xref: /freebsd/contrib/llvm-project/clang/lib/AST/Expr.cpp (revision dce5f3abed7181cc533ca5ed3de44517775e78dd)
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cstring>
38 using namespace clang;
39 
40 const Expr *Expr::getBestDynamicClassTypeExpr() const {
41   const Expr *E = this;
42   while (true) {
43     E = E->IgnoreParenBaseCasts();
44 
45     // Follow the RHS of a comma operator.
46     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
47       if (BO->getOpcode() == BO_Comma) {
48         E = BO->getRHS();
49         continue;
50       }
51     }
52 
53     // Step into initializer for materialized temporaries.
54     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
55       E = MTE->getSubExpr();
56       continue;
57     }
58 
59     break;
60   }
61 
62   return E;
63 }
64 
65 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
66   const Expr *E = getBestDynamicClassTypeExpr();
67   QualType DerivedType = E->getType();
68   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
69     DerivedType = PTy->getPointeeType();
70 
71   if (DerivedType->isDependentType())
72     return nullptr;
73 
74   const RecordType *Ty = DerivedType->castAs<RecordType>();
75   Decl *D = Ty->getDecl();
76   return cast<CXXRecordDecl>(D);
77 }
78 
79 const Expr *Expr::skipRValueSubobjectAdjustments(
80     SmallVectorImpl<const Expr *> &CommaLHSs,
81     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
82   const Expr *E = this;
83   while (true) {
84     E = E->IgnoreParens();
85 
86     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
87       if ((CE->getCastKind() == CK_DerivedToBase ||
88            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
89           E->getType()->isRecordType()) {
90         E = CE->getSubExpr();
91         auto *Derived =
92             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
93         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
94         continue;
95       }
96 
97       if (CE->getCastKind() == CK_NoOp) {
98         E = CE->getSubExpr();
99         continue;
100       }
101     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
102       if (!ME->isArrow()) {
103         assert(ME->getBase()->getType()->isRecordType());
104         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
105           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
106             E = ME->getBase();
107             Adjustments.push_back(SubobjectAdjustment(Field));
108             continue;
109           }
110         }
111       }
112     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
113       if (BO->getOpcode() == BO_PtrMemD) {
114         assert(BO->getRHS()->isRValue());
115         E = BO->getLHS();
116         const MemberPointerType *MPT =
117           BO->getRHS()->getType()->getAs<MemberPointerType>();
118         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
119         continue;
120       }
121       if (BO->getOpcode() == BO_Comma) {
122         CommaLHSs.push_back(BO->getLHS());
123         E = BO->getRHS();
124         continue;
125       }
126     }
127 
128     // Nothing changed.
129     break;
130   }
131   return E;
132 }
133 
134 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
135   const Expr *E = IgnoreParens();
136 
137   // If this value has _Bool type, it is obvious 0/1.
138   if (E->getType()->isBooleanType()) return true;
139   // If this is a non-scalar-integer type, we don't care enough to try.
140   if (!E->getType()->isIntegralOrEnumerationType()) return false;
141 
142   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
143     switch (UO->getOpcode()) {
144     case UO_Plus:
145       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
146     case UO_LNot:
147       return true;
148     default:
149       return false;
150     }
151   }
152 
153   // Only look through implicit casts.  If the user writes
154   // '(int) (a && b)' treat it as an arbitrary int.
155   // FIXME: Should we look through any cast expression in !Semantic mode?
156   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
157     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
158 
159   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
160     switch (BO->getOpcode()) {
161     default: return false;
162     case BO_LT:   // Relational operators.
163     case BO_GT:
164     case BO_LE:
165     case BO_GE:
166     case BO_EQ:   // Equality operators.
167     case BO_NE:
168     case BO_LAnd: // AND operator.
169     case BO_LOr:  // Logical OR operator.
170       return true;
171 
172     case BO_And:  // Bitwise AND operator.
173     case BO_Xor:  // Bitwise XOR operator.
174     case BO_Or:   // Bitwise OR operator.
175       // Handle things like (x==2)|(y==12).
176       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
177              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
178 
179     case BO_Comma:
180     case BO_Assign:
181       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
182     }
183   }
184 
185   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
186     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
187            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
188 
189   if (isa<ObjCBoolLiteralExpr>(E))
190     return true;
191 
192   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
193     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
194 
195   if (const FieldDecl *FD = E->getSourceBitField())
196     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
197         !FD->getBitWidth()->isValueDependent() &&
198         FD->getBitWidthValue(FD->getASTContext()) == 1)
199       return true;
200 
201   return false;
202 }
203 
204 // Amusing macro metaprogramming hack: check whether a class provides
205 // a more specific implementation of getExprLoc().
206 //
207 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
208 namespace {
209   /// This implementation is used when a class provides a custom
210   /// implementation of getExprLoc.
211   template <class E, class T>
212   SourceLocation getExprLocImpl(const Expr *expr,
213                                 SourceLocation (T::*v)() const) {
214     return static_cast<const E*>(expr)->getExprLoc();
215   }
216 
217   /// This implementation is used when a class doesn't provide
218   /// a custom implementation of getExprLoc.  Overload resolution
219   /// should pick it over the implementation above because it's
220   /// more specialized according to function template partial ordering.
221   template <class E>
222   SourceLocation getExprLocImpl(const Expr *expr,
223                                 SourceLocation (Expr::*v)() const) {
224     return static_cast<const E *>(expr)->getBeginLoc();
225   }
226 }
227 
228 SourceLocation Expr::getExprLoc() const {
229   switch (getStmtClass()) {
230   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
231 #define ABSTRACT_STMT(type)
232 #define STMT(type, base) \
233   case Stmt::type##Class: break;
234 #define EXPR(type, base) \
235   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
236 #include "clang/AST/StmtNodes.inc"
237   }
238   llvm_unreachable("unknown expression kind");
239 }
240 
241 //===----------------------------------------------------------------------===//
242 // Primary Expressions.
243 //===----------------------------------------------------------------------===//
244 
245 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
246   assert((Kind == ConstantExpr::RSK_APValue ||
247           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
248          "Invalid StorageKind Value");
249   (void)Kind;
250 }
251 
252 ConstantExpr::ResultStorageKind
253 ConstantExpr::getStorageKind(const APValue &Value) {
254   switch (Value.getKind()) {
255   case APValue::None:
256   case APValue::Indeterminate:
257     return ConstantExpr::RSK_None;
258   case APValue::Int:
259     if (!Value.getInt().needsCleanup())
260       return ConstantExpr::RSK_Int64;
261     LLVM_FALLTHROUGH;
262   default:
263     return ConstantExpr::RSK_APValue;
264   }
265 }
266 
267 ConstantExpr::ResultStorageKind
268 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
269   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
270     return ConstantExpr::RSK_Int64;
271   return ConstantExpr::RSK_APValue;
272 }
273 
274 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
275                            bool IsImmediateInvocation)
276     : FullExpr(ConstantExprClass, SubExpr) {
277   ConstantExprBits.ResultKind = StorageKind;
278   ConstantExprBits.APValueKind = APValue::None;
279   ConstantExprBits.IsUnsigned = false;
280   ConstantExprBits.BitWidth = 0;
281   ConstantExprBits.HasCleanup = false;
282   ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
283 
284   if (StorageKind == ConstantExpr::RSK_APValue)
285     ::new (getTrailingObjects<APValue>()) APValue();
286 }
287 
288 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
289                                    ResultStorageKind StorageKind,
290                                    bool IsImmediateInvocation) {
291   assert(!isa<ConstantExpr>(E));
292   AssertResultStorageKind(StorageKind);
293 
294   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
295       StorageKind == ConstantExpr::RSK_APValue,
296       StorageKind == ConstantExpr::RSK_Int64);
297   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
298   return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
299 }
300 
301 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
302                                    const APValue &Result) {
303   ResultStorageKind StorageKind = getStorageKind(Result);
304   ConstantExpr *Self = Create(Context, E, StorageKind);
305   Self->SetResult(Result, Context);
306   return Self;
307 }
308 
309 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
310     : FullExpr(ConstantExprClass, Empty) {
311   ConstantExprBits.ResultKind = StorageKind;
312 
313   if (StorageKind == ConstantExpr::RSK_APValue)
314     ::new (getTrailingObjects<APValue>()) APValue();
315 }
316 
317 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
318                                         ResultStorageKind StorageKind) {
319   AssertResultStorageKind(StorageKind);
320 
321   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
322       StorageKind == ConstantExpr::RSK_APValue,
323       StorageKind == ConstantExpr::RSK_Int64);
324   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
325   return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
326 }
327 
328 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
329   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
330          "Invalid storage for this value kind");
331   ConstantExprBits.APValueKind = Value.getKind();
332   switch (ConstantExprBits.ResultKind) {
333   case RSK_None:
334     return;
335   case RSK_Int64:
336     Int64Result() = *Value.getInt().getRawData();
337     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
338     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
339     return;
340   case RSK_APValue:
341     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
342       ConstantExprBits.HasCleanup = true;
343       Context.addDestruction(&APValueResult());
344     }
345     APValueResult() = std::move(Value);
346     return;
347   }
348   llvm_unreachable("Invalid ResultKind Bits");
349 }
350 
351 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
352   switch (ConstantExprBits.ResultKind) {
353   case ConstantExpr::RSK_APValue:
354     return APValueResult().getInt();
355   case ConstantExpr::RSK_Int64:
356     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
357                         ConstantExprBits.IsUnsigned);
358   default:
359     llvm_unreachable("invalid Accessor");
360   }
361 }
362 
363 APValue ConstantExpr::getAPValueResult() const {
364 
365   switch (ConstantExprBits.ResultKind) {
366   case ConstantExpr::RSK_APValue:
367     return APValueResult();
368   case ConstantExpr::RSK_Int64:
369     return APValue(
370         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
371                      ConstantExprBits.IsUnsigned));
372   case ConstantExpr::RSK_None:
373     if (ConstantExprBits.APValueKind == APValue::Indeterminate)
374       return APValue::IndeterminateValue();
375     return APValue();
376   }
377   llvm_unreachable("invalid ResultKind");
378 }
379 
380 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
381                          bool RefersToEnclosingVariableOrCapture, QualType T,
382                          ExprValueKind VK, SourceLocation L,
383                          const DeclarationNameLoc &LocInfo,
384                          NonOdrUseReason NOUR)
385     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
386   DeclRefExprBits.HasQualifier = false;
387   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
388   DeclRefExprBits.HasFoundDecl = false;
389   DeclRefExprBits.HadMultipleCandidates = false;
390   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
391       RefersToEnclosingVariableOrCapture;
392   DeclRefExprBits.NonOdrUseReason = NOUR;
393   DeclRefExprBits.Loc = L;
394   setDependence(computeDependence(this, Ctx));
395 }
396 
397 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
398                          NestedNameSpecifierLoc QualifierLoc,
399                          SourceLocation TemplateKWLoc, ValueDecl *D,
400                          bool RefersToEnclosingVariableOrCapture,
401                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
402                          const TemplateArgumentListInfo *TemplateArgs,
403                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
404     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
405       DNLoc(NameInfo.getInfo()) {
406   DeclRefExprBits.Loc = NameInfo.getLoc();
407   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
408   if (QualifierLoc)
409     new (getTrailingObjects<NestedNameSpecifierLoc>())
410         NestedNameSpecifierLoc(QualifierLoc);
411   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
412   if (FoundD)
413     *getTrailingObjects<NamedDecl *>() = FoundD;
414   DeclRefExprBits.HasTemplateKWAndArgsInfo
415     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
416   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
417       RefersToEnclosingVariableOrCapture;
418   DeclRefExprBits.NonOdrUseReason = NOUR;
419   if (TemplateArgs) {
420     auto Deps = TemplateArgumentDependence::None;
421     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
422         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
423         Deps);
424     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
425            "built a DeclRefExpr with dependent template args");
426   } else if (TemplateKWLoc.isValid()) {
427     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
428         TemplateKWLoc);
429   }
430   DeclRefExprBits.HadMultipleCandidates = 0;
431   setDependence(computeDependence(this, Ctx));
432 }
433 
434 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
435                                  NestedNameSpecifierLoc QualifierLoc,
436                                  SourceLocation TemplateKWLoc, ValueDecl *D,
437                                  bool RefersToEnclosingVariableOrCapture,
438                                  SourceLocation NameLoc, QualType T,
439                                  ExprValueKind VK, NamedDecl *FoundD,
440                                  const TemplateArgumentListInfo *TemplateArgs,
441                                  NonOdrUseReason NOUR) {
442   return Create(Context, QualifierLoc, TemplateKWLoc, D,
443                 RefersToEnclosingVariableOrCapture,
444                 DeclarationNameInfo(D->getDeclName(), NameLoc),
445                 T, VK, FoundD, TemplateArgs, NOUR);
446 }
447 
448 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
449                                  NestedNameSpecifierLoc QualifierLoc,
450                                  SourceLocation TemplateKWLoc, ValueDecl *D,
451                                  bool RefersToEnclosingVariableOrCapture,
452                                  const DeclarationNameInfo &NameInfo,
453                                  QualType T, ExprValueKind VK,
454                                  NamedDecl *FoundD,
455                                  const TemplateArgumentListInfo *TemplateArgs,
456                                  NonOdrUseReason NOUR) {
457   // Filter out cases where the found Decl is the same as the value refenenced.
458   if (D == FoundD)
459     FoundD = nullptr;
460 
461   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
462   std::size_t Size =
463       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
464                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
465           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
466           HasTemplateKWAndArgsInfo ? 1 : 0,
467           TemplateArgs ? TemplateArgs->size() : 0);
468 
469   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
470   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
471                                RefersToEnclosingVariableOrCapture, NameInfo,
472                                FoundD, TemplateArgs, T, VK, NOUR);
473 }
474 
475 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
476                                       bool HasQualifier,
477                                       bool HasFoundDecl,
478                                       bool HasTemplateKWAndArgsInfo,
479                                       unsigned NumTemplateArgs) {
480   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
481   std::size_t Size =
482       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
483                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
484           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
485           NumTemplateArgs);
486   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
487   return new (Mem) DeclRefExpr(EmptyShell());
488 }
489 
490 void DeclRefExpr::setDecl(ValueDecl *NewD) {
491   D = NewD;
492   setDependence(computeDependence(this, NewD->getASTContext()));
493 }
494 
495 SourceLocation DeclRefExpr::getBeginLoc() const {
496   if (hasQualifier())
497     return getQualifierLoc().getBeginLoc();
498   return getNameInfo().getBeginLoc();
499 }
500 SourceLocation DeclRefExpr::getEndLoc() const {
501   if (hasExplicitTemplateArgs())
502     return getRAngleLoc();
503   return getNameInfo().getEndLoc();
504 }
505 
506 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
507                                StringLiteral *SL)
508     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
509   PredefinedExprBits.Kind = IK;
510   assert((getIdentKind() == IK) &&
511          "IdentKind do not fit in PredefinedExprBitfields!");
512   bool HasFunctionName = SL != nullptr;
513   PredefinedExprBits.HasFunctionName = HasFunctionName;
514   PredefinedExprBits.Loc = L;
515   if (HasFunctionName)
516     setFunctionName(SL);
517   setDependence(computeDependence(this));
518 }
519 
520 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
521     : Expr(PredefinedExprClass, Empty) {
522   PredefinedExprBits.HasFunctionName = HasFunctionName;
523 }
524 
525 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
526                                        QualType FNTy, IdentKind IK,
527                                        StringLiteral *SL) {
528   bool HasFunctionName = SL != nullptr;
529   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
530                            alignof(PredefinedExpr));
531   return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
532 }
533 
534 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
535                                             bool HasFunctionName) {
536   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
537                            alignof(PredefinedExpr));
538   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
539 }
540 
541 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
542   switch (IK) {
543   case Func:
544     return "__func__";
545   case Function:
546     return "__FUNCTION__";
547   case FuncDName:
548     return "__FUNCDNAME__";
549   case LFunction:
550     return "L__FUNCTION__";
551   case PrettyFunction:
552     return "__PRETTY_FUNCTION__";
553   case FuncSig:
554     return "__FUNCSIG__";
555   case LFuncSig:
556     return "L__FUNCSIG__";
557   case PrettyFunctionNoVirtual:
558     break;
559   }
560   llvm_unreachable("Unknown ident kind for PredefinedExpr");
561 }
562 
563 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
564 // expr" policy instead.
565 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
566   ASTContext &Context = CurrentDecl->getASTContext();
567 
568   if (IK == PredefinedExpr::FuncDName) {
569     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
570       std::unique_ptr<MangleContext> MC;
571       MC.reset(Context.createMangleContext());
572 
573       if (MC->shouldMangleDeclName(ND)) {
574         SmallString<256> Buffer;
575         llvm::raw_svector_ostream Out(Buffer);
576         GlobalDecl GD;
577         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
578           GD = GlobalDecl(CD, Ctor_Base);
579         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
580           GD = GlobalDecl(DD, Dtor_Base);
581         else if (ND->hasAttr<CUDAGlobalAttr>())
582           GD = GlobalDecl(cast<FunctionDecl>(ND));
583         else
584           GD = GlobalDecl(ND);
585         MC->mangleName(GD, Out);
586 
587         if (!Buffer.empty() && Buffer.front() == '\01')
588           return std::string(Buffer.substr(1));
589         return std::string(Buffer.str());
590       }
591       return std::string(ND->getIdentifier()->getName());
592     }
593     return "";
594   }
595   if (isa<BlockDecl>(CurrentDecl)) {
596     // For blocks we only emit something if it is enclosed in a function
597     // For top-level block we'd like to include the name of variable, but we
598     // don't have it at this point.
599     auto DC = CurrentDecl->getDeclContext();
600     if (DC->isFileContext())
601       return "";
602 
603     SmallString<256> Buffer;
604     llvm::raw_svector_ostream Out(Buffer);
605     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
606       // For nested blocks, propagate up to the parent.
607       Out << ComputeName(IK, DCBlock);
608     else if (auto *DCDecl = dyn_cast<Decl>(DC))
609       Out << ComputeName(IK, DCDecl) << "_block_invoke";
610     return std::string(Out.str());
611   }
612   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
613     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
614         IK != FuncSig && IK != LFuncSig)
615       return FD->getNameAsString();
616 
617     SmallString<256> Name;
618     llvm::raw_svector_ostream Out(Name);
619 
620     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
621       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
622         Out << "virtual ";
623       if (MD->isStatic())
624         Out << "static ";
625     }
626 
627     PrintingPolicy Policy(Context.getLangOpts());
628     std::string Proto;
629     llvm::raw_string_ostream POut(Proto);
630 
631     const FunctionDecl *Decl = FD;
632     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
633       Decl = Pattern;
634     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
635     const FunctionProtoType *FT = nullptr;
636     if (FD->hasWrittenPrototype())
637       FT = dyn_cast<FunctionProtoType>(AFT);
638 
639     if (IK == FuncSig || IK == LFuncSig) {
640       switch (AFT->getCallConv()) {
641       case CC_C: POut << "__cdecl "; break;
642       case CC_X86StdCall: POut << "__stdcall "; break;
643       case CC_X86FastCall: POut << "__fastcall "; break;
644       case CC_X86ThisCall: POut << "__thiscall "; break;
645       case CC_X86VectorCall: POut << "__vectorcall "; break;
646       case CC_X86RegCall: POut << "__regcall "; break;
647       // Only bother printing the conventions that MSVC knows about.
