1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cstring> 40 #include <optional> 41 using namespace clang; 42 43 const Expr *Expr::getBestDynamicClassTypeExpr() const { 44 const Expr *E = this; 45 while (true) { 46 E = E->IgnoreParenBaseCasts(); 47 48 // Follow the RHS of a comma operator. 49 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 50 if (BO->getOpcode() == BO_Comma) { 51 E = BO->getRHS(); 52 continue; 53 } 54 } 55 56 // Step into initializer for materialized temporaries. 57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 58 E = MTE->getSubExpr(); 59 continue; 60 } 61 62 break; 63 } 64 65 return E; 66 } 67 68 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 69 const Expr *E = getBestDynamicClassTypeExpr(); 70 QualType DerivedType = E->getType(); 71 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 72 DerivedType = PTy->getPointeeType(); 73 74 if (DerivedType->isDependentType()) 75 return nullptr; 76 77 const RecordType *Ty = DerivedType->castAs<RecordType>(); 78 Decl *D = Ty->getDecl(); 79 return cast<CXXRecordDecl>(D); 80 } 81 82 const Expr *Expr::skipRValueSubobjectAdjustments( 83 SmallVectorImpl<const Expr *> &CommaLHSs, 84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 85 const Expr *E = this; 86 while (true) { 87 E = E->IgnoreParens(); 88 89 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 90 if ((CE->getCastKind() == CK_DerivedToBase || 91 CE->getCastKind() == CK_UncheckedDerivedToBase) && 92 E->getType()->isRecordType()) { 93 E = CE->getSubExpr(); 94 auto *Derived = 95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 96 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 97 continue; 98 } 99 100 if (CE->getCastKind() == CK_NoOp) { 101 E = CE->getSubExpr(); 102 continue; 103 } 104 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 105 if (!ME->isArrow()) { 106 assert(ME->getBase()->getType()->isRecordType()); 107 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 109 E = ME->getBase(); 110 Adjustments.push_back(SubobjectAdjustment(Field)); 111 continue; 112 } 113 } 114 } 115 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 116 if (BO->getOpcode() == BO_PtrMemD) { 117 assert(BO->getRHS()->isPRValue()); 118 E = BO->getLHS(); 119 const MemberPointerType *MPT = 120 BO->getRHS()->getType()->getAs<MemberPointerType>(); 121 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 122 continue; 123 } 124 if (BO->getOpcode() == BO_Comma) { 125 CommaLHSs.push_back(BO->getLHS()); 126 E = BO->getRHS(); 127 continue; 128 } 129 } 130 131 // Nothing changed. 132 break; 133 } 134 return E; 135 } 136 137 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 138 const Expr *E = IgnoreParens(); 139 140 // If this value has _Bool type, it is obvious 0/1. 141 if (E->getType()->isBooleanType()) return true; 142 // If this is a non-scalar-integer type, we don't care enough to try. 143 if (!E->getType()->isIntegralOrEnumerationType()) return false; 144 145 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 146 switch (UO->getOpcode()) { 147 case UO_Plus: 148 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 149 case UO_LNot: 150 return true; 151 default: 152 return false; 153 } 154 } 155 156 // Only look through implicit casts. If the user writes 157 // '(int) (a && b)' treat it as an arbitrary int. 158 // FIXME: Should we look through any cast expression in !Semantic mode? 159 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 160 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 161 162 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 163 switch (BO->getOpcode()) { 164 default: return false; 165 case BO_LT: // Relational operators. 166 case BO_GT: 167 case BO_LE: 168 case BO_GE: 169 case BO_EQ: // Equality operators. 170 case BO_NE: 171 case BO_LAnd: // AND operator. 172 case BO_LOr: // Logical OR operator. 173 return true; 174 175 case BO_And: // Bitwise AND operator. 176 case BO_Xor: // Bitwise XOR operator. 177 case BO_Or: // Bitwise OR operator. 178 // Handle things like (x==2)|(y==12). 179 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 180 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 181 182 case BO_Comma: 183 case BO_Assign: 184 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 185 } 186 } 187 188 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 189 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 190 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 191 192 if (isa<ObjCBoolLiteralExpr>(E)) 193 return true; 194 195 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 196 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 197 198 if (const FieldDecl *FD = E->getSourceBitField()) 199 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 200 !FD->getBitWidth()->isValueDependent() && 201 FD->getBitWidthValue(FD->getASTContext()) == 1) 202 return true; 203 204 return false; 205 } 206 207 bool Expr::isFlexibleArrayMemberLike( 208 ASTContext &Context, 209 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, 210 bool IgnoreTemplateOrMacroSubstitution) const { 211 212 // For compatibility with existing code, we treat arrays of length 0 or 213 // 1 as flexible array members. 214 const auto *CAT = Context.getAsConstantArrayType(getType()); 215 if (CAT) { 216 llvm::APInt Size = CAT->getSize(); 217 218 using FAMKind = LangOptions::StrictFlexArraysLevelKind; 219 220 if (StrictFlexArraysLevel == FAMKind::IncompleteOnly) 221 return false; 222 223 // GCC extension, only allowed to represent a FAM. 224 if (Size == 0) 225 return true; 226 227 if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1)) 228 return false; 229 230 if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2)) 231 return false; 232 } else if (!Context.getAsIncompleteArrayType(getType())) 233 return false; 234 235 const Expr *E = IgnoreParens(); 236 237 const NamedDecl *ND = nullptr; 238 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 239 ND = DRE->getDecl(); 240 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 241 ND = ME->getMemberDecl(); 242 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) 243 return IRE->getDecl()->getNextIvar() == nullptr; 244 245 if (!ND) 246 return false; 247 248 // A flexible array member must be the last member in the class. 249 // FIXME: If the base type of the member expr is not FD->getParent(), 250 // this should not be treated as a flexible array member access. 251 if (const auto *FD = dyn_cast<FieldDecl>(ND)) { 252 // GCC treats an array memeber of a union as an FAM if the size is one or 253 // zero. 254 if (CAT) { 255 llvm::APInt Size = CAT->getSize(); 256 if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne())) 257 return true; 258 } 259 260 // Don't consider sizes resulting from macro expansions or template argument 261 // substitution to form C89 tail-padded arrays. 262 if (IgnoreTemplateOrMacroSubstitution) { 263 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 264 while (TInfo) { 265 TypeLoc TL = TInfo->getTypeLoc(); 266 // Look through typedefs. 267 if (TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>()) { 268 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 269 TInfo = TDL->getTypeSourceInfo(); 270 continue; 271 } 272 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 273 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 274 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 275 return false; 276 } 277 break; 278 } 279 } 280 281 RecordDecl::field_iterator FI( 282 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 283 return ++FI == FD->getParent()->field_end(); 284 } 285 286 return false; 287 } 288 289 const ValueDecl * 290 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 291 Expr::EvalResult Eval; 292 293 if (EvaluateAsConstantExpr(Eval, Context)) { 294 APValue &Value = Eval.Val; 295 296 if (Value.isMemberPointer()) 297 return Value.getMemberPointerDecl(); 298 299 if (Value.isLValue() && Value.getLValueOffset().isZero()) 300 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 301 } 302 303 return nullptr; 304 } 305 306 // Amusing macro metaprogramming hack: check whether a class provides 307 // a more specific implementation of getExprLoc(). 308 // 309 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 310 namespace { 311 /// This implementation is used when a class provides a custom 312 /// implementation of getExprLoc. 313 template <class E, class T> 314 SourceLocation getExprLocImpl(const Expr *expr, 315 SourceLocation (T::*v)() const) { 316 return static_cast<const E*>(expr)->getExprLoc(); 317 } 318 319 /// This implementation is used when a class doesn't provide 320 /// a custom implementation of getExprLoc. Overload resolution 321 /// should pick it over the implementation above because it's 322 /// more specialized according to function template partial ordering. 323 template <class E> 324 SourceLocation getExprLocImpl(const Expr *expr, 325 SourceLocation (Expr::*v)() const) { 326 return static_cast<const E *>(expr)->getBeginLoc(); 327 } 328 } 329 330 SourceLocation Expr::getExprLoc() const { 331 switch (getStmtClass()) { 332 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 333 #define ABSTRACT_STMT(type) 334 #define STMT(type, base) \ 335 case Stmt::type##Class: break; 336 #define EXPR(type, base) \ 337 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 338 #include "clang/AST/StmtNodes.inc" 339 } 340 llvm_unreachable("unknown expression kind"); 341 } 342 343 //===----------------------------------------------------------------------===// 344 // Primary Expressions. 345 //===----------------------------------------------------------------------===// 346 347 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 348 assert((Kind == ConstantExpr::RSK_APValue || 349 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 350 "Invalid StorageKind Value"); 351 (void)Kind; 352 } 353 354 ConstantExpr::ResultStorageKind 355 ConstantExpr::getStorageKind(const APValue &Value) { 356 switch (Value.getKind()) { 357 case APValue::None: 358 case APValue::Indeterminate: 359 return ConstantExpr::RSK_None; 360 case APValue::Int: 361 if (!Value.getInt().needsCleanup()) 362 return ConstantExpr::RSK_Int64; 363 [[fallthrough]]; 364 default: 365 return ConstantExpr::RSK_APValue; 366 } 367 } 368 369 ConstantExpr::ResultStorageKind 370 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 371 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 372 return ConstantExpr::RSK_Int64; 373 return ConstantExpr::RSK_APValue; 374 } 375 376 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind, 377 bool IsImmediateInvocation) 378 : FullExpr(ConstantExprClass, SubExpr) { 379 ConstantExprBits.ResultKind = StorageKind; 380 ConstantExprBits.APValueKind = APValue::None; 381 ConstantExprBits.IsUnsigned = false; 382 ConstantExprBits.BitWidth = 0; 383 ConstantExprBits.HasCleanup = false; 384 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 385 386 if (StorageKind == ConstantExpr::RSK_APValue) 387 ::new (getTrailingObjects<APValue>()) APValue(); 388 } 389 390 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 391 ResultStorageKind StorageKind, 392 bool IsImmediateInvocation) { 393 assert(!isa<ConstantExpr>(E)); 394 AssertResultStorageKind(StorageKind); 395 396 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 397 StorageKind == ConstantExpr::RSK_APValue, 398 StorageKind == ConstantExpr::RSK_Int64); 399 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 400 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 401 } 402 403 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 404 const APValue &Result) { 405 ResultStorageKind StorageKind = getStorageKind(Result); 406 ConstantExpr *Self = Create(Context, E, StorageKind); 407 Self->SetResult(Result, Context); 408 return Self; 409 } 410 411 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind) 412 : FullExpr(ConstantExprClass, Empty) { 413 ConstantExprBits.ResultKind = StorageKind; 414 415 if (StorageKind == ConstantExpr::RSK_APValue) 416 ::new (getTrailingObjects<APValue>()) APValue(); 417 } 418 419 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 420 ResultStorageKind StorageKind) { 421 AssertResultStorageKind(StorageKind); 422 423 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 424 StorageKind == ConstantExpr::RSK_APValue, 425 StorageKind == ConstantExpr::RSK_Int64); 426 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 427 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 428 } 429 430 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 431 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 432 "Invalid storage for this value kind"); 433 ConstantExprBits.APValueKind = Value.getKind(); 434 switch (ConstantExprBits.ResultKind) { 435 case RSK_None: 436 return; 437 case RSK_Int64: 438 Int64Result() = *Value.getInt().getRawData(); 439 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 440 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 441 return; 442 case RSK_APValue: 443 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 444 ConstantExprBits.HasCleanup = true; 445 Context.addDestruction(&APValueResult()); 446 } 447 APValueResult() = std::move(Value); 448 return; 449 } 450 llvm_unreachable("Invalid ResultKind Bits"); 451 } 452 453 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 454 switch (ConstantExprBits.ResultKind) { 455 case ConstantExpr::RSK_APValue: 456 return APValueResult().getInt(); 457 case ConstantExpr::RSK_Int64: 458 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 459 ConstantExprBits.IsUnsigned); 460 default: 461 llvm_unreachable("invalid Accessor"); 462 } 463 } 464 465 APValue ConstantExpr::getAPValueResult() const { 466 467 switch (ConstantExprBits.ResultKind) { 468 case ConstantExpr::RSK_APValue: 469 return APValueResult(); 470 case ConstantExpr::RSK_Int64: 471 return APValue( 472 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 473 ConstantExprBits.IsUnsigned)); 474 case ConstantExpr::RSK_None: 475 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 476 return APValue::IndeterminateValue(); 477 return APValue(); 478 } 479 llvm_unreachable("invalid ResultKind"); 480 } 481 482 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 483 bool RefersToEnclosingVariableOrCapture, QualType T, 484 ExprValueKind VK, SourceLocation L, 485 const DeclarationNameLoc &LocInfo, 486 NonOdrUseReason NOUR) 487 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 488 DeclRefExprBits.HasQualifier = false; 489 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 490 DeclRefExprBits.HasFoundDecl = false; 491 DeclRefExprBits.HadMultipleCandidates = false; 492 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 493 RefersToEnclosingVariableOrCapture; 494 DeclRefExprBits.NonOdrUseReason = NOUR; 495 DeclRefExprBits.Loc = L; 496 setDependence(computeDependence(this, Ctx)); 497 } 498 499 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 500 NestedNameSpecifierLoc QualifierLoc, 501 SourceLocation TemplateKWLoc, ValueDecl *D, 502 bool RefersToEnclosingVariableOrCapture, 503 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 504 const TemplateArgumentListInfo *TemplateArgs, 505 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 506 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 507 DNLoc(NameInfo.getInfo()) { 508 DeclRefExprBits.Loc = NameInfo.getLoc(); 509 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 510 if (QualifierLoc) 511 new (getTrailingObjects<NestedNameSpecifierLoc>()) 512 NestedNameSpecifierLoc(QualifierLoc); 513 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 514 if (FoundD) 515 *getTrailingObjects<NamedDecl *>() = FoundD; 516 DeclRefExprBits.HasTemplateKWAndArgsInfo 517 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 518 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 519 RefersToEnclosingVariableOrCapture; 520 DeclRefExprBits.NonOdrUseReason = NOUR; 521 if (TemplateArgs) { 522 auto Deps = TemplateArgumentDependence::None; 523 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 524 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 525 Deps); 526 assert(!(Deps & TemplateArgumentDependence::Dependent) && 527 "built a DeclRefExpr with dependent template args"); 528 } else if (TemplateKWLoc.isValid()) { 529 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 530 TemplateKWLoc); 531 } 532 DeclRefExprBits.HadMultipleCandidates = 0; 533 setDependence(computeDependence(this, Ctx)); 534 } 535 536 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 537 NestedNameSpecifierLoc QualifierLoc, 538 SourceLocation TemplateKWLoc, ValueDecl *D, 539 bool RefersToEnclosingVariableOrCapture, 540 SourceLocation NameLoc, QualType T, 541 ExprValueKind VK, NamedDecl *FoundD, 542 const TemplateArgumentListInfo *TemplateArgs, 543 NonOdrUseReason NOUR) { 544 return Create(Context, QualifierLoc, TemplateKWLoc, D, 545 RefersToEnclosingVariableOrCapture, 546 DeclarationNameInfo(D->getDeclName(), NameLoc), 547 T, VK, FoundD, TemplateArgs, NOUR); 548 } 549 550 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 551 NestedNameSpecifierLoc QualifierLoc, 552 SourceLocation TemplateKWLoc, ValueDecl *D, 553 bool RefersToEnclosingVariableOrCapture, 554 const DeclarationNameInfo &NameInfo, 555 QualType T, ExprValueKind VK, 556 NamedDecl *FoundD, 557 const TemplateArgumentListInfo *TemplateArgs, 558 NonOdrUseReason NOUR) { 559 // Filter out cases where the found Decl is the same as the value refenenced. 560 if (D == FoundD) 561 FoundD = nullptr; 562 563 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 564 std::size_t Size = 565 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 566 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 567 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 568 HasTemplateKWAndArgsInfo ? 1 : 0, 569 TemplateArgs ? TemplateArgs->size() : 0); 570 571 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 572 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 573 RefersToEnclosingVariableOrCapture, NameInfo, 574 FoundD, TemplateArgs, T, VK, NOUR); 575 } 576 577 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 578 bool HasQualifier, 579 bool HasFoundDecl, 580 bool HasTemplateKWAndArgsInfo, 581 unsigned NumTemplateArgs) { 582 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 583 std::size_t Size = 584 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 585 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 586 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 587 NumTemplateArgs); 588 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 589 return new (Mem) DeclRefExpr(EmptyShell()); 590 } 591 592 void DeclRefExpr::setDecl(ValueDecl *NewD) { 593 D = NewD; 594 if (getType()->isUndeducedType()) 595 setType(NewD->getType()); 596 setDependence(computeDependence(this, NewD->getASTContext())); 597 } 598 599 SourceLocation DeclRefExpr::getBeginLoc() const { 600 if (hasQualifier()) 601 return getQualifierLoc().getBeginLoc(); 602 return getNameInfo().getBeginLoc(); 603 } 604 SourceLocation DeclRefExpr::getEndLoc() const { 605 if (hasExplicitTemplateArgs()) 606 return getRAngleLoc(); 607 return getNameInfo().getEndLoc(); 608 } 609 610 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 611 SourceLocation LParen, 612 SourceLocation RParen, 613 QualType ResultTy, 614 TypeSourceInfo *TSI) 615 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 616 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 617 setTypeSourceInfo(TSI); 618 setDependence(computeDependence(this)); 619 } 620 621 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 622 QualType ResultTy) 623 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 624 625 SYCLUniqueStableNameExpr * 626 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 627 SourceLocation LParen, SourceLocation RParen, 628 TypeSourceInfo *TSI) { 629 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 630 return new (Ctx) 631 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 632 } 633 634 SYCLUniqueStableNameExpr * 635 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 636 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 637 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 638 } 639 640 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 641 return SYCLUniqueStableNameExpr::ComputeName(Context, 642 getTypeSourceInfo()->getType()); 643 } 644 645 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 646 QualType Ty) { 647 auto MangleCallback = [](ASTContext &Ctx, 648 const NamedDecl *ND) -> std::optional<unsigned> { 649 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 650 return RD->getDeviceLambdaManglingNumber(); 651 return std::nullopt; 652 }; 653 654 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 655 Context, Context.getDiagnostics(), MangleCallback)}; 656 657 std::string Buffer; 658 Buffer.reserve(128); 659 llvm::raw_string_ostream Out(Buffer); 660 Ctx->mangleTypeName(Ty, Out); 661 662 return Out.str(); 663 } 664 665 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 666 StringLiteral *SL) 667 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 668 PredefinedExprBits.Kind = IK; 669 assert((getIdentKind() == IK) && 670 "IdentKind do not fit in PredefinedExprBitfields!"); 671 bool HasFunctionName = SL != nullptr; 672 PredefinedExprBits.HasFunctionName = HasFunctionName; 673 PredefinedExprBits.Loc = L; 674 if (HasFunctionName) 675 setFunctionName(SL); 676 setDependence(computeDependence(this)); 677 } 678 679 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 680 : Expr(PredefinedExprClass, Empty) { 681 PredefinedExprBits.HasFunctionName = HasFunctionName; 682 } 683 684 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 685 QualType FNTy, IdentKind IK, 686 StringLiteral *SL) { 687 bool HasFunctionName = SL != nullptr; 688 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 689 alignof(PredefinedExpr)); 690 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 691 } 692 693 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 694 bool HasFunctionName) { 695 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 696 alignof(PredefinedExpr)); 697 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 698 } 699 700 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 701 switch (IK) { 702 case Func: 703 return "__func__"; 704 case Function: 705 return "__FUNCTION__"; 706 case FuncDName: 707 return "__FUNCDNAME__"; 708 case LFunction: 709 return "L__FUNCTION__"; 710 case PrettyFunction: 711 return "__PRETTY_FUNCTION__"; 712 case FuncSig: 713 return "__FUNCSIG__"; 714 case LFuncSig: 715 return "L__FUNCSIG__"; 716 case PrettyFunctionNoVirtual: 717 break; 718 } 719 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 720 } 721 722 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 723 // expr" policy instead. 