xref: /freebsd/contrib/llvm-project/clang/lib/AST/Expr.cpp (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cstring>
40 #include <optional>
41 using namespace clang;
42 
43 const Expr *Expr::getBestDynamicClassTypeExpr() const {
44   const Expr *E = this;
45   while (true) {
46     E = E->IgnoreParenBaseCasts();
47 
48     // Follow the RHS of a comma operator.
49     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50       if (BO->getOpcode() == BO_Comma) {
51         E = BO->getRHS();
52         continue;
53       }
54     }
55 
56     // Step into initializer for materialized temporaries.
57     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58       E = MTE->getSubExpr();
59       continue;
60     }
61 
62     break;
63   }
64 
65   return E;
66 }
67 
68 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69   const Expr *E = getBestDynamicClassTypeExpr();
70   QualType DerivedType = E->getType();
71   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72     DerivedType = PTy->getPointeeType();
73 
74   if (DerivedType->isDependentType())
75     return nullptr;
76 
77   const RecordType *Ty = DerivedType->castAs<RecordType>();
78   Decl *D = Ty->getDecl();
79   return cast<CXXRecordDecl>(D);
80 }
81 
82 const Expr *Expr::skipRValueSubobjectAdjustments(
83     SmallVectorImpl<const Expr *> &CommaLHSs,
84     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85   const Expr *E = this;
86   while (true) {
87     E = E->IgnoreParens();
88 
89     if (const auto *CE = dyn_cast<CastExpr>(E)) {
90       if ((CE->getCastKind() == CK_DerivedToBase ||
91            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92           E->getType()->isRecordType()) {
93         E = CE->getSubExpr();
94         const auto *Derived =
95             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
96         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
97         continue;
98       }
99 
100       if (CE->getCastKind() == CK_NoOp) {
101         E = CE->getSubExpr();
102         continue;
103       }
104     } else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
105       if (!ME->isArrow()) {
106         assert(ME->getBase()->getType()->getAsRecordDecl());
107         if (const auto *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
108           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109             E = ME->getBase();
110             Adjustments.push_back(SubobjectAdjustment(Field));
111             continue;
112           }
113         }
114       }
115     } else if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
116       if (BO->getOpcode() == BO_PtrMemD) {
117         assert(BO->getRHS()->isPRValue());
118         E = BO->getLHS();
119         const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>();
120         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
121         continue;
122       }
123       if (BO->getOpcode() == BO_Comma) {
124         CommaLHSs.push_back(BO->getLHS());
125         E = BO->getRHS();
126         continue;
127       }
128     }
129 
130     // Nothing changed.
131     break;
132   }
133   return E;
134 }
135 
136 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
137   const Expr *E = IgnoreParens();
138 
139   // If this value has _Bool type, it is obvious 0/1.
140   if (E->getType()->isBooleanType()) return true;
141   // If this is a non-scalar-integer type, we don't care enough to try.
142   if (!E->getType()->isIntegralOrEnumerationType()) return false;
143 
144   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
145     switch (UO->getOpcode()) {
146     case UO_Plus:
147       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
148     case UO_LNot:
149       return true;
150     default:
151       return false;
152     }
153   }
154 
155   // Only look through implicit casts.  If the user writes
156   // '(int) (a && b)' treat it as an arbitrary int.
157   // FIXME: Should we look through any cast expression in !Semantic mode?
158   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
159     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
160 
161   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
162     switch (BO->getOpcode()) {
163     default: return false;
164     case BO_LT:   // Relational operators.
165     case BO_GT:
166     case BO_LE:
167     case BO_GE:
168     case BO_EQ:   // Equality operators.
169     case BO_NE:
170     case BO_LAnd: // AND operator.
171     case BO_LOr:  // Logical OR operator.
172       return true;
173 
174     case BO_And:  // Bitwise AND operator.
175     case BO_Xor:  // Bitwise XOR operator.
176     case BO_Or:   // Bitwise OR operator.
177       // Handle things like (x==2)|(y==12).
178       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
179              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
180 
181     case BO_Comma:
182     case BO_Assign:
183       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
184     }
185   }
186 
187   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
188     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
189            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
190 
191   if (isa<ObjCBoolLiteralExpr>(E))
192     return true;
193 
194   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
195     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
196 
197   if (const FieldDecl *FD = E->getSourceBitField())
198     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
199         !FD->getBitWidth()->isValueDependent() &&
200         FD->getBitWidthValue(FD->getASTContext()) == 1)
201       return true;
202 
203   return false;
204 }
205 
206 bool Expr::isFlexibleArrayMemberLike(
207     ASTContext &Ctx,
208     LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
209     bool IgnoreTemplateOrMacroSubstitution) const {
210   const Expr *E = IgnoreParens();
211   const Decl *D = nullptr;
212 
213   if (const auto *ME = dyn_cast<MemberExpr>(E))
214     D = ME->getMemberDecl();
215   else if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
216     D = DRE->getDecl();
217   else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
218     D = IRE->getDecl();
219 
220   return Decl::isFlexibleArrayMemberLike(Ctx, D, E->getType(),
221                                          StrictFlexArraysLevel,
222                                          IgnoreTemplateOrMacroSubstitution);
223 }
224 
225 const ValueDecl *
226 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
227   Expr::EvalResult Eval;
228 
229   if (EvaluateAsConstantExpr(Eval, Context)) {
230     APValue &Value = Eval.Val;
231 
232     if (Value.isMemberPointer())
233       return Value.getMemberPointerDecl();
234 
235     if (Value.isLValue() && Value.getLValueOffset().isZero())
236       return Value.getLValueBase().dyn_cast<const ValueDecl *>();
237   }
238 
239   return nullptr;
240 }
241 
242 // Amusing macro metaprogramming hack: check whether a class provides
243 // a more specific implementation of getExprLoc().
244 //
245 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
246 namespace {
247   /// This implementation is used when a class provides a custom
248   /// implementation of getExprLoc.
249   template <class E, class T>
250   SourceLocation getExprLocImpl(const Expr *expr,
251                                 SourceLocation (T::*v)() const) {
252     return static_cast<const E*>(expr)->getExprLoc();
253   }
254 
255   /// This implementation is used when a class doesn't provide
256   /// a custom implementation of getExprLoc.  Overload resolution
257   /// should pick it over the implementation above because it's
258   /// more specialized according to function template partial ordering.
259   template <class E>
260   SourceLocation getExprLocImpl(const Expr *expr,
261                                 SourceLocation (Expr::*v)() const) {
262     return static_cast<const E *>(expr)->getBeginLoc();
263   }
264 }
265 
266 QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const {
267   if (isa<EnumType>(getType()))
268     return getType();
269   if (const auto *ECD = getEnumConstantDecl()) {
270     const auto *ED = cast<EnumDecl>(ECD->getDeclContext());
271     if (ED->isCompleteDefinition())
272       return Ctx.getTypeDeclType(ED);
273   }
274   return getType();
275 }
276 
277 SourceLocation Expr::getExprLoc() const {
278   switch (getStmtClass()) {
279   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
280 #define ABSTRACT_STMT(type)
281 #define STMT(type, base) \
282   case Stmt::type##Class: break;
283 #define EXPR(type, base) \
284   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
285 #include "clang/AST/StmtNodes.inc"
286   }
287   llvm_unreachable("unknown expression kind");
288 }
289 
290 //===----------------------------------------------------------------------===//
291 // Primary Expressions.
292 //===----------------------------------------------------------------------===//
293 
294 static void AssertResultStorageKind(ConstantResultStorageKind Kind) {
295   assert((Kind == ConstantResultStorageKind::APValue ||
296           Kind == ConstantResultStorageKind::Int64 ||
297           Kind == ConstantResultStorageKind::None) &&
298          "Invalid StorageKind Value");
299   (void)Kind;
300 }
301 
302 ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) {
303   switch (Value.getKind()) {
304   case APValue::None:
305   case APValue::Indeterminate:
306     return ConstantResultStorageKind::None;
307   case APValue::Int:
308     if (!Value.getInt().needsCleanup())
309       return ConstantResultStorageKind::Int64;
310     [[fallthrough]];
311   default:
312     return ConstantResultStorageKind::APValue;
313   }
314 }
315 
316 ConstantResultStorageKind
317 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
318   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
319     return ConstantResultStorageKind::Int64;
320   return ConstantResultStorageKind::APValue;
321 }
322 
323 ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
324                            bool IsImmediateInvocation)
325     : FullExpr(ConstantExprClass, SubExpr) {
326   ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind);
327   ConstantExprBits.APValueKind = APValue::None;
328   ConstantExprBits.IsUnsigned = false;
329   ConstantExprBits.BitWidth = 0;
330   ConstantExprBits.HasCleanup = false;
331   ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
332 
333   if (StorageKind == ConstantResultStorageKind::APValue)
334     ::new (getTrailingObjects<APValue>()) APValue();
335 }
336 
337 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
338                                    ConstantResultStorageKind StorageKind,
339                                    bool IsImmediateInvocation) {
340   assert(!isa<ConstantExpr>(E));
341   AssertResultStorageKind(StorageKind);
342 
343   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
344       StorageKind == ConstantResultStorageKind::APValue,
345       StorageKind == ConstantResultStorageKind::Int64);
346   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
347   return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
348 }
349 
350 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
351                                    const APValue &Result) {
352   ConstantResultStorageKind StorageKind = getStorageKind(Result);
353   ConstantExpr *Self = Create(Context, E, StorageKind);
354   Self->SetResult(Result, Context);
355   return Self;
356 }
357 
358 ConstantExpr::ConstantExpr(EmptyShell Empty,
359                            ConstantResultStorageKind StorageKind)
360     : FullExpr(ConstantExprClass, Empty) {
361   ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind);
362 
363   if (StorageKind == ConstantResultStorageKind::APValue)
364     ::new (getTrailingObjects<APValue>()) APValue();
365 }
366 
367 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
368                                         ConstantResultStorageKind StorageKind) {
369   AssertResultStorageKind(StorageKind);
370 
371   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
372       StorageKind == ConstantResultStorageKind::APValue,
373       StorageKind == ConstantResultStorageKind::Int64);
374   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
375   return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
376 }
377 
378 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
379   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
380          "Invalid storage for this value kind");
381   ConstantExprBits.APValueKind = Value.getKind();
382   switch (getResultStorageKind()) {
383   case ConstantResultStorageKind::None:
384     return;
385   case ConstantResultStorageKind::Int64:
386     Int64Result() = *Value.getInt().getRawData();
387     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
388     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
389     return;
390   case ConstantResultStorageKind::APValue:
391     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
392       ConstantExprBits.HasCleanup = true;
393       Context.addDestruction(&APValueResult());
394     }
395     APValueResult() = std::move(Value);
396     return;
397   }
398   llvm_unreachable("Invalid ResultKind Bits");
399 }
400 
401 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
402   switch (getResultStorageKind()) {
403   case ConstantResultStorageKind::APValue:
404     return APValueResult().getInt();
405   case ConstantResultStorageKind::Int64:
406     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
407                         ConstantExprBits.IsUnsigned);
408   default:
409     llvm_unreachable("invalid Accessor");
410   }
411 }
412 
413 APValue ConstantExpr::getAPValueResult() const {
414 
415   switch (getResultStorageKind()) {
416   case ConstantResultStorageKind::APValue:
417     return APValueResult();
418   case ConstantResultStorageKind::Int64:
419     return APValue(
420         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
421                      ConstantExprBits.IsUnsigned));
422   case ConstantResultStorageKind::None:
423     if (ConstantExprBits.APValueKind == APValue::Indeterminate)
424       return APValue::IndeterminateValue();
425     return APValue();
426   }
427   llvm_unreachable("invalid ResultKind");
428 }
429 
430 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
431                          bool RefersToEnclosingVariableOrCapture, QualType T,
432                          ExprValueKind VK, SourceLocation L,
433                          const DeclarationNameLoc &LocInfo,
434                          NonOdrUseReason NOUR)
435     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
436   DeclRefExprBits.HasQualifier = false;
437   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
438   DeclRefExprBits.HasFoundDecl = false;
439   DeclRefExprBits.HadMultipleCandidates = false;
440   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
441       RefersToEnclosingVariableOrCapture;
442   DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
443   DeclRefExprBits.NonOdrUseReason = NOUR;
444   DeclRefExprBits.IsImmediateEscalating = false;
445   DeclRefExprBits.Loc = L;
446   setDependence(computeDependence(this, Ctx));
447 }
448 
449 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
450                          NestedNameSpecifierLoc QualifierLoc,
451                          SourceLocation TemplateKWLoc, ValueDecl *D,
452                          bool RefersToEnclosingVariableOrCapture,
453                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
454                          const TemplateArgumentListInfo *TemplateArgs,
455                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
456     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
457       DNLoc(NameInfo.getInfo()) {
458   DeclRefExprBits.Loc = NameInfo.getLoc();
459   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
460   if (QualifierLoc)
461     new (getTrailingObjects<NestedNameSpecifierLoc>())
462         NestedNameSpecifierLoc(QualifierLoc);
463   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
464   if (FoundD)
465     *getTrailingObjects<NamedDecl *>() = FoundD;
466   DeclRefExprBits.HasTemplateKWAndArgsInfo
467     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
468   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
469       RefersToEnclosingVariableOrCapture;
470   DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
471   DeclRefExprBits.NonOdrUseReason = NOUR;
472   if (TemplateArgs) {
473     auto Deps = TemplateArgumentDependence::None;
474     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
475         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
476         Deps);
477     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
478            "built a DeclRefExpr with dependent template args");
479   } else if (TemplateKWLoc.isValid()) {
480     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
481         TemplateKWLoc);
482   }
483   DeclRefExprBits.IsImmediateEscalating = false;
484   DeclRefExprBits.HadMultipleCandidates = 0;
485   setDependence(computeDependence(this, Ctx));
486 }
487 
488 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
489                                  NestedNameSpecifierLoc QualifierLoc,
490                                  SourceLocation TemplateKWLoc, ValueDecl *D,
491                                  bool RefersToEnclosingVariableOrCapture,
492                                  SourceLocation NameLoc, QualType T,
493                                  ExprValueKind VK, NamedDecl *FoundD,
494                                  const TemplateArgumentListInfo *TemplateArgs,
495                                  NonOdrUseReason NOUR) {
496   return Create(Context, QualifierLoc, TemplateKWLoc, D,
497                 RefersToEnclosingVariableOrCapture,
498                 DeclarationNameInfo(D->getDeclName(), NameLoc),
499                 T, VK, FoundD, TemplateArgs, NOUR);
500 }
501 
502 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
503                                  NestedNameSpecifierLoc QualifierLoc,
504                                  SourceLocation TemplateKWLoc, ValueDecl *D,
505                                  bool RefersToEnclosingVariableOrCapture,
506                                  const DeclarationNameInfo &NameInfo,
507                                  QualType T, ExprValueKind VK,
508                                  NamedDecl *FoundD,
509                                  const TemplateArgumentListInfo *TemplateArgs,
510                                  NonOdrUseReason NOUR) {
511   // Filter out cases where the found Decl is the same as the value refenenced.
512   if (D == FoundD)
513     FoundD = nullptr;
514 
515   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
516   std::size_t Size =
517       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
518                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
519           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
520           HasTemplateKWAndArgsInfo ? 1 : 0,
521           TemplateArgs ? TemplateArgs->size() : 0);
522 
523   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
524   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
525                                RefersToEnclosingVariableOrCapture, NameInfo,
526                                FoundD, TemplateArgs, T, VK, NOUR);
527 }
528 
529 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
530                                       bool HasQualifier,
531                                       bool HasFoundDecl,
532                                       bool HasTemplateKWAndArgsInfo,
533                                       unsigned NumTemplateArgs) {
534   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
535   std::size_t Size =
536       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
537                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
538           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
539           NumTemplateArgs);
540   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
541   return new (Mem) DeclRefExpr(EmptyShell());
542 }
543 
544 void DeclRefExpr::setDecl(ValueDecl *NewD) {
545   D = NewD;
546   if (getType()->isUndeducedType())
547     setType(NewD->getType());
548   setDependence(computeDependence(this, NewD->getASTContext()));
549 }
550 
551 SourceLocation DeclRefExpr::getBeginLoc() const {
552   if (hasQualifier())
553     return getQualifierLoc().getBeginLoc();
554   return getNameInfo().getBeginLoc();
555 }
556 SourceLocation DeclRefExpr::getEndLoc() const {
557   if (hasExplicitTemplateArgs())
558     return getRAngleLoc();
559   return getNameInfo().getEndLoc();
560 }
561 
562 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
563                                                    SourceLocation LParen,
564                                                    SourceLocation RParen,
565                                                    QualType ResultTy,
566                                                    TypeSourceInfo *TSI)
567     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
568       OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
569   setTypeSourceInfo(TSI);
570   setDependence(computeDependence(this));
571 }
572 
573 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
574                                                    QualType ResultTy)
575     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
576 
577 SYCLUniqueStableNameExpr *
578 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
579                                  SourceLocation LParen, SourceLocation RParen,
580                                  TypeSourceInfo *TSI) {
581   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
582   return new (Ctx)
583       SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
584 }
585 
586 SYCLUniqueStableNameExpr *
587 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
588   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
589   return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
590 }
591 
592 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
593   return SYCLUniqueStableNameExpr::ComputeName(Context,
594                                                getTypeSourceInfo()->getType());
595 }
596 
597 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
598                                                   QualType Ty) {
599   auto MangleCallback = [](ASTContext &Ctx,
600                            const NamedDecl *ND) -> std::optional<unsigned> {
601     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
602       return RD->getDeviceLambdaManglingNumber();
603     return std::nullopt;
604   };
605 
606   std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
607       Context, Context.getDiagnostics(), MangleCallback)};
608 
609   std::string Buffer;
610   Buffer.reserve(128);
611   llvm::raw_string_ostream Out(Buffer);
612   Ctx->mangleCanonicalTypeName(Ty, Out);
613 
614   return Out.str();
615 }
616 
617 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy,
618                                PredefinedIdentKind IK, bool IsTransparent,
619                                StringLiteral *SL)
620     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
621   PredefinedExprBits.Kind = llvm::to_underlying(IK);
622   assert((getIdentKind() == IK) &&
623          "IdentKind do not fit in PredefinedExprBitfields!");
624   bool HasFunctionName = SL != nullptr;
625   PredefinedExprBits.HasFunctionName = HasFunctionName;
626   PredefinedExprBits.IsTransparent = IsTransparent;
627   PredefinedExprBits.Loc = L;
628   if (HasFunctionName)
629     setFunctionName(SL);
630   setDependence(computeDependence(this));
631 }
632 
633 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
634     : Expr(PredefinedExprClass, Empty) {
635   PredefinedExprBits.HasFunctionName = HasFunctionName;
636 }
637 
638 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
639                                        QualType FNTy, PredefinedIdentKind IK,
640                                        bool IsTransparent, StringLiteral *SL) {
641   bool HasFunctionName = SL != nullptr;
642   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
643                            alignof(PredefinedExpr));
644   return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
645 }
646 
647 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
648                                             bool HasFunctionName) {
649   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
650                            alignof(PredefinedExpr));
651   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
652 }
653 
654 StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) {
655   switch (IK) {
656   case PredefinedIdentKind::Func:
657     return "__func__";
658   case PredefinedIdentKind::Function:
659     return "__FUNCTION__";
660   case PredefinedIdentKind::FuncDName:
661     return "__FUNCDNAME__";
662   case PredefinedIdentKind::LFunction:
663     return "L__FUNCTION__";
664   case PredefinedIdentKind::PrettyFunction:
665     return "__PRETTY_FUNCTION__";
666   case PredefinedIdentKind::FuncSig:
667     return "__FUNCSIG__";
668   case PredefinedIdentKind::LFuncSig:
669     return "L__FUNCSIG__";
670   case PredefinedIdentKind::PrettyFunctionNoVirtual:
671     break;
672   }
673   llvm_unreachable("Unknown ident kind for PredefinedExpr");
674 }
675 
676 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
677 // expr" policy instead.
678 std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK,
679                                         const Decl *CurrentDecl,
680                                         bool ForceElaboratedPrinting) {
681   ASTContext &Context = CurrentDecl->getASTContext();
682 
683   if (IK == PredefinedIdentKind::FuncDName) {
684     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
685       std::unique_ptr<MangleContext> MC;
686       MC.reset(Context.createMangleContext());
687 
688       if (MC->shouldMangleDeclName(ND)) {
689         SmallString<256> Buffer;
690         llvm::raw_svector_ostream Out(Buffer);
691         GlobalDecl GD;
692         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
693           GD = GlobalDecl(CD, Ctor_Base);
694         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
695           GD = GlobalDecl(DD, Dtor_Base);
696         else if (ND->hasAttr<CUDAGlobalAttr>())
697           GD = GlobalDecl(cast<FunctionDecl>(ND));
698         else
699           GD = GlobalDecl(ND);
700         MC->mangleName(GD, Out);
701 
702         if (!Buffer.empty() && Buffer.front() == '\01')
703           return std::string(Buffer.substr(1));
704         return std::string(Buffer);
705       }
706       return std::string(ND->getIdentifier()->getName());
707     }
708     return "";
709   }
710   if (isa<BlockDecl>(CurrentDecl)) {
711     // For blocks we only emit something if it is enclosed in a function
712     // For top-level block we'd like to include the name of variable, but we
713     // don't have it at this point.
