xref: /freebsd/contrib/llvm-project/clang/lib/AST/Expr.cpp (revision e9ac41698b2f322d55ccf9da50a3596edb2c1800)
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cstring>
40 #include <optional>
41 using namespace clang;
42 
43 const Expr *Expr::getBestDynamicClassTypeExpr() const {
44   const Expr *E = this;
45   while (true) {
46     E = E->IgnoreParenBaseCasts();
47 
48     // Follow the RHS of a comma operator.
49     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50       if (BO->getOpcode() == BO_Comma) {
51         E = BO->getRHS();
52         continue;
53       }
54     }
55 
56     // Step into initializer for materialized temporaries.
57     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58       E = MTE->getSubExpr();
59       continue;
60     }
61 
62     break;
63   }
64 
65   return E;
66 }
67 
68 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69   const Expr *E = getBestDynamicClassTypeExpr();
70   QualType DerivedType = E->getType();
71   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72     DerivedType = PTy->getPointeeType();
73 
74   if (DerivedType->isDependentType())
75     return nullptr;
76 
77   const RecordType *Ty = DerivedType->castAs<RecordType>();
78   Decl *D = Ty->getDecl();
79   return cast<CXXRecordDecl>(D);
80 }
81 
82 const Expr *Expr::skipRValueSubobjectAdjustments(
83     SmallVectorImpl<const Expr *> &CommaLHSs,
84     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85   const Expr *E = this;
86   while (true) {
87     E = E->IgnoreParens();
88 
89     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
90       if ((CE->getCastKind() == CK_DerivedToBase ||
91            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92           E->getType()->isRecordType()) {
93         E = CE->getSubExpr();
94         auto *Derived =
95             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
96         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
97         continue;
98       }
99 
100       if (CE->getCastKind() == CK_NoOp) {
101         E = CE->getSubExpr();
102         continue;
103       }
104     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
105       if (!ME->isArrow()) {
106         assert(ME->getBase()->getType()->isRecordType());
107         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
108           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109             E = ME->getBase();
110             Adjustments.push_back(SubobjectAdjustment(Field));
111             continue;
112           }
113         }
114       }
115     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
116       if (BO->getOpcode() == BO_PtrMemD) {
117         assert(BO->getRHS()->isPRValue());
118         E = BO->getLHS();
119         const MemberPointerType *MPT =
120           BO->getRHS()->getType()->getAs<MemberPointerType>();
121         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
122         continue;
123       }
124       if (BO->getOpcode() == BO_Comma) {
125         CommaLHSs.push_back(BO->getLHS());
126         E = BO->getRHS();
127         continue;
128       }
129     }
130 
131     // Nothing changed.
132     break;
133   }
134   return E;
135 }
136 
137 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
138   const Expr *E = IgnoreParens();
139 
140   // If this value has _Bool type, it is obvious 0/1.
141   if (E->getType()->isBooleanType()) return true;
142   // If this is a non-scalar-integer type, we don't care enough to try.
143   if (!E->getType()->isIntegralOrEnumerationType()) return false;
144 
145   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
146     switch (UO->getOpcode()) {
147     case UO_Plus:
148       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
149     case UO_LNot:
150       return true;
151     default:
152       return false;
153     }
154   }
155 
156   // Only look through implicit casts.  If the user writes
157   // '(int) (a && b)' treat it as an arbitrary int.
158   // FIXME: Should we look through any cast expression in !Semantic mode?
159   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
160     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
161 
162   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
163     switch (BO->getOpcode()) {
164     default: return false;
165     case BO_LT:   // Relational operators.
166     case BO_GT:
167     case BO_LE:
168     case BO_GE:
169     case BO_EQ:   // Equality operators.
170     case BO_NE:
171     case BO_LAnd: // AND operator.
172     case BO_LOr:  // Logical OR operator.
173       return true;
174 
175     case BO_And:  // Bitwise AND operator.
176     case BO_Xor:  // Bitwise XOR operator.
177     case BO_Or:   // Bitwise OR operator.
178       // Handle things like (x==2)|(y==12).
179       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
180              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
181 
182     case BO_Comma:
183     case BO_Assign:
184       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
185     }
186   }
187 
188   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
189     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
190            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
191 
192   if (isa<ObjCBoolLiteralExpr>(E))
193     return true;
194 
195   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
196     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
197 
198   if (const FieldDecl *FD = E->getSourceBitField())
199     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
200         !FD->getBitWidth()->isValueDependent() &&
201         FD->getBitWidthValue(FD->getASTContext()) == 1)
202       return true;
203 
204   return false;
205 }
206 
207 bool Expr::isFlexibleArrayMemberLike(
208     ASTContext &Ctx,
209     LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
210     bool IgnoreTemplateOrMacroSubstitution) const {
211   const Expr *E = IgnoreParens();
212   const Decl *D = nullptr;
213 
214   if (const auto *ME = dyn_cast<MemberExpr>(E))
215     D = ME->getMemberDecl();
216   else if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
217     D = DRE->getDecl();
218   else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
219     D = IRE->getDecl();
220 
221   return Decl::isFlexibleArrayMemberLike(Ctx, D, E->getType(),
222                                          StrictFlexArraysLevel,
223                                          IgnoreTemplateOrMacroSubstitution);
224 }
225 
226 const ValueDecl *
227 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
228   Expr::EvalResult Eval;
229 
230   if (EvaluateAsConstantExpr(Eval, Context)) {
231     APValue &Value = Eval.Val;
232 
233     if (Value.isMemberPointer())
234       return Value.getMemberPointerDecl();
235 
236     if (Value.isLValue() && Value.getLValueOffset().isZero())
237       return Value.getLValueBase().dyn_cast<const ValueDecl *>();
238   }
239 
240   return nullptr;
241 }
242 
243 // Amusing macro metaprogramming hack: check whether a class provides
244 // a more specific implementation of getExprLoc().
245 //
246 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
247 namespace {
248   /// This implementation is used when a class provides a custom
249   /// implementation of getExprLoc.
250   template <class E, class T>
251   SourceLocation getExprLocImpl(const Expr *expr,
252                                 SourceLocation (T::*v)() const) {
253     return static_cast<const E*>(expr)->getExprLoc();
254   }
255 
256   /// This implementation is used when a class doesn't provide
257   /// a custom implementation of getExprLoc.  Overload resolution
258   /// should pick it over the implementation above because it's
259   /// more specialized according to function template partial ordering.
260   template <class E>
261   SourceLocation getExprLocImpl(const Expr *expr,
262                                 SourceLocation (Expr::*v)() const) {
263     return static_cast<const E *>(expr)->getBeginLoc();
264   }
265 }
266 
267 SourceLocation Expr::getExprLoc() const {
268   switch (getStmtClass()) {
269   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
270 #define ABSTRACT_STMT(type)
271 #define STMT(type, base) \
272   case Stmt::type##Class: break;
273 #define EXPR(type, base) \
274   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
275 #include "clang/AST/StmtNodes.inc"
276   }
277   llvm_unreachable("unknown expression kind");
278 }
279 
280 //===----------------------------------------------------------------------===//
281 // Primary Expressions.
282 //===----------------------------------------------------------------------===//
283 
284 static void AssertResultStorageKind(ConstantResultStorageKind Kind) {
285   assert((Kind == ConstantResultStorageKind::APValue ||
286           Kind == ConstantResultStorageKind::Int64 ||
287           Kind == ConstantResultStorageKind::None) &&
288          "Invalid StorageKind Value");
289   (void)Kind;
290 }
291 
292 ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) {
293   switch (Value.getKind()) {
294   case APValue::None:
295   case APValue::Indeterminate:
296     return ConstantResultStorageKind::None;
297   case APValue::Int:
298     if (!Value.getInt().needsCleanup())
299       return ConstantResultStorageKind::Int64;
300     [[fallthrough]];
301   default:
302     return ConstantResultStorageKind::APValue;
303   }
304 }
305 
306 ConstantResultStorageKind
307 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
308   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
309     return ConstantResultStorageKind::Int64;
310   return ConstantResultStorageKind::APValue;
311 }
312 
313 ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
314                            bool IsImmediateInvocation)
315     : FullExpr(ConstantExprClass, SubExpr) {
316   ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind);
317   ConstantExprBits.APValueKind = APValue::None;
318   ConstantExprBits.IsUnsigned = false;
319   ConstantExprBits.BitWidth = 0;
320   ConstantExprBits.HasCleanup = false;
321   ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
322 
323   if (StorageKind == ConstantResultStorageKind::APValue)
324     ::new (getTrailingObjects<APValue>()) APValue();
325 }
326 
327 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
328                                    ConstantResultStorageKind StorageKind,
329                                    bool IsImmediateInvocation) {
330   assert(!isa<ConstantExpr>(E));
331   AssertResultStorageKind(StorageKind);
332 
333   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
334       StorageKind == ConstantResultStorageKind::APValue,
335       StorageKind == ConstantResultStorageKind::Int64);
336   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
337   return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
338 }
339 
340 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
341                                    const APValue &Result) {
342   ConstantResultStorageKind StorageKind = getStorageKind(Result);
343   ConstantExpr *Self = Create(Context, E, StorageKind);
344   Self->SetResult(Result, Context);
345   return Self;
346 }
347 
348 ConstantExpr::ConstantExpr(EmptyShell Empty,
349                            ConstantResultStorageKind StorageKind)
350     : FullExpr(ConstantExprClass, Empty) {
351   ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind);
352 
353   if (StorageKind == ConstantResultStorageKind::APValue)
354     ::new (getTrailingObjects<APValue>()) APValue();
355 }
356 
357 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
358                                         ConstantResultStorageKind StorageKind) {
359   AssertResultStorageKind(StorageKind);
360 
361   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
362       StorageKind == ConstantResultStorageKind::APValue,
363       StorageKind == ConstantResultStorageKind::Int64);
364   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
365   return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
366 }
367 
368 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
369   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
370          "Invalid storage for this value kind");
371   ConstantExprBits.APValueKind = Value.getKind();
372   switch (getResultStorageKind()) {
373   case ConstantResultStorageKind::None:
374     return;
375   case ConstantResultStorageKind::Int64:
376     Int64Result() = *Value.getInt().getRawData();
377     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
378     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
379     return;
380   case ConstantResultStorageKind::APValue:
381     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
382       ConstantExprBits.HasCleanup = true;
383       Context.addDestruction(&APValueResult());
384     }
385     APValueResult() = std::move(Value);
386     return;
387   }
388   llvm_unreachable("Invalid ResultKind Bits");
389 }
390 
391 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
392   switch (getResultStorageKind()) {
393   case ConstantResultStorageKind::APValue:
394     return APValueResult().getInt();
395   case ConstantResultStorageKind::Int64:
396     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
397                         ConstantExprBits.IsUnsigned);
398   default:
399     llvm_unreachable("invalid Accessor");
400   }
401 }
402 
403 APValue ConstantExpr::getAPValueResult() const {
404 
405   switch (getResultStorageKind()) {
406   case ConstantResultStorageKind::APValue:
407     return APValueResult();
408   case ConstantResultStorageKind::Int64:
409     return APValue(
410         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
411                      ConstantExprBits.IsUnsigned));
412   case ConstantResultStorageKind::None:
413     if (ConstantExprBits.APValueKind == APValue::Indeterminate)
414       return APValue::IndeterminateValue();
415     return APValue();
416   }
417   llvm_unreachable("invalid ResultKind");
418 }
419 
420 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
421                          bool RefersToEnclosingVariableOrCapture, QualType T,
422                          ExprValueKind VK, SourceLocation L,
423                          const DeclarationNameLoc &LocInfo,
424                          NonOdrUseReason NOUR)
425     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
426   DeclRefExprBits.HasQualifier = false;
427   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
428   DeclRefExprBits.HasFoundDecl = false;
429   DeclRefExprBits.HadMultipleCandidates = false;
430   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
431       RefersToEnclosingVariableOrCapture;
432   DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
433   DeclRefExprBits.NonOdrUseReason = NOUR;
434   DeclRefExprBits.IsImmediateEscalating = false;
435   DeclRefExprBits.Loc = L;
436   setDependence(computeDependence(this, Ctx));
437 }
438 
439 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
440                          NestedNameSpecifierLoc QualifierLoc,
441                          SourceLocation TemplateKWLoc, ValueDecl *D,
442                          bool RefersToEnclosingVariableOrCapture,
443                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
444                          const TemplateArgumentListInfo *TemplateArgs,
445                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
446     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
447       DNLoc(NameInfo.getInfo()) {
448   DeclRefExprBits.Loc = NameInfo.getLoc();
449   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
450   if (QualifierLoc)
451     new (getTrailingObjects<NestedNameSpecifierLoc>())
452         NestedNameSpecifierLoc(QualifierLoc);
453   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
454   if (FoundD)
455     *getTrailingObjects<NamedDecl *>() = FoundD;
456   DeclRefExprBits.HasTemplateKWAndArgsInfo
457     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
458   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
459       RefersToEnclosingVariableOrCapture;
460   DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
461   DeclRefExprBits.NonOdrUseReason = NOUR;
462   if (TemplateArgs) {
463     auto Deps = TemplateArgumentDependence::None;
464     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
465         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
466         Deps);
467     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
468            "built a DeclRefExpr with dependent template args");
469   } else if (TemplateKWLoc.isValid()) {
470     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
471         TemplateKWLoc);
472   }
473   DeclRefExprBits.IsImmediateEscalating = false;
474   DeclRefExprBits.HadMultipleCandidates = 0;
475   setDependence(computeDependence(this, Ctx));
476 }
477 
478 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
479                                  NestedNameSpecifierLoc QualifierLoc,
480                                  SourceLocation TemplateKWLoc, ValueDecl *D,
481                                  bool RefersToEnclosingVariableOrCapture,
482                                  SourceLocation NameLoc, QualType T,
483                                  ExprValueKind VK, NamedDecl *FoundD,
484                                  const TemplateArgumentListInfo *TemplateArgs,
485                                  NonOdrUseReason NOUR) {
486   return Create(Context, QualifierLoc, TemplateKWLoc, D,
487                 RefersToEnclosingVariableOrCapture,
488                 DeclarationNameInfo(D->getDeclName(), NameLoc),
489                 T, VK, FoundD, TemplateArgs, NOUR);
490 }
491 
492 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
493                                  NestedNameSpecifierLoc QualifierLoc,
494                                  SourceLocation TemplateKWLoc, ValueDecl *D,
495                                  bool RefersToEnclosingVariableOrCapture,
496                                  const DeclarationNameInfo &NameInfo,
497                                  QualType T, ExprValueKind VK,
498                                  NamedDecl *FoundD,
499                                  const TemplateArgumentListInfo *TemplateArgs,
500                                  NonOdrUseReason NOUR) {
501   // Filter out cases where the found Decl is the same as the value refenenced.
502   if (D == FoundD)
503     FoundD = nullptr;
504 
505   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
506   std::size_t Size =
507       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
508                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
509           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
510           HasTemplateKWAndArgsInfo ? 1 : 0,
511           TemplateArgs ? TemplateArgs->size() : 0);
512 
513   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
514   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
515                                RefersToEnclosingVariableOrCapture, NameInfo,
516                                FoundD, TemplateArgs, T, VK, NOUR);
517 }
518 
519 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
520                                       bool HasQualifier,
521                                       bool HasFoundDecl,
522                                       bool HasTemplateKWAndArgsInfo,
523                                       unsigned NumTemplateArgs) {
524   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
525   std::size_t Size =
526       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
527                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
528           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
529           NumTemplateArgs);
530   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
531   return new (Mem) DeclRefExpr(EmptyShell());
532 }
533 
534 void DeclRefExpr::setDecl(ValueDecl *NewD) {
535   D = NewD;
536   if (getType()->isUndeducedType())
537     setType(NewD->getType());
538   setDependence(computeDependence(this, NewD->getASTContext()));
539 }
540 
541 SourceLocation DeclRefExpr::getBeginLoc() const {
542   if (hasQualifier())
543     return getQualifierLoc().getBeginLoc();
544   return getNameInfo().getBeginLoc();
545 }
546 SourceLocation DeclRefExpr::getEndLoc() const {
547   if (hasExplicitTemplateArgs())
548     return getRAngleLoc();
549   return getNameInfo().getEndLoc();
550 }
551 
552 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
553                                                    SourceLocation LParen,
554                                                    SourceLocation RParen,
555                                                    QualType ResultTy,
556                                                    TypeSourceInfo *TSI)
557     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
558       OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
559   setTypeSourceInfo(TSI);
560   setDependence(computeDependence(this));
561 }
562 
563 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
564                                                    QualType ResultTy)
565     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
566 
567 SYCLUniqueStableNameExpr *
568 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
569                                  SourceLocation LParen, SourceLocation RParen,
570                                  TypeSourceInfo *TSI) {
571   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
572   return new (Ctx)
573       SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
574 }
575 
576 SYCLUniqueStableNameExpr *
577 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
578   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
579   return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
580 }
581 
582 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
583   return SYCLUniqueStableNameExpr::ComputeName(Context,
584                                                getTypeSourceInfo()->getType());
585 }
586 
587 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
588                                                   QualType Ty) {
589   auto MangleCallback = [](ASTContext &Ctx,
590                            const NamedDecl *ND) -> std::optional<unsigned> {
591     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
592       return RD->getDeviceLambdaManglingNumber();
593     return std::nullopt;
594   };
595 
596   std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
597       Context, Context.getDiagnostics(), MangleCallback)};
598 
599   std::string Buffer;
600   Buffer.reserve(128);
601   llvm::raw_string_ostream Out(Buffer);
602   Ctx->mangleCanonicalTypeName(Ty, Out);
603 
604   return Out.str();
605 }
606 
607 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy,
608                                PredefinedIdentKind IK, bool IsTransparent,
609                                StringLiteral *SL)
610     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
611   PredefinedExprBits.Kind = llvm::to_underlying(IK);
612   assert((getIdentKind() == IK) &&
613          "IdentKind do not fit in PredefinedExprBitfields!");
614   bool HasFunctionName = SL != nullptr;
615   PredefinedExprBits.HasFunctionName = HasFunctionName;
616   PredefinedExprBits.IsTransparent = IsTransparent;
617   PredefinedExprBits.Loc = L;
618   if (HasFunctionName)
619     setFunctionName(SL);
620   setDependence(computeDependence(this));
621 }
622 
623 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
624     : Expr(PredefinedExprClass, Empty) {
625   PredefinedExprBits.HasFunctionName = HasFunctionName;
626 }
627 
628 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
629                                        QualType FNTy, PredefinedIdentKind IK,
630                                        bool IsTransparent, StringLiteral *SL) {
631   bool HasFunctionName = SL != nullptr;
632   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
633                            alignof(PredefinedExpr));
634   return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
635 }
636 
637 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
638                                             bool HasFunctionName) {
639   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
640                            alignof(PredefinedExpr));
641   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
642 }
643 
644 StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) {
645   switch (IK) {
646   case PredefinedIdentKind::Func:
647     return "__func__";
648   case PredefinedIdentKind::Function:
649     return "__FUNCTION__";
650   case PredefinedIdentKind::FuncDName:
651     return "__FUNCDNAME__";
652   case PredefinedIdentKind::LFunction:
653     return "L__FUNCTION__";
654   case PredefinedIdentKind::PrettyFunction:
655     return "__PRETTY_FUNCTION__";
656   case PredefinedIdentKind::FuncSig:
657     return "__FUNCSIG__";
658   case PredefinedIdentKind::LFuncSig:
659     return "L__FUNCSIG__";
660   case PredefinedIdentKind::PrettyFunctionNoVirtual:
661     break;
662   }
663   llvm_unreachable("Unknown ident kind for PredefinedExpr");
664 }
665 
666 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
667 // expr" policy instead.
668 std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK,
669                                         const Decl *CurrentDecl) {
670   ASTContext &Context = CurrentDecl->getASTContext();
671 
672   if (IK == PredefinedIdentKind::FuncDName) {
673     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
674       std::unique_ptr<MangleContext> MC;
675       MC.reset(Context.createMangleContext());
676 
677       if (MC->shouldMangleDeclName(ND)) {
678         SmallString<256> Buffer;
679         llvm::raw_svector_ostream Out(Buffer);
680         GlobalDecl GD;
681         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
682           GD = GlobalDecl(CD, Ctor_Base);
683         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
684           GD = GlobalDecl(DD, Dtor_Base);
685         else if (ND->hasAttr<CUDAGlobalAttr>())
686           GD = GlobalDecl(cast<FunctionDecl>(ND));
687         else
688           GD = GlobalDecl(ND);
689         MC->mangleName(GD, Out);
690 
691         if (!Buffer.empty() && Buffer.front() == '\01')
692           return std::string(Buffer.substr(1));
693         return std::string(Buffer);
694       }
695       return std::string(ND->getIdentifier()->getName());
696     }
697     return "";
698   }
699   if (isa<BlockDecl>(CurrentDecl)) {
700     // For blocks we only emit something if it is enclosed in a function
701     // For top-level block we'd like to include the name of variable, but we
702     // don't have it at this point.
