1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr class and subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Expr.h" 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/ComputeDependence.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DependenceFlags.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/IgnoreExpr.h" 25 #include "clang/AST/Mangle.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CharInfo.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/Lexer.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cstring> 40 #include <optional> 41 using namespace clang; 42 43 const Expr *Expr::getBestDynamicClassTypeExpr() const { 44 const Expr *E = this; 45 while (true) { 46 E = E->IgnoreParenBaseCasts(); 47 48 // Follow the RHS of a comma operator. 49 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 50 if (BO->getOpcode() == BO_Comma) { 51 E = BO->getRHS(); 52 continue; 53 } 54 } 55 56 // Step into initializer for materialized temporaries. 57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { 58 E = MTE->getSubExpr(); 59 continue; 60 } 61 62 break; 63 } 64 65 return E; 66 } 67 68 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 69 const Expr *E = getBestDynamicClassTypeExpr(); 70 QualType DerivedType = E->getType(); 71 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 72 DerivedType = PTy->getPointeeType(); 73 74 if (DerivedType->isDependentType()) 75 return nullptr; 76 77 const RecordType *Ty = DerivedType->castAs<RecordType>(); 78 Decl *D = Ty->getDecl(); 79 return cast<CXXRecordDecl>(D); 80 } 81 82 const Expr *Expr::skipRValueSubobjectAdjustments( 83 SmallVectorImpl<const Expr *> &CommaLHSs, 84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 85 const Expr *E = this; 86 while (true) { 87 E = E->IgnoreParens(); 88 89 if (const auto *CE = dyn_cast<CastExpr>(E)) { 90 if ((CE->getCastKind() == CK_DerivedToBase || 91 CE->getCastKind() == CK_UncheckedDerivedToBase) && 92 E->getType()->isRecordType()) { 93 E = CE->getSubExpr(); 94 const auto *Derived = 95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); 96 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 97 continue; 98 } 99 100 if (CE->getCastKind() == CK_NoOp) { 101 E = CE->getSubExpr(); 102 continue; 103 } 104 } else if (const auto *ME = dyn_cast<MemberExpr>(E)) { 105 if (!ME->isArrow()) { 106 assert(ME->getBase()->getType()->getAsRecordDecl()); 107 if (const auto *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 109 E = ME->getBase(); 110 Adjustments.push_back(SubobjectAdjustment(Field)); 111 continue; 112 } 113 } 114 } 115 } else if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 116 if (BO->getOpcode() == BO_PtrMemD) { 117 assert(BO->getRHS()->isPRValue()); 118 E = BO->getLHS(); 119 const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>(); 120 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 121 continue; 122 } 123 if (BO->getOpcode() == BO_Comma) { 124 CommaLHSs.push_back(BO->getLHS()); 125 E = BO->getRHS(); 126 continue; 127 } 128 } 129 130 // Nothing changed. 131 break; 132 } 133 return E; 134 } 135 136 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { 137 const Expr *E = IgnoreParens(); 138 139 // If this value has _Bool type, it is obvious 0/1. 140 if (E->getType()->isBooleanType()) return true; 141 // If this is a non-scalar-integer type, we don't care enough to try. 142 if (!E->getType()->isIntegralOrEnumerationType()) return false; 143 144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 145 switch (UO->getOpcode()) { 146 case UO_Plus: 147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 148 case UO_LNot: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 // Only look through implicit casts. If the user writes 156 // '(int) (a && b)' treat it as an arbitrary int. 157 // FIXME: Should we look through any cast expression in !Semantic mode? 158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); 160 161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 162 switch (BO->getOpcode()) { 163 default: return false; 164 case BO_LT: // Relational operators. 165 case BO_GT: 166 case BO_LE: 167 case BO_GE: 168 case BO_EQ: // Equality operators. 169 case BO_NE: 170 case BO_LAnd: // AND operator. 171 case BO_LOr: // Logical OR operator. 172 return true; 173 174 case BO_And: // Bitwise AND operator. 175 case BO_Xor: // Bitwise XOR operator. 176 case BO_Or: // Bitwise OR operator. 177 // Handle things like (x==2)|(y==12). 178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && 179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 180 181 case BO_Comma: 182 case BO_Assign: 183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); 184 } 185 } 186 187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && 189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); 190 191 if (isa<ObjCBoolLiteralExpr>(E)) 192 return true; 193 194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); 196 197 if (const FieldDecl *FD = E->getSourceBitField()) 198 if (!Semantic && FD->getType()->isUnsignedIntegerType() && 199 !FD->getBitWidth()->isValueDependent() && 200 FD->getBitWidthValue(FD->getASTContext()) == 1) 201 return true; 202 203 return false; 204 } 205 206 bool Expr::isFlexibleArrayMemberLike( 207 ASTContext &Ctx, 208 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, 209 bool IgnoreTemplateOrMacroSubstitution) const { 210 const Expr *E = IgnoreParens(); 211 const Decl *D = nullptr; 212 213 if (const auto *ME = dyn_cast<MemberExpr>(E)) 214 D = ME->getMemberDecl(); 215 else if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 216 D = DRE->getDecl(); 217 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) 218 D = IRE->getDecl(); 219 220 return Decl::isFlexibleArrayMemberLike(Ctx, D, E->getType(), 221 StrictFlexArraysLevel, 222 IgnoreTemplateOrMacroSubstitution); 223 } 224 225 const ValueDecl * 226 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { 227 Expr::EvalResult Eval; 228 229 if (EvaluateAsConstantExpr(Eval, Context)) { 230 APValue &Value = Eval.Val; 231 232 if (Value.isMemberPointer()) 233 return Value.getMemberPointerDecl(); 234 235 if (Value.isLValue() && Value.getLValueOffset().isZero()) 236 return Value.getLValueBase().dyn_cast<const ValueDecl *>(); 237 } 238 239 return nullptr; 240 } 241 242 // Amusing macro metaprogramming hack: check whether a class provides 243 // a more specific implementation of getExprLoc(). 244 // 245 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. 246 namespace { 247 /// This implementation is used when a class provides a custom 248 /// implementation of getExprLoc. 249 template <class E, class T> 250 SourceLocation getExprLocImpl(const Expr *expr, 251 SourceLocation (T::*v)() const) { 252 return static_cast<const E*>(expr)->getExprLoc(); 253 } 254 255 /// This implementation is used when a class doesn't provide 256 /// a custom implementation of getExprLoc. Overload resolution 257 /// should pick it over the implementation above because it's 258 /// more specialized according to function template partial ordering. 259 template <class E> 260 SourceLocation getExprLocImpl(const Expr *expr, 261 SourceLocation (Expr::*v)() const) { 262 return static_cast<const E *>(expr)->getBeginLoc(); 263 } 264 } 265 266 QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const { 267 if (isa<EnumType>(getType())) 268 return getType(); 269 if (const auto *ECD = getEnumConstantDecl()) { 270 const auto *ED = cast<EnumDecl>(ECD->getDeclContext()); 271 if (ED->isCompleteDefinition()) 272 return Ctx.getTypeDeclType(ED); 273 } 274 return getType(); 275 } 276 277 SourceLocation Expr::getExprLoc() const { 278 switch (getStmtClass()) { 279 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 280 #define ABSTRACT_STMT(type) 281 #define STMT(type, base) \ 282 case Stmt::type##Class: break; 283 #define EXPR(type, base) \ 284 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 285 #include "clang/AST/StmtNodes.inc" 286 } 287 llvm_unreachable("unknown expression kind"); 288 } 289 290 //===----------------------------------------------------------------------===// 291 // Primary Expressions. 292 //===----------------------------------------------------------------------===// 293 294 static void AssertResultStorageKind(ConstantResultStorageKind Kind) { 295 assert((Kind == ConstantResultStorageKind::APValue || 296 Kind == ConstantResultStorageKind::Int64 || 297 Kind == ConstantResultStorageKind::None) && 298 "Invalid StorageKind Value"); 299 (void)Kind; 300 } 301 302 ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) { 303 switch (Value.getKind()) { 304 case APValue::None: 305 case APValue::Indeterminate: 306 return ConstantResultStorageKind::None; 307 case APValue::Int: 308 if (!Value.getInt().needsCleanup()) 309 return ConstantResultStorageKind::Int64; 310 [[fallthrough]]; 311 default: 312 return ConstantResultStorageKind::APValue; 313 } 314 } 315 316 ConstantResultStorageKind 317 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { 318 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) 319 return ConstantResultStorageKind::Int64; 320 return ConstantResultStorageKind::APValue; 321 } 322 323 ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind, 324 bool IsImmediateInvocation) 325 : FullExpr(ConstantExprClass, SubExpr) { 326 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); 327 ConstantExprBits.APValueKind = APValue::None; 328 ConstantExprBits.IsUnsigned = false; 329 ConstantExprBits.BitWidth = 0; 330 ConstantExprBits.HasCleanup = false; 331 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; 332 333 if (StorageKind == ConstantResultStorageKind::APValue) 334 ::new (getTrailingObjects<APValue>()) APValue(); 335 } 336 337 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 338 ConstantResultStorageKind StorageKind, 339 bool IsImmediateInvocation) { 340 assert(!isa<ConstantExpr>(E)); 341 AssertResultStorageKind(StorageKind); 342 343 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 344 StorageKind == ConstantResultStorageKind::APValue, 345 StorageKind == ConstantResultStorageKind::Int64); 346 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 347 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); 348 } 349 350 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, 351 const APValue &Result) { 352 ConstantResultStorageKind StorageKind = getStorageKind(Result); 353 ConstantExpr *Self = Create(Context, E, StorageKind); 354 Self->SetResult(Result, Context); 355 return Self; 356 } 357 358 ConstantExpr::ConstantExpr(EmptyShell Empty, 359 ConstantResultStorageKind StorageKind) 360 : FullExpr(ConstantExprClass, Empty) { 361 ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); 362 363 if (StorageKind == ConstantResultStorageKind::APValue) 364 ::new (getTrailingObjects<APValue>()) APValue(); 365 } 366 367 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, 368 ConstantResultStorageKind StorageKind) { 369 AssertResultStorageKind(StorageKind); 370 371 unsigned Size = totalSizeToAlloc<APValue, uint64_t>( 372 StorageKind == ConstantResultStorageKind::APValue, 373 StorageKind == ConstantResultStorageKind::Int64); 374 void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); 375 return new (Mem) ConstantExpr(EmptyShell(), StorageKind); 376 } 377 378 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { 379 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && 380 "Invalid storage for this value kind"); 381 ConstantExprBits.APValueKind = Value.getKind(); 382 switch (getResultStorageKind()) { 383 case ConstantResultStorageKind::None: 384 return; 385 case ConstantResultStorageKind::Int64: 386 Int64Result() = *Value.getInt().getRawData(); 387 ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); 388 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); 389 return; 390 case ConstantResultStorageKind::APValue: 391 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { 392 ConstantExprBits.HasCleanup = true; 393 Context.addDestruction(&APValueResult()); 394 } 395 APValueResult() = std::move(Value); 396 return; 397 } 398 llvm_unreachable("Invalid ResultKind Bits"); 399 } 400 401 llvm::APSInt ConstantExpr::getResultAsAPSInt() const { 402 switch (getResultStorageKind()) { 403 case ConstantResultStorageKind::APValue: 404 return APValueResult().getInt(); 405 case ConstantResultStorageKind::Int64: 406 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 407 ConstantExprBits.IsUnsigned); 408 default: 409 llvm_unreachable("invalid Accessor"); 410 } 411 } 412 413 APValue ConstantExpr::getAPValueResult() const { 414 415 switch (getResultStorageKind()) { 416 case ConstantResultStorageKind::APValue: 417 return APValueResult(); 418 case ConstantResultStorageKind::Int64: 419 return APValue( 420 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), 421 ConstantExprBits.IsUnsigned)); 422 case ConstantResultStorageKind::None: 423 if (ConstantExprBits.APValueKind == APValue::Indeterminate) 424 return APValue::IndeterminateValue(); 425 return APValue(); 426 } 427 llvm_unreachable("invalid ResultKind"); 428 } 429 430 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, 431 bool RefersToEnclosingVariableOrCapture, QualType T, 432 ExprValueKind VK, SourceLocation L, 433 const DeclarationNameLoc &LocInfo, 434 NonOdrUseReason NOUR) 435 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { 436 DeclRefExprBits.HasQualifier = false; 437 DeclRefExprBits.HasTemplateKWAndArgsInfo = false; 438 DeclRefExprBits.HasFoundDecl = false; 439 DeclRefExprBits.HadMultipleCandidates = false; 440 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 441 RefersToEnclosingVariableOrCapture; 442 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; 443 DeclRefExprBits.NonOdrUseReason = NOUR; 444 DeclRefExprBits.IsImmediateEscalating = false; 445 DeclRefExprBits.Loc = L; 446 setDependence(computeDependence(this, Ctx)); 447 } 448 449 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 450 NestedNameSpecifierLoc QualifierLoc, 451 SourceLocation TemplateKWLoc, ValueDecl *D, 452 bool RefersToEnclosingVariableOrCapture, 453 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, 454 const TemplateArgumentListInfo *TemplateArgs, 455 QualType T, ExprValueKind VK, NonOdrUseReason NOUR) 456 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), 457 DNLoc(NameInfo.getInfo()) { 458 DeclRefExprBits.Loc = NameInfo.getLoc(); 459 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 460 if (QualifierLoc) 461 new (getTrailingObjects<NestedNameSpecifierLoc>()) 462 NestedNameSpecifierLoc(QualifierLoc); 463 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 464 if (FoundD) 465 *getTrailingObjects<NamedDecl *>() = FoundD; 466 DeclRefExprBits.HasTemplateKWAndArgsInfo 467 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 468 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 469 RefersToEnclosingVariableOrCapture; 470 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; 471 DeclRefExprBits.NonOdrUseReason = NOUR; 472 if (TemplateArgs) { 473 auto Deps = TemplateArgumentDependence::None; 474 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 475 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 476 Deps); 477 assert(!(Deps & TemplateArgumentDependence::Dependent) && 478 "built a DeclRefExpr with dependent template args"); 479 } else if (TemplateKWLoc.isValid()) { 480 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 481 TemplateKWLoc); 482 } 483 DeclRefExprBits.IsImmediateEscalating = false; 484 DeclRefExprBits.HadMultipleCandidates = 0; 485 setDependence(computeDependence(this, Ctx)); 486 } 487 488 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 489 NestedNameSpecifierLoc QualifierLoc, 490 SourceLocation TemplateKWLoc, ValueDecl *D, 491 bool RefersToEnclosingVariableOrCapture, 492 SourceLocation NameLoc, QualType T, 493 ExprValueKind VK, NamedDecl *FoundD, 494 const TemplateArgumentListInfo *TemplateArgs, 495 NonOdrUseReason NOUR) { 496 return Create(Context, QualifierLoc, TemplateKWLoc, D, 497 RefersToEnclosingVariableOrCapture, 498 DeclarationNameInfo(D->getDeclName(), NameLoc), 499 T, VK, FoundD, TemplateArgs, NOUR); 500 } 501 502 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 503 NestedNameSpecifierLoc QualifierLoc, 504 SourceLocation TemplateKWLoc, ValueDecl *D, 505 bool RefersToEnclosingVariableOrCapture, 506 const DeclarationNameInfo &NameInfo, 507 QualType T, ExprValueKind VK, 508 NamedDecl *FoundD, 509 const TemplateArgumentListInfo *TemplateArgs, 510 NonOdrUseReason NOUR) { 511 // Filter out cases where the found Decl is the same as the value refenenced. 512 if (D == FoundD) 513 FoundD = nullptr; 514 515 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 516 std::size_t Size = 517 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 518 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 519 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 520 HasTemplateKWAndArgsInfo ? 1 : 0, 521 TemplateArgs ? TemplateArgs->size() : 0); 522 523 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 524 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 525 RefersToEnclosingVariableOrCapture, NameInfo, 526 FoundD, TemplateArgs, T, VK, NOUR); 527 } 528 529 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 530 bool HasQualifier, 531 bool HasFoundDecl, 532 bool HasTemplateKWAndArgsInfo, 533 unsigned NumTemplateArgs) { 534 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 535 std::size_t Size = 536 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 537 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 538 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 539 NumTemplateArgs); 540 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); 541 return new (Mem) DeclRefExpr(EmptyShell()); 542 } 543 544 void DeclRefExpr::setDecl(ValueDecl *NewD) { 545 D = NewD; 546 if (getType()->isUndeducedType()) 547 setType(NewD->getType()); 548 setDependence(computeDependence(this, NewD->getASTContext())); 549 } 550 551 SourceLocation DeclRefExpr::getBeginLoc() const { 552 if (hasQualifier()) 553 return getQualifierLoc().getBeginLoc(); 554 return getNameInfo().getBeginLoc(); 555 } 556 SourceLocation DeclRefExpr::getEndLoc() const { 557 if (hasExplicitTemplateArgs()) 558 return getRAngleLoc(); 559 return getNameInfo().getEndLoc(); 560 } 561 562 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, 563 SourceLocation LParen, 564 SourceLocation RParen, 565 QualType ResultTy, 566 TypeSourceInfo *TSI) 567 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), 568 OpLoc(OpLoc), LParen(LParen), RParen(RParen) { 569 setTypeSourceInfo(TSI); 570 setDependence(computeDependence(this)); 571 } 572 573 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, 574 QualType ResultTy) 575 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} 576 577 SYCLUniqueStableNameExpr * 578 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, 579 SourceLocation LParen, SourceLocation RParen, 580 TypeSourceInfo *TSI) { 581 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 582 return new (Ctx) 583 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); 584 } 585 586 SYCLUniqueStableNameExpr * 587 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { 588 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); 589 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); 590 } 591 592 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { 593 return SYCLUniqueStableNameExpr::ComputeName(Context, 594 getTypeSourceInfo()->getType()); 595 } 596 597 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, 598 QualType Ty) { 599 auto MangleCallback = [](ASTContext &Ctx, 600 const NamedDecl *ND) -> std::optional<unsigned> { 601 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) 602 return RD->getDeviceLambdaManglingNumber(); 603 return std::nullopt; 604 }; 605 606 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( 607 Context, Context.getDiagnostics(), MangleCallback)}; 608 609 std::string Buffer; 610 Buffer.reserve(128); 611 llvm::raw_string_ostream Out(Buffer); 612 Ctx->mangleCanonicalTypeName(Ty, Out); 613 614 return Out.str(); 615 } 616 617 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, 618 PredefinedIdentKind IK, bool IsTransparent, 619 StringLiteral *SL) 620 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { 621 PredefinedExprBits.Kind = llvm::to_underlying(IK); 622 assert((getIdentKind() == IK) && 623 "IdentKind do not fit in PredefinedExprBitfields!"); 624 bool HasFunctionName = SL != nullptr; 625 PredefinedExprBits.HasFunctionName = HasFunctionName; 626 PredefinedExprBits.IsTransparent = IsTransparent; 627 PredefinedExprBits.Loc = L; 628 if (HasFunctionName) 629 setFunctionName(SL); 630 setDependence(computeDependence(this)); 631 } 632 633 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) 634 : Expr(PredefinedExprClass, Empty) { 635 PredefinedExprBits.HasFunctionName = HasFunctionName; 636 } 637 638 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, 639 QualType FNTy, PredefinedIdentKind IK, 640 bool IsTransparent, StringLiteral *SL) { 641 bool HasFunctionName = SL != nullptr; 642 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 643 alignof(PredefinedExpr)); 644 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL); 645 } 646 647 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, 648 bool HasFunctionName) { 649 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), 650 alignof(PredefinedExpr)); 651 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); 652 } 653 654 StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) { 655 switch (IK) { 656 case PredefinedIdentKind::Func: 657 return "__func__"; 658 case PredefinedIdentKind::Function: 659 return "__FUNCTION__"; 660 case PredefinedIdentKind::FuncDName: 661 return "__FUNCDNAME__"; 662 case PredefinedIdentKind::LFunction: 663 return "L__FUNCTION__"; 664 case PredefinedIdentKind::PrettyFunction: 665 return "__PRETTY_FUNCTION__"; 666 case PredefinedIdentKind::FuncSig: 667 return "__FUNCSIG__"; 668 case PredefinedIdentKind::LFuncSig: 669 return "L__FUNCSIG__"; 670 case PredefinedIdentKind::PrettyFunctionNoVirtual: 671 break; 672 } 673 llvm_unreachable("Unknown ident kind for PredefinedExpr"); 674 } 675 676 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 677 // expr" policy instead. 678 std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK, 679 const Decl *CurrentDecl, 680 bool ForceElaboratedPrinting) { 681 ASTContext &Context = CurrentDecl->getASTContext(); 682 683 if (IK == PredefinedIdentKind::FuncDName) { 684 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 685 std::unique_ptr<MangleContext> MC; 686 MC.reset(Context.createMangleContext()); 687 688 if (MC->shouldMangleDeclName(ND)) { 689 SmallString<256> Buffer; 690 llvm::raw_svector_ostream Out(Buffer); 691 GlobalDecl GD; 692 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 693 GD = GlobalDecl(CD, Ctor_Base); 694 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 695 GD = GlobalDecl(DD, Dtor_Base); 696 else if (ND->hasAttr<CUDAGlobalAttr>()) 697 GD = GlobalDecl(cast<FunctionDecl>(ND)); 698 else 699 GD = GlobalDecl(ND); 700 MC->mangleName(GD, Out); 701 702 if (!Buffer.empty() && Buffer.front() == '\01') 703 return std::string(Buffer.substr(1)); 704 return std::string(Buffer); 705 } 706 return std::string(ND->getIdentifier()->getName()); 707 } 708 return ""; 709 } 710 if (isa<BlockDecl>(CurrentDecl)) { 711 // For blocks we only emit something if it is enclosed in a function 712 // For top-level block we'd like to include the name of variable, but we 713 // don't have it at this point. 