1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cstring> 40 using namespace clang; 41 42 const Expr *Expr::getBestDynamicClassTypeExpr() const { 43 const Expr *E = this; 44 while (true) { 45 E = E->IgnoreParenBaseCasts(); 46 47 // Follow the RHS of a comma operator. 48 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 49 if (BO->getOpcode() == BO_Comma) { 50 E = BO->getRHS(); 51 continue; 52 } 53 } 54 55 // Step into initializer for materialized temporaries. 56 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 57 E = MTE->getSubExpr(); 58 continue; 59 } 60 61 break; 62 } 63 64 return E; 65 } 66 67 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 68 const Expr *E = getBestDynamicClassTypeExpr(); 69 QualType DerivedType = E->getType(); 70 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 71 DerivedType = PTy->getPointeeType(); 72 73 if (DerivedType->isDependentType()) 74 return nullptr; 75 76 const RecordType *Ty = DerivedType->castAs<RecordType>(); 77 Decl *D = Ty->getDecl(); 78 return cast<CXXRecordDecl>(D); 79 } 80 81 const Expr *Expr::skipRValueSubobjectAdjustments( 82 SmallVectorImpl<const Expr *> &CommaLHSs, 83 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 84 const Expr *E = this; 85 while (true) { 86 E = E->IgnoreParens(); 87 88 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 89 if ((CE->getCastKind() == CK_DerivedToBase || 90 CE->getCastKind() == CK_UncheckedDerivedToBase) && 91 E->getType()->isRecordType()) { 92 E = CE->getSubExpr(); 93 auto *Derived = 94 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 95 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 96 continue; 97 } 98 99 if (CE->getCastKind() == CK_NoOp) { 100 E = CE->getSubExpr(); 101 continue; 102 } 103 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 104 if (!ME->isArrow()) { 105 assert(ME->getBase()->getType()->isRecordType()); 106 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 107 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 108 E = ME->getBase(); 109 Adjustments.push_back(SubobjectAdjustment(Field)); 110 continue; 111 } 112 } 113 } 114 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 115 if (BO->getOpcode() == BO_PtrMemD) { 116 assert(BO->getRHS()->isPRValue()); 117 E = BO->getLHS(); 118 const MemberPointerType *MPT = 119 BO->getRHS()->getType()->getAs<MemberPointerType>(); 120 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 121 continue; 122 } 123 if (BO->getOpcode() == BO_Comma) { 124 CommaLHSs.push_back(BO->getLHS()); 125 E = BO->getRHS(); 126 continue; 127 } 128 } 129 130 // Nothing changed. 131 break; 132 } 133 return E; 134 } 135 136 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 137 const Expr *E = IgnoreParens(); 138 139 // If this value has _Bool type, it is obvious 0/1. 140 if (E->getType()->isBooleanType()) return true; 141 // If this is a non-scalar-integer type, we don't care enough to try. 142 if (!E->getType()->isIntegralOrEnumerationType()) return false; 143 144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 145 switch (UO->getOpcode()) { 146 case UO_Plus: 147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 148 case UO_LNot: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 // Only look through implicit casts. If the user writes 156 // '(int) (a && b)' treat it as an arbitrary int. 157 // FIXME: Should we look through any cast expression in !Semantic mode? 158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 160 161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 162 switch (BO->getOpcode()) { 163 default: return false; 164 case BO_LT: // Relational operators. 165 case BO_GT: 166 case BO_LE: 167 case BO_GE: 168 case BO_EQ: // Equality operators. 169 case BO_NE: 170 case BO_LAnd: // AND operator. 171 case BO_LOr: // Logical OR operator. 172 return true; 173 174 case BO_And: // Bitwise AND operator. 175 case BO_Xor: // Bitwise XOR operator. 176 case BO_Or: // Bitwise OR operator. 177 // Handle things like (x==2)|(y==12). 178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 180 181 case BO_Comma: 182 case BO_Assign: 183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 184 } 185 } 186 187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 190 191 if (isa<ObjCBoolLiteralExpr>(E)) 192 return true; 193 194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 196 197 if (const FieldDecl *FD = E->getSourceBitField()) 198 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 199 !FD->getBitWidth()->isValueDependent() && 200 FD->getBitWidthValue(FD->getASTContext()) == 1) 201 return true; 202 203 return false; 204 } 205 206 const ValueDecl * 207 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 208 Expr::EvalResult Eval; 209 210 if (EvaluateAsConstantExpr(Eval, Context)) { 211 APValue &Value = Eval.Val; 212 213 if (Value.isMemberPointer()) 214 return Value.getMemberPointerDecl(); 215 216 if (Value.isLValue() && Value.getLValueOffset().isZero()) 217 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 218 } 219 220 return nullptr; 221 } 222 223 // Amusing macro metaprogramming hack: check whether a class provides 224 // a more specific implementation of getExprLoc(). 225 // 226 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 227 namespace { 228 /// This implementation is used when a class provides a custom 229 /// implementation of getExprLoc. 230 template <class E, class T> 231 SourceLocation getExprLocImpl(const Expr *expr, 232 SourceLocation (T::*v)() const) { 233 return static_cast<const E*>(expr)->getExprLoc(); 234 } 235 236 /// This implementation is used when a class doesn't provide 237 /// a custom implementation of getExprLoc. Overload resolution 238 /// should pick it over the implementation above because it's 239 /// more specialized according to function template partial ordering. 240 template <class E> 241 SourceLocation getExprLocImpl(const Expr *expr, 242 SourceLocation (Expr::*v)() const) { 243 return static_cast<const E *>(expr)->getBeginLoc(); 244 } 245 } 246 247 SourceLocation Expr::getExprLoc() const { 248 switch (getStmtClass()) { 249 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 250 #define ABSTRACT_STMT(type) 251 #define STMT(type, base) \ 252 case Stmt::type##Class: break; 253 #define EXPR(type, base) \ 254 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 255 #include "clang/AST/StmtNodes.inc" 256 } 257 llvm_unreachable("unknown expression kind"); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // Primary Expressions. 262 //===----------------------------------------------------------------------===// 263 264 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 265 assert((Kind == ConstantExpr::RSK_APValue || 266 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 267 "Invalid StorageKind Value"); 268 (void)Kind; 269 } 270 271 ConstantExpr::ResultStorageKind 272 ConstantExpr::getStorageKind(const APValue &Value) { 273 switch (Value.getKind()) { 274 case APValue::None: 275 case APValue::Indeterminate: 276 return ConstantExpr::RSK_None; 277 case APValue::Int: 278 if (!Value.getInt().needsCleanup()) 279 return ConstantExpr::RSK_Int64; 280 LLVM_FALLTHROUGH; 281 default: 282 return ConstantExpr::RSK_APValue; 283 } 284 } 285 286 ConstantExpr::ResultStorageKind 287 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 288 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 289 return ConstantExpr::RSK_Int64; 290 return ConstantExpr::RSK_APValue; 291 } 292 293 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind, 294 bool IsImmediateInvocation) 295 : FullExpr(ConstantExprClass, SubExpr) { 296 ConstantExprBits.ResultKind = StorageKind; 297 ConstantExprBits.APValueKind = APValue::None; 298 ConstantExprBits.IsUnsigned = false; 299 ConstantExprBits.BitWidth = 0; 300 ConstantExprBits.HasCleanup = false; 301 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 302 303 if (StorageKind == ConstantExpr::RSK_APValue) 304 ::new (getTrailingObjects<APValue>()) APValue(); 305 } 306 307 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 308 ResultStorageKind StorageKind, 309 bool IsImmediateInvocation) { 310 assert(!isa<ConstantExpr>(E)); 311 AssertResultStorageKind(StorageKind); 312 313 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 314 StorageKind == ConstantExpr::RSK_APValue, 315 StorageKind == ConstantExpr::RSK_Int64); 316 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 317 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 318 } 319 320 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 321 const APValue &Result) { 322 ResultStorageKind StorageKind = getStorageKind(Result); 323 ConstantExpr *Self = Create(Context, E, StorageKind); 324 Self->SetResult(Result, Context); 325 return Self; 326 } 327 328 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind) 329 : FullExpr(ConstantExprClass, Empty) { 330 ConstantExprBits.ResultKind = StorageKind; 331 332 if (StorageKind == ConstantExpr::RSK_APValue) 333 ::new (getTrailingObjects<APValue>()) APValue(); 334 } 335 336 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 337 ResultStorageKind StorageKind) { 338 AssertResultStorageKind(StorageKind); 339 340 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 341 StorageKind == ConstantExpr::RSK_APValue, 342 StorageKind == ConstantExpr::RSK_Int64); 343 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 344 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 345 } 346 347 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 348 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 349 "Invalid storage for this value kind"); 350 ConstantExprBits.APValueKind = Value.getKind(); 351 switch (ConstantExprBits.ResultKind) { 352 case RSK_None: 353 return; 354 case RSK_Int64: 355 Int64Result() = *Value.getInt().getRawData(); 356 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 357 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 358 return; 359 case RSK_APValue: 360 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 361 ConstantExprBits.HasCleanup = true; 362 Context.addDestruction(&APValueResult()); 363 } 364 APValueResult() = std::move(Value); 365 return; 366 } 367 llvm_unreachable("Invalid ResultKind Bits"); 368 } 369 370 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 371 switch (ConstantExprBits.ResultKind) { 372 case ConstantExpr::RSK_APValue: 373 return APValueResult().getInt(); 374 case ConstantExpr::RSK_Int64: 375 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 376 ConstantExprBits.IsUnsigned); 377 default: 378 llvm_unreachable("invalid Accessor"); 379 } 380 } 381 382 APValue ConstantExpr::getAPValueResult() const { 383 384 switch (ConstantExprBits.ResultKind) { 385 case ConstantExpr::RSK_APValue: 386 return APValueResult(); 387 case ConstantExpr::RSK_Int64: 388 return APValue( 389 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 390 ConstantExprBits.IsUnsigned)); 391 case ConstantExpr::RSK_None: 392 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 393 return APValue::IndeterminateValue(); 394 return APValue(); 395 } 396 llvm_unreachable("invalid ResultKind"); 397 } 398 399 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 400 bool RefersToEnclosingVariableOrCapture, QualType T, 401 ExprValueKind VK, SourceLocation L, 402 const DeclarationNameLoc &LocInfo, 403 NonOdrUseReason NOUR) 404 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 405 DeclRefExprBits.HasQualifier = false; 406 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 407 DeclRefExprBits.HasFoundDecl = false; 408 DeclRefExprBits.HadMultipleCandidates = false; 409 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 410 RefersToEnclosingVariableOrCapture; 411 DeclRefExprBits.NonOdrUseReason = NOUR; 412 DeclRefExprBits.Loc = L; 413 setDependence(computeDependence(this, Ctx)); 414 } 415 416 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 417 NestedNameSpecifierLoc QualifierLoc, 418 SourceLocation TemplateKWLoc, ValueDecl *D, 419 bool RefersToEnclosingVariableOrCapture, 420 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 421 const TemplateArgumentListInfo *TemplateArgs, 422 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 423 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 424 DNLoc(NameInfo.getInfo()) { 425 DeclRefExprBits.Loc = NameInfo.getLoc(); 426 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 427 if (QualifierLoc) 428 new (getTrailingObjects<NestedNameSpecifierLoc>()) 429 NestedNameSpecifierLoc(QualifierLoc); 430 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 431 if (FoundD) 432 *getTrailingObjects<NamedDecl *>() = FoundD; 433 DeclRefExprBits.HasTemplateKWAndArgsInfo 434 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 435 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 436 RefersToEnclosingVariableOrCapture; 437 DeclRefExprBits.NonOdrUseReason = NOUR; 438 if (TemplateArgs) { 439 auto Deps = TemplateArgumentDependence::None; 440 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 441 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 442 Deps); 443 assert(!(Deps & TemplateArgumentDependence::Dependent) && 444 "built a DeclRefExpr with dependent template args"); 445 } else if (TemplateKWLoc.isValid()) { 446 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 447 TemplateKWLoc); 448 } 449 DeclRefExprBits.HadMultipleCandidates = 0; 450 setDependence(computeDependence(this, Ctx)); 451 } 452 453 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 454 NestedNameSpecifierLoc QualifierLoc, 455 SourceLocation TemplateKWLoc, ValueDecl *D, 456 bool RefersToEnclosingVariableOrCapture, 457 SourceLocation NameLoc, QualType T, 458 ExprValueKind VK, NamedDecl *FoundD, 459 const TemplateArgumentListInfo *TemplateArgs, 460 NonOdrUseReason NOUR) { 461 return Create(Context, QualifierLoc, TemplateKWLoc, D, 462 RefersToEnclosingVariableOrCapture, 463 DeclarationNameInfo(D->getDeclName(), NameLoc), 464 T, VK, FoundD, TemplateArgs, NOUR); 465 } 466 467 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 468 NestedNameSpecifierLoc QualifierLoc, 469 SourceLocation TemplateKWLoc, ValueDecl *D, 470 bool RefersToEnclosingVariableOrCapture, 471 const DeclarationNameInfo &NameInfo, 472 QualType T, ExprValueKind VK, 473 NamedDecl *FoundD, 474 const TemplateArgumentListInfo *TemplateArgs, 475 NonOdrUseReason NOUR) { 476 // Filter out cases where the found Decl is the same as the value refenenced. 477 if (D == FoundD) 478 FoundD = nullptr; 479 480 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 481 std::size_t Size = 482 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 483 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 484 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 485 HasTemplateKWAndArgsInfo ? 1 : 0, 486 TemplateArgs ? TemplateArgs->size() : 0); 487 488 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 489 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 490 RefersToEnclosingVariableOrCapture, NameInfo, 491 FoundD, TemplateArgs, T, VK, NOUR); 492 } 493 494 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 495 bool HasQualifier, 496 bool HasFoundDecl, 497 bool HasTemplateKWAndArgsInfo, 498 unsigned NumTemplateArgs) { 499 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 500 std::size_t Size = 501 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 502 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 503 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 504 NumTemplateArgs); 505 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 506 return new (Mem) DeclRefExpr(EmptyShell()); 507 } 508 509 void DeclRefExpr::setDecl(ValueDecl *NewD) { 510 D = NewD; 511 if (getType()->isUndeducedType()) 512 setType(NewD->getType()); 513 setDependence(computeDependence(this, NewD->getASTContext())); 514 } 515 516 SourceLocation DeclRefExpr::getBeginLoc() const { 517 if (hasQualifier()) 518 return getQualifierLoc().getBeginLoc(); 519 return getNameInfo().getBeginLoc(); 520 } 521 SourceLocation DeclRefExpr::getEndLoc() const { 522 if (hasExplicitTemplateArgs()) 523 return getRAngleLoc(); 524 return getNameInfo().getEndLoc(); 525 } 526 527 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 528 SourceLocation LParen, 529 SourceLocation RParen, 530 QualType ResultTy, 531 TypeSourceInfo *TSI) 532 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 533 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 534 setTypeSourceInfo(TSI); 535 setDependence(computeDependence(this)); 536 } 537 538 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 539 QualType ResultTy) 540 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 541 542 SYCLUniqueStableNameExpr * 543 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 544 SourceLocation LParen, SourceLocation RParen, 545 TypeSourceInfo *TSI) { 546 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 547 return new (Ctx) 548 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 549 } 550 551 SYCLUniqueStableNameExpr * 552 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 553 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 554 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 555 } 556 557 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 558 return SYCLUniqueStableNameExpr::ComputeName(Context, 559 getTypeSourceInfo()->getType()); 560 } 561 562 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 563 QualType Ty) { 564 auto MangleCallback = [](ASTContext &Ctx, 565 const NamedDecl *ND) -> llvm::Optional<unsigned> { 566 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 567 return RD->getDeviceLambdaManglingNumber(); 568 return llvm::None; 569 }; 570 571 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 572 Context, Context.getDiagnostics(), MangleCallback)}; 573 574 std::string Buffer; 575 Buffer.reserve(128); 576 llvm::raw_string_ostream Out(Buffer); 577 Ctx->mangleTypeName(Ty, Out); 578 579 return Out.str(); 580 } 581 582 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 583 StringLiteral *SL) 584 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 585 PredefinedExprBits.Kind = IK; 586 assert((getIdentKind() == IK) && 587 "IdentKind do not fit in PredefinedExprBitfields!"); 588 bool HasFunctionName = SL != nullptr; 589 PredefinedExprBits.HasFunctionName = HasFunctionName; 590 PredefinedExprBits.Loc = L; 591 if (HasFunctionName) 592 setFunctionName(SL); 593 setDependence(computeDependence(this)); 594 } 595 596 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 597 : Expr(PredefinedExprClass, Empty) { 598 PredefinedExprBits.HasFunctionName = HasFunctionName; 599 } 600 601 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 602 QualType FNTy, IdentKind IK, 603 StringLiteral *SL) { 604 bool HasFunctionName = SL != nullptr; 605 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 606 alignof(PredefinedExpr)); 607 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 608 } 609 610 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 611 bool HasFunctionName) { 612 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 613 alignof(PredefinedExpr)); 614 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 615 } 616 617 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 618 switch (IK) { 619 case Func: 620 return "__func__"; 621 case Function: 622 return "__FUNCTION__"; 623 case FuncDName: 624 return "__FUNCDNAME__"; 625 case LFunction: 626 return "L__FUNCTION__"; 627 case PrettyFunction: 628 return "__PRETTY_FUNCTION__"; 629 case FuncSig: 630 return "__FUNCSIG__"; 631 case LFuncSig: 632 return "L__FUNCSIG__"; 633 case PrettyFunctionNoVirtual: 634 break; 635 } 636 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 637 } 638 639 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 640 // expr" policy instead. 641 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 642 ASTContext &Context = CurrentDecl->getASTContext(); 643 644 if (IK == PredefinedExpr::FuncDName) { 645 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 646 std::unique_ptr<MangleContext> MC; 647 MC.reset(Context.createMangleContext()); 648 649 if (MC->shouldMangleDeclName(ND)) { 650 SmallString<256> Buffer; 651 llvm::raw_svector_ostream Out(Buffer); 652 GlobalDecl GD; 653 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 654 GD = GlobalDecl(CD, Ctor_Base); 655 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 656 GD = GlobalDecl(DD, Dtor_Base); 657 else if (ND->hasAttr<CUDAGlobalAttr>()) 658 GD = GlobalDecl(cast<FunctionDecl>(ND)); 659 else 660 GD = GlobalDecl(ND); 661 MC->mangleName(GD, Out); 662 663 if (!Buffer.empty() && Buffer.front() == '\01') 664 return std::string(Buffer.substr(1)); 665 return std::string(Buffer.str()); 666 } 667 return std::string(ND->getIdentifier()->getName()); 668 } 669 return ""; 670 } 671 if (isa<BlockDecl>(CurrentDecl)) { 672 // For blocks we only emit something if it is enclosed in a function 673 // For top-level block we'd like to include the name of variable, but we 674 // don't have it at this point. 675 auto DC = CurrentDecl->getDeclContext(); 676 if (DC->isFileContext()) 677 return ""; 678 679 SmallString<256> Buffer; 680 llvm::raw_svector_ostream Out(Buffer); 681 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 682 // For nested blocks, propagate up to the parent. 