xref: /freebsd/contrib/llvm-project/clang/lib/AST/DeclCXX.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 
52 using namespace clang;
53 
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
57 
58 void AccessSpecDecl::anchor() {}
59 
60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
61   return new (C, ID) AccessSpecDecl(EmptyShell());
62 }
63 
64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
65   ExternalASTSource *Source = C.getExternalSource();
66   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
67   assert(Source && "getFromExternalSource with no external source");
68 
69   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
70     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
71         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
72   Impl.Decls.setLazy(false);
73 }
74 
75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
76     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80       HasPrivateFields(false), HasProtectedFields(false),
81       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82       HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false),
83       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84       HasInheritedConstructor(false), HasInheritedDefaultConstructor(false),
85       HasInheritedAssignment(false),
86       NeedOverloadResolutionForCopyConstructor(false),
87       NeedOverloadResolutionForMoveConstructor(false),
88       NeedOverloadResolutionForCopyAssignment(false),
89       NeedOverloadResolutionForMoveAssignment(false),
90       NeedOverloadResolutionForDestructor(false),
91       DefaultedCopyConstructorIsDeleted(false),
92       DefaultedMoveConstructorIsDeleted(false),
93       DefaultedCopyAssignmentIsDeleted(false),
94       DefaultedMoveAssignmentIsDeleted(false),
95       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
96       HasTrivialSpecialMembersForCall(SMF_All),
97       DeclaredNonTrivialSpecialMembers(0),
98       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
99       HasConstexprNonCopyMoveConstructor(false),
100       HasDefaultedDefaultConstructor(false),
101       DefaultedDefaultConstructorIsConstexpr(true),
102       HasConstexprDefaultConstructor(false),
103       DefaultedDestructorIsConstexpr(true),
104       HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
105       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
106       ImplicitCopyConstructorCanHaveConstParamForVBase(true),
107       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
108       ImplicitCopyAssignmentHasConstParam(true),
109       HasDeclaredCopyConstructorWithConstParam(false),
110       HasDeclaredCopyAssignmentWithConstParam(false),
111       IsAnyDestructorNoReturn(false), IsLambda(false),
112       IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
113       HasODRHash(false), Definition(D) {}
114 
115 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
116   return Bases.get(Definition->getASTContext().getExternalSource());
117 }
118 
119 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
120   return VBases.get(Definition->getASTContext().getExternalSource());
121 }
122 
123 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
124                              DeclContext *DC, SourceLocation StartLoc,
125                              SourceLocation IdLoc, IdentifierInfo *Id,
126                              CXXRecordDecl *PrevDecl)
127     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
128       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
129                               : nullptr) {}
130 
131 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
132                                      DeclContext *DC, SourceLocation StartLoc,
133                                      SourceLocation IdLoc, IdentifierInfo *Id,
134                                      CXXRecordDecl *PrevDecl,
135                                      bool DelayTypeCreation) {
136   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
137                                       PrevDecl);
138   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
139 
140   // FIXME: DelayTypeCreation seems like such a hack
141   if (!DelayTypeCreation)
142     C.getTypeDeclType(R, PrevDecl);
143   return R;
144 }
145 
146 CXXRecordDecl *
147 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
148                             TypeSourceInfo *Info, SourceLocation Loc,
149                             unsigned DependencyKind, bool IsGeneric,
150                             LambdaCaptureDefault CaptureDefault) {
151   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
152                                       nullptr, nullptr);
153   R->setBeingDefined(true);
154   R->DefinitionData = new (C) struct LambdaDefinitionData(
155       R, Info, DependencyKind, IsGeneric, CaptureDefault);
156   R->setMayHaveOutOfDateDef(false);
157   R->setImplicit(true);
158 
159   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
160   return R;
161 }
162 
163 CXXRecordDecl *
164 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
165   auto *R = new (C, ID) CXXRecordDecl(
166       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
167       nullptr, nullptr);
168   R->setMayHaveOutOfDateDef(false);
169   return R;
170 }
171 
172 /// Determine whether a class has a repeated base class. This is intended for
173 /// use when determining if a class is standard-layout, so makes no attempt to
174 /// handle virtual bases.
175 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
176   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
177   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
178   while (!WorkList.empty()) {
179     const CXXRecordDecl *RD = WorkList.pop_back_val();
180     if (RD->getTypeForDecl()->isDependentType())
181       continue;
182     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
183       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
184         if (!SeenBaseTypes.insert(B).second)
185           return true;
186         WorkList.push_back(B);
187       }
188     }
189   }
190   return false;
191 }
192 
193 void
194 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
195                         unsigned NumBases) {
196   ASTContext &C = getASTContext();
197 
198   if (!data().Bases.isOffset() && data().NumBases > 0)
199     C.Deallocate(data().getBases());
200 
201   if (NumBases) {
202     if (!C.getLangOpts().CPlusPlus17) {
203       // C++ [dcl.init.aggr]p1:
204       //   An aggregate is [...] a class with [...] no base classes [...].
205       data().Aggregate = false;
206     }
207 
208     // C++ [class]p4:
209     //   A POD-struct is an aggregate class...
210     data().PlainOldData = false;
211   }
212 
213   // The set of seen virtual base types.
214   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
215 
216   // The virtual bases of this class.
217   SmallVector<const CXXBaseSpecifier *, 8> VBases;
218 
219   data().Bases = new(C) CXXBaseSpecifier [NumBases];
220   data().NumBases = NumBases;
221   for (unsigned i = 0; i < NumBases; ++i) {
222     data().getBases()[i] = *Bases[i];
223     // Keep track of inherited vbases for this base class.
224     const CXXBaseSpecifier *Base = Bases[i];
225     QualType BaseType = Base->getType();
226     // Skip dependent types; we can't do any checking on them now.
227     if (BaseType->isDependentType())
228       continue;
229     auto *BaseClassDecl =
230         cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
231 
232     // C++2a [class]p7:
233     //   A standard-layout class is a class that:
234     //    [...]
235     //    -- has all non-static data members and bit-fields in the class and
236     //       its base classes first declared in the same class
237     if (BaseClassDecl->data().HasBasesWithFields ||
238         !BaseClassDecl->field_empty()) {
239       if (data().HasBasesWithFields)
240         // Two bases have members or bit-fields: not standard-layout.
241         data().IsStandardLayout = false;
242       data().HasBasesWithFields = true;
243     }
244 
245     // C++11 [class]p7:
246     //   A standard-layout class is a class that:
247     //     -- [...] has [...] at most one base class with non-static data
248     //        members
249     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
250         BaseClassDecl->hasDirectFields()) {
251       if (data().HasBasesWithNonStaticDataMembers)
252         data().IsCXX11StandardLayout = false;
253       data().HasBasesWithNonStaticDataMembers = true;
254     }
255 
256     if (!BaseClassDecl->isEmpty()) {
257       // C++14 [meta.unary.prop]p4:
258       //   T is a class type [...] with [...] no base class B for which
259       //   is_empty<B>::value is false.
260       data().Empty = false;
261     }
262 
263     // C++1z [dcl.init.agg]p1:
264     //   An aggregate is a class with [...] no private or protected base classes
265     if (Base->getAccessSpecifier() != AS_public) {
266       data().Aggregate = false;
267 
268       // C++20 [temp.param]p7:
269       //   A structural type is [...] a literal class type with [...] all base
270       //   classes [...] public
271       data().StructuralIfLiteral = false;
272     }
273 
274     // C++ [class.virtual]p1:
275     //   A class that declares or inherits a virtual function is called a
276     //   polymorphic class.
277     if (BaseClassDecl->isPolymorphic()) {
278       data().Polymorphic = true;
279 
280       //   An aggregate is a class with [...] no virtual functions.
281       data().Aggregate = false;
282     }
283 
284     // C++0x [class]p7:
285     //   A standard-layout class is a class that: [...]
286     //    -- has no non-standard-layout base classes
287     if (!BaseClassDecl->isStandardLayout())
288       data().IsStandardLayout = false;
289     if (!BaseClassDecl->isCXX11StandardLayout())
290       data().IsCXX11StandardLayout = false;
291 
292     // Record if this base is the first non-literal field or base.
293     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
294       data().HasNonLiteralTypeFieldsOrBases = true;
295 
296     // Now go through all virtual bases of this base and add them.
297     for (const auto &VBase : BaseClassDecl->vbases()) {
298       // Add this base if it's not already in the list.
299       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
300         VBases.push_back(&VBase);
301 
302         // C++11 [class.copy]p8:
303         //   The implicitly-declared copy constructor for a class X will have
304         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
305         //   has a copy constructor whose first parameter is of type
306         //   'const B&' or 'const volatile B&' [...]
307         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
308           if (!VBaseDecl->hasCopyConstructorWithConstParam())
309             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
310 
311         // C++1z [dcl.init.agg]p1:
312         //   An aggregate is a class with [...] no virtual base classes
313         data().Aggregate = false;
314       }
315     }
316 
317     if (Base->isVirtual()) {
318       // Add this base if it's not already in the list.
319       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
320         VBases.push_back(Base);
321 
322       // C++14 [meta.unary.prop] is_empty:
323       //   T is a class type, but not a union type, with ... no virtual base
324       //   classes
325       data().Empty = false;
326 
327       // C++1z [dcl.init.agg]p1:
328       //   An aggregate is a class with [...] no virtual base classes
329       data().Aggregate = false;
330 
331       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
332       //   A [default constructor, copy/move constructor, or copy/move assignment
333       //   operator for a class X] is trivial [...] if:
334       //    -- class X has [...] no virtual base classes
335       data().HasTrivialSpecialMembers &= SMF_Destructor;
336       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
337 
338       // C++0x [class]p7:
339       //   A standard-layout class is a class that: [...]
340       //    -- has [...] no virtual base classes
341       data().IsStandardLayout = false;
342       data().IsCXX11StandardLayout = false;
343 
344       // C++20 [dcl.constexpr]p3:
345       //   In the definition of a constexpr function [...]
346       //    -- if the function is a constructor or destructor,
347       //       its class shall not have any virtual base classes
348       data().DefaultedDefaultConstructorIsConstexpr = false;
349       data().DefaultedDestructorIsConstexpr = false;
350 
351       // C++1z [class.copy]p8:
352       //   The implicitly-declared copy constructor for a class X will have
353       //   the form 'X::X(const X&)' if each potentially constructed subobject
354       //   has a copy constructor whose first parameter is of type
355       //   'const B&' or 'const volatile B&' [...]
356       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
357         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
358     } else {
359       // C++ [class.ctor]p5:
360       //   A default constructor is trivial [...] if:
361       //    -- all the direct base classes of its class have trivial default
362       //       constructors.
363       if (!BaseClassDecl->hasTrivialDefaultConstructor())
364         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
365 
366       // C++0x [class.copy]p13:
367       //   A copy/move constructor for class X is trivial if [...]
368       //    [...]
369       //    -- the constructor selected to copy/move each direct base class
370       //       subobject is trivial, and
371       if (!BaseClassDecl->hasTrivialCopyConstructor())
372         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
373 
374       if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
375         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
376 
377       // If the base class doesn't have a simple move constructor, we'll eagerly
378       // declare it and perform overload resolution to determine which function
379       // it actually calls. If it does have a simple move constructor, this
380       // check is correct.
381       if (!BaseClassDecl->hasTrivialMoveConstructor())
382         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
383 
384       if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
385         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
386 
387       // C++0x [class.copy]p27:
388       //   A copy/move assignment operator for class X is trivial if [...]
389       //    [...]
390       //    -- the assignment operator selected to copy/move each direct base
391       //       class subobject is trivial, and
392       if (!BaseClassDecl->hasTrivialCopyAssignment())
393         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
394       // If the base class doesn't have a simple move assignment, we'll eagerly
395       // declare it and perform overload resolution to determine which function
396       // it actually calls. If it does have a simple move assignment, this
397       // check is correct.
398       if (!BaseClassDecl->hasTrivialMoveAssignment())
399         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
400 
401       // C++11 [class.ctor]p6:
402       //   If that user-written default constructor would satisfy the
403       //   requirements of a constexpr constructor, the implicitly-defined
404       //   default constructor is constexpr.
405       if (!BaseClassDecl->hasConstexprDefaultConstructor())
406         data().DefaultedDefaultConstructorIsConstexpr = false;
407 
408       // C++1z [class.copy]p8:
409       //   The implicitly-declared copy constructor for a class X will have
410       //   the form 'X::X(const X&)' if each potentially constructed subobject
411       //   has a copy constructor whose first parameter is of type
412       //   'const B&' or 'const volatile B&' [...]
413       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
414         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
415     }
416 
417     // C++ [class.ctor]p3:
418     //   A destructor is trivial if all the direct base classes of its class
419     //   have trivial destructors.
420     if (!BaseClassDecl->hasTrivialDestructor())
421       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
422 
423     if (!BaseClassDecl->hasTrivialDestructorForCall())
424       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
425 
426     if (!BaseClassDecl->hasIrrelevantDestructor())
427       data().HasIrrelevantDestructor = false;
428 
429     if (BaseClassDecl->isAnyDestructorNoReturn())
430       data().IsAnyDestructorNoReturn = true;
431 
432     // C++11 [class.copy]p18:
433     //   The implicitly-declared copy assignment operator for a class X will
434     //   have the form 'X& X::operator=(const X&)' if each direct base class B
435     //   of X has a copy assignment operator whose parameter is of type 'const
436     //   B&', 'const volatile B&', or 'B' [...]
437     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
438       data().ImplicitCopyAssignmentHasConstParam = false;
439 
440     // A class has an Objective-C object member if... or any of its bases
441     // has an Objective-C object member.
442     if (BaseClassDecl->hasObjectMember())
443       setHasObjectMember(true);
444 
445     if (BaseClassDecl->hasVolatileMember())
446       setHasVolatileMember(true);
447 
448     if (BaseClassDecl->getArgPassingRestrictions() ==
449         RecordDecl::APK_CanNeverPassInRegs)
450       setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
451 
452     // Keep track of the presence of mutable fields.
453     if (BaseClassDecl->hasMutableFields())
454       data().HasMutableFields = true;
455 
456     if (BaseClassDecl->hasUninitializedReferenceMember())
457       data().HasUninitializedReferenceMember = true;
458 
459     if (!BaseClassDecl->allowConstDefaultInit())
460       data().HasUninitializedFields = true;
461 
462     addedClassSubobject(BaseClassDecl);
463   }
464 
465   // C++2a [class]p7:
466   //   A class S is a standard-layout class if it:
467   //     -- has at most one base class subobject of any given type
468   //
469   // Note that we only need to check this for classes with more than one base
470   // class. If there's only one base class, and it's standard layout, then
471   // we know there are no repeated base classes.