648       default: break;
649       }
650     }
651 
652     FD->printQualifiedName(POut, Policy);
653 
654     POut << "(";
655     if (FT) {
656       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
657         if (i) POut << ", ";
658         POut << Decl->getParamDecl(i)->getType().stream(Policy);
659       }
660 
661       if (FT->isVariadic()) {
662         if (FD->getNumParams()) POut << ", ";
663         POut << "...";
664       } else if ((IK == FuncSig || IK == LFuncSig ||
665                   !Context.getLangOpts().CPlusPlus) &&
666                  !Decl->getNumParams()) {
667         POut << "void";
668       }
669     }
670     POut << ")";
671 
672     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
673       assert(FT && "We must have a written prototype in this case.");
674       if (FT->isConst())
675         POut << " const";
676       if (FT->isVolatile())
677         POut << " volatile";
678       RefQualifierKind Ref = MD->getRefQualifier();
679       if (Ref == RQ_LValue)
680         POut << " &";
681       else if (Ref == RQ_RValue)
682         POut << " &&";
683     }
684 
685     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
686     SpecsTy Specs;
687     const DeclContext *Ctx = FD->getDeclContext();
688     while (Ctx && isa<NamedDecl>(Ctx)) {
689       const ClassTemplateSpecializationDecl *Spec
690                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
691       if (Spec && !Spec->isExplicitSpecialization())
692         Specs.push_back(Spec);
693       Ctx = Ctx->getParent();
694     }
695 
696     std::string TemplateParams;
697     llvm::raw_string_ostream TOut(TemplateParams);
698     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
699          I != E; ++I) {
700       const TemplateParameterList *Params
701                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
702       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
703       assert(Params->size() == Args.size());
704       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
705         StringRef Param = Params->getParam(i)->getName();
706         if (Param.empty()) continue;
707         TOut << Param << " = ";
708         Args.get(i).print(Policy, TOut);
709         TOut << ", ";
710       }
711     }
712 
713     FunctionTemplateSpecializationInfo *FSI
714                                           = FD->getTemplateSpecializationInfo();
715     if (FSI && !FSI->isExplicitSpecialization()) {
716       const TemplateParameterList* Params
717                                   = FSI->getTemplate()->getTemplateParameters();
718       const TemplateArgumentList* Args = FSI->TemplateArguments;
719       assert(Params->size() == Args->size());
720       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
721         StringRef Param = Params->getParam(i)->getName();
722         if (Param.empty()) continue;
723         TOut << Param << " = ";
724         Args->get(i).print(Policy, TOut);
725         TOut << ", ";
726       }
727     }
728 
729     TOut.flush();
730     if (!TemplateParams.empty()) {
731       // remove the trailing comma and space
732       TemplateParams.resize(TemplateParams.size() - 2);
733       POut << " [" << TemplateParams << "]";
734     }
735 
736     POut.flush();
737 
738     // Print "auto" for all deduced return types. This includes C++1y return
739     // type deduction and lambdas. For trailing return types resolve the
740     // decltype expression. Otherwise print the real type when this is
741     // not a constructor or destructor.
742     if (isa<CXXMethodDecl>(FD) &&
743          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
744       Proto = "auto " + Proto;
745     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
746       FT->getReturnType()
747           ->getAs<DecltypeType>()
748           ->getUnderlyingType()
749           .getAsStringInternal(Proto, Policy);
750     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
751       AFT->getReturnType().getAsStringInternal(Proto, Policy);
752 
753     Out << Proto;
754 
755     return std::string(Name);
756   }
757   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
758     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
759       // Skip to its enclosing function or method, but not its enclosing
760       // CapturedDecl.
761       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
762         const Decl *D = Decl::castFromDeclContext(DC);
763         return ComputeName(IK, D);
764       }
765     llvm_unreachable("CapturedDecl not inside a function or method");
766   }
767   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
768     SmallString<256> Name;
769     llvm::raw_svector_ostream Out(Name);
770     Out << (MD->isInstanceMethod() ? '-' : '+');
771     Out << '[';
772 
773     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
774     // a null check to avoid a crash.
775     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
776       Out << *ID;
777 
778     if (const ObjCCategoryImplDecl *CID =
779         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
780       Out << '(' << *CID << ')';
781 
782     Out <<  ' ';
783     MD->getSelector().print(Out);
784     Out <<  ']';
785 
786     return std::string(Name);
787   }
788   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
789     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
790     return "top level";
791   }
792   return "";
793 }
794 
795 void APNumericStorage::setIntValue(const ASTContext &C,
796                                    const llvm::APInt &Val) {
797   if (hasAllocation())
798     C.Deallocate(pVal);
799 
800   BitWidth = Val.getBitWidth();
801   unsigned NumWords = Val.getNumWords();
802   const uint64_t* Words = Val.getRawData();
803   if (NumWords > 1) {
804     pVal = new (C) uint64_t[NumWords];
805     std::copy(Words, Words + NumWords, pVal);
806   } else if (NumWords == 1)
807     VAL = Words[0];
808   else
809     VAL = 0;
810 }
811 
812 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
813                                QualType type, SourceLocation l)
814     : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l) {
815   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
816   assert(V.getBitWidth() == C.getIntWidth(type) &&
817          "Integer type is not the correct size for constant.");
818   setValue(C, V);
819   setDependence(ExprDependence::None);
820 }
821 
822 IntegerLiteral *
823 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
824                        QualType type, SourceLocation l) {
825   return new (C) IntegerLiteral(C, V, type, l);
826 }
827 
828 IntegerLiteral *
829 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
830   return new (C) IntegerLiteral(Empty);
831 }
832 
833 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
834                                      QualType type, SourceLocation l,
835                                      unsigned Scale)
836     : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l),
837       Scale(Scale) {
838   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
839   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
840          "Fixed point type is not the correct size for constant.");
841   setValue(C, V);
842   setDependence(ExprDependence::None);
843 }
844 
845 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
846                                                        const llvm::APInt &V,
847                                                        QualType type,
848                                                        SourceLocation l,
849                                                        unsigned Scale) {
850   return new (C) FixedPointLiteral(C, V, type, l, Scale);
851 }
852 
853 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
854                                              EmptyShell Empty) {
855   return new (C) FixedPointLiteral(Empty);
856 }
857 
858 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
859   // Currently the longest decimal number that can be printed is the max for an
860   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
861   // which is 43 characters.
862   SmallString<64> S;
863   FixedPointValueToString(
864       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
865   return std::string(S.str());
866 }
867 
868 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
869                                  bool isexact, QualType Type, SourceLocation L)
870     : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary), Loc(L) {
871   setSemantics(V.getSemantics());
872   FloatingLiteralBits.IsExact = isexact;
873   setValue(C, V);
874   setDependence(ExprDependence::None);
875 }
876 
877 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
878   : Expr(FloatingLiteralClass, Empty) {
879   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
880   FloatingLiteralBits.IsExact = false;
881 }
882 
883 FloatingLiteral *
884 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
885                         bool isexact, QualType Type, SourceLocation L) {
886   return new (C) FloatingLiteral(C, V, isexact, Type, L);
887 }
888 
889 FloatingLiteral *
890 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
891   return new (C) FloatingLiteral(C, Empty);
892 }
893 
894 /// getValueAsApproximateDouble - This returns the value as an inaccurate
895 /// double.  Note that this may cause loss of precision, but is useful for
896 /// debugging dumps, etc.
897 double FloatingLiteral::getValueAsApproximateDouble() const {
898   llvm::APFloat V = getValue();
899   bool ignored;
900   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
901             &ignored);
902   return V.convertToDouble();
903 }
904 
905 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
906                                          StringKind SK) {
907   unsigned CharByteWidth = 0;
908   switch (SK) {
909   case Ascii:
910   case UTF8:
911     CharByteWidth = Target.getCharWidth();
912     break;
913   case Wide:
914     CharByteWidth = Target.getWCharWidth();
915     break;
916   case UTF16:
917     CharByteWidth = Target.getChar16Width();
918     break;
919   case UTF32:
920     CharByteWidth = Target.getChar32Width();
921     break;
922   }
923   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
924   CharByteWidth /= 8;
925   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
926          "The only supported character byte widths are 1,2 and 4!");
927   return CharByteWidth;
928 }
929 
930 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
931                              StringKind Kind, bool Pascal, QualType Ty,
932                              const SourceLocation *Loc,
933                              unsigned NumConcatenated)
934     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
935   assert(Ctx.getAsConstantArrayType(Ty) &&
936          "StringLiteral must be of constant array type!");
937   unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
938   unsigned ByteLength = Str.size();
939   assert((ByteLength % CharByteWidth == 0) &&
940          "The size of the data must be a multiple of CharByteWidth!");
941 
942   // Avoid the expensive division. The compiler should be able to figure it
943   // out by itself. However as of clang 7, even with the appropriate
944   // llvm_unreachable added just here, it is not able to do so.
945   unsigned Length;
946   switch (CharByteWidth) {
947   case 1:
948     Length = ByteLength;
949     break;
950   case 2:
951     Length = ByteLength / 2;
952     break;
953   case 4:
954     Length = ByteLength / 4;
955     break;
956   default:
957     llvm_unreachable("Unsupported character width!");
958   }
959 
960   StringLiteralBits.Kind = Kind;
961   StringLiteralBits.CharByteWidth = CharByteWidth;
962   StringLiteralBits.IsPascal = Pascal;
963   StringLiteralBits.NumConcatenated = NumConcatenated;
964   *getTrailingObjects<unsigned>() = Length;
965 
966   // Initialize the trailing array of SourceLocation.
967   // This is safe since SourceLocation is POD-like.
968   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
969               NumConcatenated * sizeof(SourceLocation));
970 
971   // Initialize the trailing array of char holding the string data.
972   std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
973 
974   setDependence(ExprDependence::None);
975 }
976 
977 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
978                              unsigned Length, unsigned CharByteWidth)
979     : Expr(StringLiteralClass, Empty) {
980   StringLiteralBits.CharByteWidth = CharByteWidth;
981   StringLiteralBits.NumConcatenated = NumConcatenated;
982   *getTrailingObjects<unsigned>() = Length;
983 }
984 
985 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
986                                      StringKind Kind, bool Pascal, QualType Ty,
987                                      const SourceLocation *Loc,
988                                      unsigned NumConcatenated) {
989   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
990                                1, NumConcatenated, Str.size()),
991                            alignof(StringLiteral));
992   return new (Mem)
993       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
994 }
995 
996 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
997                                           unsigned NumConcatenated,
998                                           unsigned Length,
999                                           unsigned CharByteWidth) {
1000   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1001                                1, NumConcatenated, Length * CharByteWidth),
1002                            alignof(StringLiteral));
1003   return new (Mem)
1004       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1005 }
1006 
1007 void StringLiteral::outputString(raw_ostream &OS) const {
1008   switch (getKind()) {
1009   case Ascii: break; // no prefix.
1010   case Wide:  OS << 'L'; break;
1011   case UTF8:  OS << "u8"; break;
1012   case UTF16: OS << 'u'; break;
1013   case UTF32: OS << 'U'; break;
1014   }
1015   OS << '"';
1016   static const char Hex[] = "0123456789ABCDEF";
1017 
1018   unsigned LastSlashX = getLength();
1019   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1020     switch (uint32_t Char = getCodeUnit(I)) {
1021     default:
1022       // FIXME: Convert UTF-8 back to codepoints before rendering.
1023 
1024       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1025       // Leave invalid surrogates alone; we'll use \x for those.
1026       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1027           Char <= 0xdbff) {
1028         uint32_t Trail = getCodeUnit(I + 1);
1029         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1030           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1031           ++I;
1032         }
1033       }
1034 
1035       if (Char > 0xff) {
1036         // If this is a wide string, output characters over 0xff using \x
1037         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1038         // codepoint: use \x escapes for invalid codepoints.
1039         if (getKind() == Wide ||
1040             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1041           // FIXME: Is this the best way to print wchar_t?
1042           OS << "\\x";
1043           int Shift = 28;
1044           while ((Char >> Shift) == 0)
1045             Shift -= 4;
1046           for (/**/; Shift >= 0; Shift -= 4)
1047             OS << Hex[(Char >> Shift) & 15];
1048           LastSlashX = I;
1049           break;
1050         }
1051 
1052         if (Char > 0xffff)
1053           OS << "\\U00"
1054              << Hex[(Char >> 20) & 15]
1055              << Hex[(Char >> 16) & 15];
1056         else
1057           OS << "\\u";
1058         OS << Hex[(Char >> 12) & 15]
1059            << Hex[(Char >>  8) & 15]
1060            << Hex[(Char >>  4) & 15]
1061            << Hex[(Char >>  0) & 15];
1062         break;
1063       }
1064 
1065       // If we used \x... for the previous character, and this character is a
1066       // hexadecimal digit, prevent it being slurped as part of the \x.
1067       if (LastSlashX + 1 == I) {
1068         switch (Char) {
1069           case '0': case '1': case '2': case '3': case '4':
1070           case '5': case '6': case '7': case '8': case '9':
1071           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1072           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1073             OS << "\"\"";
1074         }
1075       }
1076 
1077       assert(Char <= 0xff &&
1078              "Characters above 0xff should already have been handled.");
1079 
1080       if (isPrintable(Char))
1081         OS << (char)Char;
1082       else  // Output anything hard as an octal escape.
1083         OS << '\\'
1084            << (char)('0' + ((Char >> 6) & 7))
1085            << (char)('0' + ((Char >> 3) & 7))
1086            << (char)('0' + ((Char >> 0) & 7));
1087       break;
1088     // Handle some common non-printable cases to make dumps prettier.
1089     case '\\': OS << "\\\\"; break;
1090     case '"': OS << "\\\""; break;
1091     case '\a': OS << "\\a"; break;
1092     case '\b': OS << "\\b"; break;
1093     case '\f': OS << "\\f"; break;
1094     case '\n': OS << "\\n"; break;
1095     case '\r': OS << "\\r"; break;
1096     case '\t': OS << "\\t"; break;
1097     case '\v': OS << "\\v"; break;
1098     }
1099   }
1100   OS << '"';
1101 }
1102 
1103 /// getLocationOfByte - Return a source location that points to the specified
1104 /// byte of this string literal.
1105 ///
1106 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1107 /// can have escape sequences in them in addition to the usual trigraph and
1108 /// escaped newline business.  This routine handles this complexity.
1109 ///
1110 /// The *StartToken sets the first token to be searched in this function and
1111 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1112 /// returning, it updates the *StartToken to the TokNo of the token being found
1113 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1114 /// string.
1115 /// Using these two parameters can reduce the time complexity from O(n^2) to
1116 /// O(n) if one wants to get the location of byte for all the tokens in a
1117 /// string.
1118 ///
1119 SourceLocation
1120 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1121                                  const LangOptions &Features,
1122                                  const TargetInfo &Target, unsigned *StartToken,
1123                                  unsigned *StartTokenByteOffset) const {
1124   assert((getKind() == StringLiteral::Ascii ||
1125           getKind() == StringLiteral::UTF8) &&
1126          "Only narrow string literals are currently supported");
1127 
1128   // Loop over all of the tokens in this string until we find the one that
1129   // contains the byte we're looking for.
1130   unsigned TokNo = 0;
1131   unsigned StringOffset = 0;
1132   if (StartToken)
1133     TokNo = *StartToken;
1134   if (StartTokenByteOffset) {
1135     StringOffset = *StartTokenByteOffset;
1136     ByteNo -= StringOffset;
1137   }
1138   while (1) {
1139     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1140     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1141 
1142     // Get the spelling of the string so that we can get the data that makes up
1143     // the string literal, not the identifier for the macro it is potentially
1144     // expanded through.
1145     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1146 
1147     // Re-lex the token to get its length and original spelling.
1148     std::pair<FileID, unsigned> LocInfo =
1149         SM.getDecomposedLoc(StrTokSpellingLoc);
1150     bool Invalid = false;
1151     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1152     if (Invalid) {
1153       if (StartTokenByteOffset != nullptr)
1154         *StartTokenByteOffset = StringOffset;
1155       if (StartToken != nullptr)
1156         *StartToken = TokNo;
1157       return StrTokSpellingLoc;
1158     }
1159 
1160     const char *StrData = Buffer.data()+LocInfo.second;
1161 
1162     // Create a lexer starting at the beginning of this token.
1163     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1164                    Buffer.begin(), StrData, Buffer.end());
1165     Token TheTok;
1166     TheLexer.LexFromRawLexer(TheTok);
1167 
1168     // Use the StringLiteralParser to compute the length of the string in bytes.
1169     StringLiteralParser SLP(TheTok, SM, Features, Target);
1170     unsigned TokNumBytes = SLP.GetStringLength();
1171 
1172     // If the byte is in this token, return the location of the byte.
1173     if (ByteNo < TokNumBytes ||
1174         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1175       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1176 
1177       // Now that we know the offset of the token in the spelling, use the
1178       // preprocessor to get the offset in the original source.
1179       if (StartTokenByteOffset != nullptr)
1180         *StartTokenByteOffset = StringOffset;
1181       if (StartToken != nullptr)
1182         *StartToken = TokNo;
1183       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1184     }
1185 
1186     // Move to the next string token.
1187     StringOffset += TokNumBytes;
1188     ++TokNo;
1189     ByteNo -= TokNumBytes;
1190   }
1191 }
1192 
1193 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1194 /// corresponds to, e.g. "sizeof" or "[pre]++".
1195 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1196   switch (Op) {
1197 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1198 #include "clang/AST/OperationKinds.def"
1199   }
1200   llvm_unreachable("Unknown unary operator");
1201 }
1202 
1203 UnaryOperatorKind
1204 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1205   switch (OO) {
1206   default: llvm_unreachable("No unary operator for overloaded function");
1207   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1208   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1209   case OO_Amp:        return UO_AddrOf;
1210   case OO_Star:       return UO_Deref;
1211   case OO_Plus:       return UO_Plus;
1212   case OO_Minus:      return UO_Minus;
1213   case OO_Tilde:      return UO_Not;
1214   case OO_Exclaim:    return UO_LNot;
1215   case OO_Coawait:    return UO_Coawait;
1216   }
1217 }
1218 
1219 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1220   switch (Opc) {
1221   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1222   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1223   case UO_AddrOf: return OO_Amp;
1224   case UO_Deref: return OO_Star;
1225   case UO_Plus: return OO_Plus;
1226   case UO_Minus: return OO_Minus;
1227   case UO_Not: return OO_Tilde;
1228   case UO_LNot: return OO_Exclaim;
1229   case UO_Coawait: return OO_Coawait;
1230   default: return OO_None;
1231   }
1232 }
1233 
1234 
1235 //===----------------------------------------------------------------------===//
1236 // Postfix Operators.
