1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cstring> 39 using namespace clang; 40 41 const Expr *Expr::getBestDynamicClassTypeExpr() const { 42 const Expr *E = this; 43 while (true) { 44 E = E->IgnoreParenBaseCasts(); 45 46 // Follow the RHS of a comma operator. 47 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 48 if (BO->getOpcode() == BO_Comma) { 49 E = BO->getRHS(); 50 continue; 51 } 52 } 53 54 // Step into initializer for materialized temporaries. 55 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 56 E = MTE->getSubExpr(); 57 continue; 58 } 59 60 break; 61 } 62 63 return E; 64 } 65 66 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 67 const Expr *E = getBestDynamicClassTypeExpr(); 68 QualType DerivedType = E->getType(); 69 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 70 DerivedType = PTy->getPointeeType(); 71 72 if (DerivedType->isDependentType()) 73 return nullptr; 74 75 const RecordType *Ty = DerivedType->castAs<RecordType>(); 76 Decl *D = Ty->getDecl(); 77 return cast<CXXRecordDecl>(D); 78 } 79 80 const Expr *Expr::skipRValueSubobjectAdjustments( 81 SmallVectorImpl<const Expr *> &CommaLHSs, 82 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 83 const Expr *E = this; 84 while (true) { 85 E = E->IgnoreParens(); 86 87 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 88 if ((CE->getCastKind() == CK_DerivedToBase || 89 CE->getCastKind() == CK_UncheckedDerivedToBase) && 90 E->getType()->isRecordType()) { 91 E = CE->getSubExpr(); 92 auto *Derived = 93 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 94 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 95 continue; 96 } 97 98 if (CE->getCastKind() == CK_NoOp) { 99 E = CE->getSubExpr(); 100 continue; 101 } 102 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 103 if (!ME->isArrow()) { 104 assert(ME->getBase()->getType()->isRecordType()); 105 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 106 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 107 E = ME->getBase(); 108 Adjustments.push_back(SubobjectAdjustment(Field)); 109 continue; 110 } 111 } 112 } 113 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 114 if (BO->getOpcode() == BO_PtrMemD) { 115 assert(BO->getRHS()->isPRValue()); 116 E = BO->getLHS(); 117 const MemberPointerType *MPT = 118 BO->getRHS()->getType()->getAs<MemberPointerType>(); 119 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 120 continue; 121 } 122 if (BO->getOpcode() == BO_Comma) { 123 CommaLHSs.push_back(BO->getLHS()); 124 E = BO->getRHS(); 125 continue; 126 } 127 } 128 129 // Nothing changed. 130 break; 131 } 132 return E; 133 } 134 135 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 136 const Expr *E = IgnoreParens(); 137 138 // If this value has _Bool type, it is obvious 0/1. 139 if (E->getType()->isBooleanType()) return true; 140 // If this is a non-scalar-integer type, we don't care enough to try. 141 if (!E->getType()->isIntegralOrEnumerationType()) return false; 142 143 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 144 switch (UO->getOpcode()) { 145 case UO_Plus: 146 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 147 case UO_LNot: 148 return true; 149 default: 150 return false; 151 } 152 } 153 154 // Only look through implicit casts. If the user writes 155 // '(int) (a && b)' treat it as an arbitrary int. 156 // FIXME: Should we look through any cast expression in !Semantic mode? 157 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 158 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 159 160 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 161 switch (BO->getOpcode()) { 162 default: return false; 163 case BO_LT: // Relational operators. 164 case BO_GT: 165 case BO_LE: 166 case BO_GE: 167 case BO_EQ: // Equality operators. 168 case BO_NE: 169 case BO_LAnd: // AND operator. 170 case BO_LOr: // Logical OR operator. 171 return true; 172 173 case BO_And: // Bitwise AND operator. 174 case BO_Xor: // Bitwise XOR operator. 175 case BO_Or: // Bitwise OR operator. 176 // Handle things like (x==2)|(y==12). 177 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 178 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 179 180 case BO_Comma: 181 case BO_Assign: 182 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 183 } 184 } 185 186 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 187 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 188 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 189 190 if (isa<ObjCBoolLiteralExpr>(E)) 191 return true; 192 193 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 194 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 195 196 if (const FieldDecl *FD = E->getSourceBitField()) 197 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 198 !FD->getBitWidth()->isValueDependent() && 199 FD->getBitWidthValue(FD->getASTContext()) == 1) 200 return true; 201 202 return false; 203 } 204 205 const ValueDecl * 206 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 207 Expr::EvalResult Eval; 208 209 if (EvaluateAsConstantExpr(Eval, Context)) { 210 APValue &Value = Eval.Val; 211 212 if (Value.isMemberPointer()) 213 return Value.getMemberPointerDecl(); 214 215 if (Value.isLValue() && Value.getLValueOffset().isZero()) 216 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 217 } 218 219 return nullptr; 220 } 221 222 // Amusing macro metaprogramming hack: check whether a class provides 223 // a more specific implementation of getExprLoc(). 224 // 225 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 226 namespace { 227 /// This implementation is used when a class provides a custom 228 /// implementation of getExprLoc. 229 template <class E, class T> 230 SourceLocation getExprLocImpl(const Expr *expr, 231 SourceLocation (T::*v)() const) { 232 return static_cast<const E*>(expr)->getExprLoc(); 233 } 234 235 /// This implementation is used when a class doesn't provide 236 /// a custom implementation of getExprLoc. Overload resolution 237 /// should pick it over the implementation above because it's 238 /// more specialized according to function template partial ordering. 239 template <class E> 240 SourceLocation getExprLocImpl(const Expr *expr, 241 SourceLocation (Expr::*v)() const) { 242 return static_cast<const E *>(expr)->getBeginLoc(); 243 } 244 } 245 246 SourceLocation Expr::getExprLoc() const { 247 switch (getStmtClass()) { 248 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 249 #define ABSTRACT_STMT(type) 250 #define STMT(type, base) \ 251 case Stmt::type##Class: break; 252 #define EXPR(type, base) \ 253 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 254 #include "clang/AST/StmtNodes.inc" 255 } 256 llvm_unreachable("unknown expression kind"); 257 } 258 259 //===----------------------------------------------------------------------===// 260 // Primary Expressions. 261 //===----------------------------------------------------------------------===// 262 263 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { 264 assert((Kind == ConstantExpr::RSK_APValue || 265 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && 266 "Invalid StorageKind Value"); 267 (void)Kind; 268 } 269 270 ConstantExpr::ResultStorageKind 271 ConstantExpr::getStorageKind(const APValue &Value) { 272 switch (Value.getKind()) { 273 case APValue::None: 274 case APValue::Indeterminate: 275 return ConstantExpr::RSK_None; 276 case APValue::Int: 277 if (!Value.getInt().needsCleanup()) 278 return ConstantExpr::RSK_Int64; 279 LLVM_FALLTHROUGH; 280 default: 281 return ConstantExpr::RSK_APValue; 282 } 283 } 284 285 ConstantExpr::ResultStorageKind 286 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 287 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 288 return ConstantExpr::RSK_Int64; 289 return ConstantExpr::RSK_APValue; 290 } 291 292 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind, 293 bool IsImmediateInvocation) 294 : FullExpr(ConstantExprClass, SubExpr) { 295 ConstantExprBits.ResultKind = StorageKind; 296 ConstantExprBits.APValueKind = APValue::None; 297 ConstantExprBits.IsUnsigned = false; 298 ConstantExprBits.BitWidth = 0; 299 ConstantExprBits.HasCleanup = false; 300 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 301 302 if (StorageKind == ConstantExpr::RSK_APValue) 303 ::new (getTrailingObjects<APValue>()) APValue(); 304 } 305 306 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 307 ResultStorageKind StorageKind, 308 bool IsImmediateInvocation) { 309 assert(!isa<ConstantExpr>(E)); 310 AssertResultStorageKind(StorageKind); 311 312 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 313 StorageKind == ConstantExpr::RSK_APValue, 314 StorageKind == ConstantExpr::RSK_Int64); 315 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 316 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 317 } 318 319 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 320 const APValue &Result) { 321 ResultStorageKind StorageKind = getStorageKind(Result); 322 ConstantExpr *Self = Create(Context, E, StorageKind); 323 Self->SetResult(Result, Context); 324 return Self; 325 } 326 327 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind) 328 : FullExpr(ConstantExprClass, Empty) { 329 ConstantExprBits.ResultKind = StorageKind; 330 331 if (StorageKind == ConstantExpr::RSK_APValue) 332 ::new (getTrailingObjects<APValue>()) APValue(); 333 } 334 335 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 336 ResultStorageKind StorageKind) { 337 AssertResultStorageKind(StorageKind); 338 339 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 340 StorageKind == ConstantExpr::RSK_APValue, 341 StorageKind == ConstantExpr::RSK_Int64); 342 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 343 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 344 } 345 346 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 347 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 348 "Invalid storage for this value kind"); 349 ConstantExprBits.APValueKind = Value.getKind(); 350 switch (ConstantExprBits.ResultKind) { 351 case RSK_None: 352 return; 353 case RSK_Int64: 354 Int64Result() = *Value.getInt().getRawData(); 355 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 356 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 357 return; 358 case RSK_APValue: 359 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 360 ConstantExprBits.HasCleanup = true; 361 Context.addDestruction(&APValueResult()); 362 } 363 APValueResult() = std::move(Value); 364 return; 365 } 366 llvm_unreachable("Invalid ResultKind Bits"); 367 } 368 369 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 370 switch (ConstantExprBits.ResultKind) { 371 case ConstantExpr::RSK_APValue: 372 return APValueResult().getInt(); 373 case ConstantExpr::RSK_Int64: 374 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 375 ConstantExprBits.IsUnsigned); 376 default: 377 llvm_unreachable("invalid Accessor"); 378 } 379 } 380 381 APValue ConstantExpr::getAPValueResult() const { 382 383 switch (ConstantExprBits.ResultKind) { 384 case ConstantExpr::RSK_APValue: 385 return APValueResult(); 386 case ConstantExpr::RSK_Int64: 387 return APValue( 388 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 389 ConstantExprBits.IsUnsigned)); 390 case ConstantExpr::RSK_None: 391 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 392 return APValue::IndeterminateValue(); 393 return APValue(); 394 } 395 llvm_unreachable("invalid ResultKind"); 396 } 397 398 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 399 bool RefersToEnclosingVariableOrCapture, QualType T, 400 ExprValueKind VK, SourceLocation L, 401 const DeclarationNameLoc &LocInfo, 402 NonOdrUseReason NOUR) 403 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 404 DeclRefExprBits.HasQualifier = false; 405 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 406 DeclRefExprBits.HasFoundDecl = false; 407 DeclRefExprBits.HadMultipleCandidates = false; 408 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 409 RefersToEnclosingVariableOrCapture; 410 DeclRefExprBits.NonOdrUseReason = NOUR; 411 DeclRefExprBits.Loc = L; 412 setDependence(computeDependence(this, Ctx)); 413 } 414 415 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 416 NestedNameSpecifierLoc QualifierLoc, 417 SourceLocation TemplateKWLoc, ValueDecl *D, 418 bool RefersToEnclosingVariableOrCapture, 419 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 420 const TemplateArgumentListInfo *TemplateArgs, 421 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 422 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 423 DNLoc(NameInfo.getInfo()) { 424 DeclRefExprBits.Loc = NameInfo.getLoc(); 425 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 426 if (QualifierLoc) 427 new (getTrailingObjects<NestedNameSpecifierLoc>()) 428 NestedNameSpecifierLoc(QualifierLoc); 429 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 430 if (FoundD) 431 *getTrailingObjects<NamedDecl *>() = FoundD; 432 DeclRefExprBits.HasTemplateKWAndArgsInfo 433 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 434 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 435 RefersToEnclosingVariableOrCapture; 436 DeclRefExprBits.NonOdrUseReason = NOUR; 437 if (TemplateArgs) { 438 auto Deps = TemplateArgumentDependence::None; 439 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 440 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 441 Deps); 442 assert(!(Deps & TemplateArgumentDependence::Dependent) && 443 "built a DeclRefExpr with dependent template args"); 444 } else if (TemplateKWLoc.isValid()) { 445 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 446 TemplateKWLoc); 447 } 448 DeclRefExprBits.HadMultipleCandidates = 0; 449 setDependence(computeDependence(this, Ctx)); 450 } 451 452 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 453 NestedNameSpecifierLoc QualifierLoc, 454 SourceLocation TemplateKWLoc, ValueDecl *D, 455 bool RefersToEnclosingVariableOrCapture, 456 SourceLocation NameLoc, QualType T, 457 ExprValueKind VK, NamedDecl *FoundD, 458 const TemplateArgumentListInfo *TemplateArgs, 459 NonOdrUseReason NOUR) { 460 return Create(Context, QualifierLoc, TemplateKWLoc, D, 461 RefersToEnclosingVariableOrCapture, 462 DeclarationNameInfo(D->getDeclName(), NameLoc), 463 T, VK, FoundD, TemplateArgs, NOUR); 464 } 465 466 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 467 NestedNameSpecifierLoc QualifierLoc, 468 SourceLocation TemplateKWLoc, ValueDecl *D, 469 bool RefersToEnclosingVariableOrCapture, 470 const DeclarationNameInfo &NameInfo, 471 QualType T, ExprValueKind VK, 472 NamedDecl *FoundD, 473 const TemplateArgumentListInfo *TemplateArgs, 474 NonOdrUseReason NOUR) { 475 // Filter out cases where the found Decl is the same as the value refenenced. 476 if (D == FoundD) 477 FoundD = nullptr; 478 479 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 480 std::size_t Size = 481 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 482 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 483 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 484 HasTemplateKWAndArgsInfo ? 1 : 0, 485 TemplateArgs ? TemplateArgs->size() : 0); 486 487 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 488 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 489 RefersToEnclosingVariableOrCapture, NameInfo, 490 FoundD, TemplateArgs, T, VK, NOUR); 491 } 492 493 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 494 bool HasQualifier, 495 bool HasFoundDecl, 496 bool HasTemplateKWAndArgsInfo, 497 unsigned NumTemplateArgs) { 498 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 499 std::size_t Size = 500 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 501 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 502 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 503 NumTemplateArgs); 504 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 505 return new (Mem) DeclRefExpr(EmptyShell()); 506 } 507 508 void DeclRefExpr::setDecl(ValueDecl *NewD) { 509 D = NewD; 510 if (getType()->isUndeducedType()) 511 setType(NewD->getType()); 512 setDependence(computeDependence(this, NewD->getASTContext())); 513 } 514 515 SourceLocation DeclRefExpr::getBeginLoc() const { 516 if (hasQualifier()) 517 return getQualifierLoc().getBeginLoc(); 518 return getNameInfo().getBeginLoc(); 519 } 520 SourceLocation DeclRefExpr::getEndLoc() const { 521 if (hasExplicitTemplateArgs()) 522 return getRAngleLoc(); 523 return getNameInfo().getEndLoc(); 524 } 525 526 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 527 SourceLocation LParen, 528 SourceLocation RParen, 529 QualType ResultTy, 530 TypeSourceInfo *TSI) 531 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 532 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 533 setTypeSourceInfo(TSI); 534 setDependence(computeDependence(this)); 535 } 536 537 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 538 QualType ResultTy) 539 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 540 541 SYCLUniqueStableNameExpr * 542 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 543 SourceLocation LParen, SourceLocation RParen, 544 TypeSourceInfo *TSI) { 545 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 546 return new (Ctx) 547 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 548 } 549 550 SYCLUniqueStableNameExpr * 551 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 552 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 553 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 554 } 555 556 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 557 return SYCLUniqueStableNameExpr::ComputeName(Context, 558 getTypeSourceInfo()->getType()); 559 } 560 561 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 562 QualType Ty) { 563 auto MangleCallback = [](ASTContext &Ctx, 564 const NamedDecl *ND) -> llvm::Optional<unsigned> { 565 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 566 return RD->getDeviceLambdaManglingNumber(); 567 return llvm::None; 568 }; 569 570 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 571 Context, Context.getDiagnostics(), MangleCallback)}; 572 573 std::string Buffer; 574 Buffer.reserve(128); 575 llvm::raw_string_ostream Out(Buffer); 576 Ctx->mangleTypeName(Ty, Out); 577 578 return Out.str(); 579 } 580 581 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, 582 StringLiteral *SL) 583 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 584 PredefinedExprBits.Kind = IK; 585 assert((getIdentKind() == IK) && 586 "IdentKind do not fit in PredefinedExprBitfields!"); 587 bool HasFunctionName = SL != nullptr; 588 PredefinedExprBits.HasFunctionName = HasFunctionName; 589 PredefinedExprBits.Loc = L; 590 if (HasFunctionName) 591 setFunctionName(SL); 592 setDependence(computeDependence(this)); 593 } 594 595 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 596 : Expr(PredefinedExprClass, Empty) { 597 PredefinedExprBits.HasFunctionName = HasFunctionName; 598 } 599 600 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 601 QualType FNTy, IdentKind IK, 602 StringLiteral *SL) { 603 bool HasFunctionName = SL != nullptr; 604 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 605 alignof(PredefinedExpr)); 606 return new (Mem) PredefinedExpr(L, FNTy, IK, SL); 607 } 608 609 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 610 bool HasFunctionName) { 611 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 612 alignof(PredefinedExpr)); 613 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 614 } 615 616 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { 617 switch (IK) { 618 case Func: 619 return "__func__"; 620 case Function: 621 return "__FUNCTION__"; 622 case FuncDName: 623 return "__FUNCDNAME__"; 624 case LFunction: 625 return "L__FUNCTION__"; 626 case PrettyFunction: 627 return "__PRETTY_FUNCTION__"; 628 case FuncSig: 629 return "__FUNCSIG__"; 630 case LFuncSig: 631 return "L__FUNCSIG__"; 632 case PrettyFunctionNoVirtual: 633 break; 634 } 635 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 636 } 637 638 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 639 // expr" policy instead. 640 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { 641 ASTContext &Context = CurrentDecl->getASTContext(); 642 643 if (IK == PredefinedExpr::FuncDName) { 644 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 645 std::unique_ptr<MangleContext> MC; 646 MC.reset(Context.createMangleContext()); 647 648 if (MC->shouldMangleDeclName(ND)) { 649 SmallString<256> Buffer; 650 llvm::raw_svector_ostream Out(Buffer); 651 GlobalDecl GD; 652 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 653 GD = GlobalDecl(CD, Ctor_Base); 654 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 655 GD = GlobalDecl(DD, Dtor_Base); 656 else if (ND->hasAttr<CUDAGlobalAttr>()) 657 GD = GlobalDecl(cast<FunctionDecl>(ND)); 658 else 659 GD = GlobalDecl(ND); 660 MC->mangleName(GD, Out); 661 662 if (!Buffer.empty() && Buffer.front() == '\01') 663 return std::string(Buffer.substr(1)); 664 return std::string(Buffer.str()); 665 } 666 return std::string(ND->getIdentifier()->getName()); 667 } 668 return ""; 669 } 670 if (isa<BlockDecl>(CurrentDecl)) { 671 // For blocks we only emit something if it is enclosed in a function 672 // For top-level block we'd like to include the name of variable, but we 673 // don't have it at this point. 