703     auto DC = CurrentDecl->getDeclContext();
704     if (DC->isFileContext())
705       return "";
706 
707     SmallString<256> Buffer;
708     llvm::raw_svector_ostream Out(Buffer);
709     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
710       // For nested blocks, propagate up to the parent.
711       Out << ComputeName(IK, DCBlock);
712     else if (auto *DCDecl = dyn_cast<Decl>(DC))
713       Out << ComputeName(IK, DCDecl) << "_block_invoke";
714     return std::string(Out.str());
715   }
716   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
717     if (IK != PredefinedIdentKind::PrettyFunction &&
718         IK != PredefinedIdentKind::PrettyFunctionNoVirtual &&
719         IK != PredefinedIdentKind::FuncSig &&
720         IK != PredefinedIdentKind::LFuncSig)
721       return FD->getNameAsString();
722 
723     SmallString<256> Name;
724     llvm::raw_svector_ostream Out(Name);
725 
726     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
727       if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual)
728         Out << "virtual ";
729       if (MD->isStatic())
730         Out << "static ";
731     }
732 
733     class PrettyCallbacks final : public PrintingCallbacks {
734     public:
735       PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
736       std::string remapPath(StringRef Path) const override {
737         SmallString<128> p(Path);
738         LO.remapPathPrefix(p);
739         return std::string(p);
740       }
741 
742     private:
743       const LangOptions &LO;
744     };
745     PrintingPolicy Policy(Context.getLangOpts());
746     PrettyCallbacks PrettyCB(Context.getLangOpts());
747     Policy.Callbacks = &PrettyCB;
748     std::string Proto;
749     llvm::raw_string_ostream POut(Proto);
750 
751     const FunctionDecl *Decl = FD;
752     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
753       Decl = Pattern;
754     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
755     const FunctionProtoType *FT = nullptr;
756     if (FD->hasWrittenPrototype())
757       FT = dyn_cast<FunctionProtoType>(AFT);
758 
759     if (IK == PredefinedIdentKind::FuncSig ||
760         IK == PredefinedIdentKind::LFuncSig) {
761       switch (AFT->getCallConv()) {
762       case CC_C: POut << "__cdecl "; break;
763       case CC_X86StdCall: POut << "__stdcall "; break;
764       case CC_X86FastCall: POut << "__fastcall "; break;
765       case CC_X86ThisCall: POut << "__thiscall "; break;
766       case CC_X86VectorCall: POut << "__vectorcall "; break;
767       case CC_X86RegCall: POut << "__regcall "; break;
768       // Only bother printing the conventions that MSVC knows about.
769       default: break;
770       }
771     }
772 
773     FD->printQualifiedName(POut, Policy);
774 
775     POut << "(";
776     if (FT) {
777       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
778         if (i) POut << ", ";
779         POut << Decl->getParamDecl(i)->getType().stream(Policy);
780       }
781 
782       if (FT->isVariadic()) {
783         if (FD->getNumParams()) POut << ", ";
784         POut << "...";
785       } else if ((IK == PredefinedIdentKind::FuncSig ||
786                   IK == PredefinedIdentKind::LFuncSig ||
787                   !Context.getLangOpts().CPlusPlus) &&
788                  !Decl->getNumParams()) {
789         POut << "void";
790       }
791     }
792     POut << ")";
793 
794     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
795       assert(FT && "We must have a written prototype in this case.");
796       if (FT->isConst())
797         POut << " const";
798       if (FT->isVolatile())
799         POut << " volatile";
800       RefQualifierKind Ref = MD->getRefQualifier();
801       if (Ref == RQ_LValue)
802         POut << " &";
803       else if (Ref == RQ_RValue)
804         POut << " &&";
805     }
806 
807     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
808     SpecsTy Specs;
809     const DeclContext *Ctx = FD->getDeclContext();
810     while (Ctx && isa<NamedDecl>(Ctx)) {
811       const ClassTemplateSpecializationDecl *Spec
812                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
813       if (Spec && !Spec->isExplicitSpecialization())
814         Specs.push_back(Spec);
815       Ctx = Ctx->getParent();
816     }
817 
818     std::string TemplateParams;
819     llvm::raw_string_ostream TOut(TemplateParams);
820     for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
821       const TemplateParameterList *Params =
822           D->getSpecializedTemplate()->getTemplateParameters();
823       const TemplateArgumentList &Args = D->getTemplateArgs();
824       assert(Params->size() == Args.size());
825       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
826         StringRef Param = Params->getParam(i)->getName();
827         if (Param.empty()) continue;
828         TOut << Param << " = ";
829         Args.get(i).print(Policy, TOut,
830                           TemplateParameterList::shouldIncludeTypeForArgument(
831                               Policy, Params, i));
832         TOut << ", ";
833       }
834     }
835 
836     FunctionTemplateSpecializationInfo *FSI
837                                           = FD->getTemplateSpecializationInfo();
838     if (FSI && !FSI->isExplicitSpecialization()) {
839       const TemplateParameterList* Params
840                                   = FSI->getTemplate()->getTemplateParameters();
841       const TemplateArgumentList* Args = FSI->TemplateArguments;
842       assert(Params->size() == Args->size());
843       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
844         StringRef Param = Params->getParam(i)->getName();
845         if (Param.empty()) continue;
846         TOut << Param << " = ";
847         Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
848         TOut << ", ";
849       }
850     }
851 
852     TOut.flush();
853     if (!TemplateParams.empty()) {
854       // remove the trailing comma and space
855       TemplateParams.resize(TemplateParams.size() - 2);
856       POut << " [" << TemplateParams << "]";
857     }
858 
859     POut.flush();
860 
861     // Print "auto" for all deduced return types. This includes C++1y return
862     // type deduction and lambdas. For trailing return types resolve the
863     // decltype expression. Otherwise print the real type when this is
864     // not a constructor or destructor.
865     if (isa<CXXMethodDecl>(FD) &&
866          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
867       Proto = "auto " + Proto;
868     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
869       FT->getReturnType()
870           ->getAs<DecltypeType>()
871           ->getUnderlyingType()
872           .getAsStringInternal(Proto, Policy);
873     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
874       AFT->getReturnType().getAsStringInternal(Proto, Policy);
875 
876     Out << Proto;
877 
878     return std::string(Name);
879   }
880   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
881     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
882       // Skip to its enclosing function or method, but not its enclosing
883       // CapturedDecl.
884       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
885         const Decl *D = Decl::castFromDeclContext(DC);
886         return ComputeName(IK, D);
887       }
888     llvm_unreachable("CapturedDecl not inside a function or method");
889   }
890   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
891     SmallString<256> Name;
892     llvm::raw_svector_ostream Out(Name);
893     Out << (MD->isInstanceMethod() ? '-' : '+');
894     Out << '[';
895 
896     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
897     // a null check to avoid a crash.
898     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
899       Out << *ID;
900 
901     if (const ObjCCategoryImplDecl *CID =
902         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
903       Out << '(' << *CID << ')';
904 
905     Out <<  ' ';
906     MD->getSelector().print(Out);
907     Out <<  ']';
908 
909     return std::string(Name);
910   }
911   if (isa<TranslationUnitDecl>(CurrentDecl) &&
912       IK == PredefinedIdentKind::PrettyFunction) {
913     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
914     return "top level";
915   }
916   return "";
917 }
918 
919 void APNumericStorage::setIntValue(const ASTContext &C,
920                                    const llvm::APInt &Val) {
921   if (hasAllocation())
922     C.Deallocate(pVal);
923 
924   BitWidth = Val.getBitWidth();
925   unsigned NumWords = Val.getNumWords();
926   const uint64_t* Words = Val.getRawData();
927   if (NumWords > 1) {
928     pVal = new (C) uint64_t[NumWords];
929     std::copy(Words, Words + NumWords, pVal);
930   } else if (NumWords == 1)
931     VAL = Words[0];
932   else
933     VAL = 0;
934 }
935 
936 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
937                                QualType type, SourceLocation l)
938     : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
939   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
940   assert(V.getBitWidth() == C.getIntWidth(type) &&
941          "Integer type is not the correct size for constant.");
942   setValue(C, V);
943   setDependence(ExprDependence::None);
944 }
945 
946 IntegerLiteral *
947 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
948                        QualType type, SourceLocation l) {
949   return new (C) IntegerLiteral(C, V, type, l);
950 }
951 
952 IntegerLiteral *
953 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
954   return new (C) IntegerLiteral(Empty);
955 }
956 
957 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
958                                      QualType type, SourceLocation l,
959                                      unsigned Scale)
960     : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
961       Scale(Scale) {
962   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
963   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
964          "Fixed point type is not the correct size for constant.");
965   setValue(C, V);
966   setDependence(ExprDependence::None);
967 }
968 
969 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
970                                                        const llvm::APInt &V,
971                                                        QualType type,
972                                                        SourceLocation l,
973                                                        unsigned Scale) {
974   return new (C) FixedPointLiteral(C, V, type, l, Scale);
975 }
976 
977 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
978                                              EmptyShell Empty) {
979   return new (C) FixedPointLiteral(Empty);
980 }
981 
982 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
983   // Currently the longest decimal number that can be printed is the max for an
984   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
985   // which is 43 characters.
986   SmallString<64> S;
987   FixedPointValueToString(
988       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
989   return std::string(S);
990 }
991 
992 void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind,
993                              raw_ostream &OS) {
994   switch (Kind) {
995   case CharacterLiteralKind::Ascii:
996     break; // no prefix.
997   case CharacterLiteralKind::Wide:
998     OS << 'L';
999     break;
1000   case CharacterLiteralKind::UTF8:
1001     OS << "u8";
1002     break;
1003   case CharacterLiteralKind::UTF16:
1004     OS << 'u';
1005     break;
1006   case CharacterLiteralKind::UTF32:
1007     OS << 'U';
1008     break;
1009   }
1010 
1011   StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1012   if (!Escaped.empty()) {
1013     OS << "'" << Escaped << "'";
1014   } else {
1015     // A character literal might be sign-extended, which
1016     // would result in an invalid \U escape sequence.
1017     // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1018     // are not correctly handled.
1019     if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii)
1020       Val &= 0xFFu;
1021     if (Val < 256 && isPrintable((unsigned char)Val))
1022       OS << "'" << (char)Val << "'";
1023     else if (Val < 256)
1024       OS << "'\\x" << llvm::format("%02x", Val) << "'";
1025     else if (Val <= 0xFFFF)
1026       OS << "'\\u" << llvm::format("%04x", Val) << "'";
1027     else
1028       OS << "'\\U" << llvm::format("%08x", Val) << "'";
1029   }
1030 }
1031 
1032 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1033                                  bool isexact, QualType Type, SourceLocation L)
1034     : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1035   setSemantics(V.getSemantics());
1036   FloatingLiteralBits.IsExact = isexact;
1037   setValue(C, V);
1038   setDependence(ExprDependence::None);
1039 }
1040 
1041 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1042   : Expr(FloatingLiteralClass, Empty) {
1043   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1044   FloatingLiteralBits.IsExact = false;
1045 }
1046 
1047 FloatingLiteral *
1048 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1049                         bool isexact, QualType Type, SourceLocation L) {
1050   return new (C) FloatingLiteral(C, V, isexact, Type, L);
1051 }
1052 
1053 FloatingLiteral *
1054 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1055   return new (C) FloatingLiteral(C, Empty);
1056 }
1057 
1058 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1059 /// double.  Note that this may cause loss of precision, but is useful for
1060 /// debugging dumps, etc.
1061 double FloatingLiteral::getValueAsApproximateDouble() const {
1062   llvm::APFloat V = getValue();
1063   bool ignored;
1064   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1065             &ignored);
1066   return V.convertToDouble();
1067 }
1068 
1069 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1070                                          StringLiteralKind SK) {
1071   unsigned CharByteWidth = 0;
1072   switch (SK) {
1073   case StringLiteralKind::Ordinary:
1074   case StringLiteralKind::UTF8:
1075     CharByteWidth = Target.getCharWidth();
1076     break;
1077   case StringLiteralKind::Wide:
1078     CharByteWidth = Target.getWCharWidth();
1079     break;
1080   case StringLiteralKind::UTF16:
1081     CharByteWidth = Target.getChar16Width();
1082     break;
1083   case StringLiteralKind::UTF32:
1084     CharByteWidth = Target.getChar32Width();
1085     break;
1086   case StringLiteralKind::Unevaluated:
1087     return sizeof(char); // Host;
1088   }
1089   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1090   CharByteWidth /= 8;
1091   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1092          "The only supported character byte widths are 1,2 and 4!");
1093   return CharByteWidth;
1094 }
1095 
1096 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1097                              StringLiteralKind Kind, bool Pascal, QualType Ty,
1098                              const SourceLocation *Loc,
1099                              unsigned NumConcatenated)
1100     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1101 
1102   unsigned Length = Str.size();
1103 
1104   StringLiteralBits.Kind = llvm::to_underlying(Kind);
1105   StringLiteralBits.NumConcatenated = NumConcatenated;
1106 
1107   if (Kind != StringLiteralKind::Unevaluated) {
1108     assert(Ctx.getAsConstantArrayType(Ty) &&
1109            "StringLiteral must be of constant array type!");
1110     unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1111     unsigned ByteLength = Str.size();
1112     assert((ByteLength % CharByteWidth == 0) &&
1113            "The size of the data must be a multiple of CharByteWidth!");
1114 
1115     // Avoid the expensive division. The compiler should be able to figure it
1116     // out by itself. However as of clang 7, even with the appropriate
1117     // llvm_unreachable added just here, it is not able to do so.
1118     switch (CharByteWidth) {
1119     case 1:
1120       Length = ByteLength;
1121       break;
1122     case 2:
1123       Length = ByteLength / 2;
1124       break;
1125     case 4:
1126       Length = ByteLength / 4;
1127       break;
1128     default:
1129       llvm_unreachable("Unsupported character width!");
1130     }
1131 
1132     StringLiteralBits.CharByteWidth = CharByteWidth;
1133     StringLiteralBits.IsPascal = Pascal;
1134   } else {
1135     assert(!Pascal && "Can't make an unevaluated Pascal string");
1136     StringLiteralBits.CharByteWidth = 1;
1137     StringLiteralBits.IsPascal = false;
1138   }
1139 
1140   *getTrailingObjects<unsigned>() = Length;
1141 
1142   // Initialize the trailing array of SourceLocation.
1143   // This is safe since SourceLocation is POD-like.
1144   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1145               NumConcatenated * sizeof(SourceLocation));
1146 
1147   // Initialize the trailing array of char holding the string data.
1148   std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size());
1149 
1150   setDependence(ExprDependence::None);
1151 }
1152 
1153 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1154                              unsigned Length, unsigned CharByteWidth)
1155     : Expr(StringLiteralClass, Empty) {
1156   StringLiteralBits.CharByteWidth = CharByteWidth;
1157   StringLiteralBits.NumConcatenated = NumConcatenated;
1158   *getTrailingObjects<unsigned>() = Length;
1159 }
1160 
1161 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1162                                      StringLiteralKind Kind, bool Pascal,
1163                                      QualType Ty, const SourceLocation *Loc,
1164                                      unsigned NumConcatenated) {
1165   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1166                                1, NumConcatenated, Str.size()),
1167                            alignof(StringLiteral));
1168   return new (Mem)
1169       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1170 }
1171 
1172 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1173                                           unsigned NumConcatenated,
1174                                           unsigned Length,
1175                                           unsigned CharByteWidth) {
1176   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1177                                1, NumConcatenated, Length * CharByteWidth),
1178                            alignof(StringLiteral));
1179   return new (Mem)
1180       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1181 }
1182 
1183 void StringLiteral::outputString(raw_ostream &OS) const {
1184   switch (getKind()) {
1185   case StringLiteralKind::Unevaluated:
1186   case StringLiteralKind::Ordinary:
1187     break; // no prefix.
1188   case StringLiteralKind::Wide:
1189     OS << 'L';
1190     break;
1191   case StringLiteralKind::UTF8:
1192     OS << "u8";
1193     break;
1194   case StringLiteralKind::UTF16:
1195     OS << 'u';
1196     break;
1197   case StringLiteralKind::UTF32:
1198     OS << 'U';
1199     break;
1200   }
1201   OS << '"';
1202   static const char Hex[] = "0123456789ABCDEF";
1203 
1204   unsigned LastSlashX = getLength();
1205   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1206     uint32_t Char = getCodeUnit(I);
1207     StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1208     if (Escaped.empty()) {
1209       // FIXME: Convert UTF-8 back to codepoints before rendering.
1210 
1211       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1212       // Leave invalid surrogates alone; we'll use \x for those.
1213       if (getKind() == StringLiteralKind::UTF16 && I != N - 1 &&
1214           Char >= 0xd800 && Char <= 0xdbff) {
1215         uint32_t Trail = getCodeUnit(I + 1);
1216         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1217           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1218           ++I;
1219         }
1220       }
1221 
1222       if (Char > 0xff) {
1223         // If this is a wide string, output characters over 0xff using \x
1224         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1225         // codepoint: use \x escapes for invalid codepoints.
1226         if (getKind() == StringLiteralKind::Wide ||
1227             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1228           // FIXME: Is this the best way to print wchar_t?
1229           OS << "\\x";
1230           int Shift = 28;
1231           while ((Char >> Shift) == 0)
1232             Shift -= 4;
1233           for (/**/; Shift >= 0; Shift -= 4)
1234             OS << Hex[(Char >> Shift) & 15];
1235           LastSlashX = I;
1236           continue;
1237         }
1238 
1239         if (Char > 0xffff)
1240           OS << "\\U00"
1241              << Hex[(Char >> 20) & 15]
1242              << Hex[(Char >> 16) & 15];
1243         else
1244           OS << "\\u";
1245         OS << Hex[(Char >> 12) & 15]
1246            << Hex[(Char >>  8) & 15]
1247            << Hex[(Char >>  4) & 15]
1248            << Hex[(Char >>  0) & 15];
1249         continue;
1250       }
1251 
1252       // If we used \x... for the previous character, and this character is a
1253       // hexadecimal digit, prevent it being slurped as part of the \x.
1254       if (LastSlashX + 1 == I) {
1255         switch (Char) {
1256           case '0': case '1': case '2': case '3': case '4':
1257           case '5': case '6': case '7': case '8': case '9':
1258           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1259           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1260             OS << "\"\"";
1261         }
1262       }
1263 
1264       assert(Char <= 0xff &&
1265              "Characters above 0xff should already have been handled.");
1266 
1267       if (isPrintable(Char))
1268         OS << (char)Char;
1269       else  // Output anything hard as an octal escape.
1270         OS << '\\'
1271            << (char)('0' + ((Char >> 6) & 7))
1272            << (char)('0' + ((Char >> 3) & 7))
1273            << (char)('0' + ((Char >> 0) & 7));
1274     } else {
1275       // Handle some common non-printable cases to make dumps prettier.
1276       OS << Escaped;
1277     }
1278   }
1279   OS << '"';
1280 }
1281 
1282 /// getLocationOfByte - Return a source location that points to the specified
1283 /// byte of this string literal.
1284 ///
1285 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1286 /// can have escape sequences in them in addition to the usual trigraph and
1287 /// escaped newline business.  This routine handles this complexity.
1288 ///
1289 /// The *StartToken sets the first token to be searched in this function and
1290 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1291 /// returning, it updates the *StartToken to the TokNo of the token being found
1292 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1293 /// string.
1294 /// Using these two parameters can reduce the time complexity from O(n^2) to
1295 /// O(n) if one wants to get the location of byte for all the tokens in a
1296 /// string.
1297 ///
1298 SourceLocation
1299 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1300                                  const LangOptions &Features,
1301                                  const TargetInfo &Target, unsigned *StartToken,
1302                                  unsigned *StartTokenByteOffset) const {
1303   assert((getKind() == StringLiteralKind::Ordinary ||
1304           getKind() == StringLiteralKind::UTF8 ||
1305           getKind() == StringLiteralKind::Unevaluated) &&
1306          "Only narrow string literals are currently supported");
1307 
1308   // Loop over all of the tokens in this string until we find the one that
1309   // contains the byte we're looking for.
