1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the C++ related Decl classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/DeclCXX.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/ASTUnresolvedSet.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/DeclarationName.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/LambdaCapture.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/ODRHash.h" 28 #include "clang/AST/Type.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/AST/UnresolvedSet.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/IdentifierTable.h" 33 #include "clang/Basic/LLVM.h" 34 #include "clang/Basic/LangOptions.h" 35 #include "clang/Basic/OperatorKinds.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "llvm/ADT/None.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 52 using namespace clang; 53 54 //===----------------------------------------------------------------------===// 55 // Decl Allocation/Deallocation Method Implementations 56 //===----------------------------------------------------------------------===// 57 58 void AccessSpecDecl::anchor() {} 59 60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 61 return new (C, ID) AccessSpecDecl(EmptyShell()); 62 } 63 64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { 65 ExternalASTSource *Source = C.getExternalSource(); 66 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); 67 assert(Source && "getFromExternalSource with no external source"); 68 69 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) 70 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( 71 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); 72 Impl.Decls.setLazy(false); 73 } 74 75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) 76 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), 77 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), 78 Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), 79 HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), 80 HasPrivateFields(false), HasProtectedFields(false), 81 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), 82 HasOnlyCMembers(true), HasInClassInitializer(false), 83 HasUninitializedReferenceMember(false), HasUninitializedFields(false), 84 HasInheritedConstructor(false), HasInheritedAssignment(false), 85 NeedOverloadResolutionForCopyConstructor(false), 86 NeedOverloadResolutionForMoveConstructor(false), 87 NeedOverloadResolutionForCopyAssignment(false), 88 NeedOverloadResolutionForMoveAssignment(false), 89 NeedOverloadResolutionForDestructor(false), 90 DefaultedCopyConstructorIsDeleted(false), 91 DefaultedMoveConstructorIsDeleted(false), 92 DefaultedCopyAssignmentIsDeleted(false), 93 DefaultedMoveAssignmentIsDeleted(false), 94 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), 95 HasTrivialSpecialMembersForCall(SMF_All), 96 DeclaredNonTrivialSpecialMembers(0), 97 DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), 98 HasConstexprNonCopyMoveConstructor(false), 99 HasDefaultedDefaultConstructor(false), 100 DefaultedDefaultConstructorIsConstexpr(true), 101 HasConstexprDefaultConstructor(false), 102 DefaultedDestructorIsConstexpr(true), 103 HasNonLiteralTypeFieldsOrBases(false), 104 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), 105 ImplicitCopyConstructorCanHaveConstParamForVBase(true), 106 ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), 107 ImplicitCopyAssignmentHasConstParam(true), 108 HasDeclaredCopyConstructorWithConstParam(false), 109 HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false), 110 IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), 111 HasODRHash(false), Definition(D) {} 112 113 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { 114 return Bases.get(Definition->getASTContext().getExternalSource()); 115 } 116 117 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { 118 return VBases.get(Definition->getASTContext().getExternalSource()); 119 } 120 121 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, 122 DeclContext *DC, SourceLocation StartLoc, 123 SourceLocation IdLoc, IdentifierInfo *Id, 124 CXXRecordDecl *PrevDecl) 125 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), 126 DefinitionData(PrevDecl ? PrevDecl->DefinitionData 127 : nullptr) {} 128 129 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, 130 DeclContext *DC, SourceLocation StartLoc, 131 SourceLocation IdLoc, IdentifierInfo *Id, 132 CXXRecordDecl *PrevDecl, 133 bool DelayTypeCreation) { 134 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, 135 PrevDecl); 136 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 137 138 // FIXME: DelayTypeCreation seems like such a hack 139 if (!DelayTypeCreation) 140 C.getTypeDeclType(R, PrevDecl); 141 return R; 142 } 143 144 CXXRecordDecl * 145 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, 146 TypeSourceInfo *Info, SourceLocation Loc, 147 bool Dependent, bool IsGeneric, 148 LambdaCaptureDefault CaptureDefault) { 149 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, 150 nullptr, nullptr); 151 R->setBeingDefined(true); 152 R->DefinitionData = 153 new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric, 154 CaptureDefault); 155 R->setMayHaveOutOfDateDef(false); 156 R->setImplicit(true); 157 C.getTypeDeclType(R, /*PrevDecl=*/nullptr); 158 return R; 159 } 160 161 CXXRecordDecl * 162 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 163 auto *R = new (C, ID) CXXRecordDecl( 164 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), 165 nullptr, nullptr); 166 R->setMayHaveOutOfDateDef(false); 167 return R; 168 } 169 170 /// Determine whether a class has a repeated base class. This is intended for 171 /// use when determining if a class is standard-layout, so makes no attempt to 172 /// handle virtual bases. 173 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { 174 llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; 175 SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; 176 while (!WorkList.empty()) { 177 const CXXRecordDecl *RD = WorkList.pop_back_val(); 178 for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { 179 if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { 180 if (!SeenBaseTypes.insert(B).second) 181 return true; 182 WorkList.push_back(B); 183 } 184 } 185 } 186 return false; 187 } 188 189 void 190 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, 191 unsigned NumBases) { 192 ASTContext &C = getASTContext(); 193 194 if (!data().Bases.isOffset() && data().NumBases > 0) 195 C.Deallocate(data().getBases()); 196 197 if (NumBases) { 198 if (!C.getLangOpts().CPlusPlus17) { 199 // C++ [dcl.init.aggr]p1: 200 // An aggregate is [...] a class with [...] no base classes [...]. 201 data().Aggregate = false; 202 } 203 204 // C++ [class]p4: 205 // A POD-struct is an aggregate class... 206 data().PlainOldData = false; 207 } 208 209 // The set of seen virtual base types. 210 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; 211 212 // The virtual bases of this class. 213 SmallVector<const CXXBaseSpecifier *, 8> VBases; 214 215 data().Bases = new(C) CXXBaseSpecifier [NumBases]; 216 data().NumBases = NumBases; 217 for (unsigned i = 0; i < NumBases; ++i) { 218 data().getBases()[i] = *Bases[i]; 219 // Keep track of inherited vbases for this base class. 220 const CXXBaseSpecifier *Base = Bases[i]; 221 QualType BaseType = Base->getType(); 222 // Skip dependent types; we can't do any checking on them now. 223 if (BaseType->isDependentType()) 224 continue; 225 auto *BaseClassDecl = 226 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 227 228 // C++2a [class]p7: 229 // A standard-layout class is a class that: 230 // [...] 231 // -- has all non-static data members and bit-fields in the class and 232 // its base classes first declared in the same class 233 if (BaseClassDecl->data().HasBasesWithFields || 234 !BaseClassDecl->field_empty()) { 235 if (data().HasBasesWithFields) 236 // Two bases have members or bit-fields: not standard-layout. 237 data().IsStandardLayout = false; 238 data().HasBasesWithFields = true; 239 } 240 241 // C++11 [class]p7: 242 // A standard-layout class is a class that: 243 // -- [...] has [...] at most one base class with non-static data 244 // members 245 if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || 246 BaseClassDecl->hasDirectFields()) { 247 if (data().HasBasesWithNonStaticDataMembers) 248 data().IsCXX11StandardLayout = false; 249 data().HasBasesWithNonStaticDataMembers = true; 250 } 251 252 if (!BaseClassDecl->isEmpty()) { 253 // C++14 [meta.unary.prop]p4: 254 // T is a class type [...] with [...] no base class B for which 255 // is_empty<B>::value is false. 256 data().Empty = false; 257 } 258 259 // C++1z [dcl.init.agg]p1: 260 // An aggregate is a class with [...] no private or protected base classes 261 if (Base->getAccessSpecifier() != AS_public) 262 data().Aggregate = false; 263 264 // C++ [class.virtual]p1: 265 // A class that declares or inherits a virtual function is called a 266 // polymorphic class. 267 if (BaseClassDecl->isPolymorphic()) { 268 data().Polymorphic = true; 269 270 // An aggregate is a class with [...] no virtual functions. 271 data().Aggregate = false; 272 } 273 274 // C++0x [class]p7: 275 // A standard-layout class is a class that: [...] 276 // -- has no non-standard-layout base classes 277 if (!BaseClassDecl->isStandardLayout()) 278 data().IsStandardLayout = false; 279 if (!BaseClassDecl->isCXX11StandardLayout()) 280 data().IsCXX11StandardLayout = false; 281 282 // Record if this base is the first non-literal field or base. 283 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) 284 data().HasNonLiteralTypeFieldsOrBases = true; 285 286 // Now go through all virtual bases of this base and add them. 287 for (const auto &VBase : BaseClassDecl->vbases()) { 288 // Add this base if it's not already in the list. 289 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { 290 VBases.push_back(&VBase); 291 292 // C++11 [class.copy]p8: 293 // The implicitly-declared copy constructor for a class X will have 294 // the form 'X::X(const X&)' if each [...] virtual base class B of X 295 // has a copy constructor whose first parameter is of type 296 // 'const B&' or 'const volatile B&' [...] 297 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) 298 if (!VBaseDecl->hasCopyConstructorWithConstParam()) 299 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 300 301 // C++1z [dcl.init.agg]p1: 302 // An aggregate is a class with [...] no virtual base classes 303 data().Aggregate = false; 304 } 305 } 306 307 if (Base->isVirtual()) { 308 // Add this base if it's not already in the list. 309 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) 310 VBases.push_back(Base); 311 312 // C++14 [meta.unary.prop] is_empty: 313 // T is a class type, but not a union type, with ... no virtual base 314 // classes 315 data().Empty = false; 316 317 // C++1z [dcl.init.agg]p1: 318 // An aggregate is a class with [...] no virtual base classes 319 data().Aggregate = false; 320 321 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 322 // A [default constructor, copy/move constructor, or copy/move assignment 323 // operator for a class X] is trivial [...] if: 324 // -- class X has [...] no virtual base classes 325 data().HasTrivialSpecialMembers &= SMF_Destructor; 326 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 327 328 // C++0x [class]p7: 329 // A standard-layout class is a class that: [...] 330 // -- has [...] no virtual base classes 331 data().IsStandardLayout = false; 332 data().IsCXX11StandardLayout = false; 333 334 // C++20 [dcl.constexpr]p3: 335 // In the definition of a constexpr function [...] 336 // -- if the function is a constructor or destructor, 337 // its class shall not have any virtual base classes 338 data().DefaultedDefaultConstructorIsConstexpr = false; 339 data().DefaultedDestructorIsConstexpr = false; 340 341 // C++1z [class.copy]p8: 342 // The implicitly-declared copy constructor for a class X will have 343 // the form 'X::X(const X&)' if each potentially constructed subobject 344 // has a copy constructor whose first parameter is of type 345 // 'const B&' or 'const volatile B&' [...] 346 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 347 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 348 } else { 349 // C++ [class.ctor]p5: 350 // A default constructor is trivial [...] if: 351 // -- all the direct base classes of its class have trivial default 352 // constructors. 353 if (!BaseClassDecl->hasTrivialDefaultConstructor()) 354 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 355 356 // C++0x [class.copy]p13: 357 // A copy/move constructor for class X is trivial if [...] 358 // [...] 359 // -- the constructor selected to copy/move each direct base class 360 // subobject is trivial, and 361 if (!BaseClassDecl->hasTrivialCopyConstructor()) 362 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 363 364 if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) 365 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 366 367 // If the base class doesn't have a simple move constructor, we'll eagerly 368 // declare it and perform overload resolution to determine which function 369 // it actually calls. If it does have a simple move constructor, this 370 // check is correct. 371 if (!BaseClassDecl->hasTrivialMoveConstructor()) 372 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 373 374 if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) 375 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 376 377 // C++0x [class.copy]p27: 378 // A copy/move assignment operator for class X is trivial if [...] 379 // [...] 380 // -- the assignment operator selected to copy/move each direct base 381 // class subobject is trivial, and 382 if (!BaseClassDecl->hasTrivialCopyAssignment()) 383 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 384 // If the base class doesn't have a simple move assignment, we'll eagerly 385 // declare it and perform overload resolution to determine which function 386 // it actually calls. If it does have a simple move assignment, this 387 // check is correct. 388 if (!BaseClassDecl->hasTrivialMoveAssignment()) 389 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 390 391 // C++11 [class.ctor]p6: 392 // If that user-written default constructor would satisfy the 393 // requirements of a constexpr constructor, the implicitly-defined 394 // default constructor is constexpr. 395 if (!BaseClassDecl->hasConstexprDefaultConstructor()) 396 data().DefaultedDefaultConstructorIsConstexpr = false; 397 398 // C++1z [class.copy]p8: 399 // The implicitly-declared copy constructor for a class X will have 400 // the form 'X::X(const X&)' if each potentially constructed subobject 401 // has a copy constructor whose first parameter is of type 402 // 'const B&' or 'const volatile B&' [...] 403 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 404 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 405 } 406 407 // C++ [class.ctor]p3: 408 // A destructor is trivial if all the direct base classes of its class 409 // have trivial destructors. 