674 auto DC = CurrentDecl->getDeclContext(); 675 if (DC->isFileContext()) 676 return ""; 677 678 SmallString<256> Buffer; 679 llvm::raw_svector_ostream Out(Buffer); 680 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 681 // For nested blocks, propagate up to the parent. 682 Out << ComputeName(IK, DCBlock); 683 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 684 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 685 return std::string(Out.str()); 686 } 687 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 688 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && 689 IK != FuncSig && IK != LFuncSig) 690 return FD->getNameAsString(); 691 692 SmallString<256> Name; 693 llvm::raw_svector_ostream Out(Name); 694 695 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 696 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) 697 Out << "virtual "; 698 if (MD->isStatic()) 699 Out << "static "; 700 } 701 702 PrintingPolicy Policy(Context.getLangOpts()); 703 std::string Proto; 704 llvm::raw_string_ostream POut(Proto); 705 706 const FunctionDecl *Decl = FD; 707 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 708 Decl = Pattern; 709 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 710 const FunctionProtoType *FT = nullptr; 711 if (FD->hasWrittenPrototype()) 712 FT = dyn_cast<FunctionProtoType>(AFT); 713 714 if (IK == FuncSig || IK == LFuncSig) { 715 switch (AFT->getCallConv()) { 716 case CC_C: POut << "__cdecl "; break; 717 case CC_X86StdCall: POut << "__stdcall "; break; 718 case CC_X86FastCall: POut << "__fastcall "; break; 719 case CC_X86ThisCall: POut << "__thiscall "; break; 720 case CC_X86VectorCall: POut << "__vectorcall "; break; 721 case CC_X86RegCall: POut << "__regcall "; break; 722 // Only bother printing the conventions that MSVC knows about. 723 default: break; 724 } 725 } 726 727 FD->printQualifiedName(POut, Policy); 728 729 POut << "("; 730 if (FT) { 731 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 732 if (i) POut << ", "; 733 POut << Decl->getParamDecl(i)->getType().stream(Policy); 734 } 735 736 if (FT->isVariadic()) { 737 if (FD->getNumParams()) POut << ", "; 738 POut << "..."; 739 } else if ((IK == FuncSig || IK == LFuncSig || 740 !Context.getLangOpts().CPlusPlus) && 741 !Decl->getNumParams()) { 742 POut << "void"; 743 } 744 } 745 POut << ")"; 746 747 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 748 assert(FT && "We must have a written prototype in this case."); 749 if (FT->isConst()) 750 POut << " const"; 751 if (FT->isVolatile()) 752 POut << " volatile"; 753 RefQualifierKind Ref = MD->getRefQualifier(); 754 if (Ref == RQ_LValue) 755 POut << " &"; 756 else if (Ref == RQ_RValue) 757 POut << " &&"; 758 } 759 760 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 761 SpecsTy Specs; 762 const DeclContext *Ctx = FD->getDeclContext(); 763 while (Ctx && isa<NamedDecl>(Ctx)) { 764 const ClassTemplateSpecializationDecl *Spec 765 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 766 if (Spec && !Spec->isExplicitSpecialization()) 767 Specs.push_back(Spec); 768 Ctx = Ctx->getParent(); 769 } 770 771 std::string TemplateParams; 772 llvm::raw_string_ostream TOut(TemplateParams); 773 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 774 const TemplateParameterList *Params = 775 D->getSpecializedTemplate()->getTemplateParameters(); 776 const TemplateArgumentList &Args = D->getTemplateArgs(); 777 assert(Params->size() == Args.size()); 778 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 779 StringRef Param = Params->getParam(i)->getName(); 780 if (Param.empty()) continue; 781 TOut << Param << " = "; 782 Args.get(i).print(Policy, TOut, 783 TemplateParameterList::shouldIncludeTypeForArgument( 784 Policy, Params, i)); 785 TOut << ", "; 786 } 787 } 788 789 FunctionTemplateSpecializationInfo *FSI 790 = FD->getTemplateSpecializationInfo(); 791 if (FSI && !FSI->isExplicitSpecialization()) { 792 const TemplateParameterList* Params 793 = FSI->getTemplate()->getTemplateParameters(); 794 const TemplateArgumentList* Args = FSI->TemplateArguments; 795 assert(Params->size() == Args->size()); 796 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 797 StringRef Param = Params->getParam(i)->getName(); 798 if (Param.empty()) continue; 799 TOut << Param << " = "; 800 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 801 TOut << ", "; 802 } 803 } 804 805 TOut.flush(); 806 if (!TemplateParams.empty()) { 807 // remove the trailing comma and space 808 TemplateParams.resize(TemplateParams.size() - 2); 809 POut << " [" << TemplateParams << "]"; 810 } 811 812 POut.flush(); 813 814 // Print "auto" for all deduced return types. This includes C++1y return 815 // type deduction and lambdas. For trailing return types resolve the 816 // decltype expression. Otherwise print the real type when this is 817 // not a constructor or destructor. 818 if (isa<CXXMethodDecl>(FD) && 819 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 820 Proto = "auto " + Proto; 821 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 822 FT->getReturnType() 823 ->getAs<DecltypeType>() 824 ->getUnderlyingType() 825 .getAsStringInternal(Proto, Policy); 826 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 827 AFT->getReturnType().getAsStringInternal(Proto, Policy); 828 829 Out << Proto; 830 831 return std::string(Name); 832 } 833 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 834 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 835 // Skip to its enclosing function or method, but not its enclosing 836 // CapturedDecl. 837 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 838 const Decl *D = Decl::castFromDeclContext(DC); 839 return ComputeName(IK, D); 840 } 841 llvm_unreachable("CapturedDecl not inside a function or method"); 842 } 843 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 844 SmallString<256> Name; 845 llvm::raw_svector_ostream Out(Name); 846 Out << (MD->isInstanceMethod() ? '-' : '+'); 847 Out << '['; 848 849 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 850 // a null check to avoid a crash. 851 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 852 Out << *ID; 853 854 if (const ObjCCategoryImplDecl *CID = 855 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 856 Out << '(' << *CID << ')'; 857 858 Out << ' '; 859 MD->getSelector().print(Out); 860 Out << ']'; 861 862 return std::string(Name); 863 } 864 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { 865 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 866 return "top level"; 867 } 868 return ""; 869 } 870 871 void APNumericStorage::setIntValue(const ASTContext &C, 872 const llvm::APInt &Val) { 873 if (hasAllocation()) 874 C.Deallocate(pVal); 875 876 BitWidth = Val.getBitWidth(); 877 unsigned NumWords = Val.getNumWords(); 878 const uint64_t* Words = Val.getRawData(); 879 if (NumWords > 1) { 880 pVal = new (C) uint64_t[NumWords]; 881 std::copy(Words, Words + NumWords, pVal); 882 } else if (NumWords == 1) 883 VAL = Words[0]; 884 else 885 VAL = 0; 886 } 887 888 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 889 QualType type, SourceLocation l) 890 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 891 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 892 assert(V.getBitWidth() == C.getIntWidth(type) && 893 "Integer type is not the correct size for constant."); 894 setValue(C, V); 895 setDependence(ExprDependence::None); 896 } 897 898 IntegerLiteral * 899 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 900 QualType type, SourceLocation l) { 901 return new (C) IntegerLiteral(C, V, type, l); 902 } 903 904 IntegerLiteral * 905 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 906 return new (C) IntegerLiteral(Empty); 907 } 908 909 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 910 QualType type, SourceLocation l, 911 unsigned Scale) 912 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 913 Scale(Scale) { 914 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 915 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 916 "Fixed point type is not the correct size for constant."); 917 setValue(C, V); 918 setDependence(ExprDependence::None); 919 } 920 921 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 922 const llvm::APInt &V, 923 QualType type, 924 SourceLocation l, 925 unsigned Scale) { 926 return new (C) FixedPointLiteral(C, V, type, l, Scale); 927 } 928 929 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 930 EmptyShell Empty) { 931 return new (C) FixedPointLiteral(Empty); 932 } 933 934 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 935 // Currently the longest decimal number that can be printed is the max for an 936 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 937 // which is 43 characters. 938 SmallString<64> S; 939 FixedPointValueToString( 940 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 941 return std::string(S.str()); 942 } 943 944 void CharacterLiteral::print(unsigned Val, CharacterKind Kind, 945 raw_ostream &OS) { 946 switch (Kind) { 947 case CharacterLiteral::Ascii: 948 break; // no prefix. 949 case CharacterLiteral::Wide: 950 OS << 'L'; 951 break; 952 case CharacterLiteral::UTF8: 953 OS << "u8"; 954 break; 955 case CharacterLiteral::UTF16: 956 OS << 'u'; 957 break; 958 case CharacterLiteral::UTF32: 959 OS << 'U'; 960 break; 961 } 962 963 switch (Val) { 964 case '\\': 965 OS << "'\\\\'"; 966 break; 967 case '\'': 968 OS << "'\\''"; 969 break; 970 case '\a': 971 // TODO: K&R: the meaning of '\\a' is different in traditional C 972 OS << "'\\a'"; 973 break; 974 case '\b': 975 OS << "'\\b'"; 976 break; 977 // Nonstandard escape sequence. 978 /*case '\e': 979 OS << "'\\e'"; 980 break;*/ 981 case '\f': 982 OS << "'\\f'"; 983 break; 984 case '\n': 985 OS << "'\\n'"; 986 break; 987 case '\r': 988 OS << "'\\r'"; 989 break; 990 case '\t': 991 OS << "'\\t'"; 992 break; 993 case '\v': 994 OS << "'\\v'"; 995 break; 996 default: 997 // A character literal might be sign-extended, which 998 // would result in an invalid \U escape sequence. 999 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 1000 // are not correctly handled. 1001 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii) 1002 Val &= 0xFFu; 1003 if (Val < 256 && isPrintable((unsigned char)Val)) 1004 OS << "'" << (char)Val << "'"; 1005 else if (Val < 256) 1006 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 1007 else if (Val <= 0xFFFF) 1008 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 1009 else 1010 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 1011 } 1012 } 1013 1014 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 1015 bool isexact, QualType Type, SourceLocation L) 1016 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 1017 setSemantics(V.getSemantics()); 1018 FloatingLiteralBits.IsExact = isexact; 1019 setValue(C, V); 1020 setDependence(ExprDependence::None); 1021 } 1022 1023 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 1024 : Expr(FloatingLiteralClass, Empty) { 1025 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 1026 FloatingLiteralBits.IsExact = false; 1027 } 1028 1029 FloatingLiteral * 1030 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1031 bool isexact, QualType Type, SourceLocation L) { 1032 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1033 } 1034 1035 FloatingLiteral * 1036 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1037 return new (C) FloatingLiteral(C, Empty); 1038 } 1039 1040 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1041 /// double. Note that this may cause loss of precision, but is useful for 1042 /// debugging dumps, etc. 1043 double FloatingLiteral::getValueAsApproximateDouble() const { 1044 llvm::APFloat V = getValue(); 1045 bool ignored; 1046 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1047 &ignored); 1048 return V.convertToDouble(); 1049 } 1050 1051 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1052 StringKind SK) { 1053 unsigned CharByteWidth = 0; 1054 switch (SK) { 1055 case Ascii: 1056 case UTF8: 1057 CharByteWidth = Target.getCharWidth(); 1058 break; 1059 case Wide: 1060 CharByteWidth = Target.getWCharWidth(); 1061 break; 1062 case UTF16: 1063 CharByteWidth = Target.getChar16Width(); 1064 break; 1065 case UTF32: 1066 CharByteWidth = Target.getChar32Width(); 1067 break; 1068 } 1069 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1070 CharByteWidth /= 8; 1071 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1072 "The only supported character byte widths are 1,2 and 4!"); 1073 return CharByteWidth; 1074 } 1075 1076 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1077 StringKind Kind, bool Pascal, QualType Ty, 1078 const SourceLocation *Loc, 1079 unsigned NumConcatenated) 1080 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1081 assert(Ctx.getAsConstantArrayType(Ty) && 1082 "StringLiteral must be of constant array type!"); 1083 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1084 unsigned ByteLength = Str.size(); 1085 assert((ByteLength % CharByteWidth == 0) && 1086 "The size of the data must be a multiple of CharByteWidth!"); 1087 1088 // Avoid the expensive division. The compiler should be able to figure it 1089 // out by itself. However as of clang 7, even with the appropriate 1090 // llvm_unreachable added just here, it is not able to do so. 1091 unsigned Length; 1092 switch (CharByteWidth) { 1093 case 1: 1094 Length = ByteLength; 1095 break; 1096 case 2: 1097 Length = ByteLength / 2; 1098 break; 1099 case 4: 1100 Length = ByteLength / 4; 1101 break; 1102 default: 1103 llvm_unreachable("Unsupported character width!"); 1104 } 1105 1106 StringLiteralBits.Kind = Kind; 1107 StringLiteralBits.CharByteWidth = CharByteWidth; 1108 StringLiteralBits.IsPascal = Pascal; 1109 StringLiteralBits.NumConcatenated = NumConcatenated; 1110 *getTrailingObjects<unsigned>() = Length; 1111 1112 // Initialize the trailing array of SourceLocation. 1113 // This is safe since SourceLocation is POD-like. 1114 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1115 NumConcatenated * sizeof(SourceLocation)); 1116 1117 // Initialize the trailing array of char holding the string data. 1118 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); 1119 1120 setDependence(ExprDependence::None); 1121 } 1122 1123 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1124 unsigned Length, unsigned CharByteWidth) 1125 : Expr(StringLiteralClass, Empty) { 1126 StringLiteralBits.CharByteWidth = CharByteWidth; 1127 StringLiteralBits.NumConcatenated = NumConcatenated; 1128 *getTrailingObjects<unsigned>() = Length; 1129 } 1130 1131 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1132 StringKind Kind, bool Pascal, QualType Ty, 1133 const SourceLocation *Loc, 1134 unsigned NumConcatenated) { 1135 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1136 1, NumConcatenated, Str.size()), 1137 alignof(StringLiteral)); 1138 return new (Mem) 1139 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1140 } 1141 1142 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1143 unsigned NumConcatenated, 1144 unsigned Length, 1145 unsigned CharByteWidth) { 1146 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1147 1, NumConcatenated, Length * CharByteWidth), 1148 alignof(StringLiteral)); 1149 return new (Mem) 1150 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1151 } 1152 1153 void StringLiteral::outputString(raw_ostream &OS) const { 1154 switch (getKind()) { 1155 case Ascii: break; // no prefix. 1156 case Wide: OS << 'L'; break; 1157 case UTF8: OS << "u8"; break; 1158 case UTF16: OS << 'u'; break; 1159 case UTF32: OS << 'U'; break; 1160 } 1161 OS << '"'; 1162 static const char Hex[] = "0123456789ABCDEF"; 1163 1164 unsigned LastSlashX = getLength(); 1165 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1166 switch (uint32_t Char = getCodeUnit(I)) { 1167 default: 1168 // FIXME: Convert UTF-8 back to codepoints before rendering. 1169 1170 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1171 // Leave invalid surrogates alone; we'll use \x for those. 1172 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 1173 Char <= 0xdbff) { 1174 uint32_t Trail = getCodeUnit(I + 1); 1175 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1176 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1177 ++I; 1178 } 1179 } 1180 1181 if (Char > 0xff) { 1182 // If this is a wide string, output characters over 0xff using \x 1183 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1184 // codepoint: use \x escapes for invalid codepoints. 1185 if (getKind() == Wide || 1186 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1187 // FIXME: Is this the best way to print wchar_t? 1188 OS << "\\x"; 1189 int Shift = 28; 1190 while ((Char >> Shift) == 0) 1191 Shift -= 4; 1192 for (/**/; Shift >= 0; Shift -= 4) 1193 OS << Hex[(Char >> Shift) & 15]; 1194 LastSlashX = I; 1195 break; 1196 } 1197 1198 if (Char > 0xffff) 1199 OS << "\\U00" 1200 << Hex[(Char >> 20) & 15] 1201 << Hex[(Char >> 16) & 15]; 1202 else 1203 OS << "\\u"; 1204 OS << Hex[(Char >> 12) & 15] 1205 << Hex[(Char >> 8) & 15] 1206 << Hex[(Char >> 4) & 15] 1207 << Hex[(Char >> 0) & 15]; 1208 break; 1209 } 1210 1211 // If we used \x... for the previous character, and this character is a 1212 // hexadecimal digit, prevent it being slurped as part of the \x. 1213 if (LastSlashX + 1 == I) { 1214 switch (Char) { 1215 case '0': case '1': case '2': case '3': case '4': 1216 case '5': case '6': case '7': case '8': case '9': 1217 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1218 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1219 OS << "\"\""; 1220 } 1221 } 1222 1223 assert(Char <= 0xff && 1224 "Characters above 0xff should already have been handled."); 1225 1226 if (isPrintable(Char)) 1227 OS << (char)Char; 1228 else // Output anything hard as an octal escape. 1229 OS << '\\' 1230 << (char)('0' + ((Char >> 6) & 7)) 1231 << (char)('0' + ((Char >> 3) & 7)) 1232 << (char)('0' + ((Char >> 0) & 7)); 1233 break; 1234 // Handle some common non-printable cases to make dumps prettier. 1235 case '\\': OS << "\\\\"; break; 1236 case '"': OS << "\\\""; break; 1237 case '\a': OS << "\\a"; break; 1238 case '\b': OS << "\\b"; break; 1239 case '\f': OS << "\\f"; break; 1240 case '\n': OS << "\\n"; break; 1241 case '\r': OS << "\\r"; break; 1242 case '\t': OS << "\\t"; break; 1243 case '\v': OS << "\\v"; break; 1244 } 1245 } 1246 OS << '"'; 1247 } 1248 1249 /// getLocationOfByte - Return a source location that points to the specified 1250 /// byte of this string literal. 1251 /// 1252 /// Strings are amazingly complex. They can be formed from multiple tokens and 1253 /// can have escape sequences in them in addition to the usual trigraph and 1254 /// escaped newline business. This routine handles this complexity. 1255 /// 1256 /// The *StartToken sets the first token to be searched in this function and 1257 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1258 /// returning, it updates the *StartToken to the TokNo of the token being found 1259 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1260 /// string. 1261 /// Using these two parameters can reduce the time complexity from O(n^2) to 1262 /// O(n) if one wants to get the location of byte for all the tokens in a 1263 /// string. 1264 /// 1265 SourceLocation 1266 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1267 const LangOptions &Features, 1268 const TargetInfo &Target, unsigned *StartToken, 1269 unsigned *StartTokenByteOffset) const { 1270 assert((getKind() == StringLiteral::Ascii || 1271 getKind() == StringLiteral::UTF8) && 1272 "Only narrow string literals are currently supported"); 1273 1274 // Loop over all of the tokens in this string until we find the one that 1275 // contains the byte we're looking for. 1276 unsigned TokNo = 0; 1277 unsigned StringOffset = 0; 1278 if (StartToken) 1279 TokNo = *StartToken; 1280 if (StartTokenByteOffset) { 1281 StringOffset = *StartTokenByteOffset; 1282 ByteNo -= StringOffset; 1283 } 1284 while (true) { 1285 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1286 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1287 1288 // Get the spelling of the string so that we can get the data that makes up 1289 // the string literal, not the identifier for the macro it is potentially 1290 // expanded through. 1291 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1292 1293 // Re-lex the token to get its length and original spelling. 1294 std::pair<FileID, unsigned> LocInfo = 1295 SM.getDecomposedLoc(StrTokSpellingLoc); 1296 bool Invalid = false; 1297 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1298 if (Invalid) { 1299 if (StartTokenByteOffset != nullptr) 1300 *StartTokenByteOffset = StringOffset; 1301 if (StartToken != nullptr) 1302 *StartToken = TokNo; 1303 return StrTokSpellingLoc; 1304 } 1305 1306 const char *StrData = Buffer.data()+LocInfo.second; 1307 1308 // Create a lexer starting at the beginning of this token. 1309 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1310 Buffer.begin(), StrData, Buffer.end()); 1311 Token TheTok; 1312 TheLexer.LexFromRawLexer(TheTok); 1313 1314 // Use the StringLiteralParser to compute the length of the string in bytes. 