683 Out << ComputeName(IK, DCBlock); 684 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 685 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 686 return std::string(Out.str()); 687 } 688 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 689 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 690 IK != FuncSig && IK != LFuncSig) 691 return FD->getNameAsString(); 692 693 SmallString<256> Name; 694 llvm::raw_svector_ostream Out(Name); 695 696 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 697 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 698 Out << "virtual "; 699 if (MD->isStatic()) 700 Out << "static "; 701 } 702 703 PrintingPolicy Policy(Context.getLangOpts()); 704 std::string Proto; 705 llvm::raw_string_ostream POut(Proto); 706 707 const FunctionDecl *Decl = FD; 708 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 709 Decl = Pattern; 710 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 711 const FunctionProtoType *FT = nullptr; 712 if (FD->hasWrittenPrototype()) 713 FT = dyn_cast<FunctionProtoType>(AFT); 714 715 if (IK == FuncSig || IK == LFuncSig) { 716 switch (AFT->getCallConv()) { 717 case CC_C: POut << "__cdecl "; break; 718 case CC_X86StdCall: POut << "__stdcall "; break; 719 case CC_X86FastCall: POut << "__fastcall "; break; 720 case CC_X86ThisCall: POut << "__thiscall "; break; 721 case CC_X86VectorCall: POut << "__vectorcall "; break; 722 case CC_X86RegCall: POut << "__regcall "; break; 723 // Only bother printing the conventions that MSVC knows about. 724 default: break; 725 } 726 } 727 728 FD->printQualifiedName(POut, Policy); 729 730 POut << "("; 731 if (FT) { 732 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 733 if (i) POut << ", "; 734 POut << Decl->getParamDecl(i)->getType().stream(Policy); 735 } 736 737 if (FT->isVariadic()) { 738 if (FD->getNumParams()) POut << ", "; 739 POut << "..."; 740 } else if ((IK == FuncSig || IK == LFuncSig || 741 !Context.getLangOpts().CPlusPlus) && 742 !Decl->getNumParams()) { 743 POut << "void"; 744 } 745 } 746 POut << ")"; 747 748 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 749 assert(FT && "We must have a written prototype in this case."); 750 if (FT->isConst()) 751 POut << " const"; 752 if (FT->isVolatile()) 753 POut << " volatile"; 754 RefQualifierKind Ref = MD->getRefQualifier(); 755 if (Ref == RQ_LValue) 756 POut << " &"; 757 else if (Ref == RQ_RValue) 758 POut << " &&"; 759 } 760 761 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 762 SpecsTy Specs; 763 const DeclContext *Ctx = FD->getDeclContext(); 764 while (Ctx && isa<NamedDecl>(Ctx)) { 765 const ClassTemplateSpecializationDecl *Spec 766 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 767 if (Spec && !Spec->isExplicitSpecialization()) 768 Specs.push_back(Spec); 769 Ctx = Ctx->getParent(); 770 } 771 772 std::string TemplateParams; 773 llvm::raw_string_ostream TOut(TemplateParams); 774 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 775 const TemplateParameterList *Params = 776 D->getSpecializedTemplate()->getTemplateParameters(); 777 const TemplateArgumentList &Args = D->getTemplateArgs(); 778 assert(Params->size() == Args.size()); 779 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 780 StringRef Param = Params->getParam(i)->getName(); 781 if (Param.empty()) continue; 782 TOut << Param << " = "; 783 Args.get(i).print(Policy, TOut, 784 TemplateParameterList::shouldIncludeTypeForArgument( 785 Policy, Params, i)); 786 TOut << ", "; 787 } 788 } 789 790 FunctionTemplateSpecializationInfo *FSI 791 = FD->getTemplateSpecializationInfo(); 792 if (FSI && !FSI->isExplicitSpecialization()) { 793 const TemplateParameterList* Params 794 = FSI->getTemplate()->getTemplateParameters(); 795 const TemplateArgumentList* Args = FSI->TemplateArguments; 796 assert(Params->size() == Args->size()); 797 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 798 StringRef Param = Params->getParam(i)->getName(); 799 if (Param.empty()) continue; 800 TOut << Param << " = "; 801 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 802 TOut << ", "; 803 } 804 } 805 806 TOut.flush(); 807 if (!TemplateParams.empty()) { 808 // remove the trailing comma and space 809 TemplateParams.resize(TemplateParams.size() - 2); 810 POut << " [" << TemplateParams << "]"; 811 } 812 813 POut.flush(); 814 815 // Print "auto" for all deduced return types. This includes C++1y return 816 // type deduction and lambdas. For trailing return types resolve the 817 // decltype expression. Otherwise print the real type when this is 818 // not a constructor or destructor. 819 if (isa<CXXMethodDecl>(FD) && 820 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 821 Proto = "auto " + Proto; 822 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 823 FT->getReturnType() 824 ->getAs<DecltypeType>() 825 ->getUnderlyingType() 826 .getAsStringInternal(Proto, Policy); 827 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 828 AFT->getReturnType().getAsStringInternal(Proto, Policy); 829 830 Out << Proto; 831 832 return std::string(Name); 833 } 834 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 835 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 836 // Skip to its enclosing function or method, but not its enclosing 837 // CapturedDecl. 838 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 839 const Decl *D = Decl::castFromDeclContext(DC); 840 return ComputeName(IK, D); 841 } 842 llvm_unreachable("CapturedDecl not inside a function or method"); 843 } 844 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 845 SmallString<256> Name; 846 llvm::raw_svector_ostream Out(Name); 847 Out << (MD->isInstanceMethod() ? '-' : '+'); 848 Out << '['; 849 850 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 851 // a null check to avoid a crash. 852 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 853 Out << *ID; 854 855 if (const ObjCCategoryImplDecl *CID = 856 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 857 Out << '(' << *CID << ')'; 858 859 Out << ' '; 860 MD->getSelector().print(Out); 861 Out << ']'; 862 863 return std::string(Name); 864 } 865 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 866 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 867 return "top level"; 868 } 869 return ""; 870 } 871 872 void APNumericStorage::setIntValue(const ASTContext &C, 873 const llvm::APInt &Val) { 874 if (hasAllocation()) 875 C.Deallocate(pVal); 876 877 BitWidth = Val.getBitWidth(); 878 unsigned NumWords = Val.getNumWords(); 879 const uint64_t* Words = Val.getRawData(); 880 if (NumWords > 1) { 881 pVal = new (C) uint64_t[NumWords]; 882 std::copy(Words, Words + NumWords, pVal); 883 } else if (NumWords == 1) 884 VAL = Words[0]; 885 else 886 VAL = 0; 887 } 888 889 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 890 QualType type, SourceLocation l) 891 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 892 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 893 assert(V.getBitWidth() == C.getIntWidth(type) && 894 "Integer type is not the correct size for constant."); 895 setValue(C, V); 896 setDependence(ExprDependence::None); 897 } 898 899 IntegerLiteral * 900 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 901 QualType type, SourceLocation l) { 902 return new (C) IntegerLiteral(C, V, type, l); 903 } 904 905 IntegerLiteral * 906 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 907 return new (C) IntegerLiteral(Empty); 908 } 909 910 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 911 QualType type, SourceLocation l, 912 unsigned Scale) 913 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 914 Scale(Scale) { 915 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 916 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 917 "Fixed point type is not the correct size for constant."); 918 setValue(C, V); 919 setDependence(ExprDependence::None); 920 } 921 922 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 923 const llvm::APInt &V, 924 QualType type, 925 SourceLocation l, 926 unsigned Scale) { 927 return new (C) FixedPointLiteral(C, V, type, l, Scale); 928 } 929 930 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 931 EmptyShell Empty) { 932 return new (C) FixedPointLiteral(Empty); 933 } 934 935 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 936 // Currently the longest decimal number that can be printed is the max for an 937 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 938 // which is 43 characters. 939 SmallString<64> S; 940 FixedPointValueToString( 941 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 942 return std::string(S.str()); 943 } 944 945 void CharacterLiteral::print(unsigned Val, CharacterKind Kind, 946 raw_ostream &OS) { 947 switch (Kind) { 948 case CharacterLiteral::Ascii: 949 break; // no prefix. 950 case CharacterLiteral::Wide: 951 OS << 'L'; 952 break; 953 case CharacterLiteral::UTF8: 954 OS << "u8"; 955 break; 956 case CharacterLiteral::UTF16: 957 OS << 'u'; 958 break; 959 case CharacterLiteral::UTF32: 960 OS << 'U'; 961 break; 962 } 963 964 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); 965 if (!Escaped.empty()) { 966 OS << "'" << Escaped << "'"; 967 } else { 968 // A character literal might be sign-extended, which 969 // would result in an invalid \U escape sequence. 970 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 971 // are not correctly handled. 972 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii) 973 Val &= 0xFFu; 974 if (Val < 256 && isPrintable((unsigned char)Val)) 975 OS << "'" << (char)Val << "'"; 976 else if (Val < 256) 977 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 978 else if (Val <= 0xFFFF) 979 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 980 else 981 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 982 } 983 } 984 985 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 986 bool isexact, QualType Type, SourceLocation L) 987 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 988 setSemantics(V.getSemantics()); 989 FloatingLiteralBits.IsExact = isexact; 990 setValue(C, V); 991 setDependence(ExprDependence::None); 992 } 993 994 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 995 : Expr(FloatingLiteralClass, Empty) { 996 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 997 FloatingLiteralBits.IsExact = false; 998 } 999 1000 FloatingLiteral * 1001 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1002 bool isexact, QualType Type, SourceLocation L) { 1003 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1004 } 1005 1006 FloatingLiteral * 1007 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1008 return new (C) FloatingLiteral(C, Empty); 1009 } 1010 1011 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1012 /// double. Note that this may cause loss of precision, but is useful for 1013 /// debugging dumps, etc. 1014 double FloatingLiteral::getValueAsApproximateDouble() const { 1015 llvm::APFloat V = getValue(); 1016 bool ignored; 1017 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1018 &ignored); 1019 return V.convertToDouble(); 1020 } 1021 1022 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1023 StringKind SK) { 1024 unsigned CharByteWidth = 0; 1025 switch (SK) { 1026 case Ordinary: 1027 case UTF8: 1028 CharByteWidth = Target.getCharWidth(); 1029 break; 1030 case Wide: 1031 CharByteWidth = Target.getWCharWidth(); 1032 break; 1033 case UTF16: 1034 CharByteWidth = Target.getChar16Width(); 1035 break; 1036 case UTF32: 1037 CharByteWidth = Target.getChar32Width(); 1038 break; 1039 } 1040 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1041 CharByteWidth /= 8; 1042 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1043 "The only supported character byte widths are 1,2 and 4!"); 1044 return CharByteWidth; 1045 } 1046 1047 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1048 StringKind Kind, bool Pascal, QualType Ty, 1049 const SourceLocation *Loc, 1050 unsigned NumConcatenated) 1051 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1052 assert(Ctx.getAsConstantArrayType(Ty) && 1053 "StringLiteral must be of constant array type!"); 1054 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1055 unsigned ByteLength = Str.size(); 1056 assert((ByteLength % CharByteWidth == 0) && 1057 "The size of the data must be a multiple of CharByteWidth!"); 1058 1059 // Avoid the expensive division. The compiler should be able to figure it 1060 // out by itself. However as of clang 7, even with the appropriate 1061 // llvm_unreachable added just here, it is not able to do so. 1062 unsigned Length; 1063 switch (CharByteWidth) { 1064 case 1: 1065 Length = ByteLength; 1066 break; 1067 case 2: 1068 Length = ByteLength / 2; 1069 break; 1070 case 4: 1071 Length = ByteLength / 4; 1072 break; 1073 default: 1074 llvm_unreachable("Unsupported character width!"); 1075 } 1076 1077 StringLiteralBits.Kind = Kind; 1078 StringLiteralBits.CharByteWidth = CharByteWidth; 1079 StringLiteralBits.IsPascal = Pascal; 1080 StringLiteralBits.NumConcatenated = NumConcatenated; 1081 *getTrailingObjects<unsigned>() = Length; 1082 1083 // Initialize the trailing array of SourceLocation. 1084 // This is safe since SourceLocation is POD-like. 1085 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1086 NumConcatenated * sizeof(SourceLocation)); 1087 1088 // Initialize the trailing array of char holding the string data. 1089 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1090 1091 setDependence(ExprDependence::None); 1092 } 1093 1094 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1095 unsigned Length, unsigned CharByteWidth) 1096 : Expr(StringLiteralClass, Empty) { 1097 StringLiteralBits.CharByteWidth = CharByteWidth; 1098 StringLiteralBits.NumConcatenated = NumConcatenated; 1099 *getTrailingObjects<unsigned>() = Length; 1100 } 1101 1102 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1103 StringKind Kind, bool Pascal, QualType Ty, 1104 const SourceLocation *Loc, 1105 unsigned NumConcatenated) { 1106 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1107 1, NumConcatenated, Str.size()), 1108 alignof(StringLiteral)); 1109 return new (Mem) 1110 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1111 } 1112 1113 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1114 unsigned NumConcatenated, 1115 unsigned Length, 1116 unsigned CharByteWidth) { 1117 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1118 1, NumConcatenated, Length * CharByteWidth), 1119 alignof(StringLiteral)); 1120 return new (Mem) 1121 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1122 } 1123 1124 void StringLiteral::outputString(raw_ostream &OS) const { 1125 switch (getKind()) { 1126 case Ordinary: 1127 break; // no prefix. 1128 case Wide: OS << 'L'; break; 1129 case UTF8: OS << "u8"; break; 1130 case UTF16: OS << 'u'; break; 1131 case UTF32: OS << 'U'; break; 1132 } 1133 OS << '"'; 1134 static const char Hex[] = "0123456789ABCDEF"; 1135 1136 unsigned LastSlashX = getLength(); 1137 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1138 uint32_t Char = getCodeUnit(I); 1139 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); 1140 if (Escaped.empty()) { 1141 // FIXME: Convert UTF-8 back to codepoints before rendering. 1142 1143 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1144 // Leave invalid surrogates alone; we'll use \x for those. 1145 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1146 Char <= 0xdbff) { 1147 uint32_t Trail = getCodeUnit(I + 1); 1148 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1149 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1150 ++I; 1151 } 1152 } 1153 1154 if (Char > 0xff) { 1155 // If this is a wide string, output characters over 0xff using \x 1156 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1157 // codepoint: use \x escapes for invalid codepoints. 1158 if (getKind() == Wide || 1159 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1160 // FIXME: Is this the best way to print wchar_t? 1161 OS << "\\x"; 1162 int Shift = 28; 1163 while ((Char >> Shift) == 0) 1164 Shift -= 4; 1165 for (/**/; Shift >= 0; Shift -= 4) 1166 OS << Hex[(Char >> Shift) & 15]; 1167 LastSlashX = I; 1168 continue; 1169 } 1170 1171 if (Char > 0xffff) 1172 OS << "\\U00" 1173 << Hex[(Char >> 20) & 15] 1174 << Hex[(Char >> 16) & 15]; 1175 else 1176 OS << "\\u"; 1177 OS << Hex[(Char >> 12) & 15] 1178 << Hex[(Char >> 8) & 15] 1179 << Hex[(Char >> 4) & 15] 1180 << Hex[(Char >> 0) & 15]; 1181 continue; 1182 } 1183 1184 // If we used \x... for the previous character, and this character is a 1185 // hexadecimal digit, prevent it being slurped as part of the \x. 1186 if (LastSlashX + 1 == I) { 1187 switch (Char) { 1188 case '0': case '1': case '2': case '3': case '4': 1189 case '5': case '6': case '7': case '8': case '9': 1190 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1191 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1192 OS << "\"\""; 1193 } 1194 } 1195 1196 assert(Char <= 0xff && 1197 "Characters above 0xff should already have been handled."); 1198 1199 if (isPrintable(Char)) 1200 OS << (char)Char; 1201 else // Output anything hard as an octal escape. 1202 OS << '\\' 1203 << (char)('0' + ((Char >> 6) & 7)) 1204 << (char)('0' + ((Char >> 3) & 7)) 1205 << (char)('0' + ((Char >> 0) & 7)); 1206 } else { 1207 // Handle some common non-printable cases to make dumps prettier. 1208 OS << Escaped; 1209 } 1210 } 1211 OS << '"'; 1212 } 1213 1214 /// getLocationOfByte - Return a source location that points to the specified 1215 /// byte of this string literal. 1216 /// 1217 /// Strings are amazingly complex. They can be formed from multiple tokens and 1218 /// can have escape sequences in them in addition to the usual trigraph and 1219 /// escaped newline business. This routine handles this complexity. 1220 /// 1221 /// The *StartToken sets the first token to be searched in this function and 1222 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1223 /// returning, it updates the *StartToken to the TokNo of the token being found 1224 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1225 /// string. 1226 /// Using these two parameters can reduce the time complexity from O(n^2) to 1227 /// O(n) if one wants to get the location of byte for all the tokens in a 1228 /// string. 1229 /// 1230 SourceLocation 1231 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1232 const LangOptions &Features, 1233 const TargetInfo &Target, unsigned *StartToken, 1234 unsigned *StartTokenByteOffset) const { 1235 assert((getKind() == StringLiteral::Ordinary || 1236 getKind() == StringLiteral::UTF8) && 1237 "Only narrow string literals are currently supported"); 1238 1239 // Loop over all of the tokens in this string until we find the one that 1240 // contains the byte we're looking for. 1241 unsigned TokNo = 0; 1242 unsigned StringOffset = 0; 1243 if (StartToken) 1244 TokNo = *StartToken; 1245 if (StartTokenByteOffset) { 1246 StringOffset = *StartTokenByteOffset; 1247 ByteNo -= StringOffset; 1248 } 1249 while (true) { 1250 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1251 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1252 1253 // Get the spelling of the string so that we can get the data that makes up 1254 // the string literal, not the identifier for the macro it is potentially 1255 // expanded through. 1256 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1257 1258 // Re-lex the token to get its length and original spelling. 1259 std::pair<FileID, unsigned> LocInfo = 1260 SM.getDecomposedLoc(StrTokSpellingLoc); 1261 bool Invalid = false; 1262 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1263 if (Invalid) { 1264 if (StartTokenByteOffset != nullptr) 1265 *StartTokenByteOffset = StringOffset; 1266 if (StartToken != nullptr) 1267 *StartToken = TokNo; 1268 return StrTokSpellingLoc; 1269 } 1270 1271 const char *StrData = Buffer.data()+LocInfo.second; 1272 1273 // Create a lexer starting at the beginning of this token. 1274 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1275 Buffer.begin(), StrData, Buffer.end()); 1276 Token TheTok; 1277 TheLexer.LexFromRawLexer(TheTok); 1278 1279 // Use the StringLiteralParser to compute the length of the string in bytes. 1280 StringLiteralParser SLP(TheTok, SM, Features, Target); 1281 unsigned TokNumBytes = SLP.GetStringLength(); 1282 1283 // If the byte is in this token, return the location of the byte. 1284 if (ByteNo < TokNumBytes || 1285 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1286 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1287 1288 // Now that we know the offset of the token in the spelling, use the 1289 // preprocessor to get the offset in the original source. 1290 if (StartTokenByteOffset != nullptr) 1291 *StartTokenByteOffset = StringOffset; 1292 if (StartToken != nullptr) 1293 *StartToken = TokNo; 1294 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1295 } 1296 1297 // Move to the next string token. 1298 StringOffset += TokNumBytes; 1299 ++TokNo; 1300 ByteNo -= TokNumBytes; 1301 } 1302 } 1303 1304 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1305 /// corresponds to, e.g. "sizeof" or "[pre]++". 