwise.
13245     return Success(CmpResult::Equal, E);
13246   }
13247 
13248   return DoAfter();
13249 }
13250 
13251 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13252   if (!CheckLiteralType(Info, E))
13253     return false;
13254 
13255   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13256     ComparisonCategoryResult CCR;
13257     switch (CR) {
13258     case CmpResult::Unequal:
13259       llvm_unreachable("should never produce Unequal for three-way comparison");
13260     case CmpResult::Less:
13261       CCR = ComparisonCategoryResult::Less;
13262       break;
13263     case CmpResult::Equal:
13264       CCR = ComparisonCategoryResult::Equal;
13265       break;
13266     case CmpResult::Greater:
13267       CCR = ComparisonCategoryResult::Greater;
13268       break;
13269     case CmpResult::Unordered:
13270       CCR = ComparisonCategoryResult::Unordered;
13271       break;
13272     }
13273     // Evaluation succeeded. Lookup the information for the comparison category
13274     // type and fetch the VarDecl for the result.
13275     const ComparisonCategoryInfo &CmpInfo =
13276         Info.Ctx.CompCategories.getInfoForType(E->getType());
13277     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
13278     // Check and evaluate the result as a constant expression.
13279     LValue LV;
13280     LV.set(VD);
13281     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13282       return false;
13283     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13284                                    ConstantExprKind::Normal);
13285   };
13286   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13287     return ExprEvaluatorBaseTy::VisitBinCmp(E);
13288   });
13289 }
13290 
13291 bool RecordExprEvaluator::VisitCXXParenListInitExpr(
13292     const CXXParenListInitExpr *E) {
13293   return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
13294 }
13295 
13296 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13297   // We don't support assignment in C. C++ assignments don't get here because
13298   // assignment is an lvalue in C++.
13299   if (E->isAssignmentOp()) {
13300     Error(E);
13301     if (!Info.noteFailure())
13302       return false;
13303   }
13304 
13305   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13306     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13307 
13308   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13309           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13310          "DataRecursiveIntBinOpEvaluator should have handled integral types");
13311 
13312   if (E->isComparisonOp()) {
13313     // Evaluate builtin binary comparisons by evaluating them as three-way
13314     // comparisons and then translating the result.
13315     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13316       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13317              "should only produce Unequal for equality comparisons");
13318       bool IsEqual   = CR == CmpResult::Equal,
13319            IsLess    = CR == CmpResult::Less,
13320            IsGreater = CR == CmpResult::Greater;
13321       auto Op = E->getOpcode();
13322       switch (Op) {
13323       default:
13324         llvm_unreachable("unsupported binary operator");
13325       case BO_EQ:
13326       case BO_NE:
13327         return Success(IsEqual == (Op == BO_EQ), E);
13328       case BO_LT:
13329         return Success(IsLess, E);
13330       case BO_GT:
13331         return Success(IsGreater, E);
13332       case BO_LE:
13333         return Success(IsEqual || IsLess, E);
13334       case BO_GE:
13335         return Success(IsEqual || IsGreater, E);
13336       }
13337     };
13338     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13339       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13340     });
13341   }
13342 
13343   QualType LHSTy = E->getLHS()->getType();
13344   QualType RHSTy = E->getRHS()->getType();
13345 
13346   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13347       E->getOpcode() == BO_Sub) {
13348     LValue LHSValue, RHSValue;
13349 
13350     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13351     if (!LHSOK && !Info.noteFailure())
13352       return false;
13353 
13354     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13355       return false;
13356 
13357     // Reject differing bases from the normal codepath; we special-case
13358     // comparisons to null.
13359     if (!HasSameBase(LHSValue, RHSValue)) {
13360       // Handle &&A - &&B.
13361       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13362         return Error(E);
13363       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13364       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13365       if (!LHSExpr || !RHSExpr)
13366         return Error(E);
13367       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13368       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13369       if (!LHSAddrExpr || !RHSAddrExpr)
13370         return Error(E);
13371       // Make sure both labels come from the same function.
13372       if (LHSAddrExpr->getLabel()->getDeclContext() !=
13373           RHSAddrExpr->getLabel()->getDeclContext())
13374         return Error(E);
13375       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13376     }
13377     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13378     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13379 
13380     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13381     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13382 
13383     // C++11 [expr.add]p6:
13384     //   Unless both pointers point to elements of the same array object, or
13385     //   one past the last element of the array object, the behavior is
13386     //   undefined.
13387     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13388         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13389                                 RHSDesignator))
13390       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13391 
13392     QualType Type = E->getLHS()->getType();
13393     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13394 
13395     CharUnits ElementSize;
13396     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13397       return false;
13398 
13399     // As an extension, a type may have zero size (empty struct or union in
13400     // C, array of zero length). Pointer subtraction in such cases has
13401     // undefined behavior, so is not constant.
13402     if (ElementSize.isZero()) {
13403       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13404           << ElementType;
13405       return false;
13406     }
13407 
13408     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13409     // and produce incorrect results when it overflows. Such behavior
13410     // appears to be non-conforming, but is common, so perhaps we should
13411     // assume the standard intended for such cases to be undefined behavior
13412     // and check for them.
13413 
13414     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13415     // overflow in the final conversion to ptrdiff_t.
13416     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13417     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13418     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13419                     false);
13420     APSInt TrueResult = (LHS - RHS) / ElemSize;
13421     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13422 
13423     if (Result.extend(65) != TrueResult &&
13424         !HandleOverflow(Info, E, TrueResult, E->getType()))
13425       return false;
13426     return Success(Result, E);
13427   }
13428 
13429   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13430 }
13431 
13432 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13433 /// a result as the expression's type.
13434 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13435                                     const UnaryExprOrTypeTraitExpr *E) {
13436   switch(E->getKind()) {
13437   case UETT_PreferredAlignOf:
13438   case UETT_AlignOf: {
13439     if (E->isArgumentType())
13440       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13441                      E);
13442     else
13443       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13444                      E);
13445   }
13446 
13447   case UETT_VecStep: {
13448     QualType Ty = E->getTypeOfArgument();
13449 
13450     if (Ty->isVectorType()) {
13451       unsigned n = Ty->castAs<VectorType>()->getNumElements();
13452 
13453       // The vec_step built-in functions that take a 3-component
13454       // vector return 4. (OpenCL 1.1 spec 6.11.12)
13455       if (n == 3)
13456         n = 4;
13457 
13458       return Success(n, E);
13459     } else
13460       return Success(1, E);
13461   }
13462 
13463   case UETT_SizeOf: {
13464     QualType SrcTy = E->getTypeOfArgument();
13465     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13466     //   the result is the size of the referenced type."
13467     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13468       SrcTy = Ref->getPointeeType();
13469 
13470     CharUnits Sizeof;
13471     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13472       return false;
13473     return Success(Sizeof, E);
13474   }
13475   case UETT_OpenMPRequiredSimdAlign:
13476     assert(E->isArgumentType());
13477     return Success(
13478         Info.Ctx.toCharUnitsFromBits(
13479                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13480             .getQuantity(),
13481         E);
13482   }
13483 
13484   llvm_unreachable("unknown expr/type trait");
13485 }
13486 
13487 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13488   CharUnits Result;
13489   unsigned n = OOE->getNumComponents();
13490   if (n == 0)
13491     return Error(OOE);
13492   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13493   for (unsigned i = 0; i != n; ++i) {
13494     OffsetOfNode ON = OOE->getComponent(i);
13495     switch (ON.getKind()) {
13496     case OffsetOfNode::Array: {
13497       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13498       APSInt IdxResult;
13499       if (!EvaluateInteger(Idx, IdxResult, Info))
13500         return false;
13501       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13502       if (!AT)
13503         return Error(OOE);
13504       CurrentType = AT->getElementType();
13505       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13506       Result += IdxResult.getSExtValue() * ElementSize;
13507       break;
13508     }
13509 
13510     case OffsetOfNode::Field: {
13511       FieldDecl *MemberDecl = ON.getField();
13512       const RecordType *RT = CurrentType->getAs<RecordType>();
13513       if (!RT)
13514         return Error(OOE);
13515       RecordDecl *RD = RT->getDecl();
13516       if (RD->isInvalidDecl()) return false;
13517       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13518       unsigned i = MemberDecl->getFieldIndex();
13519       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13520       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13521       CurrentType = MemberDecl->getType().getNonReferenceType();
13522       break;
13523     }
13524 
13525     case OffsetOfNode::Identifier:
13526       llvm_unreachable("dependent __builtin_offsetof");
13527 
13528     case OffsetOfNode::Base: {
13529       CXXBaseSpecifier *BaseSpec = ON.getBase();
13530       if (BaseSpec->isVirtual())
13531         return Error(OOE);
13532 
13533       // Find the layout of the class whose base we are looking into.
13534       const RecordType *RT = CurrentType->getAs<RecordType>();
13535       if (!RT)
13536         return Error(OOE);
13537       RecordDecl *RD = RT->getDecl();
13538       if (RD->isInvalidDecl()) return false;
13539       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13540 
13541       // Find the base class itself.
13542       CurrentType = BaseSpec->getType();
13543       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13544       if (!BaseRT)
13545         return Error(OOE);
13546 
13547       // Add the offset to the base.
13548       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13549       break;
13550     }
13551     }
13552   }
13553   return Success(Result, OOE);
13554 }
13555 
13556 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13557   switch (E->getOpcode()) {
13558   default:
13559     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13560     // See C99 6.6p3.
13561     return Error(E);
13562   case UO_Extension:
13563     // FIXME: Should extension allow i-c-e extension expressions in its scope?
13564     // If so, we could clear the diagnostic ID.
13565     return Visit(E->getSubExpr());
13566   case UO_Plus:
13567     // The result is just the value.
13568     return Visit(E->getSubExpr());
13569   case UO_Minus: {
13570     if (!Visit(E->getSubExpr()))
13571       return false;
13572     if (!Result.isInt()) return Error(E);
13573     const APSInt &Value = Result.getInt();
13574     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
13575       if (Info.checkingForUndefinedBehavior())
13576         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13577                                          diag::warn_integer_constant_overflow)
13578             << toString(Value, 10) << E->getType();
13579 
13580       if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13581                           E->getType()))
13582         return false;
13583     }
13584     return Success(-Value, E);
13585   }
13586   case UO_Not: {
13587     if (!Visit(E->getSubExpr()))
13588       return false;
13589     if (!Result.isInt()) return Error(E);
13590     return Success(~Result.getInt(), E);
13591   }
13592   case UO_LNot: {
13593     bool bres;
13594     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13595       return false;
13596     return Success(!bres, E);
13597   }
13598   }
13599 }
13600 
13601 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13602 /// result type is integer.
13603 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13604   const Expr *SubExpr = E->getSubExpr();
13605   QualType DestType = E->getType();
13606   QualType SrcType = SubExpr->getType();
13607 
13608   switch (E->getCastKind()) {
13609   case CK_BaseToDerived:
13610   case CK_DerivedToBase:
13611   case CK_UncheckedDerivedToBase:
13612   case CK_Dynamic:
13613   case CK_ToUnion:
13614   case CK_ArrayToPointerDecay:
13615   case CK_FunctionToPointerDecay:
13616   case CK_NullToPointer:
13617   case CK_NullToMemberPointer:
13618   case CK_BaseToDerivedMemberPointer:
13619   case CK_DerivedToBaseMemberPointer:
13620   case CK_ReinterpretMemberPointer:
13621   case CK_ConstructorConversion:
13622   case CK_IntegralToPointer:
13623   case CK_ToVoid:
13624   case CK_VectorSplat:
13625   case CK_IntegralToFloating:
13626   case CK_FloatingCast:
13627   case CK_CPointerToObjCPointerCast:
13628   case CK_BlockPointerToObjCPointerCast:
13629   case CK_AnyPointerToBlockPointerCast:
13630   case CK_ObjCObjectLValueCast:
13631   case CK_FloatingRealToComplex:
13632   case CK_FloatingComplexToReal:
13633   case CK_FloatingComplexCast:
13634   case CK_FloatingComplexToIntegralComplex:
13635   case CK_IntegralRealToComplex:
13636   case CK_IntegralComplexCast:
13637   case CK_IntegralComplexToFloatingComplex:
13638   case CK_BuiltinFnToFnPtr:
13639   case CK_ZeroToOCLOpaqueType:
13640   case CK_NonAtomicToAtomic:
13641   case CK_AddressSpaceConversion:
13642   case CK_IntToOCLSampler:
13643   case CK_FloatingToFixedPoint:
13644   case CK_FixedPointToFloating:
13645   case CK_FixedPointCast:
13646   case CK_IntegralToFixedPoint:
13647   case CK_MatrixCast:
13648     llvm_unreachable("invalid cast kind for integral value");
13649 
13650   case CK_BitCast:
13651   case CK_Dependent:
13652   case CK_LValueBitCast:
13653   case CK_ARCProduceObject:
13654   case CK_ARCConsumeObject:
13655   case CK_ARCReclaimReturnedObject:
13656   case CK_ARCExtendBlockObject:
13657   case CK_CopyAndAutoreleaseBlockObject:
13658     return Error(E);
13659 
13660   case CK_UserDefinedConversion:
13661   case CK_LValueToRValue:
13662   case CK_AtomicToNonAtomic:
13663   case CK_NoOp:
13664   case CK_LValueToRValueBitCast:
13665     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13666 
13667   case CK_MemberPointerToBoolean:
13668   case CK_PointerToBoolean:
13669   case CK_IntegralToBoolean:
13670   case CK_FloatingToBoolean:
13671   case CK_BooleanToSignedIntegral:
13672   case CK_FloatingComplexToBoolean:
13673   case CK_IntegralComplexToBoolean: {
13674     bool BoolResult;
13675     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13676       return false;
13677     uint64_t IntResult = BoolResult;
13678     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13679       IntResult = (uint64_t)-1;
13680     return Success(IntResult, E);
13681   }
13682 
13683   case CK_FixedPointToIntegral: {
13684     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13685     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13686       return false;
13687     bool Overflowed;
13688     llvm::APSInt Result = Src.convertToInt(
13689         Info.Ctx.getIntWidth(DestType),
13690         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13691     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13692       return false;
13693     return Success(Result, E);
13694   }
13695 
13696   case CK_FixedPointToBoolean: {
13697     // Unsigned padding does not affect this.