472   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
473     data().IsStandardLayout = false;
474 
475   if (VBases.empty()) {
476     data().IsParsingBaseSpecifiers = false;
477     return;
478   }
479 
480   // Create base specifier for any direct or indirect virtual bases.
481   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
482   data().NumVBases = VBases.size();
483   for (int I = 0, E = VBases.size(); I != E; ++I) {
484     QualType Type = VBases[I]->getType();
485     if (!Type->isDependentType())
486       addedClassSubobject(Type->getAsCXXRecordDecl());
487     data().getVBases()[I] = *VBases[I];
488   }
489 
490   data().IsParsingBaseSpecifiers = false;
491 }
492 
493 unsigned CXXRecordDecl::getODRHash() const {
494   assert(hasDefinition() && "ODRHash only for records with definitions");
495 
496   // Previously calculated hash is stored in DefinitionData.
497   if (DefinitionData->HasODRHash)
498     return DefinitionData->ODRHash;
499 
500   // Only calculate hash on first call of getODRHash per record.
501   ODRHash Hash;
502   Hash.AddCXXRecordDecl(getDefinition());
503   DefinitionData->HasODRHash = true;
504   DefinitionData->ODRHash = Hash.CalculateHash();
505 
506   return DefinitionData->ODRHash;
507 }
508 
509 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
510   // C++11 [class.copy]p11:
511   //   A defaulted copy/move constructor for a class X is defined as
512   //   deleted if X has:
513   //    -- a direct or virtual base class B that cannot be copied/moved [...]
514   //    -- a non-static data member of class type M (or array thereof)
515   //       that cannot be copied or moved [...]
516   if (!Subobj->hasSimpleCopyConstructor())
517     data().NeedOverloadResolutionForCopyConstructor = true;
518   if (!Subobj->hasSimpleMoveConstructor())
519     data().NeedOverloadResolutionForMoveConstructor = true;
520 
521   // C++11 [class.copy]p23:
522   //   A defaulted copy/move assignment operator for a class X is defined as
523   //   deleted if X has:
524   //    -- a direct or virtual base class B that cannot be copied/moved [...]
525   //    -- a non-static data member of class type M (or array thereof)
526   //        that cannot be copied or moved [...]
527   if (!Subobj->hasSimpleCopyAssignment())
528     data().NeedOverloadResolutionForCopyAssignment = true;
529   if (!Subobj->hasSimpleMoveAssignment())
530     data().NeedOverloadResolutionForMoveAssignment = true;
531 
532   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
533   //   A defaulted [ctor or dtor] for a class X is defined as
534   //   deleted if X has:
535   //    -- any direct or virtual base class [...] has a type with a destructor
536   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
537   //    -- any non-static data member has a type with a destructor
538   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
539   if (!Subobj->hasSimpleDestructor()) {
540     data().NeedOverloadResolutionForCopyConstructor = true;
541     data().NeedOverloadResolutionForMoveConstructor = true;
542     data().NeedOverloadResolutionForDestructor = true;
543   }
544 
545   // C++2a [dcl.constexpr]p4:
546   //   The definition of a constexpr destructor [shall] satisfy the
547   //   following requirement:
548   //   -- for every subobject of class type or (possibly multi-dimensional)
549   //      array thereof, that class type shall have a constexpr destructor
550   if (!Subobj->hasConstexprDestructor())
551     data().DefaultedDestructorIsConstexpr = false;
552 
553   // C++20 [temp.param]p7:
554   //   A structural type is [...] a literal class type [for which] the types
555   //   of all base classes and non-static data members are structural types or
556   //   (possibly multi-dimensional) array thereof
557   if (!Subobj->data().StructuralIfLiteral)
558     data().StructuralIfLiteral = false;
559 }
560 
561 bool CXXRecordDecl::hasConstexprDestructor() const {
562   auto *Dtor = getDestructor();
563   return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
564 }
565 
566 bool CXXRecordDecl::hasAnyDependentBases() const {
567   if (!isDependentContext())
568     return false;
569 
570   return !forallBases([](const CXXRecordDecl *) { return true; });
571 }
572 
573 bool CXXRecordDecl::isTriviallyCopyable() const {
574   // C++0x [class]p5:
575   //   A trivially copyable class is a class that:
576   //   -- has no non-trivial copy constructors,
577   if (hasNonTrivialCopyConstructor()) return false;
578   //   -- has no non-trivial move constructors,
579   if (hasNonTrivialMoveConstructor()) return false;
580   //   -- has no non-trivial copy assignment operators,
581   if (hasNonTrivialCopyAssignment()) return false;
582   //   -- has no non-trivial move assignment operators, and
583   if (hasNonTrivialMoveAssignment()) return false;
584   //   -- has a trivial destructor.
585   if (!hasTrivialDestructor()) return false;
586 
587   return true;
588 }
589 
590 void CXXRecordDecl::markedVirtualFunctionPure() {
591   // C++ [class.abstract]p2:
592   //   A class is abstract if it has at least one pure virtual function.
593   data().Abstract = true;
594 }
595 
596 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
597     ASTContext &Ctx, const CXXRecordDecl *XFirst) {
598   if (!getNumBases())
599     return false;
600 
601   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
602   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
603   SmallVector<const CXXRecordDecl*, 8> WorkList;
604 
605   // Visit a type that we have determined is an element of M(S).
606   auto Visit = [&](const CXXRecordDecl *RD) -> bool {
607     RD = RD->getCanonicalDecl();
608 
609     // C++2a [class]p8:
610     //   A class S is a standard-layout class if it [...] has no element of the
611     //   set M(S) of types as a base class.
612     //
613     // If we find a subobject of an empty type, it might also be a base class,
614     // so we'll need to walk the base classes to check.
615     if (!RD->data().HasBasesWithFields) {
616       // Walk the bases the first time, stopping if we find the type. Build a
617       // set of them so we don't need to walk them again.
618       if (Bases.empty()) {
619         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
620           Base = Base->getCanonicalDecl();
621           if (RD == Base)
622             return false;
623           Bases.insert(Base);
624           return true;
625         });
626         if (RDIsBase)
627           return true;
628       } else {
629         if (Bases.count(RD))
630           return true;
631       }
632     }
633 
634     if (M.insert(RD).second)
635       WorkList.push_back(RD);
636     return false;
637   };
638 
639   if (Visit(XFirst))
640     return true;
641 
642   while (!WorkList.empty()) {
643     const CXXRecordDecl *X = WorkList.pop_back_val();
644 
645     // FIXME: We don't check the bases of X. That matches the standard, but
646     // that sure looks like a wording bug.
647 
648     //   -- If X is a non-union class type with a non-static data member
649     //      [recurse to each field] that is either of zero size or is the
650     //      first non-static data member of X
651     //   -- If X is a union type, [recurse to union members]
652     bool IsFirstField = true;
653     for (auto *FD : X->fields()) {
654       // FIXME: Should we really care about the type of the first non-static
655       // data member of a non-union if there are preceding unnamed bit-fields?
656       if (FD->isUnnamedBitfield())
657         continue;
658 
659       if (!IsFirstField && !FD->isZeroSize(Ctx))
660         continue;
661 
662       //   -- If X is n array type, [visit the element type]
663       QualType T = Ctx.getBaseElementType(FD->getType());
664       if (auto *RD = T->getAsCXXRecordDecl())
665         if (Visit(RD))
666           return true;
667 
668       if (!X->isUnion())
669         IsFirstField = false;
670     }
671   }
672 
673   return false;
674 }
675 
676 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
677   assert(isLambda() && "not a lambda");
678 
679   // C++2a [expr.prim.lambda.capture]p11:
680   //   The closure type associated with a lambda-expression has no default
681   //   constructor if the lambda-expression has a lambda-capture and a
682   //   defaulted default constructor otherwise. It has a deleted copy
683   //   assignment operator if the lambda-expression has a lambda-capture and
684   //   defaulted copy and move assignment operators otherwise.
685   //
686   // C++17 [expr.prim.lambda]p21:
687   //   The closure type associated with a lambda-expression has no default
688   //   constructor and a deleted copy assignment operator.
689   if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0)
690     return false;
691   return getASTContext().getLangOpts().CPlusPlus20;
692 }
693 
694 void CXXRecordDecl::addedMember(Decl *D) {
695   if (!D->isImplicit() &&
696       !isa<FieldDecl>(D) &&
697       !isa<IndirectFieldDecl>(D) &&
698       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
699         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
700     data().HasOnlyCMembers = false;
701 
702   // Ignore friends and invalid declarations.
703   if (D->getFriendObjectKind() || D->isInvalidDecl())
704     return;
705 
706   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
707   if (FunTmpl)
708     D = FunTmpl->getTemplatedDecl();
709 
710   // FIXME: Pass NamedDecl* to addedMember?
711   Decl *DUnderlying = D;
712   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
713     DUnderlying = ND->getUnderlyingDecl();
714     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
715       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
716   }
717 
718   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
719     if (Method->isVirtual()) {
720       // C++ [dcl.init.aggr]p1:
721       //   An aggregate is an array or a class with [...] no virtual functions.
722       data().Aggregate = false;
723 
724       // C++ [class]p4:
725       //   A POD-struct is an aggregate class...
726       data().PlainOldData = false;
727 
728       // C++14 [meta.unary.prop]p4:
729       //   T is a class type [...] with [...] no virtual member functions...
730       data().Empty = false;
731 
732       // C++ [class.virtual]p1:
733       //   A class that declares or inherits a virtual function is called a
734       //   polymorphic class.
735       data().Polymorphic = true;
736 
737       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
738       //   A [default constructor, copy/move constructor, or copy/move
739       //   assignment operator for a class X] is trivial [...] if:
740       //    -- class X has no virtual functions [...]
741       data().HasTrivialSpecialMembers &= SMF_Destructor;
742       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
743 
744       // C++0x [class]p7:
745       //   A standard-layout class is a class that: [...]
746       //    -- has no virtual functions
747       data().IsStandardLayout = false;
748       data().IsCXX11StandardLayout = false;
749     }
750   }
751 
752   // Notify the listener if an implicit member was added after the definition
753   // was completed.
754   if (!isBeingDefined() && D->isImplicit())
755     if (ASTMutationListener *L = getASTMutationListener())
756       L->AddedCXXImplicitMember(data().Definition, D);
757 
758   // The kind of special member this declaration is, if any.
759   unsigned SMKind = 0;
760 
761   // Handle constructors.
762   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
763     if (Constructor->isInheritingConstructor()) {
764       // Ignore constructor shadow declarations. They are lazily created and
765       // so shouldn't affect any properties of the class.
766     } else {
767       if (!Constructor->isImplicit()) {
768         // Note that we have a user-declared constructor.
769         data().UserDeclaredConstructor = true;
770 
771         const TargetInfo &TI = getASTContext().getTargetInfo();
772         if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) ||
773             !TI.areDefaultedSMFStillPOD(getLangOpts())) {
774           // C++ [class]p4:
775           //   A POD-struct is an aggregate class [...]
776           // Since the POD bit is meant to be C++03 POD-ness, clear it even if
777           // the type is technically an aggregate in C++0x since it wouldn't be
778           // in 03.
779           data().PlainOldData = false;
780         }
781       }
782 
783       if (Constructor->isDefaultConstructor()) {
784         SMKind |= SMF_DefaultConstructor;
785 
786         if (Constructor->isUserProvided())
787           data().UserProvidedDefaultConstructor = true;
788         if (Constructor->isConstexpr())
789           data().HasConstexprDefaultConstructor = true;
790         if (Constructor->isDefaulted())
791           data().HasDefaultedDefaultConstructor = true;
792       }
793 
794       if (!FunTmpl) {
795         unsigned Quals;
796         if (Constructor->isCopyConstructor(Quals)) {
797           SMKind |= SMF_CopyConstructor;
798 
799           if (Quals & Qualifiers::Const)
800             data().HasDeclaredCopyConstructorWithConstParam = true;
801         } else if (Constructor->isMoveConstructor())
802           SMKind |= SMF_MoveConstructor;
803       }
804 
805       // C++11 [dcl.init.aggr]p1: DR1518
806       //   An aggregate is an array or a class with no user-provided [or]
807       //   explicit [...] constructors
808       // C++20 [dcl.init.aggr]p1:
809       //   An aggregate is an array or a class with no user-declared [...]
810       //   constructors
811       if (getASTContext().getLangOpts().CPlusPlus20
812               ? !Constructor->isImplicit()
813               : (Constructor->isUserProvided() || Constructor->isExplicit()))
814         data().Aggregate = false;
815     }
816   }
817 
818   // Handle constructors, including those inherited from base classes.
819   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
820     // Record if we see any constexpr constructors which are neither copy
821     // nor move constructors.
822     // C++1z [basic.types]p10:
823     //   [...] has at least one constexpr constructor or constructor template
824     //   (possibly inherited from a base class) that is not a copy or move
825     //   constructor [...]
826     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
827       data().HasConstexprNonCopyMoveConstructor = true;
828     if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor())
829       data().HasInheritedDefaultConstructor = true;
830   }
831 
832   // Handle member functions.
833   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
834     if (isa<CXXDestructorDecl>(D))
835       SMKind |= SMF_Destructor;
836 
837     if (Method->isCopyAssignmentOperator()) {
838       SMKind |= SMF_CopyAssignment;
839 
840       const auto *ParamTy =
841           Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
842       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
843         data().HasDeclaredCopyAssignmentWithConstParam = true;
844     }
845 
846     if (Method->isMoveAssignmentOperator())
847       SMKind |= SMF_MoveAssignment;
848 
849     // Keep the list of conversion functions up-to-date.
850     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
851       // FIXME: We use the 'unsafe' accessor for the access specifier here,
852       // because Sema may not have set it yet. That's really just a misdesign
853       // in Sema. However, LLDB *will* have set the access specifier correctly,
854       // and adds declarations after the class is technically completed,
855       // so completeDefinition()'s overriding of the access specifiers doesn't
856       // work.
857       AccessSpecifier AS = Conversion->getAccessUnsafe();
858 
859       if (Conversion->getPrimaryTemplate()) {
860         // We don't record specializations.
861       } else {
862         ASTContext &Ctx = getASTContext();
863         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
864         NamedDecl *Primary =
865             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
866         if (Primary->getPreviousDecl())
867           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
868                               Primary, AS);
869         else
870           Conversions.addDecl(Ctx, Primary, AS);
871       }
872     }
873 
874     if (SMKind) {
875       // If this is the first declaration of a special member, we no longer have
876       // an implicit trivial special member.
