xref: /freebsd/contrib/llvm-project/clang/lib/AST/DeclCXX.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 
52 using namespace clang;
53 
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
57 
58 void AccessSpecDecl::anchor() {}
59 
60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
61   return new (C, ID) AccessSpecDecl(EmptyShell());
62 }
63 
64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
65   ExternalASTSource *Source = C.getExternalSource();
66   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
67   assert(Source && "getFromExternalSource with no external source");
68 
69   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
70     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
71         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
72   Impl.Decls.setLazy(false);
73 }
74 
75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
76     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80       HasPrivateFields(false), HasProtectedFields(false),
81       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82       HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false),
83       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84       HasInheritedConstructor(false), HasInheritedDefaultConstructor(false),
85       HasInheritedAssignment(false),
86       NeedOverloadResolutionForCopyConstructor(false),
87       NeedOverloadResolutionForMoveConstructor(false),
88       NeedOverloadResolutionForCopyAssignment(false),
89       NeedOverloadResolutionForMoveAssignment(false),
90       NeedOverloadResolutionForDestructor(false),
91       DefaultedCopyConstructorIsDeleted(false),
92       DefaultedMoveConstructorIsDeleted(false),
93       DefaultedCopyAssignmentIsDeleted(false),
94       DefaultedMoveAssignmentIsDeleted(false),
95       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
96       HasTrivialSpecialMembersForCall(SMF_All),
97       DeclaredNonTrivialSpecialMembers(0),
98       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
99       HasConstexprNonCopyMoveConstructor(false),
100       HasDefaultedDefaultConstructor(false),
101       DefaultedDefaultConstructorIsConstexpr(true),
102       HasConstexprDefaultConstructor(false),
103       DefaultedDestructorIsConstexpr(true),
104       HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
105       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
106       ImplicitCopyConstructorCanHaveConstParamForVBase(true),
107       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
108       ImplicitCopyAssignmentHasConstParam(true),
109       HasDeclaredCopyConstructorWithConstParam(false),
110       HasDeclaredCopyAssignmentWithConstParam(false),
111       IsAnyDestructorNoReturn(false), IsLambda(false),
112       IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
113       HasODRHash(false), Definition(D) {}
114 
115 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
116   return Bases.get(Definition->getASTContext().getExternalSource());
117 }
118 
119 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
120   return VBases.get(Definition->getASTContext().getExternalSource());
121 }
122 
123 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
124                              DeclContext *DC, SourceLocation StartLoc,
125                              SourceLocation IdLoc, IdentifierInfo *Id,
126                              CXXRecordDecl *PrevDecl)
127     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
128       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
129                               : nullptr) {}
130 
131 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
132                                      DeclContext *DC, SourceLocation StartLoc,
133                                      SourceLocation IdLoc, IdentifierInfo *Id,
134                                      CXXRecordDecl *PrevDecl,
135                                      bool DelayTypeCreation) {
136   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
137                                       PrevDecl);
138   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
139 
140   // FIXME: DelayTypeCreation seems like such a hack
141   if (!DelayTypeCreation)
142     C.getTypeDeclType(R, PrevDecl);
143   return R;
144 }
145 
146 CXXRecordDecl *
147 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
148                             TypeSourceInfo *Info, SourceLocation Loc,
149                             unsigned DependencyKind, bool IsGeneric,
150                             LambdaCaptureDefault CaptureDefault) {
151   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TagTypeKind::Class, C, DC, Loc,
152                                       Loc, nullptr, nullptr);
153   R->setBeingDefined(true);
154   R->DefinitionData = new (C) struct LambdaDefinitionData(
155       R, Info, DependencyKind, IsGeneric, CaptureDefault);
156   R->setMayHaveOutOfDateDef(false);
157   R->setImplicit(true);
158 
159   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
160   return R;
161 }
162 
163 CXXRecordDecl *
164 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
165   auto *R = new (C, ID)
166       CXXRecordDecl(CXXRecord, TagTypeKind::Struct, C, nullptr,
167                     SourceLocation(), SourceLocation(), nullptr, nullptr);
168   R->setMayHaveOutOfDateDef(false);
169   return R;
170 }
171 
172 /// Determine whether a class has a repeated base class. This is intended for
173 /// use when determining if a class is standard-layout, so makes no attempt to
174 /// handle virtual bases.
175 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
176   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
177   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
178   while (!WorkList.empty()) {
179     const CXXRecordDecl *RD = WorkList.pop_back_val();
180     if (RD->getTypeForDecl()->isDependentType())
181       continue;
182     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
183       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
184         if (!SeenBaseTypes.insert(B).second)
185           return true;
186         WorkList.push_back(B);
187       }
188     }
189   }
190   return false;
191 }
192 
193 void
194 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
195                         unsigned NumBases) {
196   ASTContext &C = getASTContext();
197 
198   if (!data().Bases.isOffset() && data().NumBases > 0)
199     C.Deallocate(data().getBases());
200 
201   if (NumBases) {
202     if (!C.getLangOpts().CPlusPlus17) {
203       // C++ [dcl.init.aggr]p1:
204       //   An aggregate is [...] a class with [...] no base classes [...].
205       data().Aggregate = false;
206     }
207 
208     // C++ [class]p4:
209     //   A POD-struct is an aggregate class...
210     data().PlainOldData = false;
211   }
212 
213   // The set of seen virtual base types.
214   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
215 
216   // The virtual bases of this class.
217   SmallVector<const CXXBaseSpecifier *, 8> VBases;
218 
219   data().Bases = new(C) CXXBaseSpecifier [NumBases];
220   data().NumBases = NumBases;
221   for (unsigned i = 0; i < NumBases; ++i) {
222     data().getBases()[i] = *Bases[i];
223     // Keep track of inherited vbases for this base class.
224     const CXXBaseSpecifier *Base = Bases[i];
225     QualType BaseType = Base->getType();
226     // Skip dependent types; we can't do any checking on them now.
227     if (BaseType->isDependentType())
228       continue;
229     auto *BaseClassDecl =
230         cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
231 
232     // C++2a [class]p7:
233     //   A standard-layout class is a class that:
234     //    [...]
235     //    -- has all non-static data members and bit-fields in the class and
236     //       its base classes first declared in the same class
237     if (BaseClassDecl->data().HasBasesWithFields ||
238         !BaseClassDecl->field_empty()) {
239       if (data().HasBasesWithFields)
240         // Two bases have members or bit-fields: not standard-layout.
241         data().IsStandardLayout = false;
242       data().HasBasesWithFields = true;
243     }
244 
245     // C++11 [class]p7:
246     //   A standard-layout class is a class that:
247     //     -- [...] has [...] at most one base class with non-static data
248     //        members
249     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
250         BaseClassDecl->hasDirectFields()) {
251       if (data().HasBasesWithNonStaticDataMembers)
252         data().IsCXX11StandardLayout = false;
253       data().HasBasesWithNonStaticDataMembers = true;
254     }
255 
256     if (!BaseClassDecl->isEmpty()) {
257       // C++14 [meta.unary.prop]p4:
258       //   T is a class type [...] with [...] no base class B for which
259       //   is_empty<B>::value is false.
260       data().Empty = false;
261     }
262 
263     // C++1z [dcl.init.agg]p1:
264     //   An aggregate is a class with [...] no private or protected base classes
265     if (Base->getAccessSpecifier() != AS_public) {
266       data().Aggregate = false;
267 
268       // C++20 [temp.param]p7:
269       //   A structural type is [...] a literal class type with [...] all base
270       //   classes [...] public
271       data().StructuralIfLiteral = false;
272     }
273 
274     // C++ [class.virtual]p1:
275     //   A class that declares or inherits a virtual function is called a
276     //   polymorphic class.
277     if (BaseClassDecl->isPolymorphic()) {
278       data().Polymorphic = true;
279 
280       //   An aggregate is a class with [...] no virtual functions.
281       data().Aggregate = false;
282     }
283 
284     // C++0x [class]p7:
285     //   A standard-layout class is a class that: [...]
286     //    -- has no non-standard-layout base classes
287     if (!BaseClassDecl->isStandardLayout())
288       data().IsStandardLayout = false;
289     if (!BaseClassDecl->isCXX11StandardLayout())
290       data().IsCXX11StandardLayout = false;
291 
292     // Record if this base is the first non-literal field or base.
293     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
294       data().HasNonLiteralTypeFieldsOrBases = true;
295 
296     // Now go through all virtual bases of this base and add them.
297     for (const auto &VBase : BaseClassDecl->vbases()) {
298       // Add this base if it's not already in the list.
299       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
300         VBases.push_back(&VBase);
301 
302         // C++11 [class.copy]p8:
303         //   The implicitly-declared copy constructor for a class X will have
304         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
305         //   has a copy constructor whose first parameter is of type
306         //   'const B&' or 'const volatile B&' [...]
307         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
308           if (!VBaseDecl->hasCopyConstructorWithConstParam())
309             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
310 
311         // C++1z [dcl.init.agg]p1:
312         //   An aggregate is a class with [...] no virtual base classes
313         data().Aggregate = false;
314       }
315     }
316 
317     if (Base->isVirtual()) {
318       // Add this base if it's not already in the list.
319       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
320         VBases.push_back(Base);
321 
322       // C++14 [meta.unary.prop] is_empty:
323       //   T is a class type, but not a union type, with ... no virtual base
324       //   classes
325       data().Empty = false;
326 
327       // C++1z [dcl.init.agg]p1:
328       //   An aggregate is a class with [...] no virtual base classes
329       data().Aggregate = false;
330 
331       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
332       //   A [default constructor, copy/move constructor, or copy/move assignment
333       //   operator for a class X] is trivial [...] if:
334       //    -- class X has [...] no virtual base classes
335       data().HasTrivialSpecialMembers &= SMF_Destructor;
336       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
337 
338       // C++0x [class]p7:
339       //   A standard-layout class is a class that: [...]
340       //    -- has [...] no virtual base classes
341       data().IsStandardLayout = false;
342       data().IsCXX11StandardLayout = false;
343 
344       // C++20 [dcl.constexpr]p3:
345       //   In the definition of a constexpr function [...]
346       //    -- if the function is a constructor or destructor,
347       //       its class shall not have any virtual base classes
348       data().DefaultedDefaultConstructorIsConstexpr = false;
349       data().DefaultedDestructorIsConstexpr = false;
350 
351       // C++1z [class.copy]p8:
352       //   The implicitly-declared copy constructor for a class X will have
353       //   the form 'X::X(const X&)' if each potentially constructed subobject
354       //   has a copy constructor whose first parameter is of type
355       //   'const B&' or 'const volatile B&' [...]
356       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
357         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
358     } else {
359       // C++ [class.ctor]p5:
360       //   A default constructor is trivial [...] if:
361       //    -- all the direct base classes of its class have trivial default
362       //       constructors.
363       if (!BaseClassDecl->hasTrivialDefaultConstructor())
364         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
365 
366       // C++0x [class.copy]p13:
367       //   A copy/move constructor for class X is trivial if [...]
368       //    [...]
369       //    -- the constructor selected to copy/move each direct base class
370       //       subobject is trivial, and
371       if (!BaseClassDecl->hasTrivialCopyConstructor())
372         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
373 
374       if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
375         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
376 
377       // If the base class doesn't have a simple move constructor, we'll eagerly
378       // declare it and perform overload resolution to determine which function
379       // it actually calls. If it does have a simple move constructor, this
380       // check is correct.
381       if (!BaseClassDecl->hasTrivialMoveConstructor())
382         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
383 
384       if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
385         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
386 
387       // C++0x [class.copy]p27:
388       //   A copy/move assignment operator for class X is trivial if [...]
389       //    [...]
390       //    -- the assignment operator selected to copy/move each direct base
391       //       class subobject is trivial, and
392       if (!BaseClassDecl->hasTrivialCopyAssignment())
393         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
394       // If the base class doesn't have a simple move assignment, we'll eagerly
395       // declare it and perform overload resolution to determine which function
396       // it actually calls. If it does have a simple move assignment, this
397       // check is correct.
398       if (!BaseClassDecl->hasTrivialMoveAssignment())
399         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
400 
401       // C++11 [class.ctor]p6:
402       //   If that user-written default constructor would satisfy the
403       //   requirements of a constexpr constructor, the implicitly-defined
404       //   default constructor is constexpr.
405       if (!BaseClassDecl->hasConstexprDefaultConstructor())
406         data().DefaultedDefaultConstructorIsConstexpr = false;
407 
408       // C++1z [class.copy]p8:
409       //   The implicitly-declared copy constructor for a class X will have
410       //   the form 'X::X(const X&)' if each potentially constructed subobject
411       //   has a copy constructor whose first parameter is of type
412       //   'const B&' or 'const volatile B&' [...]
413       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
414         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
415     }
416 
417     // C++ [class.ctor]p3:
418     //   A destructor is trivial if all the direct base classes of its class
419     //   have trivial destructors.
420     if (!BaseClassDecl->hasTrivialDestructor())
421       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
422 
423     if (!BaseClassDecl->hasTrivialDestructorForCall())
424       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
425 
426     if (!BaseClassDecl->hasIrrelevantDestructor())
427       data().HasIrrelevantDestructor = false;
428 
429     if (BaseClassDecl->isAnyDestructorNoReturn())
430       data().IsAnyDestructorNoReturn = true;
431 
432     // C++11 [class.copy]p18:
433     //   The implicitly-declared copy assignment operator for a class X will
434     //   have the form 'X& X::operator=(const X&)' if each direct base class B
435     //   of X has a copy assignment operator whose parameter is of type 'const
436     //   B&', 'const volatile B&', or 'B' [...]
437     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
438       data().ImplicitCopyAssignmentHasConstParam = false;
439 
440     // A class has an Objective-C object member if... or any of its bases
441     // has an Objective-C object member.
442     if (BaseClassDecl->hasObjectMember())
443       setHasObjectMember(true);
444 
445     if (BaseClassDecl->hasVolatileMember())
446       setHasVolatileMember(true);
447 
448     if (BaseClassDecl->getArgPassingRestrictions() ==
449         RecordArgPassingKind::CanNeverPassInRegs)
450       setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
451 
452     // Keep track of the presence of mutable fields.
453     if (BaseClassDecl->hasMutableFields())
454       data().HasMutableFields = true;
455 
456     if (BaseClassDecl->hasUninitializedReferenceMember())
457       data().HasUninitializedReferenceMember = true;
458 
459     if (!BaseClassDecl->allowConstDefaultInit())
460       data().HasUninitializedFields = true;
461 
462     addedClassSubobject(BaseClassDecl);
463   }
464 
465   // C++2a [class]p7:
466   //   A class S is a standard-layout class if it:
467   //     -- has at most one base class subobject of any given type
468   //
469   // Note that we only need to check this for classes with more than one base
470   // class. If there's only one base class, and it's standard layout, then
471   // we know there are no repeated base classes.
