1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the C++ related Decl classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/DeclCXX.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/ASTUnresolvedSet.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/DeclarationName.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/LambdaCapture.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/ODRHash.h" 28 #include "clang/AST/Type.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/AST/UnresolvedSet.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/IdentifierTable.h" 33 #include "clang/Basic/LLVM.h" 34 #include "clang/Basic/LangOptions.h" 35 #include "clang/Basic/OperatorKinds.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "llvm/ADT/None.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 52 using namespace clang; 53 54 //===----------------------------------------------------------------------===// 55 // Decl Allocation/Deallocation Method Implementations 56 //===----------------------------------------------------------------------===// 57 58 void AccessSpecDecl::anchor() {} 59 60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 61 return new (C, ID) AccessSpecDecl(EmptyShell()); 62 } 63 64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { 65 ExternalASTSource *Source = C.getExternalSource(); 66 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); 67 assert(Source && "getFromExternalSource with no external source"); 68 69 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) 70 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( 71 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); 72 Impl.Decls.setLazy(false); 73 } 74 75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) 76 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), 77 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), 78 Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), 79 HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), 80 HasPrivateFields(false), HasProtectedFields(false), 81 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), 82 HasOnlyCMembers(true), HasInClassInitializer(false), 83 HasUninitializedReferenceMember(false), HasUninitializedFields(false), 84 HasInheritedConstructor(false), 85 HasInheritedDefaultConstructor(false), 86 HasInheritedAssignment(false), 87 NeedOverloadResolutionForCopyConstructor(false), 88 NeedOverloadResolutionForMoveConstructor(false), 89 NeedOverloadResolutionForCopyAssignment(false), 90 NeedOverloadResolutionForMoveAssignment(false), 91 NeedOverloadResolutionForDestructor(false), 92 DefaultedCopyConstructorIsDeleted(false), 93 DefaultedMoveConstructorIsDeleted(false), 94 DefaultedCopyAssignmentIsDeleted(false), 95 DefaultedMoveAssignmentIsDeleted(false), 96 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), 97 HasTrivialSpecialMembersForCall(SMF_All), 98 DeclaredNonTrivialSpecialMembers(0), 99 DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), 100 HasConstexprNonCopyMoveConstructor(false), 101 HasDefaultedDefaultConstructor(false), 102 DefaultedDefaultConstructorIsConstexpr(true), 103 HasConstexprDefaultConstructor(false), 104 DefaultedDestructorIsConstexpr(true), 105 HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true), 106 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), 107 ImplicitCopyConstructorCanHaveConstParamForVBase(true), 108 ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), 109 ImplicitCopyAssignmentHasConstParam(true), 110 HasDeclaredCopyConstructorWithConstParam(false), 111 HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false), 112 IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), 113 HasODRHash(false), Definition(D) {} 114 115 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { 116 return Bases.get(Definition->getASTContext().getExternalSource()); 117 } 118 119 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { 120 return VBases.get(Definition->getASTContext().getExternalSource()); 121 } 122 123 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, 124 DeclContext *DC, SourceLocation StartLoc, 125 SourceLocation IdLoc, IdentifierInfo *Id, 126 CXXRecordDecl *PrevDecl) 127 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), 128 DefinitionData(PrevDecl ? PrevDecl->DefinitionData 129 : nullptr) {} 130 131 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, 132 DeclContext *DC, SourceLocation StartLoc, 133 SourceLocation IdLoc, IdentifierInfo *Id, 134 CXXRecordDecl *PrevDecl, 135 bool DelayTypeCreation) { 136 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, 137 PrevDecl); 138 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 139 140 // FIXME: DelayTypeCreation seems like such a hack 141 if (!DelayTypeCreation) 142 C.getTypeDeclType(R, PrevDecl); 143 return R; 144 } 145 146 CXXRecordDecl * 147 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, 148 TypeSourceInfo *Info, SourceLocation Loc, 149 bool Dependent, bool IsGeneric, 150 LambdaCaptureDefault CaptureDefault) { 151 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, 152 nullptr, nullptr); 153 R->setBeingDefined(true); 154 R->DefinitionData = 155 new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric, 156 CaptureDefault); 157 R->setMayHaveOutOfDateDef(false); 158 R->setImplicit(true); 159 C.getTypeDeclType(R, /*PrevDecl=*/nullptr); 160 return R; 161 } 162 163 CXXRecordDecl * 164 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 165 auto *R = new (C, ID) CXXRecordDecl( 166 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), 167 nullptr, nullptr); 168 R->setMayHaveOutOfDateDef(false); 169 return R; 170 } 171 172 /// Determine whether a class has a repeated base class. This is intended for 173 /// use when determining if a class is standard-layout, so makes no attempt to 174 /// handle virtual bases. 175 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { 176 llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; 177 SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; 178 while (!WorkList.empty()) { 179 const CXXRecordDecl *RD = WorkList.pop_back_val(); 180 for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { 181 if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { 182 if (!SeenBaseTypes.insert(B).second) 183 return true; 184 WorkList.push_back(B); 185 } 186 } 187 } 188 return false; 189 } 190 191 void 192 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, 193 unsigned NumBases) { 194 ASTContext &C = getASTContext(); 195 196 if (!data().Bases.isOffset() && data().NumBases > 0) 197 C.Deallocate(data().getBases()); 198 199 if (NumBases) { 200 if (!C.getLangOpts().CPlusPlus17) { 201 // C++ [dcl.init.aggr]p1: 202 // An aggregate is [...] a class with [...] no base classes [...]. 203 data().Aggregate = false; 204 } 205 206 // C++ [class]p4: 207 // A POD-struct is an aggregate class... 208 data().PlainOldData = false; 209 } 210 211 // The set of seen virtual base types. 212 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; 213 214 // The virtual bases of this class. 215 SmallVector<const CXXBaseSpecifier *, 8> VBases; 216 217 data().Bases = new(C) CXXBaseSpecifier [NumBases]; 218 data().NumBases = NumBases; 219 for (unsigned i = 0; i < NumBases; ++i) { 220 data().getBases()[i] = *Bases[i]; 221 // Keep track of inherited vbases for this base class. 222 const CXXBaseSpecifier *Base = Bases[i]; 223 QualType BaseType = Base->getType(); 224 // Skip dependent types; we can't do any checking on them now. 225 if (BaseType->isDependentType()) 226 continue; 227 auto *BaseClassDecl = 228 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 229 230 // C++2a [class]p7: 231 // A standard-layout class is a class that: 232 // [...] 233 // -- has all non-static data members and bit-fields in the class and 234 // its base classes first declared in the same class 235 if (BaseClassDecl->data().HasBasesWithFields || 236 !BaseClassDecl->field_empty()) { 237 if (data().HasBasesWithFields) 238 // Two bases have members or bit-fields: not standard-layout. 239 data().IsStandardLayout = false; 240 data().HasBasesWithFields = true; 241 } 242 243 // C++11 [class]p7: 244 // A standard-layout class is a class that: 245 // -- [...] has [...] at most one base class with non-static data 246 // members 247 if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || 248 BaseClassDecl->hasDirectFields()) { 249 if (data().HasBasesWithNonStaticDataMembers) 250 data().IsCXX11StandardLayout = false; 251 data().HasBasesWithNonStaticDataMembers = true; 252 } 253 254 if (!BaseClassDecl->isEmpty()) { 255 // C++14 [meta.unary.prop]p4: 256 // T is a class type [...] with [...] no base class B for which 257 // is_empty<B>::value is false. 258 data().Empty = false; 259 } 260 261 // C++1z [dcl.init.agg]p1: 262 // An aggregate is a class with [...] no private or protected base classes 263 if (Base->getAccessSpecifier() != AS_public) { 264 data().Aggregate = false; 265 266 // C++20 [temp.param]p7: 267 // A structural type is [...] a literal class type with [...] all base 268 // classes [...] public 269 data().StructuralIfLiteral = false; 270 } 271 272 // C++ [class.virtual]p1: 273 // A class that declares or inherits a virtual function is called a 274 // polymorphic class. 275 if (BaseClassDecl->isPolymorphic()) { 276 data().Polymorphic = true; 277 278 // An aggregate is a class with [...] no virtual functions. 279 data().Aggregate = false; 280 } 281 282 // C++0x [class]p7: 283 // A standard-layout class is a class that: [...] 284 // -- has no non-standard-layout base classes 285 if (!BaseClassDecl->isStandardLayout()) 286 data().IsStandardLayout = false; 287 if (!BaseClassDecl->isCXX11StandardLayout()) 288 data().IsCXX11StandardLayout = false; 289 290 // Record if this base is the first non-literal field or base. 291 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) 292 data().HasNonLiteralTypeFieldsOrBases = true; 293 294 // Now go through all virtual bases of this base and add them. 295 for (const auto &VBase : BaseClassDecl->vbases()) { 296 // Add this base if it's not already in the list. 297 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { 298 VBases.push_back(&VBase); 299 300 // C++11 [class.copy]p8: 301 // The implicitly-declared copy constructor for a class X will have 302 // the form 'X::X(const X&)' if each [...] virtual base class B of X 303 // has a copy constructor whose first parameter is of type 304 // 'const B&' or 'const volatile B&' [...] 305 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) 306 if (!VBaseDecl->hasCopyConstructorWithConstParam()) 307 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 308 309 // C++1z [dcl.init.agg]p1: 310 // An aggregate is a class with [...] no virtual base classes 311 data().Aggregate = false; 312 } 313 } 314 315 if (Base->isVirtual()) { 316 // Add this base if it's not already in the list. 317 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) 318 VBases.push_back(Base); 319 320 // C++14 [meta.unary.prop] is_empty: 321 // T is a class type, but not a union type, with ... no virtual base 322 // classes 323 data().Empty = false; 324 325 // C++1z [dcl.init.agg]p1: 326 // An aggregate is a class with [...] no virtual base classes 327 data().Aggregate = false; 328 329 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 330 // A [default constructor, copy/move constructor, or copy/move assignment 331 // operator for a class X] is trivial [...] if: 332 // -- class X has [...] no virtual base classes 333 data().HasTrivialSpecialMembers &= SMF_Destructor; 334 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 335 336 // C++0x [class]p7: 337 // A standard-layout class is a class that: [...] 338 // -- has [...] no virtual base classes 339 data().IsStandardLayout = false; 340 data().IsCXX11StandardLayout = false; 341 342 // C++20 [dcl.constexpr]p3: 343 // In the definition of a constexpr function [...] 344 // -- if the function is a constructor or destructor, 345 // its class shall not have any virtual base classes 346 data().DefaultedDefaultConstructorIsConstexpr = false; 347 data().DefaultedDestructorIsConstexpr = false; 348 349 // C++1z [class.copy]p8: 350 // The implicitly-declared copy constructor for a class X will have 351 // the form 'X::X(const X&)' if each potentially constructed subobject 352 // has a copy constructor whose first parameter is of type 353 // 'const B&' or 'const volatile B&' [...] 354 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 355 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 356 } else { 357 // C++ [class.ctor]p5: 358 // A default constructor is trivial [...] if: 359 // -- all the direct base classes of its class have trivial default 360 // constructors. 361 if (!BaseClassDecl->hasTrivialDefaultConstructor()) 362 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 363 364 // C++0x [class.copy]p13: 365 // A copy/move constructor for class X is trivial if [...] 366 // [...] 367 // -- the constructor selected to copy/move each direct base class 368 // subobject is trivial, and 369 if (!BaseClassDecl->hasTrivialCopyConstructor()) 370 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 371 372 if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) 373 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 374 375 // If the base class doesn't have a simple move constructor, we'll eagerly 376 // declare it and perform overload resolution to determine which function 377 // it actually calls. If it does have a simple move constructor, this 378 // check is correct. 379 if (!BaseClassDecl->hasTrivialMoveConstructor()) 380 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 381 382 if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) 383 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 384 385 // C++0x [class.copy]p27: 386 // A copy/move assignment operator for class X is trivial if [...] 387 // [...] 388 // -- the assignment operator selected to copy/move each direct base 389 // class subobject is trivial, and 390 if (!BaseClassDecl->hasTrivialCopyAssignment()) 391 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 392 // If the base class doesn't have a simple move assignment, we'll eagerly 393 // declare it and perform overload resolution to determine which function 394 // it actually calls. If it does have a simple move assignment, this 395 // check is correct. 396 if (!BaseClassDecl->hasTrivialMoveAssignment()) 397 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 398 399 // C++11 [class.ctor]p6: 400 // If that user-written default constructor would satisfy the 401 // requirements of a constexpr constructor, the implicitly-defined 402 // default constructor is constexpr. 403 if (!BaseClassDecl->hasConstexprDefaultConstructor()) 404 data().DefaultedDefaultConstructorIsConstexpr = false; 405 406 // C++1z [class.copy]p8: 407 // The implicitly-declared copy constructor for a class X will have 408 // the form 'X::X(const X&)' if each potentially constructed subobject 409 // has a copy constructor whose first parameter is of type 410 // 'const B&' or 'const volatile B&' [...] 411 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 412 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 413 } 414 415 // C++ [class.ctor]p3: 416 // A destructor is trivial if all the direct base classes of its class 417 // have trivial destructors. 