1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/Mangle.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/CharInfo.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Lexer.h" 30 #include "clang/Lex/LiteralSupport.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 #include <cstring> 35 using namespace clang; 36 37 const Expr *Expr::getBestDynamicClassTypeExpr() const { 38 const Expr *E = this; 39 while (true) { 40 E = E->ignoreParenBaseCasts(); 41 42 // Follow the RHS of a comma operator. 43 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 44 if (BO->getOpcode() == BO_Comma) { 45 E = BO->getRHS(); 46 continue; 47 } 48 } 49 50 // Step into initializer for materialized temporaries. 51 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 52 E = MTE->getSubExpr(); 53 continue; 54 } 55 56 break; 57 } 58 59 return E; 60 } 61 62 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 63 const Expr *E = getBestDynamicClassTypeExpr(); 64 QualType DerivedType = E->getType(); 65 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 66 DerivedType = PTy->getPointeeType(); 67 68 if (DerivedType->isDependentType()) 69 return nullptr; 70 71 const RecordType *Ty = DerivedType->castAs<RecordType>(); 72 Decl *D = Ty->getDecl(); 73 return cast<CXXRecordDecl>(D); 74 } 75 76 const Expr *Expr::skipRValueSubobjectAdjustments( 77 SmallVectorImpl<const Expr *> &CommaLHSs, 78 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 79 const Expr *E = this; 80 while (true) { 81 E = E->IgnoreParens(); 82 83 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 84 if ((CE->getCastKind() == CK_DerivedToBase || 85 CE->getCastKind() == CK_UncheckedDerivedToBase) && 86 E->getType()->isRecordType()) { 87 E = CE->getSubExpr(); 88 auto *Derived = 89 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 90 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 91 continue; 92 } 93 94 if (CE->getCastKind() == CK_NoOp) { 95 E = CE->getSubExpr(); 96 continue; 97 } 98 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 99 if (!ME->isArrow()) { 100 assert(ME->getBase()->getType()->isRecordType()); 101 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 102 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 103 E = ME->getBase(); 104 Adjustments.push_back(SubobjectAdjustment(Field)); 105 continue; 106 } 107 } 108 } 109 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 110 if (BO->getOpcode() == BO_PtrMemD) { 111 assert(BO->getRHS()->isRValue()); 112 E = BO->getLHS(); 113 const MemberPointerType *MPT = 114 BO->getRHS()->getType()->getAs<MemberPointerType>(); 115 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 116 continue; 117 } else if (BO->getOpcode() == BO_Comma) { 118 CommaLHSs.push_back(BO->getLHS()); 119 E = BO->getRHS(); 120 continue; 121 } 122 } 123 124 // Nothing changed. 125 break; 126 } 127 return E; 128 } 129 130 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 131 const Expr *E = IgnoreParens(); 132 133 // If this value has _Bool type, it is obvious 0/1. 134 if (E->getType()->isBooleanType()) return true; 135 // If this is a non-scalar-integer type, we don't care enough to try. 136 if (!E->getType()->isIntegralOrEnumerationType()) return false; 137 138 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 139 switch (UO->getOpcode()) { 140 case UO_Plus: 141 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 142 case UO_LNot: 143 return true; 144 default: 145 return false; 146 } 147 } 148 149 // Only look through implicit casts. If the user writes 150 // '(int) (a && b)' treat it as an arbitrary int. 151 // FIXME: Should we look through any cast expression in !Semantic mode? 152 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 153 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 154 155 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 156 switch (BO->getOpcode()) { 157 default: return false; 158 case BO_LT: // Relational operators. 159 case BO_GT: 160 case BO_LE: 161 case BO_GE: 162 case BO_EQ: // Equality operators. 163 case BO_NE: 164 case BO_LAnd: // AND operator. 165 case BO_LOr: // Logical OR operator. 166 return true; 167 168 case BO_And: // Bitwise AND operator. 169 case BO_Xor: // Bitwise XOR operator. 170 case BO_Or: // Bitwise OR operator. 171 // Handle things like (x==2)|(y==12). 172 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 173 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 174 175 case BO_Comma: 176 case BO_Assign: 177 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 178 } 179 } 180 181 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 182 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 183 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 184 185 if (isa<ObjCBoolLiteralExpr>(E)) 186 return true; 187 188 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 189 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 190 191 if (const FieldDecl *FD = E->getSourceBitField()) 192 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 193 !FD->getBitWidth()->isValueDependent() && 194 FD->getBitWidthValue(FD->getASTContext()) == 1) 195 return true; 196 197 return false; 198 } 199 200 // Amusing macro metaprogramming hack: check whether a class provides 201 // a more specific implementation of getExprLoc(). 202 // 203 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 204 namespace { 205 /// This implementation is used when a class provides a custom 206 /// implementation of getExprLoc. 207 template <class E, class T> 208 SourceLocation getExprLocImpl(const Expr *expr, 209 SourceLocation (T::*v)() const) { 210 return static_cast<const E*>(expr)->getExprLoc(); 211 } 212 213 /// This implementation is used when a class doesn't provide 214 /// a custom implementation of getExprLoc. Overload resolution 215 /// should pick it over the implementation above because it's 216 /// more specialized according to function template partial ordering. 217 template <class E> 218 SourceLocation getExprLocImpl(const Expr *expr, 219 SourceLocation (Expr::*v)() const) { 220 return static_cast<const E *>(expr)->getBeginLoc(); 221 } 222 } 223 224 SourceLocation Expr::getExprLoc() const { 225 switch (getStmtClass()) { 226 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 227 #define ABSTRACT_STMT(type) 228 #define STMT(type, base) \ 229 case Stmt::type##Class: break; 230 #define EXPR(type, base) \ 231 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 232 #include "clang/AST/StmtNodes.inc" 233 } 234 llvm_unreachable("unknown expression kind"); 235 } 236 237 //===----------------------------------------------------------------------===// 238 // Primary Expressions. 239 //===----------------------------------------------------------------------===// 240 241 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 242 assert((Kind == ConstantExpr::RSK_APValue || 243 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 244 "Invalid StorageKind Value"); 245 } 246 247 ConstantExpr::ResultStorageKind 248 ConstantExpr::getStorageKind(const APValue &Value) { 249 switch (Value.getKind()) { 250 case APValue::None: 251 case APValue::Indeterminate: 252 return ConstantExpr::RSK_None; 253 case APValue::Int: 254 if (!Value.getInt().needsCleanup()) 255 return ConstantExpr::RSK_Int64; 256 LLVM_FALLTHROUGH; 257 default: 258 return ConstantExpr::RSK_APValue; 259 } 260 } 261 262 ConstantExpr::ResultStorageKind 263 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 264 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 265 return ConstantExpr::RSK_Int64; 266 return ConstantExpr::RSK_APValue; 267 } 268 269 void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) { 270 ConstantExprBits.ResultKind = StorageKind; 271 ConstantExprBits.APValueKind = APValue::None; 272 ConstantExprBits.HasCleanup = false; 273 if (StorageKind == ConstantExpr::RSK_APValue) 274 ::new (getTrailingObjects<APValue>()) APValue(); 275 } 276 277 ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind) 278 : FullExpr(ConstantExprClass, subexpr) { 279 DefaultInit(StorageKind); 280 } 281 282 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 283 ResultStorageKind StorageKind) { 284 assert(!isa<ConstantExpr>(E)); 285 AssertResultStorageKind(StorageKind); 286 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 287 StorageKind == ConstantExpr::RSK_APValue, 288 StorageKind == ConstantExpr::RSK_Int64); 289 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 290 ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind); 291 return Self; 292 } 293 294 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 295 const APValue &Result) { 296 ResultStorageKind StorageKind = getStorageKind(Result); 297 ConstantExpr *Self = Create(Context, E, StorageKind); 298 Self->SetResult(Result, Context); 299 return Self; 300 } 301 302 ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty) 303 : FullExpr(ConstantExprClass, Empty) { 304 DefaultInit(StorageKind); 305 } 306 307 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 308 ResultStorageKind StorageKind, 309 EmptyShell Empty) { 310 AssertResultStorageKind(StorageKind); 311 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 312 StorageKind == ConstantExpr::RSK_APValue, 313 StorageKind == ConstantExpr::RSK_Int64); 314 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 315 ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty); 316 return Self; 317 } 318 319 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 320 assert(getStorageKind(Value) == ConstantExprBits.ResultKind && 321 "Invalid storage for this value kind"); 322 ConstantExprBits.APValueKind = Value.getKind(); 323 switch (ConstantExprBits.ResultKind) { 324 case RSK_None: 325 return; 326 case RSK_Int64: 327 Int64Result() = *Value.getInt().getRawData(); 328 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 329 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 330 return; 331 case RSK_APValue: 332 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 333 ConstantExprBits.HasCleanup = true; 334 Context.addDestruction(&APValueResult()); 335 } 336 APValueResult() = std::move(Value); 337 return; 338 } 339 llvm_unreachable("Invalid ResultKind Bits"); 340 } 341 342 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 343 switch (ConstantExprBits.ResultKind) { 344 case ConstantExpr::RSK_APValue: 345 return APValueResult().getInt(); 346 case ConstantExpr::RSK_Int64: 347 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 348 ConstantExprBits.IsUnsigned); 349 default: 350 llvm_unreachable("invalid Accessor"); 351 } 352 } 353 354 APValue ConstantExpr::getAPValueResult() const { 355 switch (ConstantExprBits.ResultKind) { 356 case ConstantExpr::RSK_APValue: 357 return APValueResult(); 358 case ConstantExpr::RSK_Int64: 359 return APValue( 360 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 361 ConstantExprBits.IsUnsigned)); 362 case ConstantExpr::RSK_None: 363 return APValue(); 364 } 365 llvm_unreachable("invalid ResultKind"); 366 } 367 368 /// Compute the type-, value-, and instantiation-dependence of a 369 /// declaration reference 370 /// based on the declaration being referenced. 371 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, 372 QualType T, bool &TypeDependent, 373 bool &ValueDependent, 374 bool &InstantiationDependent) { 375 TypeDependent = false; 376 ValueDependent = false; 377 InstantiationDependent = false; 378 379 // (TD) C++ [temp.dep.expr]p3: 380 // An id-expression is type-dependent if it contains: 381 // 382 // and 383 // 384 // (VD) C++ [temp.dep.constexpr]p2: 385 // An identifier is value-dependent if it is: 386 387 // (TD) - an identifier that was declared with dependent type 388 // (VD) - a name declared with a dependent type, 389 if (T->isDependentType()) { 390 TypeDependent = true; 391 ValueDependent = true; 392 InstantiationDependent = true; 393 return; 394 } else if (T->isInstantiationDependentType()) { 395 InstantiationDependent = true; 396 } 397 398 // (TD) - a conversion-function-id that specifies a dependent type 399 if (D->getDeclName().getNameKind() 400 == DeclarationName::CXXConversionFunctionName) { 401 QualType T = D->getDeclName().getCXXNameType(); 402 if (T->isDependentType()) { 403 TypeDependent = true; 404 ValueDependent = true; 405 InstantiationDependent = true; 406 return; 407 } 408 409 if (T->isInstantiationDependentType()) 410 InstantiationDependent = true; 411 } 412 413 // (VD) - the name of a non-type template parameter, 414 if (isa<NonTypeTemplateParmDecl>(D)) { 415 ValueDependent = true; 416 InstantiationDependent = true; 417 return; 418 } 419 420 // (VD) - a constant with integral or enumeration type and is 421 // initialized with an expression that is value-dependent. 422 // (VD) - a constant with literal type and is initialized with an 423 // expression that is value-dependent [C++11]. 424 // (VD) - FIXME: Missing from the standard: 425 // - an entity with reference type and is initialized with an 426 // expression that is value-dependent [C++11] 427 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 428 if ((Ctx.getLangOpts().CPlusPlus11 ? 429 Var->getType()->isLiteralType(Ctx) : 430 Var->getType()->isIntegralOrEnumerationType()) && 431 (Var->getType().isConstQualified() || 432 Var->getType()->isReferenceType())) { 433 if (const Expr *Init = Var->getAnyInitializer()) 434 if (Init->isValueDependent()) { 435 ValueDependent = true; 436 InstantiationDependent = true; 437 } 438 } 439 440 // (VD) - FIXME: Missing from the standard: 441 // - a member function or a static data member of the current 442 // instantiation 443 if (Var->isStaticDataMember() && 444 Var->getDeclContext()->isDependentContext()) { 445 ValueDependent = true; 446 InstantiationDependent = true; 447 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); 448 if (TInfo->getType()->isIncompleteArrayType()) 449 TypeDependent = true; 450 } 451 452 return; 453 } 454 455 // (VD) - FIXME: Missing from the standard: 456 // - a member function or a static data member of the current 457 // instantiation 458 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 459 ValueDependent = true; 460 InstantiationDependent = true; 461 } 462 } 463 464 void DeclRefExpr::computeDependence(const ASTContext &Ctx) { 465 bool TypeDependent = false; 466 bool ValueDependent = false; 467 bool InstantiationDependent = false; 468 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, 469 ValueDependent, InstantiationDependent); 470 471 ExprBits.TypeDependent |= TypeDependent; 472 ExprBits.ValueDependent |= ValueDependent; 473 ExprBits.InstantiationDependent |= InstantiationDependent; 474 475 // Is the declaration a parameter pack? 476 if (getDecl()->isParameterPack()) 477 ExprBits.ContainsUnexpandedParameterPack = true; 478 } 479 480 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 481 bool RefersToEnclosingVariableOrCapture, QualType T, 482 ExprValueKind VK, SourceLocation L, 483 const DeclarationNameLoc &LocInfo, 484 NonOdrUseReason NOUR) 485 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 486 D(D), DNLoc(LocInfo) { 487 DeclRefExprBits.HasQualifier = false; 488 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 489 DeclRefExprBits.HasFoundDecl = false; 490 DeclRefExprBits.HadMultipleCandidates = false; 491 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 492 RefersToEnclosingVariableOrCapture; 493 DeclRefExprBits.NonOdrUseReason = NOUR; 494 DeclRefExprBits.Loc = L; 495 computeDependence(Ctx); 496 } 497 498 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 499 NestedNameSpecifierLoc QualifierLoc, 500 SourceLocation TemplateKWLoc, ValueDecl *D, 501 bool RefersToEnclosingVariableOrCapture, 502 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 503 const TemplateArgumentListInfo *TemplateArgs, 504 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 505 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 506 D(D), DNLoc(NameInfo.getInfo()) { 507 DeclRefExprBits.Loc = NameInfo.getLoc(); 508 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 509 if (QualifierLoc) { 510 new (getTrailingObjects<NestedNameSpecifierLoc>()) 511 NestedNameSpecifierLoc(QualifierLoc); 512 auto *NNS = QualifierLoc.getNestedNameSpecifier(); 513 if (NNS->isInstantiationDependent()) 514 ExprBits.InstantiationDependent = true; 515 if (NNS->containsUnexpandedParameterPack()) 516 ExprBits.ContainsUnexpandedParameterPack = true; 517 } 518 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 519 if (FoundD) 520 *getTrailingObjects<NamedDecl *>() = FoundD; 521 DeclRefExprBits.HasTemplateKWAndArgsInfo 522 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 523 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 524 RefersToEnclosingVariableOrCapture; 525 DeclRefExprBits.NonOdrUseReason = NOUR; 526 if (TemplateArgs) { 527 bool Dependent = false; 528 bool InstantiationDependent = false; 529 bool ContainsUnexpandedParameterPack = false; 530 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 531 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 532 Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); 533 assert(!Dependent && "built a DeclRefExpr with dependent template args"); 534 ExprBits.InstantiationDependent |= InstantiationDependent; 535 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 536 } else if (TemplateKWLoc.isValid()) { 537 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 538 TemplateKWLoc); 539 } 540 DeclRefExprBits.HadMultipleCandidates = 0; 541 542 computeDependence(Ctx); 543 } 544 545 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 546 NestedNameSpecifierLoc QualifierLoc, 547 SourceLocation TemplateKWLoc, ValueDecl *D, 548 bool RefersToEnclosingVariableOrCapture, 549 SourceLocation NameLoc, QualType T, 550 ExprValueKind VK, NamedDecl *FoundD, 551 const TemplateArgumentListInfo *TemplateArgs, 552 NonOdrUseReason NOUR) { 553 return Create(Context, QualifierLoc, TemplateKWLoc, D, 554 RefersToEnclosingVariableOrCapture, 555 DeclarationNameInfo(D->getDeclName(), NameLoc), 556 T, VK, FoundD, TemplateArgs, NOUR); 557 } 558 559 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 560 NestedNameSpecifierLoc QualifierLoc, 561 SourceLocation TemplateKWLoc, ValueDecl *D, 562 bool RefersToEnclosingVariableOrCapture, 563 const DeclarationNameInfo &NameInfo, 564 QualType T, ExprValueKind VK, 565 NamedDecl *FoundD, 566 const TemplateArgumentListInfo *TemplateArgs, 567 NonOdrUseReason NOUR) { 568 // Filter out cases where the found Decl is the same as the value refenenced. 569 if (D == FoundD) 570 FoundD = nullptr; 571 572 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 573 std::size_t Size = 574 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 575 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 576 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 577 HasTemplateKWAndArgsInfo ? 