410 if (!BaseClassDecl->hasTrivialDestructor()) 411 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 412 413 if (!BaseClassDecl->hasTrivialDestructorForCall()) 414 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 415 416 if (!BaseClassDecl->hasIrrelevantDestructor()) 417 data().HasIrrelevantDestructor = false; 418 419 // C++11 [class.copy]p18: 420 // The implicitly-declared copy assignment operator for a class X will 421 // have the form 'X& X::operator=(const X&)' if each direct base class B 422 // of X has a copy assignment operator whose parameter is of type 'const 423 // B&', 'const volatile B&', or 'B' [...] 424 if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) 425 data().ImplicitCopyAssignmentHasConstParam = false; 426 427 // A class has an Objective-C object member if... or any of its bases 428 // has an Objective-C object member. 429 if (BaseClassDecl->hasObjectMember()) 430 setHasObjectMember(true); 431 432 if (BaseClassDecl->hasVolatileMember()) 433 setHasVolatileMember(true); 434 435 if (BaseClassDecl->getArgPassingRestrictions() == 436 RecordDecl::APK_CanNeverPassInRegs) 437 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 438 439 // Keep track of the presence of mutable fields. 440 if (BaseClassDecl->hasMutableFields()) 441 data().HasMutableFields = true; 442 443 if (BaseClassDecl->hasUninitializedReferenceMember()) 444 data().HasUninitializedReferenceMember = true; 445 446 if (!BaseClassDecl->allowConstDefaultInit()) 447 data().HasUninitializedFields = true; 448 449 addedClassSubobject(BaseClassDecl); 450 } 451 452 // C++2a [class]p7: 453 // A class S is a standard-layout class if it: 454 // -- has at most one base class subobject of any given type 455 // 456 // Note that we only need to check this for classes with more than one base 457 // class. If there's only one base class, and it's standard layout, then 458 // we know there are no repeated base classes. 459 if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) 460 data().IsStandardLayout = false; 461 462 if (VBases.empty()) { 463 data().IsParsingBaseSpecifiers = false; 464 return; 465 } 466 467 // Create base specifier for any direct or indirect virtual bases. 468 data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; 469 data().NumVBases = VBases.size(); 470 for (int I = 0, E = VBases.size(); I != E; ++I) { 471 QualType Type = VBases[I]->getType(); 472 if (!Type->isDependentType()) 473 addedClassSubobject(Type->getAsCXXRecordDecl()); 474 data().getVBases()[I] = *VBases[I]; 475 } 476 477 data().IsParsingBaseSpecifiers = false; 478 } 479 480 unsigned CXXRecordDecl::getODRHash() const { 481 assert(hasDefinition() && "ODRHash only for records with definitions"); 482 483 // Previously calculated hash is stored in DefinitionData. 484 if (DefinitionData->HasODRHash) 485 return DefinitionData->ODRHash; 486 487 // Only calculate hash on first call of getODRHash per record. 488 ODRHash Hash; 489 Hash.AddCXXRecordDecl(getDefinition()); 490 DefinitionData->HasODRHash = true; 491 DefinitionData->ODRHash = Hash.CalculateHash(); 492 493 return DefinitionData->ODRHash; 494 } 495 496 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { 497 // C++11 [class.copy]p11: 498 // A defaulted copy/move constructor for a class X is defined as 499 // deleted if X has: 500 // -- a direct or virtual base class B that cannot be copied/moved [...] 501 // -- a non-static data member of class type M (or array thereof) 502 // that cannot be copied or moved [...] 503 if (!Subobj->hasSimpleCopyConstructor()) 504 data().NeedOverloadResolutionForCopyConstructor = true; 505 if (!Subobj->hasSimpleMoveConstructor()) 506 data().NeedOverloadResolutionForMoveConstructor = true; 507 508 // C++11 [class.copy]p23: 509 // A defaulted copy/move assignment operator for a class X is defined as 510 // deleted if X has: 511 // -- a direct or virtual base class B that cannot be copied/moved [...] 512 // -- a non-static data member of class type M (or array thereof) 513 // that cannot be copied or moved [...] 514 if (!Subobj->hasSimpleCopyAssignment()) 515 data().NeedOverloadResolutionForCopyAssignment = true; 516 if (!Subobj->hasSimpleMoveAssignment()) 517 data().NeedOverloadResolutionForMoveAssignment = true; 518 519 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: 520 // A defaulted [ctor or dtor] for a class X is defined as 521 // deleted if X has: 522 // -- any direct or virtual base class [...] has a type with a destructor 523 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 524 // -- any non-static data member has a type with a destructor 525 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 526 if (!Subobj->hasSimpleDestructor()) { 527 data().NeedOverloadResolutionForCopyConstructor = true; 528 data().NeedOverloadResolutionForMoveConstructor = true; 529 data().NeedOverloadResolutionForDestructor = true; 530 } 531 532 // C++2a [dcl.constexpr]p4: 533 // The definition of a constexpr destructor [shall] satisfy the 534 // following requirement: 535 // -- for every subobject of class type or (possibly multi-dimensional) 536 // array thereof, that class type shall have a constexpr destructor 537 if (!Subobj->hasConstexprDestructor()) 538 data().DefaultedDestructorIsConstexpr = false; 539 } 540 541 bool CXXRecordDecl::hasConstexprDestructor() const { 542 auto *Dtor = getDestructor(); 543 return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); 544 } 545 546 bool CXXRecordDecl::hasAnyDependentBases() const { 547 if (!isDependentContext()) 548 return false; 549 550 return !forallBases([](const CXXRecordDecl *) { return true; }); 551 } 552 553 bool CXXRecordDecl::isTriviallyCopyable() const { 554 // C++0x [class]p5: 555 // A trivially copyable class is a class that: 556 // -- has no non-trivial copy constructors, 557 if (hasNonTrivialCopyConstructor()) return false; 558 // -- has no non-trivial move constructors, 559 if (hasNonTrivialMoveConstructor()) return false; 560 // -- has no non-trivial copy assignment operators, 561 if (hasNonTrivialCopyAssignment()) return false; 562 // -- has no non-trivial move assignment operators, and 563 if (hasNonTrivialMoveAssignment()) return false; 564 // -- has a trivial destructor. 565 if (!hasTrivialDestructor()) return false; 566 567 return true; 568 } 569 570 void CXXRecordDecl::markedVirtualFunctionPure() { 571 // C++ [class.abstract]p2: 572 // A class is abstract if it has at least one pure virtual function. 573 data().Abstract = true; 574 } 575 576 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( 577 ASTContext &Ctx, const CXXRecordDecl *XFirst) { 578 if (!getNumBases()) 579 return false; 580 581 llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; 582 llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; 583 SmallVector<const CXXRecordDecl*, 8> WorkList; 584 585 // Visit a type that we have determined is an element of M(S). 586 auto Visit = [&](const CXXRecordDecl *RD) -> bool { 587 RD = RD->getCanonicalDecl(); 588 589 // C++2a [class]p8: 590 // A class S is a standard-layout class if it [...] has no element of the 591 // set M(S) of types as a base class. 592 // 593 // If we find a subobject of an empty type, it might also be a base class, 594 // so we'll need to walk the base classes to check. 595 if (!RD->data().HasBasesWithFields) { 596 // Walk the bases the first time, stopping if we find the type. Build a 597 // set of them so we don't need to walk them again. 598 if (Bases.empty()) { 599 bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { 600 Base = Base->getCanonicalDecl(); 601 if (RD == Base) 602 return false; 603 Bases.insert(Base); 604 return true; 605 }); 606 if (RDIsBase) 607 return true; 608 } else { 609 if (Bases.count(RD)) 610 return true; 611 } 612 } 613 614 if (M.insert(RD).second) 615 WorkList.push_back(RD); 616 return false; 617 }; 618 619 if (Visit(XFirst)) 620 return true; 621 622 while (!WorkList.empty()) { 623 const CXXRecordDecl *X = WorkList.pop_back_val(); 624 625 // FIXME: We don't check the bases of X. That matches the standard, but 626 // that sure looks like a wording bug. 627 628 // -- If X is a non-union class type with a non-static data member 629 // [recurse to each field] that is either of zero size or is the 630 // first non-static data member of X 631 // -- If X is a union type, [recurse to union members] 632 bool IsFirstField = true; 633 for (auto *FD : X->fields()) { 634 // FIXME: Should we really care about the type of the first non-static 635 // data member of a non-union if there are preceding unnamed bit-fields? 636 if (FD->isUnnamedBitfield()) 637 continue; 638 639 if (!IsFirstField && !FD->isZeroSize(Ctx)) 640 continue; 641 642 // -- If X is n array type, [visit the element type] 643 QualType T = Ctx.getBaseElementType(FD->getType()); 644 if (auto *RD = T->getAsCXXRecordDecl()) 645 if (Visit(RD)) 646 return true; 647 648 if (!X->isUnion()) 649 IsFirstField = false; 650 } 651 } 652 653 return false; 654 } 655 656 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { 657 assert(isLambda() && "not a lambda"); 658 659 // C++2a [expr.prim.lambda.capture]p11: 660 // The closure type associated with a lambda-expression has no default 661 // constructor if the lambda-expression has a lambda-capture and a 662 // defaulted default constructor otherwise. It has a deleted copy 663 // assignment operator if the lambda-expression has a lambda-capture and 664 // defaulted copy and move assignment operators otherwise. 665 // 666 // C++17 [expr.prim.lambda]p21: 667 // The closure type associated with a lambda-expression has no default 668 // constructor and a deleted copy assignment operator. 669 if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0) 670 return false; 671 return getASTContext().getLangOpts().CPlusPlus20; 672 } 673 674 void CXXRecordDecl::addedMember(Decl *D) { 675 if (!D->isImplicit() && 676 !isa<FieldDecl>(D) && 677 !isa<IndirectFieldDecl>(D) && 678 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || 679 cast<TagDecl>(D)->getTagKind() == TTK_Interface)) 680 data().HasOnlyCMembers = false; 681 682 // Ignore friends and invalid declarations. 683 if (D->getFriendObjectKind() || D->isInvalidDecl()) 684 return; 685 686 auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 687 if (FunTmpl) 688 D = FunTmpl->getTemplatedDecl(); 689 690 // FIXME: Pass NamedDecl* to addedMember? 691 Decl *DUnderlying = D; 692 if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) { 693 DUnderlying = ND->getUnderlyingDecl(); 694 if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying)) 695 DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); 696 } 697 698 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 699 if (Method->isVirtual()) { 700 // C++ [dcl.init.aggr]p1: 701 // An aggregate is an array or a class with [...] no virtual functions. 702 data().Aggregate = false; 703 704 // C++ [class]p4: 705 // A POD-struct is an aggregate class... 706 data().PlainOldData = false; 707 708 // C++14 [meta.unary.prop]p4: 709 // T is a class type [...] with [...] no virtual member functions... 710 data().Empty = false; 711 712 // C++ [class.virtual]p1: 713 // A class that declares or inherits a virtual function is called a 714 // polymorphic class. 715 data().Polymorphic = true; 716 717 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 718 // A [default constructor, copy/move constructor, or copy/move 719 // assignment operator for a class X] is trivial [...] if: 720 // -- class X has no virtual functions [...] 721 data().HasTrivialSpecialMembers &= SMF_Destructor; 722 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 723 724 // C++0x [class]p7: 725 // A standard-layout class is a class that: [...] 726 // -- has no virtual functions 727 data().IsStandardLayout = false; 728 data().IsCXX11StandardLayout = false; 729 } 730 } 731 732 // Notify the listener if an implicit member was added after the definition 733 // was completed. 734 if (!isBeingDefined() && D->isImplicit()) 735 if (ASTMutationListener *L = getASTMutationListener()) 736 L->AddedCXXImplicitMember(data().Definition, D); 737 738 // The kind of special member this declaration is, if any. 739 unsigned SMKind = 0; 740 741 // Handle constructors. 742 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 743 if (Constructor->isInheritingConstructor()) { 744 // Ignore constructor shadow declarations. They are lazily created and 745 // so shouldn't affect any properties of the class. 746 } else { 747 if (!Constructor->isImplicit()) { 748 // Note that we have a user-declared constructor. 749 data().UserDeclaredConstructor = true; 750 751 // C++ [class]p4: 752 // A POD-struct is an aggregate class [...] 753 // Since the POD bit is meant to be C++03 POD-ness, clear it even if 754 // the type is technically an aggregate in C++0x since it wouldn't be 755 // in 03. 756 data().PlainOldData = false; 757 } 758 759 if (Constructor->isDefaultConstructor()) { 760 SMKind |= SMF_DefaultConstructor; 761 762 if (Constructor->isUserProvided()) 763 data().UserProvidedDefaultConstructor = true; 764 if (Constructor->isConstexpr()) 765 data().HasConstexprDefaultConstructor = true; 766 if (Constructor->isDefaulted()) 767 data().HasDefaultedDefaultConstructor = true; 768 } 769 770 if (!FunTmpl) { 771 unsigned Quals; 772 if (Constructor->isCopyConstructor(Quals)) { 773 SMKind |= SMF_CopyConstructor; 774 775 if (Quals & Qualifiers::Const) 776 data().HasDeclaredCopyConstructorWithConstParam = true; 777 } else if (Constructor->isMoveConstructor()) 778 SMKind |= SMF_MoveConstructor; 779 } 780 781 // C++11 [dcl.init.aggr]p1: DR1518 782 // An aggregate is an array or a class with no user-provided [or] 783 // explicit [...] constructors 784 // C++20 [dcl.init.aggr]p1: 785 // An aggregate is an array or a class with no user-declared [...] 786 // constructors 787 if (getASTContext().getLangOpts().CPlusPlus20 788 ? !Constructor->isImplicit() 789 : (Constructor->isUserProvided() || Constructor->isExplicit())) 790 data().Aggregate = false; 791 } 792 } 793 794 // Handle constructors, including those inherited from base classes. 795 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) { 796 // Record if we see any constexpr constructors which are neither copy 797 // nor move constructors. 798 // C++1z [basic.types]p10: 799 // [...] has at least one constexpr constructor or constructor template 800 // (possibly inherited from a base class) that is not a copy or move 801 // constructor [...] 802 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) 803 data().HasConstexprNonCopyMoveConstructor = true; 804 } 805 806 // Handle destructors. 807 if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 808 SMKind |= SMF_Destructor; 809 810 if (DD->isUserProvided()) 811 data().HasIrrelevantDestructor = false; 812 // If the destructor is explicitly defaulted and not trivial or not public 813 // or if the destructor is deleted, we clear HasIrrelevantDestructor in 814 // finishedDefaultedOrDeletedMember. 815 816 // C++11 [class.dtor]p5: 817 // A destructor is trivial if [...] the destructor is not virtual. 818 if (DD->isVirtual()) { 819 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 820 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 821 } 822 } 823 824 // Handle member functions. 