1306 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1307 switch (Op) { 1308 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1309 #include "clang/AST/OperationKinds.def" 1310 } 1311 llvm_unreachable("Unknown unary operator"); 1312 } 1313 1314 UnaryOperatorKind 1315 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1316 switch (OO) { 1317 default: llvm_unreachable("No unary operator for overloaded function"); 1318 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1319 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1320 case OO_Amp: return UO_AddrOf; 1321 case OO_Star: return UO_Deref; 1322 case OO_Plus: return UO_Plus; 1323 case OO_Minus: return UO_Minus; 1324 case OO_Tilde: return UO_Not; 1325 case OO_Exclaim: return UO_LNot; 1326 case OO_Coawait: return UO_Coawait; 1327 } 1328 } 1329 1330 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1331 switch (Opc) { 1332 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1333 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1334 case UO_AddrOf: return OO_Amp; 1335 case UO_Deref: return OO_Star; 1336 case UO_Plus: return OO_Plus; 1337 case UO_Minus: return OO_Minus; 1338 case UO_Not: return OO_Tilde; 1339 case UO_LNot: return OO_Exclaim; 1340 case UO_Coawait: return OO_Coawait; 1341 default: return OO_None; 1342 } 1343 } 1344 1345 1346 //===----------------------------------------------------------------------===// 1347 // Postfix Operators. 1348 //===----------------------------------------------------------------------===// 1349 1350 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1351 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1352 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1353 unsigned MinNumArgs, ADLCallKind UsesADL) 1354 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1355 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1356 unsigned NumPreArgs = PreArgs.size(); 1357 CallExprBits.NumPreArgs = NumPreArgs; 1358 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1359 1360 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1361 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1362 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1363 "OffsetToTrailingObjects overflow!"); 1364 1365 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1366 1367 setCallee(Fn); 1368 for (unsigned I = 0; I != NumPreArgs; ++I) 1369 setPreArg(I, PreArgs[I]); 1370 for (unsigned I = 0; I != Args.size(); ++I) 1371 setArg(I, Args[I]); 1372 for (unsigned I = Args.size(); I != NumArgs; ++I) 1373 setArg(I, nullptr); 1374 1375 this->computeDependence(); 1376 1377 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1378 if (hasStoredFPFeatures()) 1379 setStoredFPFeatures(FPFeatures); 1380 } 1381 1382 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1383 bool HasFPFeatures, EmptyShell Empty) 1384 : Expr(SC, Empty), NumArgs(NumArgs) { 1385 CallExprBits.NumPreArgs = NumPreArgs; 1386 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1387 1388 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1389 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1390 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1391 "OffsetToTrailingObjects overflow!"); 1392 CallExprBits.HasFPFeatures = HasFPFeatures; 1393 } 1394 1395 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1396 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1397 SourceLocation RParenLoc, 1398 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1399 ADLCallKind UsesADL) { 1400 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1401 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1402 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1403 void *Mem = 1404 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1405 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1406 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1407 } 1408 1409 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1410 ExprValueKind VK, SourceLocation RParenLoc, 1411 ADLCallKind UsesADL) { 1412 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1413 "Misaligned memory in CallExpr::CreateTemporary!"); 1414 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1415 VK, RParenLoc, FPOptionsOverride(), 1416 /*MinNumArgs=*/0, UsesADL); 1417 } 1418 1419 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1420 bool HasFPFeatures, EmptyShell Empty) { 1421 unsigned SizeOfTrailingObjects = 1422 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1423 void *Mem = 1424 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1425 return new (Mem) 1426 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1427 } 1428 1429 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1430 switch (SC) { 1431 case CallExprClass: 1432 return sizeof(CallExpr); 1433 case CXXOperatorCallExprClass: 1434 return sizeof(CXXOperatorCallExpr); 1435 case CXXMemberCallExprClass: 1436 return sizeof(CXXMemberCallExpr); 1437 case UserDefinedLiteralClass: 1438 return sizeof(UserDefinedLiteral); 1439 case CUDAKernelCallExprClass: 1440 return sizeof(CUDAKernelCallExpr); 1441 default: 1442 llvm_unreachable("unexpected class deriving from CallExpr!"); 1443 } 1444 } 1445 1446 Decl *Expr::getReferencedDeclOfCallee() { 1447 Expr *CEE = IgnoreParenImpCasts(); 1448 1449 while (SubstNonTypeTemplateParmExpr *NTTP = 1450 dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1451 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1452 } 1453 1454 // If we're calling a dereference, look at the pointer instead. 1455 while (true) { 1456 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1457 if (BO->isPtrMemOp()) { 1458 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1459 continue; 1460 } 1461 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1462 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1463 UO->getOpcode() == UO_Plus) { 1464 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1465 continue; 1466 } 1467 } 1468 break; 1469 } 1470 1471 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1472 return DRE->getDecl(); 1473 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1474 return ME->getMemberDecl(); 1475 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1476 return BE->getBlockDecl(); 1477 1478 return nullptr; 1479 } 1480 1481 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1482 unsigned CallExpr::getBuiltinCallee() const { 1483 auto *FDecl = getDirectCallee(); 1484 return FDecl ? FDecl->getBuiltinID() : 0; 1485 } 1486 1487 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1488 if (unsigned BI = getBuiltinCallee()) 1489 return Ctx.BuiltinInfo.isUnevaluated(BI); 1490 return false; 1491 } 1492 1493 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1494 const Expr *Callee = getCallee(); 1495 QualType CalleeType = Callee->getType(); 1496 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1497 CalleeType = FnTypePtr->getPointeeType(); 1498 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1499 CalleeType = BPT->getPointeeType(); 1500 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1501 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1502 return Ctx.VoidTy; 1503 1504 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1505 return Ctx.DependentTy; 1506 1507 // This should never be overloaded and so should never return null. 1508 CalleeType = Expr::findBoundMemberType(Callee); 1509 assert(!CalleeType.isNull()); 1510 } else if (CalleeType->isDependentType() || 1511 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1512 return Ctx.DependentTy; 1513 } 1514 1515 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1516 return FnType->getReturnType(); 1517 } 1518 1519 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1520 // If the return type is a struct, union, or enum that is marked nodiscard, 1521 // then return the return type attribute. 1522 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1523 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1524 return A; 1525 1526 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; 1527 TD = TD->desugar()->getAs<TypedefType>()) 1528 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) 1529 return A; 1530 1531 // Otherwise, see if the callee is marked nodiscard and return that attribute 1532 // instead. 1533 const Decl *D = getCalleeDecl(); 1534 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1535 } 1536 1537 SourceLocation CallExpr::getBeginLoc() const { 1538 if (isa<CXXOperatorCallExpr>(this)) 1539 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1540 1541 SourceLocation begin = getCallee()->getBeginLoc(); 1542 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1543 begin = getArg(0)->getBeginLoc(); 1544 return begin; 1545 } 1546 SourceLocation CallExpr::getEndLoc() const { 1547 if (isa<CXXOperatorCallExpr>(this)) 1548 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1549 1550 SourceLocation end = getRParenLoc(); 1551 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1552 end = getArg(getNumArgs() - 1)->getEndLoc(); 1553 return end; 1554 } 1555 1556 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1557 SourceLocation OperatorLoc, 1558 TypeSourceInfo *tsi, 1559 ArrayRef<OffsetOfNode> comps, 1560 ArrayRef<Expr*> exprs, 1561 SourceLocation RParenLoc) { 1562 void *Mem = C.Allocate( 1563 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1564 1565 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1566 RParenLoc); 1567 } 1568 1569 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1570 unsigned numComps, unsigned numExprs) { 1571 void *Mem = 1572 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1573 return new (Mem) OffsetOfExpr(numComps, numExprs); 1574 } 1575 1576 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1577 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1578 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1579 SourceLocation RParenLoc) 1580 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1581 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1582 NumComps(comps.size()), NumExprs(exprs.size()) { 1583 for (unsigned i = 0; i != comps.size(); ++i) 1584 setComponent(i, comps[i]); 1585 for (unsigned i = 0; i != exprs.size(); ++i) 1586 setIndexExpr(i, exprs[i]); 1587 1588 setDependence(computeDependence(this)); 1589 } 1590 1591 IdentifierInfo *OffsetOfNode::getFieldName() const { 1592 assert(getKind() == Field || getKind() == Identifier); 1593 if (getKind() == Field) 1594 return getField()->getIdentifier(); 1595 1596 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1597 } 1598 1599 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1600 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1601 SourceLocation op, SourceLocation rp) 1602 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1603 OpLoc(op), RParenLoc(rp) { 1604 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1605 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1606 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1607 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1608 UnaryExprOrTypeTraitExprBits.IsType = false; 1609 Argument.Ex = E; 1610 setDependence(computeDependence(this)); 1611 } 1612 1613 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1614 ValueDecl *MemberDecl, 1615 const DeclarationNameInfo &NameInfo, QualType T, 1616 ExprValueKind VK, ExprObjectKind OK, 1617 NonOdrUseReason NOUR) 1618 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1619 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1620 assert(!NameInfo.getName() || 1621 MemberDecl->getDeclName() == NameInfo.getName()); 1622 MemberExprBits.IsArrow = IsArrow; 1623 MemberExprBits.HasQualifierOrFoundDecl = false; 1624 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1625 MemberExprBits.HadMultipleCandidates = false; 1626 MemberExprBits.NonOdrUseReason = NOUR; 1627 MemberExprBits.OperatorLoc = OperatorLoc; 1628 setDependence(computeDependence(this)); 1629 } 1630 1631 MemberExpr *MemberExpr::Create( 1632 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1633 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1634 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1635 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1636 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1637 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1638 FoundDecl.getAccess() != MemberDecl->getAccess(); 1639 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1640 std::size_t Size = 1641 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1642 TemplateArgumentLoc>( 1643 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1644 TemplateArgs ? TemplateArgs->size() : 0); 1645 1646 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1647 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1648 NameInfo, T, VK, OK, NOUR); 1649 1650 // FIXME: remove remaining dependence computation to computeDependence(). 1651 auto Deps = E->getDependence(); 1652 if (HasQualOrFound) { 1653 // FIXME: Wrong. We should be looking at the member declaration we found. 1654 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) 1655 Deps |= ExprDependence::TypeValueInstantiation; 1656 else if (QualifierLoc && 1657 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1658 Deps |= ExprDependence::Instantiation; 1659 1660 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1661 1662 MemberExprNameQualifier *NQ = 1663 E->getTrailingObjects<MemberExprNameQualifier>(); 1664 NQ->QualifierLoc = QualifierLoc; 1665 NQ->FoundDecl = FoundDecl; 1666 } 1667 1668 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1669 TemplateArgs || TemplateKWLoc.isValid(); 1670 1671 if (TemplateArgs) { 1672 auto TemplateArgDeps = TemplateArgumentDependence::None; 1673 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1674 TemplateKWLoc, *TemplateArgs, 1675 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1676 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation) 1677 Deps |= ExprDependence::Instantiation; 1678 } else if (TemplateKWLoc.isValid()) { 1679 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1680 TemplateKWLoc); 1681 } 1682 E->setDependence(Deps); 1683 1684 return E; 1685 } 1686 1687 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1688 bool HasQualifier, bool HasFoundDecl, 1689 bool HasTemplateKWAndArgsInfo, 1690 unsigned NumTemplateArgs) { 1691 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1692 "template args but no template arg info?"); 1693 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1694 std::size_t Size = 1695 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1696 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1697 HasTemplateKWAndArgsInfo ? 1 : 0, 1698 NumTemplateArgs); 1699 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1700 return new (Mem) MemberExpr(EmptyShell()); 1701 } 1702 1703 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1704 MemberDecl = NewD; 1705 if (getType()->isUndeducedType()) 1706 setType(NewD->getType()); 1707 setDependence(computeDependence(this)); 1708 } 1709 1710 SourceLocation MemberExpr::getBeginLoc() const { 1711 if (isImplicitAccess()) { 1712 if (hasQualifier()) 1713 return getQualifierLoc().getBeginLoc(); 1714 return MemberLoc; 1715 } 1716 1717 // FIXME: We don't want this to happen. Rather, we should be able to 1718 // detect all kinds of implicit accesses more cleanly. 1719 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1720 if (BaseStartLoc.isValid()) 1721 return BaseStartLoc; 1722 return MemberLoc; 1723 } 1724 SourceLocation MemberExpr::getEndLoc() const { 1725 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1726 if (hasExplicitTemplateArgs()) 1727 EndLoc = getRAngleLoc(); 1728 else if (EndLoc.isInvalid()) 1729 EndLoc = getBase()->getEndLoc(); 1730 return EndLoc; 1731 } 1732 1733 bool CastExpr::CastConsistency() const { 1734 switch (getCastKind()) { 1735 case CK_DerivedToBase: 1736 case CK_UncheckedDerivedToBase: 1737 case CK_DerivedToBaseMemberPointer: 1738 case CK_BaseToDerived: 1739 case CK_BaseToDerivedMemberPointer: 1740 assert(!path_empty() && "Cast kind should have a base path!"); 1741 break; 1742 1743 case CK_CPointerToObjCPointerCast: 1744 assert(getType()->isObjCObjectPointerType()); 1745 assert(getSubExpr()->getType()->isPointerType()); 1746 goto CheckNoBasePath; 1747 1748 case CK_BlockPointerToObjCPointerCast: 1749 assert(getType()->isObjCObjectPointerType()); 1750 assert(getSubExpr()->getType()->isBlockPointerType()); 1751 goto CheckNoBasePath; 1752 1753 case CK_ReinterpretMemberPointer: 1754 assert(getType()->isMemberPointerType()); 1755 assert(getSubExpr()->getType()->isMemberPointerType()); 1756 goto CheckNoBasePath; 1757 1758 case CK_BitCast: 1759 // Arbitrary casts to C pointer types count as bitcasts. 1760 // Otherwise, we should only have block and ObjC pointer casts 1761 // here if they stay within the type kind. 1762 if (!getType()->isPointerType()) { 1763 assert(getType()->isObjCObjectPointerType() == 1764 getSubExpr()->getType()->isObjCObjectPointerType()); 1765 assert(getType()->isBlockPointerType() == 1766 getSubExpr()->getType()->isBlockPointerType()); 1767 } 1768 goto CheckNoBasePath; 1769 1770 case CK_AnyPointerToBlockPointerCast: 1771 assert(getType()->isBlockPointerType()); 1772 assert(getSubExpr()->getType()->isAnyPointerType() && 1773 !getSubExpr()->getType()->isBlockPointerType()); 1774 goto CheckNoBasePath; 1775 1776 case CK_CopyAndAutoreleaseBlockObject: 1777 assert(getType()->isBlockPointerType()); 1778 assert(getSubExpr()->getType()->isBlockPointerType()); 1779 goto CheckNoBasePath; 1780 1781 case CK_FunctionToPointerDecay: 1782 assert(getType()->isPointerType()); 1783 assert(getSubExpr()->getType()->isFunctionType()); 1784 goto CheckNoBasePath; 1785 1786 case CK_AddressSpaceConversion: { 1787 auto Ty = getType(); 1788 auto SETy = getSubExpr()->getType(); 1789 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1790 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1791 Ty = Ty->getPointeeType(); 1792 SETy = SETy->getPointeeType(); 1793 } 1794 assert((Ty->isDependentType() || SETy->isDependentType()) || 1795 (!Ty.isNull() && !SETy.isNull() && 1796 Ty.getAddressSpace() != SETy.getAddressSpace())); 1797 goto CheckNoBasePath; 1798 } 1799 // These should not have an inheritance path. 1800 case CK_Dynamic: 1801 case CK_ToUnion: 1802 case CK_ArrayToPointerDecay: 1803 case CK_NullToMemberPointer: 1804 case CK_NullToPointer: 1805 case CK_ConstructorConversion: 1806 case CK_IntegralToPointer: 1807 case CK_PointerToIntegral: 1808 case CK_ToVoid: 1809 case CK_VectorSplat: 1810 case CK_IntegralCast: 1811 case CK_BooleanToSignedIntegral: 1812 case CK_IntegralToFloating: 1813 case CK_FloatingToIntegral: 1814 case CK_FloatingCast: 1815 case CK_ObjCObjectLValueCast: 1816 case CK_FloatingRealToComplex: 1817 case CK_FloatingComplexToReal: 1818 case CK_FloatingComplexCast: 1819 case CK_FloatingComplexToIntegralComplex: 1820 case CK_IntegralRealToComplex: 1821 case CK_IntegralComplexToReal: 1822 case CK_IntegralComplexCast: 1823 case CK_IntegralComplexToFloatingComplex: 1824 case CK_ARCProduceObject: 1825 case CK_ARCConsumeObject: 1826 case CK_ARCReclaimReturnedObject: 1827 case CK_ARCExtendBlockObject: 1828 case CK_ZeroToOCLOpaqueType: 1829 case CK_IntToOCLSampler: 1830 case CK_FloatingToFixedPoint: 1831 case CK_FixedPointToFloating: 1832 case CK_FixedPointCast: 1833 case CK_FixedPointToIntegral: 1834 case CK_IntegralToFixedPoint: 1835 case CK_MatrixCast: 1836 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1837 goto CheckNoBasePath; 1838 1839 case CK_Dependent: 1840 case CK_LValueToRValue: 1841 case CK_NoOp: 1842 case CK_AtomicToNonAtomic: 1843 case CK_NonAtomicToAtomic: 1844 case CK_PointerToBoolean: 1845 case CK_IntegralToBoolean: 1846 case CK_FloatingToBoolean: 1847 case CK_MemberPointerToBoolean: 1848 case CK_FloatingComplexToBoolean: 1849 case CK_IntegralComplexToBoolean: 1850 case CK_LValueBitCast: // -> bool& 1851 case CK_LValueToRValueBitCast: 1852 case CK_UserDefinedConversion: // operator bool() 1853 case CK_BuiltinFnToFnPtr: 1854 case CK_FixedPointToBoolean: 1855 CheckNoBasePath: 1856 assert(path_empty() && "Cast kind should not have a base path!"); 1857 break; 1858 } 1859 return true; 1860 } 1861 1862 const char *CastExpr::getCastKindName(CastKind CK) { 1863 switch (CK) { 1864 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1865 #include "clang/AST/OperationKinds.def" 1866 } 1867 llvm_unreachable("Unhandled cast kind!"); 1868 } 1869 1870 namespace { 1871 // Skip over implicit nodes produced as part of semantic analysis. 1872 // Designed for use with IgnoreExprNodes. 