1 : 0, 578 TemplateArgs ? TemplateArgs->size() : 0); 579 580 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 581 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 582 RefersToEnclosingVariableOrCapture, NameInfo, 583 FoundD, TemplateArgs, T, VK, NOUR); 584 } 585 586 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 587 bool HasQualifier, 588 bool HasFoundDecl, 589 bool HasTemplateKWAndArgsInfo, 590 unsigned NumTemplateArgs) { 591 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 592 std::size_t Size = 593 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 594 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 595 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 596 NumTemplateArgs); 597 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 598 return new (Mem) DeclRefExpr(EmptyShell()); 599 } 600 601 SourceLocation DeclRefExpr::getBeginLoc() const { 602 if (hasQualifier()) 603 return getQualifierLoc().getBeginLoc(); 604 return getNameInfo().getBeginLoc(); 605 } 606 SourceLocation DeclRefExpr::getEndLoc() const { 607 if (hasExplicitTemplateArgs()) 608 return getRAngleLoc(); 609 return getNameInfo().getEndLoc(); 610 } 611 612 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 613 StringLiteral *SL) 614 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, 615 FNTy->isDependentType(), FNTy->isDependentType(), 616 FNTy->isInstantiationDependentType(), 617 /*ContainsUnexpandedParameterPack=*/false) { 618 PredefinedExprBits.Kind = IK; 619 assert((getIdentKind() == IK) && 620 "IdentKind do not fit in PredefinedExprBitfields!"); 621 bool HasFunctionName = SL != nullptr; 622 PredefinedExprBits.HasFunctionName = HasFunctionName; 623 PredefinedExprBits.Loc = L; 624 if (HasFunctionName) 625 setFunctionName(SL); 626 } 627 628 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 629 : Expr(PredefinedExprClass, Empty) { 630 PredefinedExprBits.HasFunctionName = HasFunctionName; 631 } 632 633 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 634 QualType FNTy, IdentKind IK, 635 StringLiteral *SL) { 636 bool HasFunctionName = SL != nullptr; 637 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 638 alignof(PredefinedExpr)); 639 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 640 } 641 642 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 643 bool HasFunctionName) { 644 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 645 alignof(PredefinedExpr)); 646 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 647 } 648 649 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 650 switch (IK) { 651 case Func: 652 return "__func__"; 653 case Function: 654 return "__FUNCTION__"; 655 case FuncDName: 656 return "__FUNCDNAME__"; 657 case LFunction: 658 return "L__FUNCTION__"; 659 case PrettyFunction: 660 return "__PRETTY_FUNCTION__"; 661 case FuncSig: 662 return "__FUNCSIG__"; 663 case LFuncSig: 664 return "L__FUNCSIG__"; 665 case PrettyFunctionNoVirtual: 666 break; 667 } 668 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 669 } 670 671 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 672 // expr" policy instead. 673 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 674 ASTContext &Context = CurrentDecl->getASTContext(); 675 676 if (IK == PredefinedExpr::FuncDName) { 677 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 678 std::unique_ptr<MangleContext> MC; 679 MC.reset(Context.createMangleContext()); 680 681 if (MC->shouldMangleDeclName(ND)) { 682 SmallString<256> Buffer; 683 llvm::raw_svector_ostream Out(Buffer); 684 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 685 MC->mangleCXXCtor(CD, Ctor_Base, Out); 686 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 687 MC->mangleCXXDtor(DD, Dtor_Base, Out); 688 else 689 MC->mangleName(ND, Out); 690 691 if (!Buffer.empty() && Buffer.front() == '\01') 692 return Buffer.substr(1); 693 return Buffer.str(); 694 } else 695 return ND->getIdentifier()->getName(); 696 } 697 return ""; 698 } 699 if (isa<BlockDecl>(CurrentDecl)) { 700 // For blocks we only emit something if it is enclosed in a function 701 // For top-level block we'd like to include the name of variable, but we 702 // don't have it at this point. 703 auto DC = CurrentDecl->getDeclContext(); 704 if (DC->isFileContext()) 705 return ""; 706 707 SmallString<256> Buffer; 708 llvm::raw_svector_ostream Out(Buffer); 709 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 710 // For nested blocks, propagate up to the parent. 711 Out << ComputeName(IK, DCBlock); 712 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 713 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 714 return Out.str(); 715 } 716 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 717 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 718 IK != FuncSig && IK != LFuncSig) 719 return FD->getNameAsString(); 720 721 SmallString<256> Name; 722 llvm::raw_svector_ostream Out(Name); 723 724 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 725 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 726 Out << "virtual "; 727 if (MD->isStatic()) 728 Out << "static "; 729 } 730 731 PrintingPolicy Policy(Context.getLangOpts()); 732 std::string Proto; 733 llvm::raw_string_ostream POut(Proto); 734 735 const FunctionDecl *Decl = FD; 736 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 737 Decl = Pattern; 738 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 739 const FunctionProtoType *FT = nullptr; 740 if (FD->hasWrittenPrototype()) 741 FT = dyn_cast<FunctionProtoType>(AFT); 742 743 if (IK == FuncSig || IK == LFuncSig) { 744 switch (AFT->getCallConv()) { 745 case CC_C: POut << "__cdecl "; break; 746 case CC_X86StdCall: POut << "__stdcall "; break; 747 case CC_X86FastCall: POut << "__fastcall "; break; 748 case CC_X86ThisCall: POut << "__thiscall "; break; 749 case CC_X86VectorCall: POut << "__vectorcall "; break; 750 case CC_X86RegCall: POut << "__regcall "; break; 751 // Only bother printing the conventions that MSVC knows about. 752 default: break; 753 } 754 } 755 756 FD->printQualifiedName(POut, Policy); 757 758 POut << "("; 759 if (FT) { 760 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 761 if (i) POut << ", "; 762 POut << Decl->getParamDecl(i)->getType().stream(Policy); 763 } 764 765 if (FT->isVariadic()) { 766 if (FD->getNumParams()) POut << ", "; 767 POut << "..."; 768 } else if ((IK == FuncSig || IK == LFuncSig || 769 !Context.getLangOpts().CPlusPlus) && 770 !Decl->getNumParams()) { 771 POut << "void"; 772 } 773 } 774 POut << ")"; 775 776 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 777 assert(FT && "We must have a written prototype in this case."); 778 if (FT->isConst()) 779 POut << " const"; 780 if (FT->isVolatile()) 781 POut << " volatile"; 782 RefQualifierKind Ref = MD->getRefQualifier(); 783 if (Ref == RQ_LValue) 784 POut << " &"; 785 else if (Ref == RQ_RValue) 786 POut << " &&"; 787 } 788 789 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 790 SpecsTy Specs; 791 const DeclContext *Ctx = FD->getDeclContext(); 792 while (Ctx && isa<NamedDecl>(Ctx)) { 793 const ClassTemplateSpecializationDecl *Spec 794 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 795 if (Spec && !Spec->isExplicitSpecialization()) 796 Specs.push_back(Spec); 797 Ctx = Ctx->getParent(); 798 } 799 800 std::string TemplateParams; 801 llvm::raw_string_ostream TOut(TemplateParams); 802 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 803 I != E; ++I) { 804 const TemplateParameterList *Params 805 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 806 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 807 assert(Params->size() == Args.size()); 808 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 809 StringRef Param = Params->getParam(i)->getName(); 810 if (Param.empty()) continue; 811 TOut << Param << " = "; 812 Args.get(i).print(Policy, TOut); 813 TOut << ", "; 814 } 815 } 816 817 FunctionTemplateSpecializationInfo *FSI 818 = FD->getTemplateSpecializationInfo(); 819 if (FSI && !FSI->isExplicitSpecialization()) { 820 const TemplateParameterList* Params 821 = FSI->getTemplate()->getTemplateParameters(); 822 const TemplateArgumentList* Args = FSI->TemplateArguments; 823 assert(Params->size() == Args->size()); 824 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 825 StringRef Param = Params->getParam(i)->getName(); 826 if (Param.empty()) continue; 827 TOut << Param << " = "; 828 Args->get(i).print(Policy, TOut); 829 TOut << ", "; 830 } 831 } 832 833 TOut.flush(); 834 if (!TemplateParams.empty()) { 835 // remove the trailing comma and space 836 TemplateParams.resize(TemplateParams.size() - 2); 837 POut << " [" << TemplateParams << "]"; 838 } 839 840 POut.flush(); 841 842 // Print "auto" for all deduced return types. This includes C++1y return 843 // type deduction and lambdas. For trailing return types resolve the 844 // decltype expression. Otherwise print the real type when this is 845 // not a constructor or destructor. 846 if (isa<CXXMethodDecl>(FD) && 847 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 848 Proto = "auto " + Proto; 849 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 850 FT->getReturnType() 851 ->getAs<DecltypeType>() 852 ->getUnderlyingType() 853 .getAsStringInternal(Proto, Policy); 854 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 855 AFT->getReturnType().getAsStringInternal(Proto, Policy); 856 857 Out << Proto; 858 859 return Name.str().str(); 860 } 861 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 862 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 863 // Skip to its enclosing function or method, but not its enclosing 864 // CapturedDecl. 865 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 866 const Decl *D = Decl::castFromDeclContext(DC); 867 return ComputeName(IK, D); 868 } 869 llvm_unreachable("CapturedDecl not inside a function or method"); 870 } 871 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 872 SmallString<256> Name; 873 llvm::raw_svector_ostream Out(Name); 874 Out << (MD->isInstanceMethod() ? '-' : '+'); 875 Out << '['; 876 877 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 878 // a null check to avoid a crash. 879 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 880 Out << *ID; 881 882 if (const ObjCCategoryImplDecl *CID = 883 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 884 Out << '(' << *CID << ')'; 885 886 Out << ' '; 887 MD->getSelector().print(Out); 888 Out << ']'; 889 890 return Name.str().str(); 891 } 892 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 893 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 894 return "top level"; 895 } 896 return ""; 897 } 898 899 void APNumericStorage::setIntValue(const ASTContext &C, 900 const llvm::APInt &Val) { 901 if (hasAllocation()) 902 C.Deallocate(pVal); 903 904 BitWidth = Val.getBitWidth(); 905 unsigned NumWords = Val.getNumWords(); 906 const uint64_t* Words = Val.getRawData(); 907 if (NumWords > 1) { 908 pVal = new (C) uint64_t[NumWords]; 909 std::copy(Words, Words + NumWords, pVal); 910 } else if (NumWords == 1) 911 VAL = Words[0]; 912 else 913 VAL = 0; 914 } 915 916 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 917 QualType type, SourceLocation l) 918 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 919 false, false), 920 Loc(l) { 921 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 922 assert(V.getBitWidth() == C.getIntWidth(type) && 923 "Integer type is not the correct size for constant."); 924 setValue(C, V); 925 } 926 927 IntegerLiteral * 928 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 929 QualType type, SourceLocation l) { 930 return new (C) IntegerLiteral(C, V, type, l); 931 } 932 933 IntegerLiteral * 934 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 935 return new (C) IntegerLiteral(Empty); 936 } 937 938 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 939 QualType type, SourceLocation l, 940 unsigned Scale) 941 : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 942 false, false), 943 Loc(l), Scale(Scale) { 944 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 945 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 946 "Fixed point type is not the correct size for constant."); 947 setValue(C, V); 948 } 949 950 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 951 const llvm::APInt &V, 952 QualType type, 953 SourceLocation l, 954 unsigned Scale) { 955 return new (C) FixedPointLiteral(C, V, type, l, Scale); 956 } 957 958 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 959 // Currently the longest decimal number that can be printed is the max for an 960 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 961 // which is 43 characters. 962 SmallString<64> S; 963 FixedPointValueToString( 964 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 965 return S.str(); 966 } 967 968 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 969 bool isexact, QualType Type, SourceLocation L) 970 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, 971 false, false), Loc(L) { 972 setSemantics(V.getSemantics()); 973 FloatingLiteralBits.IsExact = isexact; 974 setValue(C, V); 975 } 976 977 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 978 : Expr(FloatingLiteralClass, Empty) { 979 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 980 FloatingLiteralBits.IsExact = false; 981 } 982 983 FloatingLiteral * 984 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 985 bool isexact, QualType Type, SourceLocation L) { 986 return new (C) FloatingLiteral(C, V, isexact, Type, L); 987 } 988 989 FloatingLiteral * 990 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 991 return new (C) FloatingLiteral(C, Empty); 992 } 993 994 /// getValueAsApproximateDouble - This returns the value as an inaccurate 995 /// double. Note that this may cause loss of precision, but is useful for 996 /// debugging dumps, etc. 997 double FloatingLiteral::getValueAsApproximateDouble() const { 998 llvm::APFloat V = getValue(); 999 bool ignored; 1000 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1001 &ignored); 1002 return V.convertToDouble(); 1003 } 1004 1005 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1006 StringKind SK) { 1007 unsigned CharByteWidth = 0; 1008 switch (SK) { 1009 case Ascii: 1010 case UTF8: 1011 CharByteWidth = Target.getCharWidth(); 1012 break; 1013 case Wide: 1014 CharByteWidth = Target.getWCharWidth(); 1015 break; 1016 case UTF16: 1017 CharByteWidth = Target.getChar16Width(); 1018 break; 1019 case UTF32: 1020 CharByteWidth = Target.getChar32Width(); 1021 break; 1022 } 1023 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1024 CharByteWidth /= 8; 1025 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1026 "The only supported character byte widths are 1,2 and 4!"); 1027 return CharByteWidth; 1028 } 1029 1030 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1031 StringKind Kind, bool Pascal, QualType Ty, 1032 const SourceLocation *Loc, 1033 unsigned NumConcatenated) 1034 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false, 1035 false) { 1036 assert(Ctx.getAsConstantArrayType(Ty) && 1037 "StringLiteral must be of constant array type!"); 1038 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1039 unsigned ByteLength = Str.size(); 1040 assert((ByteLength % CharByteWidth == 0) && 1041 "The size of the data must be a multiple of CharByteWidth!"); 1042 1043 // Avoid the expensive division. The compiler should be able to figure it 1044 // out by itself. However as of clang 7, even with the appropriate 1045 // llvm_unreachable added just here, it is not able to do so. 1046 unsigned Length; 1047 switch (CharByteWidth) { 1048 case 1: 1049 Length = ByteLength; 1050 break; 1051 case 2: 1052 Length = ByteLength / 2; 1053 break; 1054 case 4: 1055 Length = ByteLength / 4; 1056 break; 1057 default: 1058 llvm_unreachable("Unsupported character width!"); 1059 } 1060 1061 StringLiteralBits.Kind = Kind; 1062 StringLiteralBits.CharByteWidth = CharByteWidth; 1063 StringLiteralBits.IsPascal = Pascal; 1064 StringLiteralBits.NumConcatenated = NumConcatenated; 1065 *getTrailingObjects<unsigned>() = Length; 1066 1067 // Initialize the trailing array of SourceLocation. 1068 // This is safe since SourceLocation is POD-like. 1069 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1070 NumConcatenated * sizeof(SourceLocation)); 1071 1072 // Initialize the trailing array of char holding the string data. 1073 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1074 } 1075 1076 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1077 unsigned Length, unsigned CharByteWidth) 1078 : Expr(StringLiteralClass, Empty) { 1079 StringLiteralBits.CharByteWidth = CharByteWidth; 1080 StringLiteralBits.NumConcatenated = NumConcatenated; 1081 *getTrailingObjects<unsigned>() = Length; 1082 } 1083 1084 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1085 StringKind Kind, bool Pascal, QualType Ty, 1086 const SourceLocation *Loc, 1087 unsigned NumConcatenated) { 1088 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1089 1, NumConcatenated, Str.size()), 1090 alignof(StringLiteral)); 1091 return new (Mem) 1092 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1093 } 1094 1095 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1096 unsigned NumConcatenated, 1097 unsigned Length, 1098 unsigned CharByteWidth) { 1099 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1100 1, NumConcatenated, Length * CharByteWidth), 1101 alignof(StringLiteral)); 1102 return new (Mem) 1103 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1104 } 1105 1106 void StringLiteral::outputString(raw_ostream &OS) const { 1107 switch (getKind()) { 1108 case Ascii: break; // no prefix. 1109 case Wide: OS << 'L'; break; 1110 case UTF8: OS << "u8"; break; 1111 case UTF16: OS << 'u'; break; 1112 case UTF32: OS << 'U'; break; 1113 } 1114 OS << '"'; 1115 static const char Hex[] = "0123456789ABCDEF"; 1116 1117 unsigned LastSlashX = getLength(); 1118 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1119 switch (uint32_t Char = getCodeUnit(I)) { 1120 default: 1121 // FIXME: Convert UTF-8 back to codepoints before rendering. 1122 1123 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1124 // Leave invalid surrogates alone; we'll use \x for those. 1125 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1126 Char <= 0xdbff) { 1127 uint32_t Trail = getCodeUnit(I + 1); 1128 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1129 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1130 ++I; 1131 } 1132 } 1133 1134 if (Char > 0xff) { 1135 // If this is a wide string, output characters over 0xff using \x 1136 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1137 // codepoint: use \x escapes for invalid codepoints. 1138 if (getKind() == Wide || 1139 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1140 // FIXME: Is this the best way to print wchar_t? 1141 OS << "\\x"; 1142 int Shift = 28; 1143 while ((Char >> Shift) == 0) 1144 Shift -= 4; 1145 for (/**/; Shift >= 0; Shift -= 4) 1146 OS << Hex[(Char >> Shift) & 15]; 1147 LastSlashX = I; 1148 break; 1149 } 1150 1151 if (Char > 0xffff) 1152 OS << "\\U00" 1153 << Hex[(Char >> 20) & 15] 1154 << Hex[(Char >> 16) & 15]; 1155 else 1156 OS << "\\u"; 1157 OS << Hex[(Char >> 12) & 15] 1158 << Hex[(Char >> 8) & 15] 1159 << Hex[(Char >> 4) & 15] 1160 << Hex[(Char >> 0) & 15]; 1161 break; 1162 } 1163 1164 // If we used \x... for the previous character, and this character is a 1165 // hexadecimal digit, prevent it being slurped as part of the \x. 1166 if (LastSlashX + 1 == I) { 1167 switch (Char) { 1168 case '0': case '1': case '2': case '3': case '4': 1169 case '5': case '6': case '7': case '8': case '9': 1170 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1171 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1172 OS << "\"\""; 1173 } 1174 } 1175 1176 assert(Char <= 0xff && 1177 "Characters above 0xff should already have been handled."); 1178 1179 if (isPrintable(Char)) 1180 OS << (char)Char; 1181 else // Output anything hard as an octal escape. 1182 OS << '\\' 1183 << (char)('0' + ((Char >> 6) & 7)) 1184 << (char)('0' + ((Char >> 3) & 7)) 1185 << (char)('0' + ((Char >> 0) & 7)); 1186 break; 1187 // Handle some common non-printable cases to make dumps prettier. 1188 case '\\': OS << "\\\\"; break; 1189 case '"': OS << "\\\""; break; 1190 case '\a': OS << "\\a"; break; 1191 case '\b': OS << "\\b"; break; 1192 case '\f': OS << "\\f"; break; 1193 case '\n': OS << "\\n"; break; 1194 case '\r': OS << "\\r"; break; 1195 case '\t': OS << "\\t"; break; 1196 case '\v': OS << "\\v"; break; 1197 } 1198 } 1199 OS << '"'; 1200 } 1201 1202 /// getLocationOfByte - Return a source location that points to the specified 1203 /// byte of this string literal. 1204 /// 1205 /// Strings are amazingly complex. They can be formed from multiple tokens and 1206 /// can have escape sequences in them in addition to the usual trigraph and 1207 /// escaped newline business. This routine handles this complexity. 1208 /// 1209 /// The *StartToken sets the first token to be searched in this function and 1210 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1211 /// returning, it updates the *StartToken to the TokNo of the token being found 1212 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1213 /// string. 1214 /// Using these two parameters can reduce the time complexity from O(n^2) to 1215 /// O(n) if one wants to get the location of byte for all the tokens in a 1216 /// string. 