xref: /freebsd/contrib/llvm-project/clang/lib/AST/Expr.cpp (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cstring>
39 using namespace clang;
40 
41 const Expr *Expr::getBestDynamicClassTypeExpr() const {
42   const Expr *E = this;
43   while (true) {
44     E = E->IgnoreParenBaseCasts();
45 
46     // Follow the RHS of a comma operator.
47     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
48       if (BO->getOpcode() == BO_Comma) {
49         E = BO->getRHS();
50         continue;
51       }
52     }
53 
54     // Step into initializer for materialized temporaries.
55     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
56       E = MTE->getSubExpr();
57       continue;
58     }
59 
60     break;
61   }
62 
63   return E;
64 }
65 
66 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
67   const Expr *E = getBestDynamicClassTypeExpr();
68   QualType DerivedType = E->getType();
69   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
70     DerivedType = PTy->getPointeeType();
71 
72   if (DerivedType->isDependentType())
73     return nullptr;
74 
75   const RecordType *Ty = DerivedType->castAs<RecordType>();
76   Decl *D = Ty->getDecl();
77   return cast<CXXRecordDecl>(D);
78 }
79 
80 const Expr *Expr::skipRValueSubobjectAdjustments(
81     SmallVectorImpl<const Expr *> &CommaLHSs,
82     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
83   const Expr *E = this;
84   while (true) {
85     E = E->IgnoreParens();
86 
87     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
88       if ((CE->getCastKind() == CK_DerivedToBase ||
89            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
90           E->getType()->isRecordType()) {
91         E = CE->getSubExpr();
92         auto *Derived =
93             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
94         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
95         continue;
96       }
97 
98       if (CE->getCastKind() == CK_NoOp) {
99         E = CE->getSubExpr();
100         continue;
101       }
102     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
103       if (!ME->isArrow()) {
104         assert(ME->getBase()->getType()->isRecordType());
105         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
106           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
107             E = ME->getBase();
108             Adjustments.push_back(SubobjectAdjustment(Field));
109             continue;
110           }
111         }
112       }
113     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
114       if (BO->getOpcode() == BO_PtrMemD) {
115         assert(BO->getRHS()->isPRValue());
116         E = BO->getLHS();
117         const MemberPointerType *MPT =
118           BO->getRHS()->getType()->getAs<MemberPointerType>();
119         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
120         continue;
121       }
122       if (BO->getOpcode() == BO_Comma) {
123         CommaLHSs.push_back(BO->getLHS());
124         E = BO->getRHS();
125         continue;
126       }
127     }
128 
129     // Nothing changed.
130     break;
131   }
132   return E;
133 }
134 
135 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
136   const Expr *E = IgnoreParens();
137 
138   // If this value has _Bool type, it is obvious 0/1.
139   if (E->getType()->isBooleanType()) return true;
140   // If this is a non-scalar-integer type, we don't care enough to try.
141   if (!E->getType()->isIntegralOrEnumerationType()) return false;
142 
143   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
144     switch (UO->getOpcode()) {
145     case UO_Plus:
146       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
147     case UO_LNot:
148       return true;
149     default:
150       return false;
151     }
152   }
153 
154   // Only look through implicit casts.  If the user writes
155   // '(int) (a && b)' treat it as an arbitrary int.
156   // FIXME: Should we look through any cast expression in !Semantic mode?
157   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
158     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
159 
160   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
161     switch (BO->getOpcode()) {
162     default: return false;
163     case BO_LT:   // Relational operators.
164     case BO_GT:
165     case BO_LE:
166     case BO_GE:
167     case BO_EQ:   // Equality operators.
168     case BO_NE:
169     case BO_LAnd: // AND operator.
170     case BO_LOr:  // Logical OR operator.
171       return true;
172 
173     case BO_And:  // Bitwise AND operator.
174     case BO_Xor:  // Bitwise XOR operator.
175     case BO_Or:   // Bitwise OR operator.
176       // Handle things like (x==2)|(y==12).
177       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
178              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
179 
180     case BO_Comma:
181     case BO_Assign:
182       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
183     }
184   }
185 
186   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
187     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
188            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
189 
190   if (isa<ObjCBoolLiteralExpr>(E))
191     return true;
192 
193   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
194     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
195 
196   if (const FieldDecl *FD = E->getSourceBitField())
197     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
198         !FD->getBitWidth()->isValueDependent() &&
199         FD->getBitWidthValue(FD->getASTContext()) == 1)
200       return true;
201 
202   return false;
203 }
204 
205 // Amusing macro metaprogramming hack: check whether a class provides
206 // a more specific implementation of getExprLoc().
207 //
208 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
209 namespace {
210   /// This implementation is used when a class provides a custom
211   /// implementation of getExprLoc.
212   template <class E, class T>
213   SourceLocation getExprLocImpl(const Expr *expr,
214                                 SourceLocation (T::*v)() const) {
215     return static_cast<const E*>(expr)->getExprLoc();
216   }
217 
218   /// This implementation is used when a class doesn't provide
219   /// a custom implementation of getExprLoc.  Overload resolution
220   /// should pick it over the implementation above because it's
221   /// more specialized according to function template partial ordering.
222   template <class E>
223   SourceLocation getExprLocImpl(const Expr *expr,
224                                 SourceLocation (Expr::*v)() const) {
225     return static_cast<const E *>(expr)->getBeginLoc();
226   }
227 }
228 
229 SourceLocation Expr::getExprLoc() const {
230   switch (getStmtClass()) {
231   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
232 #define ABSTRACT_STMT(type)
233 #define STMT(type, base) \
234   case Stmt::type##Class: break;
235 #define EXPR(type, base) \
236   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
237 #include "clang/AST/StmtNodes.inc"
238   }
239   llvm_unreachable("unknown expression kind");
240 }
241 
242 //===----------------------------------------------------------------------===//
243 // Primary Expressions.
244 //===----------------------------------------------------------------------===//
245 
246 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
247   assert((Kind == ConstantExpr::RSK_APValue ||
248           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
249          "Invalid StorageKind Value");
250   (void)Kind;
251 }
252 
253 ConstantExpr::ResultStorageKind
254 ConstantExpr::getStorageKind(const APValue &Value) {
255   switch (Value.getKind()) {
256   case APValue::None:
257   case APValue::Indeterminate:
258     return ConstantExpr::RSK_None;
259   case APValue::Int:
260     if (!Value.getInt().needsCleanup())
261       return ConstantExpr::RSK_Int64;
262     LLVM_FALLTHROUGH;
263   default:
264     return ConstantExpr::RSK_APValue;
265   }
266 }
267 
268 ConstantExpr::ResultStorageKind
269 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
270   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
271     return ConstantExpr::RSK_Int64;
272   return ConstantExpr::RSK_APValue;
273 }
274 
275 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
276                            bool IsImmediateInvocation)
277     : FullExpr(ConstantExprClass, SubExpr) {
278   ConstantExprBits.ResultKind = StorageKind;
279   ConstantExprBits.APValueKind = APValue::None;
280   ConstantExprBits.IsUnsigned = false;
281   ConstantExprBits.BitWidth = 0;
282   ConstantExprBits.HasCleanup = false;
283   ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
284 
285   if (StorageKind == ConstantExpr::RSK_APValue)
286     ::new (getTrailingObjects<APValue>()) APValue();
287 }
288 
289 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
290                                    ResultStorageKind StorageKind,
291                                    bool IsImmediateInvocation) {
292   assert(!isa<ConstantExpr>(E));
293   AssertResultStorageKind(StorageKind);
294 
295   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
296       StorageKind == ConstantExpr::RSK_APValue,
297       StorageKind == ConstantExpr::RSK_Int64);
298   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
299   return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
300 }
301 
302 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
303                                    const APValue &Result) {
304   ResultStorageKind StorageKind = getStorageKind(Result);
305   ConstantExpr *Self = Create(Context, E, StorageKind);
306   Self->SetResult(Result, Context);
307   return Self;
308 }
309 
310 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
311     : FullExpr(ConstantExprClass, Empty) {
312   ConstantExprBits.ResultKind = StorageKind;
313 
314   if (StorageKind == ConstantExpr::RSK_APValue)
315     ::new (getTrailingObjects<APValue>()) APValue();
316 }
317 
318 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
319                                         ResultStorageKind StorageKind) {
320   AssertResultStorageKind(StorageKind);
321 
322   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
323       StorageKind == ConstantExpr::RSK_APValue,
324       StorageKind == ConstantExpr::RSK_Int64);
325   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
326   return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
327 }
328 
329 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
330   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
331          "Invalid storage for this value kind");
332   ConstantExprBits.APValueKind = Value.getKind();
333   switch (ConstantExprBits.ResultKind) {
334   case RSK_None:
335     return;
336   case RSK_Int64:
337     Int64Result() = *Value.getInt().getRawData();
338     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
339     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
340     return;
341   case RSK_APValue:
342     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
343       ConstantExprBits.HasCleanup = true;
344       Context.addDestruction(&APValueResult());
345     }
346     APValueResult() = std::move(Value);
347     return;
348   }
349   llvm_unreachable("Invalid ResultKind Bits");
350 }
351 
352 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
353   switch (ConstantExprBits.ResultKind) {
354   case ConstantExpr::RSK_APValue:
355     return APValueResult().getInt();
356   case ConstantExpr::RSK_Int64:
357     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
358                         ConstantExprBits.IsUnsigned);
359   default:
360     llvm_unreachable("invalid Accessor");
361   }
362 }
363 
364 APValue ConstantExpr::getAPValueResult() const {
365 
366   switch (ConstantExprBits.ResultKind) {
367   case ConstantExpr::RSK_APValue:
368     return APValueResult();
369   case ConstantExpr::RSK_Int64:
370     return APValue(
371         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
372                      ConstantExprBits.IsUnsigned));
373   case ConstantExpr::RSK_None:
374     if (ConstantExprBits.APValueKind == APValue::Indeterminate)
375       return APValue::IndeterminateValue();
376     return APValue();
377   }
378   llvm_unreachable("invalid ResultKind");
379 }
380 
381 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
382                          bool RefersToEnclosingVariableOrCapture, QualType T,
383                          ExprValueKind VK, SourceLocation L,
384                          const DeclarationNameLoc &LocInfo,
385                          NonOdrUseReason NOUR)
386     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
387   DeclRefExprBits.HasQualifier = false;
388   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
389   DeclRefExprBits.HasFoundDecl = false;
390   DeclRefExprBits.HadMultipleCandidates = false;
391   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
392       RefersToEnclosingVariableOrCapture;
393   DeclRefExprBits.NonOdrUseReason = NOUR;
394   DeclRefExprBits.Loc = L;
395   setDependence(computeDependence(this, Ctx));
396 }
397 
398 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
399                          NestedNameSpecifierLoc QualifierLoc,
400                          SourceLocation TemplateKWLoc, ValueDecl *D,
401                          bool RefersToEnclosingVariableOrCapture,
402                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
403                          const TemplateArgumentListInfo *TemplateArgs,
404                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
405     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
406       DNLoc(NameInfo.getInfo()) {
407   DeclRefExprBits.Loc = NameInfo.getLoc();
408   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
409   if (QualifierLoc)
410     new (getTrailingObjects<NestedNameSpecifierLoc>())
411         NestedNameSpecifierLoc(QualifierLoc);
412   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
413   if (FoundD)
414     *getTrailingObjects<NamedDecl *>() = FoundD;
415   DeclRefExprBits.HasTemplateKWAndArgsInfo
416     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
417   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
418       RefersToEnclosingVariableOrCapture;
419   DeclRefExprBits.NonOdrUseReason = NOUR;
420   if (TemplateArgs) {
421     auto Deps = TemplateArgumentDependence::None;
422     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
423         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
424         Deps);
425     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
426            "built a DeclRefExpr with dependent template args");
427   } else if (TemplateKWLoc.isValid()) {
428     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
429         TemplateKWLoc);
430   }
431   DeclRefExprBits.HadMultipleCandidates = 0;
432   setDependence(computeDependence(this, Ctx));
433 }
434 
435 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
436                                  NestedNameSpecifierLoc QualifierLoc,
437                                  SourceLocation TemplateKWLoc, ValueDecl *D,
438                                  bool RefersToEnclosingVariableOrCapture,
439                                  SourceLocation NameLoc, QualType T,
440                                  ExprValueKind VK, NamedDecl *FoundD,
441                                  const TemplateArgumentListInfo *TemplateArgs,
442                                  NonOdrUseReason NOUR) {
443   return Create(Context, QualifierLoc, TemplateKWLoc, D,
444                 RefersToEnclosingVariableOrCapture,
445                 DeclarationNameInfo(D->getDeclName(), NameLoc),
446                 T, VK, FoundD, TemplateArgs, NOUR);
447 }
448 
449 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
450                                  NestedNameSpecifierLoc QualifierLoc,
451                                  SourceLocation TemplateKWLoc, ValueDecl *D,
452                                  bool RefersToEnclosingVariableOrCapture,
453                                  const DeclarationNameInfo &NameInfo,
454                                  QualType T, ExprValueKind VK,
455                                  NamedDecl *FoundD,
456                                  const TemplateArgumentListInfo *TemplateArgs,
457                                  NonOdrUseReason NOUR) {
458   // Filter out cases where the found Decl is the same as the value refenenced.
459   if (D == FoundD)
460     FoundD = nullptr;
461 
462   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
463   std::size_t Size =
464       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
465                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
466           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
467           HasTemplateKWAndArgsInfo ? 1 : 0,
468           TemplateArgs ? TemplateArgs->size() : 0);
469 
470   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
471   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
472                                RefersToEnclosingVariableOrCapture, NameInfo,
473                                FoundD, TemplateArgs, T, VK, NOUR);
474 }
475 
476 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
477                                       bool HasQualifier,
478                                       bool HasFoundDecl,
479                                       bool HasTemplateKWAndArgsInfo,
480                                       unsigned NumTemplateArgs) {
481   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
482   std::size_t Size =
483       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
484                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
485           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
486           NumTemplateArgs);
487   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
488   return new (Mem) DeclRefExpr(EmptyShell());
489 }
490 
491 void DeclRefExpr::setDecl(ValueDecl *NewD) {
492   D = NewD;
493   if (getType()->isUndeducedType())
494     setType(NewD->getType());
495   setDependence(computeDependence(this, NewD->getASTContext()));
496 }
497 
498 SourceLocation DeclRefExpr::getBeginLoc() const {
499   if (hasQualifier())
500     return getQualifierLoc().getBeginLoc();
501   return getNameInfo().getBeginLoc();
502 }
503 SourceLocation DeclRefExpr::getEndLoc() const {
504   if (hasExplicitTemplateArgs())
505     return getRAngleLoc();
506   return getNameInfo().getEndLoc();
507 }
508 
509 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
510                                                    SourceLocation LParen,
511                                                    SourceLocation RParen,
512                                                    QualType ResultTy,
513                                                    TypeSourceInfo *TSI)
514     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
515       OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
516   setTypeSourceInfo(TSI);
517   setDependence(computeDependence(this));
518 }
519 
520 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
521                                                    QualType ResultTy)
522     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
523 
524 SYCLUniqueStableNameExpr *
525 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
526                                  SourceLocation LParen, SourceLocation RParen,
527                                  TypeSourceInfo *TSI) {
528   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
529   return new (Ctx)
530       SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
531 }
532 
533 SYCLUniqueStableNameExpr *
534 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
535   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
536   return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
537 }
538 
539 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
540   return SYCLUniqueStableNameExpr::ComputeName(Context,
541                                                getTypeSourceInfo()->getType());
542 }
543 
544 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
545                                                   QualType Ty) {
546   auto MangleCallback = [](ASTContext &Ctx,
547                            const NamedDecl *ND) -> llvm::Optional<unsigned> {
548     // This replaces the 'lambda number' in the mangling with a unique number
549     // based on its order in the declaration.  To provide some level of visual
550     // notability (actual uniqueness from normal lambdas isn't necessary, as
551     // these are used differently), we add 10,000 to the number.
552     // For example:
553     // _ZTSZ3foovEUlvE10005_
554     // Demangles to: typeinfo name for foo()::'lambda10005'()
555     // Note that the mangler subtracts 2, since with normal lambdas the lambda
556     // mangling number '0' is an anonymous struct mangle, and '1' is omitted.
557     // So 10,002 results in the first number being 10,000.
558     if (Ctx.IsSYCLKernelNamingDecl(ND))
559       return 10'002 + Ctx.GetSYCLKernelNamingIndex(ND);
560     return llvm::None;
561   };
562   std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
563       Context, Context.getDiagnostics(), MangleCallback)};
564 
565   std::string Buffer;
566   Buffer.reserve(128);
567   llvm::raw_string_ostream Out(Buffer);
568   Ctx->mangleTypeName(Ty, Out);
569 
570   return Out.str();
571 }
572 
573 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
574                                StringLiteral *SL)
575     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
576   PredefinedExprBits.Kind = IK;
577   assert((getIdentKind() == IK) &&
578          "IdentKind do not fit in PredefinedExprBitfields!");
579   bool HasFunctionName = SL != nullptr;
580   PredefinedExprBits.HasFunctionName = HasFunctionName;
581   PredefinedExprBits.Loc = L;
582   if (HasFunctionName)
583     setFunctionName(SL);
584   setDependence(computeDependence(this));
585 }
586 
587 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
588     : Expr(PredefinedExprClass, Empty) {
589   PredefinedExprBits.HasFunctionName = HasFunctionName;
590 }
591 
592 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
593                                        QualType FNTy, IdentKind IK,
594                                        StringLiteral *SL) {
595   bool HasFunctionName = SL != nullptr;
596   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
597                            alignof(PredefinedExpr));
598   return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
599 }
600 
601 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
602                                             bool HasFunctionName) {
603   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
604                            alignof(PredefinedExpr));
605   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
606 }
607 
608 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
609   switch (IK) {
610   case Func:
611     return "__func__";
612   case Function:
613     return "__FUNCTION__";
614   case FuncDName:
615     return "__FUNCDNAME__";
616   case LFunction:
617     return "L__FUNCTION__";
618   case PrettyFunction:
619     return "__PRETTY_FUNCTION__";
620   case FuncSig:
621     return "__FUNCSIG__";
622   case LFuncSig:
623     return "L__FUNCSIG__";
624   case PrettyFunctionNoVirtual:
625     break;
626   }
627   llvm_unreachable("Unknown ident kind for PredefinedExpr");
628 }
629 
630 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
631 // expr" policy instead.
632 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
633   ASTContext &Context = CurrentDecl->getASTContext();
634 
635   if (IK == PredefinedExpr::FuncDName) {
636     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
637       std::unique_ptr<MangleContext> MC;
638       MC.reset(Context.createMangleContext());
639 
640       if (MC->shouldMangleDeclName(ND)) {
641         SmallString<256> Buffer;
642         llvm::raw_svector_ostream Out(Buffer);
643         GlobalDecl GD;
644         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
645           GD = GlobalDecl(CD, Ctor_Base);
646         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
647           GD = GlobalDecl(DD, Dtor_Base);
648         else if (ND->hasAttr<CUDAGlobalAttr>())
649           GD = GlobalDecl(cast<FunctionDecl>(ND));
650         else
651           GD = GlobalDecl(ND);
652         MC->mangleName(GD, Out);
653 
654         if (!Buffer.empty() && Buffer.front() == '\01')
655           return std::string(Buffer.substr(1));
656         return std::string(Buffer.str());
657       }
658       return std::string(ND->getIdentifier()->getName());
659     }
660     return "";
661   }
662   if (isa<BlockDecl>(CurrentDecl)) {
663     // For blocks we only emit something if it is enclosed in a function
664     // For top-level block we'd like to include the name of variable, but we
665     // don't have it at this point.
