1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/Mangle.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/CharInfo.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Lexer.h" 30 #include "clang/Lex/LiteralSupport.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 #include <cstring> 35 using namespace clang; 36 37 const Expr *Expr::getBestDynamicClassTypeExpr() const { 38 const Expr *E = this; 39 while (true) { 40 E = E->ignoreParenBaseCasts(); 41 42 // Follow the RHS of a comma operator. 43 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 44 if (BO->getOpcode() == BO_Comma) { 45 E = BO->getRHS(); 46 continue; 47 } 48 } 49 50 // Step into initializer for materialized temporaries. 51 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 52 E = MTE->GetTemporaryExpr(); 53 continue; 54 } 55 56 break; 57 } 58 59 return E; 60 } 61 62 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 63 const Expr *E = getBestDynamicClassTypeExpr(); 64 QualType DerivedType = E->getType(); 65 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 66 DerivedType = PTy->getPointeeType(); 67 68 if (DerivedType->isDependentType()) 69 return nullptr; 70 71 const RecordType *Ty = DerivedType->castAs<RecordType>(); 72 Decl *D = Ty->getDecl(); 73 return cast<CXXRecordDecl>(D); 74 } 75 76 const Expr *Expr::skipRValueSubobjectAdjustments( 77 SmallVectorImpl<const Expr *> &CommaLHSs, 78 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 79 const Expr *E = this; 80 while (true) { 81 E = E->IgnoreParens(); 82 83 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 84 if ((CE->getCastKind() == CK_DerivedToBase || 85 CE->getCastKind() == CK_UncheckedDerivedToBase) && 86 E->getType()->isRecordType()) { 87 E = CE->getSubExpr(); 88 auto *Derived = 89 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 90 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 91 continue; 92 } 93 94 if (CE->getCastKind() == CK_NoOp) { 95 E = CE->getSubExpr(); 96 continue; 97 } 98 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 99 if (!ME->isArrow()) { 100 assert(ME->getBase()->getType()->isRecordType()); 101 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 102 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 103 E = ME->getBase(); 104 Adjustments.push_back(SubobjectAdjustment(Field)); 105 continue; 106 } 107 } 108 } 109 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 110 if (BO->getOpcode() == BO_PtrMemD) { 111 assert(BO->getRHS()->isRValue()); 112 E = BO->getLHS(); 113 const MemberPointerType *MPT = 114 BO->getRHS()->getType()->getAs<MemberPointerType>(); 115 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 116 continue; 117 } else if (BO->getOpcode() == BO_Comma) { 118 CommaLHSs.push_back(BO->getLHS()); 119 E = BO->getRHS(); 120 continue; 121 } 122 } 123 124 // Nothing changed. 125 break; 126 } 127 return E; 128 } 129 130 /// isKnownToHaveBooleanValue - Return true if this is an integer expression 131 /// that is known to return 0 or 1. This happens for _Bool/bool expressions 132 /// but also int expressions which are produced by things like comparisons in 133 /// C. 134 bool Expr::isKnownToHaveBooleanValue() const { 135 const Expr *E = IgnoreParens(); 136 137 // If this value has _Bool type, it is obvious 0/1. 138 if (E->getType()->isBooleanType()) return true; 139 // If this is a non-scalar-integer type, we don't care enough to try. 140 if (!E->getType()->isIntegralOrEnumerationType()) return false; 141 142 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 143 switch (UO->getOpcode()) { 144 case UO_Plus: 145 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 146 case UO_LNot: 147 return true; 148 default: 149 return false; 150 } 151 } 152 153 // Only look through implicit casts. If the user writes 154 // '(int) (a && b)' treat it as an arbitrary int. 155 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 156 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 157 158 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 159 switch (BO->getOpcode()) { 160 default: return false; 161 case BO_LT: // Relational operators. 162 case BO_GT: 163 case BO_LE: 164 case BO_GE: 165 case BO_EQ: // Equality operators. 166 case BO_NE: 167 case BO_LAnd: // AND operator. 168 case BO_LOr: // Logical OR operator. 169 return true; 170 171 case BO_And: // Bitwise AND operator. 172 case BO_Xor: // Bitwise XOR operator. 173 case BO_Or: // Bitwise OR operator. 174 // Handle things like (x==2)|(y==12). 175 return BO->getLHS()->isKnownToHaveBooleanValue() && 176 BO->getRHS()->isKnownToHaveBooleanValue(); 177 178 case BO_Comma: 179 case BO_Assign: 180 return BO->getRHS()->isKnownToHaveBooleanValue(); 181 } 182 } 183 184 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 185 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 186 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 187 188 if (isa<ObjCBoolLiteralExpr>(E)) 189 return true; 190 191 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 192 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(); 193 194 return false; 195 } 196 197 // Amusing macro metaprogramming hack: check whether a class provides 198 // a more specific implementation of getExprLoc(). 199 // 200 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 201 namespace { 202 /// This implementation is used when a class provides a custom 203 /// implementation of getExprLoc. 204 template <class E, class T> 205 SourceLocation getExprLocImpl(const Expr *expr, 206 SourceLocation (T::*v)() const) { 207 return static_cast<const E*>(expr)->getExprLoc(); 208 } 209 210 /// This implementation is used when a class doesn't provide 211 /// a custom implementation of getExprLoc. Overload resolution 212 /// should pick it over the implementation above because it's 213 /// more specialized according to function template partial ordering. 214 template <class E> 215 SourceLocation getExprLocImpl(const Expr *expr, 216 SourceLocation (Expr::*v)() const) { 217 return static_cast<const E *>(expr)->getBeginLoc(); 218 } 219 } 220 221 SourceLocation Expr::getExprLoc() const { 222 switch (getStmtClass()) { 223 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 224 #define ABSTRACT_STMT(type) 225 #define STMT(type, base) \ 226 case Stmt::type##Class: break; 227 #define EXPR(type, base) \ 228 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 229 #include "clang/AST/StmtNodes.inc" 230 } 231 llvm_unreachable("unknown expression kind"); 232 } 233 234 //===----------------------------------------------------------------------===// 235 // Primary Expressions. 236 //===----------------------------------------------------------------------===// 237 238 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 239 assert((Kind == ConstantExpr::RSK_APValue || 240 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 241 "Invalid StorageKind Value"); 242 } 243 244 ConstantExpr::ResultStorageKind 245 ConstantExpr::getStorageKind(const APValue &Value) { 246 switch (Value.getKind()) { 247 case APValue::None: 248 case APValue::Indeterminate: 249 return ConstantExpr::RSK_None; 250 case APValue::Int: 251 if (!Value.getInt().needsCleanup()) 252 return ConstantExpr::RSK_Int64; 253 LLVM_FALLTHROUGH; 254 default: 255 return ConstantExpr::RSK_APValue; 256 } 257 } 258 259 ConstantExpr::ResultStorageKind 260 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 261 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 262 return ConstantExpr::RSK_Int64; 263 return ConstantExpr::RSK_APValue; 264 } 265 266 void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) { 267 ConstantExprBits.ResultKind = StorageKind; 268 ConstantExprBits.APValueKind = APValue::None; 269 ConstantExprBits.HasCleanup = false; 270 if (StorageKind == ConstantExpr::RSK_APValue) 271 ::new (getTrailingObjects<APValue>()) APValue(); 272 } 273 274 ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind) 275 : FullExpr(ConstantExprClass, subexpr) { 276 DefaultInit(StorageKind); 277 } 278 279 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 280 ResultStorageKind StorageKind) { 281 assert(!isa<ConstantExpr>(E)); 282 AssertResultStorageKind(StorageKind); 283 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 284 StorageKind == ConstantExpr::RSK_APValue, 285 StorageKind == ConstantExpr::RSK_Int64); 286 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 287 ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind); 288 return Self; 289 } 290 291 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 292 const APValue &Result) { 293 ResultStorageKind StorageKind = getStorageKind(Result); 294 ConstantExpr *Self = Create(Context, E, StorageKind); 295 Self->SetResult(Result, Context); 296 return Self; 297 } 298 299 ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty) 300 : FullExpr(ConstantExprClass, Empty) { 301 DefaultInit(StorageKind); 302 } 303 304 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 305 ResultStorageKind StorageKind, 306 EmptyShell Empty) { 307 AssertResultStorageKind(StorageKind); 308 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 309 StorageKind == ConstantExpr::RSK_APValue, 310 StorageKind == ConstantExpr::RSK_Int64); 311 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 312 ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty); 313 return Self; 314 } 315 316 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 317 assert(getStorageKind(Value) == ConstantExprBits.ResultKind && 318 "Invalid storage for this value kind"); 319 ConstantExprBits.APValueKind = Value.getKind(); 320 switch (ConstantExprBits.ResultKind) { 321 case RSK_None: 322 return; 323 case RSK_Int64: 324 Int64Result() = *Value.getInt().getRawData(); 325 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 326 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 327 return; 328 case RSK_APValue: 329 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 330 ConstantExprBits.HasCleanup = true; 331 Context.addDestruction(&APValueResult()); 332 } 333 APValueResult() = std::move(Value); 334 return; 335 } 336 llvm_unreachable("Invalid ResultKind Bits"); 337 } 338 339 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 340 switch (ConstantExprBits.ResultKind) { 341 case ConstantExpr::RSK_APValue: 342 return APValueResult().getInt(); 343 case ConstantExpr::RSK_Int64: 344 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 345 ConstantExprBits.IsUnsigned); 346 default: 347 llvm_unreachable("invalid Accessor"); 348 } 349 } 350 351 APValue ConstantExpr::getAPValueResult() const { 352 switch (ConstantExprBits.ResultKind) { 353 case ConstantExpr::RSK_APValue: 354 return APValueResult(); 355 case ConstantExpr::RSK_Int64: 356 return APValue( 357 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 358 ConstantExprBits.IsUnsigned)); 359 case ConstantExpr::RSK_None: 360 return APValue(); 361 } 362 llvm_unreachable("invalid ResultKind"); 363 } 364 365 /// Compute the type-, value-, and instantiation-dependence of a 366 /// declaration reference 367 /// based on the declaration being referenced. 368 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, 369 QualType T, bool &TypeDependent, 370 bool &ValueDependent, 371 bool &InstantiationDependent) { 372 TypeDependent = false; 373 ValueDependent = false; 374 InstantiationDependent = false; 375 376 // (TD) C++ [temp.dep.expr]p3: 377 // An id-expression is type-dependent if it contains: 378 // 379 // and 380 // 381 // (VD) C++ [temp.dep.constexpr]p2: 382 // An identifier is value-dependent if it is: 383 384 // (TD) - an identifier that was declared with dependent type 385 // (VD) - a name declared with a dependent type, 386 if (T->isDependentType()) { 387 TypeDependent = true; 388 ValueDependent = true; 389 InstantiationDependent = true; 390 return; 391 } else if (T->isInstantiationDependentType()) { 392 InstantiationDependent = true; 393 } 394 395 // (TD) - a conversion-function-id that specifies a dependent type 396 if (D->getDeclName().getNameKind() 397 == DeclarationName::CXXConversionFunctionName) { 398 QualType T = D->getDeclName().getCXXNameType(); 399 if (T->isDependentType()) { 400 TypeDependent = true; 401 ValueDependent = true; 402 InstantiationDependent = true; 403 return; 404 } 405 406 if (T->isInstantiationDependentType()) 407 InstantiationDependent = true; 408 } 409 410 // (VD) - the name of a non-type template parameter, 411 if (isa<NonTypeTemplateParmDecl>(D)) { 412 ValueDependent = true; 413 InstantiationDependent = true; 414 return; 415 } 416 417 // (VD) - a constant with integral or enumeration type and is 418 // initialized with an expression that is value-dependent. 419 // (VD) - a constant with literal type and is initialized with an 420 // expression that is value-dependent [C++11]. 421 // (VD) - FIXME: Missing from the standard: 422 // - an entity with reference type and is initialized with an 423 // expression that is value-dependent [C++11] 424 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 425 if ((Ctx.getLangOpts().CPlusPlus11 ? 426 Var->getType()->isLiteralType(Ctx) : 427 Var->getType()->isIntegralOrEnumerationType()) && 428 (Var->getType().isConstQualified() || 429 Var->getType()->isReferenceType())) { 430 if (const Expr *Init = Var->getAnyInitializer()) 431 if (Init->isValueDependent()) { 432 ValueDependent = true; 433 InstantiationDependent = true; 434 } 435 } 436 437 // (VD) - FIXME: Missing from the standard: 438 // - a member function or a static data member of the current 439 // instantiation 440 if (Var->isStaticDataMember() && 441 Var->getDeclContext()->isDependentContext()) { 442 ValueDependent = true; 443 InstantiationDependent = true; 444 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); 445 if (TInfo->getType()->isIncompleteArrayType()) 446 TypeDependent = true; 447 } 448 449 return; 450 } 451 452 // (VD) - FIXME: Missing from the standard: 453 // - a member function or a static data member of the current 454 // instantiation 455 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 456 ValueDependent = true; 457 InstantiationDependent = true; 458 } 459 } 460 461 void DeclRefExpr::computeDependence(const ASTContext &Ctx) { 462 bool TypeDependent = false; 463 bool ValueDependent = false; 464 bool InstantiationDependent = false; 465 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, 466 ValueDependent, InstantiationDependent); 467 468 ExprBits.TypeDependent |= TypeDependent; 469 ExprBits.ValueDependent |= ValueDependent; 470 ExprBits.InstantiationDependent |= InstantiationDependent; 471 472 // Is the declaration a parameter pack? 473 if (getDecl()->isParameterPack()) 474 ExprBits.ContainsUnexpandedParameterPack = true; 475 } 476 477 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 478 bool RefersToEnclosingVariableOrCapture, QualType T, 479 ExprValueKind VK, SourceLocation L, 480 const DeclarationNameLoc &LocInfo, 481 NonOdrUseReason NOUR) 482 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 483 D(D), DNLoc(LocInfo) { 484 DeclRefExprBits.HasQualifier = false; 485 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 486 DeclRefExprBits.HasFoundDecl = false; 487 DeclRefExprBits.HadMultipleCandidates = false; 488 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 489 RefersToEnclosingVariableOrCapture; 490 DeclRefExprBits.NonOdrUseReason = NOUR; 491 DeclRefExprBits.Loc = L; 492 computeDependence(Ctx); 493 } 494 495 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 496 NestedNameSpecifierLoc QualifierLoc, 497 SourceLocation TemplateKWLoc, ValueDecl *D, 498 bool RefersToEnclosingVariableOrCapture, 499 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 500 const TemplateArgumentListInfo *TemplateArgs, 501 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 502 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 503 D(D), DNLoc(NameInfo.getInfo()) { 504 DeclRefExprBits.Loc = NameInfo.getLoc(); 505 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 506 if (QualifierLoc) { 507 new (getTrailingObjects<NestedNameSpecifierLoc>()) 508 NestedNameSpecifierLoc(QualifierLoc); 509 auto *NNS = QualifierLoc.getNestedNameSpecifier(); 510 if (NNS->isInstantiationDependent()) 511 ExprBits.InstantiationDependent = true; 512 if (NNS->containsUnexpandedParameterPack()) 513 ExprBits.ContainsUnexpandedParameterPack = true; 514 } 515 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 516 if (FoundD) 517 *getTrailingObjects<NamedDecl *>() = FoundD; 518 DeclRefExprBits.HasTemplateKWAndArgsInfo 519 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 520 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 521 RefersToEnclosingVariableOrCapture; 522 DeclRefExprBits.NonOdrUseReason = NOUR; 523 if (TemplateArgs) { 524 bool Dependent = false; 525 bool InstantiationDependent = false; 526 bool ContainsUnexpandedParameterPack = false; 527 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 528 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 529 Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); 530 assert(!Dependent && "built a DeclRefExpr with dependent template args"); 531 ExprBits.InstantiationDependent |= InstantiationDependent; 532 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 533 } else if (TemplateKWLoc.isValid()) { 534 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 535 TemplateKWLoc); 536 } 537 DeclRefExprBits.HadMultipleCandidates = 0; 538 539 computeDependence(Ctx); 540 } 541 542 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 543 NestedNameSpecifierLoc QualifierLoc, 544 SourceLocation TemplateKWLoc, ValueDecl *D, 545 bool RefersToEnclosingVariableOrCapture, 546 SourceLocation NameLoc, QualType T, 547 ExprValueKind VK, NamedDecl *FoundD, 548 const TemplateArgumentListInfo *TemplateArgs, 549 NonOdrUseReason NOUR) { 550 return Create(Context, QualifierLoc, TemplateKWLoc, D, 551 RefersToEnclosingVariableOrCapture, 552 DeclarationNameInfo(D->getDeclName(), NameLoc), 553 T, VK, FoundD, TemplateArgs, NOUR); 554 } 555 556 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 557 NestedNameSpecifierLoc QualifierLoc, 558 SourceLocation TemplateKWLoc, ValueDecl *D, 559 bool RefersToEnclosingVariableOrCapture, 560 const DeclarationNameInfo &NameInfo, 561 QualType T, ExprValueKind VK, 562 NamedDecl *FoundD, 563 const TemplateArgumentListInfo *TemplateArgs, 564 NonOdrUseReason NOUR) { 565 // Filter out cases where the found Decl is the same as the value refenenced. 566 if (D == FoundD) 567 FoundD = nullptr; 568 569 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 570 std::size_t Size = 571 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 572 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 573 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 574 HasTemplateKWAndArgsInfo ? 