1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the C++ related Decl classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/DeclCXX.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/ASTUnresolvedSet.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/DeclarationName.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/LambdaCapture.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/ODRHash.h" 28 #include "clang/AST/Type.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/AST/UnresolvedSet.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/IdentifierTable.h" 33 #include "clang/Basic/LLVM.h" 34 #include "clang/Basic/LangOptions.h" 35 #include "clang/Basic/OperatorKinds.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 52 using namespace clang; 53 54 //===----------------------------------------------------------------------===// 55 // Decl Allocation/Deallocation Method Implementations 56 //===----------------------------------------------------------------------===// 57 58 void AccessSpecDecl::anchor() {} 59 60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 61 return new (C, ID) AccessSpecDecl(EmptyShell()); 62 } 63 64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { 65 ExternalASTSource *Source = C.getExternalSource(); 66 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); 67 assert(Source && "getFromExternalSource with no external source"); 68 69 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) 70 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( 71 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); 72 Impl.Decls.setLazy(false); 73 } 74 75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) 76 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), 77 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), 78 Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), 79 HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), 80 HasPrivateFields(false), HasProtectedFields(false), 81 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), 82 HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false), 83 HasUninitializedReferenceMember(false), HasUninitializedFields(false), 84 HasInheritedConstructor(false), HasInheritedDefaultConstructor(false), 85 HasInheritedAssignment(false), 86 NeedOverloadResolutionForCopyConstructor(false), 87 NeedOverloadResolutionForMoveConstructor(false), 88 NeedOverloadResolutionForCopyAssignment(false), 89 NeedOverloadResolutionForMoveAssignment(false), 90 NeedOverloadResolutionForDestructor(false), 91 DefaultedCopyConstructorIsDeleted(false), 92 DefaultedMoveConstructorIsDeleted(false), 93 DefaultedCopyAssignmentIsDeleted(false), 94 DefaultedMoveAssignmentIsDeleted(false), 95 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), 96 HasTrivialSpecialMembersForCall(SMF_All), 97 DeclaredNonTrivialSpecialMembers(0), 98 DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), 99 HasConstexprNonCopyMoveConstructor(false), 100 HasDefaultedDefaultConstructor(false), 101 DefaultedDefaultConstructorIsConstexpr(true), 102 HasConstexprDefaultConstructor(false), 103 DefaultedDestructorIsConstexpr(true), 104 HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true), 105 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), 106 ImplicitCopyConstructorCanHaveConstParamForVBase(true), 107 ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), 108 ImplicitCopyAssignmentHasConstParam(true), 109 HasDeclaredCopyConstructorWithConstParam(false), 110 HasDeclaredCopyAssignmentWithConstParam(false), 111 IsAnyDestructorNoReturn(false), IsLambda(false), 112 IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), 113 HasODRHash(false), Definition(D) {} 114 115 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { 116 return Bases.get(Definition->getASTContext().getExternalSource()); 117 } 118 119 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { 120 return VBases.get(Definition->getASTContext().getExternalSource()); 121 } 122 123 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, 124 DeclContext *DC, SourceLocation StartLoc, 125 SourceLocation IdLoc, IdentifierInfo *Id, 126 CXXRecordDecl *PrevDecl) 127 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), 128 DefinitionData(PrevDecl ? PrevDecl->DefinitionData 129 : nullptr) {} 130 131 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, 132 DeclContext *DC, SourceLocation StartLoc, 133 SourceLocation IdLoc, IdentifierInfo *Id, 134 CXXRecordDecl *PrevDecl, 135 bool DelayTypeCreation) { 136 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, 137 PrevDecl); 138 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 139 140 // FIXME: DelayTypeCreation seems like such a hack 141 if (!DelayTypeCreation) 142 C.getTypeDeclType(R, PrevDecl); 143 return R; 144 } 145 146 CXXRecordDecl * 147 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, 148 TypeSourceInfo *Info, SourceLocation Loc, 149 unsigned DependencyKind, bool IsGeneric, 150 LambdaCaptureDefault CaptureDefault) { 151 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, 152 nullptr, nullptr); 153 R->setBeingDefined(true); 154 R->DefinitionData = new (C) struct LambdaDefinitionData( 155 R, Info, DependencyKind, IsGeneric, CaptureDefault); 156 R->setMayHaveOutOfDateDef(false); 157 R->setImplicit(true); 158 159 C.getTypeDeclType(R, /*PrevDecl=*/nullptr); 160 return R; 161 } 162 163 CXXRecordDecl * 164 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 165 auto *R = new (C, ID) CXXRecordDecl( 166 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), 167 nullptr, nullptr); 168 R->setMayHaveOutOfDateDef(false); 169 return R; 170 } 171 172 /// Determine whether a class has a repeated base class. This is intended for 173 /// use when determining if a class is standard-layout, so makes no attempt to 174 /// handle virtual bases. 175 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { 176 llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; 177 SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; 178 while (!WorkList.empty()) { 179 const CXXRecordDecl *RD = WorkList.pop_back_val(); 180 if (RD->getTypeForDecl()->isDependentType()) 181 continue; 182 for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { 183 if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { 184 if (!SeenBaseTypes.insert(B).second) 185 return true; 186 WorkList.push_back(B); 187 } 188 } 189 } 190 return false; 191 } 192 193 void 194 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, 195 unsigned NumBases) { 196 ASTContext &C = getASTContext(); 197 198 if (!data().Bases.isOffset() && data().NumBases > 0) 199 C.Deallocate(data().getBases()); 200 201 if (NumBases) { 202 if (!C.getLangOpts().CPlusPlus17) { 203 // C++ [dcl.init.aggr]p1: 204 // An aggregate is [...] a class with [...] no base classes [...]. 205 data().Aggregate = false; 206 } 207 208 // C++ [class]p4: 209 // A POD-struct is an aggregate class... 210 data().PlainOldData = false; 211 } 212 213 // The set of seen virtual base types. 214 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; 215 216 // The virtual bases of this class. 217 SmallVector<const CXXBaseSpecifier *, 8> VBases; 218 219 data().Bases = new(C) CXXBaseSpecifier [NumBases]; 220 data().NumBases = NumBases; 221 for (unsigned i = 0; i < NumBases; ++i) { 222 data().getBases()[i] = *Bases[i]; 223 // Keep track of inherited vbases for this base class. 224 const CXXBaseSpecifier *Base = Bases[i]; 225 QualType BaseType = Base->getType(); 226 // Skip dependent types; we can't do any checking on them now. 227 if (BaseType->isDependentType()) 228 continue; 229 auto *BaseClassDecl = 230 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 231 232 // C++2a [class]p7: 233 // A standard-layout class is a class that: 234 // [...] 235 // -- has all non-static data members and bit-fields in the class and 236 // its base classes first declared in the same class 237 if (BaseClassDecl->data().HasBasesWithFields || 238 !BaseClassDecl->field_empty()) { 239 if (data().HasBasesWithFields) 240 // Two bases have members or bit-fields: not standard-layout. 241 data().IsStandardLayout = false; 242 data().HasBasesWithFields = true; 243 } 244 245 // C++11 [class]p7: 246 // A standard-layout class is a class that: 247 // -- [...] has [...] at most one base class with non-static data 248 // members 249 if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || 250 BaseClassDecl->hasDirectFields()) { 251 if (data().HasBasesWithNonStaticDataMembers) 252 data().IsCXX11StandardLayout = false; 253 data().HasBasesWithNonStaticDataMembers = true; 254 } 255 256 if (!BaseClassDecl->isEmpty()) { 257 // C++14 [meta.unary.prop]p4: 258 // T is a class type [...] with [...] no base class B for which 259 // is_empty<B>::value is false. 260 data().Empty = false; 261 } 262 263 // C++1z [dcl.init.agg]p1: 264 // An aggregate is a class with [...] no private or protected base classes 265 if (Base->getAccessSpecifier() != AS_public) { 266 data().Aggregate = false; 267 268 // C++20 [temp.param]p7: 269 // A structural type is [...] a literal class type with [...] all base 270 // classes [...] public 271 data().StructuralIfLiteral = false; 272 } 273 274 // C++ [class.virtual]p1: 275 // A class that declares or inherits a virtual function is called a 276 // polymorphic class. 277 if (BaseClassDecl->isPolymorphic()) { 278 data().Polymorphic = true; 279 280 // An aggregate is a class with [...] no virtual functions. 281 data().Aggregate = false; 282 } 283 284 // C++0x [class]p7: 285 // A standard-layout class is a class that: [...] 286 // -- has no non-standard-layout base classes 287 if (!BaseClassDecl->isStandardLayout()) 288 data().IsStandardLayout = false; 289 if (!BaseClassDecl->isCXX11StandardLayout()) 290 data().IsCXX11StandardLayout = false; 291 292 // Record if this base is the first non-literal field or base. 293 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) 294 data().HasNonLiteralTypeFieldsOrBases = true; 295 296 // Now go through all virtual bases of this base and add them. 297 for (const auto &VBase : BaseClassDecl->vbases()) { 298 // Add this base if it's not already in the list. 299 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { 300 VBases.push_back(&VBase); 301 302 // C++11 [class.copy]p8: 303 // The implicitly-declared copy constructor for a class X will have 304 // the form 'X::X(const X&)' if each [...] virtual base class B of X 305 // has a copy constructor whose first parameter is of type 306 // 'const B&' or 'const volatile B&' [...] 307 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) 308 if (!VBaseDecl->hasCopyConstructorWithConstParam()) 309 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 310 311 // C++1z [dcl.init.agg]p1: 312 // An aggregate is a class with [...] no virtual base classes 313 data().Aggregate = false; 314 } 315 } 316 317 if (Base->isVirtual()) { 318 // Add this base if it's not already in the list. 319 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) 320 VBases.push_back(Base); 321 322 // C++14 [meta.unary.prop] is_empty: 323 // T is a class type, but not a union type, with ... no virtual base 324 // classes 325 data().Empty = false; 326 327 // C++1z [dcl.init.agg]p1: 328 // An aggregate is a class with [...] no virtual base classes 329 data().Aggregate = false; 330 331 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 332 // A [default constructor, copy/move constructor, or copy/move assignment 333 // operator for a class X] is trivial [...] if: 334 // -- class X has [...] no virtual base classes 335 data().HasTrivialSpecialMembers &= SMF_Destructor; 336 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 337 338 // C++0x [class]p7: 339 // A standard-layout class is a class that: [...] 340 // -- has [...] no virtual base classes 341 data().IsStandardLayout = false; 342 data().IsCXX11StandardLayout = false; 343 344 // C++20 [dcl.constexpr]p3: 345 // In the definition of a constexpr function [...] 346 // -- if the function is a constructor or destructor, 347 // its class shall not have any virtual base classes 348 data().DefaultedDefaultConstructorIsConstexpr = false; 349 data().DefaultedDestructorIsConstexpr = false; 350 351 // C++1z [class.copy]p8: 352 // The implicitly-declared copy constructor for a class X will have 353 // the form 'X::X(const X&)' if each potentially constructed subobject 354 // has a copy constructor whose first parameter is of type 355 // 'const B&' or 'const volatile B&' [...] 356 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 357 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 358 } else { 359 // C++ [class.ctor]p5: 360 // A default constructor is trivial [...] if: 361 // -- all the direct base classes of its class have trivial default 362 // constructors. 363 if (!BaseClassDecl->hasTrivialDefaultConstructor()) 364 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 365 366 // C++0x [class.copy]p13: 367 // A copy/move constructor for class X is trivial if [...] 368 // [...] 369 // -- the constructor selected to copy/move each direct base class 370 // subobject is trivial, and 371 if (!BaseClassDecl->hasTrivialCopyConstructor()) 372 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 373 374 if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) 375 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 376 377 // If the base class doesn't have a simple move constructor, we'll eagerly 378 // declare it and perform overload resolution to determine which function 379 // it actually calls. If it does have a simple move constructor, this 380 // check is correct. 381 if (!BaseClassDecl->hasTrivialMoveConstructor()) 382 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 383 384 if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) 385 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 386 387 // C++0x [class.copy]p27: 388 // A copy/move assignment operator for class X is trivial if [...] 389 // [...] 390 // -- the assignment operator selected to copy/move each direct base 391 // class subobject is trivial, and 392 if (!BaseClassDecl->hasTrivialCopyAssignment()) 393 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 394 // If the base class doesn't have a simple move assignment, we'll eagerly 395 // declare it and perform overload resolution to determine which function 396 // it actually calls. If it does have a simple move assignment, this 397 // check is correct. 398 if (!BaseClassDecl->hasTrivialMoveAssignment()) 399 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 400 401 // C++11 [class.ctor]p6: 402 // If that user-written default constructor would satisfy the 403 // requirements of a constexpr constructor, the implicitly-defined 404 // default constructor is constexpr. 405 if (!BaseClassDecl->hasConstexprDefaultConstructor()) 406 data().DefaultedDefaultConstructorIsConstexpr = false; 407 408 // C++1z [class.copy]p8: 409 // The implicitly-declared copy constructor for a class X will have 410 // the form 'X::X(const X&)' if each potentially constructed subobject 411 // has a copy constructor whose first parameter is of type 412 // 'const B&' or 'const volatile B&' [...] 413 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 414 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 415 } 416 417 // C++ [class.ctor]p3: 418 // A destructor is trivial if all the direct base classes of its class 419 // have trivial destructors. 420 if (!BaseClassDecl->hasTrivialDestructor()) 421 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 422 423 if (!BaseClassDecl->hasTrivialDestructorForCall()) 424 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 425 426 if (!BaseClassDecl->hasIrrelevantDestructor()) 427 data().HasIrrelevantDestructor = false; 428 429 if (BaseClassDecl->isAnyDestructorNoReturn()) 430 data().IsAnyDestructorNoReturn = true; 431 432 // C++11 [class.copy]p18: 433 // The implicitly-declared copy assignment operator for a class X will 434 // have the form 'X& X::operator=(const X&)' if each direct base class B 435 // of X has a copy assignment operator whose parameter is of type 'const 436 // B&', 'const volatile B&', or 'B' [...] 