472   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
473     data().IsStandardLayout = false;
474 
475   if (VBases.empty()) {
476     data().IsParsingBaseSpecifiers = false;
477     return;
478   }
479 
480   // Create base specifier for any direct or indirect virtual bases.
481   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
482   data().NumVBases = VBases.size();
483   for (int I = 0, E = VBases.size(); I != E; ++I) {
484     QualType Type = VBases[I]->getType();
485     if (!Type->isDependentType())
486       addedClassSubobject(Type->getAsCXXRecordDecl());
487     data().getVBases()[I] = *VBases[I];
488   }
489 
490   data().IsParsingBaseSpecifiers = false;
491 }
492 
493 unsigned CXXRecordDecl::getODRHash() const {
494   assert(hasDefinition() && "ODRHash only for records with definitions");
495 
496   // Previously calculated hash is stored in DefinitionData.
497   if (DefinitionData->HasODRHash)
498     return DefinitionData->ODRHash;
499 
500   // Only calculate hash on first call of getODRHash per record.
501   ODRHash Hash;
502   Hash.AddCXXRecordDecl(getDefinition());
503   DefinitionData->HasODRHash = true;
504   DefinitionData->ODRHash = Hash.CalculateHash();
505 
506   return DefinitionData->ODRHash;
507 }
508 
509 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
510   // C++11 [class.copy]p11:
511   //   A defaulted copy/move constructor for a class X is defined as
512   //   deleted if X has:
513   //    -- a direct or virtual base class B that cannot be copied/moved [...]
514   //    -- a non-static data member of class type M (or array thereof)
515   //       that cannot be copied or moved [...]
516   if (!Subobj->hasSimpleCopyConstructor())
517     data().NeedOverloadResolutionForCopyConstructor = true;
518   if (!Subobj->hasSimpleMoveConstructor())
519     data().NeedOverloadResolutionForMoveConstructor = true;
520 
521   // C++11 [class.copy]p23:
522   //   A defaulted copy/move assignment operator for a class X is defined as
523   //   deleted if X has:
524   //    -- a direct or virtual base class B that cannot be copied/moved [...]
525   //    -- a non-static data member of class type M (or array thereof)
526   //        that cannot be copied or moved [...]
527   if (!Subobj->hasSimpleCopyAssignment())
528     data().NeedOverloadResolutionForCopyAssignment = true;
529   if (!Subobj->hasSimpleMoveAssignment())
530     data().NeedOverloadResolutionForMoveAssignment = true;
531 
532   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
533   //   A defaulted [ctor or dtor] for a class X is defined as
534   //   deleted if X has:
535   //    -- any direct or virtual base class [...] has a type with a destructor
536   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
537   //    -- any non-static data member has a type with a destructor
538   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
539   if (!Subobj->hasSimpleDestructor()) {
540     data().NeedOverloadResolutionForCopyConstructor = true;
541     data().NeedOverloadResolutionForMoveConstructor = true;
542     data().NeedOverloadResolutionForDestructor = true;
543   }
544 
545   // C++2a [dcl.constexpr]p4:
546   //   The definition of a constexpr destructor [shall] satisfy the
547   //   following requirement:
548   //   -- for every subobject of class type or (possibly multi-dimensional)
549   //      array thereof, that class type shall have a constexpr destructor
550   if (!Subobj->hasConstexprDestructor())
551     data().DefaultedDestructorIsConstexpr = false;
552 
553   // C++20 [temp.param]p7:
554   //   A structural type is [...] a literal class type [for which] the types
555   //   of all base classes and non-static data members are structural types or
556   //   (possibly multi-dimensional) array thereof
557   if (!Subobj->data().StructuralIfLiteral)
558     data().StructuralIfLiteral = false;
559 }
560 
561 bool CXXRecordDecl::hasConstexprDestructor() const {
562   auto *Dtor = getDestructor();
563   return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
564 }
565 
566 bool CXXRecordDecl::hasAnyDependentBases() const {
567   if (!isDependentContext())
568     return false;
569 
570   return !forallBases([](const CXXRecordDecl *) { return true; });
571 }
572 
573 bool CXXRecordDecl::isTriviallyCopyable() const {
574   // C++0x [class]p5:
575   //   A trivially copyable class is a class that:
576   //   -- has no non-trivial copy constructors,
577   if (hasNonTrivialCopyConstructor()) return false;
578   //   -- has no non-trivial move constructors,
579   if (hasNonTrivialMoveConstructor()) return false;
580   //   -- has no non-trivial copy assignment operators,
581   if (hasNonTrivialCopyAssignment()) return false;
582   //   -- has no non-trivial move assignment operators, and
583   if (hasNonTrivialMoveAssignment()) return false;
584   //   -- has a trivial destructor.
585   if (!hasTrivialDestructor()) return false;
586 
587   return true;
588 }
589 
590 bool CXXRecordDecl::isTriviallyCopyConstructible() const {
591 
592   //   A trivially copy constructible class is a class that:
593   //   -- has no non-trivial copy constructors,
594   if (hasNonTrivialCopyConstructor())
595     return false;
596   //   -- has a trivial destructor.
597   if (!hasTrivialDestructor())
598     return false;
599 
600   return true;
601 }
602 
603 void CXXRecordDecl::markedVirtualFunctionPure() {
604   // C++ [class.abstract]p2:
605   //   A class is abstract if it has at least one pure virtual function.
606   data().Abstract = true;
607 }
608 
609 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
610     ASTContext &Ctx, const CXXRecordDecl *XFirst) {
611   if (!getNumBases())
612     return false;
613 
614   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
615   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
616   SmallVector<const CXXRecordDecl*, 8> WorkList;
617 
618   // Visit a type that we have determined is an element of M(S).
619   auto Visit = [&](const CXXRecordDecl *RD) -> bool {
620     RD = RD->getCanonicalDecl();
621 
622     // C++2a [class]p8:
623     //   A class S is a standard-layout class if it [...] has no element of the
624     //   set M(S) of types as a base class.
625     //
626     // If we find a subobject of an empty type, it might also be a base class,
627     // so we'll need to walk the base classes to check.
628     if (!RD->data().HasBasesWithFields) {
629       // Walk the bases the first time, stopping if we find the type. Build a
630       // set of them so we don't need to walk them again.
631       if (Bases.empty()) {
632         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
633           Base = Base->getCanonicalDecl();
634           if (RD == Base)
635             return false;
636           Bases.insert(Base);
637           return true;
638         });
639         if (RDIsBase)
640           return true;
641       } else {
642         if (Bases.count(RD))
643           return true;
644       }
645     }
646 
647     if (M.insert(RD).second)
648       WorkList.push_back(RD);
649     return false;
650   };
651 
652   if (Visit(XFirst))
653     return true;
654 
655   while (!WorkList.empty()) {
656     const CXXRecordDecl *X = WorkList.pop_back_val();
657 
658     // FIXME: We don't check the bases of X. That matches the standard, but
659     // that sure looks like a wording bug.
660 
661     //   -- If X is a non-union class type with a non-static data member
662     //      [recurse to each field] that is either of zero size or is the
663     //      first non-static data member of X
664     //   -- If X is a union type, [recurse to union members]
665     bool IsFirstField = true;
666     for (auto *FD : X->fields()) {
667       // FIXME: Should we really care about the type of the first non-static
668       // data member of a non-union if there are preceding unnamed bit-fields?
669       if (FD->isUnnamedBitfield())
670         continue;
671 
672       if (!IsFirstField && !FD->isZeroSize(Ctx))
673         continue;
674 
675       //   -- If X is n array type, [visit the element type]
676       QualType T = Ctx.getBaseElementType(FD->getType());
677       if (auto *RD = T->getAsCXXRecordDecl())
678         if (Visit(RD))
679           return true;
680 
681       if (!X->isUnion())
682         IsFirstField = false;
683     }
684   }
685 
686   return false;
687 }
688 
689 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
690   assert(isLambda() && "not a lambda");
691 
692   // C++2a [expr.prim.lambda.capture]p11:
693   //   The closure type associated with a lambda-expression has no default
694   //   constructor if the lambda-expression has a lambda-capture and a
695   //   defaulted default constructor otherwise. It has a deleted copy
696   //   assignment operator if the lambda-expression has a lambda-capture and
697   //   defaulted copy and move assignment operators otherwise.
698   //
699   // C++17 [expr.prim.lambda]p21:
700   //   The closure type associated with a lambda-expression has no default
701   //   constructor and a deleted copy assignment operator.
702   if (!isCapturelessLambda())
703     return false;
704   return getASTContext().getLangOpts().CPlusPlus20;
705 }
706 
707 void CXXRecordDecl::addedMember(Decl *D) {
708   if (!D->isImplicit() && !isa<FieldDecl>(D) && !isa<IndirectFieldDecl>(D) &&
709       (!isa<TagDecl>(D) ||
710        cast<TagDecl>(D)->getTagKind() == TagTypeKind::Class ||
711        cast<TagDecl>(D)->getTagKind() == TagTypeKind::Interface))
712     data().HasOnlyCMembers = false;
713 
714   // Ignore friends and invalid declarations.
715   if (D->getFriendObjectKind() || D->isInvalidDecl())
716     return;
717 
718   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
719   if (FunTmpl)
720     D = FunTmpl->getTemplatedDecl();
721 
722   // FIXME: Pass NamedDecl* to addedMember?
723   Decl *DUnderlying = D;
724   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
725     DUnderlying = ND->getUnderlyingDecl();
726     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
727       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
728   }
729 
730   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
731     if (Method->isVirtual()) {
732       // C++ [dcl.init.aggr]p1:
733       //   An aggregate is an array or a class with [...] no virtual functions.
734       data().Aggregate = false;
735 
736       // C++ [class]p4:
737       //   A POD-struct is an aggregate class...
738       data().PlainOldData = false;
739 
740       // C++14 [meta.unary.prop]p4:
741       //   T is a class type [...] with [...] no virtual member functions...
742       data().Empty = false;
743 
744       // C++ [class.virtual]p1:
745       //   A class that declares or inherits a virtual function is called a
746       //   polymorphic class.
747       data().Polymorphic = true;
748 
749       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
750       //   A [default constructor, copy/move constructor, or copy/move
751       //   assignment operator for a class X] is trivial [...] if:
752       //    -- class X has no virtual functions [...]
753       data().HasTrivialSpecialMembers &= SMF_Destructor;
754       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
755 
756       // C++0x [class]p7:
757       //   A standard-layout class is a class that: [...]
758       //    -- has no virtual functions
759       data().IsStandardLayout = false;
760       data().IsCXX11StandardLayout = false;
761     }
762   }
763 
764   // Notify the listener if an implicit member was added after the definition
765   // was completed.
766   if (!isBeingDefined() && D->isImplicit())
767     if (ASTMutationListener *L = getASTMutationListener())
768       L->AddedCXXImplicitMember(data().Definition, D);
769 
770   // The kind of special member this declaration is, if any.
771   unsigned SMKind = 0;
772 
773   // Handle constructors.
774   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
775     if (Constructor->isInheritingConstructor()) {
776       // Ignore constructor shadow declarations. They are lazily created and
777       // so shouldn't affect any properties of the class.
778     } else {
779       if (!Constructor->isImplicit()) {
780         // Note that we have a user-declared constructor.
781         data().UserDeclaredConstructor = true;
782 
783         const TargetInfo &TI = getASTContext().getTargetInfo();
784         if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) ||
785             !TI.areDefaultedSMFStillPOD(getLangOpts())) {
786           // C++ [class]p4:
787           //   A POD-struct is an aggregate class [...]
788           // Since the POD bit is meant to be C++03 POD-ness, clear it even if
789           // the type is technically an aggregate in C++0x since it wouldn't be
790           // in 03.
791           data().PlainOldData = false;
792         }
793       }
794 
795       if (Constructor->isDefaultConstructor()) {
796         SMKind |= SMF_DefaultConstructor;
797 
798         if (Constructor->isUserProvided())
799           data().UserProvidedDefaultConstructor = true;
800         if (Constructor->isConstexpr())
801           data().HasConstexprDefaultConstructor = true;
802         if (Constructor->isDefaulted())
803           data().HasDefaultedDefaultConstructor = true;
804       }
805 
806       if (!FunTmpl) {
807         unsigned Quals;
808         if (Constructor->isCopyConstructor(Quals)) {
809           SMKind |= SMF_CopyConstructor;
810 
811           if (Quals & Qualifiers::Const)
812             data().HasDeclaredCopyConstructorWithConstParam = true;
813         } else if (Constructor->isMoveConstructor())
814           SMKind |= SMF_MoveConstructor;
815       }
816 
817       // C++11 [dcl.init.aggr]p1: DR1518
818       //   An aggregate is an array or a class with no user-provided [or]
819       //   explicit [...] constructors
820       // C++20 [dcl.init.aggr]p1:
821       //   An aggregate is an array or a class with no user-declared [...]
822       //   constructors
823       if (getASTContext().getLangOpts().CPlusPlus20
824               ? !Constructor->isImplicit()
825               : (Constructor->isUserProvided() || Constructor->isExplicit()))
826         data().Aggregate = false;
827     }
828   }
829 
830   // Handle constructors, including those inherited from base classes.
831   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
832     // Record if we see any constexpr constructors which are neither copy
833     // nor move constructors.
834     // C++1z [basic.types]p10:
835     //   [...] has at least one constexpr constructor or constructor template
836     //   (possibly inherited from a base class) that is not a copy or move
837     //   constructor [...]
838     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
839       data().HasConstexprNonCopyMoveConstructor = true;
840     if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor())
841       data().HasInheritedDefaultConstructor = true;
842   }
843 
844   // Handle member functions.
845   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
846     if (isa<CXXDestructorDecl>(D))
847       SMKind |= SMF_Destructor;
848 
849     if (Method->isCopyAssignmentOperator()) {
850       SMKind |= SMF_CopyAssignment;
851 
852       const auto *ParamTy =
853           Method->getNonObjectParameter(0)->getType()->getAs<ReferenceType>();
854       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
855         data().HasDeclaredCopyAssignmentWithConstParam = true;
856     }
857 
858     if (Method->isMoveAssignmentOperator())
859       SMKind |= SMF_MoveAssignment;
860 
861     // Keep the list of conversion functions up-to-date.
862     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
863       // FIXME: We use the 'unsafe' accessor for the access specifier here,
864       // because Sema may not have set it yet. That's really just a misdesign
865       // in Sema. However, LLDB *will* have set the access specifier correctly,
866       // and adds declarations after the class is technically completed,
867       // so completeDefinition()'s overriding of the access specifiers doesn't
868       // work.
869       AccessSpecifier AS = Conversion->getAccessUnsafe();
870 
871       if (Conversion->getPrimaryTemplate()) {
872         // We don't record specializations.
873       } else {
874         ASTContext &Ctx = getASTContext();
875         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
876         NamedDecl *Primary =
877             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
878         if (Primary->getPreviousDecl())
879           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
880                               Primary, AS);
881         else
882           Conversions.addDecl(Ctx, Primary, AS);
883       }
884     }
885 
886     if (SMKind) {
887       // If this is the first declaration of a special member, we no longer have
888       // an implicit trivial special member.