714     auto DC = CurrentDecl->getDeclContext();
715     if (DC->isFileContext())
716       return "";
717 
718     SmallString<256> Buffer;
719     llvm::raw_svector_ostream Out(Buffer);
720     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
721       // For nested blocks, propagate up to the parent.
722       Out << ComputeName(IK, DCBlock);
723     else if (auto *DCDecl = dyn_cast<Decl>(DC))
724       Out << ComputeName(IK, DCDecl) << "_block_invoke";
725     return std::string(Out.str());
726   }
727   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
728     const auto &LO = Context.getLangOpts();
729     bool IsFuncOrFunctionInNonMSVCCompatEnv =
730         ((IK == PredefinedIdentKind::Func ||
731           IK == PredefinedIdentKind ::Function) &&
732          !LO.MSVCCompat);
733     bool IsLFunctionInMSVCCommpatEnv =
734         IK == PredefinedIdentKind::LFunction && LO.MSVCCompat;
735     bool IsFuncOrFunctionOrLFunctionOrFuncDName =
736         IK != PredefinedIdentKind::PrettyFunction &&
737         IK != PredefinedIdentKind::PrettyFunctionNoVirtual &&
738         IK != PredefinedIdentKind::FuncSig &&
739         IK != PredefinedIdentKind::LFuncSig;
740     if ((ForceElaboratedPrinting &&
741          (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) ||
742         (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName))
743       return FD->getNameAsString();
744 
745     SmallString<256> Name;
746     llvm::raw_svector_ostream Out(Name);
747 
748     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
749       if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual)
750         Out << "virtual ";
751       if (MD->isStatic())
752         Out << "static ";
753     }
754 
755     class PrettyCallbacks final : public PrintingCallbacks {
756     public:
757       PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
758       std::string remapPath(StringRef Path) const override {
759         SmallString<128> p(Path);
760         LO.remapPathPrefix(p);
761         return std::string(p);
762       }
763 
764     private:
765       const LangOptions &LO;
766     };
767     PrintingPolicy Policy(Context.getLangOpts());
768     PrettyCallbacks PrettyCB(Context.getLangOpts());
769     Policy.Callbacks = &PrettyCB;
770     if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting)
771       Policy.SuppressTagKeyword = !LO.MSVCCompat;
772     std::string Proto;
773     llvm::raw_string_ostream POut(Proto);
774 
775     const FunctionDecl *Decl = FD;
776     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
777       Decl = Pattern;
778     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
779     const FunctionProtoType *FT = nullptr;
780     if (FD->hasWrittenPrototype())
781       FT = dyn_cast<FunctionProtoType>(AFT);
782 
783     if (IK == PredefinedIdentKind::FuncSig ||
784         IK == PredefinedIdentKind::LFuncSig) {
785       switch (AFT->getCallConv()) {
786       case CC_C: POut << "__cdecl "; break;
787       case CC_X86StdCall: POut << "__stdcall "; break;
788       case CC_X86FastCall: POut << "__fastcall "; break;
789       case CC_X86ThisCall: POut << "__thiscall "; break;
790       case CC_X86VectorCall: POut << "__vectorcall "; break;
791       case CC_X86RegCall: POut << "__regcall "; break;
792       // Only bother printing the conventions that MSVC knows about.
793       default: break;
794       }
795     }
796 
797     FD->printQualifiedName(POut, Policy);
798 
799     if (IK == PredefinedIdentKind::Function) {
800       POut.flush();
801       Out << Proto;
802       return std::string(Name);
803     }
804 
805     POut << "(";
806     if (FT) {
807       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
808         if (i) POut << ", ";
809         POut << Decl->getParamDecl(i)->getType().stream(Policy);
810       }
811 
812       if (FT->isVariadic()) {
813         if (FD->getNumParams()) POut << ", ";
814         POut << "...";
815       } else if ((IK == PredefinedIdentKind::FuncSig ||
816                   IK == PredefinedIdentKind::LFuncSig ||
817                   !Context.getLangOpts().CPlusPlus) &&
818                  !Decl->getNumParams()) {
819         POut << "void";
820       }
821     }
822     POut << ")";
823 
824     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
825       assert(FT && "We must have a written prototype in this case.");
826       if (FT->isConst())
827         POut << " const";
828       if (FT->isVolatile())
829         POut << " volatile";
830       RefQualifierKind Ref = MD->getRefQualifier();
831       if (Ref == RQ_LValue)
832         POut << " &";
833       else if (Ref == RQ_RValue)
834         POut << " &&";
835     }
836 
837     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
838     SpecsTy Specs;
839     const DeclContext *Ctx = FD->getDeclContext();
840     while (isa_and_nonnull<NamedDecl>(Ctx)) {
841       const ClassTemplateSpecializationDecl *Spec
842                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
843       if (Spec && !Spec->isExplicitSpecialization())
844         Specs.push_back(Spec);
845       Ctx = Ctx->getParent();
846     }
847 
848     std::string TemplateParams;
849     llvm::raw_string_ostream TOut(TemplateParams);
850     for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
851       const TemplateParameterList *Params =
852           D->getSpecializedTemplate()->getTemplateParameters();
853       const TemplateArgumentList &Args = D->getTemplateArgs();
854       assert(Params->size() == Args.size());
855       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
856         StringRef Param = Params->getParam(i)->getName();
857         if (Param.empty()) continue;
858         TOut << Param << " = ";
859         Args.get(i).print(Policy, TOut,
860                           TemplateParameterList::shouldIncludeTypeForArgument(
861                               Policy, Params, i));
862         TOut << ", ";
863       }
864     }
865 
866     FunctionTemplateSpecializationInfo *FSI
867                                           = FD->getTemplateSpecializationInfo();
868     if (FSI && !FSI->isExplicitSpecialization()) {
869       const TemplateParameterList* Params
870                                   = FSI->getTemplate()->getTemplateParameters();
871       const TemplateArgumentList* Args = FSI->TemplateArguments;
872       assert(Params->size() == Args->size());
873       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
874         StringRef Param = Params->getParam(i)->getName();
875         if (Param.empty()) continue;
876         TOut << Param << " = ";
877         Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
878         TOut << ", ";
879       }
880     }
881 
882     TOut.flush();
883     if (!TemplateParams.empty()) {
884       // remove the trailing comma and space
885       TemplateParams.resize(TemplateParams.size() - 2);
886       POut << " [" << TemplateParams << "]";
887     }
888 
889     POut.flush();
890 
891     // Print "auto" for all deduced return types. This includes C++1y return
892     // type deduction and lambdas. For trailing return types resolve the
893     // decltype expression. Otherwise print the real type when this is
894     // not a constructor or destructor.
895     if (isa<CXXMethodDecl>(FD) &&
896          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
897       Proto = "auto " + Proto;
898     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
899       FT->getReturnType()
900           ->getAs<DecltypeType>()
901           ->getUnderlyingType()
902           .getAsStringInternal(Proto, Policy);
903     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
904       AFT->getReturnType().getAsStringInternal(Proto, Policy);
905 
906     Out << Proto;
907 
908     return std::string(Name);
909   }
910   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
911     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
912       // Skip to its enclosing function or method, but not its enclosing
913       // CapturedDecl.
914       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
915         const Decl *D = Decl::castFromDeclContext(DC);
916         return ComputeName(IK, D);
917       }
918     llvm_unreachable("CapturedDecl not inside a function or method");
919   }
920   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
921     SmallString<256> Name;
922     llvm::raw_svector_ostream Out(Name);
923     Out << (MD->isInstanceMethod() ? '-' : '+');
924     Out << '[';
925 
926     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
927     // a null check to avoid a crash.
928     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
929       Out << *ID;
930 
931     if (const ObjCCategoryImplDecl *CID =
932         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
933       Out << '(' << *CID << ')';
934 
935     Out <<  ' ';
936     MD->getSelector().print(Out);
937     Out <<  ']';
938 
939     return std::string(Name);
940   }
941   if (isa<TranslationUnitDecl>(CurrentDecl) &&
942       IK == PredefinedIdentKind::PrettyFunction) {
943     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
944     return "top level";
945   }
946   return "";
947 }
948 
949 void APNumericStorage::setIntValue(const ASTContext &C,
950                                    const llvm::APInt &Val) {
951   if (hasAllocation())
952     C.Deallocate(pVal);
953 
954   BitWidth = Val.getBitWidth();
955   unsigned NumWords = Val.getNumWords();
956   const uint64_t* Words = Val.getRawData();
957   if (NumWords > 1) {
958     pVal = new (C) uint64_t[NumWords];
959     std::copy(Words, Words + NumWords, pVal);
960   } else if (NumWords == 1)
961     VAL = Words[0];
962   else
963     VAL = 0;
964 }
965 
966 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
967                                QualType type, SourceLocation l)
968     : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
969   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
970   assert(V.getBitWidth() == C.getIntWidth(type) &&
971          "Integer type is not the correct size for constant.");
972   setValue(C, V);
973   setDependence(ExprDependence::None);
974 }
975 
976 IntegerLiteral *
977 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
978                        QualType type, SourceLocation l) {
979   return new (C) IntegerLiteral(C, V, type, l);
980 }
981 
982 IntegerLiteral *
983 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
984   return new (C) IntegerLiteral(Empty);
985 }
986 
987 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
988                                      QualType type, SourceLocation l,
989                                      unsigned Scale)
990     : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
991       Scale(Scale) {
992   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
993   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
994          "Fixed point type is not the correct size for constant.");
995   setValue(C, V);
996   setDependence(ExprDependence::None);
997 }
998 
999 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
1000                                                        const llvm::APInt &V,
1001                                                        QualType type,
1002                                                        SourceLocation l,
1003                                                        unsigned Scale) {
1004   return new (C) FixedPointLiteral(C, V, type, l, Scale);
1005 }
1006 
1007 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1008                                              EmptyShell Empty) {
1009   return new (C) FixedPointLiteral(Empty);
1010 }
1011 
1012 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1013   // Currently the longest decimal number that can be printed is the max for an
1014   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1015   // which is 43 characters.
1016   SmallString<64> S;
1017   FixedPointValueToString(
1018       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
1019   return std::string(S);
1020 }
1021 
1022 void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind,
1023                              raw_ostream &OS) {
1024   switch (Kind) {
1025   case CharacterLiteralKind::Ascii:
1026     break; // no prefix.
1027   case CharacterLiteralKind::Wide:
1028     OS << 'L';
1029     break;
1030   case CharacterLiteralKind::UTF8:
1031     OS << "u8";
1032     break;
1033   case CharacterLiteralKind::UTF16:
1034     OS << 'u';
1035     break;
1036   case CharacterLiteralKind::UTF32:
1037     OS << 'U';
1038     break;
1039   }
1040 
1041   StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1042   if (!Escaped.empty()) {
1043     OS << "'" << Escaped << "'";
1044   } else {
1045     // A character literal might be sign-extended, which
1046     // would result in an invalid \U escape sequence.
1047     // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1048     // are not correctly handled.
1049     if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii)
1050       Val &= 0xFFu;
1051     if (Val < 256 && isPrintable((unsigned char)Val))
1052       OS << "'" << (char)Val << "'";
1053     else if (Val < 256)
1054       OS << "'\\x" << llvm::format("%02x", Val) << "'";
1055     else if (Val <= 0xFFFF)
1056       OS << "'\\u" << llvm::format("%04x", Val) << "'";
1057     else
1058       OS << "'\\U" << llvm::format("%08x", Val) << "'";
1059   }
1060 }
1061 
1062 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1063                                  bool isexact, QualType Type, SourceLocation L)
1064     : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1065   setSemantics(V.getSemantics());
1066   FloatingLiteralBits.IsExact = isexact;
1067   setValue(C, V);
1068   setDependence(ExprDependence::None);
1069 }
1070 
1071 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1072   : Expr(FloatingLiteralClass, Empty) {
1073   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1074   FloatingLiteralBits.IsExact = false;
1075 }
1076 
1077 FloatingLiteral *
1078 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1079                         bool isexact, QualType Type, SourceLocation L) {
1080   return new (C) FloatingLiteral(C, V, isexact, Type, L);
1081 }
1082 
1083 FloatingLiteral *
1084 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1085   return new (C) FloatingLiteral(C, Empty);
1086 }
1087 
1088 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1089 /// double.  Note that this may cause loss of precision, but is useful for
1090 /// debugging dumps, etc.
1091 double FloatingLiteral::getValueAsApproximateDouble() const {
1092   llvm::APFloat V = getValue();
1093   bool ignored;
1094   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1095             &ignored);
1096   return V.convertToDouble();
1097 }
1098 
1099 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1100                                          StringLiteralKind SK) {
1101   unsigned CharByteWidth = 0;
1102   switch (SK) {
1103   case StringLiteralKind::Ordinary:
1104   case StringLiteralKind::UTF8:
1105     CharByteWidth = Target.getCharWidth();
1106     break;
1107   case StringLiteralKind::Wide:
1108     CharByteWidth = Target.getWCharWidth();
1109     break;
1110   case StringLiteralKind::UTF16:
1111     CharByteWidth = Target.getChar16Width();
1112     break;
1113   case StringLiteralKind::UTF32:
1114     CharByteWidth = Target.getChar32Width();
1115     break;
1116   case StringLiteralKind::Unevaluated:
1117     return sizeof(char); // Host;
1118   }
1119   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1120   CharByteWidth /= 8;
1121   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1122          "The only supported character byte widths are 1,2 and 4!");
1123   return CharByteWidth;
1124 }
1125 
1126 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1127                              StringLiteralKind Kind, bool Pascal, QualType Ty,
1128                              const SourceLocation *Loc,
1129                              unsigned NumConcatenated)
1130     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1131 
1132   unsigned Length = Str.size();
1133 
1134   StringLiteralBits.Kind = llvm::to_underlying(Kind);
1135   StringLiteralBits.NumConcatenated = NumConcatenated;
1136 
1137   if (Kind != StringLiteralKind::Unevaluated) {
1138     assert(Ctx.getAsConstantArrayType(Ty) &&
1139            "StringLiteral must be of constant array type!");
1140     unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1141     unsigned ByteLength = Str.size();
1142     assert((ByteLength % CharByteWidth == 0) &&
1143            "The size of the data must be a multiple of CharByteWidth!");
1144 
1145     // Avoid the expensive division. The compiler should be able to figure it
1146     // out by itself. However as of clang 7, even with the appropriate
1147     // llvm_unreachable added just here, it is not able to do so.
1148     switch (CharByteWidth) {
1149     case 1:
1150       Length = ByteLength;
1151       break;
1152     case 2:
1153       Length = ByteLength / 2;
1154       break;
1155     case 4:
1156       Length = ByteLength / 4;
1157       break;
1158     default:
1159       llvm_unreachable("Unsupported character width!");
1160     }
1161 
1162     StringLiteralBits.CharByteWidth = CharByteWidth;
1163     StringLiteralBits.IsPascal = Pascal;
1164   } else {
1165     assert(!Pascal && "Can't make an unevaluated Pascal string");
1166     StringLiteralBits.CharByteWidth = 1;
1167     StringLiteralBits.IsPascal = false;
1168   }
1169 
1170   *getTrailingObjects<unsigned>() = Length;
1171 
1172   // Initialize the trailing array of SourceLocation.
1173   // This is safe since SourceLocation is POD-like.
1174   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1175               NumConcatenated * sizeof(SourceLocation));
1176 
1177   // Initialize the trailing array of char holding the string data.
1178   std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size());
1179 
1180   setDependence(ExprDependence::None);
1181 }
1182 
1183 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1184                              unsigned Length, unsigned CharByteWidth)
1185     : Expr(StringLiteralClass, Empty) {
1186   StringLiteralBits.CharByteWidth = CharByteWidth;
1187   StringLiteralBits.NumConcatenated = NumConcatenated;
1188   *getTrailingObjects<unsigned>() = Length;
1189 }
1190 
1191 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1192                                      StringLiteralKind Kind, bool Pascal,
1193                                      QualType Ty, const SourceLocation *Loc,
1194                                      unsigned NumConcatenated) {
1195   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1196                                1, NumConcatenated, Str.size()),
1197                            alignof(StringLiteral));
1198   return new (Mem)
1199       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1200 }
1201 
1202 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1203                                           unsigned NumConcatenated,
1204                                           unsigned Length,
1205                                           unsigned CharByteWidth) {
1206   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1207                                1, NumConcatenated, Length * CharByteWidth),
1208                            alignof(StringLiteral));
1209   return new (Mem)
1210       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1211 }
1212 
1213 void StringLiteral::outputString(raw_ostream &OS) const {
1214   switch (getKind()) {
1215   case StringLiteralKind::Unevaluated:
1216   case StringLiteralKind::Ordinary:
1217     break; // no prefix.
1218   case StringLiteralKind::Wide:
1219     OS << 'L';
1220     break;
1221   case StringLiteralKind::UTF8:
1222     OS << "u8";
1223     break;
1224   case StringLiteralKind::UTF16:
1225     OS << 'u';
1226     break;
1227   case StringLiteralKind::UTF32:
1228     OS << 'U';
1229     break;
1230   }
1231   OS << '"';
1232   static const char Hex[] = "0123456789ABCDEF";
1233 
1234   unsigned LastSlashX = getLength();
1235   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1236     uint32_t Char = getCodeUnit(I);
1237     StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1238     if (Escaped.empty()) {
1239       // FIXME: Convert UTF-8 back to codepoints before rendering.
1240 
1241       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1242       // Leave invalid surrogates alone; we'll use \x for those.
1243       if (getKind() == StringLiteralKind::UTF16 && I != N - 1 &&
1244           Char >= 0xd800 && Char <= 0xdbff) {
1245         uint32_t Trail = getCodeUnit(I + 1);
1246         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1247           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1248           ++I;
1249         }
1250       }
1251 
1252       if (Char > 0xff) {
1253         // If this is a wide string, output characters over 0xff using \x
1254         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1255         // codepoint: use \x escapes for invalid codepoints.
1256         if (getKind() == StringLiteralKind::Wide ||
1257             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1258           // FIXME: Is this the best way to print wchar_t?
1259           OS << "\\x";
1260           int Shift = 28;
1261           while ((Char >> Shift) == 0)
1262             Shift -= 4;
1263           for (/**/; Shift >= 0; Shift -= 4)
1264             OS << Hex[(Char >> Shift) & 15];
1265           LastSlashX = I;
1266           continue;
1267         }
1268 
1269         if (Char > 0xffff)
1270           OS << "\\U00"
1271              << Hex[(Char >> 20) & 15]
1272              << Hex[(Char >> 16) & 15];
1273         else
1274           OS << "\\u";
1275         OS << Hex[(Char >> 12) & 15]
1276            << Hex[(Char >>  8) & 15]
1277            << Hex[(Char >>  4) & 15]
1278            << Hex[(Char >>  0) & 15];
1279         continue;
1280       }
1281 
1282       // If we used \x... for the previous character, and this character is a
1283       // hexadecimal digit, prevent it being slurped as part of the \x.
1284       if (LastSlashX + 1 == I) {
1285         switch (Char) {
1286           case '0': case '1': case '2': case '3': case '4':
1287           case '5': case '6': case '7': case '8': case '9':
1288           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1289           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1290             OS << "\"\"";
1291         }
1292       }
1293 
1294       assert(Char <= 0xff &&
1295              "Characters above 0xff should already have been handled.");
1296 
1297       if (isPrintable(Char))
1298         OS << (char)Char;
1299       else  // Output anything hard as an octal escape.
1300         OS << '\\'
1301            << (char)('0' + ((Char >> 6) & 7))
1302            << (char)('0' + ((Char >> 3) & 7))
1303            << (char)('0' + ((Char >> 0) & 7));
1304     } else {
1305       // Handle some common non-printable cases to make dumps prettier.
1306       OS << Escaped;
1307     }
1308   }
1309   OS << '"';
1310 }
1311 
1312 /// getLocationOfByte - Return a source location that points to the specified
1313 /// byte of this string literal.
1314 ///
1315 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1316 /// can have escape sequences in them in addition to the usual trigraph and
1317 /// escaped newline business.  This routine handles this complexity.
1318 ///
1319 /// The *StartToken sets the first token to be searched in this function and
1320 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1321 /// returning, it updates the *StartToken to the TokNo of the token being found
1322 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1323 /// string.
1324 /// Using these two parameters can reduce the time complexity from O(n^2) to
1325 /// O(n) if one wants to get the location of byte for all the tokens in a
1326 /// string.
1327 ///
1328 SourceLocation
1329 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1330                                  const LangOptions &Features,
1331                                  const TargetInfo &Target, unsigned *StartToken,
1332                                  unsigned *StartTokenByteOffset) const {
1333   assert((getKind() == StringLiteralKind::Ordinary ||
1334           getKind() == StringLiteralKind::UTF8 ||
1335           getKind() == StringLiteralKind::Unevaluated) &&
1336          "Only narrow string literals are currently supported");
1337 
1338   // Loop over all of the tokens in this string until we find the one that
1339   // contains the byte we're looking for.