714 auto DC = CurrentDecl->getDeclContext(); 715 if (DC->isFileContext()) 716 return ""; 717 718 SmallString<256> Buffer; 719 llvm::raw_svector_ostream Out(Buffer); 720 if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) 721 // For nested blocks, propagate up to the parent. 722 Out << ComputeName(IK, DCBlock); 723 else if (auto *DCDecl = dyn_cast<Decl>(DC)) 724 Out << ComputeName(IK, DCDecl) << "_block_invoke"; 725 return std::string(Out.str()); 726 } 727 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 728 const auto &LO = Context.getLangOpts(); 729 bool IsFuncOrFunctionInNonMSVCCompatEnv = 730 ((IK == PredefinedIdentKind::Func || 731 IK == PredefinedIdentKind ::Function) && 732 !LO.MSVCCompat); 733 bool IsLFunctionInMSVCCommpatEnv = 734 IK == PredefinedIdentKind::LFunction && LO.MSVCCompat; 735 bool IsFuncOrFunctionOrLFunctionOrFuncDName = 736 IK != PredefinedIdentKind::PrettyFunction && 737 IK != PredefinedIdentKind::PrettyFunctionNoVirtual && 738 IK != PredefinedIdentKind::FuncSig && 739 IK != PredefinedIdentKind::LFuncSig; 740 if ((ForceElaboratedPrinting && 741 (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) || 742 (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName)) 743 return FD->getNameAsString(); 744 745 SmallString<256> Name; 746 llvm::raw_svector_ostream Out(Name); 747 748 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 749 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual) 750 Out << "virtual "; 751 if (MD->isStatic()) 752 Out << "static "; 753 } 754 755 class PrettyCallbacks final : public PrintingCallbacks { 756 public: 757 PrettyCallbacks(const LangOptions &LO) : LO(LO) {} 758 std::string remapPath(StringRef Path) const override { 759 SmallString<128> p(Path); 760 LO.remapPathPrefix(p); 761 return std::string(p); 762 } 763 764 private: 765 const LangOptions &LO; 766 }; 767 PrintingPolicy Policy(Context.getLangOpts()); 768 PrettyCallbacks PrettyCB(Context.getLangOpts()); 769 Policy.Callbacks = &PrettyCB; 770 if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting) 771 Policy.SuppressTagKeyword = !LO.MSVCCompat; 772 std::string Proto; 773 llvm::raw_string_ostream POut(Proto); 774 775 const FunctionDecl *Decl = FD; 776 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 777 Decl = Pattern; 778 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 779 const FunctionProtoType *FT = nullptr; 780 if (FD->hasWrittenPrototype()) 781 FT = dyn_cast<FunctionProtoType>(AFT); 782 783 if (IK == PredefinedIdentKind::FuncSig || 784 IK == PredefinedIdentKind::LFuncSig) { 785 switch (AFT->getCallConv()) { 786 case CC_C: POut << "__cdecl "; break; 787 case CC_X86StdCall: POut << "__stdcall "; break; 788 case CC_X86FastCall: POut << "__fastcall "; break; 789 case CC_X86ThisCall: POut << "__thiscall "; break; 790 case CC_X86VectorCall: POut << "__vectorcall "; break; 791 case CC_X86RegCall: POut << "__regcall "; break; 792 // Only bother printing the conventions that MSVC knows about. 793 default: break; 794 } 795 } 796 797 FD->printQualifiedName(POut, Policy); 798 799 if (IK == PredefinedIdentKind::Function) { 800 POut.flush(); 801 Out << Proto; 802 return std::string(Name); 803 } 804 805 POut << "("; 806 if (FT) { 807 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 808 if (i) POut << ", "; 809 POut << Decl->getParamDecl(i)->getType().stream(Policy); 810 } 811 812 if (FT->isVariadic()) { 813 if (FD->getNumParams()) POut << ", "; 814 POut << "..."; 815 } else if ((IK == PredefinedIdentKind::FuncSig || 816 IK == PredefinedIdentKind::LFuncSig || 817 !Context.getLangOpts().CPlusPlus) && 818 !Decl->getNumParams()) { 819 POut << "void"; 820 } 821 } 822 POut << ")"; 823 824 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 825 assert(FT && "We must have a written prototype in this case."); 826 if (FT->isConst()) 827 POut << " const"; 828 if (FT->isVolatile()) 829 POut << " volatile"; 830 RefQualifierKind Ref = MD->getRefQualifier(); 831 if (Ref == RQ_LValue) 832 POut << " &"; 833 else if (Ref == RQ_RValue) 834 POut << " &&"; 835 } 836 837 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 838 SpecsTy Specs; 839 const DeclContext *Ctx = FD->getDeclContext(); 840 while (isa_and_nonnull<NamedDecl>(Ctx)) { 841 const ClassTemplateSpecializationDecl *Spec 842 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 843 if (Spec && !Spec->isExplicitSpecialization()) 844 Specs.push_back(Spec); 845 Ctx = Ctx->getParent(); 846 } 847 848 std::string TemplateParams; 849 llvm::raw_string_ostream TOut(TemplateParams); 850 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { 851 const TemplateParameterList *Params = 852 D->getSpecializedTemplate()->getTemplateParameters(); 853 const TemplateArgumentList &Args = D->getTemplateArgs(); 854 assert(Params->size() == Args.size()); 855 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 856 StringRef Param = Params->getParam(i)->getName(); 857 if (Param.empty()) continue; 858 TOut << Param << " = "; 859 Args.get(i).print(Policy, TOut, 860 TemplateParameterList::shouldIncludeTypeForArgument( 861 Policy, Params, i)); 862 TOut << ", "; 863 } 864 } 865 866 FunctionTemplateSpecializationInfo *FSI 867 = FD->getTemplateSpecializationInfo(); 868 if (FSI && !FSI->isExplicitSpecialization()) { 869 const TemplateParameterList* Params 870 = FSI->getTemplate()->getTemplateParameters(); 871 const TemplateArgumentList* Args = FSI->TemplateArguments; 872 assert(Params->size() == Args->size()); 873 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 874 StringRef Param = Params->getParam(i)->getName(); 875 if (Param.empty()) continue; 876 TOut << Param << " = "; 877 Args->get(i).print(Policy, TOut, /*IncludeType*/ true); 878 TOut << ", "; 879 } 880 } 881 882 TOut.flush(); 883 if (!TemplateParams.empty()) { 884 // remove the trailing comma and space 885 TemplateParams.resize(TemplateParams.size() - 2); 886 POut << " [" << TemplateParams << "]"; 887 } 888 889 POut.flush(); 890 891 // Print "auto" for all deduced return types. This includes C++1y return 892 // type deduction and lambdas. For trailing return types resolve the 893 // decltype expression. Otherwise print the real type when this is 894 // not a constructor or destructor. 895 if (isa<CXXMethodDecl>(FD) && 896 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 897 Proto = "auto " + Proto; 898 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 899 FT->getReturnType() 900 ->getAs<DecltypeType>() 901 ->getUnderlyingType() 902 .getAsStringInternal(Proto, Policy); 903 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 904 AFT->getReturnType().getAsStringInternal(Proto, Policy); 905 906 Out << Proto; 907 908 return std::string(Name); 909 } 910 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 911 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 912 // Skip to its enclosing function or method, but not its enclosing 913 // CapturedDecl. 914 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 915 const Decl *D = Decl::castFromDeclContext(DC); 916 return ComputeName(IK, D); 917 } 918 llvm_unreachable("CapturedDecl not inside a function or method"); 919 } 920 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 921 SmallString<256> Name; 922 llvm::raw_svector_ostream Out(Name); 923 Out << (MD->isInstanceMethod() ? '-' : '+'); 924 Out << '['; 925 926 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 927 // a null check to avoid a crash. 928 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 929 Out << *ID; 930 931 if (const ObjCCategoryImplDecl *CID = 932 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 933 Out << '(' << *CID << ')'; 934 935 Out << ' '; 936 MD->getSelector().print(Out); 937 Out << ']'; 938 939 return std::string(Name); 940 } 941 if (isa<TranslationUnitDecl>(CurrentDecl) && 942 IK == PredefinedIdentKind::PrettyFunction) { 943 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 944 return "top level"; 945 } 946 return ""; 947 } 948 949 void APNumericStorage::setIntValue(const ASTContext &C, 950 const llvm::APInt &Val) { 951 if (hasAllocation()) 952 C.Deallocate(pVal); 953 954 BitWidth = Val.getBitWidth(); 955 unsigned NumWords = Val.getNumWords(); 956 const uint64_t* Words = Val.getRawData(); 957 if (NumWords > 1) { 958 pVal = new (C) uint64_t[NumWords]; 959 std::copy(Words, Words + NumWords, pVal); 960 } else if (NumWords == 1) 961 VAL = Words[0]; 962 else 963 VAL = 0; 964 } 965 966 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 967 QualType type, SourceLocation l) 968 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { 969 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 970 assert(V.getBitWidth() == C.getIntWidth(type) && 971 "Integer type is not the correct size for constant."); 972 setValue(C, V); 973 setDependence(ExprDependence::None); 974 } 975 976 IntegerLiteral * 977 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 978 QualType type, SourceLocation l) { 979 return new (C) IntegerLiteral(C, V, type, l); 980 } 981 982 IntegerLiteral * 983 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 984 return new (C) IntegerLiteral(Empty); 985 } 986 987 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, 988 QualType type, SourceLocation l, 989 unsigned Scale) 990 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), 991 Scale(Scale) { 992 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); 993 assert(V.getBitWidth() == C.getTypeInfo(type).Width && 994 "Fixed point type is not the correct size for constant."); 995 setValue(C, V); 996 setDependence(ExprDependence::None); 997 } 998 999 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, 1000 const llvm::APInt &V, 1001 QualType type, 1002 SourceLocation l, 1003 unsigned Scale) { 1004 return new (C) FixedPointLiteral(C, V, type, l, Scale); 1005 } 1006 1007 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, 1008 EmptyShell Empty) { 1009 return new (C) FixedPointLiteral(Empty); 1010 } 1011 1012 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { 1013 // Currently the longest decimal number that can be printed is the max for an 1014 // unsigned long _Accum: 4294967295.99999999976716935634613037109375 1015 // which is 43 characters. 1016 SmallString<64> S; 1017 FixedPointValueToString( 1018 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); 1019 return std::string(S); 1020 } 1021 1022 void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind, 1023 raw_ostream &OS) { 1024 switch (Kind) { 1025 case CharacterLiteralKind::Ascii: 1026 break; // no prefix. 1027 case CharacterLiteralKind::Wide: 1028 OS << 'L'; 1029 break; 1030 case CharacterLiteralKind::UTF8: 1031 OS << "u8"; 1032 break; 1033 case CharacterLiteralKind::UTF16: 1034 OS << 'u'; 1035 break; 1036 case CharacterLiteralKind::UTF32: 1037 OS << 'U'; 1038 break; 1039 } 1040 1041 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); 1042 if (!Escaped.empty()) { 1043 OS << "'" << Escaped << "'"; 1044 } else { 1045 // A character literal might be sign-extended, which 1046 // would result in an invalid \U escape sequence. 1047 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' 1048 // are not correctly handled. 1049 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii) 1050 Val &= 0xFFu; 1051 if (Val < 256 && isPrintable((unsigned char)Val)) 1052 OS << "'" << (char)Val << "'"; 1053 else if (Val < 256) 1054 OS << "'\\x" << llvm::format("%02x", Val) << "'"; 1055 else if (Val <= 0xFFFF) 1056 OS << "'\\u" << llvm::format("%04x", Val) << "'"; 1057 else 1058 OS << "'\\U" << llvm::format("%08x", Val) << "'"; 1059 } 1060 } 1061 1062 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 1063 bool isexact, QualType Type, SourceLocation L) 1064 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { 1065 setSemantics(V.getSemantics()); 1066 FloatingLiteralBits.IsExact = isexact; 1067 setValue(C, V); 1068 setDependence(ExprDependence::None); 1069 } 1070 1071 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 1072 : Expr(FloatingLiteralClass, Empty) { 1073 setRawSemantics(llvm::APFloatBase::S_IEEEhalf); 1074 FloatingLiteralBits.IsExact = false; 1075 } 1076 1077 FloatingLiteral * 1078 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 1079 bool isexact, QualType Type, SourceLocation L) { 1080 return new (C) FloatingLiteral(C, V, isexact, Type, L); 1081 } 1082 1083 FloatingLiteral * 1084 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 1085 return new (C) FloatingLiteral(C, Empty); 1086 } 1087 1088 /// getValueAsApproximateDouble - This returns the value as an inaccurate 1089 /// double. Note that this may cause loss of precision, but is useful for 1090 /// debugging dumps, etc. 1091 double FloatingLiteral::getValueAsApproximateDouble() const { 1092 llvm::APFloat V = getValue(); 1093 bool ignored; 1094 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 1095 &ignored); 1096 return V.convertToDouble(); 1097 } 1098 1099 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, 1100 StringLiteralKind SK) { 1101 unsigned CharByteWidth = 0; 1102 switch (SK) { 1103 case StringLiteralKind::Ordinary: 1104 case StringLiteralKind::UTF8: 1105 CharByteWidth = Target.getCharWidth(); 1106 break; 1107 case StringLiteralKind::Wide: 1108 CharByteWidth = Target.getWCharWidth(); 1109 break; 1110 case StringLiteralKind::UTF16: 1111 CharByteWidth = Target.getChar16Width(); 1112 break; 1113 case StringLiteralKind::UTF32: 1114 CharByteWidth = Target.getChar32Width(); 1115 break; 1116 case StringLiteralKind::Unevaluated: 1117 return sizeof(char); // Host; 1118 } 1119 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1120 CharByteWidth /= 8; 1121 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 1122 "The only supported character byte widths are 1,2 and 4!"); 1123 return CharByteWidth; 1124 } 1125 1126 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, 1127 StringLiteralKind Kind, bool Pascal, QualType Ty, 1128 const SourceLocation *Loc, 1129 unsigned NumConcatenated) 1130 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { 1131 1132 unsigned Length = Str.size(); 1133 1134 StringLiteralBits.Kind = llvm::to_underlying(Kind); 1135 StringLiteralBits.NumConcatenated = NumConcatenated; 1136 1137 if (Kind != StringLiteralKind::Unevaluated) { 1138 assert(Ctx.getAsConstantArrayType(Ty) && 1139 "StringLiteral must be of constant array type!"); 1140 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); 1141 unsigned ByteLength = Str.size(); 1142 assert((ByteLength % CharByteWidth == 0) && 1143 "The size of the data must be a multiple of CharByteWidth!"); 1144 1145 // Avoid the expensive division. The compiler should be able to figure it 1146 // out by itself. However as of clang 7, even with the appropriate 1147 // llvm_unreachable added just here, it is not able to do so. 1148 switch (CharByteWidth) { 1149 case 1: 1150 Length = ByteLength; 1151 break; 1152 case 2: 1153 Length = ByteLength / 2; 1154 break; 1155 case 4: 1156 Length = ByteLength / 4; 1157 break; 1158 default: 1159 llvm_unreachable("Unsupported character width!"); 1160 } 1161 1162 StringLiteralBits.CharByteWidth = CharByteWidth; 1163 StringLiteralBits.IsPascal = Pascal; 1164 } else { 1165 assert(!Pascal && "Can't make an unevaluated Pascal string"); 1166 StringLiteralBits.CharByteWidth = 1; 1167 StringLiteralBits.IsPascal = false; 1168 } 1169 1170 *getTrailingObjects<unsigned>() = Length; 1171 1172 // Initialize the trailing array of SourceLocation. 1173 // This is safe since SourceLocation is POD-like. 1174 std::memcpy(getTrailingObjects<SourceLocation>(), Loc, 1175 NumConcatenated * sizeof(SourceLocation)); 1176 1177 // Initialize the trailing array of char holding the string data. 1178 std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size()); 1179 1180 setDependence(ExprDependence::None); 1181 } 1182 1183 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, 1184 unsigned Length, unsigned CharByteWidth) 1185 : Expr(StringLiteralClass, Empty) { 1186 StringLiteralBits.CharByteWidth = CharByteWidth; 1187 StringLiteralBits.NumConcatenated = NumConcatenated; 1188 *getTrailingObjects<unsigned>() = Length; 1189 } 1190 1191 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, 1192 StringLiteralKind Kind, bool Pascal, 1193 QualType Ty, const SourceLocation *Loc, 1194 unsigned NumConcatenated) { 1195 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1196 1, NumConcatenated, Str.size()), 1197 alignof(StringLiteral)); 1198 return new (Mem) 1199 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); 1200 } 1201 1202 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, 1203 unsigned NumConcatenated, 1204 unsigned Length, 1205 unsigned CharByteWidth) { 1206 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( 1207 1, NumConcatenated, Length * CharByteWidth), 1208 alignof(StringLiteral)); 1209 return new (Mem) 1210 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); 1211 } 1212 1213 void StringLiteral::outputString(raw_ostream &OS) const { 1214 switch (getKind()) { 1215 case StringLiteralKind::Unevaluated: 1216 case StringLiteralKind::Ordinary: 1217 break; // no prefix. 1218 case StringLiteralKind::Wide: 1219 OS << 'L'; 1220 break; 1221 case StringLiteralKind::UTF8: 1222 OS << "u8"; 1223 break; 1224 case StringLiteralKind::UTF16: 1225 OS << 'u'; 1226 break; 1227 case StringLiteralKind::UTF32: 1228 OS << 'U'; 1229 break; 1230 } 1231 OS << '"'; 1232 static const char Hex[] = "0123456789ABCDEF"; 1233 1234 unsigned LastSlashX = getLength(); 1235 for (unsigned I = 0, N = getLength(); I != N; ++I) { 1236 uint32_t Char = getCodeUnit(I); 1237 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); 1238 if (Escaped.empty()) { 1239 // FIXME: Convert UTF-8 back to codepoints before rendering. 1240 1241 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 1242 // Leave invalid surrogates alone; we'll use \x for those. 1243 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 && 1244 Char >= 0xd800 && Char <= 0xdbff) { 1245 uint32_t Trail = getCodeUnit(I + 1); 1246 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 1247 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 1248 ++I; 1249 } 1250 } 1251 1252 if (Char > 0xff) { 1253 // If this is a wide string, output characters over 0xff using \x 1254 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 1255 // codepoint: use \x escapes for invalid codepoints. 1256 if (getKind() == StringLiteralKind::Wide || 1257 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 1258 // FIXME: Is this the best way to print wchar_t? 1259 OS << "\\x"; 1260 int Shift = 28; 1261 while ((Char >> Shift) == 0) 1262 Shift -= 4; 1263 for (/**/; Shift >= 0; Shift -= 4) 1264 OS << Hex[(Char >> Shift) & 15]; 1265 LastSlashX = I; 1266 continue; 1267 } 1268 1269 if (Char > 0xffff) 1270 OS << "\\U00" 1271 << Hex[(Char >> 20) & 15] 1272 << Hex[(Char >> 16) & 15]; 1273 else 1274 OS << "\\u"; 1275 OS << Hex[(Char >> 12) & 15] 1276 << Hex[(Char >> 8) & 15] 1277 << Hex[(Char >> 4) & 15] 1278 << Hex[(Char >> 0) & 15]; 1279 continue; 1280 } 1281 1282 // If we used \x... for the previous character, and this character is a 1283 // hexadecimal digit, prevent it being slurped as part of the \x. 1284 if (LastSlashX + 1 == I) { 1285 switch (Char) { 1286 case '0': case '1': case '2': case '3': case '4': 1287 case '5': case '6': case '7': case '8': case '9': 1288 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 1289 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 1290 OS << "\"\""; 1291 } 1292 } 1293 1294 assert(Char <= 0xff && 1295 "Characters above 0xff should already have been handled."); 1296 1297 if (isPrintable(Char)) 1298 OS << (char)Char; 1299 else // Output anything hard as an octal escape. 1300 OS << '\\' 1301 << (char)('0' + ((Char >> 6) & 7)) 1302 << (char)('0' + ((Char >> 3) & 7)) 1303 << (char)('0' + ((Char >> 0) & 7)); 1304 } else { 1305 // Handle some common non-printable cases to make dumps prettier. 1306 OS << Escaped; 1307 } 1308 } 1309 OS << '"'; 1310 } 1311 1312 /// getLocationOfByte - Return a source location that points to the specified 1313 /// byte of this string literal. 1314 /// 1315 /// Strings are amazingly complex. They can be formed from multiple tokens and 1316 /// can have escape sequences in them in addition to the usual trigraph and 1317 /// escaped newline business. This routine handles this complexity. 1318 /// 1319 /// The *StartToken sets the first token to be searched in this function and 1320 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1321 /// returning, it updates the *StartToken to the TokNo of the token being found 1322 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1323 /// string. 1324 /// Using these two parameters can reduce the time complexity from O(n^2) to 1325 /// O(n) if one wants to get the location of byte for all the tokens in a 1326 /// string. 1327 /// 1328 SourceLocation 1329 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1330 const LangOptions &Features, 1331 const TargetInfo &Target, unsigned *StartToken, 1332 unsigned *StartTokenByteOffset) const { 1333 assert((getKind() == StringLiteralKind::Ordinary || 1334 getKind() == StringLiteralKind::UTF8 || 1335 getKind() == StringLiteralKind::Unevaluated) && 1336 "Only narrow string literals are currently supported"); 1337 1338 // Loop over all of the tokens in this string until we find the one that 1339 // contains the byte we're looking for. 1340 unsigned TokNo = 0; 1341 unsigned StringOffset = 0; 1342 if (StartToken) 1343 TokNo = *StartToken; 1344 if (StartTokenByteOffset) { 1345 StringOffset = *StartTokenByteOffset; 1346 ByteNo -= StringOffset; 1347 } 1348 while (true) { 1349 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1350 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1351 1352 // Get the spelling of the string so that we can get the data that makes up 1353 // the string literal, not the identifier for the macro it is potentially 1354 // expanded through. 1355 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1356 1357 // Re-lex the token to get its length and original spelling. 1358 std::pair<FileID, unsigned> LocInfo = 1359 SM.getDecomposedLoc(StrTokSpellingLoc); 1360 bool Invalid = false; 1361 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1362 if (Invalid) { 1363 if (StartTokenByteOffset != nullptr) 1364 *StartTokenByteOffset = StringOffset; 1365 if (StartToken != nullptr) 1366 *StartToken = TokNo; 1367 return StrTokSpellingLoc; 1368 } 1369 1370 const char *StrData = Buffer.data()+LocInfo.second; 1371 1372 // Create a lexer starting at the beginning of this token. 1373 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1374 Buffer.begin(), StrData, Buffer.end()); 1375 Token TheTok; 1376 TheLexer.LexFromRawLexer(TheTok); 1377 1378 // Use the StringLiteralParser to compute the length of the string in bytes. 