1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cstring> 40 #include <optional> 41 using namespace clang; 42 43 const Expr *Expr::getBestDynamicClassTypeExpr() const { 44 const Expr *E = this; 45 while (true) { 46 E = E->IgnoreParenBaseCasts(); 47 48 // Follow the RHS of a comma operator. 49 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 50 if (BO->getOpcode() == BO_Comma) { 51 E = BO->getRHS(); 52 continue; 53 } 54 } 55 56 // Step into initializer for materialized temporaries. 57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 58 E = MTE->getSubExpr(); 59 continue; 60 } 61 62 break; 63 } 64 65 return E; 66 } 67 68 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 69 const Expr *E = getBestDynamicClassTypeExpr(); 70 QualType DerivedType = E->getType(); 71 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 72 DerivedType = PTy->getPointeeType(); 73 74 if (DerivedType->isDependentType()) 75 return nullptr; 76 77 const RecordType *Ty = DerivedType->castAs<RecordType>(); 78 Decl *D = Ty->getDecl(); 79 return cast<CXXRecordDecl>(D); 80 } 81 82 const Expr *Expr::skipRValueSubobjectAdjustments( 83 SmallVectorImpl<const Expr *> &CommaLHSs, 84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 85 const Expr *E = this; 86 while (true) { 87 E = E->IgnoreParens(); 88 89 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 90 if ((CE->getCastKind() == CK_DerivedToBase || 91 CE->getCastKind() == CK_UncheckedDerivedToBase) && 92 E->getType()->isRecordType()) { 93 E = CE->getSubExpr(); 94 auto *Derived = 95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 96 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 97 continue; 98 } 99 100 if (CE->getCastKind() == CK_NoOp) { 101 E = CE->getSubExpr(); 102 continue; 103 } 104 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 105 if (!ME->isArrow()) { 106 assert(ME->getBase()->getType()->isRecordType()); 107 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 109 E = ME->getBase(); 110 Adjustments.push_back(SubobjectAdjustment(Field)); 111 continue; 112 } 113 } 114 } 115 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 116 if (BO->getOpcode() == BO_PtrMemD) { 117 assert(BO->getRHS()->isPRValue()); 118 E = BO->getLHS(); 119 const MemberPointerType *MPT = 120 BO->getRHS()->getType()->getAs<MemberPointerType>(); 121 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 122 continue; 123 } 124 if (BO->getOpcode() == BO_Comma) { 125 CommaLHSs.push_back(BO->getLHS()); 126 E = BO->getRHS(); 127 continue; 128 } 129 } 130 131 // Nothing changed. 132 break; 133 } 134 return E; 135 } 136 137 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 138 const Expr *E = IgnoreParens(); 139 140 // If this value has _Bool type, it is obvious 0/1. 141 if (E->getType()->isBooleanType()) return true; 142 // If this is a non-scalar-integer type, we don't care enough to try. 143 if (!E->getType()->isIntegralOrEnumerationType()) return false; 144 145 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 146 switch (UO->getOpcode()) { 147 case UO_Plus: 148 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 149 case UO_LNot: 150 return true; 151 default: 152 return false; 153 } 154 } 155 156 // Only look through implicit casts. If the user writes 157 // '(int) (a && b)' treat it as an arbitrary int. 158 // FIXME: Should we look through any cast expression in !Semantic mode? 159 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 160 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 161 162 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 163 switch (BO->getOpcode()) { 164 default: return false; 165 case BO_LT: // Relational operators. 166 case BO_GT: 167 case BO_LE: 168 case BO_GE: 169 case BO_EQ: // Equality operators. 170 case BO_NE: 171 case BO_LAnd: // AND operator. 172 case BO_LOr: // Logical OR operator. 173 return true; 174 175 case BO_And: // Bitwise AND operator. 176 case BO_Xor: // Bitwise XOR operator. 177 case BO_Or: // Bitwise OR operator. 178 // Handle things like (x==2)|(y==12). 179 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 180 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 181 182 case BO_Comma: 183 case BO_Assign: 184 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 185 } 186 } 187 188 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 189 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 190 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 191 192 if (isa<ObjCBoolLiteralExpr>(E)) 193 return true; 194 195 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 196 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 197 198 if (const FieldDecl *FD = E->getSourceBitField()) 199 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 200 !FD->getBitWidth()->isValueDependent() && 201 FD->getBitWidthValue(FD->getASTContext()) == 1) 202 return true; 203 204 return false; 205 } 206 207 bool Expr::isFlexibleArrayMemberLike( 208 ASTContext &Context, 209 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, 210 bool IgnoreTemplateOrMacroSubstitution) const { 211 212 // For compatibility with existing code, we treat arrays of length 0 or 213 // 1 as flexible array members. 214 const auto *CAT = Context.getAsConstantArrayType(getType()); 215 if (CAT) { 216 llvm::APInt Size = CAT->getSize(); 217 218 using FAMKind = LangOptions::StrictFlexArraysLevelKind; 219 220 if (StrictFlexArraysLevel == FAMKind::IncompleteOnly) 221 return false; 222 223 // GCC extension, only allowed to represent a FAM. 224 if (Size == 0) 225 return true; 226 227 if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1)) 228 return false; 229 230 if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2)) 231 return false; 232 } else if (!Context.getAsIncompleteArrayType(getType())) 233 return false; 234 235 const Expr *E = IgnoreParens(); 236 237 const NamedDecl *ND = nullptr; 238 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 239 ND = DRE->getDecl(); 240 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 241 ND = ME->getMemberDecl(); 242 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) 243 return IRE->getDecl()->getNextIvar() == nullptr; 244 245 if (!ND) 246 return false; 247 248 // A flexible array member must be the last member in the class. 249 // FIXME: If the base type of the member expr is not FD->getParent(), 250 // this should not be treated as a flexible array member access. 251 if (const auto *FD = dyn_cast<FieldDecl>(ND)) { 252 // GCC treats an array memeber of a union as an FAM if the size is one or 253 // zero. 254 if (CAT) { 255 llvm::APInt Size = CAT->getSize(); 256 if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne())) 257 return true; 258 } 259 260 // Don't consider sizes resulting from macro expansions or template argument 261 // substitution to form C89 tail-padded arrays. 262 if (IgnoreTemplateOrMacroSubstitution) { 263 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 264 while (TInfo) { 265 TypeLoc TL = TInfo->getTypeLoc(); 266 // Look through typedefs. 267 if (TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>()) { 268 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 269 TInfo = TDL->getTypeSourceInfo(); 270 continue; 271 } 272 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 273 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 274 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 275 return false; 276 } 277 break; 278 } 279 } 280 281 RecordDecl::field_iterator FI( 282 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 283 return ++FI == FD->getParent()->field_end(); 284 } 285 286 return false; 287 } 288 289 const ValueDecl * 290 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 291 Expr::EvalResult Eval; 292 293 if (EvaluateAsConstantExpr(Eval, Context)) { 294 APValue &Value = Eval.Val; 295 296 if (Value.isMemberPointer()) 297 return Value.getMemberPointerDecl(); 298 299 if (Value.isLValue() && Value.getLValueOffset().isZero()) 300 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 301 } 302 303 return nullptr; 304 } 305 306 // Amusing macro metaprogramming hack: check whether a class provides 307 // a more specific implementation of getExprLoc(). 308 // 309 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 310 namespace { 311 /// This implementation is used when a class provides a custom 312 /// implementation of getExprLoc. 313 template <class E, class T> 314 SourceLocation getExprLocImpl(const Expr *expr, 315 SourceLocation (T::*v)() const) { 316 return static_cast<const E*>(expr)->getExprLoc(); 317 } 318 319 /// This implementation is used when a class doesn't provide 320 /// a custom implementation of getExprLoc. Overload resolution 321 /// should pick it over the implementation above because it's 322 /// more specialized according to function template partial ordering. 323 template <class E> 324 SourceLocation getExprLocImpl(const Expr *expr, 325 SourceLocation (Expr::*v)() const) { 326 return static_cast<const E *>(expr)->getBeginLoc(); 327 } 328 } 329 330 SourceLocation Expr::getExprLoc() const { 331 switch (getStmtClass()) { 332 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 333 #define ABSTRACT_STMT(type) 334 #define STMT(type, base) \ 335 case Stmt::type##Class: break; 336 #define EXPR(type, base) \ 337 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 338 #include "clang/AST/StmtNodes.inc" 339 } 340 llvm_unreachable("unknown expression kind"); 341 } 342 343 //===----------------------------------------------------------------------===// 344 // Primary Expressions. 345 //===----------------------------------------------------------------------===// 346 347 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 348 assert((Kind == ConstantExpr::RSK_APValue || 349 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 350 "Invalid StorageKind Value"); 351 (void)Kind; 352 } 353 354 ConstantExpr::ResultStorageKind 355 ConstantExpr::getStorageKind(const APValue &Value) { 356 switch (Value.getKind()) { 357 case APValue::None: 358 case APValue::Indeterminate: 359 return ConstantExpr::RSK_None; 360 case APValue::Int: 361 if (!Value.getInt().needsCleanup()) 362 return ConstantExpr::RSK_Int64; 363 [[fallthrough]]; 364 default: 365 return ConstantExpr::RSK_APValue; 366 } 367 } 368 369 ConstantExpr::ResultStorageKind 370 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 371 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 372 return ConstantExpr::RSK_Int64; 373 return ConstantExpr::RSK_APValue; 374 } 375 376 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind, 377 bool IsImmediateInvocation) 378 : FullExpr(ConstantExprClass, SubExpr) { 379 ConstantExprBits.ResultKind = StorageKind; 380 ConstantExprBits.APValueKind = APValue::None; 381 ConstantExprBits.IsUnsigned = false; 382 ConstantExprBits.BitWidth = 0; 383 ConstantExprBits.HasCleanup = false; 384 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 385 386 if (StorageKind == ConstantExpr::RSK_APValue) 387 ::new (getTrailingObjects<APValue>()) APValue(); 388 } 389 390 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 391 ResultStorageKind StorageKind, 392 bool IsImmediateInvocation) { 393 assert(!isa<ConstantExpr>(E)); 394 AssertResultStorageKind(StorageKind); 395 396 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 397 StorageKind == ConstantExpr::RSK_APValue, 398 StorageKind == ConstantExpr::RSK_Int64); 399 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 400 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 401 } 402 403 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 404 const APValue &Result) { 405 ResultStorageKind StorageKind = getStorageKind(Result); 406 ConstantExpr *Self = Create(Context, E, StorageKind); 407 Self->SetResult(Result, Context); 408 return Self; 409 } 410 411 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind) 412 : FullExpr(ConstantExprClass, Empty) { 413 ConstantExprBits.ResultKind = StorageKind; 414 415 if (StorageKind == ConstantExpr::RSK_APValue) 416 ::new (getTrailingObjects<APValue>()) APValue(); 417 } 418 419 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 420 ResultStorageKind StorageKind) { 421 AssertResultStorageKind(StorageKind); 422 423 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 424 StorageKind == ConstantExpr::RSK_APValue, 425 StorageKind == ConstantExpr::RSK_Int64); 426 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 427 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 428 } 429 430 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 431 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 432 "Invalid storage for this value kind"); 433 ConstantExprBits.APValueKind = Value.getKind(); 434 switch (ConstantExprBits.ResultKind) { 435 case RSK_None: 436 return; 437 case RSK_Int64: 438 Int64Result() = *Value.getInt().getRawData(); 439 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 440 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 441 return; 442 case RSK_APValue: 443 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 444 ConstantExprBits.HasCleanup = true; 445 Context.addDestruction(&APValueResult()); 446 } 447 APValueResult() = std::move(Value); 448 return; 449 } 450 llvm_unreachable("Invalid ResultKind Bits"); 451 } 452 453 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 454 switch (ConstantExprBits.ResultKind) { 455 case ConstantExpr::RSK_APValue: 456 return APValueResult().getInt(); 457 case ConstantExpr::RSK_Int64: 458 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 459 ConstantExprBits.IsUnsigned); 460 default: 461 llvm_unreachable("invalid Accessor"); 462 } 463 } 464 465 APValue ConstantExpr::getAPValueResult() const { 466 467 switch (ConstantExprBits.ResultKind) { 468 case ConstantExpr::RSK_APValue: 469 return APValueResult(); 470 case ConstantExpr::RSK_Int64: 471 return APValue( 472 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 473 ConstantExprBits.IsUnsigned)); 474 case ConstantExpr::RSK_None: 475 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 476 return APValue::IndeterminateValue(); 477 return APValue(); 478 } 479 llvm_unreachable("invalid ResultKind"); 480 } 481 482 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 483 bool RefersToEnclosingVariableOrCapture, QualType T, 484 ExprValueKind VK, SourceLocation L, 485 const DeclarationNameLoc &LocInfo, 486 NonOdrUseReason NOUR) 487 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 488 DeclRefExprBits.HasQualifier = false; 489 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 490 DeclRefExprBits.HasFoundDecl = false; 491 DeclRefExprBits.HadMultipleCandidates = false; 492 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 493 RefersToEnclosingVariableOrCapture; 494 DeclRefExprBits.NonOdrUseReason = NOUR; 495 DeclRefExprBits.IsImmediateEscalating = false; 496 DeclRefExprBits.Loc = L; 497 setDependence(computeDependence(this, Ctx)); 498 } 499 500 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 501 NestedNameSpecifierLoc QualifierLoc, 502 SourceLocation TemplateKWLoc, ValueDecl *D, 503 bool RefersToEnclosingVariableOrCapture, 504 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 505 const TemplateArgumentListInfo *TemplateArgs, 506 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 507 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 508 DNLoc(NameInfo.getInfo()) { 509 DeclRefExprBits.Loc = NameInfo.getLoc(); 510 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 511 if (QualifierLoc) 512 new (getTrailingObjects<NestedNameSpecifierLoc>()) 513 NestedNameSpecifierLoc(QualifierLoc); 514 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 515 if (FoundD) 516 *getTrailingObjects<NamedDecl *>() = FoundD; 517 DeclRefExprBits.HasTemplateKWAndArgsInfo 518 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 519 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 520 RefersToEnclosingVariableOrCapture; 521 DeclRefExprBits.NonOdrUseReason = NOUR; 522 if (TemplateArgs) { 523 auto Deps = TemplateArgumentDependence::None; 524 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 525 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 526 Deps); 527 assert(!(Deps & TemplateArgumentDependence::Dependent) && 528 "built a DeclRefExpr with dependent template args"); 529 } else if (TemplateKWLoc.isValid()) { 530 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 531 TemplateKWLoc); 532 } 533 DeclRefExprBits.IsImmediateEscalating = false; 534 DeclRefExprBits.HadMultipleCandidates = 0; 535 setDependence(computeDependence(this, Ctx)); 536 } 537 538 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 539 NestedNameSpecifierLoc QualifierLoc, 540 SourceLocation TemplateKWLoc, ValueDecl *D, 541 bool RefersToEnclosingVariableOrCapture, 542 SourceLocation NameLoc, QualType T, 543 ExprValueKind VK, NamedDecl *FoundD, 544 const TemplateArgumentListInfo *TemplateArgs, 545 NonOdrUseReason NOUR) { 546 return Create(Context, QualifierLoc, TemplateKWLoc, D, 547 RefersToEnclosingVariableOrCapture, 548 DeclarationNameInfo(D->getDeclName(), NameLoc), 549 T, VK, FoundD, TemplateArgs, NOUR); 550 } 551 552 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 553 NestedNameSpecifierLoc QualifierLoc, 554 SourceLocation TemplateKWLoc, ValueDecl *D, 555 bool RefersToEnclosingVariableOrCapture, 556 const DeclarationNameInfo &NameInfo, 557 QualType T, ExprValueKind VK, 558 NamedDecl *FoundD, 559 const TemplateArgumentListInfo *TemplateArgs, 560 NonOdrUseReason NOUR) { 561 // Filter out cases where the found Decl is the same as the value refenenced. 562 if (D == FoundD) 563 FoundD = nullptr; 564 565 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 566 std::size_t Size = 567 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 568 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 569 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 570 HasTemplateKWAndArgsInfo ? 1 : 0, 571 TemplateArgs ? TemplateArgs->size() : 0); 572 573 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 574 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 575 RefersToEnclosingVariableOrCapture, NameInfo, 576 FoundD, TemplateArgs, T, VK, NOUR); 577 } 578 579 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 580 bool HasQualifier, 581 bool HasFoundDecl, 582 bool HasTemplateKWAndArgsInfo, 583 unsigned NumTemplateArgs) { 584 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 585 std::size_t Size = 586 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 587 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 588 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 589 NumTemplateArgs); 590 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 591 return new (Mem) DeclRefExpr(EmptyShell()); 592 } 593 594 void DeclRefExpr::setDecl(ValueDecl *NewD) { 595 D = NewD; 596 if (getType()->isUndeducedType()) 597 setType(NewD->getType()); 598 setDependence(computeDependence(this, NewD->getASTContext())); 599 } 600 601 SourceLocation DeclRefExpr::getBeginLoc() const { 602 if (hasQualifier()) 603 return getQualifierLoc().getBeginLoc(); 604 return getNameInfo().getBeginLoc(); 605 } 606 SourceLocation DeclRefExpr::getEndLoc() const { 607 if (hasExplicitTemplateArgs()) 608 return getRAngleLoc(); 609 return getNameInfo().getEndLoc(); 610 } 611 612 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 613 SourceLocation LParen, 614 SourceLocation RParen, 615 QualType ResultTy, 616 TypeSourceInfo *TSI) 617 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 618 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 619 setTypeSourceInfo(TSI); 620 setDependence(computeDependence(this)); 621 } 622 623 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 624 QualType ResultTy) 625 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 626 627 SYCLUniqueStableNameExpr * 628 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 629 SourceLocation LParen, SourceLocation RParen, 630 TypeSourceInfo *TSI) { 631 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 632 return new (Ctx) 633 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 634 } 635 636 SYCLUniqueStableNameExpr * 637 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 638 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 639 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 640 } 641 642 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 643 return SYCLUniqueStableNameExpr::ComputeName(Context, 644 getTypeSourceInfo()->getType()); 645 } 646 647 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 648 QualType Ty) { 649 auto MangleCallback = [](ASTContext &Ctx, 650 const NamedDecl *ND) -> std::optional<unsigned> { 651 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 652 return RD->getDeviceLambdaManglingNumber(); 653 return std::nullopt; 654 }; 655 656 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 657 Context, Context.getDiagnostics(), MangleCallback)}; 658 659 std::string Buffer; 660 Buffer.reserve(128); 661 llvm::raw_string_ostream Out(Buffer); 662 Ctx->mangleTypeName(Ty, Out); 663 664 return Out.str(); 665 } 666 667 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 668 bool IsTransparent, StringLiteral *SL) 669 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 670 PredefinedExprBits.Kind = IK; 671 assert((getIdentKind() == IK) && 672 "IdentKind do not fit in PredefinedExprBitfields!"); 673 bool HasFunctionName = SL != nullptr; 674 PredefinedExprBits.HasFunctionName = HasFunctionName; 675 PredefinedExprBits.IsTransparent = IsTransparent; 676 PredefinedExprBits.Loc = L; 677 if (HasFunctionName) 678 setFunctionName(SL); 679 setDependence(computeDependence(this)); 680 } 681 682 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 683 : Expr(PredefinedExprClass, Empty) { 684 PredefinedExprBits.HasFunctionName = HasFunctionName; 685 } 686 687 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 688 QualType FNTy, IdentKind IK, 689 bool IsTransparent, StringLiteral *SL) { 690 bool HasFunctionName = SL != nullptr; 691 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 692 alignof(PredefinedExpr)); 693 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL); 694 } 695 696 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 697 bool HasFunctionName) { 698 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 699 alignof(PredefinedExpr)); 700 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 701 } 702 703 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 704 switch (IK) { 705 case Func: 706 return "__func__"; 707 case Function: 708 return "__FUNCTION__"; 709 case FuncDName: 710 return "__FUNCDNAME__"; 711 case LFunction: 712 return "L__FUNCTION__"; 713 case PrettyFunction: 714 return "__PRETTY_FUNCTION__"; 715 case FuncSig: 716 return "__FUNCSIG__"; 717 case LFuncSig: 718 return "L__FUNCSIG__"; 719 case PrettyFunctionNoVirtual: 720 break; 721 } 722 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 723 } 724 725 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 726 // expr" policy instead. 