437 if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) 438 data().ImplicitCopyAssignmentHasConstParam = false; 439 440 // A class has an Objective-C object member if... or any of its bases 441 // has an Objective-C object member. 442 if (BaseClassDecl->hasObjectMember()) 443 setHasObjectMember(true); 444 445 if (BaseClassDecl->hasVolatileMember()) 446 setHasVolatileMember(true); 447 448 if (BaseClassDecl->getArgPassingRestrictions() == 449 RecordDecl::APK_CanNeverPassInRegs) 450 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 451 452 // Keep track of the presence of mutable fields. 453 if (BaseClassDecl->hasMutableFields()) 454 data().HasMutableFields = true; 455 456 if (BaseClassDecl->hasUninitializedReferenceMember()) 457 data().HasUninitializedReferenceMember = true; 458 459 if (!BaseClassDecl->allowConstDefaultInit()) 460 data().HasUninitializedFields = true; 461 462 addedClassSubobject(BaseClassDecl); 463 } 464 465 // C++2a [class]p7: 466 // A class S is a standard-layout class if it: 467 // -- has at most one base class subobject of any given type 468 // 469 // Note that we only need to check this for classes with more than one base 470 // class. If there's only one base class, and it's standard layout, then 471 // we know there are no repeated base classes. 472 if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) 473 data().IsStandardLayout = false; 474 475 if (VBases.empty()) { 476 data().IsParsingBaseSpecifiers = false; 477 return; 478 } 479 480 // Create base specifier for any direct or indirect virtual bases. 481 data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; 482 data().NumVBases = VBases.size(); 483 for (int I = 0, E = VBases.size(); I != E; ++I) { 484 QualType Type = VBases[I]->getType(); 485 if (!Type->isDependentType()) 486 addedClassSubobject(Type->getAsCXXRecordDecl()); 487 data().getVBases()[I] = *VBases[I]; 488 } 489 490 data().IsParsingBaseSpecifiers = false; 491 } 492 493 unsigned CXXRecordDecl::getODRHash() const { 494 assert(hasDefinition() && "ODRHash only for records with definitions"); 495 496 // Previously calculated hash is stored in DefinitionData. 497 if (DefinitionData->HasODRHash) 498 return DefinitionData->ODRHash; 499 500 // Only calculate hash on first call of getODRHash per record. 501 ODRHash Hash; 502 Hash.AddCXXRecordDecl(getDefinition()); 503 DefinitionData->HasODRHash = true; 504 DefinitionData->ODRHash = Hash.CalculateHash(); 505 506 return DefinitionData->ODRHash; 507 } 508 509 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { 510 // C++11 [class.copy]p11: 511 // A defaulted copy/move constructor for a class X is defined as 512 // deleted if X has: 513 // -- a direct or virtual base class B that cannot be copied/moved [...] 514 // -- a non-static data member of class type M (or array thereof) 515 // that cannot be copied or moved [...] 516 if (!Subobj->hasSimpleCopyConstructor()) 517 data().NeedOverloadResolutionForCopyConstructor = true; 518 if (!Subobj->hasSimpleMoveConstructor()) 519 data().NeedOverloadResolutionForMoveConstructor = true; 520 521 // C++11 [class.copy]p23: 522 // A defaulted copy/move assignment operator for a class X is defined as 523 // deleted if X has: 524 // -- a direct or virtual base class B that cannot be copied/moved [...] 525 // -- a non-static data member of class type M (or array thereof) 526 // that cannot be copied or moved [...] 527 if (!Subobj->hasSimpleCopyAssignment()) 528 data().NeedOverloadResolutionForCopyAssignment = true; 529 if (!Subobj->hasSimpleMoveAssignment()) 530 data().NeedOverloadResolutionForMoveAssignment = true; 531 532 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: 533 // A defaulted [ctor or dtor] for a class X is defined as 534 // deleted if X has: 535 // -- any direct or virtual base class [...] has a type with a destructor 536 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 537 // -- any non-static data member has a type with a destructor 538 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 539 if (!Subobj->hasSimpleDestructor()) { 540 data().NeedOverloadResolutionForCopyConstructor = true; 541 data().NeedOverloadResolutionForMoveConstructor = true; 542 data().NeedOverloadResolutionForDestructor = true; 543 } 544 545 // C++2a [dcl.constexpr]p4: 546 // The definition of a constexpr destructor [shall] satisfy the 547 // following requirement: 548 // -- for every subobject of class type or (possibly multi-dimensional) 549 // array thereof, that class type shall have a constexpr destructor 550 if (!Subobj->hasConstexprDestructor()) 551 data().DefaultedDestructorIsConstexpr = false; 552 553 // C++20 [temp.param]p7: 554 // A structural type is [...] a literal class type [for which] the types 555 // of all base classes and non-static data members are structural types or 556 // (possibly multi-dimensional) array thereof 557 if (!Subobj->data().StructuralIfLiteral) 558 data().StructuralIfLiteral = false; 559 } 560 561 bool CXXRecordDecl::hasConstexprDestructor() const { 562 auto *Dtor = getDestructor(); 563 return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); 564 } 565 566 bool CXXRecordDecl::hasAnyDependentBases() const { 567 if (!isDependentContext()) 568 return false; 569 570 return !forallBases([](const CXXRecordDecl *) { return true; }); 571 } 572 573 bool CXXRecordDecl::isTriviallyCopyable() const { 574 // C++0x [class]p5: 575 // A trivially copyable class is a class that: 576 // -- has no non-trivial copy constructors, 577 if (hasNonTrivialCopyConstructor()) return false; 578 // -- has no non-trivial move constructors, 579 if (hasNonTrivialMoveConstructor()) return false; 580 // -- has no non-trivial copy assignment operators, 581 if (hasNonTrivialCopyAssignment()) return false; 582 // -- has no non-trivial move assignment operators, and 583 if (hasNonTrivialMoveAssignment()) return false; 584 // -- has a trivial destructor. 585 if (!hasTrivialDestructor()) return false; 586 587 return true; 588 } 589 590 void CXXRecordDecl::markedVirtualFunctionPure() { 591 // C++ [class.abstract]p2: 592 // A class is abstract if it has at least one pure virtual function. 593 data().Abstract = true; 594 } 595 596 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( 597 ASTContext &Ctx, const CXXRecordDecl *XFirst) { 598 if (!getNumBases()) 599 return false; 600 601 llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; 602 llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; 603 SmallVector<const CXXRecordDecl*, 8> WorkList; 604 605 // Visit a type that we have determined is an element of M(S). 606 auto Visit = [&](const CXXRecordDecl *RD) -> bool { 607 RD = RD->getCanonicalDecl(); 608 609 // C++2a [class]p8: 610 // A class S is a standard-layout class if it [...] has no element of the 611 // set M(S) of types as a base class. 612 // 613 // If we find a subobject of an empty type, it might also be a base class, 614 // so we'll need to walk the base classes to check. 615 if (!RD->data().HasBasesWithFields) { 616 // Walk the bases the first time, stopping if we find the type. Build a 617 // set of them so we don't need to walk them again. 618 if (Bases.empty()) { 619 bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { 620 Base = Base->getCanonicalDecl(); 621 if (RD == Base) 622 return false; 623 Bases.insert(Base); 624 return true; 625 }); 626 if (RDIsBase) 627 return true; 628 } else { 629 if (Bases.count(RD)) 630 return true; 631 } 632 } 633 634 if (M.insert(RD).second) 635 WorkList.push_back(RD); 636 return false; 637 }; 638 639 if (Visit(XFirst)) 640 return true; 641 642 while (!WorkList.empty()) { 643 const CXXRecordDecl *X = WorkList.pop_back_val(); 644 645 // FIXME: We don't check the bases of X. That matches the standard, but 646 // that sure looks like a wording bug. 647 648 // -- If X is a non-union class type with a non-static data member 649 // [recurse to each field] that is either of zero size or is the 650 // first non-static data member of X 651 // -- If X is a union type, [recurse to union members] 652 bool IsFirstField = true; 653 for (auto *FD : X->fields()) { 654 // FIXME: Should we really care about the type of the first non-static 655 // data member of a non-union if there are preceding unnamed bit-fields? 656 if (FD->isUnnamedBitfield()) 657 continue; 658 659 if (!IsFirstField && !FD->isZeroSize(Ctx)) 660 continue; 661 662 // -- If X is n array type, [visit the element type] 663 QualType T = Ctx.getBaseElementType(FD->getType()); 664 if (auto *RD = T->getAsCXXRecordDecl()) 665 if (Visit(RD)) 666 return true; 667 668 if (!X->isUnion()) 669 IsFirstField = false; 670 } 671 } 672 673 return false; 674 } 675 676 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { 677 assert(isLambda() && "not a lambda"); 678 679 // C++2a [expr.prim.lambda.capture]p11: 680 // The closure type associated with a lambda-expression has no default 681 // constructor if the lambda-expression has a lambda-capture and a 682 // defaulted default constructor otherwise. It has a deleted copy 683 // assignment operator if the lambda-expression has a lambda-capture and 684 // defaulted copy and move assignment operators otherwise. 685 // 686 // C++17 [expr.prim.lambda]p21: 687 // The closure type associated with a lambda-expression has no default 688 // constructor and a deleted copy assignment operator. 689 if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0) 690 return false; 691 return getASTContext().getLangOpts().CPlusPlus20; 692 } 693 694 void CXXRecordDecl::addedMember(Decl *D) { 695 if (!D->isImplicit() && 696 !isa<FieldDecl>(D) && 697 !isa<IndirectFieldDecl>(D) && 698 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || 699 cast<TagDecl>(D)->getTagKind() == TTK_Interface)) 700 data().HasOnlyCMembers = false; 701 702 // Ignore friends and invalid declarations. 703 if (D->getFriendObjectKind() || D->isInvalidDecl()) 704 return; 705 706 auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 707 if (FunTmpl) 708 D = FunTmpl->getTemplatedDecl(); 709 710 // FIXME: Pass NamedDecl* to addedMember? 711 Decl *DUnderlying = D; 712 if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) { 713 DUnderlying = ND->getUnderlyingDecl(); 714 if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying)) 715 DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); 716 } 717 718 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 719 if (Method->isVirtual()) { 720 // C++ [dcl.init.aggr]p1: 721 // An aggregate is an array or a class with [...] no virtual functions. 722 data().Aggregate = false; 723 724 // C++ [class]p4: 725 // A POD-struct is an aggregate class... 726 data().PlainOldData = false; 727 728 // C++14 [meta.unary.prop]p4: 729 // T is a class type [...] with [...] no virtual member functions... 730 data().Empty = false; 731 732 // C++ [class.virtual]p1: 733 // A class that declares or inherits a virtual function is called a 734 // polymorphic class. 735 data().Polymorphic = true; 736 737 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 738 // A [default constructor, copy/move constructor, or copy/move 739 // assignment operator for a class X] is trivial [...] if: 740 // -- class X has no virtual functions [...] 741 data().HasTrivialSpecialMembers &= SMF_Destructor; 742 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 743 744 // C++0x [class]p7: 745 // A standard-layout class is a class that: [...] 746 // -- has no virtual functions 747 data().IsStandardLayout = false; 748 data().IsCXX11StandardLayout = false; 749 } 750 } 751 752 // Notify the listener if an implicit member was added after the definition 753 // was completed. 754 if (!isBeingDefined() && D->isImplicit()) 755 if (ASTMutationListener *L = getASTMutationListener()) 756 L->AddedCXXImplicitMember(data().Definition, D); 757 758 // The kind of special member this declaration is, if any. 759 unsigned SMKind = 0; 760 761 // Handle constructors. 762 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 763 if (Constructor->isInheritingConstructor()) { 764 // Ignore constructor shadow declarations. They are lazily created and 765 // so shouldn't affect any properties of the class. 766 } else { 767 if (!Constructor->isImplicit()) { 768 // Note that we have a user-declared constructor. 769 data().UserDeclaredConstructor = true; 770 771 const TargetInfo &TI = getASTContext().getTargetInfo(); 772 if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) || 773 !TI.areDefaultedSMFStillPOD(getLangOpts())) { 774 // C++ [class]p4: 775 // A POD-struct is an aggregate class [...] 776 // Since the POD bit is meant to be C++03 POD-ness, clear it even if 777 // the type is technically an aggregate in C++0x since it wouldn't be 778 // in 03. 779 data().PlainOldData = false; 780 } 781 } 782 783 if (Constructor->isDefaultConstructor()) { 784 SMKind |= SMF_DefaultConstructor; 785 786 if (Constructor->isUserProvided()) 787 data().UserProvidedDefaultConstructor = true; 788 if (Constructor->isConstexpr()) 789 data().HasConstexprDefaultConstructor = true; 790 if (Constructor->isDefaulted()) 791 data().HasDefaultedDefaultConstructor = true; 792 } 793 794 if (!FunTmpl) { 795 unsigned Quals; 796 if (Constructor->isCopyConstructor(Quals)) { 797 SMKind |= SMF_CopyConstructor; 798 799 if (Quals & Qualifiers::Const) 800 data().HasDeclaredCopyConstructorWithConstParam = true; 801 } else if (Constructor->isMoveConstructor()) 802 SMKind |= SMF_MoveConstructor; 803 } 804 805 // C++11 [dcl.init.aggr]p1: DR1518 806 // An aggregate is an array or a class with no user-provided [or] 807 // explicit [...] constructors 808 // C++20 [dcl.init.aggr]p1: 809 // An aggregate is an array or a class with no user-declared [...] 810 // constructors 811 if (getASTContext().getLangOpts().CPlusPlus20 812 ? !Constructor->isImplicit() 813 : (Constructor->isUserProvided() || Constructor->isExplicit())) 814 data().Aggregate = false; 815 } 816 } 817 818 // Handle constructors, including those inherited from base classes. 819 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) { 820 // Record if we see any constexpr constructors which are neither copy 821 // nor move constructors. 822 // C++1z [basic.types]p10: 823 // [...] has at least one constexpr constructor or constructor template 824 // (possibly inherited from a base class) that is not a copy or move 825 // constructor [...] 826 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) 827 data().HasConstexprNonCopyMoveConstructor = true; 828 if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor()) 829 data().HasInheritedDefaultConstructor = true; 830 } 831 832 // Handle member functions. 833 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 834 if (isa<CXXDestructorDecl>(D)) 835 SMKind |= SMF_Destructor; 836 837 if (Method->isCopyAssignmentOperator()) { 838 SMKind |= SMF_CopyAssignment; 839 840 const auto *ParamTy = 841 Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); 842 if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) 843 data().HasDeclaredCopyAssignmentWithConstParam = true; 844 } 845 846 if (Method->isMoveAssignmentOperator()) 847 SMKind |= SMF_MoveAssignment; 848 849 // Keep the list of conversion functions up-to-date. 850 if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) { 851 // FIXME: We use the 'unsafe' accessor for the access specifier here, 852 // because Sema may not have set it yet. That's really just a misdesign 853 // in Sema. However, LLDB *will* have set the access specifier correctly, 854 // and adds declarations after the class is technically completed, 855 // so completeDefinition()'s overriding of the access specifiers doesn't 856 // work. 857 AccessSpecifier AS = Conversion->getAccessUnsafe(); 858 859 if (Conversion->getPrimaryTemplate()) { 860 // We don't record specializations. 861 } else { 862 ASTContext &Ctx = getASTContext(); 863 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); 864 NamedDecl *Primary = 865 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); 866 if (Primary->getPreviousDecl()) 867 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), 868 Primary, AS); 869 else 870 Conversions.addDecl(Ctx, Primary, AS); 871 } 872 } 873 874 if (SMKind) { 875 // If this is the first declaration of a special member, we no longer have 876 // an implicit trivial special member. 