666     auto DC = CurrentDecl->getDeclContext();
667     if (DC->isFileContext())
668       return "";
669 
670     SmallString<256> Buffer;
671     llvm::raw_svector_ostream Out(Buffer);
672     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
673       // For nested blocks, propagate up to the parent.
674       Out << ComputeName(IK, DCBlock);
675     else if (auto *DCDecl = dyn_cast<Decl>(DC))
676       Out << ComputeName(IK, DCDecl) << "_block_invoke";
677     return std::string(Out.str());
678   }
679   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
680     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
681         IK != FuncSig && IK != LFuncSig)
682       return FD->getNameAsString();
683 
684     SmallString<256> Name;
685     llvm::raw_svector_ostream Out(Name);
686 
687     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
688       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
689         Out << "virtual ";
690       if (MD->isStatic())
691         Out << "static ";
692     }
693 
694     PrintingPolicy Policy(Context.getLangOpts());
695     std::string Proto;
696     llvm::raw_string_ostream POut(Proto);
697 
698     const FunctionDecl *Decl = FD;
699     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
700       Decl = Pattern;
701     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
702     const FunctionProtoType *FT = nullptr;
703     if (FD->hasWrittenPrototype())
704       FT = dyn_cast<FunctionProtoType>(AFT);
705 
706     if (IK == FuncSig || IK == LFuncSig) {
707       switch (AFT->getCallConv()) {
708       case CC_C: POut << "__cdecl "; break;
709       case CC_X86StdCall: POut << "__stdcall "; break;
710       case CC_X86FastCall: POut << "__fastcall "; break;
711       case CC_X86ThisCall: POut << "__thiscall "; break;
712       case CC_X86VectorCall: POut << "__vectorcall "; break;
713       case CC_X86RegCall: POut << "__regcall "; break;
714       // Only bother printing the conventions that MSVC knows about.
715       default: break;
716       }
717     }
718 
719     FD->printQualifiedName(POut, Policy);
720 
721     POut << "(";
722     if (FT) {
723       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
724         if (i) POut << ", ";
725         POut << Decl->getParamDecl(i)->getType().stream(Policy);
726       }
727 
728       if (FT->isVariadic()) {
729         if (FD->getNumParams()) POut << ", ";
730         POut << "...";
731       } else if ((IK == FuncSig || IK == LFuncSig ||
732                   !Context.getLangOpts().CPlusPlus) &&
733                  !Decl->getNumParams()) {
734         POut << "void";
735       }
736     }
737     POut << ")";
738 
739     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
740       assert(FT && "We must have a written prototype in this case.");
741       if (FT->isConst())
742         POut << " const";
743       if (FT->isVolatile())
744         POut << " volatile";
745       RefQualifierKind Ref = MD->getRefQualifier();
746       if (Ref == RQ_LValue)
747         POut << " &";
748       else if (Ref == RQ_RValue)
749         POut << " &&";
750     }
751 
752     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
753     SpecsTy Specs;
754     const DeclContext *Ctx = FD->getDeclContext();
755     while (Ctx && isa<NamedDecl>(Ctx)) {
756       const ClassTemplateSpecializationDecl *Spec
757                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
758       if (Spec && !Spec->isExplicitSpecialization())
759         Specs.push_back(Spec);
760       Ctx = Ctx->getParent();
761     }
762 
763     std::string TemplateParams;
764     llvm::raw_string_ostream TOut(TemplateParams);
765     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
766          I != E; ++I) {
767       const TemplateParameterList *Params
768                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
769       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
770       assert(Params->size() == Args.size());
771       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
772         StringRef Param = Params->getParam(i)->getName();
773         if (Param.empty()) continue;
774         TOut << Param << " = ";
775         Args.get(i).print(
776             Policy, TOut,
777             TemplateParameterList::shouldIncludeTypeForArgument(Params, i));
778         TOut << ", ";
779       }
780     }
781 
782     FunctionTemplateSpecializationInfo *FSI
783                                           = FD->getTemplateSpecializationInfo();
784     if (FSI && !FSI->isExplicitSpecialization()) {
785       const TemplateParameterList* Params
786                                   = FSI->getTemplate()->getTemplateParameters();
787       const TemplateArgumentList* Args = FSI->TemplateArguments;
788       assert(Params->size() == Args->size());
789       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
790         StringRef Param = Params->getParam(i)->getName();
791         if (Param.empty()) continue;
792         TOut << Param << " = ";
793         Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
794         TOut << ", ";
795       }
796     }
797 
798     TOut.flush();
799     if (!TemplateParams.empty()) {
800       // remove the trailing comma and space
801       TemplateParams.resize(TemplateParams.size() - 2);
802       POut << " [" << TemplateParams << "]";
803     }
804 
805     POut.flush();
806 
807     // Print "auto" for all deduced return types. This includes C++1y return
808     // type deduction and lambdas. For trailing return types resolve the
809     // decltype expression. Otherwise print the real type when this is
810     // not a constructor or destructor.
811     if (isa<CXXMethodDecl>(FD) &&
812          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
813       Proto = "auto " + Proto;
814     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
815       FT->getReturnType()
816           ->getAs<DecltypeType>()
817           ->getUnderlyingType()
818           .getAsStringInternal(Proto, Policy);
819     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
820       AFT->getReturnType().getAsStringInternal(Proto, Policy);
821 
822     Out << Proto;
823 
824     return std::string(Name);
825   }
826   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
827     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
828       // Skip to its enclosing function or method, but not its enclosing
829       // CapturedDecl.
830       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
831         const Decl *D = Decl::castFromDeclContext(DC);
832         return ComputeName(IK, D);
833       }
834     llvm_unreachable("CapturedDecl not inside a function or method");
835   }
836   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
837     SmallString<256> Name;
838     llvm::raw_svector_ostream Out(Name);
839     Out << (MD->isInstanceMethod() ? '-' : '+');
840     Out << '[';
841 
842     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
843     // a null check to avoid a crash.
844     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
845       Out << *ID;
846 
847     if (const ObjCCategoryImplDecl *CID =
848         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
849       Out << '(' << *CID << ')';
850 
851     Out <<  ' ';
852     MD->getSelector().print(Out);
853     Out <<  ']';
854 
855     return std::string(Name);
856   }
857   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
858     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
859     return "top level";
860   }
861   return "";
862 }
863 
864 void APNumericStorage::setIntValue(const ASTContext &C,
865                                    const llvm::APInt &Val) {
866   if (hasAllocation())
867     C.Deallocate(pVal);
868 
869   BitWidth = Val.getBitWidth();
870   unsigned NumWords = Val.getNumWords();
871   const uint64_t* Words = Val.getRawData();
872   if (NumWords > 1) {
873     pVal = new (C) uint64_t[NumWords];
874     std::copy(Words, Words + NumWords, pVal);
875   } else if (NumWords == 1)
876     VAL = Words[0];
877   else
878     VAL = 0;
879 }
880 
881 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
882                                QualType type, SourceLocation l)
883     : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
884   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
885   assert(V.getBitWidth() == C.getIntWidth(type) &&
886          "Integer type is not the correct size for constant.");
887   setValue(C, V);
888   setDependence(ExprDependence::None);
889 }
890 
891 IntegerLiteral *
892 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
893                        QualType type, SourceLocation l) {
894   return new (C) IntegerLiteral(C, V, type, l);
895 }
896 
897 IntegerLiteral *
898 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
899   return new (C) IntegerLiteral(Empty);
900 }
901 
902 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
903                                      QualType type, SourceLocation l,
904                                      unsigned Scale)
905     : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
906       Scale(Scale) {
907   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
908   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
909          "Fixed point type is not the correct size for constant.");
910   setValue(C, V);
911   setDependence(ExprDependence::None);
912 }
913 
914 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
915                                                        const llvm::APInt &V,
916                                                        QualType type,
917                                                        SourceLocation l,
918                                                        unsigned Scale) {
919   return new (C) FixedPointLiteral(C, V, type, l, Scale);
920 }
921 
922 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
923                                              EmptyShell Empty) {
924   return new (C) FixedPointLiteral(Empty);
925 }
926 
927 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
928   // Currently the longest decimal number that can be printed is the max for an
929   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
930   // which is 43 characters.
931   SmallString<64> S;
932   FixedPointValueToString(
933       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
934   return std::string(S.str());
935 }
936 
937 void CharacterLiteral::print(unsigned Val, CharacterKind Kind,
938                              raw_ostream &OS) {
939   switch (Kind) {
940   case CharacterLiteral::Ascii:
941     break; // no prefix.
942   case CharacterLiteral::Wide:
943     OS << 'L';
944     break;
945   case CharacterLiteral::UTF8:
946     OS << "u8";
947     break;
948   case CharacterLiteral::UTF16:
949     OS << 'u';
950     break;
951   case CharacterLiteral::UTF32:
952     OS << 'U';
953     break;
954   }
955 
956   switch (Val) {
957   case '\\':
958     OS << "'\\\\'";
959     break;
960   case '\'':
961     OS << "'\\''";
962     break;
963   case '\a':
964     // TODO: K&R: the meaning of '\\a' is different in traditional C
965     OS << "'\\a'";
966     break;
967   case '\b':
968     OS << "'\\b'";
969     break;
970   // Nonstandard escape sequence.
971   /*case '\e':
972     OS << "'\\e'";
973     break;*/
974   case '\f':
975     OS << "'\\f'";
976     break;
977   case '\n':
978     OS << "'\\n'";
979     break;
980   case '\r':
981     OS << "'\\r'";
982     break;
983   case '\t':
984     OS << "'\\t'";
985     break;
986   case '\v':
987     OS << "'\\v'";
988     break;
989   default:
990     // A character literal might be sign-extended, which
991     // would result in an invalid \U escape sequence.
992     // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
993     // are not correctly handled.
994     if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
995       Val &= 0xFFu;
996     if (Val < 256 && isPrintable((unsigned char)Val))
997       OS << "'" << (char)Val << "'";
998     else if (Val < 256)
999       OS << "'\\x" << llvm::format("%02x", Val) << "'";
1000     else if (Val <= 0xFFFF)
1001       OS << "'\\u" << llvm::format("%04x", Val) << "'";
1002     else
1003       OS << "'\\U" << llvm::format("%08x", Val) << "'";
1004   }
1005 }
1006 
1007 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1008                                  bool isexact, QualType Type, SourceLocation L)
1009     : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1010   setSemantics(V.getSemantics());
1011   FloatingLiteralBits.IsExact = isexact;
1012   setValue(C, V);
1013   setDependence(ExprDependence::None);
1014 }
1015 
1016 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1017   : Expr(FloatingLiteralClass, Empty) {
1018   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1019   FloatingLiteralBits.IsExact = false;
1020 }
1021 
1022 FloatingLiteral *
1023 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1024                         bool isexact, QualType Type, SourceLocation L) {
1025   return new (C) FloatingLiteral(C, V, isexact, Type, L);
1026 }
1027 
1028 FloatingLiteral *
1029 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1030   return new (C) FloatingLiteral(C, Empty);
1031 }
1032 
1033 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1034 /// double.  Note that this may cause loss of precision, but is useful for
1035 /// debugging dumps, etc.
1036 double FloatingLiteral::getValueAsApproximateDouble() const {
1037   llvm::APFloat V = getValue();
1038   bool ignored;
1039   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1040             &ignored);
1041   return V.convertToDouble();
1042 }
1043 
1044 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1045                                          StringKind SK) {
1046   unsigned CharByteWidth = 0;
1047   switch (SK) {
1048   case Ascii:
1049   case UTF8:
1050     CharByteWidth = Target.getCharWidth();
1051     break;
1052   case Wide:
1053     CharByteWidth = Target.getWCharWidth();
1054     break;
1055   case UTF16:
1056     CharByteWidth = Target.getChar16Width();
1057     break;
1058   case UTF32:
1059     CharByteWidth = Target.getChar32Width();
1060     break;
1061   }
1062   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1063   CharByteWidth /= 8;
1064   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1065          "The only supported character byte widths are 1,2 and 4!");
1066   return CharByteWidth;
1067 }
1068 
1069 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1070                              StringKind Kind, bool Pascal, QualType Ty,
1071                              const SourceLocation *Loc,
1072                              unsigned NumConcatenated)
1073     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1074   assert(Ctx.getAsConstantArrayType(Ty) &&
1075          "StringLiteral must be of constant array type!");
1076   unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1077   unsigned ByteLength = Str.size();
1078   assert((ByteLength % CharByteWidth == 0) &&
1079          "The size of the data must be a multiple of CharByteWidth!");
1080 
1081   // Avoid the expensive division. The compiler should be able to figure it
1082   // out by itself. However as of clang 7, even with the appropriate
1083   // llvm_unreachable added just here, it is not able to do so.
1084   unsigned Length;
1085   switch (CharByteWidth) {
1086   case 1:
1087     Length = ByteLength;
1088     break;
1089   case 2:
1090     Length = ByteLength / 2;
1091     break;
1092   case 4:
1093     Length = ByteLength / 4;
1094     break;
1095   default:
1096     llvm_unreachable("Unsupported character width!");
1097   }
1098 
1099   StringLiteralBits.Kind = Kind;
1100   StringLiteralBits.CharByteWidth = CharByteWidth;
1101   StringLiteralBits.IsPascal = Pascal;
1102   StringLiteralBits.NumConcatenated = NumConcatenated;
1103   *getTrailingObjects<unsigned>() = Length;
1104 
1105   // Initialize the trailing array of SourceLocation.
1106   // This is safe since SourceLocation is POD-like.
1107   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1108               NumConcatenated * sizeof(SourceLocation));
1109 
1110   // Initialize the trailing array of char holding the string data.
1111   std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1112 
1113   setDependence(ExprDependence::None);
1114 }
1115 
1116 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1117                              unsigned Length, unsigned CharByteWidth)
1118     : Expr(StringLiteralClass, Empty) {
1119   StringLiteralBits.CharByteWidth = CharByteWidth;
1120   StringLiteralBits.NumConcatenated = NumConcatenated;
1121   *getTrailingObjects<unsigned>() = Length;
1122 }
1123 
1124 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1125                                      StringKind Kind, bool Pascal, QualType Ty,
1126                                      const SourceLocation *Loc,
1127                                      unsigned NumConcatenated) {
1128   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1129                                1, NumConcatenated, Str.size()),
1130                            alignof(StringLiteral));
1131   return new (Mem)
1132       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1133 }
1134 
1135 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1136                                           unsigned NumConcatenated,
1137                                           unsigned Length,
1138                                           unsigned CharByteWidth) {
1139   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1140                                1, NumConcatenated, Length * CharByteWidth),
1141                            alignof(StringLiteral));
1142   return new (Mem)
1143       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1144 }
1145 
1146 void StringLiteral::outputString(raw_ostream &OS) const {
1147   switch (getKind()) {
1148   case Ascii: break; // no prefix.
1149   case Wide:  OS << 'L'; break;
1150   case UTF8:  OS << "u8"; break;
1151   case UTF16: OS << 'u'; break;
1152   case UTF32: OS << 'U'; break;
1153   }
1154   OS << '"';
1155   static const char Hex[] = "0123456789ABCDEF";
1156 
1157   unsigned LastSlashX = getLength();
1158   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1159     switch (uint32_t Char = getCodeUnit(I)) {
1160     default:
1161       // FIXME: Convert UTF-8 back to codepoints before rendering.
1162 
1163       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1164       // Leave invalid surrogates alone; we'll use \x for those.
1165       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1166           Char <= 0xdbff) {
1167         uint32_t Trail = getCodeUnit(I + 1);
1168         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1169           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1170           ++I;
1171         }
1172       }
1173 
1174       if (Char > 0xff) {
1175         // If this is a wide string, output characters over 0xff using \x
1176         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1177         // codepoint: use \x escapes for invalid codepoints.
1178         if (getKind() == Wide ||
1179             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1180           // FIXME: Is this the best way to print wchar_t?
1181           OS << "\\x";
1182           int Shift = 28;
1183           while ((Char >> Shift) == 0)
1184             Shift -= 4;
1185           for (/**/; Shift >= 0; Shift -= 4)
1186             OS << Hex[(Char >> Shift) & 15];
1187           LastSlashX = I;
1188           break;
1189         }
1190 
1191         if (Char > 0xffff)
1192           OS << "\\U00"
1193              << Hex[(Char >> 20) & 15]
1194              << Hex[(Char >> 16) & 15];
1195         else
1196           OS << "\\u";
1197         OS << Hex[(Char >> 12) & 15]
1198            << Hex[(Char >>  8) & 15]
1199            << Hex[(Char >>  4) & 15]
1200            << Hex[(Char >>  0) & 15];
1201         break;
1202       }
1203 
1204       // If we used \x... for the previous character, and this character is a
1205       // hexadecimal digit, prevent it being slurped as part of the \x.
1206       if (LastSlashX + 1 == I) {
1207         switch (Char) {
1208           case '0': case '1': case '2': case '3': case '4':
1209           case '5': case '6': case '7': case '8': case '9':
1210           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1211           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1212             OS << "\"\"";
1213         }
1214       }
1215 
1216       assert(Char <= 0xff &&
1217              "Characters above 0xff should already have been handled.");
1218 
1219       if (isPrintable(Char))
1220         OS << (char)Char;
1221       else  // Output anything hard as an octal escape.
1222         OS << '\\'
1223            << (char)('0' + ((Char >> 6) & 7))
1224            << (char)('0' + ((Char >> 3) & 7))
1225            << (char)('0' + ((Char >> 0) & 7));
1226       break;
1227     // Handle some common non-printable cases to make dumps prettier.
1228     case '\\': OS << "\\\\"; break;
1229     case '"': OS << "\\\""; break;
1230     case '\a': OS << "\\a"; break;
1231     case '\b': OS << "\\b"; break;
1232     case '\f': OS << "\\f"; break;
1233     case '\n': OS << "\\n"; break;
1234     case '\r': OS << "\\r"; break;
1235     case '\t': OS << "\\t"; break;
1236     case '\v': OS << "\\v"; break;
1237     }
1238   }
1239   OS << '"';
1240 }
1241 
1242 /// getLocationOfByte - Return a source location that points to the specified
1243 /// byte of this string literal.
1244 ///
1245 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1246 /// can have escape sequences in them in addition to the usual trigraph and
1247 /// escaped newline business.  This routine handles this complexity.
1248 ///
1249 /// The *StartToken sets the first token to be searched in this function and
1250 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1251 /// returning, it updates the *StartToken to the TokNo of the token being found
1252 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1253 /// string.
1254 /// Using these two parameters can reduce the time complexity from O(n^2) to
1255 /// O(n) if one wants to get the location of byte for all the tokens in a
1256 /// string.
1257 ///
1258 SourceLocation
1259 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1260                                  const LangOptions &Features,
1261                                  const TargetInfo &Target, unsigned *StartToken,
1262                                  unsigned *StartTokenByteOffset) const {
1263   assert((getKind() == StringLiteral::Ascii ||
1264           getKind() == StringLiteral::UTF8) &&
1265          "Only narrow string literals are currently supported");
1266 
1267   // Loop over all of the tokens in this string until we find the one that
1268   // contains the byte we're looking for.