1379 StringLiteralParser SLP(TheTok, SM, Features, Target); 1380 unsigned TokNumBytes = SLP.GetStringLength(); 1381 1382 // If the byte is in this token, return the location of the byte. 1383 if (ByteNo < TokNumBytes || 1384 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1385 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1386 1387 // Now that we know the offset of the token in the spelling, use the 1388 // preprocessor to get the offset in the original source. 1389 if (StartTokenByteOffset != nullptr) 1390 *StartTokenByteOffset = StringOffset; 1391 if (StartToken != nullptr) 1392 *StartToken = TokNo; 1393 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1394 } 1395 1396 // Move to the next string token. 1397 StringOffset += TokNumBytes; 1398 ++TokNo; 1399 ByteNo -= TokNumBytes; 1400 } 1401 } 1402 1403 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1404 /// corresponds to, e.g. "sizeof" or "[pre]++". 1405 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1406 switch (Op) { 1407 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1408 #include "clang/AST/OperationKinds.def" 1409 } 1410 llvm_unreachable("Unknown unary operator"); 1411 } 1412 1413 UnaryOperatorKind 1414 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1415 switch (OO) { 1416 default: llvm_unreachable("No unary operator for overloaded function"); 1417 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1418 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1419 case OO_Amp: return UO_AddrOf; 1420 case OO_Star: return UO_Deref; 1421 case OO_Plus: return UO_Plus; 1422 case OO_Minus: return UO_Minus; 1423 case OO_Tilde: return UO_Not; 1424 case OO_Exclaim: return UO_LNot; 1425 case OO_Coawait: return UO_Coawait; 1426 } 1427 } 1428 1429 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1430 switch (Opc) { 1431 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1432 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1433 case UO_AddrOf: return OO_Amp; 1434 case UO_Deref: return OO_Star; 1435 case UO_Plus: return OO_Plus; 1436 case UO_Minus: return OO_Minus; 1437 case UO_Not: return OO_Tilde; 1438 case UO_LNot: return OO_Exclaim; 1439 case UO_Coawait: return OO_Coawait; 1440 default: return OO_None; 1441 } 1442 } 1443 1444 1445 //===----------------------------------------------------------------------===// 1446 // Postfix Operators. 1447 //===----------------------------------------------------------------------===// 1448 1449 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, 1450 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1451 SourceLocation RParenLoc, FPOptionsOverride FPFeatures, 1452 unsigned MinNumArgs, ADLCallKind UsesADL) 1453 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { 1454 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1455 unsigned NumPreArgs = PreArgs.size(); 1456 CallExprBits.NumPreArgs = NumPreArgs; 1457 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1458 1459 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1460 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1461 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1462 "OffsetToTrailingObjects overflow!"); 1463 1464 CallExprBits.UsesADL = static_cast<bool>(UsesADL); 1465 1466 setCallee(Fn); 1467 for (unsigned I = 0; I != NumPreArgs; ++I) 1468 setPreArg(I, PreArgs[I]); 1469 for (unsigned I = 0; I != Args.size(); ++I) 1470 setArg(I, Args[I]); 1471 for (unsigned I = Args.size(); I != NumArgs; ++I) 1472 setArg(I, nullptr); 1473 1474 this->computeDependence(); 1475 1476 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 1477 if (hasStoredFPFeatures()) 1478 setStoredFPFeatures(FPFeatures); 1479 } 1480 1481 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, 1482 bool HasFPFeatures, EmptyShell Empty) 1483 : Expr(SC, Empty), NumArgs(NumArgs) { 1484 CallExprBits.NumPreArgs = NumPreArgs; 1485 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); 1486 1487 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); 1488 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; 1489 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && 1490 "OffsetToTrailingObjects overflow!"); 1491 CallExprBits.HasFPFeatures = HasFPFeatures; 1492 } 1493 1494 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, 1495 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, 1496 SourceLocation RParenLoc, 1497 FPOptionsOverride FPFeatures, unsigned MinNumArgs, 1498 ADLCallKind UsesADL) { 1499 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); 1500 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( 1501 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); 1502 void *Mem = 1503 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1504 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, 1505 RParenLoc, FPFeatures, MinNumArgs, UsesADL); 1506 } 1507 1508 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, 1509 ExprValueKind VK, SourceLocation RParenLoc, 1510 ADLCallKind UsesADL) { 1511 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && 1512 "Misaligned memory in CallExpr::CreateTemporary!"); 1513 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, 1514 VK, RParenLoc, FPOptionsOverride(), 1515 /*MinNumArgs=*/0, UsesADL); 1516 } 1517 1518 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, 1519 bool HasFPFeatures, EmptyShell Empty) { 1520 unsigned SizeOfTrailingObjects = 1521 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); 1522 void *Mem = 1523 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); 1524 return new (Mem) 1525 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); 1526 } 1527 1528 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { 1529 switch (SC) { 1530 case CallExprClass: 1531 return sizeof(CallExpr); 1532 case CXXOperatorCallExprClass: 1533 return sizeof(CXXOperatorCallExpr); 1534 case CXXMemberCallExprClass: 1535 return sizeof(CXXMemberCallExpr); 1536 case UserDefinedLiteralClass: 1537 return sizeof(UserDefinedLiteral); 1538 case CUDAKernelCallExprClass: 1539 return sizeof(CUDAKernelCallExpr); 1540 default: 1541 llvm_unreachable("unexpected class deriving from CallExpr!"); 1542 } 1543 } 1544 1545 Decl *Expr::getReferencedDeclOfCallee() { 1546 Expr *CEE = IgnoreParenImpCasts(); 1547 1548 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) 1549 CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); 1550 1551 // If we're calling a dereference, look at the pointer instead. 1552 while (true) { 1553 if (auto *BO = dyn_cast<BinaryOperator>(CEE)) { 1554 if (BO->isPtrMemOp()) { 1555 CEE = BO->getRHS()->IgnoreParenImpCasts(); 1556 continue; 1557 } 1558 } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) { 1559 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || 1560 UO->getOpcode() == UO_Plus) { 1561 CEE = UO->getSubExpr()->IgnoreParenImpCasts(); 1562 continue; 1563 } 1564 } 1565 break; 1566 } 1567 1568 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE)) 1569 return DRE->getDecl(); 1570 if (auto *ME = dyn_cast<MemberExpr>(CEE)) 1571 return ME->getMemberDecl(); 1572 if (auto *BE = dyn_cast<BlockExpr>(CEE)) 1573 return BE->getBlockDecl(); 1574 1575 return nullptr; 1576 } 1577 1578 /// If this is a call to a builtin, return the builtin ID. If not, return 0. 1579 unsigned CallExpr::getBuiltinCallee() const { 1580 const auto *FDecl = getDirectCallee(); 1581 return FDecl ? FDecl->getBuiltinID() : 0; 1582 } 1583 1584 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1585 if (unsigned BI = getBuiltinCallee()) 1586 return Ctx.BuiltinInfo.isUnevaluated(BI); 1587 return false; 1588 } 1589 1590 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1591 const Expr *Callee = getCallee(); 1592 QualType CalleeType = Callee->getType(); 1593 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1594 CalleeType = FnTypePtr->getPointeeType(); 1595 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1596 CalleeType = BPT->getPointeeType(); 1597 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1598 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1599 return Ctx.VoidTy; 1600 1601 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) 1602 return Ctx.DependentTy; 1603 1604 // This should never be overloaded and so should never return null. 1605 CalleeType = Expr::findBoundMemberType(Callee); 1606 assert(!CalleeType.isNull()); 1607 } else if (CalleeType->isRecordType()) { 1608 // If the Callee is a record type, then it is a not-yet-resolved 1609 // dependent call to the call operator of that type. 1610 return Ctx.DependentTy; 1611 } else if (CalleeType->isDependentType() || 1612 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { 1613 return Ctx.DependentTy; 1614 } 1615 1616 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1617 return FnType->getReturnType(); 1618 } 1619 1620 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { 1621 // If the return type is a struct, union, or enum that is marked nodiscard, 1622 // then return the return type attribute. 1623 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) 1624 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) 1625 return A; 1626 1627 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; 1628 TD = TD->desugar()->getAs<TypedefType>()) 1629 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) 1630 return A; 1631 1632 // Otherwise, see if the callee is marked nodiscard and return that attribute 1633 // instead. 1634 const Decl *D = getCalleeDecl(); 1635 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; 1636 } 1637 1638 SourceLocation CallExpr::getBeginLoc() const { 1639 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1640 return OCE->getBeginLoc(); 1641 1642 SourceLocation begin = getCallee()->getBeginLoc(); 1643 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1644 begin = getArg(0)->getBeginLoc(); 1645 return begin; 1646 } 1647 SourceLocation CallExpr::getEndLoc() const { 1648 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this)) 1649 return OCE->getEndLoc(); 1650 1651 SourceLocation end = getRParenLoc(); 1652 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1653 end = getArg(getNumArgs() - 1)->getEndLoc(); 1654 return end; 1655 } 1656 1657 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1658 SourceLocation OperatorLoc, 1659 TypeSourceInfo *tsi, 1660 ArrayRef<OffsetOfNode> comps, 1661 ArrayRef<Expr*> exprs, 1662 SourceLocation RParenLoc) { 1663 void *Mem = C.Allocate( 1664 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1665 1666 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1667 RParenLoc); 1668 } 1669 1670 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1671 unsigned numComps, unsigned numExprs) { 1672 void *Mem = 1673 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1674 return new (Mem) OffsetOfExpr(numComps, numExprs); 1675 } 1676 1677 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1678 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1679 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, 1680 SourceLocation RParenLoc) 1681 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), 1682 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1683 NumComps(comps.size()), NumExprs(exprs.size()) { 1684 for (unsigned i = 0; i != comps.size(); ++i) 1685 setComponent(i, comps[i]); 1686 for (unsigned i = 0; i != exprs.size(); ++i) 1687 setIndexExpr(i, exprs[i]); 1688 1689 setDependence(computeDependence(this)); 1690 } 1691 1692 IdentifierInfo *OffsetOfNode::getFieldName() const { 1693 assert(getKind() == Field || getKind() == Identifier); 1694 if (getKind() == Field) 1695 return getField()->getIdentifier(); 1696 1697 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1698 } 1699 1700 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1701 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1702 SourceLocation op, SourceLocation rp) 1703 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), 1704 OpLoc(op), RParenLoc(rp) { 1705 assert(ExprKind <= UETT_Last && "invalid enum value!"); 1706 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1707 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && 1708 "UnaryExprOrTypeTraitExprBits.Kind overflow!"); 1709 UnaryExprOrTypeTraitExprBits.IsType = false; 1710 Argument.Ex = E; 1711 setDependence(computeDependence(this)); 1712 } 1713 1714 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1715 NestedNameSpecifierLoc QualifierLoc, 1716 SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, 1717 DeclAccessPair FoundDecl, 1718 const DeclarationNameInfo &NameInfo, 1719 const TemplateArgumentListInfo *TemplateArgs, QualType T, 1720 ExprValueKind VK, ExprObjectKind OK, 1721 NonOdrUseReason NOUR) 1722 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), 1723 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { 1724 assert(!NameInfo.getName() || 1725 MemberDecl->getDeclName() == NameInfo.getName()); 1726 MemberExprBits.IsArrow = IsArrow; 1727 MemberExprBits.HasQualifier = QualifierLoc.hasQualifier(); 1728 MemberExprBits.HasFoundDecl = 1729 FoundDecl.getDecl() != MemberDecl || 1730 FoundDecl.getAccess() != MemberDecl->getAccess(); 1731 MemberExprBits.HasTemplateKWAndArgsInfo = 1732 TemplateArgs || TemplateKWLoc.isValid(); 1733 MemberExprBits.HadMultipleCandidates = false; 1734 MemberExprBits.NonOdrUseReason = NOUR; 1735 MemberExprBits.OperatorLoc = OperatorLoc; 1736 1737 if (hasQualifier()) 1738 new (getTrailingObjects<NestedNameSpecifierLoc>()) 1739 NestedNameSpecifierLoc(QualifierLoc); 1740 if (hasFoundDecl()) 1741 *getTrailingObjects<DeclAccessPair>() = FoundDecl; 1742 if (TemplateArgs) { 1743 auto Deps = TemplateArgumentDependence::None; 1744 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1745 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 1746 Deps); 1747 } else if (TemplateKWLoc.isValid()) { 1748 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1749 TemplateKWLoc); 1750 } 1751 setDependence(computeDependence(this)); 1752 } 1753 1754 MemberExpr *MemberExpr::Create( 1755 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, 1756 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1757 ValueDecl *MemberDecl, DeclAccessPair FoundDecl, 1758 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, 1759 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { 1760 bool HasQualifier = QualifierLoc.hasQualifier(); 1761 bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl || 1762 FoundDecl.getAccess() != MemberDecl->getAccess(); 1763 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 1764 std::size_t Size = 1765 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, 1766 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 1767 HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo, 1768 TemplateArgs ? TemplateArgs->size() : 0); 1769 1770 void *Mem = C.Allocate(Size, alignof(MemberExpr)); 1771 return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc, 1772 TemplateKWLoc, MemberDecl, FoundDecl, NameInfo, 1773 TemplateArgs, T, VK, OK, NOUR); 1774 } 1775 1776 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, 1777 bool HasQualifier, bool HasFoundDecl, 1778 bool HasTemplateKWAndArgsInfo, 1779 unsigned NumTemplateArgs) { 1780 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && 1781 "template args but no template arg info?"); 1782 std::size_t Size = 1783 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, 1784 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 1785 HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo, 1786 NumTemplateArgs); 1787 void *Mem = Context.Allocate(Size, alignof(MemberExpr)); 1788 return new (Mem) MemberExpr(EmptyShell()); 1789 } 1790 1791 void MemberExpr::setMemberDecl(ValueDecl *NewD) { 1792 MemberDecl = NewD; 1793 if (getType()->isUndeducedType()) 1794 setType(NewD->getType()); 1795 setDependence(computeDependence(this)); 1796 } 1797 1798 SourceLocation MemberExpr::getBeginLoc() const { 1799 if (isImplicitAccess()) { 1800 if (hasQualifier()) 1801 return getQualifierLoc().getBeginLoc(); 1802 return MemberLoc; 1803 } 1804 1805 // FIXME: We don't want this to happen. Rather, we should be able to 1806 // detect all kinds of implicit accesses more cleanly. 1807 SourceLocation BaseStartLoc = getBase()->getBeginLoc(); 1808 if (BaseStartLoc.isValid()) 1809 return BaseStartLoc; 1810 return MemberLoc; 1811 } 1812 SourceLocation MemberExpr::getEndLoc() const { 1813 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1814 if (hasExplicitTemplateArgs()) 1815 EndLoc = getRAngleLoc(); 1816 else if (EndLoc.isInvalid()) 1817 EndLoc = getBase()->getEndLoc(); 1818 return EndLoc; 1819 } 1820 1821 bool CastExpr::CastConsistency() const { 1822 switch (getCastKind()) { 1823 case CK_DerivedToBase: 1824 case CK_UncheckedDerivedToBase: 1825 case CK_DerivedToBaseMemberPointer: 1826 case CK_BaseToDerived: 1827 case CK_BaseToDerivedMemberPointer: 1828 assert(!path_empty() && "Cast kind should have a base path!"); 1829 break; 1830 1831 case CK_CPointerToObjCPointerCast: 1832 assert(getType()->isObjCObjectPointerType()); 1833 assert(getSubExpr()->getType()->isPointerType()); 1834 goto CheckNoBasePath; 1835 1836 case CK_BlockPointerToObjCPointerCast: 1837 assert(getType()->isObjCObjectPointerType()); 1838 assert(getSubExpr()->getType()->isBlockPointerType()); 1839 goto CheckNoBasePath; 1840 1841 case CK_ReinterpretMemberPointer: 1842 assert(getType()->isMemberPointerType()); 1843 assert(getSubExpr()->getType()->isMemberPointerType()); 1844 goto CheckNoBasePath; 1845 1846 case CK_BitCast: 1847 // Arbitrary casts to C pointer types count as bitcasts. 1848 // Otherwise, we should only have block and ObjC pointer casts 1849 // here if they stay within the type kind. 1850 if (!getType()->isPointerType()) { 1851 assert(getType()->isObjCObjectPointerType() == 1852 getSubExpr()->getType()->isObjCObjectPointerType()); 1853 assert(getType()->isBlockPointerType() == 1854 getSubExpr()->getType()->isBlockPointerType()); 1855 } 1856 goto CheckNoBasePath; 1857 1858 case CK_AnyPointerToBlockPointerCast: 1859 assert(getType()->isBlockPointerType()); 1860 assert(getSubExpr()->getType()->isAnyPointerType() && 1861 !getSubExpr()->getType()->isBlockPointerType()); 1862 goto CheckNoBasePath; 1863 1864 case CK_CopyAndAutoreleaseBlockObject: 1865 assert(getType()->isBlockPointerType()); 1866 assert(getSubExpr()->getType()->isBlockPointerType()); 1867 goto CheckNoBasePath; 1868 1869 case CK_FunctionToPointerDecay: 1870 assert(getType()->isPointerType()); 1871 assert(getSubExpr()->getType()->isFunctionType()); 1872 goto CheckNoBasePath; 1873 1874 case CK_AddressSpaceConversion: { 1875 auto Ty = getType(); 1876 auto SETy = getSubExpr()->getType(); 1877 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); 1878 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { 1879 Ty = Ty->getPointeeType(); 1880 SETy = SETy->getPointeeType(); 1881 } 1882 assert((Ty->isDependentType() || SETy->isDependentType()) || 1883 (!Ty.isNull() && !SETy.isNull() && 1884 Ty.getAddressSpace() != SETy.getAddressSpace())); 1885 goto CheckNoBasePath; 1886 } 1887 // These should not have an inheritance path. 1888 case CK_Dynamic: 1889 case CK_ToUnion: 1890 case CK_ArrayToPointerDecay: 1891 case CK_NullToMemberPointer: 1892 case CK_NullToPointer: 1893 case CK_ConstructorConversion: 1894 case CK_IntegralToPointer: 1895 case CK_PointerToIntegral: 1896 case CK_ToVoid: 1897 case CK_VectorSplat: 1898 case CK_IntegralCast: 1899 case CK_BooleanToSignedIntegral: 1900 case CK_IntegralToFloating: 1901 case CK_FloatingToIntegral: 1902 case CK_FloatingCast: 1903 case CK_ObjCObjectLValueCast: 1904 case CK_FloatingRealToComplex: 1905 case CK_FloatingComplexToReal: 1906 case CK_FloatingComplexCast: 1907 case CK_FloatingComplexToIntegralComplex: 1908 case CK_IntegralRealToComplex: 1909 case CK_IntegralComplexToReal: 1910 case CK_IntegralComplexCast: 1911 case CK_IntegralComplexToFloatingComplex: 1912 case CK_ARCProduceObject: 1913 case CK_ARCConsumeObject: 1914 case CK_ARCReclaimReturnedObject: 1915 case CK_ARCExtendBlockObject: 1916 case CK_ZeroToOCLOpaqueType: 1917 case CK_IntToOCLSampler: 1918 case CK_FloatingToFixedPoint: 1919 case CK_FixedPointToFloating: 1920 case CK_FixedPointCast: 1921 case CK_FixedPointToIntegral: 1922 case CK_IntegralToFixedPoint: 1923 case CK_MatrixCast: 1924 case CK_HLSLVectorTruncation: 1925 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1926 goto CheckNoBasePath; 1927 1928 case CK_Dependent: 1929 case CK_LValueToRValue: 1930 case CK_NoOp: 1931 case CK_AtomicToNonAtomic: 1932 case CK_NonAtomicToAtomic: 1933 case CK_PointerToBoolean: 1934 case CK_IntegralToBoolean: 1935 case CK_FloatingToBoolean: 1936 case CK_MemberPointerToBoolean: 1937 case CK_FloatingComplexToBoolean: 1938 case CK_IntegralComplexToBoolean: 1939 case CK_LValueBitCast: // -> bool& 1940 case CK_LValueToRValueBitCast: 1941 case CK_UserDefinedConversion: // operator bool() 1942 case CK_BuiltinFnToFnPtr: 1943 case CK_FixedPointToBoolean: 1944 case CK_HLSLArrayRValue: 1945 CheckNoBasePath: 1946 assert(path_empty() && "Cast kind should not have a base path!"); 1947 break; 1948 } 1949 return true; 1950 } 1951 1952 const char *CastExpr::getCastKindName(CastKind CK) { 1953 switch (CK) { 1954 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1955 #include "clang/AST/OperationKinds.def" 1956 } 1957 llvm_unreachable("Unhandled cast kind!"); 1958 } 1959 1960 namespace { 1961 // Skip over implicit nodes produced as part of semantic analysis. 1962 // Designed for use with IgnoreExprNodes. 