727 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 728 ASTContext &Context = CurrentDecl->getASTContext(); 729 730 if (IK == PredefinedExpr::FuncDName) { 731 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 732 std::unique_ptr<MangleContext> MC; 733 MC.reset(Context.createMangleContext()); 734 735 if (MC->shouldMangleDeclName(ND)) { 736 SmallString<256> Buffer; 737 llvm::raw_svector_ostream Out(Buffer); 738 GlobalDecl GD; 739 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 740 GD = GlobalDecl(CD, Ctor_Base); 741 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 742 GD = GlobalDecl(DD, Dtor_Base); 743 else if (ND->hasAttr<CUDAGlobalAttr>()) 744 GD = GlobalDecl(cast<FunctionDecl>(ND)); 745 else 746 GD = GlobalDecl(ND); 747 MC->mangleName(GD, Out); 748 749 if (!Buffer.empty() && Buffer.front() == '\01') 750 return std::string(Buffer.substr(1)); 751 return std::string(Buffer.str()); 752 } 753 return std::string(ND->getIdentifier()->getName()); 754 } 755 return ""; 756 } 757 if (isa<BlockDecl>(CurrentDecl)) { 758 // For blocks we only emit something if it is enclosed in a function 759 // For top-level block we'd like to include the name of variable, but we 760 // don't have it at this point. 761 auto DC = CurrentDecl->getDeclContext(); 762 if (DC->isFileContext()) 763 return ""; 764 765 SmallString<256> Buffer; 766 llvm::raw_svector_ostream Out(Buffer); 767 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 768 // For nested blocks, propagate up to the parent. 769 Out << ComputeName(IK, DCBlock); 770 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 771 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 772 return std::string(Out.str()); 773 } 774 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 775 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 776 IK != FuncSig && IK != LFuncSig) 777 return FD->getNameAsString(); 778 779 SmallString<256> Name; 780 llvm::raw_svector_ostream Out(Name); 781 782 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 783 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 784 Out << "virtual "; 785 if (MD->isStatic()) 786 Out << "static "; 787 } 788 789 class PrettyCallbacks final : public PrintingCallbacks { 790 public: 791 PrettyCallbacks(const LangOptions &LO) : LO(LO) {} 792 std::string remapPath(StringRef Path) const override { 793 SmallString<128> p(Path); 794 LO.remapPathPrefix(p); 795 return std::string(p); 796 } 797 798 private: 799 const LangOptions &LO; 800 }; 801 PrintingPolicy Policy(Context.getLangOpts()); 802 PrettyCallbacks PrettyCB(Context.getLangOpts()); 803 Policy.Callbacks = &PrettyCB; 804 std::string Proto; 805 llvm::raw_string_ostream POut(Proto); 806 807 const FunctionDecl *Decl = FD; 808 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 809 Decl = Pattern; 810 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 811 const FunctionProtoType *FT = nullptr; 812 if (FD->hasWrittenPrototype()) 813 FT = dyn_cast<FunctionProtoType>(AFT); 814 815 if (IK == FuncSig || IK == LFuncSig) { 816 switch (AFT->getCallConv()) { 817 case CC_C: POut << "__cdecl "; break; 818 case CC_X86StdCall: POut << "__stdcall "; break; 819 case CC_X86FastCall: POut << "__fastcall "; break; 820 case CC_X86ThisCall: POut << "__thiscall "; break; 821 case CC_X86VectorCall: POut << "__vectorcall "; break; 822 case CC_X86RegCall: POut << "__regcall "; break; 823 // Only bother printing the conventions that MSVC knows about. 824 default: break; 825 } 826 } 827 828 FD->printQualifiedName(POut, Policy); 829 830 POut << "("; 831 if (FT) { 832 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 833 if (i) POut << ", "; 834 POut << Decl->getParamDecl(i)->getType().stream(Policy); 835 } 836 837 if (FT->isVariadic()) { 838 if (FD->getNumParams()) POut << ", "; 839 POut << "..."; 840 } else if ((IK == FuncSig || IK == LFuncSig || 841 !Context.getLangOpts().CPlusPlus) && 842 !Decl->getNumParams()) { 843 POut << "void"; 844 } 845 } 846 POut << ")"; 847 848 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 849 assert(FT && "We must have a written prototype in this case."); 850 if (FT->isConst()) 851 POut << " const"; 852 if (FT->isVolatile()) 853 POut << " volatile"; 854 RefQualifierKind Ref = MD->getRefQualifier(); 855 if (Ref == RQ_LValue) 856 POut << " &"; 857 else if (Ref == RQ_RValue) 858 POut << " &&"; 859 } 860 861 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 862 SpecsTy Specs; 863 const DeclContext *Ctx = FD->getDeclContext(); 864 while (Ctx && isa<NamedDecl>(Ctx)) { 865 const ClassTemplateSpecializationDecl *Spec 866 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 867 if (Spec && !Spec->isExplicitSpecialization()) 868 Specs.push_back(Spec); 869 Ctx = Ctx->getParent(); 870 } 871 872 std::string TemplateParams; 873 llvm::raw_string_ostream TOut(TemplateParams); 874 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 875 const TemplateParameterList *Params = 876 D->getSpecializedTemplate()->getTemplateParameters(); 877 const TemplateArgumentList &Args = D->getTemplateArgs(); 878 assert(Params->size() == Args.size()); 879 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 880 StringRef Param = Params->getParam(i)->getName(); 881 if (Param.empty()) continue; 882 TOut << Param << " = "; 883 Args.get(i).print(Policy, TOut, 884 TemplateParameterList::shouldIncludeTypeForArgument( 885 Policy, Params, i)); 886 TOut << ", "; 887 } 888 } 889 890 FunctionTemplateSpecializationInfo *FSI 891 = FD->getTemplateSpecializationInfo(); 892 if (FSI && !FSI->isExplicitSpecialization()) { 893 const TemplateParameterList* Params 894 = FSI->getTemplate()->getTemplateParameters(); 895 const TemplateArgumentList* Args = FSI->TemplateArguments; 896 assert(Params->size() == Args->size()); 897 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 898 StringRef Param = Params->getParam(i)->getName(); 899 if (Param.empty()) continue; 900 TOut << Param << " = "; 901 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 902 TOut << ", "; 903 } 904 } 905 906 TOut.flush(); 907 if (!TemplateParams.empty()) { 908 // remove the trailing comma and space 909 TemplateParams.resize(TemplateParams.size() - 2); 910 POut << " [" << TemplateParams << "]"; 911 } 912 913 POut.flush(); 914 915 // Print "auto" for all deduced return types. This includes C++1y return 916 // type deduction and lambdas. For trailing return types resolve the 917 // decltype expression. Otherwise print the real type when this is 918 // not a constructor or destructor. 919 if (isa<CXXMethodDecl>(FD) && 920 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 921 Proto = "auto " + Proto; 922 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 923 FT->getReturnType() 924 ->getAs<DecltypeType>() 925 ->getUnderlyingType() 926 .getAsStringInternal(Proto, Policy); 927 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 928 AFT->getReturnType().getAsStringInternal(Proto, Policy); 929 930 Out << Proto; 931 932 return std::string(Name); 933 } 934 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 935 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 936 // Skip to its enclosing function or method, but not its enclosing 937 // CapturedDecl. 938 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 939 const Decl *D = Decl::castFromDeclContext(DC); 940 return ComputeName(IK, D); 941 } 942 llvm_unreachable("CapturedDecl not inside a function or method"); 943 } 944 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 945 SmallString<256> Name; 946 llvm::raw_svector_ostream Out(Name); 947 Out << (MD->isInstanceMethod() ? '-' : '+'); 948 Out << '['; 949 950 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 951 // a null check to avoid a crash. 952 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 953 Out << *ID; 954 955 if (const ObjCCategoryImplDecl *CID = 956 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 957 Out << '(' << *CID << ')'; 958 959 Out << ' '; 960 MD->getSelector().print(Out); 961 Out << ']'; 962 963 return std::string(Name); 964 } 965 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 966 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 967 return "top level"; 968 } 969 return ""; 970 } 971 972 void APNumericStorage::setIntValue(const ASTContext &C, 973 const llvm::APInt &Val) { 974 if (hasAllocation()) 975 C.Deallocate(pVal); 976 977 BitWidth = Val.getBitWidth(); 978 unsigned NumWords = Val.getNumWords(); 979 const uint64_t* Words = Val.getRawData(); 980 if (NumWords > 1) { 981 pVal = new (C) uint64_t[NumWords]; 982 std::copy(Words, Words + NumWords, pVal); 983 } else if (NumWords == 1) 984 VAL = Words[0]; 985 else 986 VAL = 0; 987 } 988 989 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 990 QualType type, SourceLocation l) 991 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 992 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 993 assert(V.getBitWidth() == C.getIntWidth(type) && 994 "Integer type is not the correct size for constant."); 995 setValue(C, V); 996 setDependence(ExprDependence::None); 997 } 998 999 IntegerLiteral * 1000 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 1001 QualType type, SourceLocation l) { 1002 return new (C) IntegerLiteral(C, V, type, l); 1003 } 1004 1005 IntegerLiteral * 1006 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1007 return new (C) IntegerLiteral(Empty); 1008 } 1009 1010 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 1011 QualType type, SourceLocation l, 1012 unsigned Scale) 1013 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 1014 Scale(Scale) { 1015 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 1016 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 1017 "Fixed point type is not the correct size for constant."); 1018 setValue(C, V); 1019 setDependence(ExprDependence::None); 1020 } 1021 1022 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 1023 const llvm::APInt &V, 1024 QualType type, 1025 SourceLocation l, 1026 unsigned Scale) { 1027 return new (C) FixedPointLiteral(C, V, type, l, Scale); 1028 } 1029 1030 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 1031 EmptyShell Empty) { 1032 return new (C) FixedPointLiteral(Empty); 1033 } 1034 1035 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 1036 // Currently the longest decimal number that can be printed is the max for an 1037 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 1038 // which is 43 characters. 1039 SmallString<64> S; 1040 FixedPointValueToString( 1041 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 1042 return std::string(S.str()); 1043 } 1044 1045 void CharacterLiteral::print(unsigned Val, CharacterKind Kind, 1046 raw_ostream &OS) { 1047 switch (Kind) { 1048 case CharacterLiteral::Ascii: 1049 break; // no prefix. 1050 case CharacterLiteral::Wide: 1051 OS << 'L'; 1052 break; 1053 case CharacterLiteral::UTF8: 1054 OS << "u8"; 1055 break; 1056 case CharacterLiteral::UTF16: 1057 OS << 'u'; 1058 break; 1059 case CharacterLiteral::UTF32: 1060 OS << 'U'; 1061 break; 1062 } 1063 1064 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); 1065 if (!Escaped.empty()) { 1066 OS << "'" << Escaped << "'"; 1067 } else { 1068 // A character literal might be sign-extended, which 1069 // would result in an invalid \U escape sequence. 1070 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 1071 // are not correctly handled. 1072 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii) 1073 Val &= 0xFFu; 1074 if (Val < 256 && isPrintable((unsigned char)Val)) 1075 OS << "'" << (char)Val << "'"; 1076 else if (Val < 256) 1077 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 1078 else if (Val <= 0xFFFF) 1079 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 1080 else 1081 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 1082 } 1083 } 1084 1085 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 1086 bool isexact, QualType Type, SourceLocation L) 1087 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 1088 setSemantics(V.getSemantics()); 1089 FloatingLiteralBits.IsExact = isexact; 1090 setValue(C, V); 1091 setDependence(ExprDependence::None); 1092 } 1093 1094 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 1095 : Expr(FloatingLiteralClass, Empty) { 1096 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 1097 FloatingLiteralBits.IsExact = false; 1098 } 1099 1100 FloatingLiteral * 1101 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1102 bool isexact, QualType Type, SourceLocation L) { 1103 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1104 } 1105 1106 FloatingLiteral * 1107 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1108 return new (C) FloatingLiteral(C, Empty); 1109 } 1110 1111 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1112 /// double. Note that this may cause loss of precision, but is useful for 1113 /// debugging dumps, etc. 1114 double FloatingLiteral::getValueAsApproximateDouble() const { 1115 llvm::APFloat V = getValue(); 1116 bool ignored; 1117 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1118 &ignored); 1119 return V.convertToDouble(); 1120 } 1121 1122 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1123 StringKind SK) { 1124 unsigned CharByteWidth = 0; 1125 switch (SK) { 1126 case Ordinary: 1127 case UTF8: 1128 CharByteWidth = Target.getCharWidth(); 1129 break; 1130 case Wide: 1131 CharByteWidth = Target.getWCharWidth(); 1132 break; 1133 case UTF16: 1134 CharByteWidth = Target.getChar16Width(); 1135 break; 1136 case UTF32: 1137 CharByteWidth = Target.getChar32Width(); 1138 break; 1139 case Unevaluated: 1140 return sizeof(char); // Host; 1141 } 1142 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1143 CharByteWidth /= 8; 1144 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1145 "The only supported character byte widths are 1,2 and 4!"); 1146 return CharByteWidth; 1147 } 1148 1149 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1150 StringKind Kind, bool Pascal, QualType Ty, 1151 const SourceLocation *Loc, 1152 unsigned NumConcatenated) 1153 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1154 1155 unsigned Length = Str.size(); 1156 1157 StringLiteralBits.Kind = Kind; 1158 StringLiteralBits.NumConcatenated = NumConcatenated; 1159 1160 if (Kind != StringKind::Unevaluated) { 1161 assert(Ctx.getAsConstantArrayType(Ty) && 1162 "StringLiteral must be of constant array type!"); 1163 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1164 unsigned ByteLength = Str.size(); 1165 assert((ByteLength % CharByteWidth == 0) && 1166 "The size of the data must be a multiple of CharByteWidth!"); 1167 1168 // Avoid the expensive division. The compiler should be able to figure it 1169 // out by itself. However as of clang 7, even with the appropriate 1170 // llvm_unreachable added just here, it is not able to do so. 1171 switch (CharByteWidth) { 1172 case 1: 1173 Length = ByteLength; 1174 break; 1175 case 2: 1176 Length = ByteLength / 2; 1177 break; 1178 case 4: 1179 Length = ByteLength / 4; 1180 break; 1181 default: 1182 llvm_unreachable("Unsupported character width!"); 1183 } 1184 1185 StringLiteralBits.CharByteWidth = CharByteWidth; 1186 StringLiteralBits.IsPascal = Pascal; 1187 } else { 1188 assert(!Pascal && "Can't make an unevaluated Pascal string"); 1189 StringLiteralBits.CharByteWidth = 1; 1190 StringLiteralBits.IsPascal = false; 1191 } 1192 1193 *getTrailingObjects<unsigned>() = Length; 1194 1195 // Initialize the trailing array of SourceLocation. 1196 // This is safe since SourceLocation is POD-like. 1197 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1198 NumConcatenated * sizeof(SourceLocation)); 1199 1200 // Initialize the trailing array of char holding the string data. 1201 std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size()); 1202 1203 setDependence(ExprDependence::None); 1204 } 1205 1206 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1207 unsigned Length, unsigned CharByteWidth) 1208 : Expr(StringLiteralClass, Empty) { 1209 StringLiteralBits.CharByteWidth = CharByteWidth; 1210 StringLiteralBits.NumConcatenated = NumConcatenated; 1211 *getTrailingObjects<unsigned>() = Length; 1212 } 1213 1214 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1215 StringKind Kind, bool Pascal, QualType Ty, 1216 const SourceLocation *Loc, 1217 unsigned NumConcatenated) { 1218 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1219 1, NumConcatenated, Str.size()), 1220 alignof(StringLiteral)); 1221 return new (Mem) 1222 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1223 } 1224 1225 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1226 unsigned NumConcatenated, 1227 unsigned Length, 1228 unsigned CharByteWidth) { 1229 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1230 1, NumConcatenated, Length * CharByteWidth), 1231 alignof(StringLiteral)); 1232 return new (Mem) 1233 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1234 } 1235 1236 void StringLiteral::outputString(raw_ostream &OS) const { 1237 switch (getKind()) { 1238 case Unevaluated: 1239 case Ordinary: 1240 break; // no prefix. 1241 case Wide: OS << 'L'; break; 1242 case UTF8: OS << "u8"; break; 1243 case UTF16: OS << 'u'; break; 1244 case UTF32: OS << 'U'; break; 1245 } 1246 OS << '"'; 1247 static const char Hex[] = "0123456789ABCDEF"; 1248 1249 unsigned LastSlashX = getLength(); 1250 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1251 uint32_t Char = getCodeUnit(I); 1252 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); 1253 if (Escaped.empty()) { 1254 // FIXME: Convert UTF-8 back to codepoints before rendering. 1255 1256 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1257 // Leave invalid surrogates alone; we'll use \x for those. 1258 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1259 Char <= 0xdbff) { 1260 uint32_t Trail = getCodeUnit(I + 1); 1261 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1262 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1263 ++I; 1264 } 1265 } 1266 1267 if (Char > 0xff) { 1268 // If this is a wide string, output characters over 0xff using \x 1269 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1270 // codepoint: use \x escapes for invalid codepoints. 1271 if (getKind() == Wide || 1272 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1273 // FIXME: Is this the best way to print wchar_t? 1274 OS << "\\x"; 1275 int Shift = 28; 1276 while ((Char >> Shift) == 0) 1277 Shift -= 4; 1278 for (/**/; Shift >= 0; Shift -= 4) 1279 OS << Hex[(Char >> Shift) & 15]; 1280 LastSlashX = I; 1281 continue; 1282 } 1283 1284 if (Char > 0xffff) 1285 OS << "\\U00" 1286 << Hex[(Char >> 20) & 15] 1287 << Hex[(Char >> 16) & 15]; 1288 else 1289 OS << "\\u"; 1290 OS << Hex[(Char >> 12) & 15] 1291 << Hex[(Char >> 8) & 15] 1292 << Hex[(Char >> 4) & 15] 1293 << Hex[(Char >> 0) & 15]; 1294 continue; 1295 } 1296 1297 // If we used \x... for the previous character, and this character is a 1298 // hexadecimal digit, prevent it being slurped as part of the \x. 1299 if (LastSlashX + 1 == I) { 1300 switch (Char) { 1301 case '0': case '1': case '2': case '3': case '4': 1302 case '5': case '6': case '7': case '8': case '9': 1303 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1304 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1305 OS << "\"\""; 1306 } 1307 } 1308 1309 assert(Char <= 0xff && 1310 "Characters above 0xff should already have been handled."); 1311 1312 if (isPrintable(Char)) 1313 OS << (char)Char; 1314 else // Output anything hard as an octal escape. 1315 OS << '\\' 1316 << (char)('0' + ((Char >> 6) & 7)) 1317 << (char)('0' + ((Char >> 3) & 7)) 1318 << (char)('0' + ((Char >> 0) & 7)); 1319 } else { 1320 // Handle some common non-printable cases to make dumps prettier. 1321 OS << Escaped; 1322 } 1323 } 1324 OS << '"'; 1325 } 1326 1327 /// getLocationOfByte - Return a source location that points to the specified 1328 /// byte of this string literal. 1329 /// 1330 /// Strings are amazingly complex. They can be formed from multiple tokens and 1331 /// can have escape sequences in them in addition to the usual trigraph and 1332 /// escaped newline business. This routine handles this complexity. 1333 /// 1334 /// The *StartToken sets the first token to be searched in this function and 1335 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1336 /// returning, it updates the *StartToken to the TokNo of the token being found 1337 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1338 /// string. 1339 /// Using these two parameters can reduce the time complexity from O(n^2) to 1340 /// O(n) if one wants to get the location of byte for all the tokens in a 1341 /// string. 1342 /// 1343 SourceLocation 1344 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1345 const LangOptions &Features, 1346 const TargetInfo &Target, unsigned *StartToken, 1347 unsigned *StartTokenByteOffset) const { 1348 assert((getKind() == StringLiteral::Ordinary || 1349 getKind() == StringLiteral::UTF8 || 1350 getKind() == StringLiteral::Unevaluated) && 1351 "Only narrow string literals are currently supported"); 1352 1353 // Loop over all of the tokens in this string until we find the one that 1354 // contains the byte we're looking for. 1355 unsigned TokNo = 0; 1356 unsigned StringOffset = 0; 1357 if (StartToken) 1358 TokNo = *StartToken; 1359 if (StartTokenByteOffset) { 1360 StringOffset = *StartTokenByteOffset; 1361 ByteNo -= StringOffset; 1362 } 1363 while (true) { 1364 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1365 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1366 1367 // Get the spelling of the string so that we can get the data that makes up 1368 // the string literal, not the identifier for the macro it is potentially 1369 // expanded through. 1370 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1371 1372 // Re-lex the token to get its length and original spelling. 1373 std::pair<FileID, unsigned> LocInfo = 1374 SM.getDecomposedLoc(StrTokSpellingLoc); 1375 bool Invalid = false; 1376 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1377 if (Invalid) { 1378 if (StartTokenByteOffset != nullptr) 1379 *StartTokenByteOffset = StringOffset; 1380 if (StartToken != nullptr) 1381 *StartToken = TokNo; 1382 return StrTokSpellingLoc; 1383 } 1384 1385 const char *StrData = Buffer.data()+LocInfo.second; 1386 1387 // Create a lexer starting at the beginning of this token. 