1310   unsigned TokNo = 0;
1311   unsigned StringOffset = 0;
1312   if (StartToken)
1313     TokNo = *StartToken;
1314   if (StartTokenByteOffset) {
1315     StringOffset = *StartTokenByteOffset;
1316     ByteNo -= StringOffset;
1317   }
1318   while (true) {
1319     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1320     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1321 
1322     // Get the spelling of the string so that we can get the data that makes up
1323     // the string literal, not the identifier for the macro it is potentially
1324     // expanded through.
1325     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1326 
1327     // Re-lex the token to get its length and original spelling.
1328     std::pair<FileID, unsigned> LocInfo =
1329         SM.getDecomposedLoc(StrTokSpellingLoc);
1330     bool Invalid = false;
1331     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1332     if (Invalid) {
1333       if (StartTokenByteOffset != nullptr)
1334         *StartTokenByteOffset = StringOffset;
1335       if (StartToken != nullptr)
1336         *StartToken = TokNo;
1337       return StrTokSpellingLoc;
1338     }
1339 
1340     const char *StrData = Buffer.data()+LocInfo.second;
1341 
1342     // Create a lexer starting at the beginning of this token.
1343     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1344                    Buffer.begin(), StrData, Buffer.end());
1345     Token TheTok;
1346     TheLexer.LexFromRawLexer(TheTok);
1347 
1348     // Use the StringLiteralParser to compute the length of the string in bytes.
1349     StringLiteralParser SLP(TheTok, SM, Features, Target);
1350     unsigned TokNumBytes = SLP.GetStringLength();
1351 
1352     // If the byte is in this token, return the location of the byte.
1353     if (ByteNo < TokNumBytes ||
1354         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1355       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1356 
1357       // Now that we know the offset of the token in the spelling, use the
1358       // preprocessor to get the offset in the original source.
1359       if (StartTokenByteOffset != nullptr)
1360         *StartTokenByteOffset = StringOffset;
1361       if (StartToken != nullptr)
1362         *StartToken = TokNo;
1363       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1364     }
1365 
1366     // Move to the next string token.
1367     StringOffset += TokNumBytes;
1368     ++TokNo;
1369     ByteNo -= TokNumBytes;
1370   }
1371 }
1372 
1373 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1374 /// corresponds to, e.g. "sizeof" or "[pre]++".
1375 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1376   switch (Op) {
1377 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1378 #include "clang/AST/OperationKinds.def"
1379   }
1380   llvm_unreachable("Unknown unary operator");
1381 }
1382 
1383 UnaryOperatorKind
1384 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1385   switch (OO) {
1386   default: llvm_unreachable("No unary operator for overloaded function");
1387   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1388   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1389   case OO_Amp:        return UO_AddrOf;
1390   case OO_Star:       return UO_Deref;
1391   case OO_Plus:       return UO_Plus;
1392   case OO_Minus:      return UO_Minus;
1393   case OO_Tilde:      return UO_Not;
1394   case OO_Exclaim:    return UO_LNot;
1395   case OO_Coawait:    return UO_Coawait;
1396   }
1397 }
1398 
1399 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1400   switch (Opc) {
1401   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1402   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1403   case UO_AddrOf: return OO_Amp;
1404   case UO_Deref: return OO_Star;
1405   case UO_Plus: return OO_Plus;
1406   case UO_Minus: return OO_Minus;
1407   case UO_Not: return OO_Tilde;
1408   case UO_LNot: return OO_Exclaim;
1409   case UO_Coawait: return OO_Coawait;
1410   default: return OO_None;
1411   }
1412 }
1413 
1414 
1415 //===----------------------------------------------------------------------===//
1416 // Postfix Operators.
1417 //===----------------------------------------------------------------------===//
1418 
1419 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1420                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1421                    SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1422                    unsigned MinNumArgs, ADLCallKind UsesADL)
1423     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1424   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1425   unsigned NumPreArgs = PreArgs.size();
1426   CallExprBits.NumPreArgs = NumPreArgs;
1427   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1428 
1429   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1430   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1431   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1432          "OffsetToTrailingObjects overflow!");
1433 
1434   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1435 
1436   setCallee(Fn);
1437   for (unsigned I = 0; I != NumPreArgs; ++I)
1438     setPreArg(I, PreArgs[I]);
1439   for (unsigned I = 0; I != Args.size(); ++I)
1440     setArg(I, Args[I]);
1441   for (unsigned I = Args.size(); I != NumArgs; ++I)
1442     setArg(I, nullptr);
1443 
1444   this->computeDependence();
1445 
1446   CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1447   if (hasStoredFPFeatures())
1448     setStoredFPFeatures(FPFeatures);
1449 }
1450 
1451 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1452                    bool HasFPFeatures, EmptyShell Empty)
1453     : Expr(SC, Empty), NumArgs(NumArgs) {
1454   CallExprBits.NumPreArgs = NumPreArgs;
1455   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1456 
1457   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1458   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1459   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1460          "OffsetToTrailingObjects overflow!");
1461   CallExprBits.HasFPFeatures = HasFPFeatures;
1462 }
1463 
1464 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1465                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1466                            SourceLocation RParenLoc,
1467                            FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1468                            ADLCallKind UsesADL) {
1469   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1470   unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1471       /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1472   void *Mem =
1473       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1474   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1475                             RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1476 }
1477 
1478 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1479                                     ExprValueKind VK, SourceLocation RParenLoc,
1480                                     ADLCallKind UsesADL) {
1481   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1482          "Misaligned memory in CallExpr::CreateTemporary!");
1483   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1484                             VK, RParenLoc, FPOptionsOverride(),
1485                             /*MinNumArgs=*/0, UsesADL);
1486 }
1487 
1488 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1489                                 bool HasFPFeatures, EmptyShell Empty) {
1490   unsigned SizeOfTrailingObjects =
1491       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1492   void *Mem =
1493       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1494   return new (Mem)
1495       CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1496 }
1497 
1498 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1499   switch (SC) {
1500   case CallExprClass:
1501     return sizeof(CallExpr);
1502   case CXXOperatorCallExprClass:
1503     return sizeof(CXXOperatorCallExpr);
1504   case CXXMemberCallExprClass:
1505     return sizeof(CXXMemberCallExpr);
1506   case UserDefinedLiteralClass:
1507     return sizeof(UserDefinedLiteral);
1508   case CUDAKernelCallExprClass:
1509     return sizeof(CUDAKernelCallExpr);
1510   default:
1511     llvm_unreachable("unexpected class deriving from CallExpr!");
1512   }
1513 }
1514 
1515 Decl *Expr::getReferencedDeclOfCallee() {
1516   Expr *CEE = IgnoreParenImpCasts();
1517 
1518   while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE))
1519     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1520 
1521   // If we're calling a dereference, look at the pointer instead.
1522   while (true) {
1523     if (auto *BO = dyn_cast<BinaryOperator>(CEE)) {
1524       if (BO->isPtrMemOp()) {
1525         CEE = BO->getRHS()->IgnoreParenImpCasts();
1526         continue;
1527       }
1528     } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) {
1529       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1530           UO->getOpcode() == UO_Plus) {
1531         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1532         continue;
1533       }
1534     }
1535     break;
1536   }
1537 
1538   if (auto *DRE = dyn_cast<DeclRefExpr>(CEE))
1539     return DRE->getDecl();
1540   if (auto *ME = dyn_cast<MemberExpr>(CEE))
1541     return ME->getMemberDecl();
1542   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1543     return BE->getBlockDecl();
1544 
1545   return nullptr;
1546 }
1547 
1548 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1549 unsigned CallExpr::getBuiltinCallee() const {
1550   const auto *FDecl = getDirectCallee();
1551   return FDecl ? FDecl->getBuiltinID() : 0;
1552 }
1553 
1554 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1555   if (unsigned BI = getBuiltinCallee())
1556     return Ctx.BuiltinInfo.isUnevaluated(BI);
1557   return false;
1558 }
1559 
1560 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1561   const Expr *Callee = getCallee();
1562   QualType CalleeType = Callee->getType();
1563   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1564     CalleeType = FnTypePtr->getPointeeType();
1565   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1566     CalleeType = BPT->getPointeeType();
1567   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1568     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1569       return Ctx.VoidTy;
1570 
1571     if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1572       return Ctx.DependentTy;
1573 
1574     // This should never be overloaded and so should never return null.
1575     CalleeType = Expr::findBoundMemberType(Callee);
1576     assert(!CalleeType.isNull());
1577   } else if (CalleeType->isRecordType()) {
1578     // If the Callee is a record type, then it is a not-yet-resolved
1579     // dependent call to the call operator of that type.
1580     return Ctx.DependentTy;
1581   } else if (CalleeType->isDependentType() ||
1582              CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1583     return Ctx.DependentTy;
1584   }
1585 
1586   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1587   return FnType->getReturnType();
1588 }
1589 
1590 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1591   // If the return type is a struct, union, or enum that is marked nodiscard,
1592   // then return the return type attribute.
1593   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1594     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1595       return A;
1596 
1597   for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1598        TD = TD->desugar()->getAs<TypedefType>())
1599     if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1600       return A;
1601 
1602   // Otherwise, see if the callee is marked nodiscard and return that attribute
1603   // instead.
1604   const Decl *D = getCalleeDecl();
1605   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1606 }
1607 
1608 SourceLocation CallExpr::getBeginLoc() const {
1609   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1610     return OCE->getBeginLoc();
1611 
1612   SourceLocation begin = getCallee()->getBeginLoc();
1613   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1614     begin = getArg(0)->getBeginLoc();
1615   return begin;
1616 }
1617 SourceLocation CallExpr::getEndLoc() const {
1618   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1619     return OCE->getEndLoc();
1620 
1621   SourceLocation end = getRParenLoc();
1622   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1623     end = getArg(getNumArgs() - 1)->getEndLoc();
1624   return end;
1625 }
1626 
1627 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1628                                    SourceLocation OperatorLoc,
1629                                    TypeSourceInfo *tsi,
1630                                    ArrayRef<OffsetOfNode> comps,
1631                                    ArrayRef<Expr*> exprs,
1632                                    SourceLocation RParenLoc) {
1633   void *Mem = C.Allocate(
1634       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1635 
1636   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1637                                 RParenLoc);
1638 }
1639 
1640 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1641                                         unsigned numComps, unsigned numExprs) {
1642   void *Mem =
1643       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1644   return new (Mem) OffsetOfExpr(numComps, numExprs);
1645 }
1646 
1647 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1648                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1649                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1650                            SourceLocation RParenLoc)
1651     : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1652       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1653       NumComps(comps.size()), NumExprs(exprs.size()) {
1654   for (unsigned i = 0; i != comps.size(); ++i)
1655     setComponent(i, comps[i]);
1656   for (unsigned i = 0; i != exprs.size(); ++i)
1657     setIndexExpr(i, exprs[i]);
1658 
1659   setDependence(computeDependence(this));
1660 }
1661 
1662 IdentifierInfo *OffsetOfNode::getFieldName() const {
1663   assert(getKind() == Field || getKind() == Identifier);
1664   if (getKind() == Field)
1665     return getField()->getIdentifier();
1666 
1667   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1668 }
1669 
1670 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1671     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1672     SourceLocation op, SourceLocation rp)
1673     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1674       OpLoc(op), RParenLoc(rp) {
1675   assert(ExprKind <= UETT_Last && "invalid enum value!");
1676   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1677   assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1678          "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1679   UnaryExprOrTypeTraitExprBits.IsType = false;
1680   Argument.Ex = E;
1681   setDependence(computeDependence(this));
1682 }
1683 
1684 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1685                        ValueDecl *MemberDecl,
1686                        const DeclarationNameInfo &NameInfo, QualType T,
1687                        ExprValueKind VK, ExprObjectKind OK,
1688                        NonOdrUseReason NOUR)
1689     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1690       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1691   assert(!NameInfo.getName() ||
1692          MemberDecl->getDeclName() == NameInfo.getName());
1693   MemberExprBits.IsArrow = IsArrow;
1694   MemberExprBits.HasQualifierOrFoundDecl = false;
1695   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1696   MemberExprBits.HadMultipleCandidates = false;
1697   MemberExprBits.NonOdrUseReason = NOUR;
1698   MemberExprBits.OperatorLoc = OperatorLoc;
1699   setDependence(computeDependence(this));
1700 }
1701 
1702 MemberExpr *MemberExpr::Create(
1703     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1704     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1705     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1706     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1707     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1708   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1709                         FoundDecl.getAccess() != MemberDecl->getAccess();
1710   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1711   std::size_t Size =
1712       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1713                        TemplateArgumentLoc>(
1714           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1715           TemplateArgs ? TemplateArgs->size() : 0);
1716 
1717   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1718   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1719                                        NameInfo, T, VK, OK, NOUR);
1720 
1721   if (HasQualOrFound) {
1722     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1723 
1724     MemberExprNameQualifier *NQ =
1725         E->getTrailingObjects<MemberExprNameQualifier>();
1726     NQ->QualifierLoc = QualifierLoc;
1727     NQ->FoundDecl = FoundDecl;
1728   }
1729 
1730   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1731       TemplateArgs || TemplateKWLoc.isValid();
1732 
1733   // FIXME: remove remaining dependence computation to computeDependence().
1734   auto Deps = E->getDependence();
1735   if (TemplateArgs) {
1736     auto TemplateArgDeps = TemplateArgumentDependence::None;
1737     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1738         TemplateKWLoc, *TemplateArgs,
1739         E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1740     for (const TemplateArgumentLoc &ArgLoc : TemplateArgs->arguments()) {
1741       Deps |= toExprDependence(ArgLoc.getArgument().getDependence());
1742     }
1743   } else if (TemplateKWLoc.isValid()) {
1744     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1745         TemplateKWLoc);
1746   }
1747   E->setDependence(Deps);
1748 
1749   return E;
1750 }
1751 
1752 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1753                                     bool HasQualifier, bool HasFoundDecl,
1754                                     bool HasTemplateKWAndArgsInfo,
1755                                     unsigned NumTemplateArgs) {
1756   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1757          "template args but no template arg info?");
1758   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1759   std::size_t Size =
1760       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1761                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1762                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1763                                             NumTemplateArgs);
1764   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1765   return new (Mem) MemberExpr(EmptyShell());
1766 }
1767 
1768 void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1769   MemberDecl = NewD;
1770   if (getType()->isUndeducedType())
1771     setType(NewD->getType());
1772   setDependence(computeDependence(this));
1773 }
1774 
1775 SourceLocation MemberExpr::getBeginLoc() const {
1776   if (isImplicitAccess()) {
1777     if (hasQualifier())
1778       return getQualifierLoc().getBeginLoc();
1779     return MemberLoc;
1780   }
1781 
1782   // FIXME: We don't want this to happen. Rather, we should be able to
1783   // detect all kinds of implicit accesses more cleanly.
1784   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1785   if (BaseStartLoc.isValid())
1786     return BaseStartLoc;
1787   return MemberLoc;
1788 }
1789 SourceLocation MemberExpr::getEndLoc() const {
1790   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1791   if (hasExplicitTemplateArgs())
1792     EndLoc = getRAngleLoc();
1793   else if (EndLoc.isInvalid())
1794     EndLoc = getBase()->getEndLoc();
1795   return EndLoc;
1796 }
1797 
1798 bool CastExpr::CastConsistency() const {
1799   switch (getCastKind()) {
1800   case CK_DerivedToBase:
1801   case CK_UncheckedDerivedToBase:
1802   case CK_DerivedToBaseMemberPointer:
1803   case CK_BaseToDerived:
1804   case CK_BaseToDerivedMemberPointer:
1805     assert(!path_empty() && "Cast kind should have a base path!");
1806     break;
1807 
1808   case CK_CPointerToObjCPointerCast:
1809     assert(getType()->isObjCObjectPointerType());
1810     assert(getSubExpr()->getType()->isPointerType());
1811     goto CheckNoBasePath;
1812 
1813   case CK_BlockPointerToObjCPointerCast:
1814     assert(getType()->isObjCObjectPointerType());
1815     assert(getSubExpr()->getType()->isBlockPointerType());
1816     goto CheckNoBasePath;
1817 
1818   case CK_ReinterpretMemberPointer:
1819     assert(getType()->isMemberPointerType());
1820     assert(getSubExpr()->getType()->isMemberPointerType());
1821     goto CheckNoBasePath;
1822 
1823   case CK_BitCast:
1824     // Arbitrary casts to C pointer types count as bitcasts.
1825     // Otherwise, we should only have block and ObjC pointer casts
1826     // here if they stay within the type kind.
1827     if (!getType()->isPointerType()) {
1828       assert(getType()->isObjCObjectPointerType() ==
1829              getSubExpr()->getType()->isObjCObjectPointerType());
1830       assert(getType()->isBlockPointerType() ==
1831              getSubExpr()->getType()->isBlockPointerType());
1832     }
1833     goto CheckNoBasePath;
1834 
1835   case CK_AnyPointerToBlockPointerCast:
1836     assert(getType()->isBlockPointerType());
1837     assert(getSubExpr()->getType()->isAnyPointerType() &&
1838            !getSubExpr()->getType()->isBlockPointerType());
1839     goto CheckNoBasePath;
1840 
1841   case CK_CopyAndAutoreleaseBlockObject:
1842     assert(getType()->isBlockPointerType());
1843     assert(getSubExpr()->getType()->isBlockPointerType());
1844     goto CheckNoBasePath;
1845 
1846   case CK_FunctionToPointerDecay:
1847     assert(getType()->isPointerType());
1848     assert(getSubExpr()->getType()->isFunctionType());
1849     goto CheckNoBasePath;
1850 
1851   case CK_AddressSpaceConversion: {
1852     auto Ty = getType();
1853     auto SETy = getSubExpr()->getType();
1854     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1855     if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1856       Ty = Ty->getPointeeType();
1857       SETy = SETy->getPointeeType();
1858     }
1859     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1860            (!Ty.isNull() && !SETy.isNull() &&
1861             Ty.getAddressSpace() != SETy.getAddressSpace()));
1862     goto CheckNoBasePath;
1863   }
1864   // These should not have an inheritance path.
1865   case CK_Dynamic:
1866   case CK_ToUnion:
1867   case CK_ArrayToPointerDecay:
1868   case CK_NullToMemberPointer:
1869   case CK_NullToPointer:
1870   case CK_ConstructorConversion:
1871   case CK_IntegralToPointer:
1872   case CK_PointerToIntegral:
1873   case CK_ToVoid:
1874   case CK_VectorSplat:
1875   case CK_IntegralCast:
1876   case CK_BooleanToSignedIntegral:
1877   case CK_IntegralToFloating:
1878   case CK_FloatingToIntegral:
1879   case CK_FloatingCast:
1880   case CK_ObjCObjectLValueCast:
1881   case CK_FloatingRealToComplex:
1882   case CK_FloatingComplexToReal:
1883   case CK_FloatingComplexCast:
1884   case CK_FloatingComplexToIntegralComplex:
1885   case CK_IntegralRealToComplex:
1886   case CK_IntegralComplexToReal:
1887   case CK_IntegralComplexCast:
1888   case CK_IntegralComplexToFloatingComplex:
1889   case CK_ARCProduceObject:
1890   case CK_ARCConsumeObject:
1891   case CK_ARCReclaimReturnedObject:
1892   case CK_ARCExtendBlockObject:
1893   case CK_ZeroToOCLOpaqueType:
1894   case CK_IntToOCLSampler:
1895   case CK_FloatingToFixedPoint:
1896   case CK_FixedPointToFloating:
1897   case CK_FixedPointCast:
1898   case CK_FixedPointToIntegral:
1899   case CK_IntegralToFixedPoint:
1900   case CK_MatrixCast:
1901     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1902     goto CheckNoBasePath;
1903 
1904   case CK_Dependent:
1905   case CK_LValueToRValue:
1906   case CK_NoOp:
1907   case CK_AtomicToNonAtomic:
1908   case CK_NonAtomicToAtomic:
1909   case CK_PointerToBoolean:
1910   case CK_IntegralToBoolean:
1911   case CK_FloatingToBoolean:
1912   case CK_MemberPointerToBoolean:
1913   case CK_FloatingComplexToBoolean:
1914   case CK_IntegralComplexToBoolean:
1915   case CK_LValueBitCast:            // -> bool&
1916   case CK_LValueToRValueBitCast:
1917   case CK_UserDefinedConversion:    // operator bool()
1918   case CK_BuiltinFnToFnPtr:
1919   case CK_FixedPointToBoolean:
1920   CheckNoBasePath:
1921     assert(path_empty() && "Cast kind should not have a base path!");
1922     break;
1923   }
1924   return true;
1925 }
1926 
1927 const char *CastExpr::getCastKindName(CastKind CK) {
1928   switch (CK) {
1929 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1930 #include "clang/AST/OperationKinds.def"
1931   }
1932   llvm_unreachable("Unhandled cast kind!");
1933 }
1934 
1935 namespace {
1936 // Skip over implicit nodes produced as part of semantic analysis.