418 if (!BaseClassDecl->hasTrivialDestructor()) 419 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 420 421 if (!BaseClassDecl->hasTrivialDestructorForCall()) 422 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 423 424 if (!BaseClassDecl->hasIrrelevantDestructor()) 425 data().HasIrrelevantDestructor = false; 426 427 // C++11 [class.copy]p18: 428 // The implicitly-declared copy assignment operator for a class X will 429 // have the form 'X& X::operator=(const X&)' if each direct base class B 430 // of X has a copy assignment operator whose parameter is of type 'const 431 // B&', 'const volatile B&', or 'B' [...] 432 if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) 433 data().ImplicitCopyAssignmentHasConstParam = false; 434 435 // A class has an Objective-C object member if... or any of its bases 436 // has an Objective-C object member. 437 if (BaseClassDecl->hasObjectMember()) 438 setHasObjectMember(true); 439 440 if (BaseClassDecl->hasVolatileMember()) 441 setHasVolatileMember(true); 442 443 if (BaseClassDecl->getArgPassingRestrictions() == 444 RecordDecl::APK_CanNeverPassInRegs) 445 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 446 447 // Keep track of the presence of mutable fields. 448 if (BaseClassDecl->hasMutableFields()) 449 data().HasMutableFields = true; 450 451 if (BaseClassDecl->hasUninitializedReferenceMember()) 452 data().HasUninitializedReferenceMember = true; 453 454 if (!BaseClassDecl->allowConstDefaultInit()) 455 data().HasUninitializedFields = true; 456 457 addedClassSubobject(BaseClassDecl); 458 } 459 460 // C++2a [class]p7: 461 // A class S is a standard-layout class if it: 462 // -- has at most one base class subobject of any given type 463 // 464 // Note that we only need to check this for classes with more than one base 465 // class. If there's only one base class, and it's standard layout, then 466 // we know there are no repeated base classes. 467 if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) 468 data().IsStandardLayout = false; 469 470 if (VBases.empty()) { 471 data().IsParsingBaseSpecifiers = false; 472 return; 473 } 474 475 // Create base specifier for any direct or indirect virtual bases. 476 data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; 477 data().NumVBases = VBases.size(); 478 for (int I = 0, E = VBases.size(); I != E; ++I) { 479 QualType Type = VBases[I]->getType(); 480 if (!Type->isDependentType()) 481 addedClassSubobject(Type->getAsCXXRecordDecl()); 482 data().getVBases()[I] = *VBases[I]; 483 } 484 485 data().IsParsingBaseSpecifiers = false; 486 } 487 488 unsigned CXXRecordDecl::getODRHash() const { 489 assert(hasDefinition() && "ODRHash only for records with definitions"); 490 491 // Previously calculated hash is stored in DefinitionData. 492 if (DefinitionData->HasODRHash) 493 return DefinitionData->ODRHash; 494 495 // Only calculate hash on first call of getODRHash per record. 496 ODRHash Hash; 497 Hash.AddCXXRecordDecl(getDefinition()); 498 DefinitionData->HasODRHash = true; 499 DefinitionData->ODRHash = Hash.CalculateHash(); 500 501 return DefinitionData->ODRHash; 502 } 503 504 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { 505 // C++11 [class.copy]p11: 506 // A defaulted copy/move constructor for a class X is defined as 507 // deleted if X has: 508 // -- a direct or virtual base class B that cannot be copied/moved [...] 509 // -- a non-static data member of class type M (or array thereof) 510 // that cannot be copied or moved [...] 511 if (!Subobj->hasSimpleCopyConstructor()) 512 data().NeedOverloadResolutionForCopyConstructor = true; 513 if (!Subobj->hasSimpleMoveConstructor()) 514 data().NeedOverloadResolutionForMoveConstructor = true; 515 516 // C++11 [class.copy]p23: 517 // A defaulted copy/move assignment operator for a class X is defined as 518 // deleted if X has: 519 // -- a direct or virtual base class B that cannot be copied/moved [...] 520 // -- a non-static data member of class type M (or array thereof) 521 // that cannot be copied or moved [...] 522 if (!Subobj->hasSimpleCopyAssignment()) 523 data().NeedOverloadResolutionForCopyAssignment = true; 524 if (!Subobj->hasSimpleMoveAssignment()) 525 data().NeedOverloadResolutionForMoveAssignment = true; 526 527 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: 528 // A defaulted [ctor or dtor] for a class X is defined as 529 // deleted if X has: 530 // -- any direct or virtual base class [...] has a type with a destructor 531 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 532 // -- any non-static data member has a type with a destructor 533 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 534 if (!Subobj->hasSimpleDestructor()) { 535 data().NeedOverloadResolutionForCopyConstructor = true; 536 data().NeedOverloadResolutionForMoveConstructor = true; 537 data().NeedOverloadResolutionForDestructor = true; 538 } 539 540 // C++2a [dcl.constexpr]p4: 541 // The definition of a constexpr destructor [shall] satisfy the 542 // following requirement: 543 // -- for every subobject of class type or (possibly multi-dimensional) 544 // array thereof, that class type shall have a constexpr destructor 545 if (!Subobj->hasConstexprDestructor()) 546 data().DefaultedDestructorIsConstexpr = false; 547 548 // C++20 [temp.param]p7: 549 // A structural type is [...] a literal class type [for which] the types 550 // of all base classes and non-static data members are structural types or 551 // (possibly multi-dimensional) array thereof 552 if (!Subobj->data().StructuralIfLiteral) 553 data().StructuralIfLiteral = false; 554 } 555 556 bool CXXRecordDecl::hasConstexprDestructor() const { 557 auto *Dtor = getDestructor(); 558 return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); 559 } 560 561 bool CXXRecordDecl::hasAnyDependentBases() const { 562 if (!isDependentContext()) 563 return false; 564 565 return !forallBases([](const CXXRecordDecl *) { return true; }); 566 } 567 568 bool CXXRecordDecl::isTriviallyCopyable() const { 569 // C++0x [class]p5: 570 // A trivially copyable class is a class that: 571 // -- has no non-trivial copy constructors, 572 if (hasNonTrivialCopyConstructor()) return false; 573 // -- has no non-trivial move constructors, 574 if (hasNonTrivialMoveConstructor()) return false; 575 // -- has no non-trivial copy assignment operators, 576 if (hasNonTrivialCopyAssignment()) return false; 577 // -- has no non-trivial move assignment operators, and 578 if (hasNonTrivialMoveAssignment()) return false; 579 // -- has a trivial destructor. 580 if (!hasTrivialDestructor()) return false; 581 582 return true; 583 } 584 585 void CXXRecordDecl::markedVirtualFunctionPure() { 586 // C++ [class.abstract]p2: 587 // A class is abstract if it has at least one pure virtual function. 588 data().Abstract = true; 589 } 590 591 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( 592 ASTContext &Ctx, const CXXRecordDecl *XFirst) { 593 if (!getNumBases()) 594 return false; 595 596 llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; 597 llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; 598 SmallVector<const CXXRecordDecl*, 8> WorkList; 599 600 // Visit a type that we have determined is an element of M(S). 601 auto Visit = [&](const CXXRecordDecl *RD) -> bool { 602 RD = RD->getCanonicalDecl(); 603 604 // C++2a [class]p8: 605 // A class S is a standard-layout class if it [...] has no element of the 606 // set M(S) of types as a base class. 607 // 608 // If we find a subobject of an empty type, it might also be a base class, 609 // so we'll need to walk the base classes to check. 610 if (!RD->data().HasBasesWithFields) { 611 // Walk the bases the first time, stopping if we find the type. Build a 612 // set of them so we don't need to walk them again. 613 if (Bases.empty()) { 614 bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { 615 Base = Base->getCanonicalDecl(); 616 if (RD == Base) 617 return false; 618 Bases.insert(Base); 619 return true; 620 }); 621 if (RDIsBase) 622 return true; 623 } else { 624 if (Bases.count(RD)) 625 return true; 626 } 627 } 628 629 if (M.insert(RD).second) 630 WorkList.push_back(RD); 631 return false; 632 }; 633 634 if (Visit(XFirst)) 635 return true; 636 637 while (!WorkList.empty()) { 638 const CXXRecordDecl *X = WorkList.pop_back_val(); 639 640 // FIXME: We don't check the bases of X. That matches the standard, but 641 // that sure looks like a wording bug. 642 643 // -- If X is a non-union class type with a non-static data member 644 // [recurse to each field] that is either of zero size or is the 645 // first non-static data member of X 646 // -- If X is a union type, [recurse to union members] 647 bool IsFirstField = true; 648 for (auto *FD : X->fields()) { 649 // FIXME: Should we really care about the type of the first non-static 650 // data member of a non-union if there are preceding unnamed bit-fields? 651 if (FD->isUnnamedBitfield()) 652 continue; 653 654 if (!IsFirstField && !FD->isZeroSize(Ctx)) 655 continue; 656 657 // -- If X is n array type, [visit the element type] 658 QualType T = Ctx.getBaseElementType(FD->getType()); 659 if (auto *RD = T->getAsCXXRecordDecl()) 660 if (Visit(RD)) 661 return true; 662 663 if (!X->isUnion()) 664 IsFirstField = false; 665 } 666 } 667 668 return false; 669 } 670 671 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { 672 assert(isLambda() && "not a lambda"); 673 674 // C++2a [expr.prim.lambda.capture]p11: 675 // The closure type associated with a lambda-expression has no default 676 // constructor if the lambda-expression has a lambda-capture and a 677 // defaulted default constructor otherwise. It has a deleted copy 678 // assignment operator if the lambda-expression has a lambda-capture and 679 // defaulted copy and move assignment operators otherwise. 680 // 681 // C++17 [expr.prim.lambda]p21: 682 // The closure type associated with a lambda-expression has no default 683 // constructor and a deleted copy assignment operator. 684 if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0) 685 return false; 686 return getASTContext().getLangOpts().CPlusPlus20; 687 } 688 689 void CXXRecordDecl::addedMember(Decl *D) { 690 if (!D->isImplicit() && 691 !isa<FieldDecl>(D) && 692 !isa<IndirectFieldDecl>(D) && 693 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || 694 cast<TagDecl>(D)->getTagKind() == TTK_Interface)) 695 data().HasOnlyCMembers = false; 696 697 // Ignore friends and invalid declarations. 698 if (D->getFriendObjectKind() || D->isInvalidDecl()) 699 return; 700 701 auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 702 if (FunTmpl) 703 D = FunTmpl->getTemplatedDecl(); 704 705 // FIXME: Pass NamedDecl* to addedMember? 706 Decl *DUnderlying = D; 707 if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) { 708 DUnderlying = ND->getUnderlyingDecl(); 709 if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying)) 710 DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); 711 } 712 713 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 714 if (Method->isVirtual()) { 715 // C++ [dcl.init.aggr]p1: 716 // An aggregate is an array or a class with [...] no virtual functions. 717 data().Aggregate = false; 718 719 // C++ [class]p4: 720 // A POD-struct is an aggregate class... 721 data().PlainOldData = false; 722 723 // C++14 [meta.unary.prop]p4: 724 // T is a class type [...] with [...] no virtual member functions... 725 data().Empty = false; 726 727 // C++ [class.virtual]p1: 728 // A class that declares or inherits a virtual function is called a 729 // polymorphic class. 730 data().Polymorphic = true; 731 732 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 733 // A [default constructor, copy/move constructor, or copy/move 734 // assignment operator for a class X] is trivial [...] if: 735 // -- class X has no virtual functions [...] 736 data().HasTrivialSpecialMembers &= SMF_Destructor; 737 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 738 739 // C++0x [class]p7: 740 // A standard-layout class is a class that: [...] 741 // -- has no virtual functions 742 data().IsStandardLayout = false; 743 data().IsCXX11StandardLayout = false; 744 } 745 } 746 747 // Notify the listener if an implicit member was added after the definition 748 // was completed. 749 if (!isBeingDefined() && D->isImplicit()) 750 if (ASTMutationListener *L = getASTMutationListener()) 751 L->AddedCXXImplicitMember(data().Definition, D); 752 753 // The kind of special member this declaration is, if any. 754 unsigned SMKind = 0; 755 756 // Handle constructors. 757 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 758 if (Constructor->isInheritingConstructor()) { 759 // Ignore constructor shadow declarations. They are lazily created and 760 // so shouldn't affect any properties of the class. 761 } else { 762 if (!Constructor->isImplicit()) { 763 // Note that we have a user-declared constructor. 764 data().UserDeclaredConstructor = true; 765 766 // C++ [class]p4: 767 // A POD-struct is an aggregate class [...] 768 // Since the POD bit is meant to be C++03 POD-ness, clear it even if 769 // the type is technically an aggregate in C++0x since it wouldn't be 770 // in 03. 771 data().PlainOldData = false; 772 } 773 774 if (Constructor->isDefaultConstructor()) { 775 SMKind |= SMF_DefaultConstructor; 776 777 if (Constructor->isUserProvided()) 778 data().UserProvidedDefaultConstructor = true; 779 if (Constructor->isConstexpr()) 780 data().HasConstexprDefaultConstructor = true; 781 if (Constructor->isDefaulted()) 782 data().HasDefaultedDefaultConstructor = true; 783 } 784 785 if (!FunTmpl) { 786 unsigned Quals; 787 if (Constructor->isCopyConstructor(Quals)) { 788 SMKind |= SMF_CopyConstructor; 789 790 if (Quals & Qualifiers::Const) 791 data().HasDeclaredCopyConstructorWithConstParam = true; 792 } else if (Constructor->isMoveConstructor()) 793 SMKind |= SMF_MoveConstructor; 794 } 795 796 // C++11 [dcl.init.aggr]p1: DR1518 797 // An aggregate is an array or a class with no user-provided [or] 798 // explicit [...] constructors 799 // C++20 [dcl.init.aggr]p1: 800 // An aggregate is an array or a class with no user-declared [...] 801 // constructors 802 if (getASTContext().getLangOpts().CPlusPlus20 803 ? !Constructor->isImplicit() 804 : (Constructor->isUserProvided() || Constructor->isExplicit())) 805 data().Aggregate = false; 806 } 807 } 808 809 // Handle constructors, including those inherited from base classes. 810 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) { 811 // Record if we see any constexpr constructors which are neither copy 812 // nor move constructors. 813 // C++1z [basic.types]p10: 814 // [...] has at least one constexpr constructor or constructor template 815 // (possibly inherited from a base class) that is not a copy or move 816 // constructor [...] 817 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) 818 data().HasConstexprNonCopyMoveConstructor = true; 819 if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor()) 820 data().HasInheritedDefaultConstructor = true; 821 } 822 823 // Handle destructors. 824 if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 825 SMKind |= SMF_Destructor; 826 827 if (DD->isUserProvided()) 828 data().HasIrrelevantDestructor = false; 829 // If the destructor is explicitly defaulted and not trivial or not public 830 // or if the destructor is deleted, we clear HasIrrelevantDestructor in 831 // finishedDefaultedOrDeletedMember. 832 833 // C++11 [class.dtor]p5: 834 // A destructor is trivial if [...] the destructor is not virtual. 835 if (DD->isVirtual()) { 836 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 837 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 838 } 839 } 840 841 // Handle member functions. 