1388 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1389 Buffer.begin(), StrData, Buffer.end()); 1390 Token TheTok; 1391 TheLexer.LexFromRawLexer(TheTok); 1392 1393 // Use the StringLiteralParser to compute the length of the string in bytes. 1394 StringLiteralParser SLP(TheTok, SM, Features, Target); 1395 unsigned TokNumBytes = SLP.GetStringLength(); 1396 1397 // If the byte is in this token, return the location of the byte. 1398 if (ByteNo < TokNumBytes || 1399 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1400 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1401 1402 // Now that we know the offset of the token in the spelling, use the 1403 // preprocessor to get the offset in the original source. 1404 if (StartTokenByteOffset != nullptr) 1405 *StartTokenByteOffset = StringOffset; 1406 if (StartToken != nullptr) 1407 *StartToken = TokNo; 1408 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1409 } 1410 1411 // Move to the next string token. 1412 StringOffset += TokNumBytes; 1413 ++TokNo; 1414 ByteNo -= TokNumBytes; 1415 } 1416 } 1417 1418 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1419 /// corresponds to, e.g. "sizeof" or "[pre]++". 1420 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1421 switch (Op) { 1422 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1423 #include "clang/AST/OperationKinds.def" 1424 } 1425 llvm_unreachable("Unknown unary operator"); 1426 } 1427 1428 UnaryOperatorKind 1429 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1430 switch (OO) { 1431 default: llvm_unreachable("No unary operator for overloaded function"); 1432 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1433 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1434 case OO_Amp: return UO_AddrOf; 1435 case OO_Star: return UO_Deref; 1436 case OO_Plus: return UO_Plus; 1437 case OO_Minus: return UO_Minus; 1438 case OO_Tilde: return UO_Not; 1439 case OO_Exclaim: return UO_LNot; 1440 case OO_Coawait: return UO_Coawait; 1441 } 1442 } 1443 1444 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1445 switch (Opc) { 1446 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1447 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1448 case UO_AddrOf: return OO_Amp; 1449 case UO_Deref: return OO_Star; 1450 case UO_Plus: return OO_Plus; 1451 case UO_Minus: return OO_Minus; 1452 case UO_Not: return OO_Tilde; 1453 case UO_LNot: return OO_Exclaim; 1454 case UO_Coawait: return OO_Coawait; 1455 default: return OO_None; 1456 } 1457 } 1458 1459 1460 //===----------------------------------------------------------------------===// 1461 // Postfix Operators. 1462 //===----------------------------------------------------------------------===// 1463 1464 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1465 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1466 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1467 unsigned MinNumArgs, ADLCallKind UsesADL) 1468 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1469 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1470 unsigned NumPreArgs = PreArgs.size(); 1471 CallExprBits.NumPreArgs = NumPreArgs; 1472 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1473 1474 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1475 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1476 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1477 "OffsetToTrailingObjects overflow!"); 1478 1479 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1480 1481 setCallee(Fn); 1482 for (unsigned I = 0; I != NumPreArgs; ++I) 1483 setPreArg(I, PreArgs[I]); 1484 for (unsigned I = 0; I != Args.size(); ++I) 1485 setArg(I, Args[I]); 1486 for (unsigned I = Args.size(); I != NumArgs; ++I) 1487 setArg(I, nullptr); 1488 1489 this->computeDependence(); 1490 1491 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1492 if (hasStoredFPFeatures()) 1493 setStoredFPFeatures(FPFeatures); 1494 } 1495 1496 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1497 bool HasFPFeatures, EmptyShell Empty) 1498 : Expr(SC, Empty), NumArgs(NumArgs) { 1499 CallExprBits.NumPreArgs = NumPreArgs; 1500 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1501 1502 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1503 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1504 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1505 "OffsetToTrailingObjects overflow!"); 1506 CallExprBits.HasFPFeatures = HasFPFeatures; 1507 } 1508 1509 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1510 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1511 SourceLocation RParenLoc, 1512 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1513 ADLCallKind UsesADL) { 1514 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1515 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1516 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1517 void *Mem = 1518 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1519 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1520 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1521 } 1522 1523 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1524 ExprValueKind VK, SourceLocation RParenLoc, 1525 ADLCallKind UsesADL) { 1526 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1527 "Misaligned memory in CallExpr::CreateTemporary!"); 1528 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1529 VK, RParenLoc, FPOptionsOverride(), 1530 /*MinNumArgs=*/0, UsesADL); 1531 } 1532 1533 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1534 bool HasFPFeatures, EmptyShell Empty) { 1535 unsigned SizeOfTrailingObjects = 1536 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1537 void *Mem = 1538 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1539 return new (Mem) 1540 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1541 } 1542 1543 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1544 switch (SC) { 1545 case CallExprClass: 1546 return sizeof(CallExpr); 1547 case CXXOperatorCallExprClass: 1548 return sizeof(CXXOperatorCallExpr); 1549 case CXXMemberCallExprClass: 1550 return sizeof(CXXMemberCallExpr); 1551 case UserDefinedLiteralClass: 1552 return sizeof(UserDefinedLiteral); 1553 case CUDAKernelCallExprClass: 1554 return sizeof(CUDAKernelCallExpr); 1555 default: 1556 llvm_unreachable("unexpected class deriving from CallExpr!"); 1557 } 1558 } 1559 1560 Decl *Expr::getReferencedDeclOfCallee() { 1561 Expr *CEE = IgnoreParenImpCasts(); 1562 1563 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) 1564 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1565 1566 // If we're calling a dereference, look at the pointer instead. 1567 while (true) { 1568 if (auto *BO = dyn_cast<BinaryOperator>(CEE)) { 1569 if (BO->isPtrMemOp()) { 1570 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1571 continue; 1572 } 1573 } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) { 1574 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1575 UO->getOpcode() == UO_Plus) { 1576 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1577 continue; 1578 } 1579 } 1580 break; 1581 } 1582 1583 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE)) 1584 return DRE->getDecl(); 1585 if (auto *ME = dyn_cast<MemberExpr>(CEE)) 1586 return ME->getMemberDecl(); 1587 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1588 return BE->getBlockDecl(); 1589 1590 return nullptr; 1591 } 1592 1593 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1594 unsigned CallExpr::getBuiltinCallee() const { 1595 const auto *FDecl = getDirectCallee(); 1596 return FDecl ? FDecl->getBuiltinID() : 0; 1597 } 1598 1599 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1600 if (unsigned BI = getBuiltinCallee()) 1601 return Ctx.BuiltinInfo.isUnevaluated(BI); 1602 return false; 1603 } 1604 1605 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1606 const Expr *Callee = getCallee(); 1607 QualType CalleeType = Callee->getType(); 1608 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1609 CalleeType = FnTypePtr->getPointeeType(); 1610 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1611 CalleeType = BPT->getPointeeType(); 1612 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1613 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1614 return Ctx.VoidTy; 1615 1616 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1617 return Ctx.DependentTy; 1618 1619 // This should never be overloaded and so should never return null. 1620 CalleeType = Expr::findBoundMemberType(Callee); 1621 assert(!CalleeType.isNull()); 1622 } else if (CalleeType->isDependentType() || 1623 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1624 return Ctx.DependentTy; 1625 } 1626 1627 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1628 return FnType->getReturnType(); 1629 } 1630 1631 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1632 // If the return type is a struct, union, or enum that is marked nodiscard, 1633 // then return the return type attribute. 1634 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1635 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1636 return A; 1637 1638 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; 1639 TD = TD->desugar()->getAs<TypedefType>()) 1640 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) 1641 return A; 1642 1643 // Otherwise, see if the callee is marked nodiscard and return that attribute 1644 // instead. 1645 const Decl *D = getCalleeDecl(); 1646 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1647 } 1648 1649 SourceLocation CallExpr::getBeginLoc() const { 1650 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1651 return OCE->getBeginLoc(); 1652 1653 SourceLocation begin = getCallee()->getBeginLoc(); 1654 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1655 begin = getArg(0)->getBeginLoc(); 1656 return begin; 1657 } 1658 SourceLocation CallExpr::getEndLoc() const { 1659 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1660 return OCE->getEndLoc(); 1661 1662 SourceLocation end = getRParenLoc(); 1663 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1664 end = getArg(getNumArgs() - 1)->getEndLoc(); 1665 return end; 1666 } 1667 1668 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1669 SourceLocation OperatorLoc, 1670 TypeSourceInfo *tsi, 1671 ArrayRef<OffsetOfNode> comps, 1672 ArrayRef<Expr*> exprs, 1673 SourceLocation RParenLoc) { 1674 void *Mem = C.Allocate( 1675 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1676 1677 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1678 RParenLoc); 1679 } 1680 1681 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1682 unsigned numComps, unsigned numExprs) { 1683 void *Mem = 1684 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1685 return new (Mem) OffsetOfExpr(numComps, numExprs); 1686 } 1687 1688 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1689 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1690 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1691 SourceLocation RParenLoc) 1692 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1693 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1694 NumComps(comps.size()), NumExprs(exprs.size()) { 1695 for (unsigned i = 0; i != comps.size(); ++i) 1696 setComponent(i, comps[i]); 1697 for (unsigned i = 0; i != exprs.size(); ++i) 1698 setIndexExpr(i, exprs[i]); 1699 1700 setDependence(computeDependence(this)); 1701 } 1702 1703 IdentifierInfo *OffsetOfNode::getFieldName() const { 1704 assert(getKind() == Field || getKind() == Identifier); 1705 if (getKind() == Field) 1706 return getField()->getIdentifier(); 1707 1708 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1709 } 1710 1711 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1712 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1713 SourceLocation op, SourceLocation rp) 1714 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1715 OpLoc(op), RParenLoc(rp) { 1716 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1717 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1718 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1719 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1720 UnaryExprOrTypeTraitExprBits.IsType = false; 1721 Argument.Ex = E; 1722 setDependence(computeDependence(this)); 1723 } 1724 1725 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1726 ValueDecl *MemberDecl, 1727 const DeclarationNameInfo &NameInfo, QualType T, 1728 ExprValueKind VK, ExprObjectKind OK, 1729 NonOdrUseReason NOUR) 1730 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1731 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1732 assert(!NameInfo.getName() || 1733 MemberDecl->getDeclName() == NameInfo.getName()); 1734 MemberExprBits.IsArrow = IsArrow; 1735 MemberExprBits.HasQualifierOrFoundDecl = false; 1736 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1737 MemberExprBits.HadMultipleCandidates = false; 1738 MemberExprBits.NonOdrUseReason = NOUR; 1739 MemberExprBits.OperatorLoc = OperatorLoc; 1740 setDependence(computeDependence(this)); 1741 } 1742 1743 MemberExpr *MemberExpr::Create( 1744 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1745 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1746 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1747 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1748 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1749 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1750 FoundDecl.getAccess() != MemberDecl->getAccess(); 1751 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1752 std::size_t Size = 1753 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1754 TemplateArgumentLoc>( 1755 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1756 TemplateArgs ? TemplateArgs->size() : 0); 1757 1758 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1759 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1760 NameInfo, T, VK, OK, NOUR); 1761 1762 if (HasQualOrFound) { 1763 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1764 1765 MemberExprNameQualifier *NQ = 1766 E->getTrailingObjects<MemberExprNameQualifier>(); 1767 NQ->QualifierLoc = QualifierLoc; 1768 NQ->FoundDecl = FoundDecl; 1769 } 1770 1771 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1772 TemplateArgs || TemplateKWLoc.isValid(); 1773 1774 // FIXME: remove remaining dependence computation to computeDependence(). 1775 auto Deps = E->getDependence(); 1776 if (TemplateArgs) { 1777 auto TemplateArgDeps = TemplateArgumentDependence::None; 1778 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1779 TemplateKWLoc, *TemplateArgs, 1780 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1781 for (const TemplateArgumentLoc &ArgLoc : TemplateArgs->arguments()) { 1782 Deps |= toExprDependence(ArgLoc.getArgument().getDependence()); 1783 } 1784 } else if (TemplateKWLoc.isValid()) { 1785 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1786 TemplateKWLoc); 1787 } 1788 E->setDependence(Deps); 1789 1790 return E; 1791 } 1792 1793 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1794 bool HasQualifier, bool HasFoundDecl, 1795 bool HasTemplateKWAndArgsInfo, 1796 unsigned NumTemplateArgs) { 1797 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1798 "template args but no template arg info?"); 1799 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1800 std::size_t Size = 1801 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1802 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1803 HasTemplateKWAndArgsInfo ? 1 : 0, 1804 NumTemplateArgs); 1805 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1806 return new (Mem) MemberExpr(EmptyShell()); 1807 } 1808 1809 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1810 MemberDecl = NewD; 1811 if (getType()->isUndeducedType()) 1812 setType(NewD->getType()); 1813 setDependence(computeDependence(this)); 1814 } 1815 1816 SourceLocation MemberExpr::getBeginLoc() const { 1817 if (isImplicitAccess()) { 1818 if (hasQualifier()) 1819 return getQualifierLoc().getBeginLoc(); 1820 return MemberLoc; 1821 } 1822 1823 // FIXME: We don't want this to happen. Rather, we should be able to 1824 // detect all kinds of implicit accesses more cleanly. 1825 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1826 if (BaseStartLoc.isValid()) 1827 return BaseStartLoc; 1828 return MemberLoc; 1829 } 1830 SourceLocation MemberExpr::getEndLoc() const { 1831 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1832 if (hasExplicitTemplateArgs()) 1833 EndLoc = getRAngleLoc(); 1834 else if (EndLoc.isInvalid()) 1835 EndLoc = getBase()->getEndLoc(); 1836 return EndLoc; 1837 } 1838 1839 bool CastExpr::CastConsistency() const { 1840 switch (getCastKind()) { 1841 case CK_DerivedToBase: 1842 case CK_UncheckedDerivedToBase: 1843 case CK_DerivedToBaseMemberPointer: 1844 case CK_BaseToDerived: 1845 case CK_BaseToDerivedMemberPointer: 1846 assert(!path_empty() && "Cast kind should have a base path!"); 1847 break; 1848 1849 case CK_CPointerToObjCPointerCast: 1850 assert(getType()->isObjCObjectPointerType()); 1851 assert(getSubExpr()->getType()->isPointerType()); 1852 goto CheckNoBasePath; 1853 1854 case CK_BlockPointerToObjCPointerCast: 1855 assert(getType()->isObjCObjectPointerType()); 1856 assert(getSubExpr()->getType()->isBlockPointerType()); 1857 goto CheckNoBasePath; 1858 1859 case CK_ReinterpretMemberPointer: 1860 assert(getType()->isMemberPointerType()); 1861 assert(getSubExpr()->getType()->isMemberPointerType()); 1862 goto CheckNoBasePath; 1863 1864 case CK_BitCast: 1865 // Arbitrary casts to C pointer types count as bitcasts. 1866 // Otherwise, we should only have block and ObjC pointer casts 1867 // here if they stay within the type kind. 1868 if (!getType()->isPointerType()) { 1869 assert(getType()->isObjCObjectPointerType() == 1870 getSubExpr()->getType()->isObjCObjectPointerType()); 1871 assert(getType()->isBlockPointerType() == 1872 getSubExpr()->getType()->isBlockPointerType()); 1873 } 1874 goto CheckNoBasePath; 1875 1876 case CK_AnyPointerToBlockPointerCast: 1877 assert(getType()->isBlockPointerType()); 1878 assert(getSubExpr()->getType()->isAnyPointerType() && 1879 !getSubExpr()->getType()->isBlockPointerType()); 1880 goto CheckNoBasePath; 1881 1882 case CK_CopyAndAutoreleaseBlockObject: 1883 assert(getType()->isBlockPointerType()); 1884 assert(getSubExpr()->getType()->isBlockPointerType()); 1885 goto CheckNoBasePath; 1886 1887 case CK_FunctionToPointerDecay: 1888 assert(getType()->isPointerType()); 1889 assert(getSubExpr()->getType()->isFunctionType()); 1890 goto CheckNoBasePath; 1891 1892 case CK_AddressSpaceConversion: { 1893 auto Ty = getType(); 1894 auto SETy = getSubExpr()->getType(); 1895 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1896 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1897 Ty = Ty->getPointeeType(); 1898 SETy = SETy->getPointeeType(); 1899 } 1900 assert((Ty->isDependentType() || SETy->isDependentType()) || 1901 (!Ty.isNull() && !SETy.isNull() && 1902 Ty.getAddressSpace() != SETy.getAddressSpace())); 1903 goto CheckNoBasePath; 1904 } 1905 // These should not have an inheritance path. 1906 case CK_Dynamic: 1907 case CK_ToUnion: 1908 case CK_ArrayToPointerDecay: 1909 case CK_NullToMemberPointer: 1910 case CK_NullToPointer: 1911 case CK_ConstructorConversion: 1912 case CK_IntegralToPointer: 1913 case CK_PointerToIntegral: 1914 case CK_ToVoid: 1915 case CK_VectorSplat: 1916 case CK_IntegralCast: 1917 case CK_BooleanToSignedIntegral: 1918 case CK_IntegralToFloating: 1919 case CK_FloatingToIntegral: 1920 case CK_FloatingCast: 1921 case CK_ObjCObjectLValueCast: 1922 case CK_FloatingRealToComplex: 1923 case CK_FloatingComplexToReal: 1924 case CK_FloatingComplexCast: 1925 case CK_FloatingComplexToIntegralComplex: 1926 case CK_IntegralRealToComplex: 1927 case CK_IntegralComplexToReal: 1928 case CK_IntegralComplexCast: 1929 case CK_IntegralComplexToFloatingComplex: 1930 case CK_ARCProduceObject: 1931 case CK_ARCConsumeObject: 1932 case CK_ARCReclaimReturnedObject: 1933 case CK_ARCExtendBlockObject: 1934 case CK_ZeroToOCLOpaqueType: 1935 case CK_IntToOCLSampler: 1936 case CK_FloatingToFixedPoint: 1937 case CK_FixedPointToFloating: 1938 case CK_FixedPointCast: 1939 case CK_FixedPointToIntegral: 1940 case CK_IntegralToFixedPoint: 1941 case CK_MatrixCast: 1942 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1943 goto CheckNoBasePath; 1944 1945 case CK_Dependent: 1946 case CK_LValueToRValue: 1947 case CK_NoOp: 1948 case CK_AtomicToNonAtomic: 1949 case CK_NonAtomicToAtomic: 1950 case CK_PointerToBoolean: 1951 case CK_IntegralToBoolean: 1952 case CK_FloatingToBoolean: 1953 case CK_MemberPointerToBoolean: 1954 case CK_FloatingComplexToBoolean: 1955 case CK_IntegralComplexToBoolean: 1956 case CK_LValueBitCast: // -> bool& 1957 case CK_LValueToRValueBitCast: 1958 case CK_UserDefinedConversion: // operator bool() 1959 case CK_BuiltinFnToFnPtr: 1960 case CK_FixedPointToBoolean: 1961 CheckNoBasePath: 1962 assert(path_empty() && "Cast kind should not have a base path!"); 1963 break; 1964 } 1965 return true; 1966 } 1967 1968 const char *CastExpr::getCastKindName(CastKind CK) { 1969 switch (CK) { 1970 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1971 #include "clang/AST/OperationKinds.def" 1972 } 1973 llvm_unreachable("Unhandled cast kind!"); 1974 } 1975 1976 namespace { 1977 // Skip over implicit nodes produced as part of semantic analysis. 1978 // Designed for use with IgnoreExprNodes. 