877       data().HasTrivialSpecialMembers &=
878           data().DeclaredSpecialMembers | ~SMKind;
879       data().HasTrivialSpecialMembersForCall &=
880           data().DeclaredSpecialMembers | ~SMKind;
881 
882       // Note when we have declared a declared special member, and suppress the
883       // implicit declaration of this special member.
884       data().DeclaredSpecialMembers |= SMKind;
885       if (!Method->isImplicit()) {
886         data().UserDeclaredSpecialMembers |= SMKind;
887 
888         const TargetInfo &TI = getASTContext().getTargetInfo();
889         if ((!Method->isDeleted() && !Method->isDefaulted() &&
890              SMKind != SMF_MoveAssignment) ||
891             !TI.areDefaultedSMFStillPOD(getLangOpts())) {
892           // C++03 [class]p4:
893           //   A POD-struct is an aggregate class that has [...] no user-defined
894           //   copy assignment operator and no user-defined destructor.
895           //
896           // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
897           // aggregates could not have any constructors, clear it even for an
898           // explicitly defaulted or deleted constructor.
899           // type is technically an aggregate in C++0x since it wouldn't be in
900           // 03.
901           //
902           // Also, a user-declared move assignment operator makes a class
903           // non-POD. This is an extension in C++03.
904           data().PlainOldData = false;
905         }
906       }
907       // When instantiating a class, we delay updating the destructor and
908       // triviality properties of the class until selecting a destructor and
909       // computing the eligibility of its special member functions. This is
910       // because there might be function constraints that we need to evaluate
911       // and compare later in the instantiation.
912       if (!Method->isIneligibleOrNotSelected()) {
913         addedEligibleSpecialMemberFunction(Method, SMKind);
914       }
915     }
916 
917     return;
918   }
919 
920   // Handle non-static data members.
921   if (const auto *Field = dyn_cast<FieldDecl>(D)) {
922     ASTContext &Context = getASTContext();
923 
924     // C++2a [class]p7:
925     //   A standard-layout class is a class that:
926     //    [...]
927     //    -- has all non-static data members and bit-fields in the class and
928     //       its base classes first declared in the same class
929     if (data().HasBasesWithFields)
930       data().IsStandardLayout = false;
931 
932     // C++ [class.bit]p2:
933     //   A declaration for a bit-field that omits the identifier declares an
934     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
935     //   initialized.
936     if (Field->isUnnamedBitfield()) {
937       // C++ [meta.unary.prop]p4: [LWG2358]
938       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
939       //   length
940       if (data().Empty && !Field->isZeroLengthBitField(Context) &&
941           Context.getLangOpts().getClangABICompat() >
942               LangOptions::ClangABI::Ver6)
943         data().Empty = false;
944       return;
945     }
946 
947     // C++11 [class]p7:
948     //   A standard-layout class is a class that:
949     //    -- either has no non-static data members in the most derived class
950     //       [...] or has no base classes with non-static data members
951     if (data().HasBasesWithNonStaticDataMembers)
952       data().IsCXX11StandardLayout = false;
953 
954     // C++ [dcl.init.aggr]p1:
955     //   An aggregate is an array or a class (clause 9) with [...] no
956     //   private or protected non-static data members (clause 11).
957     //
958     // A POD must be an aggregate.
959     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
960       data().Aggregate = false;
961       data().PlainOldData = false;
962 
963       // C++20 [temp.param]p7:
964       //   A structural type is [...] a literal class type [for which] all
965       //   non-static data members are public
966       data().StructuralIfLiteral = false;
967     }
968 
969     // Track whether this is the first field. We use this when checking
970     // whether the class is standard-layout below.
971     bool IsFirstField = !data().HasPrivateFields &&
972                         !data().HasProtectedFields && !data().HasPublicFields;
973 
974     // C++0x [class]p7:
975     //   A standard-layout class is a class that:
976     //    [...]
977     //    -- has the same access control for all non-static data members,
978     switch (D->getAccess()) {
979     case AS_private:    data().HasPrivateFields = true;   break;
980     case AS_protected:  data().HasProtectedFields = true; break;
981     case AS_public:     data().HasPublicFields = true;    break;
982     case AS_none:       llvm_unreachable("Invalid access specifier");
983     };
984     if ((data().HasPrivateFields + data().HasProtectedFields +
985          data().HasPublicFields) > 1) {
986       data().IsStandardLayout = false;
987       data().IsCXX11StandardLayout = false;
988     }
989 
990     // Keep track of the presence of mutable fields.
991     if (Field->isMutable()) {
992       data().HasMutableFields = true;
993 
994       // C++20 [temp.param]p7:
995       //   A structural type is [...] a literal class type [for which] all
996       //   non-static data members are public
997       data().StructuralIfLiteral = false;
998     }
999 
1000     // C++11 [class.union]p8, DR1460:
1001     //   If X is a union, a non-static data member of X that is not an anonymous
1002     //   union is a variant member of X.
1003     if (isUnion() && !Field->isAnonymousStructOrUnion())
1004       data().HasVariantMembers = true;
1005 
1006     // C++0x [class]p9:
1007     //   A POD struct is a class that is both a trivial class and a
1008     //   standard-layout class, and has no non-static data members of type
1009     //   non-POD struct, non-POD union (or array of such types).
1010     //
1011     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1012     // that does not explicitly have no lifetime makes the class a non-POD.
1013     QualType T = Context.getBaseElementType(Field->getType());
1014     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1015       if (T.hasNonTrivialObjCLifetime()) {
1016         // Objective-C Automatic Reference Counting:
1017         //   If a class has a non-static data member of Objective-C pointer
1018         //   type (or array thereof), it is a non-POD type and its
1019         //   default constructor (if any), copy constructor, move constructor,
1020         //   copy assignment operator, move assignment operator, and destructor are
1021         //   non-trivial.
1022         setHasObjectMember(true);
1023         struct DefinitionData &Data = data();
1024         Data.PlainOldData = false;
1025         Data.HasTrivialSpecialMembers = 0;
1026 
1027         // __strong or __weak fields do not make special functions non-trivial
1028         // for the purpose of calls.
1029         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1030         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1031           data().HasTrivialSpecialMembersForCall = 0;
1032 
1033         // Structs with __weak fields should never be passed directly.
1034         if (LT == Qualifiers::OCL_Weak)
1035           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1036 
1037         Data.HasIrrelevantDestructor = false;
1038 
1039         if (isUnion()) {
1040           data().DefaultedCopyConstructorIsDeleted = true;
1041           data().DefaultedMoveConstructorIsDeleted = true;
1042           data().DefaultedCopyAssignmentIsDeleted = true;
1043           data().DefaultedMoveAssignmentIsDeleted = true;
1044           data().DefaultedDestructorIsDeleted = true;
1045           data().NeedOverloadResolutionForCopyConstructor = true;
1046           data().NeedOverloadResolutionForMoveConstructor = true;
1047           data().NeedOverloadResolutionForCopyAssignment = true;
1048           data().NeedOverloadResolutionForMoveAssignment = true;
1049           data().NeedOverloadResolutionForDestructor = true;
1050         }
1051       } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1052         setHasObjectMember(true);
1053       }
1054     } else if (!T.isCXX98PODType(Context))
1055       data().PlainOldData = false;
1056 
1057     if (T->isReferenceType()) {
1058       if (!Field->hasInClassInitializer())
1059         data().HasUninitializedReferenceMember = true;
1060 
1061       // C++0x [class]p7:
1062       //   A standard-layout class is a class that:
1063       //    -- has no non-static data members of type [...] reference,
1064       data().IsStandardLayout = false;
1065       data().IsCXX11StandardLayout = false;
1066 
1067       // C++1z [class.copy.ctor]p10:
1068       //   A defaulted copy constructor for a class X is defined as deleted if X has:
1069       //    -- a non-static data member of rvalue reference type
1070       if (T->isRValueReferenceType())
1071         data().DefaultedCopyConstructorIsDeleted = true;
1072     }
1073 
1074     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1075       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1076         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1077           data().HasUninitializedFields = true;
1078       } else {
1079         data().HasUninitializedFields = true;
1080       }
1081     }
1082 
1083     // Record if this field is the first non-literal or volatile field or base.
1084     if (!T->isLiteralType(Context) || T.isVolatileQualified())
1085       data().HasNonLiteralTypeFieldsOrBases = true;
1086 
1087     if (Field->hasInClassInitializer() ||
1088         (Field->isAnonymousStructOrUnion() &&
1089          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1090       data().HasInClassInitializer = true;
1091 
1092       // C++11 [class]p5:
1093       //   A default constructor is trivial if [...] no non-static data member
1094       //   of its class has a brace-or-equal-initializer.
1095       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1096 
1097       // C++11 [dcl.init.aggr]p1:
1098       //   An aggregate is a [...] class with [...] no
1099       //   brace-or-equal-initializers for non-static data members.
1100       //
1101       // This rule was removed in C++14.
1102       if (!getASTContext().getLangOpts().CPlusPlus14)
1103         data().Aggregate = false;
1104 
1105       // C++11 [class]p10:
1106       //   A POD struct is [...] a trivial class.
1107       data().PlainOldData = false;
1108     }
1109 
1110     // C++11 [class.copy]p23:
1111     //   A defaulted copy/move assignment operator for a class X is defined
1112     //   as deleted if X has:
1113     //    -- a non-static data member of reference type
1114     if (T->isReferenceType()) {
1115       data().DefaultedCopyAssignmentIsDeleted = true;
1116       data().DefaultedMoveAssignmentIsDeleted = true;
1117     }
1118 
1119     // Bitfields of length 0 are also zero-sized, but we already bailed out for
1120     // those because they are always unnamed.
1121     bool IsZeroSize = Field->isZeroSize(Context);
1122 
1123     if (const auto *RecordTy = T->getAs<RecordType>()) {
1124       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1125       if (FieldRec->getDefinition()) {
1126         addedClassSubobject(FieldRec);
1127 
1128         // We may need to perform overload resolution to determine whether a
1129         // field can be moved if it's const or volatile qualified.
1130         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1131           // We need to care about 'const' for the copy constructor because an
1132           // implicit copy constructor might be declared with a non-const
1133           // parameter.
1134           data().NeedOverloadResolutionForCopyConstructor = true;
1135           data().NeedOverloadResolutionForMoveConstructor = true;
1136           data().NeedOverloadResolutionForCopyAssignment = true;
1137           data().NeedOverloadResolutionForMoveAssignment = true;
1138         }
1139 
1140         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1141         //   A defaulted [special member] for a class X is defined as
1142         //   deleted if:
1143         //    -- X is a union-like class that has a variant member with a
1144         //       non-trivial [corresponding special member]
1145         if (isUnion()) {
1146           if (FieldRec->hasNonTrivialCopyConstructor())
1147             data().DefaultedCopyConstructorIsDeleted = true;
1148           if (FieldRec->hasNonTrivialMoveConstructor())
1149             data().DefaultedMoveConstructorIsDeleted = true;
1150           if (FieldRec->hasNonTrivialCopyAssignment())
1151             data().DefaultedCopyAssignmentIsDeleted = true;
1152           if (FieldRec->hasNonTrivialMoveAssignment())
1153             data().DefaultedMoveAssignmentIsDeleted = true;
1154           if (FieldRec->hasNonTrivialDestructor())
1155             data().DefaultedDestructorIsDeleted = true;
1156         }
1157 
1158         // For an anonymous union member, our overload resolution will perform
1159         // overload resolution for its members.
1160         if (Field->isAnonymousStructOrUnion()) {
1161           data().NeedOverloadResolutionForCopyConstructor |=
1162               FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1163           data().NeedOverloadResolutionForMoveConstructor |=
1164               FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1165           data().NeedOverloadResolutionForCopyAssignment |=
1166               FieldRec->data().NeedOverloadResolutionForCopyAssignment;
1167           data().NeedOverloadResolutionForMoveAssignment |=
1168               FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1169           data().NeedOverloadResolutionForDestructor |=
1170               FieldRec->data().NeedOverloadResolutionForDestructor;
1171         }
1172 
1173         // C++0x [class.ctor]p5:
1174         //   A default constructor is trivial [...] if:
1175         //    -- for all the non-static data members of its class that are of
1176         //       class type (or array thereof), each such class has a trivial
1177         //       default constructor.
1178         if (!FieldRec->hasTrivialDefaultConstructor())
1179           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1180 
1181         // C++0x [class.copy]p13:
1182         //   A copy/move constructor for class X is trivial if [...]
1183         //    [...]
1184         //    -- for each non-static data member of X that is of class type (or
1185         //       an array thereof), the constructor selected to copy/move that
1186         //       member is trivial;
1187         if (!FieldRec->hasTrivialCopyConstructor())
1188           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1189 
1190         if (!FieldRec->hasTrivialCopyConstructorForCall())
1191           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1192 
1193         // If the field doesn't have a simple move constructor, we'll eagerly
1194         // declare the move constructor for this class and we'll decide whether
1195         // it's trivial then.
1196         if (!FieldRec->hasTrivialMoveConstructor())
1197           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1198 
1199         if (!FieldRec->hasTrivialMoveConstructorForCall())
1200           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1201 
1202         // C++0x [class.copy]p27:
1203         //   A copy/move assignment operator for class X is trivial if [...]
1204         //    [...]
1205         //    -- for each non-static data member of X that is of class type (or
1206         //       an array thereof), the assignment operator selected to
1207         //       copy/move that member is trivial;
1208         if (!FieldRec->hasTrivialCopyAssignment())
1209           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1210         // If the field doesn't have a simple move assignment, we'll eagerly
1211         // declare the move assignment for this class and we'll decide whether
1212         // it's trivial then.
1213         if (!FieldRec->hasTrivialMoveAssignment())
1214           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1215 
1216         if (!FieldRec->hasTrivialDestructor())
1217           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1218         if (!FieldRec->hasTrivialDestructorForCall())
1219           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1220         if (!FieldRec->hasIrrelevantDestructor())
1221           data().HasIrrelevantDestructor = false;
1222         if (FieldRec->isAnyDestructorNoReturn())
1223           data().IsAnyDestructorNoReturn = true;
1224         if (FieldRec->hasObjectMember())
1225           setHasObjectMember(true);
1226         if (FieldRec->hasVolatileMember())
1227           setHasVolatileMember(true);
1228         if (FieldRec->getArgPassingRestrictions() ==
1229             RecordDecl::APK_CanNeverPassInRegs)
1230           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1231 
1232         // C++0x [class]p7:
1233         //   A standard-layout class is a class that:
1234         //    -- has no non-static data members of type non-standard-layout
1235         //       class (or array of such types) [...]