825 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 826 if (Method->isCopyAssignmentOperator()) { 827 SMKind |= SMF_CopyAssignment; 828 829 const auto *ParamTy = 830 Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); 831 if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) 832 data().HasDeclaredCopyAssignmentWithConstParam = true; 833 } 834 835 if (Method->isMoveAssignmentOperator()) 836 SMKind |= SMF_MoveAssignment; 837 838 // Keep the list of conversion functions up-to-date. 839 if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) { 840 // FIXME: We use the 'unsafe' accessor for the access specifier here, 841 // because Sema may not have set it yet. That's really just a misdesign 842 // in Sema. However, LLDB *will* have set the access specifier correctly, 843 // and adds declarations after the class is technically completed, 844 // so completeDefinition()'s overriding of the access specifiers doesn't 845 // work. 846 AccessSpecifier AS = Conversion->getAccessUnsafe(); 847 848 if (Conversion->getPrimaryTemplate()) { 849 // We don't record specializations. 850 } else { 851 ASTContext &Ctx = getASTContext(); 852 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); 853 NamedDecl *Primary = 854 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); 855 if (Primary->getPreviousDecl()) 856 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), 857 Primary, AS); 858 else 859 Conversions.addDecl(Ctx, Primary, AS); 860 } 861 } 862 863 if (SMKind) { 864 // If this is the first declaration of a special member, we no longer have 865 // an implicit trivial special member. 866 data().HasTrivialSpecialMembers &= 867 data().DeclaredSpecialMembers | ~SMKind; 868 data().HasTrivialSpecialMembersForCall &= 869 data().DeclaredSpecialMembers | ~SMKind; 870 871 if (!Method->isImplicit() && !Method->isUserProvided()) { 872 // This method is user-declared but not user-provided. We can't work out 873 // whether it's trivial yet (not until we get to the end of the class). 874 // We'll handle this method in finishedDefaultedOrDeletedMember. 875 } else if (Method->isTrivial()) { 876 data().HasTrivialSpecialMembers |= SMKind; 877 data().HasTrivialSpecialMembersForCall |= SMKind; 878 } else if (Method->isTrivialForCall()) { 879 data().HasTrivialSpecialMembersForCall |= SMKind; 880 data().DeclaredNonTrivialSpecialMembers |= SMKind; 881 } else { 882 data().DeclaredNonTrivialSpecialMembers |= SMKind; 883 // If this is a user-provided function, do not set 884 // DeclaredNonTrivialSpecialMembersForCall here since we don't know 885 // yet whether the method would be considered non-trivial for the 886 // purpose of calls (attribute "trivial_abi" can be dropped from the 887 // class later, which can change the special method's triviality). 888 if (!Method->isUserProvided()) 889 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 890 } 891 892 // Note when we have declared a declared special member, and suppress the 893 // implicit declaration of this special member. 894 data().DeclaredSpecialMembers |= SMKind; 895 896 if (!Method->isImplicit()) { 897 data().UserDeclaredSpecialMembers |= SMKind; 898 899 // C++03 [class]p4: 900 // A POD-struct is an aggregate class that has [...] no user-defined 901 // copy assignment operator and no user-defined destructor. 902 // 903 // Since the POD bit is meant to be C++03 POD-ness, and in C++03, 904 // aggregates could not have any constructors, clear it even for an 905 // explicitly defaulted or deleted constructor. 906 // type is technically an aggregate in C++0x since it wouldn't be in 03. 907 // 908 // Also, a user-declared move assignment operator makes a class non-POD. 909 // This is an extension in C++03. 910 data().PlainOldData = false; 911 } 912 } 913 914 return; 915 } 916 917 // Handle non-static data members. 918 if (const auto *Field = dyn_cast<FieldDecl>(D)) { 919 ASTContext &Context = getASTContext(); 920 921 // C++2a [class]p7: 922 // A standard-layout class is a class that: 923 // [...] 924 // -- has all non-static data members and bit-fields in the class and 925 // its base classes first declared in the same class 926 if (data().HasBasesWithFields) 927 data().IsStandardLayout = false; 928 929 // C++ [class.bit]p2: 930 // A declaration for a bit-field that omits the identifier declares an 931 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 932 // initialized. 933 if (Field->isUnnamedBitfield()) { 934 // C++ [meta.unary.prop]p4: [LWG2358] 935 // T is a class type [...] with [...] no unnamed bit-fields of non-zero 936 // length 937 if (data().Empty && !Field->isZeroLengthBitField(Context) && 938 Context.getLangOpts().getClangABICompat() > 939 LangOptions::ClangABI::Ver6) 940 data().Empty = false; 941 return; 942 } 943 944 // C++11 [class]p7: 945 // A standard-layout class is a class that: 946 // -- either has no non-static data members in the most derived class 947 // [...] or has no base classes with non-static data members 948 if (data().HasBasesWithNonStaticDataMembers) 949 data().IsCXX11StandardLayout = false; 950 951 // C++ [dcl.init.aggr]p1: 952 // An aggregate is an array or a class (clause 9) with [...] no 953 // private or protected non-static data members (clause 11). 954 // 955 // A POD must be an aggregate. 956 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { 957 data().Aggregate = false; 958 data().PlainOldData = false; 959 } 960 961 // Track whether this is the first field. We use this when checking 962 // whether the class is standard-layout below. 963 bool IsFirstField = !data().HasPrivateFields && 964 !data().HasProtectedFields && !data().HasPublicFields; 965 966 // C++0x [class]p7: 967 // A standard-layout class is a class that: 968 // [...] 969 // -- has the same access control for all non-static data members, 970 switch (D->getAccess()) { 971 case AS_private: data().HasPrivateFields = true; break; 972 case AS_protected: data().HasProtectedFields = true; break; 973 case AS_public: data().HasPublicFields = true; break; 974 case AS_none: llvm_unreachable("Invalid access specifier"); 975 }; 976 if ((data().HasPrivateFields + data().HasProtectedFields + 977 data().HasPublicFields) > 1) { 978 data().IsStandardLayout = false; 979 data().IsCXX11StandardLayout = false; 980 } 981 982 // Keep track of the presence of mutable fields. 983 if (Field->isMutable()) 984 data().HasMutableFields = true; 985 986 // C++11 [class.union]p8, DR1460: 987 // If X is a union, a non-static data member of X that is not an anonymous 988 // union is a variant member of X. 989 if (isUnion() && !Field->isAnonymousStructOrUnion()) 990 data().HasVariantMembers = true; 991 992 // C++0x [class]p9: 993 // A POD struct is a class that is both a trivial class and a 994 // standard-layout class, and has no non-static data members of type 995 // non-POD struct, non-POD union (or array of such types). 996 // 997 // Automatic Reference Counting: the presence of a member of Objective-C pointer type 998 // that does not explicitly have no lifetime makes the class a non-POD. 999 QualType T = Context.getBaseElementType(Field->getType()); 1000 if (T->isObjCRetainableType() || T.isObjCGCStrong()) { 1001 if (T.hasNonTrivialObjCLifetime()) { 1002 // Objective-C Automatic Reference Counting: 1003 // If a class has a non-static data member of Objective-C pointer 1004 // type (or array thereof), it is a non-POD type and its 1005 // default constructor (if any), copy constructor, move constructor, 1006 // copy assignment operator, move assignment operator, and destructor are 1007 // non-trivial. 1008 setHasObjectMember(true); 1009 struct DefinitionData &Data = data(); 1010 Data.PlainOldData = false; 1011 Data.HasTrivialSpecialMembers = 0; 1012 1013 // __strong or __weak fields do not make special functions non-trivial 1014 // for the purpose of calls. 1015 Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); 1016 if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) 1017 data().HasTrivialSpecialMembersForCall = 0; 1018 1019 // Structs with __weak fields should never be passed directly. 1020 if (LT == Qualifiers::OCL_Weak) 1021 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1022 1023 Data.HasIrrelevantDestructor = false; 1024 1025 if (isUnion()) { 1026 data().DefaultedCopyConstructorIsDeleted = true; 1027 data().DefaultedMoveConstructorIsDeleted = true; 1028 data().DefaultedCopyAssignmentIsDeleted = true; 1029 data().DefaultedMoveAssignmentIsDeleted = true; 1030 data().DefaultedDestructorIsDeleted = true; 1031 data().NeedOverloadResolutionForCopyConstructor = true; 1032 data().NeedOverloadResolutionForMoveConstructor = true; 1033 data().NeedOverloadResolutionForCopyAssignment = true; 1034 data().NeedOverloadResolutionForMoveAssignment = true; 1035 data().NeedOverloadResolutionForDestructor = true; 1036 } 1037 } else if (!Context.getLangOpts().ObjCAutoRefCount) { 1038 setHasObjectMember(true); 1039 } 1040 } else if (!T.isCXX98PODType(Context)) 1041 data().PlainOldData = false; 1042 1043 if (T->isReferenceType()) { 1044 if (!Field->hasInClassInitializer()) 1045 data().HasUninitializedReferenceMember = true; 1046 1047 // C++0x [class]p7: 1048 // A standard-layout class is a class that: 1049 // -- has no non-static data members of type [...] reference, 1050 data().IsStandardLayout = false; 1051 data().IsCXX11StandardLayout = false; 1052 1053 // C++1z [class.copy.ctor]p10: 1054 // A defaulted copy constructor for a class X is defined as deleted if X has: 1055 // -- a non-static data member of rvalue reference type 1056 if (T->isRValueReferenceType()) 1057 data().DefaultedCopyConstructorIsDeleted = true; 1058 } 1059 1060 if (!Field->hasInClassInitializer() && !Field->isMutable()) { 1061 if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { 1062 if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) 1063 data().HasUninitializedFields = true; 1064 } else { 1065 data().HasUninitializedFields = true; 1066 } 1067 } 1068 1069 // Record if this field is the first non-literal or volatile field or base. 1070 if (!T->isLiteralType(Context) || T.isVolatileQualified()) 1071 data().HasNonLiteralTypeFieldsOrBases = true; 1072 1073 if (Field->hasInClassInitializer() || 1074 (Field->isAnonymousStructOrUnion() && 1075 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { 1076 data().HasInClassInitializer = true; 1077 1078 // C++11 [class]p5: 1079 // A default constructor is trivial if [...] no non-static data member 1080 // of its class has a brace-or-equal-initializer. 1081 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1082 1083 // C++11 [dcl.init.aggr]p1: 1084 // An aggregate is a [...] class with [...] no 1085 // brace-or-equal-initializers for non-static data members. 1086 // 1087 // This rule was removed in C++14. 1088 if (!getASTContext().getLangOpts().CPlusPlus14) 1089 data().Aggregate = false; 1090 1091 // C++11 [class]p10: 1092 // A POD struct is [...] a trivial class. 1093 data().PlainOldData = false; 1094 } 1095 1096 // C++11 [class.copy]p23: 1097 // A defaulted copy/move assignment operator for a class X is defined 1098 // as deleted if X has: 1099 // -- a non-static data member of reference type 1100 if (T->isReferenceType()) { 1101 data().DefaultedCopyAssignmentIsDeleted = true; 1102 data().DefaultedMoveAssignmentIsDeleted = true; 1103 } 1104 1105 // Bitfields of length 0 are also zero-sized, but we already bailed out for 1106 // those because they are always unnamed. 1107 bool IsZeroSize = Field->isZeroSize(Context); 1108 1109 if (const auto *RecordTy = T->getAs<RecordType>()) { 1110 auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); 1111 if (FieldRec->getDefinition()) { 1112 addedClassSubobject(FieldRec); 1113 1114 // We may need to perform overload resolution to determine whether a 1115 // field can be moved if it's const or volatile qualified. 1116 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { 1117 // We need to care about 'const' for the copy constructor because an 1118 // implicit copy constructor might be declared with a non-const 1119 // parameter. 1120 data().NeedOverloadResolutionForCopyConstructor = true; 1121 data().NeedOverloadResolutionForMoveConstructor = true; 1122 data().NeedOverloadResolutionForCopyAssignment = true; 1123 data().NeedOverloadResolutionForMoveAssignment = true; 1124 } 1125 1126 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 1127 // A defaulted [special member] for a class X is defined as 1128 // deleted if: 1129 // -- X is a union-like class that has a variant member with a 1130 // non-trivial [corresponding special member] 1131 if (isUnion()) { 1132 if (FieldRec->hasNonTrivialCopyConstructor()) 1133 data().DefaultedCopyConstructorIsDeleted = true; 1134 if (FieldRec->hasNonTrivialMoveConstructor()) 1135 data().DefaultedMoveConstructorIsDeleted = true; 1136 if (FieldRec->hasNonTrivialCopyAssignment()) 1137 data().DefaultedCopyAssignmentIsDeleted = true; 1138 if (FieldRec->hasNonTrivialMoveAssignment()) 1139 data().DefaultedMoveAssignmentIsDeleted = true; 1140 if (FieldRec->hasNonTrivialDestructor()) 1141 data().DefaultedDestructorIsDeleted = true; 1142 } 1143 1144 // For an anonymous union member, our overload resolution will perform 1145 // overload resolution for its members. 1146 if (Field->isAnonymousStructOrUnion()) { 1147 data().NeedOverloadResolutionForCopyConstructor |= 1148 FieldRec->data().NeedOverloadResolutionForCopyConstructor; 1149 data().NeedOverloadResolutionForMoveConstructor |= 1150 FieldRec->data().NeedOverloadResolutionForMoveConstructor; 1151 data().NeedOverloadResolutionForCopyAssignment |= 1152 FieldRec->data().NeedOverloadResolutionForCopyAssignment; 1153 data().NeedOverloadResolutionForMoveAssignment |= 1154 FieldRec->data().NeedOverloadResolutionForMoveAssignment; 1155 data().NeedOverloadResolutionForDestructor |= 1156 FieldRec->data().NeedOverloadResolutionForDestructor; 1157 } 1158 1159 // C++0x [class.ctor]p5: 1160 // A default constructor is trivial [...] if: 1161 // -- for all the non-static data members of its class that are of 1162 // class type (or array thereof), each such class has a trivial 1163 // default constructor. 1164 if (!FieldRec->hasTrivialDefaultConstructor()) 1165 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1166 1167 // C++0x [class.copy]p13: 1168 // A copy/move constructor for class X is trivial if [...] 1169 // [...] 1170 // -- for each non-static data member of X that is of class type (or 1171 // an array thereof), the constructor selected to copy/move that 1172 // member is trivial; 1173 if (!FieldRec->hasTrivialCopyConstructor()) 1174 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 1175 1176 if (!FieldRec->hasTrivialCopyConstructorForCall()) 1177 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 1178 1179 // If the field doesn't have a simple move constructor, we'll eagerly 1180 // declare the move constructor for this class and we'll decide whether 1181 // it's trivial then. 1182 if (!FieldRec->hasTrivialMoveConstructor()) 1183 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 1184 1185 if (!FieldRec->hasTrivialMoveConstructorForCall()) 1186 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 1187 1188 // C++0x [class.copy]p27: 1189 // A copy/move assignment operator for class X is trivial if [...] 1190 // [...] 