1217 /// 1218 SourceLocation 1219 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1220 const LangOptions &Features, 1221 const TargetInfo &Target, unsigned *StartToken, 1222 unsigned *StartTokenByteOffset) const { 1223 assert((getKind() == StringLiteral::Ascii || 1224 getKind() == StringLiteral::UTF8) && 1225 "Only narrow string literals are currently supported"); 1226 1227 // Loop over all of the tokens in this string until we find the one that 1228 // contains the byte we're looking for. 1229 unsigned TokNo = 0; 1230 unsigned StringOffset = 0; 1231 if (StartToken) 1232 TokNo = *StartToken; 1233 if (StartTokenByteOffset) { 1234 StringOffset = *StartTokenByteOffset; 1235 ByteNo -= StringOffset; 1236 } 1237 while (1) { 1238 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1239 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1240 1241 // Get the spelling of the string so that we can get the data that makes up 1242 // the string literal, not the identifier for the macro it is potentially 1243 // expanded through. 1244 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1245 1246 // Re-lex the token to get its length and original spelling. 1247 std::pair<FileID, unsigned> LocInfo = 1248 SM.getDecomposedLoc(StrTokSpellingLoc); 1249 bool Invalid = false; 1250 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1251 if (Invalid) { 1252 if (StartTokenByteOffset != nullptr) 1253 *StartTokenByteOffset = StringOffset; 1254 if (StartToken != nullptr) 1255 *StartToken = TokNo; 1256 return StrTokSpellingLoc; 1257 } 1258 1259 const char *StrData = Buffer.data()+LocInfo.second; 1260 1261 // Create a lexer starting at the beginning of this token. 1262 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1263 Buffer.begin(), StrData, Buffer.end()); 1264 Token TheTok; 1265 TheLexer.LexFromRawLexer(TheTok); 1266 1267 // Use the StringLiteralParser to compute the length of the string in bytes. 1268 StringLiteralParser SLP(TheTok, SM, Features, Target); 1269 unsigned TokNumBytes = SLP.GetStringLength(); 1270 1271 // If the byte is in this token, return the location of the byte. 1272 if (ByteNo < TokNumBytes || 1273 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1274 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1275 1276 // Now that we know the offset of the token in the spelling, use the 1277 // preprocessor to get the offset in the original source. 1278 if (StartTokenByteOffset != nullptr) 1279 *StartTokenByteOffset = StringOffset; 1280 if (StartToken != nullptr) 1281 *StartToken = TokNo; 1282 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1283 } 1284 1285 // Move to the next string token. 1286 StringOffset += TokNumBytes; 1287 ++TokNo; 1288 ByteNo -= TokNumBytes; 1289 } 1290 } 1291 1292 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1293 /// corresponds to, e.g. "sizeof" or "[pre]++". 1294 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1295 switch (Op) { 1296 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1297 #include "clang/AST/OperationKinds.def" 1298 } 1299 llvm_unreachable("Unknown unary operator"); 1300 } 1301 1302 UnaryOperatorKind 1303 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1304 switch (OO) { 1305 default: llvm_unreachable("No unary operator for overloaded function"); 1306 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1307 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1308 case OO_Amp: return UO_AddrOf; 1309 case OO_Star: return UO_Deref; 1310 case OO_Plus: return UO_Plus; 1311 case OO_Minus: return UO_Minus; 1312 case OO_Tilde: return UO_Not; 1313 case OO_Exclaim: return UO_LNot; 1314 case OO_Coawait: return UO_Coawait; 1315 } 1316 } 1317 1318 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1319 switch (Opc) { 1320 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1321 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1322 case UO_AddrOf: return OO_Amp; 1323 case UO_Deref: return OO_Star; 1324 case UO_Plus: return OO_Plus; 1325 case UO_Minus: return OO_Minus; 1326 case UO_Not: return OO_Tilde; 1327 case UO_LNot: return OO_Exclaim; 1328 case UO_Coawait: return OO_Coawait; 1329 default: return OO_None; 1330 } 1331 } 1332 1333 1334 //===----------------------------------------------------------------------===// 1335 // Postfix Operators. 1336 //===----------------------------------------------------------------------===// 1337 1338 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1339 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1340 SourceLocation RParenLoc, unsigned MinNumArgs, 1341 ADLCallKind UsesADL) 1342 : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(), 1343 Fn->isValueDependent(), Fn->isInstantiationDependent(), 1344 Fn->containsUnexpandedParameterPack()), 1345 RParenLoc(RParenLoc) { 1346 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1347 unsigned NumPreArgs = PreArgs.size(); 1348 CallExprBits.NumPreArgs = NumPreArgs; 1349 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1350 1351 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1352 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1353 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1354 "OffsetToTrailingObjects overflow!"); 1355 1356 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1357 1358 setCallee(Fn); 1359 for (unsigned I = 0; I != NumPreArgs; ++I) { 1360 updateDependenciesFromArg(PreArgs[I]); 1361 setPreArg(I, PreArgs[I]); 1362 } 1363 for (unsigned I = 0; I != Args.size(); ++I) { 1364 updateDependenciesFromArg(Args[I]); 1365 setArg(I, Args[I]); 1366 } 1367 for (unsigned I = Args.size(); I != NumArgs; ++I) { 1368 setArg(I, nullptr); 1369 } 1370 } 1371 1372 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1373 EmptyShell Empty) 1374 : Expr(SC, Empty), NumArgs(NumArgs) { 1375 CallExprBits.NumPreArgs = NumPreArgs; 1376 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1377 1378 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1379 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1380 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1381 "OffsetToTrailingObjects overflow!"); 1382 } 1383 1384 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1385 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1386 SourceLocation RParenLoc, unsigned MinNumArgs, 1387 ADLCallKind UsesADL) { 1388 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1389 unsigned SizeOfTrailingObjects = 1390 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); 1391 void *Mem = 1392 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1393 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1394 RParenLoc, MinNumArgs, UsesADL); 1395 } 1396 1397 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1398 ExprValueKind VK, SourceLocation RParenLoc, 1399 ADLCallKind UsesADL) { 1400 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1401 "Misaligned memory in CallExpr::CreateTemporary!"); 1402 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1403 VK, RParenLoc, /*MinNumArgs=*/0, UsesADL); 1404 } 1405 1406 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1407 EmptyShell Empty) { 1408 unsigned SizeOfTrailingObjects = 1409 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); 1410 void *Mem = 1411 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1412 return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty); 1413 } 1414 1415 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1416 switch (SC) { 1417 case CallExprClass: 1418 return sizeof(CallExpr); 1419 case CXXOperatorCallExprClass: 1420 return sizeof(CXXOperatorCallExpr); 1421 case CXXMemberCallExprClass: 1422 return sizeof(CXXMemberCallExpr); 1423 case UserDefinedLiteralClass: 1424 return sizeof(UserDefinedLiteral); 1425 case CUDAKernelCallExprClass: 1426 return sizeof(CUDAKernelCallExpr); 1427 default: 1428 llvm_unreachable("unexpected class deriving from CallExpr!"); 1429 } 1430 } 1431 1432 void CallExpr::updateDependenciesFromArg(Expr *Arg) { 1433 if (Arg->isTypeDependent()) 1434 ExprBits.TypeDependent = true; 1435 if (Arg->isValueDependent()) 1436 ExprBits.ValueDependent = true; 1437 if (Arg->isInstantiationDependent()) 1438 ExprBits.InstantiationDependent = true; 1439 if (Arg->containsUnexpandedParameterPack()) 1440 ExprBits.ContainsUnexpandedParameterPack = true; 1441 } 1442 1443 Decl *Expr::getReferencedDeclOfCallee() { 1444 Expr *CEE = IgnoreParenImpCasts(); 1445 1446 while (SubstNonTypeTemplateParmExpr *NTTP 1447 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1448 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 1449 } 1450 1451 // If we're calling a dereference, look at the pointer instead. 1452 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1453 if (BO->isPtrMemOp()) 1454 CEE = BO->getRHS()->IgnoreParenCasts(); 1455 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1456 if (UO->getOpcode() == UO_Deref) 1457 CEE = UO->getSubExpr()->IgnoreParenCasts(); 1458 } 1459 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1460 return DRE->getDecl(); 1461 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1462 return ME->getMemberDecl(); 1463 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1464 return BE->getBlockDecl(); 1465 1466 return nullptr; 1467 } 1468 1469 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If 1470 /// not, return 0. 1471 unsigned CallExpr::getBuiltinCallee() const { 1472 // All simple function calls (e.g. func()) are implicitly cast to pointer to 1473 // function. As a result, we try and obtain the DeclRefExpr from the 1474 // ImplicitCastExpr. 1475 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 1476 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 1477 return 0; 1478 1479 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 1480 if (!DRE) 1481 return 0; 1482 1483 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 1484 if (!FDecl) 1485 return 0; 1486 1487 if (!FDecl->getIdentifier()) 1488 return 0; 1489 1490 return FDecl->getBuiltinID(); 1491 } 1492 1493 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1494 if (unsigned BI = getBuiltinCallee()) 1495 return Ctx.BuiltinInfo.isUnevaluated(BI); 1496 return false; 1497 } 1498 1499 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1500 const Expr *Callee = getCallee(); 1501 QualType CalleeType = Callee->getType(); 1502 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1503 CalleeType = FnTypePtr->getPointeeType(); 1504 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1505 CalleeType = BPT->getPointeeType(); 1506 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1507 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1508 return Ctx.VoidTy; 1509 1510 // This should never be overloaded and so should never return null. 1511 CalleeType = Expr::findBoundMemberType(Callee); 1512 } 1513 1514 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1515 return FnType->getReturnType(); 1516 } 1517 1518 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1519 // If the return type is a struct, union, or enum that is marked nodiscard, 1520 // then return the return type attribute. 1521 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1522 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1523 return A; 1524 1525 // Otherwise, see if the callee is marked nodiscard and return that attribute 1526 // instead. 1527 const Decl *D = getCalleeDecl(); 1528 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1529 } 1530 1531 SourceLocation CallExpr::getBeginLoc() const { 1532 if (isa<CXXOperatorCallExpr>(this)) 1533 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1534 1535 SourceLocation begin = getCallee()->getBeginLoc(); 1536 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1537 begin = getArg(0)->getBeginLoc(); 1538 return begin; 1539 } 1540 SourceLocation CallExpr::getEndLoc() const { 1541 if (isa<CXXOperatorCallExpr>(this)) 1542 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1543 1544 SourceLocation end = getRParenLoc(); 1545 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1546 end = getArg(getNumArgs() - 1)->getEndLoc(); 1547 return end; 1548 } 1549 1550 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1551 SourceLocation OperatorLoc, 1552 TypeSourceInfo *tsi, 1553 ArrayRef<OffsetOfNode> comps, 1554 ArrayRef<Expr*> exprs, 1555 SourceLocation RParenLoc) { 1556 void *Mem = C.Allocate( 1557 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1558 1559 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1560 RParenLoc); 1561 } 1562 1563 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1564 unsigned numComps, unsigned numExprs) { 1565 void *Mem = 1566 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1567 return new (Mem) OffsetOfExpr(numComps, numExprs); 1568 } 1569 1570 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1571 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1572 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, 1573 SourceLocation RParenLoc) 1574 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 1575 /*TypeDependent=*/false, 1576 /*ValueDependent=*/tsi->getType()->isDependentType(), 1577 tsi->getType()->isInstantiationDependentType(), 1578 tsi->getType()->containsUnexpandedParameterPack()), 1579 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1580 NumComps(comps.size()), NumExprs(exprs.size()) 1581 { 1582 for (unsigned i = 0; i != comps.size(); ++i) { 1583 setComponent(i, comps[i]); 1584 } 1585 1586 for (unsigned i = 0; i != exprs.size(); ++i) { 1587 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) 1588 ExprBits.ValueDependent = true; 1589 if (exprs[i]->containsUnexpandedParameterPack()) 1590 ExprBits.ContainsUnexpandedParameterPack = true; 1591 1592 setIndexExpr(i, exprs[i]); 1593 } 1594 } 1595 1596 IdentifierInfo *OffsetOfNode::getFieldName() const { 1597 assert(getKind() == Field || getKind() == Identifier); 1598 if (getKind() == Field) 1599 return getField()->getIdentifier(); 1600 1601 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1602 } 1603 1604 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1605 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1606 SourceLocation op, SourceLocation rp) 1607 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, 1608 false, // Never type-dependent (C++ [temp.dep.expr]p3). 1609 // Value-dependent if the argument is type-dependent. 1610 E->isTypeDependent(), E->isInstantiationDependent(), 1611 E->containsUnexpandedParameterPack()), 1612 OpLoc(op), RParenLoc(rp) { 1613 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1614 UnaryExprOrTypeTraitExprBits.IsType = false; 1615 Argument.Ex = E; 1616 1617 // Check to see if we are in the situation where alignof(decl) should be 1618 // dependent because decl's alignment is dependent. 1619 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { 1620 if (!isValueDependent() || !isInstantiationDependent()) { 1621 E = E->IgnoreParens(); 1622 1623 const ValueDecl *D = nullptr; 1624 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 1625 D = DRE->getDecl(); 1626 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 1627 D = ME->getMemberDecl(); 1628 1629 if (D) { 1630 for (const auto *I : D->specific_attrs<AlignedAttr>()) { 1631 if (I->isAlignmentDependent()) { 1632 setValueDependent(true); 1633 setInstantiationDependent(true); 1634 break; 1635 } 1636 } 1637 } 1638 } 1639 } 1640 } 1641 1642 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1643 ValueDecl *MemberDecl, 1644 const DeclarationNameInfo &NameInfo, QualType T, 1645 ExprValueKind VK, ExprObjectKind OK, 1646 NonOdrUseReason NOUR) 1647 : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(), 1648 Base->isValueDependent(), Base->isInstantiationDependent(), 1649 Base->containsUnexpandedParameterPack()), 1650 Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()), 1651 MemberLoc(NameInfo.getLoc()) { 1652 assert(!NameInfo.getName() || 1653 MemberDecl->getDeclName() == NameInfo.getName()); 1654 MemberExprBits.IsArrow = IsArrow; 1655 MemberExprBits.HasQualifierOrFoundDecl = false; 1656 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1657 MemberExprBits.HadMultipleCandidates = false; 1658 MemberExprBits.NonOdrUseReason = NOUR; 1659 MemberExprBits.OperatorLoc = OperatorLoc; 1660 } 1661 1662 MemberExpr *MemberExpr::Create( 1663 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1664 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1665 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1666 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1667 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1668 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1669 FoundDecl.getAccess() != MemberDecl->getAccess(); 1670 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1671 std::size_t Size = 1672 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1673 TemplateArgumentLoc>( 1674 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1675 TemplateArgs ? TemplateArgs->size() : 0); 1676 1677 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1678 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1679 NameInfo, T, VK, OK, NOUR); 1680 1681 if (isa<FieldDecl>(MemberDecl)) { 1682 DeclContext *DC = MemberDecl->getDeclContext(); 1683 // dyn_cast_or_null is used to handle objC variables which do not 1684 // have a declaration context. 1685 CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC); 1686 if (RD && RD->isDependentContext() && RD->isCurrentInstantiation(DC)) 1687 E->setTypeDependent(T->isDependentType()); 1688 1689 // Bitfield with value-dependent width is type-dependent. 1690 FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl); 1691 if (FD && FD->isBitField() && FD->getBitWidth()->isValueDependent()) 1692 E->setTypeDependent(true); 1693 } 1694 1695 if (HasQualOrFound) { 1696 // FIXME: Wrong. We should be looking at the member declaration we found. 1697 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 1698 E->setValueDependent(true); 1699 E->setTypeDependent(true); 1700 E->setInstantiationDependent(true); 1701 } 1702 else if (QualifierLoc && 1703 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1704 E->setInstantiationDependent(true); 1705 1706 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1707 1708 MemberExprNameQualifier *NQ = 1709 E->getTrailingObjects<MemberExprNameQualifier>(); 1710 NQ->QualifierLoc = QualifierLoc; 1711 NQ->FoundDecl = FoundDecl; 1712 } 1713 1714 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1715 TemplateArgs || TemplateKWLoc.isValid(); 1716 1717 if (TemplateArgs) { 1718 bool Dependent = false; 1719 bool InstantiationDependent = false; 1720 bool ContainsUnexpandedParameterPack = false; 1721 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1722 TemplateKWLoc, *TemplateArgs, 1723 E->getTrailingObjects<TemplateArgumentLoc>(), Dependent, 1724 InstantiationDependent, ContainsUnexpandedParameterPack); 1725 if (InstantiationDependent) 1726 E->setInstantiationDependent(true); 1727 } else if (TemplateKWLoc.isValid()) { 1728 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1729 TemplateKWLoc); 1730 } 1731 1732 return E; 1733 } 1734 1735 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1736 bool HasQualifier, bool HasFoundDecl, 1737 bool HasTemplateKWAndArgsInfo, 1738 unsigned NumTemplateArgs) { 1739 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1740 "template args but no template arg info?"); 1741 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1742 std::size_t Size = 1743 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1744 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1745 HasTemplateKWAndArgsInfo ? 1 : 0, 1746 NumTemplateArgs); 1747 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1748 return new (Mem) MemberExpr(EmptyShell()); 1749 } 1750 1751 SourceLocation MemberExpr::getBeginLoc() const { 1752 if (isImplicitAccess()) { 1753 if (hasQualifier()) 1754 return getQualifierLoc().getBeginLoc(); 1755 return MemberLoc; 1756 } 1757 1758 // FIXME: We don't want this to happen. Rather, we should be able to 1759 // detect all kinds of implicit accesses more cleanly. 