13698     APValue Val;
13699     if (!Evaluate(Val, Info, SubExpr))
13700       return false;
13701     return Success(Val.getFixedPoint().getBoolValue(), E);
13702   }
13703 
13704   case CK_IntegralCast: {
13705     if (!Visit(SubExpr))
13706       return false;
13707 
13708     if (!Result.isInt()) {
13709       // Allow casts of address-of-label differences if they are no-ops
13710       // or narrowing.  (The narrowing case isn't actually guaranteed to
13711       // be constant-evaluatable except in some narrow cases which are hard
13712       // to detect here.  We let it through on the assumption the user knows
13713       // what they are doing.)
13714       if (Result.isAddrLabelDiff())
13715         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13716       // Only allow casts of lvalues if they are lossless.
13717       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13718     }
13719 
13720     if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext &&
13721         Info.EvalMode == EvalInfo::EM_ConstantExpression &&
13722         DestType->isEnumeralType()) {
13723 
13724       bool ConstexprVar = true;
13725 
13726       // We know if we are here that we are in a context that we might require
13727       // a constant expression or a context that requires a constant
13728       // value. But if we are initializing a value we don't know if it is a
13729       // constexpr variable or not. We can check the EvaluatingDecl to determine
13730       // if it constexpr or not. If not then we don't want to emit a diagnostic.
13731       if (const auto *VD = dyn_cast_or_null<VarDecl>(
13732               Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
13733         ConstexprVar = VD->isConstexpr();
13734 
13735       const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType());
13736       const EnumDecl *ED = ET->getDecl();
13737       // Check that the value is within the range of the enumeration values.
13738       //
13739       // This corressponds to [expr.static.cast]p10 which says:
13740       // A value of integral or enumeration type can be explicitly converted
13741       // to a complete enumeration type ... If the enumeration type does not
13742       // have a fixed underlying type, the value is unchanged if the original
13743       // value is within the range of the enumeration values ([dcl.enum]), and
13744       // otherwise, the behavior is undefined.
13745       //
13746       // This was resolved as part of DR2338 which has CD5 status.
13747       if (!ED->isFixed()) {
13748         llvm::APInt Min;
13749         llvm::APInt Max;
13750 
13751         ED->getValueRange(Max, Min);
13752         --Max;
13753 
13754         if (ED->getNumNegativeBits() && ConstexprVar &&
13755             (Max.slt(Result.getInt().getSExtValue()) ||
13756              Min.sgt(Result.getInt().getSExtValue())))
13757           Info.Ctx.getDiagnostics().Report(
13758               E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
13759               << llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
13760               << Max.getSExtValue() << ED;
13761         else if (!ED->getNumNegativeBits() && ConstexprVar &&
13762                  Max.ult(Result.getInt().getZExtValue()))
13763           Info.Ctx.getDiagnostics().Report(
13764               E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
13765               << llvm::toString(Result.getInt(), 10) << Min.getZExtValue()
13766               << Max.getZExtValue() << ED;
13767       }
13768     }
13769 
13770     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13771                                       Result.getInt()), E);
13772   }
13773 
13774   case CK_PointerToIntegral: {
13775     CCEDiag(E, diag::note_constexpr_invalid_cast)
13776         << 2 << Info.Ctx.getLangOpts().CPlusPlus;
13777 
13778     LValue LV;
13779     if (!EvaluatePointer(SubExpr, LV, Info))
13780       return false;
13781 
13782     if (LV.getLValueBase()) {
13783       // Only allow based lvalue casts if they are lossless.
13784       // FIXME: Allow a larger integer size than the pointer size, and allow
13785       // narrowing back down to pointer width in subsequent integral casts.
13786       // FIXME: Check integer type's active bits, not its type size.
13787       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13788         return Error(E);
13789 
13790       LV.Designator.setInvalid();
13791       LV.moveInto(Result);
13792       return true;
13793     }
13794 
13795     APSInt AsInt;
13796     APValue V;
13797     LV.moveInto(V);
13798     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13799       llvm_unreachable("Can't cast this!");
13800 
13801     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13802   }
13803 
13804   case CK_IntegralComplexToReal: {
13805     ComplexValue C;
13806     if (!EvaluateComplex(SubExpr, C, Info))
13807       return false;
13808     return Success(C.getComplexIntReal(), E);
13809   }
13810 
13811   case CK_FloatingToIntegral: {
13812     APFloat F(0.0);
13813     if (!EvaluateFloat(SubExpr, F, Info))
13814       return false;
13815 
13816     APSInt Value;
13817     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13818       return false;
13819     return Success(Value, E);
13820   }
13821   }
13822 
13823   llvm_unreachable("unknown cast resulting in integral value");
13824 }
13825 
13826 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13827   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13828     ComplexValue LV;
13829     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13830       return false;
13831     if (!LV.isComplexInt())
13832       return Error(E);
13833     return Success(LV.getComplexIntReal(), E);
13834   }
13835 
13836   return Visit(E->getSubExpr());
13837 }
13838 
13839 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13840   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13841     ComplexValue LV;
13842     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13843       return false;
13844     if (!LV.isComplexInt())
13845       return Error(E);
13846     return Success(LV.getComplexIntImag(), E);
13847   }
13848 
13849   VisitIgnoredValue(E->getSubExpr());
13850   return Success(0, E);
13851 }
13852 
13853 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13854   return Success(E->getPackLength(), E);
13855 }
13856 
13857 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13858   return Success(E->getValue(), E);
13859 }
13860 
13861 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13862        const ConceptSpecializationExpr *E) {
13863   return Success(E->isSatisfied(), E);
13864 }
13865 
13866 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13867   return Success(E->isSatisfied(), E);
13868 }
13869 
13870 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13871   switch (E->getOpcode()) {
13872     default:
13873       // Invalid unary operators
13874       return Error(E);
13875     case UO_Plus:
13876       // The result is just the value.
13877       return Visit(E->getSubExpr());
13878     case UO_Minus: {
13879       if (!Visit(E->getSubExpr())) return false;
13880       if (!Result.isFixedPoint())
13881         return Error(E);
13882       bool Overflowed;
13883       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13884       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13885         return false;
13886       return Success(Negated, E);
13887     }
13888     case UO_LNot: {
13889       bool bres;
13890       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13891         return false;
13892       return Success(!bres, E);
13893     }
13894   }
13895 }
13896 
13897 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13898   const Expr *SubExpr = E->getSubExpr();
13899   QualType DestType = E->getType();
13900   assert(DestType->isFixedPointType() &&
13901          "Expected destination type to be a fixed point type");
13902   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13903 
13904   switch (E->getCastKind()) {
13905   case CK_FixedPointCast: {
13906     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13907     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13908       return false;
13909     bool Overflowed;
13910     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13911     if (Overflowed) {
13912       if (Info.checkingForUndefinedBehavior())
13913         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13914                                          diag::warn_fixedpoint_constant_overflow)
13915           << Result.toString() << E->getType();
13916       if (!HandleOverflow(Info, E, Result, E->getType()))
13917         return false;
13918     }
13919     return Success(Result, E);
13920   }
13921   case CK_IntegralToFixedPoint: {
13922     APSInt Src;
13923     if (!EvaluateInteger(SubExpr, Src, Info))
13924       return false;
13925 
13926     bool Overflowed;
13927     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13928         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13929 
13930     if (Overflowed) {
13931       if (Info.checkingForUndefinedBehavior())
13932         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13933                                          diag::warn_fixedpoint_constant_overflow)
13934           << IntResult.toString() << E->getType();
13935       if (!HandleOverflow(Info, E, IntResult, E->getType()))
13936         return false;
13937     }
13938 
13939     return Success(IntResult, E);
13940   }
13941   case CK_FloatingToFixedPoint: {
13942     APFloat Src(0.0);
13943     if (!EvaluateFloat(SubExpr, Src, Info))
13944       return false;
13945 
13946     bool Overflowed;
13947     APFixedPoint Result = APFixedPoint::getFromFloatValue(
13948         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13949 
13950     if (Overflowed) {
13951       if (Info.checkingForUndefinedBehavior())
13952         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13953                                          diag::warn_fixedpoint_constant_overflow)
13954           << Result.toString() << E->getType();
13955       if (!HandleOverflow(Info, E, Result, E->getType()))
13956         return false;
13957     }
13958 
13959     return Success(Result, E);
13960   }
13961   case CK_NoOp:
13962   case CK_LValueToRValue:
13963     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13964   default:
13965     return Error(E);
13966   }
13967 }
13968 
13969 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13970   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13971     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13972 
13973   const Expr *LHS = E->getLHS();
13974   const Expr *RHS = E->getRHS();
13975   FixedPointSemantics ResultFXSema =
13976       Info.Ctx.getFixedPointSemantics(E->getType());
13977 
13978   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13979   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13980     return false;
13981   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13982   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13983     return false;
13984 
13985   bool OpOverflow = false, ConversionOverflow = false;
13986   APFixedPoint Result(LHSFX.getSemantics());
13987   switch (E->getOpcode()) {
13988   case BO_Add: {
13989     Result = LHSFX.add(RHSFX, &OpOverflow)
13990                   .convert(ResultFXSema, &ConversionOverflow);
13991     break;
13992   }
13993   case BO_Sub: {
13994     Result = LHSFX.sub(RHSFX, &OpOverflow)
13995                   .convert(ResultFXSema, &ConversionOverflow);
13996     break;
13997   }
13998   case BO_Mul: {
13999     Result = LHSFX.mul(RHSFX, &OpOverflow)
14000                   .convert(ResultFXSema, &ConversionOverflow);
14001     break;
14002   }
14003   case BO_Div: {
14004     if (RHSFX.getValue() == 0) {
14005       Info.FFDiag(E, diag::note_expr_divide_by_zero);
14006       return false;
14007     }
14008     Result = LHSFX.div(RHSFX, &OpOverflow)
14009                   .convert(ResultFXSema, &ConversionOverflow);
14010     break;
14011   }
14012   case BO_Shl:
14013   case BO_Shr: {
14014     FixedPointSemantics LHSSema = LHSFX.getSemantics();
14015     llvm::APSInt RHSVal = RHSFX.getValue();
14016 
14017     unsigned ShiftBW =
14018         LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
14019     unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
14020     // Embedded-C 4.1.6.2.2:
14021     //   The right operand must be nonnegative and less than the total number
14022     //   of (nonpadding) bits of the fixed-point operand ...
14023     if (RHSVal.isNegative())
14024       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
14025     else if (Amt != RHSVal)
14026       Info.CCEDiag(E, diag::note_constexpr_large_shift)
14027           << RHSVal << E->getType() << ShiftBW;
14028 
14029     if (E->getOpcode() == BO_Shl)
14030       Result = LHSFX.shl(Amt, &OpOverflow);
14031     else
14032       Result = LHSFX.shr(Amt, &OpOverflow);
14033     break;
14034   }
14035   default:
14036     return false;
14037   }
14038   if (OpOverflow || ConversionOverflow) {
14039     if (Info.checkingForUndefinedBehavior())
14040       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14041                                        diag::warn_fixedpoint_constant_overflow)
14042         << Result.toString() << E->getType();
14043     if (!HandleOverflow(Info, E, Result, E->getType()))
14044       return false;
14045   }
14046   return Success(Result, E);
14047 }
14048 
14049 //===----------------------------------------------------------------------===//
14050 // Float Evaluation
14051 //===----------------------------------------------------------------------===//
14052 
14053 namespace {
14054 class FloatExprEvaluator
14055   : public ExprEvaluatorBase<FloatExprEvaluator> {
14056   APFloat &Result;
14057 public:
14058   FloatExprEvaluator(EvalInfo &info, APFloat &result)
14059     : ExprEvaluatorBaseTy(info), Result(result) {}
14060 
14061   bool Success(const APValue &V, const Expr *e) {
14062     Result = V.getFloat();
14063     return true;
14064   }
14065 
14066   bool ZeroInitialization(const Expr *E) {
14067     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
14068     return true;
14069   }
14070 
14071   bool VisitCallExpr(const CallExpr *E);
14072 
14073   bool VisitUnaryOperator(const UnaryOperator *E);
14074   bool VisitBinaryOperator(const BinaryOperator *E);
14075   bool VisitFloatingLiteral(const FloatingLiteral *E);
14076   bool VisitCastExpr(const CastExpr *E);
14077 
14078   bool VisitUnaryReal(const UnaryOperator *E);
14079   bool VisitUnaryImag(const UnaryOperator *E);
14080 
14081   // FIXME: Missing: array subscript of vector, member of vector
14082 };
14083 } // end anonymous namespace
14084 
14085 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
14086   assert(!E->isValueDependent());
14087   assert(E->isPRValue() && E->getType()->isRealFloatingType());
14088   return FloatExprEvaluator(Info, Result).Visit(E);
14089 }
14090 
14091 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
14092                                   QualType ResultTy,
14093                                   const Expr *Arg,
14094                                   bool SNaN,
14095                                   llvm::APFloat &Result) {
14096   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
14097   if (!S) return false;
14098 
14099   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
14100 
14101   llvm::APInt fill;
14102 
14103   // Treat empty strings as if they were zero.