1191 // -- for each non-static data member of X that is of class type (or 1192 // an array thereof), the assignment operator selected to 1193 // copy/move that member is trivial; 1194 if (!FieldRec->hasTrivialCopyAssignment()) 1195 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 1196 // If the field doesn't have a simple move assignment, we'll eagerly 1197 // declare the move assignment for this class and we'll decide whether 1198 // it's trivial then. 1199 if (!FieldRec->hasTrivialMoveAssignment()) 1200 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 1201 1202 if (!FieldRec->hasTrivialDestructor()) 1203 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 1204 if (!FieldRec->hasTrivialDestructorForCall()) 1205 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 1206 if (!FieldRec->hasIrrelevantDestructor()) 1207 data().HasIrrelevantDestructor = false; 1208 if (FieldRec->hasObjectMember()) 1209 setHasObjectMember(true); 1210 if (FieldRec->hasVolatileMember()) 1211 setHasVolatileMember(true); 1212 if (FieldRec->getArgPassingRestrictions() == 1213 RecordDecl::APK_CanNeverPassInRegs) 1214 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1215 1216 // C++0x [class]p7: 1217 // A standard-layout class is a class that: 1218 // -- has no non-static data members of type non-standard-layout 1219 // class (or array of such types) [...] 1220 if (!FieldRec->isStandardLayout()) 1221 data().IsStandardLayout = false; 1222 if (!FieldRec->isCXX11StandardLayout()) 1223 data().IsCXX11StandardLayout = false; 1224 1225 // C++2a [class]p7: 1226 // A standard-layout class is a class that: 1227 // [...] 1228 // -- has no element of the set M(S) of types as a base class. 1229 if (data().IsStandardLayout && 1230 (isUnion() || IsFirstField || IsZeroSize) && 1231 hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) 1232 data().IsStandardLayout = false; 1233 1234 // C++11 [class]p7: 1235 // A standard-layout class is a class that: 1236 // -- has no base classes of the same type as the first non-static 1237 // data member 1238 if (data().IsCXX11StandardLayout && IsFirstField) { 1239 // FIXME: We should check all base classes here, not just direct 1240 // base classes. 1241 for (const auto &BI : bases()) { 1242 if (Context.hasSameUnqualifiedType(BI.getType(), T)) { 1243 data().IsCXX11StandardLayout = false; 1244 break; 1245 } 1246 } 1247 } 1248 1249 // Keep track of the presence of mutable fields. 1250 if (FieldRec->hasMutableFields()) 1251 data().HasMutableFields = true; 1252 1253 if (Field->isMutable()) { 1254 // Our copy constructor/assignment might call something other than 1255 // the subobject's copy constructor/assignment if it's mutable and of 1256 // class type. 1257 data().NeedOverloadResolutionForCopyConstructor = true; 1258 data().NeedOverloadResolutionForCopyAssignment = true; 1259 } 1260 1261 // C++11 [class.copy]p13: 1262 // If the implicitly-defined constructor would satisfy the 1263 // requirements of a constexpr constructor, the implicitly-defined 1264 // constructor is constexpr. 1265 // C++11 [dcl.constexpr]p4: 1266 // -- every constructor involved in initializing non-static data 1267 // members [...] shall be a constexpr constructor 1268 if (!Field->hasInClassInitializer() && 1269 !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) 1270 // The standard requires any in-class initializer to be a constant 1271 // expression. We consider this to be a defect. 1272 data().DefaultedDefaultConstructorIsConstexpr = false; 1273 1274 // C++11 [class.copy]p8: 1275 // The implicitly-declared copy constructor for a class X will have 1276 // the form 'X::X(const X&)' if each potentially constructed subobject 1277 // of a class type M (or array thereof) has a copy constructor whose 1278 // first parameter is of type 'const M&' or 'const volatile M&'. 1279 if (!FieldRec->hasCopyConstructorWithConstParam()) 1280 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 1281 1282 // C++11 [class.copy]p18: 1283 // The implicitly-declared copy assignment oeprator for a class X will 1284 // have the form 'X& X::operator=(const X&)' if [...] for all the 1285 // non-static data members of X that are of a class type M (or array 1286 // thereof), each such class type has a copy assignment operator whose 1287 // parameter is of type 'const M&', 'const volatile M&' or 'M'. 1288 if (!FieldRec->hasCopyAssignmentWithConstParam()) 1289 data().ImplicitCopyAssignmentHasConstParam = false; 1290 1291 if (FieldRec->hasUninitializedReferenceMember() && 1292 !Field->hasInClassInitializer()) 1293 data().HasUninitializedReferenceMember = true; 1294 1295 // C++11 [class.union]p8, DR1460: 1296 // a non-static data member of an anonymous union that is a member of 1297 // X is also a variant member of X. 1298 if (FieldRec->hasVariantMembers() && 1299 Field->isAnonymousStructOrUnion()) 1300 data().HasVariantMembers = true; 1301 } 1302 } else { 1303 // Base element type of field is a non-class type. 1304 if (!T->isLiteralType(Context) || 1305 (!Field->hasInClassInitializer() && !isUnion() && 1306 !Context.getLangOpts().CPlusPlus20)) 1307 data().DefaultedDefaultConstructorIsConstexpr = false; 1308 1309 // C++11 [class.copy]p23: 1310 // A defaulted copy/move assignment operator for a class X is defined 1311 // as deleted if X has: 1312 // -- a non-static data member of const non-class type (or array 1313 // thereof) 1314 if (T.isConstQualified()) { 1315 data().DefaultedCopyAssignmentIsDeleted = true; 1316 data().DefaultedMoveAssignmentIsDeleted = true; 1317 } 1318 } 1319 1320 // C++14 [meta.unary.prop]p4: 1321 // T is a class type [...] with [...] no non-static data members other 1322 // than subobjects of zero size 1323 if (data().Empty && !IsZeroSize) 1324 data().Empty = false; 1325 } 1326 1327 // Handle using declarations of conversion functions. 1328 if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) { 1329 if (Shadow->getDeclName().getNameKind() 1330 == DeclarationName::CXXConversionFunctionName) { 1331 ASTContext &Ctx = getASTContext(); 1332 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); 1333 } 1334 } 1335 1336 if (const auto *Using = dyn_cast<UsingDecl>(D)) { 1337 if (Using->getDeclName().getNameKind() == 1338 DeclarationName::CXXConstructorName) { 1339 data().HasInheritedConstructor = true; 1340 // C++1z [dcl.init.aggr]p1: 1341 // An aggregate is [...] a class [...] with no inherited constructors 1342 data().Aggregate = false; 1343 } 1344 1345 if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) 1346 data().HasInheritedAssignment = true; 1347 } 1348 } 1349 1350 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { 1351 assert(!D->isImplicit() && !D->isUserProvided()); 1352 1353 // The kind of special member this declaration is, if any. 1354 unsigned SMKind = 0; 1355 1356 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1357 if (Constructor->isDefaultConstructor()) { 1358 SMKind |= SMF_DefaultConstructor; 1359 if (Constructor->isConstexpr()) 1360 data().HasConstexprDefaultConstructor = true; 1361 } 1362 if (Constructor->isCopyConstructor()) 1363 SMKind |= SMF_CopyConstructor; 1364 else if (Constructor->isMoveConstructor()) 1365 SMKind |= SMF_MoveConstructor; 1366 else if (Constructor->isConstexpr()) 1367 // We may now know that the constructor is constexpr. 1368 data().HasConstexprNonCopyMoveConstructor = true; 1369 } else if (isa<CXXDestructorDecl>(D)) { 1370 SMKind |= SMF_Destructor; 1371 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) 1372 data().HasIrrelevantDestructor = false; 1373 } else if (D->isCopyAssignmentOperator()) 1374 SMKind |= SMF_CopyAssignment; 1375 else if (D->isMoveAssignmentOperator()) 1376 SMKind |= SMF_MoveAssignment; 1377 1378 // Update which trivial / non-trivial special members we have. 1379 // addedMember will have skipped this step for this member. 1380 if (D->isTrivial()) 1381 data().HasTrivialSpecialMembers |= SMKind; 1382 else 1383 data().DeclaredNonTrivialSpecialMembers |= SMKind; 1384 } 1385 1386 void CXXRecordDecl::setCaptures(ArrayRef<LambdaCapture> Captures) { 1387 ASTContext &Context = getASTContext(); 1388 CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); 1389 1390 // Copy captures. 1391 Data.NumCaptures = Captures.size(); 1392 Data.NumExplicitCaptures = 0; 1393 Data.Captures = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) * 1394 Captures.size()); 1395 LambdaCapture *ToCapture = Data.Captures; 1396 for (unsigned I = 0, N = Captures.size(); I != N; ++I) { 1397 if (Captures[I].isExplicit()) 1398 ++Data.NumExplicitCaptures; 1399 1400 *ToCapture++ = Captures[I]; 1401 } 1402 1403 if (!lambdaIsDefaultConstructibleAndAssignable()) 1404 Data.DefaultedCopyAssignmentIsDeleted = true; 1405 } 1406 1407 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { 1408 unsigned SMKind = 0; 1409 1410 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1411 if (Constructor->isCopyConstructor()) 1412 SMKind = SMF_CopyConstructor; 1413 else if (Constructor->isMoveConstructor()) 1414 SMKind = SMF_MoveConstructor; 1415 } else if (isa<CXXDestructorDecl>(D)) 1416 SMKind = SMF_Destructor; 1417 1418 if (D->isTrivialForCall()) 1419 data().HasTrivialSpecialMembersForCall |= SMKind; 1420 else 1421 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 1422 } 1423 1424 bool CXXRecordDecl::isCLike() const { 1425 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || 1426 !TemplateOrInstantiation.isNull()) 1427 return false; 1428 if (!hasDefinition()) 1429 return true; 1430 1431 return isPOD() && data().HasOnlyCMembers; 1432 } 1433 1434 bool CXXRecordDecl::isGenericLambda() const { 1435 if (!isLambda()) return false; 1436 return getLambdaData().IsGenericLambda; 1437 } 1438 1439 #ifndef NDEBUG 1440 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { 1441 for (auto *D : R) 1442 if (!declaresSameEntity(D, R.front())) 1443 return false; 1444 return true; 1445 } 1446 #endif 1447 1448 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { 1449 if (!RD.isLambda()) return nullptr; 1450 DeclarationName Name = 1451 RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); 1452 DeclContext::lookup_result Calls = RD.lookup(Name); 1453 1454 assert(!Calls.empty() && "Missing lambda call operator!"); 1455 assert(allLookupResultsAreTheSame(Calls) && 1456 "More than one lambda call operator!"); 1457 return Calls.front(); 1458 } 1459 1460 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { 1461 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1462 return dyn_cast_or_null<FunctionTemplateDecl>(CallOp); 1463 } 1464 1465 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { 1466 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1467 1468 if (CallOp == nullptr) 1469 return nullptr; 1470 1471 if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) 1472 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); 1473 1474 return cast<CXXMethodDecl>(CallOp); 1475 } 1476 1477 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { 1478 if (!isLambda()) return nullptr; 1479 DeclarationName Name = 1480 &getASTContext().Idents.get(getLambdaStaticInvokerName()); 1481 DeclContext::lookup_result Invoker = lookup(Name); 1482 if (Invoker.empty()) return nullptr; 1483 assert(allLookupResultsAreTheSame(Invoker) && 1484 "More than one static invoker operator!"); 1485 NamedDecl *InvokerFun = Invoker.front(); 1486 if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun)) 1487 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); 1488 1489 return cast<CXXMethodDecl>(InvokerFun); 1490 } 1491 1492 void CXXRecordDecl::getCaptureFields( 1493 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, 1494 FieldDecl *&ThisCapture) const { 1495 Captures.clear(); 1496 ThisCapture = nullptr; 1497 1498 LambdaDefinitionData &Lambda = getLambdaData(); 1499 RecordDecl::field_iterator Field = field_begin(); 1500 for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; 1501 C != CEnd; ++C, ++Field) { 1502 if (C->capturesThis()) 1503 ThisCapture = *Field; 1504 else if (C->capturesVariable()) 1505 Captures[C->getCapturedVar()] = *Field; 1506 } 1507 assert(Field == field_end()); 1508 } 1509 1510 TemplateParameterList * 1511 CXXRecordDecl::getGenericLambdaTemplateParameterList() const { 1512 if (!isGenericLambda()) return nullptr; 1513 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1514 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) 1515 return Tmpl->getTemplateParameters(); 1516 return nullptr; 1517 } 1518 1519 ArrayRef<NamedDecl *> 1520 CXXRecordDecl::getLambdaExplicitTemplateParameters() const { 1521 TemplateParameterList *List = getGenericLambdaTemplateParameterList(); 1522 if (!List) 1523 return {}; 1524 1525 assert(std::is_partitioned(List->begin(), List->end(), 1526 [](const NamedDecl *D) { return !D->isImplicit(); }) 1527 && "Explicit template params should be ordered before implicit ones"); 1528 1529 const auto ExplicitEnd = llvm::partition_point( 1530 *List, [](const NamedDecl *D) { return !D->isImplicit(); }); 1531 return llvm::makeArrayRef(List->begin(), ExplicitEnd); 1532 } 1533 1534 Decl *CXXRecordDecl::getLambdaContextDecl() const { 1535 assert(isLambda() && "Not a lambda closure type!"); 1536 ExternalASTSource *Source = getParentASTContext().getExternalSource(); 1537 return getLambdaData().ContextDecl.get(Source); 1538 } 1539 1540 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { 1541 QualType T = 1542 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) 1543 ->getConversionType(); 1544 return Context.getCanonicalType(T); 1545 } 1546 1547 /// Collect the visible conversions of a base class. 1548 /// 1549 /// \param Record a base class of the class we're considering 1550 /// \param InVirtual whether this base class is a virtual base (or a base 1551 /// of a virtual base) 1552 /// \param Access the access along the inheritance path to this base 1553 /// \param ParentHiddenTypes the conversions provided by the inheritors 1554 /// of this base 1555 /// \param Output the set to which to add conversions from non-virtual bases 1556 /// \param VOutput the set to which to add conversions from virtual bases 1557 /// \param HiddenVBaseCs the set of conversions which were hidden in a 1558 /// virtual base along some inheritance path 1559 static void CollectVisibleConversions( 1560 ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, 1561 AccessSpecifier Access, 1562 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, 1563 ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, 1564 llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) { 1565 // The set of types which have conversions in this class or its 1566 // subclasses. As an optimization, we don't copy the derived set 1567 // unless it might change. 1568 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; 1569 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; 1570 1571 // Collect the direct conversions and figure out which conversions 1572 // will be hidden in the subclasses. 1573 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1574 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1575 if (ConvI != ConvE) { 1576 HiddenTypesBuffer = ParentHiddenTypes; 1577 HiddenTypes = &HiddenTypesBuffer; 1578 1579 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { 1580 CanQualType ConvType(GetConversionType(Context, I.getDecl())); 1581 bool Hidden = ParentHiddenTypes.count(ConvType); 1582 if (!Hidden) 1583 HiddenTypesBuffer.insert(ConvType); 1584 1585 // If this conversion is hidden and we're in a virtual base, 1586 // remember that it's hidden along some inheritance path. 1587 if (Hidden && InVirtual) 1588 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); 1589 1590 // If this conversion isn't hidden, add it to the appropriate output. 