1963 static Expr *ignoreImplicitSemaNodes(Expr *E) { 1964 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) 1965 return Materialize->getSubExpr(); 1966 1967 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) 1968 return Binder->getSubExpr(); 1969 1970 if (auto *Full = dyn_cast<FullExpr>(E)) 1971 return Full->getSubExpr(); 1972 1973 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E); 1974 CPLIE && CPLIE->getInitExprs().size() == 1) 1975 return CPLIE->getInitExprs()[0]; 1976 1977 return E; 1978 } 1979 } // namespace 1980 1981 Expr *CastExpr::getSubExprAsWritten() { 1982 const Expr *SubExpr = nullptr; 1983 1984 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 1985 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 1986 1987 // Conversions by constructor and conversion functions have a 1988 // subexpression describing the call; strip it off. 1989 if (E->getCastKind() == CK_ConstructorConversion) { 1990 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), 1991 ignoreImplicitSemaNodes); 1992 } else if (E->getCastKind() == CK_UserDefinedConversion) { 1993 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && 1994 "Unexpected SubExpr for CK_UserDefinedConversion."); 1995 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 1996 SubExpr = MCE->getImplicitObjectArgument(); 1997 } 1998 } 1999 2000 return const_cast<Expr *>(SubExpr); 2001 } 2002 2003 NamedDecl *CastExpr::getConversionFunction() const { 2004 const Expr *SubExpr = nullptr; 2005 2006 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { 2007 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); 2008 2009 if (E->getCastKind() == CK_ConstructorConversion) 2010 return cast<CXXConstructExpr>(SubExpr)->getConstructor(); 2011 2012 if (E->getCastKind() == CK_UserDefinedConversion) { 2013 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) 2014 return MCE->getMethodDecl(); 2015 } 2016 } 2017 2018 return nullptr; 2019 } 2020 2021 CXXBaseSpecifier **CastExpr::path_buffer() { 2022 switch (getStmtClass()) { 2023 #define ABSTRACT_STMT(x) 2024 #define CASTEXPR(Type, Base) \ 2025 case Stmt::Type##Class: \ 2026 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 2027 #define STMT(Type, Base) 2028 #include "clang/AST/StmtNodes.inc" 2029 default: 2030 llvm_unreachable("non-cast expressions not possible here"); 2031 } 2032 } 2033 2034 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, 2035 QualType opType) { 2036 auto RD = unionType->castAs<RecordType>()->getDecl(); 2037 return getTargetFieldForToUnionCast(RD, opType); 2038 } 2039 2040 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, 2041 QualType OpType) { 2042 auto &Ctx = RD->getASTContext(); 2043 RecordDecl::field_iterator Field, FieldEnd; 2044 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 2045 Field != FieldEnd; ++Field) { 2046 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && 2047 !Field->isUnnamedBitField()) { 2048 return *Field; 2049 } 2050 } 2051 return nullptr; 2052 } 2053 2054 FPOptionsOverride *CastExpr::getTrailingFPFeatures() { 2055 assert(hasStoredFPFeatures()); 2056 switch (getStmtClass()) { 2057 case ImplicitCastExprClass: 2058 return static_cast<ImplicitCastExpr *>(this) 2059 ->getTrailingObjects<FPOptionsOverride>(); 2060 case CStyleCastExprClass: 2061 return static_cast<CStyleCastExpr *>(this) 2062 ->getTrailingObjects<FPOptionsOverride>(); 2063 case CXXFunctionalCastExprClass: 2064 return static_cast<CXXFunctionalCastExpr *>(this) 2065 ->getTrailingObjects<FPOptionsOverride>(); 2066 case CXXStaticCastExprClass: 2067 return static_cast<CXXStaticCastExpr *>(this) 2068 ->getTrailingObjects<FPOptionsOverride>(); 2069 default: 2070 llvm_unreachable("Cast does not have FPFeatures"); 2071 } 2072 } 2073 2074 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 2075 CastKind Kind, Expr *Operand, 2076 const CXXCastPath *BasePath, 2077 ExprValueKind VK, 2078 FPOptionsOverride FPO) { 2079 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2080 void *Buffer = 2081 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2082 PathSize, FPO.requiresTrailingStorage())); 2083 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and 2084 // std::nullptr_t have special semantics not captured by CK_LValueToRValue. 2085 assert((Kind != CK_LValueToRValue || 2086 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && 2087 "invalid type for lvalue-to-rvalue conversion"); 2088 ImplicitCastExpr *E = 2089 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); 2090 if (PathSize) 2091 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2092 E->getTrailingObjects<CXXBaseSpecifier *>()); 2093 return E; 2094 } 2095 2096 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 2097 unsigned PathSize, 2098 bool HasFPFeatures) { 2099 void *Buffer = 2100 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2101 PathSize, HasFPFeatures)); 2102 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2103 } 2104 2105 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 2106 ExprValueKind VK, CastKind K, Expr *Op, 2107 const CXXCastPath *BasePath, 2108 FPOptionsOverride FPO, 2109 TypeSourceInfo *WrittenTy, 2110 SourceLocation L, SourceLocation R) { 2111 unsigned PathSize = (BasePath ? BasePath->size() : 0); 2112 void *Buffer = 2113 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2114 PathSize, FPO.requiresTrailingStorage())); 2115 CStyleCastExpr *E = 2116 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); 2117 if (PathSize) 2118 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 2119 E->getTrailingObjects<CXXBaseSpecifier *>()); 2120 return E; 2121 } 2122 2123 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 2124 unsigned PathSize, 2125 bool HasFPFeatures) { 2126 void *Buffer = 2127 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( 2128 PathSize, HasFPFeatures)); 2129 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); 2130 } 2131 2132 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 2133 /// corresponds to, e.g. "<<=". 2134 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 2135 switch (Op) { 2136 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 2137 #include "clang/AST/OperationKinds.def" 2138 } 2139 llvm_unreachable("Invalid OpCode!"); 2140 } 2141 2142 BinaryOperatorKind 2143 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 2144 switch (OO) { 2145 default: llvm_unreachable("Not an overloadable binary operator"); 2146 case OO_Plus: return BO_Add; 2147 case OO_Minus: return BO_Sub; 2148 case OO_Star: return BO_Mul; 2149 case OO_Slash: return BO_Div; 2150 case OO_Percent: return BO_Rem; 2151 case OO_Caret: return BO_Xor; 2152 case OO_Amp: return BO_And; 2153 case OO_Pipe: return BO_Or; 2154 case OO_Equal: return BO_Assign; 2155 case OO_Spaceship: return BO_Cmp; 2156 case OO_Less: return BO_LT; 2157 case OO_Greater: return BO_GT; 2158 case OO_PlusEqual: return BO_AddAssign; 2159 case OO_MinusEqual: return BO_SubAssign; 2160 case OO_StarEqual: return BO_MulAssign; 2161 case OO_SlashEqual: return BO_DivAssign; 2162 case OO_PercentEqual: return BO_RemAssign; 2163 case OO_CaretEqual: return BO_XorAssign; 2164 case OO_AmpEqual: return BO_AndAssign; 2165 case OO_PipeEqual: return BO_OrAssign; 2166 case OO_LessLess: return BO_Shl; 2167 case OO_GreaterGreater: return BO_Shr; 2168 case OO_LessLessEqual: return BO_ShlAssign; 2169 case OO_GreaterGreaterEqual: return BO_ShrAssign; 2170 case OO_EqualEqual: return BO_EQ; 2171 case OO_ExclaimEqual: return BO_NE; 2172 case OO_LessEqual: return BO_LE; 2173 case OO_GreaterEqual: return BO_GE; 2174 case OO_AmpAmp: return BO_LAnd; 2175 case OO_PipePipe: return BO_LOr; 2176 case OO_Comma: return BO_Comma; 2177 case OO_ArrowStar: return BO_PtrMemI; 2178 } 2179 } 2180 2181 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 2182 static const OverloadedOperatorKind OverOps[] = { 2183 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 2184 OO_Star, OO_Slash, OO_Percent, 2185 OO_Plus, OO_Minus, 2186 OO_LessLess, OO_GreaterGreater, 2187 OO_Spaceship, 2188 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 2189 OO_EqualEqual, OO_ExclaimEqual, 2190 OO_Amp, 2191 OO_Caret, 2192 OO_Pipe, 2193 OO_AmpAmp, 2194 OO_PipePipe, 2195 OO_Equal, OO_StarEqual, 2196 OO_SlashEqual, OO_PercentEqual, 2197 OO_PlusEqual, OO_MinusEqual, 2198 OO_LessLessEqual, OO_GreaterGreaterEqual, 2199 OO_AmpEqual, OO_CaretEqual, 2200 OO_PipeEqual, 2201 OO_Comma 2202 }; 2203 return OverOps[Opc]; 2204 } 2205 2206 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, 2207 Opcode Opc, 2208 const Expr *LHS, 2209 const Expr *RHS) { 2210 if (Opc != BO_Add) 2211 return false; 2212 2213 // Check that we have one pointer and one integer operand. 2214 const Expr *PExp; 2215 if (LHS->getType()->isPointerType()) { 2216 if (!RHS->getType()->isIntegerType()) 2217 return false; 2218 PExp = LHS; 2219 } else if (RHS->getType()->isPointerType()) { 2220 if (!LHS->getType()->isIntegerType()) 2221 return false; 2222 PExp = RHS; 2223 } else { 2224 return false; 2225 } 2226 2227 // Check that the pointer is a nullptr. 2228 if (!PExp->IgnoreParenCasts() 2229 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) 2230 return false; 2231 2232 // Check that the pointee type is char-sized. 2233 const PointerType *PTy = PExp->getType()->getAs<PointerType>(); 2234 if (!PTy || !PTy->getPointeeType()->isCharType()) 2235 return false; 2236 2237 return true; 2238 } 2239 2240 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind, 2241 QualType ResultTy, SourceLocation BLoc, 2242 SourceLocation RParenLoc, 2243 DeclContext *ParentContext) 2244 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), 2245 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { 2246 SourceLocExprBits.Kind = llvm::to_underlying(Kind); 2247 // In dependent contexts, function names may change. 2248 setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext() 2249 ? ExprDependence::Value 2250 : ExprDependence::None); 2251 } 2252 2253 StringRef SourceLocExpr::getBuiltinStr() const { 2254 switch (getIdentKind()) { 2255 case SourceLocIdentKind::File: 2256 return "__builtin_FILE"; 2257 case SourceLocIdentKind::FileName: 2258 return "__builtin_FILE_NAME"; 2259 case SourceLocIdentKind::Function: 2260 return "__builtin_FUNCTION"; 2261 case SourceLocIdentKind::FuncSig: 2262 return "__builtin_FUNCSIG"; 2263 case SourceLocIdentKind::Line: 2264 return "__builtin_LINE"; 2265 case SourceLocIdentKind::Column: 2266 return "__builtin_COLUMN"; 2267 case SourceLocIdentKind::SourceLocStruct: 2268 return "__builtin_source_location"; 2269 } 2270 llvm_unreachable("unexpected IdentKind!"); 2271 } 2272 2273 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, 2274 const Expr *DefaultExpr) const { 2275 SourceLocation Loc; 2276 const DeclContext *Context; 2277 2278 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) { 2279 Loc = DIE->getUsedLocation(); 2280 Context = DIE->getUsedContext(); 2281 } else if (const auto *DAE = 2282 dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) { 2283 Loc = DAE->getUsedLocation(); 2284 Context = DAE->getUsedContext(); 2285 } else { 2286 Loc = getLocation(); 2287 Context = getParentContext(); 2288 } 2289 2290 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( 2291 Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); 2292 2293 auto MakeStringLiteral = [&](StringRef Tmp) { 2294 using LValuePathEntry = APValue::LValuePathEntry; 2295 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); 2296 // Decay the string to a pointer to the first character. 2297 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; 2298 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); 2299 }; 2300 2301 switch (getIdentKind()) { 2302 case SourceLocIdentKind::FileName: { 2303 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the 2304 // the last part of __builtin_FILE(). 2305 SmallString<256> FileName; 2306 clang::Preprocessor::processPathToFileName( 2307 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo()); 2308 return MakeStringLiteral(FileName); 2309 } 2310 case SourceLocIdentKind::File: { 2311 SmallString<256> Path(PLoc.getFilename()); 2312 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2313 Ctx.getTargetInfo()); 2314 return MakeStringLiteral(Path); 2315 } 2316 case SourceLocIdentKind::Function: 2317 case SourceLocIdentKind::FuncSig: { 2318 const auto *CurDecl = dyn_cast<Decl>(Context); 2319 const auto Kind = getIdentKind() == SourceLocIdentKind::Function 2320 ? PredefinedIdentKind::Function 2321 : PredefinedIdentKind::FuncSig; 2322 return MakeStringLiteral( 2323 CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string("")); 2324 } 2325 case SourceLocIdentKind::Line: 2326 return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy)); 2327 case SourceLocIdentKind::Column: 2328 return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy)); 2329 case SourceLocIdentKind::SourceLocStruct: { 2330 // Fill in a std::source_location::__impl structure, by creating an 2331 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to 2332 // that. 2333 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); 2334 assert(ImplDecl); 2335 2336 // Construct an APValue for the __impl struct, and get or create a Decl 2337 // corresponding to that. Note that we've already verified that the shape of 2338 // the ImplDecl type is as expected. 2339 2340 APValue Value(APValue::UninitStruct(), 0, 4); 2341 for (const FieldDecl *F : ImplDecl->fields()) { 2342 StringRef Name = F->getName(); 2343 if (Name == "_M_file_name") { 2344 SmallString<256> Path(PLoc.getFilename()); 2345 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), 2346 Ctx.getTargetInfo()); 2347 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); 2348 } else if (Name == "_M_function_name") { 2349 // Note: this emits the PrettyFunction name -- different than what 2350 // __builtin_FUNCTION() above returns! 2351 const auto *CurDecl = dyn_cast<Decl>(Context); 2352 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( 2353 CurDecl && !isa<TranslationUnitDecl>(CurDecl) 2354 ? StringRef(PredefinedExpr::ComputeName( 2355 PredefinedIdentKind::PrettyFunction, CurDecl)) 2356 : ""); 2357 } else if (Name == "_M_line") { 2358 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType()); 2359 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2360 } else if (Name == "_M_column") { 2361 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType()); 2362 Value.getStructField(F->getFieldIndex()) = APValue(IntVal); 2363 } 2364 } 2365 2366 UnnamedGlobalConstantDecl *GV = 2367 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); 2368 2369 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, 2370 false); 2371 } 2372 } 2373 llvm_unreachable("unhandled case"); 2374 } 2375 2376 EmbedExpr::EmbedExpr(const ASTContext &Ctx, SourceLocation Loc, 2377 EmbedDataStorage *Data, unsigned Begin, 2378 unsigned NumOfElements) 2379 : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary), 2380 EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin), 2381 NumOfElements(NumOfElements) { 2382 setDependence(ExprDependence::None); 2383 FakeChildNode = IntegerLiteral::Create( 2384 Ctx, llvm::APInt::getZero(Ctx.getTypeSize(getType())), getType(), Loc); 2385 } 2386 2387 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 2388 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) 2389 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), 2390 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), 2391 RBraceLoc(rbraceloc), AltForm(nullptr, true) { 2392 sawArrayRangeDesignator(false); 2393 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 2394 2395 setDependence(computeDependence(this)); 2396 } 2397 2398 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 2399 if (NumInits > InitExprs.size()) 2400 InitExprs.reserve(C, NumInits); 2401 } 2402 2403 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 2404 InitExprs.resize(C, NumInits, nullptr); 2405 } 2406 2407 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 2408 if (Init >= InitExprs.size()) { 2409 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 2410 setInit(Init, expr); 2411 return nullptr; 2412 } 2413 2414 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 2415 setInit(Init, expr); 2416 return Result; 2417 } 2418 2419 void InitListExpr::setArrayFiller(Expr *filler) { 2420 assert(!hasArrayFiller() && "Filler already set!"); 2421 ArrayFillerOrUnionFieldInit = filler; 2422 // Fill out any "holes" in the array due to designated initializers. 2423 Expr **inits = getInits(); 2424 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 2425 if (inits[i] == nullptr) 2426 inits[i] = filler; 2427 } 2428 2429 bool InitListExpr::isStringLiteralInit() const { 2430 if (getNumInits() != 1) 2431 return false; 2432 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 2433 if (!AT || !AT->getElementType()->isIntegerType()) 2434 return false; 2435 // It is possible for getInit() to return null. 2436 const Expr *Init = getInit(0); 2437 if (!Init) 2438 return false; 2439 Init = Init->IgnoreParenImpCasts(); 2440 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 2441 } 2442 2443 bool InitListExpr::isTransparent() const { 2444 assert(isSemanticForm() && "syntactic form never semantically transparent"); 2445 2446 // A glvalue InitListExpr is always just sugar. 2447 if (isGLValue()) { 2448 assert(getNumInits() == 1 && "multiple inits in glvalue init list"); 2449 return true; 2450 } 2451 2452 // Otherwise, we're sugar if and only if we have exactly one initializer that 2453 // is of the same type. 2454 if (getNumInits() != 1 || !getInit(0)) 2455 return false; 2456 2457 // Don't confuse aggregate initialization of a struct X { X &x; }; with a 2458 // transparent struct copy. 2459 if (!getInit(0)->isPRValue() && getType()->isRecordType()) 2460 return false; 2461 2462 return getType().getCanonicalType() == 2463 getInit(0)->getType().getCanonicalType(); 2464 } 2465 2466 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { 2467 assert(isSyntacticForm() && "only test syntactic form as zero initializer"); 2468 2469 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { 2470 return false; 2471 } 2472 2473 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); 2474 return Lit && Lit->getValue() == 0; 2475 } 2476 2477 SourceLocation InitListExpr::getBeginLoc() const { 2478 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2479 return SyntacticForm->getBeginLoc(); 2480 SourceLocation Beg = LBraceLoc; 2481 if (Beg.isInvalid()) { 2482 // Find the first non-null initializer. 2483 for (InitExprsTy::const_iterator I = InitExprs.begin(), 2484 E = InitExprs.end(); 2485 I != E; ++I) { 2486 if (Stmt *S = *I) { 2487 Beg = S->getBeginLoc(); 2488 break; 2489 } 2490 } 2491 } 2492 return Beg; 2493 } 2494 2495 SourceLocation InitListExpr::getEndLoc() const { 2496 if (InitListExpr *SyntacticForm = getSyntacticForm()) 2497 return SyntacticForm->getEndLoc(); 2498 SourceLocation End = RBraceLoc; 2499 if (End.isInvalid()) { 2500 // Find the first non-null initializer from the end. 2501 for (Stmt *S : llvm::reverse(InitExprs)) { 2502 if (S) { 2503 End = S->getEndLoc(); 2504 break; 2505 } 2506 } 2507 } 2508 return End; 2509 } 2510 2511 /// getFunctionType - Return the underlying function type for this block. 2512 /// 2513 const FunctionProtoType *BlockExpr::getFunctionType() const { 2514 // The block pointer is never sugared, but the function type might be. 2515 return cast<BlockPointerType>(getType()) 2516 ->getPointeeType()->castAs<FunctionProtoType>(); 2517 } 2518 2519 SourceLocation BlockExpr::getCaretLocation() const { 2520 return TheBlock->getCaretLocation(); 2521 } 2522 const Stmt *BlockExpr::getBody() const { 2523 return TheBlock->getBody(); 2524 } 2525 Stmt *BlockExpr::getBody() { 2526 return TheBlock->getBody(); 2527 } 2528 2529 2530 //===----------------------------------------------------------------------===// 2531 // Generic Expression Routines 2532 //===----------------------------------------------------------------------===// 2533 2534 bool Expr::isReadIfDiscardedInCPlusPlus11() const { 2535 // In C++11, discarded-value expressions of a certain form are special, 2536 // according to [expr]p10: 2537 // The lvalue-to-rvalue conversion (4.1) is applied only if the 2538 // expression is a glvalue of volatile-qualified type and it has 2539 // one of the following forms: 2540 if (!isGLValue() || !getType().isVolatileQualified()) 2541 return false; 2542 2543 const Expr *E = IgnoreParens(); 2544 2545 // - id-expression (5.1.1), 2546 if (isa<DeclRefExpr>(E)) 2547 return true; 2548 2549 // - subscripting (5.2.1), 2550 if (isa<ArraySubscriptExpr>(E)) 2551 return true; 2552 2553 // - class member access (5.2.5), 2554 if (isa<MemberExpr>(E)) 2555 return true; 2556 2557 // - indirection (5.3.1), 2558 if (auto *UO = dyn_cast<UnaryOperator>(E)) 2559 if (UO->getOpcode() == UO_Deref) 2560 return true; 2561 2562 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 2563 // - pointer-to-member operation (5.5), 2564 if (BO->isPtrMemOp()) 2565 return true; 2566 2567 // - comma expression (5.18) where the right operand is one of the above. 2568 if (BO->getOpcode() == BO_Comma) 2569 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); 2570 } 2571 2572 // - conditional expression (5.16) where both the second and the third 2573 // operands are one of the above, or 2574 if (auto *CO = dyn_cast<ConditionalOperator>(E)) 2575 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && 2576 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2577 // The related edge case of "*x ?: *x". 2578 if (auto *BCO = 2579 dyn_cast<BinaryConditionalOperator>(E)) { 2580 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 2581 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && 2582 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); 2583 } 2584 2585 // Objective-C++ extensions to the rule. 2586 if (isa<ObjCIvarRefExpr>(E)) 2587 return true; 2588 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { 2589 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) 2590 return true; 2591 } 2592 2593 return false; 2594 } 2595 2596 /// isUnusedResultAWarning - Return true if this immediate expression should 2597 /// be warned about if the result is unused. If so, fill in Loc and Ranges 2598 /// with location to warn on and the source range[s] to report with the 2599 /// warning. 2600 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2601 SourceRange &R1, SourceRange &R2, 2602 ASTContext &Ctx) const { 2603 // Don't warn if the expr is type dependent. The type could end up 2604 // instantiating to void. 2605 if (isTypeDependent()) 2606 return false; 2607 2608 switch (getStmtClass()) { 2609 default: 2610 if (getType()->isVoidType()) 2611 return false; 2612 WarnE = this; 2613 Loc = getExprLoc(); 2614 R1 = getSourceRange(); 2615 return true; 2616 case ParenExprClass: 2617 return cast<ParenExpr>(this)->getSubExpr()-> 2618 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2619 case GenericSelectionExprClass: 2620 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2621 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2622 case CoawaitExprClass: 2623 case CoyieldExprClass: 2624 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> 2625 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2626 case ChooseExprClass: 2627 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2628 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2629 case UnaryOperatorClass: { 2630 const UnaryOperator *UO = cast<UnaryOperator>(this); 2631 2632 switch (UO->getOpcode()) { 2633 case UO_Plus: 2634 case UO_Minus: 2635 case UO_AddrOf: 2636 case UO_Not: 2637 case UO_LNot: 2638 case UO_Deref: 2639 break; 2640 case UO_Coawait: 2641 // This is just the 'operator co_await' call inside the guts of a 2642 // dependent co_await call. 2643 case UO_PostInc: 2644 case UO_PostDec: 2645 case UO_PreInc: 2646 case UO_PreDec: // ++/-- 2647 return false; // Not a warning. 2648 case UO_Real: 2649 case UO_Imag: 2650 // accessing a piece of a volatile complex is a side-effect. 2651 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2652 .isVolatileQualified()) 2653 return false; 2654 break; 2655 case UO_Extension: 2656 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2657 } 2658 WarnE = this; 2659 Loc = UO->getOperatorLoc(); 2660 R1 = UO->getSubExpr()->getSourceRange(); 2661 return true; 2662 } 2663 case BinaryOperatorClass: { 2664 const BinaryOperator *BO = cast<BinaryOperator>(this); 2665 switch (BO->getOpcode()) { 2666 default: 2667 break; 2668 // Consider the RHS of comma for side effects. LHS was checked by 2669 // Sema::CheckCommaOperands. 2670 case BO_Comma: 2671 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2672 // lvalue-ness) of an assignment written in a macro. 