1873 Expr *ignoreImplicitSemaNodes(Expr *E) { 1874 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1875 return Materialize->getSubExpr(); 1876 1877 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1878 return Binder->getSubExpr(); 1879 1880 if (auto *Full = dyn_cast<FullExpr>(E)) 1881 return Full->getSubExpr(); 1882 1883 return E; 1884 } 1885 } // namespace 1886 1887 Expr *CastExpr::getSubExprAsWritten() { 1888 const Expr *SubExpr = nullptr; 1889 1890 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1891 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 1892 1893 // Conversions by constructor and conversion functions have a 1894 // subexpression describing the call; strip it off. 1895 if (E->getCastKind() == CK_ConstructorConversion) { 1896 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), 1897 ignoreImplicitSemaNodes); 1898 } else if (E->getCastKind() == CK_UserDefinedConversion) { 1899 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && 1900 "Unexpected SubExpr for CK_UserDefinedConversion."); 1901 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1902 SubExpr = MCE->getImplicitObjectArgument(); 1903 } 1904 } 1905 1906 return const_cast<Expr *>(SubExpr); 1907 } 1908 1909 NamedDecl *CastExpr::getConversionFunction() const { 1910 const Expr *SubExpr = nullptr; 1911 1912 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1913 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 1914 1915 if (E->getCastKind() == CK_ConstructorConversion) 1916 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1917 1918 if (E->getCastKind() == CK_UserDefinedConversion) { 1919 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1920 return MCE->getMethodDecl(); 1921 } 1922 } 1923 1924 return nullptr; 1925 } 1926 1927 CXXBaseSpecifier **CastExpr::path_buffer() { 1928 switch (getStmtClass()) { 1929 #define ABSTRACT_STMT(x) 1930 #define CASTEXPR(Type, Base) \ 1931 case Stmt::Type##Class: \ 1932 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1933 #define STMT(Type, Base) 1934 #include "clang/AST/StmtNodes.inc" 1935 default: 1936 llvm_unreachable("non-cast expressions not possible here"); 1937 } 1938 } 1939 1940 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 1941 QualType opType) { 1942 auto RD = unionType->castAs<RecordType>()->getDecl(); 1943 return getTargetFieldForToUnionCast(RD, opType); 1944 } 1945 1946 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 1947 QualType OpType) { 1948 auto &Ctx = RD->getASTContext(); 1949 RecordDecl::field_iterator Field, FieldEnd; 1950 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 1951 Field != FieldEnd; ++Field) { 1952 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 1953 !Field->isUnnamedBitfield()) { 1954 return *Field; 1955 } 1956 } 1957 return nullptr; 1958 } 1959 1960 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 1961 assert(hasStoredFPFeatures()); 1962 switch (getStmtClass()) { 1963 case ImplicitCastExprClass: 1964 return static_cast<ImplicitCastExpr *>(this) 1965 ->getTrailingObjects<FPOptionsOverride>(); 1966 case CStyleCastExprClass: 1967 return static_cast<CStyleCastExpr *>(this) 1968 ->getTrailingObjects<FPOptionsOverride>(); 1969 case CXXFunctionalCastExprClass: 1970 return static_cast<CXXFunctionalCastExpr *>(this) 1971 ->getTrailingObjects<FPOptionsOverride>(); 1972 case CXXStaticCastExprClass: 1973 return static_cast<CXXStaticCastExpr *>(this) 1974 ->getTrailingObjects<FPOptionsOverride>(); 1975 default: 1976 llvm_unreachable("Cast does not have FPFeatures"); 1977 } 1978 } 1979 1980 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1981 CastKind Kind, Expr *Operand, 1982 const CXXCastPath *BasePath, 1983 ExprValueKind VK, 1984 FPOptionsOverride FPO) { 1985 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1986 void *Buffer = 1987 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 1988 PathSize, FPO.requiresTrailingStorage())); 1989 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 1990 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 1991 assert((Kind != CK_LValueToRValue || 1992 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 1993 "invalid type for lvalue-to-rvalue conversion"); 1994 ImplicitCastExpr *E = 1995 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 1996 if (PathSize) 1997 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1998 E->getTrailingObjects<CXXBaseSpecifier *>()); 1999 return E; 2000 } 2001 2002 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2003 unsigned PathSize, 2004 bool HasFPFeatures) { 2005 void *Buffer = 2006 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2007 PathSize, HasFPFeatures)); 2008 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2009 } 2010 2011 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2012 ExprValueKind VK, CastKind K, Expr *Op, 2013 const CXXCastPath *BasePath, 2014 FPOptionsOverride FPO, 2015 TypeSourceInfo *WrittenTy, 2016 SourceLocation L, SourceLocation R) { 2017 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2018 void *Buffer = 2019 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2020 PathSize, FPO.requiresTrailingStorage())); 2021 CStyleCastExpr *E = 2022 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2023 if (PathSize) 2024 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2025 E->getTrailingObjects<CXXBaseSpecifier *>()); 2026 return E; 2027 } 2028 2029 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2030 unsigned PathSize, 2031 bool HasFPFeatures) { 2032 void *Buffer = 2033 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2034 PathSize, HasFPFeatures)); 2035 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2036 } 2037 2038 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2039 /// corresponds to, e.g. "<<=". 2040 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2041 switch (Op) { 2042 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2043 #include "clang/AST/OperationKinds.def" 2044 } 2045 llvm_unreachable("Invalid OpCode!"); 2046 } 2047 2048 BinaryOperatorKind 2049 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2050 switch (OO) { 2051 default: llvm_unreachable("Not an overloadable binary operator"); 2052 case OO_Plus: return BO_Add; 2053 case OO_Minus: return BO_Sub; 2054 case OO_Star: return BO_Mul; 2055 case OO_Slash: return BO_Div; 2056 case OO_Percent: return BO_Rem; 2057 case OO_Caret: return BO_Xor; 2058 case OO_Amp: return BO_And; 2059 case OO_Pipe: return BO_Or; 2060 case OO_Equal: return BO_Assign; 2061 case OO_Spaceship: return BO_Cmp; 2062 case OO_Less: return BO_LT; 2063 case OO_Greater: return BO_GT; 2064 case OO_PlusEqual: return BO_AddAssign; 2065 case OO_MinusEqual: return BO_SubAssign; 2066 case OO_StarEqual: return BO_MulAssign; 2067 case OO_SlashEqual: return BO_DivAssign; 2068 case OO_PercentEqual: return BO_RemAssign; 2069 case OO_CaretEqual: return BO_XorAssign; 2070 case OO_AmpEqual: return BO_AndAssign; 2071 case OO_PipeEqual: return BO_OrAssign; 2072 case OO_LessLess: return BO_Shl; 2073 case OO_GreaterGreater: return BO_Shr; 2074 case OO_LessLessEqual: return BO_ShlAssign; 2075 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2076 case OO_EqualEqual: return BO_EQ; 2077 case OO_ExclaimEqual: return BO_NE; 2078 case OO_LessEqual: return BO_LE; 2079 case OO_GreaterEqual: return BO_GE; 2080 case OO_AmpAmp: return BO_LAnd; 2081 case OO_PipePipe: return BO_LOr; 2082 case OO_Comma: return BO_Comma; 2083 case OO_ArrowStar: return BO_PtrMemI; 2084 } 2085 } 2086 2087 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2088 static const OverloadedOperatorKind OverOps[] = { 2089 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2090 OO_Star, OO_Slash, OO_Percent, 2091 OO_Plus, OO_Minus, 2092 OO_LessLess, OO_GreaterGreater, 2093 OO_Spaceship, 2094 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2095 OO_EqualEqual, OO_ExclaimEqual, 2096 OO_Amp, 2097 OO_Caret, 2098 OO_Pipe, 2099 OO_AmpAmp, 2100 OO_PipePipe, 2101 OO_Equal, OO_StarEqual, 2102 OO_SlashEqual, OO_PercentEqual, 2103 OO_PlusEqual, OO_MinusEqual, 2104 OO_LessLessEqual, OO_GreaterGreaterEqual, 2105 OO_AmpEqual, OO_CaretEqual, 2106 OO_PipeEqual, 2107 OO_Comma 2108 }; 2109 return OverOps[Opc]; 2110 } 2111 2112 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2113 Opcode Opc, 2114 Expr *LHS, Expr *RHS) { 2115 if (Opc != BO_Add) 2116 return false; 2117 2118 // Check that we have one pointer and one integer operand. 2119 Expr *PExp; 2120 if (LHS->getType()->isPointerType()) { 2121 if (!RHS->getType()->isIntegerType()) 2122 return false; 2123 PExp = LHS; 2124 } else if (RHS->getType()->isPointerType()) { 2125 if (!LHS->getType()->isIntegerType()) 2126 return false; 2127 PExp = RHS; 2128 } else { 2129 return false; 2130 } 2131 2132 // Check that the pointer is a nullptr. 2133 if (!PExp->IgnoreParenCasts() 2134 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2135 return false; 2136 2137 // Check that the pointee type is char-sized. 2138 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2139 if (!PTy || !PTy->getPointeeType()->isCharType()) 2140 return false; 2141 2142 return true; 2143 } 2144 2145 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2146 QualType ResultTy, SourceLocation BLoc, 2147 SourceLocation RParenLoc, 2148 DeclContext *ParentContext) 2149 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), 2150 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2151 SourceLocExprBits.Kind = Kind; 2152 setDependence(ExprDependence::None); 2153 } 2154 2155 StringRef SourceLocExpr::getBuiltinStr() const { 2156 switch (getIdentKind()) { 2157 case File: 2158 return "__builtin_FILE"; 2159 case Function: 2160 return "__builtin_FUNCTION"; 2161 case Line: 2162 return "__builtin_LINE"; 2163 case Column: 2164 return "__builtin_COLUMN"; 2165 case SourceLocStruct: 2166 return "__builtin_source_location"; 2167 } 2168 llvm_unreachable("unexpected IdentKind!"); 2169 } 2170 2171 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2172 const Expr *DefaultExpr) const { 2173 SourceLocation Loc; 2174 const DeclContext *Context; 2175 2176 std::tie(Loc, 2177 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2178 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2179 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2180 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2181 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2182 return {this->getLocation(), this->getParentContext()}; 2183 }(); 2184 2185 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2186 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2187 2188 auto MakeStringLiteral = [&](StringRef Tmp) { 2189 using LValuePathEntry = APValue::LValuePathEntry; 2190 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2191 // Decay the string to a pointer to the first character. 2192 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2193 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2194 }; 2195 2196 switch (getIdentKind()) { 2197 case SourceLocExpr::File: { 2198 SmallString<256> Path(PLoc.getFilename()); 2199 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2200 Ctx.getTargetInfo()); 2201 return MakeStringLiteral(Path); 2202 } 2203 case SourceLocExpr::Function: { 2204 const auto *CurDecl = dyn_cast<Decl>(Context); 2205 return MakeStringLiteral( 2206 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2207 : std::string("")); 2208 } 2209 case SourceLocExpr::Line: 2210 case SourceLocExpr::Column: { 2211 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2212 /*isUnsigned=*/true); 2213 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2214 : PLoc.getColumn(); 2215 return APValue(IntVal); 2216 } 2217 case SourceLocExpr::SourceLocStruct: { 2218 // Fill in a std::source_location::__impl structure, by creating an 2219 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to 2220 // that. 2221 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); 2222 assert(ImplDecl); 2223 2224 // Construct an APValue for the __impl struct, and get or create a Decl 2225 // corresponding to that. Note that we've already verified that the shape of 2226 // the ImplDecl type is as expected. 2227 2228 APValue Value(APValue::UninitStruct(), 0, 4); 2229 for (FieldDecl *F : ImplDecl->fields()) { 2230 StringRef Name = F->getName(); 2231 if (Name == "_M_file_name") { 2232 SmallString<256> Path(PLoc.getFilename()); 2233 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2234 Ctx.getTargetInfo()); 2235 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); 2236 } else if (Name == "_M_function_name") { 2237 // Note: this emits the PrettyFunction name -- different than what 2238 // __builtin_FUNCTION() above returns! 2239 const auto *CurDecl = dyn_cast<Decl>(Context); 2240 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( 2241 CurDecl && !isa<TranslationUnitDecl>(CurDecl) 2242 ? StringRef(PredefinedExpr::ComputeName( 2243 PredefinedExpr::PrettyFunction, CurDecl)) 2244 : ""); 2245 } else if (Name == "_M_line") { 2246 QualType Ty = F->getType(); 2247 llvm::APSInt IntVal(Ctx.getIntWidth(Ty), 2248 Ty->hasUnsignedIntegerRepresentation()); 2249 IntVal = PLoc.getLine(); 2250 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2251 } else if (Name == "_M_column") { 2252 QualType Ty = F->getType(); 2253 llvm::APSInt IntVal(Ctx.getIntWidth(Ty), 2254 Ty->hasUnsignedIntegerRepresentation()); 2255 IntVal = PLoc.getColumn(); 2256 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2257 } 2258 } 2259 2260 UnnamedGlobalConstantDecl *GV = 2261 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); 2262 2263 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, 2264 false); 2265 } 2266 } 2267 llvm_unreachable("unhandled case"); 2268 } 2269 2270 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2271 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2272 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2273 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2274 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2275 sawArrayRangeDesignator(false); 2276 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2277 2278 setDependence(computeDependence(this)); 2279 } 2280 2281 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2282 if (NumInits > InitExprs.size()) 2283 InitExprs.reserve(C, NumInits); 2284 } 2285 2286 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2287 InitExprs.resize(C, NumInits, nullptr); 2288 } 2289 2290 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2291 if (Init >= InitExprs.size()) { 2292 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2293 setInit(Init, expr); 2294 return nullptr; 2295 } 2296 2297 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2298 setInit(Init, expr); 2299 return Result; 2300 } 2301 2302 void InitListExpr::setArrayFiller(Expr *filler) { 2303 assert(!hasArrayFiller() && "Filler already set!"); 2304 ArrayFillerOrUnionFieldInit = filler; 2305 // Fill out any "holes" in the array due to designated initializers. 2306 Expr **inits = getInits(); 2307 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2308 if (inits[i] == nullptr) 2309 inits[i] = filler; 2310 } 2311 2312 bool InitListExpr::isStringLiteralInit() const { 2313 if (getNumInits() != 1) 2314 return false; 2315 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2316 if (!AT || !AT->getElementType()->isIntegerType()) 2317 return false; 2318 // It is possible for getInit() to return null. 2319 const Expr *Init = getInit(0); 2320 if (!Init) 2321 return false; 2322 Init = Init->IgnoreParenImpCasts(); 2323 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2324 } 2325 2326 bool InitListExpr::isTransparent() const { 2327 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2328 2329 // A glvalue InitListExpr is always just sugar. 2330 if (isGLValue()) { 2331 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2332 return true; 2333 } 2334 2335 // Otherwise, we're sugar if and only if we have exactly one initializer that 2336 // is of the same type. 2337 if (getNumInits() != 1 || !getInit(0)) 2338 return false; 2339 2340 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2341 // transparent struct copy. 2342 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2343 return false; 2344 2345 return getType().getCanonicalType() == 2346 getInit(0)->getType().getCanonicalType(); 2347 } 2348 2349 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2350 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2351 2352 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2353 return false; 2354 } 2355 2356 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2357 return Lit && Lit->getValue() == 0; 2358 } 2359 2360 SourceLocation InitListExpr::getBeginLoc() const { 2361 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2362 return SyntacticForm->getBeginLoc(); 2363 SourceLocation Beg = LBraceLoc; 2364 if (Beg.isInvalid()) { 2365 // Find the first non-null initializer. 2366 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2367 E = InitExprs.end(); 2368 I != E; ++I) { 2369 if (Stmt *S = *I) { 2370 Beg = S->getBeginLoc(); 2371 break; 2372 } 2373 } 2374 } 2375 return Beg; 2376 } 2377 2378 SourceLocation InitListExpr::getEndLoc() const { 2379 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2380 return SyntacticForm->getEndLoc(); 2381 SourceLocation End = RBraceLoc; 2382 if (End.isInvalid()) { 2383 // Find the first non-null initializer from the end. 2384 for (Stmt *S : llvm::reverse(InitExprs)) { 2385 if (S) { 2386 End = S->getEndLoc(); 2387 break; 2388 } 2389 } 2390 } 2391 return End; 2392 } 2393 2394 /// getFunctionType - Return the underlying function type for this block. 2395 /// 2396 const FunctionProtoType *BlockExpr::getFunctionType() const { 2397 // The block pointer is never sugared, but the function type might be. 2398 return cast<BlockPointerType>(getType()) 2399 ->getPointeeType()->castAs<FunctionProtoType>(); 2400 } 2401 2402 SourceLocation BlockExpr::getCaretLocation() const { 2403 return TheBlock->getCaretLocation(); 2404 } 2405 const Stmt *BlockExpr::getBody() const { 2406 return TheBlock->getBody(); 2407 } 2408 Stmt *BlockExpr::getBody() { 2409 return TheBlock->getBody(); 2410 } 2411 2412 2413 //===----------------------------------------------------------------------===// 2414 // Generic Expression Routines 2415 //===----------------------------------------------------------------------===// 2416 2417 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2418 // In C++11, discarded-value expressions of a certain form are special, 2419 // according to [expr]p10: 2420 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2421 // expression is a glvalue of volatile-qualified type and it has 2422 // one of the following forms: 2423 if (!isGLValue() || !getType().isVolatileQualified()) 2424 return false; 2425 2426 const Expr *E = IgnoreParens(); 2427 2428 // - id-expression (5.1.1), 2429 if (isa<DeclRefExpr>(E)) 2430 return true; 2431 2432 // - subscripting (5.2.1), 2433 if (isa<ArraySubscriptExpr>(E)) 2434 return true; 2435 2436 // - class member access (5.2.5), 2437 if (isa<MemberExpr>(E)) 2438 return true; 2439 2440 // - indirection (5.3.1), 2441 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2442 if (UO->getOpcode() == UO_Deref) 2443 return true; 2444 2445 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2446 // - pointer-to-member operation (5.5), 2447 if (BO->isPtrMemOp()) 2448 return true; 2449 2450 // - comma expression (5.18) where the right operand is one of the above. 2451 if (BO->getOpcode() == BO_Comma) 2452 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2453 } 2454 2455 // - conditional expression (5.16) where both the second and the third 2456 // operands are one of the above, or 2457 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2458 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2459 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2460 // The related edge case of "*x ?: *x". 2461 if (auto *BCO = 2462 dyn_cast<BinaryConditionalOperator>(E)) { 2463 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2464 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2465 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2466 } 2467 2468 // Objective-C++ extensions to the rule. 2469 if (isa<ObjCIvarRefExpr>(E)) 2470 return true; 2471 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { 2472 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) 2473 return true; 2474 } 2475 2476 return false; 2477 } 2478 2479 /// isUnusedResultAWarning - Return true if this immediate expression should 2480 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2481 /// with location to warn on and the source range[s] to report with the 2482 /// warning. 2483 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2484 SourceRange &R1, SourceRange &R2, 2485 ASTContext &Ctx) const { 2486 // Don't warn if the expr is type dependent. The type could end up 2487 // instantiating to void. 2488 if (isTypeDependent()) 2489 return false; 2490 2491 switch (getStmtClass()) { 2492 default: 2493 if (getType()->isVoidType()) 2494 return false; 2495 WarnE = this; 2496 Loc = getExprLoc(); 2497 R1 = getSourceRange(); 2498 return true; 2499 case ParenExprClass: 2500 return cast<ParenExpr>(this)->getSubExpr()-> 2501 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2502 case GenericSelectionExprClass: 2503 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2504 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2505 case CoawaitExprClass: 2506 case CoyieldExprClass: 2507 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2508 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2509 case ChooseExprClass: 2510 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2511 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2512 case UnaryOperatorClass: { 2513 const UnaryOperator *UO = cast<UnaryOperator>(this); 2514 2515 switch (UO->getOpcode()) { 2516 case UO_Plus: 2517 case UO_Minus: 2518 case UO_AddrOf: 2519 case UO_Not: 2520 case UO_LNot: 2521 case UO_Deref: 2522 break; 2523 case UO_Coawait: 2524 // This is just the 'operator co_await' call inside the guts of a 2525 // dependent co_await call. 2526 case UO_PostInc: 2527 case UO_PostDec: 2528 case UO_PreInc: 2529 case UO_PreDec: // ++/-- 2530 return false; // Not a warning. 2531 case UO_Real: 2532 case UO_Imag: 2533 // accessing a piece of a volatile complex is a side-effect. 2534 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2535 .isVolatileQualified()) 2536 return false; 2537 break; 2538 case UO_Extension: 2539 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2540 } 2541 WarnE = this; 2542 Loc = UO->getOperatorLoc(); 2543 R1 = UO->getSubExpr()->getSourceRange(); 2544 return true; 2545 } 2546 case BinaryOperatorClass: { 2547 const BinaryOperator *BO = cast<BinaryOperator>(this); 2548 switch (BO->getOpcode()) { 2549 default: 2550 break; 2551 // Consider the RHS of comma for side effects. LHS was checked by 2552 // Sema::CheckCommaOperands. 