14104   if (S->getString().empty())
14105     fill = llvm::APInt(32, 0);
14106   else if (S->getString().getAsInteger(0, fill))
14107     return false;
14108 
14109   if (Context.getTargetInfo().isNan2008()) {
14110     if (SNaN)
14111       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14112     else
14113       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14114   } else {
14115     // Prior to IEEE 754-2008, architectures were allowed to choose whether
14116     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
14117     // a different encoding to what became a standard in 2008, and for pre-
14118     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
14119     // sNaN. This is now known as "legacy NaN" encoding.
14120     if (SNaN)
14121       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14122     else
14123       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14124   }
14125 
14126   return true;
14127 }
14128 
14129 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
14130   if (!IsConstantEvaluatedBuiltinCall(E))
14131     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14132 
14133   switch (E->getBuiltinCallee()) {
14134   default:
14135     return false;
14136 
14137   case Builtin::BI__builtin_huge_val:
14138   case Builtin::BI__builtin_huge_valf:
14139   case Builtin::BI__builtin_huge_vall:
14140   case Builtin::BI__builtin_huge_valf16:
14141   case Builtin::BI__builtin_huge_valf128:
14142   case Builtin::BI__builtin_inf:
14143   case Builtin::BI__builtin_inff:
14144   case Builtin::BI__builtin_infl:
14145   case Builtin::BI__builtin_inff16:
14146   case Builtin::BI__builtin_inff128: {
14147     const llvm::fltSemantics &Sem =
14148       Info.Ctx.getFloatTypeSemantics(E->getType());
14149     Result = llvm::APFloat::getInf(Sem);
14150     return true;
14151   }
14152 
14153   case Builtin::BI__builtin_nans:
14154   case Builtin::BI__builtin_nansf:
14155   case Builtin::BI__builtin_nansl:
14156   case Builtin::BI__builtin_nansf16:
14157   case Builtin::BI__builtin_nansf128:
14158     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14159                                true, Result))
14160       return Error(E);
14161     return true;
14162 
14163   case Builtin::BI__builtin_nan:
14164   case Builtin::BI__builtin_nanf:
14165   case Builtin::BI__builtin_nanl:
14166   case Builtin::BI__builtin_nanf16:
14167   case Builtin::BI__builtin_nanf128:
14168     // If this is __builtin_nan() turn this into a nan, otherwise we
14169     // can't constant fold it.
14170     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14171                                false, Result))
14172       return Error(E);
14173     return true;
14174 
14175   case Builtin::BI__builtin_fabs:
14176   case Builtin::BI__builtin_fabsf:
14177   case Builtin::BI__builtin_fabsl:
14178   case Builtin::BI__builtin_fabsf128:
14179     // The C standard says "fabs raises no floating-point exceptions,
14180     // even if x is a signaling NaN. The returned value is independent of
14181     // the current rounding direction mode."  Therefore constant folding can
14182     // proceed without regard to the floating point settings.
14183     // Reference, WG14 N2478 F.10.4.3
14184     if (!EvaluateFloat(E->getArg(0), Result, Info))
14185       return false;
14186 
14187     if (Result.isNegative())
14188       Result.changeSign();
14189     return true;
14190 
14191   case Builtin::BI__arithmetic_fence:
14192     return EvaluateFloat(E->getArg(0), Result, Info);
14193 
14194   // FIXME: Builtin::BI__builtin_powi
14195   // FIXME: Builtin::BI__builtin_powif
14196   // FIXME: Builtin::BI__builtin_powil
14197 
14198   case Builtin::BI__builtin_copysign:
14199   case Builtin::BI__builtin_copysignf:
14200   case Builtin::BI__builtin_copysignl:
14201   case Builtin::BI__builtin_copysignf128: {
14202     APFloat RHS(0.);
14203     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14204         !EvaluateFloat(E->getArg(1), RHS, Info))
14205       return false;
14206     Result.copySign(RHS);
14207     return true;
14208   }
14209 
14210   case Builtin::BI__builtin_fmax:
14211   case Builtin::BI__builtin_fmaxf:
14212   case Builtin::BI__builtin_fmaxl:
14213   case Builtin::BI__builtin_fmaxf16:
14214   case Builtin::BI__builtin_fmaxf128: {
14215     // TODO: Handle sNaN.
14216     APFloat RHS(0.);
14217     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14218         !EvaluateFloat(E->getArg(1), RHS, Info))
14219       return false;
14220     // When comparing zeroes, return +0.0 if one of the zeroes is positive.
14221     if (Result.isZero() && RHS.isZero() && Result.isNegative())
14222       Result = RHS;
14223     else if (Result.isNaN() || RHS > Result)
14224       Result = RHS;
14225     return true;
14226   }
14227 
14228   case Builtin::BI__builtin_fmin:
14229   case Builtin::BI__builtin_fminf:
14230   case Builtin::BI__builtin_fminl:
14231   case Builtin::BI__builtin_fminf16:
14232   case Builtin::BI__builtin_fminf128: {
14233     // TODO: Handle sNaN.
14234     APFloat RHS(0.);
14235     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14236         !EvaluateFloat(E->getArg(1), RHS, Info))
14237       return false;
14238     // When comparing zeroes, return -0.0 if one of the zeroes is negative.
14239     if (Result.isZero() && RHS.isZero() && RHS.isNegative())
14240       Result = RHS;
14241     else if (Result.isNaN() || RHS < Result)
14242       Result = RHS;
14243     return true;
14244   }
14245   }
14246 }
14247 
14248 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14249   if (E->getSubExpr()->getType()->isAnyComplexType()) {
14250     ComplexValue CV;
14251     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14252       return false;
14253     Result = CV.FloatReal;
14254     return true;
14255   }
14256 
14257   return Visit(E->getSubExpr());
14258 }
14259 
14260 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14261   if (E->getSubExpr()->getType()->isAnyComplexType()) {
14262     ComplexValue CV;
14263     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14264       return false;
14265     Result = CV.FloatImag;
14266     return true;
14267   }
14268 
14269   VisitIgnoredValue(E->getSubExpr());
14270   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
14271   Result = llvm::APFloat::getZero(Sem);
14272   return true;
14273 }
14274 
14275 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14276   switch (E->getOpcode()) {
14277   default: return Error(E);
14278   case UO_Plus:
14279     return EvaluateFloat(E->getSubExpr(), Result, Info);
14280   case UO_Minus:
14281     // In C standard, WG14 N2478 F.3 p4
14282     // "the unary - raises no floating point exceptions,
14283     // even if the operand is signalling."
14284     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
14285       return false;
14286     Result.changeSign();
14287     return true;
14288   }
14289 }
14290 
14291 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14292   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14293     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14294 
14295   APFloat RHS(0.0);
14296   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
14297   if (!LHSOK && !Info.noteFailure())
14298     return false;
14299   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
14300          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
14301 }
14302 
14303 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14304   Result = E->getValue();
14305   return true;
14306 }
14307 
14308 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14309   const Expr* SubExpr = E->getSubExpr();
14310 
14311   switch (E->getCastKind()) {
14312   default:
14313     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14314 
14315   case CK_IntegralToFloating: {
14316     APSInt IntResult;
14317     const FPOptions FPO = E->getFPFeaturesInEffect(
14318                                   Info.Ctx.getLangOpts());
14319     return EvaluateInteger(SubExpr, IntResult, Info) &&
14320            HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14321                                 IntResult, E->getType(), Result);
14322   }
14323 
14324   case CK_FixedPointToFloating: {
14325     APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14326     if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
14327       return false;
14328     Result =
14329         FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
14330     return true;
14331   }
14332 
14333   case CK_FloatingCast: {
14334     if (!Visit(SubExpr))
14335       return false;
14336     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14337                                   Result);
14338   }
14339 
14340   case CK_FloatingComplexToReal: {
14341     ComplexValue V;
14342     if (!EvaluateComplex(SubExpr, V, Info))
14343       return false;
14344     Result = V.getComplexFloatReal();
14345     return true;
14346   }
14347   }
14348 }
14349 
14350 //===----------------------------------------------------------------------===//
14351 // Complex Evaluation (for float and integer)
14352 //===----------------------------------------------------------------------===//
14353 
14354 namespace {
14355 class ComplexExprEvaluator
14356   : public ExprEvaluatorBase<ComplexExprEvaluator> {
14357   ComplexValue &Result;
14358 
14359 public:
14360   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
14361     : ExprEvaluatorBaseTy(info), Result(Result) {}
14362 
14363   bool Success(const APValue &V, const Expr *e) {
14364     Result.setFrom(V);
14365     return true;
14366   }
14367 
14368   bool ZeroInitialization(const Expr *E);
14369 
14370   //===--------------------------------------------------------------------===//
14371   //                            Visitor Methods
14372   //===--------------------------------------------------------------------===//
14373 
14374   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
14375   bool VisitCastExpr(const CastExpr *E);
14376   bool VisitBinaryOperator(const BinaryOperator *E);
14377   bool VisitUnaryOperator(const UnaryOperator *E);
14378   bool VisitInitListExpr(const InitListExpr *E);
14379   bool VisitCallExpr(const CallExpr *E);
14380 };
14381 } // end anonymous namespace
14382 
14383 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
14384                             EvalInfo &Info) {
14385   assert(!E->isValueDependent());
14386   assert(E->isPRValue() && E->getType()->isAnyComplexType());
14387   return ComplexExprEvaluator(Info, Result).Visit(E);
14388 }
14389 
14390 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
14391   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
14392   if (ElemTy->isRealFloatingType()) {
14393     Result.makeComplexFloat();
14394     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
14395     Result.FloatReal = Zero;
14396     Result.FloatImag = Zero;
14397   } else {
14398     Result.makeComplexInt();
14399     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
14400     Result.IntReal = Zero;
14401     Result.IntImag = Zero;
14402   }
14403   return true;
14404 }
14405 
14406 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
14407   const Expr* SubExpr = E->getSubExpr();
14408 
14409   if (SubExpr->getType()->isRealFloatingType()) {
14410     Result.makeComplexFloat();
14411     APFloat &Imag = Result.FloatImag;
14412     if (!EvaluateFloat(SubExpr, Imag, Info))
14413       return false;
14414 
14415     Result.FloatReal = APFloat(Imag.getSemantics());
14416     return true;
14417   } else {
14418     assert(SubExpr->getType()->isIntegerType() &&
14419            "Unexpected imaginary literal.");
14420 
14421     Result.makeComplexInt();
14422     APSInt &Imag = Result.IntImag;
14423     if (!EvaluateInteger(SubExpr, Imag, Info))
14424       return false;
14425 
14426     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14427     return true;
14428   }
14429 }
14430 
14431 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14432 
14433   switch (E->getCastKind()) {
14434   case CK_BitCast:
14435   case CK_BaseToDerived:
14436   case CK_DerivedToBase:
14437   case CK_UncheckedDerivedToBase:
14438   case CK_Dynamic:
14439   case CK_ToUnion:
14440   case CK_ArrayToPointerDecay:
14441   case CK_FunctionToPointerDecay:
14442   case CK_NullToPointer:
14443   case CK_NullToMemberPointer:
14444   case CK_BaseToDerivedMemberPointer:
14445   case CK_DerivedToBaseMemberPointer:
14446   case CK_MemberPointerToBoolean:
14447   case CK_ReinterpretMemberPointer:
14448   case CK_ConstructorConversion:
14449   case CK_IntegralToPointer:
14450   case CK_PointerToIntegral:
14451   case CK_PointerToBoolean:
14452   case CK_ToVoid:
14453   case CK_VectorSplat:
14454   case CK_IntegralCast:
14455   case CK_BooleanToSignedIntegral:
14456   case CK_IntegralToBoolean:
14457   case CK_IntegralToFloating:
14458   case CK_FloatingToIntegral:
14459   case CK_FloatingToBoolean:
14460   case CK_FloatingCast:
14461   case CK_CPointerToObjCPointerCast:
14462   case CK_BlockPointerToObjCPointerCast:
14463   case CK_AnyPointerToBlockPointerCast:
14464   case CK_ObjCObjectLValueCast:
14465   case CK_FloatingComplexToReal:
14466   case CK_FloatingComplexToBoolean:
14467   case CK_IntegralComplexToReal:
14468   case CK_IntegralComplexToBoolean:
14469   case CK_ARCProduceObject:
14470   case CK_ARCConsumeObject:
14471   case CK_ARCReclaimReturnedObject:
14472   case CK_ARCExtendBlockObject:
14473   case CK_CopyAndAutoreleaseBlockObject:
14474   case CK_BuiltinFnToFnPtr:
14475   case CK_ZeroToOCLOpaqueType:
14476   case CK_NonAtomicToAtomic:
14477   case CK_AddressSpaceConversion:
14478   case CK_IntToOCLSampler:
14479   case CK_FloatingToFixedPoint:
14480   case CK_FixedPointToFloating:
14481   case CK_FixedPointCast:
14482   case CK_FixedPointToBoolean:
14483   case CK_FixedPointToIntegral:
14484   case CK_IntegralToFixedPoint:
14485   case CK_MatrixCast:
14486     llvm_unreachable("invalid cast kind for complex value");
14487 
14488   case CK_LValueToRValue:
14489   case CK_AtomicToNonAtomic:
14490   case CK_NoOp:
14491   case CK_LValueToRValueBitCast:
14492     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14493 
14494   case CK_Dependent:
14495   case CK_LValueBitCast:
14496   case CK_UserDefinedConversion:
14497     return Error(E);
14498 
14499   case CK_FloatingRealToComplex: {
14500     APFloat &Real = Result.FloatReal;
14501     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14502       return false;
14503 
14504     Result.makeComplexFloat();
14505     Result.FloatImag = APFloat(Real.getSemantics());
14506     return true;
14507   }
14508 
14509   case CK_FloatingComplexCast: {
14510     if (!Visit(E->getSubExpr()))
14511       return false;
14512 
14513     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14514     QualType From
14515       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14516 
14517     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14518            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14519   }
14520 
14521   case CK_FloatingComplexToIntegralComplex: {
14522     if (!Visit(E->getSubExpr()))
14523       return false;
14524 
14525     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14526     QualType From
14527       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14528     Result.makeComplexInt();
14529     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14530                                 To, Result.IntReal) &&
14531            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14532                                 To, Result.IntImag);
14533   }
14534 
14535   case CK_IntegralRealToComplex: {
14536     APSInt &Real = Result.IntReal;
14537     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14538       return false;
14539 
14540     Result.makeComplexInt();
14541     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14542     return true;
14543   }
14544 
14545   case CK_IntegralComplexCast: {
14546     if (!Visit(E->getSubExpr()))
14547       return false;
14548 
14549     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14550     QualType From
14551       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14552 
14553     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14554     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14555     return true;
14556   }
14557 
14558   case CK_IntegralComplexToFloatingComplex: {
14559     if (!Visit(E->getSubExpr()))
14560       return false;
14561 
14562     const FPOptions FPO = E->getFPFeaturesInEffect(
14563                                   Info.Ctx.getLangOpts());
14564     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14565     QualType From
14566       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14567     Result.makeComplexFloat();
14568     return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14569                                 To, Result.FloatReal) &&
14570            HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14571                                 To, Result.FloatImag);
14572   }
14573   }
14574 
14575   llvm_unreachable("unknown cast resulting in complex value");
14576 }
14577 
14578 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14579   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14580     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14581 
14582   // Track whether the LHS or RHS is real at the type system level. When this is
14583   // the case we can simplify our evaluation strategy.