889       data().HasTrivialSpecialMembers &=
890           data().DeclaredSpecialMembers | ~SMKind;
891       data().HasTrivialSpecialMembersForCall &=
892           data().DeclaredSpecialMembers | ~SMKind;
893 
894       // Note when we have declared a declared special member, and suppress the
895       // implicit declaration of this special member.
896       data().DeclaredSpecialMembers |= SMKind;
897       if (!Method->isImplicit()) {
898         data().UserDeclaredSpecialMembers |= SMKind;
899 
900         const TargetInfo &TI = getASTContext().getTargetInfo();
901         if ((!Method->isDeleted() && !Method->isDefaulted() &&
902              SMKind != SMF_MoveAssignment) ||
903             !TI.areDefaultedSMFStillPOD(getLangOpts())) {
904           // C++03 [class]p4:
905           //   A POD-struct is an aggregate class that has [...] no user-defined
906           //   copy assignment operator and no user-defined destructor.
907           //
908           // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
909           // aggregates could not have any constructors, clear it even for an
910           // explicitly defaulted or deleted constructor.
911           // type is technically an aggregate in C++0x since it wouldn't be in
912           // 03.
913           //
914           // Also, a user-declared move assignment operator makes a class
915           // non-POD. This is an extension in C++03.
916           data().PlainOldData = false;
917         }
918       }
919       // When instantiating a class, we delay updating the destructor and
920       // triviality properties of the class until selecting a destructor and
921       // computing the eligibility of its special member functions. This is
922       // because there might be function constraints that we need to evaluate
923       // and compare later in the instantiation.
924       if (!Method->isIneligibleOrNotSelected()) {
925         addedEligibleSpecialMemberFunction(Method, SMKind);
926       }
927     }
928 
929     return;
930   }
931 
932   // Handle non-static data members.
933   if (const auto *Field = dyn_cast<FieldDecl>(D)) {
934     ASTContext &Context = getASTContext();
935 
936     // C++2a [class]p7:
937     //   A standard-layout class is a class that:
938     //    [...]
939     //    -- has all non-static data members and bit-fields in the class and
940     //       its base classes first declared in the same class
941     if (data().HasBasesWithFields)
942       data().IsStandardLayout = false;
943 
944     // C++ [class.bit]p2:
945     //   A declaration for a bit-field that omits the identifier declares an
946     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
947     //   initialized.
948     if (Field->isUnnamedBitfield()) {
949       // C++ [meta.unary.prop]p4: [LWG2358]
950       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
951       //   length
952       if (data().Empty && !Field->isZeroLengthBitField(Context) &&
953           Context.getLangOpts().getClangABICompat() >
954               LangOptions::ClangABI::Ver6)
955         data().Empty = false;
956       return;
957     }
958 
959     // C++11 [class]p7:
960     //   A standard-layout class is a class that:
961     //    -- either has no non-static data members in the most derived class
962     //       [...] or has no base classes with non-static data members
963     if (data().HasBasesWithNonStaticDataMembers)
964       data().IsCXX11StandardLayout = false;
965 
966     // C++ [dcl.init.aggr]p1:
967     //   An aggregate is an array or a class (clause 9) with [...] no
968     //   private or protected non-static data members (clause 11).
969     //
970     // A POD must be an aggregate.
971     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
972       data().Aggregate = false;
973       data().PlainOldData = false;
974 
975       // C++20 [temp.param]p7:
976       //   A structural type is [...] a literal class type [for which] all
977       //   non-static data members are public
978       data().StructuralIfLiteral = false;
979     }
980 
981     // Track whether this is the first field. We use this when checking
982     // whether the class is standard-layout below.
983     bool IsFirstField = !data().HasPrivateFields &&
984                         !data().HasProtectedFields && !data().HasPublicFields;
985 
986     // C++0x [class]p7:
987     //   A standard-layout class is a class that:
988     //    [...]
989     //    -- has the same access control for all non-static data members,
990     switch (D->getAccess()) {
991     case AS_private:    data().HasPrivateFields = true;   break;
992     case AS_protected:  data().HasProtectedFields = true; break;
993     case AS_public:     data().HasPublicFields = true;    break;
994     case AS_none:       llvm_unreachable("Invalid access specifier");
995     };
996     if ((data().HasPrivateFields + data().HasProtectedFields +
997          data().HasPublicFields) > 1) {
998       data().IsStandardLayout = false;
999       data().IsCXX11StandardLayout = false;
1000     }
1001 
1002     // Keep track of the presence of mutable fields.
1003     if (Field->isMutable()) {
1004       data().HasMutableFields = true;
1005 
1006       // C++20 [temp.param]p7:
1007       //   A structural type is [...] a literal class type [for which] all
1008       //   non-static data members are public
1009       data().StructuralIfLiteral = false;
1010     }
1011 
1012     // C++11 [class.union]p8, DR1460:
1013     //   If X is a union, a non-static data member of X that is not an anonymous
1014     //   union is a variant member of X.
1015     if (isUnion() && !Field->isAnonymousStructOrUnion())
1016       data().HasVariantMembers = true;
1017 
1018     // C++0x [class]p9:
1019     //   A POD struct is a class that is both a trivial class and a
1020     //   standard-layout class, and has no non-static data members of type
1021     //   non-POD struct, non-POD union (or array of such types).
1022     //
1023     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1024     // that does not explicitly have no lifetime makes the class a non-POD.
1025     QualType T = Context.getBaseElementType(Field->getType());
1026     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1027       if (T.hasNonTrivialObjCLifetime()) {
1028         // Objective-C Automatic Reference Counting:
1029         //   If a class has a non-static data member of Objective-C pointer
1030         //   type (or array thereof), it is a non-POD type and its
1031         //   default constructor (if any), copy constructor, move constructor,
1032         //   copy assignment operator, move assignment operator, and destructor are
1033         //   non-trivial.
1034         setHasObjectMember(true);
1035         struct DefinitionData &Data = data();
1036         Data.PlainOldData = false;
1037         Data.HasTrivialSpecialMembers = 0;
1038 
1039         // __strong or __weak fields do not make special functions non-trivial
1040         // for the purpose of calls.
1041         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1042         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1043           data().HasTrivialSpecialMembersForCall = 0;
1044 
1045         // Structs with __weak fields should never be passed directly.
1046         if (LT == Qualifiers::OCL_Weak)
1047           setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
1048 
1049         Data.HasIrrelevantDestructor = false;
1050 
1051         if (isUnion()) {
1052           data().DefaultedCopyConstructorIsDeleted = true;
1053           data().DefaultedMoveConstructorIsDeleted = true;
1054           data().DefaultedCopyAssignmentIsDeleted = true;
1055           data().DefaultedMoveAssignmentIsDeleted = true;
1056           data().DefaultedDestructorIsDeleted = true;
1057           data().NeedOverloadResolutionForCopyConstructor = true;
1058           data().NeedOverloadResolutionForMoveConstructor = true;
1059           data().NeedOverloadResolutionForCopyAssignment = true;
1060           data().NeedOverloadResolutionForMoveAssignment = true;
1061           data().NeedOverloadResolutionForDestructor = true;
1062         }
1063       } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1064         setHasObjectMember(true);
1065       }
1066     } else if (!T.isCXX98PODType(Context))
1067       data().PlainOldData = false;
1068 
1069     if (T->isReferenceType()) {
1070       if (!Field->hasInClassInitializer())
1071         data().HasUninitializedReferenceMember = true;
1072 
1073       // C++0x [class]p7:
1074       //   A standard-layout class is a class that:
1075       //    -- has no non-static data members of type [...] reference,
1076       data().IsStandardLayout = false;
1077       data().IsCXX11StandardLayout = false;
1078 
1079       // C++1z [class.copy.ctor]p10:
1080       //   A defaulted copy constructor for a class X is defined as deleted if X has:
1081       //    -- a non-static data member of rvalue reference type
1082       if (T->isRValueReferenceType())
1083         data().DefaultedCopyConstructorIsDeleted = true;
1084     }
1085 
1086     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1087       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1088         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1089           data().HasUninitializedFields = true;
1090       } else {
1091         data().HasUninitializedFields = true;
1092       }
1093     }
1094 
1095     // Record if this field is the first non-literal or volatile field or base.
1096     if (!T->isLiteralType(Context) || T.isVolatileQualified())
1097       data().HasNonLiteralTypeFieldsOrBases = true;
1098 
1099     if (Field->hasInClassInitializer() ||
1100         (Field->isAnonymousStructOrUnion() &&
1101          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1102       data().HasInClassInitializer = true;
1103 
1104       // C++11 [class]p5:
1105       //   A default constructor is trivial if [...] no non-static data member
1106       //   of its class has a brace-or-equal-initializer.
1107       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1108 
1109       // C++11 [dcl.init.aggr]p1:
1110       //   An aggregate is a [...] class with [...] no
1111       //   brace-or-equal-initializers for non-static data members.
1112       //
1113       // This rule was removed in C++14.
1114       if (!getASTContext().getLangOpts().CPlusPlus14)
1115         data().Aggregate = false;
1116 
1117       // C++11 [class]p10:
1118       //   A POD struct is [...] a trivial class.
1119       data().PlainOldData = false;
1120     }
1121 
1122     // C++11 [class.copy]p23:
1123     //   A defaulted copy/move assignment operator for a class X is defined
1124     //   as deleted if X has:
1125     //    -- a non-static data member of reference type
1126     if (T->isReferenceType()) {
1127       data().DefaultedCopyAssignmentIsDeleted = true;
1128       data().DefaultedMoveAssignmentIsDeleted = true;
1129     }
1130 
1131     // Bitfields of length 0 are also zero-sized, but we already bailed out for
1132     // those because they are always unnamed.
1133     bool IsZeroSize = Field->isZeroSize(Context);
1134 
1135     if (const auto *RecordTy = T->getAs<RecordType>()) {
1136       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1137       if (FieldRec->getDefinition()) {
1138         addedClassSubobject(FieldRec);
1139 
1140         // We may need to perform overload resolution to determine whether a
1141         // field can be moved if it's const or volatile qualified.
1142         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1143           // We need to care about 'const' for the copy constructor because an
1144           // implicit copy constructor might be declared with a non-const
1145           // parameter.
1146           data().NeedOverloadResolutionForCopyConstructor = true;
1147           data().NeedOverloadResolutionForMoveConstructor = true;
1148           data().NeedOverloadResolutionForCopyAssignment = true;
1149           data().NeedOverloadResolutionForMoveAssignment = true;
1150         }
1151 
1152         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1153         //   A defaulted [special member] for a class X is defined as
1154         //   deleted if:
1155         //    -- X is a union-like class that has a variant member with a
1156         //       non-trivial [corresponding special member]
1157         if (isUnion()) {
1158           if (FieldRec->hasNonTrivialCopyConstructor())
1159             data().DefaultedCopyConstructorIsDeleted = true;
1160           if (FieldRec->hasNonTrivialMoveConstructor())
1161             data().DefaultedMoveConstructorIsDeleted = true;
1162           if (FieldRec->hasNonTrivialCopyAssignment())
1163             data().DefaultedCopyAssignmentIsDeleted = true;
1164           if (FieldRec->hasNonTrivialMoveAssignment())
1165             data().DefaultedMoveAssignmentIsDeleted = true;
1166           if (FieldRec->hasNonTrivialDestructor())
1167             data().DefaultedDestructorIsDeleted = true;
1168         }
1169 
1170         // For an anonymous union member, our overload resolution will perform
1171         // overload resolution for its members.
1172         if (Field->isAnonymousStructOrUnion()) {
1173           data().NeedOverloadResolutionForCopyConstructor |=
1174               FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1175           data().NeedOverloadResolutionForMoveConstructor |=
1176               FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1177           data().NeedOverloadResolutionForCopyAssignment |=
1178               FieldRec->data().NeedOverloadResolutionForCopyAssignment;
1179           data().NeedOverloadResolutionForMoveAssignment |=
1180               FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1181           data().NeedOverloadResolutionForDestructor |=
1182               FieldRec->data().NeedOverloadResolutionForDestructor;
1183         }
1184 
1185         // C++0x [class.ctor]p5:
1186         //   A default constructor is trivial [...] if:
1187         //    -- for all the non-static data members of its class that are of
1188         //       class type (or array thereof), each such class has a trivial
1189         //       default constructor.
1190         if (!FieldRec->hasTrivialDefaultConstructor())
1191           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1192 
1193         // C++0x [class.copy]p13:
1194         //   A copy/move constructor for class X is trivial if [...]
1195         //    [...]
1196         //    -- for each non-static data member of X that is of class type (or
1197         //       an array thereof), the constructor selected to copy/move that
1198         //       member is trivial;
1199         if (!FieldRec->hasTrivialCopyConstructor())
1200           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1201 
1202         if (!FieldRec->hasTrivialCopyConstructorForCall())
1203           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1204 
1205         // If the field doesn't have a simple move constructor, we'll eagerly
1206         // declare the move constructor for this class and we'll decide whether
1207         // it's trivial then.
1208         if (!FieldRec->hasTrivialMoveConstructor())
1209           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1210 
1211         if (!FieldRec->hasTrivialMoveConstructorForCall())
1212           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1213 
1214         // C++0x [class.copy]p27:
1215         //   A copy/move assignment operator for class X is trivial if [...]
1216         //    [...]
1217         //    -- for each non-static data member of X that is of class type (or
1218         //       an array thereof), the assignment operator selected to
1219         //       copy/move that member is trivial;
1220         if (!FieldRec->hasTrivialCopyAssignment())
1221           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1222         // If the field doesn't have a simple move assignment, we'll eagerly
1223         // declare the move assignment for this class and we'll decide whether
1224         // it's trivial then.
1225         if (!FieldRec->hasTrivialMoveAssignment())
1226           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1227 
1228         if (!FieldRec->hasTrivialDestructor())
1229           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1230         if (!FieldRec->hasTrivialDestructorForCall())
1231           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1232         if (!FieldRec->hasIrrelevantDestructor())
1233           data().HasIrrelevantDestructor = false;
1234         if (FieldRec->isAnyDestructorNoReturn())
1235           data().IsAnyDestructorNoReturn = true;
1236         if (FieldRec->hasObjectMember())
1237           setHasObjectMember(true);
1238         if (FieldRec->hasVolatileMember())
1239           setHasVolatileMember(true);
1240         if (FieldRec->getArgPassingRestrictions() ==
1241             RecordArgPassingKind::CanNeverPassInRegs)
1242           setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs);
1243 
1244         // C++0x [class]p7:
1245         //   A standard-layout class is a class that:
1246         //    -- has no non-static data members of type non-standard-layout
1247         //       class (or array of such types) [...]