842 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 843 if (Method->isCopyAssignmentOperator()) { 844 SMKind |= SMF_CopyAssignment; 845 846 const auto *ParamTy = 847 Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); 848 if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) 849 data().HasDeclaredCopyAssignmentWithConstParam = true; 850 } 851 852 if (Method->isMoveAssignmentOperator()) 853 SMKind |= SMF_MoveAssignment; 854 855 // Keep the list of conversion functions up-to-date. 856 if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) { 857 // FIXME: We use the 'unsafe' accessor for the access specifier here, 858 // because Sema may not have set it yet. That's really just a misdesign 859 // in Sema. However, LLDB *will* have set the access specifier correctly, 860 // and adds declarations after the class is technically completed, 861 // so completeDefinition()'s overriding of the access specifiers doesn't 862 // work. 863 AccessSpecifier AS = Conversion->getAccessUnsafe(); 864 865 if (Conversion->getPrimaryTemplate()) { 866 // We don't record specializations. 867 } else { 868 ASTContext &Ctx = getASTContext(); 869 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); 870 NamedDecl *Primary = 871 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); 872 if (Primary->getPreviousDecl()) 873 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), 874 Primary, AS); 875 else 876 Conversions.addDecl(Ctx, Primary, AS); 877 } 878 } 879 880 if (SMKind) { 881 // If this is the first declaration of a special member, we no longer have 882 // an implicit trivial special member. 883 data().HasTrivialSpecialMembers &= 884 data().DeclaredSpecialMembers | ~SMKind; 885 data().HasTrivialSpecialMembersForCall &= 886 data().DeclaredSpecialMembers | ~SMKind; 887 888 if (!Method->isImplicit() && !Method->isUserProvided()) { 889 // This method is user-declared but not user-provided. We can't work out 890 // whether it's trivial yet (not until we get to the end of the class). 891 // We'll handle this method in finishedDefaultedOrDeletedMember. 892 } else if (Method->isTrivial()) { 893 data().HasTrivialSpecialMembers |= SMKind; 894 data().HasTrivialSpecialMembersForCall |= SMKind; 895 } else if (Method->isTrivialForCall()) { 896 data().HasTrivialSpecialMembersForCall |= SMKind; 897 data().DeclaredNonTrivialSpecialMembers |= SMKind; 898 } else { 899 data().DeclaredNonTrivialSpecialMembers |= SMKind; 900 // If this is a user-provided function, do not set 901 // DeclaredNonTrivialSpecialMembersForCall here since we don't know 902 // yet whether the method would be considered non-trivial for the 903 // purpose of calls (attribute "trivial_abi" can be dropped from the 904 // class later, which can change the special method's triviality). 905 if (!Method->isUserProvided()) 906 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 907 } 908 909 // Note when we have declared a declared special member, and suppress the 910 // implicit declaration of this special member. 911 data().DeclaredSpecialMembers |= SMKind; 912 913 if (!Method->isImplicit()) { 914 data().UserDeclaredSpecialMembers |= SMKind; 915 916 // C++03 [class]p4: 917 // A POD-struct is an aggregate class that has [...] no user-defined 918 // copy assignment operator and no user-defined destructor. 919 // 920 // Since the POD bit is meant to be C++03 POD-ness, and in C++03, 921 // aggregates could not have any constructors, clear it even for an 922 // explicitly defaulted or deleted constructor. 923 // type is technically an aggregate in C++0x since it wouldn't be in 03. 924 // 925 // Also, a user-declared move assignment operator makes a class non-POD. 926 // This is an extension in C++03. 927 data().PlainOldData = false; 928 } 929 } 930 931 return; 932 } 933 934 // Handle non-static data members. 935 if (const auto *Field = dyn_cast<FieldDecl>(D)) { 936 ASTContext &Context = getASTContext(); 937 938 // C++2a [class]p7: 939 // A standard-layout class is a class that: 940 // [...] 941 // -- has all non-static data members and bit-fields in the class and 942 // its base classes first declared in the same class 943 if (data().HasBasesWithFields) 944 data().IsStandardLayout = false; 945 946 // C++ [class.bit]p2: 947 // A declaration for a bit-field that omits the identifier declares an 948 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 949 // initialized. 950 if (Field->isUnnamedBitfield()) { 951 // C++ [meta.unary.prop]p4: [LWG2358] 952 // T is a class type [...] with [...] no unnamed bit-fields of non-zero 953 // length 954 if (data().Empty && !Field->isZeroLengthBitField(Context) && 955 Context.getLangOpts().getClangABICompat() > 956 LangOptions::ClangABI::Ver6) 957 data().Empty = false; 958 return; 959 } 960 961 // C++11 [class]p7: 962 // A standard-layout class is a class that: 963 // -- either has no non-static data members in the most derived class 964 // [...] or has no base classes with non-static data members 965 if (data().HasBasesWithNonStaticDataMembers) 966 data().IsCXX11StandardLayout = false; 967 968 // C++ [dcl.init.aggr]p1: 969 // An aggregate is an array or a class (clause 9) with [...] no 970 // private or protected non-static data members (clause 11). 971 // 972 // A POD must be an aggregate. 973 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { 974 data().Aggregate = false; 975 data().PlainOldData = false; 976 977 // C++20 [temp.param]p7: 978 // A structural type is [...] a literal class type [for which] all 979 // non-static data members are public 980 data().StructuralIfLiteral = false; 981 } 982 983 // Track whether this is the first field. We use this when checking 984 // whether the class is standard-layout below. 985 bool IsFirstField = !data().HasPrivateFields && 986 !data().HasProtectedFields && !data().HasPublicFields; 987 988 // C++0x [class]p7: 989 // A standard-layout class is a class that: 990 // [...] 991 // -- has the same access control for all non-static data members, 992 switch (D->getAccess()) { 993 case AS_private: data().HasPrivateFields = true; break; 994 case AS_protected: data().HasProtectedFields = true; break; 995 case AS_public: data().HasPublicFields = true; break; 996 case AS_none: llvm_unreachable("Invalid access specifier"); 997 }; 998 if ((data().HasPrivateFields + data().HasProtectedFields + 999 data().HasPublicFields) > 1) { 1000 data().IsStandardLayout = false; 1001 data().IsCXX11StandardLayout = false; 1002 } 1003 1004 // Keep track of the presence of mutable fields. 1005 if (Field->isMutable()) { 1006 data().HasMutableFields = true; 1007 1008 // C++20 [temp.param]p7: 1009 // A structural type is [...] a literal class type [for which] all 1010 // non-static data members are public 1011 data().StructuralIfLiteral = false; 1012 } 1013 1014 // C++11 [class.union]p8, DR1460: 1015 // If X is a union, a non-static data member of X that is not an anonymous 1016 // union is a variant member of X. 1017 if (isUnion() && !Field->isAnonymousStructOrUnion()) 1018 data().HasVariantMembers = true; 1019 1020 // C++0x [class]p9: 1021 // A POD struct is a class that is both a trivial class and a 1022 // standard-layout class, and has no non-static data members of type 1023 // non-POD struct, non-POD union (or array of such types). 1024 // 1025 // Automatic Reference Counting: the presence of a member of Objective-C pointer type 1026 // that does not explicitly have no lifetime makes the class a non-POD. 1027 QualType T = Context.getBaseElementType(Field->getType()); 1028 if (T->isObjCRetainableType() || T.isObjCGCStrong()) { 1029 if (T.hasNonTrivialObjCLifetime()) { 1030 // Objective-C Automatic Reference Counting: 1031 // If a class has a non-static data member of Objective-C pointer 1032 // type (or array thereof), it is a non-POD type and its 1033 // default constructor (if any), copy constructor, move constructor, 1034 // copy assignment operator, move assignment operator, and destructor are 1035 // non-trivial. 1036 setHasObjectMember(true); 1037 struct DefinitionData &Data = data(); 1038 Data.PlainOldData = false; 1039 Data.HasTrivialSpecialMembers = 0; 1040 1041 // __strong or __weak fields do not make special functions non-trivial 1042 // for the purpose of calls. 1043 Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); 1044 if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) 1045 data().HasTrivialSpecialMembersForCall = 0; 1046 1047 // Structs with __weak fields should never be passed directly. 1048 if (LT == Qualifiers::OCL_Weak) 1049 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1050 1051 Data.HasIrrelevantDestructor = false; 1052 1053 if (isUnion()) { 1054 data().DefaultedCopyConstructorIsDeleted = true; 1055 data().DefaultedMoveConstructorIsDeleted = true; 1056 data().DefaultedCopyAssignmentIsDeleted = true; 1057 data().DefaultedMoveAssignmentIsDeleted = true; 1058 data().DefaultedDestructorIsDeleted = true; 1059 data().NeedOverloadResolutionForCopyConstructor = true; 1060 data().NeedOverloadResolutionForMoveConstructor = true; 1061 data().NeedOverloadResolutionForCopyAssignment = true; 1062 data().NeedOverloadResolutionForMoveAssignment = true; 1063 data().NeedOverloadResolutionForDestructor = true; 1064 } 1065 } else if (!Context.getLangOpts().ObjCAutoRefCount) { 1066 setHasObjectMember(true); 1067 } 1068 } else if (!T.isCXX98PODType(Context)) 1069 data().PlainOldData = false; 1070 1071 if (T->isReferenceType()) { 1072 if (!Field->hasInClassInitializer()) 1073 data().HasUninitializedReferenceMember = true; 1074 1075 // C++0x [class]p7: 1076 // A standard-layout class is a class that: 1077 // -- has no non-static data members of type [...] reference, 1078 data().IsStandardLayout = false; 1079 data().IsCXX11StandardLayout = false; 1080 1081 // C++1z [class.copy.ctor]p10: 1082 // A defaulted copy constructor for a class X is defined as deleted if X has: 1083 // -- a non-static data member of rvalue reference type 1084 if (T->isRValueReferenceType()) 1085 data().DefaultedCopyConstructorIsDeleted = true; 1086 } 1087 1088 if (!Field->hasInClassInitializer() && !Field->isMutable()) { 1089 if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { 1090 if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) 1091 data().HasUninitializedFields = true; 1092 } else { 1093 data().HasUninitializedFields = true; 1094 } 1095 } 1096 1097 // Record if this field is the first non-literal or volatile field or base. 1098 if (!T->isLiteralType(Context) || T.isVolatileQualified()) 1099 data().HasNonLiteralTypeFieldsOrBases = true; 1100 1101 if (Field->hasInClassInitializer() || 1102 (Field->isAnonymousStructOrUnion() && 1103 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { 1104 data().HasInClassInitializer = true; 1105 1106 // C++11 [class]p5: 1107 // A default constructor is trivial if [...] no non-static data member 1108 // of its class has a brace-or-equal-initializer. 1109 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1110 1111 // C++11 [dcl.init.aggr]p1: 1112 // An aggregate is a [...] class with [...] no 1113 // brace-or-equal-initializers for non-static data members. 1114 // 1115 // This rule was removed in C++14. 1116 if (!getASTContext().getLangOpts().CPlusPlus14) 1117 data().Aggregate = false; 1118 1119 // C++11 [class]p10: 1120 // A POD struct is [...] a trivial class. 1121 data().PlainOldData = false; 1122 } 1123 1124 // C++11 [class.copy]p23: 1125 // A defaulted copy/move assignment operator for a class X is defined 1126 // as deleted if X has: 1127 // -- a non-static data member of reference type 1128 if (T->isReferenceType()) { 1129 data().DefaultedCopyAssignmentIsDeleted = true; 1130 data().DefaultedMoveAssignmentIsDeleted = true; 1131 } 1132 1133 // Bitfields of length 0 are also zero-sized, but we already bailed out for 1134 // those because they are always unnamed. 1135 bool IsZeroSize = Field->isZeroSize(Context); 1136 1137 if (const auto *RecordTy = T->getAs<RecordType>()) { 1138 auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); 1139 if (FieldRec->getDefinition()) { 1140 addedClassSubobject(FieldRec); 1141 1142 // We may need to perform overload resolution to determine whether a 1143 // field can be moved if it's const or volatile qualified. 1144 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { 1145 // We need to care about 'const' for the copy constructor because an 1146 // implicit copy constructor might be declared with a non-const 1147 // parameter. 1148 data().NeedOverloadResolutionForCopyConstructor = true; 1149 data().NeedOverloadResolutionForMoveConstructor = true; 1150 data().NeedOverloadResolutionForCopyAssignment = true; 1151 data().NeedOverloadResolutionForMoveAssignment = true; 1152 } 1153 1154 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 1155 // A defaulted [special member] for a class X is defined as 1156 // deleted if: 1157 // -- X is a union-like class that has a variant member with a 1158 // non-trivial [corresponding special member] 1159 if (isUnion()) { 1160 if (FieldRec->hasNonTrivialCopyConstructor()) 1161 data().DefaultedCopyConstructorIsDeleted = true; 1162 if (FieldRec->hasNonTrivialMoveConstructor()) 1163 data().DefaultedMoveConstructorIsDeleted = true; 1164 if (FieldRec->hasNonTrivialCopyAssignment()) 1165 data().DefaultedCopyAssignmentIsDeleted = true; 1166 if (FieldRec->hasNonTrivialMoveAssignment()) 1167 data().DefaultedMoveAssignmentIsDeleted = true; 1168 if (FieldRec->hasNonTrivialDestructor()) 1169 data().DefaultedDestructorIsDeleted = true; 1170 } 1171 1172 // For an anonymous union member, our overload resolution will perform 1173 // overload resolution for its members. 1174 if (Field->isAnonymousStructOrUnion()) { 1175 data().NeedOverloadResolutionForCopyConstructor |= 1176 FieldRec->data().NeedOverloadResolutionForCopyConstructor; 1177 data().NeedOverloadResolutionForMoveConstructor |= 1178 FieldRec->data().NeedOverloadResolutionForMoveConstructor; 1179 data().NeedOverloadResolutionForCopyAssignment |= 1180 FieldRec->data().NeedOverloadResolutionForCopyAssignment; 1181 data().NeedOverloadResolutionForMoveAssignment |= 1182 FieldRec->data().NeedOverloadResolutionForMoveAssignment; 1183 data().NeedOverloadResolutionForDestructor |= 1184 FieldRec->data().NeedOverloadResolutionForDestructor; 1185 } 1186 1187 // C++0x [class.ctor]p5: 1188 // A default constructor is trivial [...] if: 1189 // -- for all the non-static data members of its class that are of 1190 // class type (or array thereof), each such class has a trivial 1191 // default constructor. 1192 if (!FieldRec->hasTrivialDefaultConstructor()) 1193 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1194 1195 // C++0x [class.copy]p13: 1196 // A copy/move constructor for class X is trivial if [...] 1197 // [...] 1198 // -- for each non-static data member of X that is of class type (or 1199 // an array thereof), the constructor selected to copy/move that 1200 // member is trivial; 1201 if (!FieldRec->hasTrivialCopyConstructor()) 1202 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 1203 1204 if (!FieldRec->hasTrivialCopyConstructorForCall()) 1205 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 1206 1207 // If the field doesn't have a simple move constructor, we'll eagerly 1208 // declare the move constructor for this class and we'll decide whether 1209 // it's trivial then. 1210 if (!FieldRec->hasTrivialMoveConstructor()) 1211 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 1212 1213 if (!FieldRec->hasTrivialMoveConstructorForCall()) 1214 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 1215 1216 // C++0x [class.copy]p27: 1217 // A copy/move assignment operator for class X is trivial if [...] 