1 : 0, 575 TemplateArgs ? TemplateArgs->size() : 0); 576 577 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 578 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 579 RefersToEnclosingVariableOrCapture, NameInfo, 580 FoundD, TemplateArgs, T, VK, NOUR); 581 } 582 583 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 584 bool HasQualifier, 585 bool HasFoundDecl, 586 bool HasTemplateKWAndArgsInfo, 587 unsigned NumTemplateArgs) { 588 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 589 std::size_t Size = 590 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 591 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 592 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 593 NumTemplateArgs); 594 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 595 return new (Mem) DeclRefExpr(EmptyShell()); 596 } 597 598 SourceLocation DeclRefExpr::getBeginLoc() const { 599 if (hasQualifier()) 600 return getQualifierLoc().getBeginLoc(); 601 return getNameInfo().getBeginLoc(); 602 } 603 SourceLocation DeclRefExpr::getEndLoc() const { 604 if (hasExplicitTemplateArgs()) 605 return getRAngleLoc(); 606 return getNameInfo().getEndLoc(); 607 } 608 609 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 610 StringLiteral *SL) 611 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, 612 FNTy->isDependentType(), FNTy->isDependentType(), 613 FNTy->isInstantiationDependentType(), 614 /*ContainsUnexpandedParameterPack=*/false) { 615 PredefinedExprBits.Kind = IK; 616 assert((getIdentKind() == IK) && 617 "IdentKind do not fit in PredefinedExprBitfields!"); 618 bool HasFunctionName = SL != nullptr; 619 PredefinedExprBits.HasFunctionName = HasFunctionName; 620 PredefinedExprBits.Loc = L; 621 if (HasFunctionName) 622 setFunctionName(SL); 623 } 624 625 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 626 : Expr(PredefinedExprClass, Empty) { 627 PredefinedExprBits.HasFunctionName = HasFunctionName; 628 } 629 630 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 631 QualType FNTy, IdentKind IK, 632 StringLiteral *SL) { 633 bool HasFunctionName = SL != nullptr; 634 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 635 alignof(PredefinedExpr)); 636 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 637 } 638 639 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 640 bool HasFunctionName) { 641 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 642 alignof(PredefinedExpr)); 643 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 644 } 645 646 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 647 switch (IK) { 648 case Func: 649 return "__func__"; 650 case Function: 651 return "__FUNCTION__"; 652 case FuncDName: 653 return "__FUNCDNAME__"; 654 case LFunction: 655 return "L__FUNCTION__"; 656 case PrettyFunction: 657 return "__PRETTY_FUNCTION__"; 658 case FuncSig: 659 return "__FUNCSIG__"; 660 case LFuncSig: 661 return "L__FUNCSIG__"; 662 case PrettyFunctionNoVirtual: 663 break; 664 } 665 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 666 } 667 668 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 669 // expr" policy instead. 670 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 671 ASTContext &Context = CurrentDecl->getASTContext(); 672 673 if (IK == PredefinedExpr::FuncDName) { 674 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 675 std::unique_ptr<MangleContext> MC; 676 MC.reset(Context.createMangleContext()); 677 678 if (MC->shouldMangleDeclName(ND)) { 679 SmallString<256> Buffer; 680 llvm::raw_svector_ostream Out(Buffer); 681 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 682 MC->mangleCXXCtor(CD, Ctor_Base, Out); 683 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 684 MC->mangleCXXDtor(DD, Dtor_Base, Out); 685 else 686 MC->mangleName(ND, Out); 687 688 if (!Buffer.empty() && Buffer.front() == '\01') 689 return Buffer.substr(1); 690 return Buffer.str(); 691 } else 692 return ND->getIdentifier()->getName(); 693 } 694 return ""; 695 } 696 if (isa<BlockDecl>(CurrentDecl)) { 697 // For blocks we only emit something if it is enclosed in a function 698 // For top-level block we'd like to include the name of variable, but we 699 // don't have it at this point. 700 auto DC = CurrentDecl->getDeclContext(); 701 if (DC->isFileContext()) 702 return ""; 703 704 SmallString<256> Buffer; 705 llvm::raw_svector_ostream Out(Buffer); 706 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 707 // For nested blocks, propagate up to the parent. 708 Out << ComputeName(IK, DCBlock); 709 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 710 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 711 return Out.str(); 712 } 713 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 714 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 715 IK != FuncSig && IK != LFuncSig) 716 return FD->getNameAsString(); 717 718 SmallString<256> Name; 719 llvm::raw_svector_ostream Out(Name); 720 721 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 722 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 723 Out << "virtual "; 724 if (MD->isStatic()) 725 Out << "static "; 726 } 727 728 PrintingPolicy Policy(Context.getLangOpts()); 729 std::string Proto; 730 llvm::raw_string_ostream POut(Proto); 731 732 const FunctionDecl *Decl = FD; 733 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 734 Decl = Pattern; 735 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 736 const FunctionProtoType *FT = nullptr; 737 if (FD->hasWrittenPrototype()) 738 FT = dyn_cast<FunctionProtoType>(AFT); 739 740 if (IK == FuncSig || IK == LFuncSig) { 741 switch (AFT->getCallConv()) { 742 case CC_C: POut << "__cdecl "; break; 743 case CC_X86StdCall: POut << "__stdcall "; break; 744 case CC_X86FastCall: POut << "__fastcall "; break; 745 case CC_X86ThisCall: POut << "__thiscall "; break; 746 case CC_X86VectorCall: POut << "__vectorcall "; break; 747 case CC_X86RegCall: POut << "__regcall "; break; 748 // Only bother printing the conventions that MSVC knows about. 749 default: break; 750 } 751 } 752 753 FD->printQualifiedName(POut, Policy); 754 755 POut << "("; 756 if (FT) { 757 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 758 if (i) POut << ", "; 759 POut << Decl->getParamDecl(i)->getType().stream(Policy); 760 } 761 762 if (FT->isVariadic()) { 763 if (FD->getNumParams()) POut << ", "; 764 POut << "..."; 765 } else if ((IK == FuncSig || IK == LFuncSig || 766 !Context.getLangOpts().CPlusPlus) && 767 !Decl->getNumParams()) { 768 POut << "void"; 769 } 770 } 771 POut << ")"; 772 773 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 774 assert(FT && "We must have a written prototype in this case."); 775 if (FT->isConst()) 776 POut << " const"; 777 if (FT->isVolatile()) 778 POut << " volatile"; 779 RefQualifierKind Ref = MD->getRefQualifier(); 780 if (Ref == RQ_LValue) 781 POut << " &"; 782 else if (Ref == RQ_RValue) 783 POut << " &&"; 784 } 785 786 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 787 SpecsTy Specs; 788 const DeclContext *Ctx = FD->getDeclContext(); 789 while (Ctx && isa<NamedDecl>(Ctx)) { 790 const ClassTemplateSpecializationDecl *Spec 791 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 792 if (Spec && !Spec->isExplicitSpecialization()) 793 Specs.push_back(Spec); 794 Ctx = Ctx->getParent(); 795 } 796 797 std::string TemplateParams; 798 llvm::raw_string_ostream TOut(TemplateParams); 799 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 800 I != E; ++I) { 801 const TemplateParameterList *Params 802 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 803 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 804 assert(Params->size() == Args.size()); 805 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 806 StringRef Param = Params->getParam(i)->getName(); 807 if (Param.empty()) continue; 808 TOut << Param << " = "; 809 Args.get(i).print(Policy, TOut); 810 TOut << ", "; 811 } 812 } 813 814 FunctionTemplateSpecializationInfo *FSI 815 = FD->getTemplateSpecializationInfo(); 816 if (FSI && !FSI->isExplicitSpecialization()) { 817 const TemplateParameterList* Params 818 = FSI->getTemplate()->getTemplateParameters(); 819 const TemplateArgumentList* Args = FSI->TemplateArguments; 820 assert(Params->size() == Args->size()); 821 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 822 StringRef Param = Params->getParam(i)->getName(); 823 if (Param.empty()) continue; 824 TOut << Param << " = "; 825 Args->get(i).print(Policy, TOut); 826 TOut << ", "; 827 } 828 } 829 830 TOut.flush(); 831 if (!TemplateParams.empty()) { 832 // remove the trailing comma and space 833 TemplateParams.resize(TemplateParams.size() - 2); 834 POut << " [" << TemplateParams << "]"; 835 } 836 837 POut.flush(); 838 839 // Print "auto" for all deduced return types. This includes C++1y return 840 // type deduction and lambdas. For trailing return types resolve the 841 // decltype expression. Otherwise print the real type when this is 842 // not a constructor or destructor. 843 if (isa<CXXMethodDecl>(FD) && 844 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 845 Proto = "auto " + Proto; 846 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 847 FT->getReturnType() 848 ->getAs<DecltypeType>() 849 ->getUnderlyingType() 850 .getAsStringInternal(Proto, Policy); 851 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 852 AFT->getReturnType().getAsStringInternal(Proto, Policy); 853 854 Out << Proto; 855 856 return Name.str().str(); 857 } 858 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 859 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 860 // Skip to its enclosing function or method, but not its enclosing 861 // CapturedDecl. 862 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 863 const Decl *D = Decl::castFromDeclContext(DC); 864 return ComputeName(IK, D); 865 } 866 llvm_unreachable("CapturedDecl not inside a function or method"); 867 } 868 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 869 SmallString<256> Name; 870 llvm::raw_svector_ostream Out(Name); 871 Out << (MD->isInstanceMethod() ? '-' : '+'); 872 Out << '['; 873 874 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 875 // a null check to avoid a crash. 876 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 877 Out << *ID; 878 879 if (const ObjCCategoryImplDecl *CID = 880 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 881 Out << '(' << *CID << ')'; 882 883 Out << ' '; 884 MD->getSelector().print(Out); 885 Out << ']'; 886 887 return Name.str().str(); 888 } 889 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 890 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 891 return "top level"; 892 } 893 return ""; 894 } 895 896 void APNumericStorage::setIntValue(const ASTContext &C, 897 const llvm::APInt &Val) { 898 if (hasAllocation()) 899 C.Deallocate(pVal); 900 901 BitWidth = Val.getBitWidth(); 902 unsigned NumWords = Val.getNumWords(); 903 const uint64_t* Words = Val.getRawData(); 904 if (NumWords > 1) { 905 pVal = new (C) uint64_t[NumWords]; 906 std::copy(Words, Words + NumWords, pVal); 907 } else if (NumWords == 1) 908 VAL = Words[0]; 909 else 910 VAL = 0; 911 } 912 913 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 914 QualType type, SourceLocation l) 915 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 916 false, false), 917 Loc(l) { 918 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 919 assert(V.getBitWidth() == C.getIntWidth(type) && 920 "Integer type is not the correct size for constant."); 921 setValue(C, V); 922 } 923 924 IntegerLiteral * 925 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 926 QualType type, SourceLocation l) { 927 return new (C) IntegerLiteral(C, V, type, l); 928 } 929 930 IntegerLiteral * 931 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 932 return new (C) IntegerLiteral(Empty); 933 } 934 935 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 936 QualType type, SourceLocation l, 937 unsigned Scale) 938 : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 939 false, false), 940 Loc(l), Scale(Scale) { 941 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 942 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 943 "Fixed point type is not the correct size for constant."); 944 setValue(C, V); 945 } 946 947 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 948 const llvm::APInt &V, 949 QualType type, 950 SourceLocation l, 951 unsigned Scale) { 952 return new (C) FixedPointLiteral(C, V, type, l, Scale); 953 } 954 955 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 956 // Currently the longest decimal number that can be printed is the max for an 957 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 958 // which is 43 characters. 959 SmallString<64> S; 960 FixedPointValueToString( 961 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 962 return S.str(); 963 } 964 965 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 966 bool isexact, QualType Type, SourceLocation L) 967 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, 968 false, false), Loc(L) { 969 setSemantics(V.getSemantics()); 970 FloatingLiteralBits.IsExact = isexact; 971 setValue(C, V); 972 } 973 974 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 975 : Expr(FloatingLiteralClass, Empty) { 976 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 977 FloatingLiteralBits.IsExact = false; 978 } 979 980 FloatingLiteral * 981 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 982 bool isexact, QualType Type, SourceLocation L) { 983 return new (C) FloatingLiteral(C, V, isexact, Type, L); 984 } 985 986 FloatingLiteral * 987 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 988 return new (C) FloatingLiteral(C, Empty); 989 } 990 991 /// getValueAsApproximateDouble - This returns the value as an inaccurate 992 /// double. Note that this may cause loss of precision, but is useful for 993 /// debugging dumps, etc. 994 double FloatingLiteral::getValueAsApproximateDouble() const { 995 llvm::APFloat V = getValue(); 996 bool ignored; 997 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 998 &ignored); 999 return V.convertToDouble(); 1000 } 1001 1002 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1003 StringKind SK) { 1004 unsigned CharByteWidth = 0; 1005 switch (SK) { 1006 case Ascii: 1007 case UTF8: 1008 CharByteWidth = Target.getCharWidth(); 1009 break; 1010 case Wide: 1011 CharByteWidth = Target.getWCharWidth(); 1012 break; 1013 case UTF16: 1014 CharByteWidth = Target.getChar16Width(); 1015 break; 1016 case UTF32: 1017 CharByteWidth = Target.getChar32Width(); 1018 break; 1019 } 1020 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1021 CharByteWidth /= 8; 1022 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1023 "The only supported character byte widths are 1,2 and 4!"); 1024 return CharByteWidth; 1025 } 1026 1027 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1028 StringKind Kind, bool Pascal, QualType Ty, 1029 const SourceLocation *Loc, 1030 unsigned NumConcatenated) 1031 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false, 1032 false) { 1033 assert(Ctx.getAsConstantArrayType(Ty) && 1034 "StringLiteral must be of constant array type!"); 1035 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1036 unsigned ByteLength = Str.size(); 1037 assert((ByteLength % CharByteWidth == 0) && 1038 "The size of the data must be a multiple of CharByteWidth!"); 1039 1040 // Avoid the expensive division. The compiler should be able to figure it 1041 // out by itself. However as of clang 7, even with the appropriate 1042 // llvm_unreachable added just here, it is not able to do so. 1043 unsigned Length; 1044 switch (CharByteWidth) { 1045 case 1: 1046 Length = ByteLength; 1047 break; 1048 case 2: 1049 Length = ByteLength / 2; 1050 break; 1051 case 4: 1052 Length = ByteLength / 4; 1053 break; 1054 default: 1055 llvm_unreachable("Unsupported character width!"); 1056 } 1057 1058 StringLiteralBits.Kind = Kind; 1059 StringLiteralBits.CharByteWidth = CharByteWidth; 1060 StringLiteralBits.IsPascal = Pascal; 1061 StringLiteralBits.NumConcatenated = NumConcatenated; 1062 *getTrailingObjects<unsigned>() = Length; 1063 1064 // Initialize the trailing array of SourceLocation. 1065 // This is safe since SourceLocation is POD-like. 1066 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1067 NumConcatenated * sizeof(SourceLocation)); 1068 1069 // Initialize the trailing array of char holding the string data. 1070 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1071 } 1072 1073 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1074 unsigned Length, unsigned CharByteWidth) 1075 : Expr(StringLiteralClass, Empty) { 1076 StringLiteralBits.CharByteWidth = CharByteWidth; 1077 StringLiteralBits.NumConcatenated = NumConcatenated; 1078 *getTrailingObjects<unsigned>() = Length; 1079 } 1080 1081 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1082 StringKind Kind, bool Pascal, QualType Ty, 1083 const SourceLocation *Loc, 1084 unsigned NumConcatenated) { 1085 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1086 1, NumConcatenated, Str.size()), 1087 alignof(StringLiteral)); 1088 return new (Mem) 1089 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1090 } 1091 1092 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1093 unsigned NumConcatenated, 1094 unsigned Length, 1095 unsigned CharByteWidth) { 1096 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1097 1, NumConcatenated, Length * CharByteWidth), 1098 alignof(StringLiteral)); 1099 return new (Mem) 1100 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1101 } 1102 1103 void StringLiteral::outputString(raw_ostream &OS) const { 1104 switch (getKind()) { 1105 case Ascii: break; // no prefix. 1106 case Wide: OS << 'L'; break; 1107 case UTF8: OS << "u8"; break; 1108 case UTF16: OS << 'u'; break; 1109 case UTF32: OS << 'U'; break; 1110 } 1111 OS << '"'; 1112 static const char Hex[] = "0123456789ABCDEF"; 1113 1114 unsigned LastSlashX = getLength(); 1115 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1116 switch (uint32_t Char = getCodeUnit(I)) { 1117 default: 1118 // FIXME: Convert UTF-8 back to codepoints before rendering. 1119 1120 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1121 // Leave invalid surrogates alone; we'll use \x for those. 1122 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1123 Char <= 0xdbff) { 1124 uint32_t Trail = getCodeUnit(I + 1); 1125 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1126 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1127 ++I; 1128 } 1129 } 1130 1131 if (Char > 0xff) { 1132 // If this is a wide string, output characters over 0xff using \x 1133 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1134 // codepoint: use \x escapes for invalid codepoints. 1135 if (getKind() == Wide || 1136 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1137 // FIXME: Is this the best way to print wchar_t? 1138 OS << "\\x"; 1139 int Shift = 28; 1140 while ((Char >> Shift) == 0) 1141 Shift -= 4; 1142 for (/**/; Shift >= 0; Shift -= 4) 1143 OS << Hex[(Char >> Shift) & 15]; 1144 LastSlashX = I; 1145 break; 1146 } 1147 1148 if (Char > 0xffff) 1149 OS << "\\U00" 1150 << Hex[(Char >> 20) & 15] 1151 << Hex[(Char >> 16) & 15]; 1152 else 1153 OS << "\\u"; 1154 OS << Hex[(Char >> 12) & 15] 1155 << Hex[(Char >> 8) & 15] 1156 << Hex[(Char >> 4) & 15] 1157 << Hex[(Char >> 0) & 15]; 1158 break; 1159 } 1160 1161 // If we used \x... for the previous character, and this character is a 1162 // hexadecimal digit, prevent it being slurped as part of the \x. 1163 if (LastSlashX + 1 == I) { 1164 switch (Char) { 1165 case '0': case '1': case '2': case '3': case '4': 1166 case '5': case '6': case '7': case '8': case '9': 1167 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1168 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1169 OS << "\"\""; 1170 } 1171 } 1172 1173 assert(Char <= 0xff && 1174 "Characters above 0xff should already have been handled."); 1175 1176 if (isPrintable(Char)) 1177 OS << (char)Char; 1178 else // Output anything hard as an octal escape. 1179 OS << '\\' 1180 << (char)('0' + ((Char >> 6) & 7)) 1181 << (char)('0' + ((Char >> 3) & 7)) 1182 << (char)('0' + ((Char >> 0) & 7)); 1183 break; 1184 // Handle some common non-printable cases to make dumps prettier. 1185 case '\\': OS << "\\\\"; break; 1186 case '"': OS << "\\\""; break; 1187 case '\a': OS << "\\a"; break; 1188 case '\b': OS << "\\b"; break; 1189 case '\f': OS << "\\f"; break; 1190 case '\n': OS << "\\n"; break; 1191 case '\r': OS << "\\r"; break; 1192 case '\t': OS << "\\t"; break; 1193 case '\v': OS << "\\v"; break; 1194 } 1195 } 1196 OS << '"'; 1197 } 1198 1199 /// getLocationOfByte - Return a source location that points to the specified 1200 /// byte of this string literal. 1201 /// 1202 /// Strings are amazingly complex. They can be formed from multiple tokens and 1203 /// can have escape sequences in them in addition to the usual trigraph and 1204 /// escaped newline business. This routine handles this complexity. 