1340   unsigned TokNo = 0;
1341   unsigned StringOffset = 0;
1342   if (StartToken)
1343     TokNo = *StartToken;
1344   if (StartTokenByteOffset) {
1345     StringOffset = *StartTokenByteOffset;
1346     ByteNo -= StringOffset;
1347   }
1348   while (true) {
1349     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1350     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1351 
1352     // Get the spelling of the string so that we can get the data that makes up
1353     // the string literal, not the identifier for the macro it is potentially
1354     // expanded through.
1355     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1356 
1357     // Re-lex the token to get its length and original spelling.
1358     std::pair<FileID, unsigned> LocInfo =
1359         SM.getDecomposedLoc(StrTokSpellingLoc);
1360     bool Invalid = false;
1361     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1362     if (Invalid) {
1363       if (StartTokenByteOffset != nullptr)
1364         *StartTokenByteOffset = StringOffset;
1365       if (StartToken != nullptr)
1366         *StartToken = TokNo;
1367       return StrTokSpellingLoc;
1368     }
1369 
1370     const char *StrData = Buffer.data()+LocInfo.second;
1371 
1372     // Create a lexer starting at the beginning of this token.
1373     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1374                    Buffer.begin(), StrData, Buffer.end());
1375     Token TheTok;
1376     TheLexer.LexFromRawLexer(TheTok);
1377 
1378     // Use the StringLiteralParser to compute the length of the string in bytes.
1379     StringLiteralParser SLP(TheTok, SM, Features, Target);
1380     unsigned TokNumBytes = SLP.GetStringLength();
1381 
1382     // If the byte is in this token, return the location of the byte.
1383     if (ByteNo < TokNumBytes ||
1384         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1385       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1386 
1387       // Now that we know the offset of the token in the spelling, use the
1388       // preprocessor to get the offset in the original source.
1389       if (StartTokenByteOffset != nullptr)
1390         *StartTokenByteOffset = StringOffset;
1391       if (StartToken != nullptr)
1392         *StartToken = TokNo;
1393       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1394     }
1395 
1396     // Move to the next string token.
1397     StringOffset += TokNumBytes;
1398     ++TokNo;
1399     ByteNo -= TokNumBytes;
1400   }
1401 }
1402 
1403 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1404 /// corresponds to, e.g. "sizeof" or "[pre]++".
1405 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1406   switch (Op) {
1407 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1408 #include "clang/AST/OperationKinds.def"
1409   }
1410   llvm_unreachable("Unknown unary operator");
1411 }
1412 
1413 UnaryOperatorKind
1414 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1415   switch (OO) {
1416   default: llvm_unreachable("No unary operator for overloaded function");
1417   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1418   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1419   case OO_Amp:        return UO_AddrOf;
1420   case OO_Star:       return UO_Deref;
1421   case OO_Plus:       return UO_Plus;
1422   case OO_Minus:      return UO_Minus;
1423   case OO_Tilde:      return UO_Not;
1424   case OO_Exclaim:    return UO_LNot;
1425   case OO_Coawait:    return UO_Coawait;
1426   }
1427 }
1428 
1429 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1430   switch (Opc) {
1431   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1432   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1433   case UO_AddrOf: return OO_Amp;
1434   case UO_Deref: return OO_Star;
1435   case UO_Plus: return OO_Plus;
1436   case UO_Minus: return OO_Minus;
1437   case UO_Not: return OO_Tilde;
1438   case UO_LNot: return OO_Exclaim;
1439   case UO_Coawait: return OO_Coawait;
1440   default: return OO_None;
1441   }
1442 }
1443 
1444 
1445 //===----------------------------------------------------------------------===//
1446 // Postfix Operators.
1447 //===----------------------------------------------------------------------===//
1448 
1449 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1450                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1451                    SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1452                    unsigned MinNumArgs, ADLCallKind UsesADL)
1453     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1454   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1455   unsigned NumPreArgs = PreArgs.size();
1456   CallExprBits.NumPreArgs = NumPreArgs;
1457   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1458 
1459   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1460   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1461   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1462          "OffsetToTrailingObjects overflow!");
1463 
1464   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1465 
1466   setCallee(Fn);
1467   for (unsigned I = 0; I != NumPreArgs; ++I)
1468     setPreArg(I, PreArgs[I]);
1469   for (unsigned I = 0; I != Args.size(); ++I)
1470     setArg(I, Args[I]);
1471   for (unsigned I = Args.size(); I != NumArgs; ++I)
1472     setArg(I, nullptr);
1473 
1474   this->computeDependence();
1475 
1476   CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1477   if (hasStoredFPFeatures())
1478     setStoredFPFeatures(FPFeatures);
1479 }
1480 
1481 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1482                    bool HasFPFeatures, EmptyShell Empty)
1483     : Expr(SC, Empty), NumArgs(NumArgs) {
1484   CallExprBits.NumPreArgs = NumPreArgs;
1485   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1486 
1487   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1488   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1489   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1490          "OffsetToTrailingObjects overflow!");
1491   CallExprBits.HasFPFeatures = HasFPFeatures;
1492 }
1493 
1494 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1495                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1496                            SourceLocation RParenLoc,
1497                            FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1498                            ADLCallKind UsesADL) {
1499   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1500   unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1501       /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1502   void *Mem =
1503       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1504   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1505                             RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1506 }
1507 
1508 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1509                                     ExprValueKind VK, SourceLocation RParenLoc,
1510                                     ADLCallKind UsesADL) {
1511   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1512          "Misaligned memory in CallExpr::CreateTemporary!");
1513   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1514                             VK, RParenLoc, FPOptionsOverride(),
1515                             /*MinNumArgs=*/0, UsesADL);
1516 }
1517 
1518 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1519                                 bool HasFPFeatures, EmptyShell Empty) {
1520   unsigned SizeOfTrailingObjects =
1521       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1522   void *Mem =
1523       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1524   return new (Mem)
1525       CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1526 }
1527 
1528 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1529   switch (SC) {
1530   case CallExprClass:
1531     return sizeof(CallExpr);
1532   case CXXOperatorCallExprClass:
1533     return sizeof(CXXOperatorCallExpr);
1534   case CXXMemberCallExprClass:
1535     return sizeof(CXXMemberCallExpr);
1536   case UserDefinedLiteralClass:
1537     return sizeof(UserDefinedLiteral);
1538   case CUDAKernelCallExprClass:
1539     return sizeof(CUDAKernelCallExpr);
1540   default:
1541     llvm_unreachable("unexpected class deriving from CallExpr!");
1542   }
1543 }
1544 
1545 Decl *Expr::getReferencedDeclOfCallee() {
1546   Expr *CEE = IgnoreParenImpCasts();
1547 
1548   while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE))
1549     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1550 
1551   // If we're calling a dereference, look at the pointer instead.
1552   while (true) {
1553     if (auto *BO = dyn_cast<BinaryOperator>(CEE)) {
1554       if (BO->isPtrMemOp()) {
1555         CEE = BO->getRHS()->IgnoreParenImpCasts();
1556         continue;
1557       }
1558     } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) {
1559       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1560           UO->getOpcode() == UO_Plus) {
1561         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1562         continue;
1563       }
1564     }
1565     break;
1566   }
1567 
1568   if (auto *DRE = dyn_cast<DeclRefExpr>(CEE))
1569     return DRE->getDecl();
1570   if (auto *ME = dyn_cast<MemberExpr>(CEE))
1571     return ME->getMemberDecl();
1572   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1573     return BE->getBlockDecl();
1574 
1575   return nullptr;
1576 }
1577 
1578 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1579 unsigned CallExpr::getBuiltinCallee() const {
1580   const auto *FDecl = getDirectCallee();
1581   return FDecl ? FDecl->getBuiltinID() : 0;
1582 }
1583 
1584 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1585   if (unsigned BI = getBuiltinCallee())
1586     return Ctx.BuiltinInfo.isUnevaluated(BI);
1587   return false;
1588 }
1589 
1590 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1591   const Expr *Callee = getCallee();
1592   QualType CalleeType = Callee->getType();
1593   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1594     CalleeType = FnTypePtr->getPointeeType();
1595   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1596     CalleeType = BPT->getPointeeType();
1597   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1598     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1599       return Ctx.VoidTy;
1600 
1601     if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1602       return Ctx.DependentTy;
1603 
1604     // This should never be overloaded and so should never return null.
1605     CalleeType = Expr::findBoundMemberType(Callee);
1606     assert(!CalleeType.isNull());
1607   } else if (CalleeType->isRecordType()) {
1608     // If the Callee is a record type, then it is a not-yet-resolved
1609     // dependent call to the call operator of that type.
1610     return Ctx.DependentTy;
1611   } else if (CalleeType->isDependentType() ||
1612              CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1613     return Ctx.DependentTy;
1614   }
1615 
1616   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1617   return FnType->getReturnType();
1618 }
1619 
1620 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1621   // If the return type is a struct, union, or enum that is marked nodiscard,
1622   // then return the return type attribute.
1623   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1624     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1625       return A;
1626 
1627   for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1628        TD = TD->desugar()->getAs<TypedefType>())
1629     if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1630       return A;
1631 
1632   // Otherwise, see if the callee is marked nodiscard and return that attribute
1633   // instead.
1634   const Decl *D = getCalleeDecl();
1635   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1636 }
1637 
1638 SourceLocation CallExpr::getBeginLoc() const {
1639   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1640     return OCE->getBeginLoc();
1641 
1642   SourceLocation begin = getCallee()->getBeginLoc();
1643   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1644     begin = getArg(0)->getBeginLoc();
1645   return begin;
1646 }
1647 SourceLocation CallExpr::getEndLoc() const {
1648   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1649     return OCE->getEndLoc();
1650 
1651   SourceLocation end = getRParenLoc();
1652   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1653     end = getArg(getNumArgs() - 1)->getEndLoc();
1654   return end;
1655 }
1656 
1657 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1658                                    SourceLocation OperatorLoc,
1659                                    TypeSourceInfo *tsi,
1660                                    ArrayRef<OffsetOfNode> comps,
1661                                    ArrayRef<Expr*> exprs,
1662                                    SourceLocation RParenLoc) {
1663   void *Mem = C.Allocate(
1664       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1665 
1666   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1667                                 RParenLoc);
1668 }
1669 
1670 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1671                                         unsigned numComps, unsigned numExprs) {
1672   void *Mem =
1673       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1674   return new (Mem) OffsetOfExpr(numComps, numExprs);
1675 }
1676 
1677 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1678                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1679                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1680                            SourceLocation RParenLoc)
1681     : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1682       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1683       NumComps(comps.size()), NumExprs(exprs.size()) {
1684   for (unsigned i = 0; i != comps.size(); ++i)
1685     setComponent(i, comps[i]);
1686   for (unsigned i = 0; i != exprs.size(); ++i)
1687     setIndexExpr(i, exprs[i]);
1688 
1689   setDependence(computeDependence(this));
1690 }
1691 
1692 IdentifierInfo *OffsetOfNode::getFieldName() const {
1693   assert(getKind() == Field || getKind() == Identifier);
1694   if (getKind() == Field)
1695     return getField()->getIdentifier();
1696 
1697   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1698 }
1699 
1700 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1701     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1702     SourceLocation op, SourceLocation rp)
1703     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1704       OpLoc(op), RParenLoc(rp) {
1705   assert(ExprKind <= UETT_Last && "invalid enum value!");
1706   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1707   assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1708          "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1709   UnaryExprOrTypeTraitExprBits.IsType = false;
1710   Argument.Ex = E;
1711   setDependence(computeDependence(this));
1712 }
1713 
1714 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1715                        NestedNameSpecifierLoc QualifierLoc,
1716                        SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
1717                        DeclAccessPair FoundDecl,
1718                        const DeclarationNameInfo &NameInfo,
1719                        const TemplateArgumentListInfo *TemplateArgs, QualType T,
1720                        ExprValueKind VK, ExprObjectKind OK,
1721                        NonOdrUseReason NOUR)
1722     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1723       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1724   assert(!NameInfo.getName() ||
1725          MemberDecl->getDeclName() == NameInfo.getName());
1726   MemberExprBits.IsArrow = IsArrow;
1727   MemberExprBits.HasQualifier = QualifierLoc.hasQualifier();
1728   MemberExprBits.HasFoundDecl =
1729       FoundDecl.getDecl() != MemberDecl ||
1730       FoundDecl.getAccess() != MemberDecl->getAccess();
1731   MemberExprBits.HasTemplateKWAndArgsInfo =
1732       TemplateArgs || TemplateKWLoc.isValid();
1733   MemberExprBits.HadMultipleCandidates = false;
1734   MemberExprBits.NonOdrUseReason = NOUR;
1735   MemberExprBits.OperatorLoc = OperatorLoc;
1736 
1737   if (hasQualifier())
1738     new (getTrailingObjects<NestedNameSpecifierLoc>())
1739         NestedNameSpecifierLoc(QualifierLoc);
1740   if (hasFoundDecl())
1741     *getTrailingObjects<DeclAccessPair>() = FoundDecl;
1742   if (TemplateArgs) {
1743     auto Deps = TemplateArgumentDependence::None;
1744     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1745         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
1746         Deps);
1747   } else if (TemplateKWLoc.isValid()) {
1748     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1749         TemplateKWLoc);
1750   }
1751   setDependence(computeDependence(this));
1752 }
1753 
1754 MemberExpr *MemberExpr::Create(
1755     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1756     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1757     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1758     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1759     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1760   bool HasQualifier = QualifierLoc.hasQualifier();
1761   bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl ||
1762                       FoundDecl.getAccess() != MemberDecl->getAccess();
1763   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1764   std::size_t Size =
1765       totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1766                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
1767           HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo,
1768           TemplateArgs ? TemplateArgs->size() : 0);
1769 
1770   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1771   return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc,
1772                               TemplateKWLoc, MemberDecl, FoundDecl, NameInfo,
1773                               TemplateArgs, T, VK, OK, NOUR);
1774 }
1775 
1776 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1777                                     bool HasQualifier, bool HasFoundDecl,
1778                                     bool HasTemplateKWAndArgsInfo,
1779                                     unsigned NumTemplateArgs) {
1780   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1781          "template args but no template arg info?");
1782   std::size_t Size =
1783       totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1784                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
1785           HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo,
1786           NumTemplateArgs);
1787   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1788   return new (Mem) MemberExpr(EmptyShell());
1789 }
1790 
1791 void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1792   MemberDecl = NewD;
1793   if (getType()->isUndeducedType())
1794     setType(NewD->getType());
1795   setDependence(computeDependence(this));
1796 }
1797 
1798 SourceLocation MemberExpr::getBeginLoc() const {
1799   if (isImplicitAccess()) {
1800     if (hasQualifier())
1801       return getQualifierLoc().getBeginLoc();
1802     return MemberLoc;
1803   }
1804 
1805   // FIXME: We don't want this to happen. Rather, we should be able to
1806   // detect all kinds of implicit accesses more cleanly.
1807   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1808   if (BaseStartLoc.isValid())
1809     return BaseStartLoc;
1810   return MemberLoc;
1811 }
1812 SourceLocation MemberExpr::getEndLoc() const {
1813   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1814   if (hasExplicitTemplateArgs())
1815     EndLoc = getRAngleLoc();
1816   else if (EndLoc.isInvalid())
1817     EndLoc = getBase()->getEndLoc();
1818   return EndLoc;
1819 }
1820 
1821 bool CastExpr::CastConsistency() const {
1822   switch (getCastKind()) {
1823   case CK_DerivedToBase:
1824   case CK_UncheckedDerivedToBase:
1825   case CK_DerivedToBaseMemberPointer:
1826   case CK_BaseToDerived:
1827   case CK_BaseToDerivedMemberPointer:
1828     assert(!path_empty() && "Cast kind should have a base path!");
1829     break;
1830 
1831   case CK_CPointerToObjCPointerCast:
1832     assert(getType()->isObjCObjectPointerType());
1833     assert(getSubExpr()->getType()->isPointerType());
1834     goto CheckNoBasePath;
1835 
1836   case CK_BlockPointerToObjCPointerCast:
1837     assert(getType()->isObjCObjectPointerType());
1838     assert(getSubExpr()->getType()->isBlockPointerType());
1839     goto CheckNoBasePath;
1840 
1841   case CK_ReinterpretMemberPointer:
1842     assert(getType()->isMemberPointerType());
1843     assert(getSubExpr()->getType()->isMemberPointerType());
1844     goto CheckNoBasePath;
1845 
1846   case CK_BitCast:
1847     // Arbitrary casts to C pointer types count as bitcasts.
1848     // Otherwise, we should only have block and ObjC pointer casts
1849     // here if they stay within the type kind.
1850     if (!getType()->isPointerType()) {
1851       assert(getType()->isObjCObjectPointerType() ==
1852              getSubExpr()->getType()->isObjCObjectPointerType());
1853       assert(getType()->isBlockPointerType() ==
1854              getSubExpr()->getType()->isBlockPointerType());
1855     }
1856     goto CheckNoBasePath;
1857 
1858   case CK_AnyPointerToBlockPointerCast:
1859     assert(getType()->isBlockPointerType());
1860     assert(getSubExpr()->getType()->isAnyPointerType() &&
1861            !getSubExpr()->getType()->isBlockPointerType());
1862     goto CheckNoBasePath;
1863 
1864   case CK_CopyAndAutoreleaseBlockObject:
1865     assert(getType()->isBlockPointerType());
1866     assert(getSubExpr()->getType()->isBlockPointerType());
1867     goto CheckNoBasePath;
1868 
1869   case CK_FunctionToPointerDecay:
1870     assert(getType()->isPointerType());
1871     assert(getSubExpr()->getType()->isFunctionType());
1872     goto CheckNoBasePath;
1873 
1874   case CK_AddressSpaceConversion: {
1875     auto Ty = getType();
1876     auto SETy = getSubExpr()->getType();
1877     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1878     if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1879       Ty = Ty->getPointeeType();
1880       SETy = SETy->getPointeeType();
1881     }
1882     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1883            (!Ty.isNull() && !SETy.isNull() &&
1884             Ty.getAddressSpace() != SETy.getAddressSpace()));
1885     goto CheckNoBasePath;
1886   }
1887   // These should not have an inheritance path.
1888   case CK_Dynamic:
1889   case CK_ToUnion:
1890   case CK_ArrayToPointerDecay:
1891   case CK_NullToMemberPointer:
1892   case CK_NullToPointer:
1893   case CK_ConstructorConversion:
1894   case CK_IntegralToPointer:
1895   case CK_PointerToIntegral:
1896   case CK_ToVoid:
1897   case CK_VectorSplat:
1898   case CK_IntegralCast:
1899   case CK_BooleanToSignedIntegral:
1900   case CK_IntegralToFloating:
1901   case CK_FloatingToIntegral:
1902   case CK_FloatingCast:
1903   case CK_ObjCObjectLValueCast:
1904   case CK_FloatingRealToComplex:
1905   case CK_FloatingComplexToReal:
1906   case CK_FloatingComplexCast:
1907   case CK_FloatingComplexToIntegralComplex:
1908   case CK_IntegralRealToComplex:
1909   case CK_IntegralComplexToReal:
1910   case CK_IntegralComplexCast:
1911   case CK_IntegralComplexToFloatingComplex:
1912   case CK_ARCProduceObject:
1913   case CK_ARCConsumeObject:
1914   case CK_ARCReclaimReturnedObject:
1915   case CK_ARCExtendBlockObject:
1916   case CK_ZeroToOCLOpaqueType:
1917   case CK_IntToOCLSampler:
1918   case CK_FloatingToFixedPoint:
1919   case CK_FixedPointToFloating:
1920   case CK_FixedPointCast:
1921   case CK_FixedPointToIntegral:
1922   case CK_IntegralToFixedPoint:
1923   case CK_MatrixCast:
1924   case CK_HLSLVectorTruncation:
1925     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1926     goto CheckNoBasePath;
1927 
1928   case CK_Dependent:
1929   case CK_LValueToRValue:
1930   case CK_NoOp:
1931   case CK_AtomicToNonAtomic:
1932   case CK_NonAtomicToAtomic:
1933   case CK_PointerToBoolean:
1934   case CK_IntegralToBoolean:
1935   case CK_FloatingToBoolean:
1936   case CK_MemberPointerToBoolean:
1937   case CK_FloatingComplexToBoolean:
1938   case CK_IntegralComplexToBoolean:
1939   case CK_LValueBitCast:            // -> bool&
1940   case CK_LValueToRValueBitCast:
1941   case CK_UserDefinedConversion:    // operator bool()
1942   case CK_BuiltinFnToFnPtr:
1943   case CK_FixedPointToBoolean:
1944   case CK_HLSLArrayRValue:
1945   CheckNoBasePath:
1946     assert(path_empty() && "Cast kind should not have a base path!");
1947     break;
1948   }
1949   return true;
1950 }
1951 
1952 const char *CastExpr::getCastKindName(CastKind CK) {
1953   switch (CK) {
1954 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1955 #include "clang/AST/OperationKinds.def"
1956   }
1957   llvm_unreachable("Unhandled cast kind!");
1958 }
1959 
1960 namespace {
1961 // Skip over implicit nodes produced as part of semantic analysis.
1962 // Designed for use with IgnoreExprNodes.