1248         if (!FieldRec->isStandardLayout())
1249           data().IsStandardLayout = false;
1250         if (!FieldRec->isCXX11StandardLayout())
1251           data().IsCXX11StandardLayout = false;
1252 
1253         // C++2a [class]p7:
1254         //   A standard-layout class is a class that:
1255         //    [...]
1256         //    -- has no element of the set M(S) of types as a base class.
1257         if (data().IsStandardLayout &&
1258             (isUnion() || IsFirstField || IsZeroSize) &&
1259             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1260           data().IsStandardLayout = false;
1261 
1262         // C++11 [class]p7:
1263         //   A standard-layout class is a class that:
1264         //    -- has no base classes of the same type as the first non-static
1265         //       data member
1266         if (data().IsCXX11StandardLayout && IsFirstField) {
1267           // FIXME: We should check all base classes here, not just direct
1268           // base classes.
1269           for (const auto &BI : bases()) {
1270             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1271               data().IsCXX11StandardLayout = false;
1272               break;
1273             }
1274           }
1275         }
1276 
1277         // Keep track of the presence of mutable fields.
1278         if (FieldRec->hasMutableFields())
1279           data().HasMutableFields = true;
1280 
1281         if (Field->isMutable()) {
1282           // Our copy constructor/assignment might call something other than
1283           // the subobject's copy constructor/assignment if it's mutable and of
1284           // class type.
1285           data().NeedOverloadResolutionForCopyConstructor = true;
1286           data().NeedOverloadResolutionForCopyAssignment = true;
1287         }
1288 
1289         // C++11 [class.copy]p13:
1290         //   If the implicitly-defined constructor would satisfy the
1291         //   requirements of a constexpr constructor, the implicitly-defined
1292         //   constructor is constexpr.
1293         // C++11 [dcl.constexpr]p4:
1294         //    -- every constructor involved in initializing non-static data
1295         //       members [...] shall be a constexpr constructor
1296         if (!Field->hasInClassInitializer() &&
1297             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1298           // The standard requires any in-class initializer to be a constant
1299           // expression. We consider this to be a defect.
1300           data().DefaultedDefaultConstructorIsConstexpr = false;
1301 
1302         // C++11 [class.copy]p8:
1303         //   The implicitly-declared copy constructor for a class X will have
1304         //   the form 'X::X(const X&)' if each potentially constructed subobject
1305         //   of a class type M (or array thereof) has a copy constructor whose
1306         //   first parameter is of type 'const M&' or 'const volatile M&'.
1307         if (!FieldRec->hasCopyConstructorWithConstParam())
1308           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1309 
1310         // C++11 [class.copy]p18:
1311         //   The implicitly-declared copy assignment oeprator for a class X will
1312         //   have the form 'X& X::operator=(const X&)' if [...] for all the
1313         //   non-static data members of X that are of a class type M (or array
1314         //   thereof), each such class type has a copy assignment operator whose
1315         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1316         if (!FieldRec->hasCopyAssignmentWithConstParam())
1317           data().ImplicitCopyAssignmentHasConstParam = false;
1318 
1319         if (FieldRec->hasUninitializedReferenceMember() &&
1320             !Field->hasInClassInitializer())
1321           data().HasUninitializedReferenceMember = true;
1322 
1323         // C++11 [class.union]p8, DR1460:
1324         //   a non-static data member of an anonymous union that is a member of
1325         //   X is also a variant member of X.
1326         if (FieldRec->hasVariantMembers() &&
1327             Field->isAnonymousStructOrUnion())
1328           data().HasVariantMembers = true;
1329       }
1330     } else {
1331       // Base element type of field is a non-class type.
1332       if (!T->isLiteralType(Context) ||
1333           (!Field->hasInClassInitializer() && !isUnion() &&
1334            !Context.getLangOpts().CPlusPlus20))
1335         data().DefaultedDefaultConstructorIsConstexpr = false;
1336 
1337       // C++11 [class.copy]p23:
1338       //   A defaulted copy/move assignment operator for a class X is defined
1339       //   as deleted if X has:
1340       //    -- a non-static data member of const non-class type (or array
1341       //       thereof)
1342       if (T.isConstQualified()) {
1343         data().DefaultedCopyAssignmentIsDeleted = true;
1344         data().DefaultedMoveAssignmentIsDeleted = true;
1345       }
1346 
1347       // C++20 [temp.param]p7:
1348       //   A structural type is [...] a literal class type [for which] the
1349       //   types of all non-static data members are structural types or
1350       //   (possibly multidimensional) array thereof
1351       // We deal with class types elsewhere.
1352       if (!T->isStructuralType())
1353         data().StructuralIfLiteral = false;
1354     }
1355 
1356     // C++14 [meta.unary.prop]p4:
1357     //   T is a class type [...] with [...] no non-static data members other
1358     //   than subobjects of zero size
1359     if (data().Empty && !IsZeroSize)
1360       data().Empty = false;
1361   }
1362 
1363   // Handle using declarations of conversion functions.
1364   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1365     if (Shadow->getDeclName().getNameKind()
1366           == DeclarationName::CXXConversionFunctionName) {
1367       ASTContext &Ctx = getASTContext();
1368       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1369     }
1370   }
1371 
1372   if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1373     if (Using->getDeclName().getNameKind() ==
1374         DeclarationName::CXXConstructorName) {
1375       data().HasInheritedConstructor = true;
1376       // C++1z [dcl.init.aggr]p1:
1377       //  An aggregate is [...] a class [...] with no inherited constructors
1378       data().Aggregate = false;
1379     }
1380 
1381     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1382       data().HasInheritedAssignment = true;
1383   }
1384 }
1385 
1386 bool CXXRecordDecl::isLiteral() const {
1387   const LangOptions &LangOpts = getLangOpts();
1388   if (!(LangOpts.CPlusPlus20 ? hasConstexprDestructor()
1389                              : hasTrivialDestructor()))
1390     return false;
1391 
1392   if (hasNonLiteralTypeFieldsOrBases()) {
1393     // CWG2598
1394     // is an aggregate union type that has either no variant
1395     // members or at least one variant member of non-volatile literal type,
1396     if (!isUnion())
1397       return false;
1398     bool HasAtLeastOneLiteralMember =
1399         fields().empty() || any_of(fields(), [this](const FieldDecl *D) {
1400           return !D->getType().isVolatileQualified() &&
1401                  D->getType()->isLiteralType(getASTContext());
1402         });
1403     if (!HasAtLeastOneLiteralMember)
1404       return false;
1405   }
1406 
1407   return isAggregate() || (isLambda() && LangOpts.CPlusPlus17) ||
1408          hasConstexprNonCopyMoveConstructor() || hasTrivialDefaultConstructor();
1409 }
1410 
1411 void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) {
1412   DD->setIneligibleOrNotSelected(false);
1413   addedEligibleSpecialMemberFunction(DD, SMF_Destructor);
1414 }
1415 
1416 void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD,
1417                                                        unsigned SMKind) {
1418   // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is
1419   // a function template, but this needs CWG attention before we break ABI.
1420   // See https://github.com/llvm/llvm-project/issues/59206
1421 
1422   if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1423     if (DD->isUserProvided())
1424       data().HasIrrelevantDestructor = false;
1425     // If the destructor is explicitly defaulted and not trivial or not public
1426     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
1427     // finishedDefaultedOrDeletedMember.
1428 
1429     // C++11 [class.dtor]p5:
1430     //   A destructor is trivial if [...] the destructor is not virtual.
1431     if (DD->isVirtual()) {
1432       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1433       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1434     }
1435 
1436     if (DD->isNoReturn())
1437       data().IsAnyDestructorNoReturn = true;
1438   }
1439 
1440   if (!MD->isImplicit() && !MD->isUserProvided()) {
1441     // This method is user-declared but not user-provided. We can't work
1442     // out whether it's trivial yet (not until we get to the end of the
1443     // class). We'll handle this method in
1444     // finishedDefaultedOrDeletedMember.
1445   } else if (MD->isTrivial()) {
1446     data().HasTrivialSpecialMembers |= SMKind;
1447     data().HasTrivialSpecialMembersForCall |= SMKind;
1448   } else if (MD->isTrivialForCall()) {
1449     data().HasTrivialSpecialMembersForCall |= SMKind;
1450     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1451   } else {
1452     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1453     // If this is a user-provided function, do not set
1454     // DeclaredNonTrivialSpecialMembersForCall here since we don't know
1455     // yet whether the method would be considered non-trivial for the
1456     // purpose of calls (attribute "trivial_abi" can be dropped from the
1457     // class later, which can change the special method's triviality).
1458     if (!MD->isUserProvided())
1459       data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1460   }
1461 }
1462 
1463 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1464   assert(!D->isImplicit() && !D->isUserProvided());
1465 
1466   // The kind of special member this declaration is, if any.
1467   unsigned SMKind = 0;
1468 
1469   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1470     if (Constructor->isDefaultConstructor()) {
1471       SMKind |= SMF_DefaultConstructor;
1472       if (Constructor->isConstexpr())
1473         data().HasConstexprDefaultConstructor = true;
1474     }
1475     if (Constructor->isCopyConstructor())
1476       SMKind |= SMF_CopyConstructor;
1477     else if (Constructor->isMoveConstructor())
1478       SMKind |= SMF_MoveConstructor;
1479     else if (Constructor->isConstexpr())
1480       // We may now know that the constructor is constexpr.
1481       data().HasConstexprNonCopyMoveConstructor = true;
1482   } else if (isa<CXXDestructorDecl>(D)) {
1483     SMKind |= SMF_Destructor;
1484     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1485       data().HasIrrelevantDestructor = false;
1486   } else if (D->isCopyAssignmentOperator())
1487     SMKind |= SMF_CopyAssignment;
1488   else if (D->isMoveAssignmentOperator())
1489     SMKind |= SMF_MoveAssignment;
1490 
1491   // Update which trivial / non-trivial special members we have.
1492   // addedMember will have skipped this step for this member.
1493   if (!D->isIneligibleOrNotSelected()) {
1494     if (D->isTrivial())
1495       data().HasTrivialSpecialMembers |= SMKind;
1496     else
1497       data().DeclaredNonTrivialSpecialMembers |= SMKind;
1498   }
1499 }
1500 
1501 void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx,
1502                                                          Capture *CaptureList) {
1503   Captures.push_back(CaptureList);
1504   if (Captures.size() == 2) {
1505     // The TinyPtrVector member now needs destruction.
1506     Ctx.addDestruction(&Captures);
1507   }
1508 }
1509 
1510 void CXXRecordDecl::setCaptures(ASTContext &Context,
1511                                 ArrayRef<LambdaCapture> Captures) {
1512   CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
1513 
1514   // Copy captures.
1515   Data.NumCaptures = Captures.size();
1516   Data.NumExplicitCaptures = 0;
1517   auto *ToCapture = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
1518                                                       Captures.size());
1519   Data.AddCaptureList(Context, ToCapture);
1520   for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
1521     if (Captures[I].isExplicit())
1522       ++Data.NumExplicitCaptures;
1523 
1524     new (ToCapture) LambdaCapture(Captures[I]);
1525     ToCapture++;
1526   }
1527 
1528   if (!lambdaIsDefaultConstructibleAndAssignable())
1529     Data.DefaultedCopyAssignmentIsDeleted = true;
1530 }
1531 
1532 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1533   unsigned SMKind = 0;
1534 
1535   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1536     if (Constructor->isCopyConstructor())
1537       SMKind = SMF_CopyConstructor;
1538     else if (Constructor->isMoveConstructor())
1539       SMKind = SMF_MoveConstructor;
1540   } else if (isa<CXXDestructorDecl>(D))
1541     SMKind = SMF_Destructor;
1542 
1543   if (D->isTrivialForCall())
1544     data().HasTrivialSpecialMembersForCall |= SMKind;
1545   else
1546     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1547 }
1548 
1549 bool CXXRecordDecl::isCLike() const {
1550   if (getTagKind() == TagTypeKind::Class ||
1551       getTagKind() == TagTypeKind::Interface ||
1552       !TemplateOrInstantiation.isNull())
1553     return false;
1554   if (!hasDefinition())
1555     return true;
1556 
1557   return isPOD() && data().HasOnlyCMembers;
1558 }
1559 
1560 bool CXXRecordDecl::isGenericLambda() const {
1561   if (!isLambda()) return false;
1562   return getLambdaData().IsGenericLambda;
1563 }
1564 
1565 #ifndef NDEBUG
1566 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1567   for (auto *D : R)
1568     if (!declaresSameEntity(D, R.front()))
1569       return false;
1570   return true;
1571 }
1572 #endif
1573 
1574 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1575   if (!RD.isLambda()) return nullptr;
1576   DeclarationName Name =
1577     RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1578   DeclContext::lookup_result Calls = RD.lookup(Name);
1579 
1580   assert(!Calls.empty() && "Missing lambda call operator!");
1581   assert(allLookupResultsAreTheSame(Calls) &&
1582          "More than one lambda call operator!");
1583   return Calls.front();
1584 }
1585 
1586 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1587   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1588   return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1589 }
1590 
1591 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1592   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1593 
1594   if (CallOp == nullptr)
1595     return nullptr;
1596 
1597   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1598     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1599 
1600   return cast<CXXMethodDecl>(CallOp);
1601 }
1602 
1603 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1604   CXXMethodDecl *CallOp = getLambdaCallOperator();
1605   CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv();
1606   return getLambdaStaticInvoker(CC);
1607 }
1608 
1609 static DeclContext::lookup_result
1610 getLambdaStaticInvokers(const CXXRecordDecl &RD) {
1611   assert(RD.isLambda() && "Must be a lambda");
1612   DeclarationName Name =
1613       &RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
1614   return RD.lookup(Name);
1615 }
1616 
1617 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
1618   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
1619     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1620   return cast<CXXMethodDecl>(ND);
1621 }
1622 
1623 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
1624   if (!isLambda())
1625     return nullptr;
1626   DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
1627 
1628   for (NamedDecl *ND : Invoker) {
1629     const auto *FTy =
1630         cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>();
1631     if (FTy->getCallConv() == CC)
1632       return getInvokerAsMethod(ND);
1633   }
1634 
1635   return nullptr;
1636 }
1637 
1638 void CXXRecordDecl::getCaptureFields(
1639     llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1640     FieldDecl *&ThisCapture) const {
1641   Captures.clear();
1642   ThisCapture = nullptr;
1643 
1644   LambdaDefinitionData &Lambda = getLambdaData();
1645   for (const LambdaCapture *List : Lambda.Captures) {
1646     RecordDecl::field_iterator Field = field_begin();
1647     for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures;
1648          C != CEnd; ++C, ++Field) {
1649       if (C->capturesThis())
1650         ThisCapture = *Field;
1651       else if (C->capturesVariable())
1652         Captures[C->getCapturedVar()] = *Field;
1653     }
1654     assert(Field == field_end());
1655   }
1656 }
1657 
1658 TemplateParameterList *
1659 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1660   if (!isGenericLambda()) return nullptr;
1661   CXXMethodDecl *CallOp = getLambdaCallOperator();
1662   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1663     return Tmpl->getTemplateParameters();
1664   return nullptr;
1665 }
1666 
1667 ArrayRef<NamedDecl *>
1668 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1669   TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1670   if (!List)
1671     return {};
1672 
1673   assert(std::is_partitioned(List->begin(), List->end(),
1674                              [](const NamedDecl *D) { return !D->isImplicit(); })
1675          && "Explicit template params should be ordered before implicit ones");
1676 
1677   const auto ExplicitEnd = llvm::partition_point(
1678       *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1679   return llvm::ArrayRef(List->begin(), ExplicitEnd);
1680 }
1681 
1682 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1683   assert(isLambda() && "Not a lambda closure type!");
1684   ExternalASTSource *Source = getParentASTContext().getExternalSource();
1685   return getLambdaData().ContextDecl.get(Source);
1686 }
1687 
1688 void CXXRecordDecl::setLambdaNumbering(LambdaNumbering Numbering) {
1689   assert(isLambda() && "Not a lambda closure type!");
1690   getLambdaData().ManglingNumber = Numbering.ManglingNumber;
1691   if (Numbering.DeviceManglingNumber)
1692     getASTContext().DeviceLambdaManglingNumbers[this] =
1693         Numbering.DeviceManglingNumber;
1694   getLambdaData().IndexInContext = Numbering.IndexInContext;
1695   getLambdaData().ContextDecl = Numbering.ContextDecl;
1696   getLambdaData().HasKnownInternalLinkage = Numbering.HasKnownInternalLinkage;
1697 }
1698 
1699 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const {
1700   assert(isLambda() && "Not a lambda closure type!");
1701   return getASTContext().DeviceLambdaManglingNumbers.lookup(this);
1702 }
1703 
1704 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1705   QualType T =
1706       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1707           ->getConversionType();
1708   return Context.getCanonicalType(T);
1709 }
1710 
1711 /// Collect the visible conversions of a base class.