14584   bool LHSReal = false, RHSReal = false;
14585 
14586   bool LHSOK;
14587   if (E->getLHS()->getType()->isRealFloatingType()) {
14588     LHSReal = true;
14589     APFloat &Real = Result.FloatReal;
14590     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14591     if (LHSOK) {
14592       Result.makeComplexFloat();
14593       Result.FloatImag = APFloat(Real.getSemantics());
14594     }
14595   } else {
14596     LHSOK = Visit(E->getLHS());
14597   }
14598   if (!LHSOK && !Info.noteFailure())
14599     return false;
14600 
14601   ComplexValue RHS;
14602   if (E->getRHS()->getType()->isRealFloatingType()) {
14603     RHSReal = true;
14604     APFloat &Real = RHS.FloatReal;
14605     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14606       return false;
14607     RHS.makeComplexFloat();
14608     RHS.FloatImag = APFloat(Real.getSemantics());
14609   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14610     return false;
14611 
14612   assert(!(LHSReal && RHSReal) &&
14613          "Cannot have both operands of a complex operation be real.");
14614   switch (E->getOpcode()) {
14615   default: return Error(E);
14616   case BO_Add:
14617     if (Result.isComplexFloat()) {
14618       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14619                                        APFloat::rmNearestTiesToEven);
14620       if (LHSReal)
14621         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14622       else if (!RHSReal)
14623         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14624                                          APFloat::rmNearestTiesToEven);
14625     } else {
14626       Result.getComplexIntReal() += RHS.getComplexIntReal();
14627       Result.getComplexIntImag() += RHS.getComplexIntImag();
14628     }
14629     break;
14630   case BO_Sub:
14631     if (Result.isComplexFloat()) {
14632       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14633                                             APFloat::rmNearestTiesToEven);
14634       if (LHSReal) {
14635         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14636         Result.getComplexFloatImag().changeSign();
14637       } else if (!RHSReal) {
14638         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14639                                               APFloat::rmNearestTiesToEven);
14640       }
14641     } else {
14642       Result.getComplexIntReal() -= RHS.getComplexIntReal();
14643       Result.getComplexIntImag() -= RHS.getComplexIntImag();
14644     }
14645     break;
14646   case BO_Mul:
14647     if (Result.isComplexFloat()) {
14648       // This is an implementation of complex multiplication according to the
14649       // constraints laid out in C11 Annex G. The implementation uses the
14650       // following naming scheme:
14651       //   (a + ib) * (c + id)
14652       ComplexValue LHS = Result;
14653       APFloat &A = LHS.getComplexFloatReal();
14654       APFloat &B = LHS.getComplexFloatImag();
14655       APFloat &C = RHS.getComplexFloatReal();
14656       APFloat &D = RHS.getComplexFloatImag();
14657       APFloat &ResR = Result.getComplexFloatReal();
14658       APFloat &ResI = Result.getComplexFloatImag();
14659       if (LHSReal) {
14660         assert(!RHSReal && "Cannot have two real operands for a complex op!");
14661         ResR = A * C;
14662         ResI = A * D;
14663       } else if (RHSReal) {
14664         ResR = C * A;
14665         ResI = C * B;
14666       } else {
14667         // In the fully general case, we need to handle NaNs and infinities
14668         // robustly.
14669         APFloat AC = A * C;
14670         APFloat BD = B * D;
14671         APFloat AD = A * D;
14672         APFloat BC = B * C;
14673         ResR = AC - BD;
14674         ResI = AD + BC;
14675         if (ResR.isNaN() && ResI.isNaN()) {
14676           bool Recalc = false;
14677           if (A.isInfinity() || B.isInfinity()) {
14678             A = APFloat::copySign(
14679                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14680             B = APFloat::copySign(
14681                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14682             if (C.isNaN())
14683               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14684             if (D.isNaN())
14685               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14686             Recalc = true;
14687           }
14688           if (C.isInfinity() || D.isInfinity()) {
14689             C = APFloat::copySign(
14690                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14691             D = APFloat::copySign(
14692                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14693             if (A.isNaN())
14694               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14695             if (B.isNaN())
14696               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14697             Recalc = true;
14698           }
14699           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14700                           AD.isInfinity() || BC.isInfinity())) {
14701             if (A.isNaN())
14702               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14703             if (B.isNaN())
14704               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14705             if (C.isNaN())
14706               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14707             if (D.isNaN())
14708               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14709             Recalc = true;
14710           }
14711           if (Recalc) {
14712             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14713             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14714           }
14715         }
14716       }
14717     } else {
14718       ComplexValue LHS = Result;
14719       Result.getComplexIntReal() =
14720         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14721          LHS.getComplexIntImag() * RHS.getComplexIntImag());
14722       Result.getComplexIntImag() =
14723         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14724          LHS.getComplexIntImag() * RHS.getComplexIntReal());
14725     }
14726     break;
14727   case BO_Div:
14728     if (Result.isComplexFloat()) {
14729       // This is an implementation of complex division according to the
14730       // constraints laid out in C11 Annex G. The implementation uses the
14731       // following naming scheme:
14732       //   (a + ib) / (c + id)
14733       ComplexValue LHS = Result;
14734       APFloat &A = LHS.getComplexFloatReal();
14735       APFloat &B = LHS.getComplexFloatImag();
14736       APFloat &C = RHS.getComplexFloatReal();
14737       APFloat &D = RHS.getComplexFloatImag();
14738       APFloat &ResR = Result.getComplexFloatReal();
14739       APFloat &ResI = Result.getComplexFloatImag();
14740       if (RHSReal) {
14741         ResR = A / C;
14742         ResI = B / C;
14743       } else {
14744         if (LHSReal) {
14745           // No real optimizations we can do here, stub out with zero.
14746           B = APFloat::getZero(A.getSemantics());
14747         }
14748         int DenomLogB = 0;
14749         APFloat MaxCD = maxnum(abs(C), abs(D));
14750         if (MaxCD.isFinite()) {
14751           DenomLogB = ilogb(MaxCD);
14752           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14753           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14754         }
14755         APFloat Denom = C * C + D * D;
14756         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14757                       APFloat::rmNearestTiesToEven);
14758         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14759                       APFloat::rmNearestTiesToEven);
14760         if (ResR.isNaN() && ResI.isNaN()) {
14761           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14762             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14763             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14764           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14765                      D.isFinite()) {
14766             A = APFloat::copySign(
14767                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14768             B = APFloat::copySign(
14769                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14770             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14771             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14772           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14773             C = APFloat::copySign(
14774                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14775             D = APFloat::copySign(
14776                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14777             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14778             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14779           }
14780         }
14781       }
14782     } else {
14783       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14784         return Error(E, diag::note_expr_divide_by_zero);
14785 
14786       ComplexValue LHS = Result;
14787       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14788         RHS.getComplexIntImag() * RHS.getComplexIntImag();
14789       Result.getComplexIntReal() =
14790         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14791          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14792       Result.getComplexIntImag() =
14793         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14794          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14795     }
14796     break;
14797   }
14798 
14799   return true;
14800 }
14801 
14802 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14803   // Get the operand value into 'Result'.
14804   if (!Visit(E->getSubExpr()))
14805     return false;
14806 
14807   switch (E->getOpcode()) {
14808   default:
14809     return Error(E);
14810   case UO_Extension:
14811     return true;
14812   case UO_Plus:
14813     // The result is always just the subexpr.
14814     return true;
14815   case UO_Minus:
14816     if (Result.isComplexFloat()) {
14817       Result.getComplexFloatReal().changeSign();
14818       Result.getComplexFloatImag().changeSign();
14819     }
14820     else {
14821       Result.getComplexIntReal() = -Result.getComplexIntReal();
14822       Result.getComplexIntImag() = -Result.getComplexIntImag();
14823     }
14824     return true;
14825   case UO_Not:
14826     if (Result.isComplexFloat())
14827       Result.getComplexFloatImag().changeSign();
14828     else
14829       Result.getComplexIntImag() = -Result.getComplexIntImag();
14830     return true;
14831   }
14832 }
14833 
14834 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14835   if (E->getNumInits() == 2) {
14836     if (E->getType()->isComplexType()) {
14837       Result.makeComplexFloat();
14838       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14839         return false;
14840       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14841         return false;
14842     } else {
14843       Result.makeComplexInt();
14844       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14845         return false;
14846       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14847         return false;
14848     }
14849     return true;
14850   }
14851   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14852 }
14853 
14854 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14855   if (!IsConstantEvaluatedBuiltinCall(E))
14856     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14857 
14858   switch (E->getBuiltinCallee()) {
14859   case Builtin::BI__builtin_complex:
14860     Result.makeComplexFloat();
14861     if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14862       return false;
14863     if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14864       return false;
14865     return true;
14866 
14867   default:
14868     return false;
14869   }
14870 }
14871 
14872 //===----------------------------------------------------------------------===//
14873 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14874 // implicit conversion.
14875 //===----------------------------------------------------------------------===//
14876 
14877 namespace {
14878 class AtomicExprEvaluator :
14879     public ExprEvaluatorBase<AtomicExprEvaluator> {
14880   const LValue *This;
14881   APValue &Result;
14882 public:
14883   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14884       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14885 
14886   bool Success(const APValue &V, const Expr *E) {
14887     Result = V;
14888     return true;
14889   }
14890 
14891   bool ZeroInitialization(const Expr *E) {
14892     ImplicitValueInitExpr VIE(
14893         E->getType()->castAs<AtomicType>()->getValueType());
14894     // For atomic-qualified class (and array) types in C++, initialize the
14895     // _Atomic-wrapped subobject directly, in-place.