1269   unsigned TokNo = 0;
1270   unsigned StringOffset = 0;
1271   if (StartToken)
1272     TokNo = *StartToken;
1273   if (StartTokenByteOffset) {
1274     StringOffset = *StartTokenByteOffset;
1275     ByteNo -= StringOffset;
1276   }
1277   while (1) {
1278     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1279     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1280 
1281     // Get the spelling of the string so that we can get the data that makes up
1282     // the string literal, not the identifier for the macro it is potentially
1283     // expanded through.
1284     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1285 
1286     // Re-lex the token to get its length and original spelling.
1287     std::pair<FileID, unsigned> LocInfo =
1288         SM.getDecomposedLoc(StrTokSpellingLoc);
1289     bool Invalid = false;
1290     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1291     if (Invalid) {
1292       if (StartTokenByteOffset != nullptr)
1293         *StartTokenByteOffset = StringOffset;
1294       if (StartToken != nullptr)
1295         *StartToken = TokNo;
1296       return StrTokSpellingLoc;
1297     }
1298 
1299     const char *StrData = Buffer.data()+LocInfo.second;
1300 
1301     // Create a lexer starting at the beginning of this token.
1302     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1303                    Buffer.begin(), StrData, Buffer.end());
1304     Token TheTok;
1305     TheLexer.LexFromRawLexer(TheTok);
1306 
1307     // Use the StringLiteralParser to compute the length of the string in bytes.
1308     StringLiteralParser SLP(TheTok, SM, Features, Target);
1309     unsigned TokNumBytes = SLP.GetStringLength();
1310 
1311     // If the byte is in this token, return the location of the byte.
1312     if (ByteNo < TokNumBytes ||
1313         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1314       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1315 
1316       // Now that we know the offset of the token in the spelling, use the
1317       // preprocessor to get the offset in the original source.
1318       if (StartTokenByteOffset != nullptr)
1319         *StartTokenByteOffset = StringOffset;
1320       if (StartToken != nullptr)
1321         *StartToken = TokNo;
1322       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1323     }
1324 
1325     // Move to the next string token.
1326     StringOffset += TokNumBytes;
1327     ++TokNo;
1328     ByteNo -= TokNumBytes;
1329   }
1330 }
1331 
1332 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1333 /// corresponds to, e.g. "sizeof" or "[pre]++".
1334 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1335   switch (Op) {
1336 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1337 #include "clang/AST/OperationKinds.def"
1338   }
1339   llvm_unreachable("Unknown unary operator");
1340 }
1341 
1342 UnaryOperatorKind
1343 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1344   switch (OO) {
1345   default: llvm_unreachable("No unary operator for overloaded function");
1346   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1347   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1348   case OO_Amp:        return UO_AddrOf;
1349   case OO_Star:       return UO_Deref;
1350   case OO_Plus:       return UO_Plus;
1351   case OO_Minus:      return UO_Minus;
1352   case OO_Tilde:      return UO_Not;
1353   case OO_Exclaim:    return UO_LNot;
1354   case OO_Coawait:    return UO_Coawait;
1355   }
1356 }
1357 
1358 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1359   switch (Opc) {
1360   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1361   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1362   case UO_AddrOf: return OO_Amp;
1363   case UO_Deref: return OO_Star;
1364   case UO_Plus: return OO_Plus;
1365   case UO_Minus: return OO_Minus;
1366   case UO_Not: return OO_Tilde;
1367   case UO_LNot: return OO_Exclaim;
1368   case UO_Coawait: return OO_Coawait;
1369   default: return OO_None;
1370   }
1371 }
1372 
1373 
1374 //===----------------------------------------------------------------------===//
1375 // Postfix Operators.
1376 //===----------------------------------------------------------------------===//
1377 
1378 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1379                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1380                    SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1381                    unsigned MinNumArgs, ADLCallKind UsesADL)
1382     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1383   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1384   unsigned NumPreArgs = PreArgs.size();
1385   CallExprBits.NumPreArgs = NumPreArgs;
1386   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1387 
1388   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1389   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1390   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1391          "OffsetToTrailingObjects overflow!");
1392 
1393   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1394 
1395   setCallee(Fn);
1396   for (unsigned I = 0; I != NumPreArgs; ++I)
1397     setPreArg(I, PreArgs[I]);
1398   for (unsigned I = 0; I != Args.size(); ++I)
1399     setArg(I, Args[I]);
1400   for (unsigned I = Args.size(); I != NumArgs; ++I)
1401     setArg(I, nullptr);
1402 
1403   this->computeDependence();
1404 
1405   CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1406   if (hasStoredFPFeatures())
1407     setStoredFPFeatures(FPFeatures);
1408 }
1409 
1410 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1411                    bool HasFPFeatures, EmptyShell Empty)
1412     : Expr(SC, Empty), NumArgs(NumArgs) {
1413   CallExprBits.NumPreArgs = NumPreArgs;
1414   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1415 
1416   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1417   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1418   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1419          "OffsetToTrailingObjects overflow!");
1420   CallExprBits.HasFPFeatures = HasFPFeatures;
1421 }
1422 
1423 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1424                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1425                            SourceLocation RParenLoc,
1426                            FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1427                            ADLCallKind UsesADL) {
1428   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1429   unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1430       /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1431   void *Mem =
1432       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1433   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1434                             RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1435 }
1436 
1437 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1438                                     ExprValueKind VK, SourceLocation RParenLoc,
1439                                     ADLCallKind UsesADL) {
1440   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1441          "Misaligned memory in CallExpr::CreateTemporary!");
1442   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1443                             VK, RParenLoc, FPOptionsOverride(),
1444                             /*MinNumArgs=*/0, UsesADL);
1445 }
1446 
1447 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1448                                 bool HasFPFeatures, EmptyShell Empty) {
1449   unsigned SizeOfTrailingObjects =
1450       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1451   void *Mem =
1452       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1453   return new (Mem)
1454       CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1455 }
1456 
1457 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1458   switch (SC) {
1459   case CallExprClass:
1460     return sizeof(CallExpr);
1461   case CXXOperatorCallExprClass:
1462     return sizeof(CXXOperatorCallExpr);
1463   case CXXMemberCallExprClass:
1464     return sizeof(CXXMemberCallExpr);
1465   case UserDefinedLiteralClass:
1466     return sizeof(UserDefinedLiteral);
1467   case CUDAKernelCallExprClass:
1468     return sizeof(CUDAKernelCallExpr);
1469   default:
1470     llvm_unreachable("unexpected class deriving from CallExpr!");
1471   }
1472 }
1473 
1474 Decl *Expr::getReferencedDeclOfCallee() {
1475   Expr *CEE = IgnoreParenImpCasts();
1476 
1477   while (SubstNonTypeTemplateParmExpr *NTTP =
1478              dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1479     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1480   }
1481 
1482   // If we're calling a dereference, look at the pointer instead.
1483   while (true) {
1484     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1485       if (BO->isPtrMemOp()) {
1486         CEE = BO->getRHS()->IgnoreParenImpCasts();
1487         continue;
1488       }
1489     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1490       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1491           UO->getOpcode() == UO_Plus) {
1492         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1493         continue;
1494       }
1495     }
1496     break;
1497   }
1498 
1499   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1500     return DRE->getDecl();
1501   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1502     return ME->getMemberDecl();
1503   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1504     return BE->getBlockDecl();
1505 
1506   return nullptr;
1507 }
1508 
1509 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1510 unsigned CallExpr::getBuiltinCallee() const {
1511   auto *FDecl =
1512       dyn_cast_or_null<FunctionDecl>(getCallee()->getReferencedDeclOfCallee());
1513   return FDecl ? FDecl->getBuiltinID() : 0;
1514 }
1515 
1516 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1517   if (unsigned BI = getBuiltinCallee())
1518     return Ctx.BuiltinInfo.isUnevaluated(BI);
1519   return false;
1520 }
1521 
1522 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1523   const Expr *Callee = getCallee();
1524   QualType CalleeType = Callee->getType();
1525   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1526     CalleeType = FnTypePtr->getPointeeType();
1527   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1528     CalleeType = BPT->getPointeeType();
1529   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1530     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1531       return Ctx.VoidTy;
1532 
1533     if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1534       return Ctx.DependentTy;
1535 
1536     // This should never be overloaded and so should never return null.
1537     CalleeType = Expr::findBoundMemberType(Callee);
1538     assert(!CalleeType.isNull());
1539   } else if (CalleeType->isDependentType() ||
1540              CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1541     return Ctx.DependentTy;
1542   }
1543 
1544   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1545   return FnType->getReturnType();
1546 }
1547 
1548 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1549   // If the return type is a struct, union, or enum that is marked nodiscard,
1550   // then return the return type attribute.
1551   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1552     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1553       return A;
1554 
1555   // Otherwise, see if the callee is marked nodiscard and return that attribute
1556   // instead.
1557   const Decl *D = getCalleeDecl();
1558   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1559 }
1560 
1561 SourceLocation CallExpr::getBeginLoc() const {
1562   if (isa<CXXOperatorCallExpr>(this))
1563     return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1564 
1565   SourceLocation begin = getCallee()->getBeginLoc();
1566   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1567     begin = getArg(0)->getBeginLoc();
1568   return begin;
1569 }
1570 SourceLocation CallExpr::getEndLoc() const {
1571   if (isa<CXXOperatorCallExpr>(this))
1572     return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1573 
1574   SourceLocation end = getRParenLoc();
1575   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1576     end = getArg(getNumArgs() - 1)->getEndLoc();
1577   return end;
1578 }
1579 
1580 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1581                                    SourceLocation OperatorLoc,
1582                                    TypeSourceInfo *tsi,
1583                                    ArrayRef<OffsetOfNode> comps,
1584                                    ArrayRef<Expr*> exprs,
1585                                    SourceLocation RParenLoc) {
1586   void *Mem = C.Allocate(
1587       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1588 
1589   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1590                                 RParenLoc);
1591 }
1592 
1593 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1594                                         unsigned numComps, unsigned numExprs) {
1595   void *Mem =
1596       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1597   return new (Mem) OffsetOfExpr(numComps, numExprs);
1598 }
1599 
1600 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1601                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1602                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1603                            SourceLocation RParenLoc)
1604     : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1605       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1606       NumComps(comps.size()), NumExprs(exprs.size()) {
1607   for (unsigned i = 0; i != comps.size(); ++i)
1608     setComponent(i, comps[i]);
1609   for (unsigned i = 0; i != exprs.size(); ++i)
1610     setIndexExpr(i, exprs[i]);
1611 
1612   setDependence(computeDependence(this));
1613 }
1614 
1615 IdentifierInfo *OffsetOfNode::getFieldName() const {
1616   assert(getKind() == Field || getKind() == Identifier);
1617   if (getKind() == Field)
1618     return getField()->getIdentifier();
1619 
1620   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1621 }
1622 
1623 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1624     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1625     SourceLocation op, SourceLocation rp)
1626     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1627       OpLoc(op), RParenLoc(rp) {
1628   assert(ExprKind <= UETT_Last && "invalid enum value!");
1629   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1630   assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1631          "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1632   UnaryExprOrTypeTraitExprBits.IsType = false;
1633   Argument.Ex = E;
1634   setDependence(computeDependence(this));
1635 }
1636 
1637 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1638                        ValueDecl *MemberDecl,
1639                        const DeclarationNameInfo &NameInfo, QualType T,
1640                        ExprValueKind VK, ExprObjectKind OK,
1641                        NonOdrUseReason NOUR)
1642     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1643       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1644   assert(!NameInfo.getName() ||
1645          MemberDecl->getDeclName() == NameInfo.getName());
1646   MemberExprBits.IsArrow = IsArrow;
1647   MemberExprBits.HasQualifierOrFoundDecl = false;
1648   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1649   MemberExprBits.HadMultipleCandidates = false;
1650   MemberExprBits.NonOdrUseReason = NOUR;
1651   MemberExprBits.OperatorLoc = OperatorLoc;
1652   setDependence(computeDependence(this));
1653 }
1654 
1655 MemberExpr *MemberExpr::Create(
1656     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1657     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1658     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1659     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1660     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1661   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1662                         FoundDecl.getAccess() != MemberDecl->getAccess();
1663   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1664   std::size_t Size =
1665       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1666                        TemplateArgumentLoc>(
1667           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1668           TemplateArgs ? TemplateArgs->size() : 0);
1669 
1670   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1671   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1672                                        NameInfo, T, VK, OK, NOUR);
1673 
1674   // FIXME: remove remaining dependence computation to computeDependence().
1675   auto Deps = E->getDependence();
1676   if (HasQualOrFound) {
1677     // FIXME: Wrong. We should be looking at the member declaration we found.
1678     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1679       Deps |= ExprDependence::TypeValueInstantiation;
1680     else if (QualifierLoc &&
1681              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1682       Deps |= ExprDependence::Instantiation;
1683 
1684     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1685 
1686     MemberExprNameQualifier *NQ =
1687         E->getTrailingObjects<MemberExprNameQualifier>();
1688     NQ->QualifierLoc = QualifierLoc;
1689     NQ->FoundDecl = FoundDecl;
1690   }
1691 
1692   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1693       TemplateArgs || TemplateKWLoc.isValid();
1694 
1695   if (TemplateArgs) {
1696     auto TemplateArgDeps = TemplateArgumentDependence::None;
1697     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1698         TemplateKWLoc, *TemplateArgs,
1699         E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1700     if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1701       Deps |= ExprDependence::Instantiation;
1702   } else if (TemplateKWLoc.isValid()) {
1703     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1704         TemplateKWLoc);
1705   }
1706   E->setDependence(Deps);
1707 
1708   return E;
1709 }
1710 
1711 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1712                                     bool HasQualifier, bool HasFoundDecl,
1713                                     bool HasTemplateKWAndArgsInfo,
1714                                     unsigned NumTemplateArgs) {
1715   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1716          "template args but no template arg info?");
1717   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1718   std::size_t Size =
1719       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1720                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1721                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1722                                             NumTemplateArgs);
1723   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1724   return new (Mem) MemberExpr(EmptyShell());
1725 }
1726 
1727 void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1728   MemberDecl = NewD;
1729   if (getType()->isUndeducedType())
1730     setType(NewD->getType());
1731   setDependence(computeDependence(this));
1732 }
1733 
1734 SourceLocation MemberExpr::getBeginLoc() const {
1735   if (isImplicitAccess()) {
1736     if (hasQualifier())
1737       return getQualifierLoc().getBeginLoc();
1738     return MemberLoc;
1739   }
1740 
1741   // FIXME: We don't want this to happen. Rather, we should be able to
1742   // detect all kinds of implicit accesses more cleanly.
1743   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1744   if (BaseStartLoc.isValid())
1745     return BaseStartLoc;
1746   return MemberLoc;
1747 }
1748 SourceLocation MemberExpr::getEndLoc() const {
1749   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1750   if (hasExplicitTemplateArgs())
1751     EndLoc = getRAngleLoc();
1752   else if (EndLoc.isInvalid())
1753     EndLoc = getBase()->getEndLoc();
1754   return EndLoc;
1755 }
1756 
1757 bool CastExpr::CastConsistency() const {
1758   switch (getCastKind()) {
1759   case CK_DerivedToBase:
1760   case CK_UncheckedDerivedToBase:
1761   case CK_DerivedToBaseMemberPointer:
1762   case CK_BaseToDerived:
1763   case CK_BaseToDerivedMemberPointer:
1764     assert(!path_empty() && "Cast kind should have a base path!");
1765     break;
1766 
1767   case CK_CPointerToObjCPointerCast:
1768     assert(getType()->isObjCObjectPointerType());
1769     assert(getSubExpr()->getType()->isPointerType());
1770     goto CheckNoBasePath;
1771 
1772   case CK_BlockPointerToObjCPointerCast:
1773     assert(getType()->isObjCObjectPointerType());
1774     assert(getSubExpr()->getType()->isBlockPointerType());
1775     goto CheckNoBasePath;
1776 
1777   case CK_ReinterpretMemberPointer:
1778     assert(getType()->isMemberPointerType());
1779     assert(getSubExpr()->getType()->isMemberPointerType());
1780     goto CheckNoBasePath;
1781 
1782   case CK_BitCast:
1783     // Arbitrary casts to C pointer types count as bitcasts.
1784     // Otherwise, we should only have block and ObjC pointer casts
1785     // here if they stay within the type kind.
1786     if (!getType()->isPointerType()) {
1787       assert(getType()->isObjCObjectPointerType() ==
1788              getSubExpr()->getType()->isObjCObjectPointerType());
1789       assert(getType()->isBlockPointerType() ==
1790              getSubExpr()->getType()->isBlockPointerType());
1791     }
1792     goto CheckNoBasePath;
1793 
1794   case CK_AnyPointerToBlockPointerCast:
1795     assert(getType()->isBlockPointerType());
1796     assert(getSubExpr()->getType()->isAnyPointerType() &&
1797            !getSubExpr()->getType()->isBlockPointerType());
1798     goto CheckNoBasePath;
1799 
1800   case CK_CopyAndAutoreleaseBlockObject:
1801     assert(getType()->isBlockPointerType());
1802     assert(getSubExpr()->getType()->isBlockPointerType());
1803     goto CheckNoBasePath;
1804 
1805   case CK_FunctionToPointerDecay:
1806     assert(getType()->isPointerType());
1807     assert(getSubExpr()->getType()->isFunctionType());
1808     goto CheckNoBasePath;
1809 
1810   case CK_AddressSpaceConversion: {
1811     auto Ty = getType();
1812     auto SETy = getSubExpr()->getType();
1813     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1814     if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1815       Ty = Ty->getPointeeType();
1816       SETy = SETy->getPointeeType();
1817     }
1818     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1819            (!Ty.isNull() && !SETy.isNull() &&
1820             Ty.getAddressSpace() != SETy.getAddressSpace()));
1821     goto CheckNoBasePath;
1822   }
1823   // These should not have an inheritance path.
1824   case CK_Dynamic:
1825   case CK_ToUnion:
1826   case CK_ArrayToPointerDecay:
1827   case CK_NullToMemberPointer:
1828   case CK_NullToPointer:
1829   case CK_ConstructorConversion:
1830   case CK_IntegralToPointer:
1831   case CK_PointerToIntegral:
1832   case CK_ToVoid:
1833   case CK_VectorSplat:
1834   case CK_IntegralCast:
1835   case CK_BooleanToSignedIntegral:
1836   case CK_IntegralToFloating:
1837   case CK_FloatingToIntegral:
1838   case CK_FloatingCast:
1839   case CK_ObjCObjectLValueCast:
1840   case CK_FloatingRealToComplex:
1841   case CK_FloatingComplexToReal:
1842   case CK_FloatingComplexCast:
1843   case CK_FloatingComplexToIntegralComplex:
1844   case CK_IntegralRealToComplex:
1845   case CK_IntegralComplexToReal:
1846   case CK_IntegralComplexCast:
1847   case CK_IntegralComplexToFloatingComplex:
1848   case CK_ARCProduceObject:
1849   case CK_ARCConsumeObject:
1850   case CK_ARCReclaimReturnedObject:
1851   case CK_ARCExtendBlockObject:
1852   case CK_ZeroToOCLOpaqueType:
1853   case CK_IntToOCLSampler:
1854   case CK_FloatingToFixedPoint:
1855   case CK_FixedPointToFloating:
1856   case CK_FixedPointCast:
1857   case CK_FixedPointToIntegral:
1858   case CK_IntegralToFixedPoint:
1859   case CK_MatrixCast:
1860     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1861     goto CheckNoBasePath;
1862 
1863   case CK_Dependent:
1864   case CK_LValueToRValue:
1865   case CK_NoOp:
1866   case CK_AtomicToNonAtomic:
1867   case CK_NonAtomicToAtomic:
1868   case CK_PointerToBoolean:
1869   case CK_IntegralToBoolean:
1870   case CK_FloatingToBoolean:
1871   case CK_MemberPointerToBoolean:
1872   case CK_FloatingComplexToBoolean:
1873   case CK_IntegralComplexToBoolean:
1874   case CK_LValueBitCast:            // -> bool&
1875   case CK_LValueToRValueBitCast:
1876   case CK_UserDefinedConversion:    // operator bool()
1877   case CK_BuiltinFnToFnPtr:
1878   case CK_FixedPointToBoolean:
1879   CheckNoBasePath:
1880     assert(path_empty() && "Cast kind should not have a base path!");
1881     break;
1882   }
1883   return true;
1884 }
1885 
1886 const char *CastExpr::getCastKindName(CastKind CK) {
1887   switch (CK) {
1888 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1889 #include "clang/AST/OperationKinds.def"
1890   }
1891   llvm_unreachable("Unhandled cast kind!");
1892 }
1893 
1894 namespace {
1895   const Expr *skipImplicitTemporary(const Expr *E) {
1896     // Skip through reference binding to temporary.
