xref: /freebsd/contrib/llvm-project/clang/lib/AST/DeclCXX.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/None.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 
52 using namespace clang;
53 
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
57 
58 void AccessSpecDecl::anchor() {}
59 
60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
61   return new (C, ID) AccessSpecDecl(EmptyShell());
62 }
63 
64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
65   ExternalASTSource *Source = C.getExternalSource();
66   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
67   assert(Source && "getFromExternalSource with no external source");
68 
69   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
70     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
71         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
72   Impl.Decls.setLazy(false);
73 }
74 
75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
76     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80       HasPrivateFields(false), HasProtectedFields(false),
81       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82       HasOnlyCMembers(true), HasInClassInitializer(false),
83       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84       HasInheritedConstructor(false),
85       HasInheritedDefaultConstructor(false),
86       HasInheritedAssignment(false),
87       NeedOverloadResolutionForCopyConstructor(false),
88       NeedOverloadResolutionForMoveConstructor(false),
89       NeedOverloadResolutionForCopyAssignment(false),
90       NeedOverloadResolutionForMoveAssignment(false),
91       NeedOverloadResolutionForDestructor(false),
92       DefaultedCopyConstructorIsDeleted(false),
93       DefaultedMoveConstructorIsDeleted(false),
94       DefaultedCopyAssignmentIsDeleted(false),
95       DefaultedMoveAssignmentIsDeleted(false),
96       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
97       HasTrivialSpecialMembersForCall(SMF_All),
98       DeclaredNonTrivialSpecialMembers(0),
99       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
100       HasConstexprNonCopyMoveConstructor(false),
101       HasDefaultedDefaultConstructor(false),
102       DefaultedDefaultConstructorIsConstexpr(true),
103       HasConstexprDefaultConstructor(false),
104       DefaultedDestructorIsConstexpr(true),
105       HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
106       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
107       ImplicitCopyConstructorCanHaveConstParamForVBase(true),
108       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
109       ImplicitCopyAssignmentHasConstParam(true),
110       HasDeclaredCopyConstructorWithConstParam(false),
111       HasDeclaredCopyAssignmentWithConstParam(false),
112       IsAnyDestructorNoReturn(false), IsLambda(false),
113       IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
114       HasODRHash(false), Definition(D) {}
115 
116 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
117   return Bases.get(Definition->getASTContext().getExternalSource());
118 }
119 
120 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
121   return VBases.get(Definition->getASTContext().getExternalSource());
122 }
123 
124 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
125                              DeclContext *DC, SourceLocation StartLoc,
126                              SourceLocation IdLoc, IdentifierInfo *Id,
127                              CXXRecordDecl *PrevDecl)
128     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
129       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
130                               : nullptr) {}
131 
132 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
133                                      DeclContext *DC, SourceLocation StartLoc,
134                                      SourceLocation IdLoc, IdentifierInfo *Id,
135                                      CXXRecordDecl *PrevDecl,
136                                      bool DelayTypeCreation) {
137   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
138                                       PrevDecl);
139   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
140 
141   // FIXME: DelayTypeCreation seems like such a hack
142   if (!DelayTypeCreation)
143     C.getTypeDeclType(R, PrevDecl);
144   return R;
145 }
146 
147 CXXRecordDecl *
148 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
149                             TypeSourceInfo *Info, SourceLocation Loc,
150                             bool Dependent, bool IsGeneric,
151                             LambdaCaptureDefault CaptureDefault) {
152   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
153                                       nullptr, nullptr);
154   R->setBeingDefined(true);
155   R->DefinitionData =
156       new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
157                                           CaptureDefault);
158   R->setMayHaveOutOfDateDef(false);
159   R->setImplicit(true);
160   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
161   return R;
162 }
163 
164 CXXRecordDecl *
165 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
166   auto *R = new (C, ID) CXXRecordDecl(
167       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
168       nullptr, nullptr);
169   R->setMayHaveOutOfDateDef(false);
170   return R;
171 }
172 
173 /// Determine whether a class has a repeated base class. This is intended for
174 /// use when determining if a class is standard-layout, so makes no attempt to
175 /// handle virtual bases.
176 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
177   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
178   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
179   while (!WorkList.empty()) {
180     const CXXRecordDecl *RD = WorkList.pop_back_val();
181     if (RD->getTypeForDecl()->isDependentType())
182       continue;
183     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
184       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
185         if (!SeenBaseTypes.insert(B).second)
186           return true;
187         WorkList.push_back(B);
188       }
189     }
190   }
191   return false;
192 }
193 
194 void
195 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
196                         unsigned NumBases) {
197   ASTContext &C = getASTContext();
198 
199   if (!data().Bases.isOffset() && data().NumBases > 0)
200     C.Deallocate(data().getBases());
201 
202   if (NumBases) {
203     if (!C.getLangOpts().CPlusPlus17) {
204       // C++ [dcl.init.aggr]p1:
205       //   An aggregate is [...] a class with [...] no base classes [...].