1218 // [...] 1219 // -- for each non-static data member of X that is of class type (or 1220 // an array thereof), the assignment operator selected to 1221 // copy/move that member is trivial; 1222 if (!FieldRec->hasTrivialCopyAssignment()) 1223 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 1224 // If the field doesn't have a simple move assignment, we'll eagerly 1225 // declare the move assignment for this class and we'll decide whether 1226 // it's trivial then. 1227 if (!FieldRec->hasTrivialMoveAssignment()) 1228 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 1229 1230 if (!FieldRec->hasTrivialDestructor()) 1231 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 1232 if (!FieldRec->hasTrivialDestructorForCall()) 1233 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 1234 if (!FieldRec->hasIrrelevantDestructor()) 1235 data().HasIrrelevantDestructor = false; 1236 if (FieldRec->hasObjectMember()) 1237 setHasObjectMember(true); 1238 if (FieldRec->hasVolatileMember()) 1239 setHasVolatileMember(true); 1240 if (FieldRec->getArgPassingRestrictions() == 1241 RecordDecl::APK_CanNeverPassInRegs) 1242 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1243 1244 // C++0x [class]p7: 1245 // A standard-layout class is a class that: 1246 // -- has no non-static data members of type non-standard-layout 1247 // class (or array of such types) [...] 1248 if (!FieldRec->isStandardLayout()) 1249 data().IsStandardLayout = false; 1250 if (!FieldRec->isCXX11StandardLayout()) 1251 data().IsCXX11StandardLayout = false; 1252 1253 // C++2a [class]p7: 1254 // A standard-layout class is a class that: 1255 // [...] 1256 // -- has no element of the set M(S) of types as a base class. 1257 if (data().IsStandardLayout && 1258 (isUnion() || IsFirstField || IsZeroSize) && 1259 hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) 1260 data().IsStandardLayout = false; 1261 1262 // C++11 [class]p7: 1263 // A standard-layout class is a class that: 1264 // -- has no base classes of the same type as the first non-static 1265 // data member 1266 if (data().IsCXX11StandardLayout && IsFirstField) { 1267 // FIXME: We should check all base classes here, not just direct 1268 // base classes. 1269 for (const auto &BI : bases()) { 1270 if (Context.hasSameUnqualifiedType(BI.getType(), T)) { 1271 data().IsCXX11StandardLayout = false; 1272 break; 1273 } 1274 } 1275 } 1276 1277 // Keep track of the presence of mutable fields. 1278 if (FieldRec->hasMutableFields()) 1279 data().HasMutableFields = true; 1280 1281 if (Field->isMutable()) { 1282 // Our copy constructor/assignment might call something other than 1283 // the subobject's copy constructor/assignment if it's mutable and of 1284 // class type. 1285 data().NeedOverloadResolutionForCopyConstructor = true; 1286 data().NeedOverloadResolutionForCopyAssignment = true; 1287 } 1288 1289 // C++11 [class.copy]p13: 1290 // If the implicitly-defined constructor would satisfy the 1291 // requirements of a constexpr constructor, the implicitly-defined 1292 // constructor is constexpr. 1293 // C++11 [dcl.constexpr]p4: 1294 // -- every constructor involved in initializing non-static data 1295 // members [...] shall be a constexpr constructor 1296 if (!Field->hasInClassInitializer() && 1297 !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) 1298 // The standard requires any in-class initializer to be a constant 1299 // expression. We consider this to be a defect. 1300 data().DefaultedDefaultConstructorIsConstexpr = false; 1301 1302 // C++11 [class.copy]p8: 1303 // The implicitly-declared copy constructor for a class X will have 1304 // the form 'X::X(const X&)' if each potentially constructed subobject 1305 // of a class type M (or array thereof) has a copy constructor whose 1306 // first parameter is of type 'const M&' or 'const volatile M&'. 1307 if (!FieldRec->hasCopyConstructorWithConstParam()) 1308 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 1309 1310 // C++11 [class.copy]p18: 1311 // The implicitly-declared copy assignment oeprator for a class X will 1312 // have the form 'X& X::operator=(const X&)' if [...] for all the 1313 // non-static data members of X that are of a class type M (or array 1314 // thereof), each such class type has a copy assignment operator whose 1315 // parameter is of type 'const M&', 'const volatile M&' or 'M'. 1316 if (!FieldRec->hasCopyAssignmentWithConstParam()) 1317 data().ImplicitCopyAssignmentHasConstParam = false; 1318 1319 if (FieldRec->hasUninitializedReferenceMember() && 1320 !Field->hasInClassInitializer()) 1321 data().HasUninitializedReferenceMember = true; 1322 1323 // C++11 [class.union]p8, DR1460: 1324 // a non-static data member of an anonymous union that is a member of 1325 // X is also a variant member of X. 1326 if (FieldRec->hasVariantMembers() && 1327 Field->isAnonymousStructOrUnion()) 1328 data().HasVariantMembers = true; 1329 } 1330 } else { 1331 // Base element type of field is a non-class type. 1332 if (!T->isLiteralType(Context) || 1333 (!Field->hasInClassInitializer() && !isUnion() && 1334 !Context.getLangOpts().CPlusPlus20)) 1335 data().DefaultedDefaultConstructorIsConstexpr = false; 1336 1337 // C++11 [class.copy]p23: 1338 // A defaulted copy/move assignment operator for a class X is defined 1339 // as deleted if X has: 1340 // -- a non-static data member of const non-class type (or array 1341 // thereof) 1342 if (T.isConstQualified()) { 1343 data().DefaultedCopyAssignmentIsDeleted = true; 1344 data().DefaultedMoveAssignmentIsDeleted = true; 1345 } 1346 1347 // C++20 [temp.param]p7: 1348 // A structural type is [...] a literal class type [for which] the 1349 // types of all non-static data members are structural types or 1350 // (possibly multidimensional) array thereof 1351 // We deal with class types elsewhere. 1352 if (!T->isStructuralType()) 1353 data().StructuralIfLiteral = false; 1354 } 1355 1356 // C++14 [meta.unary.prop]p4: 1357 // T is a class type [...] with [...] no non-static data members other 1358 // than subobjects of zero size 1359 if (data().Empty && !IsZeroSize) 1360 data().Empty = false; 1361 } 1362 1363 // Handle using declarations of conversion functions. 1364 if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) { 1365 if (Shadow->getDeclName().getNameKind() 1366 == DeclarationName::CXXConversionFunctionName) { 1367 ASTContext &Ctx = getASTContext(); 1368 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); 1369 } 1370 } 1371 1372 if (const auto *Using = dyn_cast<UsingDecl>(D)) { 1373 if (Using->getDeclName().getNameKind() == 1374 DeclarationName::CXXConstructorName) { 1375 data().HasInheritedConstructor = true; 1376 // C++1z [dcl.init.aggr]p1: 1377 // An aggregate is [...] a class [...] with no inherited constructors 1378 data().Aggregate = false; 1379 } 1380 1381 if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) 1382 data().HasInheritedAssignment = true; 1383 } 1384 } 1385 1386 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { 1387 assert(!D->isImplicit() && !D->isUserProvided()); 1388 1389 // The kind of special member this declaration is, if any. 1390 unsigned SMKind = 0; 1391 1392 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1393 if (Constructor->isDefaultConstructor()) { 1394 SMKind |= SMF_DefaultConstructor; 1395 if (Constructor->isConstexpr()) 1396 data().HasConstexprDefaultConstructor = true; 1397 } 1398 if (Constructor->isCopyConstructor()) 1399 SMKind |= SMF_CopyConstructor; 1400 else if (Constructor->isMoveConstructor()) 1401 SMKind |= SMF_MoveConstructor; 1402 else if (Constructor->isConstexpr()) 1403 // We may now know that the constructor is constexpr. 1404 data().HasConstexprNonCopyMoveConstructor = true; 1405 } else if (isa<CXXDestructorDecl>(D)) { 1406 SMKind |= SMF_Destructor; 1407 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) 1408 data().HasIrrelevantDestructor = false; 1409 } else if (D->isCopyAssignmentOperator()) 1410 SMKind |= SMF_CopyAssignment; 1411 else if (D->isMoveAssignmentOperator()) 1412 SMKind |= SMF_MoveAssignment; 1413 1414 // Update which trivial / non-trivial special members we have. 1415 // addedMember will have skipped this step for this member. 1416 if (D->isTrivial()) 1417 data().HasTrivialSpecialMembers |= SMKind; 1418 else 1419 data().DeclaredNonTrivialSpecialMembers |= SMKind; 1420 } 1421 1422 void CXXRecordDecl::setCaptures(ASTContext &Context, 1423 ArrayRef<LambdaCapture> Captures) { 1424 CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); 1425 1426 // Copy captures. 1427 Data.NumCaptures = Captures.size(); 1428 Data.NumExplicitCaptures = 0; 1429 Data.Captures = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) * 1430 Captures.size()); 1431 LambdaCapture *ToCapture = Data.Captures; 1432 for (unsigned I = 0, N = Captures.size(); I != N; ++I) { 1433 if (Captures[I].isExplicit()) 1434 ++Data.NumExplicitCaptures; 1435 1436 *ToCapture++ = Captures[I]; 1437 } 1438 1439 if (!lambdaIsDefaultConstructibleAndAssignable()) 1440 Data.DefaultedCopyAssignmentIsDeleted = true; 1441 } 1442 1443 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { 1444 unsigned SMKind = 0; 1445 1446 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1447 if (Constructor->isCopyConstructor()) 1448 SMKind = SMF_CopyConstructor; 1449 else if (Constructor->isMoveConstructor()) 1450 SMKind = SMF_MoveConstructor; 1451 } else if (isa<CXXDestructorDecl>(D)) 1452 SMKind = SMF_Destructor; 1453 1454 if (D->isTrivialForCall()) 1455 data().HasTrivialSpecialMembersForCall |= SMKind; 1456 else 1457 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 1458 } 1459 1460 bool CXXRecordDecl::isCLike() const { 1461 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || 1462 !TemplateOrInstantiation.isNull()) 1463 return false; 1464 if (!hasDefinition()) 1465 return true; 1466 1467 return isPOD() && data().HasOnlyCMembers; 1468 } 1469 1470 bool CXXRecordDecl::isGenericLambda() const { 1471 if (!isLambda()) return false; 1472 return getLambdaData().IsGenericLambda; 1473 } 1474 1475 #ifndef NDEBUG 1476 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { 1477 for (auto *D : R) 1478 if (!declaresSameEntity(D, R.front())) 1479 return false; 1480 return true; 1481 } 1482 #endif 1483 1484 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { 1485 if (!RD.isLambda()) return nullptr; 1486 DeclarationName Name = 1487 RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); 1488 DeclContext::lookup_result Calls = RD.lookup(Name); 1489 1490 assert(!Calls.empty() && "Missing lambda call operator!"); 1491 assert(allLookupResultsAreTheSame(Calls) && 1492 "More than one lambda call operator!"); 1493 return Calls.front(); 1494 } 1495 1496 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { 1497 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1498 return dyn_cast_or_null<FunctionTemplateDecl>(CallOp); 1499 } 1500 1501 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { 1502 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1503 1504 if (CallOp == nullptr) 1505 return nullptr; 1506 1507 if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) 1508 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); 1509 1510 return cast<CXXMethodDecl>(CallOp); 1511 } 1512 1513 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { 1514 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1515 CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv(); 1516 return getLambdaStaticInvoker(CC); 1517 } 1518 1519 static DeclContext::lookup_result 1520 getLambdaStaticInvokers(const CXXRecordDecl &RD) { 1521 assert(RD.isLambda() && "Must be a lambda"); 1522 DeclarationName Name = 1523 &RD.getASTContext().Idents.get(getLambdaStaticInvokerName()); 1524 return RD.lookup(Name); 1525 } 1526 1527 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) { 1528 if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND)) 1529 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); 1530 return cast<CXXMethodDecl>(ND); 1531 } 1532 1533 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const { 1534 if (!isLambda()) 1535 return nullptr; 1536 DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this); 1537 1538 for (NamedDecl *ND : Invoker) { 1539 const auto *FTy = 1540 cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>(); 1541 if (FTy->getCallConv() == CC) 1542 return getInvokerAsMethod(ND); 1543 } 1544 1545 return nullptr; 1546 } 1547 1548 void CXXRecordDecl::getCaptureFields( 1549 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, 1550 FieldDecl *&ThisCapture) const { 1551 Captures.clear(); 1552 ThisCapture = nullptr; 1553 1554 LambdaDefinitionData &Lambda = getLambdaData(); 1555 RecordDecl::field_iterator Field = field_begin(); 1556 for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; 1557 C != CEnd; ++C, ++Field) { 1558 if (C->capturesThis()) 1559 ThisCapture = *Field; 1560 else if (C->capturesVariable()) 1561 Captures[C->getCapturedVar()] = *Field; 1562 } 1563 assert(Field == field_end()); 1564 } 1565 1566 TemplateParameterList * 1567 CXXRecordDecl::getGenericLambdaTemplateParameterList() const { 1568 if (!isGenericLambda()) return nullptr; 1569 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1570 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) 1571 return Tmpl->getTemplateParameters(); 1572 return nullptr; 1573 } 1574 1575 ArrayRef<NamedDecl *> 1576 CXXRecordDecl::getLambdaExplicitTemplateParameters() const { 1577 TemplateParameterList *List = getGenericLambdaTemplateParameterList(); 1578 if (!List) 1579 return {}; 1580 1581 assert(std::is_partitioned(List->begin(), List->end(), 1582 [](const NamedDecl *D) { return !D->isImplicit(); }) 1583 && "Explicit template params should be ordered before implicit ones"); 1584 1585 const auto ExplicitEnd = llvm::partition_point( 1586 *List, [](const NamedDecl *D) { return !D->isImplicit(); }); 1587 return llvm::makeArrayRef(List->begin(), ExplicitEnd); 1588 } 1589 1590 Decl *CXXRecordDecl::getLambdaContextDecl() const { 1591 assert(isLambda() && "Not a lambda closure type!"); 1592 ExternalASTSource *Source = getParentASTContext().getExternalSource(); 1593 return getLambdaData().ContextDecl.get(Source); 1594 } 1595 1596 void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const { 1597 assert(isLambda() && "Not a lambda closure type!"); 1598 if (Num) 1599 getASTContext().DeviceLambdaManglingNumbers[this] = Num; 1600 } 1601 1602 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const { 1603 assert(isLambda() && "Not a lambda closure type!"); 1604 auto I = getASTContext().DeviceLambdaManglingNumbers.find(this); 1605 if (I != getASTContext().DeviceLambdaManglingNumbers.end()) 1606 return I->second; 1607 return 0; 1608 } 1609 1610 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { 1611 QualType T = 1612 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) 1613 ->getConversionType(); 1614 return Context.getCanonicalType(T); 1615 } 1616 1617 /// Collect the visible conversions of a base class. 