1236         if (!FieldRec->isStandardLayout())
1237           data().IsStandardLayout = false;
1238         if (!FieldRec->isCXX11StandardLayout())
1239           data().IsCXX11StandardLayout = false;
1240 
1241         // C++2a [class]p7:
1242         //   A standard-layout class is a class that:
1243         //    [...]
1244         //    -- has no element of the set M(S) of types as a base class.
1245         if (data().IsStandardLayout &&
1246             (isUnion() || IsFirstField || IsZeroSize) &&
1247             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1248           data().IsStandardLayout = false;
1249 
1250         // C++11 [class]p7:
1251         //   A standard-layout class is a class that:
1252         //    -- has no base classes of the same type as the first non-static
1253         //       data member
1254         if (data().IsCXX11StandardLayout && IsFirstField) {
1255           // FIXME: We should check all base classes here, not just direct
1256           // base classes.
1257           for (const auto &BI : bases()) {
1258             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1259               data().IsCXX11StandardLayout = false;
1260               break;
1261             }
1262           }
1263         }
1264 
1265         // Keep track of the presence of mutable fields.
1266         if (FieldRec->hasMutableFields())
1267           data().HasMutableFields = true;
1268 
1269         if (Field->isMutable()) {
1270           // Our copy constructor/assignment might call something other than
1271           // the subobject's copy constructor/assignment if it's mutable and of
1272           // class type.
1273           data().NeedOverloadResolutionForCopyConstructor = true;
1274           data().NeedOverloadResolutionForCopyAssignment = true;
1275         }
1276 
1277         // C++11 [class.copy]p13:
1278         //   If the implicitly-defined constructor would satisfy the
1279         //   requirements of a constexpr constructor, the implicitly-defined
1280         //   constructor is constexpr.
1281         // C++11 [dcl.constexpr]p4:
1282         //    -- every constructor involved in initializing non-static data
1283         //       members [...] shall be a constexpr constructor
1284         if (!Field->hasInClassInitializer() &&
1285             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1286           // The standard requires any in-class initializer to be a constant
1287           // expression. We consider this to be a defect.
1288           data().DefaultedDefaultConstructorIsConstexpr = false;
1289 
1290         // C++11 [class.copy]p8:
1291         //   The implicitly-declared copy constructor for a class X will have
1292         //   the form 'X::X(const X&)' if each potentially constructed subobject
1293         //   of a class type M (or array thereof) has a copy constructor whose
1294         //   first parameter is of type 'const M&' or 'const volatile M&'.
1295         if (!FieldRec->hasCopyConstructorWithConstParam())
1296           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1297 
1298         // C++11 [class.copy]p18:
1299         //   The implicitly-declared copy assignment oeprator for a class X will
1300         //   have the form 'X& X::operator=(const X&)' if [...] for all the
1301         //   non-static data members of X that are of a class type M (or array
1302         //   thereof), each such class type has a copy assignment operator whose
1303         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1304         if (!FieldRec->hasCopyAssignmentWithConstParam())
1305           data().ImplicitCopyAssignmentHasConstParam = false;
1306 
1307         if (FieldRec->hasUninitializedReferenceMember() &&
1308             !Field->hasInClassInitializer())
1309           data().HasUninitializedReferenceMember = true;
1310 
1311         // C++11 [class.union]p8, DR1460:
1312         //   a non-static data member of an anonymous union that is a member of
1313         //   X is also a variant member of X.
1314         if (FieldRec->hasVariantMembers() &&
1315             Field->isAnonymousStructOrUnion())
1316           data().HasVariantMembers = true;
1317       }
1318     } else {
1319       // Base element type of field is a non-class type.
1320       if (!T->isLiteralType(Context) ||
1321           (!Field->hasInClassInitializer() && !isUnion() &&
1322            !Context.getLangOpts().CPlusPlus20))
1323         data().DefaultedDefaultConstructorIsConstexpr = false;
1324 
1325       // C++11 [class.copy]p23:
1326       //   A defaulted copy/move assignment operator for a class X is defined
1327       //   as deleted if X has:
1328       //    -- a non-static data member of const non-class type (or array
1329       //       thereof)
1330       if (T.isConstQualified()) {
1331         data().DefaultedCopyAssignmentIsDeleted = true;
1332         data().DefaultedMoveAssignmentIsDeleted = true;
1333       }
1334 
1335       // C++20 [temp.param]p7:
1336       //   A structural type is [...] a literal class type [for which] the
1337       //   types of all non-static data members are structural types or
1338       //   (possibly multidimensional) array thereof
1339       // We deal with class types elsewhere.
1340       if (!T->isStructuralType())
1341         data().StructuralIfLiteral = false;
1342     }
1343 
1344     // C++14 [meta.unary.prop]p4:
1345     //   T is a class type [...] with [...] no non-static data members other
1346     //   than subobjects of zero size
1347     if (data().Empty && !IsZeroSize)
1348       data().Empty = false;
1349   }
1350 
1351   // Handle using declarations of conversion functions.
1352   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1353     if (Shadow->getDeclName().getNameKind()
1354           == DeclarationName::CXXConversionFunctionName) {
1355       ASTContext &Ctx = getASTContext();
1356       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1357     }
1358   }
1359 
1360   if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1361     if (Using->getDeclName().getNameKind() ==
1362         DeclarationName::CXXConstructorName) {
1363       data().HasInheritedConstructor = true;
1364       // C++1z [dcl.init.aggr]p1:
1365       //  An aggregate is [...] a class [...] with no inherited constructors
1366       data().Aggregate = false;
1367     }
1368 
1369     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1370       data().HasInheritedAssignment = true;
1371   }
1372 }
1373 
1374 void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) {
1375   DD->setIneligibleOrNotSelected(false);
1376   addedEligibleSpecialMemberFunction(DD, SMF_Destructor);
1377 }
1378 
1379 void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD,
1380                                                        unsigned SMKind) {
1381   // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is
1382   // a function template, but this needs CWG attention before we break ABI.
1383   // See https://github.com/llvm/llvm-project/issues/59206
1384 
1385   if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1386     if (DD->isUserProvided())
1387       data().HasIrrelevantDestructor = false;
1388     // If the destructor is explicitly defaulted and not trivial or not public
1389     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
1390     // finishedDefaultedOrDeletedMember.
1391 
1392     // C++11 [class.dtor]p5:
1393     //   A destructor is trivial if [...] the destructor is not virtual.
1394     if (DD->isVirtual()) {
1395       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1396       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1397     }
1398 
1399     if (DD->isNoReturn())
1400       data().IsAnyDestructorNoReturn = true;
1401   }
1402 
1403   if (!MD->isImplicit() && !MD->isUserProvided()) {
1404     // This method is user-declared but not user-provided. We can't work
1405     // out whether it's trivial yet (not until we get to the end of the
1406     // class). We'll handle this method in
1407     // finishedDefaultedOrDeletedMember.
1408   } else if (MD->isTrivial()) {
1409     data().HasTrivialSpecialMembers |= SMKind;
1410     data().HasTrivialSpecialMembersForCall |= SMKind;
1411   } else if (MD->isTrivialForCall()) {
1412     data().HasTrivialSpecialMembersForCall |= SMKind;
1413     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1414   } else {
1415     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1416     // If this is a user-provided function, do not set
1417     // DeclaredNonTrivialSpecialMembersForCall here since we don't know
1418     // yet whether the method would be considered non-trivial for the
1419     // purpose of calls (attribute "trivial_abi" can be dropped from the
1420     // class later, which can change the special method's triviality).
1421     if (!MD->isUserProvided())
1422       data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1423   }
1424 }
1425 
1426 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1427   assert(!D->isImplicit() && !D->isUserProvided());
1428 
1429   // The kind of special member this declaration is, if any.
1430   unsigned SMKind = 0;
1431 
1432   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1433     if (Constructor->isDefaultConstructor()) {
1434       SMKind |= SMF_DefaultConstructor;
1435       if (Constructor->isConstexpr())
1436         data().HasConstexprDefaultConstructor = true;
1437     }
1438     if (Constructor->isCopyConstructor())
1439       SMKind |= SMF_CopyConstructor;
1440     else if (Constructor->isMoveConstructor())
1441       SMKind |= SMF_MoveConstructor;
1442     else if (Constructor->isConstexpr())
1443       // We may now know that the constructor is constexpr.
1444       data().HasConstexprNonCopyMoveConstructor = true;
1445   } else if (isa<CXXDestructorDecl>(D)) {
1446     SMKind |= SMF_Destructor;
1447     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1448       data().HasIrrelevantDestructor = false;
1449   } else if (D->isCopyAssignmentOperator())
1450     SMKind |= SMF_CopyAssignment;
1451   else if (D->isMoveAssignmentOperator())
1452     SMKind |= SMF_MoveAssignment;
1453 
1454   // Update which trivial / non-trivial special members we have.
1455   // addedMember will have skipped this step for this member.
1456   if (!D->isIneligibleOrNotSelected()) {
1457     if (D->isTrivial())
1458       data().HasTrivialSpecialMembers |= SMKind;
1459     else
1460       data().DeclaredNonTrivialSpecialMembers |= SMKind;
1461   }
1462 }
1463 
1464 void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx,
1465                                                          Capture *CaptureList) {
1466   Captures.push_back(CaptureList);
1467   if (Captures.size() == 2) {
1468     // The TinyPtrVector member now needs destruction.
1469     Ctx.addDestruction(&Captures);
1470   }
1471 }
1472 
1473 void CXXRecordDecl::setCaptures(ASTContext &Context,
1474                                 ArrayRef<LambdaCapture> Captures) {
1475   CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
1476 
1477   // Copy captures.
1478   Data.NumCaptures = Captures.size();
1479   Data.NumExplicitCaptures = 0;
1480   auto *ToCapture = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
1481                                                       Captures.size());
1482   Data.AddCaptureList(Context, ToCapture);
1483   for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
1484     if (Captures[I].isExplicit())
1485       ++Data.NumExplicitCaptures;
1486 
1487     *ToCapture++ = Captures[I];
1488   }
1489 
1490   if (!lambdaIsDefaultConstructibleAndAssignable())
1491     Data.DefaultedCopyAssignmentIsDeleted = true;
1492 }
1493 
1494 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1495   unsigned SMKind = 0;
1496 
1497   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1498     if (Constructor->isCopyConstructor())
1499       SMKind = SMF_CopyConstructor;
1500     else if (Constructor->isMoveConstructor())
1501       SMKind = SMF_MoveConstructor;
1502   } else if (isa<CXXDestructorDecl>(D))
1503     SMKind = SMF_Destructor;
1504 
1505   if (D->isTrivialForCall())
1506     data().HasTrivialSpecialMembersForCall |= SMKind;
1507   else
1508     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1509 }
1510 
1511 bool CXXRecordDecl::isCLike() const {
1512   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1513       !TemplateOrInstantiation.isNull())
1514     return false;
1515   if (!hasDefinition())
1516     return true;
1517 
1518   return isPOD() && data().HasOnlyCMembers;
1519 }
1520 
1521 bool CXXRecordDecl::isGenericLambda() const {
1522   if (!isLambda()) return false;
1523   return getLambdaData().IsGenericLambda;
1524 }
1525 
1526 #ifndef NDEBUG
1527 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1528   for (auto *D : R)
1529     if (!declaresSameEntity(D, R.front()))
1530       return false;
1531   return true;
1532 }
1533 #endif
1534 
1535 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1536   if (!RD.isLambda()) return nullptr;
1537   DeclarationName Name =
1538     RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1539   DeclContext::lookup_result Calls = RD.lookup(Name);
1540 
1541   assert(!Calls.empty() && "Missing lambda call operator!");
1542   assert(allLookupResultsAreTheSame(Calls) &&
1543          "More than one lambda call operator!");
1544   return Calls.front();
1545 }
1546 
1547 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1548   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1549   return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1550 }
1551 
1552 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1553   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1554 
1555   if (CallOp == nullptr)
1556     return nullptr;
1557 
1558   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1559     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1560 
1561   return cast<CXXMethodDecl>(CallOp);
1562 }
1563 
1564 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1565   CXXMethodDecl *CallOp = getLambdaCallOperator();
1566   CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv();
1567   return getLambdaStaticInvoker(CC);
1568 }
1569 
1570 static DeclContext::lookup_result
1571 getLambdaStaticInvokers(const CXXRecordDecl &RD) {
1572   assert(RD.isLambda() && "Must be a lambda");
1573   DeclarationName Name =
1574       &RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
1575   return RD.lookup(Name);
1576 }
1577 
1578 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
1579   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
1580     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1581   return cast<CXXMethodDecl>(ND);
1582 }
1583 
1584 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
1585   if (!isLambda())
1586     return nullptr;
1587   DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
1588 
1589   for (NamedDecl *ND : Invoker) {
1590     const auto *FTy =
1591         cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>();
1592     if (FTy->getCallConv() == CC)
1593       return getInvokerAsMethod(ND);
1594   }
1595 
1596   return nullptr;
1597 }
1598 
1599 void CXXRecordDecl::getCaptureFields(
1600     llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1601     FieldDecl *&ThisCapture) const {
1602   Captures.clear();
1603   ThisCapture = nullptr;
1604 
1605   LambdaDefinitionData &Lambda = getLambdaData();
1606   for (const LambdaCapture *List : Lambda.Captures) {
1607     RecordDecl::field_iterator Field = field_begin();
1608     for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures;
1609          C != CEnd; ++C, ++Field) {
1610       if (C->capturesThis())
1611         ThisCapture = *Field;
1612       else if (C->capturesVariable())
1613         Captures[C->getCapturedVar()] = *Field;
1614     }
1615     assert(Field == field_end());
1616   }
1617 }
1618 
1619 TemplateParameterList *
1620 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1621   if (!isGenericLambda()) return nullptr;
1622   CXXMethodDecl *CallOp = getLambdaCallOperator();
1623   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1624     return Tmpl->getTemplateParameters();
1625   return nullptr;
1626 }
1627 
1628 ArrayRef<NamedDecl *>
1629 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1630   TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1631   if (!List)
1632     return {};
1633 
1634   assert(std::is_partitioned(List->begin(), List->end(),
1635                              [](const NamedDecl *D) { return !D->isImplicit(); })
1636          && "Explicit template params should be ordered before implicit ones");
1637 
1638   const auto ExplicitEnd = llvm::partition_point(
1639       *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1640   return llvm::ArrayRef(List->begin(), ExplicitEnd);
1641 }
1642 
1643 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1644   assert(isLambda() && "Not a lambda closure type!");
1645   ExternalASTSource *Source = getParentASTContext().getExternalSource();
1646   return getLambdaData().ContextDecl.get(Source);
1647 }
1648 
1649 void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const {
1650   assert(isLambda() && "Not a lambda closure type!");
1651   if (Num)
1652     getASTContext().DeviceLambdaManglingNumbers[this] = Num;
1653 }
1654 
1655 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const {
1656   assert(isLambda() && "Not a lambda closure type!");
1657   auto I = getASTContext().DeviceLambdaManglingNumbers.find(this);
1658   if (I != getASTContext().DeviceLambdaManglingNumbers.end())
1659     return I->second;
1660   return 0;
1661 }
1662 
1663 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1664   QualType T =
1665       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1666           ->getConversionType();
1667   return Context.getCanonicalType(T);
1668 }
1669 
1670 /// Collect the visible conversions of a base class.