1237 //===----------------------------------------------------------------------===//
1238 
1239 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1240                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1241                    SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1242                    unsigned MinNumArgs, ADLCallKind UsesADL)
1243     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1244   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1245   unsigned NumPreArgs = PreArgs.size();
1246   CallExprBits.NumPreArgs = NumPreArgs;
1247   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1248 
1249   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1250   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1251   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1252          "OffsetToTrailingObjects overflow!");
1253 
1254   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1255 
1256   setCallee(Fn);
1257   for (unsigned I = 0; I != NumPreArgs; ++I)
1258     setPreArg(I, PreArgs[I]);
1259   for (unsigned I = 0; I != Args.size(); ++I)
1260     setArg(I, Args[I]);
1261   for (unsigned I = Args.size(); I != NumArgs; ++I)
1262     setArg(I, nullptr);
1263 
1264   setDependence(computeDependence(this, PreArgs));
1265 
1266   CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1267   if (hasStoredFPFeatures())
1268     setStoredFPFeatures(FPFeatures);
1269 }
1270 
1271 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1272                    bool HasFPFeatures, EmptyShell Empty)
1273     : Expr(SC, Empty), NumArgs(NumArgs) {
1274   CallExprBits.NumPreArgs = NumPreArgs;
1275   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1276 
1277   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1278   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1279   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1280          "OffsetToTrailingObjects overflow!");
1281   CallExprBits.HasFPFeatures = HasFPFeatures;
1282 }
1283 
1284 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1285                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1286                            SourceLocation RParenLoc,
1287                            FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1288                            ADLCallKind UsesADL) {
1289   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1290   unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1291       /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1292   void *Mem =
1293       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1294   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1295                             RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1296 }
1297 
1298 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1299                                     ExprValueKind VK, SourceLocation RParenLoc,
1300                                     ADLCallKind UsesADL) {
1301   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1302          "Misaligned memory in CallExpr::CreateTemporary!");
1303   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1304                             VK, RParenLoc, FPOptionsOverride(),
1305                             /*MinNumArgs=*/0, UsesADL);
1306 }
1307 
1308 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1309                                 bool HasFPFeatures, EmptyShell Empty) {
1310   unsigned SizeOfTrailingObjects =
1311       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1312   void *Mem =
1313       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1314   return new (Mem)
1315       CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1316 }
1317 
1318 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1319   switch (SC) {
1320   case CallExprClass:
1321     return sizeof(CallExpr);
1322   case CXXOperatorCallExprClass:
1323     return sizeof(CXXOperatorCallExpr);
1324   case CXXMemberCallExprClass:
1325     return sizeof(CXXMemberCallExpr);
1326   case UserDefinedLiteralClass:
1327     return sizeof(UserDefinedLiteral);
1328   case CUDAKernelCallExprClass:
1329     return sizeof(CUDAKernelCallExpr);
1330   default:
1331     llvm_unreachable("unexpected class deriving from CallExpr!");
1332   }
1333 }
1334 
1335 Decl *Expr::getReferencedDeclOfCallee() {
1336   Expr *CEE = IgnoreParenImpCasts();
1337 
1338   while (SubstNonTypeTemplateParmExpr *NTTP =
1339              dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1340     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1341   }
1342 
1343   // If we're calling a dereference, look at the pointer instead.
1344   while (true) {
1345     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1346       if (BO->isPtrMemOp()) {
1347         CEE = BO->getRHS()->IgnoreParenImpCasts();
1348         continue;
1349       }
1350     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1351       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1352           UO->getOpcode() == UO_Plus) {
1353         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1354         continue;
1355       }
1356     }
1357     break;
1358   }
1359 
1360   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1361     return DRE->getDecl();
1362   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1363     return ME->getMemberDecl();
1364   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1365     return BE->getBlockDecl();
1366 
1367   return nullptr;
1368 }
1369 
1370 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1371 unsigned CallExpr::getBuiltinCallee() const {
1372   auto *FDecl =
1373       dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee());
1374   return FDecl ? FDecl->getBuiltinID() : 0;
1375 }
1376 
1377 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1378   if (unsigned BI = getBuiltinCallee())
1379     return Ctx.BuiltinInfo.isUnevaluated(BI);
1380   return false;
1381 }
1382 
1383 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1384   const Expr *Callee = getCallee();
1385   QualType CalleeType = Callee->getType();
1386   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1387     CalleeType = FnTypePtr->getPointeeType();
1388   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1389     CalleeType = BPT->getPointeeType();
1390   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1391     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1392       return Ctx.VoidTy;
1393 
1394     // This should never be overloaded and so should never return null.
1395     CalleeType = Expr::findBoundMemberType(Callee);
1396   }
1397 
1398   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1399   return FnType->getReturnType();
1400 }
1401 
1402 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1403   // If the return type is a struct, union, or enum that is marked nodiscard,
1404   // then return the return type attribute.
1405   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1406     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1407       return A;
1408 
1409   // Otherwise, see if the callee is marked nodiscard and return that attribute
1410   // instead.
1411   const Decl *D = getCalleeDecl();
1412   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1413 }
1414 
1415 SourceLocation CallExpr::getBeginLoc() const {
1416   if (isa<CXXOperatorCallExpr>(this))
1417     return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1418 
1419   SourceLocation begin = getCallee()->getBeginLoc();
1420   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1421     begin = getArg(0)->getBeginLoc();
1422   return begin;
1423 }
1424 SourceLocation CallExpr::getEndLoc() const {
1425   if (isa<CXXOperatorCallExpr>(this))
1426     return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1427 
1428   SourceLocation end = getRParenLoc();
1429   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1430     end = getArg(getNumArgs() - 1)->getEndLoc();
1431   return end;
1432 }
1433 
1434 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1435                                    SourceLocation OperatorLoc,
1436                                    TypeSourceInfo *tsi,
1437                                    ArrayRef<OffsetOfNode> comps,
1438                                    ArrayRef<Expr*> exprs,
1439                                    SourceLocation RParenLoc) {
1440   void *Mem = C.Allocate(
1441       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1442 
1443   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1444                                 RParenLoc);
1445 }
1446 
1447 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1448                                         unsigned numComps, unsigned numExprs) {
1449   void *Mem =
1450       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1451   return new (Mem) OffsetOfExpr(numComps, numExprs);
1452 }
1453 
1454 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1455                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1456                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1457                            SourceLocation RParenLoc)
1458     : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary),
1459       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1460       NumComps(comps.size()), NumExprs(exprs.size()) {
1461   for (unsigned i = 0; i != comps.size(); ++i)
1462     setComponent(i, comps[i]);
1463   for (unsigned i = 0; i != exprs.size(); ++i)
1464     setIndexExpr(i, exprs[i]);
1465 
1466   setDependence(computeDependence(this));
1467 }
1468 
1469 IdentifierInfo *OffsetOfNode::getFieldName() const {
1470   assert(getKind() == Field || getKind() == Identifier);
1471   if (getKind() == Field)
1472     return getField()->getIdentifier();
1473 
1474   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1475 }
1476 
1477 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1478     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1479     SourceLocation op, SourceLocation rp)
1480     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary),
1481       OpLoc(op), RParenLoc(rp) {
1482   assert(ExprKind <= UETT_Last && "invalid enum value!");
1483   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1484   assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1485          "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1486   UnaryExprOrTypeTraitExprBits.IsType = false;
1487   Argument.Ex = E;
1488   setDependence(computeDependence(this));
1489 }
1490 
1491 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1492                        ValueDecl *MemberDecl,
1493                        const DeclarationNameInfo &NameInfo, QualType T,
1494                        ExprValueKind VK, ExprObjectKind OK,
1495                        NonOdrUseReason NOUR)
1496     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1497       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1498   assert(!NameInfo.getName() ||
1499          MemberDecl->getDeclName() == NameInfo.getName());
1500   MemberExprBits.IsArrow = IsArrow;
1501   MemberExprBits.HasQualifierOrFoundDecl = false;
1502   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1503   MemberExprBits.HadMultipleCandidates = false;
1504   MemberExprBits.NonOdrUseReason = NOUR;
1505   MemberExprBits.OperatorLoc = OperatorLoc;
1506   setDependence(computeDependence(this));
1507 }
1508 
1509 MemberExpr *MemberExpr::Create(
1510     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1511     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1512     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1513     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1514     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1515   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1516                         FoundDecl.getAccess() != MemberDecl->getAccess();
1517   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1518   std::size_t Size =
1519       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1520                        TemplateArgumentLoc>(
1521           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1522           TemplateArgs ? TemplateArgs->size() : 0);
1523 
1524   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1525   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1526                                        NameInfo, T, VK, OK, NOUR);
1527 
1528   // FIXME: remove remaining dependence computation to computeDependence().
1529   auto Deps = E->getDependence();
1530   if (HasQualOrFound) {
1531     // FIXME: Wrong. We should be looking at the member declaration we found.
1532     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1533       Deps |= ExprDependence::TypeValueInstantiation;
1534     else if (QualifierLoc &&
1535              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1536       Deps |= ExprDependence::Instantiation;
1537 
1538     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1539 
1540     MemberExprNameQualifier *NQ =
1541         E->getTrailingObjects<MemberExprNameQualifier>();
1542     NQ->QualifierLoc = QualifierLoc;
1543     NQ->FoundDecl = FoundDecl;
1544   }
1545 
1546   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1547       TemplateArgs || TemplateKWLoc.isValid();
1548 
1549   if (TemplateArgs) {
1550     auto TemplateArgDeps = TemplateArgumentDependence::None;
1551     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1552         TemplateKWLoc, *TemplateArgs,
1553         E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1554     if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1555       Deps |= ExprDependence::Instantiation;
1556   } else if (TemplateKWLoc.isValid()) {
1557     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1558         TemplateKWLoc);
1559   }
1560   E->setDependence(Deps);
1561 
1562   return E;
1563 }
1564 
1565 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1566                                     bool HasQualifier, bool HasFoundDecl,
1567                                     bool HasTemplateKWAndArgsInfo,
1568                                     unsigned NumTemplateArgs) {
1569   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1570          "template args but no template arg info?");
1571   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1572   std::size_t Size =
1573       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1574                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1575                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1576                                             NumTemplateArgs);
1577   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1578   return new (Mem) MemberExpr(EmptyShell());
1579 }
1580 
1581 void MemberExpr::setMemberDecl(ValueDecl *D) {
1582   MemberDecl = D;
1583   setDependence(computeDependence(this));
1584 }
1585 
1586 SourceLocation MemberExpr::getBeginLoc() const {
1587   if (isImplicitAccess()) {
1588     if (hasQualifier())
1589       return getQualifierLoc().getBeginLoc();
1590     return MemberLoc;
1591   }
1592 
1593   // FIXME: We don't want this to happen. Rather, we should be able to
1594   // detect all kinds of implicit accesses more cleanly.
1595   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1596   if (BaseStartLoc.isValid())
1597     return BaseStartLoc;
1598   return MemberLoc;
1599 }
1600 SourceLocation MemberExpr::getEndLoc() const {
1601   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1602   if (hasExplicitTemplateArgs())
1603     EndLoc = getRAngleLoc();
1604   else if (EndLoc.isInvalid())
1605     EndLoc = getBase()->getEndLoc();
1606   return EndLoc;
1607 }
1608 
1609 bool CastExpr::CastConsistency() const {
1610   switch (getCastKind()) {
1611   case CK_DerivedToBase:
1612   case CK_UncheckedDerivedToBase:
1613   case CK_DerivedToBaseMemberPointer:
1614   case CK_BaseToDerived:
1615   case CK_BaseToDerivedMemberPointer:
1616     assert(!path_empty() && "Cast kind should have a base path!");
1617     break;
1618 
1619   case CK_CPointerToObjCPointerCast:
1620     assert(getType()->isObjCObjectPointerType());
1621     assert(getSubExpr()->getType()->isPointerType());
1622     goto CheckNoBasePath;
1623 
1624   case CK_BlockPointerToObjCPointerCast:
1625     assert(getType()->isObjCObjectPointerType());
1626     assert(getSubExpr()->getType()->isBlockPointerType());
1627     goto CheckNoBasePath;
1628 
1629   case CK_ReinterpretMemberPointer:
1630     assert(getType()->isMemberPointerType());
1631     assert(getSubExpr()->getType()->isMemberPointerType());
1632     goto CheckNoBasePath;
1633 
1634   case CK_BitCast:
1635     // Arbitrary casts to C pointer types count as bitcasts.
1636     // Otherwise, we should only have block and ObjC pointer casts
1637     // here if they stay within the type kind.
1638     if (!getType()->isPointerType()) {
1639       assert(getType()->isObjCObjectPointerType() ==
1640              getSubExpr()->getType()->isObjCObjectPointerType());
1641       assert(getType()->isBlockPointerType() ==
1642              getSubExpr()->getType()->isBlockPointerType());
1643     }
1644     goto CheckNoBasePath;
1645 
1646   case CK_AnyPointerToBlockPointerCast:
1647     assert(getType()->isBlockPointerType());
1648     assert(getSubExpr()->getType()->isAnyPointerType() &&
1649            !getSubExpr()->getType()->isBlockPointerType());
1650     goto CheckNoBasePath;
1651 
1652   case CK_CopyAndAutoreleaseBlockObject:
1653     assert(getType()->isBlockPointerType());
1654     assert(getSubExpr()->getType()->isBlockPointerType());
1655     goto CheckNoBasePath;
1656 
1657   case CK_FunctionToPointerDecay:
1658     assert(getType()->isPointerType());
1659     assert(getSubExpr()->getType()->isFunctionType());
1660     goto CheckNoBasePath;
1661 
1662   case CK_AddressSpaceConversion: {
1663     auto Ty = getType();
1664     auto SETy = getSubExpr()->getType();
1665     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1666     if (isRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1667       Ty = Ty->getPointeeType();
1668       SETy = SETy->getPointeeType();
1669     }
1670     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1671            (!Ty.isNull() && !SETy.isNull() &&
1672             Ty.getAddressSpace() != SETy.getAddressSpace()));
1673     goto CheckNoBasePath;
1674   }
1675   // These should not have an inheritance path.
1676   case CK_Dynamic:
1677   case CK_ToUnion:
1678   case CK_ArrayToPointerDecay:
1679   case CK_NullToMemberPointer:
1680   case CK_NullToPointer:
1681   case CK_ConstructorConversion:
1682   case CK_IntegralToPointer:
1683   case CK_PointerToIntegral:
1684   case CK_ToVoid:
1685   case CK_VectorSplat:
1686   case CK_IntegralCast:
1687   case CK_BooleanToSignedIntegral:
1688   case CK_IntegralToFloating:
1689   case CK_FloatingToIntegral:
1690   case CK_FloatingCast:
1691   case CK_ObjCObjectLValueCast:
1692   case CK_FloatingRealToComplex:
1693   case CK_FloatingComplexToReal:
1694   case CK_FloatingComplexCast:
1695   case CK_FloatingComplexToIntegralComplex:
1696   case CK_IntegralRealToComplex:
1697   case CK_IntegralComplexToReal:
1698   case CK_IntegralComplexCast:
1699   case CK_IntegralComplexToFloatingComplex:
1700   case CK_ARCProduceObject:
1701   case CK_ARCConsumeObject:
1702   case CK_ARCReclaimReturnedObject:
1703   case CK_ARCExtendBlockObject:
1704   case CK_ZeroToOCLOpaqueType:
1705   case CK_IntToOCLSampler:
1706   case CK_FloatingToFixedPoint:
1707   case CK_FixedPointToFloating:
1708   case CK_FixedPointCast:
1709   case CK_FixedPointToIntegral:
1710   case CK_IntegralToFixedPoint:
1711     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1712     goto CheckNoBasePath;
1713 
1714   case CK_Dependent:
1715   case CK_LValueToRValue:
1716   case CK_NoOp:
1717   case CK_AtomicToNonAtomic:
1718   case CK_NonAtomicToAtomic:
1719   case CK_PointerToBoolean:
1720   case CK_IntegralToBoolean:
1721   case CK_FloatingToBoolean:
1722   case CK_MemberPointerToBoolean:
1723   case CK_FloatingComplexToBoolean:
1724   case CK_IntegralComplexToBoolean:
1725   case CK_LValueBitCast:            // -> bool&
1726   case CK_LValueToRValueBitCast:
1727   case CK_UserDefinedConversion:    // operator bool()
1728   case CK_BuiltinFnToFnPtr:
1729   case CK_FixedPointToBoolean:
1730   CheckNoBasePath:
1731     assert(path_empty() && "Cast kind should not have a base path!");
1732     break;
1733   }
1734   return true;
1735 }
1736 
1737 const char *CastExpr::getCastKindName(CastKind CK) {
1738   switch (CK) {
1739 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1740 #include "clang/AST/OperationKinds.def"
1741   }
1742   llvm_unreachable("Unhandled cast kind!");
1743 }
1744 
1745 namespace {
1746   const Expr *skipImplicitTemporary(const Expr *E) {
1747     // Skip through reference binding to temporary.
1748     if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1749       E = Materialize->getSubExpr();
1750 
1751     // Skip any temporary bindings; they're implicit.
1752     if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1753       E = Binder->getSubExpr();
1754 
1755     return E;
1756   }
1757 }
1758 
1759 Expr *CastExpr::getSubExprAsWritten() {
1760   const Expr *SubExpr = nullptr;
1761   const CastExpr *E = this;
1762   do {
1763     SubExpr = skipImplicitTemporary(E->getSubExpr());
1764 
1765     // Conversions by constructor and conversion functions have a
1766     // subexpression describing the call; strip it off.
1767     if (E->getCastKind() == CK_ConstructorConversion)
1768       SubExpr =
1769         skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr->IgnoreImplicit())->getArg(0));
1770     else if (E->getCastKind() == CK_UserDefinedConversion) {
1771       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1772               isa<BlockExpr>(SubExpr)) &&
1773              "Unexpected SubExpr for CK_UserDefinedConversion.");
1774       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1775         SubExpr = MCE->getImplicitObjectArgument();
1776     }
1777 
1778     // If the subexpression we're left with is an implicit cast, look
1779     // through that, too.