724 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 725 ASTContext &Context = CurrentDecl->getASTContext(); 726 727 if (IK == PredefinedExpr::FuncDName) { 728 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 729 std::unique_ptr<MangleContext> MC; 730 MC.reset(Context.createMangleContext()); 731 732 if (MC->shouldMangleDeclName(ND)) { 733 SmallString<256> Buffer; 734 llvm::raw_svector_ostream Out(Buffer); 735 GlobalDecl GD; 736 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 737 GD = GlobalDecl(CD, Ctor_Base); 738 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 739 GD = GlobalDecl(DD, Dtor_Base); 740 else if (ND->hasAttr<CUDAGlobalAttr>()) 741 GD = GlobalDecl(cast<FunctionDecl>(ND)); 742 else 743 GD = GlobalDecl(ND); 744 MC->mangleName(GD, Out); 745 746 if (!Buffer.empty() && Buffer.front() == '\01') 747 return std::string(Buffer.substr(1)); 748 return std::string(Buffer.str()); 749 } 750 return std::string(ND->getIdentifier()->getName()); 751 } 752 return ""; 753 } 754 if (isa<BlockDecl>(CurrentDecl)) { 755 // For blocks we only emit something if it is enclosed in a function 756 // For top-level block we'd like to include the name of variable, but we 757 // don't have it at this point. 758 auto DC = CurrentDecl->getDeclContext(); 759 if (DC->isFileContext()) 760 return ""; 761 762 SmallString<256> Buffer; 763 llvm::raw_svector_ostream Out(Buffer); 764 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 765 // For nested blocks, propagate up to the parent. 766 Out << ComputeName(IK, DCBlock); 767 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 768 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 769 return std::string(Out.str()); 770 } 771 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 772 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 773 IK != FuncSig && IK != LFuncSig) 774 return FD->getNameAsString(); 775 776 SmallString<256> Name; 777 llvm::raw_svector_ostream Out(Name); 778 779 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 780 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 781 Out << "virtual "; 782 if (MD->isStatic()) 783 Out << "static "; 784 } 785 786 PrintingPolicy Policy(Context.getLangOpts()); 787 std::string Proto; 788 llvm::raw_string_ostream POut(Proto); 789 790 const FunctionDecl *Decl = FD; 791 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 792 Decl = Pattern; 793 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 794 const FunctionProtoType *FT = nullptr; 795 if (FD->hasWrittenPrototype()) 796 FT = dyn_cast<FunctionProtoType>(AFT); 797 798 if (IK == FuncSig || IK == LFuncSig) { 799 switch (AFT->getCallConv()) { 800 case CC_C: POut << "__cdecl "; break; 801 case CC_X86StdCall: POut << "__stdcall "; break; 802 case CC_X86FastCall: POut << "__fastcall "; break; 803 case CC_X86ThisCall: POut << "__thiscall "; break; 804 case CC_X86VectorCall: POut << "__vectorcall "; break; 805 case CC_X86RegCall: POut << "__regcall "; break; 806 // Only bother printing the conventions that MSVC knows about. 807 default: break; 808 } 809 } 810 811 FD->printQualifiedName(POut, Policy); 812 813 POut << "("; 814 if (FT) { 815 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 816 if (i) POut << ", "; 817 POut << Decl->getParamDecl(i)->getType().stream(Policy); 818 } 819 820 if (FT->isVariadic()) { 821 if (FD->getNumParams()) POut << ", "; 822 POut << "..."; 823 } else if ((IK == FuncSig || IK == LFuncSig || 824 !Context.getLangOpts().CPlusPlus) && 825 !Decl->getNumParams()) { 826 POut << "void"; 827 } 828 } 829 POut << ")"; 830 831 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 832 assert(FT && "We must have a written prototype in this case."); 833 if (FT->isConst()) 834 POut << " const"; 835 if (FT->isVolatile()) 836 POut << " volatile"; 837 RefQualifierKind Ref = MD->getRefQualifier(); 838 if (Ref == RQ_LValue) 839 POut << " &"; 840 else if (Ref == RQ_RValue) 841 POut << " &&"; 842 } 843 844 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 845 SpecsTy Specs; 846 const DeclContext *Ctx = FD->getDeclContext(); 847 while (Ctx && isa<NamedDecl>(Ctx)) { 848 const ClassTemplateSpecializationDecl *Spec 849 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 850 if (Spec && !Spec->isExplicitSpecialization()) 851 Specs.push_back(Spec); 852 Ctx = Ctx->getParent(); 853 } 854 855 std::string TemplateParams; 856 llvm::raw_string_ostream TOut(TemplateParams); 857 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 858 const TemplateParameterList *Params = 859 D->getSpecializedTemplate()->getTemplateParameters(); 860 const TemplateArgumentList &Args = D->getTemplateArgs(); 861 assert(Params->size() == Args.size()); 862 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 863 StringRef Param = Params->getParam(i)->getName(); 864 if (Param.empty()) continue; 865 TOut << Param << " = "; 866 Args.get(i).print(Policy, TOut, 867 TemplateParameterList::shouldIncludeTypeForArgument( 868 Policy, Params, i)); 869 TOut << ", "; 870 } 871 } 872 873 FunctionTemplateSpecializationInfo *FSI 874 = FD->getTemplateSpecializationInfo(); 875 if (FSI && !FSI->isExplicitSpecialization()) { 876 const TemplateParameterList* Params 877 = FSI->getTemplate()->getTemplateParameters(); 878 const TemplateArgumentList* Args = FSI->TemplateArguments; 879 assert(Params->size() == Args->size()); 880 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 881 StringRef Param = Params->getParam(i)->getName(); 882 if (Param.empty()) continue; 883 TOut << Param << " = "; 884 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 885 TOut << ", "; 886 } 887 } 888 889 TOut.flush(); 890 if (!TemplateParams.empty()) { 891 // remove the trailing comma and space 892 TemplateParams.resize(TemplateParams.size() - 2); 893 POut << " [" << TemplateParams << "]"; 894 } 895 896 POut.flush(); 897 898 // Print "auto" for all deduced return types. This includes C++1y return 899 // type deduction and lambdas. For trailing return types resolve the 900 // decltype expression. Otherwise print the real type when this is 901 // not a constructor or destructor. 902 if (isa<CXXMethodDecl>(FD) && 903 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 904 Proto = "auto " + Proto; 905 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 906 FT->getReturnType() 907 ->getAs<DecltypeType>() 908 ->getUnderlyingType() 909 .getAsStringInternal(Proto, Policy); 910 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 911 AFT->getReturnType().getAsStringInternal(Proto, Policy); 912 913 Out << Proto; 914 915 return std::string(Name); 916 } 917 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 918 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 919 // Skip to its enclosing function or method, but not its enclosing 920 // CapturedDecl. 921 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 922 const Decl *D = Decl::castFromDeclContext(DC); 923 return ComputeName(IK, D); 924 } 925 llvm_unreachable("CapturedDecl not inside a function or method"); 926 } 927 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 928 SmallString<256> Name; 929 llvm::raw_svector_ostream Out(Name); 930 Out << (MD->isInstanceMethod() ? '-' : '+'); 931 Out << '['; 932 933 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 934 // a null check to avoid a crash. 935 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 936 Out << *ID; 937 938 if (const ObjCCategoryImplDecl *CID = 939 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 940 Out << '(' << *CID << ')'; 941 942 Out << ' '; 943 MD->getSelector().print(Out); 944 Out << ']'; 945 946 return std::string(Name); 947 } 948 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 949 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 950 return "top level"; 951 } 952 return ""; 953 } 954 955 void APNumericStorage::setIntValue(const ASTContext &C, 956 const llvm::APInt &Val) { 957 if (hasAllocation()) 958 C.Deallocate(pVal); 959 960 BitWidth = Val.getBitWidth(); 961 unsigned NumWords = Val.getNumWords(); 962 const uint64_t* Words = Val.getRawData(); 963 if (NumWords > 1) { 964 pVal = new (C) uint64_t[NumWords]; 965 std::copy(Words, Words + NumWords, pVal); 966 } else if (NumWords == 1) 967 VAL = Words[0]; 968 else 969 VAL = 0; 970 } 971 972 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 973 QualType type, SourceLocation l) 974 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 975 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 976 assert(V.getBitWidth() == C.getIntWidth(type) && 977 "Integer type is not the correct size for constant."); 978 setValue(C, V); 979 setDependence(ExprDependence::None); 980 } 981 982 IntegerLiteral * 983 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 984 QualType type, SourceLocation l) { 985 return new (C) IntegerLiteral(C, V, type, l); 986 } 987 988 IntegerLiteral * 989 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 990 return new (C) IntegerLiteral(Empty); 991 } 992 993 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 994 QualType type, SourceLocation l, 995 unsigned Scale) 996 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 997 Scale(Scale) { 998 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 999 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 1000 "Fixed point type is not the correct size for constant."); 1001 setValue(C, V); 1002 setDependence(ExprDependence::None); 1003 } 1004 1005 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 1006 const llvm::APInt &V, 1007 QualType type, 1008 SourceLocation l, 1009 unsigned Scale) { 1010 return new (C) FixedPointLiteral(C, V, type, l, Scale); 1011 } 1012 1013 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 1014 EmptyShell Empty) { 1015 return new (C) FixedPointLiteral(Empty); 1016 } 1017 1018 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 1019 // Currently the longest decimal number that can be printed is the max for an 1020 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 1021 // which is 43 characters. 1022 SmallString<64> S; 1023 FixedPointValueToString( 1024 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 1025 return std::string(S.str()); 1026 } 1027 1028 void CharacterLiteral::print(unsigned Val, CharacterKind Kind, 1029 raw_ostream &OS) { 1030 switch (Kind) { 1031 case CharacterLiteral::Ascii: 1032 break; // no prefix. 1033 case CharacterLiteral::Wide: 1034 OS << 'L'; 1035 break; 1036 case CharacterLiteral::UTF8: 1037 OS << "u8"; 1038 break; 1039 case CharacterLiteral::UTF16: 1040 OS << 'u'; 1041 break; 1042 case CharacterLiteral::UTF32: 1043 OS << 'U'; 1044 break; 1045 } 1046 1047 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); 1048 if (!Escaped.empty()) { 1049 OS << "'" << Escaped << "'"; 1050 } else { 1051 // A character literal might be sign-extended, which 1052 // would result in an invalid \U escape sequence. 1053 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 1054 // are not correctly handled. 1055 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii) 1056 Val &= 0xFFu; 1057 if (Val < 256 && isPrintable((unsigned char)Val)) 1058 OS << "'" << (char)Val << "'"; 1059 else if (Val < 256) 1060 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 1061 else if (Val <= 0xFFFF) 1062 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 1063 else 1064 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 1065 } 1066 } 1067 1068 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 1069 bool isexact, QualType Type, SourceLocation L) 1070 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 1071 setSemantics(V.getSemantics()); 1072 FloatingLiteralBits.IsExact = isexact; 1073 setValue(C, V); 1074 setDependence(ExprDependence::None); 1075 } 1076 1077 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 1078 : Expr(FloatingLiteralClass, Empty) { 1079 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 1080 FloatingLiteralBits.IsExact = false; 1081 } 1082 1083 FloatingLiteral * 1084 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1085 bool isexact, QualType Type, SourceLocation L) { 1086 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1087 } 1088 1089 FloatingLiteral * 1090 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1091 return new (C) FloatingLiteral(C, Empty); 1092 } 1093 1094 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1095 /// double. Note that this may cause loss of precision, but is useful for 1096 /// debugging dumps, etc. 1097 double FloatingLiteral::getValueAsApproximateDouble() const { 1098 llvm::APFloat V = getValue(); 1099 bool ignored; 1100 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1101 &ignored); 1102 return V.convertToDouble(); 1103 } 1104 1105 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1106 StringKind SK) { 1107 unsigned CharByteWidth = 0; 1108 switch (SK) { 1109 case Ordinary: 1110 case UTF8: 1111 CharByteWidth = Target.getCharWidth(); 1112 break; 1113 case Wide: 1114 CharByteWidth = Target.getWCharWidth(); 1115 break; 1116 case UTF16: 1117 CharByteWidth = Target.getChar16Width(); 1118 break; 1119 case UTF32: 1120 CharByteWidth = Target.getChar32Width(); 1121 break; 1122 } 1123 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1124 CharByteWidth /= 8; 1125 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1126 "The only supported character byte widths are 1,2 and 4!"); 1127 return CharByteWidth; 1128 } 1129 1130 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1131 StringKind Kind, bool Pascal, QualType Ty, 1132 const SourceLocation *Loc, 1133 unsigned NumConcatenated) 1134 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1135 assert(Ctx.getAsConstantArrayType(Ty) && 1136 "StringLiteral must be of constant array type!"); 1137 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1138 unsigned ByteLength = Str.size(); 1139 assert((ByteLength % CharByteWidth == 0) && 1140 "The size of the data must be a multiple of CharByteWidth!"); 1141 1142 // Avoid the expensive division. The compiler should be able to figure it 1143 // out by itself. However as of clang 7, even with the appropriate 1144 // llvm_unreachable added just here, it is not able to do so. 1145 unsigned Length; 1146 switch (CharByteWidth) { 1147 case 1: 1148 Length = ByteLength; 1149 break; 1150 case 2: 1151 Length = ByteLength / 2; 1152 break; 1153 case 4: 1154 Length = ByteLength / 4; 1155 break; 1156 default: 1157 llvm_unreachable("Unsupported character width!"); 1158 } 1159 1160 StringLiteralBits.Kind = Kind; 1161 StringLiteralBits.CharByteWidth = CharByteWidth; 1162 StringLiteralBits.IsPascal = Pascal; 1163 StringLiteralBits.NumConcatenated = NumConcatenated; 1164 *getTrailingObjects<unsigned>() = Length; 1165 1166 // Initialize the trailing array of SourceLocation. 1167 // This is safe since SourceLocation is POD-like. 1168 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1169 NumConcatenated * sizeof(SourceLocation)); 1170 1171 // Initialize the trailing array of char holding the string data. 1172 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1173 1174 setDependence(ExprDependence::None); 1175 } 1176 1177 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1178 unsigned Length, unsigned CharByteWidth) 1179 : Expr(StringLiteralClass, Empty) { 1180 StringLiteralBits.CharByteWidth = CharByteWidth; 1181 StringLiteralBits.NumConcatenated = NumConcatenated; 1182 *getTrailingObjects<unsigned>() = Length; 1183 } 1184 1185 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1186 StringKind Kind, bool Pascal, QualType Ty, 1187 const SourceLocation *Loc, 1188 unsigned NumConcatenated) { 1189 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1190 1, NumConcatenated, Str.size()), 1191 alignof(StringLiteral)); 1192 return new (Mem) 1193 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1194 } 1195 1196 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1197 unsigned NumConcatenated, 1198 unsigned Length, 1199 unsigned CharByteWidth) { 1200 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1201 1, NumConcatenated, Length * CharByteWidth), 1202 alignof(StringLiteral)); 1203 return new (Mem) 1204 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1205 } 1206 1207 void StringLiteral::outputString(raw_ostream &OS) const { 1208 switch (getKind()) { 1209 case Ordinary: 1210 break; // no prefix. 1211 case Wide: OS << 'L'; break; 1212 case UTF8: OS << "u8"; break; 1213 case UTF16: OS << 'u'; break; 1214 case UTF32: OS << 'U'; break; 1215 } 1216 OS << '"'; 1217 static const char Hex[] = "0123456789ABCDEF"; 1218 1219 unsigned LastSlashX = getLength(); 1220 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1221 uint32_t Char = getCodeUnit(I); 1222 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); 1223 if (Escaped.empty()) { 1224 // FIXME: Convert UTF-8 back to codepoints before rendering. 1225 1226 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1227 // Leave invalid surrogates alone; we'll use \x for those. 1228 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1229 Char <= 0xdbff) { 1230 uint32_t Trail = getCodeUnit(I + 1); 1231 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1232 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1233 ++I; 1234 } 1235 } 1236 1237 if (Char > 0xff) { 1238 // If this is a wide string, output characters over 0xff using \x 1239 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1240 // codepoint: use \x escapes for invalid codepoints. 1241 if (getKind() == Wide || 1242 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1243 // FIXME: Is this the best way to print wchar_t? 1244 OS << "\\x"; 1245 int Shift = 28; 1246 while ((Char >> Shift) == 0) 1247 Shift -= 4; 1248 for (/**/; Shift >= 0; Shift -= 4) 1249 OS << Hex[(Char >> Shift) & 15]; 1250 LastSlashX = I; 1251 continue; 1252 } 1253 1254 if (Char > 0xffff) 1255 OS << "\\U00" 1256 << Hex[(Char >> 20) & 15] 1257 << Hex[(Char >> 16) & 15]; 1258 else 1259 OS << "\\u"; 1260 OS << Hex[(Char >> 12) & 15] 1261 << Hex[(Char >> 8) & 15] 1262 << Hex[(Char >> 4) & 15] 1263 << Hex[(Char >> 0) & 15]; 1264 continue; 1265 } 1266 1267 // If we used \x... for the previous character, and this character is a 1268 // hexadecimal digit, prevent it being slurped as part of the \x. 1269 if (LastSlashX + 1 == I) { 1270 switch (Char) { 1271 case '0': case '1': case '2': case '3': case '4': 1272 case '5': case '6': case '7': case '8': case '9': 1273 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1274 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1275 OS << "\"\""; 1276 } 1277 } 1278 1279 assert(Char <= 0xff && 1280 "Characters above 0xff should already have been handled."); 1281 1282 if (isPrintable(Char)) 1283 OS << (char)Char; 1284 else // Output anything hard as an octal escape. 1285 OS << '\\' 1286 << (char)('0' + ((Char >> 6) & 7)) 1287 << (char)('0' + ((Char >> 3) & 7)) 1288 << (char)('0' + ((Char >> 0) & 7)); 1289 } else { 1290 // Handle some common non-printable cases to make dumps prettier. 1291 OS << Escaped; 1292 } 1293 } 1294 OS << '"'; 1295 } 1296 1297 /// getLocationOfByte - Return a source location that points to the specified 1298 /// byte of this string literal. 1299 /// 1300 /// Strings are amazingly complex. They can be formed from multiple tokens and 1301 /// can have escape sequences in them in addition to the usual trigraph and 1302 /// escaped newline business. This routine handles this complexity. 1303 /// 1304 /// The *StartToken sets the first token to be searched in this function and 1305 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1306 /// returning, it updates the *StartToken to the TokNo of the token being found 1307 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1308 /// string. 1309 /// Using these two parameters can reduce the time complexity from O(n^2) to 1310 /// O(n) if one wants to get the location of byte for all the tokens in a 1311 /// string. 1312 /// 1313 SourceLocation 1314 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1315 const LangOptions &Features, 1316 const TargetInfo &Target, unsigned *StartToken, 1317 unsigned *StartTokenByteOffset) const { 1318 assert((getKind() == StringLiteral::Ordinary || 1319 getKind() == StringLiteral::UTF8) && 1320 "Only narrow string literals are currently supported"); 1321 1322 // Loop over all of the tokens in this string until we find the one that 1323 // contains the byte we're looking for. 1324 unsigned TokNo = 0; 1325 unsigned StringOffset = 0; 1326 if (StartToken) 1327 TokNo = *StartToken; 1328 if (StartTokenByteOffset) { 1329 StringOffset = *StartTokenByteOffset; 1330 ByteNo -= StringOffset; 1331 } 1332 while (true) { 1333 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1334 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1335 1336 // Get the spelling of the string so that we can get the data that makes up 1337 // the string literal, not the identifier for the macro it is potentially 1338 // expanded through. 1339 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1340 1341 // Re-lex the token to get its length and original spelling. 