1315 StringLiteralParser SLP(TheTok, SM, Features, Target); 1316 unsigned TokNumBytes = SLP.GetStringLength(); 1317 1318 // If the byte is in this token, return the location of the byte. 1319 if (ByteNo < TokNumBytes || 1320 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1321 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1322 1323 // Now that we know the offset of the token in the spelling, use the 1324 // preprocessor to get the offset in the original source. 1325 if (StartTokenByteOffset != nullptr) 1326 *StartTokenByteOffset = StringOffset; 1327 if (StartToken != nullptr) 1328 *StartToken = TokNo; 1329 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1330 } 1331 1332 // Move to the next string token. 1333 StringOffset += TokNumBytes; 1334 ++TokNo; 1335 ByteNo -= TokNumBytes; 1336 } 1337 } 1338 1339 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1340 /// corresponds to, e.g. "sizeof" or "[pre]++". 1341 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1342 switch (Op) { 1343 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1344 #include "clang/AST/OperationKinds.def" 1345 } 1346 llvm_unreachable("Unknown unary operator"); 1347 } 1348 1349 UnaryOperatorKind 1350 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1351 switch (OO) { 1352 default: llvm_unreachable("No unary operator for overloaded function"); 1353 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1354 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1355 case OO_Amp: return UO_AddrOf; 1356 case OO_Star: return UO_Deref; 1357 case OO_Plus: return UO_Plus; 1358 case OO_Minus: return UO_Minus; 1359 case OO_Tilde: return UO_Not; 1360 case OO_Exclaim: return UO_LNot; 1361 case OO_Coawait: return UO_Coawait; 1362 } 1363 } 1364 1365 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1366 switch (Opc) { 1367 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1368 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1369 case UO_AddrOf: return OO_Amp; 1370 case UO_Deref: return OO_Star; 1371 case UO_Plus: return OO_Plus; 1372 case UO_Minus: return OO_Minus; 1373 case UO_Not: return OO_Tilde; 1374 case UO_LNot: return OO_Exclaim; 1375 case UO_Coawait: return OO_Coawait; 1376 default: return OO_None; 1377 } 1378 } 1379 1380 1381 //===----------------------------------------------------------------------===// 1382 // Postfix Operators. 1383 //===----------------------------------------------------------------------===// 1384 1385 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1386 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1387 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1388 unsigned MinNumArgs, ADLCallKind UsesADL) 1389 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1390 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1391 unsigned NumPreArgs = PreArgs.size(); 1392 CallExprBits.NumPreArgs = NumPreArgs; 1393 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1394 1395 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1396 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1397 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1398 "OffsetToTrailingObjects overflow!"); 1399 1400 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1401 1402 setCallee(Fn); 1403 for (unsigned I = 0; I != NumPreArgs; ++I) 1404 setPreArg(I, PreArgs[I]); 1405 for (unsigned I = 0; I != Args.size(); ++I) 1406 setArg(I, Args[I]); 1407 for (unsigned I = Args.size(); I != NumArgs; ++I) 1408 setArg(I, nullptr); 1409 1410 this->computeDependence(); 1411 1412 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1413 if (hasStoredFPFeatures()) 1414 setStoredFPFeatures(FPFeatures); 1415 } 1416 1417 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1418 bool HasFPFeatures, EmptyShell Empty) 1419 : Expr(SC, Empty), NumArgs(NumArgs) { 1420 CallExprBits.NumPreArgs = NumPreArgs; 1421 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1422 1423 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1424 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1425 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1426 "OffsetToTrailingObjects overflow!"); 1427 CallExprBits.HasFPFeatures = HasFPFeatures; 1428 } 1429 1430 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1431 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1432 SourceLocation RParenLoc, 1433 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1434 ADLCallKind UsesADL) { 1435 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1436 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1437 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1438 void *Mem = 1439 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1440 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1441 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1442 } 1443 1444 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1445 ExprValueKind VK, SourceLocation RParenLoc, 1446 ADLCallKind UsesADL) { 1447 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1448 "Misaligned memory in CallExpr::CreateTemporary!"); 1449 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1450 VK, RParenLoc, FPOptionsOverride(), 1451 /*MinNumArgs=*/0, UsesADL); 1452 } 1453 1454 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1455 bool HasFPFeatures, EmptyShell Empty) { 1456 unsigned SizeOfTrailingObjects = 1457 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1458 void *Mem = 1459 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1460 return new (Mem) 1461 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1462 } 1463 1464 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1465 switch (SC) { 1466 case CallExprClass: 1467 return sizeof(CallExpr); 1468 case CXXOperatorCallExprClass: 1469 return sizeof(CXXOperatorCallExpr); 1470 case CXXMemberCallExprClass: 1471 return sizeof(CXXMemberCallExpr); 1472 case UserDefinedLiteralClass: 1473 return sizeof(UserDefinedLiteral); 1474 case CUDAKernelCallExprClass: 1475 return sizeof(CUDAKernelCallExpr); 1476 default: 1477 llvm_unreachable("unexpected class deriving from CallExpr!"); 1478 } 1479 } 1480 1481 Decl *Expr::getReferencedDeclOfCallee() { 1482 Expr *CEE = IgnoreParenImpCasts(); 1483 1484 while (SubstNonTypeTemplateParmExpr *NTTP = 1485 dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1486 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1487 } 1488 1489 // If we're calling a dereference, look at the pointer instead. 1490 while (true) { 1491 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1492 if (BO->isPtrMemOp()) { 1493 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1494 continue; 1495 } 1496 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1497 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1498 UO->getOpcode() == UO_Plus) { 1499 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1500 continue; 1501 } 1502 } 1503 break; 1504 } 1505 1506 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1507 return DRE->getDecl(); 1508 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1509 return ME->getMemberDecl(); 1510 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1511 return BE->getBlockDecl(); 1512 1513 return nullptr; 1514 } 1515 1516 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1517 unsigned CallExpr::getBuiltinCallee() const { 1518 auto *FDecl = 1519 dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee()); 1520 return FDecl ? FDecl->getBuiltinID() : 0; 1521 } 1522 1523 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1524 if (unsigned BI = getBuiltinCallee()) 1525 return Ctx.BuiltinInfo.isUnevaluated(BI); 1526 return false; 1527 } 1528 1529 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1530 const Expr *Callee = getCallee(); 1531 QualType CalleeType = Callee->getType(); 1532 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1533 CalleeType = FnTypePtr->getPointeeType(); 1534 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1535 CalleeType = BPT->getPointeeType(); 1536 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1537 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1538 return Ctx.VoidTy; 1539 1540 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1541 return Ctx.DependentTy; 1542 1543 // This should never be overloaded and so should never return null. 1544 CalleeType = Expr::findBoundMemberType(Callee); 1545 assert(!CalleeType.isNull()); 1546 } else if (CalleeType->isDependentType() || 1547 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1548 return Ctx.DependentTy; 1549 } 1550 1551 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1552 return FnType->getReturnType(); 1553 } 1554 1555 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1556 // If the return type is a struct, union, or enum that is marked nodiscard, 1557 // then return the return type attribute. 1558 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1559 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1560 return A; 1561 1562 // Otherwise, see if the callee is marked nodiscard and return that attribute 1563 // instead. 1564 const Decl *D = getCalleeDecl(); 1565 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1566 } 1567 1568 SourceLocation CallExpr::getBeginLoc() const { 1569 if (isa<CXXOperatorCallExpr>(this)) 1570 return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); 1571 1572 SourceLocation begin = getCallee()->getBeginLoc(); 1573 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1574 begin = getArg(0)->getBeginLoc(); 1575 return begin; 1576 } 1577 SourceLocation CallExpr::getEndLoc() const { 1578 if (isa<CXXOperatorCallExpr>(this)) 1579 return cast<CXXOperatorCallExpr>(this)->getEndLoc(); 1580 1581 SourceLocation end = getRParenLoc(); 1582 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1583 end = getArg(getNumArgs() - 1)->getEndLoc(); 1584 return end; 1585 } 1586 1587 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1588 SourceLocation OperatorLoc, 1589 TypeSourceInfo *tsi, 1590 ArrayRef<OffsetOfNode> comps, 1591 ArrayRef<Expr*> exprs, 1592 SourceLocation RParenLoc) { 1593 void *Mem = C.Allocate( 1594 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1595 1596 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1597 RParenLoc); 1598 } 1599 1600 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1601 unsigned numComps, unsigned numExprs) { 1602 void *Mem = 1603 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1604 return new (Mem) OffsetOfExpr(numComps, numExprs); 1605 } 1606 1607 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1608 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1609 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1610 SourceLocation RParenLoc) 1611 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1612 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1613 NumComps(comps.size()), NumExprs(exprs.size()) { 1614 for (unsigned i = 0; i != comps.size(); ++i) 1615 setComponent(i, comps[i]); 1616 for (unsigned i = 0; i != exprs.size(); ++i) 1617 setIndexExpr(i, exprs[i]); 1618 1619 setDependence(computeDependence(this)); 1620 } 1621 1622 IdentifierInfo *OffsetOfNode::getFieldName() const { 1623 assert(getKind() == Field || getKind() == Identifier); 1624 if (getKind() == Field) 1625 return getField()->getIdentifier(); 1626 1627 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1628 } 1629 1630 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1631 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1632 SourceLocation op, SourceLocation rp) 1633 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1634 OpLoc(op), RParenLoc(rp) { 1635 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1636 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1637 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1638 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1639 UnaryExprOrTypeTraitExprBits.IsType = false; 1640 Argument.Ex = E; 1641 setDependence(computeDependence(this)); 1642 } 1643 1644 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1645 ValueDecl *MemberDecl, 1646 const DeclarationNameInfo &NameInfo, QualType T, 1647 ExprValueKind VK, ExprObjectKind OK, 1648 NonOdrUseReason NOUR) 1649 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1650 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1651 assert(!NameInfo.getName() || 1652 MemberDecl->getDeclName() == NameInfo.getName()); 1653 MemberExprBits.IsArrow = IsArrow; 1654 MemberExprBits.HasQualifierOrFoundDecl = false; 1655 MemberExprBits.HasTemplateKWAndArgsInfo = false; 1656 MemberExprBits.HadMultipleCandidates = false; 1657 MemberExprBits.NonOdrUseReason = NOUR; 1658 MemberExprBits.OperatorLoc = OperatorLoc; 1659 setDependence(computeDependence(this)); 1660 } 1661 1662 MemberExpr *MemberExpr::Create( 1663 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1664 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1665 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1666 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1667 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1668 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || 1669 FoundDecl.getAccess() != MemberDecl->getAccess(); 1670 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1671 std::size_t Size = 1672 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1673 TemplateArgumentLoc>( 1674 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, 1675 TemplateArgs ? TemplateArgs->size() : 0); 1676 1677 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1678 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, 1679 NameInfo, T, VK, OK, NOUR); 1680 1681 // FIXME: remove remaining dependence computation to computeDependence(). 1682 auto Deps = E->getDependence(); 1683 if (HasQualOrFound) { 1684 // FIXME: Wrong. We should be looking at the member declaration we found. 1685 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) 1686 Deps |= ExprDependence::TypeValueInstantiation; 1687 else if (QualifierLoc && 1688 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1689 Deps |= ExprDependence::Instantiation; 1690 1691 E->MemberExprBits.HasQualifierOrFoundDecl = true; 1692 1693 MemberExprNameQualifier *NQ = 1694 E->getTrailingObjects<MemberExprNameQualifier>(); 1695 NQ->QualifierLoc = QualifierLoc; 1696 NQ->FoundDecl = FoundDecl; 1697 } 1698 1699 E->MemberExprBits.HasTemplateKWAndArgsInfo = 1700 TemplateArgs || TemplateKWLoc.isValid(); 1701 1702 if (TemplateArgs) { 1703 auto TemplateArgDeps = TemplateArgumentDependence::None; 1704 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1705 TemplateKWLoc, *TemplateArgs, 1706 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps); 1707 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation) 1708 Deps |= ExprDependence::Instantiation; 1709 } else if (TemplateKWLoc.isValid()) { 1710 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1711 TemplateKWLoc); 1712 } 1713 E->setDependence(Deps); 1714 1715 return E; 1716 } 1717 1718 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1719 bool HasQualifier, bool HasFoundDecl, 1720 bool HasTemplateKWAndArgsInfo, 1721 unsigned NumTemplateArgs) { 1722 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1723 "template args but no template arg info?"); 1724 bool HasQualOrFound = HasQualifier || HasFoundDecl; 1725 std::size_t Size = 1726 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1727 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, 1728 HasTemplateKWAndArgsInfo ? 1 : 0, 1729 NumTemplateArgs); 1730 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1731 return new (Mem) MemberExpr(EmptyShell()); 1732 } 1733 1734 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1735 MemberDecl = NewD; 1736 if (getType()->isUndeducedType()) 1737 setType(NewD->getType()); 1738 setDependence(computeDependence(this)); 1739 } 1740 1741 SourceLocation MemberExpr::getBeginLoc() const { 1742 if (isImplicitAccess()) { 1743 if (hasQualifier()) 1744 return getQualifierLoc().getBeginLoc(); 1745 return MemberLoc; 1746 } 1747 1748 // FIXME: We don't want this to happen. Rather, we should be able to 1749 // detect all kinds of implicit accesses more cleanly. 1750 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1751 if (BaseStartLoc.isValid()) 1752 return BaseStartLoc; 1753 return MemberLoc; 1754 } 1755 SourceLocation MemberExpr::getEndLoc() const { 1756 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1757 if (hasExplicitTemplateArgs()) 1758 EndLoc = getRAngleLoc(); 1759 else if (EndLoc.isInvalid()) 1760 EndLoc = getBase()->getEndLoc(); 1761 return EndLoc; 1762 } 1763 1764 bool CastExpr::CastConsistency() const { 1765 switch (getCastKind()) { 1766 case CK_DerivedToBase: 1767 case CK_UncheckedDerivedToBase: 1768 case CK_DerivedToBaseMemberPointer: 1769 case CK_BaseToDerived: 1770 case CK_BaseToDerivedMemberPointer: 1771 assert(!path_empty() && "Cast kind should have a base path!"); 1772 break; 1773 1774 case CK_CPointerToObjCPointerCast: 1775 assert(getType()->isObjCObjectPointerType()); 1776 assert(getSubExpr()->getType()->isPointerType()); 1777 goto CheckNoBasePath; 1778 1779 case CK_BlockPointerToObjCPointerCast: 1780 assert(getType()->isObjCObjectPointerType()); 1781 assert(getSubExpr()->getType()->isBlockPointerType()); 1782 goto CheckNoBasePath; 1783 1784 case CK_ReinterpretMemberPointer: 1785 assert(getType()->isMemberPointerType()); 1786 assert(getSubExpr()->getType()->isMemberPointerType()); 1787 goto CheckNoBasePath; 1788 1789 case CK_BitCast: 1790 // Arbitrary casts to C pointer types count as bitcasts. 1791 // Otherwise, we should only have block and ObjC pointer casts 1792 // here if they stay within the type kind. 1793 if (!getType()->isPointerType()) { 1794 assert(getType()->isObjCObjectPointerType() == 1795 getSubExpr()->getType()->isObjCObjectPointerType()); 1796 assert(getType()->isBlockPointerType() == 1797 getSubExpr()->getType()->isBlockPointerType()); 1798 } 1799 goto CheckNoBasePath; 1800 1801 case CK_AnyPointerToBlockPointerCast: 1802 assert(getType()->isBlockPointerType()); 1803 assert(getSubExpr()->getType()->isAnyPointerType() && 1804 !getSubExpr()->getType()->isBlockPointerType()); 1805 goto CheckNoBasePath; 1806 1807 case CK_CopyAndAutoreleaseBlockObject: 1808 assert(getType()->isBlockPointerType()); 1809 assert(getSubExpr()->getType()->isBlockPointerType()); 1810 goto CheckNoBasePath; 1811 1812 case CK_FunctionToPointerDecay: 1813 assert(getType()->isPointerType()); 1814 assert(getSubExpr()->getType()->isFunctionType()); 1815 goto CheckNoBasePath; 1816 1817 case CK_AddressSpaceConversion: { 1818 auto Ty = getType(); 1819 auto SETy = getSubExpr()->getType(); 1820 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1821 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1822 Ty = Ty->getPointeeType(); 1823 SETy = SETy->getPointeeType(); 1824 } 1825 assert((Ty->isDependentType() || SETy->isDependentType()) || 1826 (!Ty.isNull() && !SETy.isNull() && 1827 Ty.getAddressSpace() != SETy.getAddressSpace())); 1828 goto CheckNoBasePath; 1829 } 1830 // These should not have an inheritance path. 1831 case CK_Dynamic: 1832 case CK_ToUnion: 1833 case CK_ArrayToPointerDecay: 1834 case CK_NullToMemberPointer: 1835 case CK_NullToPointer: 1836 case CK_ConstructorConversion: 1837 case CK_IntegralToPointer: 1838 case CK_PointerToIntegral: 1839 case CK_ToVoid: 1840 case CK_VectorSplat: 1841 case CK_IntegralCast: 1842 case CK_BooleanToSignedIntegral: 1843 case CK_IntegralToFloating: 1844 case CK_FloatingToIntegral: 1845 case CK_FloatingCast: 1846 case CK_ObjCObjectLValueCast: 1847 case CK_FloatingRealToComplex: 1848 case CK_FloatingComplexToReal: 1849 case CK_FloatingComplexCast: 1850 case CK_FloatingComplexToIntegralComplex: 1851 case CK_IntegralRealToComplex: 1852 case CK_IntegralComplexToReal: 1853 case CK_IntegralComplexCast: 1854 case CK_IntegralComplexToFloatingComplex: 1855 case CK_ARCProduceObject: 1856 case CK_ARCConsumeObject: 1857 case CK_ARCReclaimReturnedObject: 1858 case CK_ARCExtendBlockObject: 1859 case CK_ZeroToOCLOpaqueType: 1860 case CK_IntToOCLSampler: 1861 case CK_FloatingToFixedPoint: 1862 case CK_FixedPointToFloating: 1863 case CK_FixedPointCast: 1864 case CK_FixedPointToIntegral: 1865 case CK_IntegralToFixedPoint: 1866 case CK_MatrixCast: 1867 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1868 goto CheckNoBasePath; 1869 1870 case CK_Dependent: 1871 case CK_LValueToRValue: 1872 case CK_NoOp: 1873 case CK_AtomicToNonAtomic: 1874 case CK_NonAtomicToAtomic: 1875 case CK_PointerToBoolean: 1876 case CK_IntegralToBoolean: 1877 case CK_FloatingToBoolean: 1878 case CK_MemberPointerToBoolean: 1879 case CK_FloatingComplexToBoolean: 1880 case CK_IntegralComplexToBoolean: 1881 case CK_LValueBitCast: // -> bool& 1882 case CK_LValueToRValueBitCast: 1883 case CK_UserDefinedConversion: // operator bool() 1884 case CK_BuiltinFnToFnPtr: 1885 case CK_FixedPointToBoolean: 1886 CheckNoBasePath: 1887 assert(path_empty() && "Cast kind should not have a base path!"); 1888 break; 1889 } 1890 return true; 1891 } 1892 1893 const char *CastExpr::getCastKindName(CastKind CK) { 1894 switch (CK) { 1895 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1896 #include "clang/AST/OperationKinds.def" 1897 } 1898 llvm_unreachable("Unhandled cast kind!"); 1899 } 1900 1901 namespace { 1902 const Expr *skipImplicitTemporary(const Expr *E) { 1903 // Skip through reference binding to temporary. 1904 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1905 E = Materialize->getSubExpr(); 1906 1907 // Skip any temporary bindings; they're implicit. 