1780   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1781 
1782   return const_cast<Expr*>(SubExpr);
1783 }
1784 
1785 NamedDecl *CastExpr::getConversionFunction() const {
1786   const Expr *SubExpr = nullptr;
1787 
1788   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1789     SubExpr = skipImplicitTemporary(E->getSubExpr());
1790 
1791     if (E->getCastKind() == CK_ConstructorConversion)
1792       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1793 
1794     if (E->getCastKind() == CK_UserDefinedConversion) {
1795       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1796         return MCE->getMethodDecl();
1797     }
1798   }
1799 
1800   return nullptr;
1801 }
1802 
1803 CXXBaseSpecifier **CastExpr::path_buffer() {
1804   switch (getStmtClass()) {
1805 #define ABSTRACT_STMT(x)
1806 #define CASTEXPR(Type, Base)                                                   \
1807   case Stmt::Type##Class:                                                      \
1808     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1809 #define STMT(Type, Base)
1810 #include "clang/AST/StmtNodes.inc"
1811   default:
1812     llvm_unreachable("non-cast expressions not possible here");
1813   }
1814 }
1815 
1816 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
1817                                                         QualType opType) {
1818   auto RD = unionType->castAs<RecordType>()->getDecl();
1819   return getTargetFieldForToUnionCast(RD, opType);
1820 }
1821 
1822 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
1823                                                         QualType OpType) {
1824   auto &Ctx = RD->getASTContext();
1825   RecordDecl::field_iterator Field, FieldEnd;
1826   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1827        Field != FieldEnd; ++Field) {
1828     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1829         !Field->isUnnamedBitfield()) {
1830       return *Field;
1831     }
1832   }
1833   return nullptr;
1834 }
1835 
1836 FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
1837   assert(hasStoredFPFeatures());
1838   switch (getStmtClass()) {
1839   case ImplicitCastExprClass:
1840     return static_cast<ImplicitCastExpr *>(this)
1841         ->getTrailingObjects<FPOptionsOverride>();
1842   case CStyleCastExprClass:
1843     return static_cast<CStyleCastExpr *>(this)
1844         ->getTrailingObjects<FPOptionsOverride>();
1845   case CXXFunctionalCastExprClass:
1846     return static_cast<CXXFunctionalCastExpr *>(this)
1847         ->getTrailingObjects<FPOptionsOverride>();
1848   case CXXStaticCastExprClass:
1849     return static_cast<CXXStaticCastExpr *>(this)
1850         ->getTrailingObjects<FPOptionsOverride>();
1851   default:
1852     llvm_unreachable("Cast does not have FPFeatures");
1853   }
1854 }
1855 
1856 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1857                                            CastKind Kind, Expr *Operand,
1858                                            const CXXCastPath *BasePath,
1859                                            ExprValueKind VK,
1860                                            FPOptionsOverride FPO) {
1861   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1862   void *Buffer =
1863       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1864           PathSize, FPO.requiresTrailingStorage()));
1865   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
1866   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
1867   assert((Kind != CK_LValueToRValue ||
1868           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
1869          "invalid type for lvalue-to-rvalue conversion");
1870   ImplicitCastExpr *E =
1871       new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
1872   if (PathSize)
1873     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1874                               E->getTrailingObjects<CXXBaseSpecifier *>());
1875   return E;
1876 }
1877 
1878 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1879                                                 unsigned PathSize,
1880                                                 bool HasFPFeatures) {
1881   void *Buffer =
1882       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1883           PathSize, HasFPFeatures));
1884   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
1885 }
1886 
1887 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1888                                        ExprValueKind VK, CastKind K, Expr *Op,
1889                                        const CXXCastPath *BasePath,
1890                                        FPOptionsOverride FPO,
1891                                        TypeSourceInfo *WrittenTy,
1892                                        SourceLocation L, SourceLocation R) {
1893   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1894   void *Buffer =
1895       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1896           PathSize, FPO.requiresTrailingStorage()));
1897   CStyleCastExpr *E =
1898       new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
1899   if (PathSize)
1900     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1901                               E->getTrailingObjects<CXXBaseSpecifier *>());
1902   return E;
1903 }
1904 
1905 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1906                                             unsigned PathSize,
1907                                             bool HasFPFeatures) {
1908   void *Buffer =
1909       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
1910           PathSize, HasFPFeatures));
1911   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
1912 }
1913 
1914 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1915 /// corresponds to, e.g. "<<=".
1916 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1917   switch (Op) {
1918 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1919 #include "clang/AST/OperationKinds.def"
1920   }
1921   llvm_unreachable("Invalid OpCode!");
1922 }
1923 
1924 BinaryOperatorKind
1925 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1926   switch (OO) {
1927   default: llvm_unreachable("Not an overloadable binary operator");
1928   case OO_Plus: return BO_Add;
1929   case OO_Minus: return BO_Sub;
1930   case OO_Star: return BO_Mul;
1931   case OO_Slash: return BO_Div;
1932   case OO_Percent: return BO_Rem;
1933   case OO_Caret: return BO_Xor;
1934   case OO_Amp: return BO_And;
1935   case OO_Pipe: return BO_Or;
1936   case OO_Equal: return BO_Assign;
1937   case OO_Spaceship: return BO_Cmp;
1938   case OO_Less: return BO_LT;
1939   case OO_Greater: return BO_GT;
1940   case OO_PlusEqual: return BO_AddAssign;
1941   case OO_MinusEqual: return BO_SubAssign;
1942   case OO_StarEqual: return BO_MulAssign;
1943   case OO_SlashEqual: return BO_DivAssign;
1944   case OO_PercentEqual: return BO_RemAssign;
1945   case OO_CaretEqual: return BO_XorAssign;
1946   case OO_AmpEqual: return BO_AndAssign;
1947   case OO_PipeEqual: return BO_OrAssign;
1948   case OO_LessLess: return BO_Shl;
1949   case OO_GreaterGreater: return BO_Shr;
1950   case OO_LessLessEqual: return BO_ShlAssign;
1951   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1952   case OO_EqualEqual: return BO_EQ;
1953   case OO_ExclaimEqual: return BO_NE;
1954   case OO_LessEqual: return BO_LE;
1955   case OO_GreaterEqual: return BO_GE;
1956   case OO_AmpAmp: return BO_LAnd;
1957   case OO_PipePipe: return BO_LOr;
1958   case OO_Comma: return BO_Comma;
1959   case OO_ArrowStar: return BO_PtrMemI;
1960   }
1961 }
1962 
1963 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1964   static const OverloadedOperatorKind OverOps[] = {
1965     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1966     OO_Star, OO_Slash, OO_Percent,
1967     OO_Plus, OO_Minus,
1968     OO_LessLess, OO_GreaterGreater,
1969     OO_Spaceship,
1970     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1971     OO_EqualEqual, OO_ExclaimEqual,
1972     OO_Amp,
1973     OO_Caret,
1974     OO_Pipe,
1975     OO_AmpAmp,
1976     OO_PipePipe,
1977     OO_Equal, OO_StarEqual,
1978     OO_SlashEqual, OO_PercentEqual,
1979     OO_PlusEqual, OO_MinusEqual,
1980     OO_LessLessEqual, OO_GreaterGreaterEqual,
1981     OO_AmpEqual, OO_CaretEqual,
1982     OO_PipeEqual,
1983     OO_Comma
1984   };
1985   return OverOps[Opc];
1986 }
1987 
1988 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
1989                                                       Opcode Opc,
1990                                                       Expr *LHS, Expr *RHS) {
1991   if (Opc != BO_Add)
1992     return false;
1993 
1994   // Check that we have one pointer and one integer operand.
1995   Expr *PExp;
1996   if (LHS->getType()->isPointerType()) {
1997     if (!RHS->getType()->isIntegerType())
1998       return false;
1999     PExp = LHS;
2000   } else if (RHS->getType()->isPointerType()) {
2001     if (!LHS->getType()->isIntegerType())
2002       return false;
2003     PExp = RHS;
2004   } else {
2005     return false;
2006   }
2007 
2008   // Check that the pointer is a nullptr.
2009   if (!PExp->IgnoreParenCasts()
2010           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2011     return false;
2012 
2013   // Check that the pointee type is char-sized.
2014   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2015   if (!PTy || !PTy->getPointeeType()->isCharType())
2016     return false;
2017 
2018   return true;
2019 }
2020 
2021 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
2022                                             SourceLocExpr::IdentKind Kind) {
2023   switch (Kind) {
2024   case SourceLocExpr::File:
2025   case SourceLocExpr::Function: {
2026     QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2027     return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2028   }
2029   case SourceLocExpr::Line:
2030   case SourceLocExpr::Column:
2031     return Ctx.UnsignedIntTy;
2032   }
2033   llvm_unreachable("unhandled case");
2034 }
2035 
2036 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2037                              SourceLocation BLoc, SourceLocation RParenLoc,
2038                              DeclContext *ParentContext)
2039     : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2040            VK_RValue, OK_Ordinary),
2041       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2042   SourceLocExprBits.Kind = Kind;
2043   setDependence(ExprDependence::None);
2044 }
2045 
2046 StringRef SourceLocExpr::getBuiltinStr() const {
2047   switch (getIdentKind()) {
2048   case File:
2049     return "__builtin_FILE";
2050   case Function:
2051     return "__builtin_FUNCTION";
2052   case Line:
2053     return "__builtin_LINE";
2054   case Column:
2055     return "__builtin_COLUMN";
2056   }
2057   llvm_unreachable("unexpected IdentKind!");
2058 }
2059 
2060 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2061                                          const Expr *DefaultExpr) const {
2062   SourceLocation Loc;
2063   const DeclContext *Context;
2064 
2065   std::tie(Loc,
2066            Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2067     if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2068       return {DIE->getUsedLocation(), DIE->getUsedContext()};
2069     if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2070       return {DAE->getUsedLocation(), DAE->getUsedContext()};
2071     return {this->getLocation(), this->getParentContext()};
2072   }();
2073 
2074   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2075       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2076 
2077   auto MakeStringLiteral = [&](StringRef Tmp) {
2078     using LValuePathEntry = APValue::LValuePathEntry;
2079     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2080     // Decay the string to a pointer to the first character.
2081     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2082     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2083   };
2084 
2085   switch (getIdentKind()) {
2086   case SourceLocExpr::File:
2087     return MakeStringLiteral(PLoc.getFilename());
2088   case SourceLocExpr::Function: {
2089     const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2090     return MakeStringLiteral(
2091         CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2092                 : std::string(""));
2093   }
2094   case SourceLocExpr::Line:
2095   case SourceLocExpr::Column: {
2096     llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2097                         /*isUnsigned=*/true);
2098     IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2099                                                    : PLoc.getColumn();
2100     return APValue(IntVal);
2101   }
2102   }
2103   llvm_unreachable("unhandled case");
2104 }
2105 
2106 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2107                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2108     : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary),
2109       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2110       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2111   sawArrayRangeDesignator(false);
2112   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2113 
2114   setDependence(computeDependence(this));
2115 }
2116 
2117 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2118   if (NumInits > InitExprs.size())
2119     InitExprs.reserve(C, NumInits);
2120 }
2121 
2122 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2123   InitExprs.resize(C, NumInits, nullptr);
2124 }
2125 
2126 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2127   if (Init >= InitExprs.size()) {
2128     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2129     setInit(Init, expr);
2130     return nullptr;
2131   }
2132 
2133   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2134   setInit(Init, expr);
2135   return Result;
2136 }
2137 
2138 void InitListExpr::setArrayFiller(Expr *filler) {
2139   assert(!hasArrayFiller() && "Filler already set!");
2140   ArrayFillerOrUnionFieldInit = filler;
2141   // Fill out any "holes" in the array due to designated initializers.
2142   Expr **inits = getInits();
2143   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2144     if (inits[i] == nullptr)
2145       inits[i] = filler;
2146 }
2147 
2148 bool InitListExpr::isStringLiteralInit() const {
2149   if (getNumInits() != 1)
2150     return false;
2151   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2152   if (!AT || !AT->getElementType()->isIntegerType())
2153     return false;
2154   // It is possible for getInit() to return null.
2155   const Expr *Init = getInit(0);
2156   if (!Init)
2157     return false;
2158   Init = Init->IgnoreParens();
2159   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2160 }
2161 
2162 bool InitListExpr::isTransparent() const {
2163   assert(isSemanticForm() && "syntactic form never semantically transparent");
2164 
2165   // A glvalue InitListExpr is always just sugar.
2166   if (isGLValue()) {
2167     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2168     return true;
2169   }
2170 
2171   // Otherwise, we're sugar if and only if we have exactly one initializer that
2172   // is of the same type.
2173   if (getNumInits() != 1 || !getInit(0))
2174     return false;
2175 
2176   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2177   // transparent struct copy.
2178   if (!getInit(0)->isRValue() && getType()->isRecordType())
2179     return false;
2180 
2181   return getType().getCanonicalType() ==
2182          getInit(0)->getType().getCanonicalType();
2183 }
2184 
2185 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2186   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2187 
2188   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2189     return false;
2190   }
2191 
2192   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2193   return Lit && Lit->getValue() == 0;
2194 }
2195 
2196 SourceLocation InitListExpr::getBeginLoc() const {
2197   if (InitListExpr *SyntacticForm = getSyntacticForm())
2198     return SyntacticForm->getBeginLoc();
2199   SourceLocation Beg = LBraceLoc;
2200   if (Beg.isInvalid()) {
2201     // Find the first non-null initializer.
2202     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2203                                      E = InitExprs.end();
2204       I != E; ++I) {
2205       if (Stmt *S = *I) {
2206         Beg = S->getBeginLoc();
2207         break;
2208       }
2209     }
2210   }
2211   return Beg;
2212 }
2213 
2214 SourceLocation InitListExpr::getEndLoc() const {
2215   if (InitListExpr *SyntacticForm = getSyntacticForm())
2216     return SyntacticForm->getEndLoc();
2217   SourceLocation End = RBraceLoc;
2218   if (End.isInvalid()) {
2219     // Find the first non-null initializer from the end.
2220     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2221          E = InitExprs.rend();
2222          I != E; ++I) {
2223       if (Stmt *S = *I) {
2224         End = S->getEndLoc();
2225         break;
2226       }
2227     }
2228   }
2229   return End;
2230 }
2231 
2232 /// getFunctionType - Return the underlying function type for this block.
2233 ///
2234 const FunctionProtoType *BlockExpr::getFunctionType() const {
2235   // The block pointer is never sugared, but the function type might be.
2236   return cast<BlockPointerType>(getType())
2237            ->getPointeeType()->castAs<FunctionProtoType>();
2238 }
2239 
2240 SourceLocation BlockExpr::getCaretLocation() const {
2241   return TheBlock->getCaretLocation();
2242 }
2243 const Stmt *BlockExpr::getBody() const {
2244   return TheBlock->getBody();
2245 }
2246 Stmt *BlockExpr::getBody() {
2247   return TheBlock->getBody();
2248 }
2249 
2250 
2251 //===----------------------------------------------------------------------===//
2252 // Generic Expression Routines
2253 //===----------------------------------------------------------------------===//
2254 
2255 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2256   // In C++11, discarded-value expressions of a certain form are special,
2257   // according to [expr]p10:
2258   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2259   //   expression is an lvalue of volatile-qualified type and it has
2260   //   one of the following forms:
2261   if (!isGLValue() || !getType().isVolatileQualified())
2262     return false;
2263 
2264   const Expr *E = IgnoreParens();
2265 
2266   //   - id-expression (5.1.1),
2267   if (isa<DeclRefExpr>(E))
2268     return true;
2269 
2270   //   - subscripting (5.2.1),
2271   if (isa<ArraySubscriptExpr>(E))
2272     return true;
2273 
2274   //   - class member access (5.2.5),
2275   if (isa<MemberExpr>(E))
2276     return true;
2277 
2278   //   - indirection (5.3.1),
2279   if (auto *UO = dyn_cast<UnaryOperator>(E))
2280     if (UO->getOpcode() == UO_Deref)
2281       return true;
2282 
2283   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2284     //   - pointer-to-member operation (5.5),
2285     if (BO->isPtrMemOp())
2286       return true;
2287 
2288     //   - comma expression (5.18) where the right operand is one of the above.
2289     if (BO->getOpcode() == BO_Comma)
2290       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2291   }
2292 
2293   //   - conditional expression (5.16) where both the second and the third
2294   //     operands are one of the above, or
2295   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2296     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2297            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2298   // The related edge case of "*x ?: *x".
2299   if (auto *BCO =
2300           dyn_cast<BinaryConditionalOperator>(E)) {
2301     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2302       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2303              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2304   }
2305 
2306   // Objective-C++ extensions to the rule.
2307   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
2308     return true;
2309 
2310   return false;
2311 }
2312 
2313 /// isUnusedResultAWarning - Return true if this immediate expression should
2314 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2315 /// with location to warn on and the source range[s] to report with the
2316 /// warning.
2317 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2318                                   SourceRange &R1, SourceRange &R2,
2319                                   ASTContext &Ctx) const {
2320   // Don't warn if the expr is type dependent. The type could end up
2321   // instantiating to void.
2322   if (isTypeDependent())
2323     return false;
2324 
2325   switch (getStmtClass()) {
2326   default:
2327     if (getType()->isVoidType())
2328       return false;
2329     WarnE = this;
2330     Loc = getExprLoc();
2331     R1 = getSourceRange();
2332     return true;
2333   case ParenExprClass:
2334     return cast<ParenExpr>(this)->getSubExpr()->
2335       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2336   case GenericSelectionExprClass:
2337     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2338       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2339   case CoawaitExprClass:
2340   case CoyieldExprClass:
2341     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2342       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2343   case ChooseExprClass:
2344     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2345       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2346   case UnaryOperatorClass: {
2347     const UnaryOperator *UO = cast<UnaryOperator>(this);
2348 
2349     switch (UO->getOpcode()) {
2350     case UO_Plus:
2351     case UO_Minus:
2352     case UO_AddrOf:
2353     case UO_Not:
2354     case UO_LNot:
2355     case UO_Deref:
2356       break;
2357     case UO_Coawait:
2358       // This is just the 'operator co_await' call inside the guts of a
2359       // dependent co_await call.
2360     case UO_PostInc:
2361     case UO_PostDec:
2362     case UO_PreInc:
2363     case UO_PreDec:                 // ++/--
2364       return false;  // Not a warning.
2365     case UO_Real:
2366     case UO_Imag:
2367       // accessing a piece of a volatile complex is a side-effect.
2368       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2369           .isVolatileQualified())
2370         return false;
2371       break;
2372     case UO_Extension:
2373       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2374     }
2375     WarnE = this;
2376     Loc = UO->getOperatorLoc();
2377     R1 = UO->getSubExpr()->getSourceRange();
2378     return true;
2379   }
2380   case BinaryOperatorClass: {
2381     const BinaryOperator *BO = cast<BinaryOperator>(this);
2382     switch (BO->getOpcode()) {
2383       default:
2384         break;
2385       // Consider the RHS of comma for side effects. LHS was checked by
2386       // Sema::CheckCommaOperands.
2387       case BO_Comma:
2388         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2389         // lvalue-ness) of an assignment written in a macro.