1342 std::pair<FileID, unsigned> LocInfo = 1343 SM.getDecomposedLoc(StrTokSpellingLoc); 1344 bool Invalid = false; 1345 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1346 if (Invalid) { 1347 if (StartTokenByteOffset != nullptr) 1348 *StartTokenByteOffset = StringOffset; 1349 if (StartToken != nullptr) 1350 *StartToken = TokNo; 1351 return StrTokSpellingLoc; 1352 } 1353 1354 const char *StrData = Buffer.data()+LocInfo.second; 1355 1356 // Create a lexer starting at the beginning of this token. 1357 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1358 Buffer.begin(), StrData, Buffer.end()); 1359 Token TheTok; 1360 TheLexer.LexFromRawLexer(TheTok); 1361 1362 // Use the StringLiteralParser to compute the length of the string in bytes. 1363 StringLiteralParser SLP(TheTok, SM, Features, Target); 1364 unsigned TokNumBytes = SLP.GetStringLength(); 1365 1366 // If the byte is in this token, return the location of the byte. 1367 if (ByteNo < TokNumBytes || 1368 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1369 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1370 1371 // Now that we know the offset of the token in the spelling, use the 1372 // preprocessor to get the offset in the original source. 1373 if (StartTokenByteOffset != nullptr) 1374 *StartTokenByteOffset = StringOffset; 1375 if (StartToken != nullptr) 1376 *StartToken = TokNo; 1377 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1378 } 1379 1380 // Move to the next string token. 1381 StringOffset += TokNumBytes; 1382 ++TokNo; 1383 ByteNo -= TokNumBytes; 1384 } 1385 } 1386 1387 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1388 /// corresponds to, e.g. "sizeof" or "[pre]++". 1389 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1390 switch (Op) { 1391 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1392 #include "clang/AST/OperationKinds.def" 1393 } 1394 llvm_unreachable("Unknown unary operator"); 1395 } 1396 1397 UnaryOperatorKind 1398 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1399 switch (OO) { 1400 default: llvm_unreachable("No unary operator for overloaded function"); 1401 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1402 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1403 case OO_Amp: return UO_AddrOf; 1404 case OO_Star: return UO_Deref; 1405 case OO_Plus: return UO_Plus; 1406 case OO_Minus: return UO_Minus; 1407 case OO_Tilde: return UO_Not; 1408 case OO_Exclaim: return UO_LNot; 1409 case OO_Coawait: return UO_Coawait; 1410 } 1411 } 1412 1413 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1414 switch (Opc) { 1415 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1416 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1417 case UO_AddrOf: return OO_Amp; 1418 case UO_Deref: return OO_Star; 1419 case UO_Plus: return OO_Plus; 1420 case UO_Minus: return OO_Minus; 1421 case UO_Not: return OO_Tilde; 1422 case UO_LNot: return OO_Exclaim; 1423 case UO_Coawait: return OO_Coawait; 1424 default: return OO_None; 1425 } 1426 } 1427 1428 1429 //===----------------------------------------------------------------------===// 1430 // Postfix Operators. 1431 //===----------------------------------------------------------------------===// 1432 1433 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1434 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1435 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1436 unsigned MinNumArgs, ADLCallKind UsesADL) 1437 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1438 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1439 unsigned NumPreArgs = PreArgs.size(); 1440 CallExprBits.NumPreArgs = NumPreArgs; 1441 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1442 1443 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1444 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1445 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1446 "OffsetToTrailingObjects overflow!"); 1447 1448 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1449 1450 setCallee(Fn); 1451 for (unsigned I = 0; I != NumPreArgs; ++I) 1452 setPreArg(I, PreArgs[I]); 1453 for (unsigned I = 0; I != Args.size(); ++I) 1454 setArg(I, Args[I]); 1455 for (unsigned I = Args.size(); I != NumArgs; ++I) 1456 setArg(I, nullptr); 1457 1458 this->computeDependence(); 1459 1460 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1461 if (hasStoredFPFeatures()) 1462 setStoredFPFeatures(FPFeatures); 1463 } 1464 1465 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1466 bool HasFPFeatures, EmptyShell Empty) 1467 : Expr(SC, Empty), NumArgs(NumArgs) { 1468 CallExprBits.NumPreArgs = NumPreArgs; 1469 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1470 1471 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1472 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1473 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1474 "OffsetToTrailingObjects overflow!"); 1475 CallExprBits.HasFPFeatures = HasFPFeatures; 1476 } 1477 1478 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1479 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1480 SourceLocation RParenLoc, 1481 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1482 ADLCallKind UsesADL) { 1483 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1484 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1485 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1486 void *Mem = 1487 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1488 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1489 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1490 } 1491 1492 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1493 ExprValueKind VK, SourceLocation RParenLoc, 1494 ADLCallKind UsesADL) { 1495 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1496 "Misaligned memory in CallExpr::CreateTemporary!"); 1497 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1498 VK, RParenLoc, FPOptionsOverride(), 1499 /*MinNumArgs=*/0, UsesADL); 1500 } 1501 1502 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1503 bool HasFPFeatures, EmptyShell Empty) { 1504 unsigned SizeOfTrailingObjects = 1505 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1506 void *Mem = 1507 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1508 return new (Mem) 1509 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1510 } 1511 1512 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1513 switch (SC) { 1514 case CallExprClass: 1515 return sizeof(CallExpr); 1516 case CXXOperatorCallExprClass: 1517 return sizeof(CXXOperatorCallExpr); 1518 case CXXMemberCallExprClass: 1519 return sizeof(CXXMemberCallExpr); 1520 case UserDefinedLiteralClass: 1521 return sizeof(UserDefinedLiteral); 1522 case CUDAKernelCallExprClass: 1523 return sizeof(CUDAKernelCallExpr); 1524 default: 1525 llvm_unreachable("unexpected class deriving from CallExpr!"); 1526 } 1527 } 1528 1529 Decl *Expr::getReferencedDeclOfCallee() { 1530 Expr *CEE = IgnoreParenImpCasts(); 1531 1532 while (SubstNonTypeTemplateParmExpr *NTTP = 1533 dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1534 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1535 } 1536 1537 // If we're calling a dereference, look at the pointer instead. 1538 while (true) { 1539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1540 if (BO->isPtrMemOp()) { 1541 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1542 continue; 1543 } 1544 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1545 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1546 UO->getOpcode() == UO_Plus) { 1547 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1548 continue; 1549 } 1550 } 1551 break; 1552 } 1553 1554 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1555 return DRE->getDecl(); 1556 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1557 return ME->getMemberDecl(); 1558 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1559 return BE->getBlockDecl(); 1560 1561 return nullptr; 1562 } 1563 1564 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1565 unsigned CallExpr::getBuiltinCallee() const { 1566 auto *FDecl = getDirectCallee(); 1567 return FDecl ? FDecl->getBuiltinID() : 0; 1568 } 1569 1570 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1571 if (unsigned BI = getBuiltinCallee()) 1572 return Ctx.BuiltinInfo.isUnevaluated(BI); 1573 return false; 1574 } 1575 1576 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1577 const Expr *Callee = getCallee(); 1578 QualType CalleeType = Callee->getType(); 1579 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1580 CalleeType = FnTypePtr->getPointeeType(); 1581 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1582 CalleeType = BPT->getPointeeType(); 1583 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1584 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1585 return Ctx.VoidTy; 1586 1587 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1588 return Ctx.DependentTy; 1589 1590 // This should never be overloaded and so should never return null. 1591 CalleeType = Expr::findBoundMemberType(Callee); 1592 assert(!CalleeType.isNull()); 1593 } else if (CalleeType->isDependentType() || 1594 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1595 return Ctx.DependentTy; 1596 } 1597 1598 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1599 return FnType->getReturnType(); 1600 } 1601 1602 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1603 // If the return type is a struct, union, or enum that is marked nodiscard, 1604 // then return the return type attribute. 1605 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1606 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1607 return A; 1608 1609 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; 1610 TD = TD->desugar()->getAs<TypedefType>()) 1611 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) 1612 return A; 1613 1614 // Otherwise, see if the callee is marked nodiscard and return that attribute 1615 // instead. 1616 const Decl *D = getCalleeDecl(); 1617 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1618 } 1619 1620 SourceLocation CallExpr::getBeginLoc() const { 1621 if (isa<CXXOperatorCallExpr>(this)) 1622 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1623 1624 SourceLocation begin = getCallee()->getBeginLoc(); 1625 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1626 begin = getArg(0)->getBeginLoc(); 1627 return begin; 1628 } 1629 SourceLocation CallExpr::getEndLoc() const { 1630 if (isa<CXXOperatorCallExpr>(this)) 1631 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1632 1633 SourceLocation end = getRParenLoc(); 1634 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1635 end = getArg(getNumArgs() - 1)->getEndLoc(); 1636 return end; 1637 } 1638 1639 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1640 SourceLocation OperatorLoc, 1641 TypeSourceInfo *tsi, 1642 ArrayRef<OffsetOfNode> comps, 1643 ArrayRef<Expr*> exprs, 1644 SourceLocation RParenLoc) { 1645 void *Mem = C.Allocate( 1646 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1647 1648 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1649 RParenLoc); 1650 } 1651 1652 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1653 unsigned numComps, unsigned numExprs) { 1654 void *Mem = 1655 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1656 return new (Mem) OffsetOfExpr(numComps, numExprs); 1657 } 1658 1659 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1660 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1661 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1662 SourceLocation RParenLoc) 1663 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1664 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1665 NumComps(comps.size()), NumExprs(exprs.size()) { 1666 for (unsigned i = 0; i != comps.size(); ++i) 1667 setComponent(i, comps[i]); 1668 for (unsigned i = 0; i != exprs.size(); ++i) 1669 setIndexExpr(i, exprs[i]); 1670 1671 setDependence(computeDependence(this)); 1672 } 1673 1674 IdentifierInfo *OffsetOfNode::getFieldName() const { 1675 assert(getKind() == Field || getKind() == Identifier); 1676 if (getKind() == Field) 1677 return getField()->getIdentifier(); 1678 1679 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1680 } 1681 1682 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1683 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1684 SourceLocation op, SourceLocation rp) 1685 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1686 OpLoc(op), RParenLoc(rp) { 1687 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1688 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1689 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1690 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1691 UnaryExprOrTypeTraitExprBits.IsType = false; 1692 Argument.Ex = E; 1693 setDependence(computeDependence(this)); 1694 } 1695 1696 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1697 ValueDecl *MemberDecl, 1698 const DeclarationNameInfo &NameInfo, QualType T, 1699 ExprValueKind VK, ExprObjectKind OK, 1700 NonOdrUseReason NOUR) 1701 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1702 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1703 assert(!NameInfo.getName() || 1704 MemberDecl->getDeclName() == NameInfo.getName()); 1705 MemberExprBits.IsArrow = IsArrow; 1706 MemberExprBits.HasQualifierOrFoundDecl = false; 1707 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1708 MemberExprBits.HadMultipleCandidates = false; 1709 MemberExprBits.NonOdrUseReason = NOUR; 1710 MemberExprBits.OperatorLoc = OperatorLoc; 1711 setDependence(computeDependence(this)); 1712 } 1713 1714 MemberExpr *MemberExpr::Create( 1715 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1716 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1717 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1718 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1719 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1720 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1721 FoundDecl.getAccess() != MemberDecl->getAccess(); 1722 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1723 std::size_t Size = 1724 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1725 TemplateArgumentLoc>( 1726 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1727 TemplateArgs ? TemplateArgs->size() : 0); 1728 1729 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1730 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1731 NameInfo, T, VK, OK, NOUR); 1732 1733 // FIXME: remove remaining dependence computation to computeDependence(). 1734 auto Deps = E->getDependence(); 1735 if (HasQualOrFound) { 1736 // FIXME: Wrong. We should be looking at the member declaration we found. 1737 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) 1738 Deps |= ExprDependence::TypeValueInstantiation; 1739 else if (QualifierLoc && 1740 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1741 Deps |= ExprDependence::Instantiation; 1742 1743 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1744 1745 MemberExprNameQualifier *NQ = 1746 E->getTrailingObjects<MemberExprNameQualifier>(); 1747 NQ->QualifierLoc = QualifierLoc; 1748 NQ->FoundDecl = FoundDecl; 1749 } 1750 1751 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1752 TemplateArgs || TemplateKWLoc.isValid(); 1753 1754 if (TemplateArgs) { 1755 auto TemplateArgDeps = TemplateArgumentDependence::None; 1756 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1757 TemplateKWLoc, *TemplateArgs, 1758 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1759 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation) 1760 Deps |= ExprDependence::Instantiation; 1761 } else if (TemplateKWLoc.isValid()) { 1762 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1763 TemplateKWLoc); 1764 } 1765 E->setDependence(Deps); 1766 1767 return E; 1768 } 1769 1770 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1771 bool HasQualifier, bool HasFoundDecl, 1772 bool HasTemplateKWAndArgsInfo, 1773 unsigned NumTemplateArgs) { 1774 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1775 "template args but no template arg info?"); 1776 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1777 std::size_t Size = 1778 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1779 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1780 HasTemplateKWAndArgsInfo ? 1 : 0, 1781 NumTemplateArgs); 1782 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1783 return new (Mem) MemberExpr(EmptyShell()); 1784 } 1785 1786 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1787 MemberDecl = NewD; 1788 if (getType()->isUndeducedType()) 1789 setType(NewD->getType()); 1790 setDependence(computeDependence(this)); 1791 } 1792 1793 SourceLocation MemberExpr::getBeginLoc() const { 1794 if (isImplicitAccess()) { 1795 if (hasQualifier()) 1796 return getQualifierLoc().getBeginLoc(); 1797 return MemberLoc; 1798 } 1799 1800 // FIXME: We don't want this to happen. Rather, we should be able to 1801 // detect all kinds of implicit accesses more cleanly. 1802 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1803 if (BaseStartLoc.isValid()) 1804 return BaseStartLoc; 1805 return MemberLoc; 1806 } 1807 SourceLocation MemberExpr::getEndLoc() const { 1808 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1809 if (hasExplicitTemplateArgs()) 1810 EndLoc = getRAngleLoc(); 1811 else if (EndLoc.isInvalid()) 1812 EndLoc = getBase()->getEndLoc(); 1813 return EndLoc; 1814 } 1815 1816 bool CastExpr::CastConsistency() const { 1817 switch (getCastKind()) { 1818 case CK_DerivedToBase: 1819 case CK_UncheckedDerivedToBase: 1820 case CK_DerivedToBaseMemberPointer: 1821 case CK_BaseToDerived: 1822 case CK_BaseToDerivedMemberPointer: 1823 assert(!path_empty() && "Cast kind should have a base path!"); 1824 break; 1825 1826 case CK_CPointerToObjCPointerCast: 1827 assert(getType()->isObjCObjectPointerType()); 1828 assert(getSubExpr()->getType()->isPointerType()); 1829 goto CheckNoBasePath; 1830 1831 case CK_BlockPointerToObjCPointerCast: 1832 assert(getType()->isObjCObjectPointerType()); 1833 assert(getSubExpr()->getType()->isBlockPointerType()); 1834 goto CheckNoBasePath; 1835 1836 case CK_ReinterpretMemberPointer: 1837 assert(getType()->isMemberPointerType()); 1838 assert(getSubExpr()->getType()->isMemberPointerType()); 1839 goto CheckNoBasePath; 1840 1841 case CK_BitCast: 1842 // Arbitrary casts to C pointer types count as bitcasts. 1843 // Otherwise, we should only have block and ObjC pointer casts 1844 // here if they stay within the type kind. 1845 if (!getType()->isPointerType()) { 1846 assert(getType()->isObjCObjectPointerType() == 1847 getSubExpr()->getType()->isObjCObjectPointerType()); 1848 assert(getType()->isBlockPointerType() == 1849 getSubExpr()->getType()->isBlockPointerType()); 1850 } 1851 goto CheckNoBasePath; 1852 1853 case CK_AnyPointerToBlockPointerCast: 1854 assert(getType()->isBlockPointerType()); 1855 assert(getSubExpr()->getType()->isAnyPointerType() && 1856 !getSubExpr()->getType()->isBlockPointerType()); 1857 goto CheckNoBasePath; 1858 1859 case CK_CopyAndAutoreleaseBlockObject: 1860 assert(getType()->isBlockPointerType()); 1861 assert(getSubExpr()->getType()->isBlockPointerType()); 1862 goto CheckNoBasePath; 1863 1864 case CK_FunctionToPointerDecay: 1865 assert(getType()->isPointerType()); 1866 assert(getSubExpr()->getType()->isFunctionType()); 1867 goto CheckNoBasePath; 1868 1869 case CK_AddressSpaceConversion: { 1870 auto Ty = getType(); 1871 auto SETy = getSubExpr()->getType(); 1872 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1873 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1874 Ty = Ty->getPointeeType(); 1875 SETy = SETy->getPointeeType(); 1876 } 1877 assert((Ty->isDependentType() || SETy->isDependentType()) || 1878 (!Ty.isNull() && !SETy.isNull() && 1879 Ty.getAddressSpace() != SETy.getAddressSpace())); 1880 goto CheckNoBasePath; 1881 } 1882 // These should not have an inheritance path. 1883 case CK_Dynamic: 1884 case CK_ToUnion: 1885 case CK_ArrayToPointerDecay: 1886 case CK_NullToMemberPointer: 1887 case CK_NullToPointer: 1888 case CK_ConstructorConversion: 1889 case CK_IntegralToPointer: 1890 case CK_PointerToIntegral: 1891 case CK_ToVoid: 1892 case CK_VectorSplat: 1893 case CK_IntegralCast: 1894 case CK_BooleanToSignedIntegral: 1895 case CK_IntegralToFloating: 1896 case CK_FloatingToIntegral: 1897 case CK_FloatingCast: 1898 case CK_ObjCObjectLValueCast: 1899 case CK_FloatingRealToComplex: 1900 case CK_FloatingComplexToReal: 1901 case CK_FloatingComplexCast: 1902 case CK_FloatingComplexToIntegralComplex: 1903 case CK_IntegralRealToComplex: 1904 case CK_IntegralComplexToReal: 1905 case CK_IntegralComplexCast: 1906 case CK_IntegralComplexToFloatingComplex: 1907 case CK_ARCProduceObject: 1908 case CK_ARCConsumeObject: 1909 case CK_ARCReclaimReturnedObject: 1910 case CK_ARCExtendBlockObject: 1911 case CK_ZeroToOCLOpaqueType: 1912 case CK_IntToOCLSampler: 1913 case CK_FloatingToFixedPoint: 1914 case CK_FixedPointToFloating: 1915 case CK_FixedPointCast: 1916 case CK_FixedPointToIntegral: 1917 case CK_IntegralToFixedPoint: 1918 case CK_MatrixCast: 1919 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1920 goto CheckNoBasePath; 1921 1922 case CK_Dependent: 1923 case CK_LValueToRValue: 1924 case CK_NoOp: 1925 case CK_AtomicToNonAtomic: 1926 case CK_NonAtomicToAtomic: 1927 case CK_PointerToBoolean: 1928 case CK_IntegralToBoolean: 1929 case CK_FloatingToBoolean: 1930 case CK_MemberPointerToBoolean: 1931 case CK_FloatingComplexToBoolean: 1932 case CK_IntegralComplexToBoolean: 1933 case CK_LValueBitCast: // -> bool& 1934 case CK_LValueToRValueBitCast: 1935 case CK_UserDefinedConversion: // operator bool() 1936 case CK_BuiltinFnToFnPtr: 1937 case CK_FixedPointToBoolean: 1938 CheckNoBasePath: 1939 assert(path_empty() && "Cast kind should not have a base path!"); 1940 break; 1941 } 1942 return true; 1943 } 1944 1945 const char *CastExpr::getCastKindName(CastKind CK) { 1946 switch (CK) { 1947 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1948 #include "clang/AST/OperationKinds.def" 1949 } 1950 llvm_unreachable("Unhandled cast kind!"); 1951 } 1952 1953 namespace { 1954 // Skip over implicit nodes produced as part of semantic analysis. 