1963 static Expr *ignoreImplicitSemaNodes(Expr *E) {
1964   if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1965     return Materialize->getSubExpr();
1966 
1967   if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1968     return Binder->getSubExpr();
1969 
1970   if (auto *Full = dyn_cast<FullExpr>(E))
1971     return Full->getSubExpr();
1972 
1973   if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E);
1974       CPLIE && CPLIE->getInitExprs().size() == 1)
1975     return CPLIE->getInitExprs()[0];
1976 
1977   return E;
1978 }
1979 } // namespace
1980 
1981 Expr *CastExpr::getSubExprAsWritten() {
1982   const Expr *SubExpr = nullptr;
1983 
1984   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1985     SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1986 
1987     // Conversions by constructor and conversion functions have a
1988     // subexpression describing the call; strip it off.
1989     if (E->getCastKind() == CK_ConstructorConversion) {
1990       SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
1991                                 ignoreImplicitSemaNodes);
1992     } else if (E->getCastKind() == CK_UserDefinedConversion) {
1993       assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&
1994              "Unexpected SubExpr for CK_UserDefinedConversion.");
1995       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1996         SubExpr = MCE->getImplicitObjectArgument();
1997     }
1998   }
1999 
2000   return const_cast<Expr *>(SubExpr);
2001 }
2002 
2003 NamedDecl *CastExpr::getConversionFunction() const {
2004   const Expr *SubExpr = nullptr;
2005 
2006   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
2007     SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
2008 
2009     if (E->getCastKind() == CK_ConstructorConversion)
2010       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
2011 
2012     if (E->getCastKind() == CK_UserDefinedConversion) {
2013       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2014         return MCE->getMethodDecl();
2015     }
2016   }
2017 
2018   return nullptr;
2019 }
2020 
2021 CXXBaseSpecifier **CastExpr::path_buffer() {
2022   switch (getStmtClass()) {
2023 #define ABSTRACT_STMT(x)
2024 #define CASTEXPR(Type, Base)                                                   \
2025   case Stmt::Type##Class:                                                      \
2026     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2027 #define STMT(Type, Base)
2028 #include "clang/AST/StmtNodes.inc"
2029   default:
2030     llvm_unreachable("non-cast expressions not possible here");
2031   }
2032 }
2033 
2034 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2035                                                         QualType opType) {
2036   auto RD = unionType->castAs<RecordType>()->getDecl();
2037   return getTargetFieldForToUnionCast(RD, opType);
2038 }
2039 
2040 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2041                                                         QualType OpType) {
2042   auto &Ctx = RD->getASTContext();
2043   RecordDecl::field_iterator Field, FieldEnd;
2044   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2045        Field != FieldEnd; ++Field) {
2046     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2047         !Field->isUnnamedBitField()) {
2048       return *Field;
2049     }
2050   }
2051   return nullptr;
2052 }
2053 
2054 FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2055   assert(hasStoredFPFeatures());
2056   switch (getStmtClass()) {
2057   case ImplicitCastExprClass:
2058     return static_cast<ImplicitCastExpr *>(this)
2059         ->getTrailingObjects<FPOptionsOverride>();
2060   case CStyleCastExprClass:
2061     return static_cast<CStyleCastExpr *>(this)
2062         ->getTrailingObjects<FPOptionsOverride>();
2063   case CXXFunctionalCastExprClass:
2064     return static_cast<CXXFunctionalCastExpr *>(this)
2065         ->getTrailingObjects<FPOptionsOverride>();
2066   case CXXStaticCastExprClass:
2067     return static_cast<CXXStaticCastExpr *>(this)
2068         ->getTrailingObjects<FPOptionsOverride>();
2069   default:
2070     llvm_unreachable("Cast does not have FPFeatures");
2071   }
2072 }
2073 
2074 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2075                                            CastKind Kind, Expr *Operand,
2076                                            const CXXCastPath *BasePath,
2077                                            ExprValueKind VK,
2078                                            FPOptionsOverride FPO) {
2079   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2080   void *Buffer =
2081       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2082           PathSize, FPO.requiresTrailingStorage()));
2083   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2084   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2085   assert((Kind != CK_LValueToRValue ||
2086           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2087          "invalid type for lvalue-to-rvalue conversion");
2088   ImplicitCastExpr *E =
2089       new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2090   if (PathSize)
2091     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2092                               E->getTrailingObjects<CXXBaseSpecifier *>());
2093   return E;
2094 }
2095 
2096 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2097                                                 unsigned PathSize,
2098                                                 bool HasFPFeatures) {
2099   void *Buffer =
2100       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2101           PathSize, HasFPFeatures));
2102   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2103 }
2104 
2105 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2106                                        ExprValueKind VK, CastKind K, Expr *Op,
2107                                        const CXXCastPath *BasePath,
2108                                        FPOptionsOverride FPO,
2109                                        TypeSourceInfo *WrittenTy,
2110                                        SourceLocation L, SourceLocation R) {
2111   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2112   void *Buffer =
2113       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2114           PathSize, FPO.requiresTrailingStorage()));
2115   CStyleCastExpr *E =
2116       new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2117   if (PathSize)
2118     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2119                               E->getTrailingObjects<CXXBaseSpecifier *>());
2120   return E;
2121 }
2122 
2123 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2124                                             unsigned PathSize,
2125                                             bool HasFPFeatures) {
2126   void *Buffer =
2127       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2128           PathSize, HasFPFeatures));
2129   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2130 }
2131 
2132 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2133 /// corresponds to, e.g. "<<=".
2134 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2135   switch (Op) {
2136 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2137 #include "clang/AST/OperationKinds.def"
2138   }
2139   llvm_unreachable("Invalid OpCode!");
2140 }
2141 
2142 BinaryOperatorKind
2143 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2144   switch (OO) {
2145   default: llvm_unreachable("Not an overloadable binary operator");
2146   case OO_Plus: return BO_Add;
2147   case OO_Minus: return BO_Sub;
2148   case OO_Star: return BO_Mul;
2149   case OO_Slash: return BO_Div;
2150   case OO_Percent: return BO_Rem;
2151   case OO_Caret: return BO_Xor;
2152   case OO_Amp: return BO_And;
2153   case OO_Pipe: return BO_Or;
2154   case OO_Equal: return BO_Assign;
2155   case OO_Spaceship: return BO_Cmp;
2156   case OO_Less: return BO_LT;
2157   case OO_Greater: return BO_GT;
2158   case OO_PlusEqual: return BO_AddAssign;
2159   case OO_MinusEqual: return BO_SubAssign;
2160   case OO_StarEqual: return BO_MulAssign;
2161   case OO_SlashEqual: return BO_DivAssign;
2162   case OO_PercentEqual: return BO_RemAssign;
2163   case OO_CaretEqual: return BO_XorAssign;
2164   case OO_AmpEqual: return BO_AndAssign;
2165   case OO_PipeEqual: return BO_OrAssign;
2166   case OO_LessLess: return BO_Shl;
2167   case OO_GreaterGreater: return BO_Shr;
2168   case OO_LessLessEqual: return BO_ShlAssign;
2169   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2170   case OO_EqualEqual: return BO_EQ;
2171   case OO_ExclaimEqual: return BO_NE;
2172   case OO_LessEqual: return BO_LE;
2173   case OO_GreaterEqual: return BO_GE;
2174   case OO_AmpAmp: return BO_LAnd;
2175   case OO_PipePipe: return BO_LOr;
2176   case OO_Comma: return BO_Comma;
2177   case OO_ArrowStar: return BO_PtrMemI;
2178   }
2179 }
2180 
2181 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2182   static const OverloadedOperatorKind OverOps[] = {
2183     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2184     OO_Star, OO_Slash, OO_Percent,
2185     OO_Plus, OO_Minus,
2186     OO_LessLess, OO_GreaterGreater,
2187     OO_Spaceship,
2188     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2189     OO_EqualEqual, OO_ExclaimEqual,
2190     OO_Amp,
2191     OO_Caret,
2192     OO_Pipe,
2193     OO_AmpAmp,
2194     OO_PipePipe,
2195     OO_Equal, OO_StarEqual,
2196     OO_SlashEqual, OO_PercentEqual,
2197     OO_PlusEqual, OO_MinusEqual,
2198     OO_LessLessEqual, OO_GreaterGreaterEqual,
2199     OO_AmpEqual, OO_CaretEqual,
2200     OO_PipeEqual,
2201     OO_Comma
2202   };
2203   return OverOps[Opc];
2204 }
2205 
2206 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2207                                                       Opcode Opc,
2208                                                       const Expr *LHS,
2209                                                       const Expr *RHS) {
2210   if (Opc != BO_Add)
2211     return false;
2212 
2213   // Check that we have one pointer and one integer operand.
2214   const Expr *PExp;
2215   if (LHS->getType()->isPointerType()) {
2216     if (!RHS->getType()->isIntegerType())
2217       return false;
2218     PExp = LHS;
2219   } else if (RHS->getType()->isPointerType()) {
2220     if (!LHS->getType()->isIntegerType())
2221       return false;
2222     PExp = RHS;
2223   } else {
2224     return false;
2225   }
2226 
2227   // Check that the pointer is a nullptr.
2228   if (!PExp->IgnoreParenCasts()
2229           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2230     return false;
2231 
2232   // Check that the pointee type is char-sized.
2233   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2234   if (!PTy || !PTy->getPointeeType()->isCharType())
2235     return false;
2236 
2237   return true;
2238 }
2239 
2240 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind,
2241                              QualType ResultTy, SourceLocation BLoc,
2242                              SourceLocation RParenLoc,
2243                              DeclContext *ParentContext)
2244     : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2245       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2246   SourceLocExprBits.Kind = llvm::to_underlying(Kind);
2247   // In dependent contexts, function names may change.
2248   setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext()
2249                     ? ExprDependence::Value
2250                     : ExprDependence::None);
2251 }
2252 
2253 StringRef SourceLocExpr::getBuiltinStr() const {
2254   switch (getIdentKind()) {
2255   case SourceLocIdentKind::File:
2256     return "__builtin_FILE";
2257   case SourceLocIdentKind::FileName:
2258     return "__builtin_FILE_NAME";
2259   case SourceLocIdentKind::Function:
2260     return "__builtin_FUNCTION";
2261   case SourceLocIdentKind::FuncSig:
2262     return "__builtin_FUNCSIG";
2263   case SourceLocIdentKind::Line:
2264     return "__builtin_LINE";
2265   case SourceLocIdentKind::Column:
2266     return "__builtin_COLUMN";
2267   case SourceLocIdentKind::SourceLocStruct:
2268     return "__builtin_source_location";
2269   }
2270   llvm_unreachable("unexpected IdentKind!");
2271 }
2272 
2273 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2274                                          const Expr *DefaultExpr) const {
2275   SourceLocation Loc;
2276   const DeclContext *Context;
2277 
2278   if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) {
2279     Loc = DIE->getUsedLocation();
2280     Context = DIE->getUsedContext();
2281   } else if (const auto *DAE =
2282                  dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) {
2283     Loc = DAE->getUsedLocation();
2284     Context = DAE->getUsedContext();
2285   } else {
2286     Loc = getLocation();
2287     Context = getParentContext();
2288   }
2289 
2290   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2291       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2292 
2293   auto MakeStringLiteral = [&](StringRef Tmp) {
2294     using LValuePathEntry = APValue::LValuePathEntry;
2295     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2296     // Decay the string to a pointer to the first character.
2297     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2298     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2299   };
2300 
2301   switch (getIdentKind()) {
2302   case SourceLocIdentKind::FileName: {
2303     // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2304     // the last part of __builtin_FILE().
2305     SmallString<256> FileName;
2306     clang::Preprocessor::processPathToFileName(
2307         FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo());
2308     return MakeStringLiteral(FileName);
2309   }
2310   case SourceLocIdentKind::File: {
2311     SmallString<256> Path(PLoc.getFilename());
2312     clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2313                                                  Ctx.getTargetInfo());
2314     return MakeStringLiteral(Path);
2315   }
2316   case SourceLocIdentKind::Function:
2317   case SourceLocIdentKind::FuncSig: {
2318     const auto *CurDecl = dyn_cast<Decl>(Context);
2319     const auto Kind = getIdentKind() == SourceLocIdentKind::Function
2320                           ? PredefinedIdentKind::Function
2321                           : PredefinedIdentKind::FuncSig;
2322     return MakeStringLiteral(
2323         CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string(""));
2324   }
2325   case SourceLocIdentKind::Line:
2326     return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy));
2327   case SourceLocIdentKind::Column:
2328     return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy));
2329   case SourceLocIdentKind::SourceLocStruct: {
2330     // Fill in a std::source_location::__impl structure, by creating an
2331     // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2332     // that.
2333     const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2334     assert(ImplDecl);
2335 
2336     // Construct an APValue for the __impl struct, and get or create a Decl
2337     // corresponding to that. Note that we've already verified that the shape of
2338     // the ImplDecl type is as expected.
2339 
2340     APValue Value(APValue::UninitStruct(), 0, 4);
2341     for (const FieldDecl *F : ImplDecl->fields()) {
2342       StringRef Name = F->getName();
2343       if (Name == "_M_file_name") {
2344         SmallString<256> Path(PLoc.getFilename());
2345         clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2346                                                      Ctx.getTargetInfo());
2347         Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2348       } else if (Name == "_M_function_name") {
2349         // Note: this emits the PrettyFunction name -- different than what
2350         // __builtin_FUNCTION() above returns!
2351         const auto *CurDecl = dyn_cast<Decl>(Context);
2352         Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2353             CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2354                 ? StringRef(PredefinedExpr::ComputeName(
2355                       PredefinedIdentKind::PrettyFunction, CurDecl))
2356                 : "");
2357       } else if (Name == "_M_line") {
2358         llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType());
2359         Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2360       } else if (Name == "_M_column") {
2361         llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType());
2362         Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2363       }
2364     }
2365 
2366     UnnamedGlobalConstantDecl *GV =
2367         Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2368 
2369     return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2370                    false);
2371   }
2372   }
2373   llvm_unreachable("unhandled case");
2374 }
2375 
2376 EmbedExpr::EmbedExpr(const ASTContext &Ctx, SourceLocation Loc,
2377                      EmbedDataStorage *Data, unsigned Begin,
2378                      unsigned NumOfElements)
2379     : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary),
2380       EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin),
2381       NumOfElements(NumOfElements) {
2382   setDependence(ExprDependence::None);
2383   FakeChildNode = IntegerLiteral::Create(
2384       Ctx, llvm::APInt::getZero(Ctx.getTypeSize(getType())), getType(), Loc);
2385 }
2386 
2387 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2388                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2389     : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2390       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2391       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2392   sawArrayRangeDesignator(false);
2393   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2394 
2395   setDependence(computeDependence(this));
2396 }
2397 
2398 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2399   if (NumInits > InitExprs.size())
2400     InitExprs.reserve(C, NumInits);
2401 }
2402 
2403 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2404   InitExprs.resize(C, NumInits, nullptr);
2405 }
2406 
2407 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2408   if (Init >= InitExprs.size()) {
2409     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2410     setInit(Init, expr);
2411     return nullptr;
2412   }
2413 
2414   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2415   setInit(Init, expr);
2416   return Result;
2417 }
2418 
2419 void InitListExpr::setArrayFiller(Expr *filler) {
2420   assert(!hasArrayFiller() && "Filler already set!");
2421   ArrayFillerOrUnionFieldInit = filler;
2422   // Fill out any "holes" in the array due to designated initializers.
2423   Expr **inits = getInits();
2424   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2425     if (inits[i] == nullptr)
2426       inits[i] = filler;
2427 }
2428 
2429 bool InitListExpr::isStringLiteralInit() const {
2430   if (getNumInits() != 1)
2431     return false;
2432   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2433   if (!AT || !AT->getElementType()->isIntegerType())
2434     return false;
2435   // It is possible for getInit() to return null.
2436   const Expr *Init = getInit(0);
2437   if (!Init)
2438     return false;
2439   Init = Init->IgnoreParenImpCasts();
2440   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2441 }
2442 
2443 bool InitListExpr::isTransparent() const {
2444   assert(isSemanticForm() && "syntactic form never semantically transparent");
2445 
2446   // A glvalue InitListExpr is always just sugar.
2447   if (isGLValue()) {
2448     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2449     return true;
2450   }
2451 
2452   // Otherwise, we're sugar if and only if we have exactly one initializer that
2453   // is of the same type.
2454   if (getNumInits() != 1 || !getInit(0))
2455     return false;
2456 
2457   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2458   // transparent struct copy.
2459   if (!getInit(0)->isPRValue() && getType()->isRecordType())
2460     return false;
2461 
2462   return getType().getCanonicalType() ==
2463          getInit(0)->getType().getCanonicalType();
2464 }
2465 
2466 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2467   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2468 
2469   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2470     return false;
2471   }
2472 
2473   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2474   return Lit && Lit->getValue() == 0;
2475 }
2476 
2477 SourceLocation InitListExpr::getBeginLoc() const {
2478   if (InitListExpr *SyntacticForm = getSyntacticForm())
2479     return SyntacticForm->getBeginLoc();
2480   SourceLocation Beg = LBraceLoc;
2481   if (Beg.isInvalid()) {
2482     // Find the first non-null initializer.
2483     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2484                                      E = InitExprs.end();
2485       I != E; ++I) {
2486       if (Stmt *S = *I) {
2487         Beg = S->getBeginLoc();
2488         break;
2489       }
2490     }
2491   }
2492   return Beg;
2493 }
2494 
2495 SourceLocation InitListExpr::getEndLoc() const {
2496   if (InitListExpr *SyntacticForm = getSyntacticForm())
2497     return SyntacticForm->getEndLoc();
2498   SourceLocation End = RBraceLoc;
2499   if (End.isInvalid()) {
2500     // Find the first non-null initializer from the end.
2501     for (Stmt *S : llvm::reverse(InitExprs)) {
2502       if (S) {
2503         End = S->getEndLoc();
2504         break;
2505       }
2506     }
2507   }
2508   return End;
2509 }
2510 
2511 /// getFunctionType - Return the underlying function type for this block.
2512 ///
2513 const FunctionProtoType *BlockExpr::getFunctionType() const {
2514   // The block pointer is never sugared, but the function type might be.
2515   return cast<BlockPointerType>(getType())
2516            ->getPointeeType()->castAs<FunctionProtoType>();
2517 }
2518 
2519 SourceLocation BlockExpr::getCaretLocation() const {
2520   return TheBlock->getCaretLocation();
2521 }
2522 const Stmt *BlockExpr::getBody() const {
2523   return TheBlock->getBody();
2524 }
2525 Stmt *BlockExpr::getBody() {
2526   return TheBlock->getBody();
2527 }
2528 
2529 
2530 //===----------------------------------------------------------------------===//
2531 // Generic Expression Routines
2532 //===----------------------------------------------------------------------===//
2533 
2534 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2535   // In C++11, discarded-value expressions of a certain form are special,
2536   // according to [expr]p10:
2537   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2538   //   expression is a glvalue of volatile-qualified type and it has
2539   //   one of the following forms:
2540   if (!isGLValue() || !getType().isVolatileQualified())
2541     return false;
2542 
2543   const Expr *E = IgnoreParens();
2544 
2545   //   - id-expression (5.1.1),
2546   if (isa<DeclRefExpr>(E))
2547     return true;
2548 
2549   //   - subscripting (5.2.1),
2550   if (isa<ArraySubscriptExpr>(E))
2551     return true;
2552 
2553   //   - class member access (5.2.5),
2554   if (isa<MemberExpr>(E))
2555     return true;
2556 
2557   //   - indirection (5.3.1),
2558   if (auto *UO = dyn_cast<UnaryOperator>(E))
2559     if (UO->getOpcode() == UO_Deref)
2560       return true;
2561 
2562   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2563     //   - pointer-to-member operation (5.5),
2564     if (BO->isPtrMemOp())
2565       return true;
2566 
2567     //   - comma expression (5.18) where the right operand is one of the above.
2568     if (BO->getOpcode() == BO_Comma)
2569       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2570   }
2571 
2572   //   - conditional expression (5.16) where both the second and the third
2573   //     operands are one of the above, or
2574   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2575     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2576            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2577   // The related edge case of "*x ?: *x".
2578   if (auto *BCO =
2579           dyn_cast<BinaryConditionalOperator>(E)) {
2580     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2581       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2582              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2583   }
2584 
2585   // Objective-C++ extensions to the rule.
2586   if (isa<ObjCIvarRefExpr>(E))
2587     return true;
2588   if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2589     if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2590       return true;
2591   }
2592 
2593   return false;
2594 }
2595 
2596 /// isUnusedResultAWarning - Return true if this immediate expression should
2597 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2598 /// with location to warn on and the source range[s] to report with the
2599 /// warning.
2600 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2601                                   SourceRange &R1, SourceRange &R2,
2602                                   ASTContext &Ctx) const {
2603   // Don't warn if the expr is type dependent. The type could end up
2604   // instantiating to void.
