1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the C++ related Decl classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/DeclCXX.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/ASTUnresolvedSet.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/DeclarationName.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/LambdaCapture.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/ODRHash.h" 28 #include "clang/AST/Type.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/AST/UnresolvedSet.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/IdentifierTable.h" 33 #include "clang/Basic/LLVM.h" 34 #include "clang/Basic/LangOptions.h" 35 #include "clang/Basic/OperatorKinds.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "llvm/ADT/None.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 52 using namespace clang; 53 54 //===----------------------------------------------------------------------===// 55 // Decl Allocation/Deallocation Method Implementations 56 //===----------------------------------------------------------------------===// 57 58 void AccessSpecDecl::anchor() {} 59 60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 61 return new (C, ID) AccessSpecDecl(EmptyShell()); 62 } 63 64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { 65 ExternalASTSource *Source = C.getExternalSource(); 66 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); 67 assert(Source && "getFromExternalSource with no external source"); 68 69 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) 70 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( 71 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); 72 Impl.Decls.setLazy(false); 73 } 74 75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) 76 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), 77 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), 78 Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), 79 HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), 80 HasPrivateFields(false), HasProtectedFields(false), 81 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), 82 HasOnlyCMembers(true), HasInClassInitializer(false), 83 HasUninitializedReferenceMember(false), HasUninitializedFields(false), 84 HasInheritedConstructor(false), 85 HasInheritedDefaultConstructor(false), 86 HasInheritedAssignment(false), 87 NeedOverloadResolutionForCopyConstructor(false), 88 NeedOverloadResolutionForMoveConstructor(false), 89 NeedOverloadResolutionForCopyAssignment(false), 90 NeedOverloadResolutionForMoveAssignment(false), 91 NeedOverloadResolutionForDestructor(false), 92 DefaultedCopyConstructorIsDeleted(false), 93 DefaultedMoveConstructorIsDeleted(false), 94 DefaultedCopyAssignmentIsDeleted(false), 95 DefaultedMoveAssignmentIsDeleted(false), 96 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), 97 HasTrivialSpecialMembersForCall(SMF_All), 98 DeclaredNonTrivialSpecialMembers(0), 99 DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), 100 HasConstexprNonCopyMoveConstructor(false), 101 HasDefaultedDefaultConstructor(false), 102 DefaultedDefaultConstructorIsConstexpr(true), 103 HasConstexprDefaultConstructor(false), 104 DefaultedDestructorIsConstexpr(true), 105 HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true), 106 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), 107 ImplicitCopyConstructorCanHaveConstParamForVBase(true), 108 ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), 109 ImplicitCopyAssignmentHasConstParam(true), 110 HasDeclaredCopyConstructorWithConstParam(false), 111 HasDeclaredCopyAssignmentWithConstParam(false), 112 IsAnyDestructorNoReturn(false), IsLambda(false), 113 IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), 114 HasODRHash(false), Definition(D) {} 115 116 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { 117 return Bases.get(Definition->getASTContext().getExternalSource()); 118 } 119 120 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { 121 return VBases.get(Definition->getASTContext().getExternalSource()); 122 } 123 124 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, 125 DeclContext *DC, SourceLocation StartLoc, 126 SourceLocation IdLoc, IdentifierInfo *Id, 127 CXXRecordDecl *PrevDecl) 128 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), 129 DefinitionData(PrevDecl ? PrevDecl->DefinitionData 130 : nullptr) {} 131 132 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, 133 DeclContext *DC, SourceLocation StartLoc, 134 SourceLocation IdLoc, IdentifierInfo *Id, 135 CXXRecordDecl *PrevDecl, 136 bool DelayTypeCreation) { 137 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, 138 PrevDecl); 139 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 140 141 // FIXME: DelayTypeCreation seems like such a hack 142 if (!DelayTypeCreation) 143 C.getTypeDeclType(R, PrevDecl); 144 return R; 145 } 146 147 CXXRecordDecl * 148 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, 149 TypeSourceInfo *Info, SourceLocation Loc, 150 bool Dependent, bool IsGeneric, 151 LambdaCaptureDefault CaptureDefault) { 152 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, 153 nullptr, nullptr); 154 R->setBeingDefined(true); 155 R->DefinitionData = 156 new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric, 157 CaptureDefault); 158 R->setMayHaveOutOfDateDef(false); 159 R->setImplicit(true); 160 C.getTypeDeclType(R, /*PrevDecl=*/nullptr); 161 return R; 162 } 163 164 CXXRecordDecl * 165 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 166 auto *R = new (C, ID) CXXRecordDecl( 167 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), 168 nullptr, nullptr); 169 R->setMayHaveOutOfDateDef(false); 170 return R; 171 } 172 173 /// Determine whether a class has a repeated base class. This is intended for 174 /// use when determining if a class is standard-layout, so makes no attempt to 175 /// handle virtual bases. 176 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { 177 llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; 178 SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; 179 while (!WorkList.empty()) { 180 const CXXRecordDecl *RD = WorkList.pop_back_val(); 181 for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { 182 if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { 183 if (!SeenBaseTypes.insert(B).second) 184 return true; 185 WorkList.push_back(B); 186 } 187 } 188 } 189 return false; 190 } 191 192 void 193 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, 194 unsigned NumBases) { 195 ASTContext &C = getASTContext(); 196 197 if (!data().Bases.isOffset() && data().NumBases > 0) 198 C.Deallocate(data().getBases()); 199 200 if (NumBases) { 201 if (!C.getLangOpts().CPlusPlus17) { 202 // C++ [dcl.init.aggr]p1: 203 // An aggregate is [...] a class with [...] no base classes [...]. 204 data().Aggregate = false; 205 } 206 207 // C++ [class]p4: 208 // A POD-struct is an aggregate class... 209 data().PlainOldData = false; 210 } 211 212 // The set of seen virtual base types. 213 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; 214 215 // The virtual bases of this class. 216 SmallVector<const CXXBaseSpecifier *, 8> VBases; 217 218 data().Bases = new(C) CXXBaseSpecifier [NumBases]; 219 data().NumBases = NumBases; 220 for (unsigned i = 0; i < NumBases; ++i) { 221 data().getBases()[i] = *Bases[i]; 222 // Keep track of inherited vbases for this base class. 223 const CXXBaseSpecifier *Base = Bases[i]; 224 QualType BaseType = Base->getType(); 225 // Skip dependent types; we can't do any checking on them now. 226 if (BaseType->isDependentType()) 227 continue; 228 auto *BaseClassDecl = 229 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 230 231 // C++2a [class]p7: 232 // A standard-layout class is a class that: 233 // [...] 234 // -- has all non-static data members and bit-fields in the class and 235 // its base classes first declared in the same class 236 if (BaseClassDecl->data().HasBasesWithFields || 237 !BaseClassDecl->field_empty()) { 238 if (data().HasBasesWithFields) 239 // Two bases have members or bit-fields: not standard-layout. 240 data().IsStandardLayout = false; 241 data().HasBasesWithFields = true; 242 } 243 244 // C++11 [class]p7: 245 // A standard-layout class is a class that: 246 // -- [...] has [...] at most one base class with non-static data 247 // members 248 if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || 249 BaseClassDecl->hasDirectFields()) { 250 if (data().HasBasesWithNonStaticDataMembers) 251 data().IsCXX11StandardLayout = false; 252 data().HasBasesWithNonStaticDataMembers = true; 253 } 254 255 if (!BaseClassDecl->isEmpty()) { 256 // C++14 [meta.unary.prop]p4: 257 // T is a class type [...] with [...] no base class B for which 258 // is_empty<B>::value is false. 259 data().Empty = false; 260 } 261 262 // C++1z [dcl.init.agg]p1: 263 // An aggregate is a class with [...] no private or protected base classes 264 if (Base->getAccessSpecifier() != AS_public) { 265 data().Aggregate = false; 266 267 // C++20 [temp.param]p7: 268 // A structural type is [...] a literal class type with [...] all base 269 // classes [...] public 270 data().StructuralIfLiteral = false; 271 } 272 273 // C++ [class.virtual]p1: 274 // A class that declares or inherits a virtual function is called a 275 // polymorphic class. 276 if (BaseClassDecl->isPolymorphic()) { 277 data().Polymorphic = true; 278 279 // An aggregate is a class with [...] no virtual functions. 280 data().Aggregate = false; 281 } 282 283 // C++0x [class]p7: 284 // A standard-layout class is a class that: [...] 285 // -- has no non-standard-layout base classes 286 if (!BaseClassDecl->isStandardLayout()) 287 data().IsStandardLayout = false; 288 if (!BaseClassDecl->isCXX11StandardLayout()) 289 data().IsCXX11StandardLayout = false; 290 291 // Record if this base is the first non-literal field or base. 292 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) 293 data().HasNonLiteralTypeFieldsOrBases = true; 294 295 // Now go through all virtual bases of this base and add them. 296 for (const auto &VBase : BaseClassDecl->vbases()) { 297 // Add this base if it's not already in the list. 298 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { 299 VBases.push_back(&VBase); 300 301 // C++11 [class.copy]p8: 302 // The implicitly-declared copy constructor for a class X will have 303 // the form 'X::X(const X&)' if each [...] virtual base class B of X 304 // has a copy constructor whose first parameter is of type 305 // 'const B&' or 'const volatile B&' [...] 306 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) 307 if (!VBaseDecl->hasCopyConstructorWithConstParam()) 308 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 309 310 // C++1z [dcl.init.agg]p1: 311 // An aggregate is a class with [...] no virtual base classes 312 data().Aggregate = false; 313 } 314 } 315 316 if (Base->isVirtual()) { 317 // Add this base if it's not already in the list. 318 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) 319 VBases.push_back(Base); 320 321 // C++14 [meta.unary.prop] is_empty: 322 // T is a class type, but not a union type, with ... no virtual base 323 // classes 324 data().Empty = false; 325 326 // C++1z [dcl.init.agg]p1: 327 // An aggregate is a class with [...] no virtual base classes 328 data().Aggregate = false; 329 330 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 331 // A [default constructor, copy/move constructor, or copy/move assignment 332 // operator for a class X] is trivial [...] if: 333 // -- class X has [...] no virtual base classes 334 data().HasTrivialSpecialMembers &= SMF_Destructor; 335 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 336 337 // C++0x [class]p7: 338 // A standard-layout class is a class that: [...] 339 // -- has [...] no virtual base classes 340 data().IsStandardLayout = false; 341 data().IsCXX11StandardLayout = false; 342 343 // C++20 [dcl.constexpr]p3: 344 // In the definition of a constexpr function [...] 345 // -- if the function is a constructor or destructor, 346 // its class shall not have any virtual base classes 347 data().DefaultedDefaultConstructorIsConstexpr = false; 348 data().DefaultedDestructorIsConstexpr = false; 349 350 // C++1z [class.copy]p8: 351 // The implicitly-declared copy constructor for a class X will have 352 // the form 'X::X(const X&)' if each potentially constructed subobject 353 // has a copy constructor whose first parameter is of type 354 // 'const B&' or 'const volatile B&' [...] 355 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 356 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 357 } else { 358 // C++ [class.ctor]p5: 359 // A default constructor is trivial [...] if: 360 // -- all the direct base classes of its class have trivial default 361 // constructors. 362 if (!BaseClassDecl->hasTrivialDefaultConstructor()) 363 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 364 365 // C++0x [class.copy]p13: 366 // A copy/move constructor for class X is trivial if [...] 367 // [...] 368 // -- the constructor selected to copy/move each direct base class 369 // subobject is trivial, and 370 if (!BaseClassDecl->hasTrivialCopyConstructor()) 371 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 372 373 if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) 374 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 375 376 // If the base class doesn't have a simple move constructor, we'll eagerly 377 // declare it and perform overload resolution to determine which function 378 // it actually calls. If it does have a simple move constructor, this 379 // check is correct. 380 if (!BaseClassDecl->hasTrivialMoveConstructor()) 381 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 382 383 if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) 384 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 385 386 // C++0x [class.copy]p27: 387 // A copy/move assignment operator for class X is trivial if [...] 388 // [...] 389 // -- the assignment operator selected to copy/move each direct base 390 // class subobject is trivial, and 391 if (!BaseClassDecl->hasTrivialCopyAssignment()) 392 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 393 // If the base class doesn't have a simple move assignment, we'll eagerly 394 // declare it and perform overload resolution to determine which function 395 // it actually calls. If it does have a simple move assignment, this 396 // check is correct. 397 if (!BaseClassDecl->hasTrivialMoveAssignment()) 398 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 399 400 // C++11 [class.ctor]p6: 401 // If that user-written default constructor would satisfy the 402 // requirements of a constexpr constructor, the implicitly-defined 403 // default constructor is constexpr. 404 if (!BaseClassDecl->hasConstexprDefaultConstructor()) 405 data().DefaultedDefaultConstructorIsConstexpr = false; 406 407 // C++1z [class.copy]p8: 408 // The implicitly-declared copy constructor for a class X will have 409 // the form 'X::X(const X&)' if each potentially constructed subobject 410 // has a copy constructor whose first parameter is of type 411 // 'const B&' or 'const volatile B&' [...] 412 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 413 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 414 } 415 416 // C++ [class.ctor]p3: 417 // A destructor is trivial if all the direct base classes of its class 418 // have trivial destructors. 