1671 ///
1672 /// \param Record a base class of the class we're considering
1673 /// \param InVirtual whether this base class is a virtual base (or a base
1674 ///   of a virtual base)
1675 /// \param Access the access along the inheritance path to this base
1676 /// \param ParentHiddenTypes the conversions provided by the inheritors
1677 ///   of this base
1678 /// \param Output the set to which to add conversions from non-virtual bases
1679 /// \param VOutput the set to which to add conversions from virtual bases
1680 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1681 ///   virtual base along some inheritance path
1682 static void CollectVisibleConversions(
1683     ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1684     AccessSpecifier Access,
1685     const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1686     ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1687     llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1688   // The set of types which have conversions in this class or its
1689   // subclasses.  As an optimization, we don't copy the derived set
1690   // unless it might change.
1691   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1692   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1693 
1694   // Collect the direct conversions and figure out which conversions
1695   // will be hidden in the subclasses.
1696   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1697   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1698   if (ConvI != ConvE) {
1699     HiddenTypesBuffer = ParentHiddenTypes;
1700     HiddenTypes = &HiddenTypesBuffer;
1701 
1702     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1703       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1704       bool Hidden = ParentHiddenTypes.count(ConvType);
1705       if (!Hidden)
1706         HiddenTypesBuffer.insert(ConvType);
1707 
1708       // If this conversion is hidden and we're in a virtual base,
1709       // remember that it's hidden along some inheritance path.
1710       if (Hidden && InVirtual)
1711         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1712 
1713       // If this conversion isn't hidden, add it to the appropriate output.
1714       else if (!Hidden) {
1715         AccessSpecifier IAccess
1716           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1717 
1718         if (InVirtual)
1719           VOutput.addDecl(I.getDecl(), IAccess);
1720         else
1721           Output.addDecl(Context, I.getDecl(), IAccess);
1722       }
1723     }
1724   }
1725 
1726   // Collect information recursively from any base classes.
1727   for (const auto &I : Record->bases()) {
1728     const auto *RT = I.getType()->getAs<RecordType>();
1729     if (!RT) continue;
1730 
1731     AccessSpecifier BaseAccess
1732       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1733     bool BaseInVirtual = InVirtual || I.isVirtual();
1734 
1735     auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1736     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1737                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1738   }
1739 }
1740 
1741 /// Collect the visible conversions of a class.
1742 ///
1743 /// This would be extremely straightforward if it weren't for virtual
1744 /// bases.  It might be worth special-casing that, really.
1745 static void CollectVisibleConversions(ASTContext &Context,
1746                                       const CXXRecordDecl *Record,
1747                                       ASTUnresolvedSet &Output) {
1748   // The collection of all conversions in virtual bases that we've
1749   // found.  These will be added to the output as long as they don't
1750   // appear in the hidden-conversions set.
1751   UnresolvedSet<8> VBaseCs;
1752 
1753   // The set of conversions in virtual bases that we've determined to
1754   // be hidden.
1755   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1756 
1757   // The set of types hidden by classes derived from this one.
1758   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1759 
1760   // Go ahead and collect the direct conversions and add them to the
1761   // hidden-types set.
1762   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1763   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1764   Output.append(Context, ConvI, ConvE);
1765   for (; ConvI != ConvE; ++ConvI)
1766     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1767 
1768   // Recursively collect conversions from base classes.
1769   for (const auto &I : Record->bases()) {
1770     const auto *RT = I.getType()->getAs<RecordType>();
1771     if (!RT) continue;
1772 
1773     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1774                               I.isVirtual(), I.getAccessSpecifier(),
1775                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1776   }
1777 
1778   // Add any unhidden conversions provided by virtual bases.
1779   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1780          I != E; ++I) {
1781     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1782       Output.addDecl(Context, I.getDecl(), I.getAccess());
1783   }
1784 }
1785 
1786 /// getVisibleConversionFunctions - get all conversion functions visible
1787 /// in current class; including conversion function templates.
1788 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1789 CXXRecordDecl::getVisibleConversionFunctions() const {
1790   ASTContext &Ctx = getASTContext();
1791 
1792   ASTUnresolvedSet *Set;
1793   if (bases_begin() == bases_end()) {
1794     // If root class, all conversions are visible.
1795     Set = &data().Conversions.get(Ctx);
1796   } else {
1797     Set = &data().VisibleConversions.get(Ctx);
1798     // If visible conversion list is not evaluated, evaluate it.
1799     if (!data().ComputedVisibleConversions) {
1800       CollectVisibleConversions(Ctx, this, *Set);
1801       data().ComputedVisibleConversions = true;
1802     }
1803   }
1804   return llvm::make_range(Set->begin(), Set->end());
1805 }
1806 
1807 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1808   // This operation is O(N) but extremely rare.  Sema only uses it to
1809   // remove UsingShadowDecls in a class that were followed by a direct
1810   // declaration, e.g.:
1811   //   class A : B {
1812   //     using B::operator int;
1813   //     operator int();
1814   //   };
1815   // This is uncommon by itself and even more uncommon in conjunction
1816   // with sufficiently large numbers of directly-declared conversions
1817   // that asymptotic behavior matters.
1818 
1819   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1820   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1821     if (Convs[I].getDecl() == ConvDecl) {
1822       Convs.erase(I);
1823       assert(!llvm::is_contained(Convs, ConvDecl) &&
1824              "conversion was found multiple times in unresolved set");
1825       return;
1826     }
1827   }
1828 
1829   llvm_unreachable("conversion not found in set!");
1830 }
1831 
1832 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1833   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1834     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1835 
1836   return nullptr;
1837 }
1838 
1839 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1840   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1841 }
1842 
1843 void
1844 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1845                                              TemplateSpecializationKind TSK) {
1846   assert(TemplateOrInstantiation.isNull() &&
1847          "Previous template or instantiation?");
1848   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1849   TemplateOrInstantiation
1850     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1851 }
1852 
1853 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1854   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1855 }
1856 
1857 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1858   TemplateOrInstantiation = Template;
1859 }
1860 
1861 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1862   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1863     return Spec->getSpecializationKind();
1864 
1865   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1866     return MSInfo->getTemplateSpecializationKind();
1867 
1868   return TSK_Undeclared;
1869 }
1870 
1871 void
1872 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1873   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1874     Spec->setSpecializationKind(TSK);
1875     return;
1876   }
1877 
1878   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1879     MSInfo->setTemplateSpecializationKind(TSK);
1880     return;
1881   }
1882 
1883   llvm_unreachable("Not a class template or member class specialization");
1884 }
1885 
1886 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1887   auto GetDefinitionOrSelf =
1888       [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1889     if (auto *Def = D->getDefinition())
1890       return Def;
1891     return D;
1892   };
1893 
1894   // If it's a class template specialization, find the template or partial
1895   // specialization from which it was instantiated.
1896   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1897     auto From = TD->getInstantiatedFrom();
1898     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1899       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1900         if (NewCTD->isMemberSpecialization())
1901           break;
1902         CTD = NewCTD;
1903       }
1904       return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1905     }
1906     if (auto *CTPSD =
1907             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1908       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1909         if (NewCTPSD->isMemberSpecialization())
1910           break;
1911         CTPSD = NewCTPSD;
1912       }
1913       return GetDefinitionOrSelf(CTPSD);
1914     }
1915   }
1916 
1917   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1918     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1919       const CXXRecordDecl *RD = this;
1920       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1921         RD = NewRD;
1922       return GetDefinitionOrSelf(RD);
1923     }
1924   }
1925 
1926   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1927          "couldn't find pattern for class template instantiation");
1928   return nullptr;
1929 }
1930 
1931 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1932   ASTContext &Context = getASTContext();
1933   QualType ClassType = Context.getTypeDeclType(this);
1934 
1935   DeclarationName Name
1936     = Context.DeclarationNames.getCXXDestructorName(
1937                                           Context.getCanonicalType(ClassType));
1938 
1939   DeclContext::lookup_result R = lookup(Name);
1940 
1941   // If a destructor was marked as not selected, we skip it. We don't always
1942   // have a selected destructor: dependent types, unnamed structs.
1943   for (auto *Decl : R) {
1944     auto* DD = dyn_cast<CXXDestructorDecl>(Decl);
1945     if (DD && !DD->isIneligibleOrNotSelected())
1946       return DD;
1947   }
1948   return nullptr;
1949 }
1950 
1951 static bool isDeclContextInNamespace(const DeclContext *DC) {
1952   while (!DC->isTranslationUnit()) {
1953     if (DC->isNamespace())
1954       return true;
1955     DC = DC->getParent();
1956   }
1957   return false;
1958 }
1959 
1960 bool CXXRecordDecl::isInterfaceLike() const {
1961   assert(hasDefinition() && "checking for interface-like without a definition");
1962   // All __interfaces are inheritently interface-like.
1963   if (isInterface())
1964     return true;
1965 
1966   // Interface-like types cannot have a user declared constructor, destructor,
1967   // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1968   // cannot be interface types.
1969   if (isLambda() || hasUserDeclaredConstructor() ||
1970       hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1971       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1972     return false;
1973 
1974   // No interface-like type can have a method with a definition.
1975   for (const auto *const Method : methods())
1976     if (Method->isDefined() && !Method->isImplicit())
1977       return false;
1978 
1979   // Check "Special" types.
1980   const auto *Uuid = getAttr<UuidAttr>();
1981   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1982   // extern C++ block directly in the TU.  These are only valid if in one
1983   // of these two situations.
1984   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1985       !isDeclContextInNamespace(getDeclContext()) &&
1986       ((getName() == "IUnknown" &&
1987         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1988        (getName() == "IDispatch" &&
1989         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1990     if (getNumBases() > 0)
1991       return false;
1992     return true;
1993   }
1994 
1995   // FIXME: Any access specifiers is supposed to make this no longer interface
1996   // like.
1997 
1998   // If this isn't a 'special' type, it must have a single interface-like base.
1999   if (getNumBases() != 1)
2000     return false;
2001 
2002   const auto BaseSpec = *bases_begin();
2003   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
2004     return false;
2005   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
2006   if (Base->isInterface() || !Base->isInterfaceLike())
2007     return false;
2008   return true;
2009 }
2010 
2011 void CXXRecordDecl::completeDefinition() {
2012   completeDefinition(nullptr);
2013 }
2014 
2015 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
2016   RecordDecl::completeDefinition();
2017 
2018   // If the class may be abstract (but hasn't been marked as such), check for
2019   // any pure final overriders.
2020   if (mayBeAbstract()) {
2021     CXXFinalOverriderMap MyFinalOverriders;
2022     if (!FinalOverriders) {
2023       getFinalOverriders(MyFinalOverriders);
2024       FinalOverriders = &MyFinalOverriders;
2025     }
2026 
2027     bool Done = false;
2028     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
2029                                      MEnd = FinalOverriders->end();
2030          M != MEnd && !Done; ++M) {
2031       for (OverridingMethods::iterator SO = M->second.begin(),
2032                                     SOEnd = M->second.end();
2033            SO != SOEnd && !Done; ++SO) {
2034         assert(SO->second.size() > 0 &&
2035                "All virtual functions have overriding virtual functions");
2036 
2037         // C++ [class.abstract]p4:
2038         //   A class is abstract if it contains or inherits at least one
2039         //   pure virtual function for which the final overrider is pure
2040         //   virtual.
2041         if (SO->second.front().Method->isPure()) {
2042           data().Abstract = true;
2043           Done = true;
2044           break;
2045         }
2046       }
2047     }
2048   }
2049 
2050   // Set access bits correctly on the directly-declared conversions.
2051   for (conversion_iterator I = conversion_begin(), E = conversion_end();
2052        I != E; ++I)
2053     I.setAccess((*I)->getAccess());
2054 }
2055 
2056 bool CXXRecordDecl::mayBeAbstract() const {
2057   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
2058       isDependentContext())
2059     return false;
2060 
2061   for (const auto &B : bases()) {
2062     const auto *BaseDecl =
2063         cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
2064     if (BaseDecl->isAbstract())
2065       return true;
2066   }
2067 
2068   return false;
2069 }
2070 
2071 bool CXXRecordDecl::isEffectivelyFinal() const {
2072   auto *Def = getDefinition();
2073   if (!Def)
2074     return false;
2075   if (Def->hasAttr<FinalAttr>())
2076     return true;
2077   if (const auto *Dtor = Def->getDestructor())
2078     if (Dtor->hasAttr<FinalAttr>())
2079       return true;
2080   return false;
2081 }
2082 
2083 void CXXDeductionGuideDecl::anchor() {}
2084 
2085 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
2086   if ((getKind() != Other.getKind() ||
2087        getKind() == ExplicitSpecKind::Unresolved)) {
2088     if (getKind() == ExplicitSpecKind::Unresolved &&
2089         Other.getKind() == ExplicitSpecKind::Unresolved) {
2090       ODRHash SelfHash, OtherHash;
2091       SelfHash.AddStmt(getExpr());
2092       OtherHash.AddStmt(Other.getExpr());
2093       return SelfHash.CalculateHash() == OtherHash.CalculateHash();
2094     } else
2095       return false;
2096   }
2097   return true;
2098 }
2099 
2100 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
2101   switch (Function->getDeclKind()) {
2102   case Decl::Kind::CXXConstructor:
2103     return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
2104   case Decl::Kind::CXXConversion:
2105     return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
2106   case Decl::Kind::CXXDeductionGuide:
2107     return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
2108   default:
2109     return {};
2110   }
2111 }
2112 
2113 CXXDeductionGuideDecl *
2114 CXXDeductionGuideDecl::Create(ASTContext &C, DeclContext *DC,
2115                               SourceLocation StartLoc, ExplicitSpecifier ES,
2116                               const DeclarationNameInfo &NameInfo, QualType T,
2117                               TypeSourceInfo *TInfo, SourceLocation EndLocation,
2118                               CXXConstructorDecl *Ctor) {
2119   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
2120                                            TInfo, EndLocation, Ctor);
2121 }
2122 
2123 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
2124                                                                  unsigned ID) {
2125   return new (C, ID) CXXDeductionGuideDecl(
2126       C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2127       QualType(), nullptr, SourceLocation(), nullptr);
2128 }
2129 
2130 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
2131     ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
2132   return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
2133 }
2134 
2135 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
2136                                                                unsigned ID) {
2137   return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
2138 }
2139 
2140 void CXXMethodDecl::anchor() {}
2141 
2142 bool CXXMethodDecl::isStatic() const {
2143   const CXXMethodDecl *MD = getCanonicalDecl();
2144 
2145   if (MD->getStorageClass() == SC_Static)
2146     return true;
2147 
2148   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
2149   return isStaticOverloadedOperator(OOK);
2150 }
2151 
2152 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
2153                                  const CXXMethodDecl *BaseMD) {
2154   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
2155     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
2156       return true;
2157     if (recursivelyOverrides(MD, BaseMD))
2158       return true;
2159   }
2160   return false;
2161 }
2162 
2163 CXXMethodDecl *
2164 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2165                                                      bool MayBeBase) {
2166   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2167     return this;
2168 
2169   // Lookup doesn't work for destructors, so handle them separately.