1897     if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1898       E = Materialize->getSubExpr();
1899 
1900     // Skip any temporary bindings; they're implicit.
1901     if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1902       E = Binder->getSubExpr();
1903 
1904     return E;
1905   }
1906 }
1907 
1908 Expr *CastExpr::getSubExprAsWritten() {
1909   const Expr *SubExpr = nullptr;
1910   const CastExpr *E = this;
1911   do {
1912     SubExpr = skipImplicitTemporary(E->getSubExpr());
1913 
1914     // Conversions by constructor and conversion functions have a
1915     // subexpression describing the call; strip it off.
1916     if (E->getCastKind() == CK_ConstructorConversion)
1917       SubExpr =
1918         skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr->IgnoreImplicit())->getArg(0));
1919     else if (E->getCastKind() == CK_UserDefinedConversion) {
1920       SubExpr = SubExpr->IgnoreImplicit();
1921       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1922               isa<BlockExpr>(SubExpr)) &&
1923              "Unexpected SubExpr for CK_UserDefinedConversion.");
1924       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1925         SubExpr = MCE->getImplicitObjectArgument();
1926     }
1927 
1928     // If the subexpression we're left with is an implicit cast, look
1929     // through that, too.
1930   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1931 
1932   return const_cast<Expr*>(SubExpr);
1933 }
1934 
1935 NamedDecl *CastExpr::getConversionFunction() const {
1936   const Expr *SubExpr = nullptr;
1937 
1938   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1939     SubExpr = skipImplicitTemporary(E->getSubExpr());
1940 
1941     if (E->getCastKind() == CK_ConstructorConversion)
1942       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1943 
1944     if (E->getCastKind() == CK_UserDefinedConversion) {
1945       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1946         return MCE->getMethodDecl();
1947     }
1948   }
1949 
1950   return nullptr;
1951 }
1952 
1953 CXXBaseSpecifier **CastExpr::path_buffer() {
1954   switch (getStmtClass()) {
1955 #define ABSTRACT_STMT(x)
1956 #define CASTEXPR(Type, Base)                                                   \
1957   case Stmt::Type##Class:                                                      \
1958     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1959 #define STMT(Type, Base)
1960 #include "clang/AST/StmtNodes.inc"
1961   default:
1962     llvm_unreachable("non-cast expressions not possible here");
1963   }
1964 }
1965 
1966 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
1967                                                         QualType opType) {
1968   auto RD = unionType->castAs<RecordType>()->getDecl();
1969   return getTargetFieldForToUnionCast(RD, opType);
1970 }
1971 
1972 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
1973                                                         QualType OpType) {
1974   auto &Ctx = RD->getASTContext();
1975   RecordDecl::field_iterator Field, FieldEnd;
1976   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1977        Field != FieldEnd; ++Field) {
1978     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1979         !Field->isUnnamedBitfield()) {
1980       return *Field;
1981     }
1982   }
1983   return nullptr;
1984 }
1985 
1986 FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
1987   assert(hasStoredFPFeatures());
1988   switch (getStmtClass()) {
1989   case ImplicitCastExprClass:
1990     return static_cast<ImplicitCastExpr *>(this)
1991         ->getTrailingObjects<FPOptionsOverride>();
1992   case CStyleCastExprClass:
1993     return static_cast<CStyleCastExpr *>(this)
1994         ->getTrailingObjects<FPOptionsOverride>();
1995   case CXXFunctionalCastExprClass:
1996     return static_cast<CXXFunctionalCastExpr *>(this)
1997         ->getTrailingObjects<FPOptionsOverride>();
1998   case CXXStaticCastExprClass:
1999     return static_cast<CXXStaticCastExpr *>(this)
2000         ->getTrailingObjects<FPOptionsOverride>();
2001   default:
2002     llvm_unreachable("Cast does not have FPFeatures");
2003   }
2004 }
2005 
2006 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2007                                            CastKind Kind, Expr *Operand,
2008                                            const CXXCastPath *BasePath,
2009                                            ExprValueKind VK,
2010                                            FPOptionsOverride FPO) {
2011   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2012   void *Buffer =
2013       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2014           PathSize, FPO.requiresTrailingStorage()));
2015   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2016   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2017   assert((Kind != CK_LValueToRValue ||
2018           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2019          "invalid type for lvalue-to-rvalue conversion");
2020   ImplicitCastExpr *E =
2021       new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2022   if (PathSize)
2023     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2024                               E->getTrailingObjects<CXXBaseSpecifier *>());
2025   return E;
2026 }
2027 
2028 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2029                                                 unsigned PathSize,
2030                                                 bool HasFPFeatures) {
2031   void *Buffer =
2032       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2033           PathSize, HasFPFeatures));
2034   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2035 }
2036 
2037 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2038                                        ExprValueKind VK, CastKind K, Expr *Op,
2039                                        const CXXCastPath *BasePath,
2040                                        FPOptionsOverride FPO,
2041                                        TypeSourceInfo *WrittenTy,
2042                                        SourceLocation L, SourceLocation R) {
2043   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2044   void *Buffer =
2045       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2046           PathSize, FPO.requiresTrailingStorage()));
2047   CStyleCastExpr *E =
2048       new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2049   if (PathSize)
2050     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2051                               E->getTrailingObjects<CXXBaseSpecifier *>());
2052   return E;
2053 }
2054 
2055 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2056                                             unsigned PathSize,
2057                                             bool HasFPFeatures) {
2058   void *Buffer =
2059       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2060           PathSize, HasFPFeatures));
2061   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2062 }
2063 
2064 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2065 /// corresponds to, e.g. "<<=".
2066 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2067   switch (Op) {
2068 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2069 #include "clang/AST/OperationKinds.def"
2070   }
2071   llvm_unreachable("Invalid OpCode!");
2072 }
2073 
2074 BinaryOperatorKind
2075 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2076   switch (OO) {
2077   default: llvm_unreachable("Not an overloadable binary operator");
2078   case OO_Plus: return BO_Add;
2079   case OO_Minus: return BO_Sub;
2080   case OO_Star: return BO_Mul;
2081   case OO_Slash: return BO_Div;
2082   case OO_Percent: return BO_Rem;
2083   case OO_Caret: return BO_Xor;
2084   case OO_Amp: return BO_And;
2085   case OO_Pipe: return BO_Or;
2086   case OO_Equal: return BO_Assign;
2087   case OO_Spaceship: return BO_Cmp;
2088   case OO_Less: return BO_LT;
2089   case OO_Greater: return BO_GT;
2090   case OO_PlusEqual: return BO_AddAssign;
2091   case OO_MinusEqual: return BO_SubAssign;
2092   case OO_StarEqual: return BO_MulAssign;
2093   case OO_SlashEqual: return BO_DivAssign;
2094   case OO_PercentEqual: return BO_RemAssign;
2095   case OO_CaretEqual: return BO_XorAssign;
2096   case OO_AmpEqual: return BO_AndAssign;
2097   case OO_PipeEqual: return BO_OrAssign;
2098   case OO_LessLess: return BO_Shl;
2099   case OO_GreaterGreater: return BO_Shr;
2100   case OO_LessLessEqual: return BO_ShlAssign;
2101   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2102   case OO_EqualEqual: return BO_EQ;
2103   case OO_ExclaimEqual: return BO_NE;
2104   case OO_LessEqual: return BO_LE;
2105   case OO_GreaterEqual: return BO_GE;
2106   case OO_AmpAmp: return BO_LAnd;
2107   case OO_PipePipe: return BO_LOr;
2108   case OO_Comma: return BO_Comma;
2109   case OO_ArrowStar: return BO_PtrMemI;
2110   }
2111 }
2112 
2113 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2114   static const OverloadedOperatorKind OverOps[] = {
2115     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2116     OO_Star, OO_Slash, OO_Percent,
2117     OO_Plus, OO_Minus,
2118     OO_LessLess, OO_GreaterGreater,
2119     OO_Spaceship,
2120     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2121     OO_EqualEqual, OO_ExclaimEqual,
2122     OO_Amp,
2123     OO_Caret,
2124     OO_Pipe,
2125     OO_AmpAmp,
2126     OO_PipePipe,
2127     OO_Equal, OO_StarEqual,
2128     OO_SlashEqual, OO_PercentEqual,
2129     OO_PlusEqual, OO_MinusEqual,
2130     OO_LessLessEqual, OO_GreaterGreaterEqual,
2131     OO_AmpEqual, OO_CaretEqual,
2132     OO_PipeEqual,
2133     OO_Comma
2134   };
2135   return OverOps[Opc];
2136 }
2137 
2138 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2139                                                       Opcode Opc,
2140                                                       Expr *LHS, Expr *RHS) {
2141   if (Opc != BO_Add)
2142     return false;
2143 
2144   // Check that we have one pointer and one integer operand.
2145   Expr *PExp;
2146   if (LHS->getType()->isPointerType()) {
2147     if (!RHS->getType()->isIntegerType())
2148       return false;
2149     PExp = LHS;
2150   } else if (RHS->getType()->isPointerType()) {
2151     if (!LHS->getType()->isIntegerType())
2152       return false;
2153     PExp = RHS;
2154   } else {
2155     return false;
2156   }
2157 
2158   // Check that the pointer is a nullptr.
2159   if (!PExp->IgnoreParenCasts()
2160           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2161     return false;
2162 
2163   // Check that the pointee type is char-sized.
2164   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2165   if (!PTy || !PTy->getPointeeType()->isCharType())
2166     return false;
2167 
2168   return true;
2169 }
2170 
2171 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
2172                                             SourceLocExpr::IdentKind Kind) {
2173   switch (Kind) {
2174   case SourceLocExpr::File:
2175   case SourceLocExpr::Function: {
2176     QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2177     return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2178   }
2179   case SourceLocExpr::Line:
2180   case SourceLocExpr::Column:
2181     return Ctx.UnsignedIntTy;
2182   }
2183   llvm_unreachable("unhandled case");
2184 }
2185 
2186 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2187                              SourceLocation BLoc, SourceLocation RParenLoc,
2188                              DeclContext *ParentContext)
2189     : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2190            VK_PRValue, OK_Ordinary),
2191       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2192   SourceLocExprBits.Kind = Kind;
2193   setDependence(ExprDependence::None);
2194 }
2195 
2196 StringRef SourceLocExpr::getBuiltinStr() const {
2197   switch (getIdentKind()) {
2198   case File:
2199     return "__builtin_FILE";
2200   case Function:
2201     return "__builtin_FUNCTION";
2202   case Line:
2203     return "__builtin_LINE";
2204   case Column:
2205     return "__builtin_COLUMN";
2206   }
2207   llvm_unreachable("unexpected IdentKind!");
2208 }
2209 
2210 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2211                                          const Expr *DefaultExpr) const {
2212   SourceLocation Loc;
2213   const DeclContext *Context;
2214 
2215   std::tie(Loc,
2216            Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2217     if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2218       return {DIE->getUsedLocation(), DIE->getUsedContext()};
2219     if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2220       return {DAE->getUsedLocation(), DAE->getUsedContext()};
2221     return {this->getLocation(), this->getParentContext()};
2222   }();
2223 
2224   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2225       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2226 
2227   auto MakeStringLiteral = [&](StringRef Tmp) {
2228     using LValuePathEntry = APValue::LValuePathEntry;
2229     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2230     // Decay the string to a pointer to the first character.
2231     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2232     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2233   };
2234 
2235   switch (getIdentKind()) {
2236   case SourceLocExpr::File: {
2237     SmallString<256> Path(PLoc.getFilename());
2238     Ctx.getLangOpts().remapPathPrefix(Path);
2239     return MakeStringLiteral(Path);
2240   }
2241   case SourceLocExpr::Function: {
2242     const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2243     return MakeStringLiteral(
2244         CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2245                 : std::string(""));
2246   }
2247   case SourceLocExpr::Line:
2248   case SourceLocExpr::Column: {
2249     llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2250                         /*isUnsigned=*/true);
2251     IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2252                                                    : PLoc.getColumn();
2253     return APValue(IntVal);
2254   }
2255   }
2256   llvm_unreachable("unhandled case");
2257 }
2258 
2259 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2260                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2261     : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2262       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2263       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2264   sawArrayRangeDesignator(false);
2265   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2266 
2267   setDependence(computeDependence(this));
2268 }
2269 
2270 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2271   if (NumInits > InitExprs.size())
2272     InitExprs.reserve(C, NumInits);
2273 }
2274 
2275 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2276   InitExprs.resize(C, NumInits, nullptr);
2277 }
2278 
2279 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2280   if (Init >= InitExprs.size()) {
2281     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2282     setInit(Init, expr);
2283     return nullptr;
2284   }
2285 
2286   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2287   setInit(Init, expr);
2288   return Result;
2289 }
2290 
2291 void InitListExpr::setArrayFiller(Expr *filler) {
2292   assert(!hasArrayFiller() && "Filler already set!");
2293   ArrayFillerOrUnionFieldInit = filler;
2294   // Fill out any "holes" in the array due to designated initializers.
2295   Expr **inits = getInits();
2296   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2297     if (inits[i] == nullptr)
2298       inits[i] = filler;
2299 }
2300 
2301 bool InitListExpr::isStringLiteralInit() const {
2302   if (getNumInits() != 1)
2303     return false;
2304   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2305   if (!AT || !AT->getElementType()->isIntegerType())
2306     return false;
2307   // It is possible for getInit() to return null.
2308   const Expr *Init = getInit(0);
2309   if (!Init)
2310     return false;
2311   Init = Init->IgnoreParens();
2312   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2313 }
2314 
2315 bool InitListExpr::isTransparent() const {
2316   assert(isSemanticForm() && "syntactic form never semantically transparent");
2317 
2318   // A glvalue InitListExpr is always just sugar.
2319   if (isGLValue()) {
2320     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2321     return true;
2322   }
2323 
2324   // Otherwise, we're sugar if and only if we have exactly one initializer that
2325   // is of the same type.
2326   if (getNumInits() != 1 || !getInit(0))
2327     return false;
2328 
2329   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2330   // transparent struct copy.
2331   if (!getInit(0)->isPRValue() && getType()->isRecordType())
2332     return false;
2333 
2334   return getType().getCanonicalType() ==
2335          getInit(0)->getType().getCanonicalType();
2336 }
2337 
2338 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2339   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2340 
2341   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2342     return false;
2343   }
2344 
2345   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2346   return Lit && Lit->getValue() == 0;
2347 }
2348 
2349 SourceLocation InitListExpr::getBeginLoc() const {
2350   if (InitListExpr *SyntacticForm = getSyntacticForm())
2351     return SyntacticForm->getBeginLoc();
2352   SourceLocation Beg = LBraceLoc;
2353   if (Beg.isInvalid()) {
2354     // Find the first non-null initializer.
2355     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2356                                      E = InitExprs.end();
2357       I != E; ++I) {
2358       if (Stmt *S = *I) {
2359         Beg = S->getBeginLoc();
2360         break;
2361       }
2362     }
2363   }
2364   return Beg;
2365 }
2366 
2367 SourceLocation InitListExpr::getEndLoc() const {
2368   if (InitListExpr *SyntacticForm = getSyntacticForm())
2369     return SyntacticForm->getEndLoc();
2370   SourceLocation End = RBraceLoc;
2371   if (End.isInvalid()) {
2372     // Find the first non-null initializer from the end.
2373     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2374          E = InitExprs.rend();
2375          I != E; ++I) {
2376       if (Stmt *S = *I) {
2377         End = S->getEndLoc();
2378         break;
2379       }
2380     }
2381   }
2382   return End;
2383 }
2384 
2385 /// getFunctionType - Return the underlying function type for this block.
2386 ///
2387 const FunctionProtoType *BlockExpr::getFunctionType() const {
2388   // The block pointer is never sugared, but the function type might be.
2389   return cast<BlockPointerType>(getType())
2390            ->getPointeeType()->castAs<FunctionProtoType>();
2391 }
2392 
2393 SourceLocation BlockExpr::getCaretLocation() const {
2394   return TheBlock->getCaretLocation();
2395 }
2396 const Stmt *BlockExpr::getBody() const {
2397   return TheBlock->getBody();
2398 }
2399 Stmt *BlockExpr::getBody() {
2400   return TheBlock->getBody();
2401 }
2402 
2403 
2404 //===----------------------------------------------------------------------===//
2405 // Generic Expression Routines
2406 //===----------------------------------------------------------------------===//
2407 
2408 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2409   // In C++11, discarded-value expressions of a certain form are special,
2410   // according to [expr]p10:
2411   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2412   //   expression is a glvalue of volatile-qualified type and it has
2413   //   one of the following forms:
2414   if (!isGLValue() || !getType().isVolatileQualified())
2415     return false;
2416 
2417   const Expr *E = IgnoreParens();
2418 
2419   //   - id-expression (5.1.1),
2420   if (isa<DeclRefExpr>(E))
2421     return true;
2422 
2423   //   - subscripting (5.2.1),
2424   if (isa<ArraySubscriptExpr>(E))
2425     return true;
2426 
2427   //   - class member access (5.2.5),
2428   if (isa<MemberExpr>(E))
2429     return true;
2430 
2431   //   - indirection (5.3.1),
2432   if (auto *UO = dyn_cast<UnaryOperator>(E))
2433     if (UO->getOpcode() == UO_Deref)
2434       return true;
2435 
2436   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2437     //   - pointer-to-member operation (5.5),
2438     if (BO->isPtrMemOp())
2439       return true;
2440 
2441     //   - comma expression (5.18) where the right operand is one of the above.
2442     if (BO->getOpcode() == BO_Comma)
2443       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2444   }
2445 
2446   //   - conditional expression (5.16) where both the second and the third
2447   //     operands are one of the above, or
2448   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2449     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2450            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2451   // The related edge case of "*x ?: *x".
2452   if (auto *BCO =
2453           dyn_cast<BinaryConditionalOperator>(E)) {
2454     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2455       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2456              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2457   }
2458 
2459   // Objective-C++ extensions to the rule.