419 if (!BaseClassDecl->hasTrivialDestructor()) 420 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 421 422 if (!BaseClassDecl->hasTrivialDestructorForCall()) 423 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 424 425 if (!BaseClassDecl->hasIrrelevantDestructor()) 426 data().HasIrrelevantDestructor = false; 427 428 if (BaseClassDecl->isAnyDestructorNoReturn()) 429 data().IsAnyDestructorNoReturn = true; 430 431 // C++11 [class.copy]p18: 432 // The implicitly-declared copy assignment operator for a class X will 433 // have the form 'X& X::operator=(const X&)' if each direct base class B 434 // of X has a copy assignment operator whose parameter is of type 'const 435 // B&', 'const volatile B&', or 'B' [...] 436 if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) 437 data().ImplicitCopyAssignmentHasConstParam = false; 438 439 // A class has an Objective-C object member if... or any of its bases 440 // has an Objective-C object member. 441 if (BaseClassDecl->hasObjectMember()) 442 setHasObjectMember(true); 443 444 if (BaseClassDecl->hasVolatileMember()) 445 setHasVolatileMember(true); 446 447 if (BaseClassDecl->getArgPassingRestrictions() == 448 RecordDecl::APK_CanNeverPassInRegs) 449 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 450 451 // Keep track of the presence of mutable fields. 452 if (BaseClassDecl->hasMutableFields()) 453 data().HasMutableFields = true; 454 455 if (BaseClassDecl->hasUninitializedReferenceMember()) 456 data().HasUninitializedReferenceMember = true; 457 458 if (!BaseClassDecl->allowConstDefaultInit()) 459 data().HasUninitializedFields = true; 460 461 addedClassSubobject(BaseClassDecl); 462 } 463 464 // C++2a [class]p7: 465 // A class S is a standard-layout class if it: 466 // -- has at most one base class subobject of any given type 467 // 468 // Note that we only need to check this for classes with more than one base 469 // class. If there's only one base class, and it's standard layout, then 470 // we know there are no repeated base classes. 471 if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) 472 data().IsStandardLayout = false; 473 474 if (VBases.empty()) { 475 data().IsParsingBaseSpecifiers = false; 476 return; 477 } 478 479 // Create base specifier for any direct or indirect virtual bases. 480 data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; 481 data().NumVBases = VBases.size(); 482 for (int I = 0, E = VBases.size(); I != E; ++I) { 483 QualType Type = VBases[I]->getType(); 484 if (!Type->isDependentType()) 485 addedClassSubobject(Type->getAsCXXRecordDecl()); 486 data().getVBases()[I] = *VBases[I]; 487 } 488 489 data().IsParsingBaseSpecifiers = false; 490 } 491 492 unsigned CXXRecordDecl::getODRHash() const { 493 assert(hasDefinition() && "ODRHash only for records with definitions"); 494 495 // Previously calculated hash is stored in DefinitionData. 496 if (DefinitionData->HasODRHash) 497 return DefinitionData->ODRHash; 498 499 // Only calculate hash on first call of getODRHash per record. 500 ODRHash Hash; 501 Hash.AddCXXRecordDecl(getDefinition()); 502 DefinitionData->HasODRHash = true; 503 DefinitionData->ODRHash = Hash.CalculateHash(); 504 505 return DefinitionData->ODRHash; 506 } 507 508 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { 509 // C++11 [class.copy]p11: 510 // A defaulted copy/move constructor for a class X is defined as 511 // deleted if X has: 512 // -- a direct or virtual base class B that cannot be copied/moved [...] 513 // -- a non-static data member of class type M (or array thereof) 514 // that cannot be copied or moved [...] 515 if (!Subobj->hasSimpleCopyConstructor()) 516 data().NeedOverloadResolutionForCopyConstructor = true; 517 if (!Subobj->hasSimpleMoveConstructor()) 518 data().NeedOverloadResolutionForMoveConstructor = true; 519 520 // C++11 [class.copy]p23: 521 // A defaulted copy/move assignment operator for a class X is defined as 522 // deleted if X has: 523 // -- a direct or virtual base class B that cannot be copied/moved [...] 524 // -- a non-static data member of class type M (or array thereof) 525 // that cannot be copied or moved [...] 526 if (!Subobj->hasSimpleCopyAssignment()) 527 data().NeedOverloadResolutionForCopyAssignment = true; 528 if (!Subobj->hasSimpleMoveAssignment()) 529 data().NeedOverloadResolutionForMoveAssignment = true; 530 531 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: 532 // A defaulted [ctor or dtor] for a class X is defined as 533 // deleted if X has: 534 // -- any direct or virtual base class [...] has a type with a destructor 535 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 536 // -- any non-static data member has a type with a destructor 537 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 538 if (!Subobj->hasSimpleDestructor()) { 539 data().NeedOverloadResolutionForCopyConstructor = true; 540 data().NeedOverloadResolutionForMoveConstructor = true; 541 data().NeedOverloadResolutionForDestructor = true; 542 } 543 544 // C++2a [dcl.constexpr]p4: 545 // The definition of a constexpr destructor [shall] satisfy the 546 // following requirement: 547 // -- for every subobject of class type or (possibly multi-dimensional) 548 // array thereof, that class type shall have a constexpr destructor 549 if (!Subobj->hasConstexprDestructor()) 550 data().DefaultedDestructorIsConstexpr = false; 551 552 // C++20 [temp.param]p7: 553 // A structural type is [...] a literal class type [for which] the types 554 // of all base classes and non-static data members are structural types or 555 // (possibly multi-dimensional) array thereof 556 if (!Subobj->data().StructuralIfLiteral) 557 data().StructuralIfLiteral = false; 558 } 559 560 bool CXXRecordDecl::hasConstexprDestructor() const { 561 auto *Dtor = getDestructor(); 562 return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); 563 } 564 565 bool CXXRecordDecl::hasAnyDependentBases() const { 566 if (!isDependentContext()) 567 return false; 568 569 return !forallBases([](const CXXRecordDecl *) { return true; }); 570 } 571 572 bool CXXRecordDecl::isTriviallyCopyable() const { 573 // C++0x [class]p5: 574 // A trivially copyable class is a class that: 575 // -- has no non-trivial copy constructors, 576 if (hasNonTrivialCopyConstructor()) return false; 577 // -- has no non-trivial move constructors, 578 if (hasNonTrivialMoveConstructor()) return false; 579 // -- has no non-trivial copy assignment operators, 580 if (hasNonTrivialCopyAssignment()) return false; 581 // -- has no non-trivial move assignment operators, and 582 if (hasNonTrivialMoveAssignment()) return false; 583 // -- has a trivial destructor. 584 if (!hasTrivialDestructor()) return false; 585 586 return true; 587 } 588 589 void CXXRecordDecl::markedVirtualFunctionPure() { 590 // C++ [class.abstract]p2: 591 // A class is abstract if it has at least one pure virtual function. 592 data().Abstract = true; 593 } 594 595 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( 596 ASTContext &Ctx, const CXXRecordDecl *XFirst) { 597 if (!getNumBases()) 598 return false; 599 600 llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; 601 llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; 602 SmallVector<const CXXRecordDecl*, 8> WorkList; 603 604 // Visit a type that we have determined is an element of M(S). 605 auto Visit = [&](const CXXRecordDecl *RD) -> bool { 606 RD = RD->getCanonicalDecl(); 607 608 // C++2a [class]p8: 609 // A class S is a standard-layout class if it [...] has no element of the 610 // set M(S) of types as a base class. 611 // 612 // If we find a subobject of an empty type, it might also be a base class, 613 // so we'll need to walk the base classes to check. 614 if (!RD->data().HasBasesWithFields) { 615 // Walk the bases the first time, stopping if we find the type. Build a 616 // set of them so we don't need to walk them again. 617 if (Bases.empty()) { 618 bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { 619 Base = Base->getCanonicalDecl(); 620 if (RD == Base) 621 return false; 622 Bases.insert(Base); 623 return true; 624 }); 625 if (RDIsBase) 626 return true; 627 } else { 628 if (Bases.count(RD)) 629 return true; 630 } 631 } 632 633 if (M.insert(RD).second) 634 WorkList.push_back(RD); 635 return false; 636 }; 637 638 if (Visit(XFirst)) 639 return true; 640 641 while (!WorkList.empty()) { 642 const CXXRecordDecl *X = WorkList.pop_back_val(); 643 644 // FIXME: We don't check the bases of X. That matches the standard, but 645 // that sure looks like a wording bug. 646 647 // -- If X is a non-union class type with a non-static data member 648 // [recurse to each field] that is either of zero size or is the 649 // first non-static data member of X 650 // -- If X is a union type, [recurse to union members] 651 bool IsFirstField = true; 652 for (auto *FD : X->fields()) { 653 // FIXME: Should we really care about the type of the first non-static 654 // data member of a non-union if there are preceding unnamed bit-fields? 655 if (FD->isUnnamedBitfield()) 656 continue; 657 658 if (!IsFirstField && !FD->isZeroSize(Ctx)) 659 continue; 660 661 // -- If X is n array type, [visit the element type] 662 QualType T = Ctx.getBaseElementType(FD->getType()); 663 if (auto *RD = T->getAsCXXRecordDecl()) 664 if (Visit(RD)) 665 return true; 666 667 if (!X->isUnion()) 668 IsFirstField = false; 669 } 670 } 671 672 return false; 673 } 674 675 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { 676 assert(isLambda() && "not a lambda"); 677 678 // C++2a [expr.prim.lambda.capture]p11: 679 // The closure type associated with a lambda-expression has no default 680 // constructor if the lambda-expression has a lambda-capture and a 681 // defaulted default constructor otherwise. It has a deleted copy 682 // assignment operator if the lambda-expression has a lambda-capture and 683 // defaulted copy and move assignment operators otherwise. 684 // 685 // C++17 [expr.prim.lambda]p21: 686 // The closure type associated with a lambda-expression has no default 687 // constructor and a deleted copy assignment operator. 688 if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0) 689 return false; 690 return getASTContext().getLangOpts().CPlusPlus20; 691 } 692 693 void CXXRecordDecl::addedMember(Decl *D) { 694 if (!D->isImplicit() && 695 !isa<FieldDecl>(D) && 696 !isa<IndirectFieldDecl>(D) && 697 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || 698 cast<TagDecl>(D)->getTagKind() == TTK_Interface)) 699 data().HasOnlyCMembers = false; 700 701 // Ignore friends and invalid declarations. 702 if (D->getFriendObjectKind() || D->isInvalidDecl()) 703 return; 704 705 auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 706 if (FunTmpl) 707 D = FunTmpl->getTemplatedDecl(); 708 709 // FIXME: Pass NamedDecl* to addedMember? 710 Decl *DUnderlying = D; 711 if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) { 712 DUnderlying = ND->getUnderlyingDecl(); 713 if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying)) 714 DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); 715 } 716 717 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 718 if (Method->isVirtual()) { 719 // C++ [dcl.init.aggr]p1: 720 // An aggregate is an array or a class with [...] no virtual functions. 721 data().Aggregate = false; 722 723 // C++ [class]p4: 724 // A POD-struct is an aggregate class... 725 data().PlainOldData = false; 726 727 // C++14 [meta.unary.prop]p4: 728 // T is a class type [...] with [...] no virtual member functions... 729 data().Empty = false; 730 731 // C++ [class.virtual]p1: 732 // A class that declares or inherits a virtual function is called a 733 // polymorphic class. 734 data().Polymorphic = true; 735 736 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 737 // A [default constructor, copy/move constructor, or copy/move 738 // assignment operator for a class X] is trivial [...] if: 739 // -- class X has no virtual functions [...] 740 data().HasTrivialSpecialMembers &= SMF_Destructor; 741 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 742 743 // C++0x [class]p7: 744 // A standard-layout class is a class that: [...] 745 // -- has no virtual functions 746 data().IsStandardLayout = false; 747 data().IsCXX11StandardLayout = false; 748 } 749 } 750 751 // Notify the listener if an implicit member was added after the definition 752 // was completed. 753 if (!isBeingDefined() && D->isImplicit()) 754 if (ASTMutationListener *L = getASTMutationListener()) 755 L->AddedCXXImplicitMember(data().Definition, D); 756 757 // The kind of special member this declaration is, if any. 758 unsigned SMKind = 0; 759 760 // Handle constructors. 761 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 762 if (Constructor->isInheritingConstructor()) { 763 // Ignore constructor shadow declarations. They are lazily created and 764 // so shouldn't affect any properties of the class. 765 } else { 766 if (!Constructor->isImplicit()) { 767 // Note that we have a user-declared constructor. 768 data().UserDeclaredConstructor = true; 769 770 // C++ [class]p4: 771 // A POD-struct is an aggregate class [...] 772 // Since the POD bit is meant to be C++03 POD-ness, clear it even if 773 // the type is technically an aggregate in C++0x since it wouldn't be 774 // in 03. 775 data().PlainOldData = false; 776 } 777 778 if (Constructor->isDefaultConstructor()) { 779 SMKind |= SMF_DefaultConstructor; 780 781 if (Constructor->isUserProvided()) 782 data().UserProvidedDefaultConstructor = true; 783 if (Constructor->isConstexpr()) 784 data().HasConstexprDefaultConstructor = true; 785 if (Constructor->isDefaulted()) 786 data().HasDefaultedDefaultConstructor = true; 787 } 788 789 if (!FunTmpl) { 790 unsigned Quals; 791 if (Constructor->isCopyConstructor(Quals)) { 792 SMKind |= SMF_CopyConstructor; 793 794 if (Quals & Qualifiers::Const) 795 data().HasDeclaredCopyConstructorWithConstParam = true; 796 } else if (Constructor->isMoveConstructor()) 797 SMKind |= SMF_MoveConstructor; 798 } 799 800 // C++11 [dcl.init.aggr]p1: DR1518 801 // An aggregate is an array or a class with no user-provided [or] 802 // explicit [...] constructors 803 // C++20 [dcl.init.aggr]p1: 804 // An aggregate is an array or a class with no user-declared [...] 805 // constructors 806 if (getASTContext().getLangOpts().CPlusPlus20 807 ? !Constructor->isImplicit() 808 : (Constructor->isUserProvided() || Constructor->isExplicit())) 809 data().Aggregate = false; 810 } 811 } 812 813 // Handle constructors, including those inherited from base classes. 814 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) { 815 // Record if we see any constexpr constructors which are neither copy 816 // nor move constructors. 817 // C++1z [basic.types]p10: 818 // [...] has at least one constexpr constructor or constructor template 819 // (possibly inherited from a base class) that is not a copy or move 820 // constructor [...] 821 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) 822 data().HasConstexprNonCopyMoveConstructor = true; 823 if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor()) 824 data().HasInheritedDefaultConstructor = true; 825 } 826 827 // Handle destructors. 828 if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 829 SMKind |= SMF_Destructor; 830 831 if (DD->isUserProvided()) 832 data().HasIrrelevantDestructor = false; 833 // If the destructor is explicitly defaulted and not trivial or not public 834 // or if the destructor is deleted, we clear HasIrrelevantDestructor in 835 // finishedDefaultedOrDeletedMember. 836 837 // C++11 [class.dtor]p5: 838 // A destructor is trivial if [...] the destructor is not virtual. 839 if (DD->isVirtual()) { 840 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 841 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 842 } 843 844 if (DD->isNoReturn()) 845 data().IsAnyDestructorNoReturn = true; 846 } 847 848 // Handle member functions. 