1618 /// 1619 /// \param Record a base class of the class we're considering 1620 /// \param InVirtual whether this base class is a virtual base (or a base 1621 /// of a virtual base) 1622 /// \param Access the access along the inheritance path to this base 1623 /// \param ParentHiddenTypes the conversions provided by the inheritors 1624 /// of this base 1625 /// \param Output the set to which to add conversions from non-virtual bases 1626 /// \param VOutput the set to which to add conversions from virtual bases 1627 /// \param HiddenVBaseCs the set of conversions which were hidden in a 1628 /// virtual base along some inheritance path 1629 static void CollectVisibleConversions( 1630 ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, 1631 AccessSpecifier Access, 1632 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, 1633 ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, 1634 llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) { 1635 // The set of types which have conversions in this class or its 1636 // subclasses. As an optimization, we don't copy the derived set 1637 // unless it might change. 1638 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; 1639 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; 1640 1641 // Collect the direct conversions and figure out which conversions 1642 // will be hidden in the subclasses. 1643 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1644 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1645 if (ConvI != ConvE) { 1646 HiddenTypesBuffer = ParentHiddenTypes; 1647 HiddenTypes = &HiddenTypesBuffer; 1648 1649 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { 1650 CanQualType ConvType(GetConversionType(Context, I.getDecl())); 1651 bool Hidden = ParentHiddenTypes.count(ConvType); 1652 if (!Hidden) 1653 HiddenTypesBuffer.insert(ConvType); 1654 1655 // If this conversion is hidden and we're in a virtual base, 1656 // remember that it's hidden along some inheritance path. 1657 if (Hidden && InVirtual) 1658 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); 1659 1660 // If this conversion isn't hidden, add it to the appropriate output. 1661 else if (!Hidden) { 1662 AccessSpecifier IAccess 1663 = CXXRecordDecl::MergeAccess(Access, I.getAccess()); 1664 1665 if (InVirtual) 1666 VOutput.addDecl(I.getDecl(), IAccess); 1667 else 1668 Output.addDecl(Context, I.getDecl(), IAccess); 1669 } 1670 } 1671 } 1672 1673 // Collect information recursively from any base classes. 1674 for (const auto &I : Record->bases()) { 1675 const auto *RT = I.getType()->getAs<RecordType>(); 1676 if (!RT) continue; 1677 1678 AccessSpecifier BaseAccess 1679 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); 1680 bool BaseInVirtual = InVirtual || I.isVirtual(); 1681 1682 auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 1683 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, 1684 *HiddenTypes, Output, VOutput, HiddenVBaseCs); 1685 } 1686 } 1687 1688 /// Collect the visible conversions of a class. 1689 /// 1690 /// This would be extremely straightforward if it weren't for virtual 1691 /// bases. It might be worth special-casing that, really. 1692 static void CollectVisibleConversions(ASTContext &Context, 1693 const CXXRecordDecl *Record, 1694 ASTUnresolvedSet &Output) { 1695 // The collection of all conversions in virtual bases that we've 1696 // found. These will be added to the output as long as they don't 1697 // appear in the hidden-conversions set. 1698 UnresolvedSet<8> VBaseCs; 1699 1700 // The set of conversions in virtual bases that we've determined to 1701 // be hidden. 1702 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; 1703 1704 // The set of types hidden by classes derived from this one. 1705 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; 1706 1707 // Go ahead and collect the direct conversions and add them to the 1708 // hidden-types set. 1709 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1710 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1711 Output.append(Context, ConvI, ConvE); 1712 for (; ConvI != ConvE; ++ConvI) 1713 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); 1714 1715 // Recursively collect conversions from base classes. 1716 for (const auto &I : Record->bases()) { 1717 const auto *RT = I.getType()->getAs<RecordType>(); 1718 if (!RT) continue; 1719 1720 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), 1721 I.isVirtual(), I.getAccessSpecifier(), 1722 HiddenTypes, Output, VBaseCs, HiddenVBaseCs); 1723 } 1724 1725 // Add any unhidden conversions provided by virtual bases. 1726 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); 1727 I != E; ++I) { 1728 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) 1729 Output.addDecl(Context, I.getDecl(), I.getAccess()); 1730 } 1731 } 1732 1733 /// getVisibleConversionFunctions - get all conversion functions visible 1734 /// in current class; including conversion function templates. 1735 llvm::iterator_range<CXXRecordDecl::conversion_iterator> 1736 CXXRecordDecl::getVisibleConversionFunctions() const { 1737 ASTContext &Ctx = getASTContext(); 1738 1739 ASTUnresolvedSet *Set; 1740 if (bases_begin() == bases_end()) { 1741 // If root class, all conversions are visible. 1742 Set = &data().Conversions.get(Ctx); 1743 } else { 1744 Set = &data().VisibleConversions.get(Ctx); 1745 // If visible conversion list is not evaluated, evaluate it. 1746 if (!data().ComputedVisibleConversions) { 1747 CollectVisibleConversions(Ctx, this, *Set); 1748 data().ComputedVisibleConversions = true; 1749 } 1750 } 1751 return llvm::make_range(Set->begin(), Set->end()); 1752 } 1753 1754 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { 1755 // This operation is O(N) but extremely rare. Sema only uses it to 1756 // remove UsingShadowDecls in a class that were followed by a direct 1757 // declaration, e.g.: 1758 // class A : B { 1759 // using B::operator int; 1760 // operator int(); 1761 // }; 1762 // This is uncommon by itself and even more uncommon in conjunction 1763 // with sufficiently large numbers of directly-declared conversions 1764 // that asymptotic behavior matters. 1765 1766 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); 1767 for (unsigned I = 0, E = Convs.size(); I != E; ++I) { 1768 if (Convs[I].getDecl() == ConvDecl) { 1769 Convs.erase(I); 1770 assert(llvm::find(Convs, ConvDecl) == Convs.end() && 1771 "conversion was found multiple times in unresolved set"); 1772 return; 1773 } 1774 } 1775 1776 llvm_unreachable("conversion not found in set!"); 1777 } 1778 1779 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { 1780 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1781 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); 1782 1783 return nullptr; 1784 } 1785 1786 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { 1787 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); 1788 } 1789 1790 void 1791 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, 1792 TemplateSpecializationKind TSK) { 1793 assert(TemplateOrInstantiation.isNull() && 1794 "Previous template or instantiation?"); 1795 assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); 1796 TemplateOrInstantiation 1797 = new (getASTContext()) MemberSpecializationInfo(RD, TSK); 1798 } 1799 1800 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { 1801 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); 1802 } 1803 1804 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { 1805 TemplateOrInstantiation = Template; 1806 } 1807 1808 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ 1809 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) 1810 return Spec->getSpecializationKind(); 1811 1812 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1813 return MSInfo->getTemplateSpecializationKind(); 1814 1815 return TSK_Undeclared; 1816 } 1817 1818 void 1819 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { 1820 if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1821 Spec->setSpecializationKind(TSK); 1822 return; 1823 } 1824 1825 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1826 MSInfo->setTemplateSpecializationKind(TSK); 1827 return; 1828 } 1829 1830 llvm_unreachable("Not a class template or member class specialization"); 1831 } 1832 1833 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { 1834 auto GetDefinitionOrSelf = 1835 [](const CXXRecordDecl *D) -> const CXXRecordDecl * { 1836 if (auto *Def = D->getDefinition()) 1837 return Def; 1838 return D; 1839 }; 1840 1841 // If it's a class template specialization, find the template or partial 1842 // specialization from which it was instantiated. 1843 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1844 auto From = TD->getInstantiatedFrom(); 1845 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { 1846 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { 1847 if (NewCTD->isMemberSpecialization()) 1848 break; 1849 CTD = NewCTD; 1850 } 1851 return GetDefinitionOrSelf(CTD->getTemplatedDecl()); 1852 } 1853 if (auto *CTPSD = 1854 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 1855 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { 1856 if (NewCTPSD->isMemberSpecialization()) 1857 break; 1858 CTPSD = NewCTPSD; 1859 } 1860 return GetDefinitionOrSelf(CTPSD); 1861 } 1862 } 1863 1864 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1865 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 1866 const CXXRecordDecl *RD = this; 1867 while (auto *NewRD = RD->getInstantiatedFromMemberClass()) 1868 RD = NewRD; 1869 return GetDefinitionOrSelf(RD); 1870 } 1871 } 1872 1873 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && 1874 "couldn't find pattern for class template instantiation"); 1875 return nullptr; 1876 } 1877 1878 CXXDestructorDecl *CXXRecordDecl::getDestructor() const { 1879 ASTContext &Context = getASTContext(); 1880 QualType ClassType = Context.getTypeDeclType(this); 1881 1882 DeclarationName Name 1883 = Context.DeclarationNames.getCXXDestructorName( 1884 Context.getCanonicalType(ClassType)); 1885 1886 DeclContext::lookup_result R = lookup(Name); 1887 1888 return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front()); 1889 } 1890 1891 bool CXXRecordDecl::isAnyDestructorNoReturn() const { 1892 // Destructor is noreturn. 1893 if (const CXXDestructorDecl *Destructor = getDestructor()) 1894 if (Destructor->isNoReturn()) 1895 return true; 1896 1897 // Check base classes destructor for noreturn. 1898 for (const auto &Base : bases()) 1899 if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl()) 1900 if (RD->isAnyDestructorNoReturn()) 1901 return true; 1902 1903 // Check fields for noreturn. 1904 for (const auto *Field : fields()) 1905 if (const CXXRecordDecl *RD = 1906 Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) 1907 if (RD->isAnyDestructorNoReturn()) 1908 return true; 1909 1910 // All destructors are not noreturn. 1911 return false; 1912 } 1913 1914 static bool isDeclContextInNamespace(const DeclContext *DC) { 1915 while (!DC->isTranslationUnit()) { 1916 if (DC->isNamespace()) 1917 return true; 1918 DC = DC->getParent(); 1919 } 1920 return false; 1921 } 1922 1923 bool CXXRecordDecl::isInterfaceLike() const { 1924 assert(hasDefinition() && "checking for interface-like without a definition"); 1925 // All __interfaces are inheritently interface-like. 1926 if (isInterface()) 1927 return true; 1928 1929 // Interface-like types cannot have a user declared constructor, destructor, 1930 // friends, VBases, conversion functions, or fields. Additionally, lambdas 1931 // cannot be interface types. 1932 if (isLambda() || hasUserDeclaredConstructor() || 1933 hasUserDeclaredDestructor() || !field_empty() || hasFriends() || 1934 getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) 1935 return false; 1936 1937 // No interface-like type can have a method with a definition. 1938 for (const auto *const Method : methods()) 1939 if (Method->isDefined() && !Method->isImplicit()) 1940 return false; 1941 1942 // Check "Special" types. 1943 const auto *Uuid = getAttr<UuidAttr>(); 1944 // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an 1945 // extern C++ block directly in the TU. These are only valid if in one 1946 // of these two situations. 1947 if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && 1948 !isDeclContextInNamespace(getDeclContext()) && 1949 ((getName() == "IUnknown" && 1950 Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || 1951 (getName() == "IDispatch" && 1952 Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { 1953 if (getNumBases() > 0) 1954 return false; 1955 return true; 1956 } 1957 1958 // FIXME: Any access specifiers is supposed to make this no longer interface 1959 // like. 1960 1961 // If this isn't a 'special' type, it must have a single interface-like base. 1962 if (getNumBases() != 1) 1963 return false; 1964 1965 const auto BaseSpec = *bases_begin(); 1966 if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) 1967 return false; 1968 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 1969 if (Base->isInterface() || !Base->isInterfaceLike()) 1970 return false; 1971 return true; 1972 } 1973 1974 void CXXRecordDecl::completeDefinition() { 1975 completeDefinition(nullptr); 1976 } 1977 1978 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { 1979 RecordDecl::completeDefinition(); 1980 1981 // If the class may be abstract (but hasn't been marked as such), check for 1982 // any pure final overriders. 1983 if (mayBeAbstract()) { 1984 CXXFinalOverriderMap MyFinalOverriders; 1985 if (!FinalOverriders) { 1986 getFinalOverriders(MyFinalOverriders); 1987 FinalOverriders = &MyFinalOverriders; 1988 } 1989 1990 bool Done = false; 1991 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 1992 MEnd = FinalOverriders->end(); 1993 M != MEnd && !Done; ++M) { 1994 for (OverridingMethods::iterator SO = M->second.begin(), 1995 SOEnd = M->second.end(); 1996 SO != SOEnd && !Done; ++SO) { 1997 assert(SO->second.size() > 0 && 1998 "All virtual functions have overriding virtual functions"); 1999 2000 // C++ [class.abstract]p4: 2001 // A class is abstract if it contains or inherits at least one 2002 // pure virtual function for which the final overrider is pure 2003 // virtual. 2004 if (SO->second.front().Method->isPure()) { 2005 data().Abstract = true; 2006 Done = true; 2007 break; 2008 } 2009 } 2010 } 2011 } 2012 2013 // Set access bits correctly on the directly-declared conversions. 