1955 // Designed for use with IgnoreExprNodes. 1956 Expr *ignoreImplicitSemaNodes(Expr *E) { 1957 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1958 return Materialize->getSubExpr(); 1959 1960 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1961 return Binder->getSubExpr(); 1962 1963 if (auto *Full = dyn_cast<FullExpr>(E)) 1964 return Full->getSubExpr(); 1965 1966 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E); 1967 CPLIE && CPLIE->getInitExprs().size() == 1) 1968 return CPLIE->getInitExprs()[0]; 1969 1970 return E; 1971 } 1972 } // namespace 1973 1974 Expr *CastExpr::getSubExprAsWritten() { 1975 const Expr *SubExpr = nullptr; 1976 1977 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1978 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 1979 1980 // Conversions by constructor and conversion functions have a 1981 // subexpression describing the call; strip it off. 1982 if (E->getCastKind() == CK_ConstructorConversion) { 1983 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), 1984 ignoreImplicitSemaNodes); 1985 } else if (E->getCastKind() == CK_UserDefinedConversion) { 1986 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && 1987 "Unexpected SubExpr for CK_UserDefinedConversion."); 1988 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1989 SubExpr = MCE->getImplicitObjectArgument(); 1990 } 1991 } 1992 1993 return const_cast<Expr *>(SubExpr); 1994 } 1995 1996 NamedDecl *CastExpr::getConversionFunction() const { 1997 const Expr *SubExpr = nullptr; 1998 1999 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 2000 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 2001 2002 if (E->getCastKind() == CK_ConstructorConversion) 2003 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 2004 2005 if (E->getCastKind() == CK_UserDefinedConversion) { 2006 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 2007 return MCE->getMethodDecl(); 2008 } 2009 } 2010 2011 return nullptr; 2012 } 2013 2014 CXXBaseSpecifier **CastExpr::path_buffer() { 2015 switch (getStmtClass()) { 2016 #define ABSTRACT_STMT(x) 2017 #define CASTEXPR(Type, Base) \ 2018 case Stmt::Type##Class: \ 2019 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 2020 #define STMT(Type, Base) 2021 #include "clang/AST/StmtNodes.inc" 2022 default: 2023 llvm_unreachable("non-cast expressions not possible here"); 2024 } 2025 } 2026 2027 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 2028 QualType opType) { 2029 auto RD = unionType->castAs<RecordType>()->getDecl(); 2030 return getTargetFieldForToUnionCast(RD, opType); 2031 } 2032 2033 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 2034 QualType OpType) { 2035 auto &Ctx = RD->getASTContext(); 2036 RecordDecl::field_iterator Field, FieldEnd; 2037 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 2038 Field != FieldEnd; ++Field) { 2039 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 2040 !Field->isUnnamedBitfield()) { 2041 return *Field; 2042 } 2043 } 2044 return nullptr; 2045 } 2046 2047 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 2048 assert(hasStoredFPFeatures()); 2049 switch (getStmtClass()) { 2050 case ImplicitCastExprClass: 2051 return static_cast<ImplicitCastExpr *>(this) 2052 ->getTrailingObjects<FPOptionsOverride>(); 2053 case CStyleCastExprClass: 2054 return static_cast<CStyleCastExpr *>(this) 2055 ->getTrailingObjects<FPOptionsOverride>(); 2056 case CXXFunctionalCastExprClass: 2057 return static_cast<CXXFunctionalCastExpr *>(this) 2058 ->getTrailingObjects<FPOptionsOverride>(); 2059 case CXXStaticCastExprClass: 2060 return static_cast<CXXStaticCastExpr *>(this) 2061 ->getTrailingObjects<FPOptionsOverride>(); 2062 default: 2063 llvm_unreachable("Cast does not have FPFeatures"); 2064 } 2065 } 2066 2067 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 2068 CastKind Kind, Expr *Operand, 2069 const CXXCastPath *BasePath, 2070 ExprValueKind VK, 2071 FPOptionsOverride FPO) { 2072 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2073 void *Buffer = 2074 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2075 PathSize, FPO.requiresTrailingStorage())); 2076 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2077 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2078 assert((Kind != CK_LValueToRValue || 2079 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2080 "invalid type for lvalue-to-rvalue conversion"); 2081 ImplicitCastExpr *E = 2082 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 2083 if (PathSize) 2084 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2085 E->getTrailingObjects<CXXBaseSpecifier *>()); 2086 return E; 2087 } 2088 2089 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2090 unsigned PathSize, 2091 bool HasFPFeatures) { 2092 void *Buffer = 2093 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2094 PathSize, HasFPFeatures)); 2095 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2096 } 2097 2098 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2099 ExprValueKind VK, CastKind K, Expr *Op, 2100 const CXXCastPath *BasePath, 2101 FPOptionsOverride FPO, 2102 TypeSourceInfo *WrittenTy, 2103 SourceLocation L, SourceLocation R) { 2104 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2105 void *Buffer = 2106 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2107 PathSize, FPO.requiresTrailingStorage())); 2108 CStyleCastExpr *E = 2109 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2110 if (PathSize) 2111 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2112 E->getTrailingObjects<CXXBaseSpecifier *>()); 2113 return E; 2114 } 2115 2116 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2117 unsigned PathSize, 2118 bool HasFPFeatures) { 2119 void *Buffer = 2120 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2121 PathSize, HasFPFeatures)); 2122 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2123 } 2124 2125 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2126 /// corresponds to, e.g. "<<=". 2127 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2128 switch (Op) { 2129 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2130 #include "clang/AST/OperationKinds.def" 2131 } 2132 llvm_unreachable("Invalid OpCode!"); 2133 } 2134 2135 BinaryOperatorKind 2136 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2137 switch (OO) { 2138 default: llvm_unreachable("Not an overloadable binary operator"); 2139 case OO_Plus: return BO_Add; 2140 case OO_Minus: return BO_Sub; 2141 case OO_Star: return BO_Mul; 2142 case OO_Slash: return BO_Div; 2143 case OO_Percent: return BO_Rem; 2144 case OO_Caret: return BO_Xor; 2145 case OO_Amp: return BO_And; 2146 case OO_Pipe: return BO_Or; 2147 case OO_Equal: return BO_Assign; 2148 case OO_Spaceship: return BO_Cmp; 2149 case OO_Less: return BO_LT; 2150 case OO_Greater: return BO_GT; 2151 case OO_PlusEqual: return BO_AddAssign; 2152 case OO_MinusEqual: return BO_SubAssign; 2153 case OO_StarEqual: return BO_MulAssign; 2154 case OO_SlashEqual: return BO_DivAssign; 2155 case OO_PercentEqual: return BO_RemAssign; 2156 case OO_CaretEqual: return BO_XorAssign; 2157 case OO_AmpEqual: return BO_AndAssign; 2158 case OO_PipeEqual: return BO_OrAssign; 2159 case OO_LessLess: return BO_Shl; 2160 case OO_GreaterGreater: return BO_Shr; 2161 case OO_LessLessEqual: return BO_ShlAssign; 2162 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2163 case OO_EqualEqual: return BO_EQ; 2164 case OO_ExclaimEqual: return BO_NE; 2165 case OO_LessEqual: return BO_LE; 2166 case OO_GreaterEqual: return BO_GE; 2167 case OO_AmpAmp: return BO_LAnd; 2168 case OO_PipePipe: return BO_LOr; 2169 case OO_Comma: return BO_Comma; 2170 case OO_ArrowStar: return BO_PtrMemI; 2171 } 2172 } 2173 2174 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2175 static const OverloadedOperatorKind OverOps[] = { 2176 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2177 OO_Star, OO_Slash, OO_Percent, 2178 OO_Plus, OO_Minus, 2179 OO_LessLess, OO_GreaterGreater, 2180 OO_Spaceship, 2181 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2182 OO_EqualEqual, OO_ExclaimEqual, 2183 OO_Amp, 2184 OO_Caret, 2185 OO_Pipe, 2186 OO_AmpAmp, 2187 OO_PipePipe, 2188 OO_Equal, OO_StarEqual, 2189 OO_SlashEqual, OO_PercentEqual, 2190 OO_PlusEqual, OO_MinusEqual, 2191 OO_LessLessEqual, OO_GreaterGreaterEqual, 2192 OO_AmpEqual, OO_CaretEqual, 2193 OO_PipeEqual, 2194 OO_Comma 2195 }; 2196 return OverOps[Opc]; 2197 } 2198 2199 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2200 Opcode Opc, 2201 Expr *LHS, Expr *RHS) { 2202 if (Opc != BO_Add) 2203 return false; 2204 2205 // Check that we have one pointer and one integer operand. 2206 Expr *PExp; 2207 if (LHS->getType()->isPointerType()) { 2208 if (!RHS->getType()->isIntegerType()) 2209 return false; 2210 PExp = LHS; 2211 } else if (RHS->getType()->isPointerType()) { 2212 if (!LHS->getType()->isIntegerType()) 2213 return false; 2214 PExp = RHS; 2215 } else { 2216 return false; 2217 } 2218 2219 // Check that the pointer is a nullptr. 2220 if (!PExp->IgnoreParenCasts() 2221 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2222 return false; 2223 2224 // Check that the pointee type is char-sized. 2225 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2226 if (!PTy || !PTy->getPointeeType()->isCharType()) 2227 return false; 2228 2229 return true; 2230 } 2231 2232 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2233 QualType ResultTy, SourceLocation BLoc, 2234 SourceLocation RParenLoc, 2235 DeclContext *ParentContext) 2236 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), 2237 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2238 SourceLocExprBits.Kind = Kind; 2239 setDependence(ExprDependence::None); 2240 } 2241 2242 StringRef SourceLocExpr::getBuiltinStr() const { 2243 switch (getIdentKind()) { 2244 case File: 2245 return "__builtin_FILE"; 2246 case Function: 2247 return "__builtin_FUNCTION"; 2248 case Line: 2249 return "__builtin_LINE"; 2250 case Column: 2251 return "__builtin_COLUMN"; 2252 case SourceLocStruct: 2253 return "__builtin_source_location"; 2254 } 2255 llvm_unreachable("unexpected IdentKind!"); 2256 } 2257 2258 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2259 const Expr *DefaultExpr) const { 2260 SourceLocation Loc; 2261 const DeclContext *Context; 2262 2263 std::tie(Loc, 2264 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2265 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2266 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2267 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2268 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2269 return {this->getLocation(), this->getParentContext()}; 2270 }(); 2271 2272 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2273 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2274 2275 auto MakeStringLiteral = [&](StringRef Tmp) { 2276 using LValuePathEntry = APValue::LValuePathEntry; 2277 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2278 // Decay the string to a pointer to the first character. 2279 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2280 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2281 }; 2282 2283 switch (getIdentKind()) { 2284 case SourceLocExpr::File: { 2285 SmallString<256> Path(PLoc.getFilename()); 2286 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2287 Ctx.getTargetInfo()); 2288 return MakeStringLiteral(Path); 2289 } 2290 case SourceLocExpr::Function: { 2291 const auto *CurDecl = dyn_cast<Decl>(Context); 2292 return MakeStringLiteral( 2293 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2294 : std::string("")); 2295 } 2296 case SourceLocExpr::Line: 2297 case SourceLocExpr::Column: { 2298 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2299 /*isUnsigned=*/true); 2300 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2301 : PLoc.getColumn(); 2302 return APValue(IntVal); 2303 } 2304 case SourceLocExpr::SourceLocStruct: { 2305 // Fill in a std::source_location::__impl structure, by creating an 2306 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to 2307 // that. 2308 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); 2309 assert(ImplDecl); 2310 2311 // Construct an APValue for the __impl struct, and get or create a Decl 2312 // corresponding to that. Note that we've already verified that the shape of 2313 // the ImplDecl type is as expected. 2314 2315 APValue Value(APValue::UninitStruct(), 0, 4); 2316 for (FieldDecl *F : ImplDecl->fields()) { 2317 StringRef Name = F->getName(); 2318 if (Name == "_M_file_name") { 2319 SmallString<256> Path(PLoc.getFilename()); 2320 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2321 Ctx.getTargetInfo()); 2322 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); 2323 } else if (Name == "_M_function_name") { 2324 // Note: this emits the PrettyFunction name -- different than what 2325 // __builtin_FUNCTION() above returns! 2326 const auto *CurDecl = dyn_cast<Decl>(Context); 2327 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( 2328 CurDecl && !isa<TranslationUnitDecl>(CurDecl) 2329 ? StringRef(PredefinedExpr::ComputeName( 2330 PredefinedExpr::PrettyFunction, CurDecl)) 2331 : ""); 2332 } else if (Name == "_M_line") { 2333 QualType Ty = F->getType(); 2334 llvm::APSInt IntVal(Ctx.getIntWidth(Ty), 2335 Ty->hasUnsignedIntegerRepresentation()); 2336 IntVal = PLoc.getLine(); 2337 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2338 } else if (Name == "_M_column") { 2339 QualType Ty = F->getType(); 2340 llvm::APSInt IntVal(Ctx.getIntWidth(Ty), 2341 Ty->hasUnsignedIntegerRepresentation()); 2342 IntVal = PLoc.getColumn(); 2343 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2344 } 2345 } 2346 2347 UnnamedGlobalConstantDecl *GV = 2348 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); 2349 2350 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, 2351 false); 2352 } 2353 } 2354 llvm_unreachable("unhandled case"); 2355 } 2356 2357 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2358 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2359 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2360 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2361 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2362 sawArrayRangeDesignator(false); 2363 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2364 2365 setDependence(computeDependence(this)); 2366 } 2367 2368 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2369 if (NumInits > InitExprs.size()) 2370 InitExprs.reserve(C, NumInits); 2371 } 2372 2373 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2374 InitExprs.resize(C, NumInits, nullptr); 2375 } 2376 2377 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2378 if (Init >= InitExprs.size()) { 2379 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2380 setInit(Init, expr); 2381 return nullptr; 2382 } 2383 2384 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2385 setInit(Init, expr); 2386 return Result; 2387 } 2388 2389 void InitListExpr::setArrayFiller(Expr *filler) { 2390 assert(!hasArrayFiller() && "Filler already set!"); 2391 ArrayFillerOrUnionFieldInit = filler; 2392 // Fill out any "holes" in the array due to designated initializers. 2393 Expr **inits = getInits(); 2394 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2395 if (inits[i] == nullptr) 2396 inits[i] = filler; 2397 } 2398 2399 bool InitListExpr::isStringLiteralInit() const { 2400 if (getNumInits() != 1) 2401 return false; 2402 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2403 if (!AT || !AT->getElementType()->isIntegerType()) 2404 return false; 2405 // It is possible for getInit() to return null. 2406 const Expr *Init = getInit(0); 2407 if (!Init) 2408 return false; 2409 Init = Init->IgnoreParenImpCasts(); 2410 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2411 } 2412 2413 bool InitListExpr::isTransparent() const { 2414 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2415 2416 // A glvalue InitListExpr is always just sugar. 2417 if (isGLValue()) { 2418 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2419 return true; 2420 } 2421 2422 // Otherwise, we're sugar if and only if we have exactly one initializer that 2423 // is of the same type. 2424 if (getNumInits() != 1 || !getInit(0)) 2425 return false; 2426 2427 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2428 // transparent struct copy. 2429 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2430 return false; 2431 2432 return getType().getCanonicalType() == 2433 getInit(0)->getType().getCanonicalType(); 2434 } 2435 2436 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2437 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2438 2439 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2440 return false; 2441 } 2442 2443 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2444 return Lit && Lit->getValue() == 0; 2445 } 2446 2447 SourceLocation InitListExpr::getBeginLoc() const { 2448 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2449 return SyntacticForm->getBeginLoc(); 2450 SourceLocation Beg = LBraceLoc; 2451 if (Beg.isInvalid()) { 2452 // Find the first non-null initializer. 2453 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2454 E = InitExprs.end(); 2455 I != E; ++I) { 2456 if (Stmt *S = *I) { 2457 Beg = S->getBeginLoc(); 2458 break; 2459 } 2460 } 2461 } 2462 return Beg; 2463 } 2464 2465 SourceLocation InitListExpr::getEndLoc() const { 2466 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2467 return SyntacticForm->getEndLoc(); 2468 SourceLocation End = RBraceLoc; 2469 if (End.isInvalid()) { 2470 // Find the first non-null initializer from the end. 2471 for (Stmt *S : llvm::reverse(InitExprs)) { 2472 if (S) { 2473 End = S->getEndLoc(); 2474 break; 2475 } 2476 } 2477 } 2478 return End; 2479 } 2480 2481 /// getFunctionType - Return the underlying function type for this block. 2482 /// 2483 const FunctionProtoType *BlockExpr::getFunctionType() const { 2484 // The block pointer is never sugared, but the function type might be. 2485 return cast<BlockPointerType>(getType()) 2486 ->getPointeeType()->castAs<FunctionProtoType>(); 2487 } 2488 2489 SourceLocation BlockExpr::getCaretLocation() const { 2490 return TheBlock->getCaretLocation(); 2491 } 2492 const Stmt *BlockExpr::getBody() const { 2493 return TheBlock->getBody(); 2494 } 2495 Stmt *BlockExpr::getBody() { 2496 return TheBlock->getBody(); 2497 } 2498 2499 2500 //===----------------------------------------------------------------------===// 2501 // Generic Expression Routines 2502 //===----------------------------------------------------------------------===// 2503 2504 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2505 // In C++11, discarded-value expressions of a certain form are special, 2506 // according to [expr]p10: 2507 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2508 // expression is a glvalue of volatile-qualified type and it has 2509 // one of the following forms: 2510 if (!isGLValue() || !getType().isVolatileQualified()) 2511 return false; 2512 2513 const Expr *E = IgnoreParens(); 2514 2515 // - id-expression (5.1.1), 2516 if (isa<DeclRefExpr>(E)) 2517 return true; 2518 2519 // - subscripting (5.2.1), 2520 if (isa<ArraySubscriptExpr>(E)) 2521 return true; 2522 2523 // - class member access (5.2.5), 2524 if (isa<MemberExpr>(E)) 2525 return true; 2526 2527 // - indirection (5.3.1), 2528 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2529 if (UO->getOpcode() == UO_Deref) 2530 return true; 2531 2532 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2533 // - pointer-to-member operation (5.5), 2534 if (BO->isPtrMemOp()) 2535 return true; 2536 2537 // - comma expression (5.18) where the right operand is one of the above. 2538 if (BO->getOpcode() == BO_Comma) 2539 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2540 } 2541 2542 // - conditional expression (5.16) where both the second and the third 2543 // operands are one of the above, or 2544 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2545 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2546 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2547 // The related edge case of "*x ?: *x". 2548 if (auto *BCO = 2549 dyn_cast<BinaryConditionalOperator>(E)) { 2550 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2551 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2552 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2553 } 2554 2555 // Objective-C++ extensions to the rule. 2556 if (isa<ObjCIvarRefExpr>(E)) 2557 return true; 2558 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { 2559 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) 2560 return true; 2561 } 2562 2563 return false; 2564 } 2565 2566 /// isUnusedResultAWarning - Return true if this immediate expression should 2567 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2568 /// with location to warn on and the source range[s] to report with the 2569 /// warning. 