1205 /// 1206 /// The *StartToken sets the first token to be searched in this function and 1207 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1208 /// returning, it updates the *StartToken to the TokNo of the token being found 1209 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1210 /// string. 1211 /// Using these two parameters can reduce the time complexity from O(n^2) to 1212 /// O(n) if one wants to get the location of byte for all the tokens in a 1213 /// string. 1214 /// 1215 SourceLocation 1216 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1217 const LangOptions &Features, 1218 const TargetInfo &Target, unsigned *StartToken, 1219 unsigned *StartTokenByteOffset) const { 1220 assert((getKind() == StringLiteral::Ascii || 1221 getKind() == StringLiteral::UTF8) && 1222 "Only narrow string literals are currently supported"); 1223 1224 // Loop over all of the tokens in this string until we find the one that 1225 // contains the byte we're looking for. 1226 unsigned TokNo = 0; 1227 unsigned StringOffset = 0; 1228 if (StartToken) 1229 TokNo = *StartToken; 1230 if (StartTokenByteOffset) { 1231 StringOffset = *StartTokenByteOffset; 1232 ByteNo -= StringOffset; 1233 } 1234 while (1) { 1235 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1236 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1237 1238 // Get the spelling of the string so that we can get the data that makes up 1239 // the string literal, not the identifier for the macro it is potentially 1240 // expanded through. 1241 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1242 1243 // Re-lex the token to get its length and original spelling. 1244 std::pair<FileID, unsigned> LocInfo = 1245 SM.getDecomposedLoc(StrTokSpellingLoc); 1246 bool Invalid = false; 1247 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1248 if (Invalid) { 1249 if (StartTokenByteOffset != nullptr) 1250 *StartTokenByteOffset = StringOffset; 1251 if (StartToken != nullptr) 1252 *StartToken = TokNo; 1253 return StrTokSpellingLoc; 1254 } 1255 1256 const char *StrData = Buffer.data()+LocInfo.second; 1257 1258 // Create a lexer starting at the beginning of this token. 1259 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1260 Buffer.begin(), StrData, Buffer.end()); 1261 Token TheTok; 1262 TheLexer.LexFromRawLexer(TheTok); 1263 1264 // Use the StringLiteralParser to compute the length of the string in bytes. 1265 StringLiteralParser SLP(TheTok, SM, Features, Target); 1266 unsigned TokNumBytes = SLP.GetStringLength(); 1267 1268 // If the byte is in this token, return the location of the byte. 1269 if (ByteNo < TokNumBytes || 1270 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1271 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1272 1273 // Now that we know the offset of the token in the spelling, use the 1274 // preprocessor to get the offset in the original source. 1275 if (StartTokenByteOffset != nullptr) 1276 *StartTokenByteOffset = StringOffset; 1277 if (StartToken != nullptr) 1278 *StartToken = TokNo; 1279 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1280 } 1281 1282 // Move to the next string token. 1283 StringOffset += TokNumBytes; 1284 ++TokNo; 1285 ByteNo -= TokNumBytes; 1286 } 1287 } 1288 1289 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1290 /// corresponds to, e.g. "sizeof" or "[pre]++". 1291 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1292 switch (Op) { 1293 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1294 #include "clang/AST/OperationKinds.def" 1295 } 1296 llvm_unreachable("Unknown unary operator"); 1297 } 1298 1299 UnaryOperatorKind 1300 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1301 switch (OO) { 1302 default: llvm_unreachable("No unary operator for overloaded function"); 1303 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1304 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1305 case OO_Amp: return UO_AddrOf; 1306 case OO_Star: return UO_Deref; 1307 case OO_Plus: return UO_Plus; 1308 case OO_Minus: return UO_Minus; 1309 case OO_Tilde: return UO_Not; 1310 case OO_Exclaim: return UO_LNot; 1311 case OO_Coawait: return UO_Coawait; 1312 } 1313 } 1314 1315 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1316 switch (Opc) { 1317 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1318 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1319 case UO_AddrOf: return OO_Amp; 1320 case UO_Deref: return OO_Star; 1321 case UO_Plus: return OO_Plus; 1322 case UO_Minus: return OO_Minus; 1323 case UO_Not: return OO_Tilde; 1324 case UO_LNot: return OO_Exclaim; 1325 case UO_Coawait: return OO_Coawait; 1326 default: return OO_None; 1327 } 1328 } 1329 1330 1331 //===----------------------------------------------------------------------===// 1332 // Postfix Operators. 1333 //===----------------------------------------------------------------------===// 1334 1335 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1336 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1337 SourceLocation RParenLoc, unsigned MinNumArgs, 1338 ADLCallKind UsesADL) 1339 : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(), 1340 Fn->isValueDependent(), Fn->isInstantiationDependent(), 1341 Fn->containsUnexpandedParameterPack()), 1342 RParenLoc(RParenLoc) { 1343 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1344 unsigned NumPreArgs = PreArgs.size(); 1345 CallExprBits.NumPreArgs = NumPreArgs; 1346 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1347 1348 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1349 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1350 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1351 "OffsetToTrailingObjects overflow!"); 1352 1353 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1354 1355 setCallee(Fn); 1356 for (unsigned I = 0; I != NumPreArgs; ++I) { 1357 updateDependenciesFromArg(PreArgs[I]); 1358 setPreArg(I, PreArgs[I]); 1359 } 1360 for (unsigned I = 0; I != Args.size(); ++I) { 1361 updateDependenciesFromArg(Args[I]); 1362 setArg(I, Args[I]); 1363 } 1364 for (unsigned I = Args.size(); I != NumArgs; ++I) { 1365 setArg(I, nullptr); 1366 } 1367 } 1368 1369 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1370 EmptyShell Empty) 1371 : Expr(SC, Empty), NumArgs(NumArgs) { 1372 CallExprBits.NumPreArgs = NumPreArgs; 1373 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1374 1375 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1376 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1377 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1378 "OffsetToTrailingObjects overflow!"); 1379 } 1380 1381 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1382 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1383 SourceLocation RParenLoc, unsigned MinNumArgs, 1384 ADLCallKind UsesADL) { 1385 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1386 unsigned SizeOfTrailingObjects = 1387 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); 1388 void *Mem = 1389 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1390 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1391 RParenLoc, MinNumArgs, UsesADL); 1392 } 1393 1394 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1395 ExprValueKind VK, SourceLocation RParenLoc, 1396 ADLCallKind UsesADL) { 1397 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1398 "Misaligned memory in CallExpr::CreateTemporary!"); 1399 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1400 VK, RParenLoc, /*MinNumArgs=*/0, UsesADL); 1401 } 1402 1403 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1404 EmptyShell Empty) { 1405 unsigned SizeOfTrailingObjects = 1406 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); 1407 void *Mem = 1408 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1409 return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty); 1410 } 1411 1412 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1413 switch (SC) { 1414 case CallExprClass: 1415 return sizeof(CallExpr); 1416 case CXXOperatorCallExprClass: 1417 return sizeof(CXXOperatorCallExpr); 1418 case CXXMemberCallExprClass: 1419 return sizeof(CXXMemberCallExpr); 1420 case UserDefinedLiteralClass: 1421 return sizeof(UserDefinedLiteral); 1422 case CUDAKernelCallExprClass: 1423 return sizeof(CUDAKernelCallExpr); 1424 default: 1425 llvm_unreachable("unexpected class deriving from CallExpr!"); 1426 } 1427 } 1428 1429 void CallExpr::updateDependenciesFromArg(Expr *Arg) { 1430 if (Arg->isTypeDependent()) 1431 ExprBits.TypeDependent = true; 1432 if (Arg->isValueDependent()) 1433 ExprBits.ValueDependent = true; 1434 if (Arg->isInstantiationDependent()) 1435 ExprBits.InstantiationDependent = true; 1436 if (Arg->containsUnexpandedParameterPack()) 1437 ExprBits.ContainsUnexpandedParameterPack = true; 1438 } 1439 1440 Decl *Expr::getReferencedDeclOfCallee() { 1441 Expr *CEE = IgnoreParenImpCasts(); 1442 1443 while (SubstNonTypeTemplateParmExpr *NTTP 1444 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1445 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 1446 } 1447 1448 // If we're calling a dereference, look at the pointer instead. 1449 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1450 if (BO->isPtrMemOp()) 1451 CEE = BO->getRHS()->IgnoreParenCasts(); 1452 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1453 if (UO->getOpcode() == UO_Deref) 1454 CEE = UO->getSubExpr()->IgnoreParenCasts(); 1455 } 1456 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1457 return DRE->getDecl(); 1458 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1459 return ME->getMemberDecl(); 1460 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1461 return BE->getBlockDecl(); 1462 1463 return nullptr; 1464 } 1465 1466 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If 1467 /// not, return 0. 1468 unsigned CallExpr::getBuiltinCallee() const { 1469 // All simple function calls (e.g. func()) are implicitly cast to pointer to 1470 // function. As a result, we try and obtain the DeclRefExpr from the 1471 // ImplicitCastExpr. 1472 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 1473 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 1474 return 0; 1475 1476 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 1477 if (!DRE) 1478 return 0; 1479 1480 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 1481 if (!FDecl) 1482 return 0; 1483 1484 if (!FDecl->getIdentifier()) 1485 return 0; 1486 1487 return FDecl->getBuiltinID(); 1488 } 1489 1490 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1491 if (unsigned BI = getBuiltinCallee()) 1492 return Ctx.BuiltinInfo.isUnevaluated(BI); 1493 return false; 1494 } 1495 1496 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1497 const Expr *Callee = getCallee(); 1498 QualType CalleeType = Callee->getType(); 1499 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1500 CalleeType = FnTypePtr->getPointeeType(); 1501 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1502 CalleeType = BPT->getPointeeType(); 1503 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1504 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1505 return Ctx.VoidTy; 1506 1507 // This should never be overloaded and so should never return null. 1508 CalleeType = Expr::findBoundMemberType(Callee); 1509 } 1510 1511 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1512 return FnType->getReturnType(); 1513 } 1514 1515 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1516 // If the return type is a struct, union, or enum that is marked nodiscard, 1517 // then return the return type attribute. 1518 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1519 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1520 return A; 1521 1522 // Otherwise, see if the callee is marked nodiscard and return that attribute 1523 // instead. 1524 const Decl *D = getCalleeDecl(); 1525 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1526 } 1527 1528 SourceLocation CallExpr::getBeginLoc() const { 1529 if (isa<CXXOperatorCallExpr>(this)) 1530 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1531 1532 SourceLocation begin = getCallee()->getBeginLoc(); 1533 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1534 begin = getArg(0)->getBeginLoc(); 1535 return begin; 1536 } 1537 SourceLocation CallExpr::getEndLoc() const { 1538 if (isa<CXXOperatorCallExpr>(this)) 1539 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1540 1541 SourceLocation end = getRParenLoc(); 1542 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1543 end = getArg(getNumArgs() - 1)->getEndLoc(); 1544 return end; 1545 } 1546 1547 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1548 SourceLocation OperatorLoc, 1549 TypeSourceInfo *tsi, 1550 ArrayRef<OffsetOfNode> comps, 1551 ArrayRef<Expr*> exprs, 1552 SourceLocation RParenLoc) { 1553 void *Mem = C.Allocate( 1554 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1555 1556 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1557 RParenLoc); 1558 } 1559 1560 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1561 unsigned numComps, unsigned numExprs) { 1562 void *Mem = 1563 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1564 return new (Mem) OffsetOfExpr(numComps, numExprs); 1565 } 1566 1567 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1568 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1569 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, 1570 SourceLocation RParenLoc) 1571 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 1572 /*TypeDependent=*/false, 1573 /*ValueDependent=*/tsi->getType()->isDependentType(), 1574 tsi->getType()->isInstantiationDependentType(), 1575 tsi->getType()->containsUnexpandedParameterPack()), 1576 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1577 NumComps(comps.size()), NumExprs(exprs.size()) 1578 { 1579 for (unsigned i = 0; i != comps.size(); ++i) { 1580 setComponent(i, comps[i]); 1581 } 1582 1583 for (unsigned i = 0; i != exprs.size(); ++i) { 1584 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) 1585 ExprBits.ValueDependent = true; 1586 if (exprs[i]->containsUnexpandedParameterPack()) 1587 ExprBits.ContainsUnexpandedParameterPack = true; 1588 1589 setIndexExpr(i, exprs[i]); 1590 } 1591 } 1592 1593 IdentifierInfo *OffsetOfNode::getFieldName() const { 1594 assert(getKind() == Field || getKind() == Identifier); 1595 if (getKind() == Field) 1596 return getField()->getIdentifier(); 1597 1598 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1599 } 1600 1601 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1602 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1603 SourceLocation op, SourceLocation rp) 1604 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, 1605 false, // Never type-dependent (C++ [temp.dep.expr]p3). 1606 // Value-dependent if the argument is type-dependent. 1607 E->isTypeDependent(), E->isInstantiationDependent(), 1608 E->containsUnexpandedParameterPack()), 1609 OpLoc(op), RParenLoc(rp) { 1610 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1611 UnaryExprOrTypeTraitExprBits.IsType = false; 1612 Argument.Ex = E; 1613 1614 // Check to see if we are in the situation where alignof(decl) should be 1615 // dependent because decl's alignment is dependent. 1616 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { 1617 if (!isValueDependent() || !isInstantiationDependent()) { 1618 E = E->IgnoreParens(); 1619 1620 const ValueDecl *D = nullptr; 1621 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 1622 D = DRE->getDecl(); 1623 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 1624 D = ME->getMemberDecl(); 1625 1626 if (D) { 1627 for (const auto *I : D->specific_attrs<AlignedAttr>()) { 1628 if (I->isAlignmentDependent()) { 1629 setValueDependent(true); 1630 setInstantiationDependent(true); 1631 break; 1632 } 1633 } 1634 } 1635 } 1636 } 1637 } 1638 1639 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1640 ValueDecl *MemberDecl, 1641 const DeclarationNameInfo &NameInfo, QualType T, 1642 ExprValueKind VK, ExprObjectKind OK, 1643 NonOdrUseReason NOUR) 1644 : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(), 1645 Base->isValueDependent(), Base->isInstantiationDependent(), 1646 Base->containsUnexpandedParameterPack()), 1647 Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()), 1648 MemberLoc(NameInfo.getLoc()) { 1649 assert(!NameInfo.getName() || 1650 MemberDecl->getDeclName() == NameInfo.getName()); 1651 MemberExprBits.IsArrow = IsArrow; 1652 MemberExprBits.HasQualifierOrFoundDecl = false; 1653 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1654 MemberExprBits.HadMultipleCandidates = false; 1655 MemberExprBits.NonOdrUseReason = NOUR; 1656 MemberExprBits.OperatorLoc = OperatorLoc; 1657 } 1658 1659 MemberExpr *MemberExpr::Create( 1660 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1661 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1662 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1663 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1664 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1665 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1666 FoundDecl.getAccess() != MemberDecl->getAccess(); 1667 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1668 std::size_t Size = 1669 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1670 TemplateArgumentLoc>( 1671 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1672 TemplateArgs ? TemplateArgs->size() : 0); 1673 1674 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1675 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1676 NameInfo, T, VK, OK, NOUR); 1677 1678 if (HasQualOrFound) { 1679 // FIXME: Wrong. We should be looking at the member declaration we found. 1680 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 1681 E->setValueDependent(true); 1682 E->setTypeDependent(true); 1683 E->setInstantiationDependent(true); 1684 } 1685 else if (QualifierLoc && 1686 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1687 E->setInstantiationDependent(true); 1688 1689 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1690 1691 MemberExprNameQualifier *NQ = 1692 E->getTrailingObjects<MemberExprNameQualifier>(); 1693 NQ->QualifierLoc = QualifierLoc; 1694 NQ->FoundDecl = FoundDecl; 1695 } 1696 1697 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1698 TemplateArgs || TemplateKWLoc.isValid(); 1699 1700 if (TemplateArgs) { 1701 bool Dependent = false; 1702 bool InstantiationDependent = false; 1703 bool ContainsUnexpandedParameterPack = false; 1704 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1705 TemplateKWLoc, *TemplateArgs, 1706 E->getTrailingObjects<TemplateArgumentLoc>(), Dependent, 1707 InstantiationDependent, ContainsUnexpandedParameterPack); 1708 if (InstantiationDependent) 1709 E->setInstantiationDependent(true); 1710 } else if (TemplateKWLoc.isValid()) { 1711 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1712 TemplateKWLoc); 1713 } 1714 1715 return E; 1716 } 1717 1718 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1719 bool HasQualifier, bool HasFoundDecl, 1720 bool HasTemplateKWAndArgsInfo, 1721 unsigned NumTemplateArgs) { 1722 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1723 "template args but no template arg info?"); 1724 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1725 std::size_t Size = 1726 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1727 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1728 HasTemplateKWAndArgsInfo ? 1 : 0, 1729 NumTemplateArgs); 1730 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1731 return new (Mem) MemberExpr(EmptyShell()); 1732 } 1733 1734 SourceLocation MemberExpr::getBeginLoc() const { 1735 if (isImplicitAccess()) { 1736 if (hasQualifier()) 1737 return getQualifierLoc().getBeginLoc(); 1738 return MemberLoc; 1739 } 1740 1741 // FIXME: We don't want this to happen. Rather, we should be able to 1742 // detect all kinds of implicit accesses more cleanly. 