1979 static Expr *ignoreImplicitSemaNodes(Expr *E) { 1980 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1981 return Materialize->getSubExpr(); 1982 1983 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1984 return Binder->getSubExpr(); 1985 1986 if (auto *Full = dyn_cast<FullExpr>(E)) 1987 return Full->getSubExpr(); 1988 1989 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E); 1990 CPLIE && CPLIE->getInitExprs().size() == 1) 1991 return CPLIE->getInitExprs()[0]; 1992 1993 return E; 1994 } 1995 } // namespace 1996 1997 Expr *CastExpr::getSubExprAsWritten() { 1998 const Expr *SubExpr = nullptr; 1999 2000 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 2001 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 2002 2003 // Conversions by constructor and conversion functions have a 2004 // subexpression describing the call; strip it off. 2005 if (E->getCastKind() == CK_ConstructorConversion) { 2006 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), 2007 ignoreImplicitSemaNodes); 2008 } else if (E->getCastKind() == CK_UserDefinedConversion) { 2009 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && 2010 "Unexpected SubExpr for CK_UserDefinedConversion."); 2011 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 2012 SubExpr = MCE->getImplicitObjectArgument(); 2013 } 2014 } 2015 2016 return const_cast<Expr *>(SubExpr); 2017 } 2018 2019 NamedDecl *CastExpr::getConversionFunction() const { 2020 const Expr *SubExpr = nullptr; 2021 2022 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 2023 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 2024 2025 if (E->getCastKind() == CK_ConstructorConversion) 2026 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 2027 2028 if (E->getCastKind() == CK_UserDefinedConversion) { 2029 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 2030 return MCE->getMethodDecl(); 2031 } 2032 } 2033 2034 return nullptr; 2035 } 2036 2037 CXXBaseSpecifier **CastExpr::path_buffer() { 2038 switch (getStmtClass()) { 2039 #define ABSTRACT_STMT(x) 2040 #define CASTEXPR(Type, Base) \ 2041 case Stmt::Type##Class: \ 2042 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 2043 #define STMT(Type, Base) 2044 #include "clang/AST/StmtNodes.inc" 2045 default: 2046 llvm_unreachable("non-cast expressions not possible here"); 2047 } 2048 } 2049 2050 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 2051 QualType opType) { 2052 auto RD = unionType->castAs<RecordType>()->getDecl(); 2053 return getTargetFieldForToUnionCast(RD, opType); 2054 } 2055 2056 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 2057 QualType OpType) { 2058 auto &Ctx = RD->getASTContext(); 2059 RecordDecl::field_iterator Field, FieldEnd; 2060 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 2061 Field != FieldEnd; ++Field) { 2062 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 2063 !Field->isUnnamedBitfield()) { 2064 return *Field; 2065 } 2066 } 2067 return nullptr; 2068 } 2069 2070 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 2071 assert(hasStoredFPFeatures()); 2072 switch (getStmtClass()) { 2073 case ImplicitCastExprClass: 2074 return static_cast<ImplicitCastExpr *>(this) 2075 ->getTrailingObjects<FPOptionsOverride>(); 2076 case CStyleCastExprClass: 2077 return static_cast<CStyleCastExpr *>(this) 2078 ->getTrailingObjects<FPOptionsOverride>(); 2079 case CXXFunctionalCastExprClass: 2080 return static_cast<CXXFunctionalCastExpr *>(this) 2081 ->getTrailingObjects<FPOptionsOverride>(); 2082 case CXXStaticCastExprClass: 2083 return static_cast<CXXStaticCastExpr *>(this) 2084 ->getTrailingObjects<FPOptionsOverride>(); 2085 default: 2086 llvm_unreachable("Cast does not have FPFeatures"); 2087 } 2088 } 2089 2090 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 2091 CastKind Kind, Expr *Operand, 2092 const CXXCastPath *BasePath, 2093 ExprValueKind VK, 2094 FPOptionsOverride FPO) { 2095 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2096 void *Buffer = 2097 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2098 PathSize, FPO.requiresTrailingStorage())); 2099 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2100 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2101 assert((Kind != CK_LValueToRValue || 2102 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2103 "invalid type for lvalue-to-rvalue conversion"); 2104 ImplicitCastExpr *E = 2105 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 2106 if (PathSize) 2107 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2108 E->getTrailingObjects<CXXBaseSpecifier *>()); 2109 return E; 2110 } 2111 2112 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2113 unsigned PathSize, 2114 bool HasFPFeatures) { 2115 void *Buffer = 2116 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2117 PathSize, HasFPFeatures)); 2118 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2119 } 2120 2121 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2122 ExprValueKind VK, CastKind K, Expr *Op, 2123 const CXXCastPath *BasePath, 2124 FPOptionsOverride FPO, 2125 TypeSourceInfo *WrittenTy, 2126 SourceLocation L, SourceLocation R) { 2127 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2128 void *Buffer = 2129 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2130 PathSize, FPO.requiresTrailingStorage())); 2131 CStyleCastExpr *E = 2132 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2133 if (PathSize) 2134 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2135 E->getTrailingObjects<CXXBaseSpecifier *>()); 2136 return E; 2137 } 2138 2139 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2140 unsigned PathSize, 2141 bool HasFPFeatures) { 2142 void *Buffer = 2143 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2144 PathSize, HasFPFeatures)); 2145 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2146 } 2147 2148 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2149 /// corresponds to, e.g. "<<=". 2150 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2151 switch (Op) { 2152 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2153 #include "clang/AST/OperationKinds.def" 2154 } 2155 llvm_unreachable("Invalid OpCode!"); 2156 } 2157 2158 BinaryOperatorKind 2159 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2160 switch (OO) { 2161 default: llvm_unreachable("Not an overloadable binary operator"); 2162 case OO_Plus: return BO_Add; 2163 case OO_Minus: return BO_Sub; 2164 case OO_Star: return BO_Mul; 2165 case OO_Slash: return BO_Div; 2166 case OO_Percent: return BO_Rem; 2167 case OO_Caret: return BO_Xor; 2168 case OO_Amp: return BO_And; 2169 case OO_Pipe: return BO_Or; 2170 case OO_Equal: return BO_Assign; 2171 case OO_Spaceship: return BO_Cmp; 2172 case OO_Less: return BO_LT; 2173 case OO_Greater: return BO_GT; 2174 case OO_PlusEqual: return BO_AddAssign; 2175 case OO_MinusEqual: return BO_SubAssign; 2176 case OO_StarEqual: return BO_MulAssign; 2177 case OO_SlashEqual: return BO_DivAssign; 2178 case OO_PercentEqual: return BO_RemAssign; 2179 case OO_CaretEqual: return BO_XorAssign; 2180 case OO_AmpEqual: return BO_AndAssign; 2181 case OO_PipeEqual: return BO_OrAssign; 2182 case OO_LessLess: return BO_Shl; 2183 case OO_GreaterGreater: return BO_Shr; 2184 case OO_LessLessEqual: return BO_ShlAssign; 2185 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2186 case OO_EqualEqual: return BO_EQ; 2187 case OO_ExclaimEqual: return BO_NE; 2188 case OO_LessEqual: return BO_LE; 2189 case OO_GreaterEqual: return BO_GE; 2190 case OO_AmpAmp: return BO_LAnd; 2191 case OO_PipePipe: return BO_LOr; 2192 case OO_Comma: return BO_Comma; 2193 case OO_ArrowStar: return BO_PtrMemI; 2194 } 2195 } 2196 2197 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2198 static const OverloadedOperatorKind OverOps[] = { 2199 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2200 OO_Star, OO_Slash, OO_Percent, 2201 OO_Plus, OO_Minus, 2202 OO_LessLess, OO_GreaterGreater, 2203 OO_Spaceship, 2204 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2205 OO_EqualEqual, OO_ExclaimEqual, 2206 OO_Amp, 2207 OO_Caret, 2208 OO_Pipe, 2209 OO_AmpAmp, 2210 OO_PipePipe, 2211 OO_Equal, OO_StarEqual, 2212 OO_SlashEqual, OO_PercentEqual, 2213 OO_PlusEqual, OO_MinusEqual, 2214 OO_LessLessEqual, OO_GreaterGreaterEqual, 2215 OO_AmpEqual, OO_CaretEqual, 2216 OO_PipeEqual, 2217 OO_Comma 2218 }; 2219 return OverOps[Opc]; 2220 } 2221 2222 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2223 Opcode Opc, 2224 const Expr *LHS, 2225 const Expr *RHS) { 2226 if (Opc != BO_Add) 2227 return false; 2228 2229 // Check that we have one pointer and one integer operand. 2230 const Expr *PExp; 2231 if (LHS->getType()->isPointerType()) { 2232 if (!RHS->getType()->isIntegerType()) 2233 return false; 2234 PExp = LHS; 2235 } else if (RHS->getType()->isPointerType()) { 2236 if (!LHS->getType()->isIntegerType()) 2237 return false; 2238 PExp = RHS; 2239 } else { 2240 return false; 2241 } 2242 2243 // Check that the pointer is a nullptr. 2244 if (!PExp->IgnoreParenCasts() 2245 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2246 return false; 2247 2248 // Check that the pointee type is char-sized. 2249 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2250 if (!PTy || !PTy->getPointeeType()->isCharType()) 2251 return false; 2252 2253 return true; 2254 } 2255 2256 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2257 QualType ResultTy, SourceLocation BLoc, 2258 SourceLocation RParenLoc, 2259 DeclContext *ParentContext) 2260 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), 2261 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2262 SourceLocExprBits.Kind = Kind; 2263 setDependence(ExprDependence::None); 2264 } 2265 2266 StringRef SourceLocExpr::getBuiltinStr() const { 2267 switch (getIdentKind()) { 2268 case File: 2269 return "__builtin_FILE"; 2270 case FileName: 2271 return "__builtin_FILE_NAME"; 2272 case Function: 2273 return "__builtin_FUNCTION"; 2274 case FuncSig: 2275 return "__builtin_FUNCSIG"; 2276 case Line: 2277 return "__builtin_LINE"; 2278 case Column: 2279 return "__builtin_COLUMN"; 2280 case SourceLocStruct: 2281 return "__builtin_source_location"; 2282 } 2283 llvm_unreachable("unexpected IdentKind!"); 2284 } 2285 2286 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2287 const Expr *DefaultExpr) const { 2288 SourceLocation Loc; 2289 const DeclContext *Context; 2290 2291 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) { 2292 Loc = DIE->getUsedLocation(); 2293 Context = DIE->getUsedContext(); 2294 } else if (const auto *DAE = 2295 dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) { 2296 Loc = DAE->getUsedLocation(); 2297 Context = DAE->getUsedContext(); 2298 } else { 2299 Loc = getLocation(); 2300 Context = getParentContext(); 2301 } 2302 2303 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2304 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2305 2306 auto MakeStringLiteral = [&](StringRef Tmp) { 2307 using LValuePathEntry = APValue::LValuePathEntry; 2308 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2309 // Decay the string to a pointer to the first character. 2310 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2311 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2312 }; 2313 2314 switch (getIdentKind()) { 2315 case SourceLocExpr::FileName: { 2316 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the 2317 // the last part of __builtin_FILE(). 2318 SmallString<256> FileName; 2319 clang::Preprocessor::processPathToFileName( 2320 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo()); 2321 return MakeStringLiteral(FileName); 2322 } 2323 case SourceLocExpr::File: { 2324 SmallString<256> Path(PLoc.getFilename()); 2325 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2326 Ctx.getTargetInfo()); 2327 return MakeStringLiteral(Path); 2328 } 2329 case SourceLocExpr::Function: 2330 case SourceLocExpr::FuncSig: { 2331 const auto *CurDecl = dyn_cast<Decl>(Context); 2332 const auto Kind = getIdentKind() == SourceLocExpr::Function 2333 ? PredefinedExpr::Function 2334 : PredefinedExpr::FuncSig; 2335 return MakeStringLiteral( 2336 CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string("")); 2337 } 2338 case SourceLocExpr::Line: 2339 return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy)); 2340 case SourceLocExpr::Column: 2341 return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy)); 2342 case SourceLocExpr::SourceLocStruct: { 2343 // Fill in a std::source_location::__impl structure, by creating an 2344 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to 2345 // that. 2346 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); 2347 assert(ImplDecl); 2348 2349 // Construct an APValue for the __impl struct, and get or create a Decl 2350 // corresponding to that. Note that we've already verified that the shape of 2351 // the ImplDecl type is as expected. 2352 2353 APValue Value(APValue::UninitStruct(), 0, 4); 2354 for (const FieldDecl *F : ImplDecl->fields()) { 2355 StringRef Name = F->getName(); 2356 if (Name == "_M_file_name") { 2357 SmallString<256> Path(PLoc.getFilename()); 2358 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2359 Ctx.getTargetInfo()); 2360 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); 2361 } else if (Name == "_M_function_name") { 2362 // Note: this emits the PrettyFunction name -- different than what 2363 // __builtin_FUNCTION() above returns! 2364 const auto *CurDecl = dyn_cast<Decl>(Context); 2365 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( 2366 CurDecl && !isa<TranslationUnitDecl>(CurDecl) 2367 ? StringRef(PredefinedExpr::ComputeName( 2368 PredefinedExpr::PrettyFunction, CurDecl)) 2369 : ""); 2370 } else if (Name == "_M_line") { 2371 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType()); 2372 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2373 } else if (Name == "_M_column") { 2374 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType()); 2375 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2376 } 2377 } 2378 2379 UnnamedGlobalConstantDecl *GV = 2380 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); 2381 2382 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, 2383 false); 2384 } 2385 } 2386 llvm_unreachable("unhandled case"); 2387 } 2388 2389 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2390 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2391 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2392 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2393 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2394 sawArrayRangeDesignator(false); 2395 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2396 2397 setDependence(computeDependence(this)); 2398 } 2399 2400 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2401 if (NumInits > InitExprs.size()) 2402 InitExprs.reserve(C, NumInits); 2403 } 2404 2405 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2406 InitExprs.resize(C, NumInits, nullptr); 2407 } 2408 2409 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2410 if (Init >= InitExprs.size()) { 2411 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2412 setInit(Init, expr); 2413 return nullptr; 2414 } 2415 2416 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2417 setInit(Init, expr); 2418 return Result; 2419 } 2420 2421 void InitListExpr::setArrayFiller(Expr *filler) { 2422 assert(!hasArrayFiller() && "Filler already set!"); 2423 ArrayFillerOrUnionFieldInit = filler; 2424 // Fill out any "holes" in the array due to designated initializers. 2425 Expr **inits = getInits(); 2426 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2427 if (inits[i] == nullptr) 2428 inits[i] = filler; 2429 } 2430 2431 bool InitListExpr::isStringLiteralInit() const { 2432 if (getNumInits() != 1) 2433 return false; 2434 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2435 if (!AT || !AT->getElementType()->isIntegerType()) 2436 return false; 2437 // It is possible for getInit() to return null. 2438 const Expr *Init = getInit(0); 2439 if (!Init) 2440 return false; 2441 Init = Init->IgnoreParenImpCasts(); 2442 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2443 } 2444 2445 bool InitListExpr::isTransparent() const { 2446 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2447 2448 // A glvalue InitListExpr is always just sugar. 2449 if (isGLValue()) { 2450 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2451 return true; 2452 } 2453 2454 // Otherwise, we're sugar if and only if we have exactly one initializer that 2455 // is of the same type. 2456 if (getNumInits() != 1 || !getInit(0)) 2457 return false; 2458 2459 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2460 // transparent struct copy. 2461 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2462 return false; 2463 2464 return getType().getCanonicalType() == 2465 getInit(0)->getType().getCanonicalType(); 2466 } 2467 2468 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2469 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2470 2471 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2472 return false; 2473 } 2474 2475 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2476 return Lit && Lit->getValue() == 0; 2477 } 2478 2479 SourceLocation InitListExpr::getBeginLoc() const { 2480 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2481 return SyntacticForm->getBeginLoc(); 2482 SourceLocation Beg = LBraceLoc; 2483 if (Beg.isInvalid()) { 2484 // Find the first non-null initializer. 2485 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2486 E = InitExprs.end(); 2487 I != E; ++I) { 2488 if (Stmt *S = *I) { 2489 Beg = S->getBeginLoc(); 2490 break; 2491 } 2492 } 2493 } 2494 return Beg; 2495 } 2496 2497 SourceLocation InitListExpr::getEndLoc() const { 2498 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2499 return SyntacticForm->getEndLoc(); 2500 SourceLocation End = RBraceLoc; 2501 if (End.isInvalid()) { 2502 // Find the first non-null initializer from the end. 2503 for (Stmt *S : llvm::reverse(InitExprs)) { 2504 if (S) { 2505 End = S->getEndLoc(); 2506 break; 2507 } 2508 } 2509 } 2510 return End; 2511 } 2512 2513 /// getFunctionType - Return the underlying function type for this block. 2514 /// 2515 const FunctionProtoType *BlockExpr::getFunctionType() const { 2516 // The block pointer is never sugared, but the function type might be. 2517 return cast<BlockPointerType>(getType()) 2518 ->getPointeeType()->castAs<FunctionProtoType>(); 2519 } 2520 2521 SourceLocation BlockExpr::getCaretLocation() const { 2522 return TheBlock->getCaretLocation(); 2523 } 2524 const Stmt *BlockExpr::getBody() const { 2525 return TheBlock->getBody(); 2526 } 2527 Stmt *BlockExpr::getBody() { 2528 return TheBlock->getBody(); 2529 } 2530 2531 2532 //===----------------------------------------------------------------------===// 2533 // Generic Expression Routines 2534 //===----------------------------------------------------------------------===// 2535 2536 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2537 // In C++11, discarded-value expressions of a certain form are special, 2538 // according to [expr]p10: 2539 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2540 // expression is a glvalue of volatile-qualified type and it has 2541 // one of the following forms: 2542 if (!isGLValue() || !getType().isVolatileQualified()) 2543 return false; 2544 2545 const Expr *E = IgnoreParens(); 2546 2547 // - id-expression (5.1.1), 2548 if (isa<DeclRefExpr>(E)) 2549 return true; 2550 2551 // - subscripting (5.2.1), 2552 if (isa<ArraySubscriptExpr>(E)) 2553 return true; 2554 2555 // - class member access (5.2.5), 2556 if (isa<MemberExpr>(E)) 2557 return true; 2558 2559 // - indirection (5.3.1), 2560 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2561 if (UO->getOpcode() == UO_Deref) 2562 return true; 2563 2564 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2565 // - pointer-to-member operation (5.5), 2566 if (BO->isPtrMemOp()) 2567 return true; 2568 2569 // - comma expression (5.18) where the right operand is one of the above. 2570 if (BO->getOpcode() == BO_Comma) 2571 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2572 } 2573 2574 // - conditional expression (5.16) where both the second and the third 2575 // operands are one of the above, or 2576 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2577 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2578 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2579 // The related edge case of "*x ?: *x". 2580 if (auto *BCO = 2581 dyn_cast<BinaryConditionalOperator>(E)) { 2582 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2583 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2584 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2585 } 2586 2587 // Objective-C++ extensions to the rule. 2588 if (isa<ObjCIvarRefExpr>(E)) 2589 return true; 2590 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { 2591 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) 2592 return true; 2593 } 2594 2595 return false; 2596 } 2597 2598 /// isUnusedResultAWarning - Return true if this immediate expression should 2599 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2600 /// with location to warn on and the source range[s] to report with the 2601 /// warning. 2602 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2603 SourceRange &R1, SourceRange &R2, 2604 ASTContext &Ctx) const { 2605 // Don't warn if the expr is type dependent. The type could end up 2606 // instantiating to void. 2607 if (isTypeDependent()) 2608 return false; 2609 2610 switch (getStmtClass()) { 2611 default: 2612 if (getType()->isVoidType()) 2613 return false; 2614 WarnE = this; 2615 Loc = getExprLoc(); 2616 R1 = getSourceRange(); 2617 return true; 2618 case ParenExprClass: 2619 return cast<ParenExpr>(this)->getSubExpr()-> 2620 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2621 case GenericSelectionExprClass: 2622 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2623 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2624 case CoawaitExprClass: 2625 case CoyieldExprClass: 2626 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2627 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2628 case ChooseExprClass: 2629 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2630 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2631 case UnaryOperatorClass: { 2632 const UnaryOperator *UO = cast<UnaryOperator>(this); 2633 2634 switch (UO->getOpcode()) { 2635 case UO_Plus: 2636 case UO_Minus: 2637 case UO_AddrOf: 2638 case UO_Not: 2639 case UO_LNot: 2640 case UO_Deref: 2641 break; 2642 case UO_Coawait: 2643 // This is just the 'operator co_await' call inside the guts of a 2644 // dependent co_await call. 2645 case UO_PostInc: 2646 case UO_PostDec: 2647 case UO_PreInc: 2648 case UO_PreDec: // ++/-- 2649 return false; // Not a warning. 2650 case UO_Real: 2651 case UO_Imag: 2652 // accessing a piece of a volatile complex is a side-effect. 2653 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2654 .isVolatileQualified()) 2655 return false; 2656 break; 2657 case UO_Extension: 2658 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2659 } 2660 WarnE = this; 2661 Loc = UO->getOperatorLoc(); 2662 R1 = UO->getSubExpr()->getSourceRange(); 2663 return true; 2664 } 2665 case BinaryOperatorClass: { 2666 const BinaryOperator *BO = cast<BinaryOperator>(this); 2667 switch (BO->getOpcode()) { 2668 default: 2669 break; 2670 // Consider the RHS of comma for side effects. LHS was checked by 2671 // Sema::CheckCommaOperands. 