1908 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1909 E = Binder->getSubExpr(); 1910 1911 return E; 1912 } 1913 } 1914 1915 Expr *CastExpr::getSubExprAsWritten() { 1916 const Expr *SubExpr = nullptr; 1917 const CastExpr *E = this; 1918 do { 1919 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1920 1921 // Conversions by constructor and conversion functions have a 1922 // subexpression describing the call; strip it off. 1923 if (E->getCastKind() == CK_ConstructorConversion) 1924 SubExpr = 1925 skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr->IgnoreImplicit())->getArg(0)); 1926 else if (E->getCastKind() == CK_UserDefinedConversion) { 1927 SubExpr = SubExpr->IgnoreImplicit(); 1928 assert((isa<CXXMemberCallExpr>(SubExpr) || 1929 isa<BlockExpr>(SubExpr)) && 1930 "Unexpected SubExpr for CK_UserDefinedConversion."); 1931 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1932 SubExpr = MCE->getImplicitObjectArgument(); 1933 } 1934 1935 // If the subexpression we're left with is an implicit cast, look 1936 // through that, too. 1937 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1938 1939 return const_cast<Expr*>(SubExpr); 1940 } 1941 1942 NamedDecl *CastExpr::getConversionFunction() const { 1943 const Expr *SubExpr = nullptr; 1944 1945 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1946 SubExpr = skipImplicitTemporary(E->getSubExpr()); 1947 1948 if (E->getCastKind() == CK_ConstructorConversion) 1949 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 1950 1951 if (E->getCastKind() == CK_UserDefinedConversion) { 1952 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1953 return MCE->getMethodDecl(); 1954 } 1955 } 1956 1957 return nullptr; 1958 } 1959 1960 CXXBaseSpecifier **CastExpr::path_buffer() { 1961 switch (getStmtClass()) { 1962 #define ABSTRACT_STMT(x) 1963 #define CASTEXPR(Type, Base) \ 1964 case Stmt::Type##Class: \ 1965 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1966 #define STMT(Type, Base) 1967 #include "clang/AST/StmtNodes.inc" 1968 default: 1969 llvm_unreachable("non-cast expressions not possible here"); 1970 } 1971 } 1972 1973 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 1974 QualType opType) { 1975 auto RD = unionType->castAs<RecordType>()->getDecl(); 1976 return getTargetFieldForToUnionCast(RD, opType); 1977 } 1978 1979 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 1980 QualType OpType) { 1981 auto &Ctx = RD->getASTContext(); 1982 RecordDecl::field_iterator Field, FieldEnd; 1983 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 1984 Field != FieldEnd; ++Field) { 1985 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 1986 !Field->isUnnamedBitfield()) { 1987 return *Field; 1988 } 1989 } 1990 return nullptr; 1991 } 1992 1993 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 1994 assert(hasStoredFPFeatures()); 1995 switch (getStmtClass()) { 1996 case ImplicitCastExprClass: 1997 return static_cast<ImplicitCastExpr *>(this) 1998 ->getTrailingObjects<FPOptionsOverride>(); 1999 case CStyleCastExprClass: 2000 return static_cast<CStyleCastExpr *>(this) 2001 ->getTrailingObjects<FPOptionsOverride>(); 2002 case CXXFunctionalCastExprClass: 2003 return static_cast<CXXFunctionalCastExpr *>(this) 2004 ->getTrailingObjects<FPOptionsOverride>(); 2005 case CXXStaticCastExprClass: 2006 return static_cast<CXXStaticCastExpr *>(this) 2007 ->getTrailingObjects<FPOptionsOverride>(); 2008 default: 2009 llvm_unreachable("Cast does not have FPFeatures"); 2010 } 2011 } 2012 2013 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 2014 CastKind Kind, Expr *Operand, 2015 const CXXCastPath *BasePath, 2016 ExprValueKind VK, 2017 FPOptionsOverride FPO) { 2018 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2019 void *Buffer = 2020 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2021 PathSize, FPO.requiresTrailingStorage())); 2022 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2023 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2024 assert((Kind != CK_LValueToRValue || 2025 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2026 "invalid type for lvalue-to-rvalue conversion"); 2027 ImplicitCastExpr *E = 2028 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 2029 if (PathSize) 2030 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2031 E->getTrailingObjects<CXXBaseSpecifier *>()); 2032 return E; 2033 } 2034 2035 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2036 unsigned PathSize, 2037 bool HasFPFeatures) { 2038 void *Buffer = 2039 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2040 PathSize, HasFPFeatures)); 2041 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2042 } 2043 2044 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2045 ExprValueKind VK, CastKind K, Expr *Op, 2046 const CXXCastPath *BasePath, 2047 FPOptionsOverride FPO, 2048 TypeSourceInfo *WrittenTy, 2049 SourceLocation L, SourceLocation R) { 2050 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2051 void *Buffer = 2052 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2053 PathSize, FPO.requiresTrailingStorage())); 2054 CStyleCastExpr *E = 2055 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2056 if (PathSize) 2057 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2058 E->getTrailingObjects<CXXBaseSpecifier *>()); 2059 return E; 2060 } 2061 2062 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2063 unsigned PathSize, 2064 bool HasFPFeatures) { 2065 void *Buffer = 2066 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2067 PathSize, HasFPFeatures)); 2068 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2069 } 2070 2071 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2072 /// corresponds to, e.g. "<<=". 2073 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2074 switch (Op) { 2075 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2076 #include "clang/AST/OperationKinds.def" 2077 } 2078 llvm_unreachable("Invalid OpCode!"); 2079 } 2080 2081 BinaryOperatorKind 2082 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2083 switch (OO) { 2084 default: llvm_unreachable("Not an overloadable binary operator"); 2085 case OO_Plus: return BO_Add; 2086 case OO_Minus: return BO_Sub; 2087 case OO_Star: return BO_Mul; 2088 case OO_Slash: return BO_Div; 2089 case OO_Percent: return BO_Rem; 2090 case OO_Caret: return BO_Xor; 2091 case OO_Amp: return BO_And; 2092 case OO_Pipe: return BO_Or; 2093 case OO_Equal: return BO_Assign; 2094 case OO_Spaceship: return BO_Cmp; 2095 case OO_Less: return BO_LT; 2096 case OO_Greater: return BO_GT; 2097 case OO_PlusEqual: return BO_AddAssign; 2098 case OO_MinusEqual: return BO_SubAssign; 2099 case OO_StarEqual: return BO_MulAssign; 2100 case OO_SlashEqual: return BO_DivAssign; 2101 case OO_PercentEqual: return BO_RemAssign; 2102 case OO_CaretEqual: return BO_XorAssign; 2103 case OO_AmpEqual: return BO_AndAssign; 2104 case OO_PipeEqual: return BO_OrAssign; 2105 case OO_LessLess: return BO_Shl; 2106 case OO_GreaterGreater: return BO_Shr; 2107 case OO_LessLessEqual: return BO_ShlAssign; 2108 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2109 case OO_EqualEqual: return BO_EQ; 2110 case OO_ExclaimEqual: return BO_NE; 2111 case OO_LessEqual: return BO_LE; 2112 case OO_GreaterEqual: return BO_GE; 2113 case OO_AmpAmp: return BO_LAnd; 2114 case OO_PipePipe: return BO_LOr; 2115 case OO_Comma: return BO_Comma; 2116 case OO_ArrowStar: return BO_PtrMemI; 2117 } 2118 } 2119 2120 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2121 static const OverloadedOperatorKind OverOps[] = { 2122 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2123 OO_Star, OO_Slash, OO_Percent, 2124 OO_Plus, OO_Minus, 2125 OO_LessLess, OO_GreaterGreater, 2126 OO_Spaceship, 2127 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2128 OO_EqualEqual, OO_ExclaimEqual, 2129 OO_Amp, 2130 OO_Caret, 2131 OO_Pipe, 2132 OO_AmpAmp, 2133 OO_PipePipe, 2134 OO_Equal, OO_StarEqual, 2135 OO_SlashEqual, OO_PercentEqual, 2136 OO_PlusEqual, OO_MinusEqual, 2137 OO_LessLessEqual, OO_GreaterGreaterEqual, 2138 OO_AmpEqual, OO_CaretEqual, 2139 OO_PipeEqual, 2140 OO_Comma 2141 }; 2142 return OverOps[Opc]; 2143 } 2144 2145 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2146 Opcode Opc, 2147 Expr *LHS, Expr *RHS) { 2148 if (Opc != BO_Add) 2149 return false; 2150 2151 // Check that we have one pointer and one integer operand. 2152 Expr *PExp; 2153 if (LHS->getType()->isPointerType()) { 2154 if (!RHS->getType()->isIntegerType()) 2155 return false; 2156 PExp = LHS; 2157 } else if (RHS->getType()->isPointerType()) { 2158 if (!LHS->getType()->isIntegerType()) 2159 return false; 2160 PExp = RHS; 2161 } else { 2162 return false; 2163 } 2164 2165 // Check that the pointer is a nullptr. 2166 if (!PExp->IgnoreParenCasts() 2167 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2168 return false; 2169 2170 // Check that the pointee type is char-sized. 2171 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2172 if (!PTy || !PTy->getPointeeType()->isCharType()) 2173 return false; 2174 2175 return true; 2176 } 2177 2178 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, 2179 SourceLocExpr::IdentKind Kind) { 2180 switch (Kind) { 2181 case SourceLocExpr::File: 2182 case SourceLocExpr::Function: { 2183 QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0); 2184 return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); 2185 } 2186 case SourceLocExpr::Line: 2187 case SourceLocExpr::Column: 2188 return Ctx.UnsignedIntTy; 2189 } 2190 llvm_unreachable("unhandled case"); 2191 } 2192 2193 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, 2194 SourceLocation BLoc, SourceLocation RParenLoc, 2195 DeclContext *ParentContext) 2196 : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind), 2197 VK_PRValue, OK_Ordinary), 2198 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2199 SourceLocExprBits.Kind = Kind; 2200 setDependence(ExprDependence::None); 2201 } 2202 2203 StringRef SourceLocExpr::getBuiltinStr() const { 2204 switch (getIdentKind()) { 2205 case File: 2206 return "__builtin_FILE"; 2207 case Function: 2208 return "__builtin_FUNCTION"; 2209 case Line: 2210 return "__builtin_LINE"; 2211 case Column: 2212 return "__builtin_COLUMN"; 2213 } 2214 llvm_unreachable("unexpected IdentKind!"); 2215 } 2216 2217 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2218 const Expr *DefaultExpr) const { 2219 SourceLocation Loc; 2220 const DeclContext *Context; 2221 2222 std::tie(Loc, 2223 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { 2224 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) 2225 return {DIE->getUsedLocation(), DIE->getUsedContext()}; 2226 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) 2227 return {DAE->getUsedLocation(), DAE->getUsedContext()}; 2228 return {this->getLocation(), this->getParentContext()}; 2229 }(); 2230 2231 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2232 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2233 2234 auto MakeStringLiteral = [&](StringRef Tmp) { 2235 using LValuePathEntry = APValue::LValuePathEntry; 2236 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2237 // Decay the string to a pointer to the first character. 2238 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2239 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2240 }; 2241 2242 switch (getIdentKind()) { 2243 case SourceLocExpr::File: { 2244 SmallString<256> Path(PLoc.getFilename()); 2245 Ctx.getLangOpts().remapPathPrefix(Path); 2246 return MakeStringLiteral(Path); 2247 } 2248 case SourceLocExpr::Function: { 2249 const Decl *CurDecl = dyn_cast_or_null<Decl>(Context); 2250 return MakeStringLiteral( 2251 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) 2252 : std::string("")); 2253 } 2254 case SourceLocExpr::Line: 2255 case SourceLocExpr::Column: { 2256 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), 2257 /*isUnsigned=*/true); 2258 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() 2259 : PLoc.getColumn(); 2260 return APValue(IntVal); 2261 } 2262 } 2263 llvm_unreachable("unhandled case"); 2264 } 2265 2266 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2267 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2268 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2269 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2270 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2271 sawArrayRangeDesignator(false); 2272 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2273 2274 setDependence(computeDependence(this)); 2275 } 2276 2277 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2278 if (NumInits > InitExprs.size()) 2279 InitExprs.reserve(C, NumInits); 2280 } 2281 2282 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2283 InitExprs.resize(C, NumInits, nullptr); 2284 } 2285 2286 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2287 if (Init >= InitExprs.size()) { 2288 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2289 setInit(Init, expr); 2290 return nullptr; 2291 } 2292 2293 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2294 setInit(Init, expr); 2295 return Result; 2296 } 2297 2298 void InitListExpr::setArrayFiller(Expr *filler) { 2299 assert(!hasArrayFiller() && "Filler already set!"); 2300 ArrayFillerOrUnionFieldInit = filler; 2301 // Fill out any "holes" in the array due to designated initializers. 2302 Expr **inits = getInits(); 2303 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2304 if (inits[i] == nullptr) 2305 inits[i] = filler; 2306 } 2307 2308 bool InitListExpr::isStringLiteralInit() const { 2309 if (getNumInits() != 1) 2310 return false; 2311 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2312 if (!AT || !AT->getElementType()->isIntegerType()) 2313 return false; 2314 // It is possible for getInit() to return null. 2315 const Expr *Init = getInit(0); 2316 if (!Init) 2317 return false; 2318 Init = Init->IgnoreParenImpCasts(); 2319 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2320 } 2321 2322 bool InitListExpr::isTransparent() const { 2323 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2324 2325 // A glvalue InitListExpr is always just sugar. 2326 if (isGLValue()) { 2327 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2328 return true; 2329 } 2330 2331 // Otherwise, we're sugar if and only if we have exactly one initializer that 2332 // is of the same type. 2333 if (getNumInits() != 1 || !getInit(0)) 2334 return false; 2335 2336 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2337 // transparent struct copy. 2338 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2339 return false; 2340 2341 return getType().getCanonicalType() == 2342 getInit(0)->getType().getCanonicalType(); 2343 } 2344 2345 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2346 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2347 2348 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2349 return false; 2350 } 2351 2352 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2353 return Lit && Lit->getValue() == 0; 2354 } 2355 2356 SourceLocation InitListExpr::getBeginLoc() const { 2357 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2358 return SyntacticForm->getBeginLoc(); 2359 SourceLocation Beg = LBraceLoc; 2360 if (Beg.isInvalid()) { 2361 // Find the first non-null initializer. 2362 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2363 E = InitExprs.end(); 2364 I != E; ++I) { 2365 if (Stmt *S = *I) { 2366 Beg = S->getBeginLoc(); 2367 break; 2368 } 2369 } 2370 } 2371 return Beg; 2372 } 2373 2374 SourceLocation InitListExpr::getEndLoc() const { 2375 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2376 return SyntacticForm->getEndLoc(); 2377 SourceLocation End = RBraceLoc; 2378 if (End.isInvalid()) { 2379 // Find the first non-null initializer from the end. 2380 for (Stmt *S : llvm::reverse(InitExprs)) { 2381 if (S) { 2382 End = S->getEndLoc(); 2383 break; 2384 } 2385 } 2386 } 2387 return End; 2388 } 2389 2390 /// getFunctionType - Return the underlying function type for this block. 2391 /// 2392 const FunctionProtoType *BlockExpr::getFunctionType() const { 2393 // The block pointer is never sugared, but the function type might be. 2394 return cast<BlockPointerType>(getType()) 2395 ->getPointeeType()->castAs<FunctionProtoType>(); 2396 } 2397 2398 SourceLocation BlockExpr::getCaretLocation() const { 2399 return TheBlock->getCaretLocation(); 2400 } 2401 const Stmt *BlockExpr::getBody() const { 2402 return TheBlock->getBody(); 2403 } 2404 Stmt *BlockExpr::getBody() { 2405 return TheBlock->getBody(); 2406 } 2407 2408 2409 //===----------------------------------------------------------------------===// 2410 // Generic Expression Routines 2411 //===----------------------------------------------------------------------===// 2412 2413 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2414 // In C++11, discarded-value expressions of a certain form are special, 2415 // according to [expr]p10: 2416 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2417 // expression is a glvalue of volatile-qualified type and it has 2418 // one of the following forms: 2419 if (!isGLValue() || !getType().isVolatileQualified()) 2420 return false; 2421 2422 const Expr *E = IgnoreParens(); 2423 2424 // - id-expression (5.1.1), 2425 if (isa<DeclRefExpr>(E)) 2426 return true; 2427 2428 // - subscripting (5.2.1), 2429 if (isa<ArraySubscriptExpr>(E)) 2430 return true; 2431 2432 // - class member access (5.2.5), 2433 if (isa<MemberExpr>(E)) 2434 return true; 2435 2436 // - indirection (5.3.1), 2437 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2438 if (UO->getOpcode() == UO_Deref) 2439 return true; 2440 2441 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2442 // - pointer-to-member operation (5.5), 2443 if (BO->isPtrMemOp()) 2444 return true; 2445 2446 // - comma expression (5.18) where the right operand is one of the above. 2447 if (BO->getOpcode() == BO_Comma) 2448 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2449 } 2450 2451 // - conditional expression (5.16) where both the second and the third 2452 // operands are one of the above, or 2453 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2454 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2455 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2456 // The related edge case of "*x ?: *x". 2457 if (auto *BCO = 2458 dyn_cast<BinaryConditionalOperator>(E)) { 2459 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2460 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2461 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2462 } 2463 2464 // Objective-C++ extensions to the rule. 2465 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 2466 return true; 2467 2468 return false; 2469 } 2470 2471 /// isUnusedResultAWarning - Return true if this immediate expression should 2472 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2473 /// with location to warn on and the source range[s] to report with the 2474 /// warning. 2475 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2476 SourceRange &R1, SourceRange &R2, 2477 ASTContext &Ctx) const { 2478 // Don't warn if the expr is type dependent. The type could end up 2479 // instantiating to void. 2480 if (isTypeDependent()) 2481 return false; 2482 2483 switch (getStmtClass()) { 2484 default: 2485 if (getType()->isVoidType()) 2486 return false; 2487 WarnE = this; 2488 Loc = getExprLoc(); 2489 R1 = getSourceRange(); 2490 return true; 2491 case ParenExprClass: 2492 return cast<ParenExpr>(this)->getSubExpr()-> 2493 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2494 case GenericSelectionExprClass: 2495 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2496 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2497 case CoawaitExprClass: 2498 case CoyieldExprClass: 2499 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2500 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2501 case ChooseExprClass: 2502 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2503 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2504 case UnaryOperatorClass: { 2505 const UnaryOperator *UO = cast<UnaryOperator>(this); 2506 2507 switch (UO->getOpcode()) { 2508 case UO_Plus: 2509 case UO_Minus: 2510 case UO_AddrOf: 2511 case UO_Not: 2512 case UO_LNot: 2513 case UO_Deref: 2514 break; 2515 case UO_Coawait: 2516 // This is just the 'operator co_await' call inside the guts of a 2517 // dependent co_await call. 2518 case UO_PostInc: 2519 case UO_PostDec: 2520 case UO_PreInc: 2521 case UO_PreDec: // ++/-- 2522 return false; // Not a warning. 2523 case UO_Real: 2524 case UO_Imag: 2525 // accessing a piece of a volatile complex is a side-effect. 2526 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2527 .isVolatileQualified()) 2528 return false; 2529 break; 2530 case UO_Extension: 2531 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2532 } 2533 WarnE = this; 2534 Loc = UO->getOperatorLoc(); 2535 R1 = UO->getSubExpr()->getSourceRange(); 2536 return true; 2537 } 2538 case BinaryOperatorClass: { 2539 const BinaryOperator *BO = cast<BinaryOperator>(this); 2540 switch (BO->getOpcode()) { 2541 default: 2542 break; 2543 // Consider the RHS of comma for side effects. LHS was checked by 2544 // Sema::CheckCommaOperands. 2545 case BO_Comma: 2546 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2547 // lvalue-ness) of an assignment written in a macro. 