2673 if (IntegerLiteral *IE = 2674 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2675 if (IE->getValue() == 0) 2676 return false; 2677 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2678 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2679 case BO_LAnd: 2680 case BO_LOr: 2681 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2682 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2683 return false; 2684 break; 2685 } 2686 if (BO->isAssignmentOp()) 2687 return false; 2688 WarnE = this; 2689 Loc = BO->getOperatorLoc(); 2690 R1 = BO->getLHS()->getSourceRange(); 2691 R2 = BO->getRHS()->getSourceRange(); 2692 return true; 2693 } 2694 case CompoundAssignOperatorClass: 2695 case VAArgExprClass: 2696 case AtomicExprClass: 2697 return false; 2698 2699 case ConditionalOperatorClass: { 2700 // If only one of the LHS or RHS is a warning, the operator might 2701 // be being used for control flow. Only warn if both the LHS and 2702 // RHS are warnings. 2703 const auto *Exp = cast<ConditionalOperator>(this); 2704 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && 2705 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2706 } 2707 case BinaryConditionalOperatorClass: { 2708 const auto *Exp = cast<BinaryConditionalOperator>(this); 2709 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2710 } 2711 2712 case MemberExprClass: 2713 WarnE = this; 2714 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2715 R1 = SourceRange(Loc, Loc); 2716 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2717 return true; 2718 2719 case ArraySubscriptExprClass: 2720 WarnE = this; 2721 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2722 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2723 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2724 return true; 2725 2726 case CXXOperatorCallExprClass: { 2727 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2728 // overloads as there is no reasonable way to define these such that they 2729 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2730 // warning: operators == and != are commonly typo'ed, and so warning on them 2731 // provides additional value as well. If this list is updated, 2732 // DiagnoseUnusedComparison should be as well. 2733 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2734 switch (Op->getOperator()) { 2735 default: 2736 break; 2737 case OO_EqualEqual: 2738 case OO_ExclaimEqual: 2739 case OO_Less: 2740 case OO_Greater: 2741 case OO_GreaterEqual: 2742 case OO_LessEqual: 2743 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2744 Op->getCallReturnType(Ctx)->isVoidType()) 2745 break; 2746 WarnE = this; 2747 Loc = Op->getOperatorLoc(); 2748 R1 = Op->getSourceRange(); 2749 return true; 2750 } 2751 2752 // Fallthrough for generic call handling. 2753 [[fallthrough]]; 2754 } 2755 case CallExprClass: 2756 case CXXMemberCallExprClass: 2757 case UserDefinedLiteralClass: { 2758 // If this is a direct call, get the callee. 2759 const CallExpr *CE = cast<CallExpr>(this); 2760 if (const Decl *FD = CE->getCalleeDecl()) { 2761 // If the callee has attribute pure, const, or warn_unused_result, warn 2762 // about it. void foo() { strlen("bar"); } should warn. 2763 // 2764 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2765 // updated to match for QoI. 2766 if (CE->hasUnusedResultAttr(Ctx) || 2767 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2768 WarnE = this; 2769 Loc = CE->getCallee()->getBeginLoc(); 2770 R1 = CE->getCallee()->getSourceRange(); 2771 2772 if (unsigned NumArgs = CE->getNumArgs()) 2773 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2774 CE->getArg(NumArgs - 1)->getEndLoc()); 2775 return true; 2776 } 2777 } 2778 return false; 2779 } 2780 2781 // If we don't know precisely what we're looking at, let's not warn. 2782 case UnresolvedLookupExprClass: 2783 case CXXUnresolvedConstructExprClass: 2784 case RecoveryExprClass: 2785 return false; 2786 2787 case CXXTemporaryObjectExprClass: 2788 case CXXConstructExprClass: { 2789 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2790 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); 2791 if (Type->hasAttr<WarnUnusedAttr>() || 2792 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { 2793 WarnE = this; 2794 Loc = getBeginLoc(); 2795 R1 = getSourceRange(); 2796 return true; 2797 } 2798 } 2799 2800 const auto *CE = cast<CXXConstructExpr>(this); 2801 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 2802 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); 2803 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { 2804 WarnE = this; 2805 Loc = getBeginLoc(); 2806 R1 = getSourceRange(); 2807 2808 if (unsigned NumArgs = CE->getNumArgs()) 2809 R2 = SourceRange(CE->getArg(0)->getBeginLoc(), 2810 CE->getArg(NumArgs - 1)->getEndLoc()); 2811 return true; 2812 } 2813 } 2814 2815 return false; 2816 } 2817 2818 case ObjCMessageExprClass: { 2819 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2820 if (Ctx.getLangOpts().ObjCAutoRefCount && 2821 ME->isInstanceMessage() && 2822 !ME->getType()->isVoidType() && 2823 ME->getMethodFamily() == OMF_init) { 2824 WarnE = this; 2825 Loc = getExprLoc(); 2826 R1 = ME->getSourceRange(); 2827 return true; 2828 } 2829 2830 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2831 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2832 WarnE = this; 2833 Loc = getExprLoc(); 2834 return true; 2835 } 2836 2837 return false; 2838 } 2839 2840 case ObjCPropertyRefExprClass: 2841 case ObjCSubscriptRefExprClass: 2842 WarnE = this; 2843 Loc = getExprLoc(); 2844 R1 = getSourceRange(); 2845 return true; 2846 2847 case PseudoObjectExprClass: { 2848 const auto *POE = cast<PseudoObjectExpr>(this); 2849 2850 // For some syntactic forms, we should always warn. 2851 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( 2852 POE->getSyntacticForm())) { 2853 WarnE = this; 2854 Loc = getExprLoc(); 2855 R1 = getSourceRange(); 2856 return true; 2857 } 2858 2859 // For others, we should never warn. 2860 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) 2861 if (BO->isAssignmentOp()) 2862 return false; 2863 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) 2864 if (UO->isIncrementDecrementOp()) 2865 return false; 2866 2867 // Otherwise, warn if the result expression would warn. 2868 const Expr *Result = POE->getResultExpr(); 2869 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2870 } 2871 2872 case StmtExprClass: { 2873 // Statement exprs don't logically have side effects themselves, but are 2874 // sometimes used in macros in ways that give them a type that is unused. 2875 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2876 // however, if the result of the stmt expr is dead, we don't want to emit a 2877 // warning. 2878 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2879 if (!CS->body_empty()) { 2880 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2881 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2882 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2883 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2884 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2885 } 2886 2887 if (getType()->isVoidType()) 2888 return false; 2889 WarnE = this; 2890 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2891 R1 = getSourceRange(); 2892 return true; 2893 } 2894 case CXXFunctionalCastExprClass: 2895 case CStyleCastExprClass: { 2896 // Ignore an explicit cast to void, except in C++98 if the operand is a 2897 // volatile glvalue for which we would trigger an implicit read in any 2898 // other language mode. (Such an implicit read always happens as part of 2899 // the lvalue conversion in C, and happens in C++ for expressions of all 2900 // forms where it seems likely the user intended to trigger a volatile 2901 // load.) 2902 const CastExpr *CE = cast<CastExpr>(this); 2903 const Expr *SubE = CE->getSubExpr()->IgnoreParens(); 2904 if (CE->getCastKind() == CK_ToVoid) { 2905 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && 2906 SubE->isReadIfDiscardedInCPlusPlus11()) { 2907 // Suppress the "unused value" warning for idiomatic usage of 2908 // '(void)var;' used to suppress "unused variable" warnings. 2909 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) 2910 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2911 if (!VD->isExternallyVisible()) 2912 return false; 2913 2914 // The lvalue-to-rvalue conversion would have no effect for an array. 2915 // It's implausible that the programmer expected this to result in a 2916 // volatile array load, so don't warn. 2917 if (SubE->getType()->isArrayType()) 2918 return false; 2919 2920 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2921 } 2922 return false; 2923 } 2924 2925 // If this is a cast to a constructor conversion, check the operand. 2926 // Otherwise, the result of the cast is unused. 2927 if (CE->getCastKind() == CK_ConstructorConversion) 2928 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2929 if (CE->getCastKind() == CK_Dependent) 2930 return false; 2931 2932 WarnE = this; 2933 if (const CXXFunctionalCastExpr *CXXCE = 2934 dyn_cast<CXXFunctionalCastExpr>(this)) { 2935 Loc = CXXCE->getBeginLoc(); 2936 R1 = CXXCE->getSubExpr()->getSourceRange(); 2937 } else { 2938 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2939 Loc = CStyleCE->getLParenLoc(); 2940 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2941 } 2942 return true; 2943 } 2944 case ImplicitCastExprClass: { 2945 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2946 2947 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2948 if (ICE->getCastKind() == CK_LValueToRValue && 2949 ICE->getSubExpr()->getType().isVolatileQualified()) 2950 return false; 2951 2952 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2953 } 2954 case CXXDefaultArgExprClass: 2955 return (cast<CXXDefaultArgExpr>(this) 2956 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2957 case CXXDefaultInitExprClass: 2958 return (cast<CXXDefaultInitExpr>(this) 2959 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2960 2961 case CXXNewExprClass: 2962 // FIXME: In theory, there might be new expressions that don't have side 2963 // effects (e.g. a placement new with an uninitialized POD). 2964 case CXXDeleteExprClass: 2965 return false; 2966 case MaterializeTemporaryExprClass: 2967 return cast<MaterializeTemporaryExpr>(this) 2968 ->getSubExpr() 2969 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2970 case CXXBindTemporaryExprClass: 2971 return cast<CXXBindTemporaryExpr>(this)->getSubExpr() 2972 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2973 case ExprWithCleanupsClass: 2974 return cast<ExprWithCleanups>(this)->getSubExpr() 2975 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2976 } 2977 } 2978 2979 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2980 /// returns true, if it is; false otherwise. 2981 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2982 const Expr *E = IgnoreParens(); 2983 switch (E->getStmtClass()) { 2984 default: 2985 return false; 2986 case ObjCIvarRefExprClass: 2987 return true; 2988 case Expr::UnaryOperatorClass: 2989 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2990 case ImplicitCastExprClass: 2991 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2992 case MaterializeTemporaryExprClass: 2993 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( 2994 Ctx); 2995 case CStyleCastExprClass: 2996 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2997 case DeclRefExprClass: { 2998 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2999 3000 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 3001 if (VD->hasGlobalStorage()) 3002 return true; 3003 QualType T = VD->getType(); 3004 // dereferencing to a pointer is always a gc'able candidate, 3005 // unless it is __weak. 3006 return T->isPointerType() && 3007 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 3008 } 3009 return false; 3010 } 3011 case MemberExprClass: { 3012 const MemberExpr *M = cast<MemberExpr>(E); 3013 return M->getBase()->isOBJCGCCandidate(Ctx); 3014 } 3015 case ArraySubscriptExprClass: 3016 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 3017 } 3018 } 3019 3020 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 3021 if (isTypeDependent()) 3022 return false; 3023 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 3024 } 3025 3026 QualType Expr::findBoundMemberType(const Expr *expr) { 3027 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 3028 3029 // Bound member expressions are always one of these possibilities: 3030 // x->m x.m x->*y x.*y 3031 // (possibly parenthesized) 3032 3033 expr = expr->IgnoreParens(); 3034 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 3035 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 3036 return mem->getMemberDecl()->getType(); 3037 } 3038 3039 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 3040 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 3041 ->getPointeeType(); 3042 assert(type->isFunctionType()); 3043 return type; 3044 } 3045 3046 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 3047 return QualType(); 3048 } 3049 3050 Expr *Expr::IgnoreImpCasts() { 3051 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); 3052 } 3053 3054 Expr *Expr::IgnoreCasts() { 3055 return IgnoreExprNodes(this, IgnoreCastsSingleStep); 3056 } 3057 3058 Expr *Expr::IgnoreImplicit() { 3059 return IgnoreExprNodes(this, IgnoreImplicitSingleStep); 3060 } 3061 3062 Expr *Expr::IgnoreImplicitAsWritten() { 3063 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); 3064 } 3065 3066 Expr *Expr::IgnoreParens() { 3067 return IgnoreExprNodes(this, IgnoreParensSingleStep); 3068 } 3069 3070 Expr *Expr::IgnoreParenImpCasts() { 3071 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3072 IgnoreImplicitCastsExtraSingleStep); 3073 } 3074 3075 Expr *Expr::IgnoreParenCasts() { 3076 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); 3077 } 3078 3079 Expr *Expr::IgnoreConversionOperatorSingleStep() { 3080 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 3081 if (isa_and_nonnull<CXXConversionDecl>(MCE->getMethodDecl())) 3082 return MCE->getImplicitObjectArgument(); 3083 } 3084 return this; 3085 } 3086 3087 Expr *Expr::IgnoreParenLValueCasts() { 3088 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3089 IgnoreLValueCastsSingleStep); 3090 } 3091 3092 Expr *Expr::IgnoreParenBaseCasts() { 3093 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3094 IgnoreBaseCastsSingleStep); 3095 } 3096 3097 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { 3098 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { 3099 if (auto *CE = dyn_cast<CastExpr>(E)) { 3100 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 3101 // ptr<->int casts of the same width. We also ignore all identity casts. 3102 Expr *SubExpr = CE->getSubExpr(); 3103 bool IsIdentityCast = 3104 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); 3105 bool IsSameWidthCast = (E->getType()->isPointerType() || 3106 E->getType()->isIntegralType(Ctx)) && 3107 (SubExpr->getType()->isPointerType() || 3108 SubExpr->getType()->isIntegralType(Ctx)) && 3109 (Ctx.getTypeSize(E->getType()) == 3110 Ctx.getTypeSize(SubExpr->getType())); 3111 3112 if (IsIdentityCast || IsSameWidthCast) 3113 return SubExpr; 3114 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 3115 return NTTP->getReplacement(); 3116 3117 return E; 3118 }; 3119 return IgnoreExprNodes(this, IgnoreParensSingleStep, 3120 IgnoreNoopCastsSingleStep); 3121 } 3122 3123 Expr *Expr::IgnoreUnlessSpelledInSource() { 3124 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { 3125 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { 3126 auto *SE = Cast->getSubExpr(); 3127 if (SE->getSourceRange() == E->getSourceRange()) 3128 return SE; 3129 } 3130 3131 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 3132 auto NumArgs = C->getNumArgs(); 3133 if (NumArgs == 1 || 3134 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 3135 Expr *A = C->getArg(0); 3136 if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) 3137 return A; 3138 } 3139 } 3140 return E; 3141 }; 3142 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { 3143 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { 3144 Expr *ExprNode = C->getImplicitObjectArgument(); 3145 if (ExprNode->getSourceRange() == E->getSourceRange()) { 3146 return ExprNode; 3147 } 3148 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { 3149 if (PE->getSourceRange() == C->getSourceRange()) { 3150 return cast<Expr>(PE); 3151 } 3152 } 3153 ExprNode = ExprNode->IgnoreParenImpCasts(); 3154 if (ExprNode->getSourceRange() == E->getSourceRange()) 3155 return ExprNode; 3156 } 3157 return E; 3158 }; 3159 return IgnoreExprNodes( 3160 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, 3161 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, 3162 IgnoreImplicitMemberCallSingleStep); 3163 } 3164 3165 bool Expr::isDefaultArgument() const { 3166 const Expr *E = this; 3167 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3168 E = M->getSubExpr(); 3169 3170 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 3171 E = ICE->getSubExprAsWritten(); 3172 3173 return isa<CXXDefaultArgExpr>(E); 3174 } 3175 3176 /// Skip over any no-op casts and any temporary-binding 3177 /// expressions. 3178 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 3179 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 3180 E = M->getSubExpr(); 3181 3182 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3183 if (ICE->getCastKind() == CK_NoOp) 3184 E = ICE->getSubExpr(); 3185 else 3186 break; 3187 } 3188 3189 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 3190 E = BE->getSubExpr(); 3191 3192 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3193 if (ICE->getCastKind() == CK_NoOp) 3194 E = ICE->getSubExpr(); 3195 else 3196 break; 3197 } 3198 3199 return E->IgnoreParens(); 3200 } 3201 3202 /// isTemporaryObject - Determines if this expression produces a 3203 /// temporary of the given class type. 3204 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 3205 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 3206 return false; 3207 3208 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 3209 3210 // Temporaries are by definition pr-values of class type. 3211 if (!E->Classify(C).isPRValue()) { 3212 // In this context, property reference is a message call and is pr-value. 3213 if (!isa<ObjCPropertyRefExpr>(E)) 3214 return false; 3215 } 3216 3217 // Black-list a few cases which yield pr-values of class type that don't 3218 // refer to temporaries of that type: 3219 3220 // - implicit derived-to-base conversions 3221 if (isa<ImplicitCastExpr>(E)) { 3222 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 3223 case CK_DerivedToBase: 3224 case CK_UncheckedDerivedToBase: 3225 return false; 3226 default: 3227 break; 3228 } 3229 } 3230 3231 // - member expressions (all) 3232 if (isa<MemberExpr>(E)) 3233 return false; 3234 3235 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 3236 if (BO->isPtrMemOp()) 3237 return false; 3238 3239 // - opaque values (all) 3240 if (isa<OpaqueValueExpr>(E)) 3241 return false; 3242 3243 return true; 3244 } 3245 3246 bool Expr::isImplicitCXXThis() const { 3247 const Expr *E = this; 3248 3249 // Strip away parentheses and casts we don't care about. 3250 while (true) { 3251 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 3252 E = Paren->getSubExpr(); 3253 continue; 3254 } 3255 3256 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3257 if (ICE->getCastKind() == CK_NoOp || 3258 ICE->getCastKind() == CK_LValueToRValue || 3259 ICE->getCastKind() == CK_DerivedToBase || 3260 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 3261 E = ICE->getSubExpr(); 3262 continue; 3263 } 3264 } 3265 3266 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 3267 if (UnOp->getOpcode() == UO_Extension) { 3268 E = UnOp->getSubExpr(); 3269 continue; 3270 } 3271 } 3272 3273 if (const MaterializeTemporaryExpr *M 3274 = dyn_cast<MaterializeTemporaryExpr>(E)) { 3275 E = M->getSubExpr(); 3276 continue; 3277 } 3278 3279 break; 3280 } 3281 3282 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 3283 return This->isImplicit(); 3284 3285 return false; 3286 } 3287 3288 /// hasAnyTypeDependentArguments - Determines if any of the expressions 3289 /// in Exprs is type-dependent. 3290 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 3291 for (unsigned I = 0; I < Exprs.size(); ++I) 3292 if (Exprs[I]->isTypeDependent()) 3293 return true; 3294 3295 return false; 3296 } 3297 3298 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 3299 const Expr **Culprit) const { 3300 assert(!isValueDependent() && 3301 "Expression evaluator can't be called on a dependent expression."); 3302 3303 // This function is attempting whether an expression is an initializer 3304 // which can be evaluated at compile-time. It very closely parallels 3305 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 3306 // will lead to unexpected results. Like ConstExprEmitter, it falls back 3307 // to isEvaluatable most of the time. 3308 // 3309 // If we ever capture reference-binding directly in the AST, we can 3310 // kill the second parameter. 3311 3312 if (IsForRef) { 3313 if (auto *EWC = dyn_cast<ExprWithCleanups>(this)) 3314 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit); 3315 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this)) 3316 return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3317 EvalResult Result; 3318 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 3319 return true; 3320 if (Culprit) 3321 *Culprit = this; 3322 return false; 3323 } 3324 3325 switch (getStmtClass()) { 3326 default: break; 3327 case Stmt::ExprWithCleanupsClass: 3328 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( 3329 Ctx, IsForRef, Culprit); 3330 case StringLiteralClass: 3331 case ObjCEncodeExprClass: 3332 return true; 3333 case CXXTemporaryObjectExprClass: 3334 case CXXConstructExprClass: { 3335 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3336 3337 if (CE->getConstructor()->isTrivial() && 3338 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 3339 // Trivial default constructor 3340 if (!CE->getNumArgs()) return true; 3341 3342 // Trivial copy constructor 3343 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 3344 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 3345 } 3346 3347 break; 3348 } 3349 case ConstantExprClass: { 3350 // FIXME: We should be able to return "true" here, but it can lead to extra 3351 // error messages. E.g. in Sema/array-init.c. 3352 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); 3353 return Exp->isConstantInitializer(Ctx, false, Culprit); 3354 } 3355 case CompoundLiteralExprClass: { 3356 // This handles gcc's extension that allows global initializers like 3357 // "struct x {int x;} x = (struct x) {};". 3358 // FIXME: This accepts other cases it shouldn't! 3359 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 3360 return Exp->isConstantInitializer(Ctx, false, Culprit); 3361 } 3362 case DesignatedInitUpdateExprClass: { 3363 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 3364 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 3365 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 3366 } 3367 case InitListExprClass: { 3368 // C++ [dcl.init.aggr]p2: 3369 // The elements of an aggregate are: 3370 // - for an array, the array elements in increasing subscript order, or 3371 // - for a class, the direct base classes in declaration order, followed 3372 // by the direct non-static data members (11.4) that are not members of 3373 // an anonymous union, in declaration order. 