1760 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1761 if (BaseStartLoc.isValid()) 1762 return BaseStartLoc; 1763 return MemberLoc; 1764 } 1765 SourceLocation MemberExpr::getEndLoc() const { 1766 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1767 if (hasExplicitTemplateArgs()) 1768 EndLoc = getRAngleLoc(); 1769 else if (EndLoc.isInvalid()) 1770 EndLoc = getBase()->getEndLoc(); 1771 return EndLoc; 1772 } 1773 1774 bool CastExpr::CastConsistency() const { 1775 switch (getCastKind()) { 1776 case CK_DerivedToBase: 1777 case CK_UncheckedDerivedToBase: 1778 case CK_DerivedToBaseMemberPointer: 1779 case CK_BaseToDerived: 1780 case CK_BaseToDerivedMemberPointer: 1781 assert(!path_empty() && "Cast kind should have a base path!"); 1782 break; 1783 1784 case CK_CPointerToObjCPointerCast: 1785 assert(getType()->isObjCObjectPointerType()); 1786 assert(getSubExpr()->getType()->isPointerType()); 1787 goto CheckNoBasePath; 1788 1789 case CK_BlockPointerToObjCPointerCast: 1790 assert(getType()->isObjCObjectPointerType()); 1791 assert(getSubExpr()->getType()->isBlockPointerType()); 1792 goto CheckNoBasePath; 1793 1794 case CK_ReinterpretMemberPointer: 1795 assert(getType()->isMemberPointerType()); 1796 assert(getSubExpr()->getType()->isMemberPointerType()); 1797 goto CheckNoBasePath; 1798 1799 case CK_BitCast: 1800 // Arbitrary casts to C pointer types count as bitcasts. 1801 // Otherwise, we should only have block and ObjC pointer casts 1802 // here if they stay within the type kind. 1803 if (!getType()->isPointerType()) { 1804 assert(getType()->isObjCObjectPointerType() == 1805 getSubExpr()->getType()->isObjCObjectPointerType()); 1806 assert(getType()->isBlockPointerType() == 1807 getSubExpr()->getType()->isBlockPointerType()); 1808 } 1809 goto CheckNoBasePath; 1810 1811 case CK_AnyPointerToBlockPointerCast: 1812 assert(getType()->isBlockPointerType()); 1813 assert(getSubExpr()->getType()->isAnyPointerType() && 1814 !getSubExpr()->getType()->isBlockPointerType()); 1815 goto CheckNoBasePath; 1816 1817 case CK_CopyAndAutoreleaseBlockObject: 1818 assert(getType()->isBlockPointerType()); 1819 assert(getSubExpr()->getType()->isBlockPointerType()); 1820 goto CheckNoBasePath; 1821 1822 case CK_FunctionToPointerDecay: 1823 assert(getType()->isPointerType()); 1824 assert(getSubExpr()->getType()->isFunctionType()); 1825 goto CheckNoBasePath; 1826 1827 case CK_AddressSpaceConversion: { 1828 auto Ty = getType(); 1829 auto SETy = getSubExpr()->getType(); 1830 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1831 if (isRValue()) { 1832 Ty = Ty->getPointeeType(); 1833 SETy = SETy->getPointeeType(); 1834 } 1835 assert(!Ty.isNull() && !SETy.isNull() && 1836 Ty.getAddressSpace() != SETy.getAddressSpace()); 1837 goto CheckNoBasePath; 1838 } 1839 // These should not have an inheritance path. 1840 case CK_Dynamic: 1841 case CK_ToUnion: 1842 case CK_ArrayToPointerDecay: 1843 case CK_NullToMemberPointer: 1844 case CK_NullToPointer: 1845 case CK_ConstructorConversion: 1846 case CK_IntegralToPointer: 1847 case CK_PointerToIntegral: 1848 case CK_ToVoid: 1849 case CK_VectorSplat: 1850 case CK_IntegralCast: 1851 case CK_BooleanToSignedIntegral: 1852 case CK_IntegralToFloating: 1853 case CK_FloatingToIntegral: 1854 case CK_FloatingCast: 1855 case CK_ObjCObjectLValueCast: 1856 case CK_FloatingRealToComplex: 1857 case CK_FloatingComplexToReal: 1858 case CK_FloatingComplexCast: 1859 case CK_FloatingComplexToIntegralComplex: 1860 case CK_IntegralRealToComplex: 1861 case CK_IntegralComplexToReal: 1862 case CK_IntegralComplexCast: 1863 case CK_IntegralComplexToFloatingComplex: 1864 case CK_ARCProduceObject: 1865 case CK_ARCConsumeObject: 1866 case CK_ARCReclaimReturnedObject: 1867 case CK_ARCExtendBlockObject: 1868 case CK_ZeroToOCLOpaqueType: 1869 case CK_IntToOCLSampler: 1870 case CK_FixedPointCast: 1871 case CK_FixedPointToIntegral: 1872 case CK_IntegralToFixedPoint: 1873 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1874 goto CheckNoBasePath; 1875 1876 case CK_Dependent: 1877 case CK_LValueToRValue: 1878 case CK_NoOp: 1879 case CK_AtomicToNonAtomic: 1880 case CK_NonAtomicToAtomic: 1881 case CK_PointerToBoolean: 1882 case CK_IntegralToBoolean: 1883 case CK_FloatingToBoolean: 1884 case CK_MemberPointerToBoolean: 1885 case CK_FloatingComplexToBoolean: 1886 case CK_IntegralComplexToBoolean: 1887 case CK_LValueBitCast: // -> bool& 1888 case CK_LValueToRValueBitCast: 1889 case CK_UserDefinedConversion: // operator bool() 1890 case CK_BuiltinFnToFnPtr: 1891 case CK_FixedPointToBoolean: 1892 CheckNoBasePath: 1893 assert(path_empty() && "Cast kind should not have a base path!"); 1894 break; 1895 } 1896 return true; 1897 } 1898 1899 const char *CastExpr::getCastKindName(CastKind CK) { 1900 switch (CK) { 1901 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1902 #include "clang/AST/OperationKinds.def" 1903 } 1904 llvm_unreachable("Unhandled cast kind!"); 1905 } 1906 1907 namespace { 1908 const Expr *skipImplicitTemporary(const Expr *E) { 1909 // Skip through reference binding to temporary. 1910 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1911 E = Materialize->getSubExpr(); 1912 1913 // Skip any temporary bindings; they're implicit. 1914 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1915 E = Binder->getSubExpr(); 1916 1917 return E; 1918 } 1919 } 1920 1921 Expr *CastExpr::getSubExprAsWritten() { 1922 const Expr *SubExpr = nullptr; 1923 const CastExpr *E = this; 1924 do { 1925 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1926 1927 // Conversions by constructor and conversion functions have a 1928 // subexpression describing the call; strip it off. 1929 if (E->getCastKind() == CK_ConstructorConversion) 1930 SubExpr = 1931 skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0)); 1932 else if (E->getCastKind() == CK_UserDefinedConversion) { 1933 assert((isa<CXXMemberCallExpr>(SubExpr) || 1934 isa<BlockExpr>(SubExpr)) && 1935 "Unexpected SubExpr for CK_UserDefinedConversion."); 1936 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1937 SubExpr = MCE->getImplicitObjectArgument(); 1938 } 1939 1940 // If the subexpression we're left with is an implicit cast, look 1941 // through that, too. 1942 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1943 1944 return const_cast<Expr*>(SubExpr); 1945 } 1946 1947 NamedDecl *CastExpr::getConversionFunction() const { 1948 const Expr *SubExpr = nullptr; 1949 1950 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1951 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1952 1953 if (E->getCastKind() == CK_ConstructorConversion) 1954 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1955 1956 if (E->getCastKind() == CK_UserDefinedConversion) { 1957 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1958 return MCE->getMethodDecl(); 1959 } 1960 } 1961 1962 return nullptr; 1963 } 1964 1965 CXXBaseSpecifier **CastExpr::path_buffer() { 1966 switch (getStmtClass()) { 1967 #define ABSTRACT_STMT(x) 1968 #define CASTEXPR(Type, Base) \ 1969 case Stmt::Type##Class: \ 1970 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1971 #define STMT(Type, Base) 1972 #include "clang/AST/StmtNodes.inc" 1973 default: 1974 llvm_unreachable("non-cast expressions not possible here"); 1975 } 1976 } 1977 1978 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 1979 QualType opType) { 1980 auto RD = unionType->castAs<RecordType>()->getDecl(); 1981 return getTargetFieldForToUnionCast(RD, opType); 1982 } 1983 1984 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 1985 QualType OpType) { 1986 auto &Ctx = RD->getASTContext(); 1987 RecordDecl::field_iterator Field, FieldEnd; 1988 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 1989 Field != FieldEnd; ++Field) { 1990 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 1991 !Field->isUnnamedBitfield()) { 1992 return *Field; 1993 } 1994 } 1995 return nullptr; 1996 } 1997 1998 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1999 CastKind Kind, Expr *Operand, 2000 const CXXCastPath *BasePath, 2001 ExprValueKind VK) { 2002 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2003 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 2004 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2005 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2006 assert((Kind != CK_LValueToRValue || 2007 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2008 "invalid type for lvalue-to-rvalue conversion"); 2009 ImplicitCastExpr *E = 2010 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 2011 if (PathSize) 2012 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2013 E->getTrailingObjects<CXXBaseSpecifier *>()); 2014 return E; 2015 } 2016 2017 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2018 unsigned PathSize) { 2019 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 2020 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 2021 } 2022 2023 2024 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2025 ExprValueKind VK, CastKind K, Expr *Op, 2026 const CXXCastPath *BasePath, 2027 TypeSourceInfo *WrittenTy, 2028 SourceLocation L, SourceLocation R) { 2029 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2030 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 2031 CStyleCastExpr *E = 2032 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 2033 if (PathSize) 2034 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2035 E->getTrailingObjects<CXXBaseSpecifier *>()); 2036 return E; 2037 } 2038 2039 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2040 unsigned PathSize) { 2041 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 2042 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 2043 } 2044 2045 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2046 /// corresponds to, e.g. "<<=". 2047 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2048 switch (Op) { 2049 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2050 #include "clang/AST/OperationKinds.def" 2051 } 2052 llvm_unreachable("Invalid OpCode!"); 2053 } 2054 2055 BinaryOperatorKind 2056 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2057 switch (OO) { 2058 default: llvm_unreachable("Not an overloadable binary operator"); 2059 case OO_Plus: return BO_Add; 2060 case OO_Minus: return BO_Sub; 2061 case OO_Star: return BO_Mul; 2062 case OO_Slash: return BO_Div; 2063 case OO_Percent: return BO_Rem; 2064 case OO_Caret: return BO_Xor; 2065 case OO_Amp: return BO_And; 2066 case OO_Pipe: return BO_Or; 2067 case OO_Equal: return BO_Assign; 2068 case OO_Spaceship: return BO_Cmp; 2069 case OO_Less: return BO_LT; 2070 case OO_Greater: return BO_GT; 2071 case OO_PlusEqual: return BO_AddAssign; 2072 case OO_MinusEqual: return BO_SubAssign; 2073 case OO_StarEqual: return BO_MulAssign; 2074 case OO_SlashEqual: return BO_DivAssign; 2075 case OO_PercentEqual: return BO_RemAssign; 2076 case OO_CaretEqual: return BO_XorAssign; 2077 case OO_AmpEqual: return BO_AndAssign; 2078 case OO_PipeEqual: return BO_OrAssign; 2079 case OO_LessLess: return BO_Shl; 2080 case OO_GreaterGreater: return BO_Shr; 2081 case OO_LessLessEqual: return BO_ShlAssign; 2082 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2083 case OO_EqualEqual: return BO_EQ; 2084 case OO_ExclaimEqual: return BO_NE; 2085 case OO_LessEqual: return BO_LE; 2086 case OO_GreaterEqual: return BO_GE; 2087 case OO_AmpAmp: return BO_LAnd; 2088 case OO_PipePipe: return BO_LOr; 2089 case OO_Comma: return BO_Comma; 2090 case OO_ArrowStar: return BO_PtrMemI; 2091 } 2092 } 2093 2094 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2095 static const OverloadedOperatorKind OverOps[] = { 2096 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2097 OO_Star, OO_Slash, OO_Percent, 2098 OO_Plus, OO_Minus, 2099 OO_LessLess, OO_GreaterGreater, 2100 OO_Spaceship, 2101 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2102 OO_EqualEqual, OO_ExclaimEqual, 2103 OO_Amp, 2104 OO_Caret, 2105 OO_Pipe, 2106 OO_AmpAmp, 2107 OO_PipePipe, 2108 OO_Equal, OO_StarEqual, 2109 OO_SlashEqual, OO_PercentEqual, 2110 OO_PlusEqual, OO_MinusEqual, 2111 OO_LessLessEqual, OO_GreaterGreaterEqual, 2112 OO_AmpEqual, OO_CaretEqual, 2113 OO_PipeEqual, 2114 OO_Comma 2115 }; 2116 return OverOps[Opc]; 2117 } 2118 2119 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2120 Opcode Opc, 2121 Expr *LHS, Expr *RHS) { 2122 if (Opc != BO_Add) 2123 return false; 2124 2125 // Check that we have one pointer and one integer operand. 2126 Expr *PExp; 2127 if (LHS->getType()->isPointerType()) { 2128 if (!RHS->getType()->isIntegerType()) 2129 return false; 2130 PExp = LHS; 2131 } else if (RHS->getType()->isPointerType()) { 2132 if (!LHS->getType()->isIntegerType()) 2133 return false; 2134 PExp = RHS; 2135 } else { 2136 return false; 2137 } 2138 2139 // Check that the pointer is a nullptr. 2140 if (!PExp->IgnoreParenCasts() 2141 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2142 return false; 2143 2144 // Check that the pointee type is char-sized. 2145 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2146 if (!PTy || !PTy->getPointeeType()->isCharType()) 2147 return false; 2148 2149 return true; 2150 } 2151 2152 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, 2153 SourceLocExpr::IdentKind Kind) { 2154 switch (Kind) { 2155 case SourceLocExpr::File: 2156 case SourceLocExpr::Function: { 2157 QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0); 2158 return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); 2159 } 2160 case SourceLocExpr::Line: 2161 case SourceLocExpr::Column: 2162 return Ctx.UnsignedIntTy; 2163 } 2164 llvm_unreachable("unhandled case"); 2165 } 2166 2167 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2168 SourceLocation BLoc, SourceLocation RParenLoc, 2169 DeclContext *ParentContext) 2170 : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind), 2171 VK_RValue, OK_Ordinary, false, false, false, false), 2172 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2173 SourceLocExprBits.Kind = Kind; 2174 } 2175 2176 StringRef SourceLocExpr::getBuiltinStr() const { 2177 switch (getIdentKind()) { 2178 case File: 2179 return "__builtin_FILE"; 2180 case Function: 2181 return "__builtin_FUNCTION"; 2182 case Line: 2183 return "__builtin_LINE"; 2184 case Column: 2185 return "__builtin_COLUMN"; 2186 } 2187 llvm_unreachable("unexpected IdentKind!"); 2188 } 2189 2190 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2191 const Expr *DefaultExpr) const { 2192 SourceLocation Loc; 2193 const DeclContext *Context; 2194 2195 std::tie(Loc, 2196 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2197 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2198 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2199 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2200 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2201 return {this->getLocation(), this->getParentContext()}; 2202 }(); 2203 2204 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2205 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2206 2207 auto MakeStringLiteral = [&](StringRef Tmp) { 2208 using LValuePathEntry = APValue::LValuePathEntry; 2209 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2210 // Decay the string to a pointer to the first character. 2211 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2212 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2213 }; 2214 2215 switch (getIdentKind()) { 2216 case SourceLocExpr::File: 2217 return MakeStringLiteral(PLoc.getFilename()); 2218 case SourceLocExpr::Function: { 2219 const Decl *CurDecl = dyn_cast_or_null<Decl>(Context); 2220 return MakeStringLiteral( 2221 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2222 : std::string("")); 2223 } 2224 case SourceLocExpr::Line: 2225 case SourceLocExpr::Column: { 2226 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2227 /*isUnsigned=*/true); 2228 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2229 : PLoc.getColumn(); 2230 return APValue(IntVal); 2231 } 2232 } 2233 llvm_unreachable("unhandled case"); 2234 } 2235 2236 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2237 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) 2238 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 2239 false, false), 2240 InitExprs(C, initExprs.size()), 2241 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) 2242 { 2243 sawArrayRangeDesignator(false); 2244 for (unsigned I = 0; I != initExprs.size(); ++I) { 2245 if (initExprs[I]->isTypeDependent()) 2246 ExprBits.TypeDependent = true; 2247 if (initExprs[I]->isValueDependent()) 2248 ExprBits.ValueDependent = true; 2249 if (initExprs[I]->isInstantiationDependent()) 2250 ExprBits.InstantiationDependent = true; 2251 if (initExprs[I]->containsUnexpandedParameterPack()) 2252 ExprBits.ContainsUnexpandedParameterPack = true; 2253 } 2254 2255 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2256 } 2257 2258 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2259 if (NumInits > InitExprs.size()) 2260 InitExprs.reserve(C, NumInits); 2261 } 2262 2263 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2264 InitExprs.resize(C, NumInits, nullptr); 2265 } 2266 2267 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2268 if (Init >= InitExprs.size()) { 2269 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2270 setInit(Init, expr); 2271 return nullptr; 2272 } 2273 2274 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2275 setInit(Init, expr); 2276 return Result; 2277 } 2278 2279 void InitListExpr::setArrayFiller(Expr *filler) { 2280 assert(!hasArrayFiller() && "Filler already set!"); 2281 ArrayFillerOrUnionFieldInit = filler; 2282 // Fill out any "holes" in the array due to designated initializers. 2283 Expr **inits = getInits(); 2284 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2285 if (inits[i] == nullptr) 2286 inits[i] = filler; 2287 } 2288 2289 bool InitListExpr::isStringLiteralInit() const { 2290 if (getNumInits() != 1) 2291 return false; 2292 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2293 if (!AT || !AT->getElementType()->isIntegerType()) 2294 return false; 2295 // It is possible for getInit() to return null. 2296 const Expr *Init = getInit(0); 2297 if (!Init) 2298 return false; 2299 Init = Init->IgnoreParens(); 2300 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2301 } 2302 2303 bool InitListExpr::isTransparent() const { 2304 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2305 2306 // A glvalue InitListExpr is always just sugar. 2307 if (isGLValue()) { 2308 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2309 return true; 2310 } 2311 2312 // Otherwise, we're sugar if and only if we have exactly one initializer that 2313 // is of the same type. 2314 if (getNumInits() != 1 || !getInit(0)) 2315 return false; 2316 2317 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2318 // transparent struct copy. 2319 if (!getInit(0)->isRValue() && getType()->isRecordType()) 2320 return false; 2321 2322 return getType().getCanonicalType() == 2323 getInit(0)->getType().getCanonicalType(); 2324 } 2325 2326 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2327 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2328 2329 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2330 return false; 2331 } 2332 2333 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2334 return Lit && Lit->getValue() == 0; 2335 } 2336 2337 SourceLocation InitListExpr::getBeginLoc() const { 2338 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2339 return SyntacticForm->getBeginLoc(); 2340 SourceLocation Beg = LBraceLoc; 2341 if (Beg.isInvalid()) { 2342 // Find the first non-null initializer. 2343 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2344 E = InitExprs.end(); 2345 I != E; ++I) { 2346 if (Stmt *S = *I) { 2347 Beg = S->getBeginLoc(); 2348 break; 2349 } 2350 } 2351 } 2352 return Beg; 2353 } 2354 2355 SourceLocation InitListExpr::getEndLoc() const { 2356 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2357 return SyntacticForm->getEndLoc(); 2358 SourceLocation End = RBraceLoc; 2359 if (End.isInvalid()) { 2360 // Find the first non-null initializer from the end. 2361 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 2362 E = InitExprs.rend(); 2363 I != E; ++I) { 2364 if (Stmt *S = *I) { 2365 End = S->getEndLoc(); 2366 break; 2367 } 2368 } 2369 } 2370 return End; 2371 } 2372 2373 /// getFunctionType - Return the underlying function type for this block. 