2570 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2571 SourceRange &R1, SourceRange &R2, 2572 ASTContext &Ctx) const { 2573 // Don't warn if the expr is type dependent. The type could end up 2574 // instantiating to void. 2575 if (isTypeDependent()) 2576 return false; 2577 2578 switch (getStmtClass()) { 2579 default: 2580 if (getType()->isVoidType()) 2581 return false; 2582 WarnE = this; 2583 Loc = getExprLoc(); 2584 R1 = getSourceRange(); 2585 return true; 2586 case ParenExprClass: 2587 return cast<ParenExpr>(this)->getSubExpr()-> 2588 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2589 case GenericSelectionExprClass: 2590 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2591 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2592 case CoawaitExprClass: 2593 case CoyieldExprClass: 2594 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2595 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2596 case ChooseExprClass: 2597 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2598 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2599 case UnaryOperatorClass: { 2600 const UnaryOperator *UO = cast<UnaryOperator>(this); 2601 2602 switch (UO->getOpcode()) { 2603 case UO_Plus: 2604 case UO_Minus: 2605 case UO_AddrOf: 2606 case UO_Not: 2607 case UO_LNot: 2608 case UO_Deref: 2609 break; 2610 case UO_Coawait: 2611 // This is just the 'operator co_await' call inside the guts of a 2612 // dependent co_await call. 2613 case UO_PostInc: 2614 case UO_PostDec: 2615 case UO_PreInc: 2616 case UO_PreDec: // ++/-- 2617 return false; // Not a warning. 2618 case UO_Real: 2619 case UO_Imag: 2620 // accessing a piece of a volatile complex is a side-effect. 2621 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2622 .isVolatileQualified()) 2623 return false; 2624 break; 2625 case UO_Extension: 2626 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2627 } 2628 WarnE = this; 2629 Loc = UO->getOperatorLoc(); 2630 R1 = UO->getSubExpr()->getSourceRange(); 2631 return true; 2632 } 2633 case BinaryOperatorClass: { 2634 const BinaryOperator *BO = cast<BinaryOperator>(this); 2635 switch (BO->getOpcode()) { 2636 default: 2637 break; 2638 // Consider the RHS of comma for side effects. LHS was checked by 2639 // Sema::CheckCommaOperands. 2640 case BO_Comma: 2641 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2642 // lvalue-ness) of an assignment written in a macro. 2643 if (IntegerLiteral *IE = 2644 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2645 if (IE->getValue() == 0) 2646 return false; 2647 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2648 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2649 case BO_LAnd: 2650 case BO_LOr: 2651 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2652 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2653 return false; 2654 break; 2655 } 2656 if (BO->isAssignmentOp()) 2657 return false; 2658 WarnE = this; 2659 Loc = BO->getOperatorLoc(); 2660 R1 = BO->getLHS()->getSourceRange(); 2661 R2 = BO->getRHS()->getSourceRange(); 2662 return true; 2663 } 2664 case CompoundAssignOperatorClass: 2665 case VAArgExprClass: 2666 case AtomicExprClass: 2667 return false; 2668 2669 case ConditionalOperatorClass: { 2670 // If only one of the LHS or RHS is a warning, the operator might 2671 // be being used for control flow. Only warn if both the LHS and 2672 // RHS are warnings. 2673 const auto *Exp = cast<ConditionalOperator>(this); 2674 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2675 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2676 } 2677 case BinaryConditionalOperatorClass: { 2678 const auto *Exp = cast<BinaryConditionalOperator>(this); 2679 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2680 } 2681 2682 case MemberExprClass: 2683 WarnE = this; 2684 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2685 R1 = SourceRange(Loc, Loc); 2686 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2687 return true; 2688 2689 case ArraySubscriptExprClass: 2690 WarnE = this; 2691 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2692 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2693 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2694 return true; 2695 2696 case CXXOperatorCallExprClass: { 2697 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2698 // overloads as there is no reasonable way to define these such that they 2699 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2700 // warning: operators == and != are commonly typo'ed, and so warning on them 2701 // provides additional value as well. If this list is updated, 2702 // DiagnoseUnusedComparison should be as well. 2703 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2704 switch (Op->getOperator()) { 2705 default: 2706 break; 2707 case OO_EqualEqual: 2708 case OO_ExclaimEqual: 2709 case OO_Less: 2710 case OO_Greater: 2711 case OO_GreaterEqual: 2712 case OO_LessEqual: 2713 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2714 Op->getCallReturnType(Ctx)->isVoidType()) 2715 break; 2716 WarnE = this; 2717 Loc = Op->getOperatorLoc(); 2718 R1 = Op->getSourceRange(); 2719 return true; 2720 } 2721 2722 // Fallthrough for generic call handling. 2723 [[fallthrough]]; 2724 } 2725 case CallExprClass: 2726 case CXXMemberCallExprClass: 2727 case UserDefinedLiteralClass: { 2728 // If this is a direct call, get the callee. 2729 const CallExpr *CE = cast<CallExpr>(this); 2730 if (const Decl *FD = CE->getCalleeDecl()) { 2731 // If the callee has attribute pure, const, or warn_unused_result, warn 2732 // about it. void foo() { strlen("bar"); } should warn. 2733 // 2734 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2735 // updated to match for QoI. 2736 if (CE->hasUnusedResultAttr(Ctx) || 2737 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2738 WarnE = this; 2739 Loc = CE->getCallee()->getBeginLoc(); 2740 R1 = CE->getCallee()->getSourceRange(); 2741 2742 if (unsigned NumArgs = CE->getNumArgs()) 2743 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2744 CE->getArg(NumArgs - 1)->getEndLoc()); 2745 return true; 2746 } 2747 } 2748 return false; 2749 } 2750 2751 // If we don't know precisely what we're looking at, let's not warn. 2752 case UnresolvedLookupExprClass: 2753 case CXXUnresolvedConstructExprClass: 2754 case RecoveryExprClass: 2755 return false; 2756 2757 case CXXTemporaryObjectExprClass: 2758 case CXXConstructExprClass: { 2759 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2760 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2761 if (Type->hasAttr<WarnUnusedAttr>() || 2762 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2763 WarnE = this; 2764 Loc = getBeginLoc(); 2765 R1 = getSourceRange(); 2766 return true; 2767 } 2768 } 2769 2770 const auto *CE = cast<CXXConstructExpr>(this); 2771 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2772 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2773 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2774 WarnE = this; 2775 Loc = getBeginLoc(); 2776 R1 = getSourceRange(); 2777 2778 if (unsigned NumArgs = CE->getNumArgs()) 2779 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2780 CE->getArg(NumArgs - 1)->getEndLoc()); 2781 return true; 2782 } 2783 } 2784 2785 return false; 2786 } 2787 2788 case ObjCMessageExprClass: { 2789 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2790 if (Ctx.getLangOpts().ObjCAutoRefCount && 2791 ME->isInstanceMessage() && 2792 !ME->getType()->isVoidType() && 2793 ME->getMethodFamily() == OMF_init) { 2794 WarnE = this; 2795 Loc = getExprLoc(); 2796 R1 = ME->getSourceRange(); 2797 return true; 2798 } 2799 2800 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2801 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2802 WarnE = this; 2803 Loc = getExprLoc(); 2804 return true; 2805 } 2806 2807 return false; 2808 } 2809 2810 case ObjCPropertyRefExprClass: 2811 case ObjCSubscriptRefExprClass: 2812 WarnE = this; 2813 Loc = getExprLoc(); 2814 R1 = getSourceRange(); 2815 return true; 2816 2817 case PseudoObjectExprClass: { 2818 const auto *POE = cast<PseudoObjectExpr>(this); 2819 2820 // For some syntactic forms, we should always warn. 2821 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( 2822 POE->getSyntacticForm())) { 2823 WarnE = this; 2824 Loc = getExprLoc(); 2825 R1 = getSourceRange(); 2826 return true; 2827 } 2828 2829 // For others, we should never warn. 2830 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) 2831 if (BO->isAssignmentOp()) 2832 return false; 2833 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) 2834 if (UO->isIncrementDecrementOp()) 2835 return false; 2836 2837 // Otherwise, warn if the result expression would warn. 2838 const Expr *Result = POE->getResultExpr(); 2839 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2840 } 2841 2842 case StmtExprClass: { 2843 // Statement exprs don't logically have side effects themselves, but are 2844 // sometimes used in macros in ways that give them a type that is unused. 2845 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2846 // however, if the result of the stmt expr is dead, we don't want to emit a 2847 // warning. 2848 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2849 if (!CS->body_empty()) { 2850 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2851 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2852 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2853 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2854 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2855 } 2856 2857 if (getType()->isVoidType()) 2858 return false; 2859 WarnE = this; 2860 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2861 R1 = getSourceRange(); 2862 return true; 2863 } 2864 case CXXFunctionalCastExprClass: 2865 case CStyleCastExprClass: { 2866 // Ignore an explicit cast to void, except in C++98 if the operand is a 2867 // volatile glvalue for which we would trigger an implicit read in any 2868 // other language mode. (Such an implicit read always happens as part of 2869 // the lvalue conversion in C, and happens in C++ for expressions of all 2870 // forms where it seems likely the user intended to trigger a volatile 2871 // load.) 2872 const CastExpr *CE = cast<CastExpr>(this); 2873 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2874 if (CE->getCastKind() == CK_ToVoid) { 2875 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2876 SubE->isReadIfDiscardedInCPlusPlus11()) { 2877 // Suppress the "unused value" warning for idiomatic usage of 2878 // '(void)var;' used to suppress "unused variable" warnings. 2879 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2880 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2881 if (!VD->isExternallyVisible()) 2882 return false; 2883 2884 // The lvalue-to-rvalue conversion would have no effect for an array. 2885 // It's implausible that the programmer expected this to result in a 2886 // volatile array load, so don't warn. 2887 if (SubE->getType()->isArrayType()) 2888 return false; 2889 2890 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2891 } 2892 return false; 2893 } 2894 2895 // If this is a cast to a constructor conversion, check the operand. 2896 // Otherwise, the result of the cast is unused. 2897 if (CE->getCastKind() == CK_ConstructorConversion) 2898 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2899 if (CE->getCastKind() == CK_Dependent) 2900 return false; 2901 2902 WarnE = this; 2903 if (const CXXFunctionalCastExpr *CXXCE = 2904 dyn_cast<CXXFunctionalCastExpr>(this)) { 2905 Loc = CXXCE->getBeginLoc(); 2906 R1 = CXXCE->getSubExpr()->getSourceRange(); 2907 } else { 2908 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2909 Loc = CStyleCE->getLParenLoc(); 2910 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2911 } 2912 return true; 2913 } 2914 case ImplicitCastExprClass: { 2915 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2916 2917 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2918 if (ICE->getCastKind() == CK_LValueToRValue && 2919 ICE->getSubExpr()->getType().isVolatileQualified()) 2920 return false; 2921 2922 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2923 } 2924 case CXXDefaultArgExprClass: 2925 return (cast<CXXDefaultArgExpr>(this) 2926 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2927 case CXXDefaultInitExprClass: 2928 return (cast<CXXDefaultInitExpr>(this) 2929 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2930 2931 case CXXNewExprClass: 2932 // FIXME: In theory, there might be new expressions that don't have side 2933 // effects (e.g. a placement new with an uninitialized POD). 2934 case CXXDeleteExprClass: 2935 return false; 2936 case MaterializeTemporaryExprClass: 2937 return cast<MaterializeTemporaryExpr>(this) 2938 ->getSubExpr() 2939 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2940 case CXXBindTemporaryExprClass: 2941 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2942 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2943 case ExprWithCleanupsClass: 2944 return cast<ExprWithCleanups>(this)->getSubExpr() 2945 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2946 } 2947 } 2948 2949 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2950 /// returns true, if it is; false otherwise. 2951 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2952 const Expr *E = IgnoreParens(); 2953 switch (E->getStmtClass()) { 2954 default: 2955 return false; 2956 case ObjCIvarRefExprClass: 2957 return true; 2958 case Expr::UnaryOperatorClass: 2959 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2960 case ImplicitCastExprClass: 2961 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2962 case MaterializeTemporaryExprClass: 2963 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2964 Ctx); 2965 case CStyleCastExprClass: 2966 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2967 case DeclRefExprClass: { 2968 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2969 2970 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2971 if (VD->hasGlobalStorage()) 2972 return true; 2973 QualType T = VD->getType(); 2974 // dereferencing to a pointer is always a gc'able candidate, 2975 // unless it is __weak. 2976 return T->isPointerType() && 2977 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2978 } 2979 return false; 2980 } 2981 case MemberExprClass: { 2982 const MemberExpr *M = cast<MemberExpr>(E); 2983 return M->getBase()->isOBJCGCCandidate(Ctx); 2984 } 2985 case ArraySubscriptExprClass: 2986 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2987 } 2988 } 2989 2990 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2991 if (isTypeDependent()) 2992 return false; 2993 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2994 } 2995 2996 QualType Expr::findBoundMemberType(const Expr *expr) { 2997 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2998 2999 // Bound member expressions are always one of these possibilities: 3000 // x->m x.m x->*y x.*y 3001 // (possibly parenthesized) 3002 3003 expr = expr->IgnoreParens(); 3004 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 3005 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 3006 return mem->getMemberDecl()->getType(); 3007 } 3008 3009 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 3010 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 3011 ->getPointeeType(); 3012 assert(type->isFunctionType()); 3013 return type; 3014 } 3015 3016 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 3017 return QualType(); 3018 } 3019 3020 Expr *Expr::IgnoreImpCasts() { 3021 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 3022 } 3023 3024 Expr *Expr::IgnoreCasts() { 3025 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 3026 } 3027 3028 Expr *Expr::IgnoreImplicit() { 3029 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 3030 } 3031 3032 Expr *Expr::IgnoreImplicitAsWritten() { 3033 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 3034 } 3035 3036 Expr *Expr::IgnoreParens() { 3037 return IgnoreExprNodes(this, IgnoreParensSingleStep); 3038 } 3039 3040 Expr *Expr::IgnoreParenImpCasts() { 3041 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3042 IgnoreImplicitCastsExtraSingleStep); 3043 } 3044 3045 Expr *Expr::IgnoreParenCasts() { 3046 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 3047 } 3048 3049 Expr *Expr::IgnoreConversionOperatorSingleStep() { 3050 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 3051 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 3052 return MCE->getImplicitObjectArgument(); 3053 } 3054 return this; 3055 } 3056 3057 Expr *Expr::IgnoreParenLValueCasts() { 3058 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3059 IgnoreLValueCastsSingleStep); 3060 } 3061 3062 Expr *Expr::IgnoreParenBaseCasts() { 3063 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3064 IgnoreBaseCastsSingleStep); 3065 } 3066 3067 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 3068 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 3069 if (auto *CE = dyn_cast<CastExpr>(E)) { 3070 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 3071 // ptr<->int casts of the same width. We also ignore all identity casts. 3072 Expr *SubExpr = CE->getSubExpr(); 3073 bool IsIdentityCast = 3074 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 3075 bool IsSameWidthCast = (E->getType()->isPointerType() || 3076 E->getType()->isIntegralType(Ctx)) && 3077 (SubExpr->getType()->isPointerType() || 3078 SubExpr->getType()->isIntegralType(Ctx)) && 3079 (Ctx.getTypeSize(E->getType()) == 3080 Ctx.getTypeSize(SubExpr->getType())); 3081 3082 if (IsIdentityCast || IsSameWidthCast) 3083 return SubExpr; 3084 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 3085 return NTTP->getReplacement(); 3086 3087 return E; 3088 }; 3089 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3090 IgnoreNoopCastsSingleStep); 3091 } 3092 3093 Expr *Expr::IgnoreUnlessSpelledInSource() { 3094 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 3095 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 3096 auto *SE = Cast->getSubExpr(); 3097 if (SE->getSourceRange() == E->getSourceRange()) 3098 return SE; 3099 } 3100 3101 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3102 auto NumArgs = C->getNumArgs(); 3103 if (NumArgs == 1 || 3104 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 3105 Expr *A = C->getArg(0); 3106 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3107 return A; 3108 } 3109 } 3110 return E; 3111 }; 3112 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3113 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3114 Expr *ExprNode = C->getImplicitObjectArgument(); 3115 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3116 return ExprNode; 3117 } 3118 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3119 if (PE->getSourceRange() == C->getSourceRange()) { 3120 return cast<Expr>(PE); 3121 } 3122 } 3123 ExprNode = ExprNode->IgnoreParenImpCasts(); 3124 if (ExprNode->getSourceRange() == E->getSourceRange()) 3125 return ExprNode; 3126 } 3127 return E; 3128 }; 3129 return IgnoreExprNodes( 3130 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3131 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3132 IgnoreImplicitMemberCallSingleStep); 3133 } 3134 3135 bool Expr::isDefaultArgument() const { 3136 const Expr *E = this; 3137 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3138 E = M->getSubExpr(); 3139 3140 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3141 E = ICE->getSubExprAsWritten(); 3142 3143 return isa<CXXDefaultArgExpr>(E); 3144 } 3145 3146 /// Skip over any no-op casts and any temporary-binding 3147 /// expressions. 3148 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3149 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3150 E = M->getSubExpr(); 3151 3152 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3153 if (ICE->getCastKind() == CK_NoOp) 3154 E = ICE->getSubExpr(); 3155 else 3156 break; 3157 } 3158 3159 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3160 E = BE->getSubExpr(); 3161 3162 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3163 if (ICE->getCastKind() == CK_NoOp) 3164 E = ICE->getSubExpr(); 3165 else 3166 break; 3167 } 3168 3169 return E->IgnoreParens(); 3170 } 3171 3172 /// isTemporaryObject - Determines if this expression produces a 3173 /// temporary of the given class type. 3174 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3175 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3176 return false; 3177 3178 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3179 3180 // Temporaries are by definition pr-values of class type. 3181 if (!E->Classify(C).isPRValue()) { 3182 // In this context, property reference is a message call and is pr-value. 3183 if (!isa<ObjCPropertyRefExpr>(E)) 3184 return false; 3185 } 3186 3187 // Black-list a few cases which yield pr-values of class type that don't 3188 // refer to temporaries of that type: 3189 3190 // - implicit derived-to-base conversions 3191 if (isa<ImplicitCastExpr>(E)) { 3192 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3193 case CK_DerivedToBase: 3194 case CK_UncheckedDerivedToBase: 3195 return false; 3196 default: 3197 break; 3198 } 3199 } 3200 3201 // - member expressions (all) 3202 if (isa<MemberExpr>(E)) 3203 return false; 3204 3205 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3206 if (BO->isPtrMemOp()) 3207 return false; 3208 3209 // - opaque values (all) 3210 if (isa<OpaqueValueExpr>(E)) 3211 return false; 3212 3213 return true; 3214 } 3215 3216 bool Expr::isImplicitCXXThis() const { 3217 const Expr *E = this; 3218 3219 // Strip away parentheses and casts we don't care about. 3220 while (true) { 3221 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3222 E = Paren->getSubExpr(); 3223 continue; 3224 } 3225 3226 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3227 if (ICE->getCastKind() == CK_NoOp || 3228 ICE->getCastKind() == CK_LValueToRValue || 3229 ICE->getCastKind() == CK_DerivedToBase || 3230 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3231 E = ICE->getSubExpr(); 3232 continue; 3233 } 3234 } 3235 3236 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3237 if (UnOp->getOpcode() == UO_Extension) { 3238 E = UnOp->getSubExpr(); 3239 continue; 3240 } 3241 } 3242 3243 if (const MaterializeTemporaryExpr *M 3244 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3245 E = M->getSubExpr(); 3246 continue; 3247 } 3248 3249 break; 3250 } 3251 3252 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3253 return This->isImplicit(); 3254 3255 return false; 3256 } 3257 3258 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3259 /// in Exprs is type-dependent. 