2553 case BO_Comma: 2554 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2555 // lvalue-ness) of an assignment written in a macro. 2556 if (IntegerLiteral *IE = 2557 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2558 if (IE->getValue() == 0) 2559 return false; 2560 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2561 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2562 case BO_LAnd: 2563 case BO_LOr: 2564 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2565 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2566 return false; 2567 break; 2568 } 2569 if (BO->isAssignmentOp()) 2570 return false; 2571 WarnE = this; 2572 Loc = BO->getOperatorLoc(); 2573 R1 = BO->getLHS()->getSourceRange(); 2574 R2 = BO->getRHS()->getSourceRange(); 2575 return true; 2576 } 2577 case CompoundAssignOperatorClass: 2578 case VAArgExprClass: 2579 case AtomicExprClass: 2580 return false; 2581 2582 case ConditionalOperatorClass: { 2583 // If only one of the LHS or RHS is a warning, the operator might 2584 // be being used for control flow. Only warn if both the LHS and 2585 // RHS are warnings. 2586 const auto *Exp = cast<ConditionalOperator>(this); 2587 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2588 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2589 } 2590 case BinaryConditionalOperatorClass: { 2591 const auto *Exp = cast<BinaryConditionalOperator>(this); 2592 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2593 } 2594 2595 case MemberExprClass: 2596 WarnE = this; 2597 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2598 R1 = SourceRange(Loc, Loc); 2599 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2600 return true; 2601 2602 case ArraySubscriptExprClass: 2603 WarnE = this; 2604 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2605 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2606 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2607 return true; 2608 2609 case CXXOperatorCallExprClass: { 2610 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2611 // overloads as there is no reasonable way to define these such that they 2612 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2613 // warning: operators == and != are commonly typo'ed, and so warning on them 2614 // provides additional value as well. If this list is updated, 2615 // DiagnoseUnusedComparison should be as well. 2616 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2617 switch (Op->getOperator()) { 2618 default: 2619 break; 2620 case OO_EqualEqual: 2621 case OO_ExclaimEqual: 2622 case OO_Less: 2623 case OO_Greater: 2624 case OO_GreaterEqual: 2625 case OO_LessEqual: 2626 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2627 Op->getCallReturnType(Ctx)->isVoidType()) 2628 break; 2629 WarnE = this; 2630 Loc = Op->getOperatorLoc(); 2631 R1 = Op->getSourceRange(); 2632 return true; 2633 } 2634 2635 // Fallthrough for generic call handling. 2636 LLVM_FALLTHROUGH; 2637 } 2638 case CallExprClass: 2639 case CXXMemberCallExprClass: 2640 case UserDefinedLiteralClass: { 2641 // If this is a direct call, get the callee. 2642 const CallExpr *CE = cast<CallExpr>(this); 2643 if (const Decl *FD = CE->getCalleeDecl()) { 2644 // If the callee has attribute pure, const, or warn_unused_result, warn 2645 // about it. void foo() { strlen("bar"); } should warn. 2646 // 2647 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2648 // updated to match for QoI. 2649 if (CE->hasUnusedResultAttr(Ctx) || 2650 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2651 WarnE = this; 2652 Loc = CE->getCallee()->getBeginLoc(); 2653 R1 = CE->getCallee()->getSourceRange(); 2654 2655 if (unsigned NumArgs = CE->getNumArgs()) 2656 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2657 CE->getArg(NumArgs - 1)->getEndLoc()); 2658 return true; 2659 } 2660 } 2661 return false; 2662 } 2663 2664 // If we don't know precisely what we're looking at, let's not warn. 2665 case UnresolvedLookupExprClass: 2666 case CXXUnresolvedConstructExprClass: 2667 case RecoveryExprClass: 2668 return false; 2669 2670 case CXXTemporaryObjectExprClass: 2671 case CXXConstructExprClass: { 2672 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2673 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2674 if (Type->hasAttr<WarnUnusedAttr>() || 2675 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2676 WarnE = this; 2677 Loc = getBeginLoc(); 2678 R1 = getSourceRange(); 2679 return true; 2680 } 2681 } 2682 2683 const auto *CE = cast<CXXConstructExpr>(this); 2684 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2685 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2686 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2687 WarnE = this; 2688 Loc = getBeginLoc(); 2689 R1 = getSourceRange(); 2690 2691 if (unsigned NumArgs = CE->getNumArgs()) 2692 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2693 CE->getArg(NumArgs - 1)->getEndLoc()); 2694 return true; 2695 } 2696 } 2697 2698 return false; 2699 } 2700 2701 case ObjCMessageExprClass: { 2702 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2703 if (Ctx.getLangOpts().ObjCAutoRefCount && 2704 ME->isInstanceMessage() && 2705 !ME->getType()->isVoidType() && 2706 ME->getMethodFamily() == OMF_init) { 2707 WarnE = this; 2708 Loc = getExprLoc(); 2709 R1 = ME->getSourceRange(); 2710 return true; 2711 } 2712 2713 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2714 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2715 WarnE = this; 2716 Loc = getExprLoc(); 2717 return true; 2718 } 2719 2720 return false; 2721 } 2722 2723 case ObjCPropertyRefExprClass: 2724 case ObjCSubscriptRefExprClass: 2725 WarnE = this; 2726 Loc = getExprLoc(); 2727 R1 = getSourceRange(); 2728 return true; 2729 2730 case PseudoObjectExprClass: { 2731 const auto *POE = cast<PseudoObjectExpr>(this); 2732 2733 // For some syntactic forms, we should always warn. 2734 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( 2735 POE->getSyntacticForm())) { 2736 WarnE = this; 2737 Loc = getExprLoc(); 2738 R1 = getSourceRange(); 2739 return true; 2740 } 2741 2742 // For others, we should never warn. 2743 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) 2744 if (BO->isAssignmentOp()) 2745 return false; 2746 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) 2747 if (UO->isIncrementDecrementOp()) 2748 return false; 2749 2750 // Otherwise, warn if the result expression would warn. 2751 const Expr *Result = POE->getResultExpr(); 2752 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2753 } 2754 2755 case StmtExprClass: { 2756 // Statement exprs don't logically have side effects themselves, but are 2757 // sometimes used in macros in ways that give them a type that is unused. 2758 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2759 // however, if the result of the stmt expr is dead, we don't want to emit a 2760 // warning. 2761 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2762 if (!CS->body_empty()) { 2763 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2764 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2765 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2766 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2767 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2768 } 2769 2770 if (getType()->isVoidType()) 2771 return false; 2772 WarnE = this; 2773 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2774 R1 = getSourceRange(); 2775 return true; 2776 } 2777 case CXXFunctionalCastExprClass: 2778 case CStyleCastExprClass: { 2779 // Ignore an explicit cast to void, except in C++98 if the operand is a 2780 // volatile glvalue for which we would trigger an implicit read in any 2781 // other language mode. (Such an implicit read always happens as part of 2782 // the lvalue conversion in C, and happens in C++ for expressions of all 2783 // forms where it seems likely the user intended to trigger a volatile 2784 // load.) 2785 const CastExpr *CE = cast<CastExpr>(this); 2786 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2787 if (CE->getCastKind() == CK_ToVoid) { 2788 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2789 SubE->isReadIfDiscardedInCPlusPlus11()) { 2790 // Suppress the "unused value" warning for idiomatic usage of 2791 // '(void)var;' used to suppress "unused variable" warnings. 2792 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2793 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2794 if (!VD->isExternallyVisible()) 2795 return false; 2796 2797 // The lvalue-to-rvalue conversion would have no effect for an array. 2798 // It's implausible that the programmer expected this to result in a 2799 // volatile array load, so don't warn. 2800 if (SubE->getType()->isArrayType()) 2801 return false; 2802 2803 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2804 } 2805 return false; 2806 } 2807 2808 // If this is a cast to a constructor conversion, check the operand. 2809 // Otherwise, the result of the cast is unused. 2810 if (CE->getCastKind() == CK_ConstructorConversion) 2811 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2812 if (CE->getCastKind() == CK_Dependent) 2813 return false; 2814 2815 WarnE = this; 2816 if (const CXXFunctionalCastExpr *CXXCE = 2817 dyn_cast<CXXFunctionalCastExpr>(this)) { 2818 Loc = CXXCE->getBeginLoc(); 2819 R1 = CXXCE->getSubExpr()->getSourceRange(); 2820 } else { 2821 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2822 Loc = CStyleCE->getLParenLoc(); 2823 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2824 } 2825 return true; 2826 } 2827 case ImplicitCastExprClass: { 2828 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2829 2830 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2831 if (ICE->getCastKind() == CK_LValueToRValue && 2832 ICE->getSubExpr()->getType().isVolatileQualified()) 2833 return false; 2834 2835 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2836 } 2837 case CXXDefaultArgExprClass: 2838 return (cast<CXXDefaultArgExpr>(this) 2839 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2840 case CXXDefaultInitExprClass: 2841 return (cast<CXXDefaultInitExpr>(this) 2842 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2843 2844 case CXXNewExprClass: 2845 // FIXME: In theory, there might be new expressions that don't have side 2846 // effects (e.g. a placement new with an uninitialized POD). 2847 case CXXDeleteExprClass: 2848 return false; 2849 case MaterializeTemporaryExprClass: 2850 return cast<MaterializeTemporaryExpr>(this) 2851 ->getSubExpr() 2852 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2853 case CXXBindTemporaryExprClass: 2854 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2855 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2856 case ExprWithCleanupsClass: 2857 return cast<ExprWithCleanups>(this)->getSubExpr() 2858 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2859 } 2860 } 2861 2862 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2863 /// returns true, if it is; false otherwise. 2864 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2865 const Expr *E = IgnoreParens(); 2866 switch (E->getStmtClass()) { 2867 default: 2868 return false; 2869 case ObjCIvarRefExprClass: 2870 return true; 2871 case Expr::UnaryOperatorClass: 2872 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2873 case ImplicitCastExprClass: 2874 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2875 case MaterializeTemporaryExprClass: 2876 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2877 Ctx); 2878 case CStyleCastExprClass: 2879 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2880 case DeclRefExprClass: { 2881 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2882 2883 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2884 if (VD->hasGlobalStorage()) 2885 return true; 2886 QualType T = VD->getType(); 2887 // dereferencing to a pointer is always a gc'able candidate, 2888 // unless it is __weak. 2889 return T->isPointerType() && 2890 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2891 } 2892 return false; 2893 } 2894 case MemberExprClass: { 2895 const MemberExpr *M = cast<MemberExpr>(E); 2896 return M->getBase()->isOBJCGCCandidate(Ctx); 2897 } 2898 case ArraySubscriptExprClass: 2899 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2900 } 2901 } 2902 2903 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2904 if (isTypeDependent()) 2905 return false; 2906 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2907 } 2908 2909 QualType Expr::findBoundMemberType(const Expr *expr) { 2910 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2911 2912 // Bound member expressions are always one of these possibilities: 2913 // x->m x.m x->*y x.*y 2914 // (possibly parenthesized) 2915 2916 expr = expr->IgnoreParens(); 2917 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2918 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2919 return mem->getMemberDecl()->getType(); 2920 } 2921 2922 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2923 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2924 ->getPointeeType(); 2925 assert(type->isFunctionType()); 2926 return type; 2927 } 2928 2929 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2930 return QualType(); 2931 } 2932 2933 Expr *Expr::IgnoreImpCasts() { 2934 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 2935 } 2936 2937 Expr *Expr::IgnoreCasts() { 2938 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 2939 } 2940 2941 Expr *Expr::IgnoreImplicit() { 2942 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 2943 } 2944 2945 Expr *Expr::IgnoreImplicitAsWritten() { 2946 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 2947 } 2948 2949 Expr *Expr::IgnoreParens() { 2950 return IgnoreExprNodes(this, IgnoreParensSingleStep); 2951 } 2952 2953 Expr *Expr::IgnoreParenImpCasts() { 2954 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2955 IgnoreImplicitCastsExtraSingleStep); 2956 } 2957 2958 Expr *Expr::IgnoreParenCasts() { 2959 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 2960 } 2961 2962 Expr *Expr::IgnoreConversionOperatorSingleStep() { 2963 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2964 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2965 return MCE->getImplicitObjectArgument(); 2966 } 2967 return this; 2968 } 2969 2970 Expr *Expr::IgnoreParenLValueCasts() { 2971 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2972 IgnoreLValueCastsSingleStep); 2973 } 2974 2975 Expr *Expr::IgnoreParenBaseCasts() { 2976 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2977 IgnoreBaseCastsSingleStep); 2978 } 2979 2980 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 2981 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 2982 if (auto *CE = dyn_cast<CastExpr>(E)) { 2983 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2984 // ptr<->int casts of the same width. We also ignore all identity casts. 2985 Expr *SubExpr = CE->getSubExpr(); 2986 bool IsIdentityCast = 2987 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 2988 bool IsSameWidthCast = (E->getType()->isPointerType() || 2989 E->getType()->isIntegralType(Ctx)) && 2990 (SubExpr->getType()->isPointerType() || 2991 SubExpr->getType()->isIntegralType(Ctx)) && 2992 (Ctx.getTypeSize(E->getType()) == 2993 Ctx.getTypeSize(SubExpr->getType())); 2994 2995 if (IsIdentityCast || IsSameWidthCast) 2996 return SubExpr; 2997 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2998 return NTTP->getReplacement(); 2999 3000 return E; 3001 }; 3002 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3003 IgnoreNoopCastsSingleStep); 3004 } 3005 3006 Expr *Expr::IgnoreUnlessSpelledInSource() { 3007 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 3008 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 3009 auto *SE = Cast->getSubExpr(); 3010 if (SE->getSourceRange() == E->getSourceRange()) 3011 return SE; 3012 } 3013 3014 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3015 auto NumArgs = C->getNumArgs(); 3016 if (NumArgs == 1 || 3017 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 3018 Expr *A = C->getArg(0); 3019 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3020 return A; 3021 } 3022 } 3023 return E; 3024 }; 3025 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3026 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3027 Expr *ExprNode = C->getImplicitObjectArgument(); 3028 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3029 return ExprNode; 3030 } 3031 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3032 if (PE->getSourceRange() == C->getSourceRange()) { 3033 return cast<Expr>(PE); 3034 } 3035 } 3036 ExprNode = ExprNode->IgnoreParenImpCasts(); 3037 if (ExprNode->getSourceRange() == E->getSourceRange()) 3038 return ExprNode; 3039 } 3040 return E; 3041 }; 3042 return IgnoreExprNodes( 3043 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3044 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3045 IgnoreImplicitMemberCallSingleStep); 3046 } 3047 3048 bool Expr::isDefaultArgument() const { 3049 const Expr *E = this; 3050 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3051 E = M->getSubExpr(); 3052 3053 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3054 E = ICE->getSubExprAsWritten(); 3055 3056 return isa<CXXDefaultArgExpr>(E); 3057 } 3058 3059 /// Skip over any no-op casts and any temporary-binding 3060 /// expressions. 3061 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3062 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3063 E = M->getSubExpr(); 3064 3065 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3066 if (ICE->getCastKind() == CK_NoOp) 3067 E = ICE->getSubExpr(); 3068 else 3069 break; 3070 } 3071 3072 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3073 E = BE->getSubExpr(); 3074 3075 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3076 if (ICE->getCastKind() == CK_NoOp) 3077 E = ICE->getSubExpr(); 3078 else 3079 break; 3080 } 3081 3082 return E->IgnoreParens(); 3083 } 3084 3085 /// isTemporaryObject - Determines if this expression produces a 3086 /// temporary of the given class type. 3087 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3088 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3089 return false; 3090 3091 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3092 3093 // Temporaries are by definition pr-values of class type. 3094 if (!E->Classify(C).isPRValue()) { 3095 // In this context, property reference is a message call and is pr-value. 3096 if (!isa<ObjCPropertyRefExpr>(E)) 3097 return false; 3098 } 3099 3100 // Black-list a few cases which yield pr-values of class type that don't 3101 // refer to temporaries of that type: 3102 3103 // - implicit derived-to-base conversions 3104 if (isa<ImplicitCastExpr>(E)) { 3105 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3106 case CK_DerivedToBase: 3107 case CK_UncheckedDerivedToBase: 3108 return false; 3109 default: 3110 break; 3111 } 3112 } 3113 3114 // - member expressions (all) 3115 if (isa<MemberExpr>(E)) 3116 return false; 3117 3118 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3119 if (BO->isPtrMemOp()) 3120 return false; 3121 3122 // - opaque values (all) 3123 if (isa<OpaqueValueExpr>(E)) 3124 return false; 3125 3126 return true; 3127 } 3128 3129 bool Expr::isImplicitCXXThis() const { 3130 const Expr *E = this; 3131 3132 // Strip away parentheses and casts we don't care about. 3133 while (true) { 3134 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3135 E = Paren->getSubExpr(); 3136 continue; 3137 } 3138 3139 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3140 if (ICE->getCastKind() == CK_NoOp || 3141 ICE->getCastKind() == CK_LValueToRValue || 3142 ICE->getCastKind() == CK_DerivedToBase || 3143 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3144 E = ICE->getSubExpr(); 3145 continue; 3146 } 3147 } 3148 3149 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3150 if (UnOp->getOpcode() == UO_Extension) { 3151 E = UnOp->getSubExpr(); 3152 continue; 3153 } 3154 } 3155 3156 if (const MaterializeTemporaryExpr *M 3157 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3158 E = M->getSubExpr(); 3159 continue; 3160 } 3161 3162 break; 3163 } 3164 3165 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3166 return This->isImplicit(); 3167 3168 return false; 3169 } 3170 3171 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3172 /// in Exprs is type-dependent. 3173 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3174 for (unsigned I = 0; I < Exprs.size(); ++I) 3175 if (Exprs[I]->isTypeDependent()) 3176 return true; 3177 3178 return false; 3179 } 3180 3181 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3182 const Expr **Culprit) const { 3183 assert(!isValueDependent() && 3184 "Expression evaluator can't be called on a dependent expression."); 3185 3186 // This function is attempting whether an expression is an initializer 3187 // which can be evaluated at compile-time. It very closely parallels 3188 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3189 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3190 // to isEvaluatable most of the time. 3191 // 3192 // If we ever capture reference-binding directly in the AST, we can 3193 // kill the second parameter. 