2672 case BO_Comma: 2673 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2674 // lvalue-ness) of an assignment written in a macro. 2675 if (IntegerLiteral *IE = 2676 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2677 if (IE->getValue() == 0) 2678 return false; 2679 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2680 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2681 case BO_LAnd: 2682 case BO_LOr: 2683 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2684 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2685 return false; 2686 break; 2687 } 2688 if (BO->isAssignmentOp()) 2689 return false; 2690 WarnE = this; 2691 Loc = BO->getOperatorLoc(); 2692 R1 = BO->getLHS()->getSourceRange(); 2693 R2 = BO->getRHS()->getSourceRange(); 2694 return true; 2695 } 2696 case CompoundAssignOperatorClass: 2697 case VAArgExprClass: 2698 case AtomicExprClass: 2699 return false; 2700 2701 case ConditionalOperatorClass: { 2702 // If only one of the LHS or RHS is a warning, the operator might 2703 // be being used for control flow. Only warn if both the LHS and 2704 // RHS are warnings. 2705 const auto *Exp = cast<ConditionalOperator>(this); 2706 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2707 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2708 } 2709 case BinaryConditionalOperatorClass: { 2710 const auto *Exp = cast<BinaryConditionalOperator>(this); 2711 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2712 } 2713 2714 case MemberExprClass: 2715 WarnE = this; 2716 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2717 R1 = SourceRange(Loc, Loc); 2718 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2719 return true; 2720 2721 case ArraySubscriptExprClass: 2722 WarnE = this; 2723 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2724 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2725 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2726 return true; 2727 2728 case CXXOperatorCallExprClass: { 2729 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2730 // overloads as there is no reasonable way to define these such that they 2731 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2732 // warning: operators == and != are commonly typo'ed, and so warning on them 2733 // provides additional value as well. If this list is updated, 2734 // DiagnoseUnusedComparison should be as well. 2735 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2736 switch (Op->getOperator()) { 2737 default: 2738 break; 2739 case OO_EqualEqual: 2740 case OO_ExclaimEqual: 2741 case OO_Less: 2742 case OO_Greater: 2743 case OO_GreaterEqual: 2744 case OO_LessEqual: 2745 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2746 Op->getCallReturnType(Ctx)->isVoidType()) 2747 break; 2748 WarnE = this; 2749 Loc = Op->getOperatorLoc(); 2750 R1 = Op->getSourceRange(); 2751 return true; 2752 } 2753 2754 // Fallthrough for generic call handling. 2755 [[fallthrough]]; 2756 } 2757 case CallExprClass: 2758 case CXXMemberCallExprClass: 2759 case UserDefinedLiteralClass: { 2760 // If this is a direct call, get the callee. 2761 const CallExpr *CE = cast<CallExpr>(this); 2762 if (const Decl *FD = CE->getCalleeDecl()) { 2763 // If the callee has attribute pure, const, or warn_unused_result, warn 2764 // about it. void foo() { strlen("bar"); } should warn. 2765 // 2766 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2767 // updated to match for QoI. 2768 if (CE->hasUnusedResultAttr(Ctx) || 2769 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2770 WarnE = this; 2771 Loc = CE->getCallee()->getBeginLoc(); 2772 R1 = CE->getCallee()->getSourceRange(); 2773 2774 if (unsigned NumArgs = CE->getNumArgs()) 2775 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2776 CE->getArg(NumArgs - 1)->getEndLoc()); 2777 return true; 2778 } 2779 } 2780 return false; 2781 } 2782 2783 // If we don't know precisely what we're looking at, let's not warn. 2784 case UnresolvedLookupExprClass: 2785 case CXXUnresolvedConstructExprClass: 2786 case RecoveryExprClass: 2787 return false; 2788 2789 case CXXTemporaryObjectExprClass: 2790 case CXXConstructExprClass: { 2791 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2792 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2793 if (Type->hasAttr<WarnUnusedAttr>() || 2794 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2795 WarnE = this; 2796 Loc = getBeginLoc(); 2797 R1 = getSourceRange(); 2798 return true; 2799 } 2800 } 2801 2802 const auto *CE = cast<CXXConstructExpr>(this); 2803 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2804 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2805 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2806 WarnE = this; 2807 Loc = getBeginLoc(); 2808 R1 = getSourceRange(); 2809 2810 if (unsigned NumArgs = CE->getNumArgs()) 2811 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2812 CE->getArg(NumArgs - 1)->getEndLoc()); 2813 return true; 2814 } 2815 } 2816 2817 return false; 2818 } 2819 2820 case ObjCMessageExprClass: { 2821 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2822 if (Ctx.getLangOpts().ObjCAutoRefCount && 2823 ME->isInstanceMessage() && 2824 !ME->getType()->isVoidType() && 2825 ME->getMethodFamily() == OMF_init) { 2826 WarnE = this; 2827 Loc = getExprLoc(); 2828 R1 = ME->getSourceRange(); 2829 return true; 2830 } 2831 2832 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2833 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2834 WarnE = this; 2835 Loc = getExprLoc(); 2836 return true; 2837 } 2838 2839 return false; 2840 } 2841 2842 case ObjCPropertyRefExprClass: 2843 case ObjCSubscriptRefExprClass: 2844 WarnE = this; 2845 Loc = getExprLoc(); 2846 R1 = getSourceRange(); 2847 return true; 2848 2849 case PseudoObjectExprClass: { 2850 const auto *POE = cast<PseudoObjectExpr>(this); 2851 2852 // For some syntactic forms, we should always warn. 2853 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( 2854 POE->getSyntacticForm())) { 2855 WarnE = this; 2856 Loc = getExprLoc(); 2857 R1 = getSourceRange(); 2858 return true; 2859 } 2860 2861 // For others, we should never warn. 2862 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) 2863 if (BO->isAssignmentOp()) 2864 return false; 2865 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) 2866 if (UO->isIncrementDecrementOp()) 2867 return false; 2868 2869 // Otherwise, warn if the result expression would warn. 2870 const Expr *Result = POE->getResultExpr(); 2871 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2872 } 2873 2874 case StmtExprClass: { 2875 // Statement exprs don't logically have side effects themselves, but are 2876 // sometimes used in macros in ways that give them a type that is unused. 2877 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2878 // however, if the result of the stmt expr is dead, we don't want to emit a 2879 // warning. 2880 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2881 if (!CS->body_empty()) { 2882 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2883 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2884 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2885 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2886 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2887 } 2888 2889 if (getType()->isVoidType()) 2890 return false; 2891 WarnE = this; 2892 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2893 R1 = getSourceRange(); 2894 return true; 2895 } 2896 case CXXFunctionalCastExprClass: 2897 case CStyleCastExprClass: { 2898 // Ignore an explicit cast to void, except in C++98 if the operand is a 2899 // volatile glvalue for which we would trigger an implicit read in any 2900 // other language mode. (Such an implicit read always happens as part of 2901 // the lvalue conversion in C, and happens in C++ for expressions of all 2902 // forms where it seems likely the user intended to trigger a volatile 2903 // load.) 2904 const CastExpr *CE = cast<CastExpr>(this); 2905 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2906 if (CE->getCastKind() == CK_ToVoid) { 2907 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2908 SubE->isReadIfDiscardedInCPlusPlus11()) { 2909 // Suppress the "unused value" warning for idiomatic usage of 2910 // '(void)var;' used to suppress "unused variable" warnings. 2911 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2912 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2913 if (!VD->isExternallyVisible()) 2914 return false; 2915 2916 // The lvalue-to-rvalue conversion would have no effect for an array. 2917 // It's implausible that the programmer expected this to result in a 2918 // volatile array load, so don't warn. 2919 if (SubE->getType()->isArrayType()) 2920 return false; 2921 2922 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2923 } 2924 return false; 2925 } 2926 2927 // If this is a cast to a constructor conversion, check the operand. 2928 // Otherwise, the result of the cast is unused. 2929 if (CE->getCastKind() == CK_ConstructorConversion) 2930 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2931 if (CE->getCastKind() == CK_Dependent) 2932 return false; 2933 2934 WarnE = this; 2935 if (const CXXFunctionalCastExpr *CXXCE = 2936 dyn_cast<CXXFunctionalCastExpr>(this)) { 2937 Loc = CXXCE->getBeginLoc(); 2938 R1 = CXXCE->getSubExpr()->getSourceRange(); 2939 } else { 2940 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2941 Loc = CStyleCE->getLParenLoc(); 2942 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2943 } 2944 return true; 2945 } 2946 case ImplicitCastExprClass: { 2947 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2948 2949 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2950 if (ICE->getCastKind() == CK_LValueToRValue && 2951 ICE->getSubExpr()->getType().isVolatileQualified()) 2952 return false; 2953 2954 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2955 } 2956 case CXXDefaultArgExprClass: 2957 return (cast<CXXDefaultArgExpr>(this) 2958 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2959 case CXXDefaultInitExprClass: 2960 return (cast<CXXDefaultInitExpr>(this) 2961 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2962 2963 case CXXNewExprClass: 2964 // FIXME: In theory, there might be new expressions that don't have side 2965 // effects (e.g. a placement new with an uninitialized POD). 2966 case CXXDeleteExprClass: 2967 return false; 2968 case MaterializeTemporaryExprClass: 2969 return cast<MaterializeTemporaryExpr>(this) 2970 ->getSubExpr() 2971 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2972 case CXXBindTemporaryExprClass: 2973 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2974 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2975 case ExprWithCleanupsClass: 2976 return cast<ExprWithCleanups>(this)->getSubExpr() 2977 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2978 } 2979 } 2980 2981 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2982 /// returns true, if it is; false otherwise. 2983 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2984 const Expr *E = IgnoreParens(); 2985 switch (E->getStmtClass()) { 2986 default: 2987 return false; 2988 case ObjCIvarRefExprClass: 2989 return true; 2990 case Expr::UnaryOperatorClass: 2991 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2992 case ImplicitCastExprClass: 2993 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2994 case MaterializeTemporaryExprClass: 2995 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2996 Ctx); 2997 case CStyleCastExprClass: 2998 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2999 case DeclRefExprClass: { 3000 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 3001 3002 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 3003 if (VD->hasGlobalStorage()) 3004 return true; 3005 QualType T = VD->getType(); 3006 // dereferencing to a pointer is always a gc'able candidate, 3007 // unless it is __weak. 3008 return T->isPointerType() && 3009 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 3010 } 3011 return false; 3012 } 3013 case MemberExprClass: { 3014 const MemberExpr *M = cast<MemberExpr>(E); 3015 return M->getBase()->isOBJCGCCandidate(Ctx); 3016 } 3017 case ArraySubscriptExprClass: 3018 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 3019 } 3020 } 3021 3022 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 3023 if (isTypeDependent()) 3024 return false; 3025 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 3026 } 3027 3028 QualType Expr::findBoundMemberType(const Expr *expr) { 3029 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 3030 3031 // Bound member expressions are always one of these possibilities: 3032 // x->m x.m x->*y x.*y 3033 // (possibly parenthesized) 3034 3035 expr = expr->IgnoreParens(); 3036 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 3037 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 3038 return mem->getMemberDecl()->getType(); 3039 } 3040 3041 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 3042 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 3043 ->getPointeeType(); 3044 assert(type->isFunctionType()); 3045 return type; 3046 } 3047 3048 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 3049 return QualType(); 3050 } 3051 3052 Expr *Expr::IgnoreImpCasts() { 3053 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 3054 } 3055 3056 Expr *Expr::IgnoreCasts() { 3057 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 3058 } 3059 3060 Expr *Expr::IgnoreImplicit() { 3061 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 3062 } 3063 3064 Expr *Expr::IgnoreImplicitAsWritten() { 3065 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 3066 } 3067 3068 Expr *Expr::IgnoreParens() { 3069 return IgnoreExprNodes(this, IgnoreParensSingleStep); 3070 } 3071 3072 Expr *Expr::IgnoreParenImpCasts() { 3073 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3074 IgnoreImplicitCastsExtraSingleStep); 3075 } 3076 3077 Expr *Expr::IgnoreParenCasts() { 3078 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 3079 } 3080 3081 Expr *Expr::IgnoreConversionOperatorSingleStep() { 3082 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 3083 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 3084 return MCE->getImplicitObjectArgument(); 3085 } 3086 return this; 3087 } 3088 3089 Expr *Expr::IgnoreParenLValueCasts() { 3090 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3091 IgnoreLValueCastsSingleStep); 3092 } 3093 3094 Expr *Expr::IgnoreParenBaseCasts() { 3095 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3096 IgnoreBaseCastsSingleStep); 3097 } 3098 3099 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 3100 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 3101 if (auto *CE = dyn_cast<CastExpr>(E)) { 3102 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 3103 // ptr<->int casts of the same width. We also ignore all identity casts. 3104 Expr *SubExpr = CE->getSubExpr(); 3105 bool IsIdentityCast = 3106 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 3107 bool IsSameWidthCast = (E->getType()->isPointerType() || 3108 E->getType()->isIntegralType(Ctx)) && 3109 (SubExpr->getType()->isPointerType() || 3110 SubExpr->getType()->isIntegralType(Ctx)) && 3111 (Ctx.getTypeSize(E->getType()) == 3112 Ctx.getTypeSize(SubExpr->getType())); 3113 3114 if (IsIdentityCast || IsSameWidthCast) 3115 return SubExpr; 3116 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 3117 return NTTP->getReplacement(); 3118 3119 return E; 3120 }; 3121 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3122 IgnoreNoopCastsSingleStep); 3123 } 3124 3125 Expr *Expr::IgnoreUnlessSpelledInSource() { 3126 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 3127 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 3128 auto *SE = Cast->getSubExpr(); 3129 if (SE->getSourceRange() == E->getSourceRange()) 3130 return SE; 3131 } 3132 3133 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3134 auto NumArgs = C->getNumArgs(); 3135 if (NumArgs == 1 || 3136 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 3137 Expr *A = C->getArg(0); 3138 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3139 return A; 3140 } 3141 } 3142 return E; 3143 }; 3144 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3145 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3146 Expr *ExprNode = C->getImplicitObjectArgument(); 3147 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3148 return ExprNode; 3149 } 3150 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3151 if (PE->getSourceRange() == C->getSourceRange()) { 3152 return cast<Expr>(PE); 3153 } 3154 } 3155 ExprNode = ExprNode->IgnoreParenImpCasts(); 3156 if (ExprNode->getSourceRange() == E->getSourceRange()) 3157 return ExprNode; 3158 } 3159 return E; 3160 }; 3161 return IgnoreExprNodes( 3162 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3163 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3164 IgnoreImplicitMemberCallSingleStep); 3165 } 3166 3167 bool Expr::isDefaultArgument() const { 3168 const Expr *E = this; 3169 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3170 E = M->getSubExpr(); 3171 3172 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3173 E = ICE->getSubExprAsWritten(); 3174 3175 return isa<CXXDefaultArgExpr>(E); 3176 } 3177 3178 /// Skip over any no-op casts and any temporary-binding 3179 /// expressions. 3180 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3181 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3182 E = M->getSubExpr(); 3183 3184 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3185 if (ICE->getCastKind() == CK_NoOp) 3186 E = ICE->getSubExpr(); 3187 else 3188 break; 3189 } 3190 3191 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3192 E = BE->getSubExpr(); 3193 3194 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3195 if (ICE->getCastKind() == CK_NoOp) 3196 E = ICE->getSubExpr(); 3197 else 3198 break; 3199 } 3200 3201 return E->IgnoreParens(); 3202 } 3203 3204 /// isTemporaryObject - Determines if this expression produces a 3205 /// temporary of the given class type. 3206 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3207 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3208 return false; 3209 3210 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3211 3212 // Temporaries are by definition pr-values of class type. 3213 if (!E->Classify(C).isPRValue()) { 3214 // In this context, property reference is a message call and is pr-value. 3215 if (!isa<ObjCPropertyRefExpr>(E)) 3216 return false; 3217 } 3218 3219 // Black-list a few cases which yield pr-values of class type that don't 3220 // refer to temporaries of that type: 3221 3222 // - implicit derived-to-base conversions 3223 if (isa<ImplicitCastExpr>(E)) { 3224 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3225 case CK_DerivedToBase: 3226 case CK_UncheckedDerivedToBase: 3227 return false; 3228 default: 3229 break; 3230 } 3231 } 3232 3233 // - member expressions (all) 3234 if (isa<MemberExpr>(E)) 3235 return false; 3236 3237 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3238 if (BO->isPtrMemOp()) 3239 return false; 3240 3241 // - opaque values (all) 3242 if (isa<OpaqueValueExpr>(E)) 3243 return false; 3244 3245 return true; 3246 } 3247 3248 bool Expr::isImplicitCXXThis() const { 3249 const Expr *E = this; 3250 3251 // Strip away parentheses and casts we don't care about. 3252 while (true) { 3253 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3254 E = Paren->getSubExpr(); 3255 continue; 3256 } 3257 3258 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3259 if (ICE->getCastKind() == CK_NoOp || 3260 ICE->getCastKind() == CK_LValueToRValue || 3261 ICE->getCastKind() == CK_DerivedToBase || 3262 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3263 E = ICE->getSubExpr(); 3264 continue; 3265 } 3266 } 3267 3268 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3269 if (UnOp->getOpcode() == UO_Extension) { 3270 E = UnOp->getSubExpr(); 3271 continue; 3272 } 3273 } 3274 3275 if (const MaterializeTemporaryExpr *M 3276 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3277 E = M->getSubExpr(); 3278 continue; 3279 } 3280 3281 break; 3282 } 3283 3284 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3285 return This->isImplicit(); 3286 3287 return false; 3288 } 3289 3290 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3291 /// in Exprs is type-dependent. 3292 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3293 for (unsigned I = 0; I < Exprs.size(); ++I) 3294 if (Exprs[I]->isTypeDependent()) 3295 return true; 3296 3297 return false; 3298 } 3299 3300 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3301 const Expr **Culprit) const { 3302 assert(!isValueDependent() && 3303 "Expression evaluator can't be called on a dependent expression."); 3304 3305 // This function is attempting whether an expression is an initializer 3306 // which can be evaluated at compile-time. It very closely parallels 3307 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3308 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3309 // to isEvaluatable most of the time. 3310 // 3311 // If we ever capture reference-binding directly in the AST, we can 3312 // kill the second parameter. 3313 3314 if (IsForRef) { 3315 if (auto *EWC = dyn_cast<ExprWithCleanups>(this)) 3316 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit); 3317 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this)) 3318 return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3319 EvalResult Result; 3320 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3321 return true; 3322 if (Culprit) 3323 *Culprit = this; 3324 return false; 3325 } 3326 3327 switch (getStmtClass()) { 3328 default: break; 3329 case Stmt::ExprWithCleanupsClass: 3330 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3331 Ctx, IsForRef, Culprit); 3332 case StringLiteralClass: 3333 case ObjCEncodeExprClass: 3334 return true; 3335 case CXXTemporaryObjectExprClass: 3336 case CXXConstructExprClass: { 3337 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3338 3339 if (CE->getConstructor()->isTrivial() && 3340 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3341 // Trivial default constructor 3342 if (!CE->getNumArgs()) return true; 3343 3344 // Trivial copy constructor 3345 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3346 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3347 } 3348 3349 break; 3350 } 3351 case ConstantExprClass: { 3352 // FIXME: We should be able to return "true" here, but it can lead to extra 3353 // error messages. E.g. in Sema/array-init.c. 3354 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3355 return Exp->isConstantInitializer(Ctx, false, Culprit); 3356 } 3357 case CompoundLiteralExprClass: { 3358 // This handles gcc's extension that allows global initializers like 3359 // "struct x {int x;} x = (struct x) {};". 