2014 for (conversion_iterator I = conversion_begin(), E = conversion_end(); 2015 I != E; ++I) 2016 I.setAccess((*I)->getAccess()); 2017 } 2018 2019 bool CXXRecordDecl::mayBeAbstract() const { 2020 if (data().Abstract || isInvalidDecl() || !data().Polymorphic || 2021 isDependentContext()) 2022 return false; 2023 2024 for (const auto &B : bases()) { 2025 const auto *BaseDecl = 2026 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); 2027 if (BaseDecl->isAbstract()) 2028 return true; 2029 } 2030 2031 return false; 2032 } 2033 2034 bool CXXRecordDecl::isEffectivelyFinal() const { 2035 auto *Def = getDefinition(); 2036 if (!Def) 2037 return false; 2038 if (Def->hasAttr<FinalAttr>()) 2039 return true; 2040 if (const auto *Dtor = Def->getDestructor()) 2041 if (Dtor->hasAttr<FinalAttr>()) 2042 return true; 2043 return false; 2044 } 2045 2046 void CXXDeductionGuideDecl::anchor() {} 2047 2048 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { 2049 if ((getKind() != Other.getKind() || 2050 getKind() == ExplicitSpecKind::Unresolved)) { 2051 if (getKind() == ExplicitSpecKind::Unresolved && 2052 Other.getKind() == ExplicitSpecKind::Unresolved) { 2053 ODRHash SelfHash, OtherHash; 2054 SelfHash.AddStmt(getExpr()); 2055 OtherHash.AddStmt(Other.getExpr()); 2056 return SelfHash.CalculateHash() == OtherHash.CalculateHash(); 2057 } else 2058 return false; 2059 } 2060 return true; 2061 } 2062 2063 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { 2064 switch (Function->getDeclKind()) { 2065 case Decl::Kind::CXXConstructor: 2066 return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier(); 2067 case Decl::Kind::CXXConversion: 2068 return cast<CXXConversionDecl>(Function)->getExplicitSpecifier(); 2069 case Decl::Kind::CXXDeductionGuide: 2070 return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier(); 2071 default: 2072 return {}; 2073 } 2074 } 2075 2076 CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create( 2077 ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 2078 ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, 2079 TypeSourceInfo *TInfo, SourceLocation EndLocation) { 2080 return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, 2081 TInfo, EndLocation); 2082 } 2083 2084 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, 2085 unsigned ID) { 2086 return new (C, ID) CXXDeductionGuideDecl( 2087 C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), 2088 QualType(), nullptr, SourceLocation()); 2089 } 2090 2091 RequiresExprBodyDecl *RequiresExprBodyDecl::Create( 2092 ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { 2093 return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); 2094 } 2095 2096 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, 2097 unsigned ID) { 2098 return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); 2099 } 2100 2101 void CXXMethodDecl::anchor() {} 2102 2103 bool CXXMethodDecl::isStatic() const { 2104 const CXXMethodDecl *MD = getCanonicalDecl(); 2105 2106 if (MD->getStorageClass() == SC_Static) 2107 return true; 2108 2109 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); 2110 return isStaticOverloadedOperator(OOK); 2111 } 2112 2113 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, 2114 const CXXMethodDecl *BaseMD) { 2115 for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { 2116 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) 2117 return true; 2118 if (recursivelyOverrides(MD, BaseMD)) 2119 return true; 2120 } 2121 return false; 2122 } 2123 2124 CXXMethodDecl * 2125 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, 2126 bool MayBeBase) { 2127 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) 2128 return this; 2129 2130 // Lookup doesn't work for destructors, so handle them separately. 2131 if (isa<CXXDestructorDecl>(this)) { 2132 CXXMethodDecl *MD = RD->getDestructor(); 2133 if (MD) { 2134 if (recursivelyOverrides(MD, this)) 2135 return MD; 2136 if (MayBeBase && recursivelyOverrides(this, MD)) 2137 return MD; 2138 } 2139 return nullptr; 2140 } 2141 2142 for (auto *ND : RD->lookup(getDeclName())) { 2143 auto *MD = dyn_cast<CXXMethodDecl>(ND); 2144 if (!MD) 2145 continue; 2146 if (recursivelyOverrides(MD, this)) 2147 return MD; 2148 if (MayBeBase && recursivelyOverrides(this, MD)) 2149 return MD; 2150 } 2151 2152 return nullptr; 2153 } 2154 2155 CXXMethodDecl * 2156 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, 2157 bool MayBeBase) { 2158 if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) 2159 return MD; 2160 2161 llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders; 2162 auto AddFinalOverrider = [&](CXXMethodDecl *D) { 2163 // If this function is overridden by a candidate final overrider, it is not 2164 // a final overrider. 2165 for (CXXMethodDecl *OtherD : FinalOverriders) { 2166 if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D)) 2167 return; 2168 } 2169 2170 // Other candidate final overriders might be overridden by this function. 2171 FinalOverriders.erase( 2172 std::remove_if(FinalOverriders.begin(), FinalOverriders.end(), 2173 [&](CXXMethodDecl *OtherD) { 2174 return recursivelyOverrides(D, OtherD); 2175 }), 2176 FinalOverriders.end()); 2177 2178 FinalOverriders.push_back(D); 2179 }; 2180 2181 for (const auto &I : RD->bases()) { 2182 const RecordType *RT = I.getType()->getAs<RecordType>(); 2183 if (!RT) 2184 continue; 2185 const auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 2186 if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base)) 2187 AddFinalOverrider(D); 2188 } 2189 2190 return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; 2191 } 2192 2193 CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, 2194 SourceLocation StartLoc, 2195 const DeclarationNameInfo &NameInfo, 2196 QualType T, TypeSourceInfo *TInfo, 2197 StorageClass SC, bool isInline, 2198 ConstexprSpecKind ConstexprKind, 2199 SourceLocation EndLocation, 2200 Expr *TrailingRequiresClause) { 2201 return new (C, RD) 2202 CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, 2203 isInline, ConstexprKind, EndLocation, 2204 TrailingRequiresClause); 2205 } 2206 2207 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2208 return new (C, ID) 2209 CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(), 2210 DeclarationNameInfo(), QualType(), nullptr, SC_None, false, 2211 ConstexprSpecKind::Unspecified, SourceLocation(), nullptr); 2212 } 2213 2214 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, 2215 bool IsAppleKext) { 2216 assert(isVirtual() && "this method is expected to be virtual"); 2217 2218 // When building with -fapple-kext, all calls must go through the vtable since 2219 // the kernel linker can do runtime patching of vtables. 2220 if (IsAppleKext) 2221 return nullptr; 2222 2223 // If the member function is marked 'final', we know that it can't be 2224 // overridden and can therefore devirtualize it unless it's pure virtual. 2225 if (hasAttr<FinalAttr>()) 2226 return isPure() ? nullptr : this; 2227 2228 // If Base is unknown, we cannot devirtualize. 2229 if (!Base) 2230 return nullptr; 2231 2232 // If the base expression (after skipping derived-to-base conversions) is a 2233 // class prvalue, then we can devirtualize. 2234 Base = Base->getBestDynamicClassTypeExpr(); 2235 if (Base->isRValue() && Base->getType()->isRecordType()) 2236 return this; 2237 2238 // If we don't even know what we would call, we can't devirtualize. 2239 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2240 if (!BestDynamicDecl) 2241 return nullptr; 2242 2243 // There may be a method corresponding to MD in a derived class. 2244 CXXMethodDecl *DevirtualizedMethod = 2245 getCorrespondingMethodInClass(BestDynamicDecl); 2246 2247 // If there final overrider in the dynamic type is ambiguous, we can't 2248 // devirtualize this call. 2249 if (!DevirtualizedMethod) 2250 return nullptr; 2251 2252 // If that method is pure virtual, we can't devirtualize. If this code is 2253 // reached, the result would be UB, not a direct call to the derived class 2254 // function, and we can't assume the derived class function is defined. 2255 if (DevirtualizedMethod->isPure()) 2256 return nullptr; 2257 2258 // If that method is marked final, we can devirtualize it. 2259 if (DevirtualizedMethod->hasAttr<FinalAttr>()) 2260 return DevirtualizedMethod; 2261 2262 // Similarly, if the class itself or its destructor is marked 'final', 2263 // the class can't be derived from and we can therefore devirtualize the 2264 // member function call. 2265 if (BestDynamicDecl->isEffectivelyFinal()) 2266 return DevirtualizedMethod; 2267 2268 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) { 2269 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2270 if (VD->getType()->isRecordType()) 2271 // This is a record decl. We know the type and can devirtualize it. 2272 return DevirtualizedMethod; 2273 2274 return nullptr; 2275 } 2276 2277 // We can devirtualize calls on an object accessed by a class member access 2278 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2279 // a derived class object constructed in the same location. 2280 if (const auto *ME = dyn_cast<MemberExpr>(Base)) { 2281 const ValueDecl *VD = ME->getMemberDecl(); 2282 return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; 2283 } 2284 2285 // Likewise for calls on an object accessed by a (non-reference) pointer to 2286 // member access. 2287 if (auto *BO = dyn_cast<BinaryOperator>(Base)) { 2288 if (BO->isPtrMemOp()) { 2289 auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); 2290 if (MPT->getPointeeType()->isRecordType()) 2291 return DevirtualizedMethod; 2292 } 2293 } 2294 2295 // We can't devirtualize the call. 2296 return nullptr; 2297 } 2298 2299 bool CXXMethodDecl::isUsualDeallocationFunction( 2300 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { 2301 assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); 2302 if (getOverloadedOperator() != OO_Delete && 2303 getOverloadedOperator() != OO_Array_Delete) 2304 return false; 2305 2306 // C++ [basic.stc.dynamic.deallocation]p2: 2307 // A template instance is never a usual deallocation function, 2308 // regardless of its signature. 2309 if (getPrimaryTemplate()) 2310 return false; 2311 2312 // C++ [basic.stc.dynamic.deallocation]p2: 2313 // If a class T has a member deallocation function named operator delete 2314 // with exactly one parameter, then that function is a usual (non-placement) 2315 // deallocation function. [...] 2316 if (getNumParams() == 1) 2317 return true; 2318 unsigned UsualParams = 1; 2319 2320 // C++ P0722: 2321 // A destroying operator delete is a usual deallocation function if 2322 // removing the std::destroying_delete_t parameter and changing the 2323 // first parameter type from T* to void* results in the signature of 2324 // a usual deallocation function. 2325 if (isDestroyingOperatorDelete()) 2326 ++UsualParams; 2327 2328 // C++ <=14 [basic.stc.dynamic.deallocation]p2: 2329 // [...] If class T does not declare such an operator delete but does 2330 // declare a member deallocation function named operator delete with 2331 // exactly two parameters, the second of which has type std::size_t (18.1), 2332 // then this function is a usual deallocation function. 2333 // 2334 // C++17 says a usual deallocation function is one with the signature 2335 // (void* [, size_t] [, std::align_val_t] [, ...]) 2336 // and all such functions are usual deallocation functions. It's not clear 2337 // that allowing varargs functions was intentional. 2338 ASTContext &Context = getASTContext(); 2339 if (UsualParams < getNumParams() && 2340 Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), 2341 Context.getSizeType())) 2342 ++UsualParams; 2343 2344 if (UsualParams < getNumParams() && 2345 getParamDecl(UsualParams)->getType()->isAlignValT()) 2346 ++UsualParams; 2347 2348 if (UsualParams != getNumParams()) 2349 return false; 2350 2351 // In C++17 onwards, all potential usual deallocation functions are actual 2352 // usual deallocation functions. Honor this behavior when post-C++14 2353 // deallocation functions are offered as extensions too. 2354 // FIXME(EricWF): Destrying Delete should be a language option. How do we 2355 // handle when destroying delete is used prior to C++17? 2356 if (Context.getLangOpts().CPlusPlus17 || 2357 Context.getLangOpts().AlignedAllocation || 2358 isDestroyingOperatorDelete()) 2359 return true; 2360 2361 // This function is a usual deallocation function if there are no 2362 // single-parameter deallocation functions of the same kind. 2363 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); 2364 bool Result = true; 2365 for (const auto *D : R) { 2366 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2367 if (FD->getNumParams() == 1) { 2368 PreventedBy.push_back(FD); 2369 Result = false; 2370 } 2371 } 2372 } 2373 return Result; 2374 } 2375 2376 bool CXXMethodDecl::isCopyAssignmentOperator() const { 2377 // C++0x [class.copy]p17: 2378 // A user-declared copy assignment operator X::operator= is a non-static 2379 // non-template member function of class X with exactly one parameter of 2380 // type X, X&, const X&, volatile X& or const volatile X&. 2381 if (/*operator=*/getOverloadedOperator() != OO_Equal || 2382 /*non-static*/ isStatic() || 2383 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || 2384 getNumParams() != 1) 2385 return false; 2386 2387 QualType ParamType = getParamDecl(0)->getType(); 2388 if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) 2389 ParamType = Ref->getPointeeType(); 2390 2391 ASTContext &Context = getASTContext(); 2392 QualType ClassType 2393 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2394 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2395 } 2396 2397 bool CXXMethodDecl::isMoveAssignmentOperator() const { 2398 // C++0x [class.copy]p19: 2399 // A user-declared move assignment operator X::operator= is a non-static 2400 // non-template member function of class X with exactly one parameter of type 2401 // X&&, const X&&, volatile X&&, or const volatile X&&. 2402 if (getOverloadedOperator() != OO_Equal || isStatic() || 2403 getPrimaryTemplate() || getDescribedFunctionTemplate() || 2404 getNumParams() != 1) 2405 return false; 2406 2407 QualType ParamType = getParamDecl(0)->getType(); 2408 if (!isa<RValueReferenceType>(ParamType)) 2409 return false; 2410 ParamType = ParamType->getPointeeType(); 2411 2412 ASTContext &Context = getASTContext(); 2413 QualType ClassType 2414 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2415 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2416 } 2417 2418 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { 2419 assert(MD->isCanonicalDecl() && "Method is not canonical!"); 2420 assert(!MD->getParent()->isDependentContext() && 2421 "Can't add an overridden method to a class template!"); 2422 assert(MD->isVirtual() && "Method is not virtual!"); 2423 2424 getASTContext().addOverriddenMethod(this, MD); 2425 } 2426 2427 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { 2428 if (isa<CXXConstructorDecl>(this)) return nullptr; 2429 return getASTContext().overridden_methods_begin(this); 2430 } 2431 2432 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { 2433 if (isa<CXXConstructorDecl>(this)) return nullptr; 2434 return getASTContext().overridden_methods_end(this); 2435 } 2436 2437 unsigned CXXMethodDecl::size_overridden_methods() const { 2438 if (isa<CXXConstructorDecl>(this)) return 0; 2439 return getASTContext().overridden_methods_size(this); 2440 } 2441 2442 CXXMethodDecl::overridden_method_range 2443 CXXMethodDecl::overridden_methods() const { 2444 if (isa<CXXConstructorDecl>(this)) 2445 return overridden_method_range(nullptr, nullptr); 2446 return getASTContext().overridden_methods(this); 2447 } 2448 2449 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, 2450 const CXXRecordDecl *Decl) { 2451 QualType ClassTy = C.getTypeDeclType(Decl); 2452 return C.getQualifiedType(ClassTy, FPT->getMethodQuals()); 2453 } 2454 2455 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, 2456 const CXXRecordDecl *Decl) { 2457 ASTContext &C = Decl->getASTContext(); 2458 QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); 2459 return C.getPointerType(ObjectTy); 2460 } 2461 2462 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT, 2463 const CXXRecordDecl *Decl) { 2464 ASTContext &C = Decl->getASTContext(); 2465 return ::getThisObjectType(C, FPT, Decl); 2466 } 2467 2468 QualType CXXMethodDecl::getThisType() const { 2469 // C++ 9.3.2p1: The type of this in a member function of a class X is X*. 2470 // If the member function is declared const, the type of this is const X*, 2471 // if the member function is declared volatile, the type of this is 2472 // volatile X*, and if the member function is declared const volatile, 2473 // the type of this is const volatile X*. 2474 assert(isInstance() && "No 'this' for static methods!"); 2475 return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(), 2476 getParent()); 2477 } 2478 2479 QualType CXXMethodDecl::getThisObjectType() const { 2480 // Ditto getThisType. 