849 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 850 if (Method->isCopyAssignmentOperator()) { 851 SMKind |= SMF_CopyAssignment; 852 853 const auto *ParamTy = 854 Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); 855 if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) 856 data().HasDeclaredCopyAssignmentWithConstParam = true; 857 } 858 859 if (Method->isMoveAssignmentOperator()) 860 SMKind |= SMF_MoveAssignment; 861 862 // Keep the list of conversion functions up-to-date. 863 if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) { 864 // FIXME: We use the 'unsafe' accessor for the access specifier here, 865 // because Sema may not have set it yet. That's really just a misdesign 866 // in Sema. However, LLDB *will* have set the access specifier correctly, 867 // and adds declarations after the class is technically completed, 868 // so completeDefinition()'s overriding of the access specifiers doesn't 869 // work. 870 AccessSpecifier AS = Conversion->getAccessUnsafe(); 871 872 if (Conversion->getPrimaryTemplate()) { 873 // We don't record specializations. 874 } else { 875 ASTContext &Ctx = getASTContext(); 876 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); 877 NamedDecl *Primary = 878 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); 879 if (Primary->getPreviousDecl()) 880 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), 881 Primary, AS); 882 else 883 Conversions.addDecl(Ctx, Primary, AS); 884 } 885 } 886 887 if (SMKind) { 888 // If this is the first declaration of a special member, we no longer have 889 // an implicit trivial special member. 890 data().HasTrivialSpecialMembers &= 891 data().DeclaredSpecialMembers | ~SMKind; 892 data().HasTrivialSpecialMembersForCall &= 893 data().DeclaredSpecialMembers | ~SMKind; 894 895 if (!Method->isImplicit() && !Method->isUserProvided()) { 896 // This method is user-declared but not user-provided. We can't work out 897 // whether it's trivial yet (not until we get to the end of the class). 898 // We'll handle this method in finishedDefaultedOrDeletedMember. 899 } else if (Method->isTrivial()) { 900 data().HasTrivialSpecialMembers |= SMKind; 901 data().HasTrivialSpecialMembersForCall |= SMKind; 902 } else if (Method->isTrivialForCall()) { 903 data().HasTrivialSpecialMembersForCall |= SMKind; 904 data().DeclaredNonTrivialSpecialMembers |= SMKind; 905 } else { 906 data().DeclaredNonTrivialSpecialMembers |= SMKind; 907 // If this is a user-provided function, do not set 908 // DeclaredNonTrivialSpecialMembersForCall here since we don't know 909 // yet whether the method would be considered non-trivial for the 910 // purpose of calls (attribute "trivial_abi" can be dropped from the 911 // class later, which can change the special method's triviality). 912 if (!Method->isUserProvided()) 913 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 914 } 915 916 // Note when we have declared a declared special member, and suppress the 917 // implicit declaration of this special member. 918 data().DeclaredSpecialMembers |= SMKind; 919 920 if (!Method->isImplicit()) { 921 data().UserDeclaredSpecialMembers |= SMKind; 922 923 // C++03 [class]p4: 924 // A POD-struct is an aggregate class that has [...] no user-defined 925 // copy assignment operator and no user-defined destructor. 926 // 927 // Since the POD bit is meant to be C++03 POD-ness, and in C++03, 928 // aggregates could not have any constructors, clear it even for an 929 // explicitly defaulted or deleted constructor. 930 // type is technically an aggregate in C++0x since it wouldn't be in 03. 931 // 932 // Also, a user-declared move assignment operator makes a class non-POD. 933 // This is an extension in C++03. 934 data().PlainOldData = false; 935 } 936 } 937 938 return; 939 } 940 941 // Handle non-static data members. 942 if (const auto *Field = dyn_cast<FieldDecl>(D)) { 943 ASTContext &Context = getASTContext(); 944 945 // C++2a [class]p7: 946 // A standard-layout class is a class that: 947 // [...] 948 // -- has all non-static data members and bit-fields in the class and 949 // its base classes first declared in the same class 950 if (data().HasBasesWithFields) 951 data().IsStandardLayout = false; 952 953 // C++ [class.bit]p2: 954 // A declaration for a bit-field that omits the identifier declares an 955 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 956 // initialized. 957 if (Field->isUnnamedBitfield()) { 958 // C++ [meta.unary.prop]p4: [LWG2358] 959 // T is a class type [...] with [...] no unnamed bit-fields of non-zero 960 // length 961 if (data().Empty && !Field->isZeroLengthBitField(Context) && 962 Context.getLangOpts().getClangABICompat() > 963 LangOptions::ClangABI::Ver6) 964 data().Empty = false; 965 return; 966 } 967 968 // C++11 [class]p7: 969 // A standard-layout class is a class that: 970 // -- either has no non-static data members in the most derived class 971 // [...] or has no base classes with non-static data members 972 if (data().HasBasesWithNonStaticDataMembers) 973 data().IsCXX11StandardLayout = false; 974 975 // C++ [dcl.init.aggr]p1: 976 // An aggregate is an array or a class (clause 9) with [...] no 977 // private or protected non-static data members (clause 11). 978 // 979 // A POD must be an aggregate. 980 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { 981 data().Aggregate = false; 982 data().PlainOldData = false; 983 984 // C++20 [temp.param]p7: 985 // A structural type is [...] a literal class type [for which] all 986 // non-static data members are public 987 data().StructuralIfLiteral = false; 988 } 989 990 // Track whether this is the first field. We use this when checking 991 // whether the class is standard-layout below. 992 bool IsFirstField = !data().HasPrivateFields && 993 !data().HasProtectedFields && !data().HasPublicFields; 994 995 // C++0x [class]p7: 996 // A standard-layout class is a class that: 997 // [...] 998 // -- has the same access control for all non-static data members, 999 switch (D->getAccess()) { 1000 case AS_private: data().HasPrivateFields = true; break; 1001 case AS_protected: data().HasProtectedFields = true; break; 1002 case AS_public: data().HasPublicFields = true; break; 1003 case AS_none: llvm_unreachable("Invalid access specifier"); 1004 }; 1005 if ((data().HasPrivateFields + data().HasProtectedFields + 1006 data().HasPublicFields) > 1) { 1007 data().IsStandardLayout = false; 1008 data().IsCXX11StandardLayout = false; 1009 } 1010 1011 // Keep track of the presence of mutable fields. 1012 if (Field->isMutable()) { 1013 data().HasMutableFields = true; 1014 1015 // C++20 [temp.param]p7: 1016 // A structural type is [...] a literal class type [for which] all 1017 // non-static data members are public 1018 data().StructuralIfLiteral = false; 1019 } 1020 1021 // C++11 [class.union]p8, DR1460: 1022 // If X is a union, a non-static data member of X that is not an anonymous 1023 // union is a variant member of X. 1024 if (isUnion() && !Field->isAnonymousStructOrUnion()) 1025 data().HasVariantMembers = true; 1026 1027 // C++0x [class]p9: 1028 // A POD struct is a class that is both a trivial class and a 1029 // standard-layout class, and has no non-static data members of type 1030 // non-POD struct, non-POD union (or array of such types). 1031 // 1032 // Automatic Reference Counting: the presence of a member of Objective-C pointer type 1033 // that does not explicitly have no lifetime makes the class a non-POD. 1034 QualType T = Context.getBaseElementType(Field->getType()); 1035 if (T->isObjCRetainableType() || T.isObjCGCStrong()) { 1036 if (T.hasNonTrivialObjCLifetime()) { 1037 // Objective-C Automatic Reference Counting: 1038 // If a class has a non-static data member of Objective-C pointer 1039 // type (or array thereof), it is a non-POD type and its 1040 // default constructor (if any), copy constructor, move constructor, 1041 // copy assignment operator, move assignment operator, and destructor are 1042 // non-trivial. 1043 setHasObjectMember(true); 1044 struct DefinitionData &Data = data(); 1045 Data.PlainOldData = false; 1046 Data.HasTrivialSpecialMembers = 0; 1047 1048 // __strong or __weak fields do not make special functions non-trivial 1049 // for the purpose of calls. 1050 Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); 1051 if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) 1052 data().HasTrivialSpecialMembersForCall = 0; 1053 1054 // Structs with __weak fields should never be passed directly. 1055 if (LT == Qualifiers::OCL_Weak) 1056 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1057 1058 Data.HasIrrelevantDestructor = false; 1059 1060 if (isUnion()) { 1061 data().DefaultedCopyConstructorIsDeleted = true; 1062 data().DefaultedMoveConstructorIsDeleted = true; 1063 data().DefaultedCopyAssignmentIsDeleted = true; 1064 data().DefaultedMoveAssignmentIsDeleted = true; 1065 data().DefaultedDestructorIsDeleted = true; 1066 data().NeedOverloadResolutionForCopyConstructor = true; 1067 data().NeedOverloadResolutionForMoveConstructor = true; 1068 data().NeedOverloadResolutionForCopyAssignment = true; 1069 data().NeedOverloadResolutionForMoveAssignment = true; 1070 data().NeedOverloadResolutionForDestructor = true; 1071 } 1072 } else if (!Context.getLangOpts().ObjCAutoRefCount) { 1073 setHasObjectMember(true); 1074 } 1075 } else if (!T.isCXX98PODType(Context)) 1076 data().PlainOldData = false; 1077 1078 if (T->isReferenceType()) { 1079 if (!Field->hasInClassInitializer()) 1080 data().HasUninitializedReferenceMember = true; 1081 1082 // C++0x [class]p7: 1083 // A standard-layout class is a class that: 1084 // -- has no non-static data members of type [...] reference, 1085 data().IsStandardLayout = false; 1086 data().IsCXX11StandardLayout = false; 1087 1088 // C++1z [class.copy.ctor]p10: 1089 // A defaulted copy constructor for a class X is defined as deleted if X has: 1090 // -- a non-static data member of rvalue reference type 1091 if (T->isRValueReferenceType()) 1092 data().DefaultedCopyConstructorIsDeleted = true; 1093 } 1094 1095 if (!Field->hasInClassInitializer() && !Field->isMutable()) { 1096 if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { 1097 if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) 1098 data().HasUninitializedFields = true; 1099 } else { 1100 data().HasUninitializedFields = true; 1101 } 1102 } 1103 1104 // Record if this field is the first non-literal or volatile field or base. 1105 if (!T->isLiteralType(Context) || T.isVolatileQualified()) 1106 data().HasNonLiteralTypeFieldsOrBases = true; 1107 1108 if (Field->hasInClassInitializer() || 1109 (Field->isAnonymousStructOrUnion() && 1110 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { 1111 data().HasInClassInitializer = true; 1112 1113 // C++11 [class]p5: 1114 // A default constructor is trivial if [...] no non-static data member 1115 // of its class has a brace-or-equal-initializer. 1116 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1117 1118 // C++11 [dcl.init.aggr]p1: 1119 // An aggregate is a [...] class with [...] no 1120 // brace-or-equal-initializers for non-static data members. 1121 // 1122 // This rule was removed in C++14. 1123 if (!getASTContext().getLangOpts().CPlusPlus14) 1124 data().Aggregate = false; 1125 1126 // C++11 [class]p10: 1127 // A POD struct is [...] a trivial class. 1128 data().PlainOldData = false; 1129 } 1130 1131 // C++11 [class.copy]p23: 1132 // A defaulted copy/move assignment operator for a class X is defined 1133 // as deleted if X has: 1134 // -- a non-static data member of reference type 1135 if (T->isReferenceType()) { 1136 data().DefaultedCopyAssignmentIsDeleted = true; 1137 data().DefaultedMoveAssignmentIsDeleted = true; 1138 } 1139 1140 // Bitfields of length 0 are also zero-sized, but we already bailed out for 1141 // those because they are always unnamed. 1142 bool IsZeroSize = Field->isZeroSize(Context); 1143 1144 if (const auto *RecordTy = T->getAs<RecordType>()) { 1145 auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); 1146 if (FieldRec->getDefinition()) { 1147 addedClassSubobject(FieldRec); 1148 1149 // We may need to perform overload resolution to determine whether a 1150 // field can be moved if it's const or volatile qualified. 1151 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { 1152 // We need to care about 'const' for the copy constructor because an 1153 // implicit copy constructor might be declared with a non-const 1154 // parameter. 1155 data().NeedOverloadResolutionForCopyConstructor = true; 1156 data().NeedOverloadResolutionForMoveConstructor = true; 1157 data().NeedOverloadResolutionForCopyAssignment = true; 1158 data().NeedOverloadResolutionForMoveAssignment = true; 1159 } 1160 1161 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 1162 // A defaulted [special member] for a class X is defined as 1163 // deleted if: 1164 // -- X is a union-like class that has a variant member with a 1165 // non-trivial [corresponding special member] 1166 if (isUnion()) { 1167 if (FieldRec->hasNonTrivialCopyConstructor()) 1168 data().DefaultedCopyConstructorIsDeleted = true; 1169 if (FieldRec->hasNonTrivialMoveConstructor()) 1170 data().DefaultedMoveConstructorIsDeleted = true; 1171 if (FieldRec->hasNonTrivialCopyAssignment()) 1172 data().DefaultedCopyAssignmentIsDeleted = true; 1173 if (FieldRec->hasNonTrivialMoveAssignment()) 1174 data().DefaultedMoveAssignmentIsDeleted = true; 1175 if (FieldRec->hasNonTrivialDestructor()) 1176 data().DefaultedDestructorIsDeleted = true; 1177 } 1178 1179 // For an anonymous union member, our overload resolution will perform 1180 // overload resolution for its members. 1181 if (Field->isAnonymousStructOrUnion()) { 1182 data().NeedOverloadResolutionForCopyConstructor |= 1183 FieldRec->data().NeedOverloadResolutionForCopyConstructor; 1184 data().NeedOverloadResolutionForMoveConstructor |= 1185 FieldRec->data().NeedOverloadResolutionForMoveConstructor; 1186 data().NeedOverloadResolutionForCopyAssignment |= 1187 FieldRec->data().NeedOverloadResolutionForCopyAssignment; 1188 data().NeedOverloadResolutionForMoveAssignment |= 1189 FieldRec->data().NeedOverloadResolutionForMoveAssignment; 1190 data().NeedOverloadResolutionForDestructor |= 1191 FieldRec->data().NeedOverloadResolutionForDestructor; 1192 } 1193 1194 // C++0x [class.ctor]p5: 1195 // A default constructor is trivial [...] if: 1196 // -- for all the non-static data members of its class that are of 1197 // class type (or array thereof), each such class has a trivial 1198 // default constructor. 1199 if (!FieldRec->hasTrivialDefaultConstructor()) 1200 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1201 1202 // C++0x [class.copy]p13: 1203 // A copy/move constructor for class X is trivial if [...] 1204 // [...] 1205 // -- for each non-static data member of X that is of class type (or 1206 // an array thereof), the constructor selected to copy/move that 1207 // member is trivial; 1208 if (!FieldRec->hasTrivialCopyConstructor()) 1209 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 1210 1211 if (!FieldRec->hasTrivialCopyConstructorForCall()) 1212 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 1213 1214 // If the field doesn't have a simple move constructor, we'll eagerly 1215 // declare the move constructor for this class and we'll decide whether 1216 // it's trivial then. 1217 if (!FieldRec->hasTrivialMoveConstructor()) 1218 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 1219 1220 if (!FieldRec->hasTrivialMoveConstructorForCall()) 1221 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 1222 1223 // C++0x [class.copy]p27: 1224 // A copy/move assignment operator for class X is trivial if [...] 