2548 if (IntegerLiteral *IE = 2549 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2550 if (IE->getValue() == 0) 2551 return false; 2552 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2553 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2554 case BO_LAnd: 2555 case BO_LOr: 2556 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2557 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2558 return false; 2559 break; 2560 } 2561 if (BO->isAssignmentOp()) 2562 return false; 2563 WarnE = this; 2564 Loc = BO->getOperatorLoc(); 2565 R1 = BO->getLHS()->getSourceRange(); 2566 R2 = BO->getRHS()->getSourceRange(); 2567 return true; 2568 } 2569 case CompoundAssignOperatorClass: 2570 case VAArgExprClass: 2571 case AtomicExprClass: 2572 return false; 2573 2574 case ConditionalOperatorClass: { 2575 // If only one of the LHS or RHS is a warning, the operator might 2576 // be being used for control flow. Only warn if both the LHS and 2577 // RHS are warnings. 2578 const auto *Exp = cast<ConditionalOperator>(this); 2579 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2580 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2581 } 2582 case BinaryConditionalOperatorClass: { 2583 const auto *Exp = cast<BinaryConditionalOperator>(this); 2584 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2585 } 2586 2587 case MemberExprClass: 2588 WarnE = this; 2589 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2590 R1 = SourceRange(Loc, Loc); 2591 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2592 return true; 2593 2594 case ArraySubscriptExprClass: 2595 WarnE = this; 2596 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2597 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2598 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2599 return true; 2600 2601 case CXXOperatorCallExprClass: { 2602 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2603 // overloads as there is no reasonable way to define these such that they 2604 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2605 // warning: operators == and != are commonly typo'ed, and so warning on them 2606 // provides additional value as well. If this list is updated, 2607 // DiagnoseUnusedComparison should be as well. 2608 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2609 switch (Op->getOperator()) { 2610 default: 2611 break; 2612 case OO_EqualEqual: 2613 case OO_ExclaimEqual: 2614 case OO_Less: 2615 case OO_Greater: 2616 case OO_GreaterEqual: 2617 case OO_LessEqual: 2618 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2619 Op->getCallReturnType(Ctx)->isVoidType()) 2620 break; 2621 WarnE = this; 2622 Loc = Op->getOperatorLoc(); 2623 R1 = Op->getSourceRange(); 2624 return true; 2625 } 2626 2627 // Fallthrough for generic call handling. 2628 LLVM_FALLTHROUGH; 2629 } 2630 case CallExprClass: 2631 case CXXMemberCallExprClass: 2632 case UserDefinedLiteralClass: { 2633 // If this is a direct call, get the callee. 2634 const CallExpr *CE = cast<CallExpr>(this); 2635 if (const Decl *FD = CE->getCalleeDecl()) { 2636 // If the callee has attribute pure, const, or warn_unused_result, warn 2637 // about it. void foo() { strlen("bar"); } should warn. 2638 // 2639 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2640 // updated to match for QoI. 2641 if (CE->hasUnusedResultAttr(Ctx) || 2642 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2643 WarnE = this; 2644 Loc = CE->getCallee()->getBeginLoc(); 2645 R1 = CE->getCallee()->getSourceRange(); 2646 2647 if (unsigned NumArgs = CE->getNumArgs()) 2648 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2649 CE->getArg(NumArgs - 1)->getEndLoc()); 2650 return true; 2651 } 2652 } 2653 return false; 2654 } 2655 2656 // If we don't know precisely what we're looking at, let's not warn. 2657 case UnresolvedLookupExprClass: 2658 case CXXUnresolvedConstructExprClass: 2659 case RecoveryExprClass: 2660 return false; 2661 2662 case CXXTemporaryObjectExprClass: 2663 case CXXConstructExprClass: { 2664 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2665 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2666 if (Type->hasAttr<WarnUnusedAttr>() || 2667 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2668 WarnE = this; 2669 Loc = getBeginLoc(); 2670 R1 = getSourceRange(); 2671 return true; 2672 } 2673 } 2674 2675 const auto *CE = cast<CXXConstructExpr>(this); 2676 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2677 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2678 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2679 WarnE = this; 2680 Loc = getBeginLoc(); 2681 R1 = getSourceRange(); 2682 2683 if (unsigned NumArgs = CE->getNumArgs()) 2684 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2685 CE->getArg(NumArgs - 1)->getEndLoc()); 2686 return true; 2687 } 2688 } 2689 2690 return false; 2691 } 2692 2693 case ObjCMessageExprClass: { 2694 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2695 if (Ctx.getLangOpts().ObjCAutoRefCount && 2696 ME->isInstanceMessage() && 2697 !ME->getType()->isVoidType() && 2698 ME->getMethodFamily() == OMF_init) { 2699 WarnE = this; 2700 Loc = getExprLoc(); 2701 R1 = ME->getSourceRange(); 2702 return true; 2703 } 2704 2705 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2706 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2707 WarnE = this; 2708 Loc = getExprLoc(); 2709 return true; 2710 } 2711 2712 return false; 2713 } 2714 2715 case ObjCPropertyRefExprClass: 2716 WarnE = this; 2717 Loc = getExprLoc(); 2718 R1 = getSourceRange(); 2719 return true; 2720 2721 case PseudoObjectExprClass: { 2722 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2723 2724 // Only complain about things that have the form of a getter. 2725 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2726 isa<BinaryOperator>(PO->getSyntacticForm())) 2727 return false; 2728 2729 WarnE = this; 2730 Loc = getExprLoc(); 2731 R1 = getSourceRange(); 2732 return true; 2733 } 2734 2735 case StmtExprClass: { 2736 // Statement exprs don't logically have side effects themselves, but are 2737 // sometimes used in macros in ways that give them a type that is unused. 2738 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2739 // however, if the result of the stmt expr is dead, we don't want to emit a 2740 // warning. 2741 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2742 if (!CS->body_empty()) { 2743 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2744 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2745 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2746 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2747 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2748 } 2749 2750 if (getType()->isVoidType()) 2751 return false; 2752 WarnE = this; 2753 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2754 R1 = getSourceRange(); 2755 return true; 2756 } 2757 case CXXFunctionalCastExprClass: 2758 case CStyleCastExprClass: { 2759 // Ignore an explicit cast to void, except in C++98 if the operand is a 2760 // volatile glvalue for which we would trigger an implicit read in any 2761 // other language mode. (Such an implicit read always happens as part of 2762 // the lvalue conversion in C, and happens in C++ for expressions of all 2763 // forms where it seems likely the user intended to trigger a volatile 2764 // load.) 2765 const CastExpr *CE = cast<CastExpr>(this); 2766 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2767 if (CE->getCastKind() == CK_ToVoid) { 2768 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2769 SubE->isReadIfDiscardedInCPlusPlus11()) { 2770 // Suppress the "unused value" warning for idiomatic usage of 2771 // '(void)var;' used to suppress "unused variable" warnings. 2772 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2773 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2774 if (!VD->isExternallyVisible()) 2775 return false; 2776 2777 // The lvalue-to-rvalue conversion would have no effect for an array. 2778 // It's implausible that the programmer expected this to result in a 2779 // volatile array load, so don't warn. 2780 if (SubE->getType()->isArrayType()) 2781 return false; 2782 2783 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2784 } 2785 return false; 2786 } 2787 2788 // If this is a cast to a constructor conversion, check the operand. 2789 // Otherwise, the result of the cast is unused. 2790 if (CE->getCastKind() == CK_ConstructorConversion) 2791 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2792 if (CE->getCastKind() == CK_Dependent) 2793 return false; 2794 2795 WarnE = this; 2796 if (const CXXFunctionalCastExpr *CXXCE = 2797 dyn_cast<CXXFunctionalCastExpr>(this)) { 2798 Loc = CXXCE->getBeginLoc(); 2799 R1 = CXXCE->getSubExpr()->getSourceRange(); 2800 } else { 2801 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2802 Loc = CStyleCE->getLParenLoc(); 2803 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2804 } 2805 return true; 2806 } 2807 case ImplicitCastExprClass: { 2808 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2809 2810 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2811 if (ICE->getCastKind() == CK_LValueToRValue && 2812 ICE->getSubExpr()->getType().isVolatileQualified()) 2813 return false; 2814 2815 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2816 } 2817 case CXXDefaultArgExprClass: 2818 return (cast<CXXDefaultArgExpr>(this) 2819 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2820 case CXXDefaultInitExprClass: 2821 return (cast<CXXDefaultInitExpr>(this) 2822 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2823 2824 case CXXNewExprClass: 2825 // FIXME: In theory, there might be new expressions that don't have side 2826 // effects (e.g. a placement new with an uninitialized POD). 2827 case CXXDeleteExprClass: 2828 return false; 2829 case MaterializeTemporaryExprClass: 2830 return cast<MaterializeTemporaryExpr>(this) 2831 ->getSubExpr() 2832 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2833 case CXXBindTemporaryExprClass: 2834 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2835 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2836 case ExprWithCleanupsClass: 2837 return cast<ExprWithCleanups>(this)->getSubExpr() 2838 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2839 } 2840 } 2841 2842 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2843 /// returns true, if it is; false otherwise. 2844 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2845 const Expr *E = IgnoreParens(); 2846 switch (E->getStmtClass()) { 2847 default: 2848 return false; 2849 case ObjCIvarRefExprClass: 2850 return true; 2851 case Expr::UnaryOperatorClass: 2852 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2853 case ImplicitCastExprClass: 2854 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2855 case MaterializeTemporaryExprClass: 2856 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2857 Ctx); 2858 case CStyleCastExprClass: 2859 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2860 case DeclRefExprClass: { 2861 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2862 2863 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2864 if (VD->hasGlobalStorage()) 2865 return true; 2866 QualType T = VD->getType(); 2867 // dereferencing to a pointer is always a gc'able candidate, 2868 // unless it is __weak. 2869 return T->isPointerType() && 2870 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2871 } 2872 return false; 2873 } 2874 case MemberExprClass: { 2875 const MemberExpr *M = cast<MemberExpr>(E); 2876 return M->getBase()->isOBJCGCCandidate(Ctx); 2877 } 2878 case ArraySubscriptExprClass: 2879 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2880 } 2881 } 2882 2883 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2884 if (isTypeDependent()) 2885 return false; 2886 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2887 } 2888 2889 QualType Expr::findBoundMemberType(const Expr *expr) { 2890 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2891 2892 // Bound member expressions are always one of these possibilities: 2893 // x->m x.m x->*y x.*y 2894 // (possibly parenthesized) 2895 2896 expr = expr->IgnoreParens(); 2897 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2898 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2899 return mem->getMemberDecl()->getType(); 2900 } 2901 2902 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2903 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2904 ->getPointeeType(); 2905 assert(type->isFunctionType()); 2906 return type; 2907 } 2908 2909 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2910 return QualType(); 2911 } 2912 2913 Expr *Expr::IgnoreImpCasts() { 2914 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 2915 } 2916 2917 Expr *Expr::IgnoreCasts() { 2918 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 2919 } 2920 2921 Expr *Expr::IgnoreImplicit() { 2922 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 2923 } 2924 2925 Expr *Expr::IgnoreImplicitAsWritten() { 2926 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 2927 } 2928 2929 Expr *Expr::IgnoreParens() { 2930 return IgnoreExprNodes(this, IgnoreParensSingleStep); 2931 } 2932 2933 Expr *Expr::IgnoreParenImpCasts() { 2934 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2935 IgnoreImplicitCastsExtraSingleStep); 2936 } 2937 2938 Expr *Expr::IgnoreParenCasts() { 2939 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 2940 } 2941 2942 Expr *Expr::IgnoreConversionOperatorSingleStep() { 2943 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2944 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2945 return MCE->getImplicitObjectArgument(); 2946 } 2947 return this; 2948 } 2949 2950 Expr *Expr::IgnoreParenLValueCasts() { 2951 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2952 IgnoreLValueCastsSingleStep); 2953 } 2954 2955 Expr *Expr::IgnoreParenBaseCasts() { 2956 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2957 IgnoreBaseCastsSingleStep); 2958 } 2959 2960 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 2961 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 2962 if (auto *CE = dyn_cast<CastExpr>(E)) { 2963 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2964 // ptr<->int casts of the same width. We also ignore all identity casts. 2965 Expr *SubExpr = CE->getSubExpr(); 2966 bool IsIdentityCast = 2967 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 2968 bool IsSameWidthCast = (E->getType()->isPointerType() || 2969 E->getType()->isIntegralType(Ctx)) && 2970 (SubExpr->getType()->isPointerType() || 2971 SubExpr->getType()->isIntegralType(Ctx)) && 2972 (Ctx.getTypeSize(E->getType()) == 2973 Ctx.getTypeSize(SubExpr->getType())); 2974 2975 if (IsIdentityCast || IsSameWidthCast) 2976 return SubExpr; 2977 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 2978 return NTTP->getReplacement(); 2979 2980 return E; 2981 }; 2982 return IgnoreExprNodes(this, IgnoreParensSingleStep, 2983 IgnoreNoopCastsSingleStep); 2984 } 2985 2986 Expr *Expr::IgnoreUnlessSpelledInSource() { 2987 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 2988 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 2989 auto *SE = Cast->getSubExpr(); 2990 if (SE->getSourceRange() == E->getSourceRange()) 2991 return SE; 2992 } 2993 2994 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 2995 auto NumArgs = C->getNumArgs(); 2996 if (NumArgs == 1 || 2997 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 2998 Expr *A = C->getArg(0); 2999 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3000 return A; 3001 } 3002 } 3003 return E; 3004 }; 3005 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3006 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3007 Expr *ExprNode = C->getImplicitObjectArgument(); 3008 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3009 return ExprNode; 3010 } 3011 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3012 if (PE->getSourceRange() == C->getSourceRange()) { 3013 return cast<Expr>(PE); 3014 } 3015 } 3016 ExprNode = ExprNode->IgnoreParenImpCasts(); 3017 if (ExprNode->getSourceRange() == E->getSourceRange()) 3018 return ExprNode; 3019 } 3020 return E; 3021 }; 3022 return IgnoreExprNodes( 3023 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3024 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3025 IgnoreImplicitMemberCallSingleStep); 3026 } 3027 3028 bool Expr::isDefaultArgument() const { 3029 const Expr *E = this; 3030 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3031 E = M->getSubExpr(); 3032 3033 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3034 E = ICE->getSubExprAsWritten(); 3035 3036 return isa<CXXDefaultArgExpr>(E); 3037 } 3038 3039 /// Skip over any no-op casts and any temporary-binding 3040 /// expressions. 3041 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3042 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3043 E = M->getSubExpr(); 3044 3045 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3046 if (ICE->getCastKind() == CK_NoOp) 3047 E = ICE->getSubExpr(); 3048 else 3049 break; 3050 } 3051 3052 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3053 E = BE->getSubExpr(); 3054 3055 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3056 if (ICE->getCastKind() == CK_NoOp) 3057 E = ICE->getSubExpr(); 3058 else 3059 break; 3060 } 3061 3062 return E->IgnoreParens(); 3063 } 3064 3065 /// isTemporaryObject - Determines if this expression produces a 3066 /// temporary of the given class type. 3067 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3068 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3069 return false; 3070 3071 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3072 3073 // Temporaries are by definition pr-values of class type. 3074 if (!E->Classify(C).isPRValue()) { 3075 // In this context, property reference is a message call and is pr-value. 3076 if (!isa<ObjCPropertyRefExpr>(E)) 3077 return false; 3078 } 3079 3080 // Black-list a few cases which yield pr-values of class type that don't 3081 // refer to temporaries of that type: 3082 3083 // - implicit derived-to-base conversions 3084 if (isa<ImplicitCastExpr>(E)) { 3085 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3086 case CK_DerivedToBase: 3087 case CK_UncheckedDerivedToBase: 3088 return false; 3089 default: 3090 break; 3091 } 3092 } 3093 3094 // - member expressions (all) 3095 if (isa<MemberExpr>(E)) 3096 return false; 3097 3098 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3099 if (BO->isPtrMemOp()) 3100 return false; 3101 3102 // - opaque values (all) 3103 if (isa<OpaqueValueExpr>(E)) 3104 return false; 3105 3106 return true; 3107 } 3108 3109 bool Expr::isImplicitCXXThis() const { 3110 const Expr *E = this; 3111 3112 // Strip away parentheses and casts we don't care about. 3113 while (true) { 3114 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3115 E = Paren->getSubExpr(); 3116 continue; 3117 } 3118 3119 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3120 if (ICE->getCastKind() == CK_NoOp || 3121 ICE->getCastKind() == CK_LValueToRValue || 3122 ICE->getCastKind() == CK_DerivedToBase || 3123 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3124 E = ICE->getSubExpr(); 3125 continue; 3126 } 3127 } 3128 3129 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3130 if (UnOp->getOpcode() == UO_Extension) { 3131 E = UnOp->getSubExpr(); 3132 continue; 3133 } 3134 } 3135 3136 if (const MaterializeTemporaryExpr *M 3137 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3138 E = M->getSubExpr(); 3139 continue; 3140 } 3141 3142 break; 3143 } 3144 3145 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3146 return This->isImplicit(); 3147 3148 return false; 3149 } 3150 3151 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3152 /// in Exprs is type-dependent. 3153 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3154 for (unsigned I = 0; I < Exprs.size(); ++I) 3155 if (Exprs[I]->isTypeDependent()) 3156 return true; 3157 3158 return false; 3159 } 3160 3161 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3162 const Expr **Culprit) const { 3163 assert(!isValueDependent() && 3164 "Expression evaluator can't be called on a dependent expression."); 3165 3166 // This function is attempting whether an expression is an initializer 3167 // which can be evaluated at compile-time. It very closely parallels 3168 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3169 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3170 // to isEvaluatable most of the time. 3171 // 3172 // If we ever capture reference-binding directly in the AST, we can 3173 // kill the second parameter. 