2170   if (isa<CXXDestructorDecl>(this)) {
2171     CXXMethodDecl *MD = RD->getDestructor();
2172     if (MD) {
2173       if (recursivelyOverrides(MD, this))
2174         return MD;
2175       if (MayBeBase && recursivelyOverrides(this, MD))
2176         return MD;
2177     }
2178     return nullptr;
2179   }
2180 
2181   for (auto *ND : RD->lookup(getDeclName())) {
2182     auto *MD = dyn_cast<CXXMethodDecl>(ND);
2183     if (!MD)
2184       continue;
2185     if (recursivelyOverrides(MD, this))
2186       return MD;
2187     if (MayBeBase && recursivelyOverrides(this, MD))
2188       return MD;
2189   }
2190 
2191   return nullptr;
2192 }
2193 
2194 CXXMethodDecl *
2195 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2196                                              bool MayBeBase) {
2197   if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2198     return MD;
2199 
2200   llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
2201   auto AddFinalOverrider = [&](CXXMethodDecl *D) {
2202     // If this function is overridden by a candidate final overrider, it is not
2203     // a final overrider.
2204     for (CXXMethodDecl *OtherD : FinalOverriders) {
2205       if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
2206         return;
2207     }
2208 
2209     // Other candidate final overriders might be overridden by this function.
2210     llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) {
2211       return recursivelyOverrides(D, OtherD);
2212     });
2213 
2214     FinalOverriders.push_back(D);
2215   };
2216 
2217   for (const auto &I : RD->bases()) {
2218     const RecordType *RT = I.getType()->getAs<RecordType>();
2219     if (!RT)
2220       continue;
2221     const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2222     if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
2223       AddFinalOverrider(D);
2224   }
2225 
2226   return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
2227 }
2228 
2229 CXXMethodDecl *
2230 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2231                       const DeclarationNameInfo &NameInfo, QualType T,
2232                       TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
2233                       bool isInline, ConstexprSpecKind ConstexprKind,
2234                       SourceLocation EndLocation,
2235                       Expr *TrailingRequiresClause) {
2236   return new (C, RD) CXXMethodDecl(
2237       CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2238       isInline, ConstexprKind, EndLocation, TrailingRequiresClause);
2239 }
2240 
2241 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2242   return new (C, ID) CXXMethodDecl(
2243       CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2244       QualType(), nullptr, SC_None, false, false,
2245       ConstexprSpecKind::Unspecified, SourceLocation(), nullptr);
2246 }
2247 
2248 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2249                                                      bool IsAppleKext) {
2250   assert(isVirtual() && "this method is expected to be virtual");
2251 
2252   // When building with -fapple-kext, all calls must go through the vtable since
2253   // the kernel linker can do runtime patching of vtables.
2254   if (IsAppleKext)
2255     return nullptr;
2256 
2257   // If the member function is marked 'final', we know that it can't be
2258   // overridden and can therefore devirtualize it unless it's pure virtual.
2259   if (hasAttr<FinalAttr>())
2260     return isPure() ? nullptr : this;
2261 
2262   // If Base is unknown, we cannot devirtualize.
2263   if (!Base)
2264     return nullptr;
2265 
2266   // If the base expression (after skipping derived-to-base conversions) is a
2267   // class prvalue, then we can devirtualize.
2268   Base = Base->getBestDynamicClassTypeExpr();
2269   if (Base->isPRValue() && Base->getType()->isRecordType())
2270     return this;
2271 
2272   // If we don't even know what we would call, we can't devirtualize.
2273   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2274   if (!BestDynamicDecl)
2275     return nullptr;
2276 
2277   // There may be a method corresponding to MD in a derived class.
2278   CXXMethodDecl *DevirtualizedMethod =
2279       getCorrespondingMethodInClass(BestDynamicDecl);
2280 
2281   // If there final overrider in the dynamic type is ambiguous, we can't
2282   // devirtualize this call.
2283   if (!DevirtualizedMethod)
2284     return nullptr;
2285 
2286   // If that method is pure virtual, we can't devirtualize. If this code is
2287   // reached, the result would be UB, not a direct call to the derived class
2288   // function, and we can't assume the derived class function is defined.
2289   if (DevirtualizedMethod->isPure())
2290     return nullptr;
2291 
2292   // If that method is marked final, we can devirtualize it.
2293   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2294     return DevirtualizedMethod;
2295 
2296   // Similarly, if the class itself or its destructor is marked 'final',
2297   // the class can't be derived from and we can therefore devirtualize the
2298   // member function call.
2299   if (BestDynamicDecl->isEffectivelyFinal())
2300     return DevirtualizedMethod;
2301 
2302   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2303     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2304       if (VD->getType()->isRecordType())
2305         // This is a record decl. We know the type and can devirtualize it.
2306         return DevirtualizedMethod;
2307 
2308     return nullptr;
2309   }
2310 
2311   // We can devirtualize calls on an object accessed by a class member access
2312   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2313   // a derived class object constructed in the same location.
2314   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2315     const ValueDecl *VD = ME->getMemberDecl();
2316     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2317   }
2318 
2319   // Likewise for calls on an object accessed by a (non-reference) pointer to
2320   // member access.
2321   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2322     if (BO->isPtrMemOp()) {
2323       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2324       if (MPT->getPointeeType()->isRecordType())
2325         return DevirtualizedMethod;
2326     }
2327   }
2328 
2329   // We can't devirtualize the call.
2330   return nullptr;
2331 }
2332 
2333 bool CXXMethodDecl::isUsualDeallocationFunction(
2334     SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2335   assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2336   if (getOverloadedOperator() != OO_Delete &&
2337       getOverloadedOperator() != OO_Array_Delete)
2338     return false;
2339 
2340   // C++ [basic.stc.dynamic.deallocation]p2:
2341   //   A template instance is never a usual deallocation function,
2342   //   regardless of its signature.
2343   if (getPrimaryTemplate())
2344     return false;
2345 
2346   // C++ [basic.stc.dynamic.deallocation]p2:
2347   //   If a class T has a member deallocation function named operator delete
2348   //   with exactly one parameter, then that function is a usual (non-placement)
2349   //   deallocation function. [...]
2350   if (getNumParams() == 1)
2351     return true;
2352   unsigned UsualParams = 1;
2353 
2354   // C++ P0722:
2355   //   A destroying operator delete is a usual deallocation function if
2356   //   removing the std::destroying_delete_t parameter and changing the
2357   //   first parameter type from T* to void* results in the signature of
2358   //   a usual deallocation function.
2359   if (isDestroyingOperatorDelete())
2360     ++UsualParams;
2361 
2362   // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2363   //   [...] If class T does not declare such an operator delete but does
2364   //   declare a member deallocation function named operator delete with
2365   //   exactly two parameters, the second of which has type std::size_t (18.1),
2366   //   then this function is a usual deallocation function.
2367   //
2368   // C++17 says a usual deallocation function is one with the signature
2369   //   (void* [, size_t] [, std::align_val_t] [, ...])
2370   // and all such functions are usual deallocation functions. It's not clear
2371   // that allowing varargs functions was intentional.
2372   ASTContext &Context = getASTContext();
2373   if (UsualParams < getNumParams() &&
2374       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2375                                      Context.getSizeType()))
2376     ++UsualParams;
2377 
2378   if (UsualParams < getNumParams() &&
2379       getParamDecl(UsualParams)->getType()->isAlignValT())
2380     ++UsualParams;
2381 
2382   if (UsualParams != getNumParams())
2383     return false;
2384 
2385   // In C++17 onwards, all potential usual deallocation functions are actual
2386   // usual deallocation functions. Honor this behavior when post-C++14
2387   // deallocation functions are offered as extensions too.
2388   // FIXME(EricWF): Destroying Delete should be a language option. How do we
2389   // handle when destroying delete is used prior to C++17?
2390   if (Context.getLangOpts().CPlusPlus17 ||
2391       Context.getLangOpts().AlignedAllocation ||
2392       isDestroyingOperatorDelete())
2393     return true;
2394 
2395   // This function is a usual deallocation function if there are no
2396   // single-parameter deallocation functions of the same kind.
2397   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2398   bool Result = true;
2399   for (const auto *D : R) {
2400     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2401       if (FD->getNumParams() == 1) {
2402         PreventedBy.push_back(FD);
2403         Result = false;
2404       }
2405     }
2406   }
2407   return Result;
2408 }
2409 
2410 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2411   // C++0x [class.copy]p17:
2412   //  A user-declared copy assignment operator X::operator= is a non-static
2413   //  non-template member function of class X with exactly one parameter of
2414   //  type X, X&, const X&, volatile X& or const volatile X&.
2415   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2416       /*non-static*/ isStatic() ||
2417       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2418       getNumParams() != 1)
2419     return false;
2420 
2421   QualType ParamType = getParamDecl(0)->getType();
2422   if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2423     ParamType = Ref->getPointeeType();
2424 
2425   ASTContext &Context = getASTContext();
2426   QualType ClassType
2427     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2428   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2429 }
2430 
2431 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2432   // C++0x [class.copy]p19:
2433   //  A user-declared move assignment operator X::operator= is a non-static
2434   //  non-template member function of class X with exactly one parameter of type
2435   //  X&&, const X&&, volatile X&&, or const volatile X&&.
2436   if (getOverloadedOperator() != OO_Equal || isStatic() ||
2437       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2438       getNumParams() != 1)
2439     return false;
2440 
2441   QualType ParamType = getParamDecl(0)->getType();
2442   if (!ParamType->isRValueReferenceType())
2443     return false;
2444   ParamType = ParamType->getPointeeType();
2445 
2446   ASTContext &Context = getASTContext();
2447   QualType ClassType
2448     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2449   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2450 }
2451 
2452 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2453   assert(MD->isCanonicalDecl() && "Method is not canonical!");
2454   assert(!MD->getParent()->isDependentContext() &&
2455          "Can't add an overridden method to a class template!");
2456   assert(MD->isVirtual() && "Method is not virtual!");
2457 
2458   getASTContext().addOverriddenMethod(this, MD);
2459 }
2460 
2461 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2462   if (isa<CXXConstructorDecl>(this)) return nullptr;
2463   return getASTContext().overridden_methods_begin(this);
2464 }
2465 
2466 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2467   if (isa<CXXConstructorDecl>(this)) return nullptr;
2468   return getASTContext().overridden_methods_end(this);
2469 }
2470 
2471 unsigned CXXMethodDecl::size_overridden_methods() const {
2472   if (isa<CXXConstructorDecl>(this)) return 0;
2473   return getASTContext().overridden_methods_size(this);
2474 }
2475 
2476 CXXMethodDecl::overridden_method_range
2477 CXXMethodDecl::overridden_methods() const {
2478   if (isa<CXXConstructorDecl>(this))
2479     return overridden_method_range(nullptr, nullptr);
2480   return getASTContext().overridden_methods(this);
2481 }
2482 
2483 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2484                                   const CXXRecordDecl *Decl) {
2485   QualType ClassTy = C.getTypeDeclType(Decl);
2486   return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2487 }
2488 
2489 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2490                                     const CXXRecordDecl *Decl) {
2491   ASTContext &C = Decl->getASTContext();
2492   QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2493   return C.getPointerType(ObjectTy);
2494 }
2495 
2496 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
2497                                           const CXXRecordDecl *Decl) {
2498   ASTContext &C = Decl->getASTContext();
2499   return ::getThisObjectType(C, FPT, Decl);
2500 }
2501 
2502 QualType CXXMethodDecl::getThisType() const {
2503   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2504   // If the member function is declared const, the type of this is const X*,
2505   // if the member function is declared volatile, the type of this is
2506   // volatile X*, and if the member function is declared const volatile,
2507   // the type of this is const volatile X*.
2508   assert(isInstance() && "No 'this' for static methods!");
2509   return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
2510                                     getParent());
2511 }
2512 
2513 QualType CXXMethodDecl::getThisObjectType() const {
2514   // Ditto getThisType.
2515   assert(isInstance() && "No 'this' for static methods!");
2516   return CXXMethodDecl::getThisObjectType(
2517       getType()->castAs<FunctionProtoType>(), getParent());
2518 }
2519 
2520 bool CXXMethodDecl::hasInlineBody() const {
2521   // If this function is a template instantiation, look at the template from
2522   // which it was instantiated.