1591 else if (!Hidden) { 1592 AccessSpecifier IAccess 1593 = CXXRecordDecl::MergeAccess(Access, I.getAccess()); 1594 1595 if (InVirtual) 1596 VOutput.addDecl(I.getDecl(), IAccess); 1597 else 1598 Output.addDecl(Context, I.getDecl(), IAccess); 1599 } 1600 } 1601 } 1602 1603 // Collect information recursively from any base classes. 1604 for (const auto &I : Record->bases()) { 1605 const auto *RT = I.getType()->getAs<RecordType>(); 1606 if (!RT) continue; 1607 1608 AccessSpecifier BaseAccess 1609 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); 1610 bool BaseInVirtual = InVirtual || I.isVirtual(); 1611 1612 auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 1613 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, 1614 *HiddenTypes, Output, VOutput, HiddenVBaseCs); 1615 } 1616 } 1617 1618 /// Collect the visible conversions of a class. 1619 /// 1620 /// This would be extremely straightforward if it weren't for virtual 1621 /// bases. It might be worth special-casing that, really. 1622 static void CollectVisibleConversions(ASTContext &Context, 1623 const CXXRecordDecl *Record, 1624 ASTUnresolvedSet &Output) { 1625 // The collection of all conversions in virtual bases that we've 1626 // found. These will be added to the output as long as they don't 1627 // appear in the hidden-conversions set. 1628 UnresolvedSet<8> VBaseCs; 1629 1630 // The set of conversions in virtual bases that we've determined to 1631 // be hidden. 1632 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; 1633 1634 // The set of types hidden by classes derived from this one. 1635 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; 1636 1637 // Go ahead and collect the direct conversions and add them to the 1638 // hidden-types set. 1639 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1640 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1641 Output.append(Context, ConvI, ConvE); 1642 for (; ConvI != ConvE; ++ConvI) 1643 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); 1644 1645 // Recursively collect conversions from base classes. 1646 for (const auto &I : Record->bases()) { 1647 const auto *RT = I.getType()->getAs<RecordType>(); 1648 if (!RT) continue; 1649 1650 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), 1651 I.isVirtual(), I.getAccessSpecifier(), 1652 HiddenTypes, Output, VBaseCs, HiddenVBaseCs); 1653 } 1654 1655 // Add any unhidden conversions provided by virtual bases. 1656 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); 1657 I != E; ++I) { 1658 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) 1659 Output.addDecl(Context, I.getDecl(), I.getAccess()); 1660 } 1661 } 1662 1663 /// getVisibleConversionFunctions - get all conversion functions visible 1664 /// in current class; including conversion function templates. 1665 llvm::iterator_range<CXXRecordDecl::conversion_iterator> 1666 CXXRecordDecl::getVisibleConversionFunctions() const { 1667 ASTContext &Ctx = getASTContext(); 1668 1669 ASTUnresolvedSet *Set; 1670 if (bases_begin() == bases_end()) { 1671 // If root class, all conversions are visible. 1672 Set = &data().Conversions.get(Ctx); 1673 } else { 1674 Set = &data().VisibleConversions.get(Ctx); 1675 // If visible conversion list is not evaluated, evaluate it. 1676 if (!data().ComputedVisibleConversions) { 1677 CollectVisibleConversions(Ctx, this, *Set); 1678 data().ComputedVisibleConversions = true; 1679 } 1680 } 1681 return llvm::make_range(Set->begin(), Set->end()); 1682 } 1683 1684 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { 1685 // This operation is O(N) but extremely rare. Sema only uses it to 1686 // remove UsingShadowDecls in a class that were followed by a direct 1687 // declaration, e.g.: 1688 // class A : B { 1689 // using B::operator int; 1690 // operator int(); 1691 // }; 1692 // This is uncommon by itself and even more uncommon in conjunction 1693 // with sufficiently large numbers of directly-declared conversions 1694 // that asymptotic behavior matters. 1695 1696 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); 1697 for (unsigned I = 0, E = Convs.size(); I != E; ++I) { 1698 if (Convs[I].getDecl() == ConvDecl) { 1699 Convs.erase(I); 1700 assert(llvm::find(Convs, ConvDecl) == Convs.end() && 1701 "conversion was found multiple times in unresolved set"); 1702 return; 1703 } 1704 } 1705 1706 llvm_unreachable("conversion not found in set!"); 1707 } 1708 1709 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { 1710 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1711 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); 1712 1713 return nullptr; 1714 } 1715 1716 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { 1717 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); 1718 } 1719 1720 void 1721 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, 1722 TemplateSpecializationKind TSK) { 1723 assert(TemplateOrInstantiation.isNull() && 1724 "Previous template or instantiation?"); 1725 assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); 1726 TemplateOrInstantiation 1727 = new (getASTContext()) MemberSpecializationInfo(RD, TSK); 1728 } 1729 1730 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { 1731 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); 1732 } 1733 1734 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { 1735 TemplateOrInstantiation = Template; 1736 } 1737 1738 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ 1739 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) 1740 return Spec->getSpecializationKind(); 1741 1742 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1743 return MSInfo->getTemplateSpecializationKind(); 1744 1745 return TSK_Undeclared; 1746 } 1747 1748 void 1749 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { 1750 if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1751 Spec->setSpecializationKind(TSK); 1752 return; 1753 } 1754 1755 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1756 MSInfo->setTemplateSpecializationKind(TSK); 1757 return; 1758 } 1759 1760 llvm_unreachable("Not a class template or member class specialization"); 1761 } 1762 1763 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { 1764 auto GetDefinitionOrSelf = 1765 [](const CXXRecordDecl *D) -> const CXXRecordDecl * { 1766 if (auto *Def = D->getDefinition()) 1767 return Def; 1768 return D; 1769 }; 1770 1771 // If it's a class template specialization, find the template or partial 1772 // specialization from which it was instantiated. 1773 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1774 auto From = TD->getInstantiatedFrom(); 1775 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { 1776 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { 1777 if (NewCTD->isMemberSpecialization()) 1778 break; 1779 CTD = NewCTD; 1780 } 1781 return GetDefinitionOrSelf(CTD->getTemplatedDecl()); 1782 } 1783 if (auto *CTPSD = 1784 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 1785 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { 1786 if (NewCTPSD->isMemberSpecialization()) 1787 break; 1788 CTPSD = NewCTPSD; 1789 } 1790 return GetDefinitionOrSelf(CTPSD); 1791 } 1792 } 1793 1794 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1795 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 1796 const CXXRecordDecl *RD = this; 1797 while (auto *NewRD = RD->getInstantiatedFromMemberClass()) 1798 RD = NewRD; 1799 return GetDefinitionOrSelf(RD); 1800 } 1801 } 1802 1803 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && 1804 "couldn't find pattern for class template instantiation"); 1805 return nullptr; 1806 } 1807 1808 CXXDestructorDecl *CXXRecordDecl::getDestructor() const { 1809 ASTContext &Context = getASTContext(); 1810 QualType ClassType = Context.getTypeDeclType(this); 1811 1812 DeclarationName Name 1813 = Context.DeclarationNames.getCXXDestructorName( 1814 Context.getCanonicalType(ClassType)); 1815 1816 DeclContext::lookup_result R = lookup(Name); 1817 1818 return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front()); 1819 } 1820 1821 bool CXXRecordDecl::isAnyDestructorNoReturn() const { 1822 // Destructor is noreturn. 1823 if (const CXXDestructorDecl *Destructor = getDestructor()) 1824 if (Destructor->isNoReturn()) 1825 return true; 1826 1827 // Check base classes destructor for noreturn. 1828 for (const auto &Base : bases()) 1829 if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl()) 1830 if (RD->isAnyDestructorNoReturn()) 1831 return true; 1832 1833 // Check fields for noreturn. 1834 for (const auto *Field : fields()) 1835 if (const CXXRecordDecl *RD = 1836 Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) 1837 if (RD->isAnyDestructorNoReturn()) 1838 return true; 1839 1840 // All destructors are not noreturn. 1841 return false; 1842 } 1843 1844 static bool isDeclContextInNamespace(const DeclContext *DC) { 1845 while (!DC->isTranslationUnit()) { 1846 if (DC->isNamespace()) 1847 return true; 1848 DC = DC->getParent(); 1849 } 1850 return false; 1851 } 1852 1853 bool CXXRecordDecl::isInterfaceLike() const { 1854 assert(hasDefinition() && "checking for interface-like without a definition"); 1855 // All __interfaces are inheritently interface-like. 1856 if (isInterface()) 1857 return true; 1858 1859 // Interface-like types cannot have a user declared constructor, destructor, 1860 // friends, VBases, conversion functions, or fields. Additionally, lambdas 1861 // cannot be interface types. 1862 if (isLambda() || hasUserDeclaredConstructor() || 1863 hasUserDeclaredDestructor() || !field_empty() || hasFriends() || 1864 getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) 1865 return false; 1866 1867 // No interface-like type can have a method with a definition. 1868 for (const auto *const Method : methods()) 1869 if (Method->isDefined() && !Method->isImplicit()) 1870 return false; 1871 1872 // Check "Special" types. 1873 const auto *Uuid = getAttr<UuidAttr>(); 1874 // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an 1875 // extern C++ block directly in the TU. These are only valid if in one 1876 // of these two situations. 1877 if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && 1878 !isDeclContextInNamespace(getDeclContext()) && 1879 ((getName() == "IUnknown" && 1880 Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || 1881 (getName() == "IDispatch" && 1882 Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { 1883 if (getNumBases() > 0) 1884 return false; 1885 return true; 1886 } 1887 1888 // FIXME: Any access specifiers is supposed to make this no longer interface 1889 // like. 1890 1891 // If this isn't a 'special' type, it must have a single interface-like base. 1892 if (getNumBases() != 1) 1893 return false; 1894 1895 const auto BaseSpec = *bases_begin(); 1896 if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) 1897 return false; 1898 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 1899 if (Base->isInterface() || !Base->isInterfaceLike()) 1900 return false; 1901 return true; 1902 } 1903 1904 void CXXRecordDecl::completeDefinition() { 1905 completeDefinition(nullptr); 1906 } 1907 1908 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { 1909 RecordDecl::completeDefinition(); 1910 1911 // If the class may be abstract (but hasn't been marked as such), check for 1912 // any pure final overriders. 1913 if (mayBeAbstract()) { 1914 CXXFinalOverriderMap MyFinalOverriders; 1915 if (!FinalOverriders) { 1916 getFinalOverriders(MyFinalOverriders); 1917 FinalOverriders = &MyFinalOverriders; 1918 } 1919 1920 bool Done = false; 1921 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 1922 MEnd = FinalOverriders->end(); 1923 M != MEnd && !Done; ++M) { 1924 for (OverridingMethods::iterator SO = M->second.begin(), 1925 SOEnd = M->second.end(); 1926 SO != SOEnd && !Done; ++SO) { 1927 assert(SO->second.size() > 0 && 1928 "All virtual functions have overriding virtual functions"); 1929 1930 // C++ [class.abstract]p4: 1931 // A class is abstract if it contains or inherits at least one 1932 // pure virtual function for which the final overrider is pure 1933 // virtual. 1934 if (SO->second.front().Method->isPure()) { 1935 data().Abstract = true; 1936 Done = true; 1937 break; 1938 } 1939 } 1940 } 1941 } 1942 1943 // Set access bits correctly on the directly-declared conversions. 1944 for (conversion_iterator I = conversion_begin(), E = conversion_end(); 1945 I != E; ++I) 1946 I.setAccess((*I)->getAccess()); 1947 } 1948 1949 bool CXXRecordDecl::mayBeAbstract() const { 1950 if (data().Abstract || isInvalidDecl() || !data().Polymorphic || 1951 isDependentContext()) 1952 return false; 1953 1954 for (const auto &B : bases()) { 1955 const auto *BaseDecl = 1956 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); 1957 if (BaseDecl->isAbstract()) 1958 return true; 1959 } 1960 1961 return false; 1962 } 1963 1964 bool CXXRecordDecl::isEffectivelyFinal() const { 1965 auto *Def = getDefinition(); 1966 if (!Def) 1967 return false; 1968 if (Def->hasAttr<FinalAttr>()) 1969 return true; 1970 if (const auto *Dtor = Def->getDestructor()) 1971 if (Dtor->hasAttr<FinalAttr>()) 1972 return true; 1973 return false; 1974 } 1975 1976 void CXXDeductionGuideDecl::anchor() {} 1977 1978 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { 1979 if ((getKind() != Other.getKind() || 1980 getKind() == ExplicitSpecKind::Unresolved)) { 1981 if (getKind() == ExplicitSpecKind::Unresolved && 1982 Other.getKind() == ExplicitSpecKind::Unresolved) { 1983 ODRHash SelfHash, OtherHash; 1984 SelfHash.AddStmt(getExpr()); 1985 OtherHash.AddStmt(Other.getExpr()); 1986 return SelfHash.CalculateHash() == OtherHash.CalculateHash(); 1987 } else 1988 return false; 1989 } 1990 return true; 1991 } 1992 1993 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { 1994 switch (Function->getDeclKind()) { 1995 case Decl::Kind::CXXConstructor: 1996 return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier(); 1997 case Decl::Kind::CXXConversion: 1998 return cast<CXXConversionDecl>(Function)->getExplicitSpecifier(); 1999 case Decl::Kind::CXXDeductionGuide: 2000 return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier(); 2001 default: 2002 return {}; 2003 } 2004 } 2005 2006 CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create( 2007 ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 2008 ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, 2009 TypeSourceInfo *TInfo, SourceLocation EndLocation) { 2010 return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, 2011 TInfo, EndLocation); 2012 } 2013 2014 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, 2015 unsigned ID) { 2016 return new (C, ID) CXXDeductionGuideDecl( 2017 C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), 2018 QualType(), nullptr, SourceLocation()); 2019 } 2020 2021 RequiresExprBodyDecl *RequiresExprBodyDecl::Create( 2022 ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { 2023 return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); 2024 } 2025 2026 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, 2027 unsigned ID) { 2028 return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); 2029 } 2030 2031 void CXXMethodDecl::anchor() {} 2032 2033 bool CXXMethodDecl::isStatic() const { 2034 const CXXMethodDecl *MD = getCanonicalDecl(); 2035 2036 if (MD->getStorageClass() == SC_Static) 2037 return true; 2038 2039 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); 2040 return isStaticOverloadedOperator(OOK); 2041 } 2042 2043 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, 2044 const CXXMethodDecl *BaseMD) { 2045 for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { 2046 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) 2047 return true; 2048 if (recursivelyOverrides(MD, BaseMD)) 2049 return true; 2050 } 2051 return false; 2052 } 2053 2054 CXXMethodDecl * 2055 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, 2056 bool MayBeBase) { 2057 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) 2058 return this; 2059 2060 // Lookup doesn't work for destructors, so handle them separately. 