1225 // [...] 1226 // -- for each non-static data member of X that is of class type (or 1227 // an array thereof), the assignment operator selected to 1228 // copy/move that member is trivial; 1229 if (!FieldRec->hasTrivialCopyAssignment()) 1230 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 1231 // If the field doesn't have a simple move assignment, we'll eagerly 1232 // declare the move assignment for this class and we'll decide whether 1233 // it's trivial then. 1234 if (!FieldRec->hasTrivialMoveAssignment()) 1235 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 1236 1237 if (!FieldRec->hasTrivialDestructor()) 1238 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 1239 if (!FieldRec->hasTrivialDestructorForCall()) 1240 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 1241 if (!FieldRec->hasIrrelevantDestructor()) 1242 data().HasIrrelevantDestructor = false; 1243 if (FieldRec->isAnyDestructorNoReturn()) 1244 data().IsAnyDestructorNoReturn = true; 1245 if (FieldRec->hasObjectMember()) 1246 setHasObjectMember(true); 1247 if (FieldRec->hasVolatileMember()) 1248 setHasVolatileMember(true); 1249 if (FieldRec->getArgPassingRestrictions() == 1250 RecordDecl::APK_CanNeverPassInRegs) 1251 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1252 1253 // C++0x [class]p7: 1254 // A standard-layout class is a class that: 1255 // -- has no non-static data members of type non-standard-layout 1256 // class (or array of such types) [...] 1257 if (!FieldRec->isStandardLayout()) 1258 data().IsStandardLayout = false; 1259 if (!FieldRec->isCXX11StandardLayout()) 1260 data().IsCXX11StandardLayout = false; 1261 1262 // C++2a [class]p7: 1263 // A standard-layout class is a class that: 1264 // [...] 1265 // -- has no element of the set M(S) of types as a base class. 1266 if (data().IsStandardLayout && 1267 (isUnion() || IsFirstField || IsZeroSize) && 1268 hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) 1269 data().IsStandardLayout = false; 1270 1271 // C++11 [class]p7: 1272 // A standard-layout class is a class that: 1273 // -- has no base classes of the same type as the first non-static 1274 // data member 1275 if (data().IsCXX11StandardLayout && IsFirstField) { 1276 // FIXME: We should check all base classes here, not just direct 1277 // base classes. 1278 for (const auto &BI : bases()) { 1279 if (Context.hasSameUnqualifiedType(BI.getType(), T)) { 1280 data().IsCXX11StandardLayout = false; 1281 break; 1282 } 1283 } 1284 } 1285 1286 // Keep track of the presence of mutable fields. 1287 if (FieldRec->hasMutableFields()) 1288 data().HasMutableFields = true; 1289 1290 if (Field->isMutable()) { 1291 // Our copy constructor/assignment might call something other than 1292 // the subobject's copy constructor/assignment if it's mutable and of 1293 // class type. 1294 data().NeedOverloadResolutionForCopyConstructor = true; 1295 data().NeedOverloadResolutionForCopyAssignment = true; 1296 } 1297 1298 // C++11 [class.copy]p13: 1299 // If the implicitly-defined constructor would satisfy the 1300 // requirements of a constexpr constructor, the implicitly-defined 1301 // constructor is constexpr. 1302 // C++11 [dcl.constexpr]p4: 1303 // -- every constructor involved in initializing non-static data 1304 // members [...] shall be a constexpr constructor 1305 if (!Field->hasInClassInitializer() && 1306 !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) 1307 // The standard requires any in-class initializer to be a constant 1308 // expression. We consider this to be a defect. 1309 data().DefaultedDefaultConstructorIsConstexpr = false; 1310 1311 // C++11 [class.copy]p8: 1312 // The implicitly-declared copy constructor for a class X will have 1313 // the form 'X::X(const X&)' if each potentially constructed subobject 1314 // of a class type M (or array thereof) has a copy constructor whose 1315 // first parameter is of type 'const M&' or 'const volatile M&'. 1316 if (!FieldRec->hasCopyConstructorWithConstParam()) 1317 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 1318 1319 // C++11 [class.copy]p18: 1320 // The implicitly-declared copy assignment oeprator for a class X will 1321 // have the form 'X& X::operator=(const X&)' if [...] for all the 1322 // non-static data members of X that are of a class type M (or array 1323 // thereof), each such class type has a copy assignment operator whose 1324 // parameter is of type 'const M&', 'const volatile M&' or 'M'. 1325 if (!FieldRec->hasCopyAssignmentWithConstParam()) 1326 data().ImplicitCopyAssignmentHasConstParam = false; 1327 1328 if (FieldRec->hasUninitializedReferenceMember() && 1329 !Field->hasInClassInitializer()) 1330 data().HasUninitializedReferenceMember = true; 1331 1332 // C++11 [class.union]p8, DR1460: 1333 // a non-static data member of an anonymous union that is a member of 1334 // X is also a variant member of X. 1335 if (FieldRec->hasVariantMembers() && 1336 Field->isAnonymousStructOrUnion()) 1337 data().HasVariantMembers = true; 1338 } 1339 } else { 1340 // Base element type of field is a non-class type. 1341 if (!T->isLiteralType(Context) || 1342 (!Field->hasInClassInitializer() && !isUnion() && 1343 !Context.getLangOpts().CPlusPlus20)) 1344 data().DefaultedDefaultConstructorIsConstexpr = false; 1345 1346 // C++11 [class.copy]p23: 1347 // A defaulted copy/move assignment operator for a class X is defined 1348 // as deleted if X has: 1349 // -- a non-static data member of const non-class type (or array 1350 // thereof) 1351 if (T.isConstQualified()) { 1352 data().DefaultedCopyAssignmentIsDeleted = true; 1353 data().DefaultedMoveAssignmentIsDeleted = true; 1354 } 1355 1356 // C++20 [temp.param]p7: 1357 // A structural type is [...] a literal class type [for which] the 1358 // types of all non-static data members are structural types or 1359 // (possibly multidimensional) array thereof 1360 // We deal with class types elsewhere. 1361 if (!T->isStructuralType()) 1362 data().StructuralIfLiteral = false; 1363 } 1364 1365 // C++14 [meta.unary.prop]p4: 1366 // T is a class type [...] with [...] no non-static data members other 1367 // than subobjects of zero size 1368 if (data().Empty && !IsZeroSize) 1369 data().Empty = false; 1370 } 1371 1372 // Handle using declarations of conversion functions. 1373 if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) { 1374 if (Shadow->getDeclName().getNameKind() 1375 == DeclarationName::CXXConversionFunctionName) { 1376 ASTContext &Ctx = getASTContext(); 1377 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); 1378 } 1379 } 1380 1381 if (const auto *Using = dyn_cast<UsingDecl>(D)) { 1382 if (Using->getDeclName().getNameKind() == 1383 DeclarationName::CXXConstructorName) { 1384 data().HasInheritedConstructor = true; 1385 // C++1z [dcl.init.aggr]p1: 1386 // An aggregate is [...] a class [...] with no inherited constructors 1387 data().Aggregate = false; 1388 } 1389 1390 if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) 1391 data().HasInheritedAssignment = true; 1392 } 1393 } 1394 1395 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { 1396 assert(!D->isImplicit() && !D->isUserProvided()); 1397 1398 // The kind of special member this declaration is, if any. 1399 unsigned SMKind = 0; 1400 1401 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1402 if (Constructor->isDefaultConstructor()) { 1403 SMKind |= SMF_DefaultConstructor; 1404 if (Constructor->isConstexpr()) 1405 data().HasConstexprDefaultConstructor = true; 1406 } 1407 if (Constructor->isCopyConstructor()) 1408 SMKind |= SMF_CopyConstructor; 1409 else if (Constructor->isMoveConstructor()) 1410 SMKind |= SMF_MoveConstructor; 1411 else if (Constructor->isConstexpr()) 1412 // We may now know that the constructor is constexpr. 1413 data().HasConstexprNonCopyMoveConstructor = true; 1414 } else if (isa<CXXDestructorDecl>(D)) { 1415 SMKind |= SMF_Destructor; 1416 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) 1417 data().HasIrrelevantDestructor = false; 1418 } else if (D->isCopyAssignmentOperator()) 1419 SMKind |= SMF_CopyAssignment; 1420 else if (D->isMoveAssignmentOperator()) 1421 SMKind |= SMF_MoveAssignment; 1422 1423 // Update which trivial / non-trivial special members we have. 1424 // addedMember will have skipped this step for this member. 1425 if (D->isTrivial()) 1426 data().HasTrivialSpecialMembers |= SMKind; 1427 else 1428 data().DeclaredNonTrivialSpecialMembers |= SMKind; 1429 } 1430 1431 void CXXRecordDecl::setCaptures(ASTContext &Context, 1432 ArrayRef<LambdaCapture> Captures) { 1433 CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); 1434 1435 // Copy captures. 1436 Data.NumCaptures = Captures.size(); 1437 Data.NumExplicitCaptures = 0; 1438 Data.Captures = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) * 1439 Captures.size()); 1440 LambdaCapture *ToCapture = Data.Captures; 1441 for (unsigned I = 0, N = Captures.size(); I != N; ++I) { 1442 if (Captures[I].isExplicit()) 1443 ++Data.NumExplicitCaptures; 1444 1445 *ToCapture++ = Captures[I]; 1446 } 1447 1448 if (!lambdaIsDefaultConstructibleAndAssignable()) 1449 Data.DefaultedCopyAssignmentIsDeleted = true; 1450 } 1451 1452 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { 1453 unsigned SMKind = 0; 1454 1455 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1456 if (Constructor->isCopyConstructor()) 1457 SMKind = SMF_CopyConstructor; 1458 else if (Constructor->isMoveConstructor()) 1459 SMKind = SMF_MoveConstructor; 1460 } else if (isa<CXXDestructorDecl>(D)) 1461 SMKind = SMF_Destructor; 1462 1463 if (D->isTrivialForCall()) 1464 data().HasTrivialSpecialMembersForCall |= SMKind; 1465 else 1466 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 1467 } 1468 1469 bool CXXRecordDecl::isCLike() const { 1470 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || 1471 !TemplateOrInstantiation.isNull()) 1472 return false; 1473 if (!hasDefinition()) 1474 return true; 1475 1476 return isPOD() && data().HasOnlyCMembers; 1477 } 1478 1479 bool CXXRecordDecl::isGenericLambda() const { 1480 if (!isLambda()) return false; 1481 return getLambdaData().IsGenericLambda; 1482 } 1483 1484 #ifndef NDEBUG 1485 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { 1486 for (auto *D : R) 1487 if (!declaresSameEntity(D, R.front())) 1488 return false; 1489 return true; 1490 } 1491 #endif 1492 1493 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { 1494 if (!RD.isLambda()) return nullptr; 1495 DeclarationName Name = 1496 RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); 1497 DeclContext::lookup_result Calls = RD.lookup(Name); 1498 1499 assert(!Calls.empty() && "Missing lambda call operator!"); 1500 assert(allLookupResultsAreTheSame(Calls) && 1501 "More than one lambda call operator!"); 1502 return Calls.front(); 1503 } 1504 1505 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { 1506 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1507 return dyn_cast_or_null<FunctionTemplateDecl>(CallOp); 1508 } 1509 1510 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { 1511 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1512 1513 if (CallOp == nullptr) 1514 return nullptr; 1515 1516 if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) 1517 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); 1518 1519 return cast<CXXMethodDecl>(CallOp); 1520 } 1521 1522 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { 1523 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1524 CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv(); 1525 return getLambdaStaticInvoker(CC); 1526 } 1527 1528 static DeclContext::lookup_result 1529 getLambdaStaticInvokers(const CXXRecordDecl &RD) { 1530 assert(RD.isLambda() && "Must be a lambda"); 1531 DeclarationName Name = 1532 &RD.getASTContext().Idents.get(getLambdaStaticInvokerName()); 1533 return RD.lookup(Name); 1534 } 1535 1536 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) { 1537 if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND)) 1538 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); 1539 return cast<CXXMethodDecl>(ND); 1540 } 1541 1542 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const { 1543 if (!isLambda()) 1544 return nullptr; 1545 DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this); 1546 1547 for (NamedDecl *ND : Invoker) { 1548 const auto *FTy = 1549 cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>(); 1550 if (FTy->getCallConv() == CC) 1551 return getInvokerAsMethod(ND); 1552 } 1553 1554 return nullptr; 1555 } 1556 1557 void CXXRecordDecl::getCaptureFields( 1558 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, 1559 FieldDecl *&ThisCapture) const { 1560 Captures.clear(); 1561 ThisCapture = nullptr; 1562 1563 LambdaDefinitionData &Lambda = getLambdaData(); 1564 RecordDecl::field_iterator Field = field_begin(); 1565 for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; 1566 C != CEnd; ++C, ++Field) { 1567 if (C->capturesThis()) 1568 ThisCapture = *Field; 1569 else if (C->capturesVariable()) 1570 Captures[C->getCapturedVar()] = *Field; 1571 } 1572 assert(Field == field_end()); 1573 } 1574 1575 TemplateParameterList * 1576 CXXRecordDecl::getGenericLambdaTemplateParameterList() const { 1577 if (!isGenericLambda()) return nullptr; 1578 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1579 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) 1580 return Tmpl->getTemplateParameters(); 1581 return nullptr; 1582 } 1583 1584 ArrayRef<NamedDecl *> 1585 CXXRecordDecl::getLambdaExplicitTemplateParameters() const { 1586 TemplateParameterList *List = getGenericLambdaTemplateParameterList(); 1587 if (!List) 1588 return {}; 1589 1590 assert(std::is_partitioned(List->begin(), List->end(), 1591 [](const NamedDecl *D) { return !D->isImplicit(); }) 1592 && "Explicit template params should be ordered before implicit ones"); 1593 1594 const auto ExplicitEnd = llvm::partition_point( 1595 *List, [](const NamedDecl *D) { return !D->isImplicit(); }); 1596 return llvm::makeArrayRef(List->begin(), ExplicitEnd); 1597 } 1598 1599 Decl *CXXRecordDecl::getLambdaContextDecl() const { 1600 assert(isLambda() && "Not a lambda closure type!"); 1601 ExternalASTSource *Source = getParentASTContext().getExternalSource(); 1602 return getLambdaData().ContextDecl.get(Source); 1603 } 1604 1605 void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const { 1606 assert(isLambda() && "Not a lambda closure type!"); 1607 if (Num) 1608 getASTContext().DeviceLambdaManglingNumbers[this] = Num; 1609 } 1610 1611 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const { 1612 assert(isLambda() && "Not a lambda closure type!"); 1613 auto I = getASTContext().DeviceLambdaManglingNumbers.find(this); 1614 if (I != getASTContext().DeviceLambdaManglingNumbers.end()) 1615 return I->second; 1616 return 0; 1617 } 1618 1619 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { 1620 QualType T = 1621 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) 1622 ->getConversionType(); 1623 return Context.getCanonicalType(T); 1624 } 1625 1626 /// Collect the visible conversions of a base class. 1627 /// 1628 /// \param Record a base class of the class we're considering 1629 /// \param InVirtual whether this base class is a virtual base (or a base 1630 /// of a virtual base) 1631 /// \param Access the access along the inheritance path to this base 1632 /// \param ParentHiddenTypes the conversions provided by the inheritors 1633 /// of this base 1634 /// \param Output the set to which to add conversions from non-virtual bases 1635 /// \param VOutput the set to which to add conversions from virtual bases 1636 /// \param HiddenVBaseCs the set of conversions which were hidden in a 1637 /// virtual base along some inheritance path 1638 static void CollectVisibleConversions( 1639 ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, 1640 AccessSpecifier Access, 1641 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, 1642 ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, 1643 llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) { 1644 // The set of types which have conversions in this class or its 1645 // subclasses. As an optimization, we don't copy the derived set 1646 // unless it might change. 