2374 /// 2375 const FunctionProtoType *BlockExpr::getFunctionType() const { 2376 // The block pointer is never sugared, but the function type might be. 2377 return cast<BlockPointerType>(getType()) 2378 ->getPointeeType()->castAs<FunctionProtoType>(); 2379 } 2380 2381 SourceLocation BlockExpr::getCaretLocation() const { 2382 return TheBlock->getCaretLocation(); 2383 } 2384 const Stmt *BlockExpr::getBody() const { 2385 return TheBlock->getBody(); 2386 } 2387 Stmt *BlockExpr::getBody() { 2388 return TheBlock->getBody(); 2389 } 2390 2391 2392 //===----------------------------------------------------------------------===// 2393 // Generic Expression Routines 2394 //===----------------------------------------------------------------------===// 2395 2396 /// isUnusedResultAWarning - Return true if this immediate expression should 2397 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2398 /// with location to warn on and the source range[s] to report with the 2399 /// warning. 2400 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2401 SourceRange &R1, SourceRange &R2, 2402 ASTContext &Ctx) const { 2403 // Don't warn if the expr is type dependent. The type could end up 2404 // instantiating to void. 2405 if (isTypeDependent()) 2406 return false; 2407 2408 switch (getStmtClass()) { 2409 default: 2410 if (getType()->isVoidType()) 2411 return false; 2412 WarnE = this; 2413 Loc = getExprLoc(); 2414 R1 = getSourceRange(); 2415 return true; 2416 case ParenExprClass: 2417 return cast<ParenExpr>(this)->getSubExpr()-> 2418 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2419 case GenericSelectionExprClass: 2420 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2421 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2422 case CoawaitExprClass: 2423 case CoyieldExprClass: 2424 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2425 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2426 case ChooseExprClass: 2427 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2428 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2429 case UnaryOperatorClass: { 2430 const UnaryOperator *UO = cast<UnaryOperator>(this); 2431 2432 switch (UO->getOpcode()) { 2433 case UO_Plus: 2434 case UO_Minus: 2435 case UO_AddrOf: 2436 case UO_Not: 2437 case UO_LNot: 2438 case UO_Deref: 2439 break; 2440 case UO_Coawait: 2441 // This is just the 'operator co_await' call inside the guts of a 2442 // dependent co_await call. 2443 case UO_PostInc: 2444 case UO_PostDec: 2445 case UO_PreInc: 2446 case UO_PreDec: // ++/-- 2447 return false; // Not a warning. 2448 case UO_Real: 2449 case UO_Imag: 2450 // accessing a piece of a volatile complex is a side-effect. 2451 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2452 .isVolatileQualified()) 2453 return false; 2454 break; 2455 case UO_Extension: 2456 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2457 } 2458 WarnE = this; 2459 Loc = UO->getOperatorLoc(); 2460 R1 = UO->getSubExpr()->getSourceRange(); 2461 return true; 2462 } 2463 case BinaryOperatorClass: { 2464 const BinaryOperator *BO = cast<BinaryOperator>(this); 2465 switch (BO->getOpcode()) { 2466 default: 2467 break; 2468 // Consider the RHS of comma for side effects. LHS was checked by 2469 // Sema::CheckCommaOperands. 2470 case BO_Comma: 2471 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2472 // lvalue-ness) of an assignment written in a macro. 2473 if (IntegerLiteral *IE = 2474 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2475 if (IE->getValue() == 0) 2476 return false; 2477 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2478 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2479 case BO_LAnd: 2480 case BO_LOr: 2481 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2482 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2483 return false; 2484 break; 2485 } 2486 if (BO->isAssignmentOp()) 2487 return false; 2488 WarnE = this; 2489 Loc = BO->getOperatorLoc(); 2490 R1 = BO->getLHS()->getSourceRange(); 2491 R2 = BO->getRHS()->getSourceRange(); 2492 return true; 2493 } 2494 case CompoundAssignOperatorClass: 2495 case VAArgExprClass: 2496 case AtomicExprClass: 2497 return false; 2498 2499 case ConditionalOperatorClass: { 2500 // If only one of the LHS or RHS is a warning, the operator might 2501 // be being used for control flow. Only warn if both the LHS and 2502 // RHS are warnings. 2503 const auto *Exp = cast<ConditionalOperator>(this); 2504 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2505 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2506 } 2507 case BinaryConditionalOperatorClass: { 2508 const auto *Exp = cast<BinaryConditionalOperator>(this); 2509 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2510 } 2511 2512 case MemberExprClass: 2513 WarnE = this; 2514 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2515 R1 = SourceRange(Loc, Loc); 2516 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2517 return true; 2518 2519 case ArraySubscriptExprClass: 2520 WarnE = this; 2521 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2522 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2523 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2524 return true; 2525 2526 case CXXOperatorCallExprClass: { 2527 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2528 // overloads as there is no reasonable way to define these such that they 2529 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2530 // warning: operators == and != are commonly typo'ed, and so warning on them 2531 // provides additional value as well. If this list is updated, 2532 // DiagnoseUnusedComparison should be as well. 2533 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2534 switch (Op->getOperator()) { 2535 default: 2536 break; 2537 case OO_EqualEqual: 2538 case OO_ExclaimEqual: 2539 case OO_Less: 2540 case OO_Greater: 2541 case OO_GreaterEqual: 2542 case OO_LessEqual: 2543 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2544 Op->getCallReturnType(Ctx)->isVoidType()) 2545 break; 2546 WarnE = this; 2547 Loc = Op->getOperatorLoc(); 2548 R1 = Op->getSourceRange(); 2549 return true; 2550 } 2551 2552 // Fallthrough for generic call handling. 2553 LLVM_FALLTHROUGH; 2554 } 2555 case CallExprClass: 2556 case CXXMemberCallExprClass: 2557 case UserDefinedLiteralClass: { 2558 // If this is a direct call, get the callee. 2559 const CallExpr *CE = cast<CallExpr>(this); 2560 if (const Decl *FD = CE->getCalleeDecl()) { 2561 // If the callee has attribute pure, const, or warn_unused_result, warn 2562 // about it. void foo() { strlen("bar"); } should warn. 2563 // 2564 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2565 // updated to match for QoI. 2566 if (CE->hasUnusedResultAttr(Ctx) || 2567 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2568 WarnE = this; 2569 Loc = CE->getCallee()->getBeginLoc(); 2570 R1 = CE->getCallee()->getSourceRange(); 2571 2572 if (unsigned NumArgs = CE->getNumArgs()) 2573 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2574 CE->getArg(NumArgs - 1)->getEndLoc()); 2575 return true; 2576 } 2577 } 2578 return false; 2579 } 2580 2581 // If we don't know precisely what we're looking at, let's not warn. 2582 case UnresolvedLookupExprClass: 2583 case CXXUnresolvedConstructExprClass: 2584 return false; 2585 2586 case CXXTemporaryObjectExprClass: 2587 case CXXConstructExprClass: { 2588 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2589 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2590 if (Type->hasAttr<WarnUnusedAttr>() || 2591 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2592 WarnE = this; 2593 Loc = getBeginLoc(); 2594 R1 = getSourceRange(); 2595 return true; 2596 } 2597 } 2598 2599 const auto *CE = cast<CXXConstructExpr>(this); 2600 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2601 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2602 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2603 WarnE = this; 2604 Loc = getBeginLoc(); 2605 R1 = getSourceRange(); 2606 2607 if (unsigned NumArgs = CE->getNumArgs()) 2608 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2609 CE->getArg(NumArgs - 1)->getEndLoc()); 2610 return true; 2611 } 2612 } 2613 2614 return false; 2615 } 2616 2617 case ObjCMessageExprClass: { 2618 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2619 if (Ctx.getLangOpts().ObjCAutoRefCount && 2620 ME->isInstanceMessage() && 2621 !ME->getType()->isVoidType() && 2622 ME->getMethodFamily() == OMF_init) { 2623 WarnE = this; 2624 Loc = getExprLoc(); 2625 R1 = ME->getSourceRange(); 2626 return true; 2627 } 2628 2629 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2630 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2631 WarnE = this; 2632 Loc = getExprLoc(); 2633 return true; 2634 } 2635 2636 return false; 2637 } 2638 2639 case ObjCPropertyRefExprClass: 2640 WarnE = this; 2641 Loc = getExprLoc(); 2642 R1 = getSourceRange(); 2643 return true; 2644 2645 case PseudoObjectExprClass: { 2646 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2647 2648 // Only complain about things that have the form of a getter. 2649 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2650 isa<BinaryOperator>(PO->getSyntacticForm())) 2651 return false; 2652 2653 WarnE = this; 2654 Loc = getExprLoc(); 2655 R1 = getSourceRange(); 2656 return true; 2657 } 2658 2659 case StmtExprClass: { 2660 // Statement exprs don't logically have side effects themselves, but are 2661 // sometimes used in macros in ways that give them a type that is unused. 2662 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2663 // however, if the result of the stmt expr is dead, we don't want to emit a 2664 // warning. 2665 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2666 if (!CS->body_empty()) { 2667 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2668 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2669 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2670 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2671 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2672 } 2673 2674 if (getType()->isVoidType()) 2675 return false; 2676 WarnE = this; 2677 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2678 R1 = getSourceRange(); 2679 return true; 2680 } 2681 case CXXFunctionalCastExprClass: 2682 case CStyleCastExprClass: { 2683 // Ignore an explicit cast to void unless the operand is a non-trivial 2684 // volatile lvalue. 2685 const CastExpr *CE = cast<CastExpr>(this); 2686 if (CE->getCastKind() == CK_ToVoid) { 2687 if (CE->getSubExpr()->isGLValue() && 2688 CE->getSubExpr()->getType().isVolatileQualified()) { 2689 const DeclRefExpr *DRE = 2690 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); 2691 if (!(DRE && isa<VarDecl>(DRE->getDecl()) && 2692 cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) && 2693 !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) { 2694 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, 2695 R1, R2, Ctx); 2696 } 2697 } 2698 return false; 2699 } 2700 2701 // If this is a cast to a constructor conversion, check the operand. 2702 // Otherwise, the result of the cast is unused. 2703 if (CE->getCastKind() == CK_ConstructorConversion) 2704 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2705 2706 WarnE = this; 2707 if (const CXXFunctionalCastExpr *CXXCE = 2708 dyn_cast<CXXFunctionalCastExpr>(this)) { 2709 Loc = CXXCE->getBeginLoc(); 2710 R1 = CXXCE->getSubExpr()->getSourceRange(); 2711 } else { 2712 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2713 Loc = CStyleCE->getLParenLoc(); 2714 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2715 } 2716 return true; 2717 } 2718 case ImplicitCastExprClass: { 2719 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2720 2721 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2722 if (ICE->getCastKind() == CK_LValueToRValue && 2723 ICE->getSubExpr()->getType().isVolatileQualified()) 2724 return false; 2725 2726 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2727 } 2728 case CXXDefaultArgExprClass: 2729 return (cast<CXXDefaultArgExpr>(this) 2730 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2731 case CXXDefaultInitExprClass: 2732 return (cast<CXXDefaultInitExpr>(this) 2733 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2734 2735 case CXXNewExprClass: 2736 // FIXME: In theory, there might be new expressions that don't have side 2737 // effects (e.g. a placement new with an uninitialized POD). 2738 case CXXDeleteExprClass: 2739 return false; 2740 case MaterializeTemporaryExprClass: 2741 return cast<MaterializeTemporaryExpr>(this) 2742 ->getSubExpr() 2743 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2744 case CXXBindTemporaryExprClass: 2745 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2746 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2747 case ExprWithCleanupsClass: 2748 return cast<ExprWithCleanups>(this)->getSubExpr() 2749 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2750 } 2751 } 2752 2753 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2754 /// returns true, if it is; false otherwise. 2755 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2756 const Expr *E = IgnoreParens(); 2757 switch (E->getStmtClass()) { 2758 default: 2759 return false; 2760 case ObjCIvarRefExprClass: 2761 return true; 2762 case Expr::UnaryOperatorClass: 2763 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2764 case ImplicitCastExprClass: 2765 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2766 case MaterializeTemporaryExprClass: 2767 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2768 Ctx); 2769 case CStyleCastExprClass: 2770 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2771 case DeclRefExprClass: { 2772 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2773 2774 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2775 if (VD->hasGlobalStorage()) 2776 return true; 2777 QualType T = VD->getType(); 2778 // dereferencing to a pointer is always a gc'able candidate, 2779 // unless it is __weak. 2780 return T->isPointerType() && 2781 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2782 } 2783 return false; 2784 } 2785 case MemberExprClass: { 2786 const MemberExpr *M = cast<MemberExpr>(E); 2787 return M->getBase()->isOBJCGCCandidate(Ctx); 2788 } 2789 case ArraySubscriptExprClass: 2790 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2791 } 2792 } 2793 2794 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2795 if (isTypeDependent()) 2796 return false; 2797 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2798 } 2799 2800 QualType Expr::findBoundMemberType(const Expr *expr) { 2801 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2802 2803 // Bound member expressions are always one of these possibilities: 2804 // x->m x.m x->*y x.*y 2805 // (possibly parenthesized) 2806 2807 expr = expr->IgnoreParens(); 2808 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2809 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2810 return mem->getMemberDecl()->getType(); 2811 } 2812 2813 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2814 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2815 ->getPointeeType(); 2816 assert(type->isFunctionType()); 2817 return type; 2818 } 2819 2820 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2821 return QualType(); 2822 } 2823 2824 static Expr *IgnoreImpCastsSingleStep(Expr *E) { 2825 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) 2826 return ICE->getSubExpr(); 2827 2828 if (auto *FE = dyn_cast<FullExpr>(E)) 2829 return FE->getSubExpr(); 2830 2831 return E; 2832 } 2833 2834 static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) { 2835 // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in 2836 // addition to what IgnoreImpCasts() skips to account for the current 2837 // behaviour of IgnoreParenImpCasts(). 2838 Expr *SubE = IgnoreImpCastsSingleStep(E); 2839 if (SubE != E) 2840 return SubE; 2841 2842 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2843 return MTE->getSubExpr(); 2844 2845 if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2846 return NTTP->getReplacement(); 2847 2848 return E; 2849 } 2850 2851 static Expr *IgnoreCastsSingleStep(Expr *E) { 2852 if (auto *CE = dyn_cast<CastExpr>(E)) 2853 return CE->getSubExpr(); 2854 2855 if (auto *FE = dyn_cast<FullExpr>(E)) 2856 return FE->getSubExpr(); 2857 2858 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2859 return MTE->getSubExpr(); 2860 2861 if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2862 return NTTP->getReplacement(); 2863 2864 return E; 2865 } 2866 2867 static Expr *IgnoreLValueCastsSingleStep(Expr *E) { 2868 // Skip what IgnoreCastsSingleStep skips, except that only 2869 // lvalue-to-rvalue casts are skipped. 2870 if (auto *CE = dyn_cast<CastExpr>(E)) 2871 if (CE->getCastKind() != CK_LValueToRValue) 2872 return E; 2873 2874 return IgnoreCastsSingleStep(E); 2875 } 2876 2877 static Expr *IgnoreBaseCastsSingleStep(Expr *E) { 2878 if (auto *CE = dyn_cast<CastExpr>(E)) 2879 if (CE->getCastKind() == CK_DerivedToBase || 2880 CE->getCastKind() == CK_UncheckedDerivedToBase || 2881 CE->getCastKind() == CK_NoOp) 2882 return CE->getSubExpr(); 2883 2884 return E; 2885 } 2886 2887 static Expr *IgnoreImplicitSingleStep(Expr *E) { 2888 Expr *SubE = IgnoreImpCastsSingleStep(E); 2889 if (SubE != E) 2890 return SubE; 2891 2892 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 2893 return MTE->getSubExpr(); 2894 2895 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2896 return BTE->getSubExpr(); 2897 2898 return E; 2899 } 2900 2901 static Expr *IgnoreImplicitAsWrittenSingleStep(Expr *E) { 2902 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) 2903 return ICE->getSubExprAsWritten(); 2904 2905 return IgnoreImplicitSingleStep(E); 2906 } 2907 2908 static Expr *IgnoreParensSingleStep(Expr *E) { 2909 if (auto *PE = dyn_cast<ParenExpr>(E)) 2910 return PE->getSubExpr(); 2911 2912 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 2913 if (UO->getOpcode() == UO_Extension) 2914 return UO->getSubExpr(); 2915 } 2916 2917 else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 2918 if (!GSE->isResultDependent()) 2919 return GSE->getResultExpr(); 2920 } 2921 2922 else if (auto *CE = dyn_cast<ChooseExpr>(E)) { 2923 if (!CE->isConditionDependent()) 2924 return CE->getChosenSubExpr(); 2925 } 2926 2927 else if (auto *CE = dyn_cast<ConstantExpr>(E)) 2928 return CE->getSubExpr(); 2929 2930 return E; 2931 } 2932 2933 static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) { 2934 if (auto *CE = dyn_cast<CastExpr>(E)) { 2935 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2936 // ptr<->int casts of the same width. We also ignore all identity casts. 2937 Expr *SubExpr = CE->getSubExpr(); 2938 bool IsIdentityCast = 2939 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 2940 bool IsSameWidthCast = 2941 (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) && 2942 (SubExpr->getType()->isPointerType() || 2943 SubExpr->getType()->isIntegralType(Ctx)) && 2944 (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType())); 2945 2946 if (IsIdentityCast || IsSameWidthCast) 2947 return SubExpr; 2948 } 2949 2950 else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2951 return NTTP->getReplacement(); 2952 2953 return E; 2954 } 2955 2956 static Expr *IgnoreExprNodesImpl(Expr *E) { return E; } 2957 template <typename FnTy, typename... FnTys> 2958 static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) { 2959 return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...); 2960 } 2961 2962 /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *, 2963 /// Recursively apply each of the functions to E until reaching a fixed point. 