2061 if (isa<CXXDestructorDecl>(this)) { 2062 CXXMethodDecl *MD = RD->getDestructor(); 2063 if (MD) { 2064 if (recursivelyOverrides(MD, this)) 2065 return MD; 2066 if (MayBeBase && recursivelyOverrides(this, MD)) 2067 return MD; 2068 } 2069 return nullptr; 2070 } 2071 2072 for (auto *ND : RD->lookup(getDeclName())) { 2073 auto *MD = dyn_cast<CXXMethodDecl>(ND); 2074 if (!MD) 2075 continue; 2076 if (recursivelyOverrides(MD, this)) 2077 return MD; 2078 if (MayBeBase && recursivelyOverrides(this, MD)) 2079 return MD; 2080 } 2081 2082 return nullptr; 2083 } 2084 2085 CXXMethodDecl * 2086 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, 2087 bool MayBeBase) { 2088 if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) 2089 return MD; 2090 2091 llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders; 2092 auto AddFinalOverrider = [&](CXXMethodDecl *D) { 2093 // If this function is overridden by a candidate final overrider, it is not 2094 // a final overrider. 2095 for (CXXMethodDecl *OtherD : FinalOverriders) { 2096 if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D)) 2097 return; 2098 } 2099 2100 // Other candidate final overriders might be overridden by this function. 2101 FinalOverriders.erase( 2102 std::remove_if(FinalOverriders.begin(), FinalOverriders.end(), 2103 [&](CXXMethodDecl *OtherD) { 2104 return recursivelyOverrides(D, OtherD); 2105 }), 2106 FinalOverriders.end()); 2107 2108 FinalOverriders.push_back(D); 2109 }; 2110 2111 for (const auto &I : RD->bases()) { 2112 const RecordType *RT = I.getType()->getAs<RecordType>(); 2113 if (!RT) 2114 continue; 2115 const auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 2116 if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base)) 2117 AddFinalOverrider(D); 2118 } 2119 2120 return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; 2121 } 2122 2123 CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, 2124 SourceLocation StartLoc, 2125 const DeclarationNameInfo &NameInfo, 2126 QualType T, TypeSourceInfo *TInfo, 2127 StorageClass SC, bool isInline, 2128 ConstexprSpecKind ConstexprKind, 2129 SourceLocation EndLocation, 2130 Expr *TrailingRequiresClause) { 2131 return new (C, RD) 2132 CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, 2133 isInline, ConstexprKind, EndLocation, 2134 TrailingRequiresClause); 2135 } 2136 2137 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2138 return new (C, ID) CXXMethodDecl( 2139 CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(), 2140 QualType(), nullptr, SC_None, false, CSK_unspecified, SourceLocation(), 2141 nullptr); 2142 } 2143 2144 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, 2145 bool IsAppleKext) { 2146 assert(isVirtual() && "this method is expected to be virtual"); 2147 2148 // When building with -fapple-kext, all calls must go through the vtable since 2149 // the kernel linker can do runtime patching of vtables. 2150 if (IsAppleKext) 2151 return nullptr; 2152 2153 // If the member function is marked 'final', we know that it can't be 2154 // overridden and can therefore devirtualize it unless it's pure virtual. 2155 if (hasAttr<FinalAttr>()) 2156 return isPure() ? nullptr : this; 2157 2158 // If Base is unknown, we cannot devirtualize. 2159 if (!Base) 2160 return nullptr; 2161 2162 // If the base expression (after skipping derived-to-base conversions) is a 2163 // class prvalue, then we can devirtualize. 2164 Base = Base->getBestDynamicClassTypeExpr(); 2165 if (Base->isRValue() && Base->getType()->isRecordType()) 2166 return this; 2167 2168 // If we don't even know what we would call, we can't devirtualize. 2169 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2170 if (!BestDynamicDecl) 2171 return nullptr; 2172 2173 // There may be a method corresponding to MD in a derived class. 2174 CXXMethodDecl *DevirtualizedMethod = 2175 getCorrespondingMethodInClass(BestDynamicDecl); 2176 2177 // If there final overrider in the dynamic type is ambiguous, we can't 2178 // devirtualize this call. 2179 if (!DevirtualizedMethod) 2180 return nullptr; 2181 2182 // If that method is pure virtual, we can't devirtualize. If this code is 2183 // reached, the result would be UB, not a direct call to the derived class 2184 // function, and we can't assume the derived class function is defined. 2185 if (DevirtualizedMethod->isPure()) 2186 return nullptr; 2187 2188 // If that method is marked final, we can devirtualize it. 2189 if (DevirtualizedMethod->hasAttr<FinalAttr>()) 2190 return DevirtualizedMethod; 2191 2192 // Similarly, if the class itself or its destructor is marked 'final', 2193 // the class can't be derived from and we can therefore devirtualize the 2194 // member function call. 2195 if (BestDynamicDecl->isEffectivelyFinal()) 2196 return DevirtualizedMethod; 2197 2198 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) { 2199 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2200 if (VD->getType()->isRecordType()) 2201 // This is a record decl. We know the type and can devirtualize it. 2202 return DevirtualizedMethod; 2203 2204 return nullptr; 2205 } 2206 2207 // We can devirtualize calls on an object accessed by a class member access 2208 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2209 // a derived class object constructed in the same location. 2210 if (const auto *ME = dyn_cast<MemberExpr>(Base)) { 2211 const ValueDecl *VD = ME->getMemberDecl(); 2212 return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; 2213 } 2214 2215 // Likewise for calls on an object accessed by a (non-reference) pointer to 2216 // member access. 2217 if (auto *BO = dyn_cast<BinaryOperator>(Base)) { 2218 if (BO->isPtrMemOp()) { 2219 auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); 2220 if (MPT->getPointeeType()->isRecordType()) 2221 return DevirtualizedMethod; 2222 } 2223 } 2224 2225 // We can't devirtualize the call. 2226 return nullptr; 2227 } 2228 2229 bool CXXMethodDecl::isUsualDeallocationFunction( 2230 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { 2231 assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); 2232 if (getOverloadedOperator() != OO_Delete && 2233 getOverloadedOperator() != OO_Array_Delete) 2234 return false; 2235 2236 // C++ [basic.stc.dynamic.deallocation]p2: 2237 // A template instance is never a usual deallocation function, 2238 // regardless of its signature. 2239 if (getPrimaryTemplate()) 2240 return false; 2241 2242 // C++ [basic.stc.dynamic.deallocation]p2: 2243 // If a class T has a member deallocation function named operator delete 2244 // with exactly one parameter, then that function is a usual (non-placement) 2245 // deallocation function. [...] 2246 if (getNumParams() == 1) 2247 return true; 2248 unsigned UsualParams = 1; 2249 2250 // C++ P0722: 2251 // A destroying operator delete is a usual deallocation function if 2252 // removing the std::destroying_delete_t parameter and changing the 2253 // first parameter type from T* to void* results in the signature of 2254 // a usual deallocation function. 2255 if (isDestroyingOperatorDelete()) 2256 ++UsualParams; 2257 2258 // C++ <=14 [basic.stc.dynamic.deallocation]p2: 2259 // [...] If class T does not declare such an operator delete but does 2260 // declare a member deallocation function named operator delete with 2261 // exactly two parameters, the second of which has type std::size_t (18.1), 2262 // then this function is a usual deallocation function. 2263 // 2264 // C++17 says a usual deallocation function is one with the signature 2265 // (void* [, size_t] [, std::align_val_t] [, ...]) 2266 // and all such functions are usual deallocation functions. It's not clear 2267 // that allowing varargs functions was intentional. 2268 ASTContext &Context = getASTContext(); 2269 if (UsualParams < getNumParams() && 2270 Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), 2271 Context.getSizeType())) 2272 ++UsualParams; 2273 2274 if (UsualParams < getNumParams() && 2275 getParamDecl(UsualParams)->getType()->isAlignValT()) 2276 ++UsualParams; 2277 2278 if (UsualParams != getNumParams()) 2279 return false; 2280 2281 // In C++17 onwards, all potential usual deallocation functions are actual 2282 // usual deallocation functions. Honor this behavior when post-C++14 2283 // deallocation functions are offered as extensions too. 2284 // FIXME(EricWF): Destrying Delete should be a language option. How do we 2285 // handle when destroying delete is used prior to C++17? 2286 if (Context.getLangOpts().CPlusPlus17 || 2287 Context.getLangOpts().AlignedAllocation || 2288 isDestroyingOperatorDelete()) 2289 return true; 2290 2291 // This function is a usual deallocation function if there are no 2292 // single-parameter deallocation functions of the same kind. 2293 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); 2294 bool Result = true; 2295 for (const auto *D : R) { 2296 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2297 if (FD->getNumParams() == 1) { 2298 PreventedBy.push_back(FD); 2299 Result = false; 2300 } 2301 } 2302 } 2303 return Result; 2304 } 2305 2306 bool CXXMethodDecl::isCopyAssignmentOperator() const { 2307 // C++0x [class.copy]p17: 2308 // A user-declared copy assignment operator X::operator= is a non-static 2309 // non-template member function of class X with exactly one parameter of 2310 // type X, X&, const X&, volatile X& or const volatile X&. 2311 if (/*operator=*/getOverloadedOperator() != OO_Equal || 2312 /*non-static*/ isStatic() || 2313 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || 2314 getNumParams() != 1) 2315 return false; 2316 2317 QualType ParamType = getParamDecl(0)->getType(); 2318 if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) 2319 ParamType = Ref->getPointeeType(); 2320 2321 ASTContext &Context = getASTContext(); 2322 QualType ClassType 2323 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2324 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2325 } 2326 2327 bool CXXMethodDecl::isMoveAssignmentOperator() const { 2328 // C++0x [class.copy]p19: 2329 // A user-declared move assignment operator X::operator= is a non-static 2330 // non-template member function of class X with exactly one parameter of type 2331 // X&&, const X&&, volatile X&&, or const volatile X&&. 2332 if (getOverloadedOperator() != OO_Equal || isStatic() || 2333 getPrimaryTemplate() || getDescribedFunctionTemplate() || 2334 getNumParams() != 1) 2335 return false; 2336 2337 QualType ParamType = getParamDecl(0)->getType(); 2338 if (!isa<RValueReferenceType>(ParamType)) 2339 return false; 2340 ParamType = ParamType->getPointeeType(); 2341 2342 ASTContext &Context = getASTContext(); 2343 QualType ClassType 2344 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2345 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2346 } 2347 2348 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { 2349 assert(MD->isCanonicalDecl() && "Method is not canonical!"); 2350 assert(!MD->getParent()->isDependentContext() && 2351 "Can't add an overridden method to a class template!"); 2352 assert(MD->isVirtual() && "Method is not virtual!"); 2353 2354 getASTContext().addOverriddenMethod(this, MD); 2355 } 2356 2357 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { 2358 if (isa<CXXConstructorDecl>(this)) return nullptr; 2359 return getASTContext().overridden_methods_begin(this); 2360 } 2361 2362 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { 2363 if (isa<CXXConstructorDecl>(this)) return nullptr; 2364 return getASTContext().overridden_methods_end(this); 2365 } 2366 2367 unsigned CXXMethodDecl::size_overridden_methods() const { 2368 if (isa<CXXConstructorDecl>(this)) return 0; 2369 return getASTContext().overridden_methods_size(this); 2370 } 2371 2372 CXXMethodDecl::overridden_method_range 2373 CXXMethodDecl::overridden_methods() const { 2374 if (isa<CXXConstructorDecl>(this)) 2375 return overridden_method_range(nullptr, nullptr); 2376 return getASTContext().overridden_methods(this); 2377 } 2378 2379 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, 2380 const CXXRecordDecl *Decl) { 2381 QualType ClassTy = C.getTypeDeclType(Decl); 2382 return C.getQualifiedType(ClassTy, FPT->getMethodQuals()); 2383 } 2384 2385 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, 2386 const CXXRecordDecl *Decl) { 2387 ASTContext &C = Decl->getASTContext(); 2388 QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); 2389 return C.getPointerType(ObjectTy); 2390 } 2391 2392 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT, 2393 const CXXRecordDecl *Decl) { 2394 ASTContext &C = Decl->getASTContext(); 2395 return ::getThisObjectType(C, FPT, Decl); 2396 } 2397 2398 QualType CXXMethodDecl::getThisType() const { 2399 // C++ 9.3.2p1: The type of this in a member function of a class X is X*. 2400 // If the member function is declared const, the type of this is const X*, 2401 // if the member function is declared volatile, the type of this is 2402 // volatile X*, and if the member function is declared const volatile, 2403 // the type of this is const volatile X*. 2404 assert(isInstance() && "No 'this' for static methods!"); 2405 return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(), 2406 getParent()); 2407 } 2408 2409 QualType CXXMethodDecl::getThisObjectType() const { 2410 // Ditto getThisType. 2411 assert(isInstance() && "No 'this' for static methods!"); 2412 return CXXMethodDecl::getThisObjectType( 2413 getType()->castAs<FunctionProtoType>(), getParent()); 2414 } 2415 2416 bool CXXMethodDecl::hasInlineBody() const { 2417 // If this function is a template instantiation, look at the template from 2418 // which it was instantiated. 