206       data().Aggregate = false;
207     }
208 
209     // C++ [class]p4:
210     //   A POD-struct is an aggregate class...
211     data().PlainOldData = false;
212   }
213 
214   // The set of seen virtual base types.
215   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
216 
217   // The virtual bases of this class.
218   SmallVector<const CXXBaseSpecifier *, 8> VBases;
219 
220   data().Bases = new(C) CXXBaseSpecifier [NumBases];
221   data().NumBases = NumBases;
222   for (unsigned i = 0; i < NumBases; ++i) {
223     data().getBases()[i] = *Bases[i];
224     // Keep track of inherited vbases for this base class.
225     const CXXBaseSpecifier *Base = Bases[i];
226     QualType BaseType = Base->getType();
227     // Skip dependent types; we can't do any checking on them now.
228     if (BaseType->isDependentType())
229       continue;
230     auto *BaseClassDecl =
231         cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
232 
233     // C++2a [class]p7:
234     //   A standard-layout class is a class that:
235     //    [...]
236     //    -- has all non-static data members and bit-fields in the class and
237     //       its base classes first declared in the same class
238     if (BaseClassDecl->data().HasBasesWithFields ||
239         !BaseClassDecl->field_empty()) {
240       if (data().HasBasesWithFields)
241         // Two bases have members or bit-fields: not standard-layout.
242         data().IsStandardLayout = false;
243       data().HasBasesWithFields = true;
244     }
245 
246     // C++11 [class]p7:
247     //   A standard-layout class is a class that:
248     //     -- [...] has [...] at most one base class with non-static data
249     //        members
250     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
251         BaseClassDecl->hasDirectFields()) {
252       if (data().HasBasesWithNonStaticDataMembers)
253         data().IsCXX11StandardLayout = false;
254       data().HasBasesWithNonStaticDataMembers = true;
255     }
256 
257     if (!BaseClassDecl->isEmpty()) {
258       // C++14 [meta.unary.prop]p4:
259       //   T is a class type [...] with [...] no base class B for which
260       //   is_empty<B>::value is false.
261       data().Empty = false;
262     }
263 
264     // C++1z [dcl.init.agg]p1:
265     //   An aggregate is a class with [...] no private or protected base classes
266     if (Base->getAccessSpecifier() != AS_public) {
267       data().Aggregate = false;
268 
269       // C++20 [temp.param]p7:
270       //   A structural type is [...] a literal class type with [...] all base
271       //   classes [...] public
272       data().StructuralIfLiteral = false;
273     }
274 
275     // C++ [class.virtual]p1:
276     //   A class that declares or inherits a virtual function is called a
277     //   polymorphic class.
278     if (BaseClassDecl->isPolymorphic()) {
279       data().Polymorphic = true;
280 
281       //   An aggregate is a class with [...] no virtual functions.
282       data().Aggregate = false;
283     }
284 
285     // C++0x [class]p7:
286     //   A standard-layout class is a class that: [...]
287     //    -- has no non-standard-layout base classes
288     if (!BaseClassDecl->isStandardLayout())
289       data().IsStandardLayout = false;
290     if (!BaseClassDecl->isCXX11StandardLayout())
291       data().IsCXX11StandardLayout = false;
292 
293     // Record if this base is the first non-literal field or base.
294     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
295       data().HasNonLiteralTypeFieldsOrBases = true;
296 
297     // Now go through all virtual bases of this base and add them.
298     for (const auto &VBase : BaseClassDecl->vbases()) {
299       // Add this base if it's not already in the list.
300       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
301         VBases.push_back(&VBase);
302 
303         // C++11 [class.copy]p8:
304         //   The implicitly-declared copy constructor for a class X will have
305         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
306         //   has a copy constructor whose first parameter is of type
307         //   'const B&' or 'const volatile B&' [...]
308         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
309           if (!VBaseDecl->hasCopyConstructorWithConstParam())
310             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
311 
312         // C++1z [dcl.init.agg]p1:
313         //   An aggregate is a class with [...] no virtual base classes
314         data().Aggregate = false;
315       }
316     }
317 
318     if (Base->isVirtual()) {
319       // Add this base if it's not already in the list.