877 data().HasTrivialSpecialMembers &= 878 data().DeclaredSpecialMembers | ~SMKind; 879 data().HasTrivialSpecialMembersForCall &= 880 data().DeclaredSpecialMembers | ~SMKind; 881 882 // Note when we have declared a declared special member, and suppress the 883 // implicit declaration of this special member. 884 data().DeclaredSpecialMembers |= SMKind; 885 if (!Method->isImplicit()) { 886 data().UserDeclaredSpecialMembers |= SMKind; 887 888 const TargetInfo &TI = getASTContext().getTargetInfo(); 889 if ((!Method->isDeleted() && !Method->isDefaulted() && 890 SMKind != SMF_MoveAssignment) || 891 !TI.areDefaultedSMFStillPOD(getLangOpts())) { 892 // C++03 [class]p4: 893 // A POD-struct is an aggregate class that has [...] no user-defined 894 // copy assignment operator and no user-defined destructor. 895 // 896 // Since the POD bit is meant to be C++03 POD-ness, and in C++03, 897 // aggregates could not have any constructors, clear it even for an 898 // explicitly defaulted or deleted constructor. 899 // type is technically an aggregate in C++0x since it wouldn't be in 900 // 03. 901 // 902 // Also, a user-declared move assignment operator makes a class 903 // non-POD. This is an extension in C++03. 904 data().PlainOldData = false; 905 } 906 } 907 // When instantiating a class, we delay updating the destructor and 908 // triviality properties of the class until selecting a destructor and 909 // computing the eligibility of its special member functions. This is 910 // because there might be function constraints that we need to evaluate 911 // and compare later in the instantiation. 912 if (!Method->isIneligibleOrNotSelected()) { 913 addedEligibleSpecialMemberFunction(Method, SMKind); 914 } 915 } 916 917 return; 918 } 919 920 // Handle non-static data members. 921 if (const auto *Field = dyn_cast<FieldDecl>(D)) { 922 ASTContext &Context = getASTContext(); 923 924 // C++2a [class]p7: 925 // A standard-layout class is a class that: 926 // [...] 927 // -- has all non-static data members and bit-fields in the class and 928 // its base classes first declared in the same class 929 if (data().HasBasesWithFields) 930 data().IsStandardLayout = false; 931 932 // C++ [class.bit]p2: 933 // A declaration for a bit-field that omits the identifier declares an 934 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 935 // initialized. 936 if (Field->isUnnamedBitfield()) { 937 // C++ [meta.unary.prop]p4: [LWG2358] 938 // T is a class type [...] with [...] no unnamed bit-fields of non-zero 939 // length 940 if (data().Empty && !Field->isZeroLengthBitField(Context) && 941 Context.getLangOpts().getClangABICompat() > 942 LangOptions::ClangABI::Ver6) 943 data().Empty = false; 944 return; 945 } 946 947 // C++11 [class]p7: 948 // A standard-layout class is a class that: 949 // -- either has no non-static data members in the most derived class 950 // [...] or has no base classes with non-static data members 951 if (data().HasBasesWithNonStaticDataMembers) 952 data().IsCXX11StandardLayout = false; 953 954 // C++ [dcl.init.aggr]p1: 955 // An aggregate is an array or a class (clause 9) with [...] no 956 // private or protected non-static data members (clause 11). 957 // 958 // A POD must be an aggregate. 959 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { 960 data().Aggregate = false; 961 data().PlainOldData = false; 962 963 // C++20 [temp.param]p7: 964 // A structural type is [...] a literal class type [for which] all 965 // non-static data members are public 966 data().StructuralIfLiteral = false; 967 } 968 969 // Track whether this is the first field. We use this when checking 970 // whether the class is standard-layout below. 971 bool IsFirstField = !data().HasPrivateFields && 972 !data().HasProtectedFields && !data().HasPublicFields; 973 974 // C++0x [class]p7: 975 // A standard-layout class is a class that: 976 // [...] 977 // -- has the same access control for all non-static data members, 978 switch (D->getAccess()) { 979 case AS_private: data().HasPrivateFields = true; break; 980 case AS_protected: data().HasProtectedFields = true; break; 981 case AS_public: data().HasPublicFields = true; break; 982 case AS_none: llvm_unreachable("Invalid access specifier"); 983 }; 984 if ((data().HasPrivateFields + data().HasProtectedFields + 985 data().HasPublicFields) > 1) { 986 data().IsStandardLayout = false; 987 data().IsCXX11StandardLayout = false; 988 } 989 990 // Keep track of the presence of mutable fields. 991 if (Field->isMutable()) { 992 data().HasMutableFields = true; 993 994 // C++20 [temp.param]p7: 995 // A structural type is [...] a literal class type [for which] all 996 // non-static data members are public 997 data().StructuralIfLiteral = false; 998 } 999 1000 // C++11 [class.union]p8, DR1460: 1001 // If X is a union, a non-static data member of X that is not an anonymous 1002 // union is a variant member of X. 1003 if (isUnion() && !Field->isAnonymousStructOrUnion()) 1004 data().HasVariantMembers = true; 1005 1006 // C++0x [class]p9: 1007 // A POD struct is a class that is both a trivial class and a 1008 // standard-layout class, and has no non-static data members of type 1009 // non-POD struct, non-POD union (or array of such types). 1010 // 1011 // Automatic Reference Counting: the presence of a member of Objective-C pointer type 1012 // that does not explicitly have no lifetime makes the class a non-POD. 1013 QualType T = Context.getBaseElementType(Field->getType()); 1014 if (T->isObjCRetainableType() || T.isObjCGCStrong()) { 1015 if (T.hasNonTrivialObjCLifetime()) { 1016 // Objective-C Automatic Reference Counting: 1017 // If a class has a non-static data member of Objective-C pointer 1018 // type (or array thereof), it is a non-POD type and its 1019 // default constructor (if any), copy constructor, move constructor, 1020 // copy assignment operator, move assignment operator, and destructor are 1021 // non-trivial. 1022 setHasObjectMember(true); 1023 struct DefinitionData &Data = data(); 1024 Data.PlainOldData = false; 1025 Data.HasTrivialSpecialMembers = 0; 1026 1027 // __strong or __weak fields do not make special functions non-trivial 1028 // for the purpose of calls. 1029 Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); 1030 if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) 1031 data().HasTrivialSpecialMembersForCall = 0; 1032 1033 // Structs with __weak fields should never be passed directly. 1034 if (LT == Qualifiers::OCL_Weak) 1035 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1036 1037 Data.HasIrrelevantDestructor = false; 1038 1039 if (isUnion()) { 1040 data().DefaultedCopyConstructorIsDeleted = true; 1041 data().DefaultedMoveConstructorIsDeleted = true; 1042 data().DefaultedCopyAssignmentIsDeleted = true; 1043 data().DefaultedMoveAssignmentIsDeleted = true; 1044 data().DefaultedDestructorIsDeleted = true; 1045 data().NeedOverloadResolutionForCopyConstructor = true; 1046 data().NeedOverloadResolutionForMoveConstructor = true; 1047 data().NeedOverloadResolutionForCopyAssignment = true; 1048 data().NeedOverloadResolutionForMoveAssignment = true; 1049 data().NeedOverloadResolutionForDestructor = true; 1050 } 1051 } else if (!Context.getLangOpts().ObjCAutoRefCount) { 1052 setHasObjectMember(true); 1053 } 1054 } else if (!T.isCXX98PODType(Context)) 1055 data().PlainOldData = false; 1056 1057 if (T->isReferenceType()) { 1058 if (!Field->hasInClassInitializer()) 1059 data().HasUninitializedReferenceMember = true; 1060 1061 // C++0x [class]p7: 1062 // A standard-layout class is a class that: 1063 // -- has no non-static data members of type [...] reference, 1064 data().IsStandardLayout = false; 1065 data().IsCXX11StandardLayout = false; 1066 1067 // C++1z [class.copy.ctor]p10: 1068 // A defaulted copy constructor for a class X is defined as deleted if X has: 1069 // -- a non-static data member of rvalue reference type 1070 if (T->isRValueReferenceType()) 1071 data().DefaultedCopyConstructorIsDeleted = true; 1072 } 1073 1074 if (!Field->hasInClassInitializer() && !Field->isMutable()) { 1075 if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { 1076 if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) 1077 data().HasUninitializedFields = true; 1078 } else { 1079 data().HasUninitializedFields = true; 1080 } 1081 } 1082 1083 // Record if this field is the first non-literal or volatile field or base. 1084 if (!T->isLiteralType(Context) || T.isVolatileQualified()) 1085 data().HasNonLiteralTypeFieldsOrBases = true; 1086 1087 if (Field->hasInClassInitializer() || 1088 (Field->isAnonymousStructOrUnion() && 1089 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { 1090 data().HasInClassInitializer = true; 1091 1092 // C++11 [class]p5: 1093 // A default constructor is trivial if [...] no non-static data member 1094 // of its class has a brace-or-equal-initializer. 1095 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1096 1097 // C++11 [dcl.init.aggr]p1: 1098 // An aggregate is a [...] class with [...] no 1099 // brace-or-equal-initializers for non-static data members. 1100 // 1101 // This rule was removed in C++14. 1102 if (!getASTContext().getLangOpts().CPlusPlus14) 1103 data().Aggregate = false; 1104 1105 // C++11 [class]p10: 1106 // A POD struct is [...] a trivial class. 1107 data().PlainOldData = false; 1108 } 1109 1110 // C++11 [class.copy]p23: 1111 // A defaulted copy/move assignment operator for a class X is defined 1112 // as deleted if X has: 1113 // -- a non-static data member of reference type 1114 if (T->isReferenceType()) { 1115 data().DefaultedCopyAssignmentIsDeleted = true; 1116 data().DefaultedMoveAssignmentIsDeleted = true; 1117 } 1118 1119 // Bitfields of length 0 are also zero-sized, but we already bailed out for 1120 // those because they are always unnamed. 1121 bool IsZeroSize = Field->isZeroSize(Context); 1122 1123 if (const auto *RecordTy = T->getAs<RecordType>()) { 1124 auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); 1125 if (FieldRec->getDefinition()) { 1126 addedClassSubobject(FieldRec); 1127 1128 // We may need to perform overload resolution to determine whether a 1129 // field can be moved if it's const or volatile qualified. 1130 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { 1131 // We need to care about 'const' for the copy constructor because an 1132 // implicit copy constructor might be declared with a non-const 1133 // parameter. 1134 data().NeedOverloadResolutionForCopyConstructor = true; 1135 data().NeedOverloadResolutionForMoveConstructor = true; 1136 data().NeedOverloadResolutionForCopyAssignment = true; 1137 data().NeedOverloadResolutionForMoveAssignment = true; 1138 } 1139 1140 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 1141 // A defaulted [special member] for a class X is defined as 1142 // deleted if: 1143 // -- X is a union-like class that has a variant member with a 1144 // non-trivial [corresponding special member] 1145 if (isUnion()) { 1146 if (FieldRec->hasNonTrivialCopyConstructor()) 1147 data().DefaultedCopyConstructorIsDeleted = true; 1148 if (FieldRec->hasNonTrivialMoveConstructor()) 1149 data().DefaultedMoveConstructorIsDeleted = true; 1150 if (FieldRec->hasNonTrivialCopyAssignment()) 1151 data().DefaultedCopyAssignmentIsDeleted = true; 1152 if (FieldRec->hasNonTrivialMoveAssignment()) 1153 data().DefaultedMoveAssignmentIsDeleted = true; 1154 if (FieldRec->hasNonTrivialDestructor()) 1155 data().DefaultedDestructorIsDeleted = true; 1156 } 1157 1158 // For an anonymous union member, our overload resolution will perform 1159 // overload resolution for its members. 1160 if (Field->isAnonymousStructOrUnion()) { 1161 data().NeedOverloadResolutionForCopyConstructor |= 1162 FieldRec->data().NeedOverloadResolutionForCopyConstructor; 1163 data().NeedOverloadResolutionForMoveConstructor |= 1164 FieldRec->data().NeedOverloadResolutionForMoveConstructor; 1165 data().NeedOverloadResolutionForCopyAssignment |= 1166 FieldRec->data().NeedOverloadResolutionForCopyAssignment; 1167 data().NeedOverloadResolutionForMoveAssignment |= 1168 FieldRec->data().NeedOverloadResolutionForMoveAssignment; 1169 data().NeedOverloadResolutionForDestructor |= 1170 FieldRec->data().NeedOverloadResolutionForDestructor; 1171 } 1172 1173 // C++0x [class.ctor]p5: 1174 // A default constructor is trivial [...] if: 1175 // -- for all the non-static data members of its class that are of 1176 // class type (or array thereof), each such class has a trivial 1177 // default constructor. 1178 if (!FieldRec->hasTrivialDefaultConstructor()) 1179 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1180 1181 // C++0x [class.copy]p13: 1182 // A copy/move constructor for class X is trivial if [...] 1183 // [...] 1184 // -- for each non-static data member of X that is of class type (or 1185 // an array thereof), the constructor selected to copy/move that 1186 // member is trivial; 1187 if (!FieldRec->hasTrivialCopyConstructor()) 1188 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 1189 1190 if (!FieldRec->hasTrivialCopyConstructorForCall()) 1191 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 1192 1193 // If the field doesn't have a simple move constructor, we'll eagerly 1194 // declare the move constructor for this class and we'll decide whether 1195 // it's trivial then. 1196 if (!FieldRec->hasTrivialMoveConstructor()) 1197 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 1198 1199 if (!FieldRec->hasTrivialMoveConstructorForCall()) 1200 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 1201 1202 // C++0x [class.copy]p27: 1203 // A copy/move assignment operator for class X is trivial if [...] 1204 // [...] 1205 // -- for each non-static data member of X that is of class type (or 1206 // an array thereof), the assignment operator selected to 1207 // copy/move that member is trivial; 1208 if (!FieldRec->hasTrivialCopyAssignment()) 1209 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 1210 // If the field doesn't have a simple move assignment, we'll eagerly 1211 // declare the move assignment for this class and we'll decide whether 1212 // it's trivial then. 1213 if (!FieldRec->hasTrivialMoveAssignment()) 1214 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 1215 1216 if (!FieldRec->hasTrivialDestructor()) 1217 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 1218 if (!FieldRec->hasTrivialDestructorForCall()) 1219 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 1220 if (!FieldRec->hasIrrelevantDestructor()) 1221 data().HasIrrelevantDestructor = false; 1222 if (FieldRec->isAnyDestructorNoReturn()) 1223 data().IsAnyDestructorNoReturn = true; 1224 if (FieldRec->hasObjectMember()) 1225 setHasObjectMember(true); 1226 if (FieldRec->hasVolatileMember()) 1227 setHasVolatileMember(true); 1228 if (FieldRec->getArgPassingRestrictions() == 1229 RecordDecl::APK_CanNeverPassInRegs) 1230 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1231 1232 // C++0x [class]p7: 1233 // A standard-layout class is a class that: 1234 // -- has no non-static data members of type non-standard-layout 1235 // class (or array of such types) [...] 1236 if (!FieldRec->isStandardLayout()) 1237 data().IsStandardLayout = false; 1238 if (!FieldRec->isCXX11StandardLayout()) 1239 data().IsCXX11StandardLayout = false; 1240 1241 // C++2a [class]p7: 1242 // A standard-layout class is a class that: 1243 // [...] 1244 // -- has no element of the set M(S) of types as a base class. 1245 if (data().IsStandardLayout && 1246 (isUnion() || IsFirstField || IsZeroSize) && 1247 hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) 1248 data().IsStandardLayout = false; 1249 1250 // C++11 [class]p7: 1251 // A standard-layout class is a class that: 1252 // -- has no base classes of the same type as the first non-static 1253 // data member 1254 if (data().IsCXX11StandardLayout && IsFirstField) { 1255 // FIXME: We should check all base classes here, not just direct 1256 // base classes. 