2605   if (isTypeDependent())
2606     return false;
2607 
2608   switch (getStmtClass()) {
2609   default:
2610     if (getType()->isVoidType())
2611       return false;
2612     WarnE = this;
2613     Loc = getExprLoc();
2614     R1 = getSourceRange();
2615     return true;
2616   case ParenExprClass:
2617     return cast<ParenExpr>(this)->getSubExpr()->
2618       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2619   case GenericSelectionExprClass:
2620     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2621       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2622   case CoawaitExprClass:
2623   case CoyieldExprClass:
2624     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2625       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2626   case ChooseExprClass:
2627     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2628       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2629   case UnaryOperatorClass: {
2630     const UnaryOperator *UO = cast<UnaryOperator>(this);
2631 
2632     switch (UO->getOpcode()) {
2633     case UO_Plus:
2634     case UO_Minus:
2635     case UO_AddrOf:
2636     case UO_Not:
2637     case UO_LNot:
2638     case UO_Deref:
2639       break;
2640     case UO_Coawait:
2641       // This is just the 'operator co_await' call inside the guts of a
2642       // dependent co_await call.
2643     case UO_PostInc:
2644     case UO_PostDec:
2645     case UO_PreInc:
2646     case UO_PreDec:                 // ++/--
2647       return false;  // Not a warning.
2648     case UO_Real:
2649     case UO_Imag:
2650       // accessing a piece of a volatile complex is a side-effect.
2651       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2652           .isVolatileQualified())
2653         return false;
2654       break;
2655     case UO_Extension:
2656       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2657     }
2658     WarnE = this;
2659     Loc = UO->getOperatorLoc();
2660     R1 = UO->getSubExpr()->getSourceRange();
2661     return true;
2662   }
2663   case BinaryOperatorClass: {
2664     const BinaryOperator *BO = cast<BinaryOperator>(this);
2665     switch (BO->getOpcode()) {
2666       default:
2667         break;
2668       // Consider the RHS of comma for side effects. LHS was checked by
2669       // Sema::CheckCommaOperands.
2670       case BO_Comma:
2671         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2672         // lvalue-ness) of an assignment written in a macro.
2673         if (IntegerLiteral *IE =
2674               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2675           if (IE->getValue() == 0)
2676             return false;
2677         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2678       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2679       case BO_LAnd:
2680       case BO_LOr:
2681         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2682             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2683           return false;
2684         break;
2685     }
2686     if (BO->isAssignmentOp())
2687       return false;
2688     WarnE = this;
2689     Loc = BO->getOperatorLoc();
2690     R1 = BO->getLHS()->getSourceRange();
2691     R2 = BO->getRHS()->getSourceRange();
2692     return true;
2693   }
2694   case CompoundAssignOperatorClass:
2695   case VAArgExprClass:
2696   case AtomicExprClass:
2697     return false;
2698 
2699   case ConditionalOperatorClass: {
2700     // If only one of the LHS or RHS is a warning, the operator might
2701     // be being used for control flow. Only warn if both the LHS and
2702     // RHS are warnings.
2703     const auto *Exp = cast<ConditionalOperator>(this);
2704     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2705            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2706   }
2707   case BinaryConditionalOperatorClass: {
2708     const auto *Exp = cast<BinaryConditionalOperator>(this);
2709     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2710   }
2711 
2712   case MemberExprClass:
2713     WarnE = this;
2714     Loc = cast<MemberExpr>(this)->getMemberLoc();
2715     R1 = SourceRange(Loc, Loc);
2716     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2717     return true;
2718 
2719   case ArraySubscriptExprClass:
2720     WarnE = this;
2721     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2722     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2723     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2724     return true;
2725 
2726   case CXXOperatorCallExprClass: {
2727     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2728     // overloads as there is no reasonable way to define these such that they
2729     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2730     // warning: operators == and != are commonly typo'ed, and so warning on them
2731     // provides additional value as well. If this list is updated,
2732     // DiagnoseUnusedComparison should be as well.
2733     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2734     switch (Op->getOperator()) {
2735     default:
2736       break;
2737     case OO_EqualEqual:
2738     case OO_ExclaimEqual:
2739     case OO_Less:
2740     case OO_Greater:
2741     case OO_GreaterEqual:
2742     case OO_LessEqual:
2743       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2744           Op->getCallReturnType(Ctx)->isVoidType())
2745         break;
2746       WarnE = this;
2747       Loc = Op->getOperatorLoc();
2748       R1 = Op->getSourceRange();
2749       return true;
2750     }
2751 
2752     // Fallthrough for generic call handling.
2753     [[fallthrough]];
2754   }
2755   case CallExprClass:
2756   case CXXMemberCallExprClass:
2757   case UserDefinedLiteralClass: {
2758     // If this is a direct call, get the callee.
2759     const CallExpr *CE = cast<CallExpr>(this);
2760     if (const Decl *FD = CE->getCalleeDecl()) {
2761       // If the callee has attribute pure, const, or warn_unused_result, warn
2762       // about it. void foo() { strlen("bar"); } should warn.
2763       //
2764       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2765       // updated to match for QoI.
2766       if (CE->hasUnusedResultAttr(Ctx) ||
2767           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2768         WarnE = this;
2769         Loc = CE->getCallee()->getBeginLoc();
2770         R1 = CE->getCallee()->getSourceRange();
2771 
2772         if (unsigned NumArgs = CE->getNumArgs())
2773           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2774                            CE->getArg(NumArgs - 1)->getEndLoc());
2775         return true;
2776       }
2777     }
2778     return false;
2779   }
2780 
2781   // If we don't know precisely what we're looking at, let's not warn.
2782   case UnresolvedLookupExprClass:
2783   case CXXUnresolvedConstructExprClass:
2784   case RecoveryExprClass:
2785     return false;
2786 
2787   case CXXTemporaryObjectExprClass:
2788   case CXXConstructExprClass: {
2789     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2790       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2791       if (Type->hasAttr<WarnUnusedAttr>() ||
2792           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2793         WarnE = this;
2794         Loc = getBeginLoc();
2795         R1 = getSourceRange();
2796         return true;
2797       }
2798     }
2799 
2800     const auto *CE = cast<CXXConstructExpr>(this);
2801     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2802       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2803       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2804         WarnE = this;
2805         Loc = getBeginLoc();
2806         R1 = getSourceRange();
2807 
2808         if (unsigned NumArgs = CE->getNumArgs())
2809           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2810                            CE->getArg(NumArgs - 1)->getEndLoc());
2811         return true;
2812       }
2813     }
2814 
2815     return false;
2816   }
2817 
2818   case ObjCMessageExprClass: {
2819     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2820     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2821         ME->isInstanceMessage() &&
2822         !ME->getType()->isVoidType() &&
2823         ME->getMethodFamily() == OMF_init) {
2824       WarnE = this;
2825       Loc = getExprLoc();
2826       R1 = ME->getSourceRange();
2827       return true;
2828     }
2829 
2830     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2831       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2832         WarnE = this;
2833         Loc = getExprLoc();
2834         return true;
2835       }
2836 
2837     return false;
2838   }
2839 
2840   case ObjCPropertyRefExprClass:
2841   case ObjCSubscriptRefExprClass:
2842     WarnE = this;
2843     Loc = getExprLoc();
2844     R1 = getSourceRange();
2845     return true;
2846 
2847   case PseudoObjectExprClass: {
2848     const auto *POE = cast<PseudoObjectExpr>(this);
2849 
2850     // For some syntactic forms, we should always warn.
2851     if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2852             POE->getSyntacticForm())) {
2853       WarnE = this;
2854       Loc = getExprLoc();
2855       R1 = getSourceRange();
2856       return true;
2857     }
2858 
2859     // For others, we should never warn.
2860     if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2861       if (BO->isAssignmentOp())
2862         return false;
2863     if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2864       if (UO->isIncrementDecrementOp())
2865         return false;
2866 
2867     // Otherwise, warn if the result expression would warn.
2868     const Expr *Result = POE->getResultExpr();
2869     return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2870   }
2871 
2872   case StmtExprClass: {
2873     // Statement exprs don't logically have side effects themselves, but are
2874     // sometimes used in macros in ways that give them a type that is unused.
2875     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2876     // however, if the result of the stmt expr is dead, we don't want to emit a
2877     // warning.
2878     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2879     if (!CS->body_empty()) {
2880       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2881         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2882       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2883         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2884           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2885     }
2886 
2887     if (getType()->isVoidType())
2888       return false;
2889     WarnE = this;
2890     Loc = cast<StmtExpr>(this)->getLParenLoc();
2891     R1 = getSourceRange();
2892     return true;
2893   }
2894   case CXXFunctionalCastExprClass:
2895   case CStyleCastExprClass: {
2896     // Ignore an explicit cast to void, except in C++98 if the operand is a
2897     // volatile glvalue for which we would trigger an implicit read in any
2898     // other language mode. (Such an implicit read always happens as part of
2899     // the lvalue conversion in C, and happens in C++ for expressions of all
2900     // forms where it seems likely the user intended to trigger a volatile
2901     // load.)
2902     const CastExpr *CE = cast<CastExpr>(this);
2903     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2904     if (CE->getCastKind() == CK_ToVoid) {
2905       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2906           SubE->isReadIfDiscardedInCPlusPlus11()) {
2907         // Suppress the "unused value" warning for idiomatic usage of
2908         // '(void)var;' used to suppress "unused variable" warnings.
2909         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2910           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2911             if (!VD->isExternallyVisible())
2912               return false;
2913 
2914         // The lvalue-to-rvalue conversion would have no effect for an array.
2915         // It's implausible that the programmer expected this to result in a
2916         // volatile array load, so don't warn.
2917         if (SubE->getType()->isArrayType())
2918           return false;
2919 
2920         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2921       }
2922       return false;
2923     }
2924 
2925     // If this is a cast to a constructor conversion, check the operand.
2926     // Otherwise, the result of the cast is unused.
2927     if (CE->getCastKind() == CK_ConstructorConversion)
2928       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2929     if (CE->getCastKind() == CK_Dependent)
2930       return false;
2931 
2932     WarnE = this;
2933     if (const CXXFunctionalCastExpr *CXXCE =
2934             dyn_cast<CXXFunctionalCastExpr>(this)) {
2935       Loc = CXXCE->getBeginLoc();
2936       R1 = CXXCE->getSubExpr()->getSourceRange();
2937     } else {
2938       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2939       Loc = CStyleCE->getLParenLoc();
2940       R1 = CStyleCE->getSubExpr()->getSourceRange();
2941     }
2942     return true;
2943   }
2944   case ImplicitCastExprClass: {
2945     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2946 
2947     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2948     if (ICE->getCastKind() == CK_LValueToRValue &&
2949         ICE->getSubExpr()->getType().isVolatileQualified())
2950       return false;
2951 
2952     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2953   }
2954   case CXXDefaultArgExprClass:
2955     return (cast<CXXDefaultArgExpr>(this)
2956             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2957   case CXXDefaultInitExprClass:
2958     return (cast<CXXDefaultInitExpr>(this)
2959             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2960 
2961   case CXXNewExprClass:
2962     // FIXME: In theory, there might be new expressions that don't have side
2963     // effects (e.g. a placement new with an uninitialized POD).
2964   case CXXDeleteExprClass:
2965     return false;
2966   case MaterializeTemporaryExprClass:
2967     return cast<MaterializeTemporaryExpr>(this)
2968         ->getSubExpr()
2969         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2970   case CXXBindTemporaryExprClass:
2971     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2972                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2973   case ExprWithCleanupsClass:
2974     return cast<ExprWithCleanups>(this)->getSubExpr()
2975                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2976   }
2977 }
2978 
2979 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2980 /// returns true, if it is; false otherwise.
2981 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2982   const Expr *E = IgnoreParens();
2983   switch (E->getStmtClass()) {
2984   default:
2985     return false;
2986   case ObjCIvarRefExprClass:
2987     return true;
2988   case Expr::UnaryOperatorClass:
2989     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2990   case ImplicitCastExprClass:
2991     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2992   case MaterializeTemporaryExprClass:
2993     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2994         Ctx);
2995   case CStyleCastExprClass:
2996     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2997   case DeclRefExprClass: {
2998     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2999 
3000     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3001       if (VD->hasGlobalStorage())
3002         return true;
3003       QualType T = VD->getType();
3004       // dereferencing to a  pointer is always a gc'able candidate,
3005       // unless it is __weak.
3006       return T->isPointerType() &&
3007              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
3008     }
3009     return false;
3010   }
3011   case MemberExprClass: {
3012     const MemberExpr *M = cast<MemberExpr>(E);
3013     return M->getBase()->isOBJCGCCandidate(Ctx);
3014   }
3015   case ArraySubscriptExprClass:
3016     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
3017   }
3018 }
3019 
3020 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
3021   if (isTypeDependent())
3022     return false;
3023   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
3024 }
3025 
3026 QualType Expr::findBoundMemberType(const Expr *expr) {
3027   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
3028 
3029   // Bound member expressions are always one of these possibilities:
3030   //   x->m      x.m      x->*y      x.*y
3031   // (possibly parenthesized)
3032 
3033   expr = expr->IgnoreParens();
3034   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
3035     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3036     return mem->getMemberDecl()->getType();
3037   }
3038 
3039   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3040     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3041                       ->getPointeeType();
3042     assert(type->isFunctionType());
3043     return type;
3044   }
3045 
3046   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3047   return QualType();
3048 }
3049 
3050 Expr *Expr::IgnoreImpCasts() {
3051   return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
3052 }
3053 
3054 Expr *Expr::IgnoreCasts() {
3055   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
3056 }
3057 
3058 Expr *Expr::IgnoreImplicit() {
3059   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
3060 }
3061 
3062 Expr *Expr::IgnoreImplicitAsWritten() {
3063   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
3064 }
3065 
3066 Expr *Expr::IgnoreParens() {
3067   return IgnoreExprNodes(this, IgnoreParensSingleStep);
3068 }
3069 
3070 Expr *Expr::IgnoreParenImpCasts() {
3071   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3072                          IgnoreImplicitCastsExtraSingleStep);
3073 }
3074 
3075 Expr *Expr::IgnoreParenCasts() {
3076   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
3077 }
3078 
3079 Expr *Expr::IgnoreConversionOperatorSingleStep() {
3080   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3081     if (isa_and_nonnull<CXXConversionDecl>(MCE->getMethodDecl()))
3082       return MCE->getImplicitObjectArgument();
3083   }
3084   return this;
3085 }
3086 
3087 Expr *Expr::IgnoreParenLValueCasts() {
3088   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3089                          IgnoreLValueCastsSingleStep);
3090 }
3091 
3092 Expr *Expr::IgnoreParenBaseCasts() {
3093   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3094                          IgnoreBaseCastsSingleStep);
3095 }
3096 
3097 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3098   auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3099     if (auto *CE = dyn_cast<CastExpr>(E)) {
3100       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3101       // ptr<->int casts of the same width. We also ignore all identity casts.
3102       Expr *SubExpr = CE->getSubExpr();
3103       bool IsIdentityCast =
3104           Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3105       bool IsSameWidthCast = (E->getType()->isPointerType() ||
3106                               E->getType()->isIntegralType(Ctx)) &&
3107                              (SubExpr->getType()->isPointerType() ||
3108                               SubExpr->getType()->isIntegralType(Ctx)) &&
3109                              (Ctx.getTypeSize(E->getType()) ==
3110                               Ctx.getTypeSize(SubExpr->getType()));
3111 
3112       if (IsIdentityCast || IsSameWidthCast)
3113         return SubExpr;
3114     } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3115       return NTTP->getReplacement();
3116 
3117     return E;
3118   };
3119   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3120                          IgnoreNoopCastsSingleStep);
3121 }
3122 
3123 Expr *Expr::IgnoreUnlessSpelledInSource() {
3124   auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3125     if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3126       auto *SE = Cast->getSubExpr();
3127       if (SE->getSourceRange() == E->getSourceRange())
3128         return SE;
3129     }
3130 
3131     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3132       auto NumArgs = C->getNumArgs();
3133       if (NumArgs == 1 ||
3134           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3135         Expr *A = C->getArg(0);
3136         if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3137           return A;
3138       }
3139     }
3140     return E;
3141   };
3142   auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3143     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3144       Expr *ExprNode = C->getImplicitObjectArgument();
3145       if (ExprNode->getSourceRange() == E->getSourceRange()) {
3146         return ExprNode;
3147       }
3148       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3149         if (PE->getSourceRange() == C->getSourceRange()) {
3150           return cast<Expr>(PE);
3151         }
3152       }
3153       ExprNode = ExprNode->IgnoreParenImpCasts();
3154       if (ExprNode->getSourceRange() == E->getSourceRange())
3155         return ExprNode;
3156     }
3157     return E;
3158   };
3159   return IgnoreExprNodes(
3160       this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3161       IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3162       IgnoreImplicitMemberCallSingleStep);
3163 }
3164 
3165 bool Expr::isDefaultArgument() const {
3166   const Expr *E = this;
3167   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3168     E = M->getSubExpr();
3169 
3170   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3171     E = ICE->getSubExprAsWritten();
3172 
3173   return isa<CXXDefaultArgExpr>(E);
3174 }
3175 
3176 /// Skip over any no-op casts and any temporary-binding
3177 /// expressions.
3178 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3179   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3180     E = M->getSubExpr();
3181 
3182   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3183     if (ICE->getCastKind() == CK_NoOp)
3184       E = ICE->getSubExpr();
3185     else
3186       break;
3187   }
3188 
3189   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3190     E = BE->getSubExpr();
3191 
3192   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3193     if (ICE->getCastKind() == CK_NoOp)
3194       E = ICE->getSubExpr();
3195     else
3196       break;
3197   }
3198 
3199   return E->IgnoreParens();
3200 }
3201 
3202 /// isTemporaryObject - Determines if this expression produces a
3203 /// temporary of the given class type.
3204 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3205   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3206     return false;
3207 
3208   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3209 
3210   // Temporaries are by definition pr-values of class type.
3211   if (!E->Classify(C).isPRValue()) {
3212     // In this context, property reference is a message call and is pr-value.
3213     if (!isa<ObjCPropertyRefExpr>(E))
3214       return false;
3215   }
3216 
3217   // Black-list a few cases which yield pr-values of class type that don't
3218   // refer to temporaries of that type:
3219 
3220   // - implicit derived-to-base conversions
3221   if (isa<ImplicitCastExpr>(E)) {
3222     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3223     case CK_DerivedToBase:
3224     case CK_UncheckedDerivedToBase:
3225       return false;
3226     default:
3227       break;
3228     }
3229   }
3230 
3231   // - member expressions (all)
3232   if (isa<MemberExpr>(E))
3233     return false;
3234 
3235   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3236     if (BO->isPtrMemOp())
3237       return false;
3238 
3239   // - opaque values (all)
3240   if (isa<OpaqueValueExpr>(E))
3241     return false;
3242 
3243   return true;
3244 }
3245 
3246 bool Expr::isImplicitCXXThis() const {
3247   const Expr *E = this;
3248 
3249   // Strip away parentheses and casts we don't care about.
3250   while (true) {
3251     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3252       E = Paren->getSubExpr();
3253       continue;
3254     }
3255 
3256     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3257       if (ICE->getCastKind() == CK_NoOp ||
3258           ICE->getCastKind() == CK_LValueToRValue ||
3259           ICE->getCastKind() == CK_DerivedToBase ||
3260           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3261         E = ICE->getSubExpr();
3262         continue;
3263       }
3264     }
3265 
3266     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3267       if (UnOp->getOpcode() == UO_Extension) {
3268         E = UnOp->getSubExpr();
3269         continue;
3270       }
3271     }
3272 
3273     if (const MaterializeTemporaryExpr *M
3274                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3275       E = M->getSubExpr();
3276       continue;
3277     }
3278 
3279     break;
3280   }
3281 
3282   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3283     return This->isImplicit();
3284 
3285   return false;
3286 }
3287 
3288 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3289 /// in Exprs is type-dependent.
3290 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3291   for (unsigned I = 0; I < Exprs.size(); ++I)
3292     if (Exprs[I]->isTypeDependent())
3293       return true;
3294 
3295   return false;
3296 }
3297 
3298 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3299                                  const Expr **Culprit) const {
3300   assert(!isValueDependent() &&
3301          "Expression evaluator can't be called on a dependent expression.");
3302 
3303   // This function is attempting whether an expression is an initializer
3304   // which can be evaluated at compile-time. It very closely parallels
3305   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3306   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3307   // to isEvaluatable most of the time.
3308   //
3309   // If we ever capture reference-binding directly in the AST, we can
3310   // kill the second parameter.
3311 
3312   if (IsForRef) {
3313     if (auto *EWC = dyn_cast<ExprWithCleanups>(this))
3314       return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit);
3315     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this))
3316       return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3317     EvalResult Result;
3318     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3319       return true;
3320     if (Culprit)
3321       *Culprit = this;
3322     return false;
3323   }
3324 
3325   switch (getStmtClass()) {
3326   default: break;
3327   case Stmt::ExprWithCleanupsClass:
3328     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3329         Ctx, IsForRef, Culprit);
3330   case StringLiteralClass:
3331   case ObjCEncodeExprClass:
3332     return true;
3333   case CXXTemporaryObjectExprClass:
3334   case CXXConstructExprClass: {
3335     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3336 
3337     if (CE->getConstructor()->isTrivial() &&
3338         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3339       // Trivial default constructor
3340       if (!CE->getNumArgs()) return true;
3341 
3342       // Trivial copy constructor
3343       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3344       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3345     }
3346 
3347     break;
3348   }
3349   case ConstantExprClass: {
3350     // FIXME: We should be able to return "true" here, but it can lead to extra
3351     // error messages. E.g. in Sema/array-init.c.