1712 ///
1713 /// \param Record a base class of the class we're considering
1714 /// \param InVirtual whether this base class is a virtual base (or a base
1715 ///   of a virtual base)
1716 /// \param Access the access along the inheritance path to this base
1717 /// \param ParentHiddenTypes the conversions provided by the inheritors
1718 ///   of this base
1719 /// \param Output the set to which to add conversions from non-virtual bases
1720 /// \param VOutput the set to which to add conversions from virtual bases
1721 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1722 ///   virtual base along some inheritance path
1723 static void CollectVisibleConversions(
1724     ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1725     AccessSpecifier Access,
1726     const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1727     ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1728     llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1729   // The set of types which have conversions in this class or its
1730   // subclasses.  As an optimization, we don't copy the derived set
1731   // unless it might change.
1732   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1733   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1734 
1735   // Collect the direct conversions and figure out which conversions
1736   // will be hidden in the subclasses.
1737   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1738   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1739   if (ConvI != ConvE) {
1740     HiddenTypesBuffer = ParentHiddenTypes;
1741     HiddenTypes = &HiddenTypesBuffer;
1742 
1743     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1744       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1745       bool Hidden = ParentHiddenTypes.count(ConvType);
1746       if (!Hidden)
1747         HiddenTypesBuffer.insert(ConvType);
1748 
1749       // If this conversion is hidden and we're in a virtual base,
1750       // remember that it's hidden along some inheritance path.
1751       if (Hidden && InVirtual)
1752         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1753 
1754       // If this conversion isn't hidden, add it to the appropriate output.
1755       else if (!Hidden) {
1756         AccessSpecifier IAccess
1757           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1758 
1759         if (InVirtual)
1760           VOutput.addDecl(I.getDecl(), IAccess);
1761         else
1762           Output.addDecl(Context, I.getDecl(), IAccess);
1763       }
1764     }
1765   }
1766 
1767   // Collect information recursively from any base classes.
1768   for (const auto &I : Record->bases()) {
1769     const auto *RT = I.getType()->getAs<RecordType>();
1770     if (!RT) continue;
1771 
1772     AccessSpecifier BaseAccess
1773       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1774     bool BaseInVirtual = InVirtual || I.isVirtual();
1775 
1776     auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1777     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1778                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1779   }
1780 }
1781 
1782 /// Collect the visible conversions of a class.
1783 ///
1784 /// This would be extremely straightforward if it weren't for virtual
1785 /// bases.  It might be worth special-casing that, really.
1786 static void CollectVisibleConversions(ASTContext &Context,
1787                                       const CXXRecordDecl *Record,
1788                                       ASTUnresolvedSet &Output) {
1789   // The collection of all conversions in virtual bases that we've
1790   // found.  These will be added to the output as long as they don't
1791   // appear in the hidden-conversions set.
1792   UnresolvedSet<8> VBaseCs;
1793 
1794   // The set of conversions in virtual bases that we've determined to
1795   // be hidden.
1796   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1797 
1798   // The set of types hidden by classes derived from this one.
1799   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1800 
1801   // Go ahead and collect the direct conversions and add them to the
1802   // hidden-types set.
1803   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1804   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1805   Output.append(Context, ConvI, ConvE);
1806   for (; ConvI != ConvE; ++ConvI)
1807     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1808 
1809   // Recursively collect conversions from base classes.
1810   for (const auto &I : Record->bases()) {
1811     const auto *RT = I.getType()->getAs<RecordType>();
1812     if (!RT) continue;
1813 
1814     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1815                               I.isVirtual(), I.getAccessSpecifier(),
1816                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1817   }
1818 
1819   // Add any unhidden conversions provided by virtual bases.
1820   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1821          I != E; ++I) {
1822     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1823       Output.addDecl(Context, I.getDecl(), I.getAccess());
1824   }
1825 }
1826 
1827 /// getVisibleConversionFunctions - get all conversion functions visible
1828 /// in current class; including conversion function templates.
1829 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1830 CXXRecordDecl::getVisibleConversionFunctions() const {
1831   ASTContext &Ctx = getASTContext();
1832 
1833   ASTUnresolvedSet *Set;
1834   if (bases_begin() == bases_end()) {
1835     // If root class, all conversions are visible.
1836     Set = &data().Conversions.get(Ctx);
1837   } else {
1838     Set = &data().VisibleConversions.get(Ctx);
1839     // If visible conversion list is not evaluated, evaluate it.
1840     if (!data().ComputedVisibleConversions) {
1841       CollectVisibleConversions(Ctx, this, *Set);
1842       data().ComputedVisibleConversions = true;
1843     }
1844   }
1845   return llvm::make_range(Set->begin(), Set->end());
1846 }
1847 
1848 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1849   // This operation is O(N) but extremely rare.  Sema only uses it to
1850   // remove UsingShadowDecls in a class that were followed by a direct
1851   // declaration, e.g.:
1852   //   class A : B {
1853   //     using B::operator int;
1854   //     operator int();
1855   //   };
1856   // This is uncommon by itself and even more uncommon in conjunction
1857   // with sufficiently large numbers of directly-declared conversions
1858   // that asymptotic behavior matters.
1859 
1860   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1861   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1862     if (Convs[I].getDecl() == ConvDecl) {
1863       Convs.erase(I);
1864       assert(!llvm::is_contained(Convs, ConvDecl) &&
1865              "conversion was found multiple times in unresolved set");
1866       return;
1867     }
1868   }
1869 
1870   llvm_unreachable("conversion not found in set!");
1871 }
1872 
1873 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1874   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1875     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1876 
1877   return nullptr;
1878 }
1879 
1880 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1881   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1882 }
1883 
1884 void
1885 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1886                                              TemplateSpecializationKind TSK) {
1887   assert(TemplateOrInstantiation.isNull() &&
1888          "Previous template or instantiation?");
1889   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1890   TemplateOrInstantiation
1891     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1892 }
1893 
1894 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1895   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1896 }
1897 
1898 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1899   TemplateOrInstantiation = Template;
1900 }
1901 
1902 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1903   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1904     return Spec->getSpecializationKind();
1905 
1906   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1907     return MSInfo->getTemplateSpecializationKind();
1908 
1909   return TSK_Undeclared;
1910 }
1911 
1912 void
1913 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1914   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1915     Spec->setSpecializationKind(TSK);
1916     return;
1917   }
1918 
1919   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1920     MSInfo->setTemplateSpecializationKind(TSK);
1921     return;
1922   }
1923 
1924   llvm_unreachable("Not a class template or member class specialization");
1925 }
1926 
1927 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1928   auto GetDefinitionOrSelf =
1929       [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1930     if (auto *Def = D->getDefinition())
1931       return Def;
1932     return D;
1933   };
1934 
1935   // If it's a class template specialization, find the template or partial
1936   // specialization from which it was instantiated.
1937   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1938     auto From = TD->getInstantiatedFrom();
1939     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1940       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1941         if (NewCTD->isMemberSpecialization())
1942           break;
1943         CTD = NewCTD;
1944       }
1945       return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1946     }
1947     if (auto *CTPSD =
1948             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1949       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1950         if (NewCTPSD->isMemberSpecialization())
1951           break;
1952         CTPSD = NewCTPSD;
1953       }
1954       return GetDefinitionOrSelf(CTPSD);
1955     }
1956   }
1957 
1958   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1959     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1960       const CXXRecordDecl *RD = this;
1961       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1962         RD = NewRD;
1963       return GetDefinitionOrSelf(RD);
1964     }
1965   }
1966 
1967   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1968          "couldn't find pattern for class template instantiation");
1969   return nullptr;
1970 }
1971 
1972 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1973   ASTContext &Context = getASTContext();
1974   QualType ClassType = Context.getTypeDeclType(this);
1975 
1976   DeclarationName Name
1977     = Context.DeclarationNames.getCXXDestructorName(
1978                                           Context.getCanonicalType(ClassType));
1979 
1980   DeclContext::lookup_result R = lookup(Name);
1981 
1982   // If a destructor was marked as not selected, we skip it. We don't always
1983   // have a selected destructor: dependent types, unnamed structs.
1984   for (auto *Decl : R) {
1985     auto* DD = dyn_cast<CXXDestructorDecl>(Decl);
1986     if (DD && !DD->isIneligibleOrNotSelected())
1987       return DD;
1988   }
1989   return nullptr;
1990 }
1991 
1992 static bool isDeclContextInNamespace(const DeclContext *DC) {
1993   while (!DC->isTranslationUnit()) {
1994     if (DC->isNamespace())
1995       return true;
1996     DC = DC->getParent();
1997   }
1998   return false;
1999 }
2000 
2001 bool CXXRecordDecl::isInterfaceLike() const {
2002   assert(hasDefinition() && "checking for interface-like without a definition");
2003   // All __interfaces are inheritently interface-like.
2004   if (isInterface())
2005     return true;
2006 
2007   // Interface-like types cannot have a user declared constructor, destructor,
2008   // friends, VBases, conversion functions, or fields.  Additionally, lambdas
2009   // cannot be interface types.
2010   if (isLambda() || hasUserDeclaredConstructor() ||
2011       hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
2012       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
2013     return false;
2014 
2015   // No interface-like type can have a method with a definition.
2016   for (const auto *const Method : methods())
2017     if (Method->isDefined() && !Method->isImplicit())
2018       return false;
2019 
2020   // Check "Special" types.
2021   const auto *Uuid = getAttr<UuidAttr>();
2022   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
2023   // extern C++ block directly in the TU.  These are only valid if in one
2024   // of these two situations.
2025   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
2026       !isDeclContextInNamespace(getDeclContext()) &&
2027       ((getName() == "IUnknown" &&
2028         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
2029        (getName() == "IDispatch" &&
2030         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
2031     if (getNumBases() > 0)
2032       return false;
2033     return true;
2034   }
2035 
2036   // FIXME: Any access specifiers is supposed to make this no longer interface
2037   // like.
2038 
2039   // If this isn't a 'special' type, it must have a single interface-like base.
2040   if (getNumBases() != 1)
2041     return false;
2042 
2043   const auto BaseSpec = *bases_begin();
2044   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
2045     return false;
2046   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
2047   if (Base->isInterface() || !Base->isInterfaceLike())
2048     return false;
2049   return true;
2050 }
2051 
2052 void CXXRecordDecl::completeDefinition() {
2053   completeDefinition(nullptr);
2054 }
2055 
2056 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
2057   RecordDecl::completeDefinition();
2058 
2059   // If the class may be abstract (but hasn't been marked as such), check for
2060   // any pure final overriders.
2061   if (mayBeAbstract()) {
2062     CXXFinalOverriderMap MyFinalOverriders;
2063     if (!FinalOverriders) {
2064       getFinalOverriders(MyFinalOverriders);
2065       FinalOverriders = &MyFinalOverriders;
2066     }
2067 
2068     bool Done = false;
2069     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
2070                                      MEnd = FinalOverriders->end();
2071          M != MEnd && !Done; ++M) {
2072       for (OverridingMethods::iterator SO = M->second.begin(),
2073                                     SOEnd = M->second.end();
2074            SO != SOEnd && !Done; ++SO) {
2075         assert(SO->second.size() > 0 &&
2076                "All virtual functions have overriding virtual functions");
2077 
2078         // C++ [class.abstract]p4:
2079         //   A class is abstract if it contains or inherits at least one
2080         //   pure virtual function for which the final overrider is pure
2081         //   virtual.
2082         if (SO->second.front().Method->isPureVirtual()) {
2083           data().Abstract = true;
2084           Done = true;
2085           break;
2086         }
2087       }
2088     }
2089   }
2090 
2091   // Set access bits correctly on the directly-declared conversions.