1257 for (const auto &BI : bases()) { 1258 if (Context.hasSameUnqualifiedType(BI.getType(), T)) { 1259 data().IsCXX11StandardLayout = false; 1260 break; 1261 } 1262 } 1263 } 1264 1265 // Keep track of the presence of mutable fields. 1266 if (FieldRec->hasMutableFields()) 1267 data().HasMutableFields = true; 1268 1269 if (Field->isMutable()) { 1270 // Our copy constructor/assignment might call something other than 1271 // the subobject's copy constructor/assignment if it's mutable and of 1272 // class type. 1273 data().NeedOverloadResolutionForCopyConstructor = true; 1274 data().NeedOverloadResolutionForCopyAssignment = true; 1275 } 1276 1277 // C++11 [class.copy]p13: 1278 // If the implicitly-defined constructor would satisfy the 1279 // requirements of a constexpr constructor, the implicitly-defined 1280 // constructor is constexpr. 1281 // C++11 [dcl.constexpr]p4: 1282 // -- every constructor involved in initializing non-static data 1283 // members [...] shall be a constexpr constructor 1284 if (!Field->hasInClassInitializer() && 1285 !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) 1286 // The standard requires any in-class initializer to be a constant 1287 // expression. We consider this to be a defect. 1288 data().DefaultedDefaultConstructorIsConstexpr = false; 1289 1290 // C++11 [class.copy]p8: 1291 // The implicitly-declared copy constructor for a class X will have 1292 // the form 'X::X(const X&)' if each potentially constructed subobject 1293 // of a class type M (or array thereof) has a copy constructor whose 1294 // first parameter is of type 'const M&' or 'const volatile M&'. 1295 if (!FieldRec->hasCopyConstructorWithConstParam()) 1296 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 1297 1298 // C++11 [class.copy]p18: 1299 // The implicitly-declared copy assignment oeprator for a class X will 1300 // have the form 'X& X::operator=(const X&)' if [...] for all the 1301 // non-static data members of X that are of a class type M (or array 1302 // thereof), each such class type has a copy assignment operator whose 1303 // parameter is of type 'const M&', 'const volatile M&' or 'M'. 1304 if (!FieldRec->hasCopyAssignmentWithConstParam()) 1305 data().ImplicitCopyAssignmentHasConstParam = false; 1306 1307 if (FieldRec->hasUninitializedReferenceMember() && 1308 !Field->hasInClassInitializer()) 1309 data().HasUninitializedReferenceMember = true; 1310 1311 // C++11 [class.union]p8, DR1460: 1312 // a non-static data member of an anonymous union that is a member of 1313 // X is also a variant member of X. 1314 if (FieldRec->hasVariantMembers() && 1315 Field->isAnonymousStructOrUnion()) 1316 data().HasVariantMembers = true; 1317 } 1318 } else { 1319 // Base element type of field is a non-class type. 1320 if (!T->isLiteralType(Context) || 1321 (!Field->hasInClassInitializer() && !isUnion() && 1322 !Context.getLangOpts().CPlusPlus20)) 1323 data().DefaultedDefaultConstructorIsConstexpr = false; 1324 1325 // C++11 [class.copy]p23: 1326 // A defaulted copy/move assignment operator for a class X is defined 1327 // as deleted if X has: 1328 // -- a non-static data member of const non-class type (or array 1329 // thereof) 1330 if (T.isConstQualified()) { 1331 data().DefaultedCopyAssignmentIsDeleted = true; 1332 data().DefaultedMoveAssignmentIsDeleted = true; 1333 } 1334 1335 // C++20 [temp.param]p7: 1336 // A structural type is [...] a literal class type [for which] the 1337 // types of all non-static data members are structural types or 1338 // (possibly multidimensional) array thereof 1339 // We deal with class types elsewhere. 1340 if (!T->isStructuralType()) 1341 data().StructuralIfLiteral = false; 1342 } 1343 1344 // C++14 [meta.unary.prop]p4: 1345 // T is a class type [...] with [...] no non-static data members other 1346 // than subobjects of zero size 1347 if (data().Empty && !IsZeroSize) 1348 data().Empty = false; 1349 } 1350 1351 // Handle using declarations of conversion functions. 1352 if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) { 1353 if (Shadow->getDeclName().getNameKind() 1354 == DeclarationName::CXXConversionFunctionName) { 1355 ASTContext &Ctx = getASTContext(); 1356 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); 1357 } 1358 } 1359 1360 if (const auto *Using = dyn_cast<UsingDecl>(D)) { 1361 if (Using->getDeclName().getNameKind() == 1362 DeclarationName::CXXConstructorName) { 1363 data().HasInheritedConstructor = true; 1364 // C++1z [dcl.init.aggr]p1: 1365 // An aggregate is [...] a class [...] with no inherited constructors 1366 data().Aggregate = false; 1367 } 1368 1369 if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) 1370 data().HasInheritedAssignment = true; 1371 } 1372 } 1373 1374 void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) { 1375 DD->setIneligibleOrNotSelected(false); 1376 addedEligibleSpecialMemberFunction(DD, SMF_Destructor); 1377 } 1378 1379 void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, 1380 unsigned SMKind) { 1381 // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is 1382 // a function template, but this needs CWG attention before we break ABI. 1383 // See https://github.com/llvm/llvm-project/issues/59206 1384 1385 if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1386 if (DD->isUserProvided()) 1387 data().HasIrrelevantDestructor = false; 1388 // If the destructor is explicitly defaulted and not trivial or not public 1389 // or if the destructor is deleted, we clear HasIrrelevantDestructor in 1390 // finishedDefaultedOrDeletedMember. 1391 1392 // C++11 [class.dtor]p5: 1393 // A destructor is trivial if [...] the destructor is not virtual. 1394 if (DD->isVirtual()) { 1395 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 1396 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 1397 } 1398 1399 if (DD->isNoReturn()) 1400 data().IsAnyDestructorNoReturn = true; 1401 } 1402 1403 if (!MD->isImplicit() && !MD->isUserProvided()) { 1404 // This method is user-declared but not user-provided. We can't work 1405 // out whether it's trivial yet (not until we get to the end of the 1406 // class). We'll handle this method in 1407 // finishedDefaultedOrDeletedMember. 1408 } else if (MD->isTrivial()) { 1409 data().HasTrivialSpecialMembers |= SMKind; 1410 data().HasTrivialSpecialMembersForCall |= SMKind; 1411 } else if (MD->isTrivialForCall()) { 1412 data().HasTrivialSpecialMembersForCall |= SMKind; 1413 data().DeclaredNonTrivialSpecialMembers |= SMKind; 1414 } else { 1415 data().DeclaredNonTrivialSpecialMembers |= SMKind; 1416 // If this is a user-provided function, do not set 1417 // DeclaredNonTrivialSpecialMembersForCall here since we don't know 1418 // yet whether the method would be considered non-trivial for the 1419 // purpose of calls (attribute "trivial_abi" can be dropped from the 1420 // class later, which can change the special method's triviality). 1421 if (!MD->isUserProvided()) 1422 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 1423 } 1424 } 1425 1426 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { 1427 assert(!D->isImplicit() && !D->isUserProvided()); 1428 1429 // The kind of special member this declaration is, if any. 1430 unsigned SMKind = 0; 1431 1432 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1433 if (Constructor->isDefaultConstructor()) { 1434 SMKind |= SMF_DefaultConstructor; 1435 if (Constructor->isConstexpr()) 1436 data().HasConstexprDefaultConstructor = true; 1437 } 1438 if (Constructor->isCopyConstructor()) 1439 SMKind |= SMF_CopyConstructor; 1440 else if (Constructor->isMoveConstructor()) 1441 SMKind |= SMF_MoveConstructor; 1442 else if (Constructor->isConstexpr()) 1443 // We may now know that the constructor is constexpr. 1444 data().HasConstexprNonCopyMoveConstructor = true; 1445 } else if (isa<CXXDestructorDecl>(D)) { 1446 SMKind |= SMF_Destructor; 1447 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) 1448 data().HasIrrelevantDestructor = false; 1449 } else if (D->isCopyAssignmentOperator()) 1450 SMKind |= SMF_CopyAssignment; 1451 else if (D->isMoveAssignmentOperator()) 1452 SMKind |= SMF_MoveAssignment; 1453 1454 // Update which trivial / non-trivial special members we have. 1455 // addedMember will have skipped this step for this member. 1456 if (!D->isIneligibleOrNotSelected()) { 1457 if (D->isTrivial()) 1458 data().HasTrivialSpecialMembers |= SMKind; 1459 else 1460 data().DeclaredNonTrivialSpecialMembers |= SMKind; 1461 } 1462 } 1463 1464 void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx, 1465 Capture *CaptureList) { 1466 Captures.push_back(CaptureList); 1467 if (Captures.size() == 2) { 1468 // The TinyPtrVector member now needs destruction. 1469 Ctx.addDestruction(&Captures); 1470 } 1471 } 1472 1473 void CXXRecordDecl::setCaptures(ASTContext &Context, 1474 ArrayRef<LambdaCapture> Captures) { 1475 CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); 1476 1477 // Copy captures. 1478 Data.NumCaptures = Captures.size(); 1479 Data.NumExplicitCaptures = 0; 1480 auto *ToCapture = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) * 1481 Captures.size()); 1482 Data.AddCaptureList(Context, ToCapture); 1483 for (unsigned I = 0, N = Captures.size(); I != N; ++I) { 1484 if (Captures[I].isExplicit()) 1485 ++Data.NumExplicitCaptures; 1486 1487 *ToCapture++ = Captures[I]; 1488 } 1489 1490 if (!lambdaIsDefaultConstructibleAndAssignable()) 1491 Data.DefaultedCopyAssignmentIsDeleted = true; 1492 } 1493 1494 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { 1495 unsigned SMKind = 0; 1496 1497 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1498 if (Constructor->isCopyConstructor()) 1499 SMKind = SMF_CopyConstructor; 1500 else if (Constructor->isMoveConstructor()) 1501 SMKind = SMF_MoveConstructor; 1502 } else if (isa<CXXDestructorDecl>(D)) 1503 SMKind = SMF_Destructor; 1504 1505 if (D->isTrivialForCall()) 1506 data().HasTrivialSpecialMembersForCall |= SMKind; 1507 else 1508 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 1509 } 1510 1511 bool CXXRecordDecl::isCLike() const { 1512 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || 1513 !TemplateOrInstantiation.isNull()) 1514 return false; 1515 if (!hasDefinition()) 1516 return true; 1517 1518 return isPOD() && data().HasOnlyCMembers; 1519 } 1520 1521 bool CXXRecordDecl::isGenericLambda() const { 1522 if (!isLambda()) return false; 1523 return getLambdaData().IsGenericLambda; 1524 } 1525 1526 #ifndef NDEBUG 1527 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { 1528 for (auto *D : R) 1529 if (!declaresSameEntity(D, R.front())) 1530 return false; 1531 return true; 1532 } 1533 #endif 1534 1535 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { 1536 if (!RD.isLambda()) return nullptr; 1537 DeclarationName Name = 1538 RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); 1539 DeclContext::lookup_result Calls = RD.lookup(Name); 1540 1541 assert(!Calls.empty() && "Missing lambda call operator!"); 1542 assert(allLookupResultsAreTheSame(Calls) && 1543 "More than one lambda call operator!"); 1544 return Calls.front(); 1545 } 1546 1547 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { 1548 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1549 return dyn_cast_or_null<FunctionTemplateDecl>(CallOp); 1550 } 1551 1552 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { 1553 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1554 1555 if (CallOp == nullptr) 1556 return nullptr; 1557 1558 if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) 1559 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); 1560 1561 return cast<CXXMethodDecl>(CallOp); 1562 } 1563 1564 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { 1565 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1566 CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv(); 1567 return getLambdaStaticInvoker(CC); 1568 } 1569 1570 static DeclContext::lookup_result 1571 getLambdaStaticInvokers(const CXXRecordDecl &RD) { 1572 assert(RD.isLambda() && "Must be a lambda"); 1573 DeclarationName Name = 1574 &RD.getASTContext().Idents.get(getLambdaStaticInvokerName()); 1575 return RD.lookup(Name); 1576 } 1577 1578 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) { 1579 if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND)) 1580 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); 1581 return cast<CXXMethodDecl>(ND); 1582 } 1583 1584 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const { 1585 if (!isLambda()) 1586 return nullptr; 1587 DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this); 1588 1589 for (NamedDecl *ND : Invoker) { 1590 const auto *FTy = 1591 cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>(); 1592 if (FTy->getCallConv() == CC) 1593 return getInvokerAsMethod(ND); 1594 } 1595 1596 return nullptr; 1597 } 1598 1599 void CXXRecordDecl::getCaptureFields( 1600 llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures, 1601 FieldDecl *&ThisCapture) const { 1602 Captures.clear(); 1603 ThisCapture = nullptr; 1604 1605 LambdaDefinitionData &Lambda = getLambdaData(); 1606 for (const LambdaCapture *List : Lambda.Captures) { 1607 RecordDecl::field_iterator Field = field_begin(); 1608 for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures; 1609 C != CEnd; ++C, ++Field) { 1610 if (C->capturesThis()) 1611 ThisCapture = *Field; 1612 else if (C->capturesVariable()) 1613 Captures[C->getCapturedVar()] = *Field; 1614 } 1615 assert(Field == field_end()); 1616 } 1617 } 1618 1619 TemplateParameterList * 1620 CXXRecordDecl::getGenericLambdaTemplateParameterList() const { 1621 if (!isGenericLambda()) return nullptr; 1622 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1623 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) 1624 return Tmpl->getTemplateParameters(); 1625 return nullptr; 1626 } 1627 1628 ArrayRef<NamedDecl *> 1629 CXXRecordDecl::getLambdaExplicitTemplateParameters() const { 1630 TemplateParameterList *List = getGenericLambdaTemplateParameterList(); 1631 if (!List) 1632 return {}; 1633 1634 assert(std::is_partitioned(List->begin(), List->end(), 1635 [](const NamedDecl *D) { return !D->isImplicit(); }) 1636 && "Explicit template params should be ordered before implicit ones"); 1637 1638 const auto ExplicitEnd = llvm::partition_point( 1639 *List, [](const NamedDecl *D) { return !D->isImplicit(); }); 1640 return llvm::ArrayRef(List->begin(), ExplicitEnd); 1641 } 1642 1643 Decl *CXXRecordDecl::getLambdaContextDecl() const { 1644 assert(isLambda() && "Not a lambda closure type!"); 1645 ExternalASTSource *Source = getParentASTContext().getExternalSource(); 1646 return getLambdaData().ContextDecl.get(Source); 1647 } 1648 1649 void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const { 1650 assert(isLambda() && "Not a lambda closure type!"); 1651 if (Num) 1652 getASTContext().DeviceLambdaManglingNumbers[this] = Num; 1653 } 1654 1655 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const { 1656 assert(isLambda() && "Not a lambda closure type!"); 1657 auto I = getASTContext().DeviceLambdaManglingNumbers.find(this); 1658 if (I != getASTContext().DeviceLambdaManglingNumbers.end()) 1659 return I->second; 1660 return 0; 1661 } 1662 1663 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { 1664 QualType T = 1665 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) 1666 ->getConversionType(); 1667 return Context.getCanonicalType(T); 1668 } 1669 1670 /// Collect the visible conversions of a base class. 1671 /// 1672 /// \param Record a base class of the class we're considering 1673 /// \param InVirtual whether this base class is a virtual base (or a base 1674 /// of a virtual base) 1675 /// \param Access the access along the inheritance path to this base 1676 /// \param ParentHiddenTypes the conversions provided by the inheritors 1677 /// of this base 1678 /// \param Output the set to which to add conversions from non-virtual bases 1679 /// \param VOutput the set to which to add conversions from virtual bases 1680 /// \param HiddenVBaseCs the set of conversions which were hidden in a 1681 /// virtual base along some inheritance path 1682 static void CollectVisibleConversions( 1683 ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, 1684 AccessSpecifier Access, 1685 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, 1686 ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, 1687 llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) { 1688 // The set of types which have conversions in this class or its 1689 // subclasses. As an optimization, we don't copy the derived set 1690 // unless it might change. 