320       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
321         VBases.push_back(Base);
322 
323       // C++14 [meta.unary.prop] is_empty:
324       //   T is a class type, but not a union type, with ... no virtual base
325       //   classes
326       data().Empty = false;
327 
328       // C++1z [dcl.init.agg]p1:
329       //   An aggregate is a class with [...] no virtual base classes
330       data().Aggregate = false;
331 
332       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
333       //   A [default constructor, copy/move constructor, or copy/move assignment
334       //   operator for a class X] is trivial [...] if:
335       //    -- class X has [...] no virtual base classes
336       data().HasTrivialSpecialMembers &= SMF_Destructor;
337       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
338 
339       // C++0x [class]p7:
340       //   A standard-layout class is a class that: [...]
341       //    -- has [...] no virtual base classes
342       data().IsStandardLayout = false;
343       data().IsCXX11StandardLayout = false;
344 
345       // C++20 [dcl.constexpr]p3:
346       //   In the definition of a constexpr function [...]
347       //    -- if the function is a constructor or destructor,
348       //       its class shall not have any virtual base classes
349       data().DefaultedDefaultConstructorIsConstexpr = false;
350       data().DefaultedDestructorIsConstexpr = false;
351 
352       // C++1z [class.copy]p8:
353       //   The implicitly-declared copy constructor for a class X will have
354       //   the form 'X::X(const X&)' if each potentially constructed subobject
355       //   has a copy constructor whose first parameter is of type
356       //   'const B&' or 'const volatile B&' [...]
357       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
358         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
359     } else {
360       // C++ [class.ctor]p5:
361       //   A default constructor is trivial [...] if:
362       //    -- all the direct base classes of its class have trivial default
363       //       constructors.
364       if (!BaseClassDecl->hasTrivialDefaultConstructor())
365         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
366 
367       // C++0x [class.copy]p13:
368       //   A copy/move constructor for class X is trivial if [...]
369       //    [...]
370       //    -- the constructor selected to copy/move each direct base class
371       //       subobject is trivial, and
372       if (!BaseClassDecl->hasTrivialCopyConstructor())
373         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
374 
375       if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
376         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
377 
378       // If the base class doesn't have a simple move constructor, we'll eagerly
379       // declare it and perform overload resolution to determine which function
380       // it actually calls. If it does have a simple move constructor, this
381       // check is correct.
382       if (!BaseClassDecl->hasTrivialMoveConstructor())
383         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
384 
385       if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
386         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
387 
388       // C++0x [class.copy]p27:
389       //   A copy/move assignment operator for class X is trivial if [...]
390       //    [...]
391       //    -- the assignment operator selected to copy/move each direct base
392       //       class subobject is trivial, and
393       if (!BaseClassDecl->hasTrivialCopyAssignment())
394         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
395       // If the base class doesn't have a simple move assignment, we'll eagerly
396       // declare it and perform overload resolution to determine which function
397       // it actually calls. If it does have a simple move assignment, this
398       // check is correct.
399       if (!BaseClassDecl->hasTrivialMoveAssignment())
400         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
401 
402       // C++11 [class.ctor]p6:
403       //   If that user-written default constructor would satisfy the
404       //   requirements of a constexpr constructor, the implicitly-defined
405       //   default constructor is constexpr.
406       if (!BaseClassDecl->hasConstexprDefaultConstructor())
407         data().DefaultedDefaultConstructorIsConstexpr = false;
408 
409       // C++1z [class.copy]p8:
410       //   The implicitly-declared copy constructor for a class X will have
411       //   the form 'X::X(const X&)' if each potentially constructed subobject
412       //   has a copy constructor whose first parameter is of type
413       //   'const B&' or 'const volatile B&' [...]
414       if (!BaseClassDecl->hasCopyConstructorWithConstParam())
415         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
416     }
417 
418     // C++ [class.ctor]p3:
419     //   A destructor is trivial if all the direct base classes of its class
420     //   have trivial destructors.
421     if (!BaseClassDecl->hasTrivialDestructor())
422       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
423 
424     if (!BaseClassDecl->hasTrivialDestructorForCall())
425       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
426 
427     if (!BaseClassDecl->hasIrrelevantDestructor())
428       data().HasIrrelevantDestructor = false;
429 
430     if (BaseClassDecl->isAnyDestructorNoReturn())
431       data().IsAnyDestructorNoReturn = true;
432 
433     // C++11 [class.copy]p18:
434     //   The implicitly-declared copy assignment operator for a class X will
435     //   have the form 'X& X::operator=(const X&)' if each direct base class B
436     //   of X has a copy assignment operator whose parameter is of type 'const
437     //   B&', 'const volatile B&', or 'B' [...]
438     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
439       data().ImplicitCopyAssignmentHasConstParam = false;
440 
441     // A class has an Objective-C object member if... or any of its bases
442     // has an Objective-C object member.