1647 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; 1648 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; 1649 1650 // Collect the direct conversions and figure out which conversions 1651 // will be hidden in the subclasses. 1652 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1653 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1654 if (ConvI != ConvE) { 1655 HiddenTypesBuffer = ParentHiddenTypes; 1656 HiddenTypes = &HiddenTypesBuffer; 1657 1658 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { 1659 CanQualType ConvType(GetConversionType(Context, I.getDecl())); 1660 bool Hidden = ParentHiddenTypes.count(ConvType); 1661 if (!Hidden) 1662 HiddenTypesBuffer.insert(ConvType); 1663 1664 // If this conversion is hidden and we're in a virtual base, 1665 // remember that it's hidden along some inheritance path. 1666 if (Hidden && InVirtual) 1667 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); 1668 1669 // If this conversion isn't hidden, add it to the appropriate output. 1670 else if (!Hidden) { 1671 AccessSpecifier IAccess 1672 = CXXRecordDecl::MergeAccess(Access, I.getAccess()); 1673 1674 if (InVirtual) 1675 VOutput.addDecl(I.getDecl(), IAccess); 1676 else 1677 Output.addDecl(Context, I.getDecl(), IAccess); 1678 } 1679 } 1680 } 1681 1682 // Collect information recursively from any base classes. 1683 for (const auto &I : Record->bases()) { 1684 const auto *RT = I.getType()->getAs<RecordType>(); 1685 if (!RT) continue; 1686 1687 AccessSpecifier BaseAccess 1688 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); 1689 bool BaseInVirtual = InVirtual || I.isVirtual(); 1690 1691 auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 1692 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, 1693 *HiddenTypes, Output, VOutput, HiddenVBaseCs); 1694 } 1695 } 1696 1697 /// Collect the visible conversions of a class. 1698 /// 1699 /// This would be extremely straightforward if it weren't for virtual 1700 /// bases. It might be worth special-casing that, really. 1701 static void CollectVisibleConversions(ASTContext &Context, 1702 const CXXRecordDecl *Record, 1703 ASTUnresolvedSet &Output) { 1704 // The collection of all conversions in virtual bases that we've 1705 // found. These will be added to the output as long as they don't 1706 // appear in the hidden-conversions set. 1707 UnresolvedSet<8> VBaseCs; 1708 1709 // The set of conversions in virtual bases that we've determined to 1710 // be hidden. 1711 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; 1712 1713 // The set of types hidden by classes derived from this one. 1714 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; 1715 1716 // Go ahead and collect the direct conversions and add them to the 1717 // hidden-types set. 1718 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1719 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1720 Output.append(Context, ConvI, ConvE); 1721 for (; ConvI != ConvE; ++ConvI) 1722 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); 1723 1724 // Recursively collect conversions from base classes. 1725 for (const auto &I : Record->bases()) { 1726 const auto *RT = I.getType()->getAs<RecordType>(); 1727 if (!RT) continue; 1728 1729 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), 1730 I.isVirtual(), I.getAccessSpecifier(), 1731 HiddenTypes, Output, VBaseCs, HiddenVBaseCs); 1732 } 1733 1734 // Add any unhidden conversions provided by virtual bases. 1735 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); 1736 I != E; ++I) { 1737 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) 1738 Output.addDecl(Context, I.getDecl(), I.getAccess()); 1739 } 1740 } 1741 1742 /// getVisibleConversionFunctions - get all conversion functions visible 1743 /// in current class; including conversion function templates. 1744 llvm::iterator_range<CXXRecordDecl::conversion_iterator> 1745 CXXRecordDecl::getVisibleConversionFunctions() const { 1746 ASTContext &Ctx = getASTContext(); 1747 1748 ASTUnresolvedSet *Set; 1749 if (bases_begin() == bases_end()) { 1750 // If root class, all conversions are visible. 1751 Set = &data().Conversions.get(Ctx); 1752 } else { 1753 Set = &data().VisibleConversions.get(Ctx); 1754 // If visible conversion list is not evaluated, evaluate it. 1755 if (!data().ComputedVisibleConversions) { 1756 CollectVisibleConversions(Ctx, this, *Set); 1757 data().ComputedVisibleConversions = true; 1758 } 1759 } 1760 return llvm::make_range(Set->begin(), Set->end()); 1761 } 1762 1763 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { 1764 // This operation is O(N) but extremely rare. Sema only uses it to 1765 // remove UsingShadowDecls in a class that were followed by a direct 1766 // declaration, e.g.: 1767 // class A : B { 1768 // using B::operator int; 1769 // operator int(); 1770 // }; 1771 // This is uncommon by itself and even more uncommon in conjunction 1772 // with sufficiently large numbers of directly-declared conversions 1773 // that asymptotic behavior matters. 1774 1775 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); 1776 for (unsigned I = 0, E = Convs.size(); I != E; ++I) { 1777 if (Convs[I].getDecl() == ConvDecl) { 1778 Convs.erase(I); 1779 assert(llvm::find(Convs, ConvDecl) == Convs.end() && 1780 "conversion was found multiple times in unresolved set"); 1781 return; 1782 } 1783 } 1784 1785 llvm_unreachable("conversion not found in set!"); 1786 } 1787 1788 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { 1789 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1790 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); 1791 1792 return nullptr; 1793 } 1794 1795 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { 1796 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); 1797 } 1798 1799 void 1800 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, 1801 TemplateSpecializationKind TSK) { 1802 assert(TemplateOrInstantiation.isNull() && 1803 "Previous template or instantiation?"); 1804 assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); 1805 TemplateOrInstantiation 1806 = new (getASTContext()) MemberSpecializationInfo(RD, TSK); 1807 } 1808 1809 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { 1810 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); 1811 } 1812 1813 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { 1814 TemplateOrInstantiation = Template; 1815 } 1816 1817 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ 1818 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) 1819 return Spec->getSpecializationKind(); 1820 1821 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1822 return MSInfo->getTemplateSpecializationKind(); 1823 1824 return TSK_Undeclared; 1825 } 1826 1827 void 1828 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { 1829 if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1830 Spec->setSpecializationKind(TSK); 1831 return; 1832 } 1833 1834 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1835 MSInfo->setTemplateSpecializationKind(TSK); 1836 return; 1837 } 1838 1839 llvm_unreachable("Not a class template or member class specialization"); 1840 } 1841 1842 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { 1843 auto GetDefinitionOrSelf = 1844 [](const CXXRecordDecl *D) -> const CXXRecordDecl * { 1845 if (auto *Def = D->getDefinition()) 1846 return Def; 1847 return D; 1848 }; 1849 1850 // If it's a class template specialization, find the template or partial 1851 // specialization from which it was instantiated. 1852 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1853 auto From = TD->getInstantiatedFrom(); 1854 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { 1855 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { 1856 if (NewCTD->isMemberSpecialization()) 1857 break; 1858 CTD = NewCTD; 1859 } 1860 return GetDefinitionOrSelf(CTD->getTemplatedDecl()); 1861 } 1862 if (auto *CTPSD = 1863 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 1864 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { 1865 if (NewCTPSD->isMemberSpecialization()) 1866 break; 1867 CTPSD = NewCTPSD; 1868 } 1869 return GetDefinitionOrSelf(CTPSD); 1870 } 1871 } 1872 1873 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1874 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 1875 const CXXRecordDecl *RD = this; 1876 while (auto *NewRD = RD->getInstantiatedFromMemberClass()) 1877 RD = NewRD; 1878 return GetDefinitionOrSelf(RD); 1879 } 1880 } 1881 1882 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && 1883 "couldn't find pattern for class template instantiation"); 1884 return nullptr; 1885 } 1886 1887 CXXDestructorDecl *CXXRecordDecl::getDestructor() const { 1888 ASTContext &Context = getASTContext(); 1889 QualType ClassType = Context.getTypeDeclType(this); 1890 1891 DeclarationName Name 1892 = Context.DeclarationNames.getCXXDestructorName( 1893 Context.getCanonicalType(ClassType)); 1894 1895 DeclContext::lookup_result R = lookup(Name); 1896 1897 return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front()); 1898 } 1899 1900 static bool isDeclContextInNamespace(const DeclContext *DC) { 1901 while (!DC->isTranslationUnit()) { 1902 if (DC->isNamespace()) 1903 return true; 1904 DC = DC->getParent(); 1905 } 1906 return false; 1907 } 1908 1909 bool CXXRecordDecl::isInterfaceLike() const { 1910 assert(hasDefinition() && "checking for interface-like without a definition"); 1911 // All __interfaces are inheritently interface-like. 1912 if (isInterface()) 1913 return true; 1914 1915 // Interface-like types cannot have a user declared constructor, destructor, 1916 // friends, VBases, conversion functions, or fields. Additionally, lambdas 1917 // cannot be interface types. 1918 if (isLambda() || hasUserDeclaredConstructor() || 1919 hasUserDeclaredDestructor() || !field_empty() || hasFriends() || 1920 getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) 1921 return false; 1922 1923 // No interface-like type can have a method with a definition. 1924 for (const auto *const Method : methods()) 1925 if (Method->isDefined() && !Method->isImplicit()) 1926 return false; 1927 1928 // Check "Special" types. 1929 const auto *Uuid = getAttr<UuidAttr>(); 1930 // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an 1931 // extern C++ block directly in the TU. These are only valid if in one 1932 // of these two situations. 1933 if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && 1934 !isDeclContextInNamespace(getDeclContext()) && 1935 ((getName() == "IUnknown" && 1936 Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || 1937 (getName() == "IDispatch" && 1938 Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { 1939 if (getNumBases() > 0) 1940 return false; 1941 return true; 1942 } 1943 1944 // FIXME: Any access specifiers is supposed to make this no longer interface 1945 // like. 1946 1947 // If this isn't a 'special' type, it must have a single interface-like base. 1948 if (getNumBases() != 1) 1949 return false; 1950 1951 const auto BaseSpec = *bases_begin(); 1952 if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) 1953 return false; 1954 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 1955 if (Base->isInterface() || !Base->isInterfaceLike()) 1956 return false; 1957 return true; 1958 } 1959 1960 void CXXRecordDecl::completeDefinition() { 1961 completeDefinition(nullptr); 1962 } 1963 1964 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { 1965 RecordDecl::completeDefinition(); 1966 1967 // If the class may be abstract (but hasn't been marked as such), check for 1968 // any pure final overriders. 1969 if (mayBeAbstract()) { 1970 CXXFinalOverriderMap MyFinalOverriders; 1971 if (!FinalOverriders) { 1972 getFinalOverriders(MyFinalOverriders); 1973 FinalOverriders = &MyFinalOverriders; 1974 } 1975 1976 bool Done = false; 1977 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 1978 MEnd = FinalOverriders->end(); 1979 M != MEnd && !Done; ++M) { 1980 for (OverridingMethods::iterator SO = M->second.begin(), 1981 SOEnd = M->second.end(); 1982 SO != SOEnd && !Done; ++SO) { 1983 assert(SO->second.size() > 0 && 1984 "All virtual functions have overriding virtual functions"); 1985 1986 // C++ [class.abstract]p4: 1987 // A class is abstract if it contains or inherits at least one 1988 // pure virtual function for which the final overrider is pure 1989 // virtual. 1990 if (SO->second.front().Method->isPure()) { 1991 data().Abstract = true; 1992 Done = true; 1993 break; 1994 } 1995 } 1996 } 1997 } 1998 1999 // Set access bits correctly on the directly-declared conversions. 2000 for (conversion_iterator I = conversion_begin(), E = conversion_end(); 2001 I != E; ++I) 2002 I.setAccess((*I)->getAccess()); 2003 } 2004 2005 bool CXXRecordDecl::mayBeAbstract() const { 2006 if (data().Abstract || isInvalidDecl() || !data().Polymorphic || 2007 isDependentContext()) 2008 return false; 2009 2010 for (const auto &B : bases()) { 2011 const auto *BaseDecl = 2012 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); 2013 if (BaseDecl->isAbstract()) 2014 return true; 2015 } 2016 2017 return false; 2018 } 2019 2020 bool CXXRecordDecl::isEffectivelyFinal() const { 2021 auto *Def = getDefinition(); 2022 if (!Def) 2023 return false; 2024 if (Def->hasAttr<FinalAttr>()) 2025 return true; 2026 if (const auto *Dtor = Def->getDestructor()) 2027 if (Dtor->hasAttr<FinalAttr>()) 2028 return true; 2029 return false; 2030 } 2031 2032 void CXXDeductionGuideDecl::anchor() {} 2033 2034 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { 2035 if ((getKind() != Other.getKind() || 2036 getKind() == ExplicitSpecKind::Unresolved)) { 2037 if (getKind() == ExplicitSpecKind::Unresolved && 2038 Other.getKind() == ExplicitSpecKind::Unresolved) { 2039 ODRHash SelfHash, OtherHash; 2040 SelfHash.AddStmt(getExpr()); 2041 OtherHash.AddStmt(Other.getExpr()); 2042 return SelfHash.CalculateHash() == OtherHash.CalculateHash(); 2043 } else 2044 return false; 2045 } 2046 return true; 2047 } 2048 2049 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { 2050 switch (Function->getDeclKind()) { 2051 case Decl::Kind::CXXConstructor: 2052 return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier(); 2053 case Decl::Kind::CXXConversion: 2054 return cast<CXXConversionDecl>(Function)->getExplicitSpecifier(); 2055 case Decl::Kind::CXXDeductionGuide: 2056 return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier(); 2057 default: 2058 return {}; 2059 } 2060 } 2061 2062 CXXDeductionGuideDecl * 2063 CXXDeductionGuideDecl::Create(ASTContext &C, DeclContext *DC, 2064 SourceLocation StartLoc, ExplicitSpecifier ES, 2065 const DeclarationNameInfo &NameInfo, QualType T, 2066 TypeSourceInfo *TInfo, SourceLocation EndLocation, 2067 CXXConstructorDecl *Ctor) { 2068 return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, 2069 TInfo, EndLocation, Ctor); 2070 } 2071 2072 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, 2073 unsigned ID) { 2074 return new (C, ID) CXXDeductionGuideDecl( 2075 C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), 2076 QualType(), nullptr, SourceLocation(), nullptr); 2077 } 2078 2079 RequiresExprBodyDecl *RequiresExprBodyDecl::Create( 2080 ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { 2081 return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); 2082 } 2083 2084 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, 2085 unsigned ID) { 2086 return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); 2087 } 2088 2089 void CXXMethodDecl::anchor() {} 2090 2091 bool CXXMethodDecl::isStatic() const { 2092 const CXXMethodDecl *MD = getCanonicalDecl(); 2093 2094 if (MD->getStorageClass() == SC_Static) 2095 return true; 2096 2097 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); 2098 return isStaticOverloadedOperator(OOK); 2099 } 2100 2101 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, 2102 const CXXMethodDecl *BaseMD) { 2103 for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { 2104 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) 2105 return true; 2106 if (recursivelyOverrides(MD, BaseMD)) 2107 return true; 2108 } 2109 return false; 2110 } 2111 2112 CXXMethodDecl * 2113 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, 2114 bool MayBeBase) { 2115 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) 2116 return this; 2117 2118 // Lookup doesn't work for destructors, so handle them separately. 