2964 /// Note that a null E is valid; in this case nothing is done. 2965 template <typename... FnTys> 2966 static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) { 2967 Expr *LastE = nullptr; 2968 while (E != LastE) { 2969 LastE = E; 2970 E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...); 2971 } 2972 return E; 2973 } 2974 2975 Expr *Expr::IgnoreImpCasts() { 2976 return IgnoreExprNodes(this, IgnoreImpCastsSingleStep); 2977 } 2978 2979 Expr *Expr::IgnoreCasts() { 2980 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 2981 } 2982 2983 Expr *Expr::IgnoreImplicit() { 2984 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 2985 } 2986 2987 Expr *Expr::IgnoreImplicitAsWritten() { 2988 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 2989 } 2990 2991 Expr *Expr::IgnoreParens() { 2992 return IgnoreExprNodes(this, IgnoreParensSingleStep); 2993 } 2994 2995 Expr *Expr::IgnoreParenImpCasts() { 2996 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2997 IgnoreImpCastsExtraSingleStep); 2998 } 2999 3000 Expr *Expr::IgnoreParenCasts() { 3001 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 3002 } 3003 3004 Expr *Expr::IgnoreConversionOperator() { 3005 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 3006 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 3007 return MCE->getImplicitObjectArgument(); 3008 } 3009 return this; 3010 } 3011 3012 Expr *Expr::IgnoreParenLValueCasts() { 3013 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3014 IgnoreLValueCastsSingleStep); 3015 } 3016 3017 Expr *Expr::ignoreParenBaseCasts() { 3018 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3019 IgnoreBaseCastsSingleStep); 3020 } 3021 3022 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 3023 return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) { 3024 return IgnoreNoopCastsSingleStep(Ctx, E); 3025 }); 3026 } 3027 3028 Expr *Expr::IgnoreUnlessSpelledInSource() { 3029 Expr *E = this; 3030 3031 Expr *LastE = nullptr; 3032 while (E != LastE) { 3033 LastE = E; 3034 E = E->IgnoreParenImpCasts(); 3035 3036 auto SR = E->getSourceRange(); 3037 3038 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3039 if (C->getNumArgs() == 1) { 3040 Expr *A = C->getArg(0); 3041 if (A->getSourceRange() == SR || !isa<CXXTemporaryObjectExpr>(C)) 3042 E = A; 3043 } 3044 } 3045 3046 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3047 Expr *ExprNode = C->getImplicitObjectArgument()->IgnoreParenImpCasts(); 3048 if (ExprNode->getSourceRange() == SR) 3049 E = ExprNode; 3050 } 3051 } 3052 3053 return E; 3054 } 3055 3056 bool Expr::isDefaultArgument() const { 3057 const Expr *E = this; 3058 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3059 E = M->getSubExpr(); 3060 3061 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3062 E = ICE->getSubExprAsWritten(); 3063 3064 return isa<CXXDefaultArgExpr>(E); 3065 } 3066 3067 /// Skip over any no-op casts and any temporary-binding 3068 /// expressions. 3069 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3070 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3071 E = M->getSubExpr(); 3072 3073 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3074 if (ICE->getCastKind() == CK_NoOp) 3075 E = ICE->getSubExpr(); 3076 else 3077 break; 3078 } 3079 3080 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3081 E = BE->getSubExpr(); 3082 3083 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3084 if (ICE->getCastKind() == CK_NoOp) 3085 E = ICE->getSubExpr(); 3086 else 3087 break; 3088 } 3089 3090 return E->IgnoreParens(); 3091 } 3092 3093 /// isTemporaryObject - Determines if this expression produces a 3094 /// temporary of the given class type. 3095 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3096 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3097 return false; 3098 3099 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3100 3101 // Temporaries are by definition pr-values of class type. 3102 if (!E->Classify(C).isPRValue()) { 3103 // In this context, property reference is a message call and is pr-value. 3104 if (!isa<ObjCPropertyRefExpr>(E)) 3105 return false; 3106 } 3107 3108 // Black-list a few cases which yield pr-values of class type that don't 3109 // refer to temporaries of that type: 3110 3111 // - implicit derived-to-base conversions 3112 if (isa<ImplicitCastExpr>(E)) { 3113 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3114 case CK_DerivedToBase: 3115 case CK_UncheckedDerivedToBase: 3116 return false; 3117 default: 3118 break; 3119 } 3120 } 3121 3122 // - member expressions (all) 3123 if (isa<MemberExpr>(E)) 3124 return false; 3125 3126 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3127 if (BO->isPtrMemOp()) 3128 return false; 3129 3130 // - opaque values (all) 3131 if (isa<OpaqueValueExpr>(E)) 3132 return false; 3133 3134 return true; 3135 } 3136 3137 bool Expr::isImplicitCXXThis() const { 3138 const Expr *E = this; 3139 3140 // Strip away parentheses and casts we don't care about. 3141 while (true) { 3142 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3143 E = Paren->getSubExpr(); 3144 continue; 3145 } 3146 3147 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3148 if (ICE->getCastKind() == CK_NoOp || 3149 ICE->getCastKind() == CK_LValueToRValue || 3150 ICE->getCastKind() == CK_DerivedToBase || 3151 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3152 E = ICE->getSubExpr(); 3153 continue; 3154 } 3155 } 3156 3157 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3158 if (UnOp->getOpcode() == UO_Extension) { 3159 E = UnOp->getSubExpr(); 3160 continue; 3161 } 3162 } 3163 3164 if (const MaterializeTemporaryExpr *M 3165 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3166 E = M->getSubExpr(); 3167 continue; 3168 } 3169 3170 break; 3171 } 3172 3173 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3174 return This->isImplicit(); 3175 3176 return false; 3177 } 3178 3179 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3180 /// in Exprs is type-dependent. 3181 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3182 for (unsigned I = 0; I < Exprs.size(); ++I) 3183 if (Exprs[I]->isTypeDependent()) 3184 return true; 3185 3186 return false; 3187 } 3188 3189 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3190 const Expr **Culprit) const { 3191 assert(!isValueDependent() && 3192 "Expression evaluator can't be called on a dependent expression."); 3193 3194 // This function is attempting whether an expression is an initializer 3195 // which can be evaluated at compile-time. It very closely parallels 3196 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3197 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3198 // to isEvaluatable most of the time. 3199 // 3200 // If we ever capture reference-binding directly in the AST, we can 3201 // kill the second parameter. 3202 3203 if (IsForRef) { 3204 EvalResult Result; 3205 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3206 return true; 3207 if (Culprit) 3208 *Culprit = this; 3209 return false; 3210 } 3211 3212 switch (getStmtClass()) { 3213 default: break; 3214 case StringLiteralClass: 3215 case ObjCEncodeExprClass: 3216 return true; 3217 case CXXTemporaryObjectExprClass: 3218 case CXXConstructExprClass: { 3219 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3220 3221 if (CE->getConstructor()->isTrivial() && 3222 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3223 // Trivial default constructor 3224 if (!CE->getNumArgs()) return true; 3225 3226 // Trivial copy constructor 3227 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3228 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3229 } 3230 3231 break; 3232 } 3233 case ConstantExprClass: { 3234 // FIXME: We should be able to return "true" here, but it can lead to extra 3235 // error messages. E.g. in Sema/array-init.c. 3236 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3237 return Exp->isConstantInitializer(Ctx, false, Culprit); 3238 } 3239 case CompoundLiteralExprClass: { 3240 // This handles gcc's extension that allows global initializers like 3241 // "struct x {int x;} x = (struct x) {};". 3242 // FIXME: This accepts other cases it shouldn't! 3243 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3244 return Exp->isConstantInitializer(Ctx, false, Culprit); 3245 } 3246 case DesignatedInitUpdateExprClass: { 3247 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3248 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3249 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3250 } 3251 case InitListExprClass: { 3252 const InitListExpr *ILE = cast<InitListExpr>(this); 3253 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3254 if (ILE->getType()->isArrayType()) { 3255 unsigned numInits = ILE->getNumInits(); 3256 for (unsigned i = 0; i < numInits; i++) { 3257 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3258 return false; 3259 } 3260 return true; 3261 } 3262 3263 if (ILE->getType()->isRecordType()) { 3264 unsigned ElementNo = 0; 3265 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3266 for (const auto *Field : RD->fields()) { 3267 // If this is a union, skip all the fields that aren't being initialized. 3268 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3269 continue; 3270 3271 // Don't emit anonymous bitfields, they just affect layout. 3272 if (Field->isUnnamedBitfield()) 3273 continue; 3274 3275 if (ElementNo < ILE->getNumInits()) { 3276 const Expr *Elt = ILE->getInit(ElementNo++); 3277 if (Field->isBitField()) { 3278 // Bitfields have to evaluate to an integer. 3279 EvalResult Result; 3280 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3281 if (Culprit) 3282 *Culprit = Elt; 3283 return false; 3284 } 3285 } else { 3286 bool RefType = Field->getType()->isReferenceType(); 3287 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3288 return false; 3289 } 3290 } 3291 } 3292 return true; 3293 } 3294 3295 break; 3296 } 3297 case ImplicitValueInitExprClass: 3298 case NoInitExprClass: 3299 return true; 3300 case ParenExprClass: 3301 return cast<ParenExpr>(this)->getSubExpr() 3302 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3303 case GenericSelectionExprClass: 3304 return cast<GenericSelectionExpr>(this)->getResultExpr() 3305 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3306 case ChooseExprClass: 3307 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3308 if (Culprit) 3309 *Culprit = this; 3310 return false; 3311 } 3312 return cast<ChooseExpr>(this)->getChosenSubExpr() 3313 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3314 case UnaryOperatorClass: { 3315 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3316 if (Exp->getOpcode() == UO_Extension) 3317 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3318 break; 3319 } 3320 case CXXFunctionalCastExprClass: 3321 case CXXStaticCastExprClass: 3322 case ImplicitCastExprClass: 3323 case CStyleCastExprClass: 3324 case ObjCBridgedCastExprClass: 3325 case CXXDynamicCastExprClass: 3326 case CXXReinterpretCastExprClass: 3327 case CXXConstCastExprClass: { 3328 const CastExpr *CE = cast<CastExpr>(this); 3329 3330 // Handle misc casts we want to ignore. 3331 if (CE->getCastKind() == CK_NoOp || 3332 CE->getCastKind() == CK_LValueToRValue || 3333 CE->getCastKind() == CK_ToUnion || 3334 CE->getCastKind() == CK_ConstructorConversion || 3335 CE->getCastKind() == CK_NonAtomicToAtomic || 3336 CE->getCastKind() == CK_AtomicToNonAtomic || 3337 CE->getCastKind() == CK_IntToOCLSampler) 3338 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3339 3340 break; 3341 } 3342 case MaterializeTemporaryExprClass: 3343 return cast<MaterializeTemporaryExpr>(this) 3344 ->getSubExpr() 3345 ->isConstantInitializer(Ctx, false, Culprit); 3346 3347 case SubstNonTypeTemplateParmExprClass: 3348 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3349 ->isConstantInitializer(Ctx, false, Culprit); 3350 case CXXDefaultArgExprClass: 3351 return cast<CXXDefaultArgExpr>(this)->getExpr() 3352 ->isConstantInitializer(Ctx, false, Culprit); 3353 case CXXDefaultInitExprClass: 3354 return cast<CXXDefaultInitExpr>(this)->getExpr() 3355 ->isConstantInitializer(Ctx, false, Culprit); 3356 } 3357 // Allow certain forms of UB in constant initializers: signed integer 3358 // overflow and floating-point division by zero. We'll give a warning on 3359 // these, but they're common enough that we have to accept them. 3360 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3361 return true; 3362 if (Culprit) 3363 *Culprit = this; 3364 return false; 3365 } 3366 3367 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3368 const FunctionDecl* FD = getDirectCallee(); 3369 if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && 3370 FD->getBuiltinID() != Builtin::BI__builtin_assume)) 3371 return false; 3372 3373 const Expr* Arg = getArg(0); 3374 bool ArgVal; 3375 return !Arg->isValueDependent() && 3376 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3377 } 3378 3379 namespace { 3380 /// Look for any side effects within a Stmt. 3381 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3382 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3383 const bool IncludePossibleEffects; 3384 bool HasSideEffects; 3385 3386 public: 3387 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3388 : Inherited(Context), 3389 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3390 3391 bool hasSideEffects() const { return HasSideEffects; } 3392 3393 void VisitExpr(const Expr *E) { 3394 if (!HasSideEffects && 3395 E->HasSideEffects(Context, IncludePossibleEffects)) 3396 HasSideEffects = true; 3397 } 3398 }; 3399 } 3400 3401 bool Expr::HasSideEffects(const ASTContext &Ctx, 3402 bool IncludePossibleEffects) const { 3403 // In circumstances where we care about definite side effects instead of 3404 // potential side effects, we want to ignore expressions that are part of a 3405 // macro expansion as a potential side effect. 3406 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3407 return false; 3408 3409 if (isInstantiationDependent()) 3410 return IncludePossibleEffects; 3411 3412 switch (getStmtClass()) { 3413 case NoStmtClass: 3414 #define ABSTRACT_STMT(Type) 3415 #define STMT(Type, Base) case Type##Class: 3416 #define EXPR(Type, Base) 3417 #include "clang/AST/StmtNodes.inc" 3418 llvm_unreachable("unexpected Expr kind"); 3419 3420 case DependentScopeDeclRefExprClass: 3421 case CXXUnresolvedConstructExprClass: 3422 case CXXDependentScopeMemberExprClass: 3423 case UnresolvedLookupExprClass: 3424 case UnresolvedMemberExprClass: 3425 case PackExpansionExprClass: 3426 case SubstNonTypeTemplateParmPackExprClass: 3427 case FunctionParmPackExprClass: 3428 case TypoExprClass: 3429 case CXXFoldExprClass: 3430 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 3431 3432 case DeclRefExprClass: 3433 case ObjCIvarRefExprClass: 3434 case PredefinedExprClass: 3435 case IntegerLiteralClass: 3436 case FixedPointLiteralClass: 3437 case FloatingLiteralClass: 3438 case ImaginaryLiteralClass: 3439 case StringLiteralClass: 3440 case CharacterLiteralClass: 3441 case OffsetOfExprClass: 3442 case ImplicitValueInitExprClass: 3443 case UnaryExprOrTypeTraitExprClass: 3444 case AddrLabelExprClass: 3445 case GNUNullExprClass: 3446 case ArrayInitIndexExprClass: 3447 case NoInitExprClass: 3448 case CXXBoolLiteralExprClass: 3449 case CXXNullPtrLiteralExprClass: 3450 case CXXThisExprClass: 3451 case CXXScalarValueInitExprClass: 3452 case TypeTraitExprClass: 3453 case ArrayTypeTraitExprClass: 3454 case ExpressionTraitExprClass: 3455 case CXXNoexceptExprClass: 3456 case SizeOfPackExprClass: 3457 case ObjCStringLiteralClass: 3458 case ObjCEncodeExprClass: 3459 case ObjCBoolLiteralExprClass: 3460 case ObjCAvailabilityCheckExprClass: 3461 case CXXUuidofExprClass: 3462 case OpaqueValueExprClass: 3463 case SourceLocExprClass: 3464 case ConceptSpecializationExprClass: 3465 case RequiresExprClass: 3466 // These never have a side-effect. 3467 return false; 3468 3469 case ConstantExprClass: 3470 // FIXME: Move this into the "return false;" block above. 3471 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3472 Ctx, IncludePossibleEffects); 3473 3474 case CallExprClass: 3475 case CXXOperatorCallExprClass: 3476 case CXXMemberCallExprClass: 3477 case CUDAKernelCallExprClass: 3478 case UserDefinedLiteralClass: { 3479 // We don't know a call definitely has side effects, except for calls 3480 // to pure/const functions that definitely don't. 3481 // If the call itself is considered side-effect free, check the operands. 3482 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3483 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3484 if (IsPure || !IncludePossibleEffects) 3485 break; 3486 return true; 3487 } 3488 3489 case BlockExprClass: 3490 case CXXBindTemporaryExprClass: 3491 if (!IncludePossibleEffects) 3492 break; 3493 return true; 3494 3495 case MSPropertyRefExprClass: 3496 case MSPropertySubscriptExprClass: 3497 case CompoundAssignOperatorClass: 3498 case VAArgExprClass: 3499 case AtomicExprClass: 3500 case CXXThrowExprClass: 3501 case CXXNewExprClass: 3502 case CXXDeleteExprClass: 3503 case CoawaitExprClass: 3504 case DependentCoawaitExprClass: 3505 case CoyieldExprClass: 3506 // These always have a side-effect. 3507 return true; 3508 3509 case StmtExprClass: { 3510 // StmtExprs have a side-effect if any substatement does. 3511 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3512 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3513 return Finder.hasSideEffects(); 3514 } 3515 3516 case ExprWithCleanupsClass: 3517 if (IncludePossibleEffects) 3518 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3519 return true; 3520 break; 3521 3522 case ParenExprClass: 3523 case ArraySubscriptExprClass: 3524 case OMPArraySectionExprClass: 3525 case MemberExprClass: 3526 case ConditionalOperatorClass: 3527 case BinaryConditionalOperatorClass: 3528 case CompoundLiteralExprClass: 3529 case ExtVectorElementExprClass: 3530 case DesignatedInitExprClass: 3531 case DesignatedInitUpdateExprClass: 3532 case ArrayInitLoopExprClass: 3533 case ParenListExprClass: 3534 case CXXPseudoDestructorExprClass: 3535 case CXXRewrittenBinaryOperatorClass: 3536 case CXXStdInitializerListExprClass: 3537 case SubstNonTypeTemplateParmExprClass: 3538 case MaterializeTemporaryExprClass: 3539 case ShuffleVectorExprClass: 3540 case ConvertVectorExprClass: 3541 case AsTypeExprClass: 3542 // These have a side-effect if any subexpression does. 3543 break; 3544 3545 case UnaryOperatorClass: 3546 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3547 return true; 3548 break; 3549 3550 case BinaryOperatorClass: 3551 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3552 return true; 3553 break; 3554 3555 case InitListExprClass: 3556 // FIXME: The children for an InitListExpr doesn't include the array filler. 3557 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3558 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3559 return true; 3560 break; 3561 3562 case GenericSelectionExprClass: 3563 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3564 HasSideEffects(Ctx, IncludePossibleEffects); 3565 3566 case ChooseExprClass: 3567 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3568 Ctx, IncludePossibleEffects); 3569 3570 case CXXDefaultArgExprClass: 3571 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3572 Ctx, IncludePossibleEffects); 3573 3574 case CXXDefaultInitExprClass: { 3575 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3576 if (const Expr *E = FD->getInClassInitializer()) 3577 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3578 // If we've not yet parsed the initializer, assume it has side-effects. 3579 return true; 3580 } 3581 3582 case CXXDynamicCastExprClass: { 3583 // A dynamic_cast expression has side-effects if it can throw. 3584 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3585 if (DCE->getTypeAsWritten()->isReferenceType() && 3586 DCE->getCastKind() == CK_Dynamic) 3587 return true; 3588 } 3589 LLVM_FALLTHROUGH; 3590 case ImplicitCastExprClass: 3591 case CStyleCastExprClass: 3592 case CXXStaticCastExprClass: 3593 case CXXReinterpretCastExprClass: 3594 case CXXConstCastExprClass: 3595 case CXXFunctionalCastExprClass: 3596 case BuiltinBitCastExprClass: { 3597 // While volatile reads are side-effecting in both C and C++, we treat them 3598 // as having possible (not definite) side-effects. This allows idiomatic 3599 // code to behave without warning, such as sizeof(*v) for a volatile- 3600 // qualified pointer. 