1743 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1744 if (BaseStartLoc.isValid()) 1745 return BaseStartLoc; 1746 return MemberLoc; 1747 } 1748 SourceLocation MemberExpr::getEndLoc() const { 1749 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1750 if (hasExplicitTemplateArgs()) 1751 EndLoc = getRAngleLoc(); 1752 else if (EndLoc.isInvalid()) 1753 EndLoc = getBase()->getEndLoc(); 1754 return EndLoc; 1755 } 1756 1757 bool CastExpr::CastConsistency() const { 1758 switch (getCastKind()) { 1759 case CK_DerivedToBase: 1760 case CK_UncheckedDerivedToBase: 1761 case CK_DerivedToBaseMemberPointer: 1762 case CK_BaseToDerived: 1763 case CK_BaseToDerivedMemberPointer: 1764 assert(!path_empty() && "Cast kind should have a base path!"); 1765 break; 1766 1767 case CK_CPointerToObjCPointerCast: 1768 assert(getType()->isObjCObjectPointerType()); 1769 assert(getSubExpr()->getType()->isPointerType()); 1770 goto CheckNoBasePath; 1771 1772 case CK_BlockPointerToObjCPointerCast: 1773 assert(getType()->isObjCObjectPointerType()); 1774 assert(getSubExpr()->getType()->isBlockPointerType()); 1775 goto CheckNoBasePath; 1776 1777 case CK_ReinterpretMemberPointer: 1778 assert(getType()->isMemberPointerType()); 1779 assert(getSubExpr()->getType()->isMemberPointerType()); 1780 goto CheckNoBasePath; 1781 1782 case CK_BitCast: 1783 // Arbitrary casts to C pointer types count as bitcasts. 1784 // Otherwise, we should only have block and ObjC pointer casts 1785 // here if they stay within the type kind. 1786 if (!getType()->isPointerType()) { 1787 assert(getType()->isObjCObjectPointerType() == 1788 getSubExpr()->getType()->isObjCObjectPointerType()); 1789 assert(getType()->isBlockPointerType() == 1790 getSubExpr()->getType()->isBlockPointerType()); 1791 } 1792 goto CheckNoBasePath; 1793 1794 case CK_AnyPointerToBlockPointerCast: 1795 assert(getType()->isBlockPointerType()); 1796 assert(getSubExpr()->getType()->isAnyPointerType() && 1797 !getSubExpr()->getType()->isBlockPointerType()); 1798 goto CheckNoBasePath; 1799 1800 case CK_CopyAndAutoreleaseBlockObject: 1801 assert(getType()->isBlockPointerType()); 1802 assert(getSubExpr()->getType()->isBlockPointerType()); 1803 goto CheckNoBasePath; 1804 1805 case CK_FunctionToPointerDecay: 1806 assert(getType()->isPointerType()); 1807 assert(getSubExpr()->getType()->isFunctionType()); 1808 goto CheckNoBasePath; 1809 1810 case CK_AddressSpaceConversion: { 1811 auto Ty = getType(); 1812 auto SETy = getSubExpr()->getType(); 1813 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1814 if (/*isRValue()*/ !Ty->getPointeeType().isNull()) { 1815 Ty = Ty->getPointeeType(); 1816 SETy = SETy->getPointeeType(); 1817 } 1818 assert(!Ty.isNull() && !SETy.isNull() && 1819 Ty.getAddressSpace() != SETy.getAddressSpace()); 1820 goto CheckNoBasePath; 1821 } 1822 // These should not have an inheritance path. 1823 case CK_Dynamic: 1824 case CK_ToUnion: 1825 case CK_ArrayToPointerDecay: 1826 case CK_NullToMemberPointer: 1827 case CK_NullToPointer: 1828 case CK_ConstructorConversion: 1829 case CK_IntegralToPointer: 1830 case CK_PointerToIntegral: 1831 case CK_ToVoid: 1832 case CK_VectorSplat: 1833 case CK_IntegralCast: 1834 case CK_BooleanToSignedIntegral: 1835 case CK_IntegralToFloating: 1836 case CK_FloatingToIntegral: 1837 case CK_FloatingCast: 1838 case CK_ObjCObjectLValueCast: 1839 case CK_FloatingRealToComplex: 1840 case CK_FloatingComplexToReal: 1841 case CK_FloatingComplexCast: 1842 case CK_FloatingComplexToIntegralComplex: 1843 case CK_IntegralRealToComplex: 1844 case CK_IntegralComplexToReal: 1845 case CK_IntegralComplexCast: 1846 case CK_IntegralComplexToFloatingComplex: 1847 case CK_ARCProduceObject: 1848 case CK_ARCConsumeObject: 1849 case CK_ARCReclaimReturnedObject: 1850 case CK_ARCExtendBlockObject: 1851 case CK_ZeroToOCLOpaqueType: 1852 case CK_IntToOCLSampler: 1853 case CK_FixedPointCast: 1854 case CK_FixedPointToIntegral: 1855 case CK_IntegralToFixedPoint: 1856 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1857 goto CheckNoBasePath; 1858 1859 case CK_Dependent: 1860 case CK_LValueToRValue: 1861 case CK_NoOp: 1862 case CK_AtomicToNonAtomic: 1863 case CK_NonAtomicToAtomic: 1864 case CK_PointerToBoolean: 1865 case CK_IntegralToBoolean: 1866 case CK_FloatingToBoolean: 1867 case CK_MemberPointerToBoolean: 1868 case CK_FloatingComplexToBoolean: 1869 case CK_IntegralComplexToBoolean: 1870 case CK_LValueBitCast: // -> bool& 1871 case CK_LValueToRValueBitCast: 1872 case CK_UserDefinedConversion: // operator bool() 1873 case CK_BuiltinFnToFnPtr: 1874 case CK_FixedPointToBoolean: 1875 CheckNoBasePath: 1876 assert(path_empty() && "Cast kind should not have a base path!"); 1877 break; 1878 } 1879 return true; 1880 } 1881 1882 const char *CastExpr::getCastKindName(CastKind CK) { 1883 switch (CK) { 1884 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1885 #include "clang/AST/OperationKinds.def" 1886 } 1887 llvm_unreachable("Unhandled cast kind!"); 1888 } 1889 1890 namespace { 1891 const Expr *skipImplicitTemporary(const Expr *E) { 1892 // Skip through reference binding to temporary. 1893 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1894 E = Materialize->GetTemporaryExpr(); 1895 1896 // Skip any temporary bindings; they're implicit. 1897 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1898 E = Binder->getSubExpr(); 1899 1900 return E; 1901 } 1902 } 1903 1904 Expr *CastExpr::getSubExprAsWritten() { 1905 const Expr *SubExpr = nullptr; 1906 const CastExpr *E = this; 1907 do { 1908 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1909 1910 // Conversions by constructor and conversion functions have a 1911 // subexpression describing the call; strip it off. 1912 if (E->getCastKind() == CK_ConstructorConversion) 1913 SubExpr = 1914 skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0)); 1915 else if (E->getCastKind() == CK_UserDefinedConversion) { 1916 assert((isa<CXXMemberCallExpr>(SubExpr) || 1917 isa<BlockExpr>(SubExpr)) && 1918 "Unexpected SubExpr for CK_UserDefinedConversion."); 1919 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1920 SubExpr = MCE->getImplicitObjectArgument(); 1921 } 1922 1923 // If the subexpression we're left with is an implicit cast, look 1924 // through that, too. 1925 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1926 1927 return const_cast<Expr*>(SubExpr); 1928 } 1929 1930 NamedDecl *CastExpr::getConversionFunction() const { 1931 const Expr *SubExpr = nullptr; 1932 1933 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1934 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1935 1936 if (E->getCastKind() == CK_ConstructorConversion) 1937 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1938 1939 if (E->getCastKind() == CK_UserDefinedConversion) { 1940 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1941 return MCE->getMethodDecl(); 1942 } 1943 } 1944 1945 return nullptr; 1946 } 1947 1948 CXXBaseSpecifier **CastExpr::path_buffer() { 1949 switch (getStmtClass()) { 1950 #define ABSTRACT_STMT(x) 1951 #define CASTEXPR(Type, Base) \ 1952 case Stmt::Type##Class: \ 1953 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1954 #define STMT(Type, Base) 1955 #include "clang/AST/StmtNodes.inc" 1956 default: 1957 llvm_unreachable("non-cast expressions not possible here"); 1958 } 1959 } 1960 1961 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 1962 QualType opType) { 1963 auto RD = unionType->castAs<RecordType>()->getDecl(); 1964 return getTargetFieldForToUnionCast(RD, opType); 1965 } 1966 1967 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 1968 QualType OpType) { 1969 auto &Ctx = RD->getASTContext(); 1970 RecordDecl::field_iterator Field, FieldEnd; 1971 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 1972 Field != FieldEnd; ++Field) { 1973 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 1974 !Field->isUnnamedBitfield()) { 1975 return *Field; 1976 } 1977 } 1978 return nullptr; 1979 } 1980 1981 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1982 CastKind Kind, Expr *Operand, 1983 const CXXCastPath *BasePath, 1984 ExprValueKind VK) { 1985 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1986 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1987 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 1988 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 1989 assert((Kind != CK_LValueToRValue || 1990 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 1991 "invalid type for lvalue-to-rvalue conversion"); 1992 ImplicitCastExpr *E = 1993 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1994 if (PathSize) 1995 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1996 E->getTrailingObjects<CXXBaseSpecifier *>()); 1997 return E; 1998 } 1999 2000 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2001 unsigned PathSize) { 2002 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 2003 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 2004 } 2005 2006 2007 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2008 ExprValueKind VK, CastKind K, Expr *Op, 2009 const CXXCastPath *BasePath, 2010 TypeSourceInfo *WrittenTy, 2011 SourceLocation L, SourceLocation R) { 2012 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2013 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 2014 CStyleCastExpr *E = 2015 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 2016 if (PathSize) 2017 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2018 E->getTrailingObjects<CXXBaseSpecifier *>()); 2019 return E; 2020 } 2021 2022 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2023 unsigned PathSize) { 2024 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 2025 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 2026 } 2027 2028 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2029 /// corresponds to, e.g. "<<=". 2030 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2031 switch (Op) { 2032 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2033 #include "clang/AST/OperationKinds.def" 2034 } 2035 llvm_unreachable("Invalid OpCode!"); 2036 } 2037 2038 BinaryOperatorKind 2039 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2040 switch (OO) { 2041 default: llvm_unreachable("Not an overloadable binary operator"); 2042 case OO_Plus: return BO_Add; 2043 case OO_Minus: return BO_Sub; 2044 case OO_Star: return BO_Mul; 2045 case OO_Slash: return BO_Div; 2046 case OO_Percent: return BO_Rem; 2047 case OO_Caret: return BO_Xor; 2048 case OO_Amp: return BO_And; 2049 case OO_Pipe: return BO_Or; 2050 case OO_Equal: return BO_Assign; 2051 case OO_Spaceship: return BO_Cmp; 2052 case OO_Less: return BO_LT; 2053 case OO_Greater: return BO_GT; 2054 case OO_PlusEqual: return BO_AddAssign; 2055 case OO_MinusEqual: return BO_SubAssign; 2056 case OO_StarEqual: return BO_MulAssign; 2057 case OO_SlashEqual: return BO_DivAssign; 2058 case OO_PercentEqual: return BO_RemAssign; 2059 case OO_CaretEqual: return BO_XorAssign; 2060 case OO_AmpEqual: return BO_AndAssign; 2061 case OO_PipeEqual: return BO_OrAssign; 2062 case OO_LessLess: return BO_Shl; 2063 case OO_GreaterGreater: return BO_Shr; 2064 case OO_LessLessEqual: return BO_ShlAssign; 2065 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2066 case OO_EqualEqual: return BO_EQ; 2067 case OO_ExclaimEqual: return BO_NE; 2068 case OO_LessEqual: return BO_LE; 2069 case OO_GreaterEqual: return BO_GE; 2070 case OO_AmpAmp: return BO_LAnd; 2071 case OO_PipePipe: return BO_LOr; 2072 case OO_Comma: return BO_Comma; 2073 case OO_ArrowStar: return BO_PtrMemI; 2074 } 2075 } 2076 2077 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2078 static const OverloadedOperatorKind OverOps[] = { 2079 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2080 OO_Star, OO_Slash, OO_Percent, 2081 OO_Plus, OO_Minus, 2082 OO_LessLess, OO_GreaterGreater, 2083 OO_Spaceship, 2084 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2085 OO_EqualEqual, OO_ExclaimEqual, 2086 OO_Amp, 2087 OO_Caret, 2088 OO_Pipe, 2089 OO_AmpAmp, 2090 OO_PipePipe, 2091 OO_Equal, OO_StarEqual, 2092 OO_SlashEqual, OO_PercentEqual, 2093 OO_PlusEqual, OO_MinusEqual, 2094 OO_LessLessEqual, OO_GreaterGreaterEqual, 2095 OO_AmpEqual, OO_CaretEqual, 2096 OO_PipeEqual, 2097 OO_Comma 2098 }; 2099 return OverOps[Opc]; 2100 } 2101 2102 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2103 Opcode Opc, 2104 Expr *LHS, Expr *RHS) { 2105 if (Opc != BO_Add) 2106 return false; 2107 2108 // Check that we have one pointer and one integer operand. 2109 Expr *PExp; 2110 if (LHS->getType()->isPointerType()) { 2111 if (!RHS->getType()->isIntegerType()) 2112 return false; 2113 PExp = LHS; 2114 } else if (RHS->getType()->isPointerType()) { 2115 if (!LHS->getType()->isIntegerType()) 2116 return false; 2117 PExp = RHS; 2118 } else { 2119 return false; 2120 } 2121 2122 // Check that the pointer is a nullptr. 2123 if (!PExp->IgnoreParenCasts() 2124 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2125 return false; 2126 2127 // Check that the pointee type is char-sized. 2128 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2129 if (!PTy || !PTy->getPointeeType()->isCharType()) 2130 return false; 2131 2132 return true; 2133 } 2134 2135 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, 2136 SourceLocExpr::IdentKind Kind) { 2137 switch (Kind) { 2138 case SourceLocExpr::File: 2139 case SourceLocExpr::Function: { 2140 QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0); 2141 return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); 2142 } 2143 case SourceLocExpr::Line: 2144 case SourceLocExpr::Column: 2145 return Ctx.UnsignedIntTy; 2146 } 2147 llvm_unreachable("unhandled case"); 2148 } 2149 2150 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2151 SourceLocation BLoc, SourceLocation RParenLoc, 2152 DeclContext *ParentContext) 2153 : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind), 2154 VK_RValue, OK_Ordinary, false, false, false, false), 2155 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2156 SourceLocExprBits.Kind = Kind; 2157 } 2158 2159 StringRef SourceLocExpr::getBuiltinStr() const { 2160 switch (getIdentKind()) { 2161 case File: 2162 return "__builtin_FILE"; 2163 case Function: 2164 return "__builtin_FUNCTION"; 2165 case Line: 2166 return "__builtin_LINE"; 2167 case Column: 2168 return "__builtin_COLUMN"; 2169 } 2170 llvm_unreachable("unexpected IdentKind!"); 2171 } 2172 2173 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2174 const Expr *DefaultExpr) const { 2175 SourceLocation Loc; 2176 const DeclContext *Context; 2177 2178 std::tie(Loc, 2179 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2180 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2181 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2182 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2183 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2184 return {this->getLocation(), this->getParentContext()}; 2185 }(); 2186 2187 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2188 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2189 2190 auto MakeStringLiteral = [&](StringRef Tmp) { 2191 using LValuePathEntry = APValue::LValuePathEntry; 2192 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2193 // Decay the string to a pointer to the first character. 2194 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2195 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2196 }; 2197 2198 switch (getIdentKind()) { 2199 case SourceLocExpr::File: 2200 return MakeStringLiteral(PLoc.getFilename()); 2201 case SourceLocExpr::Function: { 2202 const Decl *CurDecl = dyn_cast_or_null<Decl>(Context); 2203 return MakeStringLiteral( 2204 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2205 : std::string("")); 2206 } 2207 case SourceLocExpr::Line: 2208 case SourceLocExpr::Column: { 2209 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2210 /*isUnsigned=*/true); 2211 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2212 : PLoc.getColumn(); 2213 return APValue(IntVal); 2214 } 2215 } 2216 llvm_unreachable("unhandled case"); 2217 } 2218 2219 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2220 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) 2221 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 2222 false, false), 2223 InitExprs(C, initExprs.size()), 2224 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) 2225 { 2226 sawArrayRangeDesignator(false); 2227 for (unsigned I = 0; I != initExprs.size(); ++I) { 2228 if (initExprs[I]->isTypeDependent()) 2229 ExprBits.TypeDependent = true; 2230 if (initExprs[I]->isValueDependent()) 2231 ExprBits.ValueDependent = true; 2232 if (initExprs[I]->isInstantiationDependent()) 2233 ExprBits.InstantiationDependent = true; 2234 if (initExprs[I]->containsUnexpandedParameterPack()) 2235 ExprBits.ContainsUnexpandedParameterPack = true; 2236 } 2237 2238 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2239 } 2240 2241 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2242 if (NumInits > InitExprs.size()) 2243 InitExprs.reserve(C, NumInits); 2244 } 2245 2246 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2247 InitExprs.resize(C, NumInits, nullptr); 2248 } 2249 2250 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2251 if (Init >= InitExprs.size()) { 2252 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2253 setInit(Init, expr); 2254 return nullptr; 2255 } 2256 2257 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2258 setInit(Init, expr); 2259 return Result; 2260 } 2261 2262 void InitListExpr::setArrayFiller(Expr *filler) { 2263 assert(!hasArrayFiller() && "Filler already set!"); 2264 ArrayFillerOrUnionFieldInit = filler; 2265 // Fill out any "holes" in the array due to designated initializers. 2266 Expr **inits = getInits(); 2267 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2268 if (inits[i] == nullptr) 2269 inits[i] = filler; 2270 } 2271 2272 bool InitListExpr::isStringLiteralInit() const { 2273 if (getNumInits() != 1) 2274 return false; 2275 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2276 if (!AT || !AT->getElementType()->isIntegerType()) 2277 return false; 2278 // It is possible for getInit() to return null. 2279 const Expr *Init = getInit(0); 2280 if (!Init) 2281 return false; 2282 Init = Init->IgnoreParens(); 2283 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2284 } 2285 2286 bool InitListExpr::isTransparent() const { 2287 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2288 2289 // A glvalue InitListExpr is always just sugar. 2290 if (isGLValue()) { 2291 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2292 return true; 2293 } 2294 2295 // Otherwise, we're sugar if and only if we have exactly one initializer that 2296 // is of the same type. 2297 if (getNumInits() != 1 || !getInit(0)) 2298 return false; 2299 2300 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2301 // transparent struct copy. 2302 if (!getInit(0)->isRValue() && getType()->isRecordType()) 2303 return false; 2304 2305 return getType().getCanonicalType() == 2306 getInit(0)->getType().getCanonicalType(); 2307 } 2308 2309 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2310 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2311 2312 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2313 return false; 2314 } 2315 2316 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2317 return Lit && Lit->getValue() == 0; 2318 } 2319 2320 SourceLocation InitListExpr::getBeginLoc() const { 2321 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2322 return SyntacticForm->getBeginLoc(); 2323 SourceLocation Beg = LBraceLoc; 2324 if (Beg.isInvalid()) { 2325 // Find the first non-null initializer. 