3360 // FIXME: This accepts other cases it shouldn't! 3361 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3362 return Exp->isConstantInitializer(Ctx, false, Culprit); 3363 } 3364 case DesignatedInitUpdateExprClass: { 3365 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3366 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3367 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3368 } 3369 case InitListExprClass: { 3370 const InitListExpr *ILE = cast<InitListExpr>(this); 3371 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3372 if (ILE->getType()->isArrayType()) { 3373 unsigned numInits = ILE->getNumInits(); 3374 for (unsigned i = 0; i < numInits; i++) { 3375 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3376 return false; 3377 } 3378 return true; 3379 } 3380 3381 if (ILE->getType()->isRecordType()) { 3382 unsigned ElementNo = 0; 3383 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3384 for (const auto *Field : RD->fields()) { 3385 // If this is a union, skip all the fields that aren't being initialized. 3386 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3387 continue; 3388 3389 // Don't emit anonymous bitfields, they just affect layout. 3390 if (Field->isUnnamedBitfield()) 3391 continue; 3392 3393 if (ElementNo < ILE->getNumInits()) { 3394 const Expr *Elt = ILE->getInit(ElementNo++); 3395 if (Field->isBitField()) { 3396 // Bitfields have to evaluate to an integer. 3397 EvalResult Result; 3398 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3399 if (Culprit) 3400 *Culprit = Elt; 3401 return false; 3402 } 3403 } else { 3404 bool RefType = Field->getType()->isReferenceType(); 3405 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3406 return false; 3407 } 3408 } 3409 } 3410 return true; 3411 } 3412 3413 break; 3414 } 3415 case ImplicitValueInitExprClass: 3416 case NoInitExprClass: 3417 return true; 3418 case ParenExprClass: 3419 return cast<ParenExpr>(this)->getSubExpr() 3420 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3421 case GenericSelectionExprClass: 3422 return cast<GenericSelectionExpr>(this)->getResultExpr() 3423 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3424 case ChooseExprClass: 3425 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3426 if (Culprit) 3427 *Culprit = this; 3428 return false; 3429 } 3430 return cast<ChooseExpr>(this)->getChosenSubExpr() 3431 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3432 case UnaryOperatorClass: { 3433 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3434 if (Exp->getOpcode() == UO_Extension) 3435 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3436 break; 3437 } 3438 case CXXFunctionalCastExprClass: 3439 case CXXStaticCastExprClass: 3440 case ImplicitCastExprClass: 3441 case CStyleCastExprClass: 3442 case ObjCBridgedCastExprClass: 3443 case CXXDynamicCastExprClass: 3444 case CXXReinterpretCastExprClass: 3445 case CXXAddrspaceCastExprClass: 3446 case CXXConstCastExprClass: { 3447 const CastExpr *CE = cast<CastExpr>(this); 3448 3449 // Handle misc casts we want to ignore. 3450 if (CE->getCastKind() == CK_NoOp || 3451 CE->getCastKind() == CK_LValueToRValue || 3452 CE->getCastKind() == CK_ToUnion || 3453 CE->getCastKind() == CK_ConstructorConversion || 3454 CE->getCastKind() == CK_NonAtomicToAtomic || 3455 CE->getCastKind() == CK_AtomicToNonAtomic || 3456 CE->getCastKind() == CK_NullToPointer || 3457 CE->getCastKind() == CK_IntToOCLSampler) 3458 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3459 3460 break; 3461 } 3462 case MaterializeTemporaryExprClass: 3463 return cast<MaterializeTemporaryExpr>(this) 3464 ->getSubExpr() 3465 ->isConstantInitializer(Ctx, false, Culprit); 3466 3467 case SubstNonTypeTemplateParmExprClass: 3468 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3469 ->isConstantInitializer(Ctx, false, Culprit); 3470 case CXXDefaultArgExprClass: 3471 return cast<CXXDefaultArgExpr>(this)->getExpr() 3472 ->isConstantInitializer(Ctx, false, Culprit); 3473 case CXXDefaultInitExprClass: 3474 return cast<CXXDefaultInitExpr>(this)->getExpr() 3475 ->isConstantInitializer(Ctx, false, Culprit); 3476 } 3477 // Allow certain forms of UB in constant initializers: signed integer 3478 // overflow and floating-point division by zero. We'll give a warning on 3479 // these, but they're common enough that we have to accept them. 3480 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3481 return true; 3482 if (Culprit) 3483 *Culprit = this; 3484 return false; 3485 } 3486 3487 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3488 unsigned BuiltinID = getBuiltinCallee(); 3489 if (BuiltinID != Builtin::BI__assume && 3490 BuiltinID != Builtin::BI__builtin_assume) 3491 return false; 3492 3493 const Expr* Arg = getArg(0); 3494 bool ArgVal; 3495 return !Arg->isValueDependent() && 3496 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3497 } 3498 3499 bool CallExpr::isCallToStdMove() const { 3500 return getBuiltinCallee() == Builtin::BImove; 3501 } 3502 3503 namespace { 3504 /// Look for any side effects within a Stmt. 3505 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3506 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3507 const bool IncludePossibleEffects; 3508 bool HasSideEffects; 3509 3510 public: 3511 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3512 : Inherited(Context), 3513 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3514 3515 bool hasSideEffects() const { return HasSideEffects; } 3516 3517 void VisitDecl(const Decl *D) { 3518 if (!D) 3519 return; 3520 3521 // We assume the caller checks subexpressions (eg, the initializer, VLA 3522 // bounds) for side-effects on our behalf. 3523 if (auto *VD = dyn_cast<VarDecl>(D)) { 3524 // Registering a destructor is a side-effect. 3525 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3526 VD->needsDestruction(Context)) 3527 HasSideEffects = true; 3528 } 3529 } 3530 3531 void VisitDeclStmt(const DeclStmt *DS) { 3532 for (auto *D : DS->decls()) 3533 VisitDecl(D); 3534 Inherited::VisitDeclStmt(DS); 3535 } 3536 3537 void VisitExpr(const Expr *E) { 3538 if (!HasSideEffects && 3539 E->HasSideEffects(Context, IncludePossibleEffects)) 3540 HasSideEffects = true; 3541 } 3542 }; 3543 } 3544 3545 bool Expr::HasSideEffects(const ASTContext &Ctx, 3546 bool IncludePossibleEffects) const { 3547 // In circumstances where we care about definite side effects instead of 3548 // potential side effects, we want to ignore expressions that are part of a 3549 // macro expansion as a potential side effect. 3550 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3551 return false; 3552 3553 switch (getStmtClass()) { 3554 case NoStmtClass: 3555 #define ABSTRACT_STMT(Type) 3556 #define STMT(Type, Base) case Type##Class: 3557 #define EXPR(Type, Base) 3558 #include "clang/AST/StmtNodes.inc" 3559 llvm_unreachable("unexpected Expr kind"); 3560 3561 case DependentScopeDeclRefExprClass: 3562 case CXXUnresolvedConstructExprClass: 3563 case CXXDependentScopeMemberExprClass: 3564 case UnresolvedLookupExprClass: 3565 case UnresolvedMemberExprClass: 3566 case PackExpansionExprClass: 3567 case SubstNonTypeTemplateParmPackExprClass: 3568 case FunctionParmPackExprClass: 3569 case TypoExprClass: 3570 case RecoveryExprClass: 3571 case CXXFoldExprClass: 3572 // Make a conservative assumption for dependent nodes. 3573 return IncludePossibleEffects; 3574 3575 case DeclRefExprClass: 3576 case ObjCIvarRefExprClass: 3577 case PredefinedExprClass: 3578 case IntegerLiteralClass: 3579 case FixedPointLiteralClass: 3580 case FloatingLiteralClass: 3581 case ImaginaryLiteralClass: 3582 case StringLiteralClass: 3583 case CharacterLiteralClass: 3584 case OffsetOfExprClass: 3585 case ImplicitValueInitExprClass: 3586 case UnaryExprOrTypeTraitExprClass: 3587 case AddrLabelExprClass: 3588 case GNUNullExprClass: 3589 case ArrayInitIndexExprClass: 3590 case NoInitExprClass: 3591 case CXXBoolLiteralExprClass: 3592 case CXXNullPtrLiteralExprClass: 3593 case CXXThisExprClass: 3594 case CXXScalarValueInitExprClass: 3595 case TypeTraitExprClass: 3596 case ArrayTypeTraitExprClass: 3597 case ExpressionTraitExprClass: 3598 case CXXNoexceptExprClass: 3599 case SizeOfPackExprClass: 3600 case ObjCStringLiteralClass: 3601 case ObjCEncodeExprClass: 3602 case ObjCBoolLiteralExprClass: 3603 case ObjCAvailabilityCheckExprClass: 3604 case CXXUuidofExprClass: 3605 case OpaqueValueExprClass: 3606 case SourceLocExprClass: 3607 case ConceptSpecializationExprClass: 3608 case RequiresExprClass: 3609 case SYCLUniqueStableNameExprClass: 3610 // These never have a side-effect. 3611 return false; 3612 3613 case ConstantExprClass: 3614 // FIXME: Move this into the "return false;" block above. 3615 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3616 Ctx, IncludePossibleEffects); 3617 3618 case CallExprClass: 3619 case CXXOperatorCallExprClass: 3620 case CXXMemberCallExprClass: 3621 case CUDAKernelCallExprClass: 3622 case UserDefinedLiteralClass: { 3623 // We don't know a call definitely has side effects, except for calls 3624 // to pure/const functions that definitely don't. 3625 // If the call itself is considered side-effect free, check the operands. 3626 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3627 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3628 if (IsPure || !IncludePossibleEffects) 3629 break; 3630 return true; 3631 } 3632 3633 case BlockExprClass: 3634 case CXXBindTemporaryExprClass: 3635 if (!IncludePossibleEffects) 3636 break; 3637 return true; 3638 3639 case MSPropertyRefExprClass: 3640 case MSPropertySubscriptExprClass: 3641 case CompoundAssignOperatorClass: 3642 case VAArgExprClass: 3643 case AtomicExprClass: 3644 case CXXThrowExprClass: 3645 case CXXNewExprClass: 3646 case CXXDeleteExprClass: 3647 case CoawaitExprClass: 3648 case DependentCoawaitExprClass: 3649 case CoyieldExprClass: 3650 // These always have a side-effect. 3651 return true; 3652 3653 case StmtExprClass: { 3654 // StmtExprs have a side-effect if any substatement does. 3655 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3656 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3657 return Finder.hasSideEffects(); 3658 } 3659 3660 case ExprWithCleanupsClass: 3661 if (IncludePossibleEffects) 3662 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3663 return true; 3664 break; 3665 3666 case ParenExprClass: 3667 case ArraySubscriptExprClass: 3668 case MatrixSubscriptExprClass: 3669 case OMPArraySectionExprClass: 3670 case OMPArrayShapingExprClass: 3671 case OMPIteratorExprClass: 3672 case MemberExprClass: 3673 case ConditionalOperatorClass: 3674 case BinaryConditionalOperatorClass: 3675 case CompoundLiteralExprClass: 3676 case ExtVectorElementExprClass: 3677 case DesignatedInitExprClass: 3678 case DesignatedInitUpdateExprClass: 3679 case ArrayInitLoopExprClass: 3680 case ParenListExprClass: 3681 case CXXPseudoDestructorExprClass: 3682 case CXXRewrittenBinaryOperatorClass: 3683 case CXXStdInitializerListExprClass: 3684 case SubstNonTypeTemplateParmExprClass: 3685 case MaterializeTemporaryExprClass: 3686 case ShuffleVectorExprClass: 3687 case ConvertVectorExprClass: 3688 case AsTypeExprClass: 3689 case CXXParenListInitExprClass: 3690 // These have a side-effect if any subexpression does. 3691 break; 3692 3693 case UnaryOperatorClass: 3694 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3695 return true; 3696 break; 3697 3698 case BinaryOperatorClass: 3699 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3700 return true; 3701 break; 3702 3703 case InitListExprClass: 3704 // FIXME: The children for an InitListExpr doesn't include the array filler. 3705 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3706 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3707 return true; 3708 break; 3709 3710 case GenericSelectionExprClass: 3711 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3712 HasSideEffects(Ctx, IncludePossibleEffects); 3713 3714 case ChooseExprClass: 3715 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3716 Ctx, IncludePossibleEffects); 3717 3718 case CXXDefaultArgExprClass: 3719 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3720 Ctx, IncludePossibleEffects); 3721 3722 case CXXDefaultInitExprClass: { 3723 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3724 if (const Expr *E = FD->getInClassInitializer()) 3725 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3726 // If we've not yet parsed the initializer, assume it has side-effects. 3727 return true; 3728 } 3729 3730 case CXXDynamicCastExprClass: { 3731 // A dynamic_cast expression has side-effects if it can throw. 3732 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3733 if (DCE->getTypeAsWritten()->isReferenceType() && 3734 DCE->getCastKind() == CK_Dynamic) 3735 return true; 3736 } 3737 [[fallthrough]]; 3738 case ImplicitCastExprClass: 3739 case CStyleCastExprClass: 3740 case CXXStaticCastExprClass: 3741 case CXXReinterpretCastExprClass: 3742 case CXXConstCastExprClass: 3743 case CXXAddrspaceCastExprClass: 3744 case CXXFunctionalCastExprClass: 3745 case BuiltinBitCastExprClass: { 3746 // While volatile reads are side-effecting in both C and C++, we treat them 3747 // as having possible (not definite) side-effects. This allows idiomatic 3748 // code to behave without warning, such as sizeof(*v) for a volatile- 3749 // qualified pointer. 3750 if (!IncludePossibleEffects) 3751 break; 3752 3753 const CastExpr *CE = cast<CastExpr>(this); 3754 if (CE->getCastKind() == CK_LValueToRValue && 3755 CE->getSubExpr()->getType().isVolatileQualified()) 3756 return true; 3757 break; 3758 } 3759 3760 case CXXTypeidExprClass: 3761 // typeid might throw if its subexpression is potentially-evaluated, so has 3762 // side-effects in that case whether or not its subexpression does. 3763 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3764 3765 case CXXConstructExprClass: 3766 case CXXTemporaryObjectExprClass: { 3767 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3768 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3769 return true; 3770 // A trivial constructor does not add any side-effects of its own. Just look 3771 // at its arguments. 3772 break; 3773 } 3774 3775 case CXXInheritedCtorInitExprClass: { 3776 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3777 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3778 return true; 3779 break; 3780 } 3781 3782 case LambdaExprClass: { 3783 const LambdaExpr *LE = cast<LambdaExpr>(this); 3784 for (Expr *E : LE->capture_inits()) 3785 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3786 return true; 3787 return false; 3788 } 3789 3790 case PseudoObjectExprClass: { 3791 // Only look for side-effects in the semantic form, and look past 3792 // OpaqueValueExpr bindings in that form. 3793 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3794 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3795 E = PO->semantics_end(); 3796 I != E; ++I) { 3797 const Expr *Subexpr = *I; 3798 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3799 Subexpr = OVE->getSourceExpr(); 3800 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3801 return true; 3802 } 3803 return false; 3804 } 3805 3806 case ObjCBoxedExprClass: 3807 case ObjCArrayLiteralClass: 3808 case ObjCDictionaryLiteralClass: 3809 case ObjCSelectorExprClass: 3810 case ObjCProtocolExprClass: 3811 case ObjCIsaExprClass: 3812 case ObjCIndirectCopyRestoreExprClass: 3813 case ObjCSubscriptRefExprClass: 3814 case ObjCBridgedCastExprClass: 3815 case ObjCMessageExprClass: 3816 case ObjCPropertyRefExprClass: 3817 // FIXME: Classify these cases better. 3818 if (IncludePossibleEffects) 3819 return true; 3820 break; 3821 } 3822 3823 // Recurse to children. 3824 for (const Stmt *SubStmt : children()) 3825 if (SubStmt && 3826 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3827 return true; 3828 3829 return false; 3830 } 3831 3832 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3833 if (auto Call = dyn_cast<CallExpr>(this)) 3834 return Call->getFPFeaturesInEffect(LO); 3835 if (auto UO = dyn_cast<UnaryOperator>(this)) 3836 return UO->getFPFeaturesInEffect(LO); 3837 if (auto BO = dyn_cast<BinaryOperator>(this)) 3838 return BO->getFPFeaturesInEffect(LO); 3839 if (auto Cast = dyn_cast<CastExpr>(this)) 3840 return Cast->getFPFeaturesInEffect(LO); 3841 return FPOptions::defaultWithoutTrailingStorage(LO); 3842 } 3843 3844 namespace { 3845 /// Look for a call to a non-trivial function within an expression. 3846 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3847 { 3848 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3849 3850 bool NonTrivial; 3851 3852 public: 3853 explicit NonTrivialCallFinder(const ASTContext &Context) 3854 : Inherited(Context), NonTrivial(false) { } 3855 3856 bool hasNonTrivialCall() const { return NonTrivial; } 3857 3858 void VisitCallExpr(const CallExpr *E) { 3859 if (const CXXMethodDecl *Method 3860 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3861 if (Method->isTrivial()) { 3862 // Recurse to children of the call. 3863 Inherited::VisitStmt(E); 3864 return; 3865 } 3866 } 3867 3868 NonTrivial = true; 3869 } 3870 3871 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3872 if (E->getConstructor()->isTrivial()) { 3873 // Recurse to children of the call. 3874 Inherited::VisitStmt(E); 3875 return; 3876 } 3877 3878 NonTrivial = true; 3879 } 3880 3881 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3882 if (E->getTemporary()->getDestructor()->isTrivial()) { 3883 Inherited::VisitStmt(E); 3884 return; 3885 } 3886 3887 NonTrivial = true; 3888 } 3889 }; 3890 } 3891 3892 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3893 NonTrivialCallFinder Finder(Ctx); 3894 Finder.Visit(this); 3895 return Finder.hasNonTrivialCall(); 3896 } 3897 3898 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3899 /// pointer constant or not, as well as the specific kind of constant detected. 3900 /// Null pointer constants can be integer constant expressions with the 3901 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3902 /// (a GNU extension). 3903 Expr::NullPointerConstantKind 3904 Expr::isNullPointerConstant(ASTContext &Ctx, 3905 NullPointerConstantValueDependence NPC) const { 3906 if (isValueDependent() && 3907 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3908 // Error-dependent expr should never be a null pointer. 3909 if (containsErrors()) 3910 return NPCK_NotNull; 3911 switch (NPC) { 3912 case NPC_NeverValueDependent: 3913 llvm_unreachable("Unexpected value dependent expression!"); 3914 case NPC_ValueDependentIsNull: 3915 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3916 return NPCK_ZeroExpression; 3917 else 3918 return NPCK_NotNull; 3919 3920 case NPC_ValueDependentIsNotNull: 3921 return NPCK_NotNull; 3922 } 3923 } 3924 3925 // Strip off a cast to void*, if it exists. Except in C++. 3926 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3927 if (!Ctx.getLangOpts().CPlusPlus) { 3928 // Check that it is a cast to void*. 3929 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3930 QualType Pointee = PT->getPointeeType(); 3931 Qualifiers Qs = Pointee.getQualifiers(); 3932 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3933 // has non-default address space it is not treated as nullptr. 3934 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3935 // since it cannot be assigned to a pointer to constant address space. 3936 if (Ctx.getLangOpts().OpenCL && 3937 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3938 Qs.removeAddressSpace(); 3939 3940 if (Pointee->isVoidType() && Qs.empty() && // to void* 3941 CE->getSubExpr()->getType()->isIntegerType()) // from int 3942 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3943 } 3944 } 3945 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3946 // Ignore the ImplicitCastExpr type entirely. 3947 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3948 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3949 // Accept ((void*)0) as a null pointer constant, as many other 3950 // implementations do. 3951 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3952 } else if (const GenericSelectionExpr *GE = 3953 dyn_cast<GenericSelectionExpr>(this)) { 3954 if (GE->isResultDependent()) 3955 return NPCK_NotNull; 3956 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3957 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3958 if (CE->isConditionDependent()) 3959 return NPCK_NotNull; 3960 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3961 } else if (const CXXDefaultArgExpr *DefaultArg 3962 = dyn_cast<CXXDefaultArgExpr>(this)) { 3963 // See through default argument expressions. 3964 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3965 } else if (const CXXDefaultInitExpr *DefaultInit 3966 = dyn_cast<CXXDefaultInitExpr>(this)) { 3967 // See through default initializer expressions. 3968 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3969 } else if (isa<GNUNullExpr>(this)) { 3970 // The GNU __null extension is always a null pointer constant. 3971 return NPCK_GNUNull; 3972 } else if (const MaterializeTemporaryExpr *M 3973 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3974 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3975 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3976 if (const Expr *Source = OVE->getSourceExpr()) 3977 return Source->isNullPointerConstant(Ctx, NPC); 3978 } 3979 3980 // If the expression has no type information, it cannot be a null pointer 3981 // constant. 3982 if (getType().isNull()) 3983 return NPCK_NotNull; 3984 3985 // C++11/C2x nullptr_t is always a null pointer constant. 