3194 3195 if (IsForRef) { 3196 EvalResult Result; 3197 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3198 return true; 3199 if (Culprit) 3200 *Culprit = this; 3201 return false; 3202 } 3203 3204 switch (getStmtClass()) { 3205 default: break; 3206 case Stmt::ExprWithCleanupsClass: 3207 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3208 Ctx, IsForRef, Culprit); 3209 case StringLiteralClass: 3210 case ObjCEncodeExprClass: 3211 return true; 3212 case CXXTemporaryObjectExprClass: 3213 case CXXConstructExprClass: { 3214 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3215 3216 if (CE->getConstructor()->isTrivial() && 3217 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3218 // Trivial default constructor 3219 if (!CE->getNumArgs()) return true; 3220 3221 // Trivial copy constructor 3222 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3223 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3224 } 3225 3226 break; 3227 } 3228 case ConstantExprClass: { 3229 // FIXME: We should be able to return "true" here, but it can lead to extra 3230 // error messages. E.g. in Sema/array-init.c. 3231 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3232 return Exp->isConstantInitializer(Ctx, false, Culprit); 3233 } 3234 case CompoundLiteralExprClass: { 3235 // This handles gcc's extension that allows global initializers like 3236 // "struct x {int x;} x = (struct x) {};". 3237 // FIXME: This accepts other cases it shouldn't! 3238 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3239 return Exp->isConstantInitializer(Ctx, false, Culprit); 3240 } 3241 case DesignatedInitUpdateExprClass: { 3242 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3243 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3244 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3245 } 3246 case InitListExprClass: { 3247 const InitListExpr *ILE = cast<InitListExpr>(this); 3248 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3249 if (ILE->getType()->isArrayType()) { 3250 unsigned numInits = ILE->getNumInits(); 3251 for (unsigned i = 0; i < numInits; i++) { 3252 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3253 return false; 3254 } 3255 return true; 3256 } 3257 3258 if (ILE->getType()->isRecordType()) { 3259 unsigned ElementNo = 0; 3260 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3261 for (const auto *Field : RD->fields()) { 3262 // If this is a union, skip all the fields that aren't being initialized. 3263 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3264 continue; 3265 3266 // Don't emit anonymous bitfields, they just affect layout. 3267 if (Field->isUnnamedBitfield()) 3268 continue; 3269 3270 if (ElementNo < ILE->getNumInits()) { 3271 const Expr *Elt = ILE->getInit(ElementNo++); 3272 if (Field->isBitField()) { 3273 // Bitfields have to evaluate to an integer. 3274 EvalResult Result; 3275 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3276 if (Culprit) 3277 *Culprit = Elt; 3278 return false; 3279 } 3280 } else { 3281 bool RefType = Field->getType()->isReferenceType(); 3282 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3283 return false; 3284 } 3285 } 3286 } 3287 return true; 3288 } 3289 3290 break; 3291 } 3292 case ImplicitValueInitExprClass: 3293 case NoInitExprClass: 3294 return true; 3295 case ParenExprClass: 3296 return cast<ParenExpr>(this)->getSubExpr() 3297 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3298 case GenericSelectionExprClass: 3299 return cast<GenericSelectionExpr>(this)->getResultExpr() 3300 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3301 case ChooseExprClass: 3302 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3303 if (Culprit) 3304 *Culprit = this; 3305 return false; 3306 } 3307 return cast<ChooseExpr>(this)->getChosenSubExpr() 3308 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3309 case UnaryOperatorClass: { 3310 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3311 if (Exp->getOpcode() == UO_Extension) 3312 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3313 break; 3314 } 3315 case CXXFunctionalCastExprClass: 3316 case CXXStaticCastExprClass: 3317 case ImplicitCastExprClass: 3318 case CStyleCastExprClass: 3319 case ObjCBridgedCastExprClass: 3320 case CXXDynamicCastExprClass: 3321 case CXXReinterpretCastExprClass: 3322 case CXXAddrspaceCastExprClass: 3323 case CXXConstCastExprClass: { 3324 const CastExpr *CE = cast<CastExpr>(this); 3325 3326 // Handle misc casts we want to ignore. 3327 if (CE->getCastKind() == CK_NoOp || 3328 CE->getCastKind() == CK_LValueToRValue || 3329 CE->getCastKind() == CK_ToUnion || 3330 CE->getCastKind() == CK_ConstructorConversion || 3331 CE->getCastKind() == CK_NonAtomicToAtomic || 3332 CE->getCastKind() == CK_AtomicToNonAtomic || 3333 CE->getCastKind() == CK_IntToOCLSampler) 3334 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3335 3336 break; 3337 } 3338 case MaterializeTemporaryExprClass: 3339 return cast<MaterializeTemporaryExpr>(this) 3340 ->getSubExpr() 3341 ->isConstantInitializer(Ctx, false, Culprit); 3342 3343 case SubstNonTypeTemplateParmExprClass: 3344 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3345 ->isConstantInitializer(Ctx, false, Culprit); 3346 case CXXDefaultArgExprClass: 3347 return cast<CXXDefaultArgExpr>(this)->getExpr() 3348 ->isConstantInitializer(Ctx, false, Culprit); 3349 case CXXDefaultInitExprClass: 3350 return cast<CXXDefaultInitExpr>(this)->getExpr() 3351 ->isConstantInitializer(Ctx, false, Culprit); 3352 } 3353 // Allow certain forms of UB in constant initializers: signed integer 3354 // overflow and floating-point division by zero. We'll give a warning on 3355 // these, but they're common enough that we have to accept them. 3356 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3357 return true; 3358 if (Culprit) 3359 *Culprit = this; 3360 return false; 3361 } 3362 3363 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3364 unsigned BuiltinID = getBuiltinCallee(); 3365 if (BuiltinID != Builtin::BI__assume && 3366 BuiltinID != Builtin::BI__builtin_assume) 3367 return false; 3368 3369 const Expr* Arg = getArg(0); 3370 bool ArgVal; 3371 return !Arg->isValueDependent() && 3372 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3373 } 3374 3375 bool CallExpr::isCallToStdMove() const { 3376 return getBuiltinCallee() == Builtin::BImove; 3377 } 3378 3379 namespace { 3380 /// Look for any side effects within a Stmt. 3381 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3382 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3383 const bool IncludePossibleEffects; 3384 bool HasSideEffects; 3385 3386 public: 3387 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3388 : Inherited(Context), 3389 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3390 3391 bool hasSideEffects() const { return HasSideEffects; } 3392 3393 void VisitDecl(const Decl *D) { 3394 if (!D) 3395 return; 3396 3397 // We assume the caller checks subexpressions (eg, the initializer, VLA 3398 // bounds) for side-effects on our behalf. 3399 if (auto *VD = dyn_cast<VarDecl>(D)) { 3400 // Registering a destructor is a side-effect. 3401 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3402 VD->needsDestruction(Context)) 3403 HasSideEffects = true; 3404 } 3405 } 3406 3407 void VisitDeclStmt(const DeclStmt *DS) { 3408 for (auto *D : DS->decls()) 3409 VisitDecl(D); 3410 Inherited::VisitDeclStmt(DS); 3411 } 3412 3413 void VisitExpr(const Expr *E) { 3414 if (!HasSideEffects && 3415 E->HasSideEffects(Context, IncludePossibleEffects)) 3416 HasSideEffects = true; 3417 } 3418 }; 3419 } 3420 3421 bool Expr::HasSideEffects(const ASTContext &Ctx, 3422 bool IncludePossibleEffects) const { 3423 // In circumstances where we care about definite side effects instead of 3424 // potential side effects, we want to ignore expressions that are part of a 3425 // macro expansion as a potential side effect. 3426 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3427 return false; 3428 3429 switch (getStmtClass()) { 3430 case NoStmtClass: 3431 #define ABSTRACT_STMT(Type) 3432 #define STMT(Type, Base) case Type##Class: 3433 #define EXPR(Type, Base) 3434 #include "clang/AST/StmtNodes.inc" 3435 llvm_unreachable("unexpected Expr kind"); 3436 3437 case DependentScopeDeclRefExprClass: 3438 case CXXUnresolvedConstructExprClass: 3439 case CXXDependentScopeMemberExprClass: 3440 case UnresolvedLookupExprClass: 3441 case UnresolvedMemberExprClass: 3442 case PackExpansionExprClass: 3443 case SubstNonTypeTemplateParmPackExprClass: 3444 case FunctionParmPackExprClass: 3445 case TypoExprClass: 3446 case RecoveryExprClass: 3447 case CXXFoldExprClass: 3448 // Make a conservative assumption for dependent nodes. 3449 return IncludePossibleEffects; 3450 3451 case DeclRefExprClass: 3452 case ObjCIvarRefExprClass: 3453 case PredefinedExprClass: 3454 case IntegerLiteralClass: 3455 case FixedPointLiteralClass: 3456 case FloatingLiteralClass: 3457 case ImaginaryLiteralClass: 3458 case StringLiteralClass: 3459 case CharacterLiteralClass: 3460 case OffsetOfExprClass: 3461 case ImplicitValueInitExprClass: 3462 case UnaryExprOrTypeTraitExprClass: 3463 case AddrLabelExprClass: 3464 case GNUNullExprClass: 3465 case ArrayInitIndexExprClass: 3466 case NoInitExprClass: 3467 case CXXBoolLiteralExprClass: 3468 case CXXNullPtrLiteralExprClass: 3469 case CXXThisExprClass: 3470 case CXXScalarValueInitExprClass: 3471 case TypeTraitExprClass: 3472 case ArrayTypeTraitExprClass: 3473 case ExpressionTraitExprClass: 3474 case CXXNoexceptExprClass: 3475 case SizeOfPackExprClass: 3476 case ObjCStringLiteralClass: 3477 case ObjCEncodeExprClass: 3478 case ObjCBoolLiteralExprClass: 3479 case ObjCAvailabilityCheckExprClass: 3480 case CXXUuidofExprClass: 3481 case OpaqueValueExprClass: 3482 case SourceLocExprClass: 3483 case ConceptSpecializationExprClass: 3484 case RequiresExprClass: 3485 case SYCLUniqueStableNameExprClass: 3486 // These never have a side-effect. 3487 return false; 3488 3489 case ConstantExprClass: 3490 // FIXME: Move this into the "return false;" block above. 3491 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3492 Ctx, IncludePossibleEffects); 3493 3494 case CallExprClass: 3495 case CXXOperatorCallExprClass: 3496 case CXXMemberCallExprClass: 3497 case CUDAKernelCallExprClass: 3498 case UserDefinedLiteralClass: { 3499 // We don't know a call definitely has side effects, except for calls 3500 // to pure/const functions that definitely don't. 3501 // If the call itself is considered side-effect free, check the operands. 3502 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3503 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3504 if (IsPure || !IncludePossibleEffects) 3505 break; 3506 return true; 3507 } 3508 3509 case BlockExprClass: 3510 case CXXBindTemporaryExprClass: 3511 if (!IncludePossibleEffects) 3512 break; 3513 return true; 3514 3515 case MSPropertyRefExprClass: 3516 case MSPropertySubscriptExprClass: 3517 case CompoundAssignOperatorClass: 3518 case VAArgExprClass: 3519 case AtomicExprClass: 3520 case CXXThrowExprClass: 3521 case CXXNewExprClass: 3522 case CXXDeleteExprClass: 3523 case CoawaitExprClass: 3524 case DependentCoawaitExprClass: 3525 case CoyieldExprClass: 3526 // These always have a side-effect. 3527 return true; 3528 3529 case StmtExprClass: { 3530 // StmtExprs have a side-effect if any substatement does. 3531 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3532 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3533 return Finder.hasSideEffects(); 3534 } 3535 3536 case ExprWithCleanupsClass: 3537 if (IncludePossibleEffects) 3538 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3539 return true; 3540 break; 3541 3542 case ParenExprClass: 3543 case ArraySubscriptExprClass: 3544 case MatrixSubscriptExprClass: 3545 case OMPArraySectionExprClass: 3546 case OMPArrayShapingExprClass: 3547 case OMPIteratorExprClass: 3548 case MemberExprClass: 3549 case ConditionalOperatorClass: 3550 case BinaryConditionalOperatorClass: 3551 case CompoundLiteralExprClass: 3552 case ExtVectorElementExprClass: 3553 case DesignatedInitExprClass: 3554 case DesignatedInitUpdateExprClass: 3555 case ArrayInitLoopExprClass: 3556 case ParenListExprClass: 3557 case CXXPseudoDestructorExprClass: 3558 case CXXRewrittenBinaryOperatorClass: 3559 case CXXStdInitializerListExprClass: 3560 case SubstNonTypeTemplateParmExprClass: 3561 case MaterializeTemporaryExprClass: 3562 case ShuffleVectorExprClass: 3563 case ConvertVectorExprClass: 3564 case AsTypeExprClass: 3565 // These have a side-effect if any subexpression does. 3566 break; 3567 3568 case UnaryOperatorClass: 3569 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3570 return true; 3571 break; 3572 3573 case BinaryOperatorClass: 3574 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3575 return true; 3576 break; 3577 3578 case InitListExprClass: 3579 // FIXME: The children for an InitListExpr doesn't include the array filler. 3580 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3581 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3582 return true; 3583 break; 3584 3585 case GenericSelectionExprClass: 3586 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3587 HasSideEffects(Ctx, IncludePossibleEffects); 3588 3589 case ChooseExprClass: 3590 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3591 Ctx, IncludePossibleEffects); 3592 3593 case CXXDefaultArgExprClass: 3594 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3595 Ctx, IncludePossibleEffects); 3596 3597 case CXXDefaultInitExprClass: { 3598 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3599 if (const Expr *E = FD->getInClassInitializer()) 3600 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3601 // If we've not yet parsed the initializer, assume it has side-effects. 3602 return true; 3603 } 3604 3605 case CXXDynamicCastExprClass: { 3606 // A dynamic_cast expression has side-effects if it can throw. 3607 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3608 if (DCE->getTypeAsWritten()->isReferenceType() && 3609 DCE->getCastKind() == CK_Dynamic) 3610 return true; 3611 } 3612 LLVM_FALLTHROUGH; 3613 case ImplicitCastExprClass: 3614 case CStyleCastExprClass: 3615 case CXXStaticCastExprClass: 3616 case CXXReinterpretCastExprClass: 3617 case CXXConstCastExprClass: 3618 case CXXAddrspaceCastExprClass: 3619 case CXXFunctionalCastExprClass: 3620 case BuiltinBitCastExprClass: { 3621 // While volatile reads are side-effecting in both C and C++, we treat them 3622 // as having possible (not definite) side-effects. This allows idiomatic 3623 // code to behave without warning, such as sizeof(*v) for a volatile- 3624 // qualified pointer. 3625 if (!IncludePossibleEffects) 3626 break; 3627 3628 const CastExpr *CE = cast<CastExpr>(this); 3629 if (CE->getCastKind() == CK_LValueToRValue && 3630 CE->getSubExpr()->getType().isVolatileQualified()) 3631 return true; 3632 break; 3633 } 3634 3635 case CXXTypeidExprClass: 3636 // typeid might throw if its subexpression is potentially-evaluated, so has 3637 // side-effects in that case whether or not its subexpression does. 3638 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3639 3640 case CXXConstructExprClass: 3641 case CXXTemporaryObjectExprClass: { 3642 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3643 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3644 return true; 3645 // A trivial constructor does not add any side-effects of its own. Just look 3646 // at its arguments. 3647 break; 3648 } 3649 3650 case CXXInheritedCtorInitExprClass: { 3651 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3652 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3653 return true; 3654 break; 3655 } 3656 3657 case LambdaExprClass: { 3658 const LambdaExpr *LE = cast<LambdaExpr>(this); 3659 for (Expr *E : LE->capture_inits()) 3660 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3661 return true; 3662 return false; 3663 } 3664 3665 case PseudoObjectExprClass: { 3666 // Only look for side-effects in the semantic form, and look past 3667 // OpaqueValueExpr bindings in that form. 3668 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3669 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3670 E = PO->semantics_end(); 3671 I != E; ++I) { 3672 const Expr *Subexpr = *I; 3673 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3674 Subexpr = OVE->getSourceExpr(); 3675 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3676 return true; 3677 } 3678 return false; 3679 } 3680 3681 case ObjCBoxedExprClass: 3682 case ObjCArrayLiteralClass: 3683 case ObjCDictionaryLiteralClass: 3684 case ObjCSelectorExprClass: 3685 case ObjCProtocolExprClass: 3686 case ObjCIsaExprClass: 3687 case ObjCIndirectCopyRestoreExprClass: 3688 case ObjCSubscriptRefExprClass: 3689 case ObjCBridgedCastExprClass: 3690 case ObjCMessageExprClass: 3691 case ObjCPropertyRefExprClass: 3692 // FIXME: Classify these cases better. 3693 if (IncludePossibleEffects) 3694 return true; 3695 break; 3696 } 3697 3698 // Recurse to children. 3699 for (const Stmt *SubStmt : children()) 3700 if (SubStmt && 3701 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3702 return true; 3703 3704 return false; 3705 } 3706 3707 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3708 if (auto Call = dyn_cast<CallExpr>(this)) 3709 return Call->getFPFeaturesInEffect(LO); 3710 if (auto UO = dyn_cast<UnaryOperator>(this)) 3711 return UO->getFPFeaturesInEffect(LO); 3712 if (auto BO = dyn_cast<BinaryOperator>(this)) 3713 return BO->getFPFeaturesInEffect(LO); 3714 if (auto Cast = dyn_cast<CastExpr>(this)) 3715 return Cast->getFPFeaturesInEffect(LO); 3716 return FPOptions::defaultWithoutTrailingStorage(LO); 3717 } 3718 3719 namespace { 3720 /// Look for a call to a non-trivial function within an expression. 3721 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3722 { 3723 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3724 3725 bool NonTrivial; 3726 3727 public: 3728 explicit NonTrivialCallFinder(const ASTContext &Context) 3729 : Inherited(Context), NonTrivial(false) { } 3730 3731 bool hasNonTrivialCall() const { return NonTrivial; } 3732 3733 void VisitCallExpr(const CallExpr *E) { 3734 if (const CXXMethodDecl *Method 3735 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3736 if (Method->isTrivial()) { 3737 // Recurse to children of the call. 3738 Inherited::VisitStmt(E); 3739 return; 3740 } 3741 } 3742 3743 NonTrivial = true; 3744 } 3745 3746 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3747 if (E->getConstructor()->isTrivial()) { 3748 // Recurse to children of the call. 3749 Inherited::VisitStmt(E); 3750 return; 3751 } 3752 3753 NonTrivial = true; 3754 } 3755 3756 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3757 if (E->getTemporary()->getDestructor()->isTrivial()) { 3758 Inherited::VisitStmt(E); 3759 return; 3760 } 3761 3762 NonTrivial = true; 3763 } 3764 }; 3765 } 3766 3767 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3768 NonTrivialCallFinder Finder(Ctx); 3769 Finder.Visit(this); 3770 return Finder.hasNonTrivialCall(); 3771 } 3772 3773 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3774 /// pointer constant or not, as well as the specific kind of constant detected. 3775 /// Null pointer constants can be integer constant expressions with the 3776 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3777 /// (a GNU extension). 3778 Expr::NullPointerConstantKind 3779 Expr::isNullPointerConstant(ASTContext &Ctx, 3780 NullPointerConstantValueDependence NPC) const { 3781 if (isValueDependent() && 3782 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3783 // Error-dependent expr should never be a null pointer. 3784 if (containsErrors()) 3785 return NPCK_NotNull; 3786 switch (NPC) { 3787 case NPC_NeverValueDependent: 3788 llvm_unreachable("Unexpected value dependent expression!"); 3789 case NPC_ValueDependentIsNull: 3790 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3791 return NPCK_ZeroExpression; 3792 else 3793 return NPCK_NotNull; 3794 3795 case NPC_ValueDependentIsNotNull: 3796 return NPCK_NotNull; 3797 } 3798 } 3799 3800 // Strip off a cast to void*, if it exists. Except in C++. 3801 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3802 if (!Ctx.getLangOpts().CPlusPlus) { 3803 // Check that it is a cast to void*. 3804 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3805 QualType Pointee = PT->getPointeeType(); 3806 Qualifiers Qs = Pointee.getQualifiers(); 3807 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3808 // has non-default address space it is not treated as nullptr. 3809 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3810 // since it cannot be assigned to a pointer to constant address space. 3811 if (Ctx.getLangOpts().OpenCL && 3812 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3813 Qs.removeAddressSpace(); 3814 3815 if (Pointee->isVoidType() && Qs.empty() && // to void* 3816 CE->getSubExpr()->getType()->isIntegerType()) // from int 3817 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3818 } 3819 } 3820 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3821 // Ignore the ImplicitCastExpr type entirely. 3822 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3823 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3824 // Accept ((void*)0) as a null pointer constant, as many other 3825 // implementations do. 3826 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3827 } else if (const GenericSelectionExpr *GE = 3828 dyn_cast<GenericSelectionExpr>(this)) { 3829 if (GE->isResultDependent()) 3830 return NPCK_NotNull; 3831 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3832 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3833 if (CE->isConditionDependent()) 3834 return NPCK_NotNull; 3835 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3836 } else if (const CXXDefaultArgExpr *DefaultArg 3837 = dyn_cast<CXXDefaultArgExpr>(this)) { 3838 // See through default argument expressions. 