2326 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2327 E = InitExprs.end(); 2328 I != E; ++I) { 2329 if (Stmt *S = *I) { 2330 Beg = S->getBeginLoc(); 2331 break; 2332 } 2333 } 2334 } 2335 return Beg; 2336 } 2337 2338 SourceLocation InitListExpr::getEndLoc() const { 2339 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2340 return SyntacticForm->getEndLoc(); 2341 SourceLocation End = RBraceLoc; 2342 if (End.isInvalid()) { 2343 // Find the first non-null initializer from the end. 2344 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 2345 E = InitExprs.rend(); 2346 I != E; ++I) { 2347 if (Stmt *S = *I) { 2348 End = S->getEndLoc(); 2349 break; 2350 } 2351 } 2352 } 2353 return End; 2354 } 2355 2356 /// getFunctionType - Return the underlying function type for this block. 2357 /// 2358 const FunctionProtoType *BlockExpr::getFunctionType() const { 2359 // The block pointer is never sugared, but the function type might be. 2360 return cast<BlockPointerType>(getType()) 2361 ->getPointeeType()->castAs<FunctionProtoType>(); 2362 } 2363 2364 SourceLocation BlockExpr::getCaretLocation() const { 2365 return TheBlock->getCaretLocation(); 2366 } 2367 const Stmt *BlockExpr::getBody() const { 2368 return TheBlock->getBody(); 2369 } 2370 Stmt *BlockExpr::getBody() { 2371 return TheBlock->getBody(); 2372 } 2373 2374 2375 //===----------------------------------------------------------------------===// 2376 // Generic Expression Routines 2377 //===----------------------------------------------------------------------===// 2378 2379 /// isUnusedResultAWarning - Return true if this immediate expression should 2380 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2381 /// with location to warn on and the source range[s] to report with the 2382 /// warning. 2383 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2384 SourceRange &R1, SourceRange &R2, 2385 ASTContext &Ctx) const { 2386 // Don't warn if the expr is type dependent. The type could end up 2387 // instantiating to void. 2388 if (isTypeDependent()) 2389 return false; 2390 2391 switch (getStmtClass()) { 2392 default: 2393 if (getType()->isVoidType()) 2394 return false; 2395 WarnE = this; 2396 Loc = getExprLoc(); 2397 R1 = getSourceRange(); 2398 return true; 2399 case ParenExprClass: 2400 return cast<ParenExpr>(this)->getSubExpr()-> 2401 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2402 case GenericSelectionExprClass: 2403 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2404 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2405 case CoawaitExprClass: 2406 case CoyieldExprClass: 2407 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2408 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2409 case ChooseExprClass: 2410 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2411 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2412 case UnaryOperatorClass: { 2413 const UnaryOperator *UO = cast<UnaryOperator>(this); 2414 2415 switch (UO->getOpcode()) { 2416 case UO_Plus: 2417 case UO_Minus: 2418 case UO_AddrOf: 2419 case UO_Not: 2420 case UO_LNot: 2421 case UO_Deref: 2422 break; 2423 case UO_Coawait: 2424 // This is just the 'operator co_await' call inside the guts of a 2425 // dependent co_await call. 2426 case UO_PostInc: 2427 case UO_PostDec: 2428 case UO_PreInc: 2429 case UO_PreDec: // ++/-- 2430 return false; // Not a warning. 2431 case UO_Real: 2432 case UO_Imag: 2433 // accessing a piece of a volatile complex is a side-effect. 2434 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2435 .isVolatileQualified()) 2436 return false; 2437 break; 2438 case UO_Extension: 2439 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2440 } 2441 WarnE = this; 2442 Loc = UO->getOperatorLoc(); 2443 R1 = UO->getSubExpr()->getSourceRange(); 2444 return true; 2445 } 2446 case BinaryOperatorClass: { 2447 const BinaryOperator *BO = cast<BinaryOperator>(this); 2448 switch (BO->getOpcode()) { 2449 default: 2450 break; 2451 // Consider the RHS of comma for side effects. LHS was checked by 2452 // Sema::CheckCommaOperands. 2453 case BO_Comma: 2454 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2455 // lvalue-ness) of an assignment written in a macro. 2456 if (IntegerLiteral *IE = 2457 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2458 if (IE->getValue() == 0) 2459 return false; 2460 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2461 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2462 case BO_LAnd: 2463 case BO_LOr: 2464 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2465 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2466 return false; 2467 break; 2468 } 2469 if (BO->isAssignmentOp()) 2470 return false; 2471 WarnE = this; 2472 Loc = BO->getOperatorLoc(); 2473 R1 = BO->getLHS()->getSourceRange(); 2474 R2 = BO->getRHS()->getSourceRange(); 2475 return true; 2476 } 2477 case CompoundAssignOperatorClass: 2478 case VAArgExprClass: 2479 case AtomicExprClass: 2480 return false; 2481 2482 case ConditionalOperatorClass: { 2483 // If only one of the LHS or RHS is a warning, the operator might 2484 // be being used for control flow. Only warn if both the LHS and 2485 // RHS are warnings. 2486 const auto *Exp = cast<ConditionalOperator>(this); 2487 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2488 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2489 } 2490 case BinaryConditionalOperatorClass: { 2491 const auto *Exp = cast<BinaryConditionalOperator>(this); 2492 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2493 } 2494 2495 case MemberExprClass: 2496 WarnE = this; 2497 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2498 R1 = SourceRange(Loc, Loc); 2499 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2500 return true; 2501 2502 case ArraySubscriptExprClass: 2503 WarnE = this; 2504 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2505 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2506 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2507 return true; 2508 2509 case CXXOperatorCallExprClass: { 2510 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2511 // overloads as there is no reasonable way to define these such that they 2512 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2513 // warning: operators == and != are commonly typo'ed, and so warning on them 2514 // provides additional value as well. If this list is updated, 2515 // DiagnoseUnusedComparison should be as well. 2516 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2517 switch (Op->getOperator()) { 2518 default: 2519 break; 2520 case OO_EqualEqual: 2521 case OO_ExclaimEqual: 2522 case OO_Less: 2523 case OO_Greater: 2524 case OO_GreaterEqual: 2525 case OO_LessEqual: 2526 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2527 Op->getCallReturnType(Ctx)->isVoidType()) 2528 break; 2529 WarnE = this; 2530 Loc = Op->getOperatorLoc(); 2531 R1 = Op->getSourceRange(); 2532 return true; 2533 } 2534 2535 // Fallthrough for generic call handling. 2536 LLVM_FALLTHROUGH; 2537 } 2538 case CallExprClass: 2539 case CXXMemberCallExprClass: 2540 case UserDefinedLiteralClass: { 2541 // If this is a direct call, get the callee. 2542 const CallExpr *CE = cast<CallExpr>(this); 2543 if (const Decl *FD = CE->getCalleeDecl()) { 2544 // If the callee has attribute pure, const, or warn_unused_result, warn 2545 // about it. void foo() { strlen("bar"); } should warn. 2546 // 2547 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2548 // updated to match for QoI. 2549 if (CE->hasUnusedResultAttr(Ctx) || 2550 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2551 WarnE = this; 2552 Loc = CE->getCallee()->getBeginLoc(); 2553 R1 = CE->getCallee()->getSourceRange(); 2554 2555 if (unsigned NumArgs = CE->getNumArgs()) 2556 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2557 CE->getArg(NumArgs - 1)->getEndLoc()); 2558 return true; 2559 } 2560 } 2561 return false; 2562 } 2563 2564 // If we don't know precisely what we're looking at, let's not warn. 2565 case UnresolvedLookupExprClass: 2566 case CXXUnresolvedConstructExprClass: 2567 return false; 2568 2569 case CXXTemporaryObjectExprClass: 2570 case CXXConstructExprClass: { 2571 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2572 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2573 if (Type->hasAttr<WarnUnusedAttr>() || 2574 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2575 WarnE = this; 2576 Loc = getBeginLoc(); 2577 R1 = getSourceRange(); 2578 return true; 2579 } 2580 } 2581 2582 const auto *CE = cast<CXXConstructExpr>(this); 2583 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2584 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2585 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2586 WarnE = this; 2587 Loc = getBeginLoc(); 2588 R1 = getSourceRange(); 2589 2590 if (unsigned NumArgs = CE->getNumArgs()) 2591 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2592 CE->getArg(NumArgs - 1)->getEndLoc()); 2593 return true; 2594 } 2595 } 2596 2597 return false; 2598 } 2599 2600 case ObjCMessageExprClass: { 2601 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2602 if (Ctx.getLangOpts().ObjCAutoRefCount && 2603 ME->isInstanceMessage() && 2604 !ME->getType()->isVoidType() && 2605 ME->getMethodFamily() == OMF_init) { 2606 WarnE = this; 2607 Loc = getExprLoc(); 2608 R1 = ME->getSourceRange(); 2609 return true; 2610 } 2611 2612 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2613 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2614 WarnE = this; 2615 Loc = getExprLoc(); 2616 return true; 2617 } 2618 2619 return false; 2620 } 2621 2622 case ObjCPropertyRefExprClass: 2623 WarnE = this; 2624 Loc = getExprLoc(); 2625 R1 = getSourceRange(); 2626 return true; 2627 2628 case PseudoObjectExprClass: { 2629 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2630 2631 // Only complain about things that have the form of a getter. 2632 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2633 isa<BinaryOperator>(PO->getSyntacticForm())) 2634 return false; 2635 2636 WarnE = this; 2637 Loc = getExprLoc(); 2638 R1 = getSourceRange(); 2639 return true; 2640 } 2641 2642 case StmtExprClass: { 2643 // Statement exprs don't logically have side effects themselves, but are 2644 // sometimes used in macros in ways that give them a type that is unused. 2645 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2646 // however, if the result of the stmt expr is dead, we don't want to emit a 2647 // warning. 2648 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2649 if (!CS->body_empty()) { 2650 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2651 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2652 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2653 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2654 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2655 } 2656 2657 if (getType()->isVoidType()) 2658 return false; 2659 WarnE = this; 2660 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2661 R1 = getSourceRange(); 2662 return true; 2663 } 2664 case CXXFunctionalCastExprClass: 2665 case CStyleCastExprClass: { 2666 // Ignore an explicit cast to void unless the operand is a non-trivial 2667 // volatile lvalue. 2668 const CastExpr *CE = cast<CastExpr>(this); 2669 if (CE->getCastKind() == CK_ToVoid) { 2670 if (CE->getSubExpr()->isGLValue() && 2671 CE->getSubExpr()->getType().isVolatileQualified()) { 2672 const DeclRefExpr *DRE = 2673 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); 2674 if (!(DRE && isa<VarDecl>(DRE->getDecl()) && 2675 cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) && 2676 !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) { 2677 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, 2678 R1, R2, Ctx); 2679 } 2680 } 2681 return false; 2682 } 2683 2684 // If this is a cast to a constructor conversion, check the operand. 2685 // Otherwise, the result of the cast is unused. 2686 if (CE->getCastKind() == CK_ConstructorConversion) 2687 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2688 2689 WarnE = this; 2690 if (const CXXFunctionalCastExpr *CXXCE = 2691 dyn_cast<CXXFunctionalCastExpr>(this)) { 2692 Loc = CXXCE->getBeginLoc(); 2693 R1 = CXXCE->getSubExpr()->getSourceRange(); 2694 } else { 2695 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2696 Loc = CStyleCE->getLParenLoc(); 2697 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2698 } 2699 return true; 2700 } 2701 case ImplicitCastExprClass: { 2702 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2703 2704 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2705 if (ICE->getCastKind() == CK_LValueToRValue && 2706 ICE->getSubExpr()->getType().isVolatileQualified()) 2707 return false; 2708 2709 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2710 } 2711 case CXXDefaultArgExprClass: 2712 return (cast<CXXDefaultArgExpr>(this) 2713 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2714 case CXXDefaultInitExprClass: 2715 return (cast<CXXDefaultInitExpr>(this) 2716 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2717 2718 case CXXNewExprClass: 2719 // FIXME: In theory, there might be new expressions that don't have side 2720 // effects (e.g. a placement new with an uninitialized POD). 2721 case CXXDeleteExprClass: 2722 return false; 2723 case MaterializeTemporaryExprClass: 2724 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2725 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2726 case CXXBindTemporaryExprClass: 2727 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2728 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2729 case ExprWithCleanupsClass: 2730 return cast<ExprWithCleanups>(this)->getSubExpr() 2731 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2732 } 2733 } 2734 2735 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2736 /// returns true, if it is; false otherwise. 2737 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2738 const Expr *E = IgnoreParens(); 2739 switch (E->getStmtClass()) { 2740 default: 2741 return false; 2742 case ObjCIvarRefExprClass: 2743 return true; 2744 case Expr::UnaryOperatorClass: 2745 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2746 case ImplicitCastExprClass: 2747 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2748 case MaterializeTemporaryExprClass: 2749 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 2750 ->isOBJCGCCandidate(Ctx); 2751 case CStyleCastExprClass: 2752 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2753 case DeclRefExprClass: { 2754 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2755 2756 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2757 if (VD->hasGlobalStorage()) 2758 return true; 2759 QualType T = VD->getType(); 2760 // dereferencing to a pointer is always a gc'able candidate, 2761 // unless it is __weak. 2762 return T->isPointerType() && 2763 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2764 } 2765 return false; 2766 } 2767 case MemberExprClass: { 2768 const MemberExpr *M = cast<MemberExpr>(E); 2769 return M->getBase()->isOBJCGCCandidate(Ctx); 2770 } 2771 case ArraySubscriptExprClass: 2772 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2773 } 2774 } 2775 2776 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2777 if (isTypeDependent()) 2778 return false; 2779 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2780 } 2781 2782 QualType Expr::findBoundMemberType(const Expr *expr) { 2783 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2784 2785 // Bound member expressions are always one of these possibilities: 2786 // x->m x.m x->*y x.*y 2787 // (possibly parenthesized) 2788 2789 expr = expr->IgnoreParens(); 2790 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2791 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2792 return mem->getMemberDecl()->getType(); 2793 } 2794 2795 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2796 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2797 ->getPointeeType(); 2798 assert(type->isFunctionType()); 2799 return type; 2800 } 2801 2802 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2803 return QualType(); 2804 } 2805 2806 static Expr *IgnoreImpCastsSingleStep(Expr *E) { 2807 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) 2808 return ICE->getSubExpr(); 2809 2810 if (auto *FE = dyn_cast<FullExpr>(E)) 2811 return FE->getSubExpr(); 2812 2813 return E; 2814 } 2815 2816 static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) { 2817 // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in 2818 // addition to what IgnoreImpCasts() skips to account for the current 2819 // behaviour of IgnoreParenImpCasts(). 2820 Expr *SubE = IgnoreImpCastsSingleStep(E); 2821 if (SubE != E) 2822 return SubE; 2823 2824 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2825 return MTE->GetTemporaryExpr(); 2826 2827 if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2828 return NTTP->getReplacement(); 2829 2830 return E; 2831 } 2832 2833 static Expr *IgnoreCastsSingleStep(Expr *E) { 2834 if (auto *CE = dyn_cast<CastExpr>(E)) 2835 return CE->getSubExpr(); 2836 2837 if (auto *FE = dyn_cast<FullExpr>(E)) 2838 return FE->getSubExpr(); 2839 2840 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2841 return MTE->GetTemporaryExpr(); 2842 2843 if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2844 return NTTP->getReplacement(); 2845 2846 return E; 2847 } 2848 2849 static Expr *IgnoreLValueCastsSingleStep(Expr *E) { 2850 // Skip what IgnoreCastsSingleStep skips, except that only 2851 // lvalue-to-rvalue casts are skipped. 2852 if (auto *CE = dyn_cast<CastExpr>(E)) 2853 if (CE->getCastKind() != CK_LValueToRValue) 2854 return E; 2855 2856 return IgnoreCastsSingleStep(E); 2857 } 2858 2859 static Expr *IgnoreBaseCastsSingleStep(Expr *E) { 2860 if (auto *CE = dyn_cast<CastExpr>(E)) 2861 if (CE->getCastKind() == CK_DerivedToBase || 2862 CE->getCastKind() == CK_UncheckedDerivedToBase || 2863 CE->getCastKind() == CK_NoOp) 2864 return CE->getSubExpr(); 2865 2866 return E; 2867 } 2868 2869 static Expr *IgnoreImplicitSingleStep(Expr *E) { 2870 Expr *SubE = IgnoreImpCastsSingleStep(E); 2871 if (SubE != E) 2872 return SubE; 2873 2874 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2875 return MTE->GetTemporaryExpr(); 2876 2877 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2878 return BTE->getSubExpr(); 2879 2880 return E; 2881 } 2882 2883 static Expr *IgnoreParensSingleStep(Expr *E) { 2884 if (auto *PE = dyn_cast<ParenExpr>(E)) 2885 return PE->getSubExpr(); 2886 2887 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 2888 if (UO->getOpcode() == UO_Extension) 2889 return UO->getSubExpr(); 2890 } 2891 2892 else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 2893 if (!GSE->isResultDependent()) 2894 return GSE->getResultExpr(); 2895 } 2896 2897 else if (auto *CE = dyn_cast<ChooseExpr>(E)) { 2898 if (!CE->isConditionDependent()) 2899 return CE->getChosenSubExpr(); 2900 } 2901 2902 else if (auto *CE = dyn_cast<ConstantExpr>(E)) 2903 return CE->getSubExpr(); 2904 2905 return E; 2906 } 2907 2908 static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) { 2909 if (auto *CE = dyn_cast<CastExpr>(E)) { 2910 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2911 // ptr<->int casts of the same width. We also ignore all identity casts. 2912 Expr *SubExpr = CE->getSubExpr(); 2913 bool IsIdentityCast = 2914 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 2915 bool IsSameWidthCast = 2916 (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) && 2917 (SubExpr->getType()->isPointerType() || 2918 SubExpr->getType()->isIntegralType(Ctx)) && 2919 (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType())); 2920 2921 if (IsIdentityCast || IsSameWidthCast) 2922 return SubExpr; 2923 } 2924 2925 else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2926 return NTTP->getReplacement(); 2927 2928 return E; 2929 } 2930 2931 static Expr *IgnoreExprNodesImpl(Expr *E) { return E; } 2932 template <typename FnTy, typename... FnTys> 2933 static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) { 2934 return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...); 2935 } 2936 2937 /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *, 2938 /// Recursively apply each of the functions to E until reaching a fixed point. 