3352     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3353     return Exp->isConstantInitializer(Ctx, false, Culprit);
3354   }
3355   case CompoundLiteralExprClass: {
3356     // This handles gcc's extension that allows global initializers like
3357     // "struct x {int x;} x = (struct x) {};".
3358     // FIXME: This accepts other cases it shouldn't!
3359     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3360     return Exp->isConstantInitializer(Ctx, false, Culprit);
3361   }
3362   case DesignatedInitUpdateExprClass: {
3363     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3364     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3365            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3366   }
3367   case InitListExprClass: {
3368     // C++ [dcl.init.aggr]p2:
3369     //   The elements of an aggregate are:
3370     //   - for an array, the array elements in increasing subscript order, or
3371     //   - for a class, the direct base classes in declaration order, followed
3372     //     by the direct non-static data members (11.4) that are not members of
3373     //     an anonymous union, in declaration order.
3374     const InitListExpr *ILE = cast<InitListExpr>(this);
3375     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3376     if (ILE->getType()->isArrayType()) {
3377       unsigned numInits = ILE->getNumInits();
3378       for (unsigned i = 0; i < numInits; i++) {
3379         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3380           return false;
3381       }
3382       return true;
3383     }
3384 
3385     if (ILE->getType()->isRecordType()) {
3386       unsigned ElementNo = 0;
3387       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3388 
3389       // In C++17, bases were added to the list of members used by aggregate
3390       // initialization.
3391       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3392         for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) {
3393           if (ElementNo < ILE->getNumInits()) {
3394             const Expr *Elt = ILE->getInit(ElementNo++);
3395             if (!Elt->isConstantInitializer(Ctx, false, Culprit))
3396               return false;
3397           }
3398         }
3399       }
3400 
3401       for (const auto *Field : RD->fields()) {
3402         // If this is a union, skip all the fields that aren't being initialized.
3403         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3404           continue;
3405 
3406         // Don't emit anonymous bitfields, they just affect layout.
3407         if (Field->isUnnamedBitField())
3408           continue;
3409 
3410         if (ElementNo < ILE->getNumInits()) {
3411           const Expr *Elt = ILE->getInit(ElementNo++);
3412           if (Field->isBitField()) {
3413             // Bitfields have to evaluate to an integer.
3414             EvalResult Result;
3415             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3416               if (Culprit)
3417                 *Culprit = Elt;
3418               return false;
3419             }
3420           } else {
3421             bool RefType = Field->getType()->isReferenceType();
3422             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3423               return false;
3424           }
3425         }
3426       }
3427       return true;
3428     }
3429 
3430     break;
3431   }
3432   case ImplicitValueInitExprClass:
3433   case NoInitExprClass:
3434     return true;
3435   case ParenExprClass:
3436     return cast<ParenExpr>(this)->getSubExpr()
3437       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3438   case GenericSelectionExprClass:
3439     return cast<GenericSelectionExpr>(this)->getResultExpr()
3440       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3441   case ChooseExprClass:
3442     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3443       if (Culprit)
3444         *Culprit = this;
3445       return false;
3446     }
3447     return cast<ChooseExpr>(this)->getChosenSubExpr()
3448       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3449   case UnaryOperatorClass: {
3450     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3451     if (Exp->getOpcode() == UO_Extension)
3452       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3453     break;
3454   }
3455   case PackIndexingExprClass: {
3456     return cast<PackIndexingExpr>(this)
3457         ->getSelectedExpr()
3458         ->isConstantInitializer(Ctx, false, Culprit);
3459   }
3460   case CXXFunctionalCastExprClass:
3461   case CXXStaticCastExprClass:
3462   case ImplicitCastExprClass:
3463   case CStyleCastExprClass:
3464   case ObjCBridgedCastExprClass:
3465   case CXXDynamicCastExprClass:
3466   case CXXReinterpretCastExprClass:
3467   case CXXAddrspaceCastExprClass:
3468   case CXXConstCastExprClass: {
3469     const CastExpr *CE = cast<CastExpr>(this);
3470 
3471     // Handle misc casts we want to ignore.
3472     if (CE->getCastKind() == CK_NoOp ||
3473         CE->getCastKind() == CK_LValueToRValue ||
3474         CE->getCastKind() == CK_ToUnion ||
3475         CE->getCastKind() == CK_ConstructorConversion ||
3476         CE->getCastKind() == CK_NonAtomicToAtomic ||
3477         CE->getCastKind() == CK_AtomicToNonAtomic ||
3478         CE->getCastKind() == CK_NullToPointer ||
3479         CE->getCastKind() == CK_IntToOCLSampler)
3480       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3481 
3482     break;
3483   }
3484   case MaterializeTemporaryExprClass:
3485     return cast<MaterializeTemporaryExpr>(this)
3486         ->getSubExpr()
3487         ->isConstantInitializer(Ctx, false, Culprit);
3488 
3489   case SubstNonTypeTemplateParmExprClass:
3490     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3491       ->isConstantInitializer(Ctx, false, Culprit);
3492   case CXXDefaultArgExprClass:
3493     return cast<CXXDefaultArgExpr>(this)->getExpr()
3494       ->isConstantInitializer(Ctx, false, Culprit);
3495   case CXXDefaultInitExprClass:
3496     return cast<CXXDefaultInitExpr>(this)->getExpr()
3497       ->isConstantInitializer(Ctx, false, Culprit);
3498   }
3499   // Allow certain forms of UB in constant initializers: signed integer
3500   // overflow and floating-point division by zero. We'll give a warning on
3501   // these, but they're common enough that we have to accept them.
3502   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3503     return true;
3504   if (Culprit)
3505     *Culprit = this;
3506   return false;
3507 }
3508 
3509 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3510   unsigned BuiltinID = getBuiltinCallee();
3511   if (BuiltinID != Builtin::BI__assume &&
3512       BuiltinID != Builtin::BI__builtin_assume)
3513     return false;
3514 
3515   const Expr* Arg = getArg(0);
3516   bool ArgVal;
3517   return !Arg->isValueDependent() &&
3518          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3519 }
3520 
3521 bool CallExpr::isCallToStdMove() const {
3522   return getBuiltinCallee() == Builtin::BImove;
3523 }
3524 
3525 namespace {
3526   /// Look for any side effects within a Stmt.
3527   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3528     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3529     const bool IncludePossibleEffects;
3530     bool HasSideEffects;
3531 
3532   public:
3533     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3534       : Inherited(Context),
3535         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3536 
3537     bool hasSideEffects() const { return HasSideEffects; }
3538 
3539     void VisitDecl(const Decl *D) {
3540       if (!D)
3541         return;
3542 
3543       // We assume the caller checks subexpressions (eg, the initializer, VLA
3544       // bounds) for side-effects on our behalf.
3545       if (auto *VD = dyn_cast<VarDecl>(D)) {
3546         // Registering a destructor is a side-effect.
3547         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3548             VD->needsDestruction(Context))
3549           HasSideEffects = true;
3550       }
3551     }
3552 
3553     void VisitDeclStmt(const DeclStmt *DS) {
3554       for (auto *D : DS->decls())
3555         VisitDecl(D);
3556       Inherited::VisitDeclStmt(DS);
3557     }
3558 
3559     void VisitExpr(const Expr *E) {
3560       if (!HasSideEffects &&
3561           E->HasSideEffects(Context, IncludePossibleEffects))
3562         HasSideEffects = true;
3563     }
3564   };
3565 }
3566 
3567 bool Expr::HasSideEffects(const ASTContext &Ctx,
3568                           bool IncludePossibleEffects) const {
3569   // In circumstances where we care about definite side effects instead of
3570   // potential side effects, we want to ignore expressions that are part of a
3571   // macro expansion as a potential side effect.
3572   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3573     return false;
3574 
3575   switch (getStmtClass()) {
3576   case NoStmtClass:
3577   #define ABSTRACT_STMT(Type)
3578   #define STMT(Type, Base) case Type##Class:
3579   #define EXPR(Type, Base)
3580   #include "clang/AST/StmtNodes.inc"
3581     llvm_unreachable("unexpected Expr kind");
3582 
3583   case DependentScopeDeclRefExprClass:
3584   case CXXUnresolvedConstructExprClass:
3585   case CXXDependentScopeMemberExprClass:
3586   case UnresolvedLookupExprClass:
3587   case UnresolvedMemberExprClass:
3588   case PackExpansionExprClass:
3589   case SubstNonTypeTemplateParmPackExprClass:
3590   case FunctionParmPackExprClass:
3591   case TypoExprClass:
3592   case RecoveryExprClass:
3593   case CXXFoldExprClass:
3594     // Make a conservative assumption for dependent nodes.
3595     return IncludePossibleEffects;
3596 
3597   case DeclRefExprClass:
3598   case ObjCIvarRefExprClass:
3599   case PredefinedExprClass:
3600   case IntegerLiteralClass:
3601   case FixedPointLiteralClass:
3602   case FloatingLiteralClass:
3603   case ImaginaryLiteralClass:
3604   case StringLiteralClass:
3605   case CharacterLiteralClass:
3606   case OffsetOfExprClass:
3607   case ImplicitValueInitExprClass:
3608   case UnaryExprOrTypeTraitExprClass:
3609   case AddrLabelExprClass:
3610   case GNUNullExprClass:
3611   case ArrayInitIndexExprClass:
3612   case NoInitExprClass:
3613   case CXXBoolLiteralExprClass:
3614   case CXXNullPtrLiteralExprClass:
3615   case CXXThisExprClass:
3616   case CXXScalarValueInitExprClass:
3617   case TypeTraitExprClass:
3618   case ArrayTypeTraitExprClass:
3619   case ExpressionTraitExprClass:
3620   case CXXNoexceptExprClass:
3621   case SizeOfPackExprClass:
3622   case ObjCStringLiteralClass:
3623   case ObjCEncodeExprClass:
3624   case ObjCBoolLiteralExprClass:
3625   case ObjCAvailabilityCheckExprClass:
3626   case CXXUuidofExprClass:
3627   case OpaqueValueExprClass:
3628   case SourceLocExprClass:
3629   case EmbedExprClass:
3630   case ConceptSpecializationExprClass:
3631   case RequiresExprClass:
3632   case SYCLUniqueStableNameExprClass:
3633   case PackIndexingExprClass:
3634     // These never have a side-effect.
3635     return false;
3636 
3637   case ConstantExprClass:
3638     // FIXME: Move this into the "return false;" block above.
3639     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3640         Ctx, IncludePossibleEffects);
3641 
3642   case CallExprClass:
3643   case CXXOperatorCallExprClass:
3644   case CXXMemberCallExprClass:
3645   case CUDAKernelCallExprClass:
3646   case UserDefinedLiteralClass: {
3647     // We don't know a call definitely has side effects, except for calls
3648     // to pure/const functions that definitely don't.
3649     // If the call itself is considered side-effect free, check the operands.
3650     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3651     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3652     if (IsPure || !IncludePossibleEffects)
3653       break;
3654     return true;
3655   }
3656 
3657   case BlockExprClass:
3658   case CXXBindTemporaryExprClass:
3659     if (!IncludePossibleEffects)
3660       break;
3661     return true;
3662 
3663   case MSPropertyRefExprClass:
3664   case MSPropertySubscriptExprClass:
3665   case CompoundAssignOperatorClass:
3666   case VAArgExprClass:
3667   case AtomicExprClass:
3668   case CXXThrowExprClass:
3669   case CXXNewExprClass:
3670   case CXXDeleteExprClass:
3671   case CoawaitExprClass:
3672   case DependentCoawaitExprClass:
3673   case CoyieldExprClass:
3674     // These always have a side-effect.
3675     return true;
3676 
3677   case StmtExprClass: {
3678     // StmtExprs have a side-effect if any substatement does.
3679     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3680     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3681     return Finder.hasSideEffects();
3682   }
3683 
3684   case ExprWithCleanupsClass:
3685     if (IncludePossibleEffects)
3686       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3687         return true;
3688     break;
3689 
3690   case ParenExprClass:
3691   case ArraySubscriptExprClass:
3692   case MatrixSubscriptExprClass:
3693   case ArraySectionExprClass:
3694   case OMPArrayShapingExprClass:
3695   case OMPIteratorExprClass:
3696   case MemberExprClass:
3697   case ConditionalOperatorClass:
3698   case BinaryConditionalOperatorClass:
3699   case CompoundLiteralExprClass:
3700   case ExtVectorElementExprClass:
3701   case DesignatedInitExprClass:
3702   case DesignatedInitUpdateExprClass:
3703   case ArrayInitLoopExprClass:
3704   case ParenListExprClass:
3705   case CXXPseudoDestructorExprClass:
3706   case CXXRewrittenBinaryOperatorClass:
3707   case CXXStdInitializerListExprClass:
3708   case SubstNonTypeTemplateParmExprClass:
3709   case MaterializeTemporaryExprClass:
3710   case ShuffleVectorExprClass:
3711   case ConvertVectorExprClass:
3712   case AsTypeExprClass:
3713   case CXXParenListInitExprClass:
3714     // These have a side-effect if any subexpression does.
3715     break;
3716 
3717   case UnaryOperatorClass:
3718     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3719       return true;
3720     break;
3721 
3722   case BinaryOperatorClass:
3723     if (cast<BinaryOperator>(this)->isAssignmentOp())
3724       return true;
3725     break;
3726 
3727   case InitListExprClass:
3728     // FIXME: The children for an InitListExpr doesn't include the array filler.
3729     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3730       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3731         return true;
3732     break;
3733 
3734   case GenericSelectionExprClass:
3735     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3736         HasSideEffects(Ctx, IncludePossibleEffects);
3737 
3738   case ChooseExprClass:
3739     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3740         Ctx, IncludePossibleEffects);
3741 
3742   case CXXDefaultArgExprClass:
3743     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3744         Ctx, IncludePossibleEffects);
3745 
3746   case CXXDefaultInitExprClass: {
3747     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3748     if (const Expr *E = FD->getInClassInitializer())
3749       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3750     // If we've not yet parsed the initializer, assume it has side-effects.
3751     return true;
3752   }
3753 
3754   case CXXDynamicCastExprClass: {
3755     // A dynamic_cast expression has side-effects if it can throw.
3756     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3757     if (DCE->getTypeAsWritten()->isReferenceType() &&
3758         DCE->getCastKind() == CK_Dynamic)
3759       return true;
3760     }
3761     [[fallthrough]];
3762   case ImplicitCastExprClass:
3763   case CStyleCastExprClass:
3764   case CXXStaticCastExprClass:
3765   case CXXReinterpretCastExprClass:
3766   case CXXConstCastExprClass:
3767   case CXXAddrspaceCastExprClass:
3768   case CXXFunctionalCastExprClass:
3769   case BuiltinBitCastExprClass: {
3770     // While volatile reads are side-effecting in both C and C++, we treat them
3771     // as having possible (not definite) side-effects. This allows idiomatic
3772     // code to behave without warning, such as sizeof(*v) for a volatile-
3773     // qualified pointer.
3774     if (!IncludePossibleEffects)
3775       break;
3776 
3777     const CastExpr *CE = cast<CastExpr>(this);
3778     if (CE->getCastKind() == CK_LValueToRValue &&
3779         CE->getSubExpr()->getType().isVolatileQualified())
3780       return true;
3781     break;
3782   }
3783 
3784   case CXXTypeidExprClass: {
3785     const auto *TE = cast<CXXTypeidExpr>(this);
3786     if (!TE->isPotentiallyEvaluated())
3787       return false;
3788 
3789     // If this type id expression can throw because of a null pointer, that is a
3790     // side-effect independent of if the operand has a side-effect
3791     if (IncludePossibleEffects && TE->hasNullCheck())
3792       return true;
3793 
3794     break;
3795   }
3796 
3797   case CXXConstructExprClass:
3798   case CXXTemporaryObjectExprClass: {
3799     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3800     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3801       return true;
3802     // A trivial constructor does not add any side-effects of its own. Just look
3803     // at its arguments.
3804     break;
3805   }
3806 
3807   case CXXInheritedCtorInitExprClass: {
3808     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3809     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3810       return true;
3811     break;
3812   }
3813 
3814   case LambdaExprClass: {
3815     const LambdaExpr *LE = cast<LambdaExpr>(this);
3816     for (Expr *E : LE->capture_inits())
3817       if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3818         return true;
3819     return false;
3820   }
3821 
3822   case PseudoObjectExprClass: {
3823     // Only look for side-effects in the semantic form, and look past
3824     // OpaqueValueExpr bindings in that form.
3825     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3826     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3827                                                     E = PO->semantics_end();
3828          I != E; ++I) {
3829       const Expr *Subexpr = *I;
3830       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3831         Subexpr = OVE->getSourceExpr();
3832       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3833         return true;
3834     }
3835     return false;
3836   }
3837 
3838   case ObjCBoxedExprClass:
3839   case ObjCArrayLiteralClass:
3840   case ObjCDictionaryLiteralClass:
3841   case ObjCSelectorExprClass:
3842   case ObjCProtocolExprClass:
3843   case ObjCIsaExprClass:
3844   case ObjCIndirectCopyRestoreExprClass:
3845   case ObjCSubscriptRefExprClass:
3846   case ObjCBridgedCastExprClass:
3847   case ObjCMessageExprClass:
3848   case ObjCPropertyRefExprClass:
3849   // FIXME: Classify these cases better.
3850     if (IncludePossibleEffects)
3851       return true;
3852     break;
3853   }
3854 
3855   // Recurse to children.
3856   for (const Stmt *SubStmt : children())
3857     if (SubStmt &&
3858         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3859       return true;
3860 
3861   return false;
3862 }
3863 
3864 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3865   if (auto Call = dyn_cast<CallExpr>(this))
3866     return Call->getFPFeaturesInEffect(LO);
3867   if (auto UO = dyn_cast<UnaryOperator>(this))
3868     return UO->getFPFeaturesInEffect(LO);
3869   if (auto BO = dyn_cast<BinaryOperator>(this))
3870     return BO->getFPFeaturesInEffect(LO);
3871   if (auto Cast = dyn_cast<CastExpr>(this))
3872     return Cast->getFPFeaturesInEffect(LO);
3873   return FPOptions::defaultWithoutTrailingStorage(LO);
3874 }
3875 
3876 namespace {
3877   /// Look for a call to a non-trivial function within an expression.
3878   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3879   {
3880     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3881 
3882     bool NonTrivial;
3883 
3884   public:
3885     explicit NonTrivialCallFinder(const ASTContext &Context)
3886       : Inherited(Context), NonTrivial(false) { }
3887 
3888     bool hasNonTrivialCall() const { return NonTrivial; }
3889 
3890     void VisitCallExpr(const CallExpr *E) {
3891       if (const CXXMethodDecl *Method
3892           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3893         if (Method->isTrivial()) {
3894           // Recurse to children of the call.
3895           Inherited::VisitStmt(E);
3896           return;
3897         }
3898       }
3899 
3900       NonTrivial = true;
3901     }
3902 
3903     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3904       if (E->getConstructor()->isTrivial()) {
3905         // Recurse to children of the call.
3906         Inherited::VisitStmt(E);
3907         return;
3908       }
3909 
3910       NonTrivial = true;
3911     }
3912 
3913     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3914       // Destructor of the temporary might be null if destructor declaration
3915       // is not valid.
3916       if (const CXXDestructorDecl *DtorDecl =
3917               E->getTemporary()->getDestructor()) {
3918         if (DtorDecl->isTrivial()) {
3919           Inherited::VisitStmt(E);
3920           return;
3921         }
3922       }
3923 
3924       NonTrivial = true;
3925     }
3926   };
3927 }
3928 
3929 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3930   NonTrivialCallFinder Finder(Ctx);
3931   Finder.Visit(this);
3932   return Finder.hasNonTrivialCall();
3933 }
3934 
3935 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3936 /// pointer constant or not, as well as the specific kind of constant detected.
3937 /// Null pointer constants can be integer constant expressions with the
3938 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3939 /// (a GNU extension).
3940 Expr::NullPointerConstantKind
3941 Expr::isNullPointerConstant(ASTContext &Ctx,
3942                             NullPointerConstantValueDependence NPC) const {
3943   if (isValueDependent() &&
3944       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3945     // Error-dependent expr should never be a null pointer.
3946     if (containsErrors())
3947       return NPCK_NotNull;
3948     switch (NPC) {
3949     case NPC_NeverValueDependent:
3950       llvm_unreachable("Unexpected value dependent expression!");
3951     case NPC_ValueDependentIsNull:
3952       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3953         return NPCK_ZeroExpression;
3954       else
3955         return NPCK_NotNull;
3956 
3957     case NPC_ValueDependentIsNotNull:
3958       return NPCK_NotNull;
3959     }
3960   }
3961 
3962   // Strip off a cast to void*, if it exists. Except in C++.
3963   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3964     if (!Ctx.getLangOpts().CPlusPlus) {
3965       // Check that it is a cast to void*.
3966       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3967         QualType Pointee = PT->getPointeeType();
3968         Qualifiers Qs = Pointee.getQualifiers();
3969         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3970         // has non-default address space it is not treated as nullptr.