2460   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
2461     return true;
2462 
2463   return false;
2464 }
2465 
2466 /// isUnusedResultAWarning - Return true if this immediate expression should
2467 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2468 /// with location to warn on and the source range[s] to report with the
2469 /// warning.
2470 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2471                                   SourceRange &R1, SourceRange &R2,
2472                                   ASTContext &Ctx) const {
2473   // Don't warn if the expr is type dependent. The type could end up
2474   // instantiating to void.
2475   if (isTypeDependent())
2476     return false;
2477 
2478   switch (getStmtClass()) {
2479   default:
2480     if (getType()->isVoidType())
2481       return false;
2482     WarnE = this;
2483     Loc = getExprLoc();
2484     R1 = getSourceRange();
2485     return true;
2486   case ParenExprClass:
2487     return cast<ParenExpr>(this)->getSubExpr()->
2488       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2489   case GenericSelectionExprClass:
2490     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2491       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2492   case CoawaitExprClass:
2493   case CoyieldExprClass:
2494     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2495       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2496   case ChooseExprClass:
2497     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2498       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2499   case UnaryOperatorClass: {
2500     const UnaryOperator *UO = cast<UnaryOperator>(this);
2501 
2502     switch (UO->getOpcode()) {
2503     case UO_Plus:
2504     case UO_Minus:
2505     case UO_AddrOf:
2506     case UO_Not:
2507     case UO_LNot:
2508     case UO_Deref:
2509       break;
2510     case UO_Coawait:
2511       // This is just the 'operator co_await' call inside the guts of a
2512       // dependent co_await call.
2513     case UO_PostInc:
2514     case UO_PostDec:
2515     case UO_PreInc:
2516     case UO_PreDec:                 // ++/--
2517       return false;  // Not a warning.
2518     case UO_Real:
2519     case UO_Imag:
2520       // accessing a piece of a volatile complex is a side-effect.
2521       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2522           .isVolatileQualified())
2523         return false;
2524       break;
2525     case UO_Extension:
2526       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2527     }
2528     WarnE = this;
2529     Loc = UO->getOperatorLoc();
2530     R1 = UO->getSubExpr()->getSourceRange();
2531     return true;
2532   }
2533   case BinaryOperatorClass: {
2534     const BinaryOperator *BO = cast<BinaryOperator>(this);
2535     switch (BO->getOpcode()) {
2536       default:
2537         break;
2538       // Consider the RHS of comma for side effects. LHS was checked by
2539       // Sema::CheckCommaOperands.
2540       case BO_Comma:
2541         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2542         // lvalue-ness) of an assignment written in a macro.
2543         if (IntegerLiteral *IE =
2544               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2545           if (IE->getValue() == 0)
2546             return false;
2547         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2548       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2549       case BO_LAnd:
2550       case BO_LOr:
2551         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2552             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2553           return false;
2554         break;
2555     }
2556     if (BO->isAssignmentOp())
2557       return false;
2558     WarnE = this;
2559     Loc = BO->getOperatorLoc();
2560     R1 = BO->getLHS()->getSourceRange();
2561     R2 = BO->getRHS()->getSourceRange();
2562     return true;
2563   }
2564   case CompoundAssignOperatorClass:
2565   case VAArgExprClass:
2566   case AtomicExprClass:
2567     return false;
2568 
2569   case ConditionalOperatorClass: {
2570     // If only one of the LHS or RHS is a warning, the operator might
2571     // be being used for control flow. Only warn if both the LHS and
2572     // RHS are warnings.
2573     const auto *Exp = cast<ConditionalOperator>(this);
2574     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2575            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2576   }
2577   case BinaryConditionalOperatorClass: {
2578     const auto *Exp = cast<BinaryConditionalOperator>(this);
2579     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2580   }
2581 
2582   case MemberExprClass:
2583     WarnE = this;
2584     Loc = cast<MemberExpr>(this)->getMemberLoc();
2585     R1 = SourceRange(Loc, Loc);
2586     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2587     return true;
2588 
2589   case ArraySubscriptExprClass:
2590     WarnE = this;
2591     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2592     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2593     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2594     return true;
2595 
2596   case CXXOperatorCallExprClass: {
2597     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2598     // overloads as there is no reasonable way to define these such that they
2599     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2600     // warning: operators == and != are commonly typo'ed, and so warning on them
2601     // provides additional value as well. If this list is updated,
2602     // DiagnoseUnusedComparison should be as well.
2603     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2604     switch (Op->getOperator()) {
2605     default:
2606       break;
2607     case OO_EqualEqual:
2608     case OO_ExclaimEqual:
2609     case OO_Less:
2610     case OO_Greater:
2611     case OO_GreaterEqual:
2612     case OO_LessEqual:
2613       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2614           Op->getCallReturnType(Ctx)->isVoidType())
2615         break;
2616       WarnE = this;
2617       Loc = Op->getOperatorLoc();
2618       R1 = Op->getSourceRange();
2619       return true;
2620     }
2621 
2622     // Fallthrough for generic call handling.
2623     LLVM_FALLTHROUGH;
2624   }
2625   case CallExprClass:
2626   case CXXMemberCallExprClass:
2627   case UserDefinedLiteralClass: {
2628     // If this is a direct call, get the callee.
2629     const CallExpr *CE = cast<CallExpr>(this);
2630     if (const Decl *FD = CE->getCalleeDecl()) {
2631       // If the callee has attribute pure, const, or warn_unused_result, warn
2632       // about it. void foo() { strlen("bar"); } should warn.
2633       //
2634       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2635       // updated to match for QoI.
2636       if (CE->hasUnusedResultAttr(Ctx) ||
2637           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2638         WarnE = this;
2639         Loc = CE->getCallee()->getBeginLoc();
2640         R1 = CE->getCallee()->getSourceRange();
2641 
2642         if (unsigned NumArgs = CE->getNumArgs())
2643           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2644                            CE->getArg(NumArgs - 1)->getEndLoc());
2645         return true;
2646       }
2647     }
2648     return false;
2649   }
2650 
2651   // If we don't know precisely what we're looking at, let's not warn.
2652   case UnresolvedLookupExprClass:
2653   case CXXUnresolvedConstructExprClass:
2654   case RecoveryExprClass:
2655     return false;
2656 
2657   case CXXTemporaryObjectExprClass:
2658   case CXXConstructExprClass: {
2659     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2660       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2661       if (Type->hasAttr<WarnUnusedAttr>() ||
2662           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2663         WarnE = this;
2664         Loc = getBeginLoc();
2665         R1 = getSourceRange();
2666         return true;
2667       }
2668     }
2669 
2670     const auto *CE = cast<CXXConstructExpr>(this);
2671     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2672       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2673       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2674         WarnE = this;
2675         Loc = getBeginLoc();
2676         R1 = getSourceRange();
2677 
2678         if (unsigned NumArgs = CE->getNumArgs())
2679           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2680                            CE->getArg(NumArgs - 1)->getEndLoc());
2681         return true;
2682       }
2683     }
2684 
2685     return false;
2686   }
2687 
2688   case ObjCMessageExprClass: {
2689     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2690     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2691         ME->isInstanceMessage() &&
2692         !ME->getType()->isVoidType() &&
2693         ME->getMethodFamily() == OMF_init) {
2694       WarnE = this;
2695       Loc = getExprLoc();
2696       R1 = ME->getSourceRange();
2697       return true;
2698     }
2699 
2700     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2701       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2702         WarnE = this;
2703         Loc = getExprLoc();
2704         return true;
2705       }
2706 
2707     return false;
2708   }
2709 
2710   case ObjCPropertyRefExprClass:
2711     WarnE = this;
2712     Loc = getExprLoc();
2713     R1 = getSourceRange();
2714     return true;
2715 
2716   case PseudoObjectExprClass: {
2717     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2718 
2719     // Only complain about things that have the form of a getter.
2720     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2721         isa<BinaryOperator>(PO->getSyntacticForm()))
2722       return false;
2723 
2724     WarnE = this;
2725     Loc = getExprLoc();
2726     R1 = getSourceRange();
2727     return true;
2728   }
2729 
2730   case StmtExprClass: {
2731     // Statement exprs don't logically have side effects themselves, but are
2732     // sometimes used in macros in ways that give them a type that is unused.
2733     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2734     // however, if the result of the stmt expr is dead, we don't want to emit a
2735     // warning.
2736     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2737     if (!CS->body_empty()) {
2738       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2739         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2740       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2741         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2742           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2743     }
2744 
2745     if (getType()->isVoidType())
2746       return false;
2747     WarnE = this;
2748     Loc = cast<StmtExpr>(this)->getLParenLoc();
2749     R1 = getSourceRange();
2750     return true;
2751   }
2752   case CXXFunctionalCastExprClass:
2753   case CStyleCastExprClass: {
2754     // Ignore an explicit cast to void, except in C++98 if the operand is a
2755     // volatile glvalue for which we would trigger an implicit read in any
2756     // other language mode. (Such an implicit read always happens as part of
2757     // the lvalue conversion in C, and happens in C++ for expressions of all
2758     // forms where it seems likely the user intended to trigger a volatile
2759     // load.)
2760     const CastExpr *CE = cast<CastExpr>(this);
2761     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2762     if (CE->getCastKind() == CK_ToVoid) {
2763       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2764           SubE->isReadIfDiscardedInCPlusPlus11()) {
2765         // Suppress the "unused value" warning for idiomatic usage of
2766         // '(void)var;' used to suppress "unused variable" warnings.
2767         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2768           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2769             if (!VD->isExternallyVisible())
2770               return false;
2771 
2772         // The lvalue-to-rvalue conversion would have no effect for an array.
2773         // It's implausible that the programmer expected this to result in a
2774         // volatile array load, so don't warn.
2775         if (SubE->getType()->isArrayType())
2776           return false;
2777 
2778         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2779       }
2780       return false;
2781     }
2782 
2783     // If this is a cast to a constructor conversion, check the operand.
2784     // Otherwise, the result of the cast is unused.
2785     if (CE->getCastKind() == CK_ConstructorConversion)
2786       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2787     if (CE->getCastKind() == CK_Dependent)
2788       return false;
2789 
2790     WarnE = this;
2791     if (const CXXFunctionalCastExpr *CXXCE =
2792             dyn_cast<CXXFunctionalCastExpr>(this)) {
2793       Loc = CXXCE->getBeginLoc();
2794       R1 = CXXCE->getSubExpr()->getSourceRange();
2795     } else {
2796       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2797       Loc = CStyleCE->getLParenLoc();
2798       R1 = CStyleCE->getSubExpr()->getSourceRange();
2799     }
2800     return true;
2801   }
2802   case ImplicitCastExprClass: {
2803     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2804 
2805     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2806     if (ICE->getCastKind() == CK_LValueToRValue &&
2807         ICE->getSubExpr()->getType().isVolatileQualified())
2808       return false;
2809 
2810     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2811   }
2812   case CXXDefaultArgExprClass:
2813     return (cast<CXXDefaultArgExpr>(this)
2814             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2815   case CXXDefaultInitExprClass:
2816     return (cast<CXXDefaultInitExpr>(this)
2817             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2818 
2819   case CXXNewExprClass:
2820     // FIXME: In theory, there might be new expressions that don't have side
2821     // effects (e.g. a placement new with an uninitialized POD).
2822   case CXXDeleteExprClass:
2823     return false;
2824   case MaterializeTemporaryExprClass:
2825     return cast<MaterializeTemporaryExpr>(this)
2826         ->getSubExpr()
2827         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2828   case CXXBindTemporaryExprClass:
2829     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2830                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2831   case ExprWithCleanupsClass:
2832     return cast<ExprWithCleanups>(this)->getSubExpr()
2833                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2834   }
2835 }
2836 
2837 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2838 /// returns true, if it is; false otherwise.
2839 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2840   const Expr *E = IgnoreParens();
2841   switch (E->getStmtClass()) {
2842   default:
2843     return false;
2844   case ObjCIvarRefExprClass:
2845     return true;
2846   case Expr::UnaryOperatorClass:
2847     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2848   case ImplicitCastExprClass:
2849     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2850   case MaterializeTemporaryExprClass:
2851     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2852         Ctx);
2853   case CStyleCastExprClass:
2854     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2855   case DeclRefExprClass: {
2856     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2857 
2858     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2859       if (VD->hasGlobalStorage())
2860         return true;
2861       QualType T = VD->getType();
2862       // dereferencing to a  pointer is always a gc'able candidate,
2863       // unless it is __weak.
2864       return T->isPointerType() &&
2865              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2866     }
2867     return false;
2868   }
2869   case MemberExprClass: {
2870     const MemberExpr *M = cast<MemberExpr>(E);
2871     return M->getBase()->isOBJCGCCandidate(Ctx);
2872   }
2873   case ArraySubscriptExprClass:
2874     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2875   }
2876 }
2877 
2878 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2879   if (isTypeDependent())
2880     return false;
2881   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2882 }
2883 
2884 QualType Expr::findBoundMemberType(const Expr *expr) {
2885   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2886 
2887   // Bound member expressions are always one of these possibilities:
2888   //   x->m      x.m      x->*y      x.*y
2889   // (possibly parenthesized)
2890 
2891   expr = expr->IgnoreParens();
2892   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2893     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2894     return mem->getMemberDecl()->getType();
2895   }
2896 
2897   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2898     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2899                       ->getPointeeType();
2900     assert(type->isFunctionType());
2901     return type;
2902   }
2903 
2904   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2905   return QualType();
2906 }
2907 
2908 Expr *Expr::IgnoreImpCasts() {
2909   return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
2910 }
2911 
2912 Expr *Expr::IgnoreCasts() {
2913   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2914 }
2915 
2916 Expr *Expr::IgnoreImplicit() {
2917   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
2918 }
2919 
2920 Expr *Expr::IgnoreImplicitAsWritten() {
2921   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
2922 }
2923 
2924 Expr *Expr::IgnoreParens() {
2925   return IgnoreExprNodes(this, IgnoreParensSingleStep);
2926 }
2927 
2928 Expr *Expr::IgnoreParenImpCasts() {
2929   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2930                          IgnoreImplicitCastsExtraSingleStep);
2931 }
2932 
2933 Expr *Expr::IgnoreParenCasts() {
2934   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
2935 }
2936 
2937 Expr *Expr::IgnoreConversionOperatorSingleStep() {
2938   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2939     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2940       return MCE->getImplicitObjectArgument();
2941   }
2942   return this;
2943 }
2944 
2945 Expr *Expr::IgnoreParenLValueCasts() {
2946   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2947                          IgnoreLValueCastsSingleStep);
2948 }
2949 
2950 Expr *Expr::IgnoreParenBaseCasts() {
2951   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2952                          IgnoreBaseCastsSingleStep);
2953 }
2954 
2955 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
2956   auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
2957     if (auto *CE = dyn_cast<CastExpr>(E)) {
2958       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2959       // ptr<->int casts of the same width. We also ignore all identity casts.
2960       Expr *SubExpr = CE->getSubExpr();
2961       bool IsIdentityCast =
2962           Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2963       bool IsSameWidthCast = (E->getType()->isPointerType() ||
2964                               E->getType()->isIntegralType(Ctx)) &&
2965                              (SubExpr->getType()->isPointerType() ||
2966                               SubExpr->getType()->isIntegralType(Ctx)) &&
2967                              (Ctx.getTypeSize(E->getType()) ==
2968                               Ctx.getTypeSize(SubExpr->getType()));
2969 
2970       if (IsIdentityCast || IsSameWidthCast)
2971         return SubExpr;
2972     } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2973       return NTTP->getReplacement();
2974 
2975     return E;
2976   };
2977   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2978                          IgnoreNoopCastsSingleStep);
2979 }
2980 
2981 Expr *Expr::IgnoreUnlessSpelledInSource() {
2982   auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
2983     if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
2984       auto *SE = Cast->getSubExpr();
2985       if (SE->getSourceRange() == E->getSourceRange())
2986         return SE;
2987     }
2988 
2989     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
2990       auto NumArgs = C->getNumArgs();
2991       if (NumArgs == 1 ||
2992           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
2993         Expr *A = C->getArg(0);
2994         if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
2995           return A;
2996       }
2997     }
2998     return E;
2999   };
3000   auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3001     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3002       Expr *ExprNode = C->getImplicitObjectArgument();
3003       if (ExprNode->getSourceRange() == E->getSourceRange()) {
3004         return ExprNode;
3005       }
3006       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3007         if (PE->getSourceRange() == C->getSourceRange()) {
3008           return cast<Expr>(PE);
3009         }
3010       }
3011       ExprNode = ExprNode->IgnoreParenImpCasts();
3012       if (ExprNode->getSourceRange() == E->getSourceRange())
3013         return ExprNode;
3014     }
3015     return E;
3016   };
3017   return IgnoreExprNodes(
3018       this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3019       IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3020       IgnoreImplicitMemberCallSingleStep);
3021 }
3022 
3023 bool Expr::isDefaultArgument() const {
3024   const Expr *E = this;
3025   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3026     E = M->getSubExpr();
3027 
3028   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3029     E = ICE->getSubExprAsWritten();
3030 
3031   return isa<CXXDefaultArgExpr>(E);
3032 }
3033 
3034 /// Skip over any no-op casts and any temporary-binding
3035 /// expressions.
3036 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3037   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3038     E = M->getSubExpr();
3039 
3040   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3041     if (ICE->getCastKind() == CK_NoOp)
3042       E = ICE->getSubExpr();
3043     else
3044       break;
3045   }
3046 
3047   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3048     E = BE->getSubExpr();
3049 
3050   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3051     if (ICE->getCastKind() == CK_NoOp)
3052       E = ICE->getSubExpr();
3053     else
3054       break;
3055   }
3056 
3057   return E->IgnoreParens();
3058 }
3059 
3060 /// isTemporaryObject - Determines if this expression produces a
3061 /// temporary of the given class type.
3062 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3063   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3064     return false;
3065 
3066   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3067 
3068   // Temporaries are by definition pr-values of class type.
3069   if (!E->Classify(C).isPRValue()) {
3070     // In this context, property reference is a message call and is pr-value.
3071     if (!isa<ObjCPropertyRefExpr>(E))
3072       return false;
3073   }
3074 
3075   // Black-list a few cases which yield pr-values of class type that don't
3076   // refer to temporaries of that type:
3077 
3078   // - implicit derived-to-base conversions
3079   if (isa<ImplicitCastExpr>(E)) {
3080     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3081     case CK_DerivedToBase:
3082     case CK_UncheckedDerivedToBase:
3083       return false;
3084     default:
3085       break;
3086     }
3087   }
3088 
3089   // - member expressions (all)
3090   if (isa<MemberExpr>(E))
3091     return false;
3092 
3093   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3094     if (BO->isPtrMemOp())
3095       return false;
3096 
3097   // - opaque values (all)
3098   if (isa<OpaqueValueExpr>(E))
3099     return false;
3100 
3101   return true;
3102 }
3103 
3104 bool Expr::isImplicitCXXThis() const {
3105   const Expr *E = this;
3106 
3107   // Strip away parentheses and casts we don't care about.