2390         if (IntegerLiteral *IE =
2391               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2392           if (IE->getValue() == 0)
2393             return false;
2394         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2395       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2396       case BO_LAnd:
2397       case BO_LOr:
2398         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2399             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2400           return false;
2401         break;
2402     }
2403     if (BO->isAssignmentOp())
2404       return false;
2405     WarnE = this;
2406     Loc = BO->getOperatorLoc();
2407     R1 = BO->getLHS()->getSourceRange();
2408     R2 = BO->getRHS()->getSourceRange();
2409     return true;
2410   }
2411   case CompoundAssignOperatorClass:
2412   case VAArgExprClass:
2413   case AtomicExprClass:
2414     return false;
2415 
2416   case ConditionalOperatorClass: {
2417     // If only one of the LHS or RHS is a warning, the operator might
2418     // be being used for control flow. Only warn if both the LHS and
2419     // RHS are warnings.
2420     const auto *Exp = cast<ConditionalOperator>(this);
2421     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2422            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2423   }
2424   case BinaryConditionalOperatorClass: {
2425     const auto *Exp = cast<BinaryConditionalOperator>(this);
2426     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2427   }
2428 
2429   case MemberExprClass:
2430     WarnE = this;
2431     Loc = cast<MemberExpr>(this)->getMemberLoc();
2432     R1 = SourceRange(Loc, Loc);
2433     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2434     return true;
2435 
2436   case ArraySubscriptExprClass:
2437     WarnE = this;
2438     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2439     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2440     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2441     return true;
2442 
2443   case CXXOperatorCallExprClass: {
2444     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2445     // overloads as there is no reasonable way to define these such that they
2446     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2447     // warning: operators == and != are commonly typo'ed, and so warning on them
2448     // provides additional value as well. If this list is updated,
2449     // DiagnoseUnusedComparison should be as well.
2450     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2451     switch (Op->getOperator()) {
2452     default:
2453       break;
2454     case OO_EqualEqual:
2455     case OO_ExclaimEqual:
2456     case OO_Less:
2457     case OO_Greater:
2458     case OO_GreaterEqual:
2459     case OO_LessEqual:
2460       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2461           Op->getCallReturnType(Ctx)->isVoidType())
2462         break;
2463       WarnE = this;
2464       Loc = Op->getOperatorLoc();
2465       R1 = Op->getSourceRange();
2466       return true;
2467     }
2468 
2469     // Fallthrough for generic call handling.
2470     LLVM_FALLTHROUGH;
2471   }
2472   case CallExprClass:
2473   case CXXMemberCallExprClass:
2474   case UserDefinedLiteralClass: {
2475     // If this is a direct call, get the callee.
2476     const CallExpr *CE = cast<CallExpr>(this);
2477     if (const Decl *FD = CE->getCalleeDecl()) {
2478       // If the callee has attribute pure, const, or warn_unused_result, warn
2479       // about it. void foo() { strlen("bar"); } should warn.
2480       //
2481       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2482       // updated to match for QoI.
2483       if (CE->hasUnusedResultAttr(Ctx) ||
2484           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2485         WarnE = this;
2486         Loc = CE->getCallee()->getBeginLoc();
2487         R1 = CE->getCallee()->getSourceRange();
2488 
2489         if (unsigned NumArgs = CE->getNumArgs())
2490           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2491                            CE->getArg(NumArgs - 1)->getEndLoc());
2492         return true;
2493       }
2494     }
2495     return false;
2496   }
2497 
2498   // If we don't know precisely what we're looking at, let's not warn.
2499   case UnresolvedLookupExprClass:
2500   case CXXUnresolvedConstructExprClass:
2501   case RecoveryExprClass:
2502     return false;
2503 
2504   case CXXTemporaryObjectExprClass:
2505   case CXXConstructExprClass: {
2506     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2507       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2508       if (Type->hasAttr<WarnUnusedAttr>() ||
2509           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2510         WarnE = this;
2511         Loc = getBeginLoc();
2512         R1 = getSourceRange();
2513         return true;
2514       }
2515     }
2516 
2517     const auto *CE = cast<CXXConstructExpr>(this);
2518     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2519       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2520       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2521         WarnE = this;
2522         Loc = getBeginLoc();
2523         R1 = getSourceRange();
2524 
2525         if (unsigned NumArgs = CE->getNumArgs())
2526           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2527                            CE->getArg(NumArgs - 1)->getEndLoc());
2528         return true;
2529       }
2530     }
2531 
2532     return false;
2533   }
2534 
2535   case ObjCMessageExprClass: {
2536     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2537     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2538         ME->isInstanceMessage() &&
2539         !ME->getType()->isVoidType() &&
2540         ME->getMethodFamily() == OMF_init) {
2541       WarnE = this;
2542       Loc = getExprLoc();
2543       R1 = ME->getSourceRange();
2544       return true;
2545     }
2546 
2547     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2548       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2549         WarnE = this;
2550         Loc = getExprLoc();
2551         return true;
2552       }
2553 
2554     return false;
2555   }
2556 
2557   case ObjCPropertyRefExprClass:
2558     WarnE = this;
2559     Loc = getExprLoc();
2560     R1 = getSourceRange();
2561     return true;
2562 
2563   case PseudoObjectExprClass: {
2564     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2565 
2566     // Only complain about things that have the form of a getter.
2567     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2568         isa<BinaryOperator>(PO->getSyntacticForm()))
2569       return false;
2570 
2571     WarnE = this;
2572     Loc = getExprLoc();
2573     R1 = getSourceRange();
2574     return true;
2575   }
2576 
2577   case StmtExprClass: {
2578     // Statement exprs don't logically have side effects themselves, but are
2579     // sometimes used in macros in ways that give them a type that is unused.
2580     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2581     // however, if the result of the stmt expr is dead, we don't want to emit a
2582     // warning.
2583     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2584     if (!CS->body_empty()) {
2585       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2586         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2587       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2588         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2589           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2590     }
2591 
2592     if (getType()->isVoidType())
2593       return false;
2594     WarnE = this;
2595     Loc = cast<StmtExpr>(this)->getLParenLoc();
2596     R1 = getSourceRange();
2597     return true;
2598   }
2599   case CXXFunctionalCastExprClass:
2600   case CStyleCastExprClass: {
2601     // Ignore an explicit cast to void, except in C++98 if the operand is a
2602     // volatile glvalue for which we would trigger an implicit read in any
2603     // other language mode. (Such an implicit read always happens as part of
2604     // the lvalue conversion in C, and happens in C++ for expressions of all
2605     // forms where it seems likely the user intended to trigger a volatile
2606     // load.)
2607     const CastExpr *CE = cast<CastExpr>(this);
2608     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2609     if (CE->getCastKind() == CK_ToVoid) {
2610       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2611           SubE->isReadIfDiscardedInCPlusPlus11()) {
2612         // Suppress the "unused value" warning for idiomatic usage of
2613         // '(void)var;' used to suppress "unused variable" warnings.
2614         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2615           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2616             if (!VD->isExternallyVisible())
2617               return false;
2618 
2619         // The lvalue-to-rvalue conversion would have no effect for an array.
2620         // It's implausible that the programmer expected this to result in a
2621         // volatile array load, so don't warn.
2622         if (SubE->getType()->isArrayType())
2623           return false;
2624 
2625         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2626       }
2627       return false;
2628     }
2629 
2630     // If this is a cast to a constructor conversion, check the operand.
2631     // Otherwise, the result of the cast is unused.
2632     if (CE->getCastKind() == CK_ConstructorConversion)
2633       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2634     if (CE->getCastKind() == CK_Dependent)
2635       return false;
2636 
2637     WarnE = this;
2638     if (const CXXFunctionalCastExpr *CXXCE =
2639             dyn_cast<CXXFunctionalCastExpr>(this)) {
2640       Loc = CXXCE->getBeginLoc();
2641       R1 = CXXCE->getSubExpr()->getSourceRange();
2642     } else {
2643       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2644       Loc = CStyleCE->getLParenLoc();
2645       R1 = CStyleCE->getSubExpr()->getSourceRange();
2646     }
2647     return true;
2648   }
2649   case ImplicitCastExprClass: {
2650     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2651 
2652     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2653     if (ICE->getCastKind() == CK_LValueToRValue &&
2654         ICE->getSubExpr()->getType().isVolatileQualified())
2655       return false;
2656 
2657     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2658   }
2659   case CXXDefaultArgExprClass:
2660     return (cast<CXXDefaultArgExpr>(this)
2661             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2662   case CXXDefaultInitExprClass:
2663     return (cast<CXXDefaultInitExpr>(this)
2664             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2665 
2666   case CXXNewExprClass:
2667     // FIXME: In theory, there might be new expressions that don't have side
2668     // effects (e.g. a placement new with an uninitialized POD).
2669   case CXXDeleteExprClass:
2670     return false;
2671   case MaterializeTemporaryExprClass:
2672     return cast<MaterializeTemporaryExpr>(this)
2673         ->getSubExpr()
2674         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2675   case CXXBindTemporaryExprClass:
2676     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2677                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2678   case ExprWithCleanupsClass:
2679     return cast<ExprWithCleanups>(this)->getSubExpr()
2680                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2681   }
2682 }
2683 
2684 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2685 /// returns true, if it is; false otherwise.
2686 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2687   const Expr *E = IgnoreParens();
2688   switch (E->getStmtClass()) {
2689   default:
2690     return false;
2691   case ObjCIvarRefExprClass:
2692     return true;
2693   case Expr::UnaryOperatorClass:
2694     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2695   case ImplicitCastExprClass:
2696     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2697   case MaterializeTemporaryExprClass:
2698     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2699         Ctx);
2700   case CStyleCastExprClass:
2701     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2702   case DeclRefExprClass: {
2703     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2704 
2705     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2706       if (VD->hasGlobalStorage())
2707         return true;
2708       QualType T = VD->getType();
2709       // dereferencing to a  pointer is always a gc'able candidate,
2710       // unless it is __weak.
2711       return T->isPointerType() &&
2712              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2713     }
2714     return false;
2715   }
2716   case MemberExprClass: {
2717     const MemberExpr *M = cast<MemberExpr>(E);
2718     return M->getBase()->isOBJCGCCandidate(Ctx);
2719   }
2720   case ArraySubscriptExprClass:
2721     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2722   }
2723 }
2724 
2725 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2726   if (isTypeDependent())
2727     return false;
2728   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2729 }
2730 
2731 QualType Expr::findBoundMemberType(const Expr *expr) {
2732   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2733 
2734   // Bound member expressions are always one of these possibilities:
2735   //   x->m      x.m      x->*y      x.*y
2736   // (possibly parenthesized)
2737 
2738   expr = expr->IgnoreParens();
2739   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2740     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2741     return mem->getMemberDecl()->getType();
2742   }
2743 
2744   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2745     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2746                       ->getPointeeType();
2747     assert(type->isFunctionType());
2748     return type;
2749   }
2750 
2751   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2752   return QualType();
2753 }
2754 
2755 Expr *Expr::IgnoreImpCasts() {
2756   return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
2757 }
2758 
2759 Expr *Expr::IgnoreCasts() {
2760   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2761 }
2762 
2763 Expr *Expr::IgnoreImplicit() {
2764   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
2765 }
2766 
2767 Expr *Expr::IgnoreImplicitAsWritten() {
2768   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
2769 }
2770 
2771 Expr *Expr::IgnoreParens() {
2772   return IgnoreExprNodes(this, IgnoreParensSingleStep);
2773 }
2774 
2775 Expr *Expr::IgnoreParenImpCasts() {
2776   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2777                          IgnoreImplicitCastsExtraSingleStep);
2778 }
2779 
2780 Expr *Expr::IgnoreParenCasts() {
2781   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
2782 }
2783 
2784 Expr *Expr::IgnoreConversionOperatorSingleStep() {
2785   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2786     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2787       return MCE->getImplicitObjectArgument();
2788   }
2789   return this;
2790 }
2791 
2792 Expr *Expr::IgnoreParenLValueCasts() {
2793   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2794                          IgnoreLValueCastsSingleStep);
2795 }
2796 
2797 Expr *Expr::IgnoreParenBaseCasts() {
2798   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2799                          IgnoreBaseCastsSingleStep);
2800 }
2801 
2802 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
2803   auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
2804     if (auto *CE = dyn_cast<CastExpr>(E)) {
2805       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2806       // ptr<->int casts of the same width. We also ignore all identity casts.
2807       Expr *SubExpr = CE->getSubExpr();
2808       bool IsIdentityCast =
2809           Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2810       bool IsSameWidthCast = (E->getType()->isPointerType() ||
2811                               E->getType()->isIntegralType(Ctx)) &&
2812                              (SubExpr->getType()->isPointerType() ||
2813                               SubExpr->getType()->isIntegralType(Ctx)) &&
2814                              (Ctx.getTypeSize(E->getType()) ==
2815                               Ctx.getTypeSize(SubExpr->getType()));
2816 
2817       if (IsIdentityCast || IsSameWidthCast)
2818         return SubExpr;
2819     } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2820       return NTTP->getReplacement();
2821 
2822     return E;
2823   };
2824   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2825                          IgnoreNoopCastsSingleStep);
2826 }
2827 
2828 Expr *Expr::IgnoreUnlessSpelledInSource() {
2829   auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
2830     if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
2831       auto *SE = Cast->getSubExpr();
2832       if (SE->getSourceRange() == E->getSourceRange())
2833         return SE;
2834     }
2835 
2836     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
2837       auto NumArgs = C->getNumArgs();
2838       if (NumArgs == 1 ||
2839           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
2840         Expr *A = C->getArg(0);
2841         if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
2842           return A;
2843       }
2844     }
2845     return E;
2846   };
2847   auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
2848     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
2849       Expr *ExprNode = C->getImplicitObjectArgument();
2850       if (ExprNode->getSourceRange() == E->getSourceRange()) {
2851         return ExprNode;
2852       }
2853       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
2854         if (PE->getSourceRange() == C->getSourceRange()) {
2855           return cast<Expr>(PE);
2856         }
2857       }
2858       ExprNode = ExprNode->IgnoreParenImpCasts();
2859       if (ExprNode->getSourceRange() == E->getSourceRange())
2860         return ExprNode;
2861     }
2862     return E;
2863   };
2864   return IgnoreExprNodes(
2865       this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
2866       IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
2867       IgnoreImplicitMemberCallSingleStep);
2868 }
2869 
2870 bool Expr::isDefaultArgument() const {
2871   const Expr *E = this;
2872   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2873     E = M->getSubExpr();
2874 
2875   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2876     E = ICE->getSubExprAsWritten();
2877 
2878   return isa<CXXDefaultArgExpr>(E);
2879 }
2880 
2881 /// Skip over any no-op casts and any temporary-binding
2882 /// expressions.
2883 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2884   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2885     E = M->getSubExpr();
2886 
2887   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2888     if (ICE->getCastKind() == CK_NoOp)
2889       E = ICE->getSubExpr();
2890     else
2891       break;
2892   }
2893 
2894   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2895     E = BE->getSubExpr();
2896 
2897   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2898     if (ICE->getCastKind() == CK_NoOp)
2899       E = ICE->getSubExpr();
2900     else
2901       break;
2902   }
2903 
2904   return E->IgnoreParens();
2905 }
2906 
2907 /// isTemporaryObject - Determines if this expression produces a
2908 /// temporary of the given class type.
2909 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2910   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2911     return false;
2912 
2913   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2914 
2915   // Temporaries are by definition pr-values of class type.
2916   if (!E->Classify(C).isPRValue()) {
2917     // In this context, property reference is a message call and is pr-value.
2918     if (!isa<ObjCPropertyRefExpr>(E))
2919       return false;
2920   }
2921 
2922   // Black-list a few cases which yield pr-values of class type that don't
2923   // refer to temporaries of that type:
2924 
2925   // - implicit derived-to-base conversions
2926   if (isa<ImplicitCastExpr>(E)) {
2927     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2928     case CK_DerivedToBase:
2929     case CK_UncheckedDerivedToBase:
2930       return false;
2931     default:
2932       break;
2933     }
2934   }
2935 
2936   // - member expressions (all)
2937   if (isa<MemberExpr>(E))
2938     return false;
2939 
2940   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2941     if (BO->isPtrMemOp())
2942       return false;
2943 
2944   // - opaque values (all)
2945   if (isa<OpaqueValueExpr>(E))
2946     return false;
2947 
2948   return true;
2949 }
2950 
2951 bool Expr::isImplicitCXXThis() const {
2952   const Expr *E = this;
2953 
2954   // Strip away parentheses and casts we don't care about.
2955   while (true) {
2956     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2957       E = Paren->getSubExpr();
2958       continue;
2959     }
2960 
2961     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2962       if (ICE->getCastKind() == CK_NoOp ||
2963           ICE->getCastKind() == CK_LValueToRValue ||
2964           ICE->getCastKind() == CK_DerivedToBase ||
2965           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2966         E = ICE->getSubExpr();
2967         continue;
2968       }
2969     }
2970 
2971     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2972       if (UnOp->getOpcode() == UO_Extension) {
2973         E = UnOp->getSubExpr();
2974         continue;
2975       }
2976     }
2977 
2978     if (const MaterializeTemporaryExpr *M
2979                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2980       E = M->getSubExpr();
2981       continue;
2982     }
2983 
2984     break;
2985   }
2986 
2987   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2988     return This->isImplicit();
2989 
2990   return false;
2991 }
2992 
2993 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2994 /// in Exprs is type-dependent.
2995 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2996   for (unsigned I = 0; I < Exprs.size(); ++I)
2997     if (Exprs[I]->isTypeDependent())
2998       return true;
2999 
3000   return false;
3001 }
3002 
3003 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3004                                  const Expr **Culprit) const {
3005   assert(!isValueDependent() &&
3006          "Expression evaluator can't be called on a dependent expression.");
3007 
3008   // This function is attempting whether an expression is an initializer
3009   // which can be evaluated at compile-time. It very closely parallels
3010   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3011   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3012   // to isEvaluatable most of the time.
3013   //
3014   // If we ever capture reference-binding directly in the AST, we can
3015   // kill the second parameter.
3016 
3017   if (IsForRef) {
3018     EvalResult Result;
3019     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3020       return true;
3021     if (Culprit)
3022       *Culprit = this;
3023     return false;
3024   }
3025 
3026   switch (getStmtClass()) {
3027   default: break;
3028   case Stmt::ExprWithCleanupsClass:
3029     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3030         Ctx, IsForRef, Culprit);
3031   case StringLiteralClass:
3032   case ObjCEncodeExprClass:
3033     return true;
3034   case CXXTemporaryObjectExprClass:
3035   case CXXConstructExprClass: {
3036     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3037 
3038     if (CE->getConstructor()->isTrivial() &&
3039         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3040       // Trivial default constructor
3041       if (!CE->getNumArgs()) return true;
3042 
3043       // Trivial copy constructor
3044       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3045       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3046     }
3047 
3048     break;
3049   }
3050   case ConstantExprClass: {
3051     // FIXME: We should be able to return "true" here, but it can lead to extra
3052     // error messages. E.g. in Sema/array-init.c.