2092   for (conversion_iterator I = conversion_begin(), E = conversion_end();
2093        I != E; ++I)
2094     I.setAccess((*I)->getAccess());
2095 }
2096 
2097 bool CXXRecordDecl::mayBeAbstract() const {
2098   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
2099       isDependentContext())
2100     return false;
2101 
2102   for (const auto &B : bases()) {
2103     const auto *BaseDecl =
2104         cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
2105     if (BaseDecl->isAbstract())
2106       return true;
2107   }
2108 
2109   return false;
2110 }
2111 
2112 bool CXXRecordDecl::isEffectivelyFinal() const {
2113   auto *Def = getDefinition();
2114   if (!Def)
2115     return false;
2116   if (Def->hasAttr<FinalAttr>())
2117     return true;
2118   if (const auto *Dtor = Def->getDestructor())
2119     if (Dtor->hasAttr<FinalAttr>())
2120       return true;
2121   return false;
2122 }
2123 
2124 void CXXDeductionGuideDecl::anchor() {}
2125 
2126 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
2127   if ((getKind() != Other.getKind() ||
2128        getKind() == ExplicitSpecKind::Unresolved)) {
2129     if (getKind() == ExplicitSpecKind::Unresolved &&
2130         Other.getKind() == ExplicitSpecKind::Unresolved) {
2131       ODRHash SelfHash, OtherHash;
2132       SelfHash.AddStmt(getExpr());
2133       OtherHash.AddStmt(Other.getExpr());
2134       return SelfHash.CalculateHash() == OtherHash.CalculateHash();
2135     } else
2136       return false;
2137   }
2138   return true;
2139 }
2140 
2141 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
2142   switch (Function->getDeclKind()) {
2143   case Decl::Kind::CXXConstructor:
2144     return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
2145   case Decl::Kind::CXXConversion:
2146     return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
2147   case Decl::Kind::CXXDeductionGuide:
2148     return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
2149   default:
2150     return {};
2151   }
2152 }
2153 
2154 CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
2155     ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2156     ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
2157     TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor,
2158     DeductionCandidate Kind) {
2159   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
2160                                            TInfo, EndLocation, Ctor, Kind);
2161 }
2162 
2163 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
2164                                                                  unsigned ID) {
2165   return new (C, ID) CXXDeductionGuideDecl(
2166       C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2167       QualType(), nullptr, SourceLocation(), nullptr,
2168       DeductionCandidate::Normal);
2169 }
2170 
2171 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
2172     ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
2173   return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
2174 }
2175 
2176 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
2177                                                                unsigned ID) {
2178   return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
2179 }
2180 
2181 void CXXMethodDecl::anchor() {}
2182 
2183 bool CXXMethodDecl::isStatic() const {
2184   const CXXMethodDecl *MD = getCanonicalDecl();
2185 
2186   if (MD->getStorageClass() == SC_Static)
2187     return true;
2188 
2189   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
2190   return isStaticOverloadedOperator(OOK);
2191 }
2192 
2193 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
2194                                  const CXXMethodDecl *BaseMD) {
2195   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
2196     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
2197       return true;
2198     if (recursivelyOverrides(MD, BaseMD))
2199       return true;
2200   }
2201   return false;
2202 }
2203 
2204 CXXMethodDecl *
2205 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2206                                                      bool MayBeBase) {
2207   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2208     return this;
2209 
2210   // Lookup doesn't work for destructors, so handle them separately.
2211   if (isa<CXXDestructorDecl>(this)) {
2212     CXXMethodDecl *MD = RD->getDestructor();
2213     if (MD) {
2214       if (recursivelyOverrides(MD, this))
2215         return MD;
2216       if (MayBeBase && recursivelyOverrides(this, MD))
2217         return MD;
2218     }
2219     return nullptr;
2220   }
2221 
2222   for (auto *ND : RD->lookup(getDeclName())) {
2223     auto *MD = dyn_cast<CXXMethodDecl>(ND);
2224     if (!MD)
2225       continue;
2226     if (recursivelyOverrides(MD, this))
2227       return MD;
2228     if (MayBeBase && recursivelyOverrides(this, MD))
2229       return MD;
2230   }
2231 
2232   return nullptr;
2233 }
2234 
2235 CXXMethodDecl *
2236 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2237                                              bool MayBeBase) {
2238   if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2239     return MD;
2240 
2241   llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
2242   auto AddFinalOverrider = [&](CXXMethodDecl *D) {
2243     // If this function is overridden by a candidate final overrider, it is not
2244     // a final overrider.
2245     for (CXXMethodDecl *OtherD : FinalOverriders) {
2246       if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
2247         return;
2248     }
2249 
2250     // Other candidate final overriders might be overridden by this function.
2251     llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) {
2252       return recursivelyOverrides(D, OtherD);
2253     });
2254 
2255     FinalOverriders.push_back(D);
2256   };
2257 
2258   for (const auto &I : RD->bases()) {
2259     const RecordType *RT = I.getType()->getAs<RecordType>();
2260     if (!RT)
2261       continue;
2262     const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2263     if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
2264       AddFinalOverrider(D);
2265   }
2266 
2267   return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
2268 }
2269 
2270 CXXMethodDecl *
2271 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2272                       const DeclarationNameInfo &NameInfo, QualType T,
2273                       TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
2274                       bool isInline, ConstexprSpecKind ConstexprKind,
2275                       SourceLocation EndLocation,
2276                       Expr *TrailingRequiresClause) {
2277   return new (C, RD) CXXMethodDecl(
2278       CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2279       isInline, ConstexprKind, EndLocation, TrailingRequiresClause);
2280 }
2281 
2282 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2283   return new (C, ID) CXXMethodDecl(
2284       CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2285       QualType(), nullptr, SC_None, false, false,
2286       ConstexprSpecKind::Unspecified, SourceLocation(), nullptr);
2287 }
2288 
2289 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2290                                                      bool IsAppleKext) {
2291   assert(isVirtual() && "this method is expected to be virtual");
2292 
2293   // When building with -fapple-kext, all calls must go through the vtable since
2294   // the kernel linker can do runtime patching of vtables.
2295   if (IsAppleKext)
2296     return nullptr;
2297 
2298   // If the member function is marked 'final', we know that it can't be
2299   // overridden and can therefore devirtualize it unless it's pure virtual.
2300   if (hasAttr<FinalAttr>())
2301     return isPureVirtual() ? nullptr : this;
2302 
2303   // If Base is unknown, we cannot devirtualize.
2304   if (!Base)
2305     return nullptr;
2306 
2307   // If the base expression (after skipping derived-to-base conversions) is a
2308   // class prvalue, then we can devirtualize.
2309   Base = Base->getBestDynamicClassTypeExpr();
2310   if (Base->isPRValue() && Base->getType()->isRecordType())
2311     return this;
2312 
2313   // If we don't even know what we would call, we can't devirtualize.
2314   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2315   if (!BestDynamicDecl)
2316     return nullptr;
2317 
2318   // There may be a method corresponding to MD in a derived class.
2319   CXXMethodDecl *DevirtualizedMethod =
2320       getCorrespondingMethodInClass(BestDynamicDecl);
2321 
2322   // If there final overrider in the dynamic type is ambiguous, we can't
2323   // devirtualize this call.
2324   if (!DevirtualizedMethod)
2325     return nullptr;
2326 
2327   // If that method is pure virtual, we can't devirtualize. If this code is
2328   // reached, the result would be UB, not a direct call to the derived class
2329   // function, and we can't assume the derived class function is defined.
2330   if (DevirtualizedMethod->isPureVirtual())
2331     return nullptr;
2332 
2333   // If that method is marked final, we can devirtualize it.
2334   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2335     return DevirtualizedMethod;
2336 
2337   // Similarly, if the class itself or its destructor is marked 'final',
2338   // the class can't be derived from and we can therefore devirtualize the
2339   // member function call.
2340   if (BestDynamicDecl->isEffectivelyFinal())
2341     return DevirtualizedMethod;
2342 
2343   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2344     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2345       if (VD->getType()->isRecordType())
2346         // This is a record decl. We know the type and can devirtualize it.
2347         return DevirtualizedMethod;
2348 
2349     return nullptr;
2350   }
2351 
2352   // We can devirtualize calls on an object accessed by a class member access
2353   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2354   // a derived class object constructed in the same location.
2355   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2356     const ValueDecl *VD = ME->getMemberDecl();
2357     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2358   }
2359 
2360   // Likewise for calls on an object accessed by a (non-reference) pointer to
2361   // member access.
2362   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2363     if (BO->isPtrMemOp()) {
2364       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2365       if (MPT->getPointeeType()->isRecordType())
2366         return DevirtualizedMethod;
2367     }
2368   }
2369 
2370   // We can't devirtualize the call.
2371   return nullptr;
2372 }
2373 
2374 bool CXXMethodDecl::isUsualDeallocationFunction(
2375     SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2376   assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2377   if (getOverloadedOperator() != OO_Delete &&
2378       getOverloadedOperator() != OO_Array_Delete)
2379     return false;
2380 
2381   // C++ [basic.stc.dynamic.deallocation]p2:
2382   //   A template instance is never a usual deallocation function,
2383   //   regardless of its signature.
2384   if (getPrimaryTemplate())
2385     return false;
2386 
2387   // C++ [basic.stc.dynamic.deallocation]p2:
2388   //   If a class T has a member deallocation function named operator delete
2389   //   with exactly one parameter, then that function is a usual (non-placement)
2390   //   deallocation function. [...]
2391   if (getNumParams() == 1)
2392     return true;
2393   unsigned UsualParams = 1;
2394 
2395   // C++ P0722:
2396   //   A destroying operator delete is a usual deallocation function if
2397   //   removing the std::destroying_delete_t parameter and changing the
2398   //   first parameter type from T* to void* results in the signature of
2399   //   a usual deallocation function.
2400   if (isDestroyingOperatorDelete())
2401     ++UsualParams;
2402 
2403   // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2404   //   [...] If class T does not declare such an operator delete but does
2405   //   declare a member deallocation function named operator delete with
2406   //   exactly two parameters, the second of which has type std::size_t (18.1),
2407   //   then this function is a usual deallocation function.
2408   //
2409   // C++17 says a usual deallocation function is one with the signature
2410   //   (void* [, size_t] [, std::align_val_t] [, ...])
2411   // and all such functions are usual deallocation functions. It's not clear
2412   // that allowing varargs functions was intentional.
2413   ASTContext &Context = getASTContext();
2414   if (UsualParams < getNumParams() &&
2415       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2416                                      Context.getSizeType()))
2417     ++UsualParams;
2418 
2419   if (UsualParams < getNumParams() &&
2420       getParamDecl(UsualParams)->getType()->isAlignValT())
2421     ++UsualParams;
2422 
2423   if (UsualParams != getNumParams())
2424     return false;
2425 
2426   // In C++17 onwards, all potential usual deallocation functions are actual
2427   // usual deallocation functions. Honor this behavior when post-C++14
2428   // deallocation functions are offered as extensions too.
2429   // FIXME(EricWF): Destroying Delete should be a language option. How do we
2430   // handle when destroying delete is used prior to C++17?
2431   if (Context.getLangOpts().CPlusPlus17 ||
2432       Context.getLangOpts().AlignedAllocation ||
2433       isDestroyingOperatorDelete())
2434     return true;
2435 
2436   // This function is a usual deallocation function if there are no
2437   // single-parameter deallocation functions of the same kind.
2438   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2439   bool Result = true;
2440   for (const auto *D : R) {
2441     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2442       if (FD->getNumParams() == 1) {
2443         PreventedBy.push_back(FD);
2444         Result = false;
2445       }
2446     }
2447   }
2448   return Result;
2449 }
2450 
2451 bool CXXMethodDecl::isExplicitObjectMemberFunction() const {
2452   // C++2b [dcl.fct]p6:
2453   // An explicit object member function is a non-static member
2454   // function with an explicit object parameter
2455   return !isStatic() && hasCXXExplicitFunctionObjectParameter();
2456 }
2457 
2458 bool CXXMethodDecl::isImplicitObjectMemberFunction() const {
2459   return !isStatic() && !hasCXXExplicitFunctionObjectParameter();
2460 }
2461 
2462 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2463   // C++0x [class.copy]p17:
2464   //  A user-declared copy assignment operator X::operator= is a non-static
2465   //  non-template member function of class X with exactly one parameter of
2466   //  type X, X&, const X&, volatile X& or const volatile X&.
2467   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2468       /*non-static*/ isStatic() ||
2469 
2470       /*non-template*/ getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2471       getNumExplicitParams() != 1)
2472     return false;
2473 
2474   QualType ParamType = getNonObjectParameter(0)->getType();
2475   if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2476     ParamType = Ref->getPointeeType();
2477 
2478   ASTContext &Context = getASTContext();
2479   QualType ClassType
2480     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2481   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2482 }
2483 
2484 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2485   // C++0x [class.copy]p19:
2486   //  A user-declared move assignment operator X::operator= is a non-static
2487   //  non-template member function of class X with exactly one parameter of type
2488   //  X&&, const X&&, volatile X&&, or const volatile X&&.
2489   if (getOverloadedOperator() != OO_Equal || isStatic() ||
2490       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2491       getNumExplicitParams() != 1)
2492     return false;
2493 
2494   QualType ParamType = getNonObjectParameter(0)->getType();
2495   if (!ParamType->isRValueReferenceType())
2496     return false;
2497   ParamType = ParamType->getPointeeType();
2498 
2499   ASTContext &Context = getASTContext();
2500   QualType ClassType
2501     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2502   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2503 }
2504 
2505 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2506   assert(MD->isCanonicalDecl() && "Method is not canonical!");
2507   assert(!MD->getParent()->isDependentContext() &&
2508          "Can't add an overridden method to a class template!");
2509   assert(MD->isVirtual() && "Method is not virtual!");
2510 
2511   getASTContext().addOverriddenMethod(this, MD);
2512 }
2513 
2514 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2515   if (isa<CXXConstructorDecl>(this)) return nullptr;
2516   return getASTContext().overridden_methods_begin(this);
2517 }
2518 
2519 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2520   if (isa<CXXConstructorDecl>(this)) return nullptr;
2521   return getASTContext().overridden_methods_end(this);
2522 }
2523 
2524 unsigned CXXMethodDecl::size_overridden_methods() const {
2525   if (isa<CXXConstructorDecl>(this)) return 0;
2526   return getASTContext().overridden_methods_size(this);
2527 }
2528 
2529 CXXMethodDecl::overridden_method_range
2530 CXXMethodDecl::overridden_methods() const {
2531   if (isa<CXXConstructorDecl>(this))
2532     return overridden_method_range(nullptr, nullptr);
2533   return getASTContext().overridden_methods(this);
2534 }
2535 
2536 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2537                                   const CXXRecordDecl *Decl) {
2538   QualType ClassTy = C.getTypeDeclType(Decl);
2539   return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2540 }
2541 
2542 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2543                                     const CXXRecordDecl *Decl) {
2544   ASTContext &C = Decl->getASTContext();
2545   QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2546   return C.getLangOpts().HLSL ? C.getLValueReferenceType(ObjectTy)
2547                               : C.getPointerType(ObjectTy);
2548 }
2549 
2550 QualType CXXMethodDecl::getThisType() const {
2551   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2552   // If the member function is declared const, the type of this is const X*,
2553   // if the member function is declared volatile, the type of this is
2554   // volatile X*, and if the member function is declared const volatile,
2555   // the type of this is const volatile X*.
2556   assert(isInstance() && "No 'this' for static methods!");
2557   return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
2558                                     getParent());
2559 }
2560 
2561 QualType CXXMethodDecl::getFunctionObjectParameterReferenceType() const {
2562   if (isExplicitObjectMemberFunction())
2563     return parameters()[0]->getType();
2564 
2565   ASTContext &C = getParentASTContext();
2566   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2567   QualType Type = ::getThisObjectType(C, FPT, getParent());
2568   RefQualifierKind RK = FPT->getRefQualifier();
2569   if (RK == RefQualifierKind::RQ_RValue)
2570     return C.getRValueReferenceType(Type);
2571   return C.getLValueReferenceType(Type);
2572 }
2573 
2574 bool CXXMethodDecl::hasInlineBody() const {
2575   // If this function is a template instantiation, look at the template from
2576   // which it was instantiated.