1691 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; 1692 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; 1693 1694 // Collect the direct conversions and figure out which conversions 1695 // will be hidden in the subclasses. 1696 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1697 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1698 if (ConvI != ConvE) { 1699 HiddenTypesBuffer = ParentHiddenTypes; 1700 HiddenTypes = &HiddenTypesBuffer; 1701 1702 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { 1703 CanQualType ConvType(GetConversionType(Context, I.getDecl())); 1704 bool Hidden = ParentHiddenTypes.count(ConvType); 1705 if (!Hidden) 1706 HiddenTypesBuffer.insert(ConvType); 1707 1708 // If this conversion is hidden and we're in a virtual base, 1709 // remember that it's hidden along some inheritance path. 1710 if (Hidden && InVirtual) 1711 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); 1712 1713 // If this conversion isn't hidden, add it to the appropriate output. 1714 else if (!Hidden) { 1715 AccessSpecifier IAccess 1716 = CXXRecordDecl::MergeAccess(Access, I.getAccess()); 1717 1718 if (InVirtual) 1719 VOutput.addDecl(I.getDecl(), IAccess); 1720 else 1721 Output.addDecl(Context, I.getDecl(), IAccess); 1722 } 1723 } 1724 } 1725 1726 // Collect information recursively from any base classes. 1727 for (const auto &I : Record->bases()) { 1728 const auto *RT = I.getType()->getAs<RecordType>(); 1729 if (!RT) continue; 1730 1731 AccessSpecifier BaseAccess 1732 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); 1733 bool BaseInVirtual = InVirtual || I.isVirtual(); 1734 1735 auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 1736 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, 1737 *HiddenTypes, Output, VOutput, HiddenVBaseCs); 1738 } 1739 } 1740 1741 /// Collect the visible conversions of a class. 1742 /// 1743 /// This would be extremely straightforward if it weren't for virtual 1744 /// bases. It might be worth special-casing that, really. 1745 static void CollectVisibleConversions(ASTContext &Context, 1746 const CXXRecordDecl *Record, 1747 ASTUnresolvedSet &Output) { 1748 // The collection of all conversions in virtual bases that we've 1749 // found. These will be added to the output as long as they don't 1750 // appear in the hidden-conversions set. 1751 UnresolvedSet<8> VBaseCs; 1752 1753 // The set of conversions in virtual bases that we've determined to 1754 // be hidden. 1755 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; 1756 1757 // The set of types hidden by classes derived from this one. 1758 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; 1759 1760 // Go ahead and collect the direct conversions and add them to the 1761 // hidden-types set. 1762 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1763 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1764 Output.append(Context, ConvI, ConvE); 1765 for (; ConvI != ConvE; ++ConvI) 1766 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); 1767 1768 // Recursively collect conversions from base classes. 1769 for (const auto &I : Record->bases()) { 1770 const auto *RT = I.getType()->getAs<RecordType>(); 1771 if (!RT) continue; 1772 1773 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), 1774 I.isVirtual(), I.getAccessSpecifier(), 1775 HiddenTypes, Output, VBaseCs, HiddenVBaseCs); 1776 } 1777 1778 // Add any unhidden conversions provided by virtual bases. 1779 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); 1780 I != E; ++I) { 1781 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) 1782 Output.addDecl(Context, I.getDecl(), I.getAccess()); 1783 } 1784 } 1785 1786 /// getVisibleConversionFunctions - get all conversion functions visible 1787 /// in current class; including conversion function templates. 1788 llvm::iterator_range<CXXRecordDecl::conversion_iterator> 1789 CXXRecordDecl::getVisibleConversionFunctions() const { 1790 ASTContext &Ctx = getASTContext(); 1791 1792 ASTUnresolvedSet *Set; 1793 if (bases_begin() == bases_end()) { 1794 // If root class, all conversions are visible. 1795 Set = &data().Conversions.get(Ctx); 1796 } else { 1797 Set = &data().VisibleConversions.get(Ctx); 1798 // If visible conversion list is not evaluated, evaluate it. 1799 if (!data().ComputedVisibleConversions) { 1800 CollectVisibleConversions(Ctx, this, *Set); 1801 data().ComputedVisibleConversions = true; 1802 } 1803 } 1804 return llvm::make_range(Set->begin(), Set->end()); 1805 } 1806 1807 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { 1808 // This operation is O(N) but extremely rare. Sema only uses it to 1809 // remove UsingShadowDecls in a class that were followed by a direct 1810 // declaration, e.g.: 1811 // class A : B { 1812 // using B::operator int; 1813 // operator int(); 1814 // }; 1815 // This is uncommon by itself and even more uncommon in conjunction 1816 // with sufficiently large numbers of directly-declared conversions 1817 // that asymptotic behavior matters. 1818 1819 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); 1820 for (unsigned I = 0, E = Convs.size(); I != E; ++I) { 1821 if (Convs[I].getDecl() == ConvDecl) { 1822 Convs.erase(I); 1823 assert(!llvm::is_contained(Convs, ConvDecl) && 1824 "conversion was found multiple times in unresolved set"); 1825 return; 1826 } 1827 } 1828 1829 llvm_unreachable("conversion not found in set!"); 1830 } 1831 1832 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { 1833 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1834 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); 1835 1836 return nullptr; 1837 } 1838 1839 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { 1840 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); 1841 } 1842 1843 void 1844 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, 1845 TemplateSpecializationKind TSK) { 1846 assert(TemplateOrInstantiation.isNull() && 1847 "Previous template or instantiation?"); 1848 assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); 1849 TemplateOrInstantiation 1850 = new (getASTContext()) MemberSpecializationInfo(RD, TSK); 1851 } 1852 1853 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { 1854 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); 1855 } 1856 1857 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { 1858 TemplateOrInstantiation = Template; 1859 } 1860 1861 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ 1862 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) 1863 return Spec->getSpecializationKind(); 1864 1865 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1866 return MSInfo->getTemplateSpecializationKind(); 1867 1868 return TSK_Undeclared; 1869 } 1870 1871 void 1872 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { 1873 if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1874 Spec->setSpecializationKind(TSK); 1875 return; 1876 } 1877 1878 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1879 MSInfo->setTemplateSpecializationKind(TSK); 1880 return; 1881 } 1882 1883 llvm_unreachable("Not a class template or member class specialization"); 1884 } 1885 1886 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { 1887 auto GetDefinitionOrSelf = 1888 [](const CXXRecordDecl *D) -> const CXXRecordDecl * { 1889 if (auto *Def = D->getDefinition()) 1890 return Def; 1891 return D; 1892 }; 1893 1894 // If it's a class template specialization, find the template or partial 1895 // specialization from which it was instantiated. 1896 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1897 auto From = TD->getInstantiatedFrom(); 1898 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { 1899 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { 1900 if (NewCTD->isMemberSpecialization()) 1901 break; 1902 CTD = NewCTD; 1903 } 1904 return GetDefinitionOrSelf(CTD->getTemplatedDecl()); 1905 } 1906 if (auto *CTPSD = 1907 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 1908 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { 1909 if (NewCTPSD->isMemberSpecialization()) 1910 break; 1911 CTPSD = NewCTPSD; 1912 } 1913 return GetDefinitionOrSelf(CTPSD); 1914 } 1915 } 1916 1917 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1918 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 1919 const CXXRecordDecl *RD = this; 1920 while (auto *NewRD = RD->getInstantiatedFromMemberClass()) 1921 RD = NewRD; 1922 return GetDefinitionOrSelf(RD); 1923 } 1924 } 1925 1926 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && 1927 "couldn't find pattern for class template instantiation"); 1928 return nullptr; 1929 } 1930 1931 CXXDestructorDecl *CXXRecordDecl::getDestructor() const { 1932 ASTContext &Context = getASTContext(); 1933 QualType ClassType = Context.getTypeDeclType(this); 1934 1935 DeclarationName Name 1936 = Context.DeclarationNames.getCXXDestructorName( 1937 Context.getCanonicalType(ClassType)); 1938 1939 DeclContext::lookup_result R = lookup(Name); 1940 1941 // If a destructor was marked as not selected, we skip it. We don't always 1942 // have a selected destructor: dependent types, unnamed structs. 1943 for (auto *Decl : R) { 1944 auto* DD = dyn_cast<CXXDestructorDecl>(Decl); 1945 if (DD && !DD->isIneligibleOrNotSelected()) 1946 return DD; 1947 } 1948 return nullptr; 1949 } 1950 1951 static bool isDeclContextInNamespace(const DeclContext *DC) { 1952 while (!DC->isTranslationUnit()) { 1953 if (DC->isNamespace()) 1954 return true; 1955 DC = DC->getParent(); 1956 } 1957 return false; 1958 } 1959 1960 bool CXXRecordDecl::isInterfaceLike() const { 1961 assert(hasDefinition() && "checking for interface-like without a definition"); 1962 // All __interfaces are inheritently interface-like. 1963 if (isInterface()) 1964 return true; 1965 1966 // Interface-like types cannot have a user declared constructor, destructor, 1967 // friends, VBases, conversion functions, or fields. Additionally, lambdas 1968 // cannot be interface types. 1969 if (isLambda() || hasUserDeclaredConstructor() || 1970 hasUserDeclaredDestructor() || !field_empty() || hasFriends() || 1971 getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) 1972 return false; 1973 1974 // No interface-like type can have a method with a definition. 1975 for (const auto *const Method : methods()) 1976 if (Method->isDefined() && !Method->isImplicit()) 1977 return false; 1978 1979 // Check "Special" types. 1980 const auto *Uuid = getAttr<UuidAttr>(); 1981 // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an 1982 // extern C++ block directly in the TU. These are only valid if in one 1983 // of these two situations. 1984 if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && 1985 !isDeclContextInNamespace(getDeclContext()) && 1986 ((getName() == "IUnknown" && 1987 Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || 1988 (getName() == "IDispatch" && 1989 Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { 1990 if (getNumBases() > 0) 1991 return false; 1992 return true; 1993 } 1994 1995 // FIXME: Any access specifiers is supposed to make this no longer interface 1996 // like. 1997 1998 // If this isn't a 'special' type, it must have a single interface-like base. 1999 if (getNumBases() != 1) 2000 return false; 2001 2002 const auto BaseSpec = *bases_begin(); 2003 if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) 2004 return false; 2005 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 2006 if (Base->isInterface() || !Base->isInterfaceLike()) 2007 return false; 2008 return true; 2009 } 2010 2011 void CXXRecordDecl::completeDefinition() { 2012 completeDefinition(nullptr); 2013 } 2014 2015 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { 2016 RecordDecl::completeDefinition(); 2017 2018 // If the class may be abstract (but hasn't been marked as such), check for 2019 // any pure final overriders. 2020 if (mayBeAbstract()) { 2021 CXXFinalOverriderMap MyFinalOverriders; 2022 if (!FinalOverriders) { 2023 getFinalOverriders(MyFinalOverriders); 2024 FinalOverriders = &MyFinalOverriders; 2025 } 2026 2027 bool Done = false; 2028 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 2029 MEnd = FinalOverriders->end(); 2030 M != MEnd && !Done; ++M) { 2031 for (OverridingMethods::iterator SO = M->second.begin(), 2032 SOEnd = M->second.end(); 2033 SO != SOEnd && !Done; ++SO) { 2034 assert(SO->second.size() > 0 && 2035 "All virtual functions have overriding virtual functions"); 2036 2037 // C++ [class.abstract]p4: 2038 // A class is abstract if it contains or inherits at least one 2039 // pure virtual function for which the final overrider is pure 2040 // virtual. 2041 if (SO->second.front().Method->isPure()) { 2042 data().Abstract = true; 2043 Done = true; 2044 break; 2045 } 2046 } 2047 } 2048 } 2049 2050 // Set access bits correctly on the directly-declared conversions. 2051 for (conversion_iterator I = conversion_begin(), E = conversion_end(); 2052 I != E; ++I) 2053 I.setAccess((*I)->getAccess()); 2054 } 2055 2056 bool CXXRecordDecl::mayBeAbstract() const { 2057 if (data().Abstract || isInvalidDecl() || !data().Polymorphic || 2058 isDependentContext()) 2059 return false; 2060 2061 for (const auto &B : bases()) { 2062 const auto *BaseDecl = 2063 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); 2064 if (BaseDecl->isAbstract()) 2065 return true; 2066 } 2067 2068 return false; 2069 } 2070 2071 bool CXXRecordDecl::isEffectivelyFinal() const { 2072 auto *Def = getDefinition(); 2073 if (!Def) 2074 return false; 2075 if (Def->hasAttr<FinalAttr>()) 2076 return true; 2077 if (const auto *Dtor = Def->getDestructor()) 2078 if (Dtor->hasAttr<FinalAttr>()) 2079 return true; 2080 return false; 2081 } 2082 2083 void CXXDeductionGuideDecl::anchor() {} 2084 2085 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { 2086 if ((getKind() != Other.getKind() || 2087 getKind() == ExplicitSpecKind::Unresolved)) { 2088 if (getKind() == ExplicitSpecKind::Unresolved && 2089 Other.getKind() == ExplicitSpecKind::Unresolved) { 2090 ODRHash SelfHash, OtherHash; 2091 SelfHash.AddStmt(getExpr()); 2092 OtherHash.AddStmt(Other.getExpr()); 2093 return SelfHash.CalculateHash() == OtherHash.CalculateHash(); 2094 } else 2095 return false; 2096 } 2097 return true; 2098 } 2099 2100 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { 2101 switch (Function->getDeclKind()) { 2102 case Decl::Kind::CXXConstructor: 2103 return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier(); 2104 case Decl::Kind::CXXConversion: 2105 return cast<CXXConversionDecl>(Function)->getExplicitSpecifier(); 2106 case Decl::Kind::CXXDeductionGuide: 2107 return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier(); 2108 default: 2109 return {}; 2110 } 2111 } 2112 2113 CXXDeductionGuideDecl * 2114 CXXDeductionGuideDecl::Create(ASTContext &C, DeclContext *DC, 2115 SourceLocation StartLoc, ExplicitSpecifier ES, 2116 const DeclarationNameInfo &NameInfo, QualType T, 2117 TypeSourceInfo *TInfo, SourceLocation EndLocation, 2118 CXXConstructorDecl *Ctor) { 2119 return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, 2120 TInfo, EndLocation, Ctor); 2121 } 2122 2123 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, 2124 unsigned ID) { 2125 return new (C, ID) CXXDeductionGuideDecl( 2126 C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), 2127 QualType(), nullptr, SourceLocation(), nullptr); 2128 } 2129 2130 RequiresExprBodyDecl *RequiresExprBodyDecl::Create( 2131 ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { 2132 return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); 2133 } 2134 2135 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, 2136 unsigned ID) { 2137 return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); 2138 } 2139 2140 void CXXMethodDecl::anchor() {} 2141 2142 bool CXXMethodDecl::isStatic() const { 2143 const CXXMethodDecl *MD = getCanonicalDecl(); 2144 2145 if (MD->getStorageClass() == SC_Static) 2146 return true; 2147 2148 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); 2149 return isStaticOverloadedOperator(OOK); 2150 } 2151 2152 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, 2153 const CXXMethodDecl *BaseMD) { 2154 for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { 2155 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) 2156 return true; 2157 if (recursivelyOverrides(MD, BaseMD)) 2158 return true; 2159 } 2160 return false; 2161 } 2162 2163 CXXMethodDecl * 2164 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, 2165 bool MayBeBase) { 2166 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) 2167 return this; 2168 2169 // Lookup doesn't work for destructors, so handle them separately. 