3053     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3054     return Exp->isConstantInitializer(Ctx, false, Culprit);
3055   }
3056   case CompoundLiteralExprClass: {
3057     // This handles gcc's extension that allows global initializers like
3058     // "struct x {int x;} x = (struct x) {};".
3059     // FIXME: This accepts other cases it shouldn't!
3060     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3061     return Exp->isConstantInitializer(Ctx, false, Culprit);
3062   }
3063   case DesignatedInitUpdateExprClass: {
3064     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3065     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3066            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3067   }
3068   case InitListExprClass: {
3069     const InitListExpr *ILE = cast<InitListExpr>(this);
3070     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3071     if (ILE->getType()->isArrayType()) {
3072       unsigned numInits = ILE->getNumInits();
3073       for (unsigned i = 0; i < numInits; i++) {
3074         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3075           return false;
3076       }
3077       return true;
3078     }
3079 
3080     if (ILE->getType()->isRecordType()) {
3081       unsigned ElementNo = 0;
3082       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3083       for (const auto *Field : RD->fields()) {
3084         // If this is a union, skip all the fields that aren't being initialized.
3085         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3086           continue;
3087 
3088         // Don't emit anonymous bitfields, they just affect layout.
3089         if (Field->isUnnamedBitfield())
3090           continue;
3091 
3092         if (ElementNo < ILE->getNumInits()) {
3093           const Expr *Elt = ILE->getInit(ElementNo++);
3094           if (Field->isBitField()) {
3095             // Bitfields have to evaluate to an integer.
3096             EvalResult Result;
3097             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3098               if (Culprit)
3099                 *Culprit = Elt;
3100               return false;
3101             }
3102           } else {
3103             bool RefType = Field->getType()->isReferenceType();
3104             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3105               return false;
3106           }
3107         }
3108       }
3109       return true;
3110     }
3111 
3112     break;
3113   }
3114   case ImplicitValueInitExprClass:
3115   case NoInitExprClass:
3116     return true;
3117   case ParenExprClass:
3118     return cast<ParenExpr>(this)->getSubExpr()
3119       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3120   case GenericSelectionExprClass:
3121     return cast<GenericSelectionExpr>(this)->getResultExpr()
3122       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3123   case ChooseExprClass:
3124     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3125       if (Culprit)
3126         *Culprit = this;
3127       return false;
3128     }
3129     return cast<ChooseExpr>(this)->getChosenSubExpr()
3130       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3131   case UnaryOperatorClass: {
3132     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3133     if (Exp->getOpcode() == UO_Extension)
3134       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3135     break;
3136   }
3137   case CXXFunctionalCastExprClass:
3138   case CXXStaticCastExprClass:
3139   case ImplicitCastExprClass:
3140   case CStyleCastExprClass:
3141   case ObjCBridgedCastExprClass:
3142   case CXXDynamicCastExprClass:
3143   case CXXReinterpretCastExprClass:
3144   case CXXAddrspaceCastExprClass:
3145   case CXXConstCastExprClass: {
3146     const CastExpr *CE = cast<CastExpr>(this);
3147 
3148     // Handle misc casts we want to ignore.
3149     if (CE->getCastKind() == CK_NoOp ||
3150         CE->getCastKind() == CK_LValueToRValue ||
3151         CE->getCastKind() == CK_ToUnion ||
3152         CE->getCastKind() == CK_ConstructorConversion ||
3153         CE->getCastKind() == CK_NonAtomicToAtomic ||
3154         CE->getCastKind() == CK_AtomicToNonAtomic ||
3155         CE->getCastKind() == CK_IntToOCLSampler)
3156       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3157 
3158     break;
3159   }
3160   case MaterializeTemporaryExprClass:
3161     return cast<MaterializeTemporaryExpr>(this)
3162         ->getSubExpr()
3163         ->isConstantInitializer(Ctx, false, Culprit);
3164 
3165   case SubstNonTypeTemplateParmExprClass:
3166     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3167       ->isConstantInitializer(Ctx, false, Culprit);
3168   case CXXDefaultArgExprClass:
3169     return cast<CXXDefaultArgExpr>(this)->getExpr()
3170       ->isConstantInitializer(Ctx, false, Culprit);
3171   case CXXDefaultInitExprClass:
3172     return cast<CXXDefaultInitExpr>(this)->getExpr()
3173       ->isConstantInitializer(Ctx, false, Culprit);
3174   }
3175   // Allow certain forms of UB in constant initializers: signed integer
3176   // overflow and floating-point division by zero. We'll give a warning on
3177   // these, but they're common enough that we have to accept them.
3178   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3179     return true;
3180   if (Culprit)
3181     *Culprit = this;
3182   return false;
3183 }
3184 
3185 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3186   const FunctionDecl* FD = getDirectCallee();
3187   if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3188               FD->getBuiltinID() != Builtin::BI__builtin_assume))
3189     return false;
3190 
3191   const Expr* Arg = getArg(0);
3192   bool ArgVal;
3193   return !Arg->isValueDependent() &&
3194          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3195 }
3196 
3197 namespace {
3198   /// Look for any side effects within a Stmt.
3199   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3200     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3201     const bool IncludePossibleEffects;
3202     bool HasSideEffects;
3203 
3204   public:
3205     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3206       : Inherited(Context),
3207         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3208 
3209     bool hasSideEffects() const { return HasSideEffects; }
3210 
3211     void VisitDecl(const Decl *D) {
3212       if (!D)
3213         return;
3214 
3215       // We assume the caller checks subexpressions (eg, the initializer, VLA
3216       // bounds) for side-effects on our behalf.
3217       if (auto *VD = dyn_cast<VarDecl>(D)) {
3218         // Registering a destructor is a side-effect.
3219         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3220             VD->needsDestruction(Context))
3221           HasSideEffects = true;
3222       }
3223     }
3224 
3225     void VisitDeclStmt(const DeclStmt *DS) {
3226       for (auto *D : DS->decls())
3227         VisitDecl(D);
3228       Inherited::VisitDeclStmt(DS);
3229     }
3230 
3231     void VisitExpr(const Expr *E) {
3232       if (!HasSideEffects &&
3233           E->HasSideEffects(Context, IncludePossibleEffects))
3234         HasSideEffects = true;
3235     }
3236   };
3237 }
3238 
3239 bool Expr::HasSideEffects(const ASTContext &Ctx,
3240                           bool IncludePossibleEffects) const {
3241   // In circumstances where we care about definite side effects instead of
3242   // potential side effects, we want to ignore expressions that are part of a
3243   // macro expansion as a potential side effect.
3244   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3245     return false;
3246 
3247   switch (getStmtClass()) {
3248   case NoStmtClass:
3249   #define ABSTRACT_STMT(Type)
3250   #define STMT(Type, Base) case Type##Class:
3251   #define EXPR(Type, Base)
3252   #include "clang/AST/StmtNodes.inc"
3253     llvm_unreachable("unexpected Expr kind");
3254 
3255   case DependentScopeDeclRefExprClass:
3256   case CXXUnresolvedConstructExprClass:
3257   case CXXDependentScopeMemberExprClass:
3258   case UnresolvedLookupExprClass:
3259   case UnresolvedMemberExprClass:
3260   case PackExpansionExprClass:
3261   case SubstNonTypeTemplateParmPackExprClass:
3262   case FunctionParmPackExprClass:
3263   case TypoExprClass:
3264   case RecoveryExprClass:
3265   case CXXFoldExprClass:
3266     // Make a conservative assumption for dependent nodes.
3267     return IncludePossibleEffects;
3268 
3269   case DeclRefExprClass:
3270   case ObjCIvarRefExprClass:
3271   case PredefinedExprClass:
3272   case IntegerLiteralClass:
3273   case FixedPointLiteralClass:
3274   case FloatingLiteralClass:
3275   case ImaginaryLiteralClass:
3276   case StringLiteralClass:
3277   case CharacterLiteralClass:
3278   case OffsetOfExprClass:
3279   case ImplicitValueInitExprClass:
3280   case UnaryExprOrTypeTraitExprClass:
3281   case AddrLabelExprClass:
3282   case GNUNullExprClass:
3283   case ArrayInitIndexExprClass:
3284   case NoInitExprClass:
3285   case CXXBoolLiteralExprClass:
3286   case CXXNullPtrLiteralExprClass:
3287   case CXXThisExprClass:
3288   case CXXScalarValueInitExprClass:
3289   case TypeTraitExprClass:
3290   case ArrayTypeTraitExprClass:
3291   case ExpressionTraitExprClass:
3292   case CXXNoexceptExprClass:
3293   case SizeOfPackExprClass:
3294   case ObjCStringLiteralClass:
3295   case ObjCEncodeExprClass:
3296   case ObjCBoolLiteralExprClass:
3297   case ObjCAvailabilityCheckExprClass:
3298   case CXXUuidofExprClass:
3299   case OpaqueValueExprClass:
3300   case SourceLocExprClass:
3301   case ConceptSpecializationExprClass:
3302   case RequiresExprClass:
3303     // These never have a side-effect.
3304     return false;
3305 
3306   case ConstantExprClass:
3307     // FIXME: Move this into the "return false;" block above.
3308     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3309         Ctx, IncludePossibleEffects);
3310 
3311   case CallExprClass:
3312   case CXXOperatorCallExprClass:
3313   case CXXMemberCallExprClass:
3314   case CUDAKernelCallExprClass:
3315   case UserDefinedLiteralClass: {
3316     // We don't know a call definitely has side effects, except for calls
3317     // to pure/const functions that definitely don't.
3318     // If the call itself is considered side-effect free, check the operands.
3319     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3320     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3321     if (IsPure || !IncludePossibleEffects)
3322       break;
3323     return true;
3324   }
3325 
3326   case BlockExprClass:
3327   case CXXBindTemporaryExprClass:
3328     if (!IncludePossibleEffects)
3329       break;
3330     return true;
3331 
3332   case MSPropertyRefExprClass:
3333   case MSPropertySubscriptExprClass:
3334   case CompoundAssignOperatorClass:
3335   case VAArgExprClass:
3336   case AtomicExprClass:
3337   case CXXThrowExprClass:
3338   case CXXNewExprClass:
3339   case CXXDeleteExprClass:
3340   case CoawaitExprClass:
3341   case DependentCoawaitExprClass:
3342   case CoyieldExprClass:
3343     // These always have a side-effect.
3344     return true;
3345 
3346   case StmtExprClass: {
3347     // StmtExprs have a side-effect if any substatement does.
3348     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3349     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3350     return Finder.hasSideEffects();
3351   }
3352 
3353   case ExprWithCleanupsClass:
3354     if (IncludePossibleEffects)
3355       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3356         return true;
3357     break;
3358 
3359   case ParenExprClass:
3360   case ArraySubscriptExprClass:
3361   case MatrixSubscriptExprClass:
3362   case OMPArraySectionExprClass:
3363   case OMPArrayShapingExprClass:
3364   case OMPIteratorExprClass:
3365   case MemberExprClass:
3366   case ConditionalOperatorClass:
3367   case BinaryConditionalOperatorClass:
3368   case CompoundLiteralExprClass:
3369   case ExtVectorElementExprClass:
3370   case DesignatedInitExprClass:
3371   case DesignatedInitUpdateExprClass:
3372   case ArrayInitLoopExprClass:
3373   case ParenListExprClass:
3374   case CXXPseudoDestructorExprClass:
3375   case CXXRewrittenBinaryOperatorClass:
3376   case CXXStdInitializerListExprClass:
3377   case SubstNonTypeTemplateParmExprClass:
3378   case MaterializeTemporaryExprClass:
3379   case ShuffleVectorExprClass:
3380   case ConvertVectorExprClass:
3381   case AsTypeExprClass:
3382     // These have a side-effect if any subexpression does.
3383     break;
3384 
3385   case UnaryOperatorClass:
3386     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3387       return true;
3388     break;
3389 
3390   case BinaryOperatorClass:
3391     if (cast<BinaryOperator>(this)->isAssignmentOp())
3392       return true;
3393     break;
3394 
3395   case InitListExprClass:
3396     // FIXME: The children for an InitListExpr doesn't include the array filler.
3397     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3398       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3399         return true;
3400     break;
3401 
3402   case GenericSelectionExprClass:
3403     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3404         HasSideEffects(Ctx, IncludePossibleEffects);
3405 
3406   case ChooseExprClass:
3407     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3408         Ctx, IncludePossibleEffects);
3409 
3410   case CXXDefaultArgExprClass:
3411     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3412         Ctx, IncludePossibleEffects);
3413 
3414   case CXXDefaultInitExprClass: {
3415     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3416     if (const Expr *E = FD->getInClassInitializer())
3417       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3418     // If we've not yet parsed the initializer, assume it has side-effects.
3419     return true;
3420   }
3421 
3422   case CXXDynamicCastExprClass: {
3423     // A dynamic_cast expression has side-effects if it can throw.
3424     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3425     if (DCE->getTypeAsWritten()->isReferenceType() &&
3426         DCE->getCastKind() == CK_Dynamic)
3427       return true;
3428     }
3429     LLVM_FALLTHROUGH;
3430   case ImplicitCastExprClass:
3431   case CStyleCastExprClass:
3432   case CXXStaticCastExprClass:
3433   case CXXReinterpretCastExprClass:
3434   case CXXConstCastExprClass:
3435   case CXXAddrspaceCastExprClass:
3436   case CXXFunctionalCastExprClass:
3437   case BuiltinBitCastExprClass: {
3438     // While volatile reads are side-effecting in both C and C++, we treat them
3439     // as having possible (not definite) side-effects. This allows idiomatic
3440     // code to behave without warning, such as sizeof(*v) for a volatile-
3441     // qualified pointer.
3442     if (!IncludePossibleEffects)
3443       break;
3444 
3445     const CastExpr *CE = cast<CastExpr>(this);
3446     if (CE->getCastKind() == CK_LValueToRValue &&
3447         CE->getSubExpr()->getType().isVolatileQualified())
3448       return true;
3449     break;
3450   }
3451 
3452   case CXXTypeidExprClass:
3453     // typeid might throw if its subexpression is potentially-evaluated, so has
3454     // side-effects in that case whether or not its subexpression does.
3455     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3456 
3457   case CXXConstructExprClass:
3458   case CXXTemporaryObjectExprClass: {
3459     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3460     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3461       return true;
3462     // A trivial constructor does not add any side-effects of its own. Just look
3463     // at its arguments.
3464     break;
3465   }
3466 
3467   case CXXInheritedCtorInitExprClass: {
3468     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3469     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3470       return true;
3471     break;
3472   }
3473 
3474   case LambdaExprClass: {
3475     const LambdaExpr *LE = cast<LambdaExpr>(this);
3476     for (Expr *E : LE->capture_inits())
3477       if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3478         return true;
3479     return false;
3480   }
3481 
3482   case PseudoObjectExprClass: {
3483     // Only look for side-effects in the semantic form, and look past
3484     // OpaqueValueExpr bindings in that form.
3485     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3486     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3487                                                     E = PO->semantics_end();
3488          I != E; ++I) {
3489       const Expr *Subexpr = *I;
3490       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3491         Subexpr = OVE->getSourceExpr();
3492       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3493         return true;
3494     }
3495     return false;
3496   }
3497 
3498   case ObjCBoxedExprClass:
3499   case ObjCArrayLiteralClass:
3500   case ObjCDictionaryLiteralClass:
3501   case ObjCSelectorExprClass:
3502   case ObjCProtocolExprClass:
3503   case ObjCIsaExprClass:
3504   case ObjCIndirectCopyRestoreExprClass:
3505   case ObjCSubscriptRefExprClass:
3506   case ObjCBridgedCastExprClass:
3507   case ObjCMessageExprClass:
3508   case ObjCPropertyRefExprClass:
3509   // FIXME: Classify these cases better.
3510     if (IncludePossibleEffects)
3511       return true;
3512     break;
3513   }
3514 
3515   // Recurse to children.
3516   for (const Stmt *SubStmt : children())
3517     if (SubStmt &&
3518         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3519       return true;
3520 
3521   return false;
3522 }
3523 
3524 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3525   if (auto Call = dyn_cast<CallExpr>(this))
3526     return Call->getFPFeaturesInEffect(LO);
3527   if (auto UO = dyn_cast<UnaryOperator>(this))
3528     return UO->getFPFeaturesInEffect(LO);
3529   if (auto BO = dyn_cast<BinaryOperator>(this))
3530     return BO->getFPFeaturesInEffect(LO);
3531   if (auto Cast = dyn_cast<CastExpr>(this))
3532     return Cast->getFPFeaturesInEffect(LO);
3533   return FPOptions::defaultWithoutTrailingStorage(LO);
3534 }
3535 
3536 namespace {
3537   /// Look for a call to a non-trivial function within an expression.
3538   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3539   {
3540     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3541 
3542     bool NonTrivial;
3543 
3544   public:
3545     explicit NonTrivialCallFinder(const ASTContext &Context)
3546       : Inherited(Context), NonTrivial(false) { }
3547 
3548     bool hasNonTrivialCall() const { return NonTrivial; }
3549 
3550     void VisitCallExpr(const CallExpr *E) {
3551       if (const CXXMethodDecl *Method
3552           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3553         if (Method->isTrivial()) {
3554           // Recurse to children of the call.
3555           Inherited::VisitStmt(E);
3556           return;
3557         }
3558       }
3559 
3560       NonTrivial = true;
3561     }
3562 
3563     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3564       if (E->getConstructor()->isTrivial()) {
3565         // Recurse to children of the call.
3566         Inherited::VisitStmt(E);
3567         return;
3568       }
3569 
3570       NonTrivial = true;
3571     }
3572 
3573     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3574       if (E->getTemporary()->getDestructor()->isTrivial()) {
3575         Inherited::VisitStmt(E);
3576         return;
3577       }
3578 
3579       NonTrivial = true;
3580     }
3581   };
3582 }
3583 
3584 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3585   NonTrivialCallFinder Finder(Ctx);
3586   Finder.Visit(this);
3587   return Finder.hasNonTrivialCall();
3588 }
3589 
3590 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3591 /// pointer constant or not, as well as the specific kind of constant detected.
3592 /// Null pointer constants can be integer constant expressions with the
3593 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3594 /// (a GNU extension).
3595 Expr::NullPointerConstantKind
3596 Expr::isNullPointerConstant(ASTContext &Ctx,
3597                             NullPointerConstantValueDependence NPC) const {
3598   if (isValueDependent() &&
3599       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3600     // Error-dependent expr should never be a null pointer.