3260 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3261 for (unsigned I = 0; I < Exprs.size(); ++I) 3262 if (Exprs[I]->isTypeDependent()) 3263 return true; 3264 3265 return false; 3266 } 3267 3268 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3269 const Expr **Culprit) const { 3270 assert(!isValueDependent() && 3271 "Expression evaluator can't be called on a dependent expression."); 3272 3273 // This function is attempting whether an expression is an initializer 3274 // which can be evaluated at compile-time. It very closely parallels 3275 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3276 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3277 // to isEvaluatable most of the time. 3278 // 3279 // If we ever capture reference-binding directly in the AST, we can 3280 // kill the second parameter. 3281 3282 if (IsForRef) { 3283 EvalResult Result; 3284 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3285 return true; 3286 if (Culprit) 3287 *Culprit = this; 3288 return false; 3289 } 3290 3291 switch (getStmtClass()) { 3292 default: break; 3293 case Stmt::ExprWithCleanupsClass: 3294 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3295 Ctx, IsForRef, Culprit); 3296 case StringLiteralClass: 3297 case ObjCEncodeExprClass: 3298 return true; 3299 case CXXTemporaryObjectExprClass: 3300 case CXXConstructExprClass: { 3301 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3302 3303 if (CE->getConstructor()->isTrivial() && 3304 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3305 // Trivial default constructor 3306 if (!CE->getNumArgs()) return true; 3307 3308 // Trivial copy constructor 3309 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3310 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3311 } 3312 3313 break; 3314 } 3315 case ConstantExprClass: { 3316 // FIXME: We should be able to return "true" here, but it can lead to extra 3317 // error messages. E.g. in Sema/array-init.c. 3318 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3319 return Exp->isConstantInitializer(Ctx, false, Culprit); 3320 } 3321 case CompoundLiteralExprClass: { 3322 // This handles gcc's extension that allows global initializers like 3323 // "struct x {int x;} x = (struct x) {};". 3324 // FIXME: This accepts other cases it shouldn't! 3325 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3326 return Exp->isConstantInitializer(Ctx, false, Culprit); 3327 } 3328 case DesignatedInitUpdateExprClass: { 3329 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3330 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3331 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3332 } 3333 case InitListExprClass: { 3334 const InitListExpr *ILE = cast<InitListExpr>(this); 3335 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3336 if (ILE->getType()->isArrayType()) { 3337 unsigned numInits = ILE->getNumInits(); 3338 for (unsigned i = 0; i < numInits; i++) { 3339 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3340 return false; 3341 } 3342 return true; 3343 } 3344 3345 if (ILE->getType()->isRecordType()) { 3346 unsigned ElementNo = 0; 3347 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3348 for (const auto *Field : RD->fields()) { 3349 // If this is a union, skip all the fields that aren't being initialized. 3350 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3351 continue; 3352 3353 // Don't emit anonymous bitfields, they just affect layout. 3354 if (Field->isUnnamedBitfield()) 3355 continue; 3356 3357 if (ElementNo < ILE->getNumInits()) { 3358 const Expr *Elt = ILE->getInit(ElementNo++); 3359 if (Field->isBitField()) { 3360 // Bitfields have to evaluate to an integer. 3361 EvalResult Result; 3362 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3363 if (Culprit) 3364 *Culprit = Elt; 3365 return false; 3366 } 3367 } else { 3368 bool RefType = Field->getType()->isReferenceType(); 3369 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3370 return false; 3371 } 3372 } 3373 } 3374 return true; 3375 } 3376 3377 break; 3378 } 3379 case ImplicitValueInitExprClass: 3380 case NoInitExprClass: 3381 return true; 3382 case ParenExprClass: 3383 return cast<ParenExpr>(this)->getSubExpr() 3384 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3385 case GenericSelectionExprClass: 3386 return cast<GenericSelectionExpr>(this)->getResultExpr() 3387 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3388 case ChooseExprClass: 3389 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3390 if (Culprit) 3391 *Culprit = this; 3392 return false; 3393 } 3394 return cast<ChooseExpr>(this)->getChosenSubExpr() 3395 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3396 case UnaryOperatorClass: { 3397 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3398 if (Exp->getOpcode() == UO_Extension) 3399 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3400 break; 3401 } 3402 case CXXFunctionalCastExprClass: 3403 case CXXStaticCastExprClass: 3404 case ImplicitCastExprClass: 3405 case CStyleCastExprClass: 3406 case ObjCBridgedCastExprClass: 3407 case CXXDynamicCastExprClass: 3408 case CXXReinterpretCastExprClass: 3409 case CXXAddrspaceCastExprClass: 3410 case CXXConstCastExprClass: { 3411 const CastExpr *CE = cast<CastExpr>(this); 3412 3413 // Handle misc casts we want to ignore. 3414 if (CE->getCastKind() == CK_NoOp || 3415 CE->getCastKind() == CK_LValueToRValue || 3416 CE->getCastKind() == CK_ToUnion || 3417 CE->getCastKind() == CK_ConstructorConversion || 3418 CE->getCastKind() == CK_NonAtomicToAtomic || 3419 CE->getCastKind() == CK_AtomicToNonAtomic || 3420 CE->getCastKind() == CK_IntToOCLSampler) 3421 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3422 3423 break; 3424 } 3425 case MaterializeTemporaryExprClass: 3426 return cast<MaterializeTemporaryExpr>(this) 3427 ->getSubExpr() 3428 ->isConstantInitializer(Ctx, false, Culprit); 3429 3430 case SubstNonTypeTemplateParmExprClass: 3431 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3432 ->isConstantInitializer(Ctx, false, Culprit); 3433 case CXXDefaultArgExprClass: 3434 return cast<CXXDefaultArgExpr>(this)->getExpr() 3435 ->isConstantInitializer(Ctx, false, Culprit); 3436 case CXXDefaultInitExprClass: 3437 return cast<CXXDefaultInitExpr>(this)->getExpr() 3438 ->isConstantInitializer(Ctx, false, Culprit); 3439 } 3440 // Allow certain forms of UB in constant initializers: signed integer 3441 // overflow and floating-point division by zero. We'll give a warning on 3442 // these, but they're common enough that we have to accept them. 3443 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3444 return true; 3445 if (Culprit) 3446 *Culprit = this; 3447 return false; 3448 } 3449 3450 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3451 unsigned BuiltinID = getBuiltinCallee(); 3452 if (BuiltinID != Builtin::BI__assume && 3453 BuiltinID != Builtin::BI__builtin_assume) 3454 return false; 3455 3456 const Expr* Arg = getArg(0); 3457 bool ArgVal; 3458 return !Arg->isValueDependent() && 3459 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3460 } 3461 3462 bool CallExpr::isCallToStdMove() const { 3463 return getBuiltinCallee() == Builtin::BImove; 3464 } 3465 3466 namespace { 3467 /// Look for any side effects within a Stmt. 3468 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3469 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3470 const bool IncludePossibleEffects; 3471 bool HasSideEffects; 3472 3473 public: 3474 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3475 : Inherited(Context), 3476 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3477 3478 bool hasSideEffects() const { return HasSideEffects; } 3479 3480 void VisitDecl(const Decl *D) { 3481 if (!D) 3482 return; 3483 3484 // We assume the caller checks subexpressions (eg, the initializer, VLA 3485 // bounds) for side-effects on our behalf. 3486 if (auto *VD = dyn_cast<VarDecl>(D)) { 3487 // Registering a destructor is a side-effect. 3488 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3489 VD->needsDestruction(Context)) 3490 HasSideEffects = true; 3491 } 3492 } 3493 3494 void VisitDeclStmt(const DeclStmt *DS) { 3495 for (auto *D : DS->decls()) 3496 VisitDecl(D); 3497 Inherited::VisitDeclStmt(DS); 3498 } 3499 3500 void VisitExpr(const Expr *E) { 3501 if (!HasSideEffects && 3502 E->HasSideEffects(Context, IncludePossibleEffects)) 3503 HasSideEffects = true; 3504 } 3505 }; 3506 } 3507 3508 bool Expr::HasSideEffects(const ASTContext &Ctx, 3509 bool IncludePossibleEffects) const { 3510 // In circumstances where we care about definite side effects instead of 3511 // potential side effects, we want to ignore expressions that are part of a 3512 // macro expansion as a potential side effect. 3513 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3514 return false; 3515 3516 switch (getStmtClass()) { 3517 case NoStmtClass: 3518 #define ABSTRACT_STMT(Type) 3519 #define STMT(Type, Base) case Type##Class: 3520 #define EXPR(Type, Base) 3521 #include "clang/AST/StmtNodes.inc" 3522 llvm_unreachable("unexpected Expr kind"); 3523 3524 case DependentScopeDeclRefExprClass: 3525 case CXXUnresolvedConstructExprClass: 3526 case CXXDependentScopeMemberExprClass: 3527 case UnresolvedLookupExprClass: 3528 case UnresolvedMemberExprClass: 3529 case PackExpansionExprClass: 3530 case SubstNonTypeTemplateParmPackExprClass: 3531 case FunctionParmPackExprClass: 3532 case TypoExprClass: 3533 case RecoveryExprClass: 3534 case CXXFoldExprClass: 3535 // Make a conservative assumption for dependent nodes. 3536 return IncludePossibleEffects; 3537 3538 case DeclRefExprClass: 3539 case ObjCIvarRefExprClass: 3540 case PredefinedExprClass: 3541 case IntegerLiteralClass: 3542 case FixedPointLiteralClass: 3543 case FloatingLiteralClass: 3544 case ImaginaryLiteralClass: 3545 case StringLiteralClass: 3546 case CharacterLiteralClass: 3547 case OffsetOfExprClass: 3548 case ImplicitValueInitExprClass: 3549 case UnaryExprOrTypeTraitExprClass: 3550 case AddrLabelExprClass: 3551 case GNUNullExprClass: 3552 case ArrayInitIndexExprClass: 3553 case NoInitExprClass: 3554 case CXXBoolLiteralExprClass: 3555 case CXXNullPtrLiteralExprClass: 3556 case CXXThisExprClass: 3557 case CXXScalarValueInitExprClass: 3558 case TypeTraitExprClass: 3559 case ArrayTypeTraitExprClass: 3560 case ExpressionTraitExprClass: 3561 case CXXNoexceptExprClass: 3562 case SizeOfPackExprClass: 3563 case ObjCStringLiteralClass: 3564 case ObjCEncodeExprClass: 3565 case ObjCBoolLiteralExprClass: 3566 case ObjCAvailabilityCheckExprClass: 3567 case CXXUuidofExprClass: 3568 case OpaqueValueExprClass: 3569 case SourceLocExprClass: 3570 case ConceptSpecializationExprClass: 3571 case RequiresExprClass: 3572 case SYCLUniqueStableNameExprClass: 3573 // These never have a side-effect. 3574 return false; 3575 3576 case ConstantExprClass: 3577 // FIXME: Move this into the "return false;" block above. 3578 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3579 Ctx, IncludePossibleEffects); 3580 3581 case CallExprClass: 3582 case CXXOperatorCallExprClass: 3583 case CXXMemberCallExprClass: 3584 case CUDAKernelCallExprClass: 3585 case UserDefinedLiteralClass: { 3586 // We don't know a call definitely has side effects, except for calls 3587 // to pure/const functions that definitely don't. 3588 // If the call itself is considered side-effect free, check the operands. 3589 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3590 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3591 if (IsPure || !IncludePossibleEffects) 3592 break; 3593 return true; 3594 } 3595 3596 case BlockExprClass: 3597 case CXXBindTemporaryExprClass: 3598 if (!IncludePossibleEffects) 3599 break; 3600 return true; 3601 3602 case MSPropertyRefExprClass: 3603 case MSPropertySubscriptExprClass: 3604 case CompoundAssignOperatorClass: 3605 case VAArgExprClass: 3606 case AtomicExprClass: 3607 case CXXThrowExprClass: 3608 case CXXNewExprClass: 3609 case CXXDeleteExprClass: 3610 case CoawaitExprClass: 3611 case DependentCoawaitExprClass: 3612 case CoyieldExprClass: 3613 // These always have a side-effect. 3614 return true; 3615 3616 case StmtExprClass: { 3617 // StmtExprs have a side-effect if any substatement does. 3618 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3619 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3620 return Finder.hasSideEffects(); 3621 } 3622 3623 case ExprWithCleanupsClass: 3624 if (IncludePossibleEffects) 3625 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3626 return true; 3627 break; 3628 3629 case ParenExprClass: 3630 case ArraySubscriptExprClass: 3631 case MatrixSubscriptExprClass: 3632 case OMPArraySectionExprClass: 3633 case OMPArrayShapingExprClass: 3634 case OMPIteratorExprClass: 3635 case MemberExprClass: 3636 case ConditionalOperatorClass: 3637 case BinaryConditionalOperatorClass: 3638 case CompoundLiteralExprClass: 3639 case ExtVectorElementExprClass: 3640 case DesignatedInitExprClass: 3641 case DesignatedInitUpdateExprClass: 3642 case ArrayInitLoopExprClass: 3643 case ParenListExprClass: 3644 case CXXPseudoDestructorExprClass: 3645 case CXXRewrittenBinaryOperatorClass: 3646 case CXXStdInitializerListExprClass: 3647 case SubstNonTypeTemplateParmExprClass: 3648 case MaterializeTemporaryExprClass: 3649 case ShuffleVectorExprClass: 3650 case ConvertVectorExprClass: 3651 case AsTypeExprClass: 3652 case CXXParenListInitExprClass: 3653 // These have a side-effect if any subexpression does. 3654 break; 3655 3656 case UnaryOperatorClass: 3657 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3658 return true; 3659 break; 3660 3661 case BinaryOperatorClass: 3662 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3663 return true; 3664 break; 3665 3666 case InitListExprClass: 3667 // FIXME: The children for an InitListExpr doesn't include the array filler. 3668 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3669 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3670 return true; 3671 break; 3672 3673 case GenericSelectionExprClass: 3674 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3675 HasSideEffects(Ctx, IncludePossibleEffects); 3676 3677 case ChooseExprClass: 3678 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3679 Ctx, IncludePossibleEffects); 3680 3681 case CXXDefaultArgExprClass: 3682 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3683 Ctx, IncludePossibleEffects); 3684 3685 case CXXDefaultInitExprClass: { 3686 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3687 if (const Expr *E = FD->getInClassInitializer()) 3688 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3689 // If we've not yet parsed the initializer, assume it has side-effects. 3690 return true; 3691 } 3692 3693 case CXXDynamicCastExprClass: { 3694 // A dynamic_cast expression has side-effects if it can throw. 3695 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3696 if (DCE->getTypeAsWritten()->isReferenceType() && 3697 DCE->getCastKind() == CK_Dynamic) 3698 return true; 3699 } 3700 [[fallthrough]]; 3701 case ImplicitCastExprClass: 3702 case CStyleCastExprClass: 3703 case CXXStaticCastExprClass: 3704 case CXXReinterpretCastExprClass: 3705 case CXXConstCastExprClass: 3706 case CXXAddrspaceCastExprClass: 3707 case CXXFunctionalCastExprClass: 3708 case BuiltinBitCastExprClass: { 3709 // While volatile reads are side-effecting in both C and C++, we treat them 3710 // as having possible (not definite) side-effects. This allows idiomatic 3711 // code to behave without warning, such as sizeof(*v) for a volatile- 3712 // qualified pointer. 3713 if (!IncludePossibleEffects) 3714 break; 3715 3716 const CastExpr *CE = cast<CastExpr>(this); 3717 if (CE->getCastKind() == CK_LValueToRValue && 3718 CE->getSubExpr()->getType().isVolatileQualified()) 3719 return true; 3720 break; 3721 } 3722 3723 case CXXTypeidExprClass: 3724 // typeid might throw if its subexpression is potentially-evaluated, so has 3725 // side-effects in that case whether or not its subexpression does. 3726 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3727 3728 case CXXConstructExprClass: 3729 case CXXTemporaryObjectExprClass: { 3730 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3731 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3732 return true; 3733 // A trivial constructor does not add any side-effects of its own. Just look 3734 // at its arguments. 3735 break; 3736 } 3737 3738 case CXXInheritedCtorInitExprClass: { 3739 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3740 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3741 return true; 3742 break; 3743 } 3744 3745 case LambdaExprClass: { 3746 const LambdaExpr *LE = cast<LambdaExpr>(this); 3747 for (Expr *E : LE->capture_inits()) 3748 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3749 return true; 3750 return false; 3751 } 3752 3753 case PseudoObjectExprClass: { 3754 // Only look for side-effects in the semantic form, and look past 3755 // OpaqueValueExpr bindings in that form. 3756 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3757 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3758 E = PO->semantics_end(); 3759 I != E; ++I) { 3760 const Expr *Subexpr = *I; 3761 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3762 Subexpr = OVE->getSourceExpr(); 3763 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3764 return true; 3765 } 3766 return false; 3767 } 3768 3769 case ObjCBoxedExprClass: 3770 case ObjCArrayLiteralClass: 3771 case ObjCDictionaryLiteralClass: 3772 case ObjCSelectorExprClass: 3773 case ObjCProtocolExprClass: 3774 case ObjCIsaExprClass: 3775 case ObjCIndirectCopyRestoreExprClass: 3776 case ObjCSubscriptRefExprClass: 3777 case ObjCBridgedCastExprClass: 3778 case ObjCMessageExprClass: 3779 case ObjCPropertyRefExprClass: 3780 // FIXME: Classify these cases better. 3781 if (IncludePossibleEffects) 3782 return true; 3783 break; 3784 } 3785 3786 // Recurse to children. 3787 for (const Stmt *SubStmt : children()) 3788 if (SubStmt && 3789 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3790 return true; 3791 3792 return false; 3793 } 3794 3795 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3796 if (auto Call = dyn_cast<CallExpr>(this)) 3797 return Call->getFPFeaturesInEffect(LO); 3798 if (auto UO = dyn_cast<UnaryOperator>(this)) 3799 return UO->getFPFeaturesInEffect(LO); 3800 if (auto BO = dyn_cast<BinaryOperator>(this)) 3801 return BO->getFPFeaturesInEffect(LO); 3802 if (auto Cast = dyn_cast<CastExpr>(this)) 3803 return Cast->getFPFeaturesInEffect(LO); 3804 return FPOptions::defaultWithoutTrailingStorage(LO); 3805 } 3806 3807 namespace { 3808 /// Look for a call to a non-trivial function within an expression. 3809 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3810 { 3811 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3812 3813 bool NonTrivial; 3814 3815 public: 3816 explicit NonTrivialCallFinder(const ASTContext &Context) 3817 : Inherited(Context), NonTrivial(false) { } 3818 3819 bool hasNonTrivialCall() const { return NonTrivial; } 3820 3821 void VisitCallExpr(const CallExpr *E) { 3822 if (const CXXMethodDecl *Method 3823 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3824 if (Method->isTrivial()) { 3825 // Recurse to children of the call. 3826 Inherited::VisitStmt(E); 3827 return; 3828 } 3829 } 3830 3831 NonTrivial = true; 3832 } 3833 3834 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3835 if (E->getConstructor()->isTrivial()) { 3836 // Recurse to children of the call. 3837 Inherited::VisitStmt(E); 3838 return; 3839 } 3840 3841 NonTrivial = true; 3842 } 3843 3844 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3845 if (E->getTemporary()->getDestructor()->isTrivial()) { 3846 Inherited::VisitStmt(E); 3847 return; 3848 } 3849 3850 NonTrivial = true; 3851 } 3852 }; 3853 } 3854 3855 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3856 NonTrivialCallFinder Finder(Ctx); 3857 Finder.Visit(this); 3858 return Finder.hasNonTrivialCall(); 3859 } 3860 3861 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3862 /// pointer constant or not, as well as the specific kind of constant detected. 3863 /// Null pointer constants can be integer constant expressions with the 3864 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3865 /// (a GNU extension). 3866 Expr::NullPointerConstantKind 3867 Expr::isNullPointerConstant(ASTContext &Ctx, 3868 NullPointerConstantValueDependence NPC) const { 3869 if (isValueDependent() && 3870 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3871 // Error-dependent expr should never be a null pointer. 3872 if (containsErrors()) 3873 return NPCK_NotNull; 3874 switch (NPC) { 3875 case NPC_NeverValueDependent: 3876 llvm_unreachable("Unexpected value dependent expression!"); 3877 case NPC_ValueDependentIsNull: 3878 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3879 return NPCK_ZeroExpression; 3880 else 3881 return NPCK_NotNull; 3882 3883 case NPC_ValueDependentIsNotNull: 3884 return NPCK_NotNull; 3885 } 3886 } 3887 3888 // Strip off a cast to void*, if it exists. Except in C++. 3889 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3890 if (!Ctx.getLangOpts().CPlusPlus) { 3891 // Check that it is a cast to void*. 3892 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3893 QualType Pointee = PT->getPointeeType(); 3894 Qualifiers Qs = Pointee.getQualifiers(); 3895 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3896 // has non-default address space it is not treated as nullptr. 3897 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3898 // since it cannot be assigned to a pointer to constant address space. 3899 if (Ctx.getLangOpts().OpenCL && 3900 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3901 Qs.removeAddressSpace(); 3902 3903 if (Pointee->isVoidType() && Qs.empty() && // to void* 3904 CE->getSubExpr()->getType()->isIntegerType()) // from int 3905 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3906 } 3907 } 3908 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3909 // Ignore the ImplicitCastExpr type entirely. 