3601 if (!IncludePossibleEffects) 3602 break; 3603 3604 const CastExpr *CE = cast<CastExpr>(this); 3605 if (CE->getCastKind() == CK_LValueToRValue && 3606 CE->getSubExpr()->getType().isVolatileQualified()) 3607 return true; 3608 break; 3609 } 3610 3611 case CXXTypeidExprClass: 3612 // typeid might throw if its subexpression is potentially-evaluated, so has 3613 // side-effects in that case whether or not its subexpression does. 3614 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3615 3616 case CXXConstructExprClass: 3617 case CXXTemporaryObjectExprClass: { 3618 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3619 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3620 return true; 3621 // A trivial constructor does not add any side-effects of its own. Just look 3622 // at its arguments. 3623 break; 3624 } 3625 3626 case CXXInheritedCtorInitExprClass: { 3627 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3628 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3629 return true; 3630 break; 3631 } 3632 3633 case LambdaExprClass: { 3634 const LambdaExpr *LE = cast<LambdaExpr>(this); 3635 for (Expr *E : LE->capture_inits()) 3636 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3637 return true; 3638 return false; 3639 } 3640 3641 case PseudoObjectExprClass: { 3642 // Only look for side-effects in the semantic form, and look past 3643 // OpaqueValueExpr bindings in that form. 3644 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3645 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3646 E = PO->semantics_end(); 3647 I != E; ++I) { 3648 const Expr *Subexpr = *I; 3649 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3650 Subexpr = OVE->getSourceExpr(); 3651 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3652 return true; 3653 } 3654 return false; 3655 } 3656 3657 case ObjCBoxedExprClass: 3658 case ObjCArrayLiteralClass: 3659 case ObjCDictionaryLiteralClass: 3660 case ObjCSelectorExprClass: 3661 case ObjCProtocolExprClass: 3662 case ObjCIsaExprClass: 3663 case ObjCIndirectCopyRestoreExprClass: 3664 case ObjCSubscriptRefExprClass: 3665 case ObjCBridgedCastExprClass: 3666 case ObjCMessageExprClass: 3667 case ObjCPropertyRefExprClass: 3668 // FIXME: Classify these cases better. 3669 if (IncludePossibleEffects) 3670 return true; 3671 break; 3672 } 3673 3674 // Recurse to children. 3675 for (const Stmt *SubStmt : children()) 3676 if (SubStmt && 3677 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3678 return true; 3679 3680 return false; 3681 } 3682 3683 namespace { 3684 /// Look for a call to a non-trivial function within an expression. 3685 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3686 { 3687 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3688 3689 bool NonTrivial; 3690 3691 public: 3692 explicit NonTrivialCallFinder(const ASTContext &Context) 3693 : Inherited(Context), NonTrivial(false) { } 3694 3695 bool hasNonTrivialCall() const { return NonTrivial; } 3696 3697 void VisitCallExpr(const CallExpr *E) { 3698 if (const CXXMethodDecl *Method 3699 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3700 if (Method->isTrivial()) { 3701 // Recurse to children of the call. 3702 Inherited::VisitStmt(E); 3703 return; 3704 } 3705 } 3706 3707 NonTrivial = true; 3708 } 3709 3710 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3711 if (E->getConstructor()->isTrivial()) { 3712 // Recurse to children of the call. 3713 Inherited::VisitStmt(E); 3714 return; 3715 } 3716 3717 NonTrivial = true; 3718 } 3719 3720 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3721 if (E->getTemporary()->getDestructor()->isTrivial()) { 3722 Inherited::VisitStmt(E); 3723 return; 3724 } 3725 3726 NonTrivial = true; 3727 } 3728 }; 3729 } 3730 3731 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3732 NonTrivialCallFinder Finder(Ctx); 3733 Finder.Visit(this); 3734 return Finder.hasNonTrivialCall(); 3735 } 3736 3737 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3738 /// pointer constant or not, as well as the specific kind of constant detected. 3739 /// Null pointer constants can be integer constant expressions with the 3740 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3741 /// (a GNU extension). 3742 Expr::NullPointerConstantKind 3743 Expr::isNullPointerConstant(ASTContext &Ctx, 3744 NullPointerConstantValueDependence NPC) const { 3745 if (isValueDependent() && 3746 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3747 switch (NPC) { 3748 case NPC_NeverValueDependent: 3749 llvm_unreachable("Unexpected value dependent expression!"); 3750 case NPC_ValueDependentIsNull: 3751 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3752 return NPCK_ZeroExpression; 3753 else 3754 return NPCK_NotNull; 3755 3756 case NPC_ValueDependentIsNotNull: 3757 return NPCK_NotNull; 3758 } 3759 } 3760 3761 // Strip off a cast to void*, if it exists. Except in C++. 3762 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3763 if (!Ctx.getLangOpts().CPlusPlus) { 3764 // Check that it is a cast to void*. 3765 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3766 QualType Pointee = PT->getPointeeType(); 3767 Qualifiers Qs = Pointee.getQualifiers(); 3768 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3769 // has non-default address space it is not treated as nullptr. 3770 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3771 // since it cannot be assigned to a pointer to constant address space. 3772 if ((Ctx.getLangOpts().OpenCLVersion >= 200 && 3773 Pointee.getAddressSpace() == LangAS::opencl_generic) || 3774 (Ctx.getLangOpts().OpenCL && 3775 Ctx.getLangOpts().OpenCLVersion < 200 && 3776 Pointee.getAddressSpace() == LangAS::opencl_private)) 3777 Qs.removeAddressSpace(); 3778 3779 if (Pointee->isVoidType() && Qs.empty() && // to void* 3780 CE->getSubExpr()->getType()->isIntegerType()) // from int 3781 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3782 } 3783 } 3784 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3785 // Ignore the ImplicitCastExpr type entirely. 3786 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3787 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3788 // Accept ((void*)0) as a null pointer constant, as many other 3789 // implementations do. 3790 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3791 } else if (const GenericSelectionExpr *GE = 3792 dyn_cast<GenericSelectionExpr>(this)) { 3793 if (GE->isResultDependent()) 3794 return NPCK_NotNull; 3795 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3796 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3797 if (CE->isConditionDependent()) 3798 return NPCK_NotNull; 3799 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3800 } else if (const CXXDefaultArgExpr *DefaultArg 3801 = dyn_cast<CXXDefaultArgExpr>(this)) { 3802 // See through default argument expressions. 3803 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3804 } else if (const CXXDefaultInitExpr *DefaultInit 3805 = dyn_cast<CXXDefaultInitExpr>(this)) { 3806 // See through default initializer expressions. 3807 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3808 } else if (isa<GNUNullExpr>(this)) { 3809 // The GNU __null extension is always a null pointer constant. 3810 return NPCK_GNUNull; 3811 } else if (const MaterializeTemporaryExpr *M 3812 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3813 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3814 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3815 if (const Expr *Source = OVE->getSourceExpr()) 3816 return Source->isNullPointerConstant(Ctx, NPC); 3817 } 3818 3819 // C++11 nullptr_t is always a null pointer constant. 3820 if (getType()->isNullPtrType()) 3821 return NPCK_CXX11_nullptr; 3822 3823 if (const RecordType *UT = getType()->getAsUnionType()) 3824 if (!Ctx.getLangOpts().CPlusPlus11 && 3825 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3826 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3827 const Expr *InitExpr = CLE->getInitializer(); 3828 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3829 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3830 } 3831 // This expression must be an integer type. 3832 if (!getType()->isIntegerType() || 3833 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3834 return NPCK_NotNull; 3835 3836 if (Ctx.getLangOpts().CPlusPlus11) { 3837 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3838 // value zero or a prvalue of type std::nullptr_t. 3839 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3840 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3841 if (Lit && !Lit->getValue()) 3842 return NPCK_ZeroLiteral; 3843 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3844 return NPCK_NotNull; 3845 } else { 3846 // If we have an integer constant expression, we need to *evaluate* it and 3847 // test for the value 0. 3848 if (!isIntegerConstantExpr(Ctx)) 3849 return NPCK_NotNull; 3850 } 3851 3852 if (EvaluateKnownConstInt(Ctx) != 0) 3853 return NPCK_NotNull; 3854 3855 if (isa<IntegerLiteral>(this)) 3856 return NPCK_ZeroLiteral; 3857 return NPCK_ZeroExpression; 3858 } 3859 3860 /// If this expression is an l-value for an Objective C 3861 /// property, find the underlying property reference expression. 3862 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3863 const Expr *E = this; 3864 while (true) { 3865 assert((E->getValueKind() == VK_LValue && 3866 E->getObjectKind() == OK_ObjCProperty) && 3867 "expression is not a property reference"); 3868 E = E->IgnoreParenCasts(); 3869 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3870 if (BO->getOpcode() == BO_Comma) { 3871 E = BO->getRHS(); 3872 continue; 3873 } 3874 } 3875 3876 break; 3877 } 3878 3879 return cast<ObjCPropertyRefExpr>(E); 3880 } 3881 3882 bool Expr::isObjCSelfExpr() const { 3883 const Expr *E = IgnoreParenImpCasts(); 3884 3885 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3886 if (!DRE) 3887 return false; 3888 3889 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3890 if (!Param) 3891 return false; 3892 3893 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3894 if (!M) 3895 return false; 3896 3897 return M->getSelfDecl() == Param; 3898 } 3899 3900 FieldDecl *Expr::getSourceBitField() { 3901 Expr *E = this->IgnoreParens(); 3902 3903 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3904 if (ICE->getCastKind() == CK_LValueToRValue || 3905 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3906 E = ICE->getSubExpr()->IgnoreParens(); 3907 else 3908 break; 3909 } 3910 3911 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3912 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3913 if (Field->isBitField()) 3914 return Field; 3915 3916 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 3917 FieldDecl *Ivar = IvarRef->getDecl(); 3918 if (Ivar->isBitField()) 3919 return Ivar; 3920 } 3921 3922 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3923 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3924 if (Field->isBitField()) 3925 return Field; 3926 3927 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3928 if (Expr *E = BD->getBinding()) 3929 return E->getSourceBitField(); 3930 } 3931 3932 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3933 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3934 return BinOp->getLHS()->getSourceBitField(); 3935 3936 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3937 return BinOp->getRHS()->getSourceBitField(); 3938 } 3939 3940 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3941 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3942 return UnOp->getSubExpr()->getSourceBitField(); 3943 3944 return nullptr; 3945 } 3946 3947 bool Expr::refersToVectorElement() const { 3948 // FIXME: Why do we not just look at the ObjectKind here? 3949 const Expr *E = this->IgnoreParens(); 3950 3951 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3952 if (ICE->getValueKind() != VK_RValue && 3953 ICE->getCastKind() == CK_NoOp) 3954 E = ICE->getSubExpr()->IgnoreParens(); 3955 else 3956 break; 3957 } 3958 3959 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3960 return ASE->getBase()->getType()->isVectorType(); 3961 3962 if (isa<ExtVectorElementExpr>(E)) 3963 return true; 3964 3965 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 3966 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 3967 if (auto *E = BD->getBinding()) 3968 return E->refersToVectorElement(); 3969 3970 return false; 3971 } 3972 3973 bool Expr::refersToGlobalRegisterVar() const { 3974 const Expr *E = this->IgnoreParenImpCasts(); 3975 3976 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3977 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3978 if (VD->getStorageClass() == SC_Register && 3979 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3980 return true; 3981 3982 return false; 3983 } 3984 3985 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 3986 E1 = E1->IgnoreParens(); 3987 E2 = E2->IgnoreParens(); 3988 3989 if (E1->getStmtClass() != E2->getStmtClass()) 3990 return false; 3991 3992 switch (E1->getStmtClass()) { 3993 default: 3994 return false; 3995 case CXXThisExprClass: 3996 return true; 3997 case DeclRefExprClass: { 3998 // DeclRefExpr without an ImplicitCastExpr can happen for integral 3999 // template parameters. 4000 const auto *DRE1 = cast<DeclRefExpr>(E1); 4001 const auto *DRE2 = cast<DeclRefExpr>(E2); 4002 return DRE1->isRValue() && DRE2->isRValue() && 4003 DRE1->getDecl() == DRE2->getDecl(); 4004 } 4005 case ImplicitCastExprClass: { 4006 // Peel off implicit casts. 4007 while (true) { 4008 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4009 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4010 if (!ICE1 || !ICE2) 4011 return false; 4012 if (ICE1->getCastKind() != ICE2->getCastKind()) 4013 return false; 4014 E1 = ICE1->getSubExpr()->IgnoreParens(); 4015 E2 = ICE2->getSubExpr()->IgnoreParens(); 4016 // The final cast must be one of these types. 4017 if (ICE1->getCastKind() == CK_LValueToRValue || 4018 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4019 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4020 break; 4021 } 4022 } 4023 4024 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4025 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4026 if (DRE1 && DRE2) 4027 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4028 4029 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4030 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4031 if (Ivar1 && Ivar2) { 4032 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4033 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4034 } 4035 4036 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4037 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4038 if (Array1 && Array2) { 4039 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4040 return false; 4041 4042 auto Idx1 = Array1->getIdx(); 4043 auto Idx2 = Array2->getIdx(); 4044 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4045 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4046 if (Integer1 && Integer2) { 4047 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4048 Integer2->getValue())) 4049 return false; 4050 } else { 4051 if (!isSameComparisonOperand(Idx1, Idx2)) 4052 return false; 4053 } 4054 4055 return true; 4056 } 4057 4058 // Walk the MemberExpr chain. 4059 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4060 const auto *ME1 = cast<MemberExpr>(E1); 4061 const auto *ME2 = cast<MemberExpr>(E2); 4062 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4063 return false; 4064 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4065 if (D->isStaticDataMember()) 4066 return true; 4067 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4068 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4069 } 4070 4071 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4072 return true; 4073 4074 // A static member variable can end the MemberExpr chain with either 4075 // a MemberExpr or a DeclRefExpr. 4076 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4077 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4078 return DRE->getDecl(); 4079 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4080 return ME->getMemberDecl(); 4081 return nullptr; 4082 }; 4083 4084 const ValueDecl *VD1 = getAnyDecl(E1); 4085 const ValueDecl *VD2 = getAnyDecl(E2); 4086 return declaresSameEntity(VD1, VD2); 4087 } 4088 } 4089 } 4090 4091 /// isArrow - Return true if the base expression is a pointer to vector, 4092 /// return false if the base expression is a vector. 4093 bool ExtVectorElementExpr::isArrow() const { 4094 return getBase()->getType()->isPointerType(); 4095 } 4096 4097 unsigned ExtVectorElementExpr::getNumElements() const { 4098 if (const VectorType *VT = getType()->getAs<VectorType>()) 4099 return VT->getNumElements(); 4100 return 1; 4101 } 4102 4103 /// containsDuplicateElements - Return true if any element access is repeated. 4104 bool ExtVectorElementExpr::containsDuplicateElements() const { 4105 // FIXME: Refactor this code to an accessor on the AST node which returns the 4106 // "type" of component access, and share with code below and in Sema. 4107 StringRef Comp = Accessor->getName(); 4108 4109 // Halving swizzles do not contain duplicate elements. 4110 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4111 return false; 4112 4113 // Advance past s-char prefix on hex swizzles. 