14896     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14897                 : Evaluate(Result, Info, &VIE);
14898   }
14899 
14900   bool VisitCastExpr(const CastExpr *E) {
14901     switch (E->getCastKind()) {
14902     default:
14903       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14904     case CK_NullToPointer:
14905       VisitIgnoredValue(E->getSubExpr());
14906       return ZeroInitialization(E);
14907     case CK_NonAtomicToAtomic:
14908       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14909                   : Evaluate(Result, Info, E->getSubExpr());
14910     }
14911   }
14912 };
14913 } // end anonymous namespace
14914 
14915 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14916                            EvalInfo &Info) {
14917   assert(!E->isValueDependent());
14918   assert(E->isPRValue() && E->getType()->isAtomicType());
14919   return AtomicExprEvaluator(Info, This, Result).Visit(E);
14920 }
14921 
14922 //===----------------------------------------------------------------------===//
14923 // Void expression evaluation, primarily for a cast to void on the LHS of a
14924 // comma operator
14925 //===----------------------------------------------------------------------===//
14926 
14927 namespace {
14928 class VoidExprEvaluator
14929   : public ExprEvaluatorBase<VoidExprEvaluator> {
14930 public:
14931   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14932 
14933   bool Success(const APValue &V, const Expr *e) { return true; }
14934 
14935   bool ZeroInitialization(const Expr *E) { return true; }
14936 
14937   bool VisitCastExpr(const CastExpr *E) {
14938     switch (E->getCastKind()) {
14939     default:
14940       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14941     case CK_ToVoid:
14942       VisitIgnoredValue(E->getSubExpr());
14943       return true;
14944     }
14945   }
14946 
14947   bool VisitCallExpr(const CallExpr *E) {
14948     if (!IsConstantEvaluatedBuiltinCall(E))
14949       return ExprEvaluatorBaseTy::VisitCallExpr(E);
14950 
14951     switch (E->getBuiltinCallee()) {
14952     case Builtin::BI__assume:
14953     case Builtin::BI__builtin_assume:
14954       // The argument is not evaluated!
14955       return true;
14956 
14957     case Builtin::BI__builtin_operator_delete:
14958       return HandleOperatorDeleteCall(Info, E);
14959 
14960     default:
14961       return false;
14962     }
14963   }
14964 
14965   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14966 };
14967 } // end anonymous namespace
14968 
14969 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14970   // We cannot speculatively evaluate a delete expression.
14971   if (Info.SpeculativeEvaluationDepth)
14972     return false;
14973 
14974   FunctionDecl *OperatorDelete = E->getOperatorDelete();
14975   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14976     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14977         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14978     return false;
14979   }
14980 
14981   const Expr *Arg = E->getArgument();
14982 
14983   LValue Pointer;
14984   if (!EvaluatePointer(Arg, Pointer, Info))
14985     return false;
14986   if (Pointer.Designator.Invalid)
14987     return false;
14988 
14989   // Deleting a null pointer has no effect.
14990   if (Pointer.isNullPointer()) {
14991     // This is the only case where we need to produce an extension warning:
14992     // the only other way we can succeed is if we find a dynamic allocation,
14993     // and we will have warned when we allocated it in that case.
14994     if (!Info.getLangOpts().CPlusPlus20)
14995       Info.CCEDiag(E, diag::note_constexpr_new);
14996     return true;
14997   }
14998 
14999   std::optional<DynAlloc *> Alloc = CheckDeleteKind(
15000       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
15001   if (!Alloc)
15002     return false;
15003   QualType AllocType = Pointer.Base.getDynamicAllocType();
15004 
15005   // For the non-array case, the designator must be empty if the static type
15006   // does not have a virtual destructor.
15007   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
15008       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
15009     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
15010         << Arg->getType()->getPointeeType() << AllocType;
15011     return false;
15012   }
15013 
15014   // For a class type with a virtual destructor, the selected operator delete
15015   // is the one looked up when building the destructor.
15016   if (!E->isArrayForm() && !E->isGlobalDelete()) {
15017     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
15018     if (VirtualDelete &&
15019         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
15020       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15021           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
15022       return false;
15023     }
15024   }
15025 
15026   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
15027                          (*Alloc)->Value, AllocType))
15028     return false;
15029 
15030   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
15031     // The element was already erased. This means the destructor call also
15032     // deleted the object.
15033     // FIXME: This probably results in undefined behavior before we get this
15034     // far, and should be diagnosed elsewhere first.
15035     Info.FFDiag(E, diag::note_constexpr_double_delete);
15036     return false;
15037   }
15038 
15039   return true;
15040 }
15041 
15042 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
15043   assert(!E->isValueDependent());
15044   assert(E->isPRValue() && E->getType()->isVoidType());
15045   return VoidExprEvaluator(Info).Visit(E);
15046 }
15047 
15048 //===----------------------------------------------------------------------===//
15049 // Top level Expr::EvaluateAsRValue method.
15050 //===----------------------------------------------------------------------===//
15051 
15052 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
15053   assert(!E->isValueDependent());
15054   // In C, function designators are not lvalues, but we evaluate them as if they
15055   // are.
15056   QualType T = E->getType();
15057   if (E->isGLValue() || T->isFunctionType()) {
15058     LValue LV;
15059     if (!EvaluateLValue(E, LV, Info))
15060       return false;
15061     LV.moveInto(Result);
15062   } else if (T->isVectorType()) {
15063     if (!EvaluateVector(E, Result, Info))
15064       return false;
15065   } else if (T->isIntegralOrEnumerationType()) {
15066     if (!IntExprEvaluator(Info, Result).Visit(E))
15067       return false;
15068   } else if (T->hasPointerRepresentation()) {
15069     LValue LV;
15070     if (!EvaluatePointer(E, LV, Info))
15071       return false;
15072     LV.moveInto(Result);
15073   } else if (T->isRealFloatingType()) {
15074     llvm::APFloat F(0.0);
15075     if (!EvaluateFloat(E, F, Info))
15076       return false;
15077     Result = APValue(F);
15078   } else if (T->isAnyComplexType()) {
15079     ComplexValue C;
15080     if (!EvaluateComplex(E, C, Info))
15081       return false;
15082     C.moveInto(Result);
15083   } else if (T->isFixedPointType()) {
15084     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
15085   } else if (T->isMemberPointerType()) {
15086     MemberPtr P;
15087     if (!EvaluateMemberPointer(E, P, Info))
15088       return false;
15089     P.moveInto(Result);
15090     return true;
15091   } else if (T->isArrayType()) {
15092     LValue LV;
15093     APValue &Value =
15094         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15095     if (!EvaluateArray(E, LV, Value, Info))
15096       return false;
15097     Result = Value;
15098   } else if (T->isRecordType()) {
15099     LValue LV;
15100     APValue &Value =
15101         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15102     if (!EvaluateRecord(E, LV, Value, Info))
15103       return false;
15104     Result = Value;
15105   } else if (T->isVoidType()) {
15106     if (!Info.getLangOpts().CPlusPlus11)
15107       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
15108         << E->getType();
15109     if (!EvaluateVoid(E, Info))
15110       return false;
15111   } else if (T->isAtomicType()) {
15112     QualType Unqual = T.getAtomicUnqualifiedType();
15113     if (Unqual->isArrayType() || Unqual->isRecordType()) {
15114       LValue LV;
15115       APValue &Value = Info.CurrentCall->createTemporary(
15116           E, Unqual, ScopeKind::FullExpression, LV);
15117       if (!EvaluateAtomic(E, &LV, Value, Info))
15118         return false;
15119       Result = Value;
15120     } else {
15121       if (!EvaluateAtomic(E, nullptr, Result, Info))
15122         return false;
15123     }
15124   } else if (Info.getLangOpts().CPlusPlus11) {
15125     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
15126     return false;
15127   } else {
15128     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
15129     return false;
15130   }
15131 
15132   return true;
15133 }
15134 
15135 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
15136 /// cases, the in-place evaluation is essential, since later initializers for
15137 /// an object can indirectly refer to subobjects which were initialized earlier.
15138 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
15139                             const Expr *E, bool AllowNonLiteralTypes) {
15140   assert(!E->isValueDependent());
15141 
15142   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
15143     return false;
15144 
15145   if (E->isPRValue()) {
15146     // Evaluate arrays and record types in-place, so that later initializers can
15147     // refer to earlier-initialized members of the object.
15148     QualType T = E->getType();
15149     if (T->isArrayType())
15150       return EvaluateArray(E, This, Result, Info);
15151     else if (T->isRecordType())
15152       return EvaluateRecord(E, This, Result, Info);
15153     else if (T->isAtomicType()) {
15154       QualType Unqual = T.getAtomicUnqualifiedType();
15155       if (Unqual->isArrayType() || Unqual->isRecordType())
15156         return EvaluateAtomic(E, &This, Result, Info);
15157     }
15158   }
15159 
15160   // For any other type, in-place evaluation is unimportant.
15161   return Evaluate(Result, Info, E);
15162 }
15163 
15164 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15165 /// lvalue-to-rvalue cast if it is an lvalue.
15166 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
15167   assert(!E->isValueDependent());
15168 
15169   if (E->getType().isNull())
15170     return false;
15171 
15172   if (!CheckLiteralType(Info, E))
15173     return false;
15174 
15175   if (Info.EnableNewConstInterp) {
15176     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
15177       return false;
15178   } else {
15179     if (!::Evaluate(Result, Info, E))
15180       return false;
15181   }
15182 
15183   // Implicit lvalue-to-rvalue cast.
15184   if (E->isGLValue()) {
15185     LValue LV;
15186     LV.setFrom(Info.Ctx, Result);
15187     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
15188       return false;
15189   }
15190 
15191   // Check this core constant expression is a constant expression.
15192   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
15193                                  ConstantExprKind::Normal) &&
15194          CheckMemoryLeaks(Info);
15195 }
15196 
15197 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
15198                                  const ASTContext &Ctx, bool &IsConst) {
15199   // Fast-path evaluations of integer literals, since we sometimes see files
15200   // containing vast quantities of these.
15201   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
15202     Result.Val = APValue(APSInt(L->getValue(),
15203                                 L->getType()->isUnsignedIntegerType()));
15204     IsConst = true;
15205     return true;
15206   }
15207 
15208   if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) {
15209     Result.Val = APValue(APSInt(APInt(1, L->getValue())));
15210     IsConst = true;
15211     return true;
15212   }
15213 
15214   // This case should be rare, but we need to check it before we check on
15215   // the type below.
15216   if (Exp->getType().isNull()) {
15217     IsConst = false;
15218     return true;
15219   }
15220 
15221   // FIXME: Evaluating values of large array and record types can cause
15222   // performance problems. Only do so in C++11 for now.
15223   if (Exp->isPRValue() &&
15224       (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) &&
15225       !Ctx.getLangOpts().CPlusPlus11) {
15226     IsConst = false;
15227     return true;
15228   }
15229   return false;
15230 }
15231 
15232 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
15233                                       Expr::SideEffectsKind SEK) {
15234   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
15235          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
15236 }
15237 
15238 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
15239                              const ASTContext &Ctx, EvalInfo &Info) {
15240   assert(!E->isValueDependent());
15241   bool IsConst;
15242   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
15243     return IsConst;
15244 
15245   return EvaluateAsRValue(Info, E, Result.Val);
15246 }
15247 
15248 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
15249                           const ASTContext &Ctx,
15250                           Expr::SideEffectsKind AllowSideEffects,
15251                           EvalInfo &Info) {
15252   assert(!E->isValueDependent());
15253   if (!E->getType()->isIntegralOrEnumerationType())
15254     return false;
15255 
15256   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
15257       !ExprResult.Val.isInt() ||
15258       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15259     return false;
15260 
15261   return true;
15262 }
15263 
15264 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
15265                                  const ASTContext &Ctx,
15266                                  Expr::SideEffectsKind AllowSideEffects,
15267                                  EvalInfo &Info) {
15268   assert(!E->isValueDependent());
15269   if (!E->getType()->isFixedPointType())
15270     return false;
15271 
15272   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
15273     return false;
15274 
15275   if (!ExprResult.Val.isFixedPoint() ||
15276       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15277     return false;
15278 
15279   return true;
15280 }
15281 
15282 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
15283 /// any crazy technique (that has nothing to do with language standards) that
15284 /// we want to.  If this function returns true, it returns the folded constant
15285 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15286 /// will be applied to the result.