3971         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3972         // since it cannot be assigned to a pointer to constant address space.
3973         if (Ctx.getLangOpts().OpenCL &&
3974             Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3975           Qs.removeAddressSpace();
3976 
3977         if (Pointee->isVoidType() && Qs.empty() && // to void*
3978             CE->getSubExpr()->getType()->isIntegerType()) // from int
3979           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3980       }
3981     }
3982   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3983     // Ignore the ImplicitCastExpr type entirely.
3984     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3985   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3986     // Accept ((void*)0) as a null pointer constant, as many other
3987     // implementations do.
3988     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3989   } else if (const GenericSelectionExpr *GE =
3990                dyn_cast<GenericSelectionExpr>(this)) {
3991     if (GE->isResultDependent())
3992       return NPCK_NotNull;
3993     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3994   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3995     if (CE->isConditionDependent())
3996       return NPCK_NotNull;
3997     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3998   } else if (const CXXDefaultArgExpr *DefaultArg
3999                = dyn_cast<CXXDefaultArgExpr>(this)) {
4000     // See through default argument expressions.
4001     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
4002   } else if (const CXXDefaultInitExpr *DefaultInit
4003                = dyn_cast<CXXDefaultInitExpr>(this)) {
4004     // See through default initializer expressions.
4005     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
4006   } else if (isa<GNUNullExpr>(this)) {
4007     // The GNU __null extension is always a null pointer constant.
4008     return NPCK_GNUNull;
4009   } else if (const MaterializeTemporaryExpr *M
4010                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
4011     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4012   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
4013     if (const Expr *Source = OVE->getSourceExpr())
4014       return Source->isNullPointerConstant(Ctx, NPC);
4015   }
4016 
4017   // If the expression has no type information, it cannot be a null pointer
4018   // constant.
4019   if (getType().isNull())
4020     return NPCK_NotNull;
4021 
4022   // C++11/C23 nullptr_t is always a null pointer constant.
4023   if (getType()->isNullPtrType())
4024     return NPCK_CXX11_nullptr;
4025 
4026   if (const RecordType *UT = getType()->getAsUnionType())
4027     if (!Ctx.getLangOpts().CPlusPlus11 &&
4028         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
4029       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
4030         const Expr *InitExpr = CLE->getInitializer();
4031         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
4032           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
4033       }
4034   // This expression must be an integer type.
4035   if (!getType()->isIntegerType() ||
4036       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
4037     return NPCK_NotNull;
4038 
4039   if (Ctx.getLangOpts().CPlusPlus11) {
4040     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
4041     // value zero or a prvalue of type std::nullptr_t.
4042     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
4043     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
4044     if (Lit && !Lit->getValue())
4045       return NPCK_ZeroLiteral;
4046     if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
4047       return NPCK_NotNull;
4048   } else {
4049     // If we have an integer constant expression, we need to *evaluate* it and
4050     // test for the value 0.
4051     if (!isIntegerConstantExpr(Ctx))
4052       return NPCK_NotNull;
4053   }
4054 
4055   if (EvaluateKnownConstInt(Ctx) != 0)
4056     return NPCK_NotNull;
4057 
4058   if (isa<IntegerLiteral>(this))
4059     return NPCK_ZeroLiteral;
4060   return NPCK_ZeroExpression;
4061 }
4062 
4063 /// If this expression is an l-value for an Objective C
4064 /// property, find the underlying property reference expression.
4065 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
4066   const Expr *E = this;
4067   while (true) {
4068     assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
4069            "expression is not a property reference");
4070     E = E->IgnoreParenCasts();
4071     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4072       if (BO->getOpcode() == BO_Comma) {
4073         E = BO->getRHS();
4074         continue;
4075       }
4076     }
4077 
4078     break;
4079   }
4080 
4081   return cast<ObjCPropertyRefExpr>(E);
4082 }
4083 
4084 bool Expr::isObjCSelfExpr() const {
4085   const Expr *E = IgnoreParenImpCasts();
4086 
4087   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4088   if (!DRE)
4089     return false;
4090 
4091   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4092   if (!Param)
4093     return false;
4094 
4095   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4096   if (!M)
4097     return false;
4098 
4099   return M->getSelfDecl() == Param;
4100 }
4101 
4102 FieldDecl *Expr::getSourceBitField() {
4103   Expr *E = this->IgnoreParens();
4104 
4105   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4106     if (ICE->getCastKind() == CK_LValueToRValue ||
4107         (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4108       E = ICE->getSubExpr()->IgnoreParens();
4109     else
4110       break;
4111   }
4112 
4113   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4114     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4115       if (Field->isBitField())
4116         return Field;
4117 
4118   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4119     FieldDecl *Ivar = IvarRef->getDecl();
4120     if (Ivar->isBitField())
4121       return Ivar;
4122   }
4123 
4124   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4125     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4126       if (Field->isBitField())
4127         return Field;
4128 
4129     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4130       if (Expr *E = BD->getBinding())
4131         return E->getSourceBitField();
4132   }
4133 
4134   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4135     if (BinOp->isAssignmentOp() && BinOp->getLHS())
4136       return BinOp->getLHS()->getSourceBitField();
4137 
4138     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4139       return BinOp->getRHS()->getSourceBitField();
4140   }
4141 
4142   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4143     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4144       return UnOp->getSubExpr()->getSourceBitField();
4145 
4146   return nullptr;
4147 }
4148 
4149 EnumConstantDecl *Expr::getEnumConstantDecl() {
4150   Expr *E = this->IgnoreParenImpCasts();
4151   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4152     return dyn_cast<EnumConstantDecl>(DRE->getDecl());
4153   return nullptr;
4154 }
4155 
4156 bool Expr::refersToVectorElement() const {
4157   // FIXME: Why do we not just look at the ObjectKind here?
4158   const Expr *E = this->IgnoreParens();
4159 
4160   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4161     if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4162       E = ICE->getSubExpr()->IgnoreParens();
4163     else
4164       break;
4165   }
4166 
4167   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4168     return ASE->getBase()->getType()->isVectorType();
4169 
4170   if (isa<ExtVectorElementExpr>(E))
4171     return true;
4172 
4173   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4174     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4175       if (auto *E = BD->getBinding())
4176         return E->refersToVectorElement();
4177 
4178   return false;
4179 }
4180 
4181 bool Expr::refersToGlobalRegisterVar() const {
4182   const Expr *E = this->IgnoreParenImpCasts();
4183 
4184   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4185     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4186       if (VD->getStorageClass() == SC_Register &&
4187           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4188         return true;
4189 
4190   return false;
4191 }
4192 
4193 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4194   E1 = E1->IgnoreParens();
4195   E2 = E2->IgnoreParens();
4196 
4197   if (E1->getStmtClass() != E2->getStmtClass())
4198     return false;
4199 
4200   switch (E1->getStmtClass()) {
4201     default:
4202       return false;
4203     case CXXThisExprClass:
4204       return true;
4205     case DeclRefExprClass: {
4206       // DeclRefExpr without an ImplicitCastExpr can happen for integral
4207       // template parameters.
4208       const auto *DRE1 = cast<DeclRefExpr>(E1);
4209       const auto *DRE2 = cast<DeclRefExpr>(E2);
4210       return DRE1->isPRValue() && DRE2->isPRValue() &&
4211              DRE1->getDecl() == DRE2->getDecl();
4212     }
4213     case ImplicitCastExprClass: {
4214       // Peel off implicit casts.
4215       while (true) {
4216         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4217         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4218         if (!ICE1 || !ICE2)
4219           return false;
4220         if (ICE1->getCastKind() != ICE2->getCastKind())
4221           return false;
4222         E1 = ICE1->getSubExpr()->IgnoreParens();
4223         E2 = ICE2->getSubExpr()->IgnoreParens();
4224         // The final cast must be one of these types.
4225         if (ICE1->getCastKind() == CK_LValueToRValue ||
4226             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4227             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4228           break;
4229         }
4230       }
4231 
4232       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4233       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4234       if (DRE1 && DRE2)
4235         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4236 
4237       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4238       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4239       if (Ivar1 && Ivar2) {
4240         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4241                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4242       }
4243 
4244       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4245       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4246       if (Array1 && Array2) {
4247         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4248           return false;
4249 
4250         auto Idx1 = Array1->getIdx();
4251         auto Idx2 = Array2->getIdx();
4252         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4253         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4254         if (Integer1 && Integer2) {
4255           if (!llvm::APInt::isSameValue(Integer1->getValue(),
4256                                         Integer2->getValue()))
4257             return false;
4258         } else {
4259           if (!isSameComparisonOperand(Idx1, Idx2))
4260             return false;
4261         }
4262 
4263         return true;
4264       }
4265 
4266       // Walk the MemberExpr chain.
4267       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4268         const auto *ME1 = cast<MemberExpr>(E1);
4269         const auto *ME2 = cast<MemberExpr>(E2);
4270         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4271           return false;
4272         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4273           if (D->isStaticDataMember())
4274             return true;
4275         E1 = ME1->getBase()->IgnoreParenImpCasts();
4276         E2 = ME2->getBase()->IgnoreParenImpCasts();
4277       }
4278 
4279       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4280         return true;
4281 
4282       // A static member variable can end the MemberExpr chain with either
4283       // a MemberExpr or a DeclRefExpr.
4284       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4285         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4286           return DRE->getDecl();
4287         if (const auto *ME = dyn_cast<MemberExpr>(E))
4288           return ME->getMemberDecl();
4289         return nullptr;
4290       };
4291 
4292       const ValueDecl *VD1 = getAnyDecl(E1);
4293       const ValueDecl *VD2 = getAnyDecl(E2);
4294       return declaresSameEntity(VD1, VD2);
4295     }
4296   }
4297 }
4298 
4299 /// isArrow - Return true if the base expression is a pointer to vector,
4300 /// return false if the base expression is a vector.
4301 bool ExtVectorElementExpr::isArrow() const {
4302   return getBase()->getType()->isPointerType();
4303 }
4304 
4305 unsigned ExtVectorElementExpr::getNumElements() const {
4306   if (const VectorType *VT = getType()->getAs<VectorType>())
4307     return VT->getNumElements();
4308   return 1;
4309 }
4310 
4311 /// containsDuplicateElements - Return true if any element access is repeated.
4312 bool ExtVectorElementExpr::containsDuplicateElements() const {
4313   // FIXME: Refactor this code to an accessor on the AST node which returns the
4314   // "type" of component access, and share with code below and in Sema.
4315   StringRef Comp = Accessor->getName();
4316 
4317   // Halving swizzles do not contain duplicate elements.
4318   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4319     return false;
4320 
4321   // Advance past s-char prefix on hex swizzles.
4322   if (Comp[0] == 's' || Comp[0] == 'S')
4323     Comp = Comp.substr(1);
4324 
4325   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4326     if (Comp.substr(i + 1).contains(Comp[i]))
4327         return true;
4328 
4329   return false;
4330 }
4331 
4332 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4333 void ExtVectorElementExpr::getEncodedElementAccess(
4334     SmallVectorImpl<uint32_t> &Elts) const {
4335   StringRef Comp = Accessor->getName();
4336   bool isNumericAccessor = false;
4337   if (Comp[0] == 's' || Comp[0] == 'S') {
4338     Comp = Comp.substr(1);
4339     isNumericAccessor = true;
4340   }
4341 
4342   bool isHi =   Comp == "hi";
4343   bool isLo =   Comp == "lo";
4344   bool isEven = Comp == "even";
4345   bool isOdd  = Comp == "odd";
4346 
4347   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4348     uint64_t Index;
4349 
4350     if (isHi)
4351       Index = e + i;
4352     else if (isLo)
4353       Index = i;
4354     else if (isEven)
4355       Index = 2 * i;
4356     else if (isOdd)
4357       Index = 2 * i + 1;
4358     else
4359       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4360 
4361     Elts.push_back(Index);
4362   }
4363 }
4364 
4365 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4366                                      QualType Type, SourceLocation BLoc,
4367                                      SourceLocation RP)
4368     : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4369       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4370   SubExprs = new (C) Stmt*[args.size()];
4371   for (unsigned i = 0; i != args.size(); i++)
4372     SubExprs[i] = args[i];
4373 
4374   setDependence(computeDependence(this));
4375 }
4376 
4377 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4378   if (SubExprs) C.Deallocate(SubExprs);
4379 
4380   this->NumExprs = Exprs.size();
4381   SubExprs = new (C) Stmt*[NumExprs];
4382   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4383 }
4384 
4385 GenericSelectionExpr::GenericSelectionExpr(
4386     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4387     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4388     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4389     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4390     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4391            AssocExprs[ResultIndex]->getValueKind(),
4392            AssocExprs[ResultIndex]->getObjectKind()),
4393       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4394       IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4395   assert(AssocTypes.size() == AssocExprs.size() &&
4396          "Must have the same number of association expressions"
4397          " and TypeSourceInfo!");
4398   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4399 
4400   GenericSelectionExprBits.GenericLoc = GenericLoc;
4401   getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4402       ControllingExpr;
4403   std::copy(AssocExprs.begin(), AssocExprs.end(),
4404             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4405   std::copy(AssocTypes.begin(), AssocTypes.end(),
4406             getTrailingObjects<TypeSourceInfo *>() +
4407                 getIndexOfStartOfAssociatedTypes());
4408 
4409   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4410 }
4411 
4412 GenericSelectionExpr::GenericSelectionExpr(
4413     const ASTContext &, SourceLocation GenericLoc,
4414     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4415     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4416     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4417     unsigned ResultIndex)
4418     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4419            AssocExprs[ResultIndex]->getValueKind(),
4420            AssocExprs[ResultIndex]->getObjectKind()),
4421       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4422       IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4423   assert(AssocTypes.size() == AssocExprs.size() &&
4424          "Must have the same number of association expressions"
4425          " and TypeSourceInfo!");
4426   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4427 
4428   GenericSelectionExprBits.GenericLoc = GenericLoc;
4429   getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4430       ControllingType;
4431   std::copy(AssocExprs.begin(), AssocExprs.end(),
4432             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4433   std::copy(AssocTypes.begin(), AssocTypes.end(),
4434             getTrailingObjects<TypeSourceInfo *>() +
4435                 getIndexOfStartOfAssociatedTypes());
4436 
4437   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4438 }
4439 
4440 GenericSelectionExpr::GenericSelectionExpr(
4441     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4442     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4443     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4444     bool ContainsUnexpandedParameterPack)
4445     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4446            OK_Ordinary),
4447       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4448       IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4449   assert(AssocTypes.size() == AssocExprs.size() &&
4450          "Must have the same number of association expressions"
4451          " and TypeSourceInfo!");
4452 
4453   GenericSelectionExprBits.GenericLoc = GenericLoc;
4454   getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4455       ControllingExpr;
4456   std::copy(AssocExprs.begin(), AssocExprs.end(),
4457             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4458   std::copy(AssocTypes.begin(), AssocTypes.end(),
4459             getTrailingObjects<TypeSourceInfo *>() +
4460                 getIndexOfStartOfAssociatedTypes());
4461 
4462   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4463 }
4464 
4465 GenericSelectionExpr::GenericSelectionExpr(
4466     const ASTContext &Context, SourceLocation GenericLoc,
4467     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4468     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4469     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4470     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4471            OK_Ordinary),
4472       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4473       IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4474   assert(AssocTypes.size() == AssocExprs.size() &&
4475          "Must have the same number of association expressions"
4476          " and TypeSourceInfo!");
4477 
4478   GenericSelectionExprBits.GenericLoc = GenericLoc;
4479   getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4480       ControllingType;
4481   std::copy(AssocExprs.begin(), AssocExprs.end(),
4482             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4483   std::copy(AssocTypes.begin(), AssocTypes.end(),
4484             getTrailingObjects<TypeSourceInfo *>() +
4485                 getIndexOfStartOfAssociatedTypes());
4486 
4487   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4488 }
4489 
4490 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4491     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4492 
4493 GenericSelectionExpr *GenericSelectionExpr::Create(
4494     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4495     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4496     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4497     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4498   unsigned NumAssocs = AssocExprs.size();
4499   void *Mem = Context.Allocate(
4500       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4501       alignof(GenericSelectionExpr));
4502   return new (Mem) GenericSelectionExpr(
4503       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4504       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4505 }
4506 
4507 GenericSelectionExpr *GenericSelectionExpr::Create(
4508     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4509     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4510     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4511     bool ContainsUnexpandedParameterPack) {
4512   unsigned NumAssocs = AssocExprs.size();
4513   void *Mem = Context.Allocate(
4514       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4515       alignof(GenericSelectionExpr));
4516   return new (Mem) GenericSelectionExpr(
4517       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4518       RParenLoc, ContainsUnexpandedParameterPack);
4519 }
4520 
4521 GenericSelectionExpr *GenericSelectionExpr::Create(
4522     const ASTContext &Context, SourceLocation GenericLoc,
4523     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4524     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4525     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4526     unsigned ResultIndex) {
4527   unsigned NumAssocs = AssocExprs.size();
4528   void *Mem = Context.Allocate(
4529       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4530       alignof(GenericSelectionExpr));
4531   return new (Mem) GenericSelectionExpr(
4532       Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4533       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4534 }
4535 
4536 GenericSelectionExpr *GenericSelectionExpr::Create(
4537     const ASTContext &Context, SourceLocation GenericLoc,
4538     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4539     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4540     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4541   unsigned NumAssocs = AssocExprs.size();
4542   void *Mem = Context.Allocate(
4543       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4544       alignof(GenericSelectionExpr));
4545   return new (Mem) GenericSelectionExpr(
4546       Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4547       RParenLoc, ContainsUnexpandedParameterPack);
4548 }
4549 
4550 GenericSelectionExpr *
4551 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4552                                   unsigned NumAssocs) {
4553   void *Mem = Context.Allocate(
4554       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4555       alignof(GenericSelectionExpr));
4556   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4557 }
4558 
4559 //===----------------------------------------------------------------------===//
4560 //  DesignatedInitExpr
4561 //===----------------------------------------------------------------------===//
4562 
4563 const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4564   assert(isFieldDesignator() && "Only valid on a field designator");
4565   if (FieldInfo.NameOrField & 0x01)
4566     return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4567   return getFieldDecl()->getIdentifier();
4568 }
4569 
4570 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4571                                        llvm::ArrayRef<Designator> Designators,
4572                                        SourceLocation EqualOrColonLoc,
4573                                        bool GNUSyntax,
4574                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4575     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4576            Init->getObjectKind()),
4577       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4578       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4579   this->Designators = new (C) Designator[NumDesignators];
4580 
4581   // Record the initializer itself.
4582   child_iterator Child = child_begin();
4583   *Child++ = Init;
4584 
4585   // Copy the designators and their subexpressions, computing
4586   // value-dependence along the way.
4587   unsigned IndexIdx = 0;
4588   for (unsigned I = 0; I != NumDesignators; ++I) {
4589     this->Designators[I] = Designators[I];
4590     if (this->Designators[I].isArrayDesignator()) {
4591       // Copy the index expressions into permanent storage.
4592       *Child++ = IndexExprs[IndexIdx++];
4593     } else if (this->Designators[I].isArrayRangeDesignator()) {
4594       // Copy the start/end expressions into permanent storage.
4595       *Child++ = IndexExprs[IndexIdx++];
4596       *Child++ = IndexExprs[IndexIdx++];
4597     }
4598   }
4599 
4600   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4601   setDependence(computeDependence(this));
4602 }
4603 
4604 DesignatedInitExpr *
4605 DesignatedInitExpr::Create(const ASTContext &C,
4606                            llvm::ArrayRef<Designator> Designators,
4607                            ArrayRef<Expr*> IndexExprs,
4608                            SourceLocation ColonOrEqualLoc,
4609                            bool UsesColonSyntax, Expr *Init) {
4610   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4611                          alignof(DesignatedInitExpr));
4612   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4613                                       ColonOrEqualLoc, UsesColonSyntax,
4614                                       IndexExprs, Init);
4615 }
4616 
4617 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4618                                                     unsigned NumIndexExprs) {
4619   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4620                          alignof(DesignatedInitExpr));
4621   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4622 }
4623 
4624 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4625                                         const Designator *Desigs,
4626                                         unsigned NumDesigs) {
4627   Designators = new (C) Designator[NumDesigs];
4628   NumDesignators = NumDesigs;
4629   for (unsigned I = 0; I != NumDesigs; ++I)
4630     Designators[I] = Desigs[I];
4631 }
4632 
4633 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4634   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4635   if (size() == 1)
4636     return DIE->getDesignator(0)->getSourceRange();
4637   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4638                      DIE->getDesignator(size() - 1)->getEndLoc());
4639 }
4640 
4641 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4642   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4643   Designator &First = *DIE->getDesignator(0);
4644   if (First.isFieldDesignator()) {
4645     // Skip past implicit designators for anonymous structs/unions, since
4646     // these do not have valid source locations.