1937 // Designed for use with IgnoreExprNodes.
1938 static Expr *ignoreImplicitSemaNodes(Expr *E) {
1939   if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1940     return Materialize->getSubExpr();
1941 
1942   if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1943     return Binder->getSubExpr();
1944 
1945   if (auto *Full = dyn_cast<FullExpr>(E))
1946     return Full->getSubExpr();
1947 
1948   if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E);
1949       CPLIE && CPLIE->getInitExprs().size() == 1)
1950     return CPLIE->getInitExprs()[0];
1951 
1952   return E;
1953 }
1954 } // namespace
1955 
1956 Expr *CastExpr::getSubExprAsWritten() {
1957   const Expr *SubExpr = nullptr;
1958 
1959   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1960     SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1961 
1962     // Conversions by constructor and conversion functions have a
1963     // subexpression describing the call; strip it off.
1964     if (E->getCastKind() == CK_ConstructorConversion) {
1965       SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
1966                                 ignoreImplicitSemaNodes);
1967     } else if (E->getCastKind() == CK_UserDefinedConversion) {
1968       assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&
1969              "Unexpected SubExpr for CK_UserDefinedConversion.");
1970       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1971         SubExpr = MCE->getImplicitObjectArgument();
1972     }
1973   }
1974 
1975   return const_cast<Expr *>(SubExpr);
1976 }
1977 
1978 NamedDecl *CastExpr::getConversionFunction() const {
1979   const Expr *SubExpr = nullptr;
1980 
1981   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1982     SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1983 
1984     if (E->getCastKind() == CK_ConstructorConversion)
1985       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1986 
1987     if (E->getCastKind() == CK_UserDefinedConversion) {
1988       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1989         return MCE->getMethodDecl();
1990     }
1991   }
1992 
1993   return nullptr;
1994 }
1995 
1996 CXXBaseSpecifier **CastExpr::path_buffer() {
1997   switch (getStmtClass()) {
1998 #define ABSTRACT_STMT(x)
1999 #define CASTEXPR(Type, Base)                                                   \
2000   case Stmt::Type##Class:                                                      \
2001     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2002 #define STMT(Type, Base)
2003 #include "clang/AST/StmtNodes.inc"
2004   default:
2005     llvm_unreachable("non-cast expressions not possible here");
2006   }
2007 }
2008 
2009 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2010                                                         QualType opType) {
2011   auto RD = unionType->castAs<RecordType>()->getDecl();
2012   return getTargetFieldForToUnionCast(RD, opType);
2013 }
2014 
2015 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2016                                                         QualType OpType) {
2017   auto &Ctx = RD->getASTContext();
2018   RecordDecl::field_iterator Field, FieldEnd;
2019   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2020        Field != FieldEnd; ++Field) {
2021     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2022         !Field->isUnnamedBitfield()) {
2023       return *Field;
2024     }
2025   }
2026   return nullptr;
2027 }
2028 
2029 FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2030   assert(hasStoredFPFeatures());
2031   switch (getStmtClass()) {
2032   case ImplicitCastExprClass:
2033     return static_cast<ImplicitCastExpr *>(this)
2034         ->getTrailingObjects<FPOptionsOverride>();
2035   case CStyleCastExprClass:
2036     return static_cast<CStyleCastExpr *>(this)
2037         ->getTrailingObjects<FPOptionsOverride>();
2038   case CXXFunctionalCastExprClass:
2039     return static_cast<CXXFunctionalCastExpr *>(this)
2040         ->getTrailingObjects<FPOptionsOverride>();
2041   case CXXStaticCastExprClass:
2042     return static_cast<CXXStaticCastExpr *>(this)
2043         ->getTrailingObjects<FPOptionsOverride>();
2044   default:
2045     llvm_unreachable("Cast does not have FPFeatures");
2046   }
2047 }
2048 
2049 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2050                                            CastKind Kind, Expr *Operand,
2051                                            const CXXCastPath *BasePath,
2052                                            ExprValueKind VK,
2053                                            FPOptionsOverride FPO) {
2054   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2055   void *Buffer =
2056       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2057           PathSize, FPO.requiresTrailingStorage()));
2058   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2059   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2060   assert((Kind != CK_LValueToRValue ||
2061           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2062          "invalid type for lvalue-to-rvalue conversion");
2063   ImplicitCastExpr *E =
2064       new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2065   if (PathSize)
2066     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2067                               E->getTrailingObjects<CXXBaseSpecifier *>());
2068   return E;
2069 }
2070 
2071 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2072                                                 unsigned PathSize,
2073                                                 bool HasFPFeatures) {
2074   void *Buffer =
2075       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2076           PathSize, HasFPFeatures));
2077   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2078 }
2079 
2080 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2081                                        ExprValueKind VK, CastKind K, Expr *Op,
2082                                        const CXXCastPath *BasePath,
2083                                        FPOptionsOverride FPO,
2084                                        TypeSourceInfo *WrittenTy,
2085                                        SourceLocation L, SourceLocation R) {
2086   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2087   void *Buffer =
2088       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2089           PathSize, FPO.requiresTrailingStorage()));
2090   CStyleCastExpr *E =
2091       new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2092   if (PathSize)
2093     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2094                               E->getTrailingObjects<CXXBaseSpecifier *>());
2095   return E;
2096 }
2097 
2098 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2099                                             unsigned PathSize,
2100                                             bool HasFPFeatures) {
2101   void *Buffer =
2102       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2103           PathSize, HasFPFeatures));
2104   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2105 }
2106 
2107 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2108 /// corresponds to, e.g. "<<=".
2109 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2110   switch (Op) {
2111 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2112 #include "clang/AST/OperationKinds.def"
2113   }
2114   llvm_unreachable("Invalid OpCode!");
2115 }
2116 
2117 BinaryOperatorKind
2118 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2119   switch (OO) {
2120   default: llvm_unreachable("Not an overloadable binary operator");
2121   case OO_Plus: return BO_Add;
2122   case OO_Minus: return BO_Sub;
2123   case OO_Star: return BO_Mul;
2124   case OO_Slash: return BO_Div;
2125   case OO_Percent: return BO_Rem;
2126   case OO_Caret: return BO_Xor;
2127   case OO_Amp: return BO_And;
2128   case OO_Pipe: return BO_Or;
2129   case OO_Equal: return BO_Assign;
2130   case OO_Spaceship: return BO_Cmp;
2131   case OO_Less: return BO_LT;
2132   case OO_Greater: return BO_GT;
2133   case OO_PlusEqual: return BO_AddAssign;
2134   case OO_MinusEqual: return BO_SubAssign;
2135   case OO_StarEqual: return BO_MulAssign;
2136   case OO_SlashEqual: return BO_DivAssign;
2137   case OO_PercentEqual: return BO_RemAssign;
2138   case OO_CaretEqual: return BO_XorAssign;
2139   case OO_AmpEqual: return BO_AndAssign;
2140   case OO_PipeEqual: return BO_OrAssign;
2141   case OO_LessLess: return BO_Shl;
2142   case OO_GreaterGreater: return BO_Shr;
2143   case OO_LessLessEqual: return BO_ShlAssign;
2144   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2145   case OO_EqualEqual: return BO_EQ;
2146   case OO_ExclaimEqual: return BO_NE;
2147   case OO_LessEqual: return BO_LE;
2148   case OO_GreaterEqual: return BO_GE;
2149   case OO_AmpAmp: return BO_LAnd;
2150   case OO_PipePipe: return BO_LOr;
2151   case OO_Comma: return BO_Comma;
2152   case OO_ArrowStar: return BO_PtrMemI;
2153   }
2154 }
2155 
2156 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2157   static const OverloadedOperatorKind OverOps[] = {
2158     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2159     OO_Star, OO_Slash, OO_Percent,
2160     OO_Plus, OO_Minus,
2161     OO_LessLess, OO_GreaterGreater,
2162     OO_Spaceship,
2163     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2164     OO_EqualEqual, OO_ExclaimEqual,
2165     OO_Amp,
2166     OO_Caret,
2167     OO_Pipe,
2168     OO_AmpAmp,
2169     OO_PipePipe,
2170     OO_Equal, OO_StarEqual,
2171     OO_SlashEqual, OO_PercentEqual,
2172     OO_PlusEqual, OO_MinusEqual,
2173     OO_LessLessEqual, OO_GreaterGreaterEqual,
2174     OO_AmpEqual, OO_CaretEqual,
2175     OO_PipeEqual,
2176     OO_Comma
2177   };
2178   return OverOps[Opc];
2179 }
2180 
2181 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2182                                                       Opcode Opc,
2183                                                       const Expr *LHS,
2184                                                       const Expr *RHS) {
2185   if (Opc != BO_Add)
2186     return false;
2187 
2188   // Check that we have one pointer and one integer operand.
2189   const Expr *PExp;
2190   if (LHS->getType()->isPointerType()) {
2191     if (!RHS->getType()->isIntegerType())
2192       return false;
2193     PExp = LHS;
2194   } else if (RHS->getType()->isPointerType()) {
2195     if (!LHS->getType()->isIntegerType())
2196       return false;
2197     PExp = RHS;
2198   } else {
2199     return false;
2200   }
2201 
2202   // Check that the pointer is a nullptr.
2203   if (!PExp->IgnoreParenCasts()
2204           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2205     return false;
2206 
2207   // Check that the pointee type is char-sized.
2208   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2209   if (!PTy || !PTy->getPointeeType()->isCharType())
2210     return false;
2211 
2212   return true;
2213 }
2214 
2215 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind,
2216                              QualType ResultTy, SourceLocation BLoc,
2217                              SourceLocation RParenLoc,
2218                              DeclContext *ParentContext)
2219     : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2220       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2221   SourceLocExprBits.Kind = llvm::to_underlying(Kind);
2222   // In dependent contexts, function names may change.
2223   setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext()
2224                     ? ExprDependence::Value
2225                     : ExprDependence::None);
2226 }
2227 
2228 StringRef SourceLocExpr::getBuiltinStr() const {
2229   switch (getIdentKind()) {
2230   case SourceLocIdentKind::File:
2231     return "__builtin_FILE";
2232   case SourceLocIdentKind::FileName:
2233     return "__builtin_FILE_NAME";
2234   case SourceLocIdentKind::Function:
2235     return "__builtin_FUNCTION";
2236   case SourceLocIdentKind::FuncSig:
2237     return "__builtin_FUNCSIG";
2238   case SourceLocIdentKind::Line:
2239     return "__builtin_LINE";
2240   case SourceLocIdentKind::Column:
2241     return "__builtin_COLUMN";
2242   case SourceLocIdentKind::SourceLocStruct:
2243     return "__builtin_source_location";
2244   }
2245   llvm_unreachable("unexpected IdentKind!");
2246 }
2247 
2248 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2249                                          const Expr *DefaultExpr) const {
2250   SourceLocation Loc;
2251   const DeclContext *Context;
2252 
2253   if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) {
2254     Loc = DIE->getUsedLocation();
2255     Context = DIE->getUsedContext();
2256   } else if (const auto *DAE =
2257                  dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) {
2258     Loc = DAE->getUsedLocation();
2259     Context = DAE->getUsedContext();
2260   } else {
2261     Loc = getLocation();
2262     Context = getParentContext();
2263   }
2264 
2265   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2266       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2267 
2268   auto MakeStringLiteral = [&](StringRef Tmp) {
2269     using LValuePathEntry = APValue::LValuePathEntry;
2270     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2271     // Decay the string to a pointer to the first character.
2272     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2273     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2274   };
2275 
2276   switch (getIdentKind()) {
2277   case SourceLocIdentKind::FileName: {
2278     // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2279     // the last part of __builtin_FILE().
2280     SmallString<256> FileName;
2281     clang::Preprocessor::processPathToFileName(
2282         FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo());
2283     return MakeStringLiteral(FileName);
2284   }
2285   case SourceLocIdentKind::File: {
2286     SmallString<256> Path(PLoc.getFilename());
2287     clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2288                                                  Ctx.getTargetInfo());
2289     return MakeStringLiteral(Path);
2290   }
2291   case SourceLocIdentKind::Function:
2292   case SourceLocIdentKind::FuncSig: {
2293     const auto *CurDecl = dyn_cast<Decl>(Context);
2294     const auto Kind = getIdentKind() == SourceLocIdentKind::Function
2295                           ? PredefinedIdentKind::Function
2296                           : PredefinedIdentKind::FuncSig;
2297     return MakeStringLiteral(
2298         CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string(""));
2299   }
2300   case SourceLocIdentKind::Line:
2301     return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy));
2302   case SourceLocIdentKind::Column:
2303     return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy));
2304   case SourceLocIdentKind::SourceLocStruct: {
2305     // Fill in a std::source_location::__impl structure, by creating an
2306     // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2307     // that.
2308     const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2309     assert(ImplDecl);
2310 
2311     // Construct an APValue for the __impl struct, and get or create a Decl
2312     // corresponding to that. Note that we've already verified that the shape of
2313     // the ImplDecl type is as expected.
2314 
2315     APValue Value(APValue::UninitStruct(), 0, 4);
2316     for (const FieldDecl *F : ImplDecl->fields()) {
2317       StringRef Name = F->getName();
2318       if (Name == "_M_file_name") {
2319         SmallString<256> Path(PLoc.getFilename());
2320         clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2321                                                      Ctx.getTargetInfo());
2322         Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2323       } else if (Name == "_M_function_name") {
2324         // Note: this emits the PrettyFunction name -- different than what
2325         // __builtin_FUNCTION() above returns!
2326         const auto *CurDecl = dyn_cast<Decl>(Context);
2327         Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2328             CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2329                 ? StringRef(PredefinedExpr::ComputeName(
2330                       PredefinedIdentKind::PrettyFunction, CurDecl))
2331                 : "");
2332       } else if (Name == "_M_line") {
2333         llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType());
2334         Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2335       } else if (Name == "_M_column") {
2336         llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType());
2337         Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2338       }
2339     }
2340 
2341     UnnamedGlobalConstantDecl *GV =
2342         Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2343 
2344     return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2345                    false);
2346   }
2347   }
2348   llvm_unreachable("unhandled case");
2349 }
2350 
2351 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2352                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2353     : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2354       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2355       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2356   sawArrayRangeDesignator(false);
2357   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2358 
2359   setDependence(computeDependence(this));
2360 }
2361 
2362 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2363   if (NumInits > InitExprs.size())
2364     InitExprs.reserve(C, NumInits);
2365 }
2366 
2367 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2368   InitExprs.resize(C, NumInits, nullptr);
2369 }
2370 
2371 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2372   if (Init >= InitExprs.size()) {
2373     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2374     setInit(Init, expr);
2375     return nullptr;
2376   }
2377 
2378   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2379   setInit(Init, expr);
2380   return Result;
2381 }
2382 
2383 void InitListExpr::setArrayFiller(Expr *filler) {
2384   assert(!hasArrayFiller() && "Filler already set!");
2385   ArrayFillerOrUnionFieldInit = filler;
2386   // Fill out any "holes" in the array due to designated initializers.
2387   Expr **inits = getInits();
2388   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2389     if (inits[i] == nullptr)
2390       inits[i] = filler;
2391 }
2392 
2393 bool InitListExpr::isStringLiteralInit() const {
2394   if (getNumInits() != 1)
2395     return false;
2396   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2397   if (!AT || !AT->getElementType()->isIntegerType())
2398     return false;
2399   // It is possible for getInit() to return null.
2400   const Expr *Init = getInit(0);
2401   if (!Init)
2402     return false;
2403   Init = Init->IgnoreParenImpCasts();
2404   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2405 }
2406 
2407 bool InitListExpr::isTransparent() const {
2408   assert(isSemanticForm() && "syntactic form never semantically transparent");
2409 
2410   // A glvalue InitListExpr is always just sugar.
2411   if (isGLValue()) {
2412     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2413     return true;
2414   }
2415 
2416   // Otherwise, we're sugar if and only if we have exactly one initializer that
2417   // is of the same type.
2418   if (getNumInits() != 1 || !getInit(0))
2419     return false;
2420 
2421   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2422   // transparent struct copy.
2423   if (!getInit(0)->isPRValue() && getType()->isRecordType())
2424     return false;
2425 
2426   return getType().getCanonicalType() ==
2427          getInit(0)->getType().getCanonicalType();
2428 }
2429 
2430 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2431   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2432 
2433   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2434     return false;
2435   }
2436 
2437   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2438   return Lit && Lit->getValue() == 0;
2439 }
2440 
2441 SourceLocation InitListExpr::getBeginLoc() const {
2442   if (InitListExpr *SyntacticForm = getSyntacticForm())
2443     return SyntacticForm->getBeginLoc();
2444   SourceLocation Beg = LBraceLoc;
2445   if (Beg.isInvalid()) {
2446     // Find the first non-null initializer.
2447     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2448                                      E = InitExprs.end();
2449       I != E; ++I) {
2450       if (Stmt *S = *I) {
2451         Beg = S->getBeginLoc();
2452         break;
2453       }
2454     }
2455   }
2456   return Beg;
2457 }
2458 
2459 SourceLocation InitListExpr::getEndLoc() const {
2460   if (InitListExpr *SyntacticForm = getSyntacticForm())
2461     return SyntacticForm->getEndLoc();
2462   SourceLocation End = RBraceLoc;
2463   if (End.isInvalid()) {
2464     // Find the first non-null initializer from the end.
2465     for (Stmt *S : llvm::reverse(InitExprs)) {
2466       if (S) {
2467         End = S->getEndLoc();
2468         break;
2469       }
2470     }
2471   }
2472   return End;
2473 }
2474 
2475 /// getFunctionType - Return the underlying function type for this block.
2476 ///
2477 const FunctionProtoType *BlockExpr::getFunctionType() const {
2478   // The block pointer is never sugared, but the function type might be.
2479   return cast<BlockPointerType>(getType())
2480            ->getPointeeType()->castAs<FunctionProtoType>();
2481 }
2482 
2483 SourceLocation BlockExpr::getCaretLocation() const {
2484   return TheBlock->getCaretLocation();
2485 }
2486 const Stmt *BlockExpr::getBody() const {
2487   return TheBlock->getBody();
2488 }
2489 Stmt *BlockExpr::getBody() {
2490   return TheBlock->getBody();
2491 }
2492 
2493 
2494 //===----------------------------------------------------------------------===//
2495 // Generic Expression Routines
2496 //===----------------------------------------------------------------------===//
2497 
2498 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2499   // In C++11, discarded-value expressions of a certain form are special,
2500   // according to [expr]p10:
2501   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2502   //   expression is a glvalue of volatile-qualified type and it has
2503   //   one of the following forms:
2504   if (!isGLValue() || !getType().isVolatileQualified())
2505     return false;
2506 
2507   const Expr *E = IgnoreParens();
2508 
2509   //   - id-expression (5.1.1),
2510   if (isa<DeclRefExpr>(E))
2511     return true;
2512 
2513   //   - subscripting (5.2.1),
2514   if (isa<ArraySubscriptExpr>(E))
2515     return true;
2516 
2517   //   - class member access (5.2.5),
2518   if (isa<MemberExpr>(E))
2519     return true;
2520 
2521   //   - indirection (5.3.1),
2522   if (auto *UO = dyn_cast<UnaryOperator>(E))
2523     if (UO->getOpcode() == UO_Deref)
2524       return true;
2525 
2526   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2527     //   - pointer-to-member operation (5.5),
2528     if (BO->isPtrMemOp())
2529       return true;
2530 
2531     //   - comma expression (5.18) where the right operand is one of the above.
2532     if (BO->getOpcode() == BO_Comma)
2533       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2534   }
2535 
2536   //   - conditional expression (5.16) where both the second and the third
2537   //     operands are one of the above, or
2538   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2539     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2540            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2541   // The related edge case of "*x ?: *x".
2542   if (auto *BCO =
2543           dyn_cast<BinaryConditionalOperator>(E)) {
2544     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2545       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2546              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2547   }
2548 
2549   // Objective-C++ extensions to the rule.
2550   if (isa<ObjCIvarRefExpr>(E))
2551     return true;
2552   if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2553     if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2554       return true;
2555   }
2556 
2557   return false;
2558 }
2559 
2560 /// isUnusedResultAWarning - Return true if this immediate expression should
2561 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2562 /// with location to warn on and the source range[s] to report with the
2563 /// warning.
2564 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2565                                   SourceRange &R1, SourceRange &R2,
2566                                   ASTContext &Ctx) const {
2567   // Don't warn if the expr is type dependent. The type could end up
2568   // instantiating to void.