2481 assert(isInstance() && "No 'this' for static methods!"); 2482 return CXXMethodDecl::getThisObjectType( 2483 getType()->castAs<FunctionProtoType>(), getParent()); 2484 } 2485 2486 bool CXXMethodDecl::hasInlineBody() const { 2487 // If this function is a template instantiation, look at the template from 2488 // which it was instantiated. 2489 const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); 2490 if (!CheckFn) 2491 CheckFn = this; 2492 2493 const FunctionDecl *fn; 2494 return CheckFn->isDefined(fn) && !fn->isOutOfLine() && 2495 (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); 2496 } 2497 2498 bool CXXMethodDecl::isLambdaStaticInvoker() const { 2499 const CXXRecordDecl *P = getParent(); 2500 return P->isLambda() && getDeclName().isIdentifier() && 2501 getName() == getLambdaStaticInvokerName(); 2502 } 2503 2504 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2505 TypeSourceInfo *TInfo, bool IsVirtual, 2506 SourceLocation L, Expr *Init, 2507 SourceLocation R, 2508 SourceLocation EllipsisLoc) 2509 : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), 2510 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), 2511 IsWritten(false), SourceOrder(0) {} 2512 2513 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2514 FieldDecl *Member, 2515 SourceLocation MemberLoc, 2516 SourceLocation L, Expr *Init, 2517 SourceLocation R) 2518 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), 2519 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2520 IsWritten(false), SourceOrder(0) {} 2521 2522 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2523 IndirectFieldDecl *Member, 2524 SourceLocation MemberLoc, 2525 SourceLocation L, Expr *Init, 2526 SourceLocation R) 2527 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), 2528 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2529 IsWritten(false), SourceOrder(0) {} 2530 2531 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2532 TypeSourceInfo *TInfo, 2533 SourceLocation L, Expr *Init, 2534 SourceLocation R) 2535 : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), 2536 IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} 2537 2538 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { 2539 return Context.getAllocator() 2540 .identifyKnownAlignedObject<CXXCtorInitializer>(this); 2541 } 2542 2543 TypeLoc CXXCtorInitializer::getBaseClassLoc() const { 2544 if (isBaseInitializer()) 2545 return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); 2546 else 2547 return {}; 2548 } 2549 2550 const Type *CXXCtorInitializer::getBaseClass() const { 2551 if (isBaseInitializer()) 2552 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); 2553 else 2554 return nullptr; 2555 } 2556 2557 SourceLocation CXXCtorInitializer::getSourceLocation() const { 2558 if (isInClassMemberInitializer()) 2559 return getAnyMember()->getLocation(); 2560 2561 if (isAnyMemberInitializer()) 2562 return getMemberLocation(); 2563 2564 if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) 2565 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); 2566 2567 return {}; 2568 } 2569 2570 SourceRange CXXCtorInitializer::getSourceRange() const { 2571 if (isInClassMemberInitializer()) { 2572 FieldDecl *D = getAnyMember(); 2573 if (Expr *I = D->getInClassInitializer()) 2574 return I->getSourceRange(); 2575 return {}; 2576 } 2577 2578 return SourceRange(getSourceLocation(), getRParenLoc()); 2579 } 2580 2581 CXXConstructorDecl::CXXConstructorDecl( 2582 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2583 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2584 ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, 2585 ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, 2586 Expr *TrailingRequiresClause) 2587 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, 2588 SC_None, isInline, ConstexprKind, SourceLocation(), 2589 TrailingRequiresClause) { 2590 setNumCtorInitializers(0); 2591 setInheritingConstructor(static_cast<bool>(Inherited)); 2592 setImplicit(isImplicitlyDeclared); 2593 CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; 2594 if (Inherited) 2595 *getTrailingObjects<InheritedConstructor>() = Inherited; 2596 setExplicitSpecifier(ES); 2597 } 2598 2599 void CXXConstructorDecl::anchor() {} 2600 2601 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, 2602 unsigned ID, 2603 uint64_t AllocKind) { 2604 bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); 2605 bool isInheritingConstructor = 2606 static_cast<bool>(AllocKind & TAKInheritsConstructor); 2607 unsigned Extra = 2608 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2609 isInheritingConstructor, hasTraillingExplicit); 2610 auto *Result = new (C, ID, Extra) CXXConstructorDecl( 2611 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2612 ExplicitSpecifier(), false, false, ConstexprSpecKind::Unspecified, 2613 InheritedConstructor(), nullptr); 2614 Result->setInheritingConstructor(isInheritingConstructor); 2615 Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = 2616 hasTraillingExplicit; 2617 Result->setExplicitSpecifier(ExplicitSpecifier()); 2618 return Result; 2619 } 2620 2621 CXXConstructorDecl *CXXConstructorDecl::Create( 2622 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2623 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2624 ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, 2625 ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, 2626 Expr *TrailingRequiresClause) { 2627 assert(NameInfo.getName().getNameKind() 2628 == DeclarationName::CXXConstructorName && 2629 "Name must refer to a constructor"); 2630 unsigned Extra = 2631 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2632 Inherited ? 1 : 0, ES.getExpr() ? 1 : 0); 2633 return new (C, RD, Extra) 2634 CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline, 2635 isImplicitlyDeclared, ConstexprKind, Inherited, 2636 TrailingRequiresClause); 2637 } 2638 2639 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { 2640 return CtorInitializers.get(getASTContext().getExternalSource()); 2641 } 2642 2643 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { 2644 assert(isDelegatingConstructor() && "Not a delegating constructor!"); 2645 Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); 2646 if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) 2647 return Construct->getConstructor(); 2648 2649 return nullptr; 2650 } 2651 2652 bool CXXConstructorDecl::isDefaultConstructor() const { 2653 // C++ [class.default.ctor]p1: 2654 // A default constructor for a class X is a constructor of class X for 2655 // which each parameter that is not a function parameter pack has a default 2656 // argument (including the case of a constructor with no parameters) 2657 return getMinRequiredArguments() == 0; 2658 } 2659 2660 bool 2661 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { 2662 return isCopyOrMoveConstructor(TypeQuals) && 2663 getParamDecl(0)->getType()->isLValueReferenceType(); 2664 } 2665 2666 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { 2667 return isCopyOrMoveConstructor(TypeQuals) && 2668 getParamDecl(0)->getType()->isRValueReferenceType(); 2669 } 2670 2671 /// Determine whether this is a copy or move constructor. 2672 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { 2673 // C++ [class.copy]p2: 2674 // A non-template constructor for class X is a copy constructor 2675 // if its first parameter is of type X&, const X&, volatile X& or 2676 // const volatile X&, and either there are no other parameters 2677 // or else all other parameters have default arguments (8.3.6). 2678 // C++0x [class.copy]p3: 2679 // A non-template constructor for class X is a move constructor if its 2680 // first parameter is of type X&&, const X&&, volatile X&&, or 2681 // const volatile X&&, and either there are no other parameters or else 2682 // all other parameters have default arguments. 2683 if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || 2684 getDescribedFunctionTemplate() != nullptr) 2685 return false; 2686 2687 const ParmVarDecl *Param = getParamDecl(0); 2688 2689 // Do we have a reference type? 2690 const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); 2691 if (!ParamRefType) 2692 return false; 2693 2694 // Is it a reference to our class type? 2695 ASTContext &Context = getASTContext(); 2696 2697 CanQualType PointeeType 2698 = Context.getCanonicalType(ParamRefType->getPointeeType()); 2699 CanQualType ClassTy 2700 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2701 if (PointeeType.getUnqualifiedType() != ClassTy) 2702 return false; 2703 2704 // FIXME: other qualifiers? 2705 2706 // We have a copy or move constructor. 2707 TypeQuals = PointeeType.getCVRQualifiers(); 2708 return true; 2709 } 2710 2711 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { 2712 // C++ [class.conv.ctor]p1: 2713 // A constructor declared without the function-specifier explicit 2714 // that can be called with a single parameter specifies a 2715 // conversion from the type of its first parameter to the type of 2716 // its class. Such a constructor is called a converting 2717 // constructor. 2718 if (isExplicit() && !AllowExplicit) 2719 return false; 2720 2721 // FIXME: This has nothing to do with the definition of converting 2722 // constructor, but is convenient for how we use this function in overload 2723 // resolution. 2724 return getNumParams() == 0 2725 ? getType()->castAs<FunctionProtoType>()->isVariadic() 2726 : getMinRequiredArguments() <= 1; 2727 } 2728 2729 bool CXXConstructorDecl::isSpecializationCopyingObject() const { 2730 if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) 2731 return false; 2732 2733 const ParmVarDecl *Param = getParamDecl(0); 2734 2735 ASTContext &Context = getASTContext(); 2736 CanQualType ParamType = Context.getCanonicalType(Param->getType()); 2737 2738 // Is it the same as our class type? 2739 CanQualType ClassTy 2740 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2741 if (ParamType.getUnqualifiedType() != ClassTy) 2742 return false; 2743 2744 return true; 2745 } 2746 2747 void CXXDestructorDecl::anchor() {} 2748 2749 CXXDestructorDecl * 2750 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2751 return new (C, ID) CXXDestructorDecl( 2752 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2753 false, false, ConstexprSpecKind::Unspecified, nullptr); 2754 } 2755 2756 CXXDestructorDecl *CXXDestructorDecl::Create( 2757 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2758 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2759 bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, 2760 Expr *TrailingRequiresClause) { 2761 assert(NameInfo.getName().getNameKind() 2762 == DeclarationName::CXXDestructorName && 2763 "Name must refer to a destructor"); 2764 return new (C, RD) 2765 CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, 2766 isImplicitlyDeclared, ConstexprKind, 2767 TrailingRequiresClause); 2768 } 2769 2770 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { 2771 auto *First = cast<CXXDestructorDecl>(getFirstDecl()); 2772 if (OD && !First->OperatorDelete) { 2773 First->OperatorDelete = OD; 2774 First->OperatorDeleteThisArg = ThisArg; 2775 if (auto *L = getASTMutationListener()) 2776 L->ResolvedOperatorDelete(First, OD, ThisArg); 2777 } 2778 } 2779 2780 void CXXConversionDecl::anchor() {} 2781 2782 CXXConversionDecl * 2783 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2784 return new (C, ID) CXXConversionDecl( 2785 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2786 false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 2787 SourceLocation(), nullptr); 2788 } 2789 2790 CXXConversionDecl *CXXConversionDecl::Create( 2791 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2792 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2793 bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, 2794 SourceLocation EndLocation, Expr *TrailingRequiresClause) { 2795 assert(NameInfo.getName().getNameKind() 2796 == DeclarationName::CXXConversionFunctionName && 2797 "Name must refer to a conversion function"); 2798 return new (C, RD) 2799 CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES, 2800 ConstexprKind, EndLocation, TrailingRequiresClause); 2801 } 2802 2803 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { 2804 return isImplicit() && getParent()->isLambda() && 2805 getConversionType()->isBlockPointerType(); 2806 } 2807 2808 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, 2809 SourceLocation LangLoc, LanguageIDs lang, 2810 bool HasBraces) 2811 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), 2812 ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { 2813 setLanguage(lang); 2814 LinkageSpecDeclBits.HasBraces = HasBraces; 2815 } 2816 2817 void LinkageSpecDecl::anchor() {} 2818 2819 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, 2820 DeclContext *DC, 2821 SourceLocation ExternLoc, 2822 SourceLocation LangLoc, 2823 LanguageIDs Lang, 2824 bool HasBraces) { 2825 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); 2826 } 2827 2828 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, 2829 unsigned ID) { 2830 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), 2831 SourceLocation(), lang_c, false); 2832 } 2833 2834 void UsingDirectiveDecl::anchor() {} 2835 2836 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, 2837 SourceLocation L, 2838 SourceLocation NamespaceLoc, 2839 NestedNameSpecifierLoc QualifierLoc, 2840 SourceLocation IdentLoc, 2841 NamedDecl *Used, 2842 DeclContext *CommonAncestor) { 2843 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used)) 2844 Used = NS->getOriginalNamespace(); 2845 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, 2846 IdentLoc, Used, CommonAncestor); 2847 } 2848 2849 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, 2850 unsigned ID) { 2851 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), 2852 SourceLocation(), 2853 NestedNameSpecifierLoc(), 2854 SourceLocation(), nullptr, nullptr); 2855 } 2856 2857 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { 2858 if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) 2859 return NA->getNamespace(); 2860 return cast_or_null<NamespaceDecl>(NominatedNamespace); 2861 } 2862 2863 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, 2864 SourceLocation StartLoc, SourceLocation IdLoc, 2865 IdentifierInfo *Id, NamespaceDecl *PrevDecl) 2866 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), 2867 redeclarable_base(C), LocStart(StartLoc), 2868 AnonOrFirstNamespaceAndInline(nullptr, Inline) { 2869 setPreviousDecl(PrevDecl); 2870 2871 if (PrevDecl) 2872 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); 2873 } 2874 2875 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, 2876 bool Inline, SourceLocation StartLoc, 2877 SourceLocation IdLoc, IdentifierInfo *Id, 2878 NamespaceDecl *PrevDecl) { 2879 return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, 2880 PrevDecl); 2881 } 2882 2883 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2884 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), 2885 SourceLocation(), nullptr, nullptr); 2886 } 2887 2888 NamespaceDecl *NamespaceDecl::getOriginalNamespace() { 2889 if (isFirstDecl()) 2890 return this; 2891 2892 return AnonOrFirstNamespaceAndInline.getPointer(); 2893 } 2894 2895 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { 2896 if (isFirstDecl()) 2897 return this; 2898 2899 return AnonOrFirstNamespaceAndInline.getPointer(); 2900 } 2901 2902 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } 2903 2904 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { 2905 return getNextRedeclaration(); 2906 } 2907 2908 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { 2909 return getPreviousDecl(); 2910 } 2911 2912 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { 2913 return getMostRecentDecl(); 2914 } 2915 2916 void NamespaceAliasDecl::anchor() {} 2917 2918 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { 2919 return getNextRedeclaration(); 2920 } 2921 2922 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { 2923 return getPreviousDecl(); 2924 } 2925 2926 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { 2927 return getMostRecentDecl(); 2928 } 2929 2930 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, 2931 SourceLocation UsingLoc, 2932 SourceLocation AliasLoc, 2933 IdentifierInfo *Alias, 2934 NestedNameSpecifierLoc QualifierLoc, 2935 SourceLocation IdentLoc, 2936 NamedDecl *Namespace) { 2937 // FIXME: Preserve the aliased namespace as written. 