4114 if (Comp[0] == 's' || Comp[0] == 'S') 4115 Comp = Comp.substr(1); 4116 4117 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4118 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 4119 return true; 4120 4121 return false; 4122 } 4123 4124 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4125 void ExtVectorElementExpr::getEncodedElementAccess( 4126 SmallVectorImpl<uint32_t> &Elts) const { 4127 StringRef Comp = Accessor->getName(); 4128 bool isNumericAccessor = false; 4129 if (Comp[0] == 's' || Comp[0] == 'S') { 4130 Comp = Comp.substr(1); 4131 isNumericAccessor = true; 4132 } 4133 4134 bool isHi = Comp == "hi"; 4135 bool isLo = Comp == "lo"; 4136 bool isEven = Comp == "even"; 4137 bool isOdd = Comp == "odd"; 4138 4139 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4140 uint64_t Index; 4141 4142 if (isHi) 4143 Index = e + i; 4144 else if (isLo) 4145 Index = i; 4146 else if (isEven) 4147 Index = 2 * i; 4148 else if (isOdd) 4149 Index = 2 * i + 1; 4150 else 4151 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4152 4153 Elts.push_back(Index); 4154 } 4155 } 4156 4157 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, 4158 QualType Type, SourceLocation BLoc, 4159 SourceLocation RP) 4160 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 4161 Type->isDependentType(), Type->isDependentType(), 4162 Type->isInstantiationDependentType(), 4163 Type->containsUnexpandedParameterPack()), 4164 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) 4165 { 4166 SubExprs = new (C) Stmt*[args.size()]; 4167 for (unsigned i = 0; i != args.size(); i++) { 4168 if (args[i]->isTypeDependent()) 4169 ExprBits.TypeDependent = true; 4170 if (args[i]->isValueDependent()) 4171 ExprBits.ValueDependent = true; 4172 if (args[i]->isInstantiationDependent()) 4173 ExprBits.InstantiationDependent = true; 4174 if (args[i]->containsUnexpandedParameterPack()) 4175 ExprBits.ContainsUnexpandedParameterPack = true; 4176 4177 SubExprs[i] = args[i]; 4178 } 4179 } 4180 4181 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4182 if (SubExprs) C.Deallocate(SubExprs); 4183 4184 this->NumExprs = Exprs.size(); 4185 SubExprs = new (C) Stmt*[NumExprs]; 4186 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4187 } 4188 4189 GenericSelectionExpr::GenericSelectionExpr( 4190 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4191 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4192 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4193 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4194 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4195 AssocExprs[ResultIndex]->getValueKind(), 4196 AssocExprs[ResultIndex]->getObjectKind(), 4197 AssocExprs[ResultIndex]->isTypeDependent(), 4198 AssocExprs[ResultIndex]->isValueDependent(), 4199 AssocExprs[ResultIndex]->isInstantiationDependent(), 4200 ContainsUnexpandedParameterPack), 4201 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4202 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4203 assert(AssocTypes.size() == AssocExprs.size() && 4204 "Must have the same number of association expressions" 4205 " and TypeSourceInfo!"); 4206 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4207 4208 GenericSelectionExprBits.GenericLoc = GenericLoc; 4209 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4210 std::copy(AssocExprs.begin(), AssocExprs.end(), 4211 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4212 std::copy(AssocTypes.begin(), AssocTypes.end(), 4213 getTrailingObjects<TypeSourceInfo *>()); 4214 } 4215 4216 GenericSelectionExpr::GenericSelectionExpr( 4217 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4218 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4219 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4220 bool ContainsUnexpandedParameterPack) 4221 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue, 4222 OK_Ordinary, 4223 /*isTypeDependent=*/true, 4224 /*isValueDependent=*/true, 4225 /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack), 4226 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4227 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4228 assert(AssocTypes.size() == AssocExprs.size() && 4229 "Must have the same number of association expressions" 4230 " and TypeSourceInfo!"); 4231 4232 GenericSelectionExprBits.GenericLoc = GenericLoc; 4233 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4234 std::copy(AssocExprs.begin(), AssocExprs.end(), 4235 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4236 std::copy(AssocTypes.begin(), AssocTypes.end(), 4237 getTrailingObjects<TypeSourceInfo *>()); 4238 } 4239 4240 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4241 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4242 4243 GenericSelectionExpr *GenericSelectionExpr::Create( 4244 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4245 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4246 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4247 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4248 unsigned NumAssocs = AssocExprs.size(); 4249 void *Mem = Context.Allocate( 4250 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4251 alignof(GenericSelectionExpr)); 4252 return new (Mem) GenericSelectionExpr( 4253 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4254 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4255 } 4256 4257 GenericSelectionExpr *GenericSelectionExpr::Create( 4258 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4259 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4260 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4261 bool ContainsUnexpandedParameterPack) { 4262 unsigned NumAssocs = AssocExprs.size(); 4263 void *Mem = Context.Allocate( 4264 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4265 alignof(GenericSelectionExpr)); 4266 return new (Mem) GenericSelectionExpr( 4267 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4268 RParenLoc, ContainsUnexpandedParameterPack); 4269 } 4270 4271 GenericSelectionExpr * 4272 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4273 unsigned NumAssocs) { 4274 void *Mem = Context.Allocate( 4275 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4276 alignof(GenericSelectionExpr)); 4277 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4278 } 4279 4280 //===----------------------------------------------------------------------===// 4281 // DesignatedInitExpr 4282 //===----------------------------------------------------------------------===// 4283 4284 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4285 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4286 if (Field.NameOrField & 0x01) 4287 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 4288 else 4289 return getField()->getIdentifier(); 4290 } 4291 4292 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4293 llvm::ArrayRef<Designator> Designators, 4294 SourceLocation EqualOrColonLoc, 4295 bool GNUSyntax, 4296 ArrayRef<Expr*> IndexExprs, 4297 Expr *Init) 4298 : Expr(DesignatedInitExprClass, Ty, 4299 Init->getValueKind(), Init->getObjectKind(), 4300 Init->isTypeDependent(), Init->isValueDependent(), 4301 Init->isInstantiationDependent(), 4302 Init->containsUnexpandedParameterPack()), 4303 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4304 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4305 this->Designators = new (C) Designator[NumDesignators]; 4306 4307 // Record the initializer itself. 4308 child_iterator Child = child_begin(); 4309 *Child++ = Init; 4310 4311 // Copy the designators and their subexpressions, computing 4312 // value-dependence along the way. 4313 unsigned IndexIdx = 0; 4314 for (unsigned I = 0; I != NumDesignators; ++I) { 4315 this->Designators[I] = Designators[I]; 4316 4317 if (this->Designators[I].isArrayDesignator()) { 4318 // Compute type- and value-dependence. 4319 Expr *Index = IndexExprs[IndexIdx]; 4320 if (Index->isTypeDependent() || Index->isValueDependent()) 4321 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 4322 if (Index->isInstantiationDependent()) 4323 ExprBits.InstantiationDependent = true; 4324 // Propagate unexpanded parameter packs. 4325 if (Index->containsUnexpandedParameterPack()) 4326 ExprBits.ContainsUnexpandedParameterPack = true; 4327 4328 // Copy the index expressions into permanent storage. 4329 *Child++ = IndexExprs[IndexIdx++]; 4330 } else if (this->Designators[I].isArrayRangeDesignator()) { 4331 // Compute type- and value-dependence. 4332 Expr *Start = IndexExprs[IndexIdx]; 4333 Expr *End = IndexExprs[IndexIdx + 1]; 4334 if (Start->isTypeDependent() || Start->isValueDependent() || 4335 End->isTypeDependent() || End->isValueDependent()) { 4336 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 4337 ExprBits.InstantiationDependent = true; 4338 } else if (Start->isInstantiationDependent() || 4339 End->isInstantiationDependent()) { 4340 ExprBits.InstantiationDependent = true; 4341 } 4342 4343 // Propagate unexpanded parameter packs. 4344 if (Start->containsUnexpandedParameterPack() || 4345 End->containsUnexpandedParameterPack()) 4346 ExprBits.ContainsUnexpandedParameterPack = true; 4347 4348 // Copy the start/end expressions into permanent storage. 4349 *Child++ = IndexExprs[IndexIdx++]; 4350 *Child++ = IndexExprs[IndexIdx++]; 4351 } 4352 } 4353 4354 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4355 } 4356 4357 DesignatedInitExpr * 4358 DesignatedInitExpr::Create(const ASTContext &C, 4359 llvm::ArrayRef<Designator> Designators, 4360 ArrayRef<Expr*> IndexExprs, 4361 SourceLocation ColonOrEqualLoc, 4362 bool UsesColonSyntax, Expr *Init) { 4363 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4364 alignof(DesignatedInitExpr)); 4365 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4366 ColonOrEqualLoc, UsesColonSyntax, 4367 IndexExprs, Init); 4368 } 4369 4370 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4371 unsigned NumIndexExprs) { 4372 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4373 alignof(DesignatedInitExpr)); 4374 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4375 } 4376 4377 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4378 const Designator *Desigs, 4379 unsigned NumDesigs) { 4380 Designators = new (C) Designator[NumDesigs]; 4381 NumDesignators = NumDesigs; 4382 for (unsigned I = 0; I != NumDesigs; ++I) 4383 Designators[I] = Desigs[I]; 4384 } 4385 4386 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4387 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4388 if (size() == 1) 4389 return DIE->getDesignator(0)->getSourceRange(); 4390 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4391 DIE->getDesignator(size() - 1)->getEndLoc()); 4392 } 4393 4394 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4395 SourceLocation StartLoc; 4396 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4397 Designator &First = *DIE->getDesignator(0); 4398 if (First.isFieldDesignator()) { 4399 if (GNUSyntax) 4400 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 4401 else 4402 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 4403 } else 4404 StartLoc = 4405 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 4406 return StartLoc; 4407 } 4408 4409 SourceLocation DesignatedInitExpr::getEndLoc() const { 4410 return getInit()->getEndLoc(); 4411 } 4412 4413 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4414 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4415 return getSubExpr(D.ArrayOrRange.Index + 1); 4416 } 4417 4418 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4419 assert(D.Kind == Designator::ArrayRangeDesignator && 4420 "Requires array range designator"); 4421 return getSubExpr(D.ArrayOrRange.Index + 1); 4422 } 4423 4424 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4425 assert(D.Kind == Designator::ArrayRangeDesignator && 4426 "Requires array range designator"); 4427 return getSubExpr(D.ArrayOrRange.Index + 2); 4428 } 4429 4430 /// Replaces the designator at index @p Idx with the series 4431 /// of designators in [First, Last). 4432 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4433 const Designator *First, 4434 const Designator *Last) { 4435 unsigned NumNewDesignators = Last - First; 4436 if (NumNewDesignators == 0) { 4437 std::copy_backward(Designators + Idx + 1, 4438 Designators + NumDesignators, 4439 Designators + Idx); 4440 --NumNewDesignators; 4441 return; 4442 } else if (NumNewDesignators == 1) { 4443 Designators[Idx] = *First; 4444 return; 4445 } 4446 4447 Designator *NewDesignators 4448 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4449 std::copy(Designators, Designators + Idx, NewDesignators); 4450 std::copy(First, Last, NewDesignators + Idx); 4451 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4452 NewDesignators + Idx + NumNewDesignators); 4453 Designators = NewDesignators; 4454 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4455 } 4456 4457 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4458 SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc) 4459 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, 4460 OK_Ordinary, false, false, false, false) { 4461 BaseAndUpdaterExprs[0] = baseExpr; 4462 4463 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 4464 ILE->setType(baseExpr->getType()); 4465 BaseAndUpdaterExprs[1] = ILE; 4466 } 4467 4468 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4469 return getBase()->getBeginLoc(); 4470 } 4471 4472 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4473 return getBase()->getEndLoc(); 4474 } 4475 4476 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4477 SourceLocation RParenLoc) 4478 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 4479 false, false), 4480 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4481 ParenListExprBits.NumExprs = Exprs.size(); 4482 4483 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) { 4484 if (Exprs[I]->isTypeDependent()) 4485 ExprBits.TypeDependent = true; 4486 if (Exprs[I]->isValueDependent()) 4487 ExprBits.ValueDependent = true; 4488 if (Exprs[I]->isInstantiationDependent()) 4489 ExprBits.InstantiationDependent = true; 4490 if (Exprs[I]->containsUnexpandedParameterPack()) 4491 ExprBits.ContainsUnexpandedParameterPack = true; 4492 4493 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4494 } 4495 } 4496 4497 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4498 : Expr(ParenListExprClass, Empty) { 4499 ParenListExprBits.NumExprs = NumExprs; 4500 } 4501 4502 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4503 SourceLocation LParenLoc, 4504 ArrayRef<Expr *> Exprs, 4505 SourceLocation RParenLoc) { 4506 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4507 alignof(ParenListExpr)); 4508 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4509 } 4510 4511 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4512 unsigned NumExprs) { 4513 void *Mem = 4514 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4515 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4516 } 4517 4518 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4519 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4520 e = ewc->getSubExpr(); 4521 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4522 e = m->getSubExpr(); 4523 e = cast<CXXConstructExpr>(e)->getArg(0); 4524 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4525 e = ice->getSubExpr(); 4526 return cast<OpaqueValueExpr>(e); 4527 } 4528 4529 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4530 EmptyShell sh, 4531 unsigned numSemanticExprs) { 4532 void *buffer = 4533 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4534 alignof(PseudoObjectExpr)); 4535 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4536 } 4537 4538 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4539 : Expr(PseudoObjectExprClass, shell) { 4540 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4541 } 4542 4543 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4544 ArrayRef<Expr*> semantics, 4545 unsigned resultIndex) { 4546 assert(syntax && "no syntactic expression!"); 4547 assert(semantics.size() && "no semantic expressions!"); 4548 4549 QualType type; 4550 ExprValueKind VK; 4551 if (resultIndex == NoResult) { 4552 type = C.VoidTy; 4553 VK = VK_RValue; 4554 } else { 4555 assert(resultIndex < semantics.size()); 4556 type = semantics[resultIndex]->getType(); 4557 VK = semantics[resultIndex]->getValueKind(); 4558 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4559 } 4560 4561 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4562 alignof(PseudoObjectExpr)); 4563 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4564 resultIndex); 4565 } 4566 4567 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4568 Expr *syntax, ArrayRef<Expr*> semantics, 4569 unsigned resultIndex) 4570 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 4571 /*filled in at end of ctor*/ false, false, false, false) { 4572 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4573 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4574 4575 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4576 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4577 getSubExprsBuffer()[i] = E; 4578 4579 if (E->isTypeDependent()) 4580 ExprBits.TypeDependent = true; 4581 if (E->isValueDependent()) 4582 ExprBits.ValueDependent = true; 4583 if (E->isInstantiationDependent()) 4584 ExprBits.InstantiationDependent = true; 4585 if (E->containsUnexpandedParameterPack()) 4586 ExprBits.ContainsUnexpandedParameterPack = true; 4587 4588 if (isa<OpaqueValueExpr>(E)) 4589 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4590 "opaque-value semantic expressions for pseudo-object " 4591 "operations must have sources"); 4592 } 4593 } 4594 4595 //===----------------------------------------------------------------------===// 4596 // Child Iterators for iterating over subexpressions/substatements 4597 //===----------------------------------------------------------------------===// 4598 4599 // UnaryExprOrTypeTraitExpr 4600 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4601 const_child_range CCR = 4602 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4603 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4604 } 4605 4606 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4607 // If this is of a type and the type is a VLA type (and not a typedef), the 4608 // size expression of the VLA needs to be treated as an executable expression. 4609 // Why isn't this weirdness documented better in StmtIterator? 4610 if (isArgumentType()) { 4611 if (const VariableArrayType *T = 4612 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4613 return const_child_range(const_child_iterator(T), const_child_iterator()); 4614 return const_child_range(const_child_iterator(), const_child_iterator()); 4615 } 4616 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4617 } 4618 4619 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, 4620 QualType t, AtomicOp op, SourceLocation RP) 4621 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 4622 false, false, false, false), 4623 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 4624 { 4625 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4626 for (unsigned i = 0; i != args.size(); i++) { 4627 if (args[i]->isTypeDependent()) 4628 ExprBits.TypeDependent = true; 4629 if (args[i]->isValueDependent()) 4630 ExprBits.ValueDependent = true; 4631 if (args[i]->isInstantiationDependent()) 4632 ExprBits.InstantiationDependent = true; 4633 if (args[i]->containsUnexpandedParameterPack()) 4634 ExprBits.ContainsUnexpandedParameterPack = true; 4635 4636 SubExprs[i] = args[i]; 4637 } 4638 } 4639 4640 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4641 switch (Op) { 4642 case AO__c11_atomic_init: 4643 case AO__opencl_atomic_init: 4644 case AO__c11_atomic_load: 4645 case AO__atomic_load_n: 4646 return 2; 4647 4648 case AO__opencl_atomic_load: 4649 case AO__c11_atomic_store: 4650 case AO__c11_atomic_exchange: 4651 case AO__atomic_load: 4652 case AO__atomic_store: 4653 case AO__atomic_store_n: 4654 case AO__atomic_exchange_n: 4655 case AO__c11_atomic_fetch_add: 4656 case AO__c11_atomic_fetch_sub: 4657 case AO__c11_atomic_fetch_and: 4658 case AO__c11_atomic_fetch_or: 4659 case AO__c11_atomic_fetch_xor: 4660 case AO__c11_atomic_fetch_max: 4661 case AO__c11_atomic_fetch_min: 4662 case AO__atomic_fetch_add: 4663 case AO__atomic_fetch_sub: 4664 case AO__atomic_fetch_and: 4665 case AO__atomic_fetch_or: 4666 case AO__atomic_fetch_xor: 4667 case AO__atomic_fetch_nand: 4668 case AO__atomic_add_fetch: 4669 case AO__atomic_sub_fetch: 4670 case AO__atomic_and_fetch: 4671 case AO__atomic_or_fetch: 4672 case AO__atomic_xor_fetch: 4673 case AO__atomic_nand_fetch: 4674 case AO__atomic_min_fetch: 4675 case AO__atomic_max_fetch: 4676 case AO__atomic_fetch_min: 4677 case AO__atomic_fetch_max: 4678 return 3; 4679 4680 case AO__opencl_atomic_store: 4681 case AO__opencl_atomic_exchange: 4682 case AO__opencl_atomic_fetch_add: 4683 case AO__opencl_atomic_fetch_sub: 4684 case AO__opencl_atomic_fetch_and: 4685 case AO__opencl_atomic_fetch_or: 4686 case AO__opencl_atomic_fetch_xor: 4687 case AO__opencl_atomic_fetch_min: 4688 case AO__opencl_atomic_fetch_max: 4689 case AO__atomic_exchange: 4690 return 4; 4691 4692 case AO__c11_atomic_compare_exchange_strong: 4693 case AO__c11_atomic_compare_exchange_weak: 4694 return 5; 4695 4696 case AO__opencl_atomic_compare_exchange_strong: 4697 case AO__opencl_atomic_compare_exchange_weak: 4698 case AO__atomic_compare_exchange: 4699 case AO__atomic_compare_exchange_n: 4700 return 6; 4701 } 4702 llvm_unreachable("unknown atomic op"); 4703 } 4704 4705 QualType AtomicExpr::getValueType() const { 4706 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4707 if (auto AT = T->getAs<AtomicType>()) 4708 return AT->getValueType(); 4709 return T; 4710 } 4711 4712 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4713 unsigned ArraySectionCount = 0; 4714 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4715 Base = OASE->getBase(); 4716 ++ArraySectionCount; 4717 } 4718 while (auto *ASE = 4719 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4720 Base = ASE->getBase(); 4721 ++ArraySectionCount; 4722 } 4723 Base = Base->IgnoreParenImpCasts(); 4724 auto OriginalTy = Base->getType(); 4725 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4726 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4727 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4728 4729 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4730 if (OriginalTy->isAnyPointerType()) 4731 OriginalTy = OriginalTy->getPointeeType(); 4732 else { 4733 assert (OriginalTy->isArrayType()); 4734 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4735 } 4736 } 4737 return OriginalTy; 4738 } 4739