3839 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3840 } else if (const CXXDefaultInitExpr *DefaultInit 3841 = dyn_cast<CXXDefaultInitExpr>(this)) { 3842 // See through default initializer expressions. 3843 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3844 } else if (isa<GNUNullExpr>(this)) { 3845 // The GNU __null extension is always a null pointer constant. 3846 return NPCK_GNUNull; 3847 } else if (const MaterializeTemporaryExpr *M 3848 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3849 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3850 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3851 if (const Expr *Source = OVE->getSourceExpr()) 3852 return Source->isNullPointerConstant(Ctx, NPC); 3853 } 3854 3855 // If the expression has no type information, it cannot be a null pointer 3856 // constant. 3857 if (getType().isNull()) 3858 return NPCK_NotNull; 3859 3860 // C++11 nullptr_t is always a null pointer constant. 3861 if (getType()->isNullPtrType()) 3862 return NPCK_CXX11_nullptr; 3863 3864 if (const RecordType *UT = getType()->getAsUnionType()) 3865 if (!Ctx.getLangOpts().CPlusPlus11 && 3866 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3867 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3868 const Expr *InitExpr = CLE->getInitializer(); 3869 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3870 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3871 } 3872 // This expression must be an integer type. 3873 if (!getType()->isIntegerType() || 3874 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3875 return NPCK_NotNull; 3876 3877 if (Ctx.getLangOpts().CPlusPlus11) { 3878 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3879 // value zero or a prvalue of type std::nullptr_t. 3880 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3881 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3882 if (Lit && !Lit->getValue()) 3883 return NPCK_ZeroLiteral; 3884 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3885 return NPCK_NotNull; 3886 } else { 3887 // If we have an integer constant expression, we need to *evaluate* it and 3888 // test for the value 0. 3889 if (!isIntegerConstantExpr(Ctx)) 3890 return NPCK_NotNull; 3891 } 3892 3893 if (EvaluateKnownConstInt(Ctx) != 0) 3894 return NPCK_NotNull; 3895 3896 if (isa<IntegerLiteral>(this)) 3897 return NPCK_ZeroLiteral; 3898 return NPCK_ZeroExpression; 3899 } 3900 3901 /// If this expression is an l-value for an Objective C 3902 /// property, find the underlying property reference expression. 3903 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3904 const Expr *E = this; 3905 while (true) { 3906 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 3907 "expression is not a property reference"); 3908 E = E->IgnoreParenCasts(); 3909 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3910 if (BO->getOpcode() == BO_Comma) { 3911 E = BO->getRHS(); 3912 continue; 3913 } 3914 } 3915 3916 break; 3917 } 3918 3919 return cast<ObjCPropertyRefExpr>(E); 3920 } 3921 3922 bool Expr::isObjCSelfExpr() const { 3923 const Expr *E = IgnoreParenImpCasts(); 3924 3925 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3926 if (!DRE) 3927 return false; 3928 3929 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3930 if (!Param) 3931 return false; 3932 3933 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3934 if (!M) 3935 return false; 3936 3937 return M->getSelfDecl() == Param; 3938 } 3939 3940 FieldDecl *Expr::getSourceBitField() { 3941 Expr *E = this->IgnoreParens(); 3942 3943 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3944 if (ICE->getCastKind() == CK_LValueToRValue || 3945 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 3946 E = ICE->getSubExpr()->IgnoreParens(); 3947 else 3948 break; 3949 } 3950 3951 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3952 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3953 if (Field->isBitField()) 3954 return Field; 3955 3956 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 3957 FieldDecl *Ivar = IvarRef->getDecl(); 3958 if (Ivar->isBitField()) 3959 return Ivar; 3960 } 3961 3962 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3963 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3964 if (Field->isBitField()) 3965 return Field; 3966 3967 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3968 if (Expr *E = BD->getBinding()) 3969 return E->getSourceBitField(); 3970 } 3971 3972 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3973 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3974 return BinOp->getLHS()->getSourceBitField(); 3975 3976 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3977 return BinOp->getRHS()->getSourceBitField(); 3978 } 3979 3980 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3981 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3982 return UnOp->getSubExpr()->getSourceBitField(); 3983 3984 return nullptr; 3985 } 3986 3987 bool Expr::refersToVectorElement() const { 3988 // FIXME: Why do we not just look at the ObjectKind here? 3989 const Expr *E = this->IgnoreParens(); 3990 3991 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3992 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 3993 E = ICE->getSubExpr()->IgnoreParens(); 3994 else 3995 break; 3996 } 3997 3998 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3999 return ASE->getBase()->getType()->isVectorType(); 4000 4001 if (isa<ExtVectorElementExpr>(E)) 4002 return true; 4003 4004 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4005 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 4006 if (auto *E = BD->getBinding()) 4007 return E->refersToVectorElement(); 4008 4009 return false; 4010 } 4011 4012 bool Expr::refersToGlobalRegisterVar() const { 4013 const Expr *E = this->IgnoreParenImpCasts(); 4014 4015 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 4016 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 4017 if (VD->getStorageClass() == SC_Register && 4018 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 4019 return true; 4020 4021 return false; 4022 } 4023 4024 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4025 E1 = E1->IgnoreParens(); 4026 E2 = E2->IgnoreParens(); 4027 4028 if (E1->getStmtClass() != E2->getStmtClass()) 4029 return false; 4030 4031 switch (E1->getStmtClass()) { 4032 default: 4033 return false; 4034 case CXXThisExprClass: 4035 return true; 4036 case DeclRefExprClass: { 4037 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4038 // template parameters. 4039 const auto *DRE1 = cast<DeclRefExpr>(E1); 4040 const auto *DRE2 = cast<DeclRefExpr>(E2); 4041 return DRE1->isPRValue() && DRE2->isPRValue() && 4042 DRE1->getDecl() == DRE2->getDecl(); 4043 } 4044 case ImplicitCastExprClass: { 4045 // Peel off implicit casts. 4046 while (true) { 4047 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4048 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4049 if (!ICE1 || !ICE2) 4050 return false; 4051 if (ICE1->getCastKind() != ICE2->getCastKind()) 4052 return false; 4053 E1 = ICE1->getSubExpr()->IgnoreParens(); 4054 E2 = ICE2->getSubExpr()->IgnoreParens(); 4055 // The final cast must be one of these types. 4056 if (ICE1->getCastKind() == CK_LValueToRValue || 4057 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4058 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4059 break; 4060 } 4061 } 4062 4063 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4064 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4065 if (DRE1 && DRE2) 4066 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4067 4068 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4069 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4070 if (Ivar1 && Ivar2) { 4071 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4072 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4073 } 4074 4075 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4076 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4077 if (Array1 && Array2) { 4078 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4079 return false; 4080 4081 auto Idx1 = Array1->getIdx(); 4082 auto Idx2 = Array2->getIdx(); 4083 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4084 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4085 if (Integer1 && Integer2) { 4086 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4087 Integer2->getValue())) 4088 return false; 4089 } else { 4090 if (!isSameComparisonOperand(Idx1, Idx2)) 4091 return false; 4092 } 4093 4094 return true; 4095 } 4096 4097 // Walk the MemberExpr chain. 4098 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4099 const auto *ME1 = cast<MemberExpr>(E1); 4100 const auto *ME2 = cast<MemberExpr>(E2); 4101 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4102 return false; 4103 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4104 if (D->isStaticDataMember()) 4105 return true; 4106 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4107 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4108 } 4109 4110 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4111 return true; 4112 4113 // A static member variable can end the MemberExpr chain with either 4114 // a MemberExpr or a DeclRefExpr. 4115 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4116 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4117 return DRE->getDecl(); 4118 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4119 return ME->getMemberDecl(); 4120 return nullptr; 4121 }; 4122 4123 const ValueDecl *VD1 = getAnyDecl(E1); 4124 const ValueDecl *VD2 = getAnyDecl(E2); 4125 return declaresSameEntity(VD1, VD2); 4126 } 4127 } 4128 } 4129 4130 /// isArrow - Return true if the base expression is a pointer to vector, 4131 /// return false if the base expression is a vector. 4132 bool ExtVectorElementExpr::isArrow() const { 4133 return getBase()->getType()->isPointerType(); 4134 } 4135 4136 unsigned ExtVectorElementExpr::getNumElements() const { 4137 if (const VectorType *VT = getType()->getAs<VectorType>()) 4138 return VT->getNumElements(); 4139 return 1; 4140 } 4141 4142 /// containsDuplicateElements - Return true if any element access is repeated. 4143 bool ExtVectorElementExpr::containsDuplicateElements() const { 4144 // FIXME: Refactor this code to an accessor on the AST node which returns the 4145 // "type" of component access, and share with code below and in Sema. 4146 StringRef Comp = Accessor->getName(); 4147 4148 // Halving swizzles do not contain duplicate elements. 4149 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4150 return false; 4151 4152 // Advance past s-char prefix on hex swizzles. 4153 if (Comp[0] == 's' || Comp[0] == 'S') 4154 Comp = Comp.substr(1); 4155 4156 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4157 if (Comp.substr(i + 1).contains(Comp[i])) 4158 return true; 4159 4160 return false; 4161 } 4162 4163 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4164 void ExtVectorElementExpr::getEncodedElementAccess( 4165 SmallVectorImpl<uint32_t> &Elts) const { 4166 StringRef Comp = Accessor->getName(); 4167 bool isNumericAccessor = false; 4168 if (Comp[0] == 's' || Comp[0] == 'S') { 4169 Comp = Comp.substr(1); 4170 isNumericAccessor = true; 4171 } 4172 4173 bool isHi = Comp == "hi"; 4174 bool isLo = Comp == "lo"; 4175 bool isEven = Comp == "even"; 4176 bool isOdd = Comp == "odd"; 4177 4178 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4179 uint64_t Index; 4180 4181 if (isHi) 4182 Index = e + i; 4183 else if (isLo) 4184 Index = i; 4185 else if (isEven) 4186 Index = 2 * i; 4187 else if (isOdd) 4188 Index = 2 * i + 1; 4189 else 4190 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4191 4192 Elts.push_back(Index); 4193 } 4194 } 4195 4196 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4197 QualType Type, SourceLocation BLoc, 4198 SourceLocation RP) 4199 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4200 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4201 SubExprs = new (C) Stmt*[args.size()]; 4202 for (unsigned i = 0; i != args.size(); i++) 4203 SubExprs[i] = args[i]; 4204 4205 setDependence(computeDependence(this)); 4206 } 4207 4208 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4209 if (SubExprs) C.Deallocate(SubExprs); 4210 4211 this->NumExprs = Exprs.size(); 4212 SubExprs = new (C) Stmt*[NumExprs]; 4213 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4214 } 4215 4216 GenericSelectionExpr::GenericSelectionExpr( 4217 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4218 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4219 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4220 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4221 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4222 AssocExprs[ResultIndex]->getValueKind(), 4223 AssocExprs[ResultIndex]->getObjectKind()), 4224 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4225 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4226 assert(AssocTypes.size() == AssocExprs.size() && 4227 "Must have the same number of association expressions" 4228 " and TypeSourceInfo!"); 4229 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4230 4231 GenericSelectionExprBits.GenericLoc = GenericLoc; 4232 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4233 std::copy(AssocExprs.begin(), AssocExprs.end(), 4234 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4235 std::copy(AssocTypes.begin(), AssocTypes.end(), 4236 getTrailingObjects<TypeSourceInfo *>()); 4237 4238 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4239 } 4240 4241 GenericSelectionExpr::GenericSelectionExpr( 4242 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4243 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4244 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4245 bool ContainsUnexpandedParameterPack) 4246 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4247 OK_Ordinary), 4248 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4249 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4250 assert(AssocTypes.size() == AssocExprs.size() && 4251 "Must have the same number of association expressions" 4252 " and TypeSourceInfo!"); 4253 4254 GenericSelectionExprBits.GenericLoc = GenericLoc; 4255 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4256 std::copy(AssocExprs.begin(), AssocExprs.end(), 4257 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4258 std::copy(AssocTypes.begin(), AssocTypes.end(), 4259 getTrailingObjects<TypeSourceInfo *>()); 4260 4261 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4262 } 4263 4264 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4265 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4266 4267 GenericSelectionExpr *GenericSelectionExpr::Create( 4268 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4269 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4270 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4271 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4272 unsigned NumAssocs = AssocExprs.size(); 4273 void *Mem = Context.Allocate( 4274 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4275 alignof(GenericSelectionExpr)); 4276 return new (Mem) GenericSelectionExpr( 4277 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4278 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4279 } 4280 4281 GenericSelectionExpr *GenericSelectionExpr::Create( 4282 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4283 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4284 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4285 bool ContainsUnexpandedParameterPack) { 4286 unsigned NumAssocs = AssocExprs.size(); 4287 void *Mem = Context.Allocate( 4288 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4289 alignof(GenericSelectionExpr)); 4290 return new (Mem) GenericSelectionExpr( 4291 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4292 RParenLoc, ContainsUnexpandedParameterPack); 4293 } 4294 4295 GenericSelectionExpr * 4296 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4297 unsigned NumAssocs) { 4298 void *Mem = Context.Allocate( 4299 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4300 alignof(GenericSelectionExpr)); 4301 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4302 } 4303 4304 //===----------------------------------------------------------------------===// 4305 // DesignatedInitExpr 4306 //===----------------------------------------------------------------------===// 4307 4308 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4309 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4310 if (Field.NameOrField & 0x01) 4311 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01); 4312 return getField()->getIdentifier(); 4313 } 4314 4315 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4316 llvm::ArrayRef<Designator> Designators, 4317 SourceLocation EqualOrColonLoc, 4318 bool GNUSyntax, 4319 ArrayRef<Expr *> IndexExprs, Expr *Init) 4320 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4321 Init->getObjectKind()), 4322 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4323 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4324 this->Designators = new (C) Designator[NumDesignators]; 4325 4326 // Record the initializer itself. 4327 child_iterator Child = child_begin(); 4328 *Child++ = Init; 4329 4330 // Copy the designators and their subexpressions, computing 4331 // value-dependence along the way. 4332 unsigned IndexIdx = 0; 4333 for (unsigned I = 0; I != NumDesignators; ++I) { 4334 this->Designators[I] = Designators[I]; 4335 if (this->Designators[I].isArrayDesignator()) { 4336 // Copy the index expressions into permanent storage. 4337 *Child++ = IndexExprs[IndexIdx++]; 4338 } else if (this->Designators[I].isArrayRangeDesignator()) { 4339 // Copy the start/end expressions into permanent storage. 4340 *Child++ = IndexExprs[IndexIdx++]; 4341 *Child++ = IndexExprs[IndexIdx++]; 4342 } 4343 } 4344 4345 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4346 setDependence(computeDependence(this)); 4347 } 4348 4349 DesignatedInitExpr * 4350 DesignatedInitExpr::Create(const ASTContext &C, 4351 llvm::ArrayRef<Designator> Designators, 4352 ArrayRef<Expr*> IndexExprs, 4353 SourceLocation ColonOrEqualLoc, 4354 bool UsesColonSyntax, Expr *Init) { 4355 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4356 alignof(DesignatedInitExpr)); 4357 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4358 ColonOrEqualLoc, UsesColonSyntax, 4359 IndexExprs, Init); 4360 } 4361 4362 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4363 unsigned NumIndexExprs) { 4364 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4365 alignof(DesignatedInitExpr)); 4366 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4367 } 4368 4369 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4370 const Designator *Desigs, 4371 unsigned NumDesigs) { 4372 Designators = new (C) Designator[NumDesigs]; 4373 NumDesignators = NumDesigs; 4374 for (unsigned I = 0; I != NumDesigs; ++I) 4375 Designators[I] = Desigs[I]; 4376 } 4377 4378 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4379 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4380 if (size() == 1) 4381 return DIE->getDesignator(0)->getSourceRange(); 4382 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4383 DIE->getDesignator(size() - 1)->getEndLoc()); 4384 } 4385 4386 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4387 SourceLocation StartLoc; 4388 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4389 Designator &First = *DIE->getDesignator(0); 4390 if (First.isFieldDesignator()) 4391 StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc; 4392 else 4393 StartLoc = First.ArrayOrRange.LBracketLoc; 4394 return StartLoc; 4395 } 4396 4397 SourceLocation DesignatedInitExpr::getEndLoc() const { 4398 return getInit()->getEndLoc(); 4399 } 4400 4401 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4402 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4403 return getSubExpr(D.ArrayOrRange.Index + 1); 4404 } 4405 4406 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4407 assert(D.Kind == Designator::ArrayRangeDesignator && 4408 "Requires array range designator"); 4409 return getSubExpr(D.ArrayOrRange.Index + 1); 4410 } 4411 4412 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4413 assert(D.Kind == Designator::ArrayRangeDesignator && 4414 "Requires array range designator"); 4415 return getSubExpr(D.ArrayOrRange.Index + 2); 4416 } 4417 4418 /// Replaces the designator at index @p Idx with the series 4419 /// of designators in [First, Last). 4420 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4421 const Designator *First, 4422 const Designator *Last) { 4423 unsigned NumNewDesignators = Last - First; 4424 if (NumNewDesignators == 0) { 4425 std::copy_backward(Designators + Idx + 1, 4426 Designators + NumDesignators, 4427 Designators + Idx); 4428 --NumNewDesignators; 4429 return; 4430 } 4431 if (NumNewDesignators == 1) { 4432 Designators[Idx] = *First; 4433 return; 4434 } 4435 4436 Designator *NewDesignators 4437 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4438 std::copy(Designators, Designators + Idx, NewDesignators); 4439 std::copy(First, Last, NewDesignators + Idx); 4440 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4441 NewDesignators + Idx + NumNewDesignators); 4442 Designators = NewDesignators; 4443 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4444 } 4445 4446 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4447 SourceLocation lBraceLoc, 4448 Expr *baseExpr, 4449 SourceLocation rBraceLoc) 4450 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4451 OK_Ordinary) { 4452 BaseAndUpdaterExprs[0] = baseExpr; 4453 4454 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 4455 ILE->setType(baseExpr->getType()); 4456 BaseAndUpdaterExprs[1] = ILE; 4457 4458 // FIXME: this is wrong, set it correctly. 