2938 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) 2939 Namespace = NS->getOriginalNamespace(); 2940 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, 2941 QualifierLoc, IdentLoc, Namespace); 2942 } 2943 2944 NamespaceAliasDecl * 2945 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2946 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), 2947 SourceLocation(), nullptr, 2948 NestedNameSpecifierLoc(), 2949 SourceLocation(), nullptr); 2950 } 2951 2952 void LifetimeExtendedTemporaryDecl::anchor() {} 2953 2954 /// Retrieve the storage duration for the materialized temporary. 2955 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { 2956 const ValueDecl *ExtendingDecl = getExtendingDecl(); 2957 if (!ExtendingDecl) 2958 return SD_FullExpression; 2959 // FIXME: This is not necessarily correct for a temporary materialized 2960 // within a default initializer. 2961 if (isa<FieldDecl>(ExtendingDecl)) 2962 return SD_Automatic; 2963 // FIXME: This only works because storage class specifiers are not allowed 2964 // on decomposition declarations. 2965 if (isa<BindingDecl>(ExtendingDecl)) 2966 return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic 2967 : SD_Static; 2968 return cast<VarDecl>(ExtendingDecl)->getStorageDuration(); 2969 } 2970 2971 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { 2972 assert(getStorageDuration() == SD_Static && 2973 "don't need to cache the computed value for this temporary"); 2974 if (MayCreate && !Value) { 2975 Value = (new (getASTContext()) APValue); 2976 getASTContext().addDestruction(Value); 2977 } 2978 assert(Value && "may not be null"); 2979 return Value; 2980 } 2981 2982 void UsingShadowDecl::anchor() {} 2983 2984 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, 2985 SourceLocation Loc, UsingDecl *Using, 2986 NamedDecl *Target) 2987 : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()), 2988 redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) { 2989 if (Target) 2990 setTargetDecl(Target); 2991 setImplicit(); 2992 } 2993 2994 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) 2995 : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), 2996 redeclarable_base(C) {} 2997 2998 UsingShadowDecl * 2999 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3000 return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); 3001 } 3002 3003 UsingDecl *UsingShadowDecl::getUsingDecl() const { 3004 const UsingShadowDecl *Shadow = this; 3005 while (const auto *NextShadow = 3006 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) 3007 Shadow = NextShadow; 3008 return cast<UsingDecl>(Shadow->UsingOrNextShadow); 3009 } 3010 3011 void ConstructorUsingShadowDecl::anchor() {} 3012 3013 ConstructorUsingShadowDecl * 3014 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, 3015 SourceLocation Loc, UsingDecl *Using, 3016 NamedDecl *Target, bool IsVirtual) { 3017 return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, 3018 IsVirtual); 3019 } 3020 3021 ConstructorUsingShadowDecl * 3022 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3023 return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); 3024 } 3025 3026 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { 3027 return getUsingDecl()->getQualifier()->getAsRecordDecl(); 3028 } 3029 3030 void UsingDecl::anchor() {} 3031 3032 void UsingDecl::addShadowDecl(UsingShadowDecl *S) { 3033 assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && 3034 "declaration already in set"); 3035 assert(S->getUsingDecl() == this); 3036 3037 if (FirstUsingShadow.getPointer()) 3038 S->UsingOrNextShadow = FirstUsingShadow.getPointer(); 3039 FirstUsingShadow.setPointer(S); 3040 } 3041 3042 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { 3043 assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && 3044 "declaration not in set"); 3045 assert(S->getUsingDecl() == this); 3046 3047 // Remove S from the shadow decl chain. This is O(n) but hopefully rare. 3048 3049 if (FirstUsingShadow.getPointer() == S) { 3050 FirstUsingShadow.setPointer( 3051 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); 3052 S->UsingOrNextShadow = this; 3053 return; 3054 } 3055 3056 UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); 3057 while (Prev->UsingOrNextShadow != S) 3058 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); 3059 Prev->UsingOrNextShadow = S->UsingOrNextShadow; 3060 S->UsingOrNextShadow = this; 3061 } 3062 3063 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, 3064 NestedNameSpecifierLoc QualifierLoc, 3065 const DeclarationNameInfo &NameInfo, 3066 bool HasTypename) { 3067 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); 3068 } 3069 3070 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3071 return new (C, ID) UsingDecl(nullptr, SourceLocation(), 3072 NestedNameSpecifierLoc(), DeclarationNameInfo(), 3073 false); 3074 } 3075 3076 SourceRange UsingDecl::getSourceRange() const { 3077 SourceLocation Begin = isAccessDeclaration() 3078 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3079 return SourceRange(Begin, getNameInfo().getEndLoc()); 3080 } 3081 3082 void UsingPackDecl::anchor() {} 3083 3084 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, 3085 NamedDecl *InstantiatedFrom, 3086 ArrayRef<NamedDecl *> UsingDecls) { 3087 size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size()); 3088 return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); 3089 } 3090 3091 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3092 unsigned NumExpansions) { 3093 size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions); 3094 auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None); 3095 Result->NumExpansions = NumExpansions; 3096 auto *Trail = Result->getTrailingObjects<NamedDecl *>(); 3097 for (unsigned I = 0; I != NumExpansions; ++I) 3098 new (Trail + I) NamedDecl*(nullptr); 3099 return Result; 3100 } 3101 3102 void UnresolvedUsingValueDecl::anchor() {} 3103 3104 UnresolvedUsingValueDecl * 3105 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, 3106 SourceLocation UsingLoc, 3107 NestedNameSpecifierLoc QualifierLoc, 3108 const DeclarationNameInfo &NameInfo, 3109 SourceLocation EllipsisLoc) { 3110 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, 3111 QualifierLoc, NameInfo, 3112 EllipsisLoc); 3113 } 3114 3115 UnresolvedUsingValueDecl * 3116 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3117 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), 3118 SourceLocation(), 3119 NestedNameSpecifierLoc(), 3120 DeclarationNameInfo(), 3121 SourceLocation()); 3122 } 3123 3124 SourceRange UnresolvedUsingValueDecl::getSourceRange() const { 3125 SourceLocation Begin = isAccessDeclaration() 3126 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3127 return SourceRange(Begin, getNameInfo().getEndLoc()); 3128 } 3129 3130 void UnresolvedUsingTypenameDecl::anchor() {} 3131 3132 UnresolvedUsingTypenameDecl * 3133 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, 3134 SourceLocation UsingLoc, 3135 SourceLocation TypenameLoc, 3136 NestedNameSpecifierLoc QualifierLoc, 3137 SourceLocation TargetNameLoc, 3138 DeclarationName TargetName, 3139 SourceLocation EllipsisLoc) { 3140 return new (C, DC) UnresolvedUsingTypenameDecl( 3141 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, 3142 TargetName.getAsIdentifierInfo(), EllipsisLoc); 3143 } 3144 3145 UnresolvedUsingTypenameDecl * 3146 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3147 return new (C, ID) UnresolvedUsingTypenameDecl( 3148 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), 3149 SourceLocation(), nullptr, SourceLocation()); 3150 } 3151 3152 void StaticAssertDecl::anchor() {} 3153 3154 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, 3155 SourceLocation StaticAssertLoc, 3156 Expr *AssertExpr, 3157 StringLiteral *Message, 3158 SourceLocation RParenLoc, 3159 bool Failed) { 3160 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, 3161 RParenLoc, Failed); 3162 } 3163 3164 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, 3165 unsigned ID) { 3166 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, 3167 nullptr, SourceLocation(), false); 3168 } 3169 3170 void BindingDecl::anchor() {} 3171 3172 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, 3173 SourceLocation IdLoc, IdentifierInfo *Id) { 3174 return new (C, DC) BindingDecl(DC, IdLoc, Id); 3175 } 3176 3177 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3178 return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); 3179 } 3180 3181 ValueDecl *BindingDecl::getDecomposedDecl() const { 3182 ExternalASTSource *Source = 3183 Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr; 3184 return cast_or_null<ValueDecl>(Decomp.get(Source)); 3185 } 3186 3187 VarDecl *BindingDecl::getHoldingVar() const { 3188 Expr *B = getBinding(); 3189 if (!B) 3190 return nullptr; 3191 auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit()); 3192 if (!DRE) 3193 return nullptr; 3194 3195 auto *VD = cast<VarDecl>(DRE->getDecl()); 3196 assert(VD->isImplicit() && "holding var for binding decl not implicit"); 3197 return VD; 3198 } 3199 3200 void DecompositionDecl::anchor() {} 3201 3202 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, 3203 SourceLocation StartLoc, 3204 SourceLocation LSquareLoc, 3205 QualType T, TypeSourceInfo *TInfo, 3206 StorageClass SC, 3207 ArrayRef<BindingDecl *> Bindings) { 3208 size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size()); 3209 return new (C, DC, Extra) 3210 DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); 3211 } 3212 3213 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, 3214 unsigned ID, 3215 unsigned NumBindings) { 3216 size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings); 3217 auto *Result = new (C, ID, Extra) 3218 DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), 3219 QualType(), nullptr, StorageClass(), None); 3220 // Set up and clean out the bindings array. 3221 Result->NumBindings = NumBindings; 3222 auto *Trail = Result->getTrailingObjects<BindingDecl *>(); 3223 for (unsigned I = 0; I != NumBindings; ++I) 3224 new (Trail + I) BindingDecl*(nullptr); 3225 return Result; 3226 } 3227 3228 void DecompositionDecl::printName(llvm::raw_ostream &os) const { 3229 os << '['; 3230 bool Comma = false; 3231 for (const auto *B : bindings()) { 3232 if (Comma) 3233 os << ", "; 3234 B->printName(os); 3235 Comma = true; 3236 } 3237 os << ']'; 3238 } 3239 3240 void MSPropertyDecl::anchor() {} 3241 3242 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, 3243 SourceLocation L, DeclarationName N, 3244 QualType T, TypeSourceInfo *TInfo, 3245 SourceLocation StartL, 3246 IdentifierInfo *Getter, 3247 IdentifierInfo *Setter) { 3248 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); 3249 } 3250 3251 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, 3252 unsigned ID) { 3253 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), 3254 DeclarationName(), QualType(), nullptr, 3255 SourceLocation(), nullptr, nullptr); 3256 } 3257 3258 void MSGuidDecl::anchor() {} 3259 3260 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) 3261 : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), 3262 PartVal(P), APVal() {} 3263 3264 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { 3265 DeclContext *DC = C.getTranslationUnitDecl(); 3266 return new (C, DC) MSGuidDecl(DC, T, P); 3267 } 3268 3269 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3270 return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); 3271 } 3272 3273 void MSGuidDecl::printName(llvm::raw_ostream &OS) const { 3274 OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-", 3275 PartVal.Part1, PartVal.Part2, PartVal.Part3); 3276 unsigned I = 0; 3277 for (uint8_t Byte : PartVal.Part4And5) { 3278 OS << llvm::format("%02" PRIx8, Byte); 3279 if (++I == 2) 3280 OS << '-'; 3281 } 3282 OS << '}'; 3283 } 3284 3285 /// Determine if T is a valid 'struct _GUID' of the shape that we expect. 3286 static bool isValidStructGUID(ASTContext &Ctx, QualType T) { 3287 // FIXME: We only need to check this once, not once each time we compute a 3288 // GUID APValue. 3289 using MatcherRef = llvm::function_ref<bool(QualType)>; 3290 3291 auto IsInt = [&Ctx](unsigned N) { 3292 return [&Ctx, N](QualType T) { 3293 return T->isUnsignedIntegerOrEnumerationType() && 3294 Ctx.getIntWidth(T) == N; 3295 }; 3296 }; 3297 3298 auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { 3299 return [&Ctx, Elem, N](QualType T) { 3300 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); 3301 return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); 3302 }; 3303 }; 3304 3305 auto IsStruct = [](std::initializer_list<MatcherRef> Fields) { 3306 return [Fields](QualType T) { 3307 const RecordDecl *RD = T->getAsRecordDecl(); 3308 if (!RD || RD->isUnion()) 3309 return false; 3310 RD = RD->getDefinition(); 3311 if (!RD) 3312 return false; 3313 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 3314 if (CXXRD->getNumBases()) 3315 return false; 3316 auto MatcherIt = Fields.begin(); 3317 for (const FieldDecl *FD : RD->fields()) { 3318 if (FD->isUnnamedBitfield()) continue; 3319 if (FD->isBitField() || MatcherIt == Fields.end() || 3320 !(*MatcherIt)(FD->getType())) 3321 return false; 3322 ++MatcherIt; 3323 } 3324 return MatcherIt == Fields.end(); 3325 }; 3326 }; 3327 3328 // We expect an {i32, i16, i16, [8 x i8]}. 3329 return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); 3330 } 3331 3332 APValue &MSGuidDecl::getAsAPValue() const { 3333 if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) { 3334 using llvm::APInt; 3335 using llvm::APSInt; 3336 APVal = APValue(APValue::UninitStruct(), 0, 4); 3337 APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); 3338 APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); 3339 APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); 3340 APValue &Arr = APVal.getStructField(3) = 3341 APValue(APValue::UninitArray(), 8, 8); 3342 for (unsigned I = 0; I != 8; ++I) { 3343 Arr.getArrayInitializedElt(I) = 3344 APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); 3345 } 3346 // Register this APValue to be destroyed if necessary. (Note that the 3347 // MSGuidDecl destructor is never run.) 3348 getASTContext().addDestruction(&APVal); 3349 } 3350 3351 return APVal; 3352 } 3353 3354 static const char *getAccessName(AccessSpecifier AS) { 3355 switch (AS) { 3356 case AS_none: 3357 llvm_unreachable("Invalid access specifier!"); 3358 case AS_public: 3359 return "public"; 3360 case AS_private: 3361 return "private"; 3362 case AS_protected: 3363 return "protected"; 3364 } 3365 llvm_unreachable("Invalid access specifier!"); 3366 } 3367 3368 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, 3369 AccessSpecifier AS) { 3370 return DB << getAccessName(AS); 3371 } 3372