3174 3175 if (IsForRef) { 3176 EvalResult Result; 3177 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3178 return true; 3179 if (Culprit) 3180 *Culprit = this; 3181 return false; 3182 } 3183 3184 switch (getStmtClass()) { 3185 default: break; 3186 case Stmt::ExprWithCleanupsClass: 3187 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3188 Ctx, IsForRef, Culprit); 3189 case StringLiteralClass: 3190 case ObjCEncodeExprClass: 3191 return true; 3192 case CXXTemporaryObjectExprClass: 3193 case CXXConstructExprClass: { 3194 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3195 3196 if (CE->getConstructor()->isTrivial() && 3197 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3198 // Trivial default constructor 3199 if (!CE->getNumArgs()) return true; 3200 3201 // Trivial copy constructor 3202 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3203 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3204 } 3205 3206 break; 3207 } 3208 case ConstantExprClass: { 3209 // FIXME: We should be able to return "true" here, but it can lead to extra 3210 // error messages. E.g. in Sema/array-init.c. 3211 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3212 return Exp->isConstantInitializer(Ctx, false, Culprit); 3213 } 3214 case CompoundLiteralExprClass: { 3215 // This handles gcc's extension that allows global initializers like 3216 // "struct x {int x;} x = (struct x) {};". 3217 // FIXME: This accepts other cases it shouldn't! 3218 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3219 return Exp->isConstantInitializer(Ctx, false, Culprit); 3220 } 3221 case DesignatedInitUpdateExprClass: { 3222 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3223 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3224 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3225 } 3226 case InitListExprClass: { 3227 const InitListExpr *ILE = cast<InitListExpr>(this); 3228 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3229 if (ILE->getType()->isArrayType()) { 3230 unsigned numInits = ILE->getNumInits(); 3231 for (unsigned i = 0; i < numInits; i++) { 3232 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3233 return false; 3234 } 3235 return true; 3236 } 3237 3238 if (ILE->getType()->isRecordType()) { 3239 unsigned ElementNo = 0; 3240 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3241 for (const auto *Field : RD->fields()) { 3242 // If this is a union, skip all the fields that aren't being initialized. 3243 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3244 continue; 3245 3246 // Don't emit anonymous bitfields, they just affect layout. 3247 if (Field->isUnnamedBitfield()) 3248 continue; 3249 3250 if (ElementNo < ILE->getNumInits()) { 3251 const Expr *Elt = ILE->getInit(ElementNo++); 3252 if (Field->isBitField()) { 3253 // Bitfields have to evaluate to an integer. 3254 EvalResult Result; 3255 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3256 if (Culprit) 3257 *Culprit = Elt; 3258 return false; 3259 } 3260 } else { 3261 bool RefType = Field->getType()->isReferenceType(); 3262 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3263 return false; 3264 } 3265 } 3266 } 3267 return true; 3268 } 3269 3270 break; 3271 } 3272 case ImplicitValueInitExprClass: 3273 case NoInitExprClass: 3274 return true; 3275 case ParenExprClass: 3276 return cast<ParenExpr>(this)->getSubExpr() 3277 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3278 case GenericSelectionExprClass: 3279 return cast<GenericSelectionExpr>(this)->getResultExpr() 3280 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3281 case ChooseExprClass: 3282 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3283 if (Culprit) 3284 *Culprit = this; 3285 return false; 3286 } 3287 return cast<ChooseExpr>(this)->getChosenSubExpr() 3288 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3289 case UnaryOperatorClass: { 3290 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3291 if (Exp->getOpcode() == UO_Extension) 3292 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3293 break; 3294 } 3295 case CXXFunctionalCastExprClass: 3296 case CXXStaticCastExprClass: 3297 case ImplicitCastExprClass: 3298 case CStyleCastExprClass: 3299 case ObjCBridgedCastExprClass: 3300 case CXXDynamicCastExprClass: 3301 case CXXReinterpretCastExprClass: 3302 case CXXAddrspaceCastExprClass: 3303 case CXXConstCastExprClass: { 3304 const CastExpr *CE = cast<CastExpr>(this); 3305 3306 // Handle misc casts we want to ignore. 3307 if (CE->getCastKind() == CK_NoOp || 3308 CE->getCastKind() == CK_LValueToRValue || 3309 CE->getCastKind() == CK_ToUnion || 3310 CE->getCastKind() == CK_ConstructorConversion || 3311 CE->getCastKind() == CK_NonAtomicToAtomic || 3312 CE->getCastKind() == CK_AtomicToNonAtomic || 3313 CE->getCastKind() == CK_IntToOCLSampler) 3314 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3315 3316 break; 3317 } 3318 case MaterializeTemporaryExprClass: 3319 return cast<MaterializeTemporaryExpr>(this) 3320 ->getSubExpr() 3321 ->isConstantInitializer(Ctx, false, Culprit); 3322 3323 case SubstNonTypeTemplateParmExprClass: 3324 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3325 ->isConstantInitializer(Ctx, false, Culprit); 3326 case CXXDefaultArgExprClass: 3327 return cast<CXXDefaultArgExpr>(this)->getExpr() 3328 ->isConstantInitializer(Ctx, false, Culprit); 3329 case CXXDefaultInitExprClass: 3330 return cast<CXXDefaultInitExpr>(this)->getExpr() 3331 ->isConstantInitializer(Ctx, false, Culprit); 3332 } 3333 // Allow certain forms of UB in constant initializers: signed integer 3334 // overflow and floating-point division by zero. We'll give a warning on 3335 // these, but they're common enough that we have to accept them. 3336 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3337 return true; 3338 if (Culprit) 3339 *Culprit = this; 3340 return false; 3341 } 3342 3343 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3344 const FunctionDecl* FD = getDirectCallee(); 3345 if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && 3346 FD->getBuiltinID() != Builtin::BI__builtin_assume)) 3347 return false; 3348 3349 const Expr* Arg = getArg(0); 3350 bool ArgVal; 3351 return !Arg->isValueDependent() && 3352 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3353 } 3354 3355 namespace { 3356 /// Look for any side effects within a Stmt. 3357 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3358 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3359 const bool IncludePossibleEffects; 3360 bool HasSideEffects; 3361 3362 public: 3363 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3364 : Inherited(Context), 3365 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3366 3367 bool hasSideEffects() const { return HasSideEffects; } 3368 3369 void VisitDecl(const Decl *D) { 3370 if (!D) 3371 return; 3372 3373 // We assume the caller checks subexpressions (eg, the initializer, VLA 3374 // bounds) for side-effects on our behalf. 3375 if (auto *VD = dyn_cast<VarDecl>(D)) { 3376 // Registering a destructor is a side-effect. 3377 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3378 VD->needsDestruction(Context)) 3379 HasSideEffects = true; 3380 } 3381 } 3382 3383 void VisitDeclStmt(const DeclStmt *DS) { 3384 for (auto *D : DS->decls()) 3385 VisitDecl(D); 3386 Inherited::VisitDeclStmt(DS); 3387 } 3388 3389 void VisitExpr(const Expr *E) { 3390 if (!HasSideEffects && 3391 E->HasSideEffects(Context, IncludePossibleEffects)) 3392 HasSideEffects = true; 3393 } 3394 }; 3395 } 3396 3397 bool Expr::HasSideEffects(const ASTContext &Ctx, 3398 bool IncludePossibleEffects) const { 3399 // In circumstances where we care about definite side effects instead of 3400 // potential side effects, we want to ignore expressions that are part of a 3401 // macro expansion as a potential side effect. 3402 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3403 return false; 3404 3405 switch (getStmtClass()) { 3406 case NoStmtClass: 3407 #define ABSTRACT_STMT(Type) 3408 #define STMT(Type, Base) case Type##Class: 3409 #define EXPR(Type, Base) 3410 #include "clang/AST/StmtNodes.inc" 3411 llvm_unreachable("unexpected Expr kind"); 3412 3413 case DependentScopeDeclRefExprClass: 3414 case CXXUnresolvedConstructExprClass: 3415 case CXXDependentScopeMemberExprClass: 3416 case UnresolvedLookupExprClass: 3417 case UnresolvedMemberExprClass: 3418 case PackExpansionExprClass: 3419 case SubstNonTypeTemplateParmPackExprClass: 3420 case FunctionParmPackExprClass: 3421 case TypoExprClass: 3422 case RecoveryExprClass: 3423 case CXXFoldExprClass: 3424 // Make a conservative assumption for dependent nodes. 3425 return IncludePossibleEffects; 3426 3427 case DeclRefExprClass: 3428 case ObjCIvarRefExprClass: 3429 case PredefinedExprClass: 3430 case IntegerLiteralClass: 3431 case FixedPointLiteralClass: 3432 case FloatingLiteralClass: 3433 case ImaginaryLiteralClass: 3434 case StringLiteralClass: 3435 case CharacterLiteralClass: 3436 case OffsetOfExprClass: 3437 case ImplicitValueInitExprClass: 3438 case UnaryExprOrTypeTraitExprClass: 3439 case AddrLabelExprClass: 3440 case GNUNullExprClass: 3441 case ArrayInitIndexExprClass: 3442 case NoInitExprClass: 3443 case CXXBoolLiteralExprClass: 3444 case CXXNullPtrLiteralExprClass: 3445 case CXXThisExprClass: 3446 case CXXScalarValueInitExprClass: 3447 case TypeTraitExprClass: 3448 case ArrayTypeTraitExprClass: 3449 case ExpressionTraitExprClass: 3450 case CXXNoexceptExprClass: 3451 case SizeOfPackExprClass: 3452 case ObjCStringLiteralClass: 3453 case ObjCEncodeExprClass: 3454 case ObjCBoolLiteralExprClass: 3455 case ObjCAvailabilityCheckExprClass: 3456 case CXXUuidofExprClass: 3457 case OpaqueValueExprClass: 3458 case SourceLocExprClass: 3459 case ConceptSpecializationExprClass: 3460 case RequiresExprClass: 3461 case SYCLUniqueStableNameExprClass: 3462 // These never have a side-effect. 3463 return false; 3464 3465 case ConstantExprClass: 3466 // FIXME: Move this into the "return false;" block above. 3467 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3468 Ctx, IncludePossibleEffects); 3469 3470 case CallExprClass: 3471 case CXXOperatorCallExprClass: 3472 case CXXMemberCallExprClass: 3473 case CUDAKernelCallExprClass: 3474 case UserDefinedLiteralClass: { 3475 // We don't know a call definitely has side effects, except for calls 3476 // to pure/const functions that definitely don't. 3477 // If the call itself is considered side-effect free, check the operands. 3478 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3479 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3480 if (IsPure || !IncludePossibleEffects) 3481 break; 3482 return true; 3483 } 3484 3485 case BlockExprClass: 3486 case CXXBindTemporaryExprClass: 3487 if (!IncludePossibleEffects) 3488 break; 3489 return true; 3490 3491 case MSPropertyRefExprClass: 3492 case MSPropertySubscriptExprClass: 3493 case CompoundAssignOperatorClass: 3494 case VAArgExprClass: 3495 case AtomicExprClass: 3496 case CXXThrowExprClass: 3497 case CXXNewExprClass: 3498 case CXXDeleteExprClass: 3499 case CoawaitExprClass: 3500 case DependentCoawaitExprClass: 3501 case CoyieldExprClass: 3502 // These always have a side-effect. 3503 return true; 3504 3505 case StmtExprClass: { 3506 // StmtExprs have a side-effect if any substatement does. 3507 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3508 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3509 return Finder.hasSideEffects(); 3510 } 3511 3512 case ExprWithCleanupsClass: 3513 if (IncludePossibleEffects) 3514 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3515 return true; 3516 break; 3517 3518 case ParenExprClass: 3519 case ArraySubscriptExprClass: 3520 case MatrixSubscriptExprClass: 3521 case OMPArraySectionExprClass: 3522 case OMPArrayShapingExprClass: 3523 case OMPIteratorExprClass: 3524 case MemberExprClass: 3525 case ConditionalOperatorClass: 3526 case BinaryConditionalOperatorClass: 3527 case CompoundLiteralExprClass: 3528 case ExtVectorElementExprClass: 3529 case DesignatedInitExprClass: 3530 case DesignatedInitUpdateExprClass: 3531 case ArrayInitLoopExprClass: 3532 case ParenListExprClass: 3533 case CXXPseudoDestructorExprClass: 3534 case CXXRewrittenBinaryOperatorClass: 3535 case CXXStdInitializerListExprClass: 3536 case SubstNonTypeTemplateParmExprClass: 3537 case MaterializeTemporaryExprClass: 3538 case ShuffleVectorExprClass: 3539 case ConvertVectorExprClass: 3540 case AsTypeExprClass: 3541 // These have a side-effect if any subexpression does. 3542 break; 3543 3544 case UnaryOperatorClass: 3545 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3546 return true; 3547 break; 3548 3549 case BinaryOperatorClass: 3550 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3551 return true; 3552 break; 3553 3554 case InitListExprClass: 3555 // FIXME: The children for an InitListExpr doesn't include the array filler. 3556 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3557 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3558 return true; 3559 break; 3560 3561 case GenericSelectionExprClass: 3562 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3563 HasSideEffects(Ctx, IncludePossibleEffects); 3564 3565 case ChooseExprClass: 3566 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3567 Ctx, IncludePossibleEffects); 3568 3569 case CXXDefaultArgExprClass: 3570 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3571 Ctx, IncludePossibleEffects); 3572 3573 case CXXDefaultInitExprClass: { 3574 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3575 if (const Expr *E = FD->getInClassInitializer()) 3576 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3577 // If we've not yet parsed the initializer, assume it has side-effects. 3578 return true; 3579 } 3580 3581 case CXXDynamicCastExprClass: { 3582 // A dynamic_cast expression has side-effects if it can throw. 3583 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3584 if (DCE->getTypeAsWritten()->isReferenceType() && 3585 DCE->getCastKind() == CK_Dynamic) 3586 return true; 3587 } 3588 LLVM_FALLTHROUGH; 3589 case ImplicitCastExprClass: 3590 case CStyleCastExprClass: 3591 case CXXStaticCastExprClass: 3592 case CXXReinterpretCastExprClass: 3593 case CXXConstCastExprClass: 3594 case CXXAddrspaceCastExprClass: 3595 case CXXFunctionalCastExprClass: 3596 case BuiltinBitCastExprClass: { 3597 // While volatile reads are side-effecting in both C and C++, we treat them 3598 // as having possible (not definite) side-effects. This allows idiomatic 3599 // code to behave without warning, such as sizeof(*v) for a volatile- 3600 // qualified pointer. 3601 if (!IncludePossibleEffects) 3602 break; 3603 3604 const CastExpr *CE = cast<CastExpr>(this); 3605 if (CE->getCastKind() == CK_LValueToRValue && 3606 CE->getSubExpr()->getType().isVolatileQualified()) 3607 return true; 3608 break; 3609 } 3610 3611 case CXXTypeidExprClass: 3612 // typeid might throw if its subexpression is potentially-evaluated, so has 3613 // side-effects in that case whether or not its subexpression does. 3614 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3615 3616 case CXXConstructExprClass: 3617 case CXXTemporaryObjectExprClass: { 3618 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3619 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3620 return true; 3621 // A trivial constructor does not add any side-effects of its own. Just look 3622 // at its arguments. 3623 break; 3624 } 3625 3626 case CXXInheritedCtorInitExprClass: { 3627 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3628 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3629 return true; 3630 break; 3631 } 3632 3633 case LambdaExprClass: { 3634 const LambdaExpr *LE = cast<LambdaExpr>(this); 3635 for (Expr *E : LE->capture_inits()) 3636 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3637 return true; 3638 return false; 3639 } 3640 3641 case PseudoObjectExprClass: { 3642 // Only look for side-effects in the semantic form, and look past 3643 // OpaqueValueExpr bindings in that form. 3644 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3645 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3646 E = PO->semantics_end(); 3647 I != E; ++I) { 3648 const Expr *Subexpr = *I; 3649 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3650 Subexpr = OVE->getSourceExpr(); 3651 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3652 return true; 3653 } 3654 return false; 3655 } 3656 3657 case ObjCBoxedExprClass: 3658 case ObjCArrayLiteralClass: 3659 case ObjCDictionaryLiteralClass: 3660 case ObjCSelectorExprClass: 3661 case ObjCProtocolExprClass: 3662 case ObjCIsaExprClass: 3663 case ObjCIndirectCopyRestoreExprClass: 3664 case ObjCSubscriptRefExprClass: 3665 case ObjCBridgedCastExprClass: 3666 case ObjCMessageExprClass: 3667 case ObjCPropertyRefExprClass: 3668 // FIXME: Classify these cases better. 3669 if (IncludePossibleEffects) 3670 return true; 3671 break; 3672 } 3673 3674 // Recurse to children. 3675 for (const Stmt *SubStmt : children()) 3676 if (SubStmt && 3677 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3678 return true; 3679 3680 return false; 3681 } 3682 3683 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3684 if (auto Call = dyn_cast<CallExpr>(this)) 3685 return Call->getFPFeaturesInEffect(LO); 3686 if (auto UO = dyn_cast<UnaryOperator>(this)) 3687 return UO->getFPFeaturesInEffect(LO); 3688 if (auto BO = dyn_cast<BinaryOperator>(this)) 3689 return BO->getFPFeaturesInEffect(LO); 3690 if (auto Cast = dyn_cast<CastExpr>(this)) 3691 return Cast->getFPFeaturesInEffect(LO); 3692 return FPOptions::defaultWithoutTrailingStorage(LO); 3693 } 3694 3695 namespace { 3696 /// Look for a call to a non-trivial function within an expression. 3697 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3698 { 3699 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3700 3701 bool NonTrivial; 3702 3703 public: 3704 explicit NonTrivialCallFinder(const ASTContext &Context) 3705 : Inherited(Context), NonTrivial(false) { } 3706 3707 bool hasNonTrivialCall() const { return NonTrivial; } 3708 3709 void VisitCallExpr(const CallExpr *E) { 3710 if (const CXXMethodDecl *Method 3711 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3712 if (Method->isTrivial()) { 3713 // Recurse to children of the call. 3714 Inherited::VisitStmt(E); 3715 return; 3716 } 3717 } 3718 3719 NonTrivial = true; 3720 } 3721 3722 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3723 if (E->getConstructor()->isTrivial()) { 3724 // Recurse to children of the call. 3725 Inherited::VisitStmt(E); 3726 return; 3727 } 3728 3729 NonTrivial = true; 3730 } 3731 3732 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3733 if (E->getTemporary()->getDestructor()->isTrivial()) { 3734 Inherited::VisitStmt(E); 3735 return; 3736 } 3737 3738 NonTrivial = true; 3739 } 3740 }; 3741 } 3742 3743 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3744 NonTrivialCallFinder Finder(Ctx); 3745 Finder.Visit(this); 3746 return Finder.hasNonTrivialCall(); 3747 } 3748 3749 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3750 /// pointer constant or not, as well as the specific kind of constant detected. 3751 /// Null pointer constants can be integer constant expressions with the 3752 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3753 /// (a GNU extension). 3754 Expr::NullPointerConstantKind 3755 Expr::isNullPointerConstant(ASTContext &Ctx, 3756 NullPointerConstantValueDependence NPC) const { 3757 if (isValueDependent() && 3758 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3759 // Error-dependent expr should never be a null pointer. 3760 if (containsErrors()) 3761 return NPCK_NotNull; 3762 switch (NPC) { 3763 case NPC_NeverValueDependent: 3764 llvm_unreachable("Unexpected value dependent expression!"); 3765 case NPC_ValueDependentIsNull: 3766 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3767 return NPCK_ZeroExpression; 3768 else 3769 return NPCK_NotNull; 3770 3771 case NPC_ValueDependentIsNotNull: 3772 return NPCK_NotNull; 3773 } 3774 } 3775 3776 // Strip off a cast to void*, if it exists. Except in C++. 3777 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3778 if (!Ctx.getLangOpts().CPlusPlus) { 3779 // Check that it is a cast to void*. 3780 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3781 QualType Pointee = PT->getPointeeType(); 3782 Qualifiers Qs = Pointee.getQualifiers(); 3783 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3784 // has non-default address space it is not treated as nullptr. 3785 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3786 // since it cannot be assigned to a pointer to constant address space. 3787 if (Ctx.getLangOpts().OpenCL && 3788 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3789 Qs.removeAddressSpace(); 3790 3791 if (Pointee->isVoidType() && Qs.empty() && // to void* 3792 CE->getSubExpr()->getType()->isIntegerType()) // from int 3793 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3794 } 3795 } 3796 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3797 // Ignore the ImplicitCastExpr type entirely. 3798 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3799 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3800 // Accept ((void*)0) as a null pointer constant, as many other 3801 // implementations do. 3802 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3803 } else if (const GenericSelectionExpr *GE = 3804 dyn_cast<GenericSelectionExpr>(this)) { 3805 if (GE->isResultDependent()) 3806 return NPCK_NotNull; 3807 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3808 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3809 if (CE->isConditionDependent()) 3810 return NPCK_NotNull; 3811 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3812 } else if (const CXXDefaultArgExpr *DefaultArg 3813 = dyn_cast<CXXDefaultArgExpr>(this)) { 3814 // See through default argument expressions. 3815 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3816 } else if (const CXXDefaultInitExpr *DefaultInit 3817 = dyn_cast<CXXDefaultInitExpr>(this)) { 3818 // See through default initializer expressions. 