2569   if (isTypeDependent())
2570     return false;
2571 
2572   switch (getStmtClass()) {
2573   default:
2574     if (getType()->isVoidType())
2575       return false;
2576     WarnE = this;
2577     Loc = getExprLoc();
2578     R1 = getSourceRange();
2579     return true;
2580   case ParenExprClass:
2581     return cast<ParenExpr>(this)->getSubExpr()->
2582       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2583   case GenericSelectionExprClass:
2584     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2585       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2586   case CoawaitExprClass:
2587   case CoyieldExprClass:
2588     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2589       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2590   case ChooseExprClass:
2591     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2592       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2593   case UnaryOperatorClass: {
2594     const UnaryOperator *UO = cast<UnaryOperator>(this);
2595 
2596     switch (UO->getOpcode()) {
2597     case UO_Plus:
2598     case UO_Minus:
2599     case UO_AddrOf:
2600     case UO_Not:
2601     case UO_LNot:
2602     case UO_Deref:
2603       break;
2604     case UO_Coawait:
2605       // This is just the 'operator co_await' call inside the guts of a
2606       // dependent co_await call.
2607     case UO_PostInc:
2608     case UO_PostDec:
2609     case UO_PreInc:
2610     case UO_PreDec:                 // ++/--
2611       return false;  // Not a warning.
2612     case UO_Real:
2613     case UO_Imag:
2614       // accessing a piece of a volatile complex is a side-effect.
2615       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2616           .isVolatileQualified())
2617         return false;
2618       break;
2619     case UO_Extension:
2620       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2621     }
2622     WarnE = this;
2623     Loc = UO->getOperatorLoc();
2624     R1 = UO->getSubExpr()->getSourceRange();
2625     return true;
2626   }
2627   case BinaryOperatorClass: {
2628     const BinaryOperator *BO = cast<BinaryOperator>(this);
2629     switch (BO->getOpcode()) {
2630       default:
2631         break;
2632       // Consider the RHS of comma for side effects. LHS was checked by
2633       // Sema::CheckCommaOperands.
2634       case BO_Comma:
2635         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2636         // lvalue-ness) of an assignment written in a macro.
2637         if (IntegerLiteral *IE =
2638               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2639           if (IE->getValue() == 0)
2640             return false;
2641         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2642       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2643       case BO_LAnd:
2644       case BO_LOr:
2645         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2646             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2647           return false;
2648         break;
2649     }
2650     if (BO->isAssignmentOp())
2651       return false;
2652     WarnE = this;
2653     Loc = BO->getOperatorLoc();
2654     R1 = BO->getLHS()->getSourceRange();
2655     R2 = BO->getRHS()->getSourceRange();
2656     return true;
2657   }
2658   case CompoundAssignOperatorClass:
2659   case VAArgExprClass:
2660   case AtomicExprClass:
2661     return false;
2662 
2663   case ConditionalOperatorClass: {
2664     // If only one of the LHS or RHS is a warning, the operator might
2665     // be being used for control flow. Only warn if both the LHS and
2666     // RHS are warnings.
2667     const auto *Exp = cast<ConditionalOperator>(this);
2668     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2669            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2670   }
2671   case BinaryConditionalOperatorClass: {
2672     const auto *Exp = cast<BinaryConditionalOperator>(this);
2673     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2674   }
2675 
2676   case MemberExprClass:
2677     WarnE = this;
2678     Loc = cast<MemberExpr>(this)->getMemberLoc();
2679     R1 = SourceRange(Loc, Loc);
2680     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2681     return true;
2682 
2683   case ArraySubscriptExprClass:
2684     WarnE = this;
2685     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2686     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2687     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2688     return true;
2689 
2690   case CXXOperatorCallExprClass: {
2691     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2692     // overloads as there is no reasonable way to define these such that they
2693     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2694     // warning: operators == and != are commonly typo'ed, and so warning on them
2695     // provides additional value as well. If this list is updated,
2696     // DiagnoseUnusedComparison should be as well.
2697     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2698     switch (Op->getOperator()) {
2699     default:
2700       break;
2701     case OO_EqualEqual:
2702     case OO_ExclaimEqual:
2703     case OO_Less:
2704     case OO_Greater:
2705     case OO_GreaterEqual:
2706     case OO_LessEqual:
2707       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2708           Op->getCallReturnType(Ctx)->isVoidType())
2709         break;
2710       WarnE = this;
2711       Loc = Op->getOperatorLoc();
2712       R1 = Op->getSourceRange();
2713       return true;
2714     }
2715 
2716     // Fallthrough for generic call handling.
2717     [[fallthrough]];
2718   }
2719   case CallExprClass:
2720   case CXXMemberCallExprClass:
2721   case UserDefinedLiteralClass: {
2722     // If this is a direct call, get the callee.
2723     const CallExpr *CE = cast<CallExpr>(this);
2724     if (const Decl *FD = CE->getCalleeDecl()) {
2725       // If the callee has attribute pure, const, or warn_unused_result, warn
2726       // about it. void foo() { strlen("bar"); } should warn.
2727       //
2728       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2729       // updated to match for QoI.
2730       if (CE->hasUnusedResultAttr(Ctx) ||
2731           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2732         WarnE = this;
2733         Loc = CE->getCallee()->getBeginLoc();
2734         R1 = CE->getCallee()->getSourceRange();
2735 
2736         if (unsigned NumArgs = CE->getNumArgs())
2737           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2738                            CE->getArg(NumArgs - 1)->getEndLoc());
2739         return true;
2740       }
2741     }
2742     return false;
2743   }
2744 
2745   // If we don't know precisely what we're looking at, let's not warn.
2746   case UnresolvedLookupExprClass:
2747   case CXXUnresolvedConstructExprClass:
2748   case RecoveryExprClass:
2749     return false;
2750 
2751   case CXXTemporaryObjectExprClass:
2752   case CXXConstructExprClass: {
2753     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2754       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2755       if (Type->hasAttr<WarnUnusedAttr>() ||
2756           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2757         WarnE = this;
2758         Loc = getBeginLoc();
2759         R1 = getSourceRange();
2760         return true;
2761       }
2762     }
2763 
2764     const auto *CE = cast<CXXConstructExpr>(this);
2765     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2766       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2767       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2768         WarnE = this;
2769         Loc = getBeginLoc();
2770         R1 = getSourceRange();
2771 
2772         if (unsigned NumArgs = CE->getNumArgs())
2773           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2774                            CE->getArg(NumArgs - 1)->getEndLoc());
2775         return true;
2776       }
2777     }
2778 
2779     return false;
2780   }
2781 
2782   case ObjCMessageExprClass: {
2783     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2784     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2785         ME->isInstanceMessage() &&
2786         !ME->getType()->isVoidType() &&
2787         ME->getMethodFamily() == OMF_init) {
2788       WarnE = this;
2789       Loc = getExprLoc();
2790       R1 = ME->getSourceRange();
2791       return true;
2792     }
2793 
2794     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2795       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2796         WarnE = this;
2797         Loc = getExprLoc();
2798         return true;
2799       }
2800 
2801     return false;
2802   }
2803 
2804   case ObjCPropertyRefExprClass:
2805   case ObjCSubscriptRefExprClass:
2806     WarnE = this;
2807     Loc = getExprLoc();
2808     R1 = getSourceRange();
2809     return true;
2810 
2811   case PseudoObjectExprClass: {
2812     const auto *POE = cast<PseudoObjectExpr>(this);
2813 
2814     // For some syntactic forms, we should always warn.
2815     if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2816             POE->getSyntacticForm())) {
2817       WarnE = this;
2818       Loc = getExprLoc();
2819       R1 = getSourceRange();
2820       return true;
2821     }
2822 
2823     // For others, we should never warn.
2824     if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2825       if (BO->isAssignmentOp())
2826         return false;
2827     if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2828       if (UO->isIncrementDecrementOp())
2829         return false;
2830 
2831     // Otherwise, warn if the result expression would warn.
2832     const Expr *Result = POE->getResultExpr();
2833     return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2834   }
2835 
2836   case StmtExprClass: {
2837     // Statement exprs don't logically have side effects themselves, but are
2838     // sometimes used in macros in ways that give them a type that is unused.
2839     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2840     // however, if the result of the stmt expr is dead, we don't want to emit a
2841     // warning.
2842     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2843     if (!CS->body_empty()) {
2844       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2845         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2846       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2847         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2848           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2849     }
2850 
2851     if (getType()->isVoidType())
2852       return false;
2853     WarnE = this;
2854     Loc = cast<StmtExpr>(this)->getLParenLoc();
2855     R1 = getSourceRange();
2856     return true;
2857   }
2858   case CXXFunctionalCastExprClass:
2859   case CStyleCastExprClass: {
2860     // Ignore an explicit cast to void, except in C++98 if the operand is a
2861     // volatile glvalue for which we would trigger an implicit read in any
2862     // other language mode. (Such an implicit read always happens as part of
2863     // the lvalue conversion in C, and happens in C++ for expressions of all
2864     // forms where it seems likely the user intended to trigger a volatile
2865     // load.)
2866     const CastExpr *CE = cast<CastExpr>(this);
2867     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2868     if (CE->getCastKind() == CK_ToVoid) {
2869       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2870           SubE->isReadIfDiscardedInCPlusPlus11()) {
2871         // Suppress the "unused value" warning for idiomatic usage of
2872         // '(void)var;' used to suppress "unused variable" warnings.
2873         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2874           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2875             if (!VD->isExternallyVisible())
2876               return false;
2877 
2878         // The lvalue-to-rvalue conversion would have no effect for an array.
2879         // It's implausible that the programmer expected this to result in a
2880         // volatile array load, so don't warn.
2881         if (SubE->getType()->isArrayType())
2882           return false;
2883 
2884         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2885       }
2886       return false;
2887     }
2888 
2889     // If this is a cast to a constructor conversion, check the operand.
2890     // Otherwise, the result of the cast is unused.
2891     if (CE->getCastKind() == CK_ConstructorConversion)
2892       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2893     if (CE->getCastKind() == CK_Dependent)
2894       return false;
2895 
2896     WarnE = this;
2897     if (const CXXFunctionalCastExpr *CXXCE =
2898             dyn_cast<CXXFunctionalCastExpr>(this)) {
2899       Loc = CXXCE->getBeginLoc();
2900       R1 = CXXCE->getSubExpr()->getSourceRange();
2901     } else {
2902       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2903       Loc = CStyleCE->getLParenLoc();
2904       R1 = CStyleCE->getSubExpr()->getSourceRange();
2905     }
2906     return true;
2907   }
2908   case ImplicitCastExprClass: {
2909     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2910 
2911     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2912     if (ICE->getCastKind() == CK_LValueToRValue &&
2913         ICE->getSubExpr()->getType().isVolatileQualified())
2914       return false;
2915 
2916     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2917   }
2918   case CXXDefaultArgExprClass:
2919     return (cast<CXXDefaultArgExpr>(this)
2920             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2921   case CXXDefaultInitExprClass:
2922     return (cast<CXXDefaultInitExpr>(this)
2923             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2924 
2925   case CXXNewExprClass:
2926     // FIXME: In theory, there might be new expressions that don't have side
2927     // effects (e.g. a placement new with an uninitialized POD).
2928   case CXXDeleteExprClass:
2929     return false;
2930   case MaterializeTemporaryExprClass:
2931     return cast<MaterializeTemporaryExpr>(this)
2932         ->getSubExpr()
2933         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2934   case CXXBindTemporaryExprClass:
2935     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2936                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2937   case ExprWithCleanupsClass:
2938     return cast<ExprWithCleanups>(this)->getSubExpr()
2939                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2940   }
2941 }
2942 
2943 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2944 /// returns true, if it is; false otherwise.
2945 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2946   const Expr *E = IgnoreParens();
2947   switch (E->getStmtClass()) {
2948   default:
2949     return false;
2950   case ObjCIvarRefExprClass:
2951     return true;
2952   case Expr::UnaryOperatorClass:
2953     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2954   case ImplicitCastExprClass:
2955     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2956   case MaterializeTemporaryExprClass:
2957     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2958         Ctx);
2959   case CStyleCastExprClass:
2960     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2961   case DeclRefExprClass: {
2962     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2963 
2964     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2965       if (VD->hasGlobalStorage())
2966         return true;
2967       QualType T = VD->getType();
2968       // dereferencing to a  pointer is always a gc'able candidate,
2969       // unless it is __weak.
2970       return T->isPointerType() &&
2971              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2972     }
2973     return false;
2974   }
2975   case MemberExprClass: {
2976     const MemberExpr *M = cast<MemberExpr>(E);
2977     return M->getBase()->isOBJCGCCandidate(Ctx);
2978   }
2979   case ArraySubscriptExprClass:
2980     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2981   }
2982 }
2983 
2984 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2985   if (isTypeDependent())
2986     return false;
2987   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2988 }
2989 
2990 QualType Expr::findBoundMemberType(const Expr *expr) {
2991   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2992 
2993   // Bound member expressions are always one of these possibilities:
2994   //   x->m      x.m      x->*y      x.*y
2995   // (possibly parenthesized)
2996 
2997   expr = expr->IgnoreParens();
2998   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2999     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3000     return mem->getMemberDecl()->getType();
3001   }
3002 
3003   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3004     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3005                       ->getPointeeType();
3006     assert(type->isFunctionType());
3007     return type;
3008   }
3009 
3010   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3011   return QualType();
3012 }
3013 
3014 Expr *Expr::IgnoreImpCasts() {
3015   return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
3016 }
3017 
3018 Expr *Expr::IgnoreCasts() {
3019   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
3020 }
3021 
3022 Expr *Expr::IgnoreImplicit() {
3023   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
3024 }
3025 
3026 Expr *Expr::IgnoreImplicitAsWritten() {
3027   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
3028 }
3029 
3030 Expr *Expr::IgnoreParens() {
3031   return IgnoreExprNodes(this, IgnoreParensSingleStep);
3032 }
3033 
3034 Expr *Expr::IgnoreParenImpCasts() {
3035   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3036                          IgnoreImplicitCastsExtraSingleStep);
3037 }
3038 
3039 Expr *Expr::IgnoreParenCasts() {
3040   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
3041 }
3042 
3043 Expr *Expr::IgnoreConversionOperatorSingleStep() {
3044   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3045     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
3046       return MCE->getImplicitObjectArgument();
3047   }
3048   return this;
3049 }
3050 
3051 Expr *Expr::IgnoreParenLValueCasts() {
3052   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3053                          IgnoreLValueCastsSingleStep);
3054 }
3055 
3056 Expr *Expr::IgnoreParenBaseCasts() {
3057   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3058                          IgnoreBaseCastsSingleStep);
3059 }
3060 
3061 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3062   auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3063     if (auto *CE = dyn_cast<CastExpr>(E)) {
3064       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3065       // ptr<->int casts of the same width. We also ignore all identity casts.
3066       Expr *SubExpr = CE->getSubExpr();
3067       bool IsIdentityCast =
3068           Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3069       bool IsSameWidthCast = (E->getType()->isPointerType() ||
3070                               E->getType()->isIntegralType(Ctx)) &&
3071                              (SubExpr->getType()->isPointerType() ||
3072                               SubExpr->getType()->isIntegralType(Ctx)) &&
3073                              (Ctx.getTypeSize(E->getType()) ==
3074                               Ctx.getTypeSize(SubExpr->getType()));
3075 
3076       if (IsIdentityCast || IsSameWidthCast)
3077         return SubExpr;
3078     } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3079       return NTTP->getReplacement();
3080 
3081     return E;
3082   };
3083   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3084                          IgnoreNoopCastsSingleStep);
3085 }
3086 
3087 Expr *Expr::IgnoreUnlessSpelledInSource() {
3088   auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3089     if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3090       auto *SE = Cast->getSubExpr();
3091       if (SE->getSourceRange() == E->getSourceRange())
3092         return SE;
3093     }
3094 
3095     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3096       auto NumArgs = C->getNumArgs();
3097       if (NumArgs == 1 ||
3098           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3099         Expr *A = C->getArg(0);
3100         if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3101           return A;
3102       }
3103     }
3104     return E;
3105   };
3106   auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3107     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3108       Expr *ExprNode = C->getImplicitObjectArgument();
3109       if (ExprNode->getSourceRange() == E->getSourceRange()) {
3110         return ExprNode;
3111       }
3112       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3113         if (PE->getSourceRange() == C->getSourceRange()) {
3114           return cast<Expr>(PE);
3115         }
3116       }
3117       ExprNode = ExprNode->IgnoreParenImpCasts();
3118       if (ExprNode->getSourceRange() == E->getSourceRange())
3119         return ExprNode;
3120     }
3121     return E;
3122   };
3123   return IgnoreExprNodes(
3124       this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3125       IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3126       IgnoreImplicitMemberCallSingleStep);
3127 }
3128 
3129 bool Expr::isDefaultArgument() const {
3130   const Expr *E = this;
3131   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3132     E = M->getSubExpr();
3133 
3134   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3135     E = ICE->getSubExprAsWritten();
3136 
3137   return isa<CXXDefaultArgExpr>(E);
3138 }
3139 
3140 /// Skip over any no-op casts and any temporary-binding
3141 /// expressions.
3142 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3143   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3144     E = M->getSubExpr();
3145 
3146   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3147     if (ICE->getCastKind() == CK_NoOp)
3148       E = ICE->getSubExpr();
3149     else
3150       break;
3151   }
3152 
3153   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3154     E = BE->getSubExpr();
3155 
3156   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3157     if (ICE->getCastKind() == CK_NoOp)
3158       E = ICE->getSubExpr();
3159     else
3160       break;
3161   }
3162 
3163   return E->IgnoreParens();
3164 }
3165 
3166 /// isTemporaryObject - Determines if this expression produces a
3167 /// temporary of the given class type.
3168 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3169   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3170     return false;
3171 
3172   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3173 
3174   // Temporaries are by definition pr-values of class type.
3175   if (!E->Classify(C).isPRValue()) {
3176     // In this context, property reference is a message call and is pr-value.
3177     if (!isa<ObjCPropertyRefExpr>(E))
3178       return false;
3179   }
3180 
3181   // Black-list a few cases which yield pr-values of class type that don't
3182   // refer to temporaries of that type:
3183 
3184   // - implicit derived-to-base conversions
3185   if (isa<ImplicitCastExpr>(E)) {
3186     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3187     case CK_DerivedToBase:
3188     case CK_UncheckedDerivedToBase:
3189       return false;
3190     default:
3191       break;
3192     }
3193   }
3194 
3195   // - member expressions (all)
3196   if (isa<MemberExpr>(E))
3197     return false;
3198 
3199   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3200     if (BO->isPtrMemOp())
3201       return false;
3202 
3203   // - opaque values (all)
3204   if (isa<OpaqueValueExpr>(E))
3205     return false;
3206 
3207   return true;
3208 }
3209 
3210 bool Expr::isImplicitCXXThis() const {
3211   const Expr *E = this;
3212 
3213   // Strip away parentheses and casts we don't care about.
3214   while (true) {
3215     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3216       E = Paren->getSubExpr();
3217       continue;
3218     }
3219 
3220     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3221       if (ICE->getCastKind() == CK_NoOp ||
3222           ICE->getCastKind() == CK_LValueToRValue ||
3223           ICE->getCastKind() == CK_DerivedToBase ||
3224           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3225         E = ICE->getSubExpr();
3226         continue;
3227       }
3228     }
3229 
3230     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3231       if (UnOp->getOpcode() == UO_Extension) {
3232         E = UnOp->getSubExpr();
3233         continue;
3234       }
3235     }
3236 
3237     if (const MaterializeTemporaryExpr *M
3238                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3239       E = M->getSubExpr();
3240       continue;
3241     }
3242 
3243     break;
3244   }
3245 
3246   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3247     return This->isImplicit();
3248 
3249   return false;
3250 }
3251 
3252 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3253 /// in Exprs is type-dependent.
3254 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3255   for (unsigned I = 0; I < Exprs.size(); ++I)
3256     if (Exprs[I]->isTypeDependent())
3257       return true;
3258 
3259   return false;
3260 }
3261 
3262 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3263                                  const Expr **Culprit) const {
3264   assert(!isValueDependent() &&
3265          "Expression evaluator can't be called on a dependent expression.");
3266 
3267   // This function is attempting whether an expression is an initializer
3268   // which can be evaluated at compile-time. It very closely parallels
3269   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3270   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3271   // to isEvaluatable most of the time.
3272   //
3273   // If we ever capture reference-binding directly in the AST, we can
3274   // kill the second parameter.