2939 /// Note that a null E is valid; in this case nothing is done. 2940 template <typename... FnTys> 2941 static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) { 2942 Expr *LastE = nullptr; 2943 while (E != LastE) { 2944 LastE = E; 2945 E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...); 2946 } 2947 return E; 2948 } 2949 2950 Expr *Expr::IgnoreImpCasts() { 2951 return IgnoreExprNodes(this, IgnoreImpCastsSingleStep); 2952 } 2953 2954 Expr *Expr::IgnoreCasts() { 2955 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 2956 } 2957 2958 Expr *Expr::IgnoreImplicit() { 2959 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 2960 } 2961 2962 Expr *Expr::IgnoreParens() { 2963 return IgnoreExprNodes(this, IgnoreParensSingleStep); 2964 } 2965 2966 Expr *Expr::IgnoreParenImpCasts() { 2967 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2968 IgnoreImpCastsExtraSingleStep); 2969 } 2970 2971 Expr *Expr::IgnoreParenCasts() { 2972 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 2973 } 2974 2975 Expr *Expr::IgnoreConversionOperator() { 2976 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2977 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2978 return MCE->getImplicitObjectArgument(); 2979 } 2980 return this; 2981 } 2982 2983 Expr *Expr::IgnoreParenLValueCasts() { 2984 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2985 IgnoreLValueCastsSingleStep); 2986 } 2987 2988 Expr *Expr::ignoreParenBaseCasts() { 2989 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2990 IgnoreBaseCastsSingleStep); 2991 } 2992 2993 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 2994 return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) { 2995 return IgnoreNoopCastsSingleStep(Ctx, E); 2996 }); 2997 } 2998 2999 bool Expr::isDefaultArgument() const { 3000 const Expr *E = this; 3001 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3002 E = M->GetTemporaryExpr(); 3003 3004 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3005 E = ICE->getSubExprAsWritten(); 3006 3007 return isa<CXXDefaultArgExpr>(E); 3008 } 3009 3010 /// Skip over any no-op casts and any temporary-binding 3011 /// expressions. 3012 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3013 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3014 E = M->GetTemporaryExpr(); 3015 3016 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3017 if (ICE->getCastKind() == CK_NoOp) 3018 E = ICE->getSubExpr(); 3019 else 3020 break; 3021 } 3022 3023 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3024 E = BE->getSubExpr(); 3025 3026 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3027 if (ICE->getCastKind() == CK_NoOp) 3028 E = ICE->getSubExpr(); 3029 else 3030 break; 3031 } 3032 3033 return E->IgnoreParens(); 3034 } 3035 3036 /// isTemporaryObject - Determines if this expression produces a 3037 /// temporary of the given class type. 3038 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3039 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3040 return false; 3041 3042 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3043 3044 // Temporaries are by definition pr-values of class type. 3045 if (!E->Classify(C).isPRValue()) { 3046 // In this context, property reference is a message call and is pr-value. 3047 if (!isa<ObjCPropertyRefExpr>(E)) 3048 return false; 3049 } 3050 3051 // Black-list a few cases which yield pr-values of class type that don't 3052 // refer to temporaries of that type: 3053 3054 // - implicit derived-to-base conversions 3055 if (isa<ImplicitCastExpr>(E)) { 3056 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3057 case CK_DerivedToBase: 3058 case CK_UncheckedDerivedToBase: 3059 return false; 3060 default: 3061 break; 3062 } 3063 } 3064 3065 // - member expressions (all) 3066 if (isa<MemberExpr>(E)) 3067 return false; 3068 3069 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3070 if (BO->isPtrMemOp()) 3071 return false; 3072 3073 // - opaque values (all) 3074 if (isa<OpaqueValueExpr>(E)) 3075 return false; 3076 3077 return true; 3078 } 3079 3080 bool Expr::isImplicitCXXThis() const { 3081 const Expr *E = this; 3082 3083 // Strip away parentheses and casts we don't care about. 3084 while (true) { 3085 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3086 E = Paren->getSubExpr(); 3087 continue; 3088 } 3089 3090 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3091 if (ICE->getCastKind() == CK_NoOp || 3092 ICE->getCastKind() == CK_LValueToRValue || 3093 ICE->getCastKind() == CK_DerivedToBase || 3094 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3095 E = ICE->getSubExpr(); 3096 continue; 3097 } 3098 } 3099 3100 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3101 if (UnOp->getOpcode() == UO_Extension) { 3102 E = UnOp->getSubExpr(); 3103 continue; 3104 } 3105 } 3106 3107 if (const MaterializeTemporaryExpr *M 3108 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3109 E = M->GetTemporaryExpr(); 3110 continue; 3111 } 3112 3113 break; 3114 } 3115 3116 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3117 return This->isImplicit(); 3118 3119 return false; 3120 } 3121 3122 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3123 /// in Exprs is type-dependent. 3124 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3125 for (unsigned I = 0; I < Exprs.size(); ++I) 3126 if (Exprs[I]->isTypeDependent()) 3127 return true; 3128 3129 return false; 3130 } 3131 3132 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3133 const Expr **Culprit) const { 3134 assert(!isValueDependent() && 3135 "Expression evaluator can't be called on a dependent expression."); 3136 3137 // This function is attempting whether an expression is an initializer 3138 // which can be evaluated at compile-time. It very closely parallels 3139 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3140 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3141 // to isEvaluatable most of the time. 3142 // 3143 // If we ever capture reference-binding directly in the AST, we can 3144 // kill the second parameter. 3145 3146 if (IsForRef) { 3147 EvalResult Result; 3148 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3149 return true; 3150 if (Culprit) 3151 *Culprit = this; 3152 return false; 3153 } 3154 3155 switch (getStmtClass()) { 3156 default: break; 3157 case StringLiteralClass: 3158 case ObjCEncodeExprClass: 3159 return true; 3160 case CXXTemporaryObjectExprClass: 3161 case CXXConstructExprClass: { 3162 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3163 3164 if (CE->getConstructor()->isTrivial() && 3165 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3166 // Trivial default constructor 3167 if (!CE->getNumArgs()) return true; 3168 3169 // Trivial copy constructor 3170 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3171 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3172 } 3173 3174 break; 3175 } 3176 case ConstantExprClass: { 3177 // FIXME: We should be able to return "true" here, but it can lead to extra 3178 // error messages. E.g. in Sema/array-init.c. 3179 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3180 return Exp->isConstantInitializer(Ctx, false, Culprit); 3181 } 3182 case CompoundLiteralExprClass: { 3183 // This handles gcc's extension that allows global initializers like 3184 // "struct x {int x;} x = (struct x) {};". 3185 // FIXME: This accepts other cases it shouldn't! 3186 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3187 return Exp->isConstantInitializer(Ctx, false, Culprit); 3188 } 3189 case DesignatedInitUpdateExprClass: { 3190 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3191 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3192 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3193 } 3194 case InitListExprClass: { 3195 const InitListExpr *ILE = cast<InitListExpr>(this); 3196 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3197 if (ILE->getType()->isArrayType()) { 3198 unsigned numInits = ILE->getNumInits(); 3199 for (unsigned i = 0; i < numInits; i++) { 3200 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3201 return false; 3202 } 3203 return true; 3204 } 3205 3206 if (ILE->getType()->isRecordType()) { 3207 unsigned ElementNo = 0; 3208 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3209 for (const auto *Field : RD->fields()) { 3210 // If this is a union, skip all the fields that aren't being initialized. 3211 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3212 continue; 3213 3214 // Don't emit anonymous bitfields, they just affect layout. 3215 if (Field->isUnnamedBitfield()) 3216 continue; 3217 3218 if (ElementNo < ILE->getNumInits()) { 3219 const Expr *Elt = ILE->getInit(ElementNo++); 3220 if (Field->isBitField()) { 3221 // Bitfields have to evaluate to an integer. 3222 EvalResult Result; 3223 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3224 if (Culprit) 3225 *Culprit = Elt; 3226 return false; 3227 } 3228 } else { 3229 bool RefType = Field->getType()->isReferenceType(); 3230 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3231 return false; 3232 } 3233 } 3234 } 3235 return true; 3236 } 3237 3238 break; 3239 } 3240 case ImplicitValueInitExprClass: 3241 case NoInitExprClass: 3242 return true; 3243 case ParenExprClass: 3244 return cast<ParenExpr>(this)->getSubExpr() 3245 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3246 case GenericSelectionExprClass: 3247 return cast<GenericSelectionExpr>(this)->getResultExpr() 3248 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3249 case ChooseExprClass: 3250 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3251 if (Culprit) 3252 *Culprit = this; 3253 return false; 3254 } 3255 return cast<ChooseExpr>(this)->getChosenSubExpr() 3256 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3257 case UnaryOperatorClass: { 3258 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3259 if (Exp->getOpcode() == UO_Extension) 3260 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3261 break; 3262 } 3263 case CXXFunctionalCastExprClass: 3264 case CXXStaticCastExprClass: 3265 case ImplicitCastExprClass: 3266 case CStyleCastExprClass: 3267 case ObjCBridgedCastExprClass: 3268 case CXXDynamicCastExprClass: 3269 case CXXReinterpretCastExprClass: 3270 case CXXConstCastExprClass: { 3271 const CastExpr *CE = cast<CastExpr>(this); 3272 3273 // Handle misc casts we want to ignore. 3274 if (CE->getCastKind() == CK_NoOp || 3275 CE->getCastKind() == CK_LValueToRValue || 3276 CE->getCastKind() == CK_ToUnion || 3277 CE->getCastKind() == CK_ConstructorConversion || 3278 CE->getCastKind() == CK_NonAtomicToAtomic || 3279 CE->getCastKind() == CK_AtomicToNonAtomic || 3280 CE->getCastKind() == CK_IntToOCLSampler) 3281 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3282 3283 break; 3284 } 3285 case MaterializeTemporaryExprClass: 3286 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 3287 ->isConstantInitializer(Ctx, false, Culprit); 3288 3289 case SubstNonTypeTemplateParmExprClass: 3290 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3291 ->isConstantInitializer(Ctx, false, Culprit); 3292 case CXXDefaultArgExprClass: 3293 return cast<CXXDefaultArgExpr>(this)->getExpr() 3294 ->isConstantInitializer(Ctx, false, Culprit); 3295 case CXXDefaultInitExprClass: 3296 return cast<CXXDefaultInitExpr>(this)->getExpr() 3297 ->isConstantInitializer(Ctx, false, Culprit); 3298 } 3299 // Allow certain forms of UB in constant initializers: signed integer 3300 // overflow and floating-point division by zero. We'll give a warning on 3301 // these, but they're common enough that we have to accept them. 3302 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3303 return true; 3304 if (Culprit) 3305 *Culprit = this; 3306 return false; 3307 } 3308 3309 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3310 const FunctionDecl* FD = getDirectCallee(); 3311 if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && 3312 FD->getBuiltinID() != Builtin::BI__builtin_assume)) 3313 return false; 3314 3315 const Expr* Arg = getArg(0); 3316 bool ArgVal; 3317 return !Arg->isValueDependent() && 3318 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3319 } 3320 3321 namespace { 3322 /// Look for any side effects within a Stmt. 3323 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3324 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3325 const bool IncludePossibleEffects; 3326 bool HasSideEffects; 3327 3328 public: 3329 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3330 : Inherited(Context), 3331 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3332 3333 bool hasSideEffects() const { return HasSideEffects; } 3334 3335 void VisitExpr(const Expr *E) { 3336 if (!HasSideEffects && 3337 E->HasSideEffects(Context, IncludePossibleEffects)) 3338 HasSideEffects = true; 3339 } 3340 }; 3341 } 3342 3343 bool Expr::HasSideEffects(const ASTContext &Ctx, 3344 bool IncludePossibleEffects) const { 3345 // In circumstances where we care about definite side effects instead of 3346 // potential side effects, we want to ignore expressions that are part of a 3347 // macro expansion as a potential side effect. 3348 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3349 return false; 3350 3351 if (isInstantiationDependent()) 3352 return IncludePossibleEffects; 3353 3354 switch (getStmtClass()) { 3355 case NoStmtClass: 3356 #define ABSTRACT_STMT(Type) 3357 #define STMT(Type, Base) case Type##Class: 3358 #define EXPR(Type, Base) 3359 #include "clang/AST/StmtNodes.inc" 3360 llvm_unreachable("unexpected Expr kind"); 3361 3362 case DependentScopeDeclRefExprClass: 3363 case CXXUnresolvedConstructExprClass: 3364 case CXXDependentScopeMemberExprClass: 3365 case UnresolvedLookupExprClass: 3366 case UnresolvedMemberExprClass: 3367 case PackExpansionExprClass: 3368 case SubstNonTypeTemplateParmPackExprClass: 3369 case FunctionParmPackExprClass: 3370 case TypoExprClass: 3371 case CXXFoldExprClass: 3372 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 3373 3374 case DeclRefExprClass: 3375 case ObjCIvarRefExprClass: 3376 case PredefinedExprClass: 3377 case IntegerLiteralClass: 3378 case FixedPointLiteralClass: 3379 case FloatingLiteralClass: 3380 case ImaginaryLiteralClass: 3381 case StringLiteralClass: 3382 case CharacterLiteralClass: 3383 case OffsetOfExprClass: 3384 case ImplicitValueInitExprClass: 3385 case UnaryExprOrTypeTraitExprClass: 3386 case AddrLabelExprClass: 3387 case GNUNullExprClass: 3388 case ArrayInitIndexExprClass: 3389 case NoInitExprClass: 3390 case CXXBoolLiteralExprClass: 3391 case CXXNullPtrLiteralExprClass: 3392 case CXXThisExprClass: 3393 case CXXScalarValueInitExprClass: 3394 case TypeTraitExprClass: 3395 case ArrayTypeTraitExprClass: 3396 case ExpressionTraitExprClass: 3397 case CXXNoexceptExprClass: 3398 case SizeOfPackExprClass: 3399 case ObjCStringLiteralClass: 3400 case ObjCEncodeExprClass: 3401 case ObjCBoolLiteralExprClass: 3402 case ObjCAvailabilityCheckExprClass: 3403 case CXXUuidofExprClass: 3404 case OpaqueValueExprClass: 3405 case SourceLocExprClass: 3406 case ConceptSpecializationExprClass: 3407 // These never have a side-effect. 3408 return false; 3409 3410 case ConstantExprClass: 3411 // FIXME: Move this into the "return false;" block above. 3412 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3413 Ctx, IncludePossibleEffects); 3414 3415 case CallExprClass: 3416 case CXXOperatorCallExprClass: 3417 case CXXMemberCallExprClass: 3418 case CUDAKernelCallExprClass: 3419 case UserDefinedLiteralClass: { 3420 // We don't know a call definitely has side effects, except for calls 3421 // to pure/const functions that definitely don't. 3422 // If the call itself is considered side-effect free, check the operands. 3423 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3424 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3425 if (IsPure || !IncludePossibleEffects) 3426 break; 3427 return true; 3428 } 3429 3430 case BlockExprClass: 3431 case CXXBindTemporaryExprClass: 3432 if (!IncludePossibleEffects) 3433 break; 3434 return true; 3435 3436 case MSPropertyRefExprClass: 3437 case MSPropertySubscriptExprClass: 3438 case CompoundAssignOperatorClass: 3439 case VAArgExprClass: 3440 case AtomicExprClass: 3441 case CXXThrowExprClass: 3442 case CXXNewExprClass: 3443 case CXXDeleteExprClass: 3444 case CoawaitExprClass: 3445 case DependentCoawaitExprClass: 3446 case CoyieldExprClass: 3447 // These always have a side-effect. 3448 return true; 3449 3450 case StmtExprClass: { 3451 // StmtExprs have a side-effect if any substatement does. 3452 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3453 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3454 return Finder.hasSideEffects(); 3455 } 3456 3457 case ExprWithCleanupsClass: 3458 if (IncludePossibleEffects) 3459 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3460 return true; 3461 break; 3462 3463 case ParenExprClass: 3464 case ArraySubscriptExprClass: 3465 case OMPArraySectionExprClass: 3466 case MemberExprClass: 3467 case ConditionalOperatorClass: 3468 case BinaryConditionalOperatorClass: 3469 case CompoundLiteralExprClass: 3470 case ExtVectorElementExprClass: 3471 case DesignatedInitExprClass: 3472 case DesignatedInitUpdateExprClass: 3473 case ArrayInitLoopExprClass: 3474 case ParenListExprClass: 3475 case CXXPseudoDestructorExprClass: 3476 case CXXRewrittenBinaryOperatorClass: 3477 case CXXStdInitializerListExprClass: 3478 case SubstNonTypeTemplateParmExprClass: 3479 case MaterializeTemporaryExprClass: 3480 case ShuffleVectorExprClass: 3481 case ConvertVectorExprClass: 3482 case AsTypeExprClass: 3483 // These have a side-effect if any subexpression does. 3484 break; 3485 3486 case UnaryOperatorClass: 3487 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3488 return true; 3489 break; 3490 3491 case BinaryOperatorClass: 3492 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3493 return true; 3494 break; 3495 3496 case InitListExprClass: 3497 // FIXME: The children for an InitListExpr doesn't include the array filler. 3498 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3499 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3500 return true; 3501 break; 3502 3503 case GenericSelectionExprClass: 3504 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3505 HasSideEffects(Ctx, IncludePossibleEffects); 3506 3507 case ChooseExprClass: 3508 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3509 Ctx, IncludePossibleEffects); 3510 3511 case CXXDefaultArgExprClass: 3512 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3513 Ctx, IncludePossibleEffects); 3514 3515 case CXXDefaultInitExprClass: { 3516 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3517 if (const Expr *E = FD->getInClassInitializer()) 3518 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3519 // If we've not yet parsed the initializer, assume it has side-effects. 3520 return true; 3521 } 3522 3523 case CXXDynamicCastExprClass: { 3524 // A dynamic_cast expression has side-effects if it can throw. 3525 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3526 if (DCE->getTypeAsWritten()->isReferenceType() && 3527 DCE->getCastKind() == CK_Dynamic) 3528 return true; 3529 } 3530 LLVM_FALLTHROUGH; 3531 case ImplicitCastExprClass: 3532 case CStyleCastExprClass: 3533 case CXXStaticCastExprClass: 3534 case CXXReinterpretCastExprClass: 3535 case CXXConstCastExprClass: 3536 case CXXFunctionalCastExprClass: 3537 case BuiltinBitCastExprClass: { 3538 // While volatile reads are side-effecting in both C and C++, we treat them 3539 // as having possible (not definite) side-effects. This allows idiomatic 3540 // code to behave without warning, such as sizeof(*v) for a volatile- 3541 // qualified pointer. 