15287 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
15288                             bool InConstantContext) const {
15289   assert(!isValueDependent() &&
15290          "Expression evaluator can't be called on a dependent expression.");
15291   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
15292   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15293   Info.InConstantContext = InConstantContext;
15294   return ::EvaluateAsRValue(this, Result, Ctx, Info);
15295 }
15296 
15297 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
15298                                       bool InConstantContext) const {
15299   assert(!isValueDependent() &&
15300          "Expression evaluator can't be called on a dependent expression.");
15301   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
15302   EvalResult Scratch;
15303   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
15304          HandleConversionToBool(Scratch.Val, Result);
15305 }
15306 
15307 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15308                          SideEffectsKind AllowSideEffects,
15309                          bool InConstantContext) const {
15310   assert(!isValueDependent() &&
15311          "Expression evaluator can't be called on a dependent expression.");
15312   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
15313   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15314   Info.InConstantContext = InConstantContext;
15315   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
15316 }
15317 
15318 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
15319                                 SideEffectsKind AllowSideEffects,
15320                                 bool InConstantContext) const {
15321   assert(!isValueDependent() &&
15322          "Expression evaluator can't be called on a dependent expression.");
15323   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
15324   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15325   Info.InConstantContext = InConstantContext;
15326   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
15327 }
15328 
15329 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
15330                            SideEffectsKind AllowSideEffects,
15331                            bool InConstantContext) const {
15332   assert(!isValueDependent() &&
15333          "Expression evaluator can't be called on a dependent expression.");
15334 
15335   if (!getType()->isRealFloatingType())
15336     return false;
15337 
15338   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
15339   EvalResult ExprResult;
15340   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
15341       !ExprResult.Val.isFloat() ||
15342       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15343     return false;
15344 
15345   Result = ExprResult.Val.getFloat();
15346   return true;
15347 }
15348 
15349 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
15350                             bool InConstantContext) const {
15351   assert(!isValueDependent() &&
15352          "Expression evaluator can't be called on a dependent expression.");
15353 
15354   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
15355   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
15356   Info.InConstantContext = InConstantContext;
15357   LValue LV;
15358   CheckedTemporaries CheckedTemps;
15359   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
15360       Result.HasSideEffects ||
15361       !CheckLValueConstantExpression(Info, getExprLoc(),
15362                                      Ctx.getLValueReferenceType(getType()), LV,
15363                                      ConstantExprKind::Normal, CheckedTemps))
15364     return false;
15365 
15366   LV.moveInto(Result.Val);
15367   return true;
15368 }
15369 
15370 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
15371                                 APValue DestroyedValue, QualType Type,
15372                                 SourceLocation Loc, Expr::EvalStatus &EStatus,
15373                                 bool IsConstantDestruction) {
15374   EvalInfo Info(Ctx, EStatus,
15375                 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
15376                                       : EvalInfo::EM_ConstantFold);
15377   Info.setEvaluatingDecl(Base, DestroyedValue,
15378                          EvalInfo::EvaluatingDeclKind::Dtor);
15379   Info.InConstantContext = IsConstantDestruction;
15380 
15381   LValue LVal;
15382   LVal.set(Base);
15383 
15384   if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
15385       EStatus.HasSideEffects)
15386     return false;
15387 
15388   if (!Info.discardCleanups())
15389     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15390 
15391   return true;
15392 }
15393 
15394 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
15395                                   ConstantExprKind Kind) const {
15396   assert(!isValueDependent() &&
15397          "Expression evaluator can't be called on a dependent expression.");
15398   bool IsConst;
15399   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue())
15400     return true;
15401 
15402   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
15403   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
15404   EvalInfo Info(Ctx, Result, EM);
15405   Info.InConstantContext = true;
15406 
15407   // The type of the object we're initializing is 'const T' for a class NTTP.
15408   QualType T = getType();
15409   if (Kind == ConstantExprKind::ClassTemplateArgument)
15410     T.addConst();
15411 
15412   // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15413   // represent the result of the evaluation. CheckConstantExpression ensures
15414   // this doesn't escape.
15415   MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
15416   APValue::LValueBase Base(&BaseMTE);
15417 
15418   Info.setEvaluatingDecl(Base, Result.Val);
15419   LValue LVal;
15420   LVal.set(Base);
15421 
15422   {
15423     // C++23 [intro.execution]/p5
15424     // A full-expression is [...] a constant-expression
15425     // So we need to make sure temporary objects are destroyed after having
15426     // evaluating the expression (per C++23 [class.temporary]/p4).
15427     FullExpressionRAII Scope(Info);
15428     if (!::EvaluateInPlace(Result.Val, Info, LVal, this) ||
15429         Result.HasSideEffects || !Scope.destroy())
15430       return false;
15431   }
15432 
15433   if (!Info.discardCleanups())
15434     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15435 
15436   if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
15437                                Result.Val, Kind))
15438     return false;
15439   if (!CheckMemoryLeaks(Info))
15440     return false;
15441 
15442   // If this is a class template argument, it's required to have constant
15443   // destruction too.
15444   if (Kind == ConstantExprKind::ClassTemplateArgument &&
15445       (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15446                             true) ||
15447        Result.HasSideEffects)) {
15448     // FIXME: Prefix a note to indicate that the problem is lack of constant
15449     // destruction.
15450     return false;
15451   }
15452 
15453   return true;
15454 }
15455 
15456 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15457                                  const VarDecl *VD,
15458                                  SmallVectorImpl<PartialDiagnosticAt> &Notes,
15459                                  bool IsConstantInitialization) const {
15460   assert(!isValueDependent() &&
15461          "Expression evaluator can't be called on a dependent expression.");
15462 
15463   llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
15464     std::string Name;
15465     llvm::raw_string_ostream OS(Name);
15466     VD->printQualifiedName(OS);
15467     return Name;
15468   });
15469 
15470   // FIXME: Evaluating initializers for large array and record types can cause
15471   // performance problems. Only do so in C++11 for now.
15472   if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
15473       !Ctx.getLangOpts().CPlusPlus11)
15474     return false;
15475 
15476   Expr::EvalStatus EStatus;
15477   EStatus.Diag = &Notes;
15478 
15479   EvalInfo Info(Ctx, EStatus,
15480                 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus)
15481                     ? EvalInfo::EM_ConstantExpression
15482                     : EvalInfo::EM_ConstantFold);
15483   Info.setEvaluatingDecl(VD, Value);
15484   Info.InConstantContext = IsConstantInitialization;
15485 
15486   if (Info.EnableNewConstInterp) {
15487     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15488     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
15489       return false;
15490   } else {
15491     LValue LVal;
15492     LVal.set(VD);
15493 
15494     if (!EvaluateInPlace(Value, Info, LVal, this,
15495                          /*AllowNonLiteralTypes=*/true) ||
15496         EStatus.HasSideEffects)
15497       return false;
15498 
15499     // At this point, any lifetime-extended temporaries are completely
15500     // initialized.
15501     Info.performLifetimeExtension();
15502 
15503     if (!Info.discardCleanups())
15504       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15505   }
15506 
15507   SourceLocation DeclLoc = VD->getLocation();
15508   QualType DeclTy = VD->getType();
15509   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15510                                  ConstantExprKind::Normal) &&
15511          CheckMemoryLeaks(Info);
15512 }
15513 
15514 bool VarDecl::evaluateDestruction(
15515     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15516   Expr::EvalStatus EStatus;
15517   EStatus.Diag = &Notes;
15518 
15519   // Only treat the destruction as constant destruction if we formally have
15520   // constant initialization (or are usable in a constant expression).
15521   bool IsConstantDestruction = hasConstantInitialization();
15522 
15523   // Make a copy of the value for the destructor to mutate, if we know it.
15524   // Otherwise, treat the value as default-initialized; if the destructor works
15525   // anyway, then the destruction is constant (and must be essentially empty).
15526   APValue DestroyedValue;
15527   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15528     DestroyedValue = *getEvaluatedValue();
15529   else if (!getDefaultInitValue(getType(), DestroyedValue))
15530     return false;
15531 
15532   if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15533                            getType(), getLocation(), EStatus,
15534                            IsConstantDestruction) ||
15535       EStatus.HasSideEffects)
15536     return false;
15537 
15538   ensureEvaluatedStmt()->HasConstantDestruction = true;
15539   return true;
15540 }
15541 
15542 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15543 /// constant folded, but discard the result.
15544 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15545   assert(!isValueDependent() &&
15546          "Expression evaluator can't be called on a dependent expression.");
15547 
15548   EvalResult Result;
15549   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15550          !hasUnacceptableSideEffect(Result, SEK);
15551 }
15552 
15553 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15554                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15555   assert(!isValueDependent() &&
15556          "Expression evaluator can't be called on a dependent expression.");
15557 
15558   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
15559   EvalResult EVResult;
15560   EVResult.Diag = Diag;
15561   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15562   Info.InConstantContext = true;
15563 
15564   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15565   (void)Result;
15566   assert(Result && "Could not evaluate expression");
15567   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15568 
15569   return EVResult.Val.getInt();
15570 }
15571 
15572 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15573     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15574   assert(!isValueDependent() &&
15575          "Expression evaluator can't be called on a dependent expression.");
15576 
15577   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
15578   EvalResult EVResult;
15579   EVResult.Diag = Diag;
15580   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15581   Info.InConstantContext = true;
15582   Info.CheckingForUndefinedBehavior = true;
15583 
15584   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15585   (void)Result;
15586   assert(Result && "Could not evaluate expression");
15587   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15588 
15589   return EVResult.Val.getInt();
15590 }
15591 
15592 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15593   assert(!isValueDependent() &&
15594          "Expression evaluator can't be called on a dependent expression.");
15595 
15596   ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
15597   bool IsConst;
15598   EvalResult EVResult;
15599   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15600     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15601     Info.CheckingForUndefinedBehavior = true;
15602     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15603   }
15604 }
15605 
15606 bool Expr::EvalResult::isGlobalLValue() const {
15607   assert(Val.isLValue());
15608   return IsGlobalLValue(Val.getLValueBase());
15609 }
15610 
15611 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15612 /// an integer constant expression.
15613 
15614 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15615 /// comma, etc
15616 
15617 // CheckICE - This function does the fundamental ICE checking: the returned
15618 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15619 // and a (possibly null) SourceLocation indicating the location of the problem.
15620 //
15621 // Note that to reduce code duplication, this helper does no evaluation
15622 // itself; the caller checks whether the expression is evaluatable, and
15623 // in the rare cases where CheckICE actually cares about the evaluated
15624 // value, it calls into Evaluate.
15625 
15626 namespace {
15627 
15628 enum ICEKind {
15629   /// This expression is an ICE.
15630   IK_ICE,
15631   /// This expression is not an ICE, but if it isn't evaluated, it's
15632   /// a legal subexpression for an ICE. This return value is used to handle
15633   /// the comma operator in C99 mode, and non-constant subexpressions.
15634   IK_ICEIfUnevaluated,
15635   /// This expression is not an ICE, and is not a legal subexpression for one.