3910 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3911 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3912 // Accept ((void*)0) as a null pointer constant, as many other 3913 // implementations do. 3914 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3915 } else if (const GenericSelectionExpr *GE = 3916 dyn_cast<GenericSelectionExpr>(this)) { 3917 if (GE->isResultDependent()) 3918 return NPCK_NotNull; 3919 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3920 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3921 if (CE->isConditionDependent()) 3922 return NPCK_NotNull; 3923 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3924 } else if (const CXXDefaultArgExpr *DefaultArg 3925 = dyn_cast<CXXDefaultArgExpr>(this)) { 3926 // See through default argument expressions. 3927 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3928 } else if (const CXXDefaultInitExpr *DefaultInit 3929 = dyn_cast<CXXDefaultInitExpr>(this)) { 3930 // See through default initializer expressions. 3931 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3932 } else if (isa<GNUNullExpr>(this)) { 3933 // The GNU __null extension is always a null pointer constant. 3934 return NPCK_GNUNull; 3935 } else if (const MaterializeTemporaryExpr *M 3936 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3937 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3938 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3939 if (const Expr *Source = OVE->getSourceExpr()) 3940 return Source->isNullPointerConstant(Ctx, NPC); 3941 } 3942 3943 // If the expression has no type information, it cannot be a null pointer 3944 // constant. 3945 if (getType().isNull()) 3946 return NPCK_NotNull; 3947 3948 // C++11/C2x nullptr_t is always a null pointer constant. 3949 if (getType()->isNullPtrType()) 3950 return NPCK_CXX11_nullptr; 3951 3952 if (const RecordType *UT = getType()->getAsUnionType()) 3953 if (!Ctx.getLangOpts().CPlusPlus11 && 3954 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3955 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3956 const Expr *InitExpr = CLE->getInitializer(); 3957 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3958 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3959 } 3960 // This expression must be an integer type. 3961 if (!getType()->isIntegerType() || 3962 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3963 return NPCK_NotNull; 3964 3965 if (Ctx.getLangOpts().CPlusPlus11) { 3966 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3967 // value zero or a prvalue of type std::nullptr_t. 3968 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3969 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3970 if (Lit && !Lit->getValue()) 3971 return NPCK_ZeroLiteral; 3972 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3973 return NPCK_NotNull; 3974 } else { 3975 // If we have an integer constant expression, we need to *evaluate* it and 3976 // test for the value 0. 3977 if (!isIntegerConstantExpr(Ctx)) 3978 return NPCK_NotNull; 3979 } 3980 3981 if (EvaluateKnownConstInt(Ctx) != 0) 3982 return NPCK_NotNull; 3983 3984 if (isa<IntegerLiteral>(this)) 3985 return NPCK_ZeroLiteral; 3986 return NPCK_ZeroExpression; 3987 } 3988 3989 /// If this expression is an l-value for an Objective C 3990 /// property, find the underlying property reference expression. 3991 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3992 const Expr *E = this; 3993 while (true) { 3994 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 3995 "expression is not a property reference"); 3996 E = E->IgnoreParenCasts(); 3997 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3998 if (BO->getOpcode() == BO_Comma) { 3999 E = BO->getRHS(); 4000 continue; 4001 } 4002 } 4003 4004 break; 4005 } 4006 4007 return cast<ObjCPropertyRefExpr>(E); 4008 } 4009 4010 bool Expr::isObjCSelfExpr() const { 4011 const Expr *E = IgnoreParenImpCasts(); 4012 4013 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 4014 if (!DRE) 4015 return false; 4016 4017 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 4018 if (!Param) 4019 return false; 4020 4021 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 4022 if (!M) 4023 return false; 4024 4025 return M->getSelfDecl() == Param; 4026 } 4027 4028 FieldDecl *Expr::getSourceBitField() { 4029 Expr *E = this->IgnoreParens(); 4030 4031 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4032 if (ICE->getCastKind() == CK_LValueToRValue || 4033 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 4034 E = ICE->getSubExpr()->IgnoreParens(); 4035 else 4036 break; 4037 } 4038 4039 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 4040 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 4041 if (Field->isBitField()) 4042 return Field; 4043 4044 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 4045 FieldDecl *Ivar = IvarRef->getDecl(); 4046 if (Ivar->isBitField()) 4047 return Ivar; 4048 } 4049 4050 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 4051 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 4052 if (Field->isBitField()) 4053 return Field; 4054 4055 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 4056 if (Expr *E = BD->getBinding()) 4057 return E->getSourceBitField(); 4058 } 4059 4060 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 4061 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 4062 return BinOp->getLHS()->getSourceBitField(); 4063 4064 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 4065 return BinOp->getRHS()->getSourceBitField(); 4066 } 4067 4068 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 4069 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 4070 return UnOp->getSubExpr()->getSourceBitField(); 4071 4072 return nullptr; 4073 } 4074 4075 bool Expr::refersToVectorElement() const { 4076 // FIXME: Why do we not just look at the ObjectKind here? 4077 const Expr *E = this->IgnoreParens(); 4078 4079 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4080 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 4081 E = ICE->getSubExpr()->IgnoreParens(); 4082 else 4083 break; 4084 } 4085 4086 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 4087 return ASE->getBase()->getType()->isVectorType(); 4088 4089 if (isa<ExtVectorElementExpr>(E)) 4090 return true; 4091 4092 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4093 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 4094 if (auto *E = BD->getBinding()) 4095 return E->refersToVectorElement(); 4096 4097 return false; 4098 } 4099 4100 bool Expr::refersToGlobalRegisterVar() const { 4101 const Expr *E = this->IgnoreParenImpCasts(); 4102 4103 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 4104 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 4105 if (VD->getStorageClass() == SC_Register && 4106 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 4107 return true; 4108 4109 return false; 4110 } 4111 4112 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4113 E1 = E1->IgnoreParens(); 4114 E2 = E2->IgnoreParens(); 4115 4116 if (E1->getStmtClass() != E2->getStmtClass()) 4117 return false; 4118 4119 switch (E1->getStmtClass()) { 4120 default: 4121 return false; 4122 case CXXThisExprClass: 4123 return true; 4124 case DeclRefExprClass: { 4125 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4126 // template parameters. 4127 const auto *DRE1 = cast<DeclRefExpr>(E1); 4128 const auto *DRE2 = cast<DeclRefExpr>(E2); 4129 return DRE1->isPRValue() && DRE2->isPRValue() && 4130 DRE1->getDecl() == DRE2->getDecl(); 4131 } 4132 case ImplicitCastExprClass: { 4133 // Peel off implicit casts. 4134 while (true) { 4135 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4136 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4137 if (!ICE1 || !ICE2) 4138 return false; 4139 if (ICE1->getCastKind() != ICE2->getCastKind()) 4140 return false; 4141 E1 = ICE1->getSubExpr()->IgnoreParens(); 4142 E2 = ICE2->getSubExpr()->IgnoreParens(); 4143 // The final cast must be one of these types. 4144 if (ICE1->getCastKind() == CK_LValueToRValue || 4145 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4146 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4147 break; 4148 } 4149 } 4150 4151 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4152 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4153 if (DRE1 && DRE2) 4154 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4155 4156 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4157 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4158 if (Ivar1 && Ivar2) { 4159 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4160 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4161 } 4162 4163 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4164 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4165 if (Array1 && Array2) { 4166 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4167 return false; 4168 4169 auto Idx1 = Array1->getIdx(); 4170 auto Idx2 = Array2->getIdx(); 4171 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4172 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4173 if (Integer1 && Integer2) { 4174 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4175 Integer2->getValue())) 4176 return false; 4177 } else { 4178 if (!isSameComparisonOperand(Idx1, Idx2)) 4179 return false; 4180 } 4181 4182 return true; 4183 } 4184 4185 // Walk the MemberExpr chain. 4186 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4187 const auto *ME1 = cast<MemberExpr>(E1); 4188 const auto *ME2 = cast<MemberExpr>(E2); 4189 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4190 return false; 4191 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4192 if (D->isStaticDataMember()) 4193 return true; 4194 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4195 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4196 } 4197 4198 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4199 return true; 4200 4201 // A static member variable can end the MemberExpr chain with either 4202 // a MemberExpr or a DeclRefExpr. 4203 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4204 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4205 return DRE->getDecl(); 4206 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4207 return ME->getMemberDecl(); 4208 return nullptr; 4209 }; 4210 4211 const ValueDecl *VD1 = getAnyDecl(E1); 4212 const ValueDecl *VD2 = getAnyDecl(E2); 4213 return declaresSameEntity(VD1, VD2); 4214 } 4215 } 4216 } 4217 4218 /// isArrow - Return true if the base expression is a pointer to vector, 4219 /// return false if the base expression is a vector. 4220 bool ExtVectorElementExpr::isArrow() const { 4221 return getBase()->getType()->isPointerType(); 4222 } 4223 4224 unsigned ExtVectorElementExpr::getNumElements() const { 4225 if (const VectorType *VT = getType()->getAs<VectorType>()) 4226 return VT->getNumElements(); 4227 return 1; 4228 } 4229 4230 /// containsDuplicateElements - Return true if any element access is repeated. 4231 bool ExtVectorElementExpr::containsDuplicateElements() const { 4232 // FIXME: Refactor this code to an accessor on the AST node which returns the 4233 // "type" of component access, and share with code below and in Sema. 4234 StringRef Comp = Accessor->getName(); 4235 4236 // Halving swizzles do not contain duplicate elements. 4237 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4238 return false; 4239 4240 // Advance past s-char prefix on hex swizzles. 4241 if (Comp[0] == 's' || Comp[0] == 'S') 4242 Comp = Comp.substr(1); 4243 4244 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4245 if (Comp.substr(i + 1).contains(Comp[i])) 4246 return true; 4247 4248 return false; 4249 } 4250 4251 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4252 void ExtVectorElementExpr::getEncodedElementAccess( 4253 SmallVectorImpl<uint32_t> &Elts) const { 4254 StringRef Comp = Accessor->getName(); 4255 bool isNumericAccessor = false; 4256 if (Comp[0] == 's' || Comp[0] == 'S') { 4257 Comp = Comp.substr(1); 4258 isNumericAccessor = true; 4259 } 4260 4261 bool isHi = Comp == "hi"; 4262 bool isLo = Comp == "lo"; 4263 bool isEven = Comp == "even"; 4264 bool isOdd = Comp == "odd"; 4265 4266 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4267 uint64_t Index; 4268 4269 if (isHi) 4270 Index = e + i; 4271 else if (isLo) 4272 Index = i; 4273 else if (isEven) 4274 Index = 2 * i; 4275 else if (isOdd) 4276 Index = 2 * i + 1; 4277 else 4278 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4279 4280 Elts.push_back(Index); 4281 } 4282 } 4283 4284 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4285 QualType Type, SourceLocation BLoc, 4286 SourceLocation RP) 4287 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4288 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4289 SubExprs = new (C) Stmt*[args.size()]; 4290 for (unsigned i = 0; i != args.size(); i++) 4291 SubExprs[i] = args[i]; 4292 4293 setDependence(computeDependence(this)); 4294 } 4295 4296 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4297 if (SubExprs) C.Deallocate(SubExprs); 4298 4299 this->NumExprs = Exprs.size(); 4300 SubExprs = new (C) Stmt*[NumExprs]; 4301 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4302 } 4303 4304 GenericSelectionExpr::GenericSelectionExpr( 4305 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4306 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4307 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4308 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4309 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4310 AssocExprs[ResultIndex]->getValueKind(), 4311 AssocExprs[ResultIndex]->getObjectKind()), 4312 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4313 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4314 assert(AssocTypes.size() == AssocExprs.size() && 4315 "Must have the same number of association expressions" 4316 " and TypeSourceInfo!"); 4317 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4318 4319 GenericSelectionExprBits.GenericLoc = GenericLoc; 4320 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4321 std::copy(AssocExprs.begin(), AssocExprs.end(), 4322 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4323 std::copy(AssocTypes.begin(), AssocTypes.end(), 4324 getTrailingObjects<TypeSourceInfo *>()); 4325 4326 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4327 } 4328 4329 GenericSelectionExpr::GenericSelectionExpr( 4330 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4331 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4332 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4333 bool ContainsUnexpandedParameterPack) 4334 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4335 OK_Ordinary), 4336 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4337 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4338 assert(AssocTypes.size() == AssocExprs.size() && 4339 "Must have the same number of association expressions" 4340 " and TypeSourceInfo!"); 4341 4342 GenericSelectionExprBits.GenericLoc = GenericLoc; 4343 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4344 std::copy(AssocExprs.begin(), AssocExprs.end(), 4345 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4346 std::copy(AssocTypes.begin(), AssocTypes.end(), 4347 getTrailingObjects<TypeSourceInfo *>()); 4348 4349 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4350 } 4351 4352 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4353 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4354 4355 GenericSelectionExpr *GenericSelectionExpr::Create( 4356 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4357 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4358 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4359 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4360 unsigned NumAssocs = AssocExprs.size(); 4361 void *Mem = Context.Allocate( 4362 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4363 alignof(GenericSelectionExpr)); 4364 return new (Mem) GenericSelectionExpr( 4365 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4366 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4367 } 4368 4369 GenericSelectionExpr *GenericSelectionExpr::Create( 4370 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4371 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4372 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4373 bool ContainsUnexpandedParameterPack) { 4374 unsigned NumAssocs = AssocExprs.size(); 4375 void *Mem = Context.Allocate( 4376 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4377 alignof(GenericSelectionExpr)); 4378 return new (Mem) GenericSelectionExpr( 4379 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4380 RParenLoc, ContainsUnexpandedParameterPack); 4381 } 4382 4383 GenericSelectionExpr * 4384 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4385 unsigned NumAssocs) { 4386 void *Mem = Context.Allocate( 4387 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4388 alignof(GenericSelectionExpr)); 4389 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4390 } 4391 4392 //===----------------------------------------------------------------------===// 4393 // DesignatedInitExpr 4394 //===----------------------------------------------------------------------===// 4395 4396 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4397 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4398 if (Field.NameOrField & 0x01) 4399 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01); 4400 return getField()->getIdentifier(); 4401 } 4402 4403 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4404 llvm::ArrayRef<Designator> Designators, 4405 SourceLocation EqualOrColonLoc, 4406 bool GNUSyntax, 4407 ArrayRef<Expr *> IndexExprs, Expr *Init) 4408 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4409 Init->getObjectKind()), 4410 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4411 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4412 this->Designators = new (C) Designator[NumDesignators]; 4413 4414 // Record the initializer itself. 4415 child_iterator Child = child_begin(); 4416 *Child++ = Init; 4417 4418 // Copy the designators and their subexpressions, computing 4419 // value-dependence along the way. 4420 unsigned IndexIdx = 0; 4421 for (unsigned I = 0; I != NumDesignators; ++I) { 4422 this->Designators[I] = Designators[I]; 4423 if (this->Designators[I].isArrayDesignator()) { 4424 // Copy the index expressions into permanent storage. 4425 *Child++ = IndexExprs[IndexIdx++]; 4426 } else if (this->Designators[I].isArrayRangeDesignator()) { 4427 // Copy the start/end expressions into permanent storage. 4428 *Child++ = IndexExprs[IndexIdx++]; 4429 *Child++ = IndexExprs[IndexIdx++]; 4430 } 4431 } 4432 4433 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4434 setDependence(computeDependence(this)); 4435 } 4436 4437 DesignatedInitExpr * 4438 DesignatedInitExpr::Create(const ASTContext &C, 4439 llvm::ArrayRef<Designator> Designators, 4440 ArrayRef<Expr*> IndexExprs, 4441 SourceLocation ColonOrEqualLoc, 4442 bool UsesColonSyntax, Expr *Init) { 4443 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4444 alignof(DesignatedInitExpr)); 4445 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4446 ColonOrEqualLoc, UsesColonSyntax, 4447 IndexExprs, Init); 4448 } 4449 4450 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4451 unsigned NumIndexExprs) { 4452 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4453 alignof(DesignatedInitExpr)); 4454 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4455 } 4456 4457 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4458 const Designator *Desigs, 4459 unsigned NumDesigs) { 4460 Designators = new (C) Designator[NumDesigs]; 4461 NumDesignators = NumDesigs; 4462 for (unsigned I = 0; I != NumDesigs; ++I) 4463 Designators[I] = Desigs[I]; 4464 } 4465 4466 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4467 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4468 if (size() == 1) 4469 return DIE->getDesignator(0)->getSourceRange(); 4470 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4471 DIE->getDesignator(size() - 1)->getEndLoc()); 4472 } 4473 4474 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4475 SourceLocation StartLoc; 4476 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4477 Designator &First = *DIE->getDesignator(0); 4478 if (First.isFieldDesignator()) 4479 StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc; 4480 else 4481 StartLoc = First.ArrayOrRange.LBracketLoc; 4482 return StartLoc; 4483 } 4484 4485 SourceLocation DesignatedInitExpr::getEndLoc() const { 4486 return getInit()->getEndLoc(); 4487 } 4488 4489 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4490 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4491 return getSubExpr(D.ArrayOrRange.Index + 1); 4492 } 4493 4494 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4495 assert(D.Kind == Designator::ArrayRangeDesignator && 4496 "Requires array range designator"); 4497 return getSubExpr(D.ArrayOrRange.Index + 1); 4498 } 4499 4500 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4501 assert(D.Kind == Designator::ArrayRangeDesignator && 4502 "Requires array range designator"); 4503 return getSubExpr(D.ArrayOrRange.Index + 2); 4504 } 4505 4506 /// Replaces the designator at index @p Idx with the series 4507 /// of designators in [First, Last). 