2119 if (isa<CXXDestructorDecl>(this)) { 2120 CXXMethodDecl *MD = RD->getDestructor(); 2121 if (MD) { 2122 if (recursivelyOverrides(MD, this)) 2123 return MD; 2124 if (MayBeBase && recursivelyOverrides(this, MD)) 2125 return MD; 2126 } 2127 return nullptr; 2128 } 2129 2130 for (auto *ND : RD->lookup(getDeclName())) { 2131 auto *MD = dyn_cast<CXXMethodDecl>(ND); 2132 if (!MD) 2133 continue; 2134 if (recursivelyOverrides(MD, this)) 2135 return MD; 2136 if (MayBeBase && recursivelyOverrides(this, MD)) 2137 return MD; 2138 } 2139 2140 return nullptr; 2141 } 2142 2143 CXXMethodDecl * 2144 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, 2145 bool MayBeBase) { 2146 if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) 2147 return MD; 2148 2149 llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders; 2150 auto AddFinalOverrider = [&](CXXMethodDecl *D) { 2151 // If this function is overridden by a candidate final overrider, it is not 2152 // a final overrider. 2153 for (CXXMethodDecl *OtherD : FinalOverriders) { 2154 if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D)) 2155 return; 2156 } 2157 2158 // Other candidate final overriders might be overridden by this function. 2159 FinalOverriders.erase( 2160 std::remove_if(FinalOverriders.begin(), FinalOverriders.end(), 2161 [&](CXXMethodDecl *OtherD) { 2162 return recursivelyOverrides(D, OtherD); 2163 }), 2164 FinalOverriders.end()); 2165 2166 FinalOverriders.push_back(D); 2167 }; 2168 2169 for (const auto &I : RD->bases()) { 2170 const RecordType *RT = I.getType()->getAs<RecordType>(); 2171 if (!RT) 2172 continue; 2173 const auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 2174 if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base)) 2175 AddFinalOverrider(D); 2176 } 2177 2178 return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; 2179 } 2180 2181 CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, 2182 SourceLocation StartLoc, 2183 const DeclarationNameInfo &NameInfo, 2184 QualType T, TypeSourceInfo *TInfo, 2185 StorageClass SC, bool isInline, 2186 ConstexprSpecKind ConstexprKind, 2187 SourceLocation EndLocation, 2188 Expr *TrailingRequiresClause) { 2189 return new (C, RD) 2190 CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, 2191 isInline, ConstexprKind, EndLocation, 2192 TrailingRequiresClause); 2193 } 2194 2195 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2196 return new (C, ID) 2197 CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(), 2198 DeclarationNameInfo(), QualType(), nullptr, SC_None, false, 2199 ConstexprSpecKind::Unspecified, SourceLocation(), nullptr); 2200 } 2201 2202 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, 2203 bool IsAppleKext) { 2204 assert(isVirtual() && "this method is expected to be virtual"); 2205 2206 // When building with -fapple-kext, all calls must go through the vtable since 2207 // the kernel linker can do runtime patching of vtables. 2208 if (IsAppleKext) 2209 return nullptr; 2210 2211 // If the member function is marked 'final', we know that it can't be 2212 // overridden and can therefore devirtualize it unless it's pure virtual. 2213 if (hasAttr<FinalAttr>()) 2214 return isPure() ? nullptr : this; 2215 2216 // If Base is unknown, we cannot devirtualize. 2217 if (!Base) 2218 return nullptr; 2219 2220 // If the base expression (after skipping derived-to-base conversions) is a 2221 // class prvalue, then we can devirtualize. 2222 Base = Base->getBestDynamicClassTypeExpr(); 2223 if (Base->isPRValue() && Base->getType()->isRecordType()) 2224 return this; 2225 2226 // If we don't even know what we would call, we can't devirtualize. 2227 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2228 if (!BestDynamicDecl) 2229 return nullptr; 2230 2231 // There may be a method corresponding to MD in a derived class. 2232 CXXMethodDecl *DevirtualizedMethod = 2233 getCorrespondingMethodInClass(BestDynamicDecl); 2234 2235 // If there final overrider in the dynamic type is ambiguous, we can't 2236 // devirtualize this call. 2237 if (!DevirtualizedMethod) 2238 return nullptr; 2239 2240 // If that method is pure virtual, we can't devirtualize. If this code is 2241 // reached, the result would be UB, not a direct call to the derived class 2242 // function, and we can't assume the derived class function is defined. 2243 if (DevirtualizedMethod->isPure()) 2244 return nullptr; 2245 2246 // If that method is marked final, we can devirtualize it. 2247 if (DevirtualizedMethod->hasAttr<FinalAttr>()) 2248 return DevirtualizedMethod; 2249 2250 // Similarly, if the class itself or its destructor is marked 'final', 2251 // the class can't be derived from and we can therefore devirtualize the 2252 // member function call. 2253 if (BestDynamicDecl->isEffectivelyFinal()) 2254 return DevirtualizedMethod; 2255 2256 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) { 2257 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2258 if (VD->getType()->isRecordType()) 2259 // This is a record decl. We know the type and can devirtualize it. 2260 return DevirtualizedMethod; 2261 2262 return nullptr; 2263 } 2264 2265 // We can devirtualize calls on an object accessed by a class member access 2266 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2267 // a derived class object constructed in the same location. 2268 if (const auto *ME = dyn_cast<MemberExpr>(Base)) { 2269 const ValueDecl *VD = ME->getMemberDecl(); 2270 return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; 2271 } 2272 2273 // Likewise for calls on an object accessed by a (non-reference) pointer to 2274 // member access. 2275 if (auto *BO = dyn_cast<BinaryOperator>(Base)) { 2276 if (BO->isPtrMemOp()) { 2277 auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); 2278 if (MPT->getPointeeType()->isRecordType()) 2279 return DevirtualizedMethod; 2280 } 2281 } 2282 2283 // We can't devirtualize the call. 2284 return nullptr; 2285 } 2286 2287 bool CXXMethodDecl::isUsualDeallocationFunction( 2288 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { 2289 assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); 2290 if (getOverloadedOperator() != OO_Delete && 2291 getOverloadedOperator() != OO_Array_Delete) 2292 return false; 2293 2294 // C++ [basic.stc.dynamic.deallocation]p2: 2295 // A template instance is never a usual deallocation function, 2296 // regardless of its signature. 2297 if (getPrimaryTemplate()) 2298 return false; 2299 2300 // C++ [basic.stc.dynamic.deallocation]p2: 2301 // If a class T has a member deallocation function named operator delete 2302 // with exactly one parameter, then that function is a usual (non-placement) 2303 // deallocation function. [...] 2304 if (getNumParams() == 1) 2305 return true; 2306 unsigned UsualParams = 1; 2307 2308 // C++ P0722: 2309 // A destroying operator delete is a usual deallocation function if 2310 // removing the std::destroying_delete_t parameter and changing the 2311 // first parameter type from T* to void* results in the signature of 2312 // a usual deallocation function. 2313 if (isDestroyingOperatorDelete()) 2314 ++UsualParams; 2315 2316 // C++ <=14 [basic.stc.dynamic.deallocation]p2: 2317 // [...] If class T does not declare such an operator delete but does 2318 // declare a member deallocation function named operator delete with 2319 // exactly two parameters, the second of which has type std::size_t (18.1), 2320 // then this function is a usual deallocation function. 2321 // 2322 // C++17 says a usual deallocation function is one with the signature 2323 // (void* [, size_t] [, std::align_val_t] [, ...]) 2324 // and all such functions are usual deallocation functions. It's not clear 2325 // that allowing varargs functions was intentional. 2326 ASTContext &Context = getASTContext(); 2327 if (UsualParams < getNumParams() && 2328 Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), 2329 Context.getSizeType())) 2330 ++UsualParams; 2331 2332 if (UsualParams < getNumParams() && 2333 getParamDecl(UsualParams)->getType()->isAlignValT()) 2334 ++UsualParams; 2335 2336 if (UsualParams != getNumParams()) 2337 return false; 2338 2339 // In C++17 onwards, all potential usual deallocation functions are actual 2340 // usual deallocation functions. Honor this behavior when post-C++14 2341 // deallocation functions are offered as extensions too. 2342 // FIXME(EricWF): Destrying Delete should be a language option. How do we 2343 // handle when destroying delete is used prior to C++17? 2344 if (Context.getLangOpts().CPlusPlus17 || 2345 Context.getLangOpts().AlignedAllocation || 2346 isDestroyingOperatorDelete()) 2347 return true; 2348 2349 // This function is a usual deallocation function if there are no 2350 // single-parameter deallocation functions of the same kind. 2351 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); 2352 bool Result = true; 2353 for (const auto *D : R) { 2354 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2355 if (FD->getNumParams() == 1) { 2356 PreventedBy.push_back(FD); 2357 Result = false; 2358 } 2359 } 2360 } 2361 return Result; 2362 } 2363 2364 bool CXXMethodDecl::isCopyAssignmentOperator() const { 2365 // C++0x [class.copy]p17: 2366 // A user-declared copy assignment operator X::operator= is a non-static 2367 // non-template member function of class X with exactly one parameter of 2368 // type X, X&, const X&, volatile X& or const volatile X&. 2369 if (/*operator=*/getOverloadedOperator() != OO_Equal || 2370 /*non-static*/ isStatic() || 2371 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || 2372 getNumParams() != 1) 2373 return false; 2374 2375 QualType ParamType = getParamDecl(0)->getType(); 2376 if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) 2377 ParamType = Ref->getPointeeType(); 2378 2379 ASTContext &Context = getASTContext(); 2380 QualType ClassType 2381 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2382 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2383 } 2384 2385 bool CXXMethodDecl::isMoveAssignmentOperator() const { 2386 // C++0x [class.copy]p19: 2387 // A user-declared move assignment operator X::operator= is a non-static 2388 // non-template member function of class X with exactly one parameter of type 2389 // X&&, const X&&, volatile X&&, or const volatile X&&. 2390 if (getOverloadedOperator() != OO_Equal || isStatic() || 2391 getPrimaryTemplate() || getDescribedFunctionTemplate() || 2392 getNumParams() != 1) 2393 return false; 2394 2395 QualType ParamType = getParamDecl(0)->getType(); 2396 if (!isa<RValueReferenceType>(ParamType)) 2397 return false; 2398 ParamType = ParamType->getPointeeType(); 2399 2400 ASTContext &Context = getASTContext(); 2401 QualType ClassType 2402 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2403 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2404 } 2405 2406 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { 2407 assert(MD->isCanonicalDecl() && "Method is not canonical!"); 2408 assert(!MD->getParent()->isDependentContext() && 2409 "Can't add an overridden method to a class template!"); 2410 assert(MD->isVirtual() && "Method is not virtual!"); 2411 2412 getASTContext().addOverriddenMethod(this, MD); 2413 } 2414 2415 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { 2416 if (isa<CXXConstructorDecl>(this)) return nullptr; 2417 return getASTContext().overridden_methods_begin(this); 2418 } 2419 2420 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { 2421 if (isa<CXXConstructorDecl>(this)) return nullptr; 2422 return getASTContext().overridden_methods_end(this); 2423 } 2424 2425 unsigned CXXMethodDecl::size_overridden_methods() const { 2426 if (isa<CXXConstructorDecl>(this)) return 0; 2427 return getASTContext().overridden_methods_size(this); 2428 } 2429 2430 CXXMethodDecl::overridden_method_range 2431 CXXMethodDecl::overridden_methods() const { 2432 if (isa<CXXConstructorDecl>(this)) 2433 return overridden_method_range(nullptr, nullptr); 2434 return getASTContext().overridden_methods(this); 2435 } 2436 2437 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, 2438 const CXXRecordDecl *Decl) { 2439 QualType ClassTy = C.getTypeDeclType(Decl); 2440 return C.getQualifiedType(ClassTy, FPT->getMethodQuals()); 2441 } 2442 2443 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, 2444 const CXXRecordDecl *Decl) { 2445 ASTContext &C = Decl->getASTContext(); 2446 QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); 2447 return C.getPointerType(ObjectTy); 2448 } 2449 2450 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT, 2451 const CXXRecordDecl *Decl) { 2452 ASTContext &C = Decl->getASTContext(); 2453 return ::getThisObjectType(C, FPT, Decl); 2454 } 2455 2456 QualType CXXMethodDecl::getThisType() const { 2457 // C++ 9.3.2p1: The type of this in a member function of a class X is X*. 2458 // If the member function is declared const, the type of this is const X*, 2459 // if the member function is declared volatile, the type of this is 2460 // volatile X*, and if the member function is declared const volatile, 2461 // the type of this is const volatile X*. 2462 assert(isInstance() && "No 'this' for static methods!"); 2463 return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(), 2464 getParent()); 2465 } 2466 2467 QualType CXXMethodDecl::getThisObjectType() const { 2468 // Ditto getThisType. 2469 assert(isInstance() && "No 'this' for static methods!"); 2470 return CXXMethodDecl::getThisObjectType( 2471 getType()->castAs<FunctionProtoType>(), getParent()); 2472 } 2473 2474 bool CXXMethodDecl::hasInlineBody() const { 2475 // If this function is a template instantiation, look at the template from 2476 // which it was instantiated. 