2170 if (isa<CXXDestructorDecl>(this)) { 2171 CXXMethodDecl *MD = RD->getDestructor(); 2172 if (MD) { 2173 if (recursivelyOverrides(MD, this)) 2174 return MD; 2175 if (MayBeBase && recursivelyOverrides(this, MD)) 2176 return MD; 2177 } 2178 return nullptr; 2179 } 2180 2181 for (auto *ND : RD->lookup(getDeclName())) { 2182 auto *MD = dyn_cast<CXXMethodDecl>(ND); 2183 if (!MD) 2184 continue; 2185 if (recursivelyOverrides(MD, this)) 2186 return MD; 2187 if (MayBeBase && recursivelyOverrides(this, MD)) 2188 return MD; 2189 } 2190 2191 return nullptr; 2192 } 2193 2194 CXXMethodDecl * 2195 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, 2196 bool MayBeBase) { 2197 if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) 2198 return MD; 2199 2200 llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders; 2201 auto AddFinalOverrider = [&](CXXMethodDecl *D) { 2202 // If this function is overridden by a candidate final overrider, it is not 2203 // a final overrider. 2204 for (CXXMethodDecl *OtherD : FinalOverriders) { 2205 if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D)) 2206 return; 2207 } 2208 2209 // Other candidate final overriders might be overridden by this function. 2210 llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) { 2211 return recursivelyOverrides(D, OtherD); 2212 }); 2213 2214 FinalOverriders.push_back(D); 2215 }; 2216 2217 for (const auto &I : RD->bases()) { 2218 const RecordType *RT = I.getType()->getAs<RecordType>(); 2219 if (!RT) 2220 continue; 2221 const auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 2222 if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base)) 2223 AddFinalOverrider(D); 2224 } 2225 2226 return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; 2227 } 2228 2229 CXXMethodDecl * 2230 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2231 const DeclarationNameInfo &NameInfo, QualType T, 2232 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 2233 bool isInline, ConstexprSpecKind ConstexprKind, 2234 SourceLocation EndLocation, 2235 Expr *TrailingRequiresClause) { 2236 return new (C, RD) CXXMethodDecl( 2237 CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 2238 isInline, ConstexprKind, EndLocation, TrailingRequiresClause); 2239 } 2240 2241 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2242 return new (C, ID) CXXMethodDecl( 2243 CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(), 2244 QualType(), nullptr, SC_None, false, false, 2245 ConstexprSpecKind::Unspecified, SourceLocation(), nullptr); 2246 } 2247 2248 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, 2249 bool IsAppleKext) { 2250 assert(isVirtual() && "this method is expected to be virtual"); 2251 2252 // When building with -fapple-kext, all calls must go through the vtable since 2253 // the kernel linker can do runtime patching of vtables. 2254 if (IsAppleKext) 2255 return nullptr; 2256 2257 // If the member function is marked 'final', we know that it can't be 2258 // overridden and can therefore devirtualize it unless it's pure virtual. 2259 if (hasAttr<FinalAttr>()) 2260 return isPure() ? nullptr : this; 2261 2262 // If Base is unknown, we cannot devirtualize. 2263 if (!Base) 2264 return nullptr; 2265 2266 // If the base expression (after skipping derived-to-base conversions) is a 2267 // class prvalue, then we can devirtualize. 2268 Base = Base->getBestDynamicClassTypeExpr(); 2269 if (Base->isPRValue() && Base->getType()->isRecordType()) 2270 return this; 2271 2272 // If we don't even know what we would call, we can't devirtualize. 2273 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2274 if (!BestDynamicDecl) 2275 return nullptr; 2276 2277 // There may be a method corresponding to MD in a derived class. 2278 CXXMethodDecl *DevirtualizedMethod = 2279 getCorrespondingMethodInClass(BestDynamicDecl); 2280 2281 // If there final overrider in the dynamic type is ambiguous, we can't 2282 // devirtualize this call. 2283 if (!DevirtualizedMethod) 2284 return nullptr; 2285 2286 // If that method is pure virtual, we can't devirtualize. If this code is 2287 // reached, the result would be UB, not a direct call to the derived class 2288 // function, and we can't assume the derived class function is defined. 2289 if (DevirtualizedMethod->isPure()) 2290 return nullptr; 2291 2292 // If that method is marked final, we can devirtualize it. 2293 if (DevirtualizedMethod->hasAttr<FinalAttr>()) 2294 return DevirtualizedMethod; 2295 2296 // Similarly, if the class itself or its destructor is marked 'final', 2297 // the class can't be derived from and we can therefore devirtualize the 2298 // member function call. 2299 if (BestDynamicDecl->isEffectivelyFinal()) 2300 return DevirtualizedMethod; 2301 2302 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) { 2303 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2304 if (VD->getType()->isRecordType()) 2305 // This is a record decl. We know the type and can devirtualize it. 2306 return DevirtualizedMethod; 2307 2308 return nullptr; 2309 } 2310 2311 // We can devirtualize calls on an object accessed by a class member access 2312 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2313 // a derived class object constructed in the same location. 2314 if (const auto *ME = dyn_cast<MemberExpr>(Base)) { 2315 const ValueDecl *VD = ME->getMemberDecl(); 2316 return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; 2317 } 2318 2319 // Likewise for calls on an object accessed by a (non-reference) pointer to 2320 // member access. 2321 if (auto *BO = dyn_cast<BinaryOperator>(Base)) { 2322 if (BO->isPtrMemOp()) { 2323 auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); 2324 if (MPT->getPointeeType()->isRecordType()) 2325 return DevirtualizedMethod; 2326 } 2327 } 2328 2329 // We can't devirtualize the call. 2330 return nullptr; 2331 } 2332 2333 bool CXXMethodDecl::isUsualDeallocationFunction( 2334 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { 2335 assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); 2336 if (getOverloadedOperator() != OO_Delete && 2337 getOverloadedOperator() != OO_Array_Delete) 2338 return false; 2339 2340 // C++ [basic.stc.dynamic.deallocation]p2: 2341 // A template instance is never a usual deallocation function, 2342 // regardless of its signature. 2343 if (getPrimaryTemplate()) 2344 return false; 2345 2346 // C++ [basic.stc.dynamic.deallocation]p2: 2347 // If a class T has a member deallocation function named operator delete 2348 // with exactly one parameter, then that function is a usual (non-placement) 2349 // deallocation function. [...] 2350 if (getNumParams() == 1) 2351 return true; 2352 unsigned UsualParams = 1; 2353 2354 // C++ P0722: 2355 // A destroying operator delete is a usual deallocation function if 2356 // removing the std::destroying_delete_t parameter and changing the 2357 // first parameter type from T* to void* results in the signature of 2358 // a usual deallocation function. 2359 if (isDestroyingOperatorDelete()) 2360 ++UsualParams; 2361 2362 // C++ <=14 [basic.stc.dynamic.deallocation]p2: 2363 // [...] If class T does not declare such an operator delete but does 2364 // declare a member deallocation function named operator delete with 2365 // exactly two parameters, the second of which has type std::size_t (18.1), 2366 // then this function is a usual deallocation function. 2367 // 2368 // C++17 says a usual deallocation function is one with the signature 2369 // (void* [, size_t] [, std::align_val_t] [, ...]) 2370 // and all such functions are usual deallocation functions. It's not clear 2371 // that allowing varargs functions was intentional. 2372 ASTContext &Context = getASTContext(); 2373 if (UsualParams < getNumParams() && 2374 Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), 2375 Context.getSizeType())) 2376 ++UsualParams; 2377 2378 if (UsualParams < getNumParams() && 2379 getParamDecl(UsualParams)->getType()->isAlignValT()) 2380 ++UsualParams; 2381 2382 if (UsualParams != getNumParams()) 2383 return false; 2384 2385 // In C++17 onwards, all potential usual deallocation functions are actual 2386 // usual deallocation functions. Honor this behavior when post-C++14 2387 // deallocation functions are offered as extensions too. 2388 // FIXME(EricWF): Destroying Delete should be a language option. How do we 2389 // handle when destroying delete is used prior to C++17? 2390 if (Context.getLangOpts().CPlusPlus17 || 2391 Context.getLangOpts().AlignedAllocation || 2392 isDestroyingOperatorDelete()) 2393 return true; 2394 2395 // This function is a usual deallocation function if there are no 2396 // single-parameter deallocation functions of the same kind. 2397 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); 2398 bool Result = true; 2399 for (const auto *D : R) { 2400 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2401 if (FD->getNumParams() == 1) { 2402 PreventedBy.push_back(FD); 2403 Result = false; 2404 } 2405 } 2406 } 2407 return Result; 2408 } 2409 2410 bool CXXMethodDecl::isCopyAssignmentOperator() const { 2411 // C++0x [class.copy]p17: 2412 // A user-declared copy assignment operator X::operator= is a non-static 2413 // non-template member function of class X with exactly one parameter of 2414 // type X, X&, const X&, volatile X& or const volatile X&. 2415 if (/*operator=*/getOverloadedOperator() != OO_Equal || 2416 /*non-static*/ isStatic() || 2417 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || 2418 getNumParams() != 1) 2419 return false; 2420 2421 QualType ParamType = getParamDecl(0)->getType(); 2422 if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) 2423 ParamType = Ref->getPointeeType(); 2424 2425 ASTContext &Context = getASTContext(); 2426 QualType ClassType 2427 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2428 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2429 } 2430 2431 bool CXXMethodDecl::isMoveAssignmentOperator() const { 2432 // C++0x [class.copy]p19: 2433 // A user-declared move assignment operator X::operator= is a non-static 2434 // non-template member function of class X with exactly one parameter of type 2435 // X&&, const X&&, volatile X&&, or const volatile X&&. 2436 if (getOverloadedOperator() != OO_Equal || isStatic() || 2437 getPrimaryTemplate() || getDescribedFunctionTemplate() || 2438 getNumParams() != 1) 2439 return false; 2440 2441 QualType ParamType = getParamDecl(0)->getType(); 2442 if (!ParamType->isRValueReferenceType()) 2443 return false; 2444 ParamType = ParamType->getPointeeType(); 2445 2446 ASTContext &Context = getASTContext(); 2447 QualType ClassType 2448 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2449 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2450 } 2451 2452 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { 2453 assert(MD->isCanonicalDecl() && "Method is not canonical!"); 2454 assert(!MD->getParent()->isDependentContext() && 2455 "Can't add an overridden method to a class template!"); 2456 assert(MD->isVirtual() && "Method is not virtual!"); 2457 2458 getASTContext().addOverriddenMethod(this, MD); 2459 } 2460 2461 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { 2462 if (isa<CXXConstructorDecl>(this)) return nullptr; 2463 return getASTContext().overridden_methods_begin(this); 2464 } 2465 2466 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { 2467 if (isa<CXXConstructorDecl>(this)) return nullptr; 2468 return getASTContext().overridden_methods_end(this); 2469 } 2470 2471 unsigned CXXMethodDecl::size_overridden_methods() const { 2472 if (isa<CXXConstructorDecl>(this)) return 0; 2473 return getASTContext().overridden_methods_size(this); 2474 } 2475 2476 CXXMethodDecl::overridden_method_range 2477 CXXMethodDecl::overridden_methods() const { 2478 if (isa<CXXConstructorDecl>(this)) 2479 return overridden_method_range(nullptr, nullptr); 2480 return getASTContext().overridden_methods(this); 2481 } 2482 2483 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, 2484 const CXXRecordDecl *Decl) { 2485 QualType ClassTy = C.getTypeDeclType(Decl); 2486 return C.getQualifiedType(ClassTy, FPT->getMethodQuals()); 2487 } 2488 2489 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, 2490 const CXXRecordDecl *Decl) { 2491 ASTContext &C = Decl->getASTContext(); 2492 QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); 2493 return C.getPointerType(ObjectTy); 2494 } 2495 2496 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT, 2497 const CXXRecordDecl *Decl) { 2498 ASTContext &C = Decl->getASTContext(); 2499 return ::getThisObjectType(C, FPT, Decl); 2500 } 2501 2502 QualType CXXMethodDecl::getThisType() const { 2503 // C++ 9.3.2p1: The type of this in a member function of a class X is X*. 2504 // If the member function is declared const, the type of this is const X*, 2505 // if the member function is declared volatile, the type of this is 2506 // volatile X*, and if the member function is declared const volatile, 2507 // the type of this is const volatile X*. 2508 assert(isInstance() && "No 'this' for static methods!"); 2509 return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(), 2510 getParent()); 2511 } 2512 2513 QualType CXXMethodDecl::getThisObjectType() const { 2514 // Ditto getThisType. 2515 assert(isInstance() && "No 'this' for static methods!"); 2516 return CXXMethodDecl::getThisObjectType( 2517 getType()->castAs<FunctionProtoType>(), getParent()); 2518 } 2519 2520 bool CXXMethodDecl::hasInlineBody() const { 2521 // If this function is a template instantiation, look at the template from 2522 // which it was instantiated. 