4508 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4509 const Designator *First, 4510 const Designator *Last) { 4511 unsigned NumNewDesignators = Last - First; 4512 if (NumNewDesignators == 0) { 4513 std::copy_backward(Designators + Idx + 1, 4514 Designators + NumDesignators, 4515 Designators + Idx); 4516 --NumNewDesignators; 4517 return; 4518 } 4519 if (NumNewDesignators == 1) { 4520 Designators[Idx] = *First; 4521 return; 4522 } 4523 4524 Designator *NewDesignators 4525 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4526 std::copy(Designators, Designators + Idx, NewDesignators); 4527 std::copy(First, Last, NewDesignators + Idx); 4528 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4529 NewDesignators + Idx + NumNewDesignators); 4530 Designators = NewDesignators; 4531 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4532 } 4533 4534 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4535 SourceLocation lBraceLoc, 4536 Expr *baseExpr, 4537 SourceLocation rBraceLoc) 4538 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4539 OK_Ordinary) { 4540 BaseAndUpdaterExprs[0] = baseExpr; 4541 4542 InitListExpr *ILE = 4543 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc); 4544 ILE->setType(baseExpr->getType()); 4545 BaseAndUpdaterExprs[1] = ILE; 4546 4547 // FIXME: this is wrong, set it correctly. 4548 setDependence(ExprDependence::None); 4549 } 4550 4551 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4552 return getBase()->getBeginLoc(); 4553 } 4554 4555 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4556 return getBase()->getEndLoc(); 4557 } 4558 4559 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4560 SourceLocation RParenLoc) 4561 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4562 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4563 ParenListExprBits.NumExprs = Exprs.size(); 4564 4565 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4566 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4567 setDependence(computeDependence(this)); 4568 } 4569 4570 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4571 : Expr(ParenListExprClass, Empty) { 4572 ParenListExprBits.NumExprs = NumExprs; 4573 } 4574 4575 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4576 SourceLocation LParenLoc, 4577 ArrayRef<Expr *> Exprs, 4578 SourceLocation RParenLoc) { 4579 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4580 alignof(ParenListExpr)); 4581 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4582 } 4583 4584 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4585 unsigned NumExprs) { 4586 void *Mem = 4587 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4588 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4589 } 4590 4591 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4592 Opcode opc, QualType ResTy, ExprValueKind VK, 4593 ExprObjectKind OK, SourceLocation opLoc, 4594 FPOptionsOverride FPFeatures) 4595 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4596 BinaryOperatorBits.Opc = opc; 4597 assert(!isCompoundAssignmentOp() && 4598 "Use CompoundAssignOperator for compound assignments"); 4599 BinaryOperatorBits.OpLoc = opLoc; 4600 SubExprs[LHS] = lhs; 4601 SubExprs[RHS] = rhs; 4602 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4603 if (hasStoredFPFeatures()) 4604 setStoredFPFeatures(FPFeatures); 4605 setDependence(computeDependence(this)); 4606 } 4607 4608 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4609 Opcode opc, QualType ResTy, ExprValueKind VK, 4610 ExprObjectKind OK, SourceLocation opLoc, 4611 FPOptionsOverride FPFeatures, bool dead2) 4612 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4613 BinaryOperatorBits.Opc = opc; 4614 assert(isCompoundAssignmentOp() && 4615 "Use CompoundAssignOperator for compound assignments"); 4616 BinaryOperatorBits.OpLoc = opLoc; 4617 SubExprs[LHS] = lhs; 4618 SubExprs[RHS] = rhs; 4619 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4620 if (hasStoredFPFeatures()) 4621 setStoredFPFeatures(FPFeatures); 4622 setDependence(computeDependence(this)); 4623 } 4624 4625 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4626 bool HasFPFeatures) { 4627 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4628 void *Mem = 4629 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4630 return new (Mem) BinaryOperator(EmptyShell()); 4631 } 4632 4633 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4634 Expr *rhs, Opcode opc, QualType ResTy, 4635 ExprValueKind VK, ExprObjectKind OK, 4636 SourceLocation opLoc, 4637 FPOptionsOverride FPFeatures) { 4638 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4639 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4640 void *Mem = 4641 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4642 return new (Mem) 4643 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4644 } 4645 4646 CompoundAssignOperator * 4647 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4648 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4649 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4650 alignof(CompoundAssignOperator)); 4651 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4652 } 4653 4654 CompoundAssignOperator * 4655 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4656 Opcode opc, QualType ResTy, ExprValueKind VK, 4657 ExprObjectKind OK, SourceLocation opLoc, 4658 FPOptionsOverride FPFeatures, 4659 QualType CompLHSType, QualType CompResultType) { 4660 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4661 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4662 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4663 alignof(CompoundAssignOperator)); 4664 return new (Mem) 4665 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4666 CompLHSType, CompResultType); 4667 } 4668 4669 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4670 bool hasFPFeatures) { 4671 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4672 alignof(UnaryOperator)); 4673 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4674 } 4675 4676 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4677 QualType type, ExprValueKind VK, ExprObjectKind OK, 4678 SourceLocation l, bool CanOverflow, 4679 FPOptionsOverride FPFeatures) 4680 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4681 UnaryOperatorBits.Opc = opc; 4682 UnaryOperatorBits.CanOverflow = CanOverflow; 4683 UnaryOperatorBits.Loc = l; 4684 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4685 if (hasStoredFPFeatures()) 4686 setStoredFPFeatures(FPFeatures); 4687 setDependence(computeDependence(this, Ctx)); 4688 } 4689 4690 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4691 Opcode opc, QualType type, 4692 ExprValueKind VK, ExprObjectKind OK, 4693 SourceLocation l, bool CanOverflow, 4694 FPOptionsOverride FPFeatures) { 4695 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4696 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4697 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4698 return new (Mem) 4699 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4700 } 4701 4702 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4703 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4704 e = ewc->getSubExpr(); 4705 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4706 e = m->getSubExpr(); 4707 e = cast<CXXConstructExpr>(e)->getArg(0); 4708 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4709 e = ice->getSubExpr(); 4710 return cast<OpaqueValueExpr>(e); 4711 } 4712 4713 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4714 EmptyShell sh, 4715 unsigned numSemanticExprs) { 4716 void *buffer = 4717 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4718 alignof(PseudoObjectExpr)); 4719 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4720 } 4721 4722 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4723 : Expr(PseudoObjectExprClass, shell) { 4724 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4725 } 4726 4727 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4728 ArrayRef<Expr*> semantics, 4729 unsigned resultIndex) { 4730 assert(syntax && "no syntactic expression!"); 4731 assert(semantics.size() && "no semantic expressions!"); 4732 4733 QualType type; 4734 ExprValueKind VK; 4735 if (resultIndex == NoResult) { 4736 type = C.VoidTy; 4737 VK = VK_PRValue; 4738 } else { 4739 assert(resultIndex < semantics.size()); 4740 type = semantics[resultIndex]->getType(); 4741 VK = semantics[resultIndex]->getValueKind(); 4742 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4743 } 4744 4745 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4746 alignof(PseudoObjectExpr)); 4747 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4748 resultIndex); 4749 } 4750 4751 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4752 Expr *syntax, ArrayRef<Expr *> semantics, 4753 unsigned resultIndex) 4754 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4755 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4756 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4757 4758 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4759 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4760 getSubExprsBuffer()[i] = E; 4761 4762 if (isa<OpaqueValueExpr>(E)) 4763 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4764 "opaque-value semantic expressions for pseudo-object " 4765 "operations must have sources"); 4766 } 4767 4768 setDependence(computeDependence(this)); 4769 } 4770 4771 //===----------------------------------------------------------------------===// 4772 // Child Iterators for iterating over subexpressions/substatements 4773 //===----------------------------------------------------------------------===// 4774 4775 // UnaryExprOrTypeTraitExpr 4776 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4777 const_child_range CCR = 4778 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4779 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4780 } 4781 4782 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4783 // If this is of a type and the type is a VLA type (and not a typedef), the 4784 // size expression of the VLA needs to be treated as an executable expression. 4785 // Why isn't this weirdness documented better in StmtIterator? 4786 if (isArgumentType()) { 4787 if (const VariableArrayType *T = 4788 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4789 return const_child_range(const_child_iterator(T), const_child_iterator()); 4790 return const_child_range(const_child_iterator(), const_child_iterator()); 4791 } 4792 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4793 } 4794 4795 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4796 AtomicOp op, SourceLocation RP) 4797 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4798 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4799 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4800 for (unsigned i = 0; i != args.size(); i++) 4801 SubExprs[i] = args[i]; 4802 setDependence(computeDependence(this)); 4803 } 4804 4805 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4806 switch (Op) { 4807 case AO__c11_atomic_init: 4808 case AO__opencl_atomic_init: 4809 case AO__c11_atomic_load: 4810 case AO__atomic_load_n: 4811 return 2; 4812 4813 case AO__opencl_atomic_load: 4814 case AO__hip_atomic_load: 4815 case AO__c11_atomic_store: 4816 case AO__c11_atomic_exchange: 4817 case AO__atomic_load: 4818 case AO__atomic_store: 4819 case AO__atomic_store_n: 4820 case AO__atomic_exchange_n: 4821 case AO__c11_atomic_fetch_add: 4822 case AO__c11_atomic_fetch_sub: 4823 case AO__c11_atomic_fetch_and: 4824 case AO__c11_atomic_fetch_or: 4825 case AO__c11_atomic_fetch_xor: 4826 case AO__c11_atomic_fetch_nand: 4827 case AO__c11_atomic_fetch_max: 4828 case AO__c11_atomic_fetch_min: 4829 case AO__atomic_fetch_add: 4830 case AO__atomic_fetch_sub: 4831 case AO__atomic_fetch_and: 4832 case AO__atomic_fetch_or: 4833 case AO__atomic_fetch_xor: 4834 case AO__atomic_fetch_nand: 4835 case AO__atomic_add_fetch: 4836 case AO__atomic_sub_fetch: 4837 case AO__atomic_and_fetch: 4838 case AO__atomic_or_fetch: 4839 case AO__atomic_xor_fetch: 4840 case AO__atomic_nand_fetch: 4841 case AO__atomic_min_fetch: 4842 case AO__atomic_max_fetch: 4843 case AO__atomic_fetch_min: 4844 case AO__atomic_fetch_max: 4845 return 3; 4846 4847 case AO__hip_atomic_exchange: 4848 case AO__hip_atomic_fetch_add: 4849 case AO__hip_atomic_fetch_and: 4850 case AO__hip_atomic_fetch_or: 4851 case AO__hip_atomic_fetch_xor: 4852 case AO__hip_atomic_fetch_min: 4853 case AO__hip_atomic_fetch_max: 4854 case AO__opencl_atomic_store: 4855 case AO__hip_atomic_store: 4856 case AO__opencl_atomic_exchange: 4857 case AO__opencl_atomic_fetch_add: 4858 case AO__opencl_atomic_fetch_sub: 4859 case AO__opencl_atomic_fetch_and: 4860 case AO__opencl_atomic_fetch_or: 4861 case AO__opencl_atomic_fetch_xor: 4862 case AO__opencl_atomic_fetch_min: 4863 case AO__opencl_atomic_fetch_max: 4864 case AO__atomic_exchange: 4865 return 4; 4866 4867 case AO__c11_atomic_compare_exchange_strong: 4868 case AO__c11_atomic_compare_exchange_weak: 4869 return 5; 4870 case AO__hip_atomic_compare_exchange_strong: 4871 case AO__opencl_atomic_compare_exchange_strong: 4872 case AO__opencl_atomic_compare_exchange_weak: 4873 case AO__hip_atomic_compare_exchange_weak: 4874 case AO__atomic_compare_exchange: 4875 case AO__atomic_compare_exchange_n: 4876 return 6; 4877 } 4878 llvm_unreachable("unknown atomic op"); 4879 } 4880 4881 QualType AtomicExpr::getValueType() const { 4882 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4883 if (auto AT = T->getAs<AtomicType>()) 4884 return AT->getValueType(); 4885 return T; 4886 } 4887 4888 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4889 unsigned ArraySectionCount = 0; 4890 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4891 Base = OASE->getBase(); 4892 ++ArraySectionCount; 4893 } 4894 while (auto *ASE = 4895 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4896 Base = ASE->getBase(); 4897 ++ArraySectionCount; 4898 } 4899 Base = Base->IgnoreParenImpCasts(); 4900 auto OriginalTy = Base->getType(); 4901 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4902 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4903 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4904 4905 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4906 if (OriginalTy->isAnyPointerType()) 4907 OriginalTy = OriginalTy->getPointeeType(); 4908 else { 4909 assert (OriginalTy->isArrayType()); 4910 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4911 } 4912 } 4913 return OriginalTy; 4914 } 4915 4916 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 4917 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 4918 : Expr(RecoveryExprClass, T.getNonReferenceType(), 4919 T->isDependentType() ? VK_LValue : getValueKindForType(T), 4920 OK_Ordinary), 4921 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 4922 assert(!T.isNull()); 4923 assert(!llvm::is_contained(SubExprs, nullptr)); 4924 4925 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 4926 setDependence(computeDependence(this)); 4927 } 4928 4929 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 4930 SourceLocation BeginLoc, 4931 SourceLocation EndLoc, 4932 ArrayRef<Expr *> SubExprs) { 4933 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 4934 alignof(RecoveryExpr)); 4935 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 4936 } 4937 4938 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 4939 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 4940 alignof(RecoveryExpr)); 4941 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 4942 } 4943 4944 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 4945 assert( 4946 NumDims == Dims.size() && 4947 "Preallocated number of dimensions is different from the provided one."); 4948 llvm::copy(Dims, getTrailingObjects<Expr *>()); 4949 } 4950 4951 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 4952 assert( 4953 NumDims == BR.size() && 4954 "Preallocated number of dimensions is different from the provided one."); 4955 llvm::copy(BR, getTrailingObjects<SourceRange>()); 4956 } 4957 4958 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 4959 SourceLocation L, SourceLocation R, 4960 ArrayRef<Expr *> Dims) 4961 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 4962 RPLoc(R), NumDims(Dims.size()) { 4963 setBase(Op); 4964 setDimensions(Dims); 4965 setDependence(computeDependence(this)); 4966 } 4967 4968 OMPArrayShapingExpr * 4969 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 4970 SourceLocation L, SourceLocation R, 4971 ArrayRef<Expr *> Dims, 4972 ArrayRef<SourceRange> BracketRanges) { 4973 assert(Dims.size() == BracketRanges.size() && 4974 "Different number of dimensions and brackets ranges."); 4975 void *Mem = Context.Allocate( 4976 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 4977 alignof(OMPArrayShapingExpr)); 4978 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 4979 E->setBracketsRanges(BracketRanges); 4980 return E; 4981 } 4982 4983 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 4984 unsigned NumDims) { 4985 void *Mem = Context.Allocate( 4986 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 4987 alignof(OMPArrayShapingExpr)); 4988 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 4989 } 4990 4991 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 4992 assert(I < NumIterators && 4993 "Idx is greater or equal the number of iterators definitions."); 4994 getTrailingObjects<Decl *>()[I] = D; 4995 } 4996 4997 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 4998 assert(I < NumIterators && 4999 "Idx is greater or equal the number of iterators definitions."); 5000 getTrailingObjects< 5001 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5002 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 5003 } 5004 5005 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 5006 SourceLocation ColonLoc, Expr *End, 5007 SourceLocation SecondColonLoc, 5008 Expr *Step) { 5009 assert(I < NumIterators && 5010 "Idx is greater or equal the number of iterators definitions."); 5011 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5012 static_cast<int>(RangeExprOffset::Begin)] = 5013 Begin; 5014 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5015 static_cast<int>(RangeExprOffset::End)] = End; 5016 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5017 static_cast<int>(RangeExprOffset::Step)] = Step; 5018 getTrailingObjects< 5019 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5020 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 5021 ColonLoc; 5022 getTrailingObjects< 5023 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5024 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 5025 SecondColonLoc; 5026 } 5027 5028 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 5029 return getTrailingObjects<Decl *>()[I]; 5030 } 5031 5032 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 5033 IteratorRange Res; 5034 Res.Begin = 5035 getTrailingObjects<Expr *>()[I * static_cast<int>( 5036 RangeExprOffset::Total) + 5037 static_cast<int>(RangeExprOffset::Begin)]; 5038 Res.End = 5039 getTrailingObjects<Expr *>()[I * static_cast<int>( 5040 RangeExprOffset::Total) + 5041 static_cast<int>(RangeExprOffset::End)]; 5042 Res.Step = 5043 getTrailingObjects<Expr *>()[I * static_cast<int>( 5044 RangeExprOffset::Total) + 5045 static_cast<int>(RangeExprOffset::Step)]; 5046 return Res; 5047 } 5048 5049 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 5050 return getTrailingObjects< 5051 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5052 static_cast<int>(RangeLocOffset::AssignLoc)]; 5053 } 5054 5055 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 5056 return getTrailingObjects< 5057 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5058 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 5059 } 5060 5061 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 5062 return getTrailingObjects< 5063 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5064 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 5065 } 5066 5067 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 5068 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 5069 } 5070 5071 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 5072 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5073 } 5074 5075 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 5076 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5077 } 5078 5079 OMPIteratorExpr::OMPIteratorExpr( 5080 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 5081 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5082 ArrayRef<OMPIteratorHelperData> Helpers) 5083 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 5084 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 5085 NumIterators(Data.size()) { 5086 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 5087 const IteratorDefinition &D = Data[I]; 5088 setIteratorDeclaration(I, D.IteratorDecl); 5089 setAssignmentLoc(I, D.AssignmentLoc); 5090 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 5091 D.SecondColonLoc, D.Range.Step); 5092 setHelper(I, Helpers[I]); 5093 } 5094 setDependence(computeDependence(this)); 5095 } 5096 5097 OMPIteratorExpr * 5098 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 5099 SourceLocation IteratorKwLoc, SourceLocation L, 5100 SourceLocation R, 5101 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5102 ArrayRef<OMPIteratorHelperData> Helpers) { 5103 assert(Data.size() == Helpers.size() && 5104 "Data and helpers must have the same size."); 5105 void *Mem = Context.Allocate( 5106 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5107 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 5108 Data.size() * static_cast<int>(RangeLocOffset::Total), 5109 Helpers.size()), 5110 alignof(OMPIteratorExpr)); 5111 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 5112 } 5113 5114 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5115 unsigned NumIterators) { 5116 void *Mem = Context.Allocate( 5117 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5118 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5119 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5120 alignof(OMPIteratorExpr)); 5121 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5122 } 5123