3819 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3820 } else if (isa<GNUNullExpr>(this)) { 3821 // The GNU __null extension is always a null pointer constant. 3822 return NPCK_GNUNull; 3823 } else if (const MaterializeTemporaryExpr *M 3824 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3825 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3826 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3827 if (const Expr *Source = OVE->getSourceExpr()) 3828 return Source->isNullPointerConstant(Ctx, NPC); 3829 } 3830 3831 // If the expression has no type information, it cannot be a null pointer 3832 // constant. 3833 if (getType().isNull()) 3834 return NPCK_NotNull; 3835 3836 // C++11 nullptr_t is always a null pointer constant. 3837 if (getType()->isNullPtrType()) 3838 return NPCK_CXX11_nullptr; 3839 3840 if (const RecordType *UT = getType()->getAsUnionType()) 3841 if (!Ctx.getLangOpts().CPlusPlus11 && 3842 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3843 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3844 const Expr *InitExpr = CLE->getInitializer(); 3845 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3846 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3847 } 3848 // This expression must be an integer type. 3849 if (!getType()->isIntegerType() || 3850 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3851 return NPCK_NotNull; 3852 3853 if (Ctx.getLangOpts().CPlusPlus11) { 3854 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3855 // value zero or a prvalue of type std::nullptr_t. 3856 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3857 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3858 if (Lit && !Lit->getValue()) 3859 return NPCK_ZeroLiteral; 3860 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3861 return NPCK_NotNull; 3862 } else { 3863 // If we have an integer constant expression, we need to *evaluate* it and 3864 // test for the value 0. 3865 if (!isIntegerConstantExpr(Ctx)) 3866 return NPCK_NotNull; 3867 } 3868 3869 if (EvaluateKnownConstInt(Ctx) != 0) 3870 return NPCK_NotNull; 3871 3872 if (isa<IntegerLiteral>(this)) 3873 return NPCK_ZeroLiteral; 3874 return NPCK_ZeroExpression; 3875 } 3876 3877 /// If this expression is an l-value for an Objective C 3878 /// property, find the underlying property reference expression. 3879 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3880 const Expr *E = this; 3881 while (true) { 3882 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 3883 "expression is not a property reference"); 3884 E = E->IgnoreParenCasts(); 3885 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3886 if (BO->getOpcode() == BO_Comma) { 3887 E = BO->getRHS(); 3888 continue; 3889 } 3890 } 3891 3892 break; 3893 } 3894 3895 return cast<ObjCPropertyRefExpr>(E); 3896 } 3897 3898 bool Expr::isObjCSelfExpr() const { 3899 const Expr *E = IgnoreParenImpCasts(); 3900 3901 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3902 if (!DRE) 3903 return false; 3904 3905 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3906 if (!Param) 3907 return false; 3908 3909 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3910 if (!M) 3911 return false; 3912 3913 return M->getSelfDecl() == Param; 3914 } 3915 3916 FieldDecl *Expr::getSourceBitField() { 3917 Expr *E = this->IgnoreParens(); 3918 3919 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3920 if (ICE->getCastKind() == CK_LValueToRValue || 3921 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 3922 E = ICE->getSubExpr()->IgnoreParens(); 3923 else 3924 break; 3925 } 3926 3927 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3928 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3929 if (Field->isBitField()) 3930 return Field; 3931 3932 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 3933 FieldDecl *Ivar = IvarRef->getDecl(); 3934 if (Ivar->isBitField()) 3935 return Ivar; 3936 } 3937 3938 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 3939 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3940 if (Field->isBitField()) 3941 return Field; 3942 3943 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 3944 if (Expr *E = BD->getBinding()) 3945 return E->getSourceBitField(); 3946 } 3947 3948 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3949 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3950 return BinOp->getLHS()->getSourceBitField(); 3951 3952 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3953 return BinOp->getRHS()->getSourceBitField(); 3954 } 3955 3956 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3957 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3958 return UnOp->getSubExpr()->getSourceBitField(); 3959 3960 return nullptr; 3961 } 3962 3963 bool Expr::refersToVectorElement() const { 3964 // FIXME: Why do we not just look at the ObjectKind here? 3965 const Expr *E = this->IgnoreParens(); 3966 3967 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3968 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 3969 E = ICE->getSubExpr()->IgnoreParens(); 3970 else 3971 break; 3972 } 3973 3974 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3975 return ASE->getBase()->getType()->isVectorType(); 3976 3977 if (isa<ExtVectorElementExpr>(E)) 3978 return true; 3979 3980 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 3981 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 3982 if (auto *E = BD->getBinding()) 3983 return E->refersToVectorElement(); 3984 3985 return false; 3986 } 3987 3988 bool Expr::refersToGlobalRegisterVar() const { 3989 const Expr *E = this->IgnoreParenImpCasts(); 3990 3991 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3992 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3993 if (VD->getStorageClass() == SC_Register && 3994 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3995 return true; 3996 3997 return false; 3998 } 3999 4000 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4001 E1 = E1->IgnoreParens(); 4002 E2 = E2->IgnoreParens(); 4003 4004 if (E1->getStmtClass() != E2->getStmtClass()) 4005 return false; 4006 4007 switch (E1->getStmtClass()) { 4008 default: 4009 return false; 4010 case CXXThisExprClass: 4011 return true; 4012 case DeclRefExprClass: { 4013 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4014 // template parameters. 4015 const auto *DRE1 = cast<DeclRefExpr>(E1); 4016 const auto *DRE2 = cast<DeclRefExpr>(E2); 4017 return DRE1->isPRValue() && DRE2->isPRValue() && 4018 DRE1->getDecl() == DRE2->getDecl(); 4019 } 4020 case ImplicitCastExprClass: { 4021 // Peel off implicit casts. 4022 while (true) { 4023 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4024 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4025 if (!ICE1 || !ICE2) 4026 return false; 4027 if (ICE1->getCastKind() != ICE2->getCastKind()) 4028 return false; 4029 E1 = ICE1->getSubExpr()->IgnoreParens(); 4030 E2 = ICE2->getSubExpr()->IgnoreParens(); 4031 // The final cast must be one of these types. 4032 if (ICE1->getCastKind() == CK_LValueToRValue || 4033 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4034 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4035 break; 4036 } 4037 } 4038 4039 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4040 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4041 if (DRE1 && DRE2) 4042 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4043 4044 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4045 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4046 if (Ivar1 && Ivar2) { 4047 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4048 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4049 } 4050 4051 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4052 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4053 if (Array1 && Array2) { 4054 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4055 return false; 4056 4057 auto Idx1 = Array1->getIdx(); 4058 auto Idx2 = Array2->getIdx(); 4059 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4060 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4061 if (Integer1 && Integer2) { 4062 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4063 Integer2->getValue())) 4064 return false; 4065 } else { 4066 if (!isSameComparisonOperand(Idx1, Idx2)) 4067 return false; 4068 } 4069 4070 return true; 4071 } 4072 4073 // Walk the MemberExpr chain. 4074 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4075 const auto *ME1 = cast<MemberExpr>(E1); 4076 const auto *ME2 = cast<MemberExpr>(E2); 4077 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4078 return false; 4079 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4080 if (D->isStaticDataMember()) 4081 return true; 4082 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4083 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4084 } 4085 4086 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4087 return true; 4088 4089 // A static member variable can end the MemberExpr chain with either 4090 // a MemberExpr or a DeclRefExpr. 4091 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4092 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4093 return DRE->getDecl(); 4094 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4095 return ME->getMemberDecl(); 4096 return nullptr; 4097 }; 4098 4099 const ValueDecl *VD1 = getAnyDecl(E1); 4100 const ValueDecl *VD2 = getAnyDecl(E2); 4101 return declaresSameEntity(VD1, VD2); 4102 } 4103 } 4104 } 4105 4106 /// isArrow - Return true if the base expression is a pointer to vector, 4107 /// return false if the base expression is a vector. 4108 bool ExtVectorElementExpr::isArrow() const { 4109 return getBase()->getType()->isPointerType(); 4110 } 4111 4112 unsigned ExtVectorElementExpr::getNumElements() const { 4113 if (const VectorType *VT = getType()->getAs<VectorType>()) 4114 return VT->getNumElements(); 4115 return 1; 4116 } 4117 4118 /// containsDuplicateElements - Return true if any element access is repeated. 4119 bool ExtVectorElementExpr::containsDuplicateElements() const { 4120 // FIXME: Refactor this code to an accessor on the AST node which returns the 4121 // "type" of component access, and share with code below and in Sema. 4122 StringRef Comp = Accessor->getName(); 4123 4124 // Halving swizzles do not contain duplicate elements. 4125 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4126 return false; 4127 4128 // Advance past s-char prefix on hex swizzles. 4129 if (Comp[0] == 's' || Comp[0] == 'S') 4130 Comp = Comp.substr(1); 4131 4132 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4133 if (Comp.substr(i + 1).contains(Comp[i])) 4134 return true; 4135 4136 return false; 4137 } 4138 4139 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4140 void ExtVectorElementExpr::getEncodedElementAccess( 4141 SmallVectorImpl<uint32_t> &Elts) const { 4142 StringRef Comp = Accessor->getName(); 4143 bool isNumericAccessor = false; 4144 if (Comp[0] == 's' || Comp[0] == 'S') { 4145 Comp = Comp.substr(1); 4146 isNumericAccessor = true; 4147 } 4148 4149 bool isHi = Comp == "hi"; 4150 bool isLo = Comp == "lo"; 4151 bool isEven = Comp == "even"; 4152 bool isOdd = Comp == "odd"; 4153 4154 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4155 uint64_t Index; 4156 4157 if (isHi) 4158 Index = e + i; 4159 else if (isLo) 4160 Index = i; 4161 else if (isEven) 4162 Index = 2 * i; 4163 else if (isOdd) 4164 Index = 2 * i + 1; 4165 else 4166 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4167 4168 Elts.push_back(Index); 4169 } 4170 } 4171 4172 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4173 QualType Type, SourceLocation BLoc, 4174 SourceLocation RP) 4175 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4176 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4177 SubExprs = new (C) Stmt*[args.size()]; 4178 for (unsigned i = 0; i != args.size(); i++) 4179 SubExprs[i] = args[i]; 4180 4181 setDependence(computeDependence(this)); 4182 } 4183 4184 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4185 if (SubExprs) C.Deallocate(SubExprs); 4186 4187 this->NumExprs = Exprs.size(); 4188 SubExprs = new (C) Stmt*[NumExprs]; 4189 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4190 } 4191 4192 GenericSelectionExpr::GenericSelectionExpr( 4193 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4194 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4195 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4196 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4197 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4198 AssocExprs[ResultIndex]->getValueKind(), 4199 AssocExprs[ResultIndex]->getObjectKind()), 4200 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4201 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4202 assert(AssocTypes.size() == AssocExprs.size() && 4203 "Must have the same number of association expressions" 4204 " and TypeSourceInfo!"); 4205 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4206 4207 GenericSelectionExprBits.GenericLoc = GenericLoc; 4208 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4209 std::copy(AssocExprs.begin(), AssocExprs.end(), 4210 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4211 std::copy(AssocTypes.begin(), AssocTypes.end(), 4212 getTrailingObjects<TypeSourceInfo *>()); 4213 4214 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4215 } 4216 4217 GenericSelectionExpr::GenericSelectionExpr( 4218 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4219 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4220 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4221 bool ContainsUnexpandedParameterPack) 4222 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4223 OK_Ordinary), 4224 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4225 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4226 assert(AssocTypes.size() == AssocExprs.size() && 4227 "Must have the same number of association expressions" 4228 " and TypeSourceInfo!"); 4229 4230 GenericSelectionExprBits.GenericLoc = GenericLoc; 4231 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; 4232 std::copy(AssocExprs.begin(), AssocExprs.end(), 4233 getTrailingObjects<Stmt *>() + AssocExprStartIndex); 4234 std::copy(AssocTypes.begin(), AssocTypes.end(), 4235 getTrailingObjects<TypeSourceInfo *>()); 4236 4237 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4238 } 4239 4240 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4241 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4242 4243 GenericSelectionExpr *GenericSelectionExpr::Create( 4244 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4245 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4246 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4247 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4248 unsigned NumAssocs = AssocExprs.size(); 4249 void *Mem = Context.Allocate( 4250 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4251 alignof(GenericSelectionExpr)); 4252 return new (Mem) GenericSelectionExpr( 4253 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4254 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4255 } 4256 4257 GenericSelectionExpr *GenericSelectionExpr::Create( 4258 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4259 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4260 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4261 bool ContainsUnexpandedParameterPack) { 4262 unsigned NumAssocs = AssocExprs.size(); 4263 void *Mem = Context.Allocate( 4264 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4265 alignof(GenericSelectionExpr)); 4266 return new (Mem) GenericSelectionExpr( 4267 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4268 RParenLoc, ContainsUnexpandedParameterPack); 4269 } 4270 4271 GenericSelectionExpr * 4272 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4273 unsigned NumAssocs) { 4274 void *Mem = Context.Allocate( 4275 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4276 alignof(GenericSelectionExpr)); 4277 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4278 } 4279 4280 //===----------------------------------------------------------------------===// 4281 // DesignatedInitExpr 4282 //===----------------------------------------------------------------------===// 4283 4284 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4285 assert(Kind == FieldDesignator && "Only valid on a field designator"); 4286 if (Field.NameOrField & 0x01) 4287 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01); 4288 return getField()->getIdentifier(); 4289 } 4290 4291 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4292 llvm::ArrayRef<Designator> Designators, 4293 SourceLocation EqualOrColonLoc, 4294 bool GNUSyntax, 4295 ArrayRef<Expr *> IndexExprs, Expr *Init) 4296 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4297 Init->getObjectKind()), 4298 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4299 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4300 this->Designators = new (C) Designator[NumDesignators]; 4301 4302 // Record the initializer itself. 4303 child_iterator Child = child_begin(); 4304 *Child++ = Init; 4305 4306 // Copy the designators and their subexpressions, computing 4307 // value-dependence along the way. 4308 unsigned IndexIdx = 0; 4309 for (unsigned I = 0; I != NumDesignators; ++I) { 4310 this->Designators[I] = Designators[I]; 4311 if (this->Designators[I].isArrayDesignator()) { 4312 // Copy the index expressions into permanent storage. 4313 *Child++ = IndexExprs[IndexIdx++]; 4314 } else if (this->Designators[I].isArrayRangeDesignator()) { 4315 // Copy the start/end expressions into permanent storage. 4316 *Child++ = IndexExprs[IndexIdx++]; 4317 *Child++ = IndexExprs[IndexIdx++]; 4318 } 4319 } 4320 4321 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4322 setDependence(computeDependence(this)); 4323 } 4324 4325 DesignatedInitExpr * 4326 DesignatedInitExpr::Create(const ASTContext &C, 4327 llvm::ArrayRef<Designator> Designators, 4328 ArrayRef<Expr*> IndexExprs, 4329 SourceLocation ColonOrEqualLoc, 4330 bool UsesColonSyntax, Expr *Init) { 4331 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4332 alignof(DesignatedInitExpr)); 4333 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4334 ColonOrEqualLoc, UsesColonSyntax, 4335 IndexExprs, Init); 4336 } 4337 4338 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4339 unsigned NumIndexExprs) { 4340 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4341 alignof(DesignatedInitExpr)); 4342 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4343 } 4344 4345 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4346 const Designator *Desigs, 4347 unsigned NumDesigs) { 4348 Designators = new (C) Designator[NumDesigs]; 4349 NumDesignators = NumDesigs; 4350 for (unsigned I = 0; I != NumDesigs; ++I) 4351 Designators[I] = Desigs[I]; 4352 } 4353 4354 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4355 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4356 if (size() == 1) 4357 return DIE->getDesignator(0)->getSourceRange(); 4358 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4359 DIE->getDesignator(size() - 1)->getEndLoc()); 4360 } 4361 4362 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4363 SourceLocation StartLoc; 4364 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4365 Designator &First = *DIE->getDesignator(0); 4366 if (First.isFieldDesignator()) 4367 StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc; 4368 else 4369 StartLoc = First.ArrayOrRange.LBracketLoc; 4370 return StartLoc; 4371 } 4372 4373 SourceLocation DesignatedInitExpr::getEndLoc() const { 4374 return getInit()->getEndLoc(); 4375 } 4376 4377 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4378 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 4379 return getSubExpr(D.ArrayOrRange.Index + 1); 4380 } 4381 4382 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4383 assert(D.Kind == Designator::ArrayRangeDesignator && 4384 "Requires array range designator"); 4385 return getSubExpr(D.ArrayOrRange.Index + 1); 4386 } 4387 4388 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4389 assert(D.Kind == Designator::ArrayRangeDesignator && 4390 "Requires array range designator"); 4391 return getSubExpr(D.ArrayOrRange.Index + 2); 4392 } 4393 4394 /// Replaces the designator at index @p Idx with the series 4395 /// of designators in [First, Last). 4396 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4397 const Designator *First, 4398 const Designator *Last) { 4399 unsigned NumNewDesignators = Last - First; 4400 if (NumNewDesignators == 0) { 4401 std::copy_backward(Designators + Idx + 1, 4402 Designators + NumDesignators, 4403 Designators + Idx); 4404 --NumNewDesignators; 4405 return; 4406 } 4407 if (NumNewDesignators == 1) { 4408 Designators[Idx] = *First; 4409 return; 4410 } 4411 4412 Designator *NewDesignators 4413 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4414 std::copy(Designators, Designators + Idx, NewDesignators); 4415 std::copy(First, Last, NewDesignators + Idx); 4416 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4417 NewDesignators + Idx + NumNewDesignators); 4418 Designators = NewDesignators; 4419 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4420 } 4421 4422 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4423 SourceLocation lBraceLoc, 4424 Expr *baseExpr, 4425 SourceLocation rBraceLoc) 4426 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4427 OK_Ordinary) { 4428 BaseAndUpdaterExprs[0] = baseExpr; 4429 4430 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 4431 ILE->setType(baseExpr->getType()); 4432 BaseAndUpdaterExprs[1] = ILE; 4433 4434 // FIXME: this is wrong, set it correctly. 