2523   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2524   if (!CheckFn)
2525     CheckFn = this;
2526 
2527   const FunctionDecl *fn;
2528   return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2529          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2530 }
2531 
2532 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2533   const CXXRecordDecl *P = getParent();
2534   return P->isLambda() && getDeclName().isIdentifier() &&
2535          getName() == getLambdaStaticInvokerName();
2536 }
2537 
2538 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2539                                        TypeSourceInfo *TInfo, bool IsVirtual,
2540                                        SourceLocation L, Expr *Init,
2541                                        SourceLocation R,
2542                                        SourceLocation EllipsisLoc)
2543     : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc),
2544       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2545       IsWritten(false), SourceOrder(0) {}
2546 
2547 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2548                                        SourceLocation MemberLoc,
2549                                        SourceLocation L, Expr *Init,
2550                                        SourceLocation R)
2551     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2552       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2553       IsWritten(false), SourceOrder(0) {}
2554 
2555 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2556                                        IndirectFieldDecl *Member,
2557                                        SourceLocation MemberLoc,
2558                                        SourceLocation L, Expr *Init,
2559                                        SourceLocation R)
2560     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2561       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2562       IsWritten(false), SourceOrder(0) {}
2563 
2564 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2565                                        TypeSourceInfo *TInfo,
2566                                        SourceLocation L, Expr *Init,
2567                                        SourceLocation R)
2568     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2569       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2570 
2571 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2572   return Context.getAllocator()
2573                 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2574 }
2575 
2576 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2577   if (isBaseInitializer())
2578     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2579   else
2580     return {};
2581 }
2582 
2583 const Type *CXXCtorInitializer::getBaseClass() const {
2584   if (isBaseInitializer())
2585     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2586   else
2587     return nullptr;
2588 }
2589 
2590 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2591   if (isInClassMemberInitializer())
2592     return getAnyMember()->getLocation();
2593 
2594   if (isAnyMemberInitializer())
2595     return getMemberLocation();
2596 
2597   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2598     return TSInfo->getTypeLoc().getBeginLoc();
2599 
2600   return {};
2601 }
2602 
2603 SourceRange CXXCtorInitializer::getSourceRange() const {
2604   if (isInClassMemberInitializer()) {
2605     FieldDecl *D = getAnyMember();
2606     if (Expr *I = D->getInClassInitializer())
2607       return I->getSourceRange();
2608     return {};
2609   }
2610 
2611   return SourceRange(getSourceLocation(), getRParenLoc());
2612 }
2613 
2614 CXXConstructorDecl::CXXConstructorDecl(
2615     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2616     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2617     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2618     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2619     InheritedConstructor Inherited, Expr *TrailingRequiresClause)
2620     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2621                     SC_None, UsesFPIntrin, isInline, ConstexprKind,
2622                     SourceLocation(), TrailingRequiresClause) {
2623   setNumCtorInitializers(0);
2624   setInheritingConstructor(static_cast<bool>(Inherited));
2625   setImplicit(isImplicitlyDeclared);
2626   CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2627   if (Inherited)
2628     *getTrailingObjects<InheritedConstructor>() = Inherited;
2629   setExplicitSpecifier(ES);
2630 }
2631 
2632 void CXXConstructorDecl::anchor() {}
2633 
2634 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2635                                                            unsigned ID,
2636                                                            uint64_t AllocKind) {
2637   bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2638   bool isInheritingConstructor =
2639       static_cast<bool>(AllocKind & TAKInheritsConstructor);
2640   unsigned Extra =
2641       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2642           isInheritingConstructor, hasTrailingExplicit);
2643   auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2644       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2645       ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified,
2646       InheritedConstructor(), nullptr);
2647   Result->setInheritingConstructor(isInheritingConstructor);
2648   Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2649       hasTrailingExplicit;
2650   Result->setExplicitSpecifier(ExplicitSpecifier());
2651   return Result;
2652 }
2653 
2654 CXXConstructorDecl *CXXConstructorDecl::Create(
2655     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2656     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2657     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2658     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2659     InheritedConstructor Inherited, Expr *TrailingRequiresClause) {
2660   assert(NameInfo.getName().getNameKind()
2661          == DeclarationName::CXXConstructorName &&
2662          "Name must refer to a constructor");
2663   unsigned Extra =
2664       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2665           Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2666   return new (C, RD, Extra) CXXConstructorDecl(
2667       C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline,
2668       isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause);
2669 }
2670 
2671 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2672   return CtorInitializers.get(getASTContext().getExternalSource());
2673 }
2674 
2675 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2676   assert(isDelegatingConstructor() && "Not a delegating constructor!");
2677   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2678   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2679     return Construct->getConstructor();
2680 
2681   return nullptr;
2682 }
2683 
2684 bool CXXConstructorDecl::isDefaultConstructor() const {
2685   // C++ [class.default.ctor]p1:
2686   //   A default constructor for a class X is a constructor of class X for
2687   //   which each parameter that is not a function parameter pack has a default
2688   //   argument (including the case of a constructor with no parameters)
2689   return getMinRequiredArguments() == 0;
2690 }
2691 
2692 bool
2693 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2694   return isCopyOrMoveConstructor(TypeQuals) &&
2695          getParamDecl(0)->getType()->isLValueReferenceType();
2696 }
2697 
2698 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2699   return isCopyOrMoveConstructor(TypeQuals) &&
2700          getParamDecl(0)->getType()->isRValueReferenceType();
2701 }
2702 
2703 /// Determine whether this is a copy or move constructor.
2704 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2705   // C++ [class.copy]p2:
2706   //   A non-template constructor for class X is a copy constructor
2707   //   if its first parameter is of type X&, const X&, volatile X& or
2708   //   const volatile X&, and either there are no other parameters
2709   //   or else all other parameters have default arguments (8.3.6).
2710   // C++0x [class.copy]p3:
2711   //   A non-template constructor for class X is a move constructor if its
2712   //   first parameter is of type X&&, const X&&, volatile X&&, or
2713   //   const volatile X&&, and either there are no other parameters or else
2714   //   all other parameters have default arguments.
2715   if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2716       getDescribedFunctionTemplate() != nullptr)
2717     return false;
2718 
2719   const ParmVarDecl *Param = getParamDecl(0);
2720 
2721   // Do we have a reference type?
2722   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2723   if (!ParamRefType)
2724     return false;
2725 
2726   // Is it a reference to our class type?
2727   ASTContext &Context = getASTContext();
2728 
2729   CanQualType PointeeType
2730     = Context.getCanonicalType(ParamRefType->getPointeeType());
2731   CanQualType ClassTy
2732     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2733   if (PointeeType.getUnqualifiedType() != ClassTy)
2734     return false;
2735 
2736   // FIXME: other qualifiers?
2737 
2738   // We have a copy or move constructor.
2739   TypeQuals = PointeeType.getCVRQualifiers();
2740   return true;
2741 }
2742 
2743 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2744   // C++ [class.conv.ctor]p1:
2745   //   A constructor declared without the function-specifier explicit
2746   //   that can be called with a single parameter specifies a
2747   //   conversion from the type of its first parameter to the type of
2748   //   its class. Such a constructor is called a converting
2749   //   constructor.
2750   if (isExplicit() && !AllowExplicit)
2751     return false;
2752 
2753   // FIXME: This has nothing to do with the definition of converting
2754   // constructor, but is convenient for how we use this function in overload
2755   // resolution.
2756   return getNumParams() == 0
2757              ? getType()->castAs<FunctionProtoType>()->isVariadic()
2758              : getMinRequiredArguments() <= 1;
2759 }
2760 
2761 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2762   if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2763     return false;
2764 
2765   const ParmVarDecl *Param = getParamDecl(0);
2766 
2767   ASTContext &Context = getASTContext();
2768   CanQualType ParamType = Context.getCanonicalType(Param->getType());
2769 
2770   // Is it the same as our class type?
2771   CanQualType ClassTy
2772     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2773   if (ParamType.getUnqualifiedType() != ClassTy)
2774     return false;
2775 
2776   return true;
2777 }
2778 
2779 void CXXDestructorDecl::anchor() {}
2780 
2781 CXXDestructorDecl *
2782 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2783   return new (C, ID) CXXDestructorDecl(
2784       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2785       false, false, false, ConstexprSpecKind::Unspecified, nullptr);
2786 }
2787 
2788 CXXDestructorDecl *CXXDestructorDecl::Create(
2789     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2790     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2791     bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2792     ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) {
2793   assert(NameInfo.getName().getNameKind()
2794          == DeclarationName::CXXDestructorName &&
2795          "Name must refer to a destructor");
2796   return new (C, RD) CXXDestructorDecl(
2797       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline,
2798       isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause);
2799 }
2800 
2801 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2802   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2803   if (OD && !First->OperatorDelete) {
2804     First->OperatorDelete = OD;
2805     First->OperatorDeleteThisArg = ThisArg;
2806     if (auto *L = getASTMutationListener())
2807       L->ResolvedOperatorDelete(First, OD, ThisArg);
2808   }
2809 }
2810 
2811 void CXXConversionDecl::anchor() {}
2812 
2813 CXXConversionDecl *
2814 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2815   return new (C, ID) CXXConversionDecl(
2816       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2817       false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
2818       SourceLocation(), nullptr);
2819 }
2820 
2821 CXXConversionDecl *CXXConversionDecl::Create(
2822     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2823     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2824     bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2825     ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2826     Expr *TrailingRequiresClause) {
2827   assert(NameInfo.getName().getNameKind()
2828          == DeclarationName::CXXConversionFunctionName &&
2829          "Name must refer to a conversion function");
2830   return new (C, RD) CXXConversionDecl(
2831       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES,
2832       ConstexprKind, EndLocation, TrailingRequiresClause);
2833 }
2834 
2835 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2836   return isImplicit() && getParent()->isLambda() &&
2837          getConversionType()->isBlockPointerType();
2838 }
2839 
2840 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2841                                  SourceLocation LangLoc, LanguageIDs lang,
2842                                  bool HasBraces)
2843     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2844       ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2845   setLanguage(lang);
2846   LinkageSpecDeclBits.HasBraces = HasBraces;
2847 }
2848 
2849 void LinkageSpecDecl::anchor() {}
2850 
2851 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2852                                          DeclContext *DC,
2853                                          SourceLocation ExternLoc,
2854                                          SourceLocation LangLoc,
2855                                          LanguageIDs Lang,
2856                                          bool HasBraces) {
2857   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2858 }
2859 
2860 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2861                                                      unsigned ID) {
2862   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2863                                      SourceLocation(), lang_c, false);
2864 }
2865 
2866 void UsingDirectiveDecl::anchor() {}
2867 
2868 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2869                                                SourceLocation L,
2870                                                SourceLocation NamespaceLoc,
2871                                            NestedNameSpecifierLoc QualifierLoc,
2872                                                SourceLocation IdentLoc,
2873                                                NamedDecl *Used,
2874                                                DeclContext *CommonAncestor) {
2875   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2876     Used = NS->getOriginalNamespace();
2877   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2878                                         IdentLoc, Used, CommonAncestor);
2879 }
2880 
2881 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2882                                                            unsigned ID) {
2883   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2884                                         SourceLocation(),
2885                                         NestedNameSpecifierLoc(),
2886                                         SourceLocation(), nullptr, nullptr);
2887 }
2888 
2889 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2890   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2891     return NA->getNamespace();
2892   return cast_or_null<NamespaceDecl>(NominatedNamespace);
2893 }
2894 
2895 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2896                              SourceLocation StartLoc, SourceLocation IdLoc,
2897                              IdentifierInfo *Id, NamespaceDecl *PrevDecl,
2898                              bool Nested)
2899     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2900       redeclarable_base(C), LocStart(StartLoc) {
2901   unsigned Flags = 0;
2902   if (Inline)
2903     Flags |= F_Inline;
2904   if (Nested)
2905     Flags |= F_Nested;
2906   AnonOrFirstNamespaceAndFlags = {nullptr, Flags};
2907   setPreviousDecl(PrevDecl);
2908 
2909   if (PrevDecl)
2910     AnonOrFirstNamespaceAndFlags.setPointer(PrevDecl->getOriginalNamespace());
2911 }
2912 
2913 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2914                                      bool Inline, SourceLocation StartLoc,
2915                                      SourceLocation IdLoc, IdentifierInfo *Id,
2916                                      NamespaceDecl *PrevDecl, bool Nested) {
2917   return new (C, DC)
2918       NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested);
2919 }
2920 
2921 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2922   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2923                                    SourceLocation(), nullptr, nullptr, false);
2924 }
2925 
2926 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2927   if (isFirstDecl())
2928     return this;
2929 
2930   return AnonOrFirstNamespaceAndFlags.getPointer();
2931 }
2932 
2933 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2934   if (isFirstDecl())
2935     return this;
2936 
2937   return AnonOrFirstNamespaceAndFlags.getPointer();
2938 }
2939 
2940 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2941 
2942 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2943   return getNextRedeclaration();
2944 }
2945 
2946 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2947   return getPreviousDecl();
2948 }
2949 
2950 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2951   return getMostRecentDecl();
2952 }
2953 
2954 void NamespaceAliasDecl::anchor() {}
2955 
2956 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2957   return getNextRedeclaration();
2958 }
2959 
2960 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2961   return getPreviousDecl();
2962 }
2963 
2964 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2965   return getMostRecentDecl();
2966 }
2967 
2968 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2969                                                SourceLocation UsingLoc,
2970                                                SourceLocation AliasLoc,
2971                                                IdentifierInfo *Alias,
2972                                            NestedNameSpecifierLoc QualifierLoc,
2973                                                SourceLocation IdentLoc,
2974                                                NamedDecl *Namespace) {
2975   // FIXME: Preserve the aliased namespace as written.
2976   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2977     Namespace = NS->getOriginalNamespace();
2978   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2979                                         QualifierLoc, IdentLoc, Namespace);
2980 }
2981 
2982 NamespaceAliasDecl *
2983 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2984   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2985                                         SourceLocation(), nullptr,
2986                                         NestedNameSpecifierLoc(),
2987                                         SourceLocation(), nullptr);
2988 }
2989 
2990 void LifetimeExtendedTemporaryDecl::anchor() {}
2991 
2992 /// Retrieve the storage duration for the materialized temporary.
2993 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
2994   const ValueDecl *ExtendingDecl = getExtendingDecl();
2995   if (!ExtendingDecl)
2996     return SD_FullExpression;
2997   // FIXME: This is not necessarily correct for a temporary materialized
2998   // within a default initializer.
2999   if (isa<FieldDecl>(ExtendingDecl))
3000     return SD_Automatic;
3001   // FIXME: This only works because storage class specifiers are not allowed
3002   // on decomposition declarations.