2419 const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); 2420 if (!CheckFn) 2421 CheckFn = this; 2422 2423 const FunctionDecl *fn; 2424 return CheckFn->isDefined(fn) && !fn->isOutOfLine() && 2425 (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); 2426 } 2427 2428 bool CXXMethodDecl::isLambdaStaticInvoker() const { 2429 const CXXRecordDecl *P = getParent(); 2430 if (P->isLambda()) { 2431 if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) { 2432 if (StaticInvoker == this) return true; 2433 if (P->isGenericLambda() && this->isFunctionTemplateSpecialization()) 2434 return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl(); 2435 } 2436 } 2437 return false; 2438 } 2439 2440 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2441 TypeSourceInfo *TInfo, bool IsVirtual, 2442 SourceLocation L, Expr *Init, 2443 SourceLocation R, 2444 SourceLocation EllipsisLoc) 2445 : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), 2446 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), 2447 IsWritten(false), SourceOrder(0) {} 2448 2449 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2450 FieldDecl *Member, 2451 SourceLocation MemberLoc, 2452 SourceLocation L, Expr *Init, 2453 SourceLocation R) 2454 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), 2455 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2456 IsWritten(false), SourceOrder(0) {} 2457 2458 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2459 IndirectFieldDecl *Member, 2460 SourceLocation MemberLoc, 2461 SourceLocation L, Expr *Init, 2462 SourceLocation R) 2463 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), 2464 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2465 IsWritten(false), SourceOrder(0) {} 2466 2467 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2468 TypeSourceInfo *TInfo, 2469 SourceLocation L, Expr *Init, 2470 SourceLocation R) 2471 : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), 2472 IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} 2473 2474 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { 2475 return Context.getAllocator() 2476 .identifyKnownAlignedObject<CXXCtorInitializer>(this); 2477 } 2478 2479 TypeLoc CXXCtorInitializer::getBaseClassLoc() const { 2480 if (isBaseInitializer()) 2481 return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); 2482 else 2483 return {}; 2484 } 2485 2486 const Type *CXXCtorInitializer::getBaseClass() const { 2487 if (isBaseInitializer()) 2488 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); 2489 else 2490 return nullptr; 2491 } 2492 2493 SourceLocation CXXCtorInitializer::getSourceLocation() const { 2494 if (isInClassMemberInitializer()) 2495 return getAnyMember()->getLocation(); 2496 2497 if (isAnyMemberInitializer()) 2498 return getMemberLocation(); 2499 2500 if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) 2501 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); 2502 2503 return {}; 2504 } 2505 2506 SourceRange CXXCtorInitializer::getSourceRange() const { 2507 if (isInClassMemberInitializer()) { 2508 FieldDecl *D = getAnyMember(); 2509 if (Expr *I = D->getInClassInitializer()) 2510 return I->getSourceRange(); 2511 return {}; 2512 } 2513 2514 return SourceRange(getSourceLocation(), getRParenLoc()); 2515 } 2516 2517 CXXConstructorDecl::CXXConstructorDecl( 2518 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2519 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2520 ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, 2521 ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, 2522 Expr *TrailingRequiresClause) 2523 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, 2524 SC_None, isInline, ConstexprKind, SourceLocation(), 2525 TrailingRequiresClause) { 2526 setNumCtorInitializers(0); 2527 setInheritingConstructor(static_cast<bool>(Inherited)); 2528 setImplicit(isImplicitlyDeclared); 2529 CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; 2530 if (Inherited) 2531 *getTrailingObjects<InheritedConstructor>() = Inherited; 2532 setExplicitSpecifier(ES); 2533 } 2534 2535 void CXXConstructorDecl::anchor() {} 2536 2537 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, 2538 unsigned ID, 2539 uint64_t AllocKind) { 2540 bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); 2541 bool isInheritingConstructor = 2542 static_cast<bool>(AllocKind & TAKInheritsConstructor); 2543 unsigned Extra = 2544 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2545 isInheritingConstructor, hasTraillingExplicit); 2546 auto *Result = new (C, ID, Extra) 2547 CXXConstructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), 2548 QualType(), nullptr, ExplicitSpecifier(), false, false, 2549 CSK_unspecified, InheritedConstructor(), nullptr); 2550 Result->setInheritingConstructor(isInheritingConstructor); 2551 Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = 2552 hasTraillingExplicit; 2553 Result->setExplicitSpecifier(ExplicitSpecifier()); 2554 return Result; 2555 } 2556 2557 CXXConstructorDecl *CXXConstructorDecl::Create( 2558 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2559 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2560 ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, 2561 ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, 2562 Expr *TrailingRequiresClause) { 2563 assert(NameInfo.getName().getNameKind() 2564 == DeclarationName::CXXConstructorName && 2565 "Name must refer to a constructor"); 2566 unsigned Extra = 2567 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2568 Inherited ? 1 : 0, ES.getExpr() ? 1 : 0); 2569 return new (C, RD, Extra) 2570 CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline, 2571 isImplicitlyDeclared, ConstexprKind, Inherited, 2572 TrailingRequiresClause); 2573 } 2574 2575 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { 2576 return CtorInitializers.get(getASTContext().getExternalSource()); 2577 } 2578 2579 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { 2580 assert(isDelegatingConstructor() && "Not a delegating constructor!"); 2581 Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); 2582 if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) 2583 return Construct->getConstructor(); 2584 2585 return nullptr; 2586 } 2587 2588 bool CXXConstructorDecl::isDefaultConstructor() const { 2589 // C++ [class.default.ctor]p1: 2590 // A default constructor for a class X is a constructor of class X for 2591 // which each parameter that is not a function parameter pack has a default 2592 // argument (including the case of a constructor with no parameters) 2593 return getMinRequiredArguments() == 0; 2594 } 2595 2596 bool 2597 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { 2598 return isCopyOrMoveConstructor(TypeQuals) && 2599 getParamDecl(0)->getType()->isLValueReferenceType(); 2600 } 2601 2602 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { 2603 return isCopyOrMoveConstructor(TypeQuals) && 2604 getParamDecl(0)->getType()->isRValueReferenceType(); 2605 } 2606 2607 /// Determine whether this is a copy or move constructor. 2608 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { 2609 // C++ [class.copy]p2: 2610 // A non-template constructor for class X is a copy constructor 2611 // if its first parameter is of type X&, const X&, volatile X& or 2612 // const volatile X&, and either there are no other parameters 2613 // or else all other parameters have default arguments (8.3.6). 2614 // C++0x [class.copy]p3: 2615 // A non-template constructor for class X is a move constructor if its 2616 // first parameter is of type X&&, const X&&, volatile X&&, or 2617 // const volatile X&&, and either there are no other parameters or else 2618 // all other parameters have default arguments. 2619 if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || 2620 getDescribedFunctionTemplate() != nullptr) 2621 return false; 2622 2623 const ParmVarDecl *Param = getParamDecl(0); 2624 2625 // Do we have a reference type? 2626 const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); 2627 if (!ParamRefType) 2628 return false; 2629 2630 // Is it a reference to our class type? 2631 ASTContext &Context = getASTContext(); 2632 2633 CanQualType PointeeType 2634 = Context.getCanonicalType(ParamRefType->getPointeeType()); 2635 CanQualType ClassTy 2636 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2637 if (PointeeType.getUnqualifiedType() != ClassTy) 2638 return false; 2639 2640 // FIXME: other qualifiers? 2641 2642 // We have a copy or move constructor. 2643 TypeQuals = PointeeType.getCVRQualifiers(); 2644 return true; 2645 } 2646 2647 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { 2648 // C++ [class.conv.ctor]p1: 2649 // A constructor declared without the function-specifier explicit 2650 // that can be called with a single parameter specifies a 2651 // conversion from the type of its first parameter to the type of 2652 // its class. Such a constructor is called a converting 2653 // constructor. 2654 if (isExplicit() && !AllowExplicit) 2655 return false; 2656 2657 // FIXME: This has nothing to do with the definition of converting 2658 // constructor, but is convenient for how we use this function in overload 2659 // resolution. 2660 return getNumParams() == 0 2661 ? getType()->castAs<FunctionProtoType>()->isVariadic() 2662 : getMinRequiredArguments() <= 1; 2663 } 2664 2665 bool CXXConstructorDecl::isSpecializationCopyingObject() const { 2666 if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) 2667 return false; 2668 2669 const ParmVarDecl *Param = getParamDecl(0); 2670 2671 ASTContext &Context = getASTContext(); 2672 CanQualType ParamType = Context.getCanonicalType(Param->getType()); 2673 2674 // Is it the same as our class type? 2675 CanQualType ClassTy 2676 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2677 if (ParamType.getUnqualifiedType() != ClassTy) 2678 return false; 2679 2680 return true; 2681 } 2682 2683 void CXXDestructorDecl::anchor() {} 2684 2685 CXXDestructorDecl * 2686 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2687 return new (C, ID) 2688 CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), 2689 QualType(), nullptr, false, false, CSK_unspecified, 2690 nullptr); 2691 } 2692 2693 CXXDestructorDecl *CXXDestructorDecl::Create( 2694 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2695 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2696 bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, 2697 Expr *TrailingRequiresClause) { 2698 assert(NameInfo.getName().getNameKind() 2699 == DeclarationName::CXXDestructorName && 2700 "Name must refer to a destructor"); 2701 return new (C, RD) 2702 CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, 2703 isImplicitlyDeclared, ConstexprKind, 2704 TrailingRequiresClause); 2705 } 2706 2707 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { 2708 auto *First = cast<CXXDestructorDecl>(getFirstDecl()); 2709 if (OD && !First->OperatorDelete) { 2710 First->OperatorDelete = OD; 2711 First->OperatorDeleteThisArg = ThisArg; 2712 if (auto *L = getASTMutationListener()) 2713 L->ResolvedOperatorDelete(First, OD, ThisArg); 2714 } 2715 } 2716 2717 void CXXConversionDecl::anchor() {} 2718 2719 CXXConversionDecl * 2720 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2721 return new (C, ID) CXXConversionDecl( 2722 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2723 false, ExplicitSpecifier(), CSK_unspecified, SourceLocation(), nullptr); 2724 } 2725 2726 CXXConversionDecl *CXXConversionDecl::Create( 2727 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2728 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2729 bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, 2730 SourceLocation EndLocation, Expr *TrailingRequiresClause) { 2731 assert(NameInfo.getName().getNameKind() 2732 == DeclarationName::CXXConversionFunctionName && 2733 "Name must refer to a conversion function"); 2734 return new (C, RD) 2735 CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES, 2736 ConstexprKind, EndLocation, TrailingRequiresClause); 2737 } 2738 2739 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { 2740 return isImplicit() && getParent()->isLambda() && 2741 getConversionType()->isBlockPointerType(); 2742 } 2743 2744 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, 2745 SourceLocation LangLoc, LanguageIDs lang, 2746 bool HasBraces) 2747 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), 2748 ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { 2749 setLanguage(lang); 2750 LinkageSpecDeclBits.HasBraces = HasBraces; 2751 } 2752 2753 void LinkageSpecDecl::anchor() {} 2754 2755 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, 2756 DeclContext *DC, 2757 SourceLocation ExternLoc, 2758 SourceLocation LangLoc, 2759 LanguageIDs Lang, 2760 bool HasBraces) { 2761 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); 2762 } 2763 2764 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, 2765 unsigned ID) { 2766 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), 2767 SourceLocation(), lang_c, false); 2768 } 2769 2770 void UsingDirectiveDecl::anchor() {} 2771 2772 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, 2773 SourceLocation L, 2774 SourceLocation NamespaceLoc, 2775 NestedNameSpecifierLoc QualifierLoc, 2776 SourceLocation IdentLoc, 2777 NamedDecl *Used, 2778 DeclContext *CommonAncestor) { 2779 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used)) 2780 Used = NS->getOriginalNamespace(); 2781 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, 2782 IdentLoc, Used, CommonAncestor); 2783 } 2784 2785 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, 2786 unsigned ID) { 2787 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), 2788 SourceLocation(), 2789 NestedNameSpecifierLoc(), 2790 SourceLocation(), nullptr, nullptr); 2791 } 2792 2793 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { 2794 if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) 2795 return NA->getNamespace(); 2796 return cast_or_null<NamespaceDecl>(NominatedNamespace); 2797 } 2798 2799 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, 2800 SourceLocation StartLoc, SourceLocation IdLoc, 2801 IdentifierInfo *Id, NamespaceDecl *PrevDecl) 2802 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), 2803 redeclarable_base(C), LocStart(StartLoc), 2804 AnonOrFirstNamespaceAndInline(nullptr, Inline) { 2805 setPreviousDecl(PrevDecl); 2806 2807 if (PrevDecl) 2808 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); 2809 } 2810 2811 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, 2812 bool Inline, SourceLocation StartLoc, 2813 SourceLocation IdLoc, IdentifierInfo *Id, 2814 NamespaceDecl *PrevDecl) { 2815 return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, 2816 PrevDecl); 2817 } 2818 2819 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2820 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), 2821 SourceLocation(), nullptr, nullptr); 2822 } 2823 2824 NamespaceDecl *NamespaceDecl::getOriginalNamespace() { 2825 if (isFirstDecl()) 2826 return this; 2827 2828 return AnonOrFirstNamespaceAndInline.getPointer(); 2829 } 2830 2831 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { 2832 if (isFirstDecl()) 2833 return this; 2834 2835 return AnonOrFirstNamespaceAndInline.getPointer(); 2836 } 2837 2838 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } 2839 2840 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { 2841 return getNextRedeclaration(); 2842 } 2843 2844 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { 2845 return getPreviousDecl(); 2846 } 2847 2848 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { 2849 return getMostRecentDecl(); 2850 } 2851 2852 void NamespaceAliasDecl::anchor() {} 2853 2854 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { 2855 return getNextRedeclaration(); 2856 } 2857 2858 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { 2859 return getPreviousDecl(); 2860 } 2861 2862 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { 2863 return getMostRecentDecl(); 2864 } 2865 2866 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, 2867 SourceLocation UsingLoc, 2868 SourceLocation AliasLoc, 2869 IdentifierInfo *Alias, 2870 NestedNameSpecifierLoc QualifierLoc, 2871 SourceLocation IdentLoc, 2872 NamedDecl *Namespace) { 2873 // FIXME: Preserve the aliased namespace as written. 