15636   IK_NotICE
15637 };
15638 
15639 struct ICEDiag {
15640   ICEKind Kind;
15641   SourceLocation Loc;
15642 
15643   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15644 };
15645 
15646 }
15647 
15648 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15649 
15650 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15651 
15652 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15653   Expr::EvalResult EVResult;
15654   Expr::EvalStatus Status;
15655   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15656 
15657   Info.InConstantContext = true;
15658   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15659       !EVResult.Val.isInt())
15660     return ICEDiag(IK_NotICE, E->getBeginLoc());
15661 
15662   return NoDiag();
15663 }
15664 
15665 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15666   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15667   if (!E->getType()->isIntegralOrEnumerationType())
15668     return ICEDiag(IK_NotICE, E->getBeginLoc());
15669 
15670   switch (E->getStmtClass()) {
15671 #define ABSTRACT_STMT(Node)
15672 #define STMT(Node, Base) case Expr::Node##Class:
15673 #define EXPR(Node, Base)
15674 #include "clang/AST/StmtNodes.inc"
15675   case Expr::PredefinedExprClass:
15676   case Expr::FloatingLiteralClass:
15677   case Expr::ImaginaryLiteralClass:
15678   case Expr::StringLiteralClass:
15679   case Expr::ArraySubscriptExprClass:
15680   case Expr::MatrixSubscriptExprClass:
15681   case Expr::OMPArraySectionExprClass:
15682   case Expr::OMPArrayShapingExprClass:
15683   case Expr::OMPIteratorExprClass:
15684   case Expr::MemberExprClass:
15685   case Expr::CompoundAssignOperatorClass:
15686   case Expr::CompoundLiteralExprClass:
15687   case Expr::ExtVectorElementExprClass:
15688   case Expr::DesignatedInitExprClass:
15689   case Expr::ArrayInitLoopExprClass:
15690   case Expr::ArrayInitIndexExprClass:
15691   case Expr::NoInitExprClass:
15692   case Expr::DesignatedInitUpdateExprClass:
15693   case Expr::ImplicitValueInitExprClass:
15694   case Expr::ParenListExprClass:
15695   case Expr::VAArgExprClass:
15696   case Expr::AddrLabelExprClass:
15697   case Expr::StmtExprClass:
15698   case Expr::CXXMemberCallExprClass:
15699   case Expr::CUDAKernelCallExprClass:
15700   case Expr::CXXAddrspaceCastExprClass:
15701   case Expr::CXXDynamicCastExprClass:
15702   case Expr::CXXTypeidExprClass:
15703   case Expr::CXXUuidofExprClass:
15704   case Expr::MSPropertyRefExprClass:
15705   case Expr::MSPropertySubscriptExprClass:
15706   case Expr::CXXNullPtrLiteralExprClass:
15707   case Expr::UserDefinedLiteralClass:
15708   case Expr::CXXThisExprClass:
15709   case Expr::CXXThrowExprClass:
15710   case Expr::CXXNewExprClass:
15711   case Expr::CXXDeleteExprClass:
15712   case Expr::CXXPseudoDestructorExprClass:
15713   case Expr::UnresolvedLookupExprClass:
15714   case Expr::TypoExprClass:
15715   case Expr::RecoveryExprClass:
15716   case Expr::DependentScopeDeclRefExprClass:
15717   case Expr::CXXConstructExprClass:
15718   case Expr::CXXInheritedCtorInitExprClass:
15719   case Expr::CXXStdInitializerListExprClass:
15720   case Expr::CXXBindTemporaryExprClass:
15721   case Expr::ExprWithCleanupsClass:
15722   case Expr::CXXTemporaryObjectExprClass:
15723   case Expr::CXXUnresolvedConstructExprClass:
15724   case Expr::CXXDependentScopeMemberExprClass:
15725   case Expr::UnresolvedMemberExprClass:
15726   case Expr::ObjCStringLiteralClass:
15727   case Expr::ObjCBoxedExprClass:
15728   case Expr::ObjCArrayLiteralClass:
15729   case Expr::ObjCDictionaryLiteralClass:
15730   case Expr::ObjCEncodeExprClass:
15731   case Expr::ObjCMessageExprClass:
15732   case Expr::ObjCSelectorExprClass:
15733   case Expr::ObjCProtocolExprClass:
15734   case Expr::ObjCIvarRefExprClass:
15735   case Expr::ObjCPropertyRefExprClass:
15736   case Expr::ObjCSubscriptRefExprClass:
15737   case Expr::ObjCIsaExprClass:
15738   case Expr::ObjCAvailabilityCheckExprClass:
15739   case Expr::ShuffleVectorExprClass:
15740   case Expr::ConvertVectorExprClass:
15741   case Expr::BlockExprClass:
15742   case Expr::NoStmtClass:
15743   case Expr::OpaqueValueExprClass:
15744   case Expr::PackExpansionExprClass:
15745   case Expr::SubstNonTypeTemplateParmPackExprClass:
15746   case Expr::FunctionParmPackExprClass:
15747   case Expr::AsTypeExprClass:
15748   case Expr::ObjCIndirectCopyRestoreExprClass:
15749   case Expr::MaterializeTemporaryExprClass:
15750   case Expr::PseudoObjectExprClass:
15751   case Expr::AtomicExprClass:
15752   case Expr::LambdaExprClass:
15753   case Expr::CXXFoldExprClass:
15754   case Expr::CoawaitExprClass:
15755   case Expr::DependentCoawaitExprClass:
15756   case Expr::CoyieldExprClass:
15757   case Expr::SYCLUniqueStableNameExprClass:
15758   case Expr::CXXParenListInitExprClass:
15759     return ICEDiag(IK_NotICE, E->getBeginLoc());
15760 
15761   case Expr::InitListExprClass: {
15762     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15763     // form "T x = { a };" is equivalent to "T x = a;".
15764     // Unless we're initializing a reference, T is a scalar as it is known to be
15765     // of integral or enumeration type.
15766     if (E->isPRValue())
15767       if (cast<InitListExpr>(E)->getNumInits() == 1)
15768         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15769     return ICEDiag(IK_NotICE, E->getBeginLoc());
15770   }
15771 
15772   case Expr::SizeOfPackExprClass:
15773   case Expr::GNUNullExprClass:
15774   case Expr::SourceLocExprClass:
15775     return NoDiag();
15776 
15777   case Expr::SubstNonTypeTemplateParmExprClass:
15778     return
15779       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15780 
15781   case Expr::ConstantExprClass:
15782     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15783 
15784   case Expr::ParenExprClass:
15785     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15786   case Expr::GenericSelectionExprClass:
15787     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15788   case Expr::IntegerLiteralClass:
15789   case Expr::FixedPointLiteralClass:
15790   case Expr::CharacterLiteralClass:
15791   case Expr::ObjCBoolLiteralExprClass:
15792   case Expr::CXXBoolLiteralExprClass:
15793   case Expr::CXXScalarValueInitExprClass:
15794   case Expr::TypeTraitExprClass:
15795   case Expr::ConceptSpecializationExprClass:
15796   case Expr::RequiresExprClass:
15797   case Expr::ArrayTypeTraitExprClass:
15798   case Expr::ExpressionTraitExprClass:
15799   case Expr::CXXNoexceptExprClass:
15800     return NoDiag();
15801   case Expr::CallExprClass:
15802   case Expr::CXXOperatorCallExprClass: {
15803     // C99 6.6/3 allows function calls within unevaluated subexpressions of
15804     // constant expressions, but they can never be ICEs because an ICE cannot
15805     // contain an operand of (pointer to) function type.
15806     const CallExpr *CE = cast<CallExpr>(E);
15807     if (CE->getBuiltinCallee())
15808       return CheckEvalInICE(E, Ctx);
15809     return ICEDiag(IK_NotICE, E->getBeginLoc());
15810   }
15811   case Expr::CXXRewrittenBinaryOperatorClass:
15812     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15813                     Ctx);
15814   case Expr::DeclRefExprClass: {
15815     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15816     if (isa<EnumConstantDecl>(D))
15817       return NoDiag();
15818 
15819     // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15820     // integer variables in constant expressions:
15821     //
15822     // C++ 7.1.5.1p2
15823     //   A variable of non-volatile const-qualified integral or enumeration
15824     //   type initialized by an ICE can be used in ICEs.
15825     //
15826     // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15827     // that mode, use of reference variables should not be allowed.
15828     const VarDecl *VD = dyn_cast<VarDecl>(D);
15829     if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15830         !VD->getType()->isReferenceType())
15831       return NoDiag();
15832 
15833     return ICEDiag(IK_NotICE, E->getBeginLoc());
15834   }
15835   case Expr::UnaryOperatorClass: {
15836     const UnaryOperator *Exp = cast<UnaryOperator>(E);
15837     switch (Exp->getOpcode()) {
15838     case UO_PostInc:
15839     case UO_PostDec:
15840     case UO_PreInc:
15841     case UO_PreDec:
15842     case UO_AddrOf:
15843     case UO_Deref:
15844     case UO_Coawait:
15845       // C99 6.6/3 allows increment and decrement within unevaluated
15846       // subexpressions of constant expressions, but they can never be ICEs
15847       // because an ICE cannot contain an lvalue operand.
15848       return ICEDiag(IK_NotICE, E->getBeginLoc());
15849     case UO_Extension:
15850     case UO_LNot:
15851     case UO_Plus:
15852     case UO_Minus:
15853     case UO_Not:
15854     case UO_Real:
15855     case UO_Imag:
15856       return CheckICE(Exp->getSubExpr(), Ctx);
15857     }
15858     llvm_unreachable("invalid unary operator class");
15859   }
15860   case Expr::OffsetOfExprClass: {
15861     // Note that per C99, offsetof must be an ICE. And AFAIK, using
15862     // EvaluateAsRValue matches the proposed gcc behavior for cases like
15863     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
15864     // compliance: we should warn earlier for offsetof expressions with
15865     // array subscripts that aren't ICEs, and if the array subscripts
15866     // are ICEs, the value of the offsetof must be an integer constant.
15867     return CheckEvalInICE(E, Ctx);
15868   }
15869   case Expr::UnaryExprOrTypeTraitExprClass: {
15870     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15871     if ((Exp->getKind() ==  UETT_SizeOf) &&
15872         Exp->getTypeOfArgument()->isVariableArrayType())
15873       return ICEDiag(IK_NotICE, E->getBeginLoc());
15874     return NoDiag();
15875   }
15876   case Expr::BinaryOperatorClass: {
15877     const BinaryOperator *Exp = cast<BinaryOperator>(E);
15878     switch (Exp->getOpcode()) {
15879     case BO_PtrMemD:
15880     case BO_PtrMemI:
15881     case BO_Assign:
15882     case BO_MulAssign:
15883     case BO_DivAssign:
15884     case BO_RemAssign:
15885     case BO_AddAssign:
15886     case BO_SubAssign:
15887     case BO_ShlAssign:
15888     case BO_ShrAssign:
15889     case BO_AndAssign:
15890     case BO_XorAssign:
15891     case BO_OrAssign:
15892       // C99 6.6/3 allows assignments within unevaluated subexpressions of
15893       // constant expressions, but they can never be ICEs because an ICE cannot
15894       // contain an lvalue operand.
15895       return ICEDiag(IK_NotICE, E->getBeginLoc());
15896 
15897     case BO_Mul:
15898     case BO_Div:
15899     case BO_Rem:
15900     case BO_Add:
15901     case BO_Sub:
15902     case BO_Shl:
15903     case BO_Shr:
15904     case BO_LT:
15905     case BO_GT:
15906     case BO_LE:
15907     case BO_GE:
15908     case BO_EQ:
15909     case BO_NE:
15910     case BO_And:
15911     case BO_Xor:
15912     case BO_Or:
15913     case BO_Comma:
15914     case BO_Cmp: {
15915       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15916       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15917       if (Exp->getOpcode() == BO_Div ||
15918           Exp->getOpcode() == BO_Rem) {
15919         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15920         // we don't evaluate one.
15921         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15922           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15923           if (REval == 0)
15924             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15925           if (REval.isSigned() && REval.isAllOnes()) {
15926             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15927             if (LEval.isMinSignedValue())
15928               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15929           }
15930         }
15931       }
15932       if (Exp->getOpcode() == BO_Comma) {
15933         if (Ctx.getLangOpts().C99) {
15934           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15935           // if it isn't evaluated.
15936           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15937             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15938         } else {
15939           // In both C89 and C++, commas in ICEs are illegal.
15940           return ICEDiag(IK_NotICE, E->getBeginLoc());
15941         }
15942       }
15943       return Worst(LHSResult, RHSResult);
15944     }
15945     case BO_LAnd:
15946     case BO_LOr: {
15947       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15948       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15949       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15950         // Rare case where the RHS has a comma "side-effect"; we need
15951         // to actually check the condition to see whether the side
15952         // with the comma is evaluated.
15953         if ((Exp->getOpcode() == BO_LAnd) !=
15954             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15955           return RHSResult;
15956         return NoDiag();
15957       }
15958 
15959       return Worst(LHSResult, RHSResult);
15960     }
15961     }
15962     llvm_unreachable("invalid binary operator kind");
15963   }
15964   case Expr::ImplicitCastExprClass:
15965   case Expr::CStyleCastExprClass:
15966   case Expr::CXXFunctionalCastExprClass:
15967   case Expr::CXXStaticCastExprClass:
15968   case Expr::CXXReinterpretCastExprClass:
15969   case Expr::CXXConstCastExprClass:
15970   case Expr::ObjCBridgedCastExprClass: {
15971     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15972     if (isa<ExplicitCastExpr>(E)) {
15973       if (const FloatingLiteral *FL
15974             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15975         unsigned DestWidth = Ctx.getIntWidth(E->getType());
15976         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15977         APSInt IgnoredVal(DestWidth, !DestSigned);
15978         bool Ignored;
15979         // If the value does not fit in the destination type, the behavior is
15980         // undefined, so we are not required to treat it as a constant
15981         // expression.
15982         if (FL->getValue().convertToInteger(IgnoredVal,
15983                                             llvm::APFloat::rmTowardZero,
15984                                             &Ignored) & APFloat::opInvalidOp)
15985           return ICEDiag(IK_NotICE, E->getBeginLoc());
15986         return NoDiag();
15987       }
15988     }
15989     switch (cast<CastExpr>(E)->getCastKind()) {
15990     case CK_LValueToRValue:
15991     case CK_AtomicToNonAtomic:
15992     case CK_NonAtomicToAtomic:
15993     case CK_NoOp:
15994     case CK_IntegralToBoolean:
15995     case CK_IntegralCast:
15996       return CheckICE(SubExpr, Ctx);
15997     default:
15998       return ICEDiag(IK_NotICE, E->getBeginLoc());
15999     }
16000   }
16001   case Expr::BinaryConditionalOperatorClass: {
16002     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
16003     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
16004     if (CommonResult.Kind == IK_NotICE) return CommonResult;
16005     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16006     if (FalseResult.Kind == IK_NotICE) return FalseResult;
16007     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
16008     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
16009         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
16010     return FalseResult;
16011   }
16012   case Expr::ConditionalOperatorClass: {
16013     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
16014     // If the condition (ignoring parens) is a __builtin_constant_p call,
16015     // then only the true side is actually considered in an integer constant
16016     // expression, and it is fully evaluated.  This is an important GNU
16017     // extension.  See GCC PR38377 for discussion.