2477 const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); 2478 if (!CheckFn) 2479 CheckFn = this; 2480 2481 const FunctionDecl *fn; 2482 return CheckFn->isDefined(fn) && !fn->isOutOfLine() && 2483 (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); 2484 } 2485 2486 bool CXXMethodDecl::isLambdaStaticInvoker() const { 2487 const CXXRecordDecl *P = getParent(); 2488 return P->isLambda() && getDeclName().isIdentifier() && 2489 getName() == getLambdaStaticInvokerName(); 2490 } 2491 2492 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2493 TypeSourceInfo *TInfo, bool IsVirtual, 2494 SourceLocation L, Expr *Init, 2495 SourceLocation R, 2496 SourceLocation EllipsisLoc) 2497 : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc), 2498 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), 2499 IsWritten(false), SourceOrder(0) {} 2500 2501 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, 2502 SourceLocation MemberLoc, 2503 SourceLocation L, Expr *Init, 2504 SourceLocation R) 2505 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), 2506 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2507 IsWritten(false), SourceOrder(0) {} 2508 2509 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2510 IndirectFieldDecl *Member, 2511 SourceLocation MemberLoc, 2512 SourceLocation L, Expr *Init, 2513 SourceLocation R) 2514 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), 2515 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2516 IsWritten(false), SourceOrder(0) {} 2517 2518 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2519 TypeSourceInfo *TInfo, 2520 SourceLocation L, Expr *Init, 2521 SourceLocation R) 2522 : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), 2523 IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} 2524 2525 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { 2526 return Context.getAllocator() 2527 .identifyKnownAlignedObject<CXXCtorInitializer>(this); 2528 } 2529 2530 TypeLoc CXXCtorInitializer::getBaseClassLoc() const { 2531 if (isBaseInitializer()) 2532 return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); 2533 else 2534 return {}; 2535 } 2536 2537 const Type *CXXCtorInitializer::getBaseClass() const { 2538 if (isBaseInitializer()) 2539 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); 2540 else 2541 return nullptr; 2542 } 2543 2544 SourceLocation CXXCtorInitializer::getSourceLocation() const { 2545 if (isInClassMemberInitializer()) 2546 return getAnyMember()->getLocation(); 2547 2548 if (isAnyMemberInitializer()) 2549 return getMemberLocation(); 2550 2551 if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) 2552 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); 2553 2554 return {}; 2555 } 2556 2557 SourceRange CXXCtorInitializer::getSourceRange() const { 2558 if (isInClassMemberInitializer()) { 2559 FieldDecl *D = getAnyMember(); 2560 if (Expr *I = D->getInClassInitializer()) 2561 return I->getSourceRange(); 2562 return {}; 2563 } 2564 2565 return SourceRange(getSourceLocation(), getRParenLoc()); 2566 } 2567 2568 CXXConstructorDecl::CXXConstructorDecl( 2569 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2570 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2571 ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, 2572 ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, 2573 Expr *TrailingRequiresClause) 2574 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, 2575 SC_None, isInline, ConstexprKind, SourceLocation(), 2576 TrailingRequiresClause) { 2577 setNumCtorInitializers(0); 2578 setInheritingConstructor(static_cast<bool>(Inherited)); 2579 setImplicit(isImplicitlyDeclared); 2580 CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; 2581 if (Inherited) 2582 *getTrailingObjects<InheritedConstructor>() = Inherited; 2583 setExplicitSpecifier(ES); 2584 } 2585 2586 void CXXConstructorDecl::anchor() {} 2587 2588 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, 2589 unsigned ID, 2590 uint64_t AllocKind) { 2591 bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); 2592 bool isInheritingConstructor = 2593 static_cast<bool>(AllocKind & TAKInheritsConstructor); 2594 unsigned Extra = 2595 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2596 isInheritingConstructor, hasTrailingExplicit); 2597 auto *Result = new (C, ID, Extra) CXXConstructorDecl( 2598 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2599 ExplicitSpecifier(), false, false, ConstexprSpecKind::Unspecified, 2600 InheritedConstructor(), nullptr); 2601 Result->setInheritingConstructor(isInheritingConstructor); 2602 Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = 2603 hasTrailingExplicit; 2604 Result->setExplicitSpecifier(ExplicitSpecifier()); 2605 return Result; 2606 } 2607 2608 CXXConstructorDecl *CXXConstructorDecl::Create( 2609 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2610 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2611 ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, 2612 ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, 2613 Expr *TrailingRequiresClause) { 2614 assert(NameInfo.getName().getNameKind() 2615 == DeclarationName::CXXConstructorName && 2616 "Name must refer to a constructor"); 2617 unsigned Extra = 2618 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2619 Inherited ? 1 : 0, ES.getExpr() ? 1 : 0); 2620 return new (C, RD, Extra) 2621 CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline, 2622 isImplicitlyDeclared, ConstexprKind, Inherited, 2623 TrailingRequiresClause); 2624 } 2625 2626 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { 2627 return CtorInitializers.get(getASTContext().getExternalSource()); 2628 } 2629 2630 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { 2631 assert(isDelegatingConstructor() && "Not a delegating constructor!"); 2632 Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); 2633 if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) 2634 return Construct->getConstructor(); 2635 2636 return nullptr; 2637 } 2638 2639 bool CXXConstructorDecl::isDefaultConstructor() const { 2640 // C++ [class.default.ctor]p1: 2641 // A default constructor for a class X is a constructor of class X for 2642 // which each parameter that is not a function parameter pack has a default 2643 // argument (including the case of a constructor with no parameters) 2644 return getMinRequiredArguments() == 0; 2645 } 2646 2647 bool 2648 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { 2649 return isCopyOrMoveConstructor(TypeQuals) && 2650 getParamDecl(0)->getType()->isLValueReferenceType(); 2651 } 2652 2653 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { 2654 return isCopyOrMoveConstructor(TypeQuals) && 2655 getParamDecl(0)->getType()->isRValueReferenceType(); 2656 } 2657 2658 /// Determine whether this is a copy or move constructor. 2659 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { 2660 // C++ [class.copy]p2: 2661 // A non-template constructor for class X is a copy constructor 2662 // if its first parameter is of type X&, const X&, volatile X& or 2663 // const volatile X&, and either there are no other parameters 2664 // or else all other parameters have default arguments (8.3.6). 2665 // C++0x [class.copy]p3: 2666 // A non-template constructor for class X is a move constructor if its 2667 // first parameter is of type X&&, const X&&, volatile X&&, or 2668 // const volatile X&&, and either there are no other parameters or else 2669 // all other parameters have default arguments. 2670 if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || 2671 getDescribedFunctionTemplate() != nullptr) 2672 return false; 2673 2674 const ParmVarDecl *Param = getParamDecl(0); 2675 2676 // Do we have a reference type? 2677 const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); 2678 if (!ParamRefType) 2679 return false; 2680 2681 // Is it a reference to our class type? 2682 ASTContext &Context = getASTContext(); 2683 2684 CanQualType PointeeType 2685 = Context.getCanonicalType(ParamRefType->getPointeeType()); 2686 CanQualType ClassTy 2687 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2688 if (PointeeType.getUnqualifiedType() != ClassTy) 2689 return false; 2690 2691 // FIXME: other qualifiers? 2692 2693 // We have a copy or move constructor. 2694 TypeQuals = PointeeType.getCVRQualifiers(); 2695 return true; 2696 } 2697 2698 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { 2699 // C++ [class.conv.ctor]p1: 2700 // A constructor declared without the function-specifier explicit 2701 // that can be called with a single parameter specifies a 2702 // conversion from the type of its first parameter to the type of 2703 // its class. Such a constructor is called a converting 2704 // constructor. 2705 if (isExplicit() && !AllowExplicit) 2706 return false; 2707 2708 // FIXME: This has nothing to do with the definition of converting 2709 // constructor, but is convenient for how we use this function in overload 2710 // resolution. 2711 return getNumParams() == 0 2712 ? getType()->castAs<FunctionProtoType>()->isVariadic() 2713 : getMinRequiredArguments() <= 1; 2714 } 2715 2716 bool CXXConstructorDecl::isSpecializationCopyingObject() const { 2717 if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) 2718 return false; 2719 2720 const ParmVarDecl *Param = getParamDecl(0); 2721 2722 ASTContext &Context = getASTContext(); 2723 CanQualType ParamType = Context.getCanonicalType(Param->getType()); 2724 2725 // Is it the same as our class type? 2726 CanQualType ClassTy 2727 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2728 if (ParamType.getUnqualifiedType() != ClassTy) 2729 return false; 2730 2731 return true; 2732 } 2733 2734 void CXXDestructorDecl::anchor() {} 2735 2736 CXXDestructorDecl * 2737 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2738 return new (C, ID) CXXDestructorDecl( 2739 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2740 false, false, ConstexprSpecKind::Unspecified, nullptr); 2741 } 2742 2743 CXXDestructorDecl *CXXDestructorDecl::Create( 2744 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2745 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2746 bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, 2747 Expr *TrailingRequiresClause) { 2748 assert(NameInfo.getName().getNameKind() 2749 == DeclarationName::CXXDestructorName && 2750 "Name must refer to a destructor"); 2751 return new (C, RD) 2752 CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, 2753 isImplicitlyDeclared, ConstexprKind, 2754 TrailingRequiresClause); 2755 } 2756 2757 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { 2758 auto *First = cast<CXXDestructorDecl>(getFirstDecl()); 2759 if (OD && !First->OperatorDelete) { 2760 First->OperatorDelete = OD; 2761 First->OperatorDeleteThisArg = ThisArg; 2762 if (auto *L = getASTMutationListener()) 2763 L->ResolvedOperatorDelete(First, OD, ThisArg); 2764 } 2765 } 2766 2767 void CXXConversionDecl::anchor() {} 2768 2769 CXXConversionDecl * 2770 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2771 return new (C, ID) CXXConversionDecl( 2772 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2773 false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 2774 SourceLocation(), nullptr); 2775 } 2776 2777 CXXConversionDecl *CXXConversionDecl::Create( 2778 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2779 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2780 bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, 2781 SourceLocation EndLocation, Expr *TrailingRequiresClause) { 2782 assert(NameInfo.getName().getNameKind() 2783 == DeclarationName::CXXConversionFunctionName && 2784 "Name must refer to a conversion function"); 2785 return new (C, RD) 2786 CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES, 2787 ConstexprKind, EndLocation, TrailingRequiresClause); 2788 } 2789 2790 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { 2791 return isImplicit() && getParent()->isLambda() && 2792 getConversionType()->isBlockPointerType(); 2793 } 2794 2795 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, 2796 SourceLocation LangLoc, LanguageIDs lang, 2797 bool HasBraces) 2798 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), 2799 ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { 2800 setLanguage(lang); 2801 LinkageSpecDeclBits.HasBraces = HasBraces; 2802 } 2803 2804 void LinkageSpecDecl::anchor() {} 2805 2806 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, 2807 DeclContext *DC, 2808 SourceLocation ExternLoc, 2809 SourceLocation LangLoc, 2810 LanguageIDs Lang, 2811 bool HasBraces) { 2812 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); 2813 } 2814 2815 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, 2816 unsigned ID) { 2817 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), 2818 SourceLocation(), lang_c, false); 2819 } 2820 2821 void UsingDirectiveDecl::anchor() {} 2822 2823 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, 2824 SourceLocation L, 2825 SourceLocation NamespaceLoc, 2826 NestedNameSpecifierLoc QualifierLoc, 2827 SourceLocation IdentLoc, 2828 NamedDecl *Used, 2829 DeclContext *CommonAncestor) { 2830 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used)) 2831 Used = NS->getOriginalNamespace(); 2832 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, 2833 IdentLoc, Used, CommonAncestor); 2834 } 2835 2836 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, 2837 unsigned ID) { 2838 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), 2839 SourceLocation(), 2840 NestedNameSpecifierLoc(), 2841 SourceLocation(), nullptr, nullptr); 2842 } 2843 2844 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { 2845 if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) 2846 return NA->getNamespace(); 2847 return cast_or_null<NamespaceDecl>(NominatedNamespace); 2848 } 2849 2850 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, 2851 SourceLocation StartLoc, SourceLocation IdLoc, 2852 IdentifierInfo *Id, NamespaceDecl *PrevDecl) 2853 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), 2854 redeclarable_base(C), LocStart(StartLoc), 2855 AnonOrFirstNamespaceAndInline(nullptr, Inline) { 2856 setPreviousDecl(PrevDecl); 2857 2858 if (PrevDecl) 2859 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); 2860 } 2861 2862 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, 2863 bool Inline, SourceLocation StartLoc, 2864 SourceLocation IdLoc, IdentifierInfo *Id, 2865 NamespaceDecl *PrevDecl) { 2866 return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, 2867 PrevDecl); 2868 } 2869 2870 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2871 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), 2872 SourceLocation(), nullptr, nullptr); 2873 } 2874 2875 NamespaceDecl *NamespaceDecl::getOriginalNamespace() { 2876 if (isFirstDecl()) 2877 return this; 2878 2879 return AnonOrFirstNamespaceAndInline.getPointer(); 2880 } 2881 2882 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { 2883 if (isFirstDecl()) 2884 return this; 2885 2886 return AnonOrFirstNamespaceAndInline.getPointer(); 2887 } 2888 2889 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } 2890 2891 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { 2892 return getNextRedeclaration(); 2893 } 2894 2895 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { 2896 return getPreviousDecl(); 2897 } 2898 2899 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { 2900 return getMostRecentDecl(); 2901 } 2902 2903 void NamespaceAliasDecl::anchor() {} 2904 2905 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { 2906 return getNextRedeclaration(); 2907 } 2908 2909 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { 2910 return getPreviousDecl(); 2911 } 2912 2913 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { 2914 return getMostRecentDecl(); 2915 } 2916 2917 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, 2918 SourceLocation UsingLoc, 2919 SourceLocation AliasLoc, 2920 IdentifierInfo *Alias, 2921 NestedNameSpecifierLoc QualifierLoc, 2922 SourceLocation IdentLoc, 2923 NamedDecl *Namespace) { 2924 // FIXME: Preserve the aliased namespace as written. 