3374 const InitListExpr *ILE = cast<InitListExpr>(this); 3375 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); 3376 if (ILE->getType()->isArrayType()) { 3377 unsigned numInits = ILE->getNumInits(); 3378 for (unsigned i = 0; i < numInits; i++) { 3379 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 3380 return false; 3381 } 3382 return true; 3383 } 3384 3385 if (ILE->getType()->isRecordType()) { 3386 unsigned ElementNo = 0; 3387 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 3388 3389 // In C++17, bases were added to the list of members used by aggregate 3390 // initialization. 3391 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3392 for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) { 3393 if (ElementNo < ILE->getNumInits()) { 3394 const Expr *Elt = ILE->getInit(ElementNo++); 3395 if (!Elt->isConstantInitializer(Ctx, false, Culprit)) 3396 return false; 3397 } 3398 } 3399 } 3400 3401 for (const auto *Field : RD->fields()) { 3402 // If this is a union, skip all the fields that aren't being initialized. 3403 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 3404 continue; 3405 3406 // Don't emit anonymous bitfields, they just affect layout. 3407 if (Field->isUnnamedBitField()) 3408 continue; 3409 3410 if (ElementNo < ILE->getNumInits()) { 3411 const Expr *Elt = ILE->getInit(ElementNo++); 3412 if (Field->isBitField()) { 3413 // Bitfields have to evaluate to an integer. 3414 EvalResult Result; 3415 if (!Elt->EvaluateAsInt(Result, Ctx)) { 3416 if (Culprit) 3417 *Culprit = Elt; 3418 return false; 3419 } 3420 } else { 3421 bool RefType = Field->getType()->isReferenceType(); 3422 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 3423 return false; 3424 } 3425 } 3426 } 3427 return true; 3428 } 3429 3430 break; 3431 } 3432 case ImplicitValueInitExprClass: 3433 case NoInitExprClass: 3434 return true; 3435 case ParenExprClass: 3436 return cast<ParenExpr>(this)->getSubExpr() 3437 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3438 case GenericSelectionExprClass: 3439 return cast<GenericSelectionExpr>(this)->getResultExpr() 3440 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3441 case ChooseExprClass: 3442 if (cast<ChooseExpr>(this)->isConditionDependent()) { 3443 if (Culprit) 3444 *Culprit = this; 3445 return false; 3446 } 3447 return cast<ChooseExpr>(this)->getChosenSubExpr() 3448 ->isConstantInitializer(Ctx, IsForRef, Culprit); 3449 case UnaryOperatorClass: { 3450 const UnaryOperator* Exp = cast<UnaryOperator>(this); 3451 if (Exp->getOpcode() == UO_Extension) 3452 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3453 break; 3454 } 3455 case PackIndexingExprClass: { 3456 return cast<PackIndexingExpr>(this) 3457 ->getSelectedExpr() 3458 ->isConstantInitializer(Ctx, false, Culprit); 3459 } 3460 case CXXFunctionalCastExprClass: 3461 case CXXStaticCastExprClass: 3462 case ImplicitCastExprClass: 3463 case CStyleCastExprClass: 3464 case ObjCBridgedCastExprClass: 3465 case CXXDynamicCastExprClass: 3466 case CXXReinterpretCastExprClass: 3467 case CXXAddrspaceCastExprClass: 3468 case CXXConstCastExprClass: { 3469 const CastExpr *CE = cast<CastExpr>(this); 3470 3471 // Handle misc casts we want to ignore. 3472 if (CE->getCastKind() == CK_NoOp || 3473 CE->getCastKind() == CK_LValueToRValue || 3474 CE->getCastKind() == CK_ToUnion || 3475 CE->getCastKind() == CK_ConstructorConversion || 3476 CE->getCastKind() == CK_NonAtomicToAtomic || 3477 CE->getCastKind() == CK_AtomicToNonAtomic || 3478 CE->getCastKind() == CK_NullToPointer || 3479 CE->getCastKind() == CK_IntToOCLSampler) 3480 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 3481 3482 break; 3483 } 3484 case MaterializeTemporaryExprClass: 3485 return cast<MaterializeTemporaryExpr>(this) 3486 ->getSubExpr() 3487 ->isConstantInitializer(Ctx, false, Culprit); 3488 3489 case SubstNonTypeTemplateParmExprClass: 3490 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 3491 ->isConstantInitializer(Ctx, false, Culprit); 3492 case CXXDefaultArgExprClass: 3493 return cast<CXXDefaultArgExpr>(this)->getExpr() 3494 ->isConstantInitializer(Ctx, false, Culprit); 3495 case CXXDefaultInitExprClass: 3496 return cast<CXXDefaultInitExpr>(this)->getExpr() 3497 ->isConstantInitializer(Ctx, false, Culprit); 3498 } 3499 // Allow certain forms of UB in constant initializers: signed integer 3500 // overflow and floating-point division by zero. We'll give a warning on 3501 // these, but they're common enough that we have to accept them. 3502 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 3503 return true; 3504 if (Culprit) 3505 *Culprit = this; 3506 return false; 3507 } 3508 3509 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { 3510 unsigned BuiltinID = getBuiltinCallee(); 3511 if (BuiltinID != Builtin::BI__assume && 3512 BuiltinID != Builtin::BI__builtin_assume) 3513 return false; 3514 3515 const Expr* Arg = getArg(0); 3516 bool ArgVal; 3517 return !Arg->isValueDependent() && 3518 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; 3519 } 3520 3521 bool CallExpr::isCallToStdMove() const { 3522 return getBuiltinCallee() == Builtin::BImove; 3523 } 3524 3525 namespace { 3526 /// Look for any side effects within a Stmt. 3527 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 3528 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 3529 const bool IncludePossibleEffects; 3530 bool HasSideEffects; 3531 3532 public: 3533 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 3534 : Inherited(Context), 3535 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 3536 3537 bool hasSideEffects() const { return HasSideEffects; } 3538 3539 void VisitDecl(const Decl *D) { 3540 if (!D) 3541 return; 3542 3543 // We assume the caller checks subexpressions (eg, the initializer, VLA 3544 // bounds) for side-effects on our behalf. 3545 if (auto *VD = dyn_cast<VarDecl>(D)) { 3546 // Registering a destructor is a side-effect. 3547 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && 3548 VD->needsDestruction(Context)) 3549 HasSideEffects = true; 3550 } 3551 } 3552 3553 void VisitDeclStmt(const DeclStmt *DS) { 3554 for (auto *D : DS->decls()) 3555 VisitDecl(D); 3556 Inherited::VisitDeclStmt(DS); 3557 } 3558 3559 void VisitExpr(const Expr *E) { 3560 if (!HasSideEffects && 3561 E->HasSideEffects(Context, IncludePossibleEffects)) 3562 HasSideEffects = true; 3563 } 3564 }; 3565 } 3566 3567 bool Expr::HasSideEffects(const ASTContext &Ctx, 3568 bool IncludePossibleEffects) const { 3569 // In circumstances where we care about definite side effects instead of 3570 // potential side effects, we want to ignore expressions that are part of a 3571 // macro expansion as a potential side effect. 3572 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 3573 return false; 3574 3575 switch (getStmtClass()) { 3576 case NoStmtClass: 3577 #define ABSTRACT_STMT(Type) 3578 #define STMT(Type, Base) case Type##Class: 3579 #define EXPR(Type, Base) 3580 #include "clang/AST/StmtNodes.inc" 3581 llvm_unreachable("unexpected Expr kind"); 3582 3583 case DependentScopeDeclRefExprClass: 3584 case CXXUnresolvedConstructExprClass: 3585 case CXXDependentScopeMemberExprClass: 3586 case UnresolvedLookupExprClass: 3587 case UnresolvedMemberExprClass: 3588 case PackExpansionExprClass: 3589 case SubstNonTypeTemplateParmPackExprClass: 3590 case FunctionParmPackExprClass: 3591 case TypoExprClass: 3592 case RecoveryExprClass: 3593 case CXXFoldExprClass: 3594 // Make a conservative assumption for dependent nodes. 3595 return IncludePossibleEffects; 3596 3597 case DeclRefExprClass: 3598 case ObjCIvarRefExprClass: 3599 case PredefinedExprClass: 3600 case IntegerLiteralClass: 3601 case FixedPointLiteralClass: 3602 case FloatingLiteralClass: 3603 case ImaginaryLiteralClass: 3604 case StringLiteralClass: 3605 case CharacterLiteralClass: 3606 case OffsetOfExprClass: 3607 case ImplicitValueInitExprClass: 3608 case UnaryExprOrTypeTraitExprClass: 3609 case AddrLabelExprClass: 3610 case GNUNullExprClass: 3611 case ArrayInitIndexExprClass: 3612 case NoInitExprClass: 3613 case CXXBoolLiteralExprClass: 3614 case CXXNullPtrLiteralExprClass: 3615 case CXXThisExprClass: 3616 case CXXScalarValueInitExprClass: 3617 case TypeTraitExprClass: 3618 case ArrayTypeTraitExprClass: 3619 case ExpressionTraitExprClass: 3620 case CXXNoexceptExprClass: 3621 case SizeOfPackExprClass: 3622 case ObjCStringLiteralClass: 3623 case ObjCEncodeExprClass: 3624 case ObjCBoolLiteralExprClass: 3625 case ObjCAvailabilityCheckExprClass: 3626 case CXXUuidofExprClass: 3627 case OpaqueValueExprClass: 3628 case SourceLocExprClass: 3629 case EmbedExprClass: 3630 case ConceptSpecializationExprClass: 3631 case RequiresExprClass: 3632 case SYCLUniqueStableNameExprClass: 3633 case PackIndexingExprClass: 3634 // These never have a side-effect. 3635 return false; 3636 3637 case ConstantExprClass: 3638 // FIXME: Move this into the "return false;" block above. 3639 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( 3640 Ctx, IncludePossibleEffects); 3641 3642 case CallExprClass: 3643 case CXXOperatorCallExprClass: 3644 case CXXMemberCallExprClass: 3645 case CUDAKernelCallExprClass: 3646 case UserDefinedLiteralClass: { 3647 // We don't know a call definitely has side effects, except for calls 3648 // to pure/const functions that definitely don't. 3649 // If the call itself is considered side-effect free, check the operands. 3650 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 3651 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 3652 if (IsPure || !IncludePossibleEffects) 3653 break; 3654 return true; 3655 } 3656 3657 case BlockExprClass: 3658 case CXXBindTemporaryExprClass: 3659 if (!IncludePossibleEffects) 3660 break; 3661 return true; 3662 3663 case MSPropertyRefExprClass: 3664 case MSPropertySubscriptExprClass: 3665 case CompoundAssignOperatorClass: 3666 case VAArgExprClass: 3667 case AtomicExprClass: 3668 case CXXThrowExprClass: 3669 case CXXNewExprClass: 3670 case CXXDeleteExprClass: 3671 case CoawaitExprClass: 3672 case DependentCoawaitExprClass: 3673 case CoyieldExprClass: 3674 // These always have a side-effect. 3675 return true; 3676 3677 case StmtExprClass: { 3678 // StmtExprs have a side-effect if any substatement does. 3679 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 3680 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 3681 return Finder.hasSideEffects(); 3682 } 3683 3684 case ExprWithCleanupsClass: 3685 if (IncludePossibleEffects) 3686 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 3687 return true; 3688 break; 3689 3690 case ParenExprClass: 3691 case ArraySubscriptExprClass: 3692 case MatrixSubscriptExprClass: 3693 case ArraySectionExprClass: 3694 case OMPArrayShapingExprClass: 3695 case OMPIteratorExprClass: 3696 case MemberExprClass: 3697 case ConditionalOperatorClass: 3698 case BinaryConditionalOperatorClass: 3699 case CompoundLiteralExprClass: 3700 case ExtVectorElementExprClass: 3701 case DesignatedInitExprClass: 3702 case DesignatedInitUpdateExprClass: 3703 case ArrayInitLoopExprClass: 3704 case ParenListExprClass: 3705 case CXXPseudoDestructorExprClass: 3706 case CXXRewrittenBinaryOperatorClass: 3707 case CXXStdInitializerListExprClass: 3708 case SubstNonTypeTemplateParmExprClass: 3709 case MaterializeTemporaryExprClass: 3710 case ShuffleVectorExprClass: 3711 case ConvertVectorExprClass: 3712 case AsTypeExprClass: 3713 case CXXParenListInitExprClass: 3714 // These have a side-effect if any subexpression does. 3715 break; 3716 3717 case UnaryOperatorClass: 3718 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 3719 return true; 3720 break; 3721 3722 case BinaryOperatorClass: 3723 if (cast<BinaryOperator>(this)->isAssignmentOp()) 3724 return true; 3725 break; 3726 3727 case InitListExprClass: 3728 // FIXME: The children for an InitListExpr doesn't include the array filler. 3729 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 3730 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 3731 return true; 3732 break; 3733 3734 case GenericSelectionExprClass: 3735 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3736 HasSideEffects(Ctx, IncludePossibleEffects); 3737 3738 case ChooseExprClass: 3739 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3740 Ctx, IncludePossibleEffects); 3741 3742 case CXXDefaultArgExprClass: 3743 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3744 Ctx, IncludePossibleEffects); 3745 3746 case CXXDefaultInitExprClass: { 3747 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3748 if (const Expr *E = FD->getInClassInitializer()) 3749 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3750 // If we've not yet parsed the initializer, assume it has side-effects. 3751 return true; 3752 } 3753 3754 case CXXDynamicCastExprClass: { 3755 // A dynamic_cast expression has side-effects if it can throw. 3756 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3757 if (DCE->getTypeAsWritten()->isReferenceType() && 3758 DCE->getCastKind() == CK_Dynamic) 3759 return true; 3760 } 3761 [[fallthrough]]; 3762 case ImplicitCastExprClass: 3763 case CStyleCastExprClass: 3764 case CXXStaticCastExprClass: 3765 case CXXReinterpretCastExprClass: 3766 case CXXConstCastExprClass: 3767 case CXXAddrspaceCastExprClass: 3768 case CXXFunctionalCastExprClass: 3769 case BuiltinBitCastExprClass: { 3770 // While volatile reads are side-effecting in both C and C++, we treat them 3771 // as having possible (not definite) side-effects. This allows idiomatic 3772 // code to behave without warning, such as sizeof(*v) for a volatile- 3773 // qualified pointer. 3774 if (!IncludePossibleEffects) 3775 break; 3776 3777 const CastExpr *CE = cast<CastExpr>(this); 3778 if (CE->getCastKind() == CK_LValueToRValue && 3779 CE->getSubExpr()->getType().isVolatileQualified()) 3780 return true; 3781 break; 3782 } 3783 3784 case CXXTypeidExprClass: { 3785 const auto *TE = cast<CXXTypeidExpr>(this); 3786 if (!TE->isPotentiallyEvaluated()) 3787 return false; 3788 3789 // If this type id expression can throw because of a null pointer, that is a 3790 // side-effect independent of if the operand has a side-effect 3791 if (IncludePossibleEffects && TE->hasNullCheck()) 3792 return true; 3793 3794 break; 3795 } 3796 3797 case CXXConstructExprClass: 3798 case CXXTemporaryObjectExprClass: { 3799 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3800 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3801 return true; 3802 // A trivial constructor does not add any side-effects of its own. Just look 3803 // at its arguments. 3804 break; 3805 } 3806 3807 case CXXInheritedCtorInitExprClass: { 3808 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3809 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3810 return true; 3811 break; 3812 } 3813 3814 case LambdaExprClass: { 3815 const LambdaExpr *LE = cast<LambdaExpr>(this); 3816 for (Expr *E : LE->capture_inits()) 3817 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) 3818 return true; 3819 return false; 3820 } 3821 3822 case PseudoObjectExprClass: { 3823 // Only look for side-effects in the semantic form, and look past 3824 // OpaqueValueExpr bindings in that form. 3825 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3826 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3827 E = PO->semantics_end(); 3828 I != E; ++I) { 3829 const Expr *Subexpr = *I; 3830 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3831 Subexpr = OVE->getSourceExpr(); 3832 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3833 return true; 3834 } 3835 return false; 3836 } 3837 3838 case ObjCBoxedExprClass: 3839 case ObjCArrayLiteralClass: 3840 case ObjCDictionaryLiteralClass: 3841 case ObjCSelectorExprClass: 3842 case ObjCProtocolExprClass: 3843 case ObjCIsaExprClass: 3844 case ObjCIndirectCopyRestoreExprClass: 3845 case ObjCSubscriptRefExprClass: 3846 case ObjCBridgedCastExprClass: 3847 case ObjCMessageExprClass: 3848 case ObjCPropertyRefExprClass: 3849 // FIXME: Classify these cases better. 3850 if (IncludePossibleEffects) 3851 return true; 3852 break; 3853 } 3854 3855 // Recurse to children. 3856 for (const Stmt *SubStmt : children()) 3857 if (SubStmt && 3858 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3859 return true; 3860 3861 return false; 3862 } 3863 3864 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { 3865 if (auto Call = dyn_cast<CallExpr>(this)) 3866 return Call->getFPFeaturesInEffect(LO); 3867 if (auto UO = dyn_cast<UnaryOperator>(this)) 3868 return UO->getFPFeaturesInEffect(LO); 3869 if (auto BO = dyn_cast<BinaryOperator>(this)) 3870 return BO->getFPFeaturesInEffect(LO); 3871 if (auto Cast = dyn_cast<CastExpr>(this)) 3872 return Cast->getFPFeaturesInEffect(LO); 3873 return FPOptions::defaultWithoutTrailingStorage(LO); 3874 } 3875 3876 namespace { 3877 /// Look for a call to a non-trivial function within an expression. 3878 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3879 { 3880 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3881 3882 bool NonTrivial; 3883 3884 public: 3885 explicit NonTrivialCallFinder(const ASTContext &Context) 3886 : Inherited(Context), NonTrivial(false) { } 3887 3888 bool hasNonTrivialCall() const { return NonTrivial; } 3889 3890 void VisitCallExpr(const CallExpr *E) { 3891 if (const CXXMethodDecl *Method 3892 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3893 if (Method->isTrivial()) { 3894 // Recurse to children of the call. 3895 Inherited::VisitStmt(E); 3896 return; 3897 } 3898 } 3899 3900 NonTrivial = true; 3901 } 3902 3903 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3904 if (E->getConstructor()->isTrivial()) { 3905 // Recurse to children of the call. 3906 Inherited::VisitStmt(E); 3907 return; 3908 } 3909 3910 NonTrivial = true; 3911 } 3912 3913 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3914 // Destructor of the temporary might be null if destructor declaration 3915 // is not valid. 3916 if (const CXXDestructorDecl *DtorDecl = 3917 E->getTemporary()->getDestructor()) { 3918 if (DtorDecl->isTrivial()) { 3919 Inherited::VisitStmt(E); 3920 return; 3921 } 3922 } 3923 3924 NonTrivial = true; 3925 } 3926 }; 3927 } 3928 3929 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3930 NonTrivialCallFinder Finder(Ctx); 3931 Finder.Visit(this); 3932 return Finder.hasNonTrivialCall(); 3933 } 3934 3935 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3936 /// pointer constant or not, as well as the specific kind of constant detected. 3937 /// Null pointer constants can be integer constant expressions with the 3938 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3939 /// (a GNU extension). 3940 Expr::NullPointerConstantKind 3941 Expr::isNullPointerConstant(ASTContext &Ctx, 3942 NullPointerConstantValueDependence NPC) const { 3943 if (isValueDependent() && 3944 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3945 // Error-dependent expr should never be a null pointer. 3946 if (containsErrors()) 3947 return NPCK_NotNull; 3948 switch (NPC) { 3949 case NPC_NeverValueDependent: 3950 llvm_unreachable("Unexpected value dependent expression!"); 3951 case NPC_ValueDependentIsNull: 3952 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3953 return NPCK_ZeroExpression; 3954 else 3955 return NPCK_NotNull; 3956 3957 case NPC_ValueDependentIsNotNull: 3958 return NPCK_NotNull; 3959 } 3960 } 3961 3962 // Strip off a cast to void*, if it exists. Except in C++. 3963 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3964 if (!Ctx.getLangOpts().CPlusPlus) { 3965 // Check that it is a cast to void*. 3966 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3967 QualType Pointee = PT->getPointeeType(); 3968 Qualifiers Qs = Pointee.getQualifiers(); 3969 // Only (void*)0 or equivalent are treated as nullptr. If pointee type 3970 // has non-default address space it is not treated as nullptr. 3971 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr 3972 // since it cannot be assigned to a pointer to constant address space. 3973 if (Ctx.getLangOpts().OpenCL && 3974 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) 3975 Qs.removeAddressSpace(); 3976 3977 if (Pointee->isVoidType() && Qs.empty() && // to void* 3978 CE->getSubExpr()->getType()->isIntegerType()) // from int 3979 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3980 } 3981 } 3982 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3983 // Ignore the ImplicitCastExpr type entirely. 3984 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3985 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3986 // Accept ((void*)0) as a null pointer constant, as many other 3987 // implementations do. 3988 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3989 } else if (const GenericSelectionExpr *GE = 3990 dyn_cast<GenericSelectionExpr>(this)) { 3991 if (GE->isResultDependent()) 3992 return NPCK_NotNull; 3993 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3994 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3995 if (CE->isConditionDependent()) 3996 return NPCK_NotNull; 3997 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3998 } else if (const CXXDefaultArgExpr *DefaultArg 3999 = dyn_cast<CXXDefaultArgExpr>(this)) { 4000 // See through default argument expressions. 4001 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 4002 } else if (const CXXDefaultInitExpr *DefaultInit 4003 = dyn_cast<CXXDefaultInitExpr>(this)) { 4004 // See through default initializer expressions. 4005 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 4006 } else if (isa<GNUNullExpr>(this)) { 4007 // The GNU __null extension is always a null pointer constant. 4008 return NPCK_GNUNull; 4009 } else if (const MaterializeTemporaryExpr *M 4010 = dyn_cast<MaterializeTemporaryExpr>(this)) { 4011 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); 4012 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 4013 if (const Expr *Source = OVE->getSourceExpr()) 4014 return Source->isNullPointerConstant(Ctx, NPC); 4015 } 4016 4017 // If the expression has no type information, it cannot be a null pointer 4018 // constant. 4019 if (getType().isNull()) 4020 return NPCK_NotNull; 4021 4022 // C++11/C23 nullptr_t is always a null pointer constant. 4023 if (getType()->isNullPtrType()) 4024 return NPCK_CXX11_nullptr; 4025 4026 if (const RecordType *UT = getType()->getAsUnionType()) 4027 if (!Ctx.getLangOpts().CPlusPlus11 && 4028 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4029 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 4030 const Expr *InitExpr = CLE->getInitializer(); 4031 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 4032 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 4033 } 4034 // This expression must be an integer type. 4035 if (!getType()->isIntegerType() || 4036 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 4037 return NPCK_NotNull; 4038 4039 if (Ctx.getLangOpts().CPlusPlus11) { 4040 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 4041 // value zero or a prvalue of type std::nullptr_t. 4042 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 4043 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 4044 if (Lit && !Lit->getValue()) 4045 return NPCK_ZeroLiteral; 4046 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 4047 return NPCK_NotNull; 4048 } else { 4049 // If we have an integer constant expression, we need to *evaluate* it and 4050 // test for the value 0. 