3275 
3276   if (IsForRef) {
3277     if (auto *EWC = dyn_cast<ExprWithCleanups>(this))
3278       return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit);
3279     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this))
3280       return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3281     EvalResult Result;
3282     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3283       return true;
3284     if (Culprit)
3285       *Culprit = this;
3286     return false;
3287   }
3288 
3289   switch (getStmtClass()) {
3290   default: break;
3291   case Stmt::ExprWithCleanupsClass:
3292     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3293         Ctx, IsForRef, Culprit);
3294   case StringLiteralClass:
3295   case ObjCEncodeExprClass:
3296     return true;
3297   case CXXTemporaryObjectExprClass:
3298   case CXXConstructExprClass: {
3299     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3300 
3301     if (CE->getConstructor()->isTrivial() &&
3302         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3303       // Trivial default constructor
3304       if (!CE->getNumArgs()) return true;
3305 
3306       // Trivial copy constructor
3307       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3308       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3309     }
3310 
3311     break;
3312   }
3313   case ConstantExprClass: {
3314     // FIXME: We should be able to return "true" here, but it can lead to extra
3315     // error messages. E.g. in Sema/array-init.c.
3316     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3317     return Exp->isConstantInitializer(Ctx, false, Culprit);
3318   }
3319   case CompoundLiteralExprClass: {
3320     // This handles gcc's extension that allows global initializers like
3321     // "struct x {int x;} x = (struct x) {};".
3322     // FIXME: This accepts other cases it shouldn't!
3323     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3324     return Exp->isConstantInitializer(Ctx, false, Culprit);
3325   }
3326   case DesignatedInitUpdateExprClass: {
3327     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3328     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3329            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3330   }
3331   case InitListExprClass: {
3332     const InitListExpr *ILE = cast<InitListExpr>(this);
3333     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3334     if (ILE->getType()->isArrayType()) {
3335       unsigned numInits = ILE->getNumInits();
3336       for (unsigned i = 0; i < numInits; i++) {
3337         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3338           return false;
3339       }
3340       return true;
3341     }
3342 
3343     if (ILE->getType()->isRecordType()) {
3344       unsigned ElementNo = 0;
3345       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3346       for (const auto *Field : RD->fields()) {
3347         // If this is a union, skip all the fields that aren't being initialized.
3348         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3349           continue;
3350 
3351         // Don't emit anonymous bitfields, they just affect layout.
3352         if (Field->isUnnamedBitfield())
3353           continue;
3354 
3355         if (ElementNo < ILE->getNumInits()) {
3356           const Expr *Elt = ILE->getInit(ElementNo++);
3357           if (Field->isBitField()) {
3358             // Bitfields have to evaluate to an integer.
3359             EvalResult Result;
3360             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3361               if (Culprit)
3362                 *Culprit = Elt;
3363               return false;
3364             }
3365           } else {
3366             bool RefType = Field->getType()->isReferenceType();
3367             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3368               return false;
3369           }
3370         }
3371       }
3372       return true;
3373     }
3374 
3375     break;
3376   }
3377   case ImplicitValueInitExprClass:
3378   case NoInitExprClass:
3379     return true;
3380   case ParenExprClass:
3381     return cast<ParenExpr>(this)->getSubExpr()
3382       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3383   case GenericSelectionExprClass:
3384     return cast<GenericSelectionExpr>(this)->getResultExpr()
3385       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3386   case ChooseExprClass:
3387     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3388       if (Culprit)
3389         *Culprit = this;
3390       return false;
3391     }
3392     return cast<ChooseExpr>(this)->getChosenSubExpr()
3393       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3394   case UnaryOperatorClass: {
3395     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3396     if (Exp->getOpcode() == UO_Extension)
3397       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3398     break;
3399   }
3400   case CXXFunctionalCastExprClass:
3401   case CXXStaticCastExprClass:
3402   case ImplicitCastExprClass:
3403   case CStyleCastExprClass:
3404   case ObjCBridgedCastExprClass:
3405   case CXXDynamicCastExprClass:
3406   case CXXReinterpretCastExprClass:
3407   case CXXAddrspaceCastExprClass:
3408   case CXXConstCastExprClass: {
3409     const CastExpr *CE = cast<CastExpr>(this);
3410 
3411     // Handle misc casts we want to ignore.
3412     if (CE->getCastKind() == CK_NoOp ||
3413         CE->getCastKind() == CK_LValueToRValue ||
3414         CE->getCastKind() == CK_ToUnion ||
3415         CE->getCastKind() == CK_ConstructorConversion ||
3416         CE->getCastKind() == CK_NonAtomicToAtomic ||
3417         CE->getCastKind() == CK_AtomicToNonAtomic ||
3418         CE->getCastKind() == CK_NullToPointer ||
3419         CE->getCastKind() == CK_IntToOCLSampler)
3420       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3421 
3422     break;
3423   }
3424   case MaterializeTemporaryExprClass:
3425     return cast<MaterializeTemporaryExpr>(this)
3426         ->getSubExpr()
3427         ->isConstantInitializer(Ctx, false, Culprit);
3428 
3429   case SubstNonTypeTemplateParmExprClass:
3430     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3431       ->isConstantInitializer(Ctx, false, Culprit);
3432   case CXXDefaultArgExprClass:
3433     return cast<CXXDefaultArgExpr>(this)->getExpr()
3434       ->isConstantInitializer(Ctx, false, Culprit);
3435   case CXXDefaultInitExprClass:
3436     return cast<CXXDefaultInitExpr>(this)->getExpr()
3437       ->isConstantInitializer(Ctx, false, Culprit);
3438   }
3439   // Allow certain forms of UB in constant initializers: signed integer
3440   // overflow and floating-point division by zero. We'll give a warning on
3441   // these, but they're common enough that we have to accept them.
3442   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3443     return true;
3444   if (Culprit)
3445     *Culprit = this;
3446   return false;
3447 }
3448 
3449 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3450   unsigned BuiltinID = getBuiltinCallee();
3451   if (BuiltinID != Builtin::BI__assume &&
3452       BuiltinID != Builtin::BI__builtin_assume)
3453     return false;
3454 
3455   const Expr* Arg = getArg(0);
3456   bool ArgVal;
3457   return !Arg->isValueDependent() &&
3458          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3459 }
3460 
3461 bool CallExpr::isCallToStdMove() const {
3462   return getBuiltinCallee() == Builtin::BImove;
3463 }
3464 
3465 namespace {
3466   /// Look for any side effects within a Stmt.
3467   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3468     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3469     const bool IncludePossibleEffects;
3470     bool HasSideEffects;
3471 
3472   public:
3473     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3474       : Inherited(Context),
3475         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3476 
3477     bool hasSideEffects() const { return HasSideEffects; }
3478 
3479     void VisitDecl(const Decl *D) {
3480       if (!D)
3481         return;
3482 
3483       // We assume the caller checks subexpressions (eg, the initializer, VLA
3484       // bounds) for side-effects on our behalf.
3485       if (auto *VD = dyn_cast<VarDecl>(D)) {
3486         // Registering a destructor is a side-effect.
3487         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3488             VD->needsDestruction(Context))
3489           HasSideEffects = true;
3490       }
3491     }
3492 
3493     void VisitDeclStmt(const DeclStmt *DS) {
3494       for (auto *D : DS->decls())
3495         VisitDecl(D);
3496       Inherited::VisitDeclStmt(DS);
3497     }
3498 
3499     void VisitExpr(const Expr *E) {
3500       if (!HasSideEffects &&
3501           E->HasSideEffects(Context, IncludePossibleEffects))
3502         HasSideEffects = true;
3503     }
3504   };
3505 }
3506 
3507 bool Expr::HasSideEffects(const ASTContext &Ctx,
3508                           bool IncludePossibleEffects) const {
3509   // In circumstances where we care about definite side effects instead of
3510   // potential side effects, we want to ignore expressions that are part of a
3511   // macro expansion as a potential side effect.
3512   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3513     return false;
3514 
3515   switch (getStmtClass()) {
3516   case NoStmtClass:
3517   #define ABSTRACT_STMT(Type)
3518   #define STMT(Type, Base) case Type##Class:
3519   #define EXPR(Type, Base)
3520   #include "clang/AST/StmtNodes.inc"
3521     llvm_unreachable("unexpected Expr kind");
3522 
3523   case DependentScopeDeclRefExprClass:
3524   case CXXUnresolvedConstructExprClass:
3525   case CXXDependentScopeMemberExprClass:
3526   case UnresolvedLookupExprClass:
3527   case UnresolvedMemberExprClass:
3528   case PackExpansionExprClass:
3529   case SubstNonTypeTemplateParmPackExprClass:
3530   case FunctionParmPackExprClass:
3531   case TypoExprClass:
3532   case RecoveryExprClass:
3533   case CXXFoldExprClass:
3534     // Make a conservative assumption for dependent nodes.
3535     return IncludePossibleEffects;
3536 
3537   case DeclRefExprClass:
3538   case ObjCIvarRefExprClass:
3539   case PredefinedExprClass:
3540   case IntegerLiteralClass:
3541   case FixedPointLiteralClass:
3542   case FloatingLiteralClass:
3543   case ImaginaryLiteralClass:
3544   case StringLiteralClass:
3545   case CharacterLiteralClass:
3546   case OffsetOfExprClass:
3547   case ImplicitValueInitExprClass:
3548   case UnaryExprOrTypeTraitExprClass:
3549   case AddrLabelExprClass:
3550   case GNUNullExprClass:
3551   case ArrayInitIndexExprClass:
3552   case NoInitExprClass:
3553   case CXXBoolLiteralExprClass:
3554   case CXXNullPtrLiteralExprClass:
3555   case CXXThisExprClass:
3556   case CXXScalarValueInitExprClass:
3557   case TypeTraitExprClass:
3558   case ArrayTypeTraitExprClass:
3559   case ExpressionTraitExprClass:
3560   case CXXNoexceptExprClass:
3561   case SizeOfPackExprClass:
3562   case ObjCStringLiteralClass:
3563   case ObjCEncodeExprClass:
3564   case ObjCBoolLiteralExprClass:
3565   case ObjCAvailabilityCheckExprClass:
3566   case CXXUuidofExprClass:
3567   case OpaqueValueExprClass:
3568   case SourceLocExprClass:
3569   case ConceptSpecializationExprClass:
3570   case RequiresExprClass:
3571   case SYCLUniqueStableNameExprClass:
3572     // These never have a side-effect.
3573     return false;
3574 
3575   case ConstantExprClass:
3576     // FIXME: Move this into the "return false;" block above.
3577     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3578         Ctx, IncludePossibleEffects);
3579 
3580   case CallExprClass:
3581   case CXXOperatorCallExprClass:
3582   case CXXMemberCallExprClass:
3583   case CUDAKernelCallExprClass:
3584   case UserDefinedLiteralClass: {
3585     // We don't know a call definitely has side effects, except for calls
3586     // to pure/const functions that definitely don't.
3587     // If the call itself is considered side-effect free, check the operands.
3588     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3589     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3590     if (IsPure || !IncludePossibleEffects)
3591       break;
3592     return true;
3593   }
3594 
3595   case BlockExprClass:
3596   case CXXBindTemporaryExprClass:
3597     if (!IncludePossibleEffects)
3598       break;
3599     return true;
3600 
3601   case MSPropertyRefExprClass:
3602   case MSPropertySubscriptExprClass:
3603   case CompoundAssignOperatorClass:
3604   case VAArgExprClass:
3605   case AtomicExprClass:
3606   case CXXThrowExprClass:
3607   case CXXNewExprClass:
3608   case CXXDeleteExprClass:
3609   case CoawaitExprClass:
3610   case DependentCoawaitExprClass:
3611   case CoyieldExprClass:
3612     // These always have a side-effect.
3613     return true;
3614 
3615   case StmtExprClass: {
3616     // StmtExprs have a side-effect if any substatement does.
3617     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3618     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3619     return Finder.hasSideEffects();
3620   }
3621 
3622   case ExprWithCleanupsClass:
3623     if (IncludePossibleEffects)
3624       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3625         return true;
3626     break;
3627 
3628   case ParenExprClass:
3629   case ArraySubscriptExprClass:
3630   case MatrixSubscriptExprClass:
3631   case OMPArraySectionExprClass:
3632   case OMPArrayShapingExprClass:
3633   case OMPIteratorExprClass:
3634   case MemberExprClass:
3635   case ConditionalOperatorClass:
3636   case BinaryConditionalOperatorClass:
3637   case CompoundLiteralExprClass:
3638   case ExtVectorElementExprClass:
3639   case DesignatedInitExprClass:
3640   case DesignatedInitUpdateExprClass:
3641   case ArrayInitLoopExprClass:
3642   case ParenListExprClass:
3643   case CXXPseudoDestructorExprClass:
3644   case CXXRewrittenBinaryOperatorClass:
3645   case CXXStdInitializerListExprClass:
3646   case SubstNonTypeTemplateParmExprClass:
3647   case MaterializeTemporaryExprClass:
3648   case ShuffleVectorExprClass:
3649   case ConvertVectorExprClass:
3650   case AsTypeExprClass:
3651   case CXXParenListInitExprClass:
3652     // These have a side-effect if any subexpression does.
3653     break;
3654 
3655   case UnaryOperatorClass:
3656     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3657       return true;
3658     break;
3659 
3660   case BinaryOperatorClass:
3661     if (cast<BinaryOperator>(this)->isAssignmentOp())
3662       return true;
3663     break;
3664 
3665   case InitListExprClass:
3666     // FIXME: The children for an InitListExpr doesn't include the array filler.
3667     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3668       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3669         return true;
3670     break;
3671 
3672   case GenericSelectionExprClass:
3673     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3674         HasSideEffects(Ctx, IncludePossibleEffects);
3675 
3676   case ChooseExprClass:
3677     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3678         Ctx, IncludePossibleEffects);
3679 
3680   case CXXDefaultArgExprClass:
3681     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3682         Ctx, IncludePossibleEffects);
3683 
3684   case CXXDefaultInitExprClass: {
3685     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3686     if (const Expr *E = FD->getInClassInitializer())
3687       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3688     // If we've not yet parsed the initializer, assume it has side-effects.
3689     return true;
3690   }
3691 
3692   case CXXDynamicCastExprClass: {
3693     // A dynamic_cast expression has side-effects if it can throw.
3694     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3695     if (DCE->getTypeAsWritten()->isReferenceType() &&
3696         DCE->getCastKind() == CK_Dynamic)
3697       return true;
3698     }
3699     [[fallthrough]];
3700   case ImplicitCastExprClass:
3701   case CStyleCastExprClass:
3702   case CXXStaticCastExprClass:
3703   case CXXReinterpretCastExprClass:
3704   case CXXConstCastExprClass:
3705   case CXXAddrspaceCastExprClass:
3706   case CXXFunctionalCastExprClass:
3707   case BuiltinBitCastExprClass: {
3708     // While volatile reads are side-effecting in both C and C++, we treat them
3709     // as having possible (not definite) side-effects. This allows idiomatic
3710     // code to behave without warning, such as sizeof(*v) for a volatile-
3711     // qualified pointer.
3712     if (!IncludePossibleEffects)
3713       break;
3714 
3715     const CastExpr *CE = cast<CastExpr>(this);
3716     if (CE->getCastKind() == CK_LValueToRValue &&
3717         CE->getSubExpr()->getType().isVolatileQualified())
3718       return true;
3719     break;
3720   }
3721 
3722   case CXXTypeidExprClass:
3723     // typeid might throw if its subexpression is potentially-evaluated, so has
3724     // side-effects in that case whether or not its subexpression does.
3725     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3726 
3727   case CXXConstructExprClass:
3728   case CXXTemporaryObjectExprClass: {
3729     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3730     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3731       return true;
3732     // A trivial constructor does not add any side-effects of its own. Just look
3733     // at its arguments.
3734     break;
3735   }
3736 
3737   case CXXInheritedCtorInitExprClass: {
3738     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3739     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3740       return true;
3741     break;
3742   }
3743 
3744   case LambdaExprClass: {
3745     const LambdaExpr *LE = cast<LambdaExpr>(this);
3746     for (Expr *E : LE->capture_inits())
3747       if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3748         return true;
3749     return false;
3750   }
3751 
3752   case PseudoObjectExprClass: {
3753     // Only look for side-effects in the semantic form, and look past
3754     // OpaqueValueExpr bindings in that form.
3755     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3756     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3757                                                     E = PO->semantics_end();
3758          I != E; ++I) {
3759       const Expr *Subexpr = *I;
3760       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3761         Subexpr = OVE->getSourceExpr();
3762       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3763         return true;
3764     }
3765     return false;
3766   }
3767 
3768   case ObjCBoxedExprClass:
3769   case ObjCArrayLiteralClass:
3770   case ObjCDictionaryLiteralClass:
3771   case ObjCSelectorExprClass:
3772   case ObjCProtocolExprClass:
3773   case ObjCIsaExprClass:
3774   case ObjCIndirectCopyRestoreExprClass:
3775   case ObjCSubscriptRefExprClass:
3776   case ObjCBridgedCastExprClass:
3777   case ObjCMessageExprClass:
3778   case ObjCPropertyRefExprClass:
3779   // FIXME: Classify these cases better.
3780     if (IncludePossibleEffects)
3781       return true;
3782     break;
3783   }
3784 
3785   // Recurse to children.
3786   for (const Stmt *SubStmt : children())
3787     if (SubStmt &&
3788         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3789       return true;
3790 
3791   return false;
3792 }
3793 
3794 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3795   if (auto Call = dyn_cast<CallExpr>(this))
3796     return Call->getFPFeaturesInEffect(LO);
3797   if (auto UO = dyn_cast<UnaryOperator>(this))
3798     return UO->getFPFeaturesInEffect(LO);
3799   if (auto BO = dyn_cast<BinaryOperator>(this))
3800     return BO->getFPFeaturesInEffect(LO);
3801   if (auto Cast = dyn_cast<CastExpr>(this))
3802     return Cast->getFPFeaturesInEffect(LO);
3803   return FPOptions::defaultWithoutTrailingStorage(LO);
3804 }
3805 
3806 namespace {
3807   /// Look for a call to a non-trivial function within an expression.
3808   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3809   {
3810     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3811 
3812     bool NonTrivial;
3813 
3814   public:
3815     explicit NonTrivialCallFinder(const ASTContext &Context)
3816       : Inherited(Context), NonTrivial(false) { }
3817 
3818     bool hasNonTrivialCall() const { return NonTrivial; }
3819 
3820     void VisitCallExpr(const CallExpr *E) {
3821       if (const CXXMethodDecl *Method
3822           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3823         if (Method->isTrivial()) {
3824           // Recurse to children of the call.
3825           Inherited::VisitStmt(E);
3826           return;
3827         }
3828       }
3829 
3830       NonTrivial = true;
3831     }
3832 
3833     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3834       if (E->getConstructor()->isTrivial()) {
3835         // Recurse to children of the call.
3836         Inherited::VisitStmt(E);
3837         return;
3838       }
3839 
3840       NonTrivial = true;
3841     }
3842 
3843     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3844       if (E->getTemporary()->getDestructor()->isTrivial()) {
3845         Inherited::VisitStmt(E);
3846         return;
3847       }
3848 
3849       NonTrivial = true;
3850     }
3851   };
3852 }
3853 
3854 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3855   NonTrivialCallFinder Finder(Ctx);
3856   Finder.Visit(this);
3857   return Finder.hasNonTrivialCall();
3858 }
3859 
3860 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3861 /// pointer constant or not, as well as the specific kind of constant detected.
3862 /// Null pointer constants can be integer constant expressions with the
3863 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3864 /// (a GNU extension).
3865 Expr::NullPointerConstantKind
3866 Expr::isNullPointerConstant(ASTContext &Ctx,
3867                             NullPointerConstantValueDependence NPC) const {
3868   if (isValueDependent() &&
3869       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3870     // Error-dependent expr should never be a null pointer.
3871     if (containsErrors())
3872       return NPCK_NotNull;
3873     switch (NPC) {
3874     case NPC_NeverValueDependent:
3875       llvm_unreachable("Unexpected value dependent expression!");
3876     case NPC_ValueDependentIsNull:
3877       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3878         return NPCK_ZeroExpression;
3879       else
3880         return NPCK_NotNull;
3881 
3882     case NPC_ValueDependentIsNotNull:
3883       return NPCK_NotNull;
3884     }
3885   }
3886 
3887   // Strip off a cast to void*, if it exists. Except in C++.
3888   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3889     if (!Ctx.getLangOpts().CPlusPlus) {
3890       // Check that it is a cast to void*.
3891       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3892         QualType Pointee = PT->getPointeeType();
3893         Qualifiers Qs = Pointee.getQualifiers();
3894         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3895         // has non-default address space it is not treated as nullptr.
3896         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3897         // since it cannot be assigned to a pointer to constant address space.