4435 setDependence(ExprDependence::None); 4436 } 4437 4438 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4439 return getBase()->getBeginLoc(); 4440 } 4441 4442 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4443 return getBase()->getEndLoc(); 4444 } 4445 4446 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4447 SourceLocation RParenLoc) 4448 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4449 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4450 ParenListExprBits.NumExprs = Exprs.size(); 4451 4452 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4453 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4454 setDependence(computeDependence(this)); 4455 } 4456 4457 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4458 : Expr(ParenListExprClass, Empty) { 4459 ParenListExprBits.NumExprs = NumExprs; 4460 } 4461 4462 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4463 SourceLocation LParenLoc, 4464 ArrayRef<Expr *> Exprs, 4465 SourceLocation RParenLoc) { 4466 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4467 alignof(ParenListExpr)); 4468 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4469 } 4470 4471 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4472 unsigned NumExprs) { 4473 void *Mem = 4474 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4475 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4476 } 4477 4478 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4479 Opcode opc, QualType ResTy, ExprValueKind VK, 4480 ExprObjectKind OK, SourceLocation opLoc, 4481 FPOptionsOverride FPFeatures) 4482 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4483 BinaryOperatorBits.Opc = opc; 4484 assert(!isCompoundAssignmentOp() && 4485 "Use CompoundAssignOperator for compound assignments"); 4486 BinaryOperatorBits.OpLoc = opLoc; 4487 SubExprs[LHS] = lhs; 4488 SubExprs[RHS] = rhs; 4489 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4490 if (hasStoredFPFeatures()) 4491 setStoredFPFeatures(FPFeatures); 4492 setDependence(computeDependence(this)); 4493 } 4494 4495 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4496 Opcode opc, QualType ResTy, ExprValueKind VK, 4497 ExprObjectKind OK, SourceLocation opLoc, 4498 FPOptionsOverride FPFeatures, bool dead2) 4499 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4500 BinaryOperatorBits.Opc = opc; 4501 assert(isCompoundAssignmentOp() && 4502 "Use CompoundAssignOperator for compound assignments"); 4503 BinaryOperatorBits.OpLoc = opLoc; 4504 SubExprs[LHS] = lhs; 4505 SubExprs[RHS] = rhs; 4506 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4507 if (hasStoredFPFeatures()) 4508 setStoredFPFeatures(FPFeatures); 4509 setDependence(computeDependence(this)); 4510 } 4511 4512 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4513 bool HasFPFeatures) { 4514 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4515 void *Mem = 4516 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4517 return new (Mem) BinaryOperator(EmptyShell()); 4518 } 4519 4520 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4521 Expr *rhs, Opcode opc, QualType ResTy, 4522 ExprValueKind VK, ExprObjectKind OK, 4523 SourceLocation opLoc, 4524 FPOptionsOverride FPFeatures) { 4525 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4526 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4527 void *Mem = 4528 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4529 return new (Mem) 4530 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4531 } 4532 4533 CompoundAssignOperator * 4534 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4535 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4536 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4537 alignof(CompoundAssignOperator)); 4538 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4539 } 4540 4541 CompoundAssignOperator * 4542 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4543 Opcode opc, QualType ResTy, ExprValueKind VK, 4544 ExprObjectKind OK, SourceLocation opLoc, 4545 FPOptionsOverride FPFeatures, 4546 QualType CompLHSType, QualType CompResultType) { 4547 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4548 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4549 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4550 alignof(CompoundAssignOperator)); 4551 return new (Mem) 4552 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4553 CompLHSType, CompResultType); 4554 } 4555 4556 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4557 bool hasFPFeatures) { 4558 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4559 alignof(UnaryOperator)); 4560 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4561 } 4562 4563 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4564 QualType type, ExprValueKind VK, ExprObjectKind OK, 4565 SourceLocation l, bool CanOverflow, 4566 FPOptionsOverride FPFeatures) 4567 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4568 UnaryOperatorBits.Opc = opc; 4569 UnaryOperatorBits.CanOverflow = CanOverflow; 4570 UnaryOperatorBits.Loc = l; 4571 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4572 if (hasStoredFPFeatures()) 4573 setStoredFPFeatures(FPFeatures); 4574 setDependence(computeDependence(this, Ctx)); 4575 } 4576 4577 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4578 Opcode opc, QualType type, 4579 ExprValueKind VK, ExprObjectKind OK, 4580 SourceLocation l, bool CanOverflow, 4581 FPOptionsOverride FPFeatures) { 4582 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4583 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4584 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4585 return new (Mem) 4586 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4587 } 4588 4589 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4590 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4591 e = ewc->getSubExpr(); 4592 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4593 e = m->getSubExpr(); 4594 e = cast<CXXConstructExpr>(e)->getArg(0); 4595 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4596 e = ice->getSubExpr(); 4597 return cast<OpaqueValueExpr>(e); 4598 } 4599 4600 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4601 EmptyShell sh, 4602 unsigned numSemanticExprs) { 4603 void *buffer = 4604 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4605 alignof(PseudoObjectExpr)); 4606 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4607 } 4608 4609 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4610 : Expr(PseudoObjectExprClass, shell) { 4611 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4612 } 4613 4614 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4615 ArrayRef<Expr*> semantics, 4616 unsigned resultIndex) { 4617 assert(syntax && "no syntactic expression!"); 4618 assert(semantics.size() && "no semantic expressions!"); 4619 4620 QualType type; 4621 ExprValueKind VK; 4622 if (resultIndex == NoResult) { 4623 type = C.VoidTy; 4624 VK = VK_PRValue; 4625 } else { 4626 assert(resultIndex < semantics.size()); 4627 type = semantics[resultIndex]->getType(); 4628 VK = semantics[resultIndex]->getValueKind(); 4629 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4630 } 4631 4632 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4633 alignof(PseudoObjectExpr)); 4634 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4635 resultIndex); 4636 } 4637 4638 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4639 Expr *syntax, ArrayRef<Expr *> semantics, 4640 unsigned resultIndex) 4641 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4642 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4643 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4644 4645 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4646 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4647 getSubExprsBuffer()[i] = E; 4648 4649 if (isa<OpaqueValueExpr>(E)) 4650 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4651 "opaque-value semantic expressions for pseudo-object " 4652 "operations must have sources"); 4653 } 4654 4655 setDependence(computeDependence(this)); 4656 } 4657 4658 //===----------------------------------------------------------------------===// 4659 // Child Iterators for iterating over subexpressions/substatements 4660 //===----------------------------------------------------------------------===// 4661 4662 // UnaryExprOrTypeTraitExpr 4663 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4664 const_child_range CCR = 4665 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4666 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4667 } 4668 4669 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4670 // If this is of a type and the type is a VLA type (and not a typedef), the 4671 // size expression of the VLA needs to be treated as an executable expression. 4672 // Why isn't this weirdness documented better in StmtIterator? 4673 if (isArgumentType()) { 4674 if (const VariableArrayType *T = 4675 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4676 return const_child_range(const_child_iterator(T), const_child_iterator()); 4677 return const_child_range(const_child_iterator(), const_child_iterator()); 4678 } 4679 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4680 } 4681 4682 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4683 AtomicOp op, SourceLocation RP) 4684 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4685 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4686 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4687 for (unsigned i = 0; i != args.size(); i++) 4688 SubExprs[i] = args[i]; 4689 setDependence(computeDependence(this)); 4690 } 4691 4692 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4693 switch (Op) { 4694 case AO__c11_atomic_init: 4695 case AO__opencl_atomic_init: 4696 case AO__c11_atomic_load: 4697 case AO__atomic_load_n: 4698 return 2; 4699 4700 case AO__opencl_atomic_load: 4701 case AO__hip_atomic_load: 4702 case AO__c11_atomic_store: 4703 case AO__c11_atomic_exchange: 4704 case AO__atomic_load: 4705 case AO__atomic_store: 4706 case AO__atomic_store_n: 4707 case AO__atomic_exchange_n: 4708 case AO__c11_atomic_fetch_add: 4709 case AO__c11_atomic_fetch_sub: 4710 case AO__c11_atomic_fetch_and: 4711 case AO__c11_atomic_fetch_or: 4712 case AO__c11_atomic_fetch_xor: 4713 case AO__c11_atomic_fetch_nand: 4714 case AO__c11_atomic_fetch_max: 4715 case AO__c11_atomic_fetch_min: 4716 case AO__atomic_fetch_add: 4717 case AO__atomic_fetch_sub: 4718 case AO__atomic_fetch_and: 4719 case AO__atomic_fetch_or: 4720 case AO__atomic_fetch_xor: 4721 case AO__atomic_fetch_nand: 4722 case AO__atomic_add_fetch: 4723 case AO__atomic_sub_fetch: 4724 case AO__atomic_and_fetch: 4725 case AO__atomic_or_fetch: 4726 case AO__atomic_xor_fetch: 4727 case AO__atomic_nand_fetch: 4728 case AO__atomic_min_fetch: 4729 case AO__atomic_max_fetch: 4730 case AO__atomic_fetch_min: 4731 case AO__atomic_fetch_max: 4732 return 3; 4733 4734 case AO__hip_atomic_exchange: 4735 case AO__hip_atomic_fetch_add: 4736 case AO__hip_atomic_fetch_and: 4737 case AO__hip_atomic_fetch_or: 4738 case AO__hip_atomic_fetch_xor: 4739 case AO__hip_atomic_fetch_min: 4740 case AO__hip_atomic_fetch_max: 4741 case AO__opencl_atomic_store: 4742 case AO__hip_atomic_store: 4743 case AO__opencl_atomic_exchange: 4744 case AO__opencl_atomic_fetch_add: 4745 case AO__opencl_atomic_fetch_sub: 4746 case AO__opencl_atomic_fetch_and: 4747 case AO__opencl_atomic_fetch_or: 4748 case AO__opencl_atomic_fetch_xor: 4749 case AO__opencl_atomic_fetch_min: 4750 case AO__opencl_atomic_fetch_max: 4751 case AO__atomic_exchange: 4752 return 4; 4753 4754 case AO__c11_atomic_compare_exchange_strong: 4755 case AO__c11_atomic_compare_exchange_weak: 4756 return 5; 4757 case AO__hip_atomic_compare_exchange_strong: 4758 case AO__opencl_atomic_compare_exchange_strong: 4759 case AO__opencl_atomic_compare_exchange_weak: 4760 case AO__hip_atomic_compare_exchange_weak: 4761 case AO__atomic_compare_exchange: 4762 case AO__atomic_compare_exchange_n: 4763 return 6; 4764 } 4765 llvm_unreachable("unknown atomic op"); 4766 } 4767 4768 QualType AtomicExpr::getValueType() const { 4769 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 4770 if (auto AT = T->getAs<AtomicType>()) 4771 return AT->getValueType(); 4772 return T; 4773 } 4774 4775 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 4776 unsigned ArraySectionCount = 0; 4777 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 4778 Base = OASE->getBase(); 4779 ++ArraySectionCount; 4780 } 4781 while (auto *ASE = 4782 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 4783 Base = ASE->getBase(); 4784 ++ArraySectionCount; 4785 } 4786 Base = Base->IgnoreParenImpCasts(); 4787 auto OriginalTy = Base->getType(); 4788 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 4789 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 4790 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 4791 4792 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 4793 if (OriginalTy->isAnyPointerType()) 4794 OriginalTy = OriginalTy->getPointeeType(); 4795 else { 4796 assert (OriginalTy->isArrayType()); 4797 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 4798 } 4799 } 4800 return OriginalTy; 4801 } 4802 4803 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 4804 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 4805 : Expr(RecoveryExprClass, T.getNonReferenceType(), 4806 T->isDependentType() ? VK_LValue : getValueKindForType(T), 4807 OK_Ordinary), 4808 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 4809 assert(!T.isNull()); 4810 assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; })); 4811 4812 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 4813 setDependence(computeDependence(this)); 4814 } 4815 4816 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 4817 SourceLocation BeginLoc, 4818 SourceLocation EndLoc, 4819 ArrayRef<Expr *> SubExprs) { 4820 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 4821 alignof(RecoveryExpr)); 4822 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 4823 } 4824 4825 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 4826 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 4827 alignof(RecoveryExpr)); 4828 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 4829 } 4830 4831 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 4832 assert( 4833 NumDims == Dims.size() && 4834 "Preallocated number of dimensions is different from the provided one."); 4835 llvm::copy(Dims, getTrailingObjects<Expr *>()); 4836 } 4837 4838 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 4839 assert( 4840 NumDims == BR.size() && 4841 "Preallocated number of dimensions is different from the provided one."); 4842 llvm::copy(BR, getTrailingObjects<SourceRange>()); 4843 } 4844 4845 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 4846 SourceLocation L, SourceLocation R, 4847 ArrayRef<Expr *> Dims) 4848 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 4849 RPLoc(R), NumDims(Dims.size()) { 4850 setBase(Op); 4851 setDimensions(Dims); 4852 setDependence(computeDependence(this)); 4853 } 4854 4855 OMPArrayShapingExpr * 4856 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 4857 SourceLocation L, SourceLocation R, 4858 ArrayRef<Expr *> Dims, 4859 ArrayRef<SourceRange> BracketRanges) { 4860 assert(Dims.size() == BracketRanges.size() && 4861 "Different number of dimensions and brackets ranges."); 4862 void *Mem = Context.Allocate( 4863 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 4864 alignof(OMPArrayShapingExpr)); 4865 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 4866 E->setBracketsRanges(BracketRanges); 4867 return E; 4868 } 4869 4870 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 4871 unsigned NumDims) { 4872 void *Mem = Context.Allocate( 4873 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 4874 alignof(OMPArrayShapingExpr)); 4875 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 4876 } 4877 4878 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 4879 assert(I < NumIterators && 4880 "Idx is greater or equal the number of iterators definitions."); 4881 getTrailingObjects<Decl *>()[I] = D; 4882 } 4883 4884 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 4885 assert(I < NumIterators && 4886 "Idx is greater or equal the number of iterators definitions."); 4887 getTrailingObjects< 4888 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4889 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 4890 } 4891 4892 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 4893 SourceLocation ColonLoc, Expr *End, 4894 SourceLocation SecondColonLoc, 4895 Expr *Step) { 4896 assert(I < NumIterators && 4897 "Idx is greater or equal the number of iterators definitions."); 4898 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4899 static_cast<int>(RangeExprOffset::Begin)] = 4900 Begin; 4901 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4902 static_cast<int>(RangeExprOffset::End)] = End; 4903 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 4904 static_cast<int>(RangeExprOffset::Step)] = Step; 4905 getTrailingObjects< 4906 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4907 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 4908 ColonLoc; 4909 getTrailingObjects< 4910 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4911 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 4912 SecondColonLoc; 4913 } 4914 4915 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 4916 return getTrailingObjects<Decl *>()[I]; 4917 } 4918 4919 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 4920 IteratorRange Res; 4921 Res.Begin = 4922 getTrailingObjects<Expr *>()[I * static_cast<int>( 4923 RangeExprOffset::Total) + 4924 static_cast<int>(RangeExprOffset::Begin)]; 4925 Res.End = 4926 getTrailingObjects<Expr *>()[I * static_cast<int>( 4927 RangeExprOffset::Total) + 4928 static_cast<int>(RangeExprOffset::End)]; 4929 Res.Step = 4930 getTrailingObjects<Expr *>()[I * static_cast<int>( 4931 RangeExprOffset::Total) + 4932 static_cast<int>(RangeExprOffset::Step)]; 4933 return Res; 4934 } 4935 4936 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 4937 return getTrailingObjects< 4938 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4939 static_cast<int>(RangeLocOffset::AssignLoc)]; 4940 } 4941 4942 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 4943 return getTrailingObjects< 4944 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4945 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 4946 } 4947 4948 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 4949 return getTrailingObjects< 4950 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 4951 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 4952 } 4953 4954 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 4955 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 4956 } 4957 4958 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 4959 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4960 } 4961 4962 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 4963 return getTrailingObjects<OMPIteratorHelperData>()[I]; 4964 } 4965 4966 OMPIteratorExpr::OMPIteratorExpr( 4967 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 4968 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4969 ArrayRef<OMPIteratorHelperData> Helpers) 4970 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 4971 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 4972 NumIterators(Data.size()) { 4973 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 4974 const IteratorDefinition &D = Data[I]; 4975 setIteratorDeclaration(I, D.IteratorDecl); 4976 setAssignmentLoc(I, D.AssignmentLoc); 4977 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 4978 D.SecondColonLoc, D.Range.Step); 4979 setHelper(I, Helpers[I]); 4980 } 4981 setDependence(computeDependence(this)); 4982 } 4983 4984 OMPIteratorExpr * 4985 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 4986 SourceLocation IteratorKwLoc, SourceLocation L, 4987 SourceLocation R, 4988 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 4989 ArrayRef<OMPIteratorHelperData> Helpers) { 4990 assert(Data.size() == Helpers.size() && 4991 "Data and helpers must have the same size."); 4992 void *Mem = Context.Allocate( 4993 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 4994 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 4995 Data.size() * static_cast<int>(RangeLocOffset::Total), 4996 Helpers.size()), 4997 alignof(OMPIteratorExpr)); 4998 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 4999 } 5000 5001 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5002 unsigned NumIterators) { 5003 void *Mem = Context.Allocate( 5004 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5005 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5006 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5007 alignof(OMPIteratorExpr)); 5008 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5009 } 5010