4051 if (!isIntegerConstantExpr(Ctx)) 4052 return NPCK_NotNull; 4053 } 4054 4055 if (EvaluateKnownConstInt(Ctx) != 0) 4056 return NPCK_NotNull; 4057 4058 if (isa<IntegerLiteral>(this)) 4059 return NPCK_ZeroLiteral; 4060 return NPCK_ZeroExpression; 4061 } 4062 4063 /// If this expression is an l-value for an Objective C 4064 /// property, find the underlying property reference expression. 4065 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 4066 const Expr *E = this; 4067 while (true) { 4068 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && 4069 "expression is not a property reference"); 4070 E = E->IgnoreParenCasts(); 4071 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 4072 if (BO->getOpcode() == BO_Comma) { 4073 E = BO->getRHS(); 4074 continue; 4075 } 4076 } 4077 4078 break; 4079 } 4080 4081 return cast<ObjCPropertyRefExpr>(E); 4082 } 4083 4084 bool Expr::isObjCSelfExpr() const { 4085 const Expr *E = IgnoreParenImpCasts(); 4086 4087 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 4088 if (!DRE) 4089 return false; 4090 4091 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 4092 if (!Param) 4093 return false; 4094 4095 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 4096 if (!M) 4097 return false; 4098 4099 return M->getSelfDecl() == Param; 4100 } 4101 4102 FieldDecl *Expr::getSourceBitField() { 4103 Expr *E = this->IgnoreParens(); 4104 4105 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4106 if (ICE->getCastKind() == CK_LValueToRValue || 4107 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) 4108 E = ICE->getSubExpr()->IgnoreParens(); 4109 else 4110 break; 4111 } 4112 4113 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 4114 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 4115 if (Field->isBitField()) 4116 return Field; 4117 4118 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 4119 FieldDecl *Ivar = IvarRef->getDecl(); 4120 if (Ivar->isBitField()) 4121 return Ivar; 4122 } 4123 4124 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { 4125 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 4126 if (Field->isBitField()) 4127 return Field; 4128 4129 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) 4130 if (Expr *E = BD->getBinding()) 4131 return E->getSourceBitField(); 4132 } 4133 4134 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 4135 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 4136 return BinOp->getLHS()->getSourceBitField(); 4137 4138 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 4139 return BinOp->getRHS()->getSourceBitField(); 4140 } 4141 4142 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 4143 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 4144 return UnOp->getSubExpr()->getSourceBitField(); 4145 4146 return nullptr; 4147 } 4148 4149 EnumConstantDecl *Expr::getEnumConstantDecl() { 4150 Expr *E = this->IgnoreParenImpCasts(); 4151 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4152 return dyn_cast<EnumConstantDecl>(DRE->getDecl()); 4153 return nullptr; 4154 } 4155 4156 bool Expr::refersToVectorElement() const { 4157 // FIXME: Why do we not just look at the ObjectKind here? 4158 const Expr *E = this->IgnoreParens(); 4159 4160 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 4161 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) 4162 E = ICE->getSubExpr()->IgnoreParens(); 4163 else 4164 break; 4165 } 4166 4167 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 4168 return ASE->getBase()->getType()->isVectorType(); 4169 4170 if (isa<ExtVectorElementExpr>(E)) 4171 return true; 4172 4173 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 4174 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) 4175 if (auto *E = BD->getBinding()) 4176 return E->refersToVectorElement(); 4177 4178 return false; 4179 } 4180 4181 bool Expr::refersToGlobalRegisterVar() const { 4182 const Expr *E = this->IgnoreParenImpCasts(); 4183 4184 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 4185 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 4186 if (VD->getStorageClass() == SC_Register && 4187 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 4188 return true; 4189 4190 return false; 4191 } 4192 4193 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { 4194 E1 = E1->IgnoreParens(); 4195 E2 = E2->IgnoreParens(); 4196 4197 if (E1->getStmtClass() != E2->getStmtClass()) 4198 return false; 4199 4200 switch (E1->getStmtClass()) { 4201 default: 4202 return false; 4203 case CXXThisExprClass: 4204 return true; 4205 case DeclRefExprClass: { 4206 // DeclRefExpr without an ImplicitCastExpr can happen for integral 4207 // template parameters. 4208 const auto *DRE1 = cast<DeclRefExpr>(E1); 4209 const auto *DRE2 = cast<DeclRefExpr>(E2); 4210 return DRE1->isPRValue() && DRE2->isPRValue() && 4211 DRE1->getDecl() == DRE2->getDecl(); 4212 } 4213 case ImplicitCastExprClass: { 4214 // Peel off implicit casts. 4215 while (true) { 4216 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); 4217 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); 4218 if (!ICE1 || !ICE2) 4219 return false; 4220 if (ICE1->getCastKind() != ICE2->getCastKind()) 4221 return false; 4222 E1 = ICE1->getSubExpr()->IgnoreParens(); 4223 E2 = ICE2->getSubExpr()->IgnoreParens(); 4224 // The final cast must be one of these types. 4225 if (ICE1->getCastKind() == CK_LValueToRValue || 4226 ICE1->getCastKind() == CK_ArrayToPointerDecay || 4227 ICE1->getCastKind() == CK_FunctionToPointerDecay) { 4228 break; 4229 } 4230 } 4231 4232 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); 4233 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); 4234 if (DRE1 && DRE2) 4235 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); 4236 4237 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); 4238 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); 4239 if (Ivar1 && Ivar2) { 4240 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && 4241 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); 4242 } 4243 4244 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); 4245 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); 4246 if (Array1 && Array2) { 4247 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) 4248 return false; 4249 4250 auto Idx1 = Array1->getIdx(); 4251 auto Idx2 = Array2->getIdx(); 4252 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); 4253 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); 4254 if (Integer1 && Integer2) { 4255 if (!llvm::APInt::isSameValue(Integer1->getValue(), 4256 Integer2->getValue())) 4257 return false; 4258 } else { 4259 if (!isSameComparisonOperand(Idx1, Idx2)) 4260 return false; 4261 } 4262 4263 return true; 4264 } 4265 4266 // Walk the MemberExpr chain. 4267 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { 4268 const auto *ME1 = cast<MemberExpr>(E1); 4269 const auto *ME2 = cast<MemberExpr>(E2); 4270 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) 4271 return false; 4272 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) 4273 if (D->isStaticDataMember()) 4274 return true; 4275 E1 = ME1->getBase()->IgnoreParenImpCasts(); 4276 E2 = ME2->getBase()->IgnoreParenImpCasts(); 4277 } 4278 4279 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) 4280 return true; 4281 4282 // A static member variable can end the MemberExpr chain with either 4283 // a MemberExpr or a DeclRefExpr. 4284 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { 4285 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 4286 return DRE->getDecl(); 4287 if (const auto *ME = dyn_cast<MemberExpr>(E)) 4288 return ME->getMemberDecl(); 4289 return nullptr; 4290 }; 4291 4292 const ValueDecl *VD1 = getAnyDecl(E1); 4293 const ValueDecl *VD2 = getAnyDecl(E2); 4294 return declaresSameEntity(VD1, VD2); 4295 } 4296 } 4297 } 4298 4299 /// isArrow - Return true if the base expression is a pointer to vector, 4300 /// return false if the base expression is a vector. 4301 bool ExtVectorElementExpr::isArrow() const { 4302 return getBase()->getType()->isPointerType(); 4303 } 4304 4305 unsigned ExtVectorElementExpr::getNumElements() const { 4306 if (const VectorType *VT = getType()->getAs<VectorType>()) 4307 return VT->getNumElements(); 4308 return 1; 4309 } 4310 4311 /// containsDuplicateElements - Return true if any element access is repeated. 4312 bool ExtVectorElementExpr::containsDuplicateElements() const { 4313 // FIXME: Refactor this code to an accessor on the AST node which returns the 4314 // "type" of component access, and share with code below and in Sema. 4315 StringRef Comp = Accessor->getName(); 4316 4317 // Halving swizzles do not contain duplicate elements. 4318 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 4319 return false; 4320 4321 // Advance past s-char prefix on hex swizzles. 4322 if (Comp[0] == 's' || Comp[0] == 'S') 4323 Comp = Comp.substr(1); 4324 4325 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 4326 if (Comp.substr(i + 1).contains(Comp[i])) 4327 return true; 4328 4329 return false; 4330 } 4331 4332 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 4333 void ExtVectorElementExpr::getEncodedElementAccess( 4334 SmallVectorImpl<uint32_t> &Elts) const { 4335 StringRef Comp = Accessor->getName(); 4336 bool isNumericAccessor = false; 4337 if (Comp[0] == 's' || Comp[0] == 'S') { 4338 Comp = Comp.substr(1); 4339 isNumericAccessor = true; 4340 } 4341 4342 bool isHi = Comp == "hi"; 4343 bool isLo = Comp == "lo"; 4344 bool isEven = Comp == "even"; 4345 bool isOdd = Comp == "odd"; 4346 4347 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 4348 uint64_t Index; 4349 4350 if (isHi) 4351 Index = e + i; 4352 else if (isLo) 4353 Index = i; 4354 else if (isEven) 4355 Index = 2 * i; 4356 else if (isOdd) 4357 Index = 2 * i + 1; 4358 else 4359 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 4360 4361 Elts.push_back(Index); 4362 } 4363 } 4364 4365 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, 4366 QualType Type, SourceLocation BLoc, 4367 SourceLocation RP) 4368 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), 4369 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { 4370 SubExprs = new (C) Stmt*[args.size()]; 4371 for (unsigned i = 0; i != args.size(); i++) 4372 SubExprs[i] = args[i]; 4373 4374 setDependence(computeDependence(this)); 4375 } 4376 4377 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 4378 if (SubExprs) C.Deallocate(SubExprs); 4379 4380 this->NumExprs = Exprs.size(); 4381 SubExprs = new (C) Stmt*[NumExprs]; 4382 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 4383 } 4384 4385 GenericSelectionExpr::GenericSelectionExpr( 4386 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, 4387 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4388 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4389 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) 4390 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4391 AssocExprs[ResultIndex]->getValueKind(), 4392 AssocExprs[ResultIndex]->getObjectKind()), 4393 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4394 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4395 assert(AssocTypes.size() == AssocExprs.size() && 4396 "Must have the same number of association expressions" 4397 " and TypeSourceInfo!"); 4398 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4399 4400 GenericSelectionExprBits.GenericLoc = GenericLoc; 4401 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4402 ControllingExpr; 4403 std::copy(AssocExprs.begin(), AssocExprs.end(), 4404 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4405 std::copy(AssocTypes.begin(), AssocTypes.end(), 4406 getTrailingObjects<TypeSourceInfo *>() + 4407 getIndexOfStartOfAssociatedTypes()); 4408 4409 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4410 } 4411 4412 GenericSelectionExpr::GenericSelectionExpr( 4413 const ASTContext &, SourceLocation GenericLoc, 4414 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4415 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4416 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4417 unsigned ResultIndex) 4418 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), 4419 AssocExprs[ResultIndex]->getValueKind(), 4420 AssocExprs[ResultIndex]->getObjectKind()), 4421 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 4422 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4423 assert(AssocTypes.size() == AssocExprs.size() && 4424 "Must have the same number of association expressions" 4425 " and TypeSourceInfo!"); 4426 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); 4427 4428 GenericSelectionExprBits.GenericLoc = GenericLoc; 4429 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4430 ControllingType; 4431 std::copy(AssocExprs.begin(), AssocExprs.end(), 4432 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4433 std::copy(AssocTypes.begin(), AssocTypes.end(), 4434 getTrailingObjects<TypeSourceInfo *>() + 4435 getIndexOfStartOfAssociatedTypes()); 4436 4437 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4438 } 4439 4440 GenericSelectionExpr::GenericSelectionExpr( 4441 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4442 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4443 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4444 bool ContainsUnexpandedParameterPack) 4445 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4446 OK_Ordinary), 4447 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4448 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4449 assert(AssocTypes.size() == AssocExprs.size() && 4450 "Must have the same number of association expressions" 4451 " and TypeSourceInfo!"); 4452 4453 GenericSelectionExprBits.GenericLoc = GenericLoc; 4454 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = 4455 ControllingExpr; 4456 std::copy(AssocExprs.begin(), AssocExprs.end(), 4457 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4458 std::copy(AssocTypes.begin(), AssocTypes.end(), 4459 getTrailingObjects<TypeSourceInfo *>() + 4460 getIndexOfStartOfAssociatedTypes()); 4461 4462 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4463 } 4464 4465 GenericSelectionExpr::GenericSelectionExpr( 4466 const ASTContext &Context, SourceLocation GenericLoc, 4467 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4468 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4469 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) 4470 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, 4471 OK_Ordinary), 4472 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), 4473 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 4474 assert(AssocTypes.size() == AssocExprs.size() && 4475 "Must have the same number of association expressions" 4476 " and TypeSourceInfo!"); 4477 4478 GenericSelectionExprBits.GenericLoc = GenericLoc; 4479 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = 4480 ControllingType; 4481 std::copy(AssocExprs.begin(), AssocExprs.end(), 4482 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); 4483 std::copy(AssocTypes.begin(), AssocTypes.end(), 4484 getTrailingObjects<TypeSourceInfo *>() + 4485 getIndexOfStartOfAssociatedTypes()); 4486 4487 setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); 4488 } 4489 4490 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) 4491 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} 4492 4493 GenericSelectionExpr *GenericSelectionExpr::Create( 4494 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4495 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4496 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4497 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { 4498 unsigned NumAssocs = AssocExprs.size(); 4499 void *Mem = Context.Allocate( 4500 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4501 alignof(GenericSelectionExpr)); 4502 return new (Mem) GenericSelectionExpr( 4503 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4504 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4505 } 4506 4507 GenericSelectionExpr *GenericSelectionExpr::Create( 4508 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, 4509 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, 4510 SourceLocation DefaultLoc, SourceLocation RParenLoc, 4511 bool ContainsUnexpandedParameterPack) { 4512 unsigned NumAssocs = AssocExprs.size(); 4513 void *Mem = Context.Allocate( 4514 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4515 alignof(GenericSelectionExpr)); 4516 return new (Mem) GenericSelectionExpr( 4517 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, 4518 RParenLoc, ContainsUnexpandedParameterPack); 4519 } 4520 4521 GenericSelectionExpr *GenericSelectionExpr::Create( 4522 const ASTContext &Context, SourceLocation GenericLoc, 4523 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4524 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4525 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, 4526 unsigned ResultIndex) { 4527 unsigned NumAssocs = AssocExprs.size(); 4528 void *Mem = Context.Allocate( 4529 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4530 alignof(GenericSelectionExpr)); 4531 return new (Mem) GenericSelectionExpr( 4532 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4533 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); 4534 } 4535 4536 GenericSelectionExpr *GenericSelectionExpr::Create( 4537 const ASTContext &Context, SourceLocation GenericLoc, 4538 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, 4539 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, 4540 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { 4541 unsigned NumAssocs = AssocExprs.size(); 4542 void *Mem = Context.Allocate( 4543 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4544 alignof(GenericSelectionExpr)); 4545 return new (Mem) GenericSelectionExpr( 4546 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, 4547 RParenLoc, ContainsUnexpandedParameterPack); 4548 } 4549 4550 GenericSelectionExpr * 4551 GenericSelectionExpr::CreateEmpty(const ASTContext &Context, 4552 unsigned NumAssocs) { 4553 void *Mem = Context.Allocate( 4554 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), 4555 alignof(GenericSelectionExpr)); 4556 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); 4557 } 4558 4559 //===----------------------------------------------------------------------===// 4560 // DesignatedInitExpr 4561 //===----------------------------------------------------------------------===// 4562 4563 const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 4564 assert(isFieldDesignator() && "Only valid on a field designator"); 4565 if (FieldInfo.NameOrField & 0x01) 4566 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01); 4567 return getFieldDecl()->getIdentifier(); 4568 } 4569 4570 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 4571 llvm::ArrayRef<Designator> Designators, 4572 SourceLocation EqualOrColonLoc, 4573 bool GNUSyntax, 4574 ArrayRef<Expr *> IndexExprs, Expr *Init) 4575 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), 4576 Init->getObjectKind()), 4577 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 4578 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 4579 this->Designators = new (C) Designator[NumDesignators]; 4580 4581 // Record the initializer itself. 4582 child_iterator Child = child_begin(); 4583 *Child++ = Init; 4584 4585 // Copy the designators and their subexpressions, computing 4586 // value-dependence along the way. 4587 unsigned IndexIdx = 0; 4588 for (unsigned I = 0; I != NumDesignators; ++I) { 4589 this->Designators[I] = Designators[I]; 4590 if (this->Designators[I].isArrayDesignator()) { 4591 // Copy the index expressions into permanent storage. 4592 *Child++ = IndexExprs[IndexIdx++]; 4593 } else if (this->Designators[I].isArrayRangeDesignator()) { 4594 // Copy the start/end expressions into permanent storage. 4595 *Child++ = IndexExprs[IndexIdx++]; 4596 *Child++ = IndexExprs[IndexIdx++]; 4597 } 4598 } 4599 4600 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 4601 setDependence(computeDependence(this)); 4602 } 4603 4604 DesignatedInitExpr * 4605 DesignatedInitExpr::Create(const ASTContext &C, 4606 llvm::ArrayRef<Designator> Designators, 4607 ArrayRef<Expr*> IndexExprs, 4608 SourceLocation ColonOrEqualLoc, 4609 bool UsesColonSyntax, Expr *Init) { 4610 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 4611 alignof(DesignatedInitExpr)); 4612 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 4613 ColonOrEqualLoc, UsesColonSyntax, 4614 IndexExprs, Init); 4615 } 4616 4617 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 4618 unsigned NumIndexExprs) { 4619 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 4620 alignof(DesignatedInitExpr)); 4621 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 4622 } 4623 4624 void DesignatedInitExpr::setDesignators(const ASTContext &C, 4625 const Designator *Desigs, 4626 unsigned NumDesigs) { 4627 Designators = new (C) Designator[NumDesigs]; 4628 NumDesignators = NumDesigs; 4629 for (unsigned I = 0; I != NumDesigs; ++I) 4630 Designators[I] = Desigs[I]; 4631 } 4632 4633 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 4634 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 4635 if (size() == 1) 4636 return DIE->getDesignator(0)->getSourceRange(); 4637 return SourceRange(DIE->getDesignator(0)->getBeginLoc(), 4638 DIE->getDesignator(size() - 1)->getEndLoc()); 4639 } 4640 4641 SourceLocation DesignatedInitExpr::getBeginLoc() const { 4642 auto *DIE = const_cast<DesignatedInitExpr *>(this); 4643 Designator &First = *DIE->getDesignator(0); 4644 if (First.isFieldDesignator()) { 4645 // Skip past implicit designators for anonymous structs/unions, since 4646 // these do not have valid source locations. 4647 for (unsigned int i = 0; i < DIE->size(); i++) { 4648 Designator &Des = *DIE->getDesignator(i); 4649 SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc(); 4650 if (!retval.isValid()) 4651 continue; 4652 return retval; 4653 } 4654 } 4655 return First.getLBracketLoc(); 4656 } 4657 4658 SourceLocation DesignatedInitExpr::getEndLoc() const { 4659 return getInit()->getEndLoc(); 4660 } 4661 4662 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 4663 assert(D.isArrayDesignator() && "Requires array designator"); 4664 return getSubExpr(D.getArrayIndex() + 1); 4665 } 4666 4667 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 4668 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4669 return getSubExpr(D.getArrayIndex() + 1); 4670 } 4671 4672 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 4673 assert(D.isArrayRangeDesignator() && "Requires array range designator"); 4674 return getSubExpr(D.getArrayIndex() + 2); 4675 } 4676 4677 /// Replaces the designator at index @p Idx with the series 4678 /// of designators in [First, Last). 