3898         if (Ctx.getLangOpts().OpenCL &&
3899             Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3900           Qs.removeAddressSpace();
3901 
3902         if (Pointee->isVoidType() && Qs.empty() && // to void*
3903             CE->getSubExpr()->getType()->isIntegerType()) // from int
3904           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3905       }
3906     }
3907   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3908     // Ignore the ImplicitCastExpr type entirely.
3909     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3910   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3911     // Accept ((void*)0) as a null pointer constant, as many other
3912     // implementations do.
3913     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3914   } else if (const GenericSelectionExpr *GE =
3915                dyn_cast<GenericSelectionExpr>(this)) {
3916     if (GE->isResultDependent())
3917       return NPCK_NotNull;
3918     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3919   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3920     if (CE->isConditionDependent())
3921       return NPCK_NotNull;
3922     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3923   } else if (const CXXDefaultArgExpr *DefaultArg
3924                = dyn_cast<CXXDefaultArgExpr>(this)) {
3925     // See through default argument expressions.
3926     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3927   } else if (const CXXDefaultInitExpr *DefaultInit
3928                = dyn_cast<CXXDefaultInitExpr>(this)) {
3929     // See through default initializer expressions.
3930     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3931   } else if (isa<GNUNullExpr>(this)) {
3932     // The GNU __null extension is always a null pointer constant.
3933     return NPCK_GNUNull;
3934   } else if (const MaterializeTemporaryExpr *M
3935                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3936     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3937   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3938     if (const Expr *Source = OVE->getSourceExpr())
3939       return Source->isNullPointerConstant(Ctx, NPC);
3940   }
3941 
3942   // If the expression has no type information, it cannot be a null pointer
3943   // constant.
3944   if (getType().isNull())
3945     return NPCK_NotNull;
3946 
3947   // C++11/C23 nullptr_t is always a null pointer constant.
3948   if (getType()->isNullPtrType())
3949     return NPCK_CXX11_nullptr;
3950 
3951   if (const RecordType *UT = getType()->getAsUnionType())
3952     if (!Ctx.getLangOpts().CPlusPlus11 &&
3953         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3954       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3955         const Expr *InitExpr = CLE->getInitializer();
3956         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3957           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3958       }
3959   // This expression must be an integer type.
3960   if (!getType()->isIntegerType() ||
3961       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3962     return NPCK_NotNull;
3963 
3964   if (Ctx.getLangOpts().CPlusPlus11) {
3965     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3966     // value zero or a prvalue of type std::nullptr_t.
3967     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3968     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3969     if (Lit && !Lit->getValue())
3970       return NPCK_ZeroLiteral;
3971     if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3972       return NPCK_NotNull;
3973   } else {
3974     // If we have an integer constant expression, we need to *evaluate* it and
3975     // test for the value 0.
3976     if (!isIntegerConstantExpr(Ctx))
3977       return NPCK_NotNull;
3978   }
3979 
3980   if (EvaluateKnownConstInt(Ctx) != 0)
3981     return NPCK_NotNull;
3982 
3983   if (isa<IntegerLiteral>(this))
3984     return NPCK_ZeroLiteral;
3985   return NPCK_ZeroExpression;
3986 }
3987 
3988 /// If this expression is an l-value for an Objective C
3989 /// property, find the underlying property reference expression.
3990 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3991   const Expr *E = this;
3992   while (true) {
3993     assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
3994            "expression is not a property reference");
3995     E = E->IgnoreParenCasts();
3996     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3997       if (BO->getOpcode() == BO_Comma) {
3998         E = BO->getRHS();
3999         continue;
4000       }
4001     }
4002 
4003     break;
4004   }
4005 
4006   return cast<ObjCPropertyRefExpr>(E);
4007 }
4008 
4009 bool Expr::isObjCSelfExpr() const {
4010   const Expr *E = IgnoreParenImpCasts();
4011 
4012   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4013   if (!DRE)
4014     return false;
4015 
4016   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4017   if (!Param)
4018     return false;
4019 
4020   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4021   if (!M)
4022     return false;
4023 
4024   return M->getSelfDecl() == Param;
4025 }
4026 
4027 FieldDecl *Expr::getSourceBitField() {
4028   Expr *E = this->IgnoreParens();
4029 
4030   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4031     if (ICE->getCastKind() == CK_LValueToRValue ||
4032         (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4033       E = ICE->getSubExpr()->IgnoreParens();
4034     else
4035       break;
4036   }
4037 
4038   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4039     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4040       if (Field->isBitField())
4041         return Field;
4042 
4043   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4044     FieldDecl *Ivar = IvarRef->getDecl();
4045     if (Ivar->isBitField())
4046       return Ivar;
4047   }
4048 
4049   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4050     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4051       if (Field->isBitField())
4052         return Field;
4053 
4054     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4055       if (Expr *E = BD->getBinding())
4056         return E->getSourceBitField();
4057   }
4058 
4059   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4060     if (BinOp->isAssignmentOp() && BinOp->getLHS())
4061       return BinOp->getLHS()->getSourceBitField();
4062 
4063     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4064       return BinOp->getRHS()->getSourceBitField();
4065   }
4066 
4067   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4068     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4069       return UnOp->getSubExpr()->getSourceBitField();
4070 
4071   return nullptr;
4072 }
4073 
4074 bool Expr::refersToVectorElement() const {
4075   // FIXME: Why do we not just look at the ObjectKind here?
4076   const Expr *E = this->IgnoreParens();
4077 
4078   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4079     if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4080       E = ICE->getSubExpr()->IgnoreParens();
4081     else
4082       break;
4083   }
4084 
4085   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4086     return ASE->getBase()->getType()->isVectorType();
4087 
4088   if (isa<ExtVectorElementExpr>(E))
4089     return true;
4090 
4091   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4092     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4093       if (auto *E = BD->getBinding())
4094         return E->refersToVectorElement();
4095 
4096   return false;
4097 }
4098 
4099 bool Expr::refersToGlobalRegisterVar() const {
4100   const Expr *E = this->IgnoreParenImpCasts();
4101 
4102   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4103     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4104       if (VD->getStorageClass() == SC_Register &&
4105           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4106         return true;
4107 
4108   return false;
4109 }
4110 
4111 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4112   E1 = E1->IgnoreParens();
4113   E2 = E2->IgnoreParens();
4114 
4115   if (E1->getStmtClass() != E2->getStmtClass())
4116     return false;
4117 
4118   switch (E1->getStmtClass()) {
4119     default:
4120       return false;
4121     case CXXThisExprClass:
4122       return true;
4123     case DeclRefExprClass: {
4124       // DeclRefExpr without an ImplicitCastExpr can happen for integral
4125       // template parameters.
4126       const auto *DRE1 = cast<DeclRefExpr>(E1);
4127       const auto *DRE2 = cast<DeclRefExpr>(E2);
4128       return DRE1->isPRValue() && DRE2->isPRValue() &&
4129              DRE1->getDecl() == DRE2->getDecl();
4130     }
4131     case ImplicitCastExprClass: {
4132       // Peel off implicit casts.
4133       while (true) {
4134         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4135         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4136         if (!ICE1 || !ICE2)
4137           return false;
4138         if (ICE1->getCastKind() != ICE2->getCastKind())
4139           return false;
4140         E1 = ICE1->getSubExpr()->IgnoreParens();
4141         E2 = ICE2->getSubExpr()->IgnoreParens();
4142         // The final cast must be one of these types.
4143         if (ICE1->getCastKind() == CK_LValueToRValue ||
4144             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4145             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4146           break;
4147         }
4148       }
4149 
4150       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4151       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4152       if (DRE1 && DRE2)
4153         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4154 
4155       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4156       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4157       if (Ivar1 && Ivar2) {
4158         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4159                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4160       }
4161 
4162       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4163       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4164       if (Array1 && Array2) {
4165         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4166           return false;
4167 
4168         auto Idx1 = Array1->getIdx();
4169         auto Idx2 = Array2->getIdx();
4170         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4171         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4172         if (Integer1 && Integer2) {
4173           if (!llvm::APInt::isSameValue(Integer1->getValue(),
4174                                         Integer2->getValue()))
4175             return false;
4176         } else {
4177           if (!isSameComparisonOperand(Idx1, Idx2))
4178             return false;
4179         }
4180 
4181         return true;
4182       }
4183 
4184       // Walk the MemberExpr chain.
4185       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4186         const auto *ME1 = cast<MemberExpr>(E1);
4187         const auto *ME2 = cast<MemberExpr>(E2);
4188         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4189           return false;
4190         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4191           if (D->isStaticDataMember())
4192             return true;
4193         E1 = ME1->getBase()->IgnoreParenImpCasts();
4194         E2 = ME2->getBase()->IgnoreParenImpCasts();
4195       }
4196 
4197       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4198         return true;
4199 
4200       // A static member variable can end the MemberExpr chain with either
4201       // a MemberExpr or a DeclRefExpr.
4202       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4203         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4204           return DRE->getDecl();
4205         if (const auto *ME = dyn_cast<MemberExpr>(E))
4206           return ME->getMemberDecl();
4207         return nullptr;
4208       };
4209 
4210       const ValueDecl *VD1 = getAnyDecl(E1);
4211       const ValueDecl *VD2 = getAnyDecl(E2);
4212       return declaresSameEntity(VD1, VD2);
4213     }
4214   }
4215 }
4216 
4217 /// isArrow - Return true if the base expression is a pointer to vector,
4218 /// return false if the base expression is a vector.
4219 bool ExtVectorElementExpr::isArrow() const {
4220   return getBase()->getType()->isPointerType();
4221 }
4222 
4223 unsigned ExtVectorElementExpr::getNumElements() const {
4224   if (const VectorType *VT = getType()->getAs<VectorType>())
4225     return VT->getNumElements();
4226   return 1;
4227 }
4228 
4229 /// containsDuplicateElements - Return true if any element access is repeated.
4230 bool ExtVectorElementExpr::containsDuplicateElements() const {
4231   // FIXME: Refactor this code to an accessor on the AST node which returns the
4232   // "type" of component access, and share with code below and in Sema.
4233   StringRef Comp = Accessor->getName();
4234 
4235   // Halving swizzles do not contain duplicate elements.
4236   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4237     return false;
4238 
4239   // Advance past s-char prefix on hex swizzles.
4240   if (Comp[0] == 's' || Comp[0] == 'S')
4241     Comp = Comp.substr(1);
4242 
4243   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4244     if (Comp.substr(i + 1).contains(Comp[i]))
4245         return true;
4246 
4247   return false;
4248 }
4249 
4250 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4251 void ExtVectorElementExpr::getEncodedElementAccess(
4252     SmallVectorImpl<uint32_t> &Elts) const {
4253   StringRef Comp = Accessor->getName();
4254   bool isNumericAccessor = false;
4255   if (Comp[0] == 's' || Comp[0] == 'S') {
4256     Comp = Comp.substr(1);
4257     isNumericAccessor = true;
4258   }
4259 
4260   bool isHi =   Comp == "hi";
4261   bool isLo =   Comp == "lo";
4262   bool isEven = Comp == "even";
4263   bool isOdd  = Comp == "odd";
4264 
4265   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4266     uint64_t Index;
4267 
4268     if (isHi)
4269       Index = e + i;
4270     else if (isLo)
4271       Index = i;
4272     else if (isEven)
4273       Index = 2 * i;
4274     else if (isOdd)
4275       Index = 2 * i + 1;
4276     else
4277       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4278 
4279     Elts.push_back(Index);
4280   }
4281 }
4282 
4283 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4284                                      QualType Type, SourceLocation BLoc,
4285                                      SourceLocation RP)
4286     : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4287       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4288   SubExprs = new (C) Stmt*[args.size()];
4289   for (unsigned i = 0; i != args.size(); i++)
4290     SubExprs[i] = args[i];
4291 
4292   setDependence(computeDependence(this));
4293 }
4294 
4295 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4296   if (SubExprs) C.Deallocate(SubExprs);
4297 
4298   this->NumExprs = Exprs.size();
4299   SubExprs = new (C) Stmt*[NumExprs];
4300   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4301 }
4302 
4303 GenericSelectionExpr::GenericSelectionExpr(
4304     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4305     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4306     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4307     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4308     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4309            AssocExprs[ResultIndex]->getValueKind(),
4310            AssocExprs[ResultIndex]->getObjectKind()),
4311       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4312       IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4313   assert(AssocTypes.size() == AssocExprs.size() &&
4314          "Must have the same number of association expressions"
4315          " and TypeSourceInfo!");
4316   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4317 
4318   GenericSelectionExprBits.GenericLoc = GenericLoc;
4319   getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4320       ControllingExpr;
4321   std::copy(AssocExprs.begin(), AssocExprs.end(),
4322             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4323   std::copy(AssocTypes.begin(), AssocTypes.end(),
4324             getTrailingObjects<TypeSourceInfo *>() +
4325                 getIndexOfStartOfAssociatedTypes());
4326 
4327   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4328 }
4329 
4330 GenericSelectionExpr::GenericSelectionExpr(
4331     const ASTContext &, SourceLocation GenericLoc,
4332     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4333     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4334     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4335     unsigned ResultIndex)
4336     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4337            AssocExprs[ResultIndex]->getValueKind(),
4338            AssocExprs[ResultIndex]->getObjectKind()),
4339       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4340       IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4341   assert(AssocTypes.size() == AssocExprs.size() &&
4342          "Must have the same number of association expressions"
4343          " and TypeSourceInfo!");
4344   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4345 
4346   GenericSelectionExprBits.GenericLoc = GenericLoc;
4347   getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4348       ControllingType;
4349   std::copy(AssocExprs.begin(), AssocExprs.end(),
4350             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4351   std::copy(AssocTypes.begin(), AssocTypes.end(),
4352             getTrailingObjects<TypeSourceInfo *>() +
4353                 getIndexOfStartOfAssociatedTypes());
4354 
4355   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4356 }
4357 
4358 GenericSelectionExpr::GenericSelectionExpr(
4359     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4360     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4361     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4362     bool ContainsUnexpandedParameterPack)
4363     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4364            OK_Ordinary),
4365       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4366       IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4367   assert(AssocTypes.size() == AssocExprs.size() &&
4368          "Must have the same number of association expressions"
4369          " and TypeSourceInfo!");
4370 
4371   GenericSelectionExprBits.GenericLoc = GenericLoc;
4372   getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4373       ControllingExpr;
4374   std::copy(AssocExprs.begin(), AssocExprs.end(),
4375             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4376   std::copy(AssocTypes.begin(), AssocTypes.end(),
4377             getTrailingObjects<TypeSourceInfo *>() +
4378                 getIndexOfStartOfAssociatedTypes());
4379 
4380   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4381 }
4382 
4383 GenericSelectionExpr::GenericSelectionExpr(
4384     const ASTContext &Context, SourceLocation GenericLoc,
4385     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4386     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4387     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4388     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4389            OK_Ordinary),
4390       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4391       IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4392   assert(AssocTypes.size() == AssocExprs.size() &&
4393          "Must have the same number of association expressions"
4394          " and TypeSourceInfo!");
4395 
4396   GenericSelectionExprBits.GenericLoc = GenericLoc;
4397   getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4398       ControllingType;
4399   std::copy(AssocExprs.begin(), AssocExprs.end(),
4400             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4401   std::copy(AssocTypes.begin(), AssocTypes.end(),
4402             getTrailingObjects<TypeSourceInfo *>() +
4403                 getIndexOfStartOfAssociatedTypes());
4404 
4405   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4406 }
4407 
4408 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4409     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4410 
4411 GenericSelectionExpr *GenericSelectionExpr::Create(
4412     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4413     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4414     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4415     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4416   unsigned NumAssocs = AssocExprs.size();
4417   void *Mem = Context.Allocate(
4418       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4419       alignof(GenericSelectionExpr));
4420   return new (Mem) GenericSelectionExpr(
4421       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4422       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4423 }
4424 
4425 GenericSelectionExpr *GenericSelectionExpr::Create(
4426     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4427     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4428     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4429     bool ContainsUnexpandedParameterPack) {
4430   unsigned NumAssocs = AssocExprs.size();
4431   void *Mem = Context.Allocate(
4432       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4433       alignof(GenericSelectionExpr));
4434   return new (Mem) GenericSelectionExpr(
4435       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4436       RParenLoc, ContainsUnexpandedParameterPack);
4437 }
4438 
4439 GenericSelectionExpr *GenericSelectionExpr::Create(
4440     const ASTContext &Context, SourceLocation GenericLoc,
4441     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4442     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4443     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4444     unsigned ResultIndex) {
4445   unsigned NumAssocs = AssocExprs.size();
4446   void *Mem = Context.Allocate(
4447       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4448       alignof(GenericSelectionExpr));
4449   return new (Mem) GenericSelectionExpr(
4450       Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4451       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4452 }
4453 
4454 GenericSelectionExpr *GenericSelectionExpr::Create(
4455     const ASTContext &Context, SourceLocation GenericLoc,
4456     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4457     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4458     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4459   unsigned NumAssocs = AssocExprs.size();
4460   void *Mem = Context.Allocate(
4461       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4462       alignof(GenericSelectionExpr));
4463   return new (Mem) GenericSelectionExpr(
4464       Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4465       RParenLoc, ContainsUnexpandedParameterPack);
4466 }
4467 
4468 GenericSelectionExpr *
4469 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4470                                   unsigned NumAssocs) {
4471   void *Mem = Context.Allocate(
4472       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4473       alignof(GenericSelectionExpr));
4474   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4475 }
4476 
4477 //===----------------------------------------------------------------------===//
4478 //  DesignatedInitExpr
4479 //===----------------------------------------------------------------------===//
4480 
4481 const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4482   assert(isFieldDesignator() && "Only valid on a field designator");
4483   if (FieldInfo.NameOrField & 0x01)
4484     return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4485   return getFieldDecl()->getIdentifier();
4486 }
4487 
4488 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4489                                        llvm::ArrayRef<Designator> Designators,
4490                                        SourceLocation EqualOrColonLoc,
4491                                        bool GNUSyntax,
4492                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4493     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4494            Init->getObjectKind()),
4495       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4496       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4497   this->Designators = new (C) Designator[NumDesignators];
4498 
4499   // Record the initializer itself.
4500   child_iterator Child = child_begin();
4501   *Child++ = Init;
4502 
4503   // Copy the designators and their subexpressions, computing
4504   // value-dependence along the way.
4505   unsigned IndexIdx = 0;
4506   for (unsigned I = 0; I != NumDesignators; ++I) {
4507     this->Designators[I] = Designators[I];
4508     if (this->Designators[I].isArrayDesignator()) {
4509       // Copy the index expressions into permanent storage.
4510       *Child++ = IndexExprs[IndexIdx++];
4511     } else if (this->Designators[I].isArrayRangeDesignator()) {
4512       // Copy the start/end expressions into permanent storage.
4513       *Child++ = IndexExprs[IndexIdx++];
4514       *Child++ = IndexExprs[IndexIdx++];
4515     }
4516   }
4517 
4518   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4519   setDependence(computeDependence(this));
4520 }
4521 
4522 DesignatedInitExpr *
4523 DesignatedInitExpr::Create(const ASTContext &C,
4524                            llvm::ArrayRef<Designator> Designators,
4525                            ArrayRef<Expr*> IndexExprs,
4526                            SourceLocation ColonOrEqualLoc,
4527                            bool UsesColonSyntax, Expr *Init) {
4528   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4529                          alignof(DesignatedInitExpr));
4530   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4531                                       ColonOrEqualLoc, UsesColonSyntax,
4532                                       IndexExprs, Init);
4533 }
4534 
4535 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4536                                                     unsigned NumIndexExprs) {
4537   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4538                          alignof(DesignatedInitExpr));
4539   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4540 }
4541 
4542 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4543                                         const Designator *Desigs,
4544                                         unsigned NumDesigs) {
4545   Designators = new (C) Designator[NumDesigs];
4546   NumDesignators = NumDesigs;
4547   for (unsigned I = 0; I != NumDesigs; ++I)
4548     Designators[I] = Desigs[I];
4549 }
4550 
4551 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4552   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4553   if (size() == 1)
4554     return DIE->getDesignator(0)->getSourceRange();
4555   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4556                      DIE->getDesignator(size() - 1)->getEndLoc());
4557 }
4558 
4559 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4560   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4561   Designator &First = *DIE->getDesignator(0);
4562   if (First.isFieldDesignator())
4563     return GNUSyntax ? First.getFieldLoc() : First.getDotLoc();
4564   return First.getLBracketLoc();
4565 }
4566 
4567 SourceLocation DesignatedInitExpr::getEndLoc() const {
4568   return getInit()->getEndLoc();
4569 }
4570 
4571 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4572   assert(D.isArrayDesignator() && "Requires array designator");
4573   return getSubExpr(D.getArrayIndex() + 1);
4574 }
4575 
4576 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4577   assert(D.isArrayRangeDesignator() && "Requires array range designator");
4578   return getSubExpr(D.getArrayIndex() + 1);
4579 }
4580 
4581 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4582   assert(D.isArrayRangeDesignator() && "Requires array range designator");
4583   return getSubExpr(D.getArrayIndex() + 2);
4584 }
4585 
4586 /// Replaces the designator at index @p Idx with the series
4587 /// of designators in [First, Last).