4647     for (unsigned int i = 0; i < DIE->size(); i++) {
4648       Designator &Des = *DIE->getDesignator(i);
4649       SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc();
4650       if (!retval.isValid())
4651         continue;
4652       return retval;
4653     }
4654   }
4655   return First.getLBracketLoc();
4656 }
4657 
4658 SourceLocation DesignatedInitExpr::getEndLoc() const {
4659   return getInit()->getEndLoc();
4660 }
4661 
4662 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4663   assert(D.isArrayDesignator() && "Requires array designator");
4664   return getSubExpr(D.getArrayIndex() + 1);
4665 }
4666 
4667 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4668   assert(D.isArrayRangeDesignator() && "Requires array range designator");
4669   return getSubExpr(D.getArrayIndex() + 1);
4670 }
4671 
4672 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4673   assert(D.isArrayRangeDesignator() && "Requires array range designator");
4674   return getSubExpr(D.getArrayIndex() + 2);
4675 }
4676 
4677 /// Replaces the designator at index @p Idx with the series
4678 /// of designators in [First, Last).
4679 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4680                                           const Designator *First,
4681                                           const Designator *Last) {
4682   unsigned NumNewDesignators = Last - First;
4683   if (NumNewDesignators == 0) {
4684     std::copy_backward(Designators + Idx + 1,
4685                        Designators + NumDesignators,
4686                        Designators + Idx);
4687     --NumNewDesignators;
4688     return;
4689   }
4690   if (NumNewDesignators == 1) {
4691     Designators[Idx] = *First;
4692     return;
4693   }
4694 
4695   Designator *NewDesignators
4696     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4697   std::copy(Designators, Designators + Idx, NewDesignators);
4698   std::copy(First, Last, NewDesignators + Idx);
4699   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4700             NewDesignators + Idx + NumNewDesignators);
4701   Designators = NewDesignators;
4702   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4703 }
4704 
4705 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4706                                                    SourceLocation lBraceLoc,
4707                                                    Expr *baseExpr,
4708                                                    SourceLocation rBraceLoc)
4709     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4710            OK_Ordinary) {
4711   BaseAndUpdaterExprs[0] = baseExpr;
4712 
4713   InitListExpr *ILE =
4714       new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4715   ILE->setType(baseExpr->getType());
4716   BaseAndUpdaterExprs[1] = ILE;
4717 
4718   // FIXME: this is wrong, set it correctly.
4719   setDependence(ExprDependence::None);
4720 }
4721 
4722 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4723   return getBase()->getBeginLoc();
4724 }
4725 
4726 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4727   return getBase()->getEndLoc();
4728 }
4729 
4730 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4731                              SourceLocation RParenLoc)
4732     : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4733       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4734   ParenListExprBits.NumExprs = Exprs.size();
4735 
4736   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4737     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4738   setDependence(computeDependence(this));
4739 }
4740 
4741 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4742     : Expr(ParenListExprClass, Empty) {
4743   ParenListExprBits.NumExprs = NumExprs;
4744 }
4745 
4746 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4747                                      SourceLocation LParenLoc,
4748                                      ArrayRef<Expr *> Exprs,
4749                                      SourceLocation RParenLoc) {
4750   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4751                            alignof(ParenListExpr));
4752   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4753 }
4754 
4755 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4756                                           unsigned NumExprs) {
4757   void *Mem =
4758       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4759   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4760 }
4761 
4762 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4763                                Opcode opc, QualType ResTy, ExprValueKind VK,
4764                                ExprObjectKind OK, SourceLocation opLoc,
4765                                FPOptionsOverride FPFeatures)
4766     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4767   BinaryOperatorBits.Opc = opc;
4768   assert(!isCompoundAssignmentOp() &&
4769          "Use CompoundAssignOperator for compound assignments");
4770   BinaryOperatorBits.OpLoc = opLoc;
4771   SubExprs[LHS] = lhs;
4772   SubExprs[RHS] = rhs;
4773   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4774   if (hasStoredFPFeatures())
4775     setStoredFPFeatures(FPFeatures);
4776   setDependence(computeDependence(this));
4777 }
4778 
4779 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4780                                Opcode opc, QualType ResTy, ExprValueKind VK,
4781                                ExprObjectKind OK, SourceLocation opLoc,
4782                                FPOptionsOverride FPFeatures, bool dead2)
4783     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4784   BinaryOperatorBits.Opc = opc;
4785   assert(isCompoundAssignmentOp() &&
4786          "Use CompoundAssignOperator for compound assignments");
4787   BinaryOperatorBits.OpLoc = opLoc;
4788   SubExprs[LHS] = lhs;
4789   SubExprs[RHS] = rhs;
4790   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4791   if (hasStoredFPFeatures())
4792     setStoredFPFeatures(FPFeatures);
4793   setDependence(computeDependence(this));
4794 }
4795 
4796 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4797                                             bool HasFPFeatures) {
4798   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4799   void *Mem =
4800       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4801   return new (Mem) BinaryOperator(EmptyShell());
4802 }
4803 
4804 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4805                                        Expr *rhs, Opcode opc, QualType ResTy,
4806                                        ExprValueKind VK, ExprObjectKind OK,
4807                                        SourceLocation opLoc,
4808                                        FPOptionsOverride FPFeatures) {
4809   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4810   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4811   void *Mem =
4812       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4813   return new (Mem)
4814       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4815 }
4816 
4817 CompoundAssignOperator *
4818 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4819   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4820   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4821                          alignof(CompoundAssignOperator));
4822   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4823 }
4824 
4825 CompoundAssignOperator *
4826 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4827                                Opcode opc, QualType ResTy, ExprValueKind VK,
4828                                ExprObjectKind OK, SourceLocation opLoc,
4829                                FPOptionsOverride FPFeatures,
4830                                QualType CompLHSType, QualType CompResultType) {
4831   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4832   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4833   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4834                          alignof(CompoundAssignOperator));
4835   return new (Mem)
4836       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4837                              CompLHSType, CompResultType);
4838 }
4839 
4840 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4841                                           bool hasFPFeatures) {
4842   void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4843                          alignof(UnaryOperator));
4844   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4845 }
4846 
4847 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4848                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4849                              SourceLocation l, bool CanOverflow,
4850                              FPOptionsOverride FPFeatures)
4851     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4852   UnaryOperatorBits.Opc = opc;
4853   UnaryOperatorBits.CanOverflow = CanOverflow;
4854   UnaryOperatorBits.Loc = l;
4855   UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4856   if (hasStoredFPFeatures())
4857     setStoredFPFeatures(FPFeatures);
4858   setDependence(computeDependence(this, Ctx));
4859 }
4860 
4861 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4862                                      Opcode opc, QualType type,
4863                                      ExprValueKind VK, ExprObjectKind OK,
4864                                      SourceLocation l, bool CanOverflow,
4865                                      FPOptionsOverride FPFeatures) {
4866   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4867   unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4868   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4869   return new (Mem)
4870       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4871 }
4872 
4873 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4874   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4875     e = ewc->getSubExpr();
4876   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4877     e = m->getSubExpr();
4878   e = cast<CXXConstructExpr>(e)->getArg(0);
4879   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4880     e = ice->getSubExpr();
4881   return cast<OpaqueValueExpr>(e);
4882 }
4883 
4884 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4885                                            EmptyShell sh,
4886                                            unsigned numSemanticExprs) {
4887   void *buffer =
4888       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4889                        alignof(PseudoObjectExpr));
4890   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4891 }
4892 
4893 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4894   : Expr(PseudoObjectExprClass, shell) {
4895   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4896 }
4897 
4898 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4899                                            ArrayRef<Expr*> semantics,
4900                                            unsigned resultIndex) {
4901   assert(syntax && "no syntactic expression!");
4902   assert(semantics.size() && "no semantic expressions!");
4903 
4904   QualType type;
4905   ExprValueKind VK;
4906   if (resultIndex == NoResult) {
4907     type = C.VoidTy;
4908     VK = VK_PRValue;
4909   } else {
4910     assert(resultIndex < semantics.size());
4911     type = semantics[resultIndex]->getType();
4912     VK = semantics[resultIndex]->getValueKind();
4913     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4914   }
4915 
4916   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4917                             alignof(PseudoObjectExpr));
4918   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4919                                       resultIndex);
4920 }
4921 
4922 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4923                                    Expr *syntax, ArrayRef<Expr *> semantics,
4924                                    unsigned resultIndex)
4925     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4926   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4927   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4928 
4929   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4930     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4931     getSubExprsBuffer()[i] = E;
4932 
4933     if (isa<OpaqueValueExpr>(E))
4934       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4935              "opaque-value semantic expressions for pseudo-object "
4936              "operations must have sources");
4937   }
4938 
4939   setDependence(computeDependence(this));
4940 }
4941 
4942 //===----------------------------------------------------------------------===//
4943 //  Child Iterators for iterating over subexpressions/substatements
4944 //===----------------------------------------------------------------------===//
4945 
4946 // UnaryExprOrTypeTraitExpr
4947 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4948   const_child_range CCR =
4949       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4950   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4951 }
4952 
4953 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4954   // If this is of a type and the type is a VLA type (and not a typedef), the
4955   // size expression of the VLA needs to be treated as an executable expression.
4956   // Why isn't this weirdness documented better in StmtIterator?
4957   if (isArgumentType()) {
4958     if (const VariableArrayType *T =
4959             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4960       return const_child_range(const_child_iterator(T), const_child_iterator());
4961     return const_child_range(const_child_iterator(), const_child_iterator());
4962   }
4963   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4964 }
4965 
4966 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4967                        AtomicOp op, SourceLocation RP)
4968     : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4969       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4970   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4971   for (unsigned i = 0; i != args.size(); i++)
4972     SubExprs[i] = args[i];
4973   setDependence(computeDependence(this));
4974 }
4975 
4976 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4977   switch (Op) {
4978   case AO__c11_atomic_init:
4979   case AO__opencl_atomic_init:
4980   case AO__c11_atomic_load:
4981   case AO__atomic_load_n:
4982     return 2;
4983 
4984   case AO__scoped_atomic_load_n:
4985   case AO__opencl_atomic_load:
4986   case AO__hip_atomic_load:
4987   case AO__c11_atomic_store:
4988   case AO__c11_atomic_exchange:
4989   case AO__atomic_load:
4990   case AO__atomic_store:
4991   case AO__atomic_store_n:
4992   case AO__atomic_exchange_n:
4993   case AO__c11_atomic_fetch_add:
4994   case AO__c11_atomic_fetch_sub:
4995   case AO__c11_atomic_fetch_and:
4996   case AO__c11_atomic_fetch_or:
4997   case AO__c11_atomic_fetch_xor:
4998   case AO__c11_atomic_fetch_nand:
4999   case AO__c11_atomic_fetch_max:
5000   case AO__c11_atomic_fetch_min:
5001   case AO__atomic_fetch_add:
5002   case AO__atomic_fetch_sub:
5003   case AO__atomic_fetch_and:
5004   case AO__atomic_fetch_or:
5005   case AO__atomic_fetch_xor:
5006   case AO__atomic_fetch_nand:
5007   case AO__atomic_add_fetch:
5008   case AO__atomic_sub_fetch:
5009   case AO__atomic_and_fetch:
5010   case AO__atomic_or_fetch:
5011   case AO__atomic_xor_fetch:
5012   case AO__atomic_nand_fetch:
5013   case AO__atomic_min_fetch:
5014   case AO__atomic_max_fetch:
5015   case AO__atomic_fetch_min:
5016   case AO__atomic_fetch_max:
5017     return 3;
5018 
5019   case AO__scoped_atomic_load:
5020   case AO__scoped_atomic_store:
5021   case AO__scoped_atomic_store_n:
5022   case AO__scoped_atomic_fetch_add:
5023   case AO__scoped_atomic_fetch_sub:
5024   case AO__scoped_atomic_fetch_and:
5025   case AO__scoped_atomic_fetch_or:
5026   case AO__scoped_atomic_fetch_xor:
5027   case AO__scoped_atomic_fetch_nand:
5028   case AO__scoped_atomic_add_fetch:
5029   case AO__scoped_atomic_sub_fetch:
5030   case AO__scoped_atomic_and_fetch:
5031   case AO__scoped_atomic_or_fetch:
5032   case AO__scoped_atomic_xor_fetch:
5033   case AO__scoped_atomic_nand_fetch:
5034   case AO__scoped_atomic_min_fetch:
5035   case AO__scoped_atomic_max_fetch:
5036   case AO__scoped_atomic_fetch_min:
5037   case AO__scoped_atomic_fetch_max:
5038   case AO__scoped_atomic_exchange_n:
5039   case AO__hip_atomic_exchange:
5040   case AO__hip_atomic_fetch_add:
5041   case AO__hip_atomic_fetch_sub:
5042   case AO__hip_atomic_fetch_and:
5043   case AO__hip_atomic_fetch_or:
5044   case AO__hip_atomic_fetch_xor:
5045   case AO__hip_atomic_fetch_min:
5046   case AO__hip_atomic_fetch_max:
5047   case AO__opencl_atomic_store:
5048   case AO__hip_atomic_store:
5049   case AO__opencl_atomic_exchange:
5050   case AO__opencl_atomic_fetch_add:
5051   case AO__opencl_atomic_fetch_sub:
5052   case AO__opencl_atomic_fetch_and:
5053   case AO__opencl_atomic_fetch_or:
5054   case AO__opencl_atomic_fetch_xor:
5055   case AO__opencl_atomic_fetch_min:
5056   case AO__opencl_atomic_fetch_max:
5057   case AO__atomic_exchange:
5058     return 4;
5059 
5060   case AO__scoped_atomic_exchange:
5061   case AO__c11_atomic_compare_exchange_strong:
5062   case AO__c11_atomic_compare_exchange_weak:
5063     return 5;
5064   case AO__hip_atomic_compare_exchange_strong:
5065   case AO__opencl_atomic_compare_exchange_strong:
5066   case AO__opencl_atomic_compare_exchange_weak:
5067   case AO__hip_atomic_compare_exchange_weak:
5068   case AO__atomic_compare_exchange:
5069   case AO__atomic_compare_exchange_n:
5070     return 6;
5071 
5072   case AO__scoped_atomic_compare_exchange:
5073   case AO__scoped_atomic_compare_exchange_n:
5074     return 7;
5075   }
5076   llvm_unreachable("unknown atomic op");
5077 }
5078 
5079 QualType AtomicExpr::getValueType() const {
5080   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
5081   if (auto AT = T->getAs<AtomicType>())
5082     return AT->getValueType();
5083   return T;
5084 }
5085 
5086 QualType ArraySectionExpr::getBaseOriginalType(const Expr *Base) {
5087   unsigned ArraySectionCount = 0;
5088   while (auto *OASE = dyn_cast<ArraySectionExpr>(Base->IgnoreParens())) {
5089     Base = OASE->getBase();
5090     ++ArraySectionCount;
5091   }
5092   while (auto *ASE =
5093              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
5094     Base = ASE->getBase();
5095     ++ArraySectionCount;
5096   }
5097   Base = Base->IgnoreParenImpCasts();
5098   auto OriginalTy = Base->getType();
5099   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
5100     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
5101       OriginalTy = PVD->getOriginalType().getNonReferenceType();
5102 
5103   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5104     if (OriginalTy->isAnyPointerType())
5105       OriginalTy = OriginalTy->getPointeeType();
5106     else if (OriginalTy->isArrayType())
5107       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5108     else
5109       return {};
5110   }
5111   return OriginalTy;
5112 }
5113 
5114 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5115                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5116     : Expr(RecoveryExprClass, T.getNonReferenceType(),
5117            T->isDependentType() ? VK_LValue : getValueKindForType(T),
5118            OK_Ordinary),
5119       BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5120   assert(!T.isNull());
5121   assert(!llvm::is_contained(SubExprs, nullptr));
5122 
5123   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
5124   setDependence(computeDependence(this));
5125 }
5126 
5127 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
5128                                    SourceLocation BeginLoc,
5129                                    SourceLocation EndLoc,
5130                                    ArrayRef<Expr *> SubExprs) {
5131   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
5132                            alignof(RecoveryExpr));
5133   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5134 }
5135 
5136 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
5137   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
5138                            alignof(RecoveryExpr));
5139   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5140 }
5141 
5142 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5143   assert(
5144       NumDims == Dims.size() &&
5145       "Preallocated number of dimensions is different from the provided one.");
5146   llvm::copy(Dims, getTrailingObjects<Expr *>());
5147 }
5148 
5149 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5150   assert(
5151       NumDims == BR.size() &&
5152       "Preallocated number of dimensions is different from the provided one.");
5153   llvm::copy(BR, getTrailingObjects<SourceRange>());
5154 }
5155 
5156 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5157                                          SourceLocation L, SourceLocation R,
5158                                          ArrayRef<Expr *> Dims)
5159     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5160       RPLoc(R), NumDims(Dims.size()) {
5161   setBase(Op);
5162   setDimensions(Dims);
5163   setDependence(computeDependence(this));
5164 }
5165 
5166 OMPArrayShapingExpr *
5167 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
5168                             SourceLocation L, SourceLocation R,
5169                             ArrayRef<Expr *> Dims,
5170                             ArrayRef<SourceRange> BracketRanges) {
5171   assert(Dims.size() == BracketRanges.size() &&
5172          "Different number of dimensions and brackets ranges.");
5173   void *Mem = Context.Allocate(
5174       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
5175       alignof(OMPArrayShapingExpr));
5176   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5177   E->setBracketsRanges(BracketRanges);
5178   return E;
5179 }
5180 
5181 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
5182                                                       unsigned NumDims) {
5183   void *Mem = Context.Allocate(
5184       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
5185       alignof(OMPArrayShapingExpr));
5186   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5187 }
5188 
5189 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5190   assert(I < NumIterators &&
5191          "Idx is greater or equal the number of iterators definitions.");
5192   getTrailingObjects<Decl *>()[I] = D;
5193 }
5194 
5195 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5196   assert(I < NumIterators &&
5197          "Idx is greater or equal the number of iterators definitions.");
5198   getTrailingObjects<
5199       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5200                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5201 }
5202 
5203 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5204                                        SourceLocation ColonLoc, Expr *End,
5205                                        SourceLocation SecondColonLoc,
5206                                        Expr *Step) {
5207   assert(I < NumIterators &&
5208          "Idx is greater or equal the number of iterators definitions.");
5209   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5210                                static_cast<int>(RangeExprOffset::Begin)] =
5211       Begin;
5212   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5213                                static_cast<int>(RangeExprOffset::End)] = End;
5214   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5215                                static_cast<int>(RangeExprOffset::Step)] = Step;
5216   getTrailingObjects<
5217       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5218                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5219       ColonLoc;
5220   getTrailingObjects<
5221       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5222                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5223       SecondColonLoc;
5224 }
5225 
5226 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5227   return getTrailingObjects<Decl *>()[I];
5228 }
5229 
5230 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5231   IteratorRange Res;
5232   Res.Begin =
5233       getTrailingObjects<Expr *>()[I * static_cast<int>(
5234                                            RangeExprOffset::Total) +
5235                                    static_cast<int>(RangeExprOffset::Begin)];
5236   Res.End =
5237       getTrailingObjects<Expr *>()[I * static_cast<int>(
5238                                            RangeExprOffset::Total) +
5239                                    static_cast<int>(RangeExprOffset::End)];
5240   Res.Step =
5241       getTrailingObjects<Expr *>()[I * static_cast<int>(
5242                                            RangeExprOffset::Total) +
5243                                    static_cast<int>(RangeExprOffset::Step)];
5244   return Res;
5245 }
5246 
5247 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5248   return getTrailingObjects<
5249       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5250                         static_cast<int>(RangeLocOffset::AssignLoc)];
5251 }
5252 
5253 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5254   return getTrailingObjects<
5255       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5256                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
5257 }
5258 
5259 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5260   return getTrailingObjects<
5261       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5262                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
5263 }
5264 
5265 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5266   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5267 }
5268 
5269 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5270   return getTrailingObjects<OMPIteratorHelperData>()[I];
5271 }
5272 
5273 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5274   return getTrailingObjects<OMPIteratorHelperData>()[I];
5275 }
5276 
5277 OMPIteratorExpr::OMPIteratorExpr(
5278     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5279     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5280     ArrayRef<OMPIteratorHelperData> Helpers)
5281     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5282       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5283       NumIterators(Data.size()) {
5284   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5285     const IteratorDefinition &D = Data[I];
5286     setIteratorDeclaration(I, D.IteratorDecl);
5287     setAssignmentLoc(I, D.AssignmentLoc);
5288     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5289                      D.SecondColonLoc, D.Range.Step);
5290     setHelper(I, Helpers[I]);
5291   }
5292   setDependence(computeDependence(this));
5293 }
5294 
5295 OMPIteratorExpr *
5296 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5297                         SourceLocation IteratorKwLoc, SourceLocation L,
5298                         SourceLocation R,
5299                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5300                         ArrayRef<OMPIteratorHelperData> Helpers) {
5301   assert(Data.size() == Helpers.size() &&
5302          "Data and helpers must have the same size.");
5303   void *Mem = Context.Allocate(
5304       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5305           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5306           Data.size() * static_cast<int>(RangeLocOffset::Total),
5307           Helpers.size()),
5308       alignof(OMPIteratorExpr));
5309   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5310 }
5311 
5312 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5313                                               unsigned NumIterators) {
5314   void *Mem = Context.Allocate(
5315       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5316           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5317           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5318       alignof(OMPIteratorExpr));
5319   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5320 }
5321