3108   while (true) {
3109     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3110       E = Paren->getSubExpr();
3111       continue;
3112     }
3113 
3114     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3115       if (ICE->getCastKind() == CK_NoOp ||
3116           ICE->getCastKind() == CK_LValueToRValue ||
3117           ICE->getCastKind() == CK_DerivedToBase ||
3118           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3119         E = ICE->getSubExpr();
3120         continue;
3121       }
3122     }
3123 
3124     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3125       if (UnOp->getOpcode() == UO_Extension) {
3126         E = UnOp->getSubExpr();
3127         continue;
3128       }
3129     }
3130 
3131     if (const MaterializeTemporaryExpr *M
3132                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3133       E = M->getSubExpr();
3134       continue;
3135     }
3136 
3137     break;
3138   }
3139 
3140   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3141     return This->isImplicit();
3142 
3143   return false;
3144 }
3145 
3146 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3147 /// in Exprs is type-dependent.
3148 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3149   for (unsigned I = 0; I < Exprs.size(); ++I)
3150     if (Exprs[I]->isTypeDependent())
3151       return true;
3152 
3153   return false;
3154 }
3155 
3156 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3157                                  const Expr **Culprit) const {
3158   assert(!isValueDependent() &&
3159          "Expression evaluator can't be called on a dependent expression.");
3160 
3161   // This function is attempting whether an expression is an initializer
3162   // which can be evaluated at compile-time. It very closely parallels
3163   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3164   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3165   // to isEvaluatable most of the time.
3166   //
3167   // If we ever capture reference-binding directly in the AST, we can
3168   // kill the second parameter.
3169 
3170   if (IsForRef) {
3171     EvalResult Result;
3172     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3173       return true;
3174     if (Culprit)
3175       *Culprit = this;
3176     return false;
3177   }
3178 
3179   switch (getStmtClass()) {
3180   default: break;
3181   case Stmt::ExprWithCleanupsClass:
3182     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3183         Ctx, IsForRef, Culprit);
3184   case StringLiteralClass:
3185   case ObjCEncodeExprClass:
3186     return true;
3187   case CXXTemporaryObjectExprClass:
3188   case CXXConstructExprClass: {
3189     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3190 
3191     if (CE->getConstructor()->isTrivial() &&
3192         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3193       // Trivial default constructor
3194       if (!CE->getNumArgs()) return true;
3195 
3196       // Trivial copy constructor
3197       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3198       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3199     }
3200 
3201     break;
3202   }
3203   case ConstantExprClass: {
3204     // FIXME: We should be able to return "true" here, but it can lead to extra
3205     // error messages. E.g. in Sema/array-init.c.
3206     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3207     return Exp->isConstantInitializer(Ctx, false, Culprit);
3208   }
3209   case CompoundLiteralExprClass: {
3210     // This handles gcc's extension that allows global initializers like
3211     // "struct x {int x;} x = (struct x) {};".
3212     // FIXME: This accepts other cases it shouldn't!
3213     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3214     return Exp->isConstantInitializer(Ctx, false, Culprit);
3215   }
3216   case DesignatedInitUpdateExprClass: {
3217     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3218     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3219            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3220   }
3221   case InitListExprClass: {
3222     const InitListExpr *ILE = cast<InitListExpr>(this);
3223     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3224     if (ILE->getType()->isArrayType()) {
3225       unsigned numInits = ILE->getNumInits();
3226       for (unsigned i = 0; i < numInits; i++) {
3227         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3228           return false;
3229       }
3230       return true;
3231     }
3232 
3233     if (ILE->getType()->isRecordType()) {
3234       unsigned ElementNo = 0;
3235       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3236       for (const auto *Field : RD->fields()) {
3237         // If this is a union, skip all the fields that aren't being initialized.
3238         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3239           continue;
3240 
3241         // Don't emit anonymous bitfields, they just affect layout.
3242         if (Field->isUnnamedBitfield())
3243           continue;
3244 
3245         if (ElementNo < ILE->getNumInits()) {
3246           const Expr *Elt = ILE->getInit(ElementNo++);
3247           if (Field->isBitField()) {
3248             // Bitfields have to evaluate to an integer.
3249             EvalResult Result;
3250             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3251               if (Culprit)
3252                 *Culprit = Elt;
3253               return false;
3254             }
3255           } else {
3256             bool RefType = Field->getType()->isReferenceType();
3257             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3258               return false;
3259           }
3260         }
3261       }
3262       return true;
3263     }
3264 
3265     break;
3266   }
3267   case ImplicitValueInitExprClass:
3268   case NoInitExprClass:
3269     return true;
3270   case ParenExprClass:
3271     return cast<ParenExpr>(this)->getSubExpr()
3272       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3273   case GenericSelectionExprClass:
3274     return cast<GenericSelectionExpr>(this)->getResultExpr()
3275       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3276   case ChooseExprClass:
3277     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3278       if (Culprit)
3279         *Culprit = this;
3280       return false;
3281     }
3282     return cast<ChooseExpr>(this)->getChosenSubExpr()
3283       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3284   case UnaryOperatorClass: {
3285     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3286     if (Exp->getOpcode() == UO_Extension)
3287       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3288     break;
3289   }
3290   case CXXFunctionalCastExprClass:
3291   case CXXStaticCastExprClass:
3292   case ImplicitCastExprClass:
3293   case CStyleCastExprClass:
3294   case ObjCBridgedCastExprClass:
3295   case CXXDynamicCastExprClass:
3296   case CXXReinterpretCastExprClass:
3297   case CXXAddrspaceCastExprClass:
3298   case CXXConstCastExprClass: {
3299     const CastExpr *CE = cast<CastExpr>(this);
3300 
3301     // Handle misc casts we want to ignore.
3302     if (CE->getCastKind() == CK_NoOp ||
3303         CE->getCastKind() == CK_LValueToRValue ||
3304         CE->getCastKind() == CK_ToUnion ||
3305         CE->getCastKind() == CK_ConstructorConversion ||
3306         CE->getCastKind() == CK_NonAtomicToAtomic ||
3307         CE->getCastKind() == CK_AtomicToNonAtomic ||
3308         CE->getCastKind() == CK_IntToOCLSampler)
3309       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3310 
3311     break;
3312   }
3313   case MaterializeTemporaryExprClass:
3314     return cast<MaterializeTemporaryExpr>(this)
3315         ->getSubExpr()
3316         ->isConstantInitializer(Ctx, false, Culprit);
3317 
3318   case SubstNonTypeTemplateParmExprClass:
3319     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3320       ->isConstantInitializer(Ctx, false, Culprit);
3321   case CXXDefaultArgExprClass:
3322     return cast<CXXDefaultArgExpr>(this)->getExpr()
3323       ->isConstantInitializer(Ctx, false, Culprit);
3324   case CXXDefaultInitExprClass:
3325     return cast<CXXDefaultInitExpr>(this)->getExpr()
3326       ->isConstantInitializer(Ctx, false, Culprit);
3327   }
3328   // Allow certain forms of UB in constant initializers: signed integer
3329   // overflow and floating-point division by zero. We'll give a warning on
3330   // these, but they're common enough that we have to accept them.
3331   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3332     return true;
3333   if (Culprit)
3334     *Culprit = this;
3335   return false;
3336 }
3337 
3338 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3339   const FunctionDecl* FD = getDirectCallee();
3340   if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3341               FD->getBuiltinID() != Builtin::BI__builtin_assume))
3342     return false;
3343 
3344   const Expr* Arg = getArg(0);
3345   bool ArgVal;
3346   return !Arg->isValueDependent() &&
3347          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3348 }
3349 
3350 namespace {
3351   /// Look for any side effects within a Stmt.
3352   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3353     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3354     const bool IncludePossibleEffects;
3355     bool HasSideEffects;
3356 
3357   public:
3358     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3359       : Inherited(Context),
3360         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3361 
3362     bool hasSideEffects() const { return HasSideEffects; }
3363 
3364     void VisitDecl(const Decl *D) {
3365       if (!D)
3366         return;
3367 
3368       // We assume the caller checks subexpressions (eg, the initializer, VLA
3369       // bounds) for side-effects on our behalf.
3370       if (auto *VD = dyn_cast<VarDecl>(D)) {
3371         // Registering a destructor is a side-effect.
3372         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3373             VD->needsDestruction(Context))
3374           HasSideEffects = true;
3375       }
3376     }
3377 
3378     void VisitDeclStmt(const DeclStmt *DS) {
3379       for (auto *D : DS->decls())
3380         VisitDecl(D);
3381       Inherited::VisitDeclStmt(DS);
3382     }
3383 
3384     void VisitExpr(const Expr *E) {
3385       if (!HasSideEffects &&
3386           E->HasSideEffects(Context, IncludePossibleEffects))
3387         HasSideEffects = true;
3388     }
3389   };
3390 }
3391 
3392 bool Expr::HasSideEffects(const ASTContext &Ctx,
3393                           bool IncludePossibleEffects) const {
3394   // In circumstances where we care about definite side effects instead of
3395   // potential side effects, we want to ignore expressions that are part of a
3396   // macro expansion as a potential side effect.
3397   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3398     return false;
3399 
3400   switch (getStmtClass()) {
3401   case NoStmtClass:
3402   #define ABSTRACT_STMT(Type)
3403   #define STMT(Type, Base) case Type##Class:
3404   #define EXPR(Type, Base)
3405   #include "clang/AST/StmtNodes.inc"
3406     llvm_unreachable("unexpected Expr kind");
3407 
3408   case DependentScopeDeclRefExprClass:
3409   case CXXUnresolvedConstructExprClass:
3410   case CXXDependentScopeMemberExprClass:
3411   case UnresolvedLookupExprClass:
3412   case UnresolvedMemberExprClass:
3413   case PackExpansionExprClass:
3414   case SubstNonTypeTemplateParmPackExprClass:
3415   case FunctionParmPackExprClass:
3416   case TypoExprClass:
3417   case RecoveryExprClass:
3418   case CXXFoldExprClass:
3419     // Make a conservative assumption for dependent nodes.
3420     return IncludePossibleEffects;
3421 
3422   case DeclRefExprClass:
3423   case ObjCIvarRefExprClass:
3424   case PredefinedExprClass:
3425   case IntegerLiteralClass:
3426   case FixedPointLiteralClass:
3427   case FloatingLiteralClass:
3428   case ImaginaryLiteralClass:
3429   case StringLiteralClass:
3430   case CharacterLiteralClass:
3431   case OffsetOfExprClass:
3432   case ImplicitValueInitExprClass:
3433   case UnaryExprOrTypeTraitExprClass:
3434   case AddrLabelExprClass:
3435   case GNUNullExprClass:
3436   case ArrayInitIndexExprClass:
3437   case NoInitExprClass:
3438   case CXXBoolLiteralExprClass:
3439   case CXXNullPtrLiteralExprClass:
3440   case CXXThisExprClass:
3441   case CXXScalarValueInitExprClass:
3442   case TypeTraitExprClass:
3443   case ArrayTypeTraitExprClass:
3444   case ExpressionTraitExprClass:
3445   case CXXNoexceptExprClass:
3446   case SizeOfPackExprClass:
3447   case ObjCStringLiteralClass:
3448   case ObjCEncodeExprClass:
3449   case ObjCBoolLiteralExprClass:
3450   case ObjCAvailabilityCheckExprClass:
3451   case CXXUuidofExprClass:
3452   case OpaqueValueExprClass:
3453   case SourceLocExprClass:
3454   case ConceptSpecializationExprClass:
3455   case RequiresExprClass:
3456   case SYCLUniqueStableNameExprClass:
3457     // These never have a side-effect.
3458     return false;
3459 
3460   case ConstantExprClass:
3461     // FIXME: Move this into the "return false;" block above.
3462     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3463         Ctx, IncludePossibleEffects);
3464 
3465   case CallExprClass:
3466   case CXXOperatorCallExprClass:
3467   case CXXMemberCallExprClass:
3468   case CUDAKernelCallExprClass:
3469   case UserDefinedLiteralClass: {
3470     // We don't know a call definitely has side effects, except for calls
3471     // to pure/const functions that definitely don't.
3472     // If the call itself is considered side-effect free, check the operands.
3473     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3474     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3475     if (IsPure || !IncludePossibleEffects)
3476       break;
3477     return true;
3478   }
3479 
3480   case BlockExprClass:
3481   case CXXBindTemporaryExprClass:
3482     if (!IncludePossibleEffects)
3483       break;
3484     return true;
3485 
3486   case MSPropertyRefExprClass:
3487   case MSPropertySubscriptExprClass:
3488   case CompoundAssignOperatorClass:
3489   case VAArgExprClass:
3490   case AtomicExprClass:
3491   case CXXThrowExprClass:
3492   case CXXNewExprClass:
3493   case CXXDeleteExprClass:
3494   case CoawaitExprClass:
3495   case DependentCoawaitExprClass:
3496   case CoyieldExprClass:
3497     // These always have a side-effect.
3498     return true;
3499 
3500   case StmtExprClass: {
3501     // StmtExprs have a side-effect if any substatement does.
3502     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3503     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3504     return Finder.hasSideEffects();
3505   }
3506 
3507   case ExprWithCleanupsClass:
3508     if (IncludePossibleEffects)
3509       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3510         return true;
3511     break;
3512 
3513   case ParenExprClass:
3514   case ArraySubscriptExprClass:
3515   case MatrixSubscriptExprClass:
3516   case OMPArraySectionExprClass:
3517   case OMPArrayShapingExprClass:
3518   case OMPIteratorExprClass:
3519   case MemberExprClass:
3520   case ConditionalOperatorClass:
3521   case BinaryConditionalOperatorClass:
3522   case CompoundLiteralExprClass:
3523   case ExtVectorElementExprClass:
3524   case DesignatedInitExprClass:
3525   case DesignatedInitUpdateExprClass:
3526   case ArrayInitLoopExprClass:
3527   case ParenListExprClass:
3528   case CXXPseudoDestructorExprClass:
3529   case CXXRewrittenBinaryOperatorClass:
3530   case CXXStdInitializerListExprClass:
3531   case SubstNonTypeTemplateParmExprClass:
3532   case MaterializeTemporaryExprClass:
3533   case ShuffleVectorExprClass:
3534   case ConvertVectorExprClass:
3535   case AsTypeExprClass:
3536     // These have a side-effect if any subexpression does.
3537     break;
3538 
3539   case UnaryOperatorClass:
3540     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3541       return true;
3542     break;
3543 
3544   case BinaryOperatorClass:
3545     if (cast<BinaryOperator>(this)->isAssignmentOp())
3546       return true;
3547     break;
3548 
3549   case InitListExprClass:
3550     // FIXME: The children for an InitListExpr doesn't include the array filler.
3551     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3552       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3553         return true;
3554     break;
3555 
3556   case GenericSelectionExprClass:
3557     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3558         HasSideEffects(Ctx, IncludePossibleEffects);
3559 
3560   case ChooseExprClass:
3561     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3562         Ctx, IncludePossibleEffects);
3563 
3564   case CXXDefaultArgExprClass:
3565     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3566         Ctx, IncludePossibleEffects);
3567 
3568   case CXXDefaultInitExprClass: {
3569     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3570     if (const Expr *E = FD->getInClassInitializer())
3571       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3572     // If we've not yet parsed the initializer, assume it has side-effects.
3573     return true;
3574   }
3575 
3576   case CXXDynamicCastExprClass: {
3577     // A dynamic_cast expression has side-effects if it can throw.
3578     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3579     if (DCE->getTypeAsWritten()->isReferenceType() &&
3580         DCE->getCastKind() == CK_Dynamic)
3581       return true;
3582     }
3583     LLVM_FALLTHROUGH;
3584   case ImplicitCastExprClass:
3585   case CStyleCastExprClass:
3586   case CXXStaticCastExprClass:
3587   case CXXReinterpretCastExprClass:
3588   case CXXConstCastExprClass:
3589   case CXXAddrspaceCastExprClass:
3590   case CXXFunctionalCastExprClass:
3591   case BuiltinBitCastExprClass: {
3592     // While volatile reads are side-effecting in both C and C++, we treat them
3593     // as having possible (not definite) side-effects. This allows idiomatic
3594     // code to behave without warning, such as sizeof(*v) for a volatile-
3595     // qualified pointer.
3596     if (!IncludePossibleEffects)
3597       break;
3598 
3599     const CastExpr *CE = cast<CastExpr>(this);
3600     if (CE->getCastKind() == CK_LValueToRValue &&
3601         CE->getSubExpr()->getType().isVolatileQualified())
3602       return true;
3603     break;
3604   }
3605 
3606   case CXXTypeidExprClass:
3607     // typeid might throw if its subexpression is potentially-evaluated, so has
3608     // side-effects in that case whether or not its subexpression does.
3609     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3610 
3611   case CXXConstructExprClass:
3612   case CXXTemporaryObjectExprClass: {
3613     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3614     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3615       return true;
3616     // A trivial constructor does not add any side-effects of its own. Just look
3617     // at its arguments.
3618     break;
3619   }
3620 
3621   case CXXInheritedCtorInitExprClass: {
3622     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3623     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3624       return true;
3625     break;
3626   }
3627 
3628   case LambdaExprClass: {
3629     const LambdaExpr *LE = cast<LambdaExpr>(this);
3630     for (Expr *E : LE->capture_inits())
3631       if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3632         return true;
3633     return false;
3634   }
3635 
3636   case PseudoObjectExprClass: {
3637     // Only look for side-effects in the semantic form, and look past
3638     // OpaqueValueExpr bindings in that form.
3639     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3640     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3641                                                     E = PO->semantics_end();
3642          I != E; ++I) {
3643       const Expr *Subexpr = *I;
3644       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3645         Subexpr = OVE->getSourceExpr();
3646       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3647         return true;
3648     }
3649     return false;
3650   }
3651 
3652   case ObjCBoxedExprClass:
3653   case ObjCArrayLiteralClass:
3654   case ObjCDictionaryLiteralClass:
3655   case ObjCSelectorExprClass:
3656   case ObjCProtocolExprClass:
3657   case ObjCIsaExprClass:
3658   case ObjCIndirectCopyRestoreExprClass:
3659   case ObjCSubscriptRefExprClass:
3660   case ObjCBridgedCastExprClass:
3661   case ObjCMessageExprClass:
3662   case ObjCPropertyRefExprClass:
3663   // FIXME: Classify these cases better.
3664     if (IncludePossibleEffects)
3665       return true;
3666     break;
3667   }
3668 
3669   // Recurse to children.
3670   for (const Stmt *SubStmt : children())
3671     if (SubStmt &&
3672         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3673       return true;
3674 
3675   return false;
3676 }
3677 
3678 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3679   if (auto Call = dyn_cast<CallExpr>(this))
3680     return Call->getFPFeaturesInEffect(LO);
3681   if (auto UO = dyn_cast<UnaryOperator>(this))
3682     return UO->getFPFeaturesInEffect(LO);
3683   if (auto BO = dyn_cast<BinaryOperator>(this))
3684     return BO->getFPFeaturesInEffect(LO);
3685   if (auto Cast = dyn_cast<CastExpr>(this))
3686     return Cast->getFPFeaturesInEffect(LO);
3687   return FPOptions::defaultWithoutTrailingStorage(LO);
3688 }
3689 
3690 namespace {
3691   /// Look for a call to a non-trivial function within an expression.
3692   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3693   {
3694     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3695 
3696     bool NonTrivial;
3697 
3698   public:
3699     explicit NonTrivialCallFinder(const ASTContext &Context)
3700       : Inherited(Context), NonTrivial(false) { }
3701 
3702     bool hasNonTrivialCall() const { return NonTrivial; }
3703 
3704     void VisitCallExpr(const CallExpr *E) {
3705       if (const CXXMethodDecl *Method
3706           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3707         if (Method->isTrivial()) {
3708           // Recurse to children of the call.