3542 if (!IncludePossibleEffects) 3543 break; 3544 3545 const CastExpr *CE = cast<CastExpr>(this); 3546 if (CE->getCastKind() == CK_LValueToRValue && 3547 CE->getSubExpr()->getType().isVolatileQualified()) 3548 return true; 3549 break; 3550 } 3551 3552 case CXXTypeidExprClass: 3553 // typeid might throw if its subexpression is potentially-evaluated, so has 3554 // side-effects in that case whether or not its subexpression does. 3555 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3556 3557 case CXXConstructExprClass: 3558 case CXXTemporaryObjectExprClass: { 3559 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3560 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3561 return true; 3562 // A trivial constructor does not add any side-effects of its own. Just look 3563 // at its arguments. 3564 break; 3565 } 3566 3567 case CXXInheritedCtorInitExprClass: { 3568 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3569 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3570 return true; 3571 break; 3572 } 3573 3574 case LambdaExprClass: { 3575 const LambdaExpr *LE = cast<LambdaExpr>(this); 3576 for (Expr *E : LE->capture_inits()) 3577 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3578 return true; 3579 return false; 3580 } 3581 3582 case PseudoObjectExprClass: { 3583 // Only look for side-effects in the semantic form, and look past 3584 // OpaqueValueExpr bindings in that form. 3585 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3586 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3587 E = PO->semantics_end(); 3588 I != E; ++I) { 3589 const Expr *Subexpr = *I; 3590 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3591 Subexpr = OVE->getSourceExpr(); 3592 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3593 return true; 3594 } 3595 return false; 3596 } 3597 3598 case ObjCBoxedExprClass: 3599 case ObjCArrayLiteralClass: 3600 case ObjCDictionaryLiteralClass: 3601 case ObjCSelectorExprClass: 3602 case ObjCProtocolExprClass: 3603 case ObjCIsaExprClass: 3604 case ObjCIndirectCopyRestoreExprClass: 3605 case ObjCSubscriptRefExprClass: 3606 case ObjCBridgedCastExprClass: 3607 case ObjCMessageExprClass: 3608 case ObjCPropertyRefExprClass: 3609 // FIXME: Classify these cases better. 3610 if (IncludePossibleEffects) 3611 return true; 3612 break; 3613 } 3614 3615 // Recurse to children. 3616 for (const Stmt *SubStmt : children()) 3617 if (SubStmt && 3618 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3619 return true; 3620 3621 return false; 3622 } 3623 3624 namespace { 3625 /// Look for a call to a non-trivial function within an expression. 3626 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3627 { 3628 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3629 3630 bool NonTrivial; 3631 3632 public: 3633 explicit NonTrivialCallFinder(const ASTContext &Context) 3634 : Inherited(Context), NonTrivial(false) { } 3635 3636 bool hasNonTrivialCall() const { return NonTrivial; } 3637 3638 void VisitCallExpr(const CallExpr *E) { 3639 if (const CXXMethodDecl *Method 3640 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3641 if (Method->isTrivial()) { 3642 // Recurse to children of the call. 3643 Inherited::VisitStmt(E); 3644 return; 3645 } 3646 } 3647 3648 NonTrivial = true; 3649 } 3650 3651 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3652 if (E->getConstructor()->isTrivial()) { 3653 // Recurse to children of the call. 3654 Inherited::VisitStmt(E); 3655 return; 3656 } 3657 3658 NonTrivial = true; 3659 } 3660 3661 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3662 if (E->getTemporary()->getDestructor()->isTrivial()) { 3663 Inherited::VisitStmt(E); 3664 return; 3665 } 3666 3667 NonTrivial = true; 3668 } 3669 }; 3670 } 3671 3672 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3673 NonTrivialCallFinder Finder(Ctx); 3674 Finder.Visit(this); 3675 return Finder.hasNonTrivialCall(); 3676 } 3677 3678 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3679 /// pointer constant or not, as well as the specific kind of constant detected. 3680 /// Null pointer constants can be integer constant expressions with the 3681 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3682 /// (a GNU extension). 3683 Expr::NullPointerConstantKind 3684 Expr::isNullPointerConstant(ASTContext &Ctx, 3685 NullPointerConstantValueDependence NPC) const { 3686 if (isValueDependent() && 3687 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3688 switch (NPC) { 3689 case NPC_NeverValueDependent: 3690 llvm_unreachable("Unexpected value dependent expression!"); 3691 case NPC_ValueDependentIsNull: 3692 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3693 return NPCK_ZeroExpression; 3694 else 3695 return NPCK_NotNull; 3696 3697 case NPC_ValueDependentIsNotNull: 3698 return NPCK_NotNull; 3699 } 3700 } 3701 3702 // Strip off a cast to void*, if it exists. Except in C++. 3703 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3704 if (!Ctx.getLangOpts().CPlusPlus) { 3705 // Check that it is a cast to void*. 3706 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3707 QualType Pointee = PT->getPointeeType(); 3708 Qualifiers Qs = Pointee.getQualifiers(); 3709 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3710 // has non-default address space it is not treated as nullptr. 3711 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3712 // since it cannot be assigned to a pointer to constant address space. 3713 if ((Ctx.getLangOpts().OpenCLVersion >= 200 && 3714 Pointee.getAddressSpace() == LangAS::opencl_generic) || 3715 (Ctx.getLangOpts().OpenCL && 3716 Ctx.getLangOpts().OpenCLVersion < 200 && 3717 Pointee.getAddressSpace() == LangAS::opencl_private)) 3718 Qs.removeAddressSpace(); 3719 3720 if (Pointee->isVoidType() && Qs.empty() && // to void* 3721 CE->getSubExpr()->getType()->isIntegerType()) // from int 3722 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3723 } 3724 } 3725 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3726 // Ignore the ImplicitCastExpr type entirely. 3727 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3728 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3729 // Accept ((void*)0) as a null pointer constant, as many other 3730 // implementations do. 3731 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3732 } else if (const GenericSelectionExpr *GE = 3733 dyn_cast<GenericSelectionExpr>(this)) { 3734 if (GE->isResultDependent()) 3735 return NPCK_NotNull; 3736 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3737 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3738 if (CE->isConditionDependent()) 3739 return NPCK_NotNull; 3740 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3741 } else if (const CXXDefaultArgExpr *DefaultArg 3742 = dyn_cast<CXXDefaultArgExpr>(this)) { 3743 // See through default argument expressions. 3744 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3745 } else if (const CXXDefaultInitExpr *DefaultInit 3746 = dyn_cast<CXXDefaultInitExpr>(this)) { 3747 // See through default initializer expressions. 3748 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3749 } else if (isa<GNUNullExpr>(this)) { 3750 // The GNU __null extension is always a null pointer constant. 3751 return NPCK_GNUNull; 3752 } else if (const MaterializeTemporaryExpr *M 3753 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3754 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 3755 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3756 if (const Expr *Source = OVE->getSourceExpr()) 3757 return Source->isNullPointerConstant(Ctx, NPC); 3758 } 3759 3760 // C++11 nullptr_t is always a null pointer constant. 3761 if (getType()->isNullPtrType()) 3762 return NPCK_CXX11_nullptr; 3763 3764 if (const RecordType *UT = getType()->getAsUnionType()) 3765 if (!Ctx.getLangOpts().CPlusPlus11 && 3766 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3767 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3768 const Expr *InitExpr = CLE->getInitializer(); 3769 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3770 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3771 } 3772 // This expression must be an integer type. 3773 if (!getType()->isIntegerType() || 3774 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3775 return NPCK_NotNull; 3776 3777 if (Ctx.getLangOpts().CPlusPlus11) { 3778 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3779 // value zero or a prvalue of type std::nullptr_t. 3780 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3781 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3782 if (Lit && !Lit->getValue()) 3783 return NPCK_ZeroLiteral; 3784 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3785 return NPCK_NotNull; 3786 } else { 3787 // If we have an integer constant expression, we need to *evaluate* it and 3788 // test for the value 0. 3789 if (!isIntegerConstantExpr(Ctx)) 3790 return NPCK_NotNull; 3791 } 3792 3793 if (EvaluateKnownConstInt(Ctx) != 0) 3794 return NPCK_NotNull; 3795 3796 if (isa<IntegerLiteral>(this)) 3797 return NPCK_ZeroLiteral; 3798 return NPCK_ZeroExpression; 3799 } 3800 3801 /// If this expression is an l-value for an Objective C 3802 /// property, find the underlying property reference expression. 3803 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3804 const Expr *E = this; 3805 while (true) { 3806 assert((E->getValueKind() == VK_LValue && 3807 E->getObjectKind() == OK_ObjCProperty) && 3808 "expression is not a property reference"); 3809 E = E->IgnoreParenCasts(); 3810 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3811 if (BO->getOpcode() == BO_Comma) { 3812 E = BO->getRHS(); 3813 continue; 3814 } 3815 } 3816 3817 break; 3818 } 3819 3820 return cast<ObjCPropertyRefExpr>(E); 3821 } 3822 3823 bool Expr::isObjCSelfExpr() const { 3824 const Expr *E = IgnoreParenImpCasts(); 3825 3826 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3827 if (!DRE) 3828 return false; 3829 3830 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3831 if (!Param) 3832 return false; 3833 3834 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3835 if (!M) 3836 return false; 3837 3838 return M->getSelfDecl() == Param; 3839 } 3840 3841 FieldDecl *Expr::getSourceBitField() { 3842 Expr *E = this->IgnoreParens(); 3843 3844 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3845 if (ICE->getCastKind() == CK_LValueToRValue || 3846 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3847 E = ICE->getSubExpr()->IgnoreParens(); 3848 else 3849 break; 3850 } 3851 3852 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3853 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3854 if (Field->isBitField()) 3855 return Field; 3856 3857 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 3858 FieldDecl *Ivar = IvarRef->getDecl(); 3859 if (Ivar->isBitField()) 3860 return Ivar; 3861 } 3862 3863 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3864 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3865 if (Field->isBitField()) 3866 return Field; 3867 3868 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3869 if (Expr *E = BD->getBinding()) 3870 return E->getSourceBitField(); 3871 } 3872 3873 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3874 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3875 return BinOp->getLHS()->getSourceBitField(); 3876 3877 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3878 return BinOp->getRHS()->getSourceBitField(); 3879 } 3880 3881 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3882 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3883 return UnOp->getSubExpr()->getSourceBitField(); 3884 3885 return nullptr; 3886 } 3887 3888 bool Expr::refersToVectorElement() const { 3889 // FIXME: Why do we not just look at the ObjectKind here? 3890 const Expr *E = this->IgnoreParens(); 3891 3892 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3893 if (ICE->getValueKind() != VK_RValue && 3894 ICE->getCastKind() == CK_NoOp) 3895 E = ICE->getSubExpr()->IgnoreParens(); 3896 else 3897 break; 3898 } 3899 3900 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3901 return ASE->getBase()->getType()->isVectorType(); 3902 3903 if (isa<ExtVectorElementExpr>(E)) 3904 return true; 3905 3906 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 3907 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 3908 if (auto *E = BD->getBinding()) 3909 return E->refersToVectorElement(); 3910 3911 return false; 3912 } 3913 3914 bool Expr::refersToGlobalRegisterVar() const { 3915 const Expr *E = this->IgnoreParenImpCasts(); 3916 3917 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3918 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3919 if (VD->getStorageClass() == SC_Register && 3920 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3921 return true; 3922 3923 return false; 3924 } 3925 3926 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 3927 E1 = E1->IgnoreParens(); 3928 E2 = E2->IgnoreParens(); 3929 3930 if (E1->getStmtClass() != E2->getStmtClass()) 3931 return false; 3932 3933 switch (E1->getStmtClass()) { 3934 default: 3935 return false; 3936 case CXXThisExprClass: 3937 return true; 3938 case DeclRefExprClass: { 3939 // DeclRefExpr without an ImplicitCastExpr can happen for integral 3940 // template parameters. 3941 const auto *DRE1 = cast<DeclRefExpr>(E1); 3942 const auto *DRE2 = cast<DeclRefExpr>(E2); 3943 return DRE1->isRValue() && DRE2->isRValue() && 3944 DRE1->getDecl() == DRE2->getDecl(); 3945 } 3946 case ImplicitCastExprClass: { 3947 // Peel off implicit casts. 3948 while (true) { 3949 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 3950 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 3951 if (!ICE1 || !ICE2) 3952 return false; 3953 if (ICE1->getCastKind() != ICE2->getCastKind()) 3954 return false; 3955 E1 = ICE1->getSubExpr()->IgnoreParens(); 3956 E2 = ICE2->getSubExpr()->IgnoreParens(); 3957 // The final cast must be one of these types. 3958 if (ICE1->getCastKind() == CK_LValueToRValue || 3959 ICE1->getCastKind() == CK_ArrayToPointerDecay || 3960 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 3961 break; 3962 } 3963 } 3964 3965 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 3966 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 3967 if (DRE1 && DRE2) 3968 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 3969 3970 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 3971 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 3972 if (Ivar1 && Ivar2) { 3973 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 3974 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 3975 } 3976 3977 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 3978 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 3979 if (Array1 && Array2) { 3980 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 3981 return false; 3982 3983 auto Idx1 = Array1->getIdx(); 3984 auto Idx2 = Array2->getIdx(); 3985 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 3986 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 3987 if (Integer1 && Integer2) { 3988 if (!llvm::APInt::isSameValue(Integer1->getValue(), 3989 Integer2->getValue())) 3990 return false; 3991 } else { 3992 if (!isSameComparisonOperand(Idx1, Idx2)) 3993 return false; 3994 } 3995 3996 return true; 3997 } 3998 3999 // Walk the MemberExpr chain. 4000 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4001 const auto *ME1 = cast<MemberExpr>(E1); 4002 const auto *ME2 = cast<MemberExpr>(E2); 4003 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4004 return false; 4005 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4006 if (D->isStaticDataMember()) 4007 return true; 4008 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4009 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4010 } 4011 4012 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4013 return true; 4014 4015 // A static member variable can end the MemberExpr chain with either 4016 // a MemberExpr or a DeclRefExpr. 4017 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4018 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4019 return DRE->getDecl(); 4020 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4021 return ME->getMemberDecl(); 4022 return nullptr; 4023 }; 4024 4025 const ValueDecl *VD1 = getAnyDecl(E1); 4026 const ValueDecl *VD2 = getAnyDecl(E2); 4027 return declaresSameEntity(VD1, VD2); 4028 } 4029 } 4030 } 4031 4032 /// isArrow - Return true if the base expression is a pointer to vector, 4033 /// return false if the base expression is a vector. 4034 bool ExtVectorElementExpr::isArrow() const { 4035 return getBase()->getType()->isPointerType(); 4036 } 4037 4038 unsigned ExtVectorElementExpr::getNumElements() const { 4039 if (const VectorType *VT = getType()->getAs<VectorType>()) 4040 return VT->getNumElements(); 4041 return 1; 4042 } 4043 4044 /// containsDuplicateElements - Return true if any element access is repeated. 4045 bool ExtVectorElementExpr::containsDuplicateElements() const { 4046 // FIXME: Refactor this code to an accessor on the AST node which returns the 4047 // "type" of component access, and share with code below and in Sema. 4048 StringRef Comp = Accessor->getName(); 4049 4050 // Halving swizzles do not contain duplicate elements. 4051 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4052 return false; 4053 4054 // Advance past s-char prefix on hex swizzles. 