3601     if (containsErrors())
3602       return NPCK_NotNull;
3603     switch (NPC) {
3604     case NPC_NeverValueDependent:
3605       llvm_unreachable("Unexpected value dependent expression!");
3606     case NPC_ValueDependentIsNull:
3607       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3608         return NPCK_ZeroExpression;
3609       else
3610         return NPCK_NotNull;
3611 
3612     case NPC_ValueDependentIsNotNull:
3613       return NPCK_NotNull;
3614     }
3615   }
3616 
3617   // Strip off a cast to void*, if it exists. Except in C++.
3618   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3619     if (!Ctx.getLangOpts().CPlusPlus) {
3620       // Check that it is a cast to void*.
3621       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3622         QualType Pointee = PT->getPointeeType();
3623         Qualifiers Qs = Pointee.getQualifiers();
3624         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3625         // has non-default address space it is not treated as nullptr.
3626         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3627         // since it cannot be assigned to a pointer to constant address space.
3628         if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3629              Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3630             (Ctx.getLangOpts().OpenCL &&
3631              Ctx.getLangOpts().OpenCLVersion < 200 &&
3632              Pointee.getAddressSpace() == LangAS::opencl_private))
3633           Qs.removeAddressSpace();
3634 
3635         if (Pointee->isVoidType() && Qs.empty() && // to void*
3636             CE->getSubExpr()->getType()->isIntegerType()) // from int
3637           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3638       }
3639     }
3640   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3641     // Ignore the ImplicitCastExpr type entirely.
3642     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3643   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3644     // Accept ((void*)0) as a null pointer constant, as many other
3645     // implementations do.
3646     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3647   } else if (const GenericSelectionExpr *GE =
3648                dyn_cast<GenericSelectionExpr>(this)) {
3649     if (GE->isResultDependent())
3650       return NPCK_NotNull;
3651     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3652   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3653     if (CE->isConditionDependent())
3654       return NPCK_NotNull;
3655     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3656   } else if (const CXXDefaultArgExpr *DefaultArg
3657                = dyn_cast<CXXDefaultArgExpr>(this)) {
3658     // See through default argument expressions.
3659     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3660   } else if (const CXXDefaultInitExpr *DefaultInit
3661                = dyn_cast<CXXDefaultInitExpr>(this)) {
3662     // See through default initializer expressions.
3663     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3664   } else if (isa<GNUNullExpr>(this)) {
3665     // The GNU __null extension is always a null pointer constant.
3666     return NPCK_GNUNull;
3667   } else if (const MaterializeTemporaryExpr *M
3668                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3669     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3670   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3671     if (const Expr *Source = OVE->getSourceExpr())
3672       return Source->isNullPointerConstant(Ctx, NPC);
3673   }
3674 
3675   // If the expression has no type information, it cannot be a null pointer
3676   // constant.
3677   if (getType().isNull())
3678     return NPCK_NotNull;
3679 
3680   // C++11 nullptr_t is always a null pointer constant.
3681   if (getType()->isNullPtrType())
3682     return NPCK_CXX11_nullptr;
3683 
3684   if (const RecordType *UT = getType()->getAsUnionType())
3685     if (!Ctx.getLangOpts().CPlusPlus11 &&
3686         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3687       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3688         const Expr *InitExpr = CLE->getInitializer();
3689         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3690           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3691       }
3692   // This expression must be an integer type.
3693   if (!getType()->isIntegerType() ||
3694       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3695     return NPCK_NotNull;
3696 
3697   if (Ctx.getLangOpts().CPlusPlus11) {
3698     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3699     // value zero or a prvalue of type std::nullptr_t.
3700     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3701     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3702     if (Lit && !Lit->getValue())
3703       return NPCK_ZeroLiteral;
3704     if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3705       return NPCK_NotNull;
3706   } else {
3707     // If we have an integer constant expression, we need to *evaluate* it and
3708     // test for the value 0.
3709     if (!isIntegerConstantExpr(Ctx))
3710       return NPCK_NotNull;
3711   }
3712 
3713   if (EvaluateKnownConstInt(Ctx) != 0)
3714     return NPCK_NotNull;
3715 
3716   if (isa<IntegerLiteral>(this))
3717     return NPCK_ZeroLiteral;
3718   return NPCK_ZeroExpression;
3719 }
3720 
3721 /// If this expression is an l-value for an Objective C
3722 /// property, find the underlying property reference expression.
3723 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3724   const Expr *E = this;
3725   while (true) {
3726     assert((E->getValueKind() == VK_LValue &&
3727             E->getObjectKind() == OK_ObjCProperty) &&
3728            "expression is not a property reference");
3729     E = E->IgnoreParenCasts();
3730     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3731       if (BO->getOpcode() == BO_Comma) {
3732         E = BO->getRHS();
3733         continue;
3734       }
3735     }
3736 
3737     break;
3738   }
3739 
3740   return cast<ObjCPropertyRefExpr>(E);
3741 }
3742 
3743 bool Expr::isObjCSelfExpr() const {
3744   const Expr *E = IgnoreParenImpCasts();
3745 
3746   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3747   if (!DRE)
3748     return false;
3749 
3750   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3751   if (!Param)
3752     return false;
3753 
3754   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3755   if (!M)
3756     return false;
3757 
3758   return M->getSelfDecl() == Param;
3759 }
3760 
3761 FieldDecl *Expr::getSourceBitField() {
3762   Expr *E = this->IgnoreParens();
3763 
3764   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3765     if (ICE->getCastKind() == CK_LValueToRValue ||
3766         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3767       E = ICE->getSubExpr()->IgnoreParens();
3768     else
3769       break;
3770   }
3771 
3772   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3773     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3774       if (Field->isBitField())
3775         return Field;
3776 
3777   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3778     FieldDecl *Ivar = IvarRef->getDecl();
3779     if (Ivar->isBitField())
3780       return Ivar;
3781   }
3782 
3783   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3784     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3785       if (Field->isBitField())
3786         return Field;
3787 
3788     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3789       if (Expr *E = BD->getBinding())
3790         return E->getSourceBitField();
3791   }
3792 
3793   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3794     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3795       return BinOp->getLHS()->getSourceBitField();
3796 
3797     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3798       return BinOp->getRHS()->getSourceBitField();
3799   }
3800 
3801   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3802     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3803       return UnOp->getSubExpr()->getSourceBitField();
3804 
3805   return nullptr;
3806 }
3807 
3808 bool Expr::refersToVectorElement() const {
3809   // FIXME: Why do we not just look at the ObjectKind here?
3810   const Expr *E = this->IgnoreParens();
3811 
3812   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3813     if (ICE->getValueKind() != VK_RValue &&
3814         ICE->getCastKind() == CK_NoOp)
3815       E = ICE->getSubExpr()->IgnoreParens();
3816     else
3817       break;
3818   }
3819 
3820   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3821     return ASE->getBase()->getType()->isVectorType();
3822 
3823   if (isa<ExtVectorElementExpr>(E))
3824     return true;
3825 
3826   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3827     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3828       if (auto *E = BD->getBinding())
3829         return E->refersToVectorElement();
3830 
3831   return false;
3832 }
3833 
3834 bool Expr::refersToGlobalRegisterVar() const {
3835   const Expr *E = this->IgnoreParenImpCasts();
3836 
3837   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3838     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3839       if (VD->getStorageClass() == SC_Register &&
3840           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3841         return true;
3842 
3843   return false;
3844 }
3845 
3846 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
3847   E1 = E1->IgnoreParens();
3848   E2 = E2->IgnoreParens();
3849 
3850   if (E1->getStmtClass() != E2->getStmtClass())
3851     return false;
3852 
3853   switch (E1->getStmtClass()) {
3854     default:
3855       return false;
3856     case CXXThisExprClass:
3857       return true;
3858     case DeclRefExprClass: {
3859       // DeclRefExpr without an ImplicitCastExpr can happen for integral
3860       // template parameters.
3861       const auto *DRE1 = cast<DeclRefExpr>(E1);
3862       const auto *DRE2 = cast<DeclRefExpr>(E2);
3863       return DRE1->isRValue() && DRE2->isRValue() &&
3864              DRE1->getDecl() == DRE2->getDecl();
3865     }
3866     case ImplicitCastExprClass: {
3867       // Peel off implicit casts.
3868       while (true) {
3869         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
3870         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
3871         if (!ICE1 || !ICE2)
3872           return false;
3873         if (ICE1->getCastKind() != ICE2->getCastKind())
3874           return false;
3875         E1 = ICE1->getSubExpr()->IgnoreParens();
3876         E2 = ICE2->getSubExpr()->IgnoreParens();
3877         // The final cast must be one of these types.
3878         if (ICE1->getCastKind() == CK_LValueToRValue ||
3879             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
3880             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
3881           break;
3882         }
3883       }
3884 
3885       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
3886       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
3887       if (DRE1 && DRE2)
3888         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
3889 
3890       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
3891       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
3892       if (Ivar1 && Ivar2) {
3893         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
3894                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
3895       }
3896 
3897       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
3898       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
3899       if (Array1 && Array2) {
3900         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
3901           return false;
3902 
3903         auto Idx1 = Array1->getIdx();
3904         auto Idx2 = Array2->getIdx();
3905         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
3906         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
3907         if (Integer1 && Integer2) {
3908           if (!llvm::APInt::isSameValue(Integer1->getValue(),
3909                                         Integer2->getValue()))
3910             return false;
3911         } else {
3912           if (!isSameComparisonOperand(Idx1, Idx2))
3913             return false;
3914         }
3915 
3916         return true;
3917       }
3918 
3919       // Walk the MemberExpr chain.
3920       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
3921         const auto *ME1 = cast<MemberExpr>(E1);
3922         const auto *ME2 = cast<MemberExpr>(E2);
3923         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
3924           return false;
3925         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
3926           if (D->isStaticDataMember())
3927             return true;
3928         E1 = ME1->getBase()->IgnoreParenImpCasts();
3929         E2 = ME2->getBase()->IgnoreParenImpCasts();
3930       }
3931 
3932       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
3933         return true;
3934 
3935       // A static member variable can end the MemberExpr chain with either
3936       // a MemberExpr or a DeclRefExpr.
3937       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
3938         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
3939           return DRE->getDecl();
3940         if (const auto *ME = dyn_cast<MemberExpr>(E))
3941           return ME->getMemberDecl();
3942         return nullptr;
3943       };
3944 
3945       const ValueDecl *VD1 = getAnyDecl(E1);
3946       const ValueDecl *VD2 = getAnyDecl(E2);
3947       return declaresSameEntity(VD1, VD2);
3948     }
3949   }
3950 }
3951 
3952 /// isArrow - Return true if the base expression is a pointer to vector,
3953 /// return false if the base expression is a vector.
3954 bool ExtVectorElementExpr::isArrow() const {
3955   return getBase()->getType()->isPointerType();
3956 }
3957 
3958 unsigned ExtVectorElementExpr::getNumElements() const {
3959   if (const VectorType *VT = getType()->getAs<VectorType>())
3960     return VT->getNumElements();
3961   return 1;
3962 }
3963 
3964 /// containsDuplicateElements - Return true if any element access is repeated.
3965 bool ExtVectorElementExpr::containsDuplicateElements() const {
3966   // FIXME: Refactor this code to an accessor on the AST node which returns the
3967   // "type" of component access, and share with code below and in Sema.
3968   StringRef Comp = Accessor->getName();
3969 
3970   // Halving swizzles do not contain duplicate elements.
3971   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3972     return false;
3973 
3974   // Advance past s-char prefix on hex swizzles.
3975   if (Comp[0] == 's' || Comp[0] == 'S')
3976     Comp = Comp.substr(1);
3977 
3978   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3979     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3980         return true;
3981 
3982   return false;
3983 }
3984 
3985 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3986 void ExtVectorElementExpr::getEncodedElementAccess(
3987     SmallVectorImpl<uint32_t> &Elts) const {
3988   StringRef Comp = Accessor->getName();
3989   bool isNumericAccessor = false;
3990   if (Comp[0] == 's' || Comp[0] == 'S') {
3991     Comp = Comp.substr(1);
3992     isNumericAccessor = true;
3993   }
3994 
3995   bool isHi =   Comp == "hi";
3996   bool isLo =   Comp == "lo";
3997   bool isEven = Comp == "even";
3998   bool isOdd  = Comp == "odd";
3999 
4000   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4001     uint64_t Index;
4002 
4003     if (isHi)
4004       Index = e + i;
4005     else if (isLo)
4006       Index = i;
4007     else if (isEven)
4008       Index = 2 * i;
4009     else if (isOdd)
4010       Index = 2 * i + 1;
4011     else
4012       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4013 
4014     Elts.push_back(Index);
4015   }
4016 }
4017 
4018 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4019                                      QualType Type, SourceLocation BLoc,
4020                                      SourceLocation RP)
4021     : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary),
4022       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4023   SubExprs = new (C) Stmt*[args.size()];
4024   for (unsigned i = 0; i != args.size(); i++)
4025     SubExprs[i] = args[i];
4026 
4027   setDependence(computeDependence(this));
4028 }
4029 
4030 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4031   if (SubExprs) C.Deallocate(SubExprs);
4032 
4033   this->NumExprs = Exprs.size();
4034   SubExprs = new (C) Stmt*[NumExprs];
4035   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4036 }
4037 
4038 GenericSelectionExpr::GenericSelectionExpr(
4039     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4040     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4041     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4042     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4043     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4044            AssocExprs[ResultIndex]->getValueKind(),
4045            AssocExprs[ResultIndex]->getObjectKind()),
4046       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4047       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4048   assert(AssocTypes.size() == AssocExprs.size() &&
4049          "Must have the same number of association expressions"
4050          " and TypeSourceInfo!");
4051   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4052 
4053   GenericSelectionExprBits.GenericLoc = GenericLoc;
4054   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4055   std::copy(AssocExprs.begin(), AssocExprs.end(),
4056             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4057   std::copy(AssocTypes.begin(), AssocTypes.end(),
4058             getTrailingObjects<TypeSourceInfo *>());
4059 
4060   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4061 }
4062 
4063 GenericSelectionExpr::GenericSelectionExpr(
4064     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4065     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4066     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4067     bool ContainsUnexpandedParameterPack)
4068     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
4069            OK_Ordinary),
4070       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4071       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4072   assert(AssocTypes.size() == AssocExprs.size() &&
4073          "Must have the same number of association expressions"
4074          " and TypeSourceInfo!");
4075 
4076   GenericSelectionExprBits.GenericLoc = GenericLoc;
4077   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4078   std::copy(AssocExprs.begin(), AssocExprs.end(),
4079             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4080   std::copy(AssocTypes.begin(), AssocTypes.end(),
4081             getTrailingObjects<TypeSourceInfo *>());
4082 
4083   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4084 }
4085 
4086 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4087     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4088 
4089 GenericSelectionExpr *GenericSelectionExpr::Create(
4090     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4091     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4092     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4093     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4094   unsigned NumAssocs = AssocExprs.size();
4095   void *Mem = Context.Allocate(
4096       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4097       alignof(GenericSelectionExpr));
4098   return new (Mem) GenericSelectionExpr(
4099       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4100       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4101 }
4102 
4103 GenericSelectionExpr *GenericSelectionExpr::Create(
4104     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4105     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4106     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4107     bool ContainsUnexpandedParameterPack) {
4108   unsigned NumAssocs = AssocExprs.size();
4109   void *Mem = Context.Allocate(
4110       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4111       alignof(GenericSelectionExpr));
4112   return new (Mem) GenericSelectionExpr(
4113       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4114       RParenLoc, ContainsUnexpandedParameterPack);
4115 }
4116 
4117 GenericSelectionExpr *
4118 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4119                                   unsigned NumAssocs) {
4120   void *Mem = Context.Allocate(
4121       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4122       alignof(GenericSelectionExpr));
4123   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4124 }
4125 
4126 //===----------------------------------------------------------------------===//
4127 //  DesignatedInitExpr
4128 //===----------------------------------------------------------------------===//
4129 
4130 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4131   assert(Kind == FieldDesignator && "Only valid on a field designator");
4132   if (Field.NameOrField & 0x01)
4133     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4134   return getField()->getIdentifier();
4135 }
4136 
4137 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4138                                        llvm::ArrayRef<Designator> Designators,
4139                                        SourceLocation EqualOrColonLoc,
4140                                        bool GNUSyntax,
4141                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4142     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4143            Init->getObjectKind()),
4144       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4145       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4146   this->Designators = new (C) Designator[NumDesignators];
4147 
4148   // Record the initializer itself.
4149   child_iterator Child = child_begin();
4150   *Child++ = Init;
4151 
4152   // Copy the designators and their subexpressions, computing
4153   // value-dependence along the way.
4154   unsigned IndexIdx = 0;
4155   for (unsigned I = 0; I != NumDesignators; ++I) {
4156     this->Designators[I] = Designators[I];
4157     if (this->Designators[I].isArrayDesignator()) {
4158       // Copy the index expressions into permanent storage.
4159       *Child++ = IndexExprs[IndexIdx++];
4160     } else if (this->Designators[I].isArrayRangeDesignator()) {
4161       // Copy the start/end expressions into permanent storage.
4162       *Child++ = IndexExprs[IndexIdx++];
4163       *Child++ = IndexExprs[IndexIdx++];
4164     }
4165   }
4166 
4167   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4168   setDependence(computeDependence(this));
4169 }
4170 
4171 DesignatedInitExpr *
4172 DesignatedInitExpr::Create(const ASTContext &C,
4173                            llvm::ArrayRef<Designator> Designators,
4174                            ArrayRef<Expr*> IndexExprs,
4175                            SourceLocation ColonOrEqualLoc,
4176                            bool UsesColonSyntax, Expr *Init) {
4177   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4178                          alignof(DesignatedInitExpr));
4179   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4180                                       ColonOrEqualLoc, UsesColonSyntax,
4181                                       IndexExprs, Init);
4182 }
4183 
4184 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4185                                                     unsigned NumIndexExprs) {
4186   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4187                          alignof(DesignatedInitExpr));
4188   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4189 }
4190 
4191 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4192                                         const Designator *Desigs,
4193                                         unsigned NumDesigs) {
4194   Designators = new (C) Designator[NumDesigs];
4195   NumDesignators = NumDesigs;
4196   for (unsigned I = 0; I != NumDesigs; ++I)
4197     Designators[I] = Desigs[I];
4198 }
4199 
4200 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4201   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4202   if (size() == 1)
4203     return DIE->getDesignator(0)->getSourceRange();
4204   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4205                      DIE->getDesignator(size() - 1)->getEndLoc());
4206 }
4207 
4208 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4209   SourceLocation StartLoc;
4210   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4211   Designator &First = *DIE->getDesignator(0);
4212   if (First.isFieldDesignator())
4213     StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4214   else
4215     StartLoc = First.ArrayOrRange.LBracketLoc;
4216   return StartLoc;
4217 }
4218 
4219 SourceLocation DesignatedInitExpr::getEndLoc() const {
4220   return getInit()->getEndLoc();
4221 }
4222 
4223 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4224   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4225   return getSubExpr(D.ArrayOrRange.Index + 1);
4226 }
4227 
4228 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4229   assert(D.Kind == Designator::ArrayRangeDesignator &&
4230          "Requires array range designator");
4231   return getSubExpr(D.ArrayOrRange.Index + 1);
4232 }
4233 
4234 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4235   assert(D.Kind == Designator::ArrayRangeDesignator &&
4236          "Requires array range designator");
4237   return getSubExpr(D.ArrayOrRange.Index + 2);
4238 }
4239 
4240 /// Replaces the designator at index @p Idx with the series
4241 /// of designators in [First, Last).