3003   if (isa<BindingDecl>(ExtendingDecl))
3004     return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
3005                                                                  : SD_Static;
3006   return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3007 }
3008 
3009 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
3010   assert(getStorageDuration() == SD_Static &&
3011          "don't need to cache the computed value for this temporary");
3012   if (MayCreate && !Value) {
3013     Value = (new (getASTContext()) APValue);
3014     getASTContext().addDestruction(Value);
3015   }
3016   assert(Value && "may not be null");
3017   return Value;
3018 }
3019 
3020 void UsingShadowDecl::anchor() {}
3021 
3022 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
3023                                  SourceLocation Loc, DeclarationName Name,
3024                                  BaseUsingDecl *Introducer, NamedDecl *Target)
3025     : NamedDecl(K, DC, Loc, Name), redeclarable_base(C),
3026       UsingOrNextShadow(Introducer) {
3027   if (Target) {
3028     assert(!isa<UsingShadowDecl>(Target));
3029     setTargetDecl(Target);
3030   }
3031   setImplicit();
3032 }
3033 
3034 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
3035     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
3036       redeclarable_base(C) {}
3037 
3038 UsingShadowDecl *
3039 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3040   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
3041 }
3042 
3043 BaseUsingDecl *UsingShadowDecl::getIntroducer() const {
3044   const UsingShadowDecl *Shadow = this;
3045   while (const auto *NextShadow =
3046              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
3047     Shadow = NextShadow;
3048   return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow);
3049 }
3050 
3051 void ConstructorUsingShadowDecl::anchor() {}
3052 
3053 ConstructorUsingShadowDecl *
3054 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
3055                                    SourceLocation Loc, UsingDecl *Using,
3056                                    NamedDecl *Target, bool IsVirtual) {
3057   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
3058                                                 IsVirtual);
3059 }
3060 
3061 ConstructorUsingShadowDecl *
3062 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3063   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
3064 }
3065 
3066 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3067   return getIntroducer()->getQualifier()->getAsRecordDecl();
3068 }
3069 
3070 void BaseUsingDecl::anchor() {}
3071 
3072 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) {
3073   assert(!llvm::is_contained(shadows(), S) && "declaration already in set");
3074   assert(S->getIntroducer() == this);
3075 
3076   if (FirstUsingShadow.getPointer())
3077     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
3078   FirstUsingShadow.setPointer(S);
3079 }
3080 
3081 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) {
3082   assert(llvm::is_contained(shadows(), S) && "declaration not in set");
3083   assert(S->getIntroducer() == this);
3084 
3085   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3086 
3087   if (FirstUsingShadow.getPointer() == S) {
3088     FirstUsingShadow.setPointer(
3089       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
3090     S->UsingOrNextShadow = this;
3091     return;
3092   }
3093 
3094   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
3095   while (Prev->UsingOrNextShadow != S)
3096     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
3097   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
3098   S->UsingOrNextShadow = this;
3099 }
3100 
3101 void UsingDecl::anchor() {}
3102 
3103 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
3104                              NestedNameSpecifierLoc QualifierLoc,
3105                              const DeclarationNameInfo &NameInfo,
3106                              bool HasTypename) {
3107   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
3108 }
3109 
3110 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3111   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
3112                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
3113                                false);
3114 }
3115 
3116 SourceRange UsingDecl::getSourceRange() const {
3117   SourceLocation Begin = isAccessDeclaration()
3118     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3119   return SourceRange(Begin, getNameInfo().getEndLoc());
3120 }
3121 
3122 void UsingEnumDecl::anchor() {}
3123 
3124 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC,
3125                                      SourceLocation UL,
3126                                      SourceLocation EL,
3127                                      SourceLocation NL,
3128                                      TypeSourceInfo *EnumType) {
3129   assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl()));
3130   return new (C, DC)
3131       UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType);
3132 }
3133 
3134 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3135   return new (C, ID)
3136       UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(),
3137                     SourceLocation(), SourceLocation(), nullptr);
3138 }
3139 
3140 SourceRange UsingEnumDecl::getSourceRange() const {
3141   return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc());
3142 }
3143 
3144 void UsingPackDecl::anchor() {}
3145 
3146 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
3147                                      NamedDecl *InstantiatedFrom,
3148                                      ArrayRef<NamedDecl *> UsingDecls) {
3149   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
3150   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
3151 }
3152 
3153 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3154                                                  unsigned NumExpansions) {
3155   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
3156   auto *Result =
3157       new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, std::nullopt);
3158   Result->NumExpansions = NumExpansions;
3159   auto *Trail = Result->getTrailingObjects<NamedDecl *>();
3160   for (unsigned I = 0; I != NumExpansions; ++I)
3161     new (Trail + I) NamedDecl*(nullptr);
3162   return Result;
3163 }
3164 
3165 void UnresolvedUsingValueDecl::anchor() {}
3166 
3167 UnresolvedUsingValueDecl *
3168 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
3169                                  SourceLocation UsingLoc,
3170                                  NestedNameSpecifierLoc QualifierLoc,
3171                                  const DeclarationNameInfo &NameInfo,
3172                                  SourceLocation EllipsisLoc) {
3173   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
3174                                               QualifierLoc, NameInfo,
3175                                               EllipsisLoc);
3176 }
3177 
3178 UnresolvedUsingValueDecl *
3179 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3180   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
3181                                               SourceLocation(),
3182                                               NestedNameSpecifierLoc(),
3183                                               DeclarationNameInfo(),
3184                                               SourceLocation());
3185 }
3186 
3187 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
3188   SourceLocation Begin = isAccessDeclaration()
3189     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3190   return SourceRange(Begin, getNameInfo().getEndLoc());
3191 }
3192 
3193 void UnresolvedUsingTypenameDecl::anchor() {}
3194 
3195 UnresolvedUsingTypenameDecl *
3196 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3197                                     SourceLocation UsingLoc,
3198                                     SourceLocation TypenameLoc,
3199                                     NestedNameSpecifierLoc QualifierLoc,
3200                                     SourceLocation TargetNameLoc,
3201                                     DeclarationName TargetName,
3202                                     SourceLocation EllipsisLoc) {
3203   return new (C, DC) UnresolvedUsingTypenameDecl(
3204       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3205       TargetName.getAsIdentifierInfo(), EllipsisLoc);
3206 }
3207 
3208 UnresolvedUsingTypenameDecl *
3209 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3210   return new (C, ID) UnresolvedUsingTypenameDecl(
3211       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3212       SourceLocation(), nullptr, SourceLocation());
3213 }
3214 
3215 UnresolvedUsingIfExistsDecl *
3216 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC,
3217                                     SourceLocation Loc, DeclarationName Name) {
3218   return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name);
3219 }
3220 
3221 UnresolvedUsingIfExistsDecl *
3222 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) {
3223   return new (Ctx, ID)
3224       UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName());
3225 }
3226 
3227 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC,
3228                                                          SourceLocation Loc,
3229                                                          DeclarationName Name)
3230     : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {}
3231 
3232 void UnresolvedUsingIfExistsDecl::anchor() {}
3233 
3234 void StaticAssertDecl::anchor() {}
3235 
3236 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3237                                            SourceLocation StaticAssertLoc,
3238                                            Expr *AssertExpr,
3239                                            StringLiteral *Message,
3240                                            SourceLocation RParenLoc,
3241                                            bool Failed) {
3242   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3243                                       RParenLoc, Failed);
3244 }
3245 
3246 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3247                                                        unsigned ID) {
3248   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3249                                       nullptr, SourceLocation(), false);
3250 }
3251 
3252 VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() {
3253   assert((isa<VarDecl, BindingDecl>(this)) &&
3254          "expected a VarDecl or a BindingDecl");
3255   if (auto *Var = llvm::dyn_cast<VarDecl>(this))
3256     return Var;
3257   if (auto *BD = llvm::dyn_cast<BindingDecl>(this))
3258     return llvm::dyn_cast<VarDecl>(BD->getDecomposedDecl());
3259   return nullptr;
3260 }
3261 
3262 void BindingDecl::anchor() {}
3263 
3264 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3265                                  SourceLocation IdLoc, IdentifierInfo *Id) {
3266   return new (C, DC) BindingDecl(DC, IdLoc, Id);
3267 }
3268 
3269 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3270   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3271 }
3272 
3273 VarDecl *BindingDecl::getHoldingVar() const {
3274   Expr *B = getBinding();
3275   if (!B)
3276     return nullptr;
3277   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3278   if (!DRE)
3279     return nullptr;
3280 
3281   auto *VD = cast<VarDecl>(DRE->getDecl());
3282   assert(VD->isImplicit() && "holding var for binding decl not implicit");
3283   return VD;
3284 }
3285 
3286 void DecompositionDecl::anchor() {}
3287 
3288 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3289                                              SourceLocation StartLoc,
3290                                              SourceLocation LSquareLoc,
3291                                              QualType T, TypeSourceInfo *TInfo,
3292                                              StorageClass SC,
3293                                              ArrayRef<BindingDecl *> Bindings) {
3294   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3295   return new (C, DC, Extra)
3296       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3297 }
3298 
3299 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3300                                                          unsigned ID,
3301                                                          unsigned NumBindings) {
3302   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3303   auto *Result = new (C, ID, Extra)
3304       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3305                         QualType(), nullptr, StorageClass(), std::nullopt);
3306   // Set up and clean out the bindings array.
3307   Result->NumBindings = NumBindings;
3308   auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3309   for (unsigned I = 0; I != NumBindings; ++I)
3310     new (Trail + I) BindingDecl*(nullptr);
3311   return Result;
3312 }
3313 
3314 void DecompositionDecl::printName(llvm::raw_ostream &OS,
3315                                   const PrintingPolicy &Policy) const {
3316   OS << '[';
3317   bool Comma = false;
3318   for (const auto *B : bindings()) {
3319     if (Comma)
3320       OS << ", ";
3321     B->printName(OS, Policy);
3322     Comma = true;
3323   }
3324   OS << ']';
3325 }
3326 
3327 void MSPropertyDecl::anchor() {}
3328 
3329 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3330                                        SourceLocation L, DeclarationName N,
3331                                        QualType T, TypeSourceInfo *TInfo,
3332                                        SourceLocation StartL,
3333                                        IdentifierInfo *Getter,
3334                                        IdentifierInfo *Setter) {
3335   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3336 }
3337 
3338 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3339                                                    unsigned ID) {
3340   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3341                                     DeclarationName(), QualType(), nullptr,
3342                                     SourceLocation(), nullptr, nullptr);
3343 }
3344 
3345 void MSGuidDecl::anchor() {}
3346 
3347 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
3348     : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
3349       PartVal(P) {}
3350 
3351 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
3352   DeclContext *DC = C.getTranslationUnitDecl();
3353   return new (C, DC) MSGuidDecl(DC, T, P);
3354 }
3355 
3356 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3357   return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
3358 }
3359 
3360 void MSGuidDecl::printName(llvm::raw_ostream &OS,
3361                            const PrintingPolicy &) const {
3362   OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
3363                      PartVal.Part1, PartVal.Part2, PartVal.Part3);
3364   unsigned I = 0;
3365   for (uint8_t Byte : PartVal.Part4And5) {
3366     OS << llvm::format("%02" PRIx8, Byte);
3367     if (++I == 2)
3368       OS << '-';
3369   }
3370   OS << '}';
3371 }
3372 
3373 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
3374 static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
3375   // FIXME: We only need to check this once, not once each time we compute a
3376   // GUID APValue.
3377   using MatcherRef = llvm::function_ref<bool(QualType)>;
3378 
3379   auto IsInt = [&Ctx](unsigned N) {
3380     return [&Ctx, N](QualType T) {
3381       return T->isUnsignedIntegerOrEnumerationType() &&
3382              Ctx.getIntWidth(T) == N;
3383     };
3384   };
3385 
3386   auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
3387     return [&Ctx, Elem, N](QualType T) {
3388       const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
3389       return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
3390     };
3391   };
3392 
3393   auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
3394     return [Fields](QualType T) {
3395       const RecordDecl *RD = T->getAsRecordDecl();
3396       if (!RD || RD->isUnion())
3397         return false;
3398       RD = RD->getDefinition();
3399       if (!RD)
3400         return false;
3401       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3402         if (CXXRD->getNumBases())
3403           return false;
3404       auto MatcherIt = Fields.begin();
3405       for (const FieldDecl *FD : RD->fields()) {
3406         if (FD->isUnnamedBitfield()) continue;
3407         if (FD->isBitField() || MatcherIt == Fields.end() ||
3408             !(*MatcherIt)(FD->getType()))
3409           return false;
3410         ++MatcherIt;
3411       }
3412       return MatcherIt == Fields.end();
3413     };
3414   };
3415 
3416   // We expect an {i32, i16, i16, [8 x i8]}.
3417   return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
3418 }
3419 
3420 APValue &MSGuidDecl::getAsAPValue() const {
3421   if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3422     using llvm::APInt;
3423     using llvm::APSInt;
3424     APVal = APValue(APValue::UninitStruct(), 0, 4);
3425     APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
3426     APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
3427     APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
3428     APValue &Arr = APVal.getStructField(3) =
3429         APValue(APValue::UninitArray(), 8, 8);
3430     for (unsigned I = 0; I != 8; ++I) {
3431       Arr.getArrayInitializedElt(I) =
3432           APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
3433     }
3434     // Register this APValue to be destroyed if necessary. (Note that the
3435     // MSGuidDecl destructor is never run.)
3436     getASTContext().addDestruction(&APVal);
3437   }
3438 
3439   return APVal;
3440 }
3441 
3442 void UnnamedGlobalConstantDecl::anchor() {}
3443 
3444 UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C,
3445                                                      DeclContext *DC,
3446                                                      QualType Ty,
3447                                                      const APValue &Val)
3448     : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(),
3449                 DeclarationName(), Ty),
3450       Value(Val) {
3451   // Cleanup the embedded APValue if required (note that our destructor is never
3452   // run)
3453   if (Value.needsCleanup())
3454     C.addDestruction(&Value);
3455 }
3456 
3457 UnnamedGlobalConstantDecl *
3458 UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T,
3459                                   const APValue &Value) {
3460   DeclContext *DC = C.getTranslationUnitDecl();
3461   return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value);
3462 }
3463 
3464 UnnamedGlobalConstantDecl *
3465 UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3466   return new (C, ID)
3467       UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue());
3468 }
3469 
3470 void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS,
3471                                           const PrintingPolicy &) const {
3472   OS << "unnamed-global-constant";
3473 }
3474 
3475 static const char *getAccessName(AccessSpecifier AS) {
3476   switch (AS) {
3477     case AS_none:
3478       llvm_unreachable("Invalid access specifier!");
3479     case AS_public:
3480       return "public";
3481     case AS_private:
3482       return "private";
3483     case AS_protected:
3484       return "protected";
3485   }
3486   llvm_unreachable("Invalid access specifier!");
3487 }
3488 
3489 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
3490                                              AccessSpecifier AS) {
3491   return DB << getAccessName(AS);
3492 }
3493