2523 const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); 2524 if (!CheckFn) 2525 CheckFn = this; 2526 2527 const FunctionDecl *fn; 2528 return CheckFn->isDefined(fn) && !fn->isOutOfLine() && 2529 (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); 2530 } 2531 2532 bool CXXMethodDecl::isLambdaStaticInvoker() const { 2533 const CXXRecordDecl *P = getParent(); 2534 return P->isLambda() && getDeclName().isIdentifier() && 2535 getName() == getLambdaStaticInvokerName(); 2536 } 2537 2538 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2539 TypeSourceInfo *TInfo, bool IsVirtual, 2540 SourceLocation L, Expr *Init, 2541 SourceLocation R, 2542 SourceLocation EllipsisLoc) 2543 : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc), 2544 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), 2545 IsWritten(false), SourceOrder(0) {} 2546 2547 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, 2548 SourceLocation MemberLoc, 2549 SourceLocation L, Expr *Init, 2550 SourceLocation R) 2551 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), 2552 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2553 IsWritten(false), SourceOrder(0) {} 2554 2555 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2556 IndirectFieldDecl *Member, 2557 SourceLocation MemberLoc, 2558 SourceLocation L, Expr *Init, 2559 SourceLocation R) 2560 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), 2561 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2562 IsWritten(false), SourceOrder(0) {} 2563 2564 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2565 TypeSourceInfo *TInfo, 2566 SourceLocation L, Expr *Init, 2567 SourceLocation R) 2568 : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), 2569 IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} 2570 2571 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { 2572 return Context.getAllocator() 2573 .identifyKnownAlignedObject<CXXCtorInitializer>(this); 2574 } 2575 2576 TypeLoc CXXCtorInitializer::getBaseClassLoc() const { 2577 if (isBaseInitializer()) 2578 return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); 2579 else 2580 return {}; 2581 } 2582 2583 const Type *CXXCtorInitializer::getBaseClass() const { 2584 if (isBaseInitializer()) 2585 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); 2586 else 2587 return nullptr; 2588 } 2589 2590 SourceLocation CXXCtorInitializer::getSourceLocation() const { 2591 if (isInClassMemberInitializer()) 2592 return getAnyMember()->getLocation(); 2593 2594 if (isAnyMemberInitializer()) 2595 return getMemberLocation(); 2596 2597 if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) 2598 return TSInfo->getTypeLoc().getBeginLoc(); 2599 2600 return {}; 2601 } 2602 2603 SourceRange CXXCtorInitializer::getSourceRange() const { 2604 if (isInClassMemberInitializer()) { 2605 FieldDecl *D = getAnyMember(); 2606 if (Expr *I = D->getInClassInitializer()) 2607 return I->getSourceRange(); 2608 return {}; 2609 } 2610 2611 return SourceRange(getSourceLocation(), getRParenLoc()); 2612 } 2613 2614 CXXConstructorDecl::CXXConstructorDecl( 2615 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2616 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2617 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, 2618 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, 2619 InheritedConstructor Inherited, Expr *TrailingRequiresClause) 2620 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, 2621 SC_None, UsesFPIntrin, isInline, ConstexprKind, 2622 SourceLocation(), TrailingRequiresClause) { 2623 setNumCtorInitializers(0); 2624 setInheritingConstructor(static_cast<bool>(Inherited)); 2625 setImplicit(isImplicitlyDeclared); 2626 CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; 2627 if (Inherited) 2628 *getTrailingObjects<InheritedConstructor>() = Inherited; 2629 setExplicitSpecifier(ES); 2630 } 2631 2632 void CXXConstructorDecl::anchor() {} 2633 2634 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, 2635 unsigned ID, 2636 uint64_t AllocKind) { 2637 bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); 2638 bool isInheritingConstructor = 2639 static_cast<bool>(AllocKind & TAKInheritsConstructor); 2640 unsigned Extra = 2641 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2642 isInheritingConstructor, hasTrailingExplicit); 2643 auto *Result = new (C, ID, Extra) CXXConstructorDecl( 2644 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2645 ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified, 2646 InheritedConstructor(), nullptr); 2647 Result->setInheritingConstructor(isInheritingConstructor); 2648 Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = 2649 hasTrailingExplicit; 2650 Result->setExplicitSpecifier(ExplicitSpecifier()); 2651 return Result; 2652 } 2653 2654 CXXConstructorDecl *CXXConstructorDecl::Create( 2655 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2656 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2657 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, 2658 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, 2659 InheritedConstructor Inherited, Expr *TrailingRequiresClause) { 2660 assert(NameInfo.getName().getNameKind() 2661 == DeclarationName::CXXConstructorName && 2662 "Name must refer to a constructor"); 2663 unsigned Extra = 2664 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2665 Inherited ? 1 : 0, ES.getExpr() ? 1 : 0); 2666 return new (C, RD, Extra) CXXConstructorDecl( 2667 C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline, 2668 isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause); 2669 } 2670 2671 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { 2672 return CtorInitializers.get(getASTContext().getExternalSource()); 2673 } 2674 2675 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { 2676 assert(isDelegatingConstructor() && "Not a delegating constructor!"); 2677 Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); 2678 if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) 2679 return Construct->getConstructor(); 2680 2681 return nullptr; 2682 } 2683 2684 bool CXXConstructorDecl::isDefaultConstructor() const { 2685 // C++ [class.default.ctor]p1: 2686 // A default constructor for a class X is a constructor of class X for 2687 // which each parameter that is not a function parameter pack has a default 2688 // argument (including the case of a constructor with no parameters) 2689 return getMinRequiredArguments() == 0; 2690 } 2691 2692 bool 2693 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { 2694 return isCopyOrMoveConstructor(TypeQuals) && 2695 getParamDecl(0)->getType()->isLValueReferenceType(); 2696 } 2697 2698 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { 2699 return isCopyOrMoveConstructor(TypeQuals) && 2700 getParamDecl(0)->getType()->isRValueReferenceType(); 2701 } 2702 2703 /// Determine whether this is a copy or move constructor. 2704 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { 2705 // C++ [class.copy]p2: 2706 // A non-template constructor for class X is a copy constructor 2707 // if its first parameter is of type X&, const X&, volatile X& or 2708 // const volatile X&, and either there are no other parameters 2709 // or else all other parameters have default arguments (8.3.6). 2710 // C++0x [class.copy]p3: 2711 // A non-template constructor for class X is a move constructor if its 2712 // first parameter is of type X&&, const X&&, volatile X&&, or 2713 // const volatile X&&, and either there are no other parameters or else 2714 // all other parameters have default arguments. 2715 if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || 2716 getDescribedFunctionTemplate() != nullptr) 2717 return false; 2718 2719 const ParmVarDecl *Param = getParamDecl(0); 2720 2721 // Do we have a reference type? 2722 const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); 2723 if (!ParamRefType) 2724 return false; 2725 2726 // Is it a reference to our class type? 2727 ASTContext &Context = getASTContext(); 2728 2729 CanQualType PointeeType 2730 = Context.getCanonicalType(ParamRefType->getPointeeType()); 2731 CanQualType ClassTy 2732 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2733 if (PointeeType.getUnqualifiedType() != ClassTy) 2734 return false; 2735 2736 // FIXME: other qualifiers? 2737 2738 // We have a copy or move constructor. 2739 TypeQuals = PointeeType.getCVRQualifiers(); 2740 return true; 2741 } 2742 2743 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { 2744 // C++ [class.conv.ctor]p1: 2745 // A constructor declared without the function-specifier explicit 2746 // that can be called with a single parameter specifies a 2747 // conversion from the type of its first parameter to the type of 2748 // its class. Such a constructor is called a converting 2749 // constructor. 2750 if (isExplicit() && !AllowExplicit) 2751 return false; 2752 2753 // FIXME: This has nothing to do with the definition of converting 2754 // constructor, but is convenient for how we use this function in overload 2755 // resolution. 2756 return getNumParams() == 0 2757 ? getType()->castAs<FunctionProtoType>()->isVariadic() 2758 : getMinRequiredArguments() <= 1; 2759 } 2760 2761 bool CXXConstructorDecl::isSpecializationCopyingObject() const { 2762 if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) 2763 return false; 2764 2765 const ParmVarDecl *Param = getParamDecl(0); 2766 2767 ASTContext &Context = getASTContext(); 2768 CanQualType ParamType = Context.getCanonicalType(Param->getType()); 2769 2770 // Is it the same as our class type? 2771 CanQualType ClassTy 2772 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2773 if (ParamType.getUnqualifiedType() != ClassTy) 2774 return false; 2775 2776 return true; 2777 } 2778 2779 void CXXDestructorDecl::anchor() {} 2780 2781 CXXDestructorDecl * 2782 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2783 return new (C, ID) CXXDestructorDecl( 2784 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2785 false, false, false, ConstexprSpecKind::Unspecified, nullptr); 2786 } 2787 2788 CXXDestructorDecl *CXXDestructorDecl::Create( 2789 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2790 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2791 bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared, 2792 ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) { 2793 assert(NameInfo.getName().getNameKind() 2794 == DeclarationName::CXXDestructorName && 2795 "Name must refer to a destructor"); 2796 return new (C, RD) CXXDestructorDecl( 2797 C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, 2798 isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause); 2799 } 2800 2801 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { 2802 auto *First = cast<CXXDestructorDecl>(getFirstDecl()); 2803 if (OD && !First->OperatorDelete) { 2804 First->OperatorDelete = OD; 2805 First->OperatorDeleteThisArg = ThisArg; 2806 if (auto *L = getASTMutationListener()) 2807 L->ResolvedOperatorDelete(First, OD, ThisArg); 2808 } 2809 } 2810 2811 void CXXConversionDecl::anchor() {} 2812 2813 CXXConversionDecl * 2814 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2815 return new (C, ID) CXXConversionDecl( 2816 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2817 false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 2818 SourceLocation(), nullptr); 2819 } 2820 2821 CXXConversionDecl *CXXConversionDecl::Create( 2822 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2823 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2824 bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES, 2825 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, 2826 Expr *TrailingRequiresClause) { 2827 assert(NameInfo.getName().getNameKind() 2828 == DeclarationName::CXXConversionFunctionName && 2829 "Name must refer to a conversion function"); 2830 return new (C, RD) CXXConversionDecl( 2831 C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES, 2832 ConstexprKind, EndLocation, TrailingRequiresClause); 2833 } 2834 2835 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { 2836 return isImplicit() && getParent()->isLambda() && 2837 getConversionType()->isBlockPointerType(); 2838 } 2839 2840 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, 2841 SourceLocation LangLoc, LanguageIDs lang, 2842 bool HasBraces) 2843 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), 2844 ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { 2845 setLanguage(lang); 2846 LinkageSpecDeclBits.HasBraces = HasBraces; 2847 } 2848 2849 void LinkageSpecDecl::anchor() {} 2850 2851 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, 2852 DeclContext *DC, 2853 SourceLocation ExternLoc, 2854 SourceLocation LangLoc, 2855 LanguageIDs Lang, 2856 bool HasBraces) { 2857 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); 2858 } 2859 2860 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, 2861 unsigned ID) { 2862 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), 2863 SourceLocation(), lang_c, false); 2864 } 2865 2866 void UsingDirectiveDecl::anchor() {} 2867 2868 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, 2869 SourceLocation L, 2870 SourceLocation NamespaceLoc, 2871 NestedNameSpecifierLoc QualifierLoc, 2872 SourceLocation IdentLoc, 2873 NamedDecl *Used, 2874 DeclContext *CommonAncestor) { 2875 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used)) 2876 Used = NS->getOriginalNamespace(); 2877 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, 2878 IdentLoc, Used, CommonAncestor); 2879 } 2880 2881 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, 2882 unsigned ID) { 2883 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), 2884 SourceLocation(), 2885 NestedNameSpecifierLoc(), 2886 SourceLocation(), nullptr, nullptr); 2887 } 2888 2889 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { 2890 if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) 2891 return NA->getNamespace(); 2892 return cast_or_null<NamespaceDecl>(NominatedNamespace); 2893 } 2894 2895 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, 2896 SourceLocation StartLoc, SourceLocation IdLoc, 2897 IdentifierInfo *Id, NamespaceDecl *PrevDecl, 2898 bool Nested) 2899 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), 2900 redeclarable_base(C), LocStart(StartLoc) { 2901 unsigned Flags = 0; 2902 if (Inline) 2903 Flags |= F_Inline; 2904 if (Nested) 2905 Flags |= F_Nested; 2906 AnonOrFirstNamespaceAndFlags = {nullptr, Flags}; 2907 setPreviousDecl(PrevDecl); 2908 2909 if (PrevDecl) 2910 AnonOrFirstNamespaceAndFlags.setPointer(PrevDecl->getOriginalNamespace()); 2911 } 2912 2913 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, 2914 bool Inline, SourceLocation StartLoc, 2915 SourceLocation IdLoc, IdentifierInfo *Id, 2916 NamespaceDecl *PrevDecl, bool Nested) { 2917 return new (C, DC) 2918 NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested); 2919 } 2920 2921 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2922 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), 2923 SourceLocation(), nullptr, nullptr, false); 2924 } 2925 2926 NamespaceDecl *NamespaceDecl::getOriginalNamespace() { 2927 if (isFirstDecl()) 2928 return this; 2929 2930 return AnonOrFirstNamespaceAndFlags.getPointer(); 2931 } 2932 2933 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { 2934 if (isFirstDecl()) 2935 return this; 2936 2937 return AnonOrFirstNamespaceAndFlags.getPointer(); 2938 } 2939 2940 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } 2941 2942 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { 2943 return getNextRedeclaration(); 2944 } 2945 2946 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { 2947 return getPreviousDecl(); 2948 } 2949 2950 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { 2951 return getMostRecentDecl(); 2952 } 2953 2954 void NamespaceAliasDecl::anchor() {} 2955 2956 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { 2957 return getNextRedeclaration(); 2958 } 2959 2960 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { 2961 return getPreviousDecl(); 2962 } 2963 2964 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { 2965 return getMostRecentDecl(); 2966 } 2967 2968 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, 2969 SourceLocation UsingLoc, 2970 SourceLocation AliasLoc, 2971 IdentifierInfo *Alias, 2972 NestedNameSpecifierLoc QualifierLoc, 2973 SourceLocation IdentLoc, 2974 NamedDecl *Namespace) { 2975 // FIXME: Preserve the aliased namespace as written. 2976 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) 2977 Namespace = NS->getOriginalNamespace(); 2978 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, 2979 QualifierLoc, IdentLoc, Namespace); 2980 } 2981 2982 NamespaceAliasDecl * 2983 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2984 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), 2985 SourceLocation(), nullptr, 2986 NestedNameSpecifierLoc(), 2987 SourceLocation(), nullptr); 2988 } 2989 2990 void LifetimeExtendedTemporaryDecl::anchor() {} 2991 2992 /// Retrieve the storage duration for the materialized temporary. 2993 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { 2994 const ValueDecl *ExtendingDecl = getExtendingDecl(); 2995 if (!ExtendingDecl) 2996 return SD_FullExpression; 2997 // FIXME: This is not necessarily correct for a temporary materialized 2998 // within a default initializer. 2999 if (isa<FieldDecl>(ExtendingDecl)) 3000 return SD_Automatic; 3001 // FIXME: This only works because storage class specifiers are not allowed 3002 // on decomposition declarations. 