4242 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4243                                           const Designator *First,
4244                                           const Designator *Last) {
4245   unsigned NumNewDesignators = Last - First;
4246   if (NumNewDesignators == 0) {
4247     std::copy_backward(Designators + Idx + 1,
4248                        Designators + NumDesignators,
4249                        Designators + Idx);
4250     --NumNewDesignators;
4251     return;
4252   }
4253   if (NumNewDesignators == 1) {
4254     Designators[Idx] = *First;
4255     return;
4256   }
4257 
4258   Designator *NewDesignators
4259     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4260   std::copy(Designators, Designators + Idx, NewDesignators);
4261   std::copy(First, Last, NewDesignators + Idx);
4262   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4263             NewDesignators + Idx + NumNewDesignators);
4264   Designators = NewDesignators;
4265   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4266 }
4267 
4268 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4269                                                    SourceLocation lBraceLoc,
4270                                                    Expr *baseExpr,
4271                                                    SourceLocation rBraceLoc)
4272     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
4273            OK_Ordinary) {
4274   BaseAndUpdaterExprs[0] = baseExpr;
4275 
4276   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4277   ILE->setType(baseExpr->getType());
4278   BaseAndUpdaterExprs[1] = ILE;
4279 
4280   // FIXME: this is wrong, set it correctly.
4281   setDependence(ExprDependence::None);
4282 }
4283 
4284 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4285   return getBase()->getBeginLoc();
4286 }
4287 
4288 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4289   return getBase()->getEndLoc();
4290 }
4291 
4292 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4293                              SourceLocation RParenLoc)
4294     : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary),
4295       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4296   ParenListExprBits.NumExprs = Exprs.size();
4297 
4298   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4299     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4300   setDependence(computeDependence(this));
4301 }
4302 
4303 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4304     : Expr(ParenListExprClass, Empty) {
4305   ParenListExprBits.NumExprs = NumExprs;
4306 }
4307 
4308 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4309                                      SourceLocation LParenLoc,
4310                                      ArrayRef<Expr *> Exprs,
4311                                      SourceLocation RParenLoc) {
4312   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4313                            alignof(ParenListExpr));
4314   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4315 }
4316 
4317 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4318                                           unsigned NumExprs) {
4319   void *Mem =
4320       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4321   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4322 }
4323 
4324 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4325                                Opcode opc, QualType ResTy, ExprValueKind VK,
4326                                ExprObjectKind OK, SourceLocation opLoc,
4327                                FPOptionsOverride FPFeatures)
4328     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4329   BinaryOperatorBits.Opc = opc;
4330   assert(!isCompoundAssignmentOp() &&
4331          "Use CompoundAssignOperator for compound assignments");
4332   BinaryOperatorBits.OpLoc = opLoc;
4333   SubExprs[LHS] = lhs;
4334   SubExprs[RHS] = rhs;
4335   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4336   if (hasStoredFPFeatures())
4337     setStoredFPFeatures(FPFeatures);
4338   setDependence(computeDependence(this));
4339 }
4340 
4341 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4342                                Opcode opc, QualType ResTy, ExprValueKind VK,
4343                                ExprObjectKind OK, SourceLocation opLoc,
4344                                FPOptionsOverride FPFeatures, bool dead2)
4345     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4346   BinaryOperatorBits.Opc = opc;
4347   assert(isCompoundAssignmentOp() &&
4348          "Use CompoundAssignOperator for compound assignments");
4349   BinaryOperatorBits.OpLoc = opLoc;
4350   SubExprs[LHS] = lhs;
4351   SubExprs[RHS] = rhs;
4352   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4353   if (hasStoredFPFeatures())
4354     setStoredFPFeatures(FPFeatures);
4355   setDependence(computeDependence(this));
4356 }
4357 
4358 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4359                                             bool HasFPFeatures) {
4360   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4361   void *Mem =
4362       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4363   return new (Mem) BinaryOperator(EmptyShell());
4364 }
4365 
4366 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4367                                        Expr *rhs, Opcode opc, QualType ResTy,
4368                                        ExprValueKind VK, ExprObjectKind OK,
4369                                        SourceLocation opLoc,
4370                                        FPOptionsOverride FPFeatures) {
4371   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4372   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4373   void *Mem =
4374       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4375   return new (Mem)
4376       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4377 }
4378 
4379 CompoundAssignOperator *
4380 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4381   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4382   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4383                          alignof(CompoundAssignOperator));
4384   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4385 }
4386 
4387 CompoundAssignOperator *
4388 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4389                                Opcode opc, QualType ResTy, ExprValueKind VK,
4390                                ExprObjectKind OK, SourceLocation opLoc,
4391                                FPOptionsOverride FPFeatures,
4392                                QualType CompLHSType, QualType CompResultType) {
4393   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4394   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4395   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4396                          alignof(CompoundAssignOperator));
4397   return new (Mem)
4398       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4399                              CompLHSType, CompResultType);
4400 }
4401 
4402 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4403                                           bool hasFPFeatures) {
4404   void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4405                          alignof(UnaryOperator));
4406   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4407 }
4408 
4409 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4410                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4411                              SourceLocation l, bool CanOverflow,
4412                              FPOptionsOverride FPFeatures)
4413     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4414   UnaryOperatorBits.Opc = opc;
4415   UnaryOperatorBits.CanOverflow = CanOverflow;
4416   UnaryOperatorBits.Loc = l;
4417   UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4418   if (hasStoredFPFeatures())
4419     setStoredFPFeatures(FPFeatures);
4420   setDependence(computeDependence(this, Ctx));
4421 }
4422 
4423 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4424                                      Opcode opc, QualType type,
4425                                      ExprValueKind VK, ExprObjectKind OK,
4426                                      SourceLocation l, bool CanOverflow,
4427                                      FPOptionsOverride FPFeatures) {
4428   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4429   unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4430   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4431   return new (Mem)
4432       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4433 }
4434 
4435 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4436   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4437     e = ewc->getSubExpr();
4438   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4439     e = m->getSubExpr();
4440   e = cast<CXXConstructExpr>(e)->getArg(0);
4441   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4442     e = ice->getSubExpr();
4443   return cast<OpaqueValueExpr>(e);
4444 }
4445 
4446 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4447                                            EmptyShell sh,
4448                                            unsigned numSemanticExprs) {
4449   void *buffer =
4450       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4451                        alignof(PseudoObjectExpr));
4452   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4453 }
4454 
4455 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4456   : Expr(PseudoObjectExprClass, shell) {
4457   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4458 }
4459 
4460 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4461                                            ArrayRef<Expr*> semantics,
4462                                            unsigned resultIndex) {
4463   assert(syntax && "no syntactic expression!");
4464   assert(semantics.size() && "no semantic expressions!");
4465 
4466   QualType type;
4467   ExprValueKind VK;
4468   if (resultIndex == NoResult) {
4469     type = C.VoidTy;
4470     VK = VK_RValue;
4471   } else {
4472     assert(resultIndex < semantics.size());
4473     type = semantics[resultIndex]->getType();
4474     VK = semantics[resultIndex]->getValueKind();
4475     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4476   }
4477 
4478   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4479                             alignof(PseudoObjectExpr));
4480   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4481                                       resultIndex);
4482 }
4483 
4484 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4485                                    Expr *syntax, ArrayRef<Expr *> semantics,
4486                                    unsigned resultIndex)
4487     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4488   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4489   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4490 
4491   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4492     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4493     getSubExprsBuffer()[i] = E;
4494 
4495     if (isa<OpaqueValueExpr>(E))
4496       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4497              "opaque-value semantic expressions for pseudo-object "
4498              "operations must have sources");
4499   }
4500 
4501   setDependence(computeDependence(this));
4502 }
4503 
4504 //===----------------------------------------------------------------------===//
4505 //  Child Iterators for iterating over subexpressions/substatements
4506 //===----------------------------------------------------------------------===//
4507 
4508 // UnaryExprOrTypeTraitExpr
4509 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4510   const_child_range CCR =
4511       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4512   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4513 }
4514 
4515 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4516   // If this is of a type and the type is a VLA type (and not a typedef), the
4517   // size expression of the VLA needs to be treated as an executable expression.
4518   // Why isn't this weirdness documented better in StmtIterator?
4519   if (isArgumentType()) {
4520     if (const VariableArrayType *T =
4521             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4522       return const_child_range(const_child_iterator(T), const_child_iterator());
4523     return const_child_range(const_child_iterator(), const_child_iterator());
4524   }
4525   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4526 }
4527 
4528 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4529                        AtomicOp op, SourceLocation RP)
4530     : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary),
4531       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4532   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4533   for (unsigned i = 0; i != args.size(); i++)
4534     SubExprs[i] = args[i];
4535   setDependence(computeDependence(this));
4536 }
4537 
4538 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4539   switch (Op) {
4540   case AO__c11_atomic_init:
4541   case AO__opencl_atomic_init:
4542   case AO__c11_atomic_load:
4543   case AO__atomic_load_n:
4544     return 2;
4545 
4546   case AO__opencl_atomic_load:
4547   case AO__c11_atomic_store:
4548   case AO__c11_atomic_exchange:
4549   case AO__atomic_load:
4550   case AO__atomic_store:
4551   case AO__atomic_store_n:
4552   case AO__atomic_exchange_n:
4553   case AO__c11_atomic_fetch_add:
4554   case AO__c11_atomic_fetch_sub:
4555   case AO__c11_atomic_fetch_and:
4556   case AO__c11_atomic_fetch_or:
4557   case AO__c11_atomic_fetch_xor:
4558   case AO__c11_atomic_fetch_max:
4559   case AO__c11_atomic_fetch_min:
4560   case AO__atomic_fetch_add:
4561   case AO__atomic_fetch_sub:
4562   case AO__atomic_fetch_and:
4563   case AO__atomic_fetch_or:
4564   case AO__atomic_fetch_xor:
4565   case AO__atomic_fetch_nand:
4566   case AO__atomic_add_fetch:
4567   case AO__atomic_sub_fetch:
4568   case AO__atomic_and_fetch:
4569   case AO__atomic_or_fetch:
4570   case AO__atomic_xor_fetch:
4571   case AO__atomic_nand_fetch:
4572   case AO__atomic_min_fetch:
4573   case AO__atomic_max_fetch:
4574   case AO__atomic_fetch_min:
4575   case AO__atomic_fetch_max:
4576     return 3;
4577 
4578   case AO__opencl_atomic_store:
4579   case AO__opencl_atomic_exchange:
4580   case AO__opencl_atomic_fetch_add:
4581   case AO__opencl_atomic_fetch_sub:
4582   case AO__opencl_atomic_fetch_and:
4583   case AO__opencl_atomic_fetch_or:
4584   case AO__opencl_atomic_fetch_xor:
4585   case AO__opencl_atomic_fetch_min:
4586   case AO__opencl_atomic_fetch_max:
4587   case AO__atomic_exchange:
4588     return 4;
4589 
4590   case AO__c11_atomic_compare_exchange_strong:
4591   case AO__c11_atomic_compare_exchange_weak:
4592     return 5;
4593 
4594   case AO__opencl_atomic_compare_exchange_strong:
4595   case AO__opencl_atomic_compare_exchange_weak:
4596   case AO__atomic_compare_exchange:
4597   case AO__atomic_compare_exchange_n:
4598     return 6;
4599   }
4600   llvm_unreachable("unknown atomic op");
4601 }
4602 
4603 QualType AtomicExpr::getValueType() const {
4604   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4605   if (auto AT = T->getAs<AtomicType>())
4606     return AT->getValueType();
4607   return T;
4608 }
4609 
4610 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4611   unsigned ArraySectionCount = 0;
4612   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4613     Base = OASE->getBase();
4614     ++ArraySectionCount;
4615   }
4616   while (auto *ASE =
4617              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4618     Base = ASE->getBase();
4619     ++ArraySectionCount;
4620   }
4621   Base = Base->IgnoreParenImpCasts();
4622   auto OriginalTy = Base->getType();
4623   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4624     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4625       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4626 
4627   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4628     if (OriginalTy->isAnyPointerType())
4629       OriginalTy = OriginalTy->getPointeeType();
4630     else {
4631       assert (OriginalTy->isArrayType());
4632       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4633     }
4634   }
4635   return OriginalTy;
4636 }
4637 
4638 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4639                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4640     : Expr(RecoveryExprClass, T.getNonReferenceType(),
4641            T->isDependentType() ? VK_LValue : getValueKindForType(T),
4642            OK_Ordinary),
4643       BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4644   assert(!T.isNull());
4645   assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; }));
4646 
4647   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4648   setDependence(computeDependence(this));
4649 }
4650 
4651 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4652                                    SourceLocation BeginLoc,
4653                                    SourceLocation EndLoc,
4654                                    ArrayRef<Expr *> SubExprs) {
4655   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4656                            alignof(RecoveryExpr));
4657   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4658 }
4659 
4660 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4661   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4662                            alignof(RecoveryExpr));
4663   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4664 }
4665 
4666 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4667   assert(
4668       NumDims == Dims.size() &&
4669       "Preallocated number of dimensions is different from the provided one.");
4670   llvm::copy(Dims, getTrailingObjects<Expr *>());
4671 }
4672 
4673 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4674   assert(
4675       NumDims == BR.size() &&
4676       "Preallocated number of dimensions is different from the provided one.");
4677   llvm::copy(BR, getTrailingObjects<SourceRange>());
4678 }
4679 
4680 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4681                                          SourceLocation L, SourceLocation R,
4682                                          ArrayRef<Expr *> Dims)
4683     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4684       RPLoc(R), NumDims(Dims.size()) {
4685   setBase(Op);
4686   setDimensions(Dims);
4687   setDependence(computeDependence(this));
4688 }
4689 
4690 OMPArrayShapingExpr *
4691 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4692                             SourceLocation L, SourceLocation R,
4693                             ArrayRef<Expr *> Dims,
4694                             ArrayRef<SourceRange> BracketRanges) {
4695   assert(Dims.size() == BracketRanges.size() &&
4696          "Different number of dimensions and brackets ranges.");
4697   void *Mem = Context.Allocate(
4698       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4699       alignof(OMPArrayShapingExpr));
4700   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4701   E->setBracketsRanges(BracketRanges);
4702   return E;
4703 }
4704 
4705 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4706                                                       unsigned NumDims) {
4707   void *Mem = Context.Allocate(
4708       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4709       alignof(OMPArrayShapingExpr));
4710   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4711 }
4712 
4713 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4714   assert(I < NumIterators &&
4715          "Idx is greater or equal the number of iterators definitions.");
4716   getTrailingObjects<Decl *>()[I] = D;
4717 }
4718 
4719 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4720   assert(I < NumIterators &&
4721          "Idx is greater or equal the number of iterators definitions.");
4722   getTrailingObjects<
4723       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4724                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
4725 }
4726 
4727 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
4728                                        SourceLocation ColonLoc, Expr *End,
4729                                        SourceLocation SecondColonLoc,
4730                                        Expr *Step) {
4731   assert(I < NumIterators &&
4732          "Idx is greater or equal the number of iterators definitions.");
4733   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4734                                static_cast<int>(RangeExprOffset::Begin)] =
4735       Begin;
4736   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4737                                static_cast<int>(RangeExprOffset::End)] = End;
4738   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4739                                static_cast<int>(RangeExprOffset::Step)] = Step;
4740   getTrailingObjects<
4741       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4742                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
4743       ColonLoc;
4744   getTrailingObjects<
4745       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4746                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
4747       SecondColonLoc;
4748 }
4749 
4750 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
4751   return getTrailingObjects<Decl *>()[I];
4752 }
4753 
4754 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
4755   IteratorRange Res;
4756   Res.Begin =
4757       getTrailingObjects<Expr *>()[I * static_cast<int>(
4758                                            RangeExprOffset::Total) +
4759                                    static_cast<int>(RangeExprOffset::Begin)];
4760   Res.End =
4761       getTrailingObjects<Expr *>()[I * static_cast<int>(
4762                                            RangeExprOffset::Total) +
4763                                    static_cast<int>(RangeExprOffset::End)];
4764   Res.Step =
4765       getTrailingObjects<Expr *>()[I * static_cast<int>(
4766                                            RangeExprOffset::Total) +
4767                                    static_cast<int>(RangeExprOffset::Step)];
4768   return Res;
4769 }
4770 
4771 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
4772   return getTrailingObjects<
4773       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4774                         static_cast<int>(RangeLocOffset::AssignLoc)];
4775 }
4776 
4777 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
4778   return getTrailingObjects<
4779       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4780                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
4781 }
4782 
4783 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
4784   return getTrailingObjects<
4785       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4786                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
4787 }
4788 
4789 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
4790   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
4791 }
4792 
4793 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
4794   return getTrailingObjects<OMPIteratorHelperData>()[I];
4795 }
4796 
4797 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
4798   return getTrailingObjects<OMPIteratorHelperData>()[I];
4799 }
4800 
4801 OMPIteratorExpr::OMPIteratorExpr(
4802     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
4803     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4804     ArrayRef<OMPIteratorHelperData> Helpers)
4805     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
4806       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
4807       NumIterators(Data.size()) {
4808   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
4809     const IteratorDefinition &D = Data[I];
4810     setIteratorDeclaration(I, D.IteratorDecl);
4811     setAssignmentLoc(I, D.AssignmentLoc);
4812     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
4813                      D.SecondColonLoc, D.Range.Step);
4814     setHelper(I, Helpers[I]);
4815   }
4816   setDependence(computeDependence(this));
4817 }
4818 
4819 OMPIteratorExpr *
4820 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
4821                         SourceLocation IteratorKwLoc, SourceLocation L,
4822                         SourceLocation R,
4823                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4824                         ArrayRef<OMPIteratorHelperData> Helpers) {
4825   assert(Data.size() == Helpers.size() &&
4826          "Data and helpers must have the same size.");
4827   void *Mem = Context.Allocate(
4828       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4829           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
4830           Data.size() * static_cast<int>(RangeLocOffset::Total),
4831           Helpers.size()),
4832       alignof(OMPIteratorExpr));
4833   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
4834 }
4835 
4836 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
4837                                               unsigned NumIterators) {
4838   void *Mem = Context.Allocate(
4839       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4840           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
4841           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
4842       alignof(OMPIteratorExpr));
4843   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
4844 }
4845