2874 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) 2875 Namespace = NS->getOriginalNamespace(); 2876 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, 2877 QualifierLoc, IdentLoc, Namespace); 2878 } 2879 2880 NamespaceAliasDecl * 2881 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2882 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), 2883 SourceLocation(), nullptr, 2884 NestedNameSpecifierLoc(), 2885 SourceLocation(), nullptr); 2886 } 2887 2888 void LifetimeExtendedTemporaryDecl::anchor() {} 2889 2890 /// Retrieve the storage duration for the materialized temporary. 2891 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { 2892 const ValueDecl *ExtendingDecl = getExtendingDecl(); 2893 if (!ExtendingDecl) 2894 return SD_FullExpression; 2895 // FIXME: This is not necessarily correct for a temporary materialized 2896 // within a default initializer. 2897 if (isa<FieldDecl>(ExtendingDecl)) 2898 return SD_Automatic; 2899 // FIXME: This only works because storage class specifiers are not allowed 2900 // on decomposition declarations. 2901 if (isa<BindingDecl>(ExtendingDecl)) 2902 return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic 2903 : SD_Static; 2904 return cast<VarDecl>(ExtendingDecl)->getStorageDuration(); 2905 } 2906 2907 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { 2908 assert(getStorageDuration() == SD_Static && 2909 "don't need to cache the computed value for this temporary"); 2910 if (MayCreate && !Value) { 2911 Value = (new (getASTContext()) APValue); 2912 getASTContext().addDestruction(Value); 2913 } 2914 assert(Value && "may not be null"); 2915 return Value; 2916 } 2917 2918 void UsingShadowDecl::anchor() {} 2919 2920 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, 2921 SourceLocation Loc, UsingDecl *Using, 2922 NamedDecl *Target) 2923 : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()), 2924 redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) { 2925 if (Target) 2926 setTargetDecl(Target); 2927 setImplicit(); 2928 } 2929 2930 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) 2931 : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), 2932 redeclarable_base(C) {} 2933 2934 UsingShadowDecl * 2935 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2936 return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); 2937 } 2938 2939 UsingDecl *UsingShadowDecl::getUsingDecl() const { 2940 const UsingShadowDecl *Shadow = this; 2941 while (const auto *NextShadow = 2942 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) 2943 Shadow = NextShadow; 2944 return cast<UsingDecl>(Shadow->UsingOrNextShadow); 2945 } 2946 2947 void ConstructorUsingShadowDecl::anchor() {} 2948 2949 ConstructorUsingShadowDecl * 2950 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, 2951 SourceLocation Loc, UsingDecl *Using, 2952 NamedDecl *Target, bool IsVirtual) { 2953 return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, 2954 IsVirtual); 2955 } 2956 2957 ConstructorUsingShadowDecl * 2958 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2959 return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); 2960 } 2961 2962 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { 2963 return getUsingDecl()->getQualifier()->getAsRecordDecl(); 2964 } 2965 2966 void UsingDecl::anchor() {} 2967 2968 void UsingDecl::addShadowDecl(UsingShadowDecl *S) { 2969 assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && 2970 "declaration already in set"); 2971 assert(S->getUsingDecl() == this); 2972 2973 if (FirstUsingShadow.getPointer()) 2974 S->UsingOrNextShadow = FirstUsingShadow.getPointer(); 2975 FirstUsingShadow.setPointer(S); 2976 } 2977 2978 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { 2979 assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && 2980 "declaration not in set"); 2981 assert(S->getUsingDecl() == this); 2982 2983 // Remove S from the shadow decl chain. This is O(n) but hopefully rare. 2984 2985 if (FirstUsingShadow.getPointer() == S) { 2986 FirstUsingShadow.setPointer( 2987 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); 2988 S->UsingOrNextShadow = this; 2989 return; 2990 } 2991 2992 UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); 2993 while (Prev->UsingOrNextShadow != S) 2994 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); 2995 Prev->UsingOrNextShadow = S->UsingOrNextShadow; 2996 S->UsingOrNextShadow = this; 2997 } 2998 2999 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, 3000 NestedNameSpecifierLoc QualifierLoc, 3001 const DeclarationNameInfo &NameInfo, 3002 bool HasTypename) { 3003 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); 3004 } 3005 3006 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3007 return new (C, ID) UsingDecl(nullptr, SourceLocation(), 3008 NestedNameSpecifierLoc(), DeclarationNameInfo(), 3009 false); 3010 } 3011 3012 SourceRange UsingDecl::getSourceRange() const { 3013 SourceLocation Begin = isAccessDeclaration() 3014 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3015 return SourceRange(Begin, getNameInfo().getEndLoc()); 3016 } 3017 3018 void UsingPackDecl::anchor() {} 3019 3020 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, 3021 NamedDecl *InstantiatedFrom, 3022 ArrayRef<NamedDecl *> UsingDecls) { 3023 size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size()); 3024 return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); 3025 } 3026 3027 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3028 unsigned NumExpansions) { 3029 size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions); 3030 auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None); 3031 Result->NumExpansions = NumExpansions; 3032 auto *Trail = Result->getTrailingObjects<NamedDecl *>(); 3033 for (unsigned I = 0; I != NumExpansions; ++I) 3034 new (Trail + I) NamedDecl*(nullptr); 3035 return Result; 3036 } 3037 3038 void UnresolvedUsingValueDecl::anchor() {} 3039 3040 UnresolvedUsingValueDecl * 3041 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, 3042 SourceLocation UsingLoc, 3043 NestedNameSpecifierLoc QualifierLoc, 3044 const DeclarationNameInfo &NameInfo, 3045 SourceLocation EllipsisLoc) { 3046 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, 3047 QualifierLoc, NameInfo, 3048 EllipsisLoc); 3049 } 3050 3051 UnresolvedUsingValueDecl * 3052 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3053 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), 3054 SourceLocation(), 3055 NestedNameSpecifierLoc(), 3056 DeclarationNameInfo(), 3057 SourceLocation()); 3058 } 3059 3060 SourceRange UnresolvedUsingValueDecl::getSourceRange() const { 3061 SourceLocation Begin = isAccessDeclaration() 3062 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3063 return SourceRange(Begin, getNameInfo().getEndLoc()); 3064 } 3065 3066 void UnresolvedUsingTypenameDecl::anchor() {} 3067 3068 UnresolvedUsingTypenameDecl * 3069 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, 3070 SourceLocation UsingLoc, 3071 SourceLocation TypenameLoc, 3072 NestedNameSpecifierLoc QualifierLoc, 3073 SourceLocation TargetNameLoc, 3074 DeclarationName TargetName, 3075 SourceLocation EllipsisLoc) { 3076 return new (C, DC) UnresolvedUsingTypenameDecl( 3077 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, 3078 TargetName.getAsIdentifierInfo(), EllipsisLoc); 3079 } 3080 3081 UnresolvedUsingTypenameDecl * 3082 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3083 return new (C, ID) UnresolvedUsingTypenameDecl( 3084 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), 3085 SourceLocation(), nullptr, SourceLocation()); 3086 } 3087 3088 void StaticAssertDecl::anchor() {} 3089 3090 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, 3091 SourceLocation StaticAssertLoc, 3092 Expr *AssertExpr, 3093 StringLiteral *Message, 3094 SourceLocation RParenLoc, 3095 bool Failed) { 3096 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, 3097 RParenLoc, Failed); 3098 } 3099 3100 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, 3101 unsigned ID) { 3102 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, 3103 nullptr, SourceLocation(), false); 3104 } 3105 3106 void BindingDecl::anchor() {} 3107 3108 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, 3109 SourceLocation IdLoc, IdentifierInfo *Id) { 3110 return new (C, DC) BindingDecl(DC, IdLoc, Id); 3111 } 3112 3113 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3114 return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); 3115 } 3116 3117 ValueDecl *BindingDecl::getDecomposedDecl() const { 3118 ExternalASTSource *Source = 3119 Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr; 3120 return cast_or_null<ValueDecl>(Decomp.get(Source)); 3121 } 3122 3123 VarDecl *BindingDecl::getHoldingVar() const { 3124 Expr *B = getBinding(); 3125 if (!B) 3126 return nullptr; 3127 auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit()); 3128 if (!DRE) 3129 return nullptr; 3130 3131 auto *VD = cast<VarDecl>(DRE->getDecl()); 3132 assert(VD->isImplicit() && "holding var for binding decl not implicit"); 3133 return VD; 3134 } 3135 3136 void DecompositionDecl::anchor() {} 3137 3138 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, 3139 SourceLocation StartLoc, 3140 SourceLocation LSquareLoc, 3141 QualType T, TypeSourceInfo *TInfo, 3142 StorageClass SC, 3143 ArrayRef<BindingDecl *> Bindings) { 3144 size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size()); 3145 return new (C, DC, Extra) 3146 DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); 3147 } 3148 3149 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, 3150 unsigned ID, 3151 unsigned NumBindings) { 3152 size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings); 3153 auto *Result = new (C, ID, Extra) 3154 DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), 3155 QualType(), nullptr, StorageClass(), None); 3156 // Set up and clean out the bindings array. 3157 Result->NumBindings = NumBindings; 3158 auto *Trail = Result->getTrailingObjects<BindingDecl *>(); 3159 for (unsigned I = 0; I != NumBindings; ++I) 3160 new (Trail + I) BindingDecl*(nullptr); 3161 return Result; 3162 } 3163 3164 void DecompositionDecl::printName(llvm::raw_ostream &os) const { 3165 os << '['; 3166 bool Comma = false; 3167 for (const auto *B : bindings()) { 3168 if (Comma) 3169 os << ", "; 3170 B->printName(os); 3171 Comma = true; 3172 } 3173 os << ']'; 3174 } 3175 3176 void MSPropertyDecl::anchor() {} 3177 3178 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, 3179 SourceLocation L, DeclarationName N, 3180 QualType T, TypeSourceInfo *TInfo, 3181 SourceLocation StartL, 3182 IdentifierInfo *Getter, 3183 IdentifierInfo *Setter) { 3184 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); 3185 } 3186 3187 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, 3188 unsigned ID) { 3189 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), 3190 DeclarationName(), QualType(), nullptr, 3191 SourceLocation(), nullptr, nullptr); 3192 } 3193 3194 void MSGuidDecl::anchor() {} 3195 3196 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) 3197 : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), 3198 PartVal(P), APVal() {} 3199 3200 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { 3201 DeclContext *DC = C.getTranslationUnitDecl(); 3202 return new (C, DC) MSGuidDecl(DC, T, P); 3203 } 3204 3205 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3206 return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); 3207 } 3208 3209 void MSGuidDecl::printName(llvm::raw_ostream &OS) const { 3210 OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-", 3211 PartVal.Part1, PartVal.Part2, PartVal.Part3); 3212 unsigned I = 0; 3213 for (uint8_t Byte : PartVal.Part4And5) { 3214 OS << llvm::format("%02" PRIx8, Byte); 3215 if (++I == 2) 3216 OS << '-'; 3217 } 3218 OS << '}'; 3219 } 3220 3221 /// Determine if T is a valid 'struct _GUID' of the shape that we expect. 3222 static bool isValidStructGUID(ASTContext &Ctx, QualType T) { 3223 // FIXME: We only need to check this once, not once each time we compute a 3224 // GUID APValue. 3225 using MatcherRef = llvm::function_ref<bool(QualType)>; 3226 3227 auto IsInt = [&Ctx](unsigned N) { 3228 return [&Ctx, N](QualType T) { 3229 return T->isUnsignedIntegerOrEnumerationType() && 3230 Ctx.getIntWidth(T) == N; 3231 }; 3232 }; 3233 3234 auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { 3235 return [&Ctx, Elem, N](QualType T) { 3236 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); 3237 return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); 3238 }; 3239 }; 3240 3241 auto IsStruct = [](std::initializer_list<MatcherRef> Fields) { 3242 return [Fields](QualType T) { 3243 const RecordDecl *RD = T->getAsRecordDecl(); 3244 if (!RD || RD->isUnion()) 3245 return false; 3246 RD = RD->getDefinition(); 3247 if (!RD) 3248 return false; 3249 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 3250 if (CXXRD->getNumBases()) 3251 return false; 3252 auto MatcherIt = Fields.begin(); 3253 for (const FieldDecl *FD : RD->fields()) { 3254 if (FD->isUnnamedBitfield()) continue; 3255 if (FD->isBitField() || MatcherIt == Fields.end() || 3256 !(*MatcherIt)(FD->getType())) 3257 return false; 3258 ++MatcherIt; 3259 } 3260 return MatcherIt == Fields.end(); 3261 }; 3262 }; 3263 3264 // We expect an {i32, i16, i16, [8 x i8]}. 3265 return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); 3266 } 3267 3268 APValue &MSGuidDecl::getAsAPValue() const { 3269 if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) { 3270 using llvm::APInt; 3271 using llvm::APSInt; 3272 APVal = APValue(APValue::UninitStruct(), 0, 4); 3273 APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); 3274 APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); 3275 APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); 3276 APValue &Arr = APVal.getStructField(3) = 3277 APValue(APValue::UninitArray(), 8, 8); 3278 for (unsigned I = 0; I != 8; ++I) { 3279 Arr.getArrayInitializedElt(I) = 3280 APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); 3281 } 3282 // Register this APValue to be destroyed if necessary. (Note that the 3283 // MSGuidDecl destructor is never run.) 3284 getASTContext().addDestruction(&APVal); 3285 } 3286 3287 return APVal; 3288 } 3289 3290 static const char *getAccessName(AccessSpecifier AS) { 3291 switch (AS) { 3292 case AS_none: 3293 llvm_unreachable("Invalid access specifier!"); 3294 case AS_public: 3295 return "public"; 3296 case AS_private: 3297 return "private"; 3298 case AS_protected: 3299 return "protected"; 3300 } 3301 llvm_unreachable("Invalid access specifier!"); 3302 } 3303 3304 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, 3305 AccessSpecifier AS) { 3306 return DB << getAccessName(AS); 3307 } 3308 3309 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB, 3310 AccessSpecifier AS) { 3311 return DB << getAccessName(AS); 3312 } 3313