4679 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 4680 const Designator *First, 4681 const Designator *Last) { 4682 unsigned NumNewDesignators = Last - First; 4683 if (NumNewDesignators == 0) { 4684 std::copy_backward(Designators + Idx + 1, 4685 Designators + NumDesignators, 4686 Designators + Idx); 4687 --NumNewDesignators; 4688 return; 4689 } 4690 if (NumNewDesignators == 1) { 4691 Designators[Idx] = *First; 4692 return; 4693 } 4694 4695 Designator *NewDesignators 4696 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 4697 std::copy(Designators, Designators + Idx, NewDesignators); 4698 std::copy(First, Last, NewDesignators + Idx); 4699 std::copy(Designators + Idx + 1, Designators + NumDesignators, 4700 NewDesignators + Idx + NumNewDesignators); 4701 Designators = NewDesignators; 4702 NumDesignators = NumDesignators - 1 + NumNewDesignators; 4703 } 4704 4705 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 4706 SourceLocation lBraceLoc, 4707 Expr *baseExpr, 4708 SourceLocation rBraceLoc) 4709 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, 4710 OK_Ordinary) { 4711 BaseAndUpdaterExprs[0] = baseExpr; 4712 4713 InitListExpr *ILE = 4714 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc); 4715 ILE->setType(baseExpr->getType()); 4716 BaseAndUpdaterExprs[1] = ILE; 4717 4718 // FIXME: this is wrong, set it correctly. 4719 setDependence(ExprDependence::None); 4720 } 4721 4722 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { 4723 return getBase()->getBeginLoc(); 4724 } 4725 4726 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { 4727 return getBase()->getEndLoc(); 4728 } 4729 4730 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, 4731 SourceLocation RParenLoc) 4732 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), 4733 LParenLoc(LParenLoc), RParenLoc(RParenLoc) { 4734 ParenListExprBits.NumExprs = Exprs.size(); 4735 4736 for (unsigned I = 0, N = Exprs.size(); I != N; ++I) 4737 getTrailingObjects<Stmt *>()[I] = Exprs[I]; 4738 setDependence(computeDependence(this)); 4739 } 4740 4741 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) 4742 : Expr(ParenListExprClass, Empty) { 4743 ParenListExprBits.NumExprs = NumExprs; 4744 } 4745 4746 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, 4747 SourceLocation LParenLoc, 4748 ArrayRef<Expr *> Exprs, 4749 SourceLocation RParenLoc) { 4750 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), 4751 alignof(ParenListExpr)); 4752 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); 4753 } 4754 4755 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, 4756 unsigned NumExprs) { 4757 void *Mem = 4758 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); 4759 return new (Mem) ParenListExpr(EmptyShell(), NumExprs); 4760 } 4761 4762 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4763 Opcode opc, QualType ResTy, ExprValueKind VK, 4764 ExprObjectKind OK, SourceLocation opLoc, 4765 FPOptionsOverride FPFeatures) 4766 : Expr(BinaryOperatorClass, ResTy, VK, OK) { 4767 BinaryOperatorBits.Opc = opc; 4768 assert(!isCompoundAssignmentOp() && 4769 "Use CompoundAssignOperator for compound assignments"); 4770 BinaryOperatorBits.OpLoc = opLoc; 4771 SubExprs[LHS] = lhs; 4772 SubExprs[RHS] = rhs; 4773 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4774 if (hasStoredFPFeatures()) 4775 setStoredFPFeatures(FPFeatures); 4776 setDependence(computeDependence(this)); 4777 } 4778 4779 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, 4780 Opcode opc, QualType ResTy, ExprValueKind VK, 4781 ExprObjectKind OK, SourceLocation opLoc, 4782 FPOptionsOverride FPFeatures, bool dead2) 4783 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { 4784 BinaryOperatorBits.Opc = opc; 4785 assert(isCompoundAssignmentOp() && 4786 "Use CompoundAssignOperator for compound assignments"); 4787 BinaryOperatorBits.OpLoc = opLoc; 4788 SubExprs[LHS] = lhs; 4789 SubExprs[RHS] = rhs; 4790 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4791 if (hasStoredFPFeatures()) 4792 setStoredFPFeatures(FPFeatures); 4793 setDependence(computeDependence(this)); 4794 } 4795 4796 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, 4797 bool HasFPFeatures) { 4798 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4799 void *Mem = 4800 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4801 return new (Mem) BinaryOperator(EmptyShell()); 4802 } 4803 4804 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, 4805 Expr *rhs, Opcode opc, QualType ResTy, 4806 ExprValueKind VK, ExprObjectKind OK, 4807 SourceLocation opLoc, 4808 FPOptionsOverride FPFeatures) { 4809 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4810 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4811 void *Mem = 4812 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); 4813 return new (Mem) 4814 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); 4815 } 4816 4817 CompoundAssignOperator * 4818 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { 4819 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4820 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4821 alignof(CompoundAssignOperator)); 4822 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); 4823 } 4824 4825 CompoundAssignOperator * 4826 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, 4827 Opcode opc, QualType ResTy, ExprValueKind VK, 4828 ExprObjectKind OK, SourceLocation opLoc, 4829 FPOptionsOverride FPFeatures, 4830 QualType CompLHSType, QualType CompResultType) { 4831 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4832 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); 4833 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, 4834 alignof(CompoundAssignOperator)); 4835 return new (Mem) 4836 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, 4837 CompLHSType, CompResultType); 4838 } 4839 4840 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, 4841 bool hasFPFeatures) { 4842 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), 4843 alignof(UnaryOperator)); 4844 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); 4845 } 4846 4847 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, 4848 QualType type, ExprValueKind VK, ExprObjectKind OK, 4849 SourceLocation l, bool CanOverflow, 4850 FPOptionsOverride FPFeatures) 4851 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { 4852 UnaryOperatorBits.Opc = opc; 4853 UnaryOperatorBits.CanOverflow = CanOverflow; 4854 UnaryOperatorBits.Loc = l; 4855 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4856 if (hasStoredFPFeatures()) 4857 setStoredFPFeatures(FPFeatures); 4858 setDependence(computeDependence(this, Ctx)); 4859 } 4860 4861 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, 4862 Opcode opc, QualType type, 4863 ExprValueKind VK, ExprObjectKind OK, 4864 SourceLocation l, bool CanOverflow, 4865 FPOptionsOverride FPFeatures) { 4866 bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); 4867 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); 4868 void *Mem = C.Allocate(Size, alignof(UnaryOperator)); 4869 return new (Mem) 4870 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); 4871 } 4872 4873 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4874 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4875 e = ewc->getSubExpr(); 4876 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4877 e = m->getSubExpr(); 4878 e = cast<CXXConstructExpr>(e)->getArg(0); 4879 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4880 e = ice->getSubExpr(); 4881 return cast<OpaqueValueExpr>(e); 4882 } 4883 4884 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4885 EmptyShell sh, 4886 unsigned numSemanticExprs) { 4887 void *buffer = 4888 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 4889 alignof(PseudoObjectExpr)); 4890 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4891 } 4892 4893 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4894 : Expr(PseudoObjectExprClass, shell) { 4895 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4896 } 4897 4898 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4899 ArrayRef<Expr*> semantics, 4900 unsigned resultIndex) { 4901 assert(syntax && "no syntactic expression!"); 4902 assert(semantics.size() && "no semantic expressions!"); 4903 4904 QualType type; 4905 ExprValueKind VK; 4906 if (resultIndex == NoResult) { 4907 type = C.VoidTy; 4908 VK = VK_PRValue; 4909 } else { 4910 assert(resultIndex < semantics.size()); 4911 type = semantics[resultIndex]->getType(); 4912 VK = semantics[resultIndex]->getValueKind(); 4913 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4914 } 4915 4916 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 4917 alignof(PseudoObjectExpr)); 4918 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4919 resultIndex); 4920 } 4921 4922 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4923 Expr *syntax, ArrayRef<Expr *> semantics, 4924 unsigned resultIndex) 4925 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { 4926 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4927 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4928 4929 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4930 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4931 getSubExprsBuffer()[i] = E; 4932 4933 if (isa<OpaqueValueExpr>(E)) 4934 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4935 "opaque-value semantic expressions for pseudo-object " 4936 "operations must have sources"); 4937 } 4938 4939 setDependence(computeDependence(this)); 4940 } 4941 4942 //===----------------------------------------------------------------------===// 4943 // Child Iterators for iterating over subexpressions/substatements 4944 //===----------------------------------------------------------------------===// 4945 4946 // UnaryExprOrTypeTraitExpr 4947 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4948 const_child_range CCR = 4949 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); 4950 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); 4951 } 4952 4953 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { 4954 // If this is of a type and the type is a VLA type (and not a typedef), the 4955 // size expression of the VLA needs to be treated as an executable expression. 4956 // Why isn't this weirdness documented better in StmtIterator? 4957 if (isArgumentType()) { 4958 if (const VariableArrayType *T = 4959 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) 4960 return const_child_range(const_child_iterator(T), const_child_iterator()); 4961 return const_child_range(const_child_iterator(), const_child_iterator()); 4962 } 4963 return const_child_range(&Argument.Ex, &Argument.Ex + 1); 4964 } 4965 4966 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, 4967 AtomicOp op, SourceLocation RP) 4968 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), 4969 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { 4970 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4971 for (unsigned i = 0; i != args.size(); i++) 4972 SubExprs[i] = args[i]; 4973 setDependence(computeDependence(this)); 4974 } 4975 4976 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4977 switch (Op) { 4978 case AO__c11_atomic_init: 4979 case AO__opencl_atomic_init: 4980 case AO__c11_atomic_load: 4981 case AO__atomic_load_n: 4982 return 2; 4983 4984 case AO__scoped_atomic_load_n: 4985 case AO__opencl_atomic_load: 4986 case AO__hip_atomic_load: 4987 case AO__c11_atomic_store: 4988 case AO__c11_atomic_exchange: 4989 case AO__atomic_load: 4990 case AO__atomic_store: 4991 case AO__atomic_store_n: 4992 case AO__atomic_exchange_n: 4993 case AO__c11_atomic_fetch_add: 4994 case AO__c11_atomic_fetch_sub: 4995 case AO__c11_atomic_fetch_and: 4996 case AO__c11_atomic_fetch_or: 4997 case AO__c11_atomic_fetch_xor: 4998 case AO__c11_atomic_fetch_nand: 4999 case AO__c11_atomic_fetch_max: 5000 case AO__c11_atomic_fetch_min: 5001 case AO__atomic_fetch_add: 5002 case AO__atomic_fetch_sub: 5003 case AO__atomic_fetch_and: 5004 case AO__atomic_fetch_or: 5005 case AO__atomic_fetch_xor: 5006 case AO__atomic_fetch_nand: 5007 case AO__atomic_add_fetch: 5008 case AO__atomic_sub_fetch: 5009 case AO__atomic_and_fetch: 5010 case AO__atomic_or_fetch: 5011 case AO__atomic_xor_fetch: 5012 case AO__atomic_nand_fetch: 5013 case AO__atomic_min_fetch: 5014 case AO__atomic_max_fetch: 5015 case AO__atomic_fetch_min: 5016 case AO__atomic_fetch_max: 5017 return 3; 5018 5019 case AO__scoped_atomic_load: 5020 case AO__scoped_atomic_store: 5021 case AO__scoped_atomic_store_n: 5022 case AO__scoped_atomic_fetch_add: 5023 case AO__scoped_atomic_fetch_sub: 5024 case AO__scoped_atomic_fetch_and: 5025 case AO__scoped_atomic_fetch_or: 5026 case AO__scoped_atomic_fetch_xor: 5027 case AO__scoped_atomic_fetch_nand: 5028 case AO__scoped_atomic_add_fetch: 5029 case AO__scoped_atomic_sub_fetch: 5030 case AO__scoped_atomic_and_fetch: 5031 case AO__scoped_atomic_or_fetch: 5032 case AO__scoped_atomic_xor_fetch: 5033 case AO__scoped_atomic_nand_fetch: 5034 case AO__scoped_atomic_min_fetch: 5035 case AO__scoped_atomic_max_fetch: 5036 case AO__scoped_atomic_fetch_min: 5037 case AO__scoped_atomic_fetch_max: 5038 case AO__scoped_atomic_exchange_n: 5039 case AO__hip_atomic_exchange: 5040 case AO__hip_atomic_fetch_add: 5041 case AO__hip_atomic_fetch_sub: 5042 case AO__hip_atomic_fetch_and: 5043 case AO__hip_atomic_fetch_or: 5044 case AO__hip_atomic_fetch_xor: 5045 case AO__hip_atomic_fetch_min: 5046 case AO__hip_atomic_fetch_max: 5047 case AO__opencl_atomic_store: 5048 case AO__hip_atomic_store: 5049 case AO__opencl_atomic_exchange: 5050 case AO__opencl_atomic_fetch_add: 5051 case AO__opencl_atomic_fetch_sub: 5052 case AO__opencl_atomic_fetch_and: 5053 case AO__opencl_atomic_fetch_or: 5054 case AO__opencl_atomic_fetch_xor: 5055 case AO__opencl_atomic_fetch_min: 5056 case AO__opencl_atomic_fetch_max: 5057 case AO__atomic_exchange: 5058 return 4; 5059 5060 case AO__scoped_atomic_exchange: 5061 case AO__c11_atomic_compare_exchange_strong: 5062 case AO__c11_atomic_compare_exchange_weak: 5063 return 5; 5064 case AO__hip_atomic_compare_exchange_strong: 5065 case AO__opencl_atomic_compare_exchange_strong: 5066 case AO__opencl_atomic_compare_exchange_weak: 5067 case AO__hip_atomic_compare_exchange_weak: 5068 case AO__atomic_compare_exchange: 5069 case AO__atomic_compare_exchange_n: 5070 return 6; 5071 5072 case AO__scoped_atomic_compare_exchange: 5073 case AO__scoped_atomic_compare_exchange_n: 5074 return 7; 5075 } 5076 llvm_unreachable("unknown atomic op"); 5077 } 5078 5079 QualType AtomicExpr::getValueType() const { 5080 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); 5081 if (auto AT = T->getAs<AtomicType>()) 5082 return AT->getValueType(); 5083 return T; 5084 } 5085 5086 QualType ArraySectionExpr::getBaseOriginalType(const Expr *Base) { 5087 unsigned ArraySectionCount = 0; 5088 while (auto *OASE = dyn_cast<ArraySectionExpr>(Base->IgnoreParens())) { 5089 Base = OASE->getBase(); 5090 ++ArraySectionCount; 5091 } 5092 while (auto *ASE = 5093 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 5094 Base = ASE->getBase(); 5095 ++ArraySectionCount; 5096 } 5097 Base = Base->IgnoreParenImpCasts(); 5098 auto OriginalTy = Base->getType(); 5099 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 5100 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 5101 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 5102 5103 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 5104 if (OriginalTy->isAnyPointerType()) 5105 OriginalTy = OriginalTy->getPointeeType(); 5106 else if (OriginalTy->isArrayType()) 5107 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 5108 else 5109 return {}; 5110 } 5111 return OriginalTy; 5112 } 5113 5114 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, 5115 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) 5116 : Expr(RecoveryExprClass, T.getNonReferenceType(), 5117 T->isDependentType() ? VK_LValue : getValueKindForType(T), 5118 OK_Ordinary), 5119 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { 5120 assert(!T.isNull()); 5121 assert(!llvm::is_contained(SubExprs, nullptr)); 5122 5123 llvm::copy(SubExprs, getTrailingObjects<Expr *>()); 5124 setDependence(computeDependence(this)); 5125 } 5126 5127 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, 5128 SourceLocation BeginLoc, 5129 SourceLocation EndLoc, 5130 ArrayRef<Expr *> SubExprs) { 5131 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), 5132 alignof(RecoveryExpr)); 5133 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); 5134 } 5135 5136 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { 5137 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), 5138 alignof(RecoveryExpr)); 5139 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); 5140 } 5141 5142 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { 5143 assert( 5144 NumDims == Dims.size() && 5145 "Preallocated number of dimensions is different from the provided one."); 5146 llvm::copy(Dims, getTrailingObjects<Expr *>()); 5147 } 5148 5149 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { 5150 assert( 5151 NumDims == BR.size() && 5152 "Preallocated number of dimensions is different from the provided one."); 5153 llvm::copy(BR, getTrailingObjects<SourceRange>()); 5154 } 5155 5156 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, 5157 SourceLocation L, SourceLocation R, 5158 ArrayRef<Expr *> Dims) 5159 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), 5160 RPLoc(R), NumDims(Dims.size()) { 5161 setBase(Op); 5162 setDimensions(Dims); 5163 setDependence(computeDependence(this)); 5164 } 5165 5166 OMPArrayShapingExpr * 5167 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, 5168 SourceLocation L, SourceLocation R, 5169 ArrayRef<Expr *> Dims, 5170 ArrayRef<SourceRange> BracketRanges) { 5171 assert(Dims.size() == BracketRanges.size() && 5172 "Different number of dimensions and brackets ranges."); 5173 void *Mem = Context.Allocate( 5174 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), 5175 alignof(OMPArrayShapingExpr)); 5176 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); 5177 E->setBracketsRanges(BracketRanges); 5178 return E; 5179 } 5180 5181 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, 5182 unsigned NumDims) { 5183 void *Mem = Context.Allocate( 5184 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), 5185 alignof(OMPArrayShapingExpr)); 5186 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); 5187 } 5188 5189 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { 5190 assert(I < NumIterators && 5191 "Idx is greater or equal the number of iterators definitions."); 5192 getTrailingObjects<Decl *>()[I] = D; 5193 } 5194 5195 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { 5196 assert(I < NumIterators && 5197 "Idx is greater or equal the number of iterators definitions."); 5198 getTrailingObjects< 5199 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5200 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; 5201 } 5202 5203 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, 5204 SourceLocation ColonLoc, Expr *End, 5205 SourceLocation SecondColonLoc, 5206 Expr *Step) { 5207 assert(I < NumIterators && 5208 "Idx is greater or equal the number of iterators definitions."); 5209 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5210 static_cast<int>(RangeExprOffset::Begin)] = 5211 Begin; 5212 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5213 static_cast<int>(RangeExprOffset::End)] = End; 5214 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + 5215 static_cast<int>(RangeExprOffset::Step)] = Step; 5216 getTrailingObjects< 5217 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5218 static_cast<int>(RangeLocOffset::FirstColonLoc)] = 5219 ColonLoc; 5220 getTrailingObjects< 5221 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5222 static_cast<int>(RangeLocOffset::SecondColonLoc)] = 5223 SecondColonLoc; 5224 } 5225 5226 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { 5227 return getTrailingObjects<Decl *>()[I]; 5228 } 5229 5230 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { 5231 IteratorRange Res; 5232 Res.Begin = 5233 getTrailingObjects<Expr *>()[I * static_cast<int>( 5234 RangeExprOffset::Total) + 5235 static_cast<int>(RangeExprOffset::Begin)]; 5236 Res.End = 5237 getTrailingObjects<Expr *>()[I * static_cast<int>( 5238 RangeExprOffset::Total) + 5239 static_cast<int>(RangeExprOffset::End)]; 5240 Res.Step = 5241 getTrailingObjects<Expr *>()[I * static_cast<int>( 5242 RangeExprOffset::Total) + 5243 static_cast<int>(RangeExprOffset::Step)]; 5244 return Res; 5245 } 5246 5247 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { 5248 return getTrailingObjects< 5249 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5250 static_cast<int>(RangeLocOffset::AssignLoc)]; 5251 } 5252 5253 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { 5254 return getTrailingObjects< 5255 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5256 static_cast<int>(RangeLocOffset::FirstColonLoc)]; 5257 } 5258 5259 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { 5260 return getTrailingObjects< 5261 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + 5262 static_cast<int>(RangeLocOffset::SecondColonLoc)]; 5263 } 5264 5265 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { 5266 getTrailingObjects<OMPIteratorHelperData>()[I] = D; 5267 } 5268 5269 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { 5270 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5271 } 5272 5273 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { 5274 return getTrailingObjects<OMPIteratorHelperData>()[I]; 5275 } 5276 5277 OMPIteratorExpr::OMPIteratorExpr( 5278 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, 5279 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5280 ArrayRef<OMPIteratorHelperData> Helpers) 5281 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), 5282 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), 5283 NumIterators(Data.size()) { 5284 for (unsigned I = 0, E = Data.size(); I < E; ++I) { 5285 const IteratorDefinition &D = Data[I]; 5286 setIteratorDeclaration(I, D.IteratorDecl); 5287 setAssignmentLoc(I, D.AssignmentLoc); 5288 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, 5289 D.SecondColonLoc, D.Range.Step); 5290 setHelper(I, Helpers[I]); 5291 } 5292 setDependence(computeDependence(this)); 5293 } 5294 5295 OMPIteratorExpr * 5296 OMPIteratorExpr::Create(const ASTContext &Context, QualType T, 5297 SourceLocation IteratorKwLoc, SourceLocation L, 5298 SourceLocation R, 5299 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, 5300 ArrayRef<OMPIteratorHelperData> Helpers) { 5301 assert(Data.size() == Helpers.size() && 5302 "Data and helpers must have the same size."); 5303 void *Mem = Context.Allocate( 5304 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5305 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), 5306 Data.size() * static_cast<int>(RangeLocOffset::Total), 5307 Helpers.size()), 5308 alignof(OMPIteratorExpr)); 5309 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); 5310 } 5311 5312 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, 5313 unsigned NumIterators) { 5314 void *Mem = Context.Allocate( 5315 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( 5316 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), 5317 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), 5318 alignof(OMPIteratorExpr)); 5319 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); 5320 } 5321