4055 if (Comp[0] == 's' || Comp[0] == 'S') 4056 Comp = Comp.substr(1); 4057 4058 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4059 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 4060 return true; 4061 4062 return false; 4063 } 4064 4065 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4066 void ExtVectorElementExpr::getEncodedElementAccess( 4067 SmallVectorImpl<uint32_t> &Elts) const { 4068 StringRef Comp = Accessor->getName(); 4069 bool isNumericAccessor = false; 4070 if (Comp[0] == 's' || Comp[0] == 'S') { 4071 Comp = Comp.substr(1); 4072 isNumericAccessor = true; 4073 } 4074 4075 bool isHi = Comp == "hi"; 4076 bool isLo = Comp == "lo"; 4077 bool isEven = Comp == "even"; 4078 bool isOdd = Comp == "odd"; 4079 4080 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4081 uint64_t Index; 4082 4083 if (isHi) 4084 Index = e + i; 4085 else if (isLo) 4086 Index = i; 4087 else if (isEven) 4088 Index = 2 * i; 4089 else if (isOdd) 4090 Index = 2 * i + 1; 4091 else 4092 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4093 4094 Elts.push_back(Index); 4095 } 4096 } 4097 4098 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, 4099 QualType Type, SourceLocation BLoc, 4100 SourceLocation RP) 4101 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 4102 Type->isDependentType(), Type->isDependentType(), 4103 Type->isInstantiationDependentType(), 4104 Type->containsUnexpandedParameterPack()), 4105 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) 4106 { 4107 SubExprs = new (C) Stmt*[args.size()]; 4108 for (unsigned i = 0; i != args.size(); i++) { 4109 if (args[i]->isTypeDependent()) 4110 ExprBits.TypeDependent = true; 4111 if (args[i]->isValueDependent()) 4112 ExprBits.ValueDependent = true; 4113 if (args[i]->isInstantiationDependent()) 4114 ExprBits.InstantiationDependent = true; 4115 if (args[i]->containsUnexpandedParameterPack()) 4116 ExprBits.ContainsUnexpandedParameterPack = true; 4117 4118 SubExprs[i] = args[i]; 4119 } 4120 } 4121 4122 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4123 if (SubExprs) C.Deallocate(SubExprs); 4124 4125 this->NumExprs = Exprs.size(); 4126 SubExprs = new (C) Stmt*[NumExprs]; 4127 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4128 } 4129 4130 GenericSelectionExpr::GenericSelectionExpr( 4131 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4132 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4133 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4134 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4135 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4136 AssocExprs[ResultIndex]->getValueKind(), 4137 AssocExprs[ResultIndex]->getObjectKind(), 4138 AssocExprs[ResultIndex]->isTypeDependent(), 4139 AssocExprs[ResultIndex]->isValueDependent(), 4140 AssocExprs[ResultIndex]->isInstantiationDependent(), 4141 ContainsUnexpandedParameterPack), 4142 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4143 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4144 assert(AssocTypes.size() == AssocExprs.size() && 4145 "Must have the same number of association expressions" 4146 " and TypeSourceInfo!"); 4147 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4148 4149 GenericSelectionExprBits.GenericLoc = GenericLoc; 4150 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4151 std::copy(AssocExprs.begin(), AssocExprs.end(), 4152 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4153 std::copy(AssocTypes.begin(), AssocTypes.end(), 4154 getTrailingObjects<TypeSourceInfo *>()); 4155 } 4156 4157 GenericSelectionExpr::GenericSelectionExpr( 4158 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4159 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4160 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4161 bool ContainsUnexpandedParameterPack) 4162 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue, 4163 OK_Ordinary, 4164 /*isTypeDependent=*/true, 4165 /*isValueDependent=*/true, 4166 /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack), 4167 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4168 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4169 assert(AssocTypes.size() == AssocExprs.size() && 4170 "Must have the same number of association expressions" 4171 " and TypeSourceInfo!"); 4172 4173 GenericSelectionExprBits.GenericLoc = GenericLoc; 4174 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4175 std::copy(AssocExprs.begin(), AssocExprs.end(), 4176 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4177 std::copy(AssocTypes.begin(), AssocTypes.end(), 4178 getTrailingObjects<TypeSourceInfo *>()); 4179 } 4180 4181 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4182 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4183 4184 GenericSelectionExpr *GenericSelectionExpr::Create( 4185 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4186 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4187 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4188 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4189 unsigned NumAssocs = AssocExprs.size(); 4190 void *Mem = Context.Allocate( 4191 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4192 alignof(GenericSelectionExpr)); 4193 return new (Mem) GenericSelectionExpr( 4194 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4195 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4196 } 4197 4198 GenericSelectionExpr *GenericSelectionExpr::Create( 4199 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4200 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4201 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4202 bool ContainsUnexpandedParameterPack) { 4203 unsigned NumAssocs = AssocExprs.size(); 4204 void *Mem = Context.Allocate( 4205 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4206 alignof(GenericSelectionExpr)); 4207 return new (Mem) GenericSelectionExpr( 4208 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4209 RParenLoc, ContainsUnexpandedParameterPack); 4210 } 4211 4212 GenericSelectionExpr * 4213 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4214 unsigned NumAssocs) { 4215 void *Mem = Context.Allocate( 4216 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4217 alignof(GenericSelectionExpr)); 4218 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4219 } 4220 4221 //===----------------------------------------------------------------------===// 4222 // DesignatedInitExpr 4223 //===----------------------------------------------------------------------===// 4224 4225 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4226 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4227 if (Field.NameOrField & 0x01) 4228 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 4229 else 4230 return getField()->getIdentifier(); 4231 } 4232 4233 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4234 llvm::ArrayRef<Designator> Designators, 4235 SourceLocation EqualOrColonLoc, 4236 bool GNUSyntax, 4237 ArrayRef<Expr*> IndexExprs, 4238 Expr *Init) 4239 : Expr(DesignatedInitExprClass, Ty, 4240 Init->getValueKind(), Init->getObjectKind(), 4241 Init->isTypeDependent(), Init->isValueDependent(), 4242 Init->isInstantiationDependent(), 4243 Init->containsUnexpandedParameterPack()), 4244 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4245 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4246 this->Designators = new (C) Designator[NumDesignators]; 4247 4248 // Record the initializer itself. 4249 child_iterator Child = child_begin(); 4250 *Child++ = Init; 4251 4252 // Copy the designators and their subexpressions, computing 4253 // value-dependence along the way. 4254 unsigned IndexIdx = 0; 4255 for (unsigned I = 0; I != NumDesignators; ++I) { 4256 this->Designators[I] = Designators[I]; 4257 4258 if (this->Designators[I].isArrayDesignator()) { 4259 // Compute type- and value-dependence. 4260 Expr *Index = IndexExprs[IndexIdx]; 4261 if (Index->isTypeDependent() || Index->isValueDependent()) 4262 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 4263 if (Index->isInstantiationDependent()) 4264 ExprBits.InstantiationDependent = true; 4265 // Propagate unexpanded parameter packs. 4266 if (Index->containsUnexpandedParameterPack()) 4267 ExprBits.ContainsUnexpandedParameterPack = true; 4268 4269 // Copy the index expressions into permanent storage. 4270 *Child++ = IndexExprs[IndexIdx++]; 4271 } else if (this->Designators[I].isArrayRangeDesignator()) { 4272 // Compute type- and value-dependence. 4273 Expr *Start = IndexExprs[IndexIdx]; 4274 Expr *End = IndexExprs[IndexIdx + 1]; 4275 if (Start->isTypeDependent() || Start->isValueDependent() || 4276 End->isTypeDependent() || End->isValueDependent()) { 4277 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 4278 ExprBits.InstantiationDependent = true; 4279 } else if (Start->isInstantiationDependent() || 4280 End->isInstantiationDependent()) { 4281 ExprBits.InstantiationDependent = true; 4282 } 4283 4284 // Propagate unexpanded parameter packs. 4285 if (Start->containsUnexpandedParameterPack() || 4286 End->containsUnexpandedParameterPack()) 4287 ExprBits.ContainsUnexpandedParameterPack = true; 4288 4289 // Copy the start/end expressions into permanent storage. 4290 *Child++ = IndexExprs[IndexIdx++]; 4291 *Child++ = IndexExprs[IndexIdx++]; 4292 } 4293 } 4294 4295 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4296 } 4297 4298 DesignatedInitExpr * 4299 DesignatedInitExpr::Create(const ASTContext &C, 4300 llvm::ArrayRef<Designator> Designators, 4301 ArrayRef<Expr*> IndexExprs, 4302 SourceLocation ColonOrEqualLoc, 4303 bool UsesColonSyntax, Expr *Init) { 4304 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4305 alignof(DesignatedInitExpr)); 4306 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4307 ColonOrEqualLoc, UsesColonSyntax, 4308 IndexExprs, Init); 4309 } 4310 4311 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4312 unsigned NumIndexExprs) { 4313 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4314 alignof(DesignatedInitExpr)); 4315 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4316 } 4317 4318 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4319 const Designator *Desigs, 4320 unsigned NumDesigs) { 4321 Designators = new (C) Designator[NumDesigs]; 4322 NumDesignators = NumDesigs; 4323 for (unsigned I = 0; I != NumDesigs; ++I) 4324 Designators[I] = Desigs[I]; 4325 } 4326 4327 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4328 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4329 if (size() == 1) 4330 return DIE->getDesignator(0)->getSourceRange(); 4331 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4332 DIE->getDesignator(size() - 1)->getEndLoc()); 4333 } 4334 4335 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4336 SourceLocation StartLoc; 4337 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4338 Designator &First = *DIE->getDesignator(0); 4339 if (First.isFieldDesignator()) { 4340 if (GNUSyntax) 4341 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 4342 else 4343 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 4344 } else 4345 StartLoc = 4346 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 4347 return StartLoc; 4348 } 4349 4350 SourceLocation DesignatedInitExpr::getEndLoc() const { 4351 return getInit()->getEndLoc(); 4352 } 4353 4354 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4355 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4356 return getSubExpr(D.ArrayOrRange.Index + 1); 4357 } 4358 4359 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4360 assert(D.Kind == Designator::ArrayRangeDesignator && 4361 "Requires array range designator"); 4362 return getSubExpr(D.ArrayOrRange.Index + 1); 4363 } 4364 4365 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4366 assert(D.Kind == Designator::ArrayRangeDesignator && 4367 "Requires array range designator"); 4368 return getSubExpr(D.ArrayOrRange.Index + 2); 4369 } 4370 4371 /// Replaces the designator at index @p Idx with the series 4372 /// of designators in [First, Last). 4373 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4374 const Designator *First, 4375 const Designator *Last) { 4376 unsigned NumNewDesignators = Last - First; 4377 if (NumNewDesignators == 0) { 4378 std::copy_backward(Designators + Idx + 1, 4379 Designators + NumDesignators, 4380 Designators + Idx); 4381 --NumNewDesignators; 4382 return; 4383 } else if (NumNewDesignators == 1) { 4384 Designators[Idx] = *First; 4385 return; 4386 } 4387 4388 Designator *NewDesignators 4389 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4390 std::copy(Designators, Designators + Idx, NewDesignators); 4391 std::copy(First, Last, NewDesignators + Idx); 4392 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4393 NewDesignators + Idx + NumNewDesignators); 4394 Designators = NewDesignators; 4395 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4396 } 4397 4398 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4399 SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc) 4400 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, 4401 OK_Ordinary, false, false, false, false) { 4402 BaseAndUpdaterExprs[0] = baseExpr; 4403 4404 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 4405 ILE->setType(baseExpr->getType()); 4406 BaseAndUpdaterExprs[1] = ILE; 4407 } 4408 4409 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4410 return getBase()->getBeginLoc(); 4411 } 4412 4413 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4414 return getBase()->getEndLoc(); 4415 } 4416 4417 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4418 SourceLocation RParenLoc) 4419 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 4420 false, false), 4421 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4422 ParenListExprBits.NumExprs = Exprs.size(); 4423 4424 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) { 4425 if (Exprs[I]->isTypeDependent()) 4426 ExprBits.TypeDependent = true; 4427 if (Exprs[I]->isValueDependent()) 4428 ExprBits.ValueDependent = true; 4429 if (Exprs[I]->isInstantiationDependent()) 4430 ExprBits.InstantiationDependent = true; 4431 if (Exprs[I]->containsUnexpandedParameterPack()) 4432 ExprBits.ContainsUnexpandedParameterPack = true; 4433 4434 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4435 } 4436 } 4437 4438 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4439 : Expr(ParenListExprClass, Empty) { 4440 ParenListExprBits.NumExprs = NumExprs; 4441 } 4442 4443 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4444 SourceLocation LParenLoc, 4445 ArrayRef<Expr *> Exprs, 4446 SourceLocation RParenLoc) { 4447 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4448 alignof(ParenListExpr)); 4449 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4450 } 4451 4452 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4453 unsigned NumExprs) { 4454 void *Mem = 4455 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4456 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4457 } 4458 4459 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4460 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4461 e = ewc->getSubExpr(); 4462 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4463 e = m->GetTemporaryExpr(); 4464 e = cast<CXXConstructExpr>(e)->getArg(0); 4465 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4466 e = ice->getSubExpr(); 4467 return cast<OpaqueValueExpr>(e); 4468 } 4469 4470 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4471 EmptyShell sh, 4472 unsigned numSemanticExprs) { 4473 void *buffer = 4474 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4475 alignof(PseudoObjectExpr)); 4476 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4477 } 4478 4479 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4480 : Expr(PseudoObjectExprClass, shell) { 4481 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4482 } 4483 4484 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4485 ArrayRef<Expr*> semantics, 4486 unsigned resultIndex) { 4487 assert(syntax && "no syntactic expression!"); 4488 assert(semantics.size() && "no semantic expressions!"); 4489 4490 QualType type; 4491 ExprValueKind VK; 4492 if (resultIndex == NoResult) { 4493 type = C.VoidTy; 4494 VK = VK_RValue; 4495 } else { 4496 assert(resultIndex < semantics.size()); 4497 type = semantics[resultIndex]->getType(); 4498 VK = semantics[resultIndex]->getValueKind(); 4499 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4500 } 4501 4502 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4503 alignof(PseudoObjectExpr)); 4504 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4505 resultIndex); 4506 } 4507 4508 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4509 Expr *syntax, ArrayRef<Expr*> semantics, 4510 unsigned resultIndex) 4511 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 4512 /*filled in at end of ctor*/ false, false, false, false) { 4513 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4514 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4515 4516 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4517 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4518 getSubExprsBuffer()[i] = E; 4519 4520 if (E->isTypeDependent()) 4521 ExprBits.TypeDependent = true; 4522 if (E->isValueDependent()) 4523 ExprBits.ValueDependent = true; 4524 if (E->isInstantiationDependent()) 4525 ExprBits.InstantiationDependent = true; 4526 if (E->containsUnexpandedParameterPack()) 4527 ExprBits.ContainsUnexpandedParameterPack = true; 4528 4529 if (isa<OpaqueValueExpr>(E)) 4530 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4531 "opaque-value semantic expressions for pseudo-object " 4532 "operations must have sources"); 4533 } 4534 } 4535 4536 //===----------------------------------------------------------------------===// 4537 // Child Iterators for iterating over subexpressions/substatements 4538 //===----------------------------------------------------------------------===// 4539 4540 // UnaryExprOrTypeTraitExpr 4541 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4542 const_child_range CCR = 4543 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4544 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4545 } 4546 4547 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4548 // If this is of a type and the type is a VLA type (and not a typedef), the 4549 // size expression of the VLA needs to be treated as an executable expression. 4550 // Why isn't this weirdness documented better in StmtIterator? 4551 if (isArgumentType()) { 4552 if (const VariableArrayType *T = 4553 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4554 return const_child_range(const_child_iterator(T), const_child_iterator()); 4555 return const_child_range(const_child_iterator(), const_child_iterator()); 4556 } 4557 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4558 } 4559 4560 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, 4561 QualType t, AtomicOp op, SourceLocation RP) 4562 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 4563 false, false, false, false), 4564 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 4565 { 4566 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4567 for (unsigned i = 0; i != args.size(); i++) { 4568 if (args[i]->isTypeDependent()) 4569 ExprBits.TypeDependent = true; 4570 if (args[i]->isValueDependent()) 4571 ExprBits.ValueDependent = true; 4572 if (args[i]->isInstantiationDependent()) 4573 ExprBits.InstantiationDependent = true; 4574 if (args[i]->containsUnexpandedParameterPack()) 4575 ExprBits.ContainsUnexpandedParameterPack = true; 4576 4577 SubExprs[i] = args[i]; 4578 } 4579 } 4580 4581 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4582 switch (Op) { 4583 case AO__c11_atomic_init: 4584 case AO__opencl_atomic_init: 4585 case AO__c11_atomic_load: 4586 case AO__atomic_load_n: 4587 return 2; 4588 4589 case AO__opencl_atomic_load: 4590 case AO__c11_atomic_store: 4591 case AO__c11_atomic_exchange: 4592 case AO__atomic_load: 4593 case AO__atomic_store: 4594 case AO__atomic_store_n: 4595 case AO__atomic_exchange_n: 4596 case AO__c11_atomic_fetch_add: 4597 case AO__c11_atomic_fetch_sub: 4598 case AO__c11_atomic_fetch_and: 4599 case AO__c11_atomic_fetch_or: 4600 case AO__c11_atomic_fetch_xor: 4601 case AO__atomic_fetch_add: 4602 case AO__atomic_fetch_sub: 4603 case AO__atomic_fetch_and: 4604 case AO__atomic_fetch_or: 4605 case AO__atomic_fetch_xor: 4606 case AO__atomic_fetch_nand: 4607 case AO__atomic_add_fetch: 4608 case AO__atomic_sub_fetch: 4609 case AO__atomic_and_fetch: 4610 case AO__atomic_or_fetch: 4611 case AO__atomic_xor_fetch: 4612 case AO__atomic_nand_fetch: 4613 case AO__atomic_fetch_min: 4614 case AO__atomic_fetch_max: 4615 return 3; 4616 4617 case AO__opencl_atomic_store: 4618 case AO__opencl_atomic_exchange: 4619 case AO__opencl_atomic_fetch_add: 4620 case AO__opencl_atomic_fetch_sub: 4621 case AO__opencl_atomic_fetch_and: 4622 case AO__opencl_atomic_fetch_or: 4623 case AO__opencl_atomic_fetch_xor: 4624 case AO__opencl_atomic_fetch_min: 4625 case AO__opencl_atomic_fetch_max: 4626 case AO__atomic_exchange: 4627 return 4; 4628 4629 case AO__c11_atomic_compare_exchange_strong: 4630 case AO__c11_atomic_compare_exchange_weak: 4631 return 5; 4632 4633 case AO__opencl_atomic_compare_exchange_strong: 4634 case AO__opencl_atomic_compare_exchange_weak: 4635 case AO__atomic_compare_exchange: 4636 case AO__atomic_compare_exchange_n: 4637 return 6; 4638 } 4639 llvm_unreachable("unknown atomic op"); 4640 } 4641 4642 QualType AtomicExpr::getValueType() const { 4643 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4644 if (auto AT = T->getAs<AtomicType>()) 4645 return AT->getValueType(); 4646 return T; 4647 } 4648 4649 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4650 unsigned ArraySectionCount = 0; 4651 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4652 Base = OASE->getBase(); 4653 ++ArraySectionCount; 4654 } 4655 while (auto *ASE = 4656 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4657 Base = ASE->getBase(); 4658 ++ArraySectionCount; 4659 } 4660 Base = Base->IgnoreParenImpCasts(); 4661 auto OriginalTy = Base->getType(); 4662 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4663 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4664 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4665 4666 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4667 if (OriginalTy->isAnyPointerType()) 4668 OriginalTy = OriginalTy->getPointeeType(); 4669 else { 4670 assert (OriginalTy->isArrayType()); 4671 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4672 } 4673 } 4674 return OriginalTy; 4675 } 4676