2925 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) 2926 Namespace = NS->getOriginalNamespace(); 2927 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, 2928 QualifierLoc, IdentLoc, Namespace); 2929 } 2930 2931 NamespaceAliasDecl * 2932 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2933 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), 2934 SourceLocation(), nullptr, 2935 NestedNameSpecifierLoc(), 2936 SourceLocation(), nullptr); 2937 } 2938 2939 void LifetimeExtendedTemporaryDecl::anchor() {} 2940 2941 /// Retrieve the storage duration for the materialized temporary. 2942 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { 2943 const ValueDecl *ExtendingDecl = getExtendingDecl(); 2944 if (!ExtendingDecl) 2945 return SD_FullExpression; 2946 // FIXME: This is not necessarily correct for a temporary materialized 2947 // within a default initializer. 2948 if (isa<FieldDecl>(ExtendingDecl)) 2949 return SD_Automatic; 2950 // FIXME: This only works because storage class specifiers are not allowed 2951 // on decomposition declarations. 2952 if (isa<BindingDecl>(ExtendingDecl)) 2953 return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic 2954 : SD_Static; 2955 return cast<VarDecl>(ExtendingDecl)->getStorageDuration(); 2956 } 2957 2958 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { 2959 assert(getStorageDuration() == SD_Static && 2960 "don't need to cache the computed value for this temporary"); 2961 if (MayCreate && !Value) { 2962 Value = (new (getASTContext()) APValue); 2963 getASTContext().addDestruction(Value); 2964 } 2965 assert(Value && "may not be null"); 2966 return Value; 2967 } 2968 2969 void UsingShadowDecl::anchor() {} 2970 2971 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, 2972 SourceLocation Loc, DeclarationName Name, 2973 BaseUsingDecl *Introducer, NamedDecl *Target) 2974 : NamedDecl(K, DC, Loc, Name), redeclarable_base(C), 2975 UsingOrNextShadow(Introducer) { 2976 if (Target) 2977 setTargetDecl(Target); 2978 setImplicit(); 2979 } 2980 2981 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) 2982 : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), 2983 redeclarable_base(C) {} 2984 2985 UsingShadowDecl * 2986 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2987 return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); 2988 } 2989 2990 BaseUsingDecl *UsingShadowDecl::getIntroducer() const { 2991 const UsingShadowDecl *Shadow = this; 2992 while (const auto *NextShadow = 2993 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) 2994 Shadow = NextShadow; 2995 return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow); 2996 } 2997 2998 void ConstructorUsingShadowDecl::anchor() {} 2999 3000 ConstructorUsingShadowDecl * 3001 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, 3002 SourceLocation Loc, UsingDecl *Using, 3003 NamedDecl *Target, bool IsVirtual) { 3004 return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, 3005 IsVirtual); 3006 } 3007 3008 ConstructorUsingShadowDecl * 3009 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3010 return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); 3011 } 3012 3013 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { 3014 return getIntroducer()->getQualifier()->getAsRecordDecl(); 3015 } 3016 3017 void BaseUsingDecl::anchor() {} 3018 3019 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) { 3020 assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && 3021 "declaration already in set"); 3022 assert(S->getIntroducer() == this); 3023 3024 if (FirstUsingShadow.getPointer()) 3025 S->UsingOrNextShadow = FirstUsingShadow.getPointer(); 3026 FirstUsingShadow.setPointer(S); 3027 } 3028 3029 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) { 3030 assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && 3031 "declaration not in set"); 3032 assert(S->getIntroducer() == this); 3033 3034 // Remove S from the shadow decl chain. This is O(n) but hopefully rare. 3035 3036 if (FirstUsingShadow.getPointer() == S) { 3037 FirstUsingShadow.setPointer( 3038 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); 3039 S->UsingOrNextShadow = this; 3040 return; 3041 } 3042 3043 UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); 3044 while (Prev->UsingOrNextShadow != S) 3045 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); 3046 Prev->UsingOrNextShadow = S->UsingOrNextShadow; 3047 S->UsingOrNextShadow = this; 3048 } 3049 3050 void UsingDecl::anchor() {} 3051 3052 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, 3053 NestedNameSpecifierLoc QualifierLoc, 3054 const DeclarationNameInfo &NameInfo, 3055 bool HasTypename) { 3056 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); 3057 } 3058 3059 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3060 return new (C, ID) UsingDecl(nullptr, SourceLocation(), 3061 NestedNameSpecifierLoc(), DeclarationNameInfo(), 3062 false); 3063 } 3064 3065 SourceRange UsingDecl::getSourceRange() const { 3066 SourceLocation Begin = isAccessDeclaration() 3067 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3068 return SourceRange(Begin, getNameInfo().getEndLoc()); 3069 } 3070 3071 void UsingEnumDecl::anchor() {} 3072 3073 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC, 3074 SourceLocation UL, SourceLocation EL, 3075 SourceLocation NL, EnumDecl *Enum) { 3076 return new (C, DC) UsingEnumDecl(DC, Enum->getDeclName(), UL, EL, NL, Enum); 3077 } 3078 3079 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3080 return new (C, ID) UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(), 3081 SourceLocation(), SourceLocation(), nullptr); 3082 } 3083 3084 SourceRange UsingEnumDecl::getSourceRange() const { 3085 return SourceRange(EnumLocation, getLocation()); 3086 } 3087 3088 void UsingPackDecl::anchor() {} 3089 3090 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, 3091 NamedDecl *InstantiatedFrom, 3092 ArrayRef<NamedDecl *> UsingDecls) { 3093 size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size()); 3094 return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); 3095 } 3096 3097 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3098 unsigned NumExpansions) { 3099 size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions); 3100 auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None); 3101 Result->NumExpansions = NumExpansions; 3102 auto *Trail = Result->getTrailingObjects<NamedDecl *>(); 3103 for (unsigned I = 0; I != NumExpansions; ++I) 3104 new (Trail + I) NamedDecl*(nullptr); 3105 return Result; 3106 } 3107 3108 void UnresolvedUsingValueDecl::anchor() {} 3109 3110 UnresolvedUsingValueDecl * 3111 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, 3112 SourceLocation UsingLoc, 3113 NestedNameSpecifierLoc QualifierLoc, 3114 const DeclarationNameInfo &NameInfo, 3115 SourceLocation EllipsisLoc) { 3116 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, 3117 QualifierLoc, NameInfo, 3118 EllipsisLoc); 3119 } 3120 3121 UnresolvedUsingValueDecl * 3122 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3123 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), 3124 SourceLocation(), 3125 NestedNameSpecifierLoc(), 3126 DeclarationNameInfo(), 3127 SourceLocation()); 3128 } 3129 3130 SourceRange UnresolvedUsingValueDecl::getSourceRange() const { 3131 SourceLocation Begin = isAccessDeclaration() 3132 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3133 return SourceRange(Begin, getNameInfo().getEndLoc()); 3134 } 3135 3136 void UnresolvedUsingTypenameDecl::anchor() {} 3137 3138 UnresolvedUsingTypenameDecl * 3139 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, 3140 SourceLocation UsingLoc, 3141 SourceLocation TypenameLoc, 3142 NestedNameSpecifierLoc QualifierLoc, 3143 SourceLocation TargetNameLoc, 3144 DeclarationName TargetName, 3145 SourceLocation EllipsisLoc) { 3146 return new (C, DC) UnresolvedUsingTypenameDecl( 3147 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, 3148 TargetName.getAsIdentifierInfo(), EllipsisLoc); 3149 } 3150 3151 UnresolvedUsingTypenameDecl * 3152 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3153 return new (C, ID) UnresolvedUsingTypenameDecl( 3154 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), 3155 SourceLocation(), nullptr, SourceLocation()); 3156 } 3157 3158 UnresolvedUsingIfExistsDecl * 3159 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC, 3160 SourceLocation Loc, DeclarationName Name) { 3161 return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name); 3162 } 3163 3164 UnresolvedUsingIfExistsDecl * 3165 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) { 3166 return new (Ctx, ID) 3167 UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName()); 3168 } 3169 3170 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC, 3171 SourceLocation Loc, 3172 DeclarationName Name) 3173 : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {} 3174 3175 void UnresolvedUsingIfExistsDecl::anchor() {} 3176 3177 void StaticAssertDecl::anchor() {} 3178 3179 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, 3180 SourceLocation StaticAssertLoc, 3181 Expr *AssertExpr, 3182 StringLiteral *Message, 3183 SourceLocation RParenLoc, 3184 bool Failed) { 3185 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, 3186 RParenLoc, Failed); 3187 } 3188 3189 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, 3190 unsigned ID) { 3191 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, 3192 nullptr, SourceLocation(), false); 3193 } 3194 3195 void BindingDecl::anchor() {} 3196 3197 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, 3198 SourceLocation IdLoc, IdentifierInfo *Id) { 3199 return new (C, DC) BindingDecl(DC, IdLoc, Id); 3200 } 3201 3202 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3203 return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); 3204 } 3205 3206 VarDecl *BindingDecl::getHoldingVar() const { 3207 Expr *B = getBinding(); 3208 if (!B) 3209 return nullptr; 3210 auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit()); 3211 if (!DRE) 3212 return nullptr; 3213 3214 auto *VD = cast<VarDecl>(DRE->getDecl()); 3215 assert(VD->isImplicit() && "holding var for binding decl not implicit"); 3216 return VD; 3217 } 3218 3219 void DecompositionDecl::anchor() {} 3220 3221 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, 3222 SourceLocation StartLoc, 3223 SourceLocation LSquareLoc, 3224 QualType T, TypeSourceInfo *TInfo, 3225 StorageClass SC, 3226 ArrayRef<BindingDecl *> Bindings) { 3227 size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size()); 3228 return new (C, DC, Extra) 3229 DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); 3230 } 3231 3232 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, 3233 unsigned ID, 3234 unsigned NumBindings) { 3235 size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings); 3236 auto *Result = new (C, ID, Extra) 3237 DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), 3238 QualType(), nullptr, StorageClass(), None); 3239 // Set up and clean out the bindings array. 3240 Result->NumBindings = NumBindings; 3241 auto *Trail = Result->getTrailingObjects<BindingDecl *>(); 3242 for (unsigned I = 0; I != NumBindings; ++I) 3243 new (Trail + I) BindingDecl*(nullptr); 3244 return Result; 3245 } 3246 3247 void DecompositionDecl::printName(llvm::raw_ostream &os) const { 3248 os << '['; 3249 bool Comma = false; 3250 for (const auto *B : bindings()) { 3251 if (Comma) 3252 os << ", "; 3253 B->printName(os); 3254 Comma = true; 3255 } 3256 os << ']'; 3257 } 3258 3259 void MSPropertyDecl::anchor() {} 3260 3261 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, 3262 SourceLocation L, DeclarationName N, 3263 QualType T, TypeSourceInfo *TInfo, 3264 SourceLocation StartL, 3265 IdentifierInfo *Getter, 3266 IdentifierInfo *Setter) { 3267 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); 3268 } 3269 3270 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, 3271 unsigned ID) { 3272 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), 3273 DeclarationName(), QualType(), nullptr, 3274 SourceLocation(), nullptr, nullptr); 3275 } 3276 3277 void MSGuidDecl::anchor() {} 3278 3279 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) 3280 : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), 3281 PartVal(P), APVal() {} 3282 3283 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { 3284 DeclContext *DC = C.getTranslationUnitDecl(); 3285 return new (C, DC) MSGuidDecl(DC, T, P); 3286 } 3287 3288 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3289 return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); 3290 } 3291 3292 void MSGuidDecl::printName(llvm::raw_ostream &OS) const { 3293 OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-", 3294 PartVal.Part1, PartVal.Part2, PartVal.Part3); 3295 unsigned I = 0; 3296 for (uint8_t Byte : PartVal.Part4And5) { 3297 OS << llvm::format("%02" PRIx8, Byte); 3298 if (++I == 2) 3299 OS << '-'; 3300 } 3301 OS << '}'; 3302 } 3303 3304 /// Determine if T is a valid 'struct _GUID' of the shape that we expect. 3305 static bool isValidStructGUID(ASTContext &Ctx, QualType T) { 3306 // FIXME: We only need to check this once, not once each time we compute a 3307 // GUID APValue. 3308 using MatcherRef = llvm::function_ref<bool(QualType)>; 3309 3310 auto IsInt = [&Ctx](unsigned N) { 3311 return [&Ctx, N](QualType T) { 3312 return T->isUnsignedIntegerOrEnumerationType() && 3313 Ctx.getIntWidth(T) == N; 3314 }; 3315 }; 3316 3317 auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { 3318 return [&Ctx, Elem, N](QualType T) { 3319 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); 3320 return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); 3321 }; 3322 }; 3323 3324 auto IsStruct = [](std::initializer_list<MatcherRef> Fields) { 3325 return [Fields](QualType T) { 3326 const RecordDecl *RD = T->getAsRecordDecl(); 3327 if (!RD || RD->isUnion()) 3328 return false; 3329 RD = RD->getDefinition(); 3330 if (!RD) 3331 return false; 3332 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 3333 if (CXXRD->getNumBases()) 3334 return false; 3335 auto MatcherIt = Fields.begin(); 3336 for (const FieldDecl *FD : RD->fields()) { 3337 if (FD->isUnnamedBitfield()) continue; 3338 if (FD->isBitField() || MatcherIt == Fields.end() || 3339 !(*MatcherIt)(FD->getType())) 3340 return false; 3341 ++MatcherIt; 3342 } 3343 return MatcherIt == Fields.end(); 3344 }; 3345 }; 3346 3347 // We expect an {i32, i16, i16, [8 x i8]}. 3348 return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); 3349 } 3350 3351 APValue &MSGuidDecl::getAsAPValue() const { 3352 if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) { 3353 using llvm::APInt; 3354 using llvm::APSInt; 3355 APVal = APValue(APValue::UninitStruct(), 0, 4); 3356 APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); 3357 APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); 3358 APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); 3359 APValue &Arr = APVal.getStructField(3) = 3360 APValue(APValue::UninitArray(), 8, 8); 3361 for (unsigned I = 0; I != 8; ++I) { 3362 Arr.getArrayInitializedElt(I) = 3363 APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); 3364 } 3365 // Register this APValue to be destroyed if necessary. (Note that the 3366 // MSGuidDecl destructor is never run.) 3367 getASTContext().addDestruction(&APVal); 3368 } 3369 3370 return APVal; 3371 } 3372 3373 static const char *getAccessName(AccessSpecifier AS) { 3374 switch (AS) { 3375 case AS_none: 3376 llvm_unreachable("Invalid access specifier!"); 3377 case AS_public: 3378 return "public"; 3379 case AS_private: 3380 return "private"; 3381 case AS_protected: 3382 return "protected"; 3383 } 3384 llvm_unreachable("Invalid access specifier!"); 3385 } 3386 3387 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, 3388 AccessSpecifier AS) { 3389 return DB << getAccessName(AS); 3390 } 3391