3709           Inherited::VisitStmt(E);
3710           return;
3711         }
3712       }
3713 
3714       NonTrivial = true;
3715     }
3716 
3717     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3718       if (E->getConstructor()->isTrivial()) {
3719         // Recurse to children of the call.
3720         Inherited::VisitStmt(E);
3721         return;
3722       }
3723 
3724       NonTrivial = true;
3725     }
3726 
3727     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3728       if (E->getTemporary()->getDestructor()->isTrivial()) {
3729         Inherited::VisitStmt(E);
3730         return;
3731       }
3732 
3733       NonTrivial = true;
3734     }
3735   };
3736 }
3737 
3738 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3739   NonTrivialCallFinder Finder(Ctx);
3740   Finder.Visit(this);
3741   return Finder.hasNonTrivialCall();
3742 }
3743 
3744 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3745 /// pointer constant or not, as well as the specific kind of constant detected.
3746 /// Null pointer constants can be integer constant expressions with the
3747 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3748 /// (a GNU extension).
3749 Expr::NullPointerConstantKind
3750 Expr::isNullPointerConstant(ASTContext &Ctx,
3751                             NullPointerConstantValueDependence NPC) const {
3752   if (isValueDependent() &&
3753       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3754     // Error-dependent expr should never be a null pointer.
3755     if (containsErrors())
3756       return NPCK_NotNull;
3757     switch (NPC) {
3758     case NPC_NeverValueDependent:
3759       llvm_unreachable("Unexpected value dependent expression!");
3760     case NPC_ValueDependentIsNull:
3761       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3762         return NPCK_ZeroExpression;
3763       else
3764         return NPCK_NotNull;
3765 
3766     case NPC_ValueDependentIsNotNull:
3767       return NPCK_NotNull;
3768     }
3769   }
3770 
3771   // Strip off a cast to void*, if it exists. Except in C++.
3772   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3773     if (!Ctx.getLangOpts().CPlusPlus) {
3774       // Check that it is a cast to void*.
3775       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3776         QualType Pointee = PT->getPointeeType();
3777         Qualifiers Qs = Pointee.getQualifiers();
3778         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3779         // has non-default address space it is not treated as nullptr.
3780         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3781         // since it cannot be assigned to a pointer to constant address space.
3782         if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3783              Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3784             (Ctx.getLangOpts().OpenCL &&
3785              Ctx.getLangOpts().OpenCLVersion < 200 &&
3786              Pointee.getAddressSpace() == LangAS::opencl_private))
3787           Qs.removeAddressSpace();
3788 
3789         if (Pointee->isVoidType() && Qs.empty() && // to void*
3790             CE->getSubExpr()->getType()->isIntegerType()) // from int
3791           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3792       }
3793     }
3794   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3795     // Ignore the ImplicitCastExpr type entirely.
3796     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3797   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3798     // Accept ((void*)0) as a null pointer constant, as many other
3799     // implementations do.
3800     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3801   } else if (const GenericSelectionExpr *GE =
3802                dyn_cast<GenericSelectionExpr>(this)) {
3803     if (GE->isResultDependent())
3804       return NPCK_NotNull;
3805     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3806   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3807     if (CE->isConditionDependent())
3808       return NPCK_NotNull;
3809     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3810   } else if (const CXXDefaultArgExpr *DefaultArg
3811                = dyn_cast<CXXDefaultArgExpr>(this)) {
3812     // See through default argument expressions.
3813     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3814   } else if (const CXXDefaultInitExpr *DefaultInit
3815                = dyn_cast<CXXDefaultInitExpr>(this)) {
3816     // See through default initializer expressions.
3817     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3818   } else if (isa<GNUNullExpr>(this)) {
3819     // The GNU __null extension is always a null pointer constant.
3820     return NPCK_GNUNull;
3821   } else if (const MaterializeTemporaryExpr *M
3822                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3823     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3824   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3825     if (const Expr *Source = OVE->getSourceExpr())
3826       return Source->isNullPointerConstant(Ctx, NPC);
3827   }
3828 
3829   // If the expression has no type information, it cannot be a null pointer
3830   // constant.
3831   if (getType().isNull())
3832     return NPCK_NotNull;
3833 
3834   // C++11 nullptr_t is always a null pointer constant.
3835   if (getType()->isNullPtrType())
3836     return NPCK_CXX11_nullptr;
3837 
3838   if (const RecordType *UT = getType()->getAsUnionType())
3839     if (!Ctx.getLangOpts().CPlusPlus11 &&
3840         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3841       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3842         const Expr *InitExpr = CLE->getInitializer();
3843         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3844           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3845       }
3846   // This expression must be an integer type.
3847   if (!getType()->isIntegerType() ||
3848       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3849     return NPCK_NotNull;
3850 
3851   if (Ctx.getLangOpts().CPlusPlus11) {
3852     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3853     // value zero or a prvalue of type std::nullptr_t.
3854     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3855     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3856     if (Lit && !Lit->getValue())
3857       return NPCK_ZeroLiteral;
3858     if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3859       return NPCK_NotNull;
3860   } else {
3861     // If we have an integer constant expression, we need to *evaluate* it and
3862     // test for the value 0.
3863     if (!isIntegerConstantExpr(Ctx))
3864       return NPCK_NotNull;
3865   }
3866 
3867   if (EvaluateKnownConstInt(Ctx) != 0)
3868     return NPCK_NotNull;
3869 
3870   if (isa<IntegerLiteral>(this))
3871     return NPCK_ZeroLiteral;
3872   return NPCK_ZeroExpression;
3873 }
3874 
3875 /// If this expression is an l-value for an Objective C
3876 /// property, find the underlying property reference expression.
3877 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3878   const Expr *E = this;
3879   while (true) {
3880     assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
3881            "expression is not a property reference");
3882     E = E->IgnoreParenCasts();
3883     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3884       if (BO->getOpcode() == BO_Comma) {
3885         E = BO->getRHS();
3886         continue;
3887       }
3888     }
3889 
3890     break;
3891   }
3892 
3893   return cast<ObjCPropertyRefExpr>(E);
3894 }
3895 
3896 bool Expr::isObjCSelfExpr() const {
3897   const Expr *E = IgnoreParenImpCasts();
3898 
3899   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3900   if (!DRE)
3901     return false;
3902 
3903   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3904   if (!Param)
3905     return false;
3906 
3907   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3908   if (!M)
3909     return false;
3910 
3911   return M->getSelfDecl() == Param;
3912 }
3913 
3914 FieldDecl *Expr::getSourceBitField() {
3915   Expr *E = this->IgnoreParens();
3916 
3917   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3918     if (ICE->getCastKind() == CK_LValueToRValue ||
3919         (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
3920       E = ICE->getSubExpr()->IgnoreParens();
3921     else
3922       break;
3923   }
3924 
3925   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3926     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3927       if (Field->isBitField())
3928         return Field;
3929 
3930   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3931     FieldDecl *Ivar = IvarRef->getDecl();
3932     if (Ivar->isBitField())
3933       return Ivar;
3934   }
3935 
3936   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3937     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3938       if (Field->isBitField())
3939         return Field;
3940 
3941     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3942       if (Expr *E = BD->getBinding())
3943         return E->getSourceBitField();
3944   }
3945 
3946   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3947     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3948       return BinOp->getLHS()->getSourceBitField();
3949 
3950     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3951       return BinOp->getRHS()->getSourceBitField();
3952   }
3953 
3954   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3955     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3956       return UnOp->getSubExpr()->getSourceBitField();
3957 
3958   return nullptr;
3959 }
3960 
3961 bool Expr::refersToVectorElement() const {
3962   // FIXME: Why do we not just look at the ObjectKind here?
3963   const Expr *E = this->IgnoreParens();
3964 
3965   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3966     if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
3967       E = ICE->getSubExpr()->IgnoreParens();
3968     else
3969       break;
3970   }
3971 
3972   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3973     return ASE->getBase()->getType()->isVectorType();
3974 
3975   if (isa<ExtVectorElementExpr>(E))
3976     return true;
3977 
3978   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3979     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3980       if (auto *E = BD->getBinding())
3981         return E->refersToVectorElement();
3982 
3983   return false;
3984 }
3985 
3986 bool Expr::refersToGlobalRegisterVar() const {
3987   const Expr *E = this->IgnoreParenImpCasts();
3988 
3989   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3990     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3991       if (VD->getStorageClass() == SC_Register &&
3992           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3993         return true;
3994 
3995   return false;
3996 }
3997 
3998 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
3999   E1 = E1->IgnoreParens();
4000   E2 = E2->IgnoreParens();
4001 
4002   if (E1->getStmtClass() != E2->getStmtClass())
4003     return false;
4004 
4005   switch (E1->getStmtClass()) {
4006     default:
4007       return false;
4008     case CXXThisExprClass:
4009       return true;
4010     case DeclRefExprClass: {
4011       // DeclRefExpr without an ImplicitCastExpr can happen for integral
4012       // template parameters.
4013       const auto *DRE1 = cast<DeclRefExpr>(E1);
4014       const auto *DRE2 = cast<DeclRefExpr>(E2);
4015       return DRE1->isPRValue() && DRE2->isPRValue() &&
4016              DRE1->getDecl() == DRE2->getDecl();
4017     }
4018     case ImplicitCastExprClass: {
4019       // Peel off implicit casts.
4020       while (true) {
4021         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4022         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4023         if (!ICE1 || !ICE2)
4024           return false;
4025         if (ICE1->getCastKind() != ICE2->getCastKind())
4026           return false;
4027         E1 = ICE1->getSubExpr()->IgnoreParens();
4028         E2 = ICE2->getSubExpr()->IgnoreParens();
4029         // The final cast must be one of these types.
4030         if (ICE1->getCastKind() == CK_LValueToRValue ||
4031             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4032             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4033           break;
4034         }
4035       }
4036 
4037       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4038       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4039       if (DRE1 && DRE2)
4040         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4041 
4042       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4043       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4044       if (Ivar1 && Ivar2) {
4045         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4046                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4047       }
4048 
4049       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4050       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4051       if (Array1 && Array2) {
4052         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4053           return false;
4054 
4055         auto Idx1 = Array1->getIdx();
4056         auto Idx2 = Array2->getIdx();
4057         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4058         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4059         if (Integer1 && Integer2) {
4060           if (!llvm::APInt::isSameValue(Integer1->getValue(),
4061                                         Integer2->getValue()))
4062             return false;
4063         } else {
4064           if (!isSameComparisonOperand(Idx1, Idx2))
4065             return false;
4066         }
4067 
4068         return true;
4069       }
4070 
4071       // Walk the MemberExpr chain.
4072       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4073         const auto *ME1 = cast<MemberExpr>(E1);
4074         const auto *ME2 = cast<MemberExpr>(E2);
4075         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4076           return false;
4077         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4078           if (D->isStaticDataMember())
4079             return true;
4080         E1 = ME1->getBase()->IgnoreParenImpCasts();
4081         E2 = ME2->getBase()->IgnoreParenImpCasts();
4082       }
4083 
4084       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4085         return true;
4086 
4087       // A static member variable can end the MemberExpr chain with either
4088       // a MemberExpr or a DeclRefExpr.
4089       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4090         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4091           return DRE->getDecl();
4092         if (const auto *ME = dyn_cast<MemberExpr>(E))
4093           return ME->getMemberDecl();
4094         return nullptr;
4095       };
4096 
4097       const ValueDecl *VD1 = getAnyDecl(E1);
4098       const ValueDecl *VD2 = getAnyDecl(E2);
4099       return declaresSameEntity(VD1, VD2);
4100     }
4101   }
4102 }
4103 
4104 /// isArrow - Return true if the base expression is a pointer to vector,
4105 /// return false if the base expression is a vector.
4106 bool ExtVectorElementExpr::isArrow() const {
4107   return getBase()->getType()->isPointerType();
4108 }
4109 
4110 unsigned ExtVectorElementExpr::getNumElements() const {
4111   if (const VectorType *VT = getType()->getAs<VectorType>())
4112     return VT->getNumElements();
4113   return 1;
4114 }
4115 
4116 /// containsDuplicateElements - Return true if any element access is repeated.
4117 bool ExtVectorElementExpr::containsDuplicateElements() const {
4118   // FIXME: Refactor this code to an accessor on the AST node which returns the
4119   // "type" of component access, and share with code below and in Sema.
4120   StringRef Comp = Accessor->getName();
4121 
4122   // Halving swizzles do not contain duplicate elements.
4123   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4124     return false;
4125 
4126   // Advance past s-char prefix on hex swizzles.
4127   if (Comp[0] == 's' || Comp[0] == 'S')
4128     Comp = Comp.substr(1);
4129 
4130   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4131     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
4132         return true;
4133 
4134   return false;
4135 }
4136 
4137 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4138 void ExtVectorElementExpr::getEncodedElementAccess(
4139     SmallVectorImpl<uint32_t> &Elts) const {
4140   StringRef Comp = Accessor->getName();
4141   bool isNumericAccessor = false;
4142   if (Comp[0] == 's' || Comp[0] == 'S') {
4143     Comp = Comp.substr(1);
4144     isNumericAccessor = true;
4145   }
4146 
4147   bool isHi =   Comp == "hi";
4148   bool isLo =   Comp == "lo";
4149   bool isEven = Comp == "even";
4150   bool isOdd  = Comp == "odd";
4151 
4152   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4153     uint64_t Index;
4154 
4155     if (isHi)
4156       Index = e + i;
4157     else if (isLo)
4158       Index = i;
4159     else if (isEven)
4160       Index = 2 * i;
4161     else if (isOdd)
4162       Index = 2 * i + 1;
4163     else
4164       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4165 
4166     Elts.push_back(Index);
4167   }
4168 }
4169 
4170 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4171                                      QualType Type, SourceLocation BLoc,
4172                                      SourceLocation RP)
4173     : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4174       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4175   SubExprs = new (C) Stmt*[args.size()];
4176   for (unsigned i = 0; i != args.size(); i++)
4177     SubExprs[i] = args[i];
4178 
4179   setDependence(computeDependence(this));
4180 }
4181 
4182 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4183   if (SubExprs) C.Deallocate(SubExprs);
4184 
4185   this->NumExprs = Exprs.size();
4186   SubExprs = new (C) Stmt*[NumExprs];
4187   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4188 }
4189 
4190 GenericSelectionExpr::GenericSelectionExpr(
4191     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4192     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4193     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4194     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4195     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4196            AssocExprs[ResultIndex]->getValueKind(),
4197            AssocExprs[ResultIndex]->getObjectKind()),
4198       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4199       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4200   assert(AssocTypes.size() == AssocExprs.size() &&
4201          "Must have the same number of association expressions"
4202          " and TypeSourceInfo!");
4203   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4204 
4205   GenericSelectionExprBits.GenericLoc = GenericLoc;
4206   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4207   std::copy(AssocExprs.begin(), AssocExprs.end(),
4208             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4209   std::copy(AssocTypes.begin(), AssocTypes.end(),
4210             getTrailingObjects<TypeSourceInfo *>());
4211 
4212   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4213 }
4214 
4215 GenericSelectionExpr::GenericSelectionExpr(
4216     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4217     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4218     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4219     bool ContainsUnexpandedParameterPack)
4220     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4221            OK_Ordinary),
4222       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4223       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4224   assert(AssocTypes.size() == AssocExprs.size() &&
4225          "Must have the same number of association expressions"
4226          " and TypeSourceInfo!");
4227 
4228   GenericSelectionExprBits.GenericLoc = GenericLoc;
4229   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4230   std::copy(AssocExprs.begin(), AssocExprs.end(),
4231             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4232   std::copy(AssocTypes.begin(), AssocTypes.end(),
4233             getTrailingObjects<TypeSourceInfo *>());
4234 
4235   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4236 }
4237 
4238 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4239     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4240 
4241 GenericSelectionExpr *GenericSelectionExpr::Create(
4242     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4243     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4244     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4245     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4246   unsigned NumAssocs = AssocExprs.size();
4247   void *Mem = Context.Allocate(
4248       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4249       alignof(GenericSelectionExpr));
4250   return new (Mem) GenericSelectionExpr(
4251       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4252       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4253 }
4254 
4255 GenericSelectionExpr *GenericSelectionExpr::Create(
4256     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4257     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4258     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4259     bool ContainsUnexpandedParameterPack) {
4260   unsigned NumAssocs = AssocExprs.size();
4261   void *Mem = Context.Allocate(
4262       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4263       alignof(GenericSelectionExpr));
4264   return new (Mem) GenericSelectionExpr(
4265       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4266       RParenLoc, ContainsUnexpandedParameterPack);
4267 }
4268 
4269 GenericSelectionExpr *
4270 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4271                                   unsigned NumAssocs) {
4272   void *Mem = Context.Allocate(
4273       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4274       alignof(GenericSelectionExpr));
4275   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4276 }
4277 
4278 //===----------------------------------------------------------------------===//
4279 //  DesignatedInitExpr
4280 //===----------------------------------------------------------------------===//
4281 
4282 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4283   assert(Kind == FieldDesignator && "Only valid on a field designator");
4284   if (Field.NameOrField & 0x01)
4285     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4286   return getField()->getIdentifier();
4287 }
4288 
4289 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4290                                        llvm::ArrayRef<Designator> Designators,
4291                                        SourceLocation EqualOrColonLoc,
4292                                        bool GNUSyntax,
4293                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4294     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4295            Init->getObjectKind()),
4296       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4297       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4298   this->Designators = new (C) Designator[NumDesignators];
4299 
4300   // Record the initializer itself.
4301   child_iterator Child = child_begin();
4302   *Child++ = Init;
4303 
4304   // Copy the designators and their subexpressions, computing
4305   // value-dependence along the way.
4306   unsigned IndexIdx = 0;
4307   for (unsigned I = 0; I != NumDesignators; ++I) {
4308     this->Designators[I] = Designators[I];
4309     if (this->Designators[I].isArrayDesignator()) {
4310       // Copy the index expressions into permanent storage.
4311       *Child++ = IndexExprs[IndexIdx++];
4312     } else if (this->Designators[I].isArrayRangeDesignator()) {
4313       // Copy the start/end expressions into permanent storage.
4314       *Child++ = IndexExprs[IndexIdx++];
4315       *Child++ = IndexExprs[IndexIdx++];
4316     }
4317   }
4318 
4319   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4320   setDependence(computeDependence(this));
4321 }
4322 
4323 DesignatedInitExpr *
4324 DesignatedInitExpr::Create(const ASTContext &C,
4325                            llvm::ArrayRef<Designator> Designators,
4326                            ArrayRef<Expr*> IndexExprs,
4327                            SourceLocation ColonOrEqualLoc,
4328                            bool UsesColonSyntax, Expr *Init) {
4329   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4330                          alignof(DesignatedInitExpr));
4331   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4332                                       ColonOrEqualLoc, UsesColonSyntax,
4333                                       IndexExprs, Init);
4334 }
4335 
4336 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4337                                                     unsigned NumIndexExprs) {
4338   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4339                          alignof(DesignatedInitExpr));
4340   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4341 }
4342 
4343 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4344                                         const Designator *Desigs,
4345                                         unsigned NumDesigs) {
4346   Designators = new (C) Designator[NumDesigs];
4347   NumDesignators = NumDesigs;
4348   for (unsigned I = 0; I != NumDesigs; ++I)
4349     Designators[I] = Desigs[I];
4350 }
4351 
4352 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4353   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4354   if (size() == 1)
4355     return DIE->getDesignator(0)->getSourceRange();
4356   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4357                      DIE->getDesignator(size() - 1)->getEndLoc());
4358 }
4359 
4360 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4361   SourceLocation StartLoc;
4362   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4363   Designator &First = *DIE->getDesignator(0);
4364   if (First.isFieldDesignator())
4365     StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4366   else
4367     StartLoc = First.ArrayOrRange.LBracketLoc;
4368   return StartLoc;
4369 }
4370 
4371 SourceLocation DesignatedInitExpr::getEndLoc() const {
4372   return getInit()->getEndLoc();
4373 }
4374 
4375 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4376   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4377   return getSubExpr(D.ArrayOrRange.Index + 1);
4378 }
4379 
4380 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4381   assert(D.Kind == Designator::ArrayRangeDesignator &&
4382          "Requires array range designator");
4383   return getSubExpr(D.ArrayOrRange.Index + 1);
4384 }
4385 
4386 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4387   assert(D.Kind == Designator::ArrayRangeDesignator &&
4388          "Requires array range designator");
4389   return getSubExpr(D.ArrayOrRange.Index + 2);
4390 }
4391 
4392 /// Replaces the designator at index @p Idx with the series
4393 /// of designators in [First, Last).