2577   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2578   if (!CheckFn)
2579     CheckFn = this;
2580 
2581   const FunctionDecl *fn;
2582   return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2583          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2584 }
2585 
2586 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2587   const CXXRecordDecl *P = getParent();
2588   return P->isLambda() && getDeclName().isIdentifier() &&
2589          getName() == getLambdaStaticInvokerName();
2590 }
2591 
2592 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2593                                        TypeSourceInfo *TInfo, bool IsVirtual,
2594                                        SourceLocation L, Expr *Init,
2595                                        SourceLocation R,
2596                                        SourceLocation EllipsisLoc)
2597     : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc),
2598       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2599       IsWritten(false), SourceOrder(0) {}
2600 
2601 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2602                                        SourceLocation MemberLoc,
2603                                        SourceLocation L, Expr *Init,
2604                                        SourceLocation R)
2605     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2606       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2607       IsWritten(false), SourceOrder(0) {}
2608 
2609 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2610                                        IndirectFieldDecl *Member,
2611                                        SourceLocation MemberLoc,
2612                                        SourceLocation L, Expr *Init,
2613                                        SourceLocation R)
2614     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2615       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2616       IsWritten(false), SourceOrder(0) {}
2617 
2618 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2619                                        TypeSourceInfo *TInfo,
2620                                        SourceLocation L, Expr *Init,
2621                                        SourceLocation R)
2622     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2623       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2624 
2625 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2626   return Context.getAllocator()
2627                 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2628 }
2629 
2630 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2631   if (isBaseInitializer())
2632     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2633   else
2634     return {};
2635 }
2636 
2637 const Type *CXXCtorInitializer::getBaseClass() const {
2638   if (isBaseInitializer())
2639     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2640   else
2641     return nullptr;
2642 }
2643 
2644 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2645   if (isInClassMemberInitializer())
2646     return getAnyMember()->getLocation();
2647 
2648   if (isAnyMemberInitializer())
2649     return getMemberLocation();
2650 
2651   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2652     return TSInfo->getTypeLoc().getBeginLoc();
2653 
2654   return {};
2655 }
2656 
2657 SourceRange CXXCtorInitializer::getSourceRange() const {
2658   if (isInClassMemberInitializer()) {
2659     FieldDecl *D = getAnyMember();
2660     if (Expr *I = D->getInClassInitializer())
2661       return I->getSourceRange();
2662     return {};
2663   }
2664 
2665   return SourceRange(getSourceLocation(), getRParenLoc());
2666 }
2667 
2668 CXXConstructorDecl::CXXConstructorDecl(
2669     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2670     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2671     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2672     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2673     InheritedConstructor Inherited, Expr *TrailingRequiresClause)
2674     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2675                     SC_None, UsesFPIntrin, isInline, ConstexprKind,
2676                     SourceLocation(), TrailingRequiresClause) {
2677   setNumCtorInitializers(0);
2678   setInheritingConstructor(static_cast<bool>(Inherited));
2679   setImplicit(isImplicitlyDeclared);
2680   CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2681   if (Inherited)
2682     *getTrailingObjects<InheritedConstructor>() = Inherited;
2683   setExplicitSpecifier(ES);
2684 }
2685 
2686 void CXXConstructorDecl::anchor() {}
2687 
2688 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2689                                                            unsigned ID,
2690                                                            uint64_t AllocKind) {
2691   bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2692   bool isInheritingConstructor =
2693       static_cast<bool>(AllocKind & TAKInheritsConstructor);
2694   unsigned Extra =
2695       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2696           isInheritingConstructor, hasTrailingExplicit);
2697   auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2698       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2699       ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified,
2700       InheritedConstructor(), nullptr);
2701   Result->setInheritingConstructor(isInheritingConstructor);
2702   Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2703       hasTrailingExplicit;
2704   Result->setExplicitSpecifier(ExplicitSpecifier());
2705   return Result;
2706 }
2707 
2708 CXXConstructorDecl *CXXConstructorDecl::Create(
2709     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2710     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2711     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2712     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2713     InheritedConstructor Inherited, Expr *TrailingRequiresClause) {
2714   assert(NameInfo.getName().getNameKind()
2715          == DeclarationName::CXXConstructorName &&
2716          "Name must refer to a constructor");
2717   unsigned Extra =
2718       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2719           Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2720   return new (C, RD, Extra) CXXConstructorDecl(
2721       C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline,
2722       isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause);
2723 }
2724 
2725 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2726   return CtorInitializers.get(getASTContext().getExternalSource());
2727 }
2728 
2729 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2730   assert(isDelegatingConstructor() && "Not a delegating constructor!");
2731   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2732   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2733     return Construct->getConstructor();
2734 
2735   return nullptr;
2736 }
2737 
2738 bool CXXConstructorDecl::isDefaultConstructor() const {
2739   // C++ [class.default.ctor]p1:
2740   //   A default constructor for a class X is a constructor of class X for
2741   //   which each parameter that is not a function parameter pack has a default
2742   //   argument (including the case of a constructor with no parameters)
2743   return getMinRequiredArguments() == 0;
2744 }
2745 
2746 bool
2747 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2748   return isCopyOrMoveConstructor(TypeQuals) &&
2749          getParamDecl(0)->getType()->isLValueReferenceType();
2750 }
2751 
2752 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2753   return isCopyOrMoveConstructor(TypeQuals) &&
2754          getParamDecl(0)->getType()->isRValueReferenceType();
2755 }
2756 
2757 /// Determine whether this is a copy or move constructor.
2758 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2759   // C++ [class.copy]p2:
2760   //   A non-template constructor for class X is a copy constructor
2761   //   if its first parameter is of type X&, const X&, volatile X& or
2762   //   const volatile X&, and either there are no other parameters
2763   //   or else all other parameters have default arguments (8.3.6).
2764   // C++0x [class.copy]p3:
2765   //   A non-template constructor for class X is a move constructor if its
2766   //   first parameter is of type X&&, const X&&, volatile X&&, or
2767   //   const volatile X&&, and either there are no other parameters or else
2768   //   all other parameters have default arguments.
2769   if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2770       getDescribedFunctionTemplate() != nullptr)
2771     return false;
2772 
2773   const ParmVarDecl *Param = getParamDecl(0);
2774 
2775   // Do we have a reference type?
2776   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2777   if (!ParamRefType)
2778     return false;
2779 
2780   // Is it a reference to our class type?
2781   ASTContext &Context = getASTContext();
2782 
2783   CanQualType PointeeType
2784     = Context.getCanonicalType(ParamRefType->getPointeeType());
2785   CanQualType ClassTy
2786     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2787   if (PointeeType.getUnqualifiedType() != ClassTy)
2788     return false;
2789 
2790   // FIXME: other qualifiers?
2791 
2792   // We have a copy or move constructor.
2793   TypeQuals = PointeeType.getCVRQualifiers();
2794   return true;
2795 }
2796 
2797 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2798   // C++ [class.conv.ctor]p1:
2799   //   A constructor declared without the function-specifier explicit
2800   //   that can be called with a single parameter specifies a
2801   //   conversion from the type of its first parameter to the type of
2802   //   its class. Such a constructor is called a converting
2803   //   constructor.
2804   if (isExplicit() && !AllowExplicit)
2805     return false;
2806 
2807   // FIXME: This has nothing to do with the definition of converting
2808   // constructor, but is convenient for how we use this function in overload
2809   // resolution.
2810   return getNumParams() == 0
2811              ? getType()->castAs<FunctionProtoType>()->isVariadic()
2812              : getMinRequiredArguments() <= 1;
2813 }
2814 
2815 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2816   if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2817     return false;
2818 
2819   const ParmVarDecl *Param = getParamDecl(0);
2820 
2821   ASTContext &Context = getASTContext();
2822   CanQualType ParamType = Context.getCanonicalType(Param->getType());
2823 
2824   // Is it the same as our class type?
2825   CanQualType ClassTy
2826     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2827   if (ParamType.getUnqualifiedType() != ClassTy)
2828     return false;
2829 
2830   return true;
2831 }
2832 
2833 void CXXDestructorDecl::anchor() {}
2834 
2835 CXXDestructorDecl *
2836 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2837   return new (C, ID) CXXDestructorDecl(
2838       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2839       false, false, false, ConstexprSpecKind::Unspecified, nullptr);
2840 }
2841 
2842 CXXDestructorDecl *CXXDestructorDecl::Create(
2843     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2844     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2845     bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2846     ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) {
2847   assert(NameInfo.getName().getNameKind()
2848          == DeclarationName::CXXDestructorName &&
2849          "Name must refer to a destructor");
2850   return new (C, RD) CXXDestructorDecl(
2851       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline,
2852       isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause);
2853 }
2854 
2855 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2856   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2857   if (OD && !First->OperatorDelete) {
2858     First->OperatorDelete = OD;
2859     First->OperatorDeleteThisArg = ThisArg;
2860     if (auto *L = getASTMutationListener())
2861       L->ResolvedOperatorDelete(First, OD, ThisArg);
2862   }
2863 }
2864 
2865 void CXXConversionDecl::anchor() {}
2866 
2867 CXXConversionDecl *
2868 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2869   return new (C, ID) CXXConversionDecl(
2870       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2871       false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
2872       SourceLocation(), nullptr);
2873 }
2874 
2875 CXXConversionDecl *CXXConversionDecl::Create(
2876     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2877     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2878     bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2879     ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2880     Expr *TrailingRequiresClause) {
2881   assert(NameInfo.getName().getNameKind()
2882          == DeclarationName::CXXConversionFunctionName &&
2883          "Name must refer to a conversion function");
2884   return new (C, RD) CXXConversionDecl(
2885       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES,
2886       ConstexprKind, EndLocation, TrailingRequiresClause);
2887 }
2888 
2889 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2890   return isImplicit() && getParent()->isLambda() &&
2891          getConversionType()->isBlockPointerType();
2892 }
2893 
2894 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2895                                  SourceLocation LangLoc,
2896                                  LinkageSpecLanguageIDs lang, bool HasBraces)
2897     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2898       ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2899   setLanguage(lang);
2900   LinkageSpecDeclBits.HasBraces = HasBraces;
2901 }
2902 
2903 void LinkageSpecDecl::anchor() {}
2904 
2905 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, DeclContext *DC,
2906                                          SourceLocation ExternLoc,
2907                                          SourceLocation LangLoc,
2908                                          LinkageSpecLanguageIDs Lang,
2909                                          bool HasBraces) {
2910   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2911 }
2912 
2913 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2914                                                      unsigned ID) {
2915   return new (C, ID)
2916       LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(),
2917                       LinkageSpecLanguageIDs::C, false);
2918 }
2919 
2920 void UsingDirectiveDecl::anchor() {}
2921 
2922 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2923                                                SourceLocation L,
2924                                                SourceLocation NamespaceLoc,
2925                                            NestedNameSpecifierLoc QualifierLoc,
2926                                                SourceLocation IdentLoc,
2927                                                NamedDecl *Used,
2928                                                DeclContext *CommonAncestor) {
2929   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2930     Used = NS->getOriginalNamespace();
2931   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2932                                         IdentLoc, Used, CommonAncestor);
2933 }
2934 
2935 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2936                                                            unsigned ID) {
2937   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2938                                         SourceLocation(),
2939                                         NestedNameSpecifierLoc(),
2940                                         SourceLocation(), nullptr, nullptr);
2941 }
2942 
2943 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2944   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2945     return NA->getNamespace();
2946   return cast_or_null<NamespaceDecl>(NominatedNamespace);
2947 }
2948 
2949 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2950                              SourceLocation StartLoc, SourceLocation IdLoc,
2951                              IdentifierInfo *Id, NamespaceDecl *PrevDecl,
2952                              bool Nested)
2953     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2954       redeclarable_base(C), LocStart(StartLoc) {
2955   unsigned Flags = 0;
2956   if (Inline)
2957     Flags |= F_Inline;
2958   if (Nested)
2959     Flags |= F_Nested;
2960   AnonOrFirstNamespaceAndFlags = {nullptr, Flags};
2961   setPreviousDecl(PrevDecl);
2962 
2963   if (PrevDecl)
2964     AnonOrFirstNamespaceAndFlags.setPointer(PrevDecl->getOriginalNamespace());
2965 }
2966 
2967 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2968                                      bool Inline, SourceLocation StartLoc,
2969                                      SourceLocation IdLoc, IdentifierInfo *Id,
2970                                      NamespaceDecl *PrevDecl, bool Nested) {
2971   return new (C, DC)
2972       NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested);
2973 }
2974 
2975 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2976   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2977                                    SourceLocation(), nullptr, nullptr, false);
2978 }
2979 
2980 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2981   if (isFirstDecl())
2982     return this;
2983 
2984   return AnonOrFirstNamespaceAndFlags.getPointer();
2985 }
2986 
2987 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2988   if (isFirstDecl())
2989     return this;
2990 
2991   return AnonOrFirstNamespaceAndFlags.getPointer();
2992 }
2993 
2994 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2995 
2996 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2997   return getNextRedeclaration();
2998 }
2999 
3000 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
3001   return getPreviousDecl();
3002 }
3003 
3004 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
3005   return getMostRecentDecl();
3006 }
3007 
3008 void NamespaceAliasDecl::anchor() {}
3009 
3010 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
3011   return getNextRedeclaration();
3012 }
3013 
3014 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
3015   return getPreviousDecl();
3016 }
3017 
3018 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
3019   return getMostRecentDecl();
3020 }
3021 
3022 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
3023                                                SourceLocation UsingLoc,
3024                                                SourceLocation AliasLoc,
3025                                                IdentifierInfo *Alias,
3026                                            NestedNameSpecifierLoc QualifierLoc,
3027                                                SourceLocation IdentLoc,
3028                                                NamedDecl *Namespace) {
3029   // FIXME: Preserve the aliased namespace as written.
3030   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
3031     Namespace = NS->getOriginalNamespace();
3032   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
3033                                         QualifierLoc, IdentLoc, Namespace);
3034 }
3035 
3036 NamespaceAliasDecl *
3037 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3038   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
3039                                         SourceLocation(), nullptr,
3040                                         NestedNameSpecifierLoc(),
3041                                         SourceLocation(), nullptr);
3042 }
3043 
3044 void LifetimeExtendedTemporaryDecl::anchor() {}
3045 
3046 /// Retrieve the storage duration for the materialized temporary.
3047 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
3048   const ValueDecl *ExtendingDecl = getExtendingDecl();
3049   if (!ExtendingDecl)
3050     return SD_FullExpression;
3051   // FIXME: This is not necessarily correct for a temporary materialized
3052   // within a default initializer.
3053   if (isa<FieldDecl>(ExtendingDecl))
3054     return SD_Automatic;
3055   // FIXME: This only works because storage class specifiers are not allowed
3056   // on decomposition declarations.