4588 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4589                                           const Designator *First,
4590                                           const Designator *Last) {
4591   unsigned NumNewDesignators = Last - First;
4592   if (NumNewDesignators == 0) {
4593     std::copy_backward(Designators + Idx + 1,
4594                        Designators + NumDesignators,
4595                        Designators + Idx);
4596     --NumNewDesignators;
4597     return;
4598   }
4599   if (NumNewDesignators == 1) {
4600     Designators[Idx] = *First;
4601     return;
4602   }
4603 
4604   Designator *NewDesignators
4605     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4606   std::copy(Designators, Designators + Idx, NewDesignators);
4607   std::copy(First, Last, NewDesignators + Idx);
4608   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4609             NewDesignators + Idx + NumNewDesignators);
4610   Designators = NewDesignators;
4611   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4612 }
4613 
4614 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4615                                                    SourceLocation lBraceLoc,
4616                                                    Expr *baseExpr,
4617                                                    SourceLocation rBraceLoc)
4618     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4619            OK_Ordinary) {
4620   BaseAndUpdaterExprs[0] = baseExpr;
4621 
4622   InitListExpr *ILE =
4623       new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4624   ILE->setType(baseExpr->getType());
4625   BaseAndUpdaterExprs[1] = ILE;
4626 
4627   // FIXME: this is wrong, set it correctly.
4628   setDependence(ExprDependence::None);
4629 }
4630 
4631 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4632   return getBase()->getBeginLoc();
4633 }
4634 
4635 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4636   return getBase()->getEndLoc();
4637 }
4638 
4639 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4640                              SourceLocation RParenLoc)
4641     : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4642       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4643   ParenListExprBits.NumExprs = Exprs.size();
4644 
4645   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4646     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4647   setDependence(computeDependence(this));
4648 }
4649 
4650 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4651     : Expr(ParenListExprClass, Empty) {
4652   ParenListExprBits.NumExprs = NumExprs;
4653 }
4654 
4655 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4656                                      SourceLocation LParenLoc,
4657                                      ArrayRef<Expr *> Exprs,
4658                                      SourceLocation RParenLoc) {
4659   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4660                            alignof(ParenListExpr));
4661   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4662 }
4663 
4664 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4665                                           unsigned NumExprs) {
4666   void *Mem =
4667       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4668   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4669 }
4670 
4671 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4672                                Opcode opc, QualType ResTy, ExprValueKind VK,
4673                                ExprObjectKind OK, SourceLocation opLoc,
4674                                FPOptionsOverride FPFeatures)
4675     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4676   BinaryOperatorBits.Opc = opc;
4677   assert(!isCompoundAssignmentOp() &&
4678          "Use CompoundAssignOperator for compound assignments");
4679   BinaryOperatorBits.OpLoc = opLoc;
4680   SubExprs[LHS] = lhs;
4681   SubExprs[RHS] = rhs;
4682   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4683   if (hasStoredFPFeatures())
4684     setStoredFPFeatures(FPFeatures);
4685   setDependence(computeDependence(this));
4686 }
4687 
4688 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4689                                Opcode opc, QualType ResTy, ExprValueKind VK,
4690                                ExprObjectKind OK, SourceLocation opLoc,
4691                                FPOptionsOverride FPFeatures, bool dead2)
4692     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4693   BinaryOperatorBits.Opc = opc;
4694   assert(isCompoundAssignmentOp() &&
4695          "Use CompoundAssignOperator for compound assignments");
4696   BinaryOperatorBits.OpLoc = opLoc;
4697   SubExprs[LHS] = lhs;
4698   SubExprs[RHS] = rhs;
4699   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4700   if (hasStoredFPFeatures())
4701     setStoredFPFeatures(FPFeatures);
4702   setDependence(computeDependence(this));
4703 }
4704 
4705 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4706                                             bool HasFPFeatures) {
4707   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4708   void *Mem =
4709       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4710   return new (Mem) BinaryOperator(EmptyShell());
4711 }
4712 
4713 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4714                                        Expr *rhs, Opcode opc, QualType ResTy,
4715                                        ExprValueKind VK, ExprObjectKind OK,
4716                                        SourceLocation opLoc,
4717                                        FPOptionsOverride FPFeatures) {
4718   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4719   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4720   void *Mem =
4721       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4722   return new (Mem)
4723       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4724 }
4725 
4726 CompoundAssignOperator *
4727 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4728   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4729   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4730                          alignof(CompoundAssignOperator));
4731   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4732 }
4733 
4734 CompoundAssignOperator *
4735 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4736                                Opcode opc, QualType ResTy, ExprValueKind VK,
4737                                ExprObjectKind OK, SourceLocation opLoc,
4738                                FPOptionsOverride FPFeatures,
4739                                QualType CompLHSType, QualType CompResultType) {
4740   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4741   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4742   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4743                          alignof(CompoundAssignOperator));
4744   return new (Mem)
4745       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4746                              CompLHSType, CompResultType);
4747 }
4748 
4749 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4750                                           bool hasFPFeatures) {
4751   void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4752                          alignof(UnaryOperator));
4753   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4754 }
4755 
4756 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4757                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4758                              SourceLocation l, bool CanOverflow,
4759                              FPOptionsOverride FPFeatures)
4760     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4761   UnaryOperatorBits.Opc = opc;
4762   UnaryOperatorBits.CanOverflow = CanOverflow;
4763   UnaryOperatorBits.Loc = l;
4764   UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4765   if (hasStoredFPFeatures())
4766     setStoredFPFeatures(FPFeatures);
4767   setDependence(computeDependence(this, Ctx));
4768 }
4769 
4770 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4771                                      Opcode opc, QualType type,
4772                                      ExprValueKind VK, ExprObjectKind OK,
4773                                      SourceLocation l, bool CanOverflow,
4774                                      FPOptionsOverride FPFeatures) {
4775   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4776   unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4777   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4778   return new (Mem)
4779       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4780 }
4781 
4782 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4783   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4784     e = ewc->getSubExpr();
4785   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4786     e = m->getSubExpr();
4787   e = cast<CXXConstructExpr>(e)->getArg(0);
4788   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4789     e = ice->getSubExpr();
4790   return cast<OpaqueValueExpr>(e);
4791 }
4792 
4793 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4794                                            EmptyShell sh,
4795                                            unsigned numSemanticExprs) {
4796   void *buffer =
4797       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4798                        alignof(PseudoObjectExpr));
4799   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4800 }
4801 
4802 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4803   : Expr(PseudoObjectExprClass, shell) {
4804   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4805 }
4806 
4807 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4808                                            ArrayRef<Expr*> semantics,
4809                                            unsigned resultIndex) {
4810   assert(syntax && "no syntactic expression!");
4811   assert(semantics.size() && "no semantic expressions!");
4812 
4813   QualType type;
4814   ExprValueKind VK;
4815   if (resultIndex == NoResult) {
4816     type = C.VoidTy;
4817     VK = VK_PRValue;
4818   } else {
4819     assert(resultIndex < semantics.size());
4820     type = semantics[resultIndex]->getType();
4821     VK = semantics[resultIndex]->getValueKind();
4822     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4823   }
4824 
4825   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4826                             alignof(PseudoObjectExpr));
4827   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4828                                       resultIndex);
4829 }
4830 
4831 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4832                                    Expr *syntax, ArrayRef<Expr *> semantics,
4833                                    unsigned resultIndex)
4834     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4835   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4836   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4837 
4838   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4839     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4840     getSubExprsBuffer()[i] = E;
4841 
4842     if (isa<OpaqueValueExpr>(E))
4843       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4844              "opaque-value semantic expressions for pseudo-object "
4845              "operations must have sources");
4846   }
4847 
4848   setDependence(computeDependence(this));
4849 }
4850 
4851 //===----------------------------------------------------------------------===//
4852 //  Child Iterators for iterating over subexpressions/substatements
4853 //===----------------------------------------------------------------------===//
4854 
4855 // UnaryExprOrTypeTraitExpr
4856 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4857   const_child_range CCR =
4858       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4859   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4860 }
4861 
4862 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4863   // If this is of a type and the type is a VLA type (and not a typedef), the
4864   // size expression of the VLA needs to be treated as an executable expression.
4865   // Why isn't this weirdness documented better in StmtIterator?
4866   if (isArgumentType()) {
4867     if (const VariableArrayType *T =
4868             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4869       return const_child_range(const_child_iterator(T), const_child_iterator());
4870     return const_child_range(const_child_iterator(), const_child_iterator());
4871   }
4872   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4873 }
4874 
4875 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4876                        AtomicOp op, SourceLocation RP)
4877     : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4878       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4879   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4880   for (unsigned i = 0; i != args.size(); i++)
4881     SubExprs[i] = args[i];
4882   setDependence(computeDependence(this));
4883 }
4884 
4885 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4886   switch (Op) {
4887   case AO__c11_atomic_init:
4888   case AO__opencl_atomic_init:
4889   case AO__c11_atomic_load:
4890   case AO__atomic_load_n:
4891     return 2;
4892 
4893   case AO__scoped_atomic_load_n:
4894   case AO__opencl_atomic_load:
4895   case AO__hip_atomic_load:
4896   case AO__c11_atomic_store:
4897   case AO__c11_atomic_exchange:
4898   case AO__atomic_load:
4899   case AO__atomic_store:
4900   case AO__atomic_store_n:
4901   case AO__atomic_exchange_n:
4902   case AO__c11_atomic_fetch_add:
4903   case AO__c11_atomic_fetch_sub:
4904   case AO__c11_atomic_fetch_and:
4905   case AO__c11_atomic_fetch_or:
4906   case AO__c11_atomic_fetch_xor:
4907   case AO__c11_atomic_fetch_nand:
4908   case AO__c11_atomic_fetch_max:
4909   case AO__c11_atomic_fetch_min:
4910   case AO__atomic_fetch_add:
4911   case AO__atomic_fetch_sub:
4912   case AO__atomic_fetch_and:
4913   case AO__atomic_fetch_or:
4914   case AO__atomic_fetch_xor:
4915   case AO__atomic_fetch_nand:
4916   case AO__atomic_add_fetch:
4917   case AO__atomic_sub_fetch:
4918   case AO__atomic_and_fetch:
4919   case AO__atomic_or_fetch:
4920   case AO__atomic_xor_fetch:
4921   case AO__atomic_nand_fetch:
4922   case AO__atomic_min_fetch:
4923   case AO__atomic_max_fetch:
4924   case AO__atomic_fetch_min:
4925   case AO__atomic_fetch_max:
4926     return 3;
4927 
4928   case AO__scoped_atomic_load:
4929   case AO__scoped_atomic_store:
4930   case AO__scoped_atomic_store_n:
4931   case AO__scoped_atomic_fetch_add:
4932   case AO__scoped_atomic_fetch_sub:
4933   case AO__scoped_atomic_fetch_and:
4934   case AO__scoped_atomic_fetch_or:
4935   case AO__scoped_atomic_fetch_xor:
4936   case AO__scoped_atomic_fetch_nand:
4937   case AO__scoped_atomic_add_fetch:
4938   case AO__scoped_atomic_sub_fetch:
4939   case AO__scoped_atomic_and_fetch:
4940   case AO__scoped_atomic_or_fetch:
4941   case AO__scoped_atomic_xor_fetch:
4942   case AO__scoped_atomic_nand_fetch:
4943   case AO__scoped_atomic_min_fetch:
4944   case AO__scoped_atomic_max_fetch:
4945   case AO__scoped_atomic_fetch_min:
4946   case AO__scoped_atomic_fetch_max:
4947   case AO__scoped_atomic_exchange_n:
4948   case AO__hip_atomic_exchange:
4949   case AO__hip_atomic_fetch_add:
4950   case AO__hip_atomic_fetch_sub:
4951   case AO__hip_atomic_fetch_and:
4952   case AO__hip_atomic_fetch_or:
4953   case AO__hip_atomic_fetch_xor:
4954   case AO__hip_atomic_fetch_min:
4955   case AO__hip_atomic_fetch_max:
4956   case AO__opencl_atomic_store:
4957   case AO__hip_atomic_store:
4958   case AO__opencl_atomic_exchange:
4959   case AO__opencl_atomic_fetch_add:
4960   case AO__opencl_atomic_fetch_sub:
4961   case AO__opencl_atomic_fetch_and:
4962   case AO__opencl_atomic_fetch_or:
4963   case AO__opencl_atomic_fetch_xor:
4964   case AO__opencl_atomic_fetch_min:
4965   case AO__opencl_atomic_fetch_max:
4966   case AO__atomic_exchange:
4967     return 4;
4968 
4969   case AO__scoped_atomic_exchange:
4970   case AO__c11_atomic_compare_exchange_strong:
4971   case AO__c11_atomic_compare_exchange_weak:
4972     return 5;
4973   case AO__hip_atomic_compare_exchange_strong:
4974   case AO__opencl_atomic_compare_exchange_strong:
4975   case AO__opencl_atomic_compare_exchange_weak:
4976   case AO__hip_atomic_compare_exchange_weak:
4977   case AO__atomic_compare_exchange:
4978   case AO__atomic_compare_exchange_n:
4979     return 6;
4980 
4981   case AO__scoped_atomic_compare_exchange:
4982   case AO__scoped_atomic_compare_exchange_n:
4983     return 7;
4984   }
4985   llvm_unreachable("unknown atomic op");
4986 }
4987 
4988 QualType AtomicExpr::getValueType() const {
4989   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4990   if (auto AT = T->getAs<AtomicType>())
4991     return AT->getValueType();
4992   return T;
4993 }
4994 
4995 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4996   unsigned ArraySectionCount = 0;
4997   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4998     Base = OASE->getBase();
4999     ++ArraySectionCount;
5000   }
5001   while (auto *ASE =
5002              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
5003     Base = ASE->getBase();
5004     ++ArraySectionCount;
5005   }
5006   Base = Base->IgnoreParenImpCasts();
5007   auto OriginalTy = Base->getType();
5008   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
5009     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
5010       OriginalTy = PVD->getOriginalType().getNonReferenceType();
5011 
5012   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5013     if (OriginalTy->isAnyPointerType())
5014       OriginalTy = OriginalTy->getPointeeType();
5015     else if (OriginalTy->isArrayType())
5016       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5017     else
5018       return {};
5019   }
5020   return OriginalTy;
5021 }
5022 
5023 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5024                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5025     : Expr(RecoveryExprClass, T.getNonReferenceType(),
5026            T->isDependentType() ? VK_LValue : getValueKindForType(T),
5027            OK_Ordinary),
5028       BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5029   assert(!T.isNull());
5030   assert(!llvm::is_contained(SubExprs, nullptr));
5031 
5032   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
5033   setDependence(computeDependence(this));
5034 }
5035 
5036 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
5037                                    SourceLocation BeginLoc,
5038                                    SourceLocation EndLoc,
5039                                    ArrayRef<Expr *> SubExprs) {
5040   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
5041                            alignof(RecoveryExpr));
5042   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5043 }
5044 
5045 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
5046   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
5047                            alignof(RecoveryExpr));
5048   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5049 }
5050 
5051 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5052   assert(
5053       NumDims == Dims.size() &&
5054       "Preallocated number of dimensions is different from the provided one.");
5055   llvm::copy(Dims, getTrailingObjects<Expr *>());
5056 }
5057 
5058 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5059   assert(
5060       NumDims == BR.size() &&
5061       "Preallocated number of dimensions is different from the provided one.");
5062   llvm::copy(BR, getTrailingObjects<SourceRange>());
5063 }
5064 
5065 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5066                                          SourceLocation L, SourceLocation R,
5067                                          ArrayRef<Expr *> Dims)
5068     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5069       RPLoc(R), NumDims(Dims.size()) {
5070   setBase(Op);
5071   setDimensions(Dims);
5072   setDependence(computeDependence(this));
5073 }
5074 
5075 OMPArrayShapingExpr *
5076 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
5077                             SourceLocation L, SourceLocation R,
5078                             ArrayRef<Expr *> Dims,
5079                             ArrayRef<SourceRange> BracketRanges) {
5080   assert(Dims.size() == BracketRanges.size() &&
5081          "Different number of dimensions and brackets ranges.");
5082   void *Mem = Context.Allocate(
5083       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
5084       alignof(OMPArrayShapingExpr));
5085   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5086   E->setBracketsRanges(BracketRanges);
5087   return E;
5088 }
5089 
5090 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
5091                                                       unsigned NumDims) {
5092   void *Mem = Context.Allocate(
5093       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
5094       alignof(OMPArrayShapingExpr));
5095   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5096 }
5097 
5098 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5099   assert(I < NumIterators &&
5100          "Idx is greater or equal the number of iterators definitions.");
5101   getTrailingObjects<Decl *>()[I] = D;
5102 }
5103 
5104 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5105   assert(I < NumIterators &&
5106          "Idx is greater or equal the number of iterators definitions.");
5107   getTrailingObjects<
5108       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5109                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5110 }
5111 
5112 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5113                                        SourceLocation ColonLoc, Expr *End,
5114                                        SourceLocation SecondColonLoc,
5115                                        Expr *Step) {
5116   assert(I < NumIterators &&
5117          "Idx is greater or equal the number of iterators definitions.");
5118   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5119                                static_cast<int>(RangeExprOffset::Begin)] =
5120       Begin;
5121   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5122                                static_cast<int>(RangeExprOffset::End)] = End;
5123   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5124                                static_cast<int>(RangeExprOffset::Step)] = Step;
5125   getTrailingObjects<
5126       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5127                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5128       ColonLoc;
5129   getTrailingObjects<
5130       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5131                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5132       SecondColonLoc;
5133 }
5134 
5135 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5136   return getTrailingObjects<Decl *>()[I];
5137 }
5138 
5139 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5140   IteratorRange Res;
5141   Res.Begin =
5142       getTrailingObjects<Expr *>()[I * static_cast<int>(
5143                                            RangeExprOffset::Total) +
5144                                    static_cast<int>(RangeExprOffset::Begin)];
5145   Res.End =
5146       getTrailingObjects<Expr *>()[I * static_cast<int>(
5147                                            RangeExprOffset::Total) +
5148                                    static_cast<int>(RangeExprOffset::End)];
5149   Res.Step =
5150       getTrailingObjects<Expr *>()[I * static_cast<int>(
5151                                            RangeExprOffset::Total) +
5152                                    static_cast<int>(RangeExprOffset::Step)];
5153   return Res;
5154 }
5155 
5156 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5157   return getTrailingObjects<
5158       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5159                         static_cast<int>(RangeLocOffset::AssignLoc)];
5160 }
5161 
5162 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5163   return getTrailingObjects<
5164       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5165                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
5166 }
5167 
5168 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5169   return getTrailingObjects<
5170       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5171                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
5172 }
5173 
5174 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5175   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5176 }
5177 
5178 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5179   return getTrailingObjects<OMPIteratorHelperData>()[I];
5180 }
5181 
5182 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5183   return getTrailingObjects<OMPIteratorHelperData>()[I];
5184 }
5185 
5186 OMPIteratorExpr::OMPIteratorExpr(
5187     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5188     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5189     ArrayRef<OMPIteratorHelperData> Helpers)
5190     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5191       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5192       NumIterators(Data.size()) {
5193   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5194     const IteratorDefinition &D = Data[I];
5195     setIteratorDeclaration(I, D.IteratorDecl);
5196     setAssignmentLoc(I, D.AssignmentLoc);
5197     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5198                      D.SecondColonLoc, D.Range.Step);
5199     setHelper(I, Helpers[I]);
5200   }
5201   setDependence(computeDependence(this));
5202 }
5203 
5204 OMPIteratorExpr *
5205 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5206                         SourceLocation IteratorKwLoc, SourceLocation L,
5207                         SourceLocation R,
5208                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5209                         ArrayRef<OMPIteratorHelperData> Helpers) {
5210   assert(Data.size() == Helpers.size() &&
5211          "Data and helpers must have the same size.");
5212   void *Mem = Context.Allocate(
5213       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5214           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5215           Data.size() * static_cast<int>(RangeLocOffset::Total),
5216           Helpers.size()),
5217       alignof(OMPIteratorExpr));
5218   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5219 }
5220 
5221 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5222                                               unsigned NumIterators) {
5223   void *Mem = Context.Allocate(
5224       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5225           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5226           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5227       alignof(OMPIteratorExpr));
5228   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5229 }
5230