16018     if (const CallExpr *CallCE
16019         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
16020       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
16021         return CheckEvalInICE(E, Ctx);
16022     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
16023     if (CondResult.Kind == IK_NotICE)
16024       return CondResult;
16025 
16026     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
16027     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16028 
16029     if (TrueResult.Kind == IK_NotICE)
16030       return TrueResult;
16031     if (FalseResult.Kind == IK_NotICE)
16032       return FalseResult;
16033     if (CondResult.Kind == IK_ICEIfUnevaluated)
16034       return CondResult;
16035     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
16036       return NoDiag();
16037     // Rare case where the diagnostics depend on which side is evaluated
16038     // Note that if we get here, CondResult is 0, and at least one of
16039     // TrueResult and FalseResult is non-zero.
16040     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
16041       return FalseResult;
16042     return TrueResult;
16043   }
16044   case Expr::CXXDefaultArgExprClass:
16045     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
16046   case Expr::CXXDefaultInitExprClass:
16047     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
16048   case Expr::ChooseExprClass: {
16049     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
16050   }
16051   case Expr::BuiltinBitCastExprClass: {
16052     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
16053       return ICEDiag(IK_NotICE, E->getBeginLoc());
16054     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
16055   }
16056   }
16057 
16058   llvm_unreachable("Invalid StmtClass!");
16059 }
16060 
16061 /// Evaluate an expression as a C++11 integral constant expression.
16062 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
16063                                                     const Expr *E,
16064                                                     llvm::APSInt *Value,
16065                                                     SourceLocation *Loc) {
16066   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16067     if (Loc) *Loc = E->getExprLoc();
16068     return false;
16069   }
16070 
16071   APValue Result;
16072   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
16073     return false;
16074 
16075   if (!Result.isInt()) {
16076     if (Loc) *Loc = E->getExprLoc();
16077     return false;
16078   }
16079 
16080   if (Value) *Value = Result.getInt();
16081   return true;
16082 }
16083 
16084 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
16085                                  SourceLocation *Loc) const {
16086   assert(!isValueDependent() &&
16087          "Expression evaluator can't be called on a dependent expression.");
16088 
16089   ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
16090 
16091   if (Ctx.getLangOpts().CPlusPlus11)
16092     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
16093 
16094   ICEDiag D = CheckICE(this, Ctx);
16095   if (D.Kind != IK_ICE) {
16096     if (Loc) *Loc = D.Loc;
16097     return false;
16098   }
16099   return true;
16100 }
16101 
16102 std::optional<llvm::APSInt>
16103 Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc,
16104                              bool isEvaluated) const {
16105   if (isValueDependent()) {
16106     // Expression evaluator can't succeed on a dependent expression.
16107     return std::nullopt;
16108   }
16109 
16110   APSInt Value;
16111 
16112   if (Ctx.getLangOpts().CPlusPlus11) {
16113     if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
16114       return Value;
16115     return std::nullopt;
16116   }
16117 
16118   if (!isIntegerConstantExpr(Ctx, Loc))
16119     return std::nullopt;
16120 
16121   // The only possible side-effects here are due to UB discovered in the
16122   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
16123   // required to treat the expression as an ICE, so we produce the folded
16124   // value.
16125   EvalResult ExprResult;
16126   Expr::EvalStatus Status;
16127   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
16128   Info.InConstantContext = true;
16129 
16130   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
16131     llvm_unreachable("ICE cannot be evaluated!");
16132 
16133   return ExprResult.Val.getInt();
16134 }
16135 
16136 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
16137   assert(!isValueDependent() &&
16138          "Expression evaluator can't be called on a dependent expression.");
16139 
16140   return CheckICE(this, Ctx).Kind == IK_ICE;
16141 }
16142 
16143 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
16144                                SourceLocation *Loc) const {
16145   assert(!isValueDependent() &&
16146          "Expression evaluator can't be called on a dependent expression.");
16147 
16148   // We support this checking in C++98 mode in order to diagnose compatibility
16149   // issues.
16150   assert(Ctx.getLangOpts().CPlusPlus);
16151 
16152   // Build evaluation settings.
16153   Expr::EvalStatus Status;
16154   SmallVector<PartialDiagnosticAt, 8> Diags;
16155   Status.Diag = &Diags;
16156   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16157 
16158   APValue Scratch;
16159   bool IsConstExpr =
16160       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
16161       // FIXME: We don't produce a diagnostic for this, but the callers that
16162       // call us on arbitrary full-expressions should generally not care.
16163       Info.discardCleanups() && !Status.HasSideEffects;
16164 
16165   if (!Diags.empty()) {
16166     IsConstExpr = false;
16167     if (Loc) *Loc = Diags[0].first;
16168   } else if (!IsConstExpr) {
16169     // FIXME: This shouldn't happen.
16170     if (Loc) *Loc = getExprLoc();
16171   }
16172 
16173   return IsConstExpr;
16174 }
16175 
16176 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
16177                                     const FunctionDecl *Callee,
16178                                     ArrayRef<const Expr*> Args,
16179                                     const Expr *This) const {
16180   assert(!isValueDependent() &&
16181          "Expression evaluator can't be called on a dependent expression.");
16182 
16183   llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
16184     std::string Name;
16185     llvm::raw_string_ostream OS(Name);
16186     Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(),
16187                                  /*Qualified=*/true);
16188     return Name;
16189   });
16190 
16191   Expr::EvalStatus Status;
16192   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
16193   Info.InConstantContext = true;
16194 
16195   LValue ThisVal;
16196   const LValue *ThisPtr = nullptr;
16197   if (This) {
16198 #ifndef NDEBUG
16199     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
16200     assert(MD && "Don't provide `this` for non-methods.");
16201     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
16202 #endif
16203     if (!This->isValueDependent() &&
16204         EvaluateObjectArgument(Info, This, ThisVal) &&
16205         !Info.EvalStatus.HasSideEffects)
16206       ThisPtr = &ThisVal;
16207 
16208     // Ignore any side-effects from a failed evaluation. This is safe because
16209     // they can't interfere with any other argument evaluation.
16210     Info.EvalStatus.HasSideEffects = false;
16211   }
16212 
16213   CallRef Call = Info.CurrentCall->createCall(Callee);
16214   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
16215        I != E; ++I) {
16216     unsigned Idx = I - Args.begin();
16217     if (Idx >= Callee->getNumParams())
16218       break;
16219     const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
16220     if ((*I)->isValueDependent() ||
16221         !EvaluateCallArg(PVD, *I, Call, Info) ||
16222         Info.EvalStatus.HasSideEffects) {
16223       // If evaluation fails, throw away the argument entirely.
16224       if (APValue *Slot = Info.getParamSlot(Call, PVD))
16225         *Slot = APValue();
16226     }
16227 
16228     // Ignore any side-effects from a failed evaluation. This is safe because
16229     // they can't interfere with any other argument evaluation.
16230     Info.EvalStatus.HasSideEffects = false;
16231   }
16232 
16233   // Parameter cleanups happen in the caller and are not part of this
16234   // evaluation.
16235   Info.discardCleanups();
16236   Info.EvalStatus.HasSideEffects = false;
16237 
16238   // Build fake call to Callee.
16239   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This,
16240                        Call);
16241   // FIXME: Missing ExprWithCleanups in enable_if conditions?
16242   FullExpressionRAII Scope(Info);
16243   return Evaluate(Value, Info, this) && Scope.destroy() &&
16244          !Info.EvalStatus.HasSideEffects;
16245 }
16246 
16247 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
16248                                    SmallVectorImpl<
16249                                      PartialDiagnosticAt> &Diags) {
16250   // FIXME: It would be useful to check constexpr function templates, but at the
16251   // moment the constant expression evaluator cannot cope with the non-rigorous
16252   // ASTs which we build for dependent expressions.
16253   if (FD->isDependentContext())
16254     return true;
16255 
16256   llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
16257     std::string Name;
16258     llvm::raw_string_ostream OS(Name);
16259     FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(),
16260                              /*Qualified=*/true);
16261     return Name;
16262   });
16263 
16264   Expr::EvalStatus Status;
16265   Status.Diag = &Diags;
16266 
16267   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
16268   Info.InConstantContext = true;
16269   Info.CheckingPotentialConstantExpression = true;
16270 
16271   // The constexpr VM attempts to compile all methods to bytecode here.
16272   if (Info.EnableNewConstInterp) {
16273     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
16274     return Diags.empty();
16275   }
16276 
16277   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
16278   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
16279 
16280   // Fabricate an arbitrary expression on the stack and pretend that it
16281   // is a temporary being used as the 'this' pointer.
16282   LValue This;
16283   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
16284   This.set({&VIE, Info.CurrentCall->Index});
16285 
16286   ArrayRef<const Expr*> Args;
16287 
16288   APValue Scratch;
16289   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
16290     // Evaluate the call as a constant initializer, to allow the construction
16291     // of objects of non-literal types.
16292     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
16293     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
16294   } else {
16295     SourceLocation Loc = FD->getLocation();
16296     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
16297                        &VIE, Args, CallRef(), FD->getBody(), Info, Scratch,
16298                        /*ResultSlot=*/nullptr);
16299   }
16300 
16301   return Diags.empty();
16302 }
16303 
16304 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
16305                                               const FunctionDecl *FD,
16306                                               SmallVectorImpl<
16307                                                 PartialDiagnosticAt> &Diags) {
16308   assert(!E->isValueDependent() &&
16309          "Expression evaluator can't be called on a dependent expression.");
16310 
16311   Expr::EvalStatus Status;
16312   Status.Diag = &Diags;
16313 
16314   EvalInfo Info(FD->getASTContext(), Status,
16315                 EvalInfo::EM_ConstantExpressionUnevaluated);
16316   Info.InConstantContext = true;
16317   Info.CheckingPotentialConstantExpression = true;
16318 
16319   // Fabricate a call stack frame to give the arguments a plausible cover story.
16320   CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr,
16321                        /*CallExpr=*/nullptr, CallRef());
16322 
16323   APValue ResultScratch;
16324   Evaluate(ResultScratch, Info, E);
16325   return Diags.empty();
16326 }
16327 
16328 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
16329                                  unsigned Type) const {
16330   if (!getType()->isPointerType())
16331     return false;
16332 
16333   Expr::EvalStatus Status;
16334   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16335   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
16336 }
16337 
16338 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
16339                                   EvalInfo &Info) {
16340   if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
16341     return false;
16342 
16343   LValue String;
16344 
16345   if (!EvaluatePointer(E, String, Info))
16346     return false;
16347 
16348   QualType CharTy = E->getType()->getPointeeType();
16349 
16350   // Fast path: if it's a string literal, search the string value.
16351   if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
16352           String.getLValueBase().dyn_cast<const Expr *>())) {
16353     StringRef Str = S->getBytes();
16354     int64_t Off = String.Offset.getQuantity();
16355     if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
16356         S->getCharByteWidth() == 1 &&
16357         // FIXME: Add fast-path for wchar_t too.
16358         Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
16359       Str = Str.substr(Off);
16360 
16361       StringRef::size_type Pos = Str.find(0);
16362       if (Pos != StringRef::npos)
16363         Str = Str.substr(0, Pos);
16364 
16365       Result = Str.size();
16366       return true;
16367     }
16368 
16369     // Fall through to slow path.
16370   }
16371 
16372   // Slow path: scan the bytes of the string looking for the terminating 0.
16373   for (uint64_t Strlen = 0; /**/; ++Strlen) {
16374     APValue Char;
16375     if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
16376         !Char.isInt())
16377       return false;
16378     if (!Char.getInt()) {
16379       Result = Strlen;
16380       return true;
16381     }
16382     if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
16383       return false;
16384   }
16385 }
16386 
16387 bool Expr::EvaluateCharRangeAsString(std::string &Result,
16388                                      const Expr *SizeExpression,
16389                                      const Expr *PtrExpression, ASTContext &Ctx,
16390                                      EvalResult &Status) const {
16391   LValue String;
16392   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16393   Info.InConstantContext = true;
16394 
16395   FullExpressionRAII Scope(Info);
16396   APSInt SizeValue;
16397   if (!::EvaluateInteger(SizeExpression, SizeValue, Info))
16398     return false;
16399 
16400   int64_t Size = SizeValue.getExtValue();
16401 
16402   if (!::EvaluatePointer(PtrExpression, String, Info))
16403     return false;
16404 
16405   QualType CharTy = PtrExpression->getType()->getPointeeType();
16406   for (int64_t I = 0; I < Size; ++I) {
16407     APValue Char;
16408     if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String,
16409                                         Char))
16410       return false;
16411 
16412     APSInt C = Char.getInt();
16413     Result.push_back(static_cast<char>(C.getExtValue()));
16414     if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1))
16415       return false;
16416   }
16417   if (!Scope.destroy())
16418     return false;
16419 
16420   if (!CheckMemoryLeaks(Info))
16421     return false;
16422 
16423   return true;
16424 }
16425 
16426 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
16427   Expr::EvalStatus Status;
16428   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16429   return EvaluateBuiltinStrLen(this, Result, Info);
16430 }
16431