4459 setDependence(ExprDependence::None); 4460 } 4461 4462 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4463 return getBase()->getBeginLoc(); 4464 } 4465 4466 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4467 return getBase()->getEndLoc(); 4468 } 4469 4470 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4471 SourceLocation RParenLoc) 4472 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4473 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4474 ParenListExprBits.NumExprs = Exprs.size(); 4475 4476 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4477 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4478 setDependence(computeDependence(this)); 4479 } 4480 4481 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4482 : Expr(ParenListExprClass, Empty) { 4483 ParenListExprBits.NumExprs = NumExprs; 4484 } 4485 4486 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4487 SourceLocation LParenLoc, 4488 ArrayRef<Expr *> Exprs, 4489 SourceLocation RParenLoc) { 4490 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4491 alignof(ParenListExpr)); 4492 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4493 } 4494 4495 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4496 unsigned NumExprs) { 4497 void *Mem = 4498 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4499 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4500 } 4501 4502 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4503 Opcode opc, QualType ResTy, ExprValueKind VK, 4504 ExprObjectKind OK, SourceLocation opLoc, 4505 FPOptionsOverride FPFeatures) 4506 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4507 BinaryOperatorBits.Opc = opc; 4508 assert(!isCompoundAssignmentOp() && 4509 "Use CompoundAssignOperator for compound assignments"); 4510 BinaryOperatorBits.OpLoc = opLoc; 4511 SubExprs[LHS] = lhs; 4512 SubExprs[RHS] = rhs; 4513 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4514 if (hasStoredFPFeatures()) 4515 setStoredFPFeatures(FPFeatures); 4516 setDependence(computeDependence(this)); 4517 } 4518 4519 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4520 Opcode opc, QualType ResTy, ExprValueKind VK, 4521 ExprObjectKind OK, SourceLocation opLoc, 4522 FPOptionsOverride FPFeatures, bool dead2) 4523 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4524 BinaryOperatorBits.Opc = opc; 4525 assert(isCompoundAssignmentOp() && 4526 "Use CompoundAssignOperator for compound assignments"); 4527 BinaryOperatorBits.OpLoc = opLoc; 4528 SubExprs[LHS] = lhs; 4529 SubExprs[RHS] = rhs; 4530 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4531 if (hasStoredFPFeatures()) 4532 setStoredFPFeatures(FPFeatures); 4533 setDependence(computeDependence(this)); 4534 } 4535 4536 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4537 bool HasFPFeatures) { 4538 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4539 void *Mem = 4540 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4541 return new (Mem) BinaryOperator(EmptyShell()); 4542 } 4543 4544 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4545 Expr *rhs, Opcode opc, QualType ResTy, 4546 ExprValueKind VK, ExprObjectKind OK, 4547 SourceLocation opLoc, 4548 FPOptionsOverride FPFeatures) { 4549 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4550 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4551 void *Mem = 4552 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4553 return new (Mem) 4554 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4555 } 4556 4557 CompoundAssignOperator * 4558 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4559 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4560 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4561 alignof(CompoundAssignOperator)); 4562 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4563 } 4564 4565 CompoundAssignOperator * 4566 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4567 Opcode opc, QualType ResTy, ExprValueKind VK, 4568 ExprObjectKind OK, SourceLocation opLoc, 4569 FPOptionsOverride FPFeatures, 4570 QualType CompLHSType, QualType CompResultType) { 4571 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4572 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4573 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4574 alignof(CompoundAssignOperator)); 4575 return new (Mem) 4576 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4577 CompLHSType, CompResultType); 4578 } 4579 4580 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4581 bool hasFPFeatures) { 4582 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4583 alignof(UnaryOperator)); 4584 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4585 } 4586 4587 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4588 QualType type, ExprValueKind VK, ExprObjectKind OK, 4589 SourceLocation l, bool CanOverflow, 4590 FPOptionsOverride FPFeatures) 4591 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4592 UnaryOperatorBits.Opc = opc; 4593 UnaryOperatorBits.CanOverflow = CanOverflow; 4594 UnaryOperatorBits.Loc = l; 4595 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4596 if (hasStoredFPFeatures()) 4597 setStoredFPFeatures(FPFeatures); 4598 setDependence(computeDependence(this, Ctx)); 4599 } 4600 4601 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4602 Opcode opc, QualType type, 4603 ExprValueKind VK, ExprObjectKind OK, 4604 SourceLocation l, bool CanOverflow, 4605 FPOptionsOverride FPFeatures) { 4606 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4607 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4608 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4609 return new (Mem) 4610 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4611 } 4612 4613 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4614 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4615 e = ewc->getSubExpr(); 4616 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4617 e = m->getSubExpr(); 4618 e = cast<CXXConstructExpr>(e)->getArg(0); 4619 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4620 e = ice->getSubExpr(); 4621 return cast<OpaqueValueExpr>(e); 4622 } 4623 4624 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4625 EmptyShell sh, 4626 unsigned numSemanticExprs) { 4627 void *buffer = 4628 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4629 alignof(PseudoObjectExpr)); 4630 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4631 } 4632 4633 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4634 : Expr(PseudoObjectExprClass, shell) { 4635 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4636 } 4637 4638 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4639 ArrayRef<Expr*> semantics, 4640 unsigned resultIndex) { 4641 assert(syntax && "no syntactic expression!"); 4642 assert(semantics.size() && "no semantic expressions!"); 4643 4644 QualType type; 4645 ExprValueKind VK; 4646 if (resultIndex == NoResult) { 4647 type = C.VoidTy; 4648 VK = VK_PRValue; 4649 } else { 4650 assert(resultIndex < semantics.size()); 4651 type = semantics[resultIndex]->getType(); 4652 VK = semantics[resultIndex]->getValueKind(); 4653 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4654 } 4655 4656 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4657 alignof(PseudoObjectExpr)); 4658 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4659 resultIndex); 4660 } 4661 4662 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4663 Expr *syntax, ArrayRef<Expr *> semantics, 4664 unsigned resultIndex) 4665 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4666 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4667 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4668 4669 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4670 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4671 getSubExprsBuffer()[i] = E; 4672 4673 if (isa<OpaqueValueExpr>(E)) 4674 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4675 "opaque-value semantic expressions for pseudo-object " 4676 "operations must have sources"); 4677 } 4678 4679 setDependence(computeDependence(this)); 4680 } 4681 4682 //===----------------------------------------------------------------------===// 4683 // Child Iterators for iterating over subexpressions/substatements 4684 //===----------------------------------------------------------------------===// 4685 4686 // UnaryExprOrTypeTraitExpr 4687 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4688 const_child_range CCR = 4689 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4690 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4691 } 4692 4693 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4694 // If this is of a type and the type is a VLA type (and not a typedef), the 4695 // size expression of the VLA needs to be treated as an executable expression. 4696 // Why isn't this weirdness documented better in StmtIterator? 4697 if (isArgumentType()) { 4698 if (const VariableArrayType *T = 4699 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4700 return const_child_range(const_child_iterator(T), const_child_iterator()); 4701 return const_child_range(const_child_iterator(), const_child_iterator()); 4702 } 4703 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4704 } 4705 4706 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4707 AtomicOp op, SourceLocation RP) 4708 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4709 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4710 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4711 for (unsigned i = 0; i != args.size(); i++) 4712 SubExprs[i] = args[i]; 4713 setDependence(computeDependence(this)); 4714 } 4715 4716 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4717 switch (Op) { 4718 case AO__c11_atomic_init: 4719 case AO__opencl_atomic_init: 4720 case AO__c11_atomic_load: 4721 case AO__atomic_load_n: 4722 return 2; 4723 4724 case AO__opencl_atomic_load: 4725 case AO__hip_atomic_load: 4726 case AO__c11_atomic_store: 4727 case AO__c11_atomic_exchange: 4728 case AO__atomic_load: 4729 case AO__atomic_store: 4730 case AO__atomic_store_n: 4731 case AO__atomic_exchange_n: 4732 case AO__c11_atomic_fetch_add: 4733 case AO__c11_atomic_fetch_sub: 4734 case AO__c11_atomic_fetch_and: 4735 case AO__c11_atomic_fetch_or: 4736 case AO__c11_atomic_fetch_xor: 4737 case AO__c11_atomic_fetch_nand: 4738 case AO__c11_atomic_fetch_max: 4739 case AO__c11_atomic_fetch_min: 4740 case AO__atomic_fetch_add: 4741 case AO__atomic_fetch_sub: 4742 case AO__atomic_fetch_and: 4743 case AO__atomic_fetch_or: 4744 case AO__atomic_fetch_xor: 4745 case AO__atomic_fetch_nand: 4746 case AO__atomic_add_fetch: 4747 case AO__atomic_sub_fetch: 4748 case AO__atomic_and_fetch: 4749 case AO__atomic_or_fetch: 4750 case AO__atomic_xor_fetch: 4751 case AO__atomic_nand_fetch: 4752 case AO__atomic_min_fetch: 4753 case AO__atomic_max_fetch: 4754 case AO__atomic_fetch_min: 4755 case AO__atomic_fetch_max: 4756 return 3; 4757 4758 case AO__hip_atomic_exchange: 4759 case AO__hip_atomic_fetch_add: 4760 case AO__hip_atomic_fetch_and: 4761 case AO__hip_atomic_fetch_or: 4762 case AO__hip_atomic_fetch_xor: 4763 case AO__hip_atomic_fetch_min: 4764 case AO__hip_atomic_fetch_max: 4765 case AO__opencl_atomic_store: 4766 case AO__hip_atomic_store: 4767 case AO__opencl_atomic_exchange: 4768 case AO__opencl_atomic_fetch_add: 4769 case AO__opencl_atomic_fetch_sub: 4770 case AO__opencl_atomic_fetch_and: 4771 case AO__opencl_atomic_fetch_or: 4772 case AO__opencl_atomic_fetch_xor: 4773 case AO__opencl_atomic_fetch_min: 4774 case AO__opencl_atomic_fetch_max: 4775 case AO__atomic_exchange: 4776 return 4; 4777 4778 case AO__c11_atomic_compare_exchange_strong: 4779 case AO__c11_atomic_compare_exchange_weak: 4780 return 5; 4781 case AO__hip_atomic_compare_exchange_strong: 4782 case AO__opencl_atomic_compare_exchange_strong: 4783 case AO__opencl_atomic_compare_exchange_weak: 4784 case AO__hip_atomic_compare_exchange_weak: 4785 case AO__atomic_compare_exchange: 4786 case AO__atomic_compare_exchange_n: 4787 return 6; 4788 } 4789 llvm_unreachable("unknown atomic op"); 4790 } 4791 4792 QualType AtomicExpr::getValueType() const { 4793 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4794 if (auto AT = T->getAs<AtomicType>()) 4795 return AT->getValueType(); 4796 return T; 4797 } 4798 4799 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4800 unsigned ArraySectionCount = 0; 4801 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4802 Base = OASE->getBase(); 4803 ++ArraySectionCount; 4804 } 4805 while (auto *ASE = 4806 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4807 Base = ASE->getBase(); 4808 ++ArraySectionCount; 4809 } 4810 Base = Base->IgnoreParenImpCasts(); 4811 auto OriginalTy = Base->getType(); 4812 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4813 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4814 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4815 4816 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4817 if (OriginalTy->isAnyPointerType()) 4818 OriginalTy = OriginalTy->getPointeeType(); 4819 else { 4820 assert (OriginalTy->isArrayType()); 4821 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4822 } 4823 } 4824 return OriginalTy; 4825 } 4826 4827 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 4828 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 4829 : Expr(RecoveryExprClass, T.getNonReferenceType(), 4830 T->isDependentType() ? VK_LValue : getValueKindForType(T), 4831 OK_Ordinary), 4832 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 4833 assert(!T.isNull()); 4834 assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; })); 4835 4836 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 4837 setDependence(computeDependence(this)); 4838 } 4839 4840 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 4841 SourceLocation BeginLoc, 4842 SourceLocation EndLoc, 4843 ArrayRef<Expr *> SubExprs) { 4844 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 4845 alignof(RecoveryExpr)); 4846 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 4847 } 4848 4849 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 4850 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 4851 alignof(RecoveryExpr)); 4852 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 4853 } 4854 4855 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 4856 assert( 4857 NumDims == Dims.size() && 4858 "Preallocated number of dimensions is different from the provided one."); 4859 llvm::copy(Dims, getTrailingObjects<Expr *>()); 4860 } 4861 4862 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 4863 assert( 4864 NumDims == BR.size() && 4865 "Preallocated number of dimensions is different from the provided one."); 4866 llvm::copy(BR, getTrailingObjects<SourceRange>()); 4867 } 4868 4869 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 4870 SourceLocation L, SourceLocation R, 4871 ArrayRef<Expr *> Dims) 4872 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 4873 RPLoc(R), NumDims(Dims.size()) { 4874 setBase(Op); 4875 setDimensions(Dims); 4876 setDependence(computeDependence(this)); 4877 } 4878 4879 OMPArrayShapingExpr * 4880 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 4881 SourceLocation L, SourceLocation R, 4882 ArrayRef<Expr *> Dims, 4883 ArrayRef<SourceRange> BracketRanges) { 4884 assert(Dims.size() == BracketRanges.size() && 4885 "Different number of dimensions and brackets ranges."); 4886 void *Mem = Context.Allocate( 4887 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 4888 alignof(OMPArrayShapingExpr)); 4889 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 4890 E->setBracketsRanges(BracketRanges); 4891 return E; 4892 } 4893 4894 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 4895 unsigned NumDims) { 4896 void *Mem = Context.Allocate( 4897 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 4898 alignof(OMPArrayShapingExpr)); 4899 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 4900 } 4901 4902 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 4903 assert(I < NumIterators && 4904 "Idx is greater or equal the number of iterators definitions."); 4905 getTrailingObjects<Decl *>()[I] = D; 4906 } 4907 4908 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 4909 assert(I < NumIterators && 4910 "Idx is greater or equal the number of iterators definitions."); 4911 getTrailingObjects< 4912 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4913 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 4914 } 4915 4916 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 4917 SourceLocation ColonLoc, Expr *End, 4918 SourceLocation SecondColonLoc, 4919 Expr *Step) { 4920 assert(I < NumIterators && 4921 "Idx is greater or equal the number of iterators definitions."); 4922 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4923 static_cast<int>(RangeExprOffset::Begin)] = 4924 Begin; 4925 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4926 static_cast<int>(RangeExprOffset::End)] = End; 4927 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4928 static_cast<int>(RangeExprOffset::Step)] = Step; 4929 getTrailingObjects< 4930 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4931 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 4932 ColonLoc; 4933 getTrailingObjects< 4934 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4935 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 4936 SecondColonLoc; 4937 } 4938 4939 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 4940 return getTrailingObjects<Decl *>()[I]; 4941 } 4942 4943 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 4944 IteratorRange Res; 4945 Res.Begin = 4946 getTrailingObjects<Expr *>()[I * static_cast<int>( 4947 RangeExprOffset::Total) + 4948 static_cast<int>(RangeExprOffset::Begin)]; 4949 Res.End = 4950 getTrailingObjects<Expr *>()[I * static_cast<int>( 4951 RangeExprOffset::Total) + 4952 static_cast<int>(RangeExprOffset::End)]; 4953 Res.Step = 4954 getTrailingObjects<Expr *>()[I * static_cast<int>( 4955 RangeExprOffset::Total) + 4956 static_cast<int>(RangeExprOffset::Step)]; 4957 return Res; 4958 } 4959 4960 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 4961 return getTrailingObjects< 4962 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4963 static_cast<int>(RangeLocOffset::AssignLoc)]; 4964 } 4965 4966 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 4967 return getTrailingObjects< 4968 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4969 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 4970 } 4971 4972 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 4973 return getTrailingObjects< 4974 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4975 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 4976 } 4977 4978 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 4979 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 4980 } 4981 4982 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 4983 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4984 } 4985 4986 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 4987 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4988 } 4989 4990 OMPIteratorExpr::OMPIteratorExpr( 4991 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 4992 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4993 ArrayRef<OMPIteratorHelperData> Helpers) 4994 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 4995 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 4996 NumIterators(Data.size()) { 4997 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 4998 const IteratorDefinition &D = Data[I]; 4999 setIteratorDeclaration(I, D.IteratorDecl); 5000 setAssignmentLoc(I, D.AssignmentLoc); 5001 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 5002 D.SecondColonLoc, D.Range.Step); 5003 setHelper(I, Helpers[I]); 5004 } 5005 setDependence(computeDependence(this)); 5006 } 5007 5008 OMPIteratorExpr * 5009 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 5010 SourceLocation IteratorKwLoc, SourceLocation L, 5011 SourceLocation R, 5012 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5013 ArrayRef<OMPIteratorHelperData> Helpers) { 5014 assert(Data.size() == Helpers.size() && 5015 "Data and helpers must have the same size."); 5016 void *Mem = Context.Allocate( 5017 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5018 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 5019 Data.size() * static_cast<int>(RangeLocOffset::Total), 5020 Helpers.size()), 5021 alignof(OMPIteratorExpr)); 5022 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 5023 } 5024 5025 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5026 unsigned NumIterators) { 5027 void *Mem = Context.Allocate( 5028 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5029 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5030 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5031 alignof(OMPIteratorExpr)); 5032 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5033 } 5034