3057   if (isa<BindingDecl>(ExtendingDecl))
3058     return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
3059                                                                  : SD_Static;
3060   return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3061 }
3062 
3063 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
3064   assert(getStorageDuration() == SD_Static &&
3065          "don't need to cache the computed value for this temporary");
3066   if (MayCreate && !Value) {
3067     Value = (new (getASTContext()) APValue);
3068     getASTContext().addDestruction(Value);
3069   }
3070   assert(Value && "may not be null");
3071   return Value;
3072 }
3073 
3074 void UsingShadowDecl::anchor() {}
3075 
3076 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
3077                                  SourceLocation Loc, DeclarationName Name,
3078                                  BaseUsingDecl *Introducer, NamedDecl *Target)
3079     : NamedDecl(K, DC, Loc, Name), redeclarable_base(C),
3080       UsingOrNextShadow(Introducer) {
3081   if (Target) {
3082     assert(!isa<UsingShadowDecl>(Target));
3083     setTargetDecl(Target);
3084   }
3085   setImplicit();
3086 }
3087 
3088 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
3089     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
3090       redeclarable_base(C) {}
3091 
3092 UsingShadowDecl *
3093 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3094   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
3095 }
3096 
3097 BaseUsingDecl *UsingShadowDecl::getIntroducer() const {
3098   const UsingShadowDecl *Shadow = this;
3099   while (const auto *NextShadow =
3100              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
3101     Shadow = NextShadow;
3102   return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow);
3103 }
3104 
3105 void ConstructorUsingShadowDecl::anchor() {}
3106 
3107 ConstructorUsingShadowDecl *
3108 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
3109                                    SourceLocation Loc, UsingDecl *Using,
3110                                    NamedDecl *Target, bool IsVirtual) {
3111   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
3112                                                 IsVirtual);
3113 }
3114 
3115 ConstructorUsingShadowDecl *
3116 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3117   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
3118 }
3119 
3120 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3121   return getIntroducer()->getQualifier()->getAsRecordDecl();
3122 }
3123 
3124 void BaseUsingDecl::anchor() {}
3125 
3126 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) {
3127   assert(!llvm::is_contained(shadows(), S) && "declaration already in set");
3128   assert(S->getIntroducer() == this);
3129 
3130   if (FirstUsingShadow.getPointer())
3131     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
3132   FirstUsingShadow.setPointer(S);
3133 }
3134 
3135 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) {
3136   assert(llvm::is_contained(shadows(), S) && "declaration not in set");
3137   assert(S->getIntroducer() == this);
3138 
3139   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3140 
3141   if (FirstUsingShadow.getPointer() == S) {
3142     FirstUsingShadow.setPointer(
3143       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
3144     S->UsingOrNextShadow = this;
3145     return;
3146   }
3147 
3148   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
3149   while (Prev->UsingOrNextShadow != S)
3150     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
3151   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
3152   S->UsingOrNextShadow = this;
3153 }
3154 
3155 void UsingDecl::anchor() {}
3156 
3157 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
3158                              NestedNameSpecifierLoc QualifierLoc,
3159                              const DeclarationNameInfo &NameInfo,
3160                              bool HasTypename) {
3161   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
3162 }
3163 
3164 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3165   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
3166                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
3167                                false);
3168 }
3169 
3170 SourceRange UsingDecl::getSourceRange() const {
3171   SourceLocation Begin = isAccessDeclaration()
3172     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3173   return SourceRange(Begin, getNameInfo().getEndLoc());
3174 }
3175 
3176 void UsingEnumDecl::anchor() {}
3177 
3178 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC,
3179                                      SourceLocation UL,
3180                                      SourceLocation EL,
3181                                      SourceLocation NL,
3182                                      TypeSourceInfo *EnumType) {
3183   assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl()));
3184   return new (C, DC)
3185       UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType);
3186 }
3187 
3188 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3189   return new (C, ID)
3190       UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(),
3191                     SourceLocation(), SourceLocation(), nullptr);
3192 }
3193 
3194 SourceRange UsingEnumDecl::getSourceRange() const {
3195   return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc());
3196 }
3197 
3198 void UsingPackDecl::anchor() {}
3199 
3200 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
3201                                      NamedDecl *InstantiatedFrom,
3202                                      ArrayRef<NamedDecl *> UsingDecls) {
3203   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
3204   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
3205 }
3206 
3207 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3208                                                  unsigned NumExpansions) {
3209   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
3210   auto *Result =
3211       new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, std::nullopt);
3212   Result->NumExpansions = NumExpansions;
3213   auto *Trail = Result->getTrailingObjects<NamedDecl *>();
3214   for (unsigned I = 0; I != NumExpansions; ++I)
3215     new (Trail + I) NamedDecl*(nullptr);
3216   return Result;
3217 }
3218 
3219 void UnresolvedUsingValueDecl::anchor() {}
3220 
3221 UnresolvedUsingValueDecl *
3222 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
3223                                  SourceLocation UsingLoc,
3224                                  NestedNameSpecifierLoc QualifierLoc,
3225                                  const DeclarationNameInfo &NameInfo,
3226                                  SourceLocation EllipsisLoc) {
3227   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
3228                                               QualifierLoc, NameInfo,
3229                                               EllipsisLoc);
3230 }
3231 
3232 UnresolvedUsingValueDecl *
3233 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3234   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
3235                                               SourceLocation(),
3236                                               NestedNameSpecifierLoc(),
3237                                               DeclarationNameInfo(),
3238                                               SourceLocation());
3239 }
3240 
3241 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
3242   SourceLocation Begin = isAccessDeclaration()
3243     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3244   return SourceRange(Begin, getNameInfo().getEndLoc());
3245 }
3246 
3247 void UnresolvedUsingTypenameDecl::anchor() {}
3248 
3249 UnresolvedUsingTypenameDecl *
3250 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3251                                     SourceLocation UsingLoc,
3252                                     SourceLocation TypenameLoc,
3253                                     NestedNameSpecifierLoc QualifierLoc,
3254                                     SourceLocation TargetNameLoc,
3255                                     DeclarationName TargetName,
3256                                     SourceLocation EllipsisLoc) {
3257   return new (C, DC) UnresolvedUsingTypenameDecl(
3258       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3259       TargetName.getAsIdentifierInfo(), EllipsisLoc);
3260 }
3261 
3262 UnresolvedUsingTypenameDecl *
3263 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3264   return new (C, ID) UnresolvedUsingTypenameDecl(
3265       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3266       SourceLocation(), nullptr, SourceLocation());
3267 }
3268 
3269 UnresolvedUsingIfExistsDecl *
3270 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC,
3271                                     SourceLocation Loc, DeclarationName Name) {
3272   return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name);
3273 }
3274 
3275 UnresolvedUsingIfExistsDecl *
3276 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) {
3277   return new (Ctx, ID)
3278       UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName());
3279 }
3280 
3281 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC,
3282                                                          SourceLocation Loc,
3283                                                          DeclarationName Name)
3284     : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {}
3285 
3286 void UnresolvedUsingIfExistsDecl::anchor() {}
3287 
3288 void StaticAssertDecl::anchor() {}
3289 
3290 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3291                                            SourceLocation StaticAssertLoc,
3292                                            Expr *AssertExpr, Expr *Message,
3293                                            SourceLocation RParenLoc,
3294                                            bool Failed) {
3295   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3296                                       RParenLoc, Failed);
3297 }
3298 
3299 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3300                                                        unsigned ID) {
3301   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3302                                       nullptr, SourceLocation(), false);
3303 }
3304 
3305 VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() {
3306   assert((isa<VarDecl, BindingDecl>(this)) &&
3307          "expected a VarDecl or a BindingDecl");
3308   if (auto *Var = llvm::dyn_cast<VarDecl>(this))
3309     return Var;
3310   if (auto *BD = llvm::dyn_cast<BindingDecl>(this))
3311     return llvm::dyn_cast<VarDecl>(BD->getDecomposedDecl());
3312   return nullptr;
3313 }
3314 
3315 void BindingDecl::anchor() {}
3316 
3317 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3318                                  SourceLocation IdLoc, IdentifierInfo *Id) {
3319   return new (C, DC) BindingDecl(DC, IdLoc, Id);
3320 }
3321 
3322 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3323   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3324 }
3325 
3326 VarDecl *BindingDecl::getHoldingVar() const {
3327   Expr *B = getBinding();
3328   if (!B)
3329     return nullptr;
3330   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3331   if (!DRE)
3332     return nullptr;
3333 
3334   auto *VD = cast<VarDecl>(DRE->getDecl());
3335   assert(VD->isImplicit() && "holding var for binding decl not implicit");
3336   return VD;
3337 }
3338 
3339 void DecompositionDecl::anchor() {}
3340 
3341 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3342                                              SourceLocation StartLoc,
3343                                              SourceLocation LSquareLoc,
3344                                              QualType T, TypeSourceInfo *TInfo,
3345                                              StorageClass SC,
3346                                              ArrayRef<BindingDecl *> Bindings) {
3347   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3348   return new (C, DC, Extra)
3349       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3350 }
3351 
3352 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3353                                                          unsigned ID,
3354                                                          unsigned NumBindings) {
3355   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3356   auto *Result = new (C, ID, Extra)
3357       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3358                         QualType(), nullptr, StorageClass(), std::nullopt);
3359   // Set up and clean out the bindings array.
3360   Result->NumBindings = NumBindings;
3361   auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3362   for (unsigned I = 0; I != NumBindings; ++I)
3363     new (Trail + I) BindingDecl*(nullptr);
3364   return Result;
3365 }
3366 
3367 void DecompositionDecl::printName(llvm::raw_ostream &OS,
3368                                   const PrintingPolicy &Policy) const {
3369   OS << '[';
3370   bool Comma = false;
3371   for (const auto *B : bindings()) {
3372     if (Comma)
3373       OS << ", ";
3374     B->printName(OS, Policy);
3375     Comma = true;
3376   }
3377   OS << ']';
3378 }
3379 
3380 void MSPropertyDecl::anchor() {}
3381 
3382 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3383                                        SourceLocation L, DeclarationName N,
3384                                        QualType T, TypeSourceInfo *TInfo,
3385                                        SourceLocation StartL,
3386                                        IdentifierInfo *Getter,
3387                                        IdentifierInfo *Setter) {
3388   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3389 }
3390 
3391 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3392                                                    unsigned ID) {
3393   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3394                                     DeclarationName(), QualType(), nullptr,
3395                                     SourceLocation(), nullptr, nullptr);
3396 }
3397 
3398 void MSGuidDecl::anchor() {}
3399 
3400 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
3401     : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
3402       PartVal(P) {}
3403 
3404 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
3405   DeclContext *DC = C.getTranslationUnitDecl();
3406   return new (C, DC) MSGuidDecl(DC, T, P);
3407 }
3408 
3409 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3410   return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
3411 }
3412 
3413 void MSGuidDecl::printName(llvm::raw_ostream &OS,
3414                            const PrintingPolicy &) const {
3415   OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
3416                      PartVal.Part1, PartVal.Part2, PartVal.Part3);
3417   unsigned I = 0;
3418   for (uint8_t Byte : PartVal.Part4And5) {
3419     OS << llvm::format("%02" PRIx8, Byte);
3420     if (++I == 2)
3421       OS << '-';
3422   }
3423   OS << '}';
3424 }
3425 
3426 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
3427 static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
3428   // FIXME: We only need to check this once, not once each time we compute a
3429   // GUID APValue.
3430   using MatcherRef = llvm::function_ref<bool(QualType)>;
3431 
3432   auto IsInt = [&Ctx](unsigned N) {
3433     return [&Ctx, N](QualType T) {
3434       return T->isUnsignedIntegerOrEnumerationType() &&
3435              Ctx.getIntWidth(T) == N;
3436     };
3437   };
3438 
3439   auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
3440     return [&Ctx, Elem, N](QualType T) {
3441       const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
3442       return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
3443     };
3444   };
3445 
3446   auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
3447     return [Fields](QualType T) {
3448       const RecordDecl *RD = T->getAsRecordDecl();
3449       if (!RD || RD->isUnion())
3450         return false;
3451       RD = RD->getDefinition();
3452       if (!RD)
3453         return false;
3454       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3455         if (CXXRD->getNumBases())
3456           return false;
3457       auto MatcherIt = Fields.begin();
3458       for (const FieldDecl *FD : RD->fields()) {
3459         if (FD->isUnnamedBitfield()) continue;
3460         if (FD->isBitField() || MatcherIt == Fields.end() ||
3461             !(*MatcherIt)(FD->getType()))
3462           return false;
3463         ++MatcherIt;
3464       }
3465       return MatcherIt == Fields.end();
3466     };
3467   };
3468 
3469   // We expect an {i32, i16, i16, [8 x i8]}.
3470   return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
3471 }
3472 
3473 APValue &MSGuidDecl::getAsAPValue() const {
3474   if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3475     using llvm::APInt;
3476     using llvm::APSInt;
3477     APVal = APValue(APValue::UninitStruct(), 0, 4);
3478     APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
3479     APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
3480     APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
3481     APValue &Arr = APVal.getStructField(3) =
3482         APValue(APValue::UninitArray(), 8, 8);
3483     for (unsigned I = 0; I != 8; ++I) {
3484       Arr.getArrayInitializedElt(I) =
3485           APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
3486     }
3487     // Register this APValue to be destroyed if necessary. (Note that the
3488     // MSGuidDecl destructor is never run.)
3489     getASTContext().addDestruction(&APVal);
3490   }
3491 
3492   return APVal;
3493 }
3494 
3495 void UnnamedGlobalConstantDecl::anchor() {}
3496 
3497 UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C,
3498                                                      DeclContext *DC,
3499                                                      QualType Ty,
3500                                                      const APValue &Val)
3501     : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(),
3502                 DeclarationName(), Ty),
3503       Value(Val) {
3504   // Cleanup the embedded APValue if required (note that our destructor is never
3505   // run)
3506   if (Value.needsCleanup())
3507     C.addDestruction(&Value);
3508 }
3509 
3510 UnnamedGlobalConstantDecl *
3511 UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T,
3512                                   const APValue &Value) {
3513   DeclContext *DC = C.getTranslationUnitDecl();
3514   return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value);
3515 }
3516 
3517 UnnamedGlobalConstantDecl *
3518 UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3519   return new (C, ID)
3520       UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue());
3521 }
3522 
3523 void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS,
3524                                           const PrintingPolicy &) const {
3525   OS << "unnamed-global-constant";
3526 }
3527 
3528 static const char *getAccessName(AccessSpecifier AS) {
3529   switch (AS) {
3530     case AS_none:
3531       llvm_unreachable("Invalid access specifier!");
3532     case AS_public:
3533       return "public";
3534     case AS_private:
3535       return "private";
3536     case AS_protected:
3537       return "protected";
3538   }
3539   llvm_unreachable("Invalid access specifier!");
3540 }
3541 
3542 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
3543                                              AccessSpecifier AS) {
3544   return DB << getAccessName(AS);
3545 }
3546