3986 if (getType()->isNullPtrType()) 3987 return NPCK_CXX11_nullptr; 3988 3989 if (const RecordType *UT = getType()->getAsUnionType()) 3990 if (!Ctx.getLangOpts().CPlusPlus11 && 3991 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3992 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3993 const Expr *InitExpr = CLE->getInitializer(); 3994 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3995 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3996 } 3997 // This expression must be an integer type. 3998 if (!getType()->isIntegerType() || 3999 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 4000 return NPCK_NotNull; 4001 4002 if (Ctx.getLangOpts().CPlusPlus11) { 4003 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 4004 // value zero or a prvalue of type std::nullptr_t. 4005 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 4006 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 4007 if (Lit && !Lit->getValue()) 4008 return NPCK_ZeroLiteral; 4009 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 4010 return NPCK_NotNull; 4011 } else { 4012 // If we have an integer constant expression, we need to *evaluate* it and 4013 // test for the value 0. 4014 if (!isIntegerConstantExpr(Ctx)) 4015 return NPCK_NotNull; 4016 } 4017 4018 if (EvaluateKnownConstInt(Ctx) != 0) 4019 return NPCK_NotNull; 4020 4021 if (isa<IntegerLiteral>(this)) 4022 return NPCK_ZeroLiteral; 4023 return NPCK_ZeroExpression; 4024 } 4025 4026 /// If this expression is an l-value for an Objective C 4027 /// property, find the underlying property reference expression. 4028 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 4029 const Expr *E = this; 4030 while (true) { 4031 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 4032 "expression is not a property reference"); 4033 E = E->IgnoreParenCasts(); 4034 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 4035 if (BO->getOpcode() == BO_Comma) { 4036 E = BO->getRHS(); 4037 continue; 4038 } 4039 } 4040 4041 break; 4042 } 4043 4044 return cast<ObjCPropertyRefExpr>(E); 4045 } 4046 4047 bool Expr::isObjCSelfExpr() const { 4048 const Expr *E = IgnoreParenImpCasts(); 4049 4050 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 4051 if (!DRE) 4052 return false; 4053 4054 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 4055 if (!Param) 4056 return false; 4057 4058 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 4059 if (!M) 4060 return false; 4061 4062 return M->getSelfDecl() == Param; 4063 } 4064 4065 FieldDecl *Expr::getSourceBitField() { 4066 Expr *E = this->IgnoreParens(); 4067 4068 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4069 if (ICE->getCastKind() == CK_LValueToRValue || 4070 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 4071 E = ICE->getSubExpr()->IgnoreParens(); 4072 else 4073 break; 4074 } 4075 4076 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 4077 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 4078 if (Field->isBitField()) 4079 return Field; 4080 4081 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 4082 FieldDecl *Ivar = IvarRef->getDecl(); 4083 if (Ivar->isBitField()) 4084 return Ivar; 4085 } 4086 4087 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 4088 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 4089 if (Field->isBitField()) 4090 return Field; 4091 4092 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 4093 if (Expr *E = BD->getBinding()) 4094 return E->getSourceBitField(); 4095 } 4096 4097 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 4098 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 4099 return BinOp->getLHS()->getSourceBitField(); 4100 4101 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 4102 return BinOp->getRHS()->getSourceBitField(); 4103 } 4104 4105 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 4106 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 4107 return UnOp->getSubExpr()->getSourceBitField(); 4108 4109 return nullptr; 4110 } 4111 4112 bool Expr::refersToVectorElement() const { 4113 // FIXME: Why do we not just look at the ObjectKind here? 4114 const Expr *E = this->IgnoreParens(); 4115 4116 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4117 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 4118 E = ICE->getSubExpr()->IgnoreParens(); 4119 else 4120 break; 4121 } 4122 4123 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 4124 return ASE->getBase()->getType()->isVectorType(); 4125 4126 if (isa<ExtVectorElementExpr>(E)) 4127 return true; 4128 4129 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4130 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 4131 if (auto *E = BD->getBinding()) 4132 return E->refersToVectorElement(); 4133 4134 return false; 4135 } 4136 4137 bool Expr::refersToGlobalRegisterVar() const { 4138 const Expr *E = this->IgnoreParenImpCasts(); 4139 4140 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 4141 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 4142 if (VD->getStorageClass() == SC_Register && 4143 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 4144 return true; 4145 4146 return false; 4147 } 4148 4149 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4150 E1 = E1->IgnoreParens(); 4151 E2 = E2->IgnoreParens(); 4152 4153 if (E1->getStmtClass() != E2->getStmtClass()) 4154 return false; 4155 4156 switch (E1->getStmtClass()) { 4157 default: 4158 return false; 4159 case CXXThisExprClass: 4160 return true; 4161 case DeclRefExprClass: { 4162 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4163 // template parameters. 4164 const auto *DRE1 = cast<DeclRefExpr>(E1); 4165 const auto *DRE2 = cast<DeclRefExpr>(E2); 4166 return DRE1->isPRValue() && DRE2->isPRValue() && 4167 DRE1->getDecl() == DRE2->getDecl(); 4168 } 4169 case ImplicitCastExprClass: { 4170 // Peel off implicit casts. 4171 while (true) { 4172 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4173 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4174 if (!ICE1 || !ICE2) 4175 return false; 4176 if (ICE1->getCastKind() != ICE2->getCastKind()) 4177 return false; 4178 E1 = ICE1->getSubExpr()->IgnoreParens(); 4179 E2 = ICE2->getSubExpr()->IgnoreParens(); 4180 // The final cast must be one of these types. 4181 if (ICE1->getCastKind() == CK_LValueToRValue || 4182 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4183 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4184 break; 4185 } 4186 } 4187 4188 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4189 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4190 if (DRE1 && DRE2) 4191 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4192 4193 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4194 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4195 if (Ivar1 && Ivar2) { 4196 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4197 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4198 } 4199 4200 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4201 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4202 if (Array1 && Array2) { 4203 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4204 return false; 4205 4206 auto Idx1 = Array1->getIdx(); 4207 auto Idx2 = Array2->getIdx(); 4208 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4209 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4210 if (Integer1 && Integer2) { 4211 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4212 Integer2->getValue())) 4213 return false; 4214 } else { 4215 if (!isSameComparisonOperand(Idx1, Idx2)) 4216 return false; 4217 } 4218 4219 return true; 4220 } 4221 4222 // Walk the MemberExpr chain. 4223 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4224 const auto *ME1 = cast<MemberExpr>(E1); 4225 const auto *ME2 = cast<MemberExpr>(E2); 4226 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4227 return false; 4228 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4229 if (D->isStaticDataMember()) 4230 return true; 4231 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4232 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4233 } 4234 4235 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4236 return true; 4237 4238 // A static member variable can end the MemberExpr chain with either 4239 // a MemberExpr or a DeclRefExpr. 4240 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4241 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4242 return DRE->getDecl(); 4243 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4244 return ME->getMemberDecl(); 4245 return nullptr; 4246 }; 4247 4248 const ValueDecl *VD1 = getAnyDecl(E1); 4249 const ValueDecl *VD2 = getAnyDecl(E2); 4250 return declaresSameEntity(VD1, VD2); 4251 } 4252 } 4253 } 4254 4255 /// isArrow - Return true if the base expression is a pointer to vector, 4256 /// return false if the base expression is a vector. 4257 bool ExtVectorElementExpr::isArrow() const { 4258 return getBase()->getType()->isPointerType(); 4259 } 4260 4261 unsigned ExtVectorElementExpr::getNumElements() const { 4262 if (const VectorType *VT = getType()->getAs<VectorType>()) 4263 return VT->getNumElements(); 4264 return 1; 4265 } 4266 4267 /// containsDuplicateElements - Return true if any element access is repeated. 4268 bool ExtVectorElementExpr::containsDuplicateElements() const { 4269 // FIXME: Refactor this code to an accessor on the AST node which returns the 4270 // "type" of component access, and share with code below and in Sema. 4271 StringRef Comp = Accessor->getName(); 4272 4273 // Halving swizzles do not contain duplicate elements. 4274 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4275 return false; 4276 4277 // Advance past s-char prefix on hex swizzles. 4278 if (Comp[0] == 's' || Comp[0] == 'S') 4279 Comp = Comp.substr(1); 4280 4281 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4282 if (Comp.substr(i + 1).contains(Comp[i])) 4283 return true; 4284 4285 return false; 4286 } 4287 4288 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4289 void ExtVectorElementExpr::getEncodedElementAccess( 4290 SmallVectorImpl<uint32_t> &Elts) const { 4291 StringRef Comp = Accessor->getName(); 4292 bool isNumericAccessor = false; 4293 if (Comp[0] == 's' || Comp[0] == 'S') { 4294 Comp = Comp.substr(1); 4295 isNumericAccessor = true; 4296 } 4297 4298 bool isHi = Comp == "hi"; 4299 bool isLo = Comp == "lo"; 4300 bool isEven = Comp == "even"; 4301 bool isOdd = Comp == "odd"; 4302 4303 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4304 uint64_t Index; 4305 4306 if (isHi) 4307 Index = e + i; 4308 else if (isLo) 4309 Index = i; 4310 else if (isEven) 4311 Index = 2 * i; 4312 else if (isOdd) 4313 Index = 2 * i + 1; 4314 else 4315 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4316 4317 Elts.push_back(Index); 4318 } 4319 } 4320 4321 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4322 QualType Type, SourceLocation BLoc, 4323 SourceLocation RP) 4324 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4325 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4326 SubExprs = new (C) Stmt*[args.size()]; 4327 for (unsigned i = 0; i != args.size(); i++) 4328 SubExprs[i] = args[i]; 4329 4330 setDependence(computeDependence(this)); 4331 } 4332 4333 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4334 if (SubExprs) C.Deallocate(SubExprs); 4335 4336 this->NumExprs = Exprs.size(); 4337 SubExprs = new (C) Stmt*[NumExprs]; 4338 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4339 } 4340 4341 GenericSelectionExpr::GenericSelectionExpr( 4342 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4343 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4344 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4345 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4346 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4347 AssocExprs[ResultIndex]->getValueKind(), 4348 AssocExprs[ResultIndex]->getObjectKind()), 4349 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4350 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4351 assert(AssocTypes.size() == AssocExprs.size() && 4352 "Must have the same number of association expressions" 4353 " and TypeSourceInfo!"); 4354 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4355 4356 GenericSelectionExprBits.GenericLoc = GenericLoc; 4357 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4358 ControllingExpr; 4359 std::copy(AssocExprs.begin(), AssocExprs.end(), 4360 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4361 std::copy(AssocTypes.begin(), AssocTypes.end(), 4362 getTrailingObjects<TypeSourceInfo *>() + 4363 getIndexOfStartOfAssociatedTypes()); 4364 4365 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4366 } 4367 4368 GenericSelectionExpr::GenericSelectionExpr( 4369 const ASTContext &, SourceLocation GenericLoc, 4370 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4371 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4372 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4373 unsigned ResultIndex) 4374 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4375 AssocExprs[ResultIndex]->getValueKind(), 4376 AssocExprs[ResultIndex]->getObjectKind()), 4377 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4378 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4379 assert(AssocTypes.size() == AssocExprs.size() && 4380 "Must have the same number of association expressions" 4381 " and TypeSourceInfo!"); 4382 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4383 4384 GenericSelectionExprBits.GenericLoc = GenericLoc; 4385 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4386 ControllingType; 4387 std::copy(AssocExprs.begin(), AssocExprs.end(), 4388 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4389 std::copy(AssocTypes.begin(), AssocTypes.end(), 4390 getTrailingObjects<TypeSourceInfo *>() + 4391 getIndexOfStartOfAssociatedTypes()); 4392 4393 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4394 } 4395 4396 GenericSelectionExpr::GenericSelectionExpr( 4397 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4398 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4399 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4400 bool ContainsUnexpandedParameterPack) 4401 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4402 OK_Ordinary), 4403 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4404 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4405 assert(AssocTypes.size() == AssocExprs.size() && 4406 "Must have the same number of association expressions" 4407 " and TypeSourceInfo!"); 4408 4409 GenericSelectionExprBits.GenericLoc = GenericLoc; 4410 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4411 ControllingExpr; 4412 std::copy(AssocExprs.begin(), AssocExprs.end(), 4413 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4414 std::copy(AssocTypes.begin(), AssocTypes.end(), 4415 getTrailingObjects<TypeSourceInfo *>() + 4416 getIndexOfStartOfAssociatedTypes()); 4417 4418 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4419 } 4420 4421 GenericSelectionExpr::GenericSelectionExpr( 4422 const ASTContext &Context, SourceLocation GenericLoc, 4423 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4424 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4425 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) 4426 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4427 OK_Ordinary), 4428 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4429 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4430 assert(AssocTypes.size() == AssocExprs.size() && 4431 "Must have the same number of association expressions" 4432 " and TypeSourceInfo!"); 4433 4434 GenericSelectionExprBits.GenericLoc = GenericLoc; 4435 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4436 ControllingType; 4437 std::copy(AssocExprs.begin(), AssocExprs.end(), 4438 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4439 std::copy(AssocTypes.begin(), AssocTypes.end(), 4440 getTrailingObjects<TypeSourceInfo *>() + 4441 getIndexOfStartOfAssociatedTypes()); 4442 4443 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4444 } 4445 4446 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4447 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4448 4449 GenericSelectionExpr *GenericSelectionExpr::Create( 4450 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4451 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4452 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4453 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4454 unsigned NumAssocs = AssocExprs.size(); 4455 void *Mem = Context.Allocate( 4456 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4457 alignof(GenericSelectionExpr)); 4458 return new (Mem) GenericSelectionExpr( 4459 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4460 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4461 } 4462 4463 GenericSelectionExpr *GenericSelectionExpr::Create( 4464 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4465 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4466 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4467 bool ContainsUnexpandedParameterPack) { 4468 unsigned NumAssocs = AssocExprs.size(); 4469 void *Mem = Context.Allocate( 4470 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4471 alignof(GenericSelectionExpr)); 4472 return new (Mem) GenericSelectionExpr( 4473 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4474 RParenLoc, ContainsUnexpandedParameterPack); 4475 } 4476 4477 GenericSelectionExpr *GenericSelectionExpr::Create( 4478 const ASTContext &Context, SourceLocation GenericLoc, 4479 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4480 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4481 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4482 unsigned ResultIndex) { 4483 unsigned NumAssocs = AssocExprs.size(); 4484 void *Mem = Context.Allocate( 4485 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4486 alignof(GenericSelectionExpr)); 4487 return new (Mem) GenericSelectionExpr( 4488 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4489 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4490 } 4491 4492 GenericSelectionExpr *GenericSelectionExpr::Create( 4493 const ASTContext &Context, SourceLocation GenericLoc, 4494 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4495 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4496 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { 4497 unsigned NumAssocs = AssocExprs.size(); 4498 void *Mem = Context.Allocate( 4499 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4500 alignof(GenericSelectionExpr)); 4501 return new (Mem) GenericSelectionExpr( 4502 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4503 RParenLoc, ContainsUnexpandedParameterPack); 4504 } 4505 4506 GenericSelectionExpr * 4507 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4508 unsigned NumAssocs) { 4509 void *Mem = Context.Allocate( 4510 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4511 alignof(GenericSelectionExpr)); 4512 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4513 } 4514 4515 //===----------------------------------------------------------------------===// 4516 // DesignatedInitExpr 4517 //===----------------------------------------------------------------------===// 4518 4519 const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4520 assert(isFieldDesignator() && "Only valid on a field designator"); 4521 if (FieldInfo.NameOrField & 0x01) 4522 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01); 4523 return getFieldDecl()->getIdentifier(); 4524 } 4525 4526 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4527 llvm::ArrayRef<Designator> Designators, 4528 SourceLocation EqualOrColonLoc, 4529 bool GNUSyntax, 4530 ArrayRef<Expr *> IndexExprs, Expr *Init) 4531 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4532 Init->getObjectKind()), 4533 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4534 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4535 this->Designators = new (C) Designator[NumDesignators]; 4536 4537 // Record the initializer itself. 4538 child_iterator Child = child_begin(); 4539 *Child++ = Init; 4540 4541 // Copy the designators and their subexpressions, computing 4542 // value-dependence along the way. 4543 unsigned IndexIdx = 0; 4544 for (unsigned I = 0; I != NumDesignators; ++I) { 4545 this->Designators[I] = Designators[I]; 4546 if (this->Designators[I].isArrayDesignator()) { 4547 // Copy the index expressions into permanent storage. 4548 *Child++ = IndexExprs[IndexIdx++]; 4549 } else if (this->Designators[I].isArrayRangeDesignator()) { 4550 // Copy the start/end expressions into permanent storage. 4551 *Child++ = IndexExprs[IndexIdx++]; 4552 *Child++ = IndexExprs[IndexIdx++]; 4553 } 4554 } 4555 4556 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4557 setDependence(computeDependence(this)); 4558 } 4559 4560 DesignatedInitExpr * 4561 DesignatedInitExpr::Create(const ASTContext &C, 4562 llvm::ArrayRef<Designator> Designators, 4563 ArrayRef<Expr*> IndexExprs, 4564 SourceLocation ColonOrEqualLoc, 4565 bool UsesColonSyntax, Expr *Init) { 4566 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4567 alignof(DesignatedInitExpr)); 4568 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4569 ColonOrEqualLoc, UsesColonSyntax, 4570 IndexExprs, Init); 4571 } 4572 4573 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4574 unsigned NumIndexExprs) { 4575 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4576 alignof(DesignatedInitExpr)); 4577 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4578 } 4579 4580 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4581 const Designator *Desigs, 4582 unsigned NumDesigs) { 4583 Designators = new (C) Designator[NumDesigs]; 4584 NumDesignators = NumDesigs; 4585 for (unsigned I = 0; I != NumDesigs; ++I) 4586 Designators[I] = Desigs[I]; 4587 } 4588 4589 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4590 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4591 if (size() == 1) 4592 return DIE->getDesignator(0)->getSourceRange(); 4593 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4594 DIE->getDesignator(size() - 1)->getEndLoc()); 4595 } 4596 4597 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4598 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4599 Designator &First = *DIE->getDesignator(0); 4600 if (First.isFieldDesignator()) 4601 return GNUSyntax ? First.getFieldLoc() : First.getDotLoc(); 4602 return First.getLBracketLoc(); 4603 } 4604 4605 SourceLocation DesignatedInitExpr::getEndLoc() const { 4606 return getInit()->getEndLoc(); 4607 } 4608 4609 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4610 assert(D.isArrayDesignator() && "Requires array designator"); 4611 return getSubExpr(D.getArrayIndex() + 1); 4612 } 4613 4614 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4615 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4616 return getSubExpr(D.getArrayIndex() + 1); 4617 } 4618 4619 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4620 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4621 return getSubExpr(D.getArrayIndex() + 2); 4622 } 4623 4624 /// Replaces the designator at index @p Idx with the series 4625 /// of designators in [First, Last). 