4394 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4395                                           const Designator *First,
4396                                           const Designator *Last) {
4397   unsigned NumNewDesignators = Last - First;
4398   if (NumNewDesignators == 0) {
4399     std::copy_backward(Designators + Idx + 1,
4400                        Designators + NumDesignators,
4401                        Designators + Idx);
4402     --NumNewDesignators;
4403     return;
4404   }
4405   if (NumNewDesignators == 1) {
4406     Designators[Idx] = *First;
4407     return;
4408   }
4409 
4410   Designator *NewDesignators
4411     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4412   std::copy(Designators, Designators + Idx, NewDesignators);
4413   std::copy(First, Last, NewDesignators + Idx);
4414   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4415             NewDesignators + Idx + NumNewDesignators);
4416   Designators = NewDesignators;
4417   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4418 }
4419 
4420 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4421                                                    SourceLocation lBraceLoc,
4422                                                    Expr *baseExpr,
4423                                                    SourceLocation rBraceLoc)
4424     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4425            OK_Ordinary) {
4426   BaseAndUpdaterExprs[0] = baseExpr;
4427 
4428   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4429   ILE->setType(baseExpr->getType());
4430   BaseAndUpdaterExprs[1] = ILE;
4431 
4432   // FIXME: this is wrong, set it correctly.
4433   setDependence(ExprDependence::None);
4434 }
4435 
4436 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4437   return getBase()->getBeginLoc();
4438 }
4439 
4440 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4441   return getBase()->getEndLoc();
4442 }
4443 
4444 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4445                              SourceLocation RParenLoc)
4446     : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4447       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4448   ParenListExprBits.NumExprs = Exprs.size();
4449 
4450   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4451     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4452   setDependence(computeDependence(this));
4453 }
4454 
4455 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4456     : Expr(ParenListExprClass, Empty) {
4457   ParenListExprBits.NumExprs = NumExprs;
4458 }
4459 
4460 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4461                                      SourceLocation LParenLoc,
4462                                      ArrayRef<Expr *> Exprs,
4463                                      SourceLocation RParenLoc) {
4464   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4465                            alignof(ParenListExpr));
4466   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4467 }
4468 
4469 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4470                                           unsigned NumExprs) {
4471   void *Mem =
4472       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4473   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4474 }
4475 
4476 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4477                                Opcode opc, QualType ResTy, ExprValueKind VK,
4478                                ExprObjectKind OK, SourceLocation opLoc,
4479                                FPOptionsOverride FPFeatures)
4480     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4481   BinaryOperatorBits.Opc = opc;
4482   assert(!isCompoundAssignmentOp() &&
4483          "Use CompoundAssignOperator for compound assignments");
4484   BinaryOperatorBits.OpLoc = opLoc;
4485   SubExprs[LHS] = lhs;
4486   SubExprs[RHS] = rhs;
4487   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4488   if (hasStoredFPFeatures())
4489     setStoredFPFeatures(FPFeatures);
4490   setDependence(computeDependence(this));
4491 }
4492 
4493 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4494                                Opcode opc, QualType ResTy, ExprValueKind VK,
4495                                ExprObjectKind OK, SourceLocation opLoc,
4496                                FPOptionsOverride FPFeatures, bool dead2)
4497     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4498   BinaryOperatorBits.Opc = opc;
4499   assert(isCompoundAssignmentOp() &&
4500          "Use CompoundAssignOperator for compound assignments");
4501   BinaryOperatorBits.OpLoc = opLoc;
4502   SubExprs[LHS] = lhs;
4503   SubExprs[RHS] = rhs;
4504   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4505   if (hasStoredFPFeatures())
4506     setStoredFPFeatures(FPFeatures);
4507   setDependence(computeDependence(this));
4508 }
4509 
4510 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4511                                             bool HasFPFeatures) {
4512   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4513   void *Mem =
4514       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4515   return new (Mem) BinaryOperator(EmptyShell());
4516 }
4517 
4518 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4519                                        Expr *rhs, Opcode opc, QualType ResTy,
4520                                        ExprValueKind VK, ExprObjectKind OK,
4521                                        SourceLocation opLoc,
4522                                        FPOptionsOverride FPFeatures) {
4523   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4524   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4525   void *Mem =
4526       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4527   return new (Mem)
4528       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4529 }
4530 
4531 CompoundAssignOperator *
4532 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4533   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4534   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4535                          alignof(CompoundAssignOperator));
4536   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4537 }
4538 
4539 CompoundAssignOperator *
4540 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4541                                Opcode opc, QualType ResTy, ExprValueKind VK,
4542                                ExprObjectKind OK, SourceLocation opLoc,
4543                                FPOptionsOverride FPFeatures,
4544                                QualType CompLHSType, QualType CompResultType) {
4545   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4546   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4547   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4548                          alignof(CompoundAssignOperator));
4549   return new (Mem)
4550       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4551                              CompLHSType, CompResultType);
4552 }
4553 
4554 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4555                                           bool hasFPFeatures) {
4556   void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4557                          alignof(UnaryOperator));
4558   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4559 }
4560 
4561 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4562                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4563                              SourceLocation l, bool CanOverflow,
4564                              FPOptionsOverride FPFeatures)
4565     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4566   UnaryOperatorBits.Opc = opc;
4567   UnaryOperatorBits.CanOverflow = CanOverflow;
4568   UnaryOperatorBits.Loc = l;
4569   UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4570   if (hasStoredFPFeatures())
4571     setStoredFPFeatures(FPFeatures);
4572   setDependence(computeDependence(this, Ctx));
4573 }
4574 
4575 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4576                                      Opcode opc, QualType type,
4577                                      ExprValueKind VK, ExprObjectKind OK,
4578                                      SourceLocation l, bool CanOverflow,
4579                                      FPOptionsOverride FPFeatures) {
4580   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4581   unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4582   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4583   return new (Mem)
4584       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4585 }
4586 
4587 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4588   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4589     e = ewc->getSubExpr();
4590   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4591     e = m->getSubExpr();
4592   e = cast<CXXConstructExpr>(e)->getArg(0);
4593   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4594     e = ice->getSubExpr();
4595   return cast<OpaqueValueExpr>(e);
4596 }
4597 
4598 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4599                                            EmptyShell sh,
4600                                            unsigned numSemanticExprs) {
4601   void *buffer =
4602       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4603                        alignof(PseudoObjectExpr));
4604   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4605 }
4606 
4607 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4608   : Expr(PseudoObjectExprClass, shell) {
4609   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4610 }
4611 
4612 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4613                                            ArrayRef<Expr*> semantics,
4614                                            unsigned resultIndex) {
4615   assert(syntax && "no syntactic expression!");
4616   assert(semantics.size() && "no semantic expressions!");
4617 
4618   QualType type;
4619   ExprValueKind VK;
4620   if (resultIndex == NoResult) {
4621     type = C.VoidTy;
4622     VK = VK_PRValue;
4623   } else {
4624     assert(resultIndex < semantics.size());
4625     type = semantics[resultIndex]->getType();
4626     VK = semantics[resultIndex]->getValueKind();
4627     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4628   }
4629 
4630   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4631                             alignof(PseudoObjectExpr));
4632   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4633                                       resultIndex);
4634 }
4635 
4636 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4637                                    Expr *syntax, ArrayRef<Expr *> semantics,
4638                                    unsigned resultIndex)
4639     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4640   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4641   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4642 
4643   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4644     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4645     getSubExprsBuffer()[i] = E;
4646 
4647     if (isa<OpaqueValueExpr>(E))
4648       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4649              "opaque-value semantic expressions for pseudo-object "
4650              "operations must have sources");
4651   }
4652 
4653   setDependence(computeDependence(this));
4654 }
4655 
4656 //===----------------------------------------------------------------------===//
4657 //  Child Iterators for iterating over subexpressions/substatements
4658 //===----------------------------------------------------------------------===//
4659 
4660 // UnaryExprOrTypeTraitExpr
4661 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4662   const_child_range CCR =
4663       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4664   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4665 }
4666 
4667 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4668   // If this is of a type and the type is a VLA type (and not a typedef), the
4669   // size expression of the VLA needs to be treated as an executable expression.
4670   // Why isn't this weirdness documented better in StmtIterator?
4671   if (isArgumentType()) {
4672     if (const VariableArrayType *T =
4673             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4674       return const_child_range(const_child_iterator(T), const_child_iterator());
4675     return const_child_range(const_child_iterator(), const_child_iterator());
4676   }
4677   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4678 }
4679 
4680 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4681                        AtomicOp op, SourceLocation RP)
4682     : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4683       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4684   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4685   for (unsigned i = 0; i != args.size(); i++)
4686     SubExprs[i] = args[i];
4687   setDependence(computeDependence(this));
4688 }
4689 
4690 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4691   switch (Op) {
4692   case AO__c11_atomic_init:
4693   case AO__opencl_atomic_init:
4694   case AO__c11_atomic_load:
4695   case AO__atomic_load_n:
4696     return 2;
4697 
4698   case AO__opencl_atomic_load:
4699   case AO__c11_atomic_store:
4700   case AO__c11_atomic_exchange:
4701   case AO__atomic_load:
4702   case AO__atomic_store:
4703   case AO__atomic_store_n:
4704   case AO__atomic_exchange_n:
4705   case AO__c11_atomic_fetch_add:
4706   case AO__c11_atomic_fetch_sub:
4707   case AO__c11_atomic_fetch_and:
4708   case AO__c11_atomic_fetch_or:
4709   case AO__c11_atomic_fetch_xor:
4710   case AO__c11_atomic_fetch_max:
4711   case AO__c11_atomic_fetch_min:
4712   case AO__atomic_fetch_add:
4713   case AO__atomic_fetch_sub:
4714   case AO__atomic_fetch_and:
4715   case AO__atomic_fetch_or:
4716   case AO__atomic_fetch_xor:
4717   case AO__atomic_fetch_nand:
4718   case AO__atomic_add_fetch:
4719   case AO__atomic_sub_fetch:
4720   case AO__atomic_and_fetch:
4721   case AO__atomic_or_fetch:
4722   case AO__atomic_xor_fetch:
4723   case AO__atomic_nand_fetch:
4724   case AO__atomic_min_fetch:
4725   case AO__atomic_max_fetch:
4726   case AO__atomic_fetch_min:
4727   case AO__atomic_fetch_max:
4728     return 3;
4729 
4730   case AO__opencl_atomic_store:
4731   case AO__opencl_atomic_exchange:
4732   case AO__opencl_atomic_fetch_add:
4733   case AO__opencl_atomic_fetch_sub:
4734   case AO__opencl_atomic_fetch_and:
4735   case AO__opencl_atomic_fetch_or:
4736   case AO__opencl_atomic_fetch_xor:
4737   case AO__opencl_atomic_fetch_min:
4738   case AO__opencl_atomic_fetch_max:
4739   case AO__atomic_exchange:
4740     return 4;
4741 
4742   case AO__c11_atomic_compare_exchange_strong:
4743   case AO__c11_atomic_compare_exchange_weak:
4744     return 5;
4745 
4746   case AO__opencl_atomic_compare_exchange_strong:
4747   case AO__opencl_atomic_compare_exchange_weak:
4748   case AO__atomic_compare_exchange:
4749   case AO__atomic_compare_exchange_n:
4750     return 6;
4751   }
4752   llvm_unreachable("unknown atomic op");
4753 }
4754 
4755 QualType AtomicExpr::getValueType() const {
4756   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4757   if (auto AT = T->getAs<AtomicType>())
4758     return AT->getValueType();
4759   return T;
4760 }
4761 
4762 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4763   unsigned ArraySectionCount = 0;
4764   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4765     Base = OASE->getBase();
4766     ++ArraySectionCount;
4767   }
4768   while (auto *ASE =
4769              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4770     Base = ASE->getBase();
4771     ++ArraySectionCount;
4772   }
4773   Base = Base->IgnoreParenImpCasts();
4774   auto OriginalTy = Base->getType();
4775   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4776     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4777       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4778 
4779   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4780     if (OriginalTy->isAnyPointerType())
4781       OriginalTy = OriginalTy->getPointeeType();
4782     else {
4783       assert (OriginalTy->isArrayType());
4784       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4785     }
4786   }
4787   return OriginalTy;
4788 }
4789 
4790 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4791                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4792     : Expr(RecoveryExprClass, T.getNonReferenceType(),
4793            T->isDependentType() ? VK_LValue : getValueKindForType(T),
4794            OK_Ordinary),
4795       BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4796   assert(!T.isNull());
4797   assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; }));
4798 
4799   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4800   setDependence(computeDependence(this));
4801 }
4802 
4803 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4804                                    SourceLocation BeginLoc,
4805                                    SourceLocation EndLoc,
4806                                    ArrayRef<Expr *> SubExprs) {
4807   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4808                            alignof(RecoveryExpr));
4809   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4810 }
4811 
4812 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4813   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4814                            alignof(RecoveryExpr));
4815   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4816 }
4817 
4818 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4819   assert(
4820       NumDims == Dims.size() &&
4821       "Preallocated number of dimensions is different from the provided one.");
4822   llvm::copy(Dims, getTrailingObjects<Expr *>());
4823 }
4824 
4825 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4826   assert(
4827       NumDims == BR.size() &&
4828       "Preallocated number of dimensions is different from the provided one.");
4829   llvm::copy(BR, getTrailingObjects<SourceRange>());
4830 }
4831 
4832 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4833                                          SourceLocation L, SourceLocation R,
4834                                          ArrayRef<Expr *> Dims)
4835     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4836       RPLoc(R), NumDims(Dims.size()) {
4837   setBase(Op);
4838   setDimensions(Dims);
4839   setDependence(computeDependence(this));
4840 }
4841 
4842 OMPArrayShapingExpr *
4843 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4844                             SourceLocation L, SourceLocation R,
4845                             ArrayRef<Expr *> Dims,
4846                             ArrayRef<SourceRange> BracketRanges) {
4847   assert(Dims.size() == BracketRanges.size() &&
4848          "Different number of dimensions and brackets ranges.");
4849   void *Mem = Context.Allocate(
4850       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4851       alignof(OMPArrayShapingExpr));
4852   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4853   E->setBracketsRanges(BracketRanges);
4854   return E;
4855 }
4856 
4857 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4858                                                       unsigned NumDims) {
4859   void *Mem = Context.Allocate(
4860       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4861       alignof(OMPArrayShapingExpr));
4862   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4863 }
4864 
4865 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4866   assert(I < NumIterators &&
4867          "Idx is greater or equal the number of iterators definitions.");
4868   getTrailingObjects<Decl *>()[I] = D;
4869 }
4870 
4871 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4872   assert(I < NumIterators &&
4873          "Idx is greater or equal the number of iterators definitions.");
4874   getTrailingObjects<
4875       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4876                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
4877 }
4878 
4879 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
4880                                        SourceLocation ColonLoc, Expr *End,
4881                                        SourceLocation SecondColonLoc,
4882                                        Expr *Step) {
4883   assert(I < NumIterators &&
4884          "Idx is greater or equal the number of iterators definitions.");
4885   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4886                                static_cast<int>(RangeExprOffset::Begin)] =
4887       Begin;
4888   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4889                                static_cast<int>(RangeExprOffset::End)] = End;
4890   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
4891                                static_cast<int>(RangeExprOffset::Step)] = Step;
4892   getTrailingObjects<
4893       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4894                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
4895       ColonLoc;
4896   getTrailingObjects<
4897       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4898                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
4899       SecondColonLoc;
4900 }
4901 
4902 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
4903   return getTrailingObjects<Decl *>()[I];
4904 }
4905 
4906 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
4907   IteratorRange Res;
4908   Res.Begin =
4909       getTrailingObjects<Expr *>()[I * static_cast<int>(
4910                                            RangeExprOffset::Total) +
4911                                    static_cast<int>(RangeExprOffset::Begin)];
4912   Res.End =
4913       getTrailingObjects<Expr *>()[I * static_cast<int>(
4914                                            RangeExprOffset::Total) +
4915                                    static_cast<int>(RangeExprOffset::End)];
4916   Res.Step =
4917       getTrailingObjects<Expr *>()[I * static_cast<int>(
4918                                            RangeExprOffset::Total) +
4919                                    static_cast<int>(RangeExprOffset::Step)];
4920   return Res;
4921 }
4922 
4923 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
4924   return getTrailingObjects<
4925       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4926                         static_cast<int>(RangeLocOffset::AssignLoc)];
4927 }
4928 
4929 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
4930   return getTrailingObjects<
4931       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4932                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
4933 }
4934 
4935 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
4936   return getTrailingObjects<
4937       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4938                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
4939 }
4940 
4941 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
4942   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
4943 }
4944 
4945 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
4946   return getTrailingObjects<OMPIteratorHelperData>()[I];
4947 }
4948 
4949 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
4950   return getTrailingObjects<OMPIteratorHelperData>()[I];
4951 }
4952 
4953 OMPIteratorExpr::OMPIteratorExpr(
4954     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
4955     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4956     ArrayRef<OMPIteratorHelperData> Helpers)
4957     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
4958       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
4959       NumIterators(Data.size()) {
4960   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
4961     const IteratorDefinition &D = Data[I];
4962     setIteratorDeclaration(I, D.IteratorDecl);
4963     setAssignmentLoc(I, D.AssignmentLoc);
4964     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
4965                      D.SecondColonLoc, D.Range.Step);
4966     setHelper(I, Helpers[I]);
4967   }
4968   setDependence(computeDependence(this));
4969 }
4970 
4971 OMPIteratorExpr *
4972 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
4973                         SourceLocation IteratorKwLoc, SourceLocation L,
4974                         SourceLocation R,
4975                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
4976                         ArrayRef<OMPIteratorHelperData> Helpers) {
4977   assert(Data.size() == Helpers.size() &&
4978          "Data and helpers must have the same size.");
4979   void *Mem = Context.Allocate(
4980       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4981           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
4982           Data.size() * static_cast<int>(RangeLocOffset::Total),
4983           Helpers.size()),
4984       alignof(OMPIteratorExpr));
4985   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
4986 }
4987 
4988 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
4989                                               unsigned NumIterators) {
4990   void *Mem = Context.Allocate(
4991       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
4992           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
4993           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
4994       alignof(OMPIteratorExpr));
4995   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
4996 }
4997