3003 if (isa<BindingDecl>(ExtendingDecl)) 3004 return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic 3005 : SD_Static; 3006 return cast<VarDecl>(ExtendingDecl)->getStorageDuration(); 3007 } 3008 3009 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { 3010 assert(getStorageDuration() == SD_Static && 3011 "don't need to cache the computed value for this temporary"); 3012 if (MayCreate && !Value) { 3013 Value = (new (getASTContext()) APValue); 3014 getASTContext().addDestruction(Value); 3015 } 3016 assert(Value && "may not be null"); 3017 return Value; 3018 } 3019 3020 void UsingShadowDecl::anchor() {} 3021 3022 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, 3023 SourceLocation Loc, DeclarationName Name, 3024 BaseUsingDecl *Introducer, NamedDecl *Target) 3025 : NamedDecl(K, DC, Loc, Name), redeclarable_base(C), 3026 UsingOrNextShadow(Introducer) { 3027 if (Target) { 3028 assert(!isa<UsingShadowDecl>(Target)); 3029 setTargetDecl(Target); 3030 } 3031 setImplicit(); 3032 } 3033 3034 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) 3035 : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), 3036 redeclarable_base(C) {} 3037 3038 UsingShadowDecl * 3039 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3040 return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); 3041 } 3042 3043 BaseUsingDecl *UsingShadowDecl::getIntroducer() const { 3044 const UsingShadowDecl *Shadow = this; 3045 while (const auto *NextShadow = 3046 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) 3047 Shadow = NextShadow; 3048 return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow); 3049 } 3050 3051 void ConstructorUsingShadowDecl::anchor() {} 3052 3053 ConstructorUsingShadowDecl * 3054 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, 3055 SourceLocation Loc, UsingDecl *Using, 3056 NamedDecl *Target, bool IsVirtual) { 3057 return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, 3058 IsVirtual); 3059 } 3060 3061 ConstructorUsingShadowDecl * 3062 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3063 return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); 3064 } 3065 3066 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { 3067 return getIntroducer()->getQualifier()->getAsRecordDecl(); 3068 } 3069 3070 void BaseUsingDecl::anchor() {} 3071 3072 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) { 3073 assert(!llvm::is_contained(shadows(), S) && "declaration already in set"); 3074 assert(S->getIntroducer() == this); 3075 3076 if (FirstUsingShadow.getPointer()) 3077 S->UsingOrNextShadow = FirstUsingShadow.getPointer(); 3078 FirstUsingShadow.setPointer(S); 3079 } 3080 3081 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) { 3082 assert(llvm::is_contained(shadows(), S) && "declaration not in set"); 3083 assert(S->getIntroducer() == this); 3084 3085 // Remove S from the shadow decl chain. This is O(n) but hopefully rare. 3086 3087 if (FirstUsingShadow.getPointer() == S) { 3088 FirstUsingShadow.setPointer( 3089 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); 3090 S->UsingOrNextShadow = this; 3091 return; 3092 } 3093 3094 UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); 3095 while (Prev->UsingOrNextShadow != S) 3096 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); 3097 Prev->UsingOrNextShadow = S->UsingOrNextShadow; 3098 S->UsingOrNextShadow = this; 3099 } 3100 3101 void UsingDecl::anchor() {} 3102 3103 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, 3104 NestedNameSpecifierLoc QualifierLoc, 3105 const DeclarationNameInfo &NameInfo, 3106 bool HasTypename) { 3107 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); 3108 } 3109 3110 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3111 return new (C, ID) UsingDecl(nullptr, SourceLocation(), 3112 NestedNameSpecifierLoc(), DeclarationNameInfo(), 3113 false); 3114 } 3115 3116 SourceRange UsingDecl::getSourceRange() const { 3117 SourceLocation Begin = isAccessDeclaration() 3118 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3119 return SourceRange(Begin, getNameInfo().getEndLoc()); 3120 } 3121 3122 void UsingEnumDecl::anchor() {} 3123 3124 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC, 3125 SourceLocation UL, 3126 SourceLocation EL, 3127 SourceLocation NL, 3128 TypeSourceInfo *EnumType) { 3129 assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl())); 3130 return new (C, DC) 3131 UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType); 3132 } 3133 3134 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3135 return new (C, ID) 3136 UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(), 3137 SourceLocation(), SourceLocation(), nullptr); 3138 } 3139 3140 SourceRange UsingEnumDecl::getSourceRange() const { 3141 return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc()); 3142 } 3143 3144 void UsingPackDecl::anchor() {} 3145 3146 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, 3147 NamedDecl *InstantiatedFrom, 3148 ArrayRef<NamedDecl *> UsingDecls) { 3149 size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size()); 3150 return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); 3151 } 3152 3153 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3154 unsigned NumExpansions) { 3155 size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions); 3156 auto *Result = 3157 new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, std::nullopt); 3158 Result->NumExpansions = NumExpansions; 3159 auto *Trail = Result->getTrailingObjects<NamedDecl *>(); 3160 for (unsigned I = 0; I != NumExpansions; ++I) 3161 new (Trail + I) NamedDecl*(nullptr); 3162 return Result; 3163 } 3164 3165 void UnresolvedUsingValueDecl::anchor() {} 3166 3167 UnresolvedUsingValueDecl * 3168 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, 3169 SourceLocation UsingLoc, 3170 NestedNameSpecifierLoc QualifierLoc, 3171 const DeclarationNameInfo &NameInfo, 3172 SourceLocation EllipsisLoc) { 3173 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, 3174 QualifierLoc, NameInfo, 3175 EllipsisLoc); 3176 } 3177 3178 UnresolvedUsingValueDecl * 3179 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3180 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), 3181 SourceLocation(), 3182 NestedNameSpecifierLoc(), 3183 DeclarationNameInfo(), 3184 SourceLocation()); 3185 } 3186 3187 SourceRange UnresolvedUsingValueDecl::getSourceRange() const { 3188 SourceLocation Begin = isAccessDeclaration() 3189 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3190 return SourceRange(Begin, getNameInfo().getEndLoc()); 3191 } 3192 3193 void UnresolvedUsingTypenameDecl::anchor() {} 3194 3195 UnresolvedUsingTypenameDecl * 3196 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, 3197 SourceLocation UsingLoc, 3198 SourceLocation TypenameLoc, 3199 NestedNameSpecifierLoc QualifierLoc, 3200 SourceLocation TargetNameLoc, 3201 DeclarationName TargetName, 3202 SourceLocation EllipsisLoc) { 3203 return new (C, DC) UnresolvedUsingTypenameDecl( 3204 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, 3205 TargetName.getAsIdentifierInfo(), EllipsisLoc); 3206 } 3207 3208 UnresolvedUsingTypenameDecl * 3209 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3210 return new (C, ID) UnresolvedUsingTypenameDecl( 3211 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), 3212 SourceLocation(), nullptr, SourceLocation()); 3213 } 3214 3215 UnresolvedUsingIfExistsDecl * 3216 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC, 3217 SourceLocation Loc, DeclarationName Name) { 3218 return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name); 3219 } 3220 3221 UnresolvedUsingIfExistsDecl * 3222 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) { 3223 return new (Ctx, ID) 3224 UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName()); 3225 } 3226 3227 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC, 3228 SourceLocation Loc, 3229 DeclarationName Name) 3230 : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {} 3231 3232 void UnresolvedUsingIfExistsDecl::anchor() {} 3233 3234 void StaticAssertDecl::anchor() {} 3235 3236 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, 3237 SourceLocation StaticAssertLoc, 3238 Expr *AssertExpr, 3239 StringLiteral *Message, 3240 SourceLocation RParenLoc, 3241 bool Failed) { 3242 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, 3243 RParenLoc, Failed); 3244 } 3245 3246 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, 3247 unsigned ID) { 3248 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, 3249 nullptr, SourceLocation(), false); 3250 } 3251 3252 VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() { 3253 assert((isa<VarDecl, BindingDecl>(this)) && 3254 "expected a VarDecl or a BindingDecl"); 3255 if (auto *Var = llvm::dyn_cast<VarDecl>(this)) 3256 return Var; 3257 if (auto *BD = llvm::dyn_cast<BindingDecl>(this)) 3258 return llvm::dyn_cast<VarDecl>(BD->getDecomposedDecl()); 3259 return nullptr; 3260 } 3261 3262 void BindingDecl::anchor() {} 3263 3264 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, 3265 SourceLocation IdLoc, IdentifierInfo *Id) { 3266 return new (C, DC) BindingDecl(DC, IdLoc, Id); 3267 } 3268 3269 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3270 return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); 3271 } 3272 3273 VarDecl *BindingDecl::getHoldingVar() const { 3274 Expr *B = getBinding(); 3275 if (!B) 3276 return nullptr; 3277 auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit()); 3278 if (!DRE) 3279 return nullptr; 3280 3281 auto *VD = cast<VarDecl>(DRE->getDecl()); 3282 assert(VD->isImplicit() && "holding var for binding decl not implicit"); 3283 return VD; 3284 } 3285 3286 void DecompositionDecl::anchor() {} 3287 3288 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, 3289 SourceLocation StartLoc, 3290 SourceLocation LSquareLoc, 3291 QualType T, TypeSourceInfo *TInfo, 3292 StorageClass SC, 3293 ArrayRef<BindingDecl *> Bindings) { 3294 size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size()); 3295 return new (C, DC, Extra) 3296 DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); 3297 } 3298 3299 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, 3300 unsigned ID, 3301 unsigned NumBindings) { 3302 size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings); 3303 auto *Result = new (C, ID, Extra) 3304 DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), 3305 QualType(), nullptr, StorageClass(), std::nullopt); 3306 // Set up and clean out the bindings array. 3307 Result->NumBindings = NumBindings; 3308 auto *Trail = Result->getTrailingObjects<BindingDecl *>(); 3309 for (unsigned I = 0; I != NumBindings; ++I) 3310 new (Trail + I) BindingDecl*(nullptr); 3311 return Result; 3312 } 3313 3314 void DecompositionDecl::printName(llvm::raw_ostream &OS, 3315 const PrintingPolicy &Policy) const { 3316 OS << '['; 3317 bool Comma = false; 3318 for (const auto *B : bindings()) { 3319 if (Comma) 3320 OS << ", "; 3321 B->printName(OS, Policy); 3322 Comma = true; 3323 } 3324 OS << ']'; 3325 } 3326 3327 void MSPropertyDecl::anchor() {} 3328 3329 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, 3330 SourceLocation L, DeclarationName N, 3331 QualType T, TypeSourceInfo *TInfo, 3332 SourceLocation StartL, 3333 IdentifierInfo *Getter, 3334 IdentifierInfo *Setter) { 3335 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); 3336 } 3337 3338 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, 3339 unsigned ID) { 3340 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), 3341 DeclarationName(), QualType(), nullptr, 3342 SourceLocation(), nullptr, nullptr); 3343 } 3344 3345 void MSGuidDecl::anchor() {} 3346 3347 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) 3348 : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), 3349 PartVal(P) {} 3350 3351 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { 3352 DeclContext *DC = C.getTranslationUnitDecl(); 3353 return new (C, DC) MSGuidDecl(DC, T, P); 3354 } 3355 3356 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3357 return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); 3358 } 3359 3360 void MSGuidDecl::printName(llvm::raw_ostream &OS, 3361 const PrintingPolicy &) const { 3362 OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-", 3363 PartVal.Part1, PartVal.Part2, PartVal.Part3); 3364 unsigned I = 0; 3365 for (uint8_t Byte : PartVal.Part4And5) { 3366 OS << llvm::format("%02" PRIx8, Byte); 3367 if (++I == 2) 3368 OS << '-'; 3369 } 3370 OS << '}'; 3371 } 3372 3373 /// Determine if T is a valid 'struct _GUID' of the shape that we expect. 3374 static bool isValidStructGUID(ASTContext &Ctx, QualType T) { 3375 // FIXME: We only need to check this once, not once each time we compute a 3376 // GUID APValue. 3377 using MatcherRef = llvm::function_ref<bool(QualType)>; 3378 3379 auto IsInt = [&Ctx](unsigned N) { 3380 return [&Ctx, N](QualType T) { 3381 return T->isUnsignedIntegerOrEnumerationType() && 3382 Ctx.getIntWidth(T) == N; 3383 }; 3384 }; 3385 3386 auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { 3387 return [&Ctx, Elem, N](QualType T) { 3388 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); 3389 return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); 3390 }; 3391 }; 3392 3393 auto IsStruct = [](std::initializer_list<MatcherRef> Fields) { 3394 return [Fields](QualType T) { 3395 const RecordDecl *RD = T->getAsRecordDecl(); 3396 if (!RD || RD->isUnion()) 3397 return false; 3398 RD = RD->getDefinition(); 3399 if (!RD) 3400 return false; 3401 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 3402 if (CXXRD->getNumBases()) 3403 return false; 3404 auto MatcherIt = Fields.begin(); 3405 for (const FieldDecl *FD : RD->fields()) { 3406 if (FD->isUnnamedBitfield()) continue; 3407 if (FD->isBitField() || MatcherIt == Fields.end() || 3408 !(*MatcherIt)(FD->getType())) 3409 return false; 3410 ++MatcherIt; 3411 } 3412 return MatcherIt == Fields.end(); 3413 }; 3414 }; 3415 3416 // We expect an {i32, i16, i16, [8 x i8]}. 3417 return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); 3418 } 3419 3420 APValue &MSGuidDecl::getAsAPValue() const { 3421 if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) { 3422 using llvm::APInt; 3423 using llvm::APSInt; 3424 APVal = APValue(APValue::UninitStruct(), 0, 4); 3425 APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); 3426 APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); 3427 APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); 3428 APValue &Arr = APVal.getStructField(3) = 3429 APValue(APValue::UninitArray(), 8, 8); 3430 for (unsigned I = 0; I != 8; ++I) { 3431 Arr.getArrayInitializedElt(I) = 3432 APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); 3433 } 3434 // Register this APValue to be destroyed if necessary. (Note that the 3435 // MSGuidDecl destructor is never run.) 3436 getASTContext().addDestruction(&APVal); 3437 } 3438 3439 return APVal; 3440 } 3441 3442 void UnnamedGlobalConstantDecl::anchor() {} 3443 3444 UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C, 3445 DeclContext *DC, 3446 QualType Ty, 3447 const APValue &Val) 3448 : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(), 3449 DeclarationName(), Ty), 3450 Value(Val) { 3451 // Cleanup the embedded APValue if required (note that our destructor is never 3452 // run) 3453 if (Value.needsCleanup()) 3454 C.addDestruction(&Value); 3455 } 3456 3457 UnnamedGlobalConstantDecl * 3458 UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T, 3459 const APValue &Value) { 3460 DeclContext *DC = C.getTranslationUnitDecl(); 3461 return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value); 3462 } 3463 3464 UnnamedGlobalConstantDecl * 3465 UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3466 return new (C, ID) 3467 UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue()); 3468 } 3469 3470 void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS, 3471 const PrintingPolicy &) const { 3472 OS << "unnamed-global-constant"; 3473 } 3474 3475 static const char *getAccessName(AccessSpecifier AS) { 3476 switch (AS) { 3477 case AS_none: 3478 llvm_unreachable("Invalid access specifier!"); 3479 case AS_public: 3480 return "public"; 3481 case AS_private: 3482 return "private"; 3483 case AS_protected: 3484 return "protected"; 3485 } 3486 llvm_unreachable("Invalid access specifier!"); 3487 } 3488 3489 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, 3490 AccessSpecifier AS) { 3491 return DB << getAccessName(AS); 3492 } 3493