4626 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4627 const Designator *First, 4628 const Designator *Last) { 4629 unsigned NumNewDesignators = Last - First; 4630 if (NumNewDesignators == 0) { 4631 std::copy_backward(Designators + Idx + 1, 4632 Designators + NumDesignators, 4633 Designators + Idx); 4634 --NumNewDesignators; 4635 return; 4636 } 4637 if (NumNewDesignators == 1) { 4638 Designators[Idx] = *First; 4639 return; 4640 } 4641 4642 Designator *NewDesignators 4643 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4644 std::copy(Designators, Designators + Idx, NewDesignators); 4645 std::copy(First, Last, NewDesignators + Idx); 4646 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4647 NewDesignators + Idx + NumNewDesignators); 4648 Designators = NewDesignators; 4649 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4650 } 4651 4652 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4653 SourceLocation lBraceLoc, 4654 Expr *baseExpr, 4655 SourceLocation rBraceLoc) 4656 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4657 OK_Ordinary) { 4658 BaseAndUpdaterExprs[0] = baseExpr; 4659 4660 InitListExpr *ILE = 4661 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc); 4662 ILE->setType(baseExpr->getType()); 4663 BaseAndUpdaterExprs[1] = ILE; 4664 4665 // FIXME: this is wrong, set it correctly. 4666 setDependence(ExprDependence::None); 4667 } 4668 4669 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4670 return getBase()->getBeginLoc(); 4671 } 4672 4673 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4674 return getBase()->getEndLoc(); 4675 } 4676 4677 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4678 SourceLocation RParenLoc) 4679 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4680 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4681 ParenListExprBits.NumExprs = Exprs.size(); 4682 4683 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4684 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4685 setDependence(computeDependence(this)); 4686 } 4687 4688 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4689 : Expr(ParenListExprClass, Empty) { 4690 ParenListExprBits.NumExprs = NumExprs; 4691 } 4692 4693 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4694 SourceLocation LParenLoc, 4695 ArrayRef<Expr *> Exprs, 4696 SourceLocation RParenLoc) { 4697 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4698 alignof(ParenListExpr)); 4699 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4700 } 4701 4702 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4703 unsigned NumExprs) { 4704 void *Mem = 4705 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4706 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4707 } 4708 4709 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4710 Opcode opc, QualType ResTy, ExprValueKind VK, 4711 ExprObjectKind OK, SourceLocation opLoc, 4712 FPOptionsOverride FPFeatures) 4713 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4714 BinaryOperatorBits.Opc = opc; 4715 assert(!isCompoundAssignmentOp() && 4716 "Use CompoundAssignOperator for compound assignments"); 4717 BinaryOperatorBits.OpLoc = opLoc; 4718 SubExprs[LHS] = lhs; 4719 SubExprs[RHS] = rhs; 4720 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4721 if (hasStoredFPFeatures()) 4722 setStoredFPFeatures(FPFeatures); 4723 setDependence(computeDependence(this)); 4724 } 4725 4726 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4727 Opcode opc, QualType ResTy, ExprValueKind VK, 4728 ExprObjectKind OK, SourceLocation opLoc, 4729 FPOptionsOverride FPFeatures, bool dead2) 4730 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4731 BinaryOperatorBits.Opc = opc; 4732 assert(isCompoundAssignmentOp() && 4733 "Use CompoundAssignOperator for compound assignments"); 4734 BinaryOperatorBits.OpLoc = opLoc; 4735 SubExprs[LHS] = lhs; 4736 SubExprs[RHS] = rhs; 4737 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4738 if (hasStoredFPFeatures()) 4739 setStoredFPFeatures(FPFeatures); 4740 setDependence(computeDependence(this)); 4741 } 4742 4743 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4744 bool HasFPFeatures) { 4745 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4746 void *Mem = 4747 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4748 return new (Mem) BinaryOperator(EmptyShell()); 4749 } 4750 4751 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4752 Expr *rhs, Opcode opc, QualType ResTy, 4753 ExprValueKind VK, ExprObjectKind OK, 4754 SourceLocation opLoc, 4755 FPOptionsOverride FPFeatures) { 4756 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4757 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4758 void *Mem = 4759 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4760 return new (Mem) 4761 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4762 } 4763 4764 CompoundAssignOperator * 4765 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4766 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4767 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4768 alignof(CompoundAssignOperator)); 4769 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4770 } 4771 4772 CompoundAssignOperator * 4773 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4774 Opcode opc, QualType ResTy, ExprValueKind VK, 4775 ExprObjectKind OK, SourceLocation opLoc, 4776 FPOptionsOverride FPFeatures, 4777 QualType CompLHSType, QualType CompResultType) { 4778 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4779 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4780 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4781 alignof(CompoundAssignOperator)); 4782 return new (Mem) 4783 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4784 CompLHSType, CompResultType); 4785 } 4786 4787 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4788 bool hasFPFeatures) { 4789 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4790 alignof(UnaryOperator)); 4791 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4792 } 4793 4794 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4795 QualType type, ExprValueKind VK, ExprObjectKind OK, 4796 SourceLocation l, bool CanOverflow, 4797 FPOptionsOverride FPFeatures) 4798 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4799 UnaryOperatorBits.Opc = opc; 4800 UnaryOperatorBits.CanOverflow = CanOverflow; 4801 UnaryOperatorBits.Loc = l; 4802 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4803 if (hasStoredFPFeatures()) 4804 setStoredFPFeatures(FPFeatures); 4805 setDependence(computeDependence(this, Ctx)); 4806 } 4807 4808 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4809 Opcode opc, QualType type, 4810 ExprValueKind VK, ExprObjectKind OK, 4811 SourceLocation l, bool CanOverflow, 4812 FPOptionsOverride FPFeatures) { 4813 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4814 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4815 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4816 return new (Mem) 4817 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4818 } 4819 4820 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4821 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4822 e = ewc->getSubExpr(); 4823 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4824 e = m->getSubExpr(); 4825 e = cast<CXXConstructExpr>(e)->getArg(0); 4826 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4827 e = ice->getSubExpr(); 4828 return cast<OpaqueValueExpr>(e); 4829 } 4830 4831 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4832 EmptyShell sh, 4833 unsigned numSemanticExprs) { 4834 void *buffer = 4835 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4836 alignof(PseudoObjectExpr)); 4837 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4838 } 4839 4840 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4841 : Expr(PseudoObjectExprClass, shell) { 4842 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4843 } 4844 4845 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4846 ArrayRef<Expr*> semantics, 4847 unsigned resultIndex) { 4848 assert(syntax && "no syntactic expression!"); 4849 assert(semantics.size() && "no semantic expressions!"); 4850 4851 QualType type; 4852 ExprValueKind VK; 4853 if (resultIndex == NoResult) { 4854 type = C.VoidTy; 4855 VK = VK_PRValue; 4856 } else { 4857 assert(resultIndex < semantics.size()); 4858 type = semantics[resultIndex]->getType(); 4859 VK = semantics[resultIndex]->getValueKind(); 4860 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4861 } 4862 4863 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4864 alignof(PseudoObjectExpr)); 4865 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4866 resultIndex); 4867 } 4868 4869 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4870 Expr *syntax, ArrayRef<Expr *> semantics, 4871 unsigned resultIndex) 4872 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4873 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4874 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4875 4876 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4877 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4878 getSubExprsBuffer()[i] = E; 4879 4880 if (isa<OpaqueValueExpr>(E)) 4881 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4882 "opaque-value semantic expressions for pseudo-object " 4883 "operations must have sources"); 4884 } 4885 4886 setDependence(computeDependence(this)); 4887 } 4888 4889 //===----------------------------------------------------------------------===// 4890 // Child Iterators for iterating over subexpressions/substatements 4891 //===----------------------------------------------------------------------===// 4892 4893 // UnaryExprOrTypeTraitExpr 4894 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4895 const_child_range CCR = 4896 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4897 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4898 } 4899 4900 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4901 // If this is of a type and the type is a VLA type (and not a typedef), the 4902 // size expression of the VLA needs to be treated as an executable expression. 4903 // Why isn't this weirdness documented better in StmtIterator? 4904 if (isArgumentType()) { 4905 if (const VariableArrayType *T = 4906 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4907 return const_child_range(const_child_iterator(T), const_child_iterator()); 4908 return const_child_range(const_child_iterator(), const_child_iterator()); 4909 } 4910 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4911 } 4912 4913 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4914 AtomicOp op, SourceLocation RP) 4915 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4916 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4917 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4918 for (unsigned i = 0; i != args.size(); i++) 4919 SubExprs[i] = args[i]; 4920 setDependence(computeDependence(this)); 4921 } 4922 4923 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4924 switch (Op) { 4925 case AO__c11_atomic_init: 4926 case AO__opencl_atomic_init: 4927 case AO__c11_atomic_load: 4928 case AO__atomic_load_n: 4929 return 2; 4930 4931 case AO__opencl_atomic_load: 4932 case AO__hip_atomic_load: 4933 case AO__c11_atomic_store: 4934 case AO__c11_atomic_exchange: 4935 case AO__atomic_load: 4936 case AO__atomic_store: 4937 case AO__atomic_store_n: 4938 case AO__atomic_exchange_n: 4939 case AO__c11_atomic_fetch_add: 4940 case AO__c11_atomic_fetch_sub: 4941 case AO__c11_atomic_fetch_and: 4942 case AO__c11_atomic_fetch_or: 4943 case AO__c11_atomic_fetch_xor: 4944 case AO__c11_atomic_fetch_nand: 4945 case AO__c11_atomic_fetch_max: 4946 case AO__c11_atomic_fetch_min: 4947 case AO__atomic_fetch_add: 4948 case AO__atomic_fetch_sub: 4949 case AO__atomic_fetch_and: 4950 case AO__atomic_fetch_or: 4951 case AO__atomic_fetch_xor: 4952 case AO__atomic_fetch_nand: 4953 case AO__atomic_add_fetch: 4954 case AO__atomic_sub_fetch: 4955 case AO__atomic_and_fetch: 4956 case AO__atomic_or_fetch: 4957 case AO__atomic_xor_fetch: 4958 case AO__atomic_nand_fetch: 4959 case AO__atomic_min_fetch: 4960 case AO__atomic_max_fetch: 4961 case AO__atomic_fetch_min: 4962 case AO__atomic_fetch_max: 4963 return 3; 4964 4965 case AO__hip_atomic_exchange: 4966 case AO__hip_atomic_fetch_add: 4967 case AO__hip_atomic_fetch_sub: 4968 case AO__hip_atomic_fetch_and: 4969 case AO__hip_atomic_fetch_or: 4970 case AO__hip_atomic_fetch_xor: 4971 case AO__hip_atomic_fetch_min: 4972 case AO__hip_atomic_fetch_max: 4973 case AO__opencl_atomic_store: 4974 case AO__hip_atomic_store: 4975 case AO__opencl_atomic_exchange: 4976 case AO__opencl_atomic_fetch_add: 4977 case AO__opencl_atomic_fetch_sub: 4978 case AO__opencl_atomic_fetch_and: 4979 case AO__opencl_atomic_fetch_or: 4980 case AO__opencl_atomic_fetch_xor: 4981 case AO__opencl_atomic_fetch_min: 4982 case AO__opencl_atomic_fetch_max: 4983 case AO__atomic_exchange: 4984 return 4; 4985 4986 case AO__c11_atomic_compare_exchange_strong: 4987 case AO__c11_atomic_compare_exchange_weak: 4988 return 5; 4989 case AO__hip_atomic_compare_exchange_strong: 4990 case AO__opencl_atomic_compare_exchange_strong: 4991 case AO__opencl_atomic_compare_exchange_weak: 4992 case AO__hip_atomic_compare_exchange_weak: 4993 case AO__atomic_compare_exchange: 4994 case AO__atomic_compare_exchange_n: 4995 return 6; 4996 } 4997 llvm_unreachable("unknown atomic op"); 4998 } 4999 5000 QualType AtomicExpr::getValueType() const { 5001 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 5002 if (auto AT = T->getAs<AtomicType>()) 5003 return AT->getValueType(); 5004 return T; 5005 } 5006 5007 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 5008 unsigned ArraySectionCount = 0; 5009 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 5010 Base = OASE->getBase(); 5011 ++ArraySectionCount; 5012 } 5013 while (auto *ASE = 5014 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 5015 Base = ASE->getBase(); 5016 ++ArraySectionCount; 5017 } 5018 Base = Base->IgnoreParenImpCasts(); 5019 auto OriginalTy = Base->getType(); 5020 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 5021 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 5022 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 5023 5024 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 5025 if (OriginalTy->isAnyPointerType()) 5026 OriginalTy = OriginalTy->getPointeeType(); 5027 else { 5028 assert (OriginalTy->isArrayType()); 5029 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 5030 } 5031 } 5032 return OriginalTy; 5033 } 5034 5035 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 5036 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 5037 : Expr(RecoveryExprClass, T.getNonReferenceType(), 5038 T->isDependentType() ? VK_LValue : getValueKindForType(T), 5039 OK_Ordinary), 5040 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 5041 assert(!T.isNull()); 5042 assert(!llvm::is_contained(SubExprs, nullptr)); 5043 5044 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 5045 setDependence(computeDependence(this)); 5046 } 5047 5048 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 5049 SourceLocation BeginLoc, 5050 SourceLocation EndLoc, 5051 ArrayRef<Expr *> SubExprs) { 5052 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 5053 alignof(RecoveryExpr)); 5054 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 5055 } 5056 5057 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 5058 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 5059 alignof(RecoveryExpr)); 5060 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 5061 } 5062 5063 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 5064 assert( 5065 NumDims == Dims.size() && 5066 "Preallocated number of dimensions is different from the provided one."); 5067 llvm::copy(Dims, getTrailingObjects<Expr *>()); 5068 } 5069 5070 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 5071 assert( 5072 NumDims == BR.size() && 5073 "Preallocated number of dimensions is different from the provided one."); 5074 llvm::copy(BR, getTrailingObjects<SourceRange>()); 5075 } 5076 5077 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 5078 SourceLocation L, SourceLocation R, 5079 ArrayRef<Expr *> Dims) 5080 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 5081 RPLoc(R), NumDims(Dims.size()) { 5082 setBase(Op); 5083 setDimensions(Dims); 5084 setDependence(computeDependence(this)); 5085 } 5086 5087 OMPArrayShapingExpr * 5088 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 5089 SourceLocation L, SourceLocation R, 5090 ArrayRef<Expr *> Dims, 5091 ArrayRef<SourceRange> BracketRanges) { 5092 assert(Dims.size() == BracketRanges.size() && 5093 "Different number of dimensions and brackets ranges."); 5094 void *Mem = Context.Allocate( 5095 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 5096 alignof(OMPArrayShapingExpr)); 5097 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 5098 E->setBracketsRanges(BracketRanges); 5099 return E; 5100 } 5101 5102 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 5103 unsigned NumDims) { 5104 void *Mem = Context.Allocate( 5105 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 5106 alignof(OMPArrayShapingExpr)); 5107 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 5108 } 5109 5110 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 5111 assert(I < NumIterators && 5112 "Idx is greater or equal the number of iterators definitions."); 5113 getTrailingObjects<Decl *>()[I] = D; 5114 } 5115 5116 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 5117 assert(I < NumIterators && 5118 "Idx is greater or equal the number of iterators definitions."); 5119 getTrailingObjects< 5120 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5121 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 5122 } 5123 5124 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 5125 SourceLocation ColonLoc, Expr *End, 5126 SourceLocation SecondColonLoc, 5127 Expr *Step) { 5128 assert(I < NumIterators && 5129 "Idx is greater or equal the number of iterators definitions."); 5130 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5131 static_cast<int>(RangeExprOffset::Begin)] = 5132 Begin; 5133 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5134 static_cast<int>(RangeExprOffset::End)] = End; 5135 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5136 static_cast<int>(RangeExprOffset::Step)] = Step; 5137 getTrailingObjects< 5138 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5139 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 5140 ColonLoc; 5141 getTrailingObjects< 5142 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5143 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 5144 SecondColonLoc; 5145 } 5146 5147 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 5148 return getTrailingObjects<Decl *>()[I]; 5149 } 5150 5151 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 5152 IteratorRange Res; 5153 Res.Begin = 5154 getTrailingObjects<Expr *>()[I * static_cast<int>( 5155 RangeExprOffset::Total) + 5156 static_cast<int>(RangeExprOffset::Begin)]; 5157 Res.End = 5158 getTrailingObjects<Expr *>()[I * static_cast<int>( 5159 RangeExprOffset::Total) + 5160 static_cast<int>(RangeExprOffset::End)]; 5161 Res.Step = 5162 getTrailingObjects<Expr *>()[I * static_cast<int>( 5163 RangeExprOffset::Total) + 5164 static_cast<int>(RangeExprOffset::Step)]; 5165 return Res; 5166 } 5167 5168 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 5169 return getTrailingObjects< 5170 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5171 static_cast<int>(RangeLocOffset::AssignLoc)]; 5172 } 5173 5174 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 5175 return getTrailingObjects< 5176 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5177 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 5178 } 5179 5180 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 5181 return getTrailingObjects< 5182 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5183 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 5184 } 5185 5186 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 5187 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 5188 } 5189 5190 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 5191 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5192 } 5193 5194 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 5195 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5196 } 5197 5198 OMPIteratorExpr::OMPIteratorExpr( 5199 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 5200 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5201 ArrayRef<OMPIteratorHelperData> Helpers) 5202 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 5203 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 5204 NumIterators(Data.size()) { 5205 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 5206 const IteratorDefinition &D = Data[I]; 5207 setIteratorDeclaration(I, D.IteratorDecl); 5208 setAssignmentLoc(I, D.AssignmentLoc); 5209 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 5210 D.SecondColonLoc, D.Range.Step); 5211 setHelper(I, Helpers[I]); 5212 } 5213 setDependence(computeDependence(this)); 5214 } 5215 5216 OMPIteratorExpr * 5217 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 5218 SourceLocation IteratorKwLoc, SourceLocation L, 5219 SourceLocation R, 5220 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5221 ArrayRef<OMPIteratorHelperData> Helpers) { 5222 assert(Data.size() == Helpers.size() && 5223 "Data and helpers must have the same size."); 5224 void *Mem = Context.Allocate( 5225 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5226 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 5227 Data.size() * static_cast<int>(RangeLocOffset::Total), 5228 Helpers.size()), 5229 alignof(OMPIteratorExpr)); 5230 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 5231 } 5232 5233 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5234 unsigned NumIterators) { 5235 void *Mem = Context.Allocate( 5236 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5237 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5238 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5239 alignof(OMPIteratorExpr)); 5240 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5241 } 5242