443     if (BaseClassDecl->hasObjectMember())
444       setHasObjectMember(true);
445 
446     if (BaseClassDecl->hasVolatileMember())
447       setHasVolatileMember(true);
448 
449     if (BaseClassDecl->getArgPassingRestrictions() ==
450         RecordDecl::APK_CanNeverPassInRegs)
451       setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
452 
453     // Keep track of the presence of mutable fields.
454     if (BaseClassDecl->hasMutableFields())
455       data().HasMutableFields = true;
456 
457     if (BaseClassDecl->hasUninitializedReferenceMember())
458       data().HasUninitializedReferenceMember = true;
459 
460     if (!BaseClassDecl->allowConstDefaultInit())
461       data().HasUninitializedFields = true;
462 
463     addedClassSubobject(BaseClassDecl);
464   }
465 
466   // C++2a [class]p7:
467   //   A class S is a standard-layout class if it:
468   //     -- has at most one base class subobject of any given type
469   //
470   // Note that we only need to check this for classes with more than one base
471   // class. If there's only one base class, and it's standard layout, then
472   // we know there are no repeated base classes.
473   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
474     data().IsStandardLayout = false;
475 
476   if (VBases.empty()) {
477     data().IsParsingBaseSpecifiers = false;
478     return;
479   }
480 
481   // Create base specifier for any direct or indirect virtual bases.
482   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
483   data().NumVBases = VBases.size();
484   for (int I = 0, E = VBases.size(); I != E; ++I) {
485     QualType Type = VBases[I]->getType();
486     if (!Type->isDependentType())
487       addedClassSubobject(Type->getAsCXXRecordDecl());
488     data().getVBases()[I] = *VBases[I];
489   }
490 
491   data().IsParsingBaseSpecifiers = false;
492 }
493 
494 unsigned CXXRecordDecl::getODRHash() const {
495   assert(hasDefinition() && "ODRHash only for records with definitions");
496 
497   // Previously calculated hash is stored in DefinitionData.
498   if (DefinitionData->HasODRHash)
499     return DefinitionData->ODRHash;
500 
501   // Only calculate hash on first call of getODRHash per record.
502   ODRHash Hash;
503   Hash.AddCXXRecordDecl(getDefinition());
504   DefinitionData->HasODRHash = true;
505   DefinitionData->ODRHash = Hash.CalculateHash();
506 
507   return DefinitionData->ODRHash;
508 }
509 
510 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
511   // C++11 [class.copy]p11:
512   //   A defaulted copy/move constructor for a class X is defined as
513   //   deleted if X has:
514   //    -- a direct or virtual base class B that cannot be copied/moved [...]
515   //    -- a non-static data member of class type M (or array thereof)
516   //       that cannot be copied or moved [...]
517   if (!Subobj->hasSimpleCopyConstructor())
518     data().NeedOverloadResolutionForCopyConstructor = true;
519   if (!Subobj->hasSimpleMoveConstructor())
520     data().NeedOverloadResolutionForMoveConstructor = true;
521 
522   // C++11 [class.copy]p23:
523   //   A defaulted copy/move assignment operator for a class X is defined as
524   //   deleted if X has:
525   //    -- a direct or virtual base class B that cannot be copied/moved [...]
526   //    -- a non-static data member of class type M (or array thereof)
527   //        that cannot be copied or moved [...]
528   if (!Subobj->hasSimpleCopyAssignment())
529     data().NeedOverloadResolutionForCopyAssignment = true;
530   if (!Subobj->hasSimpleMoveAssignment())
531     data().NeedOverloadResolutionForMoveAssignment = true;
532 
533   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
534   //   A defaulted [ctor or dtor] for a class X is defined as
535   //   deleted if X has:
536   //    -- any direct or virtual base class [...] has a type with a destructor
537   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
538   //    -- any non-static data member has a type with a destructor
539   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
540   if (!Subobj->hasSimpleDestructor()) {
541     data().NeedOverloadResolutionForCopyConstructor = true;
542     data().NeedOverloadResolutionForMoveConstructor = true;
543     data().NeedOverloadResolutionForDestructor = true;
544   }
545 
546   // C++2a [dcl.constexpr]p4:
547   //   The definition of a constexpr destructor [shall] satisfy the
548   //   following requirement:
549   //   -- for every subobject of class type or (possibly multi-dimensional)
550   //      array thereof, that class type shall have a constexpr destructor
551   if (!Subobj->hasConstexprDestructor())
552     data().DefaultedDestructorIsConstexpr = false;
553 
554   // C++20 [temp.param]p7:
555   //   A structural type is [...] a literal class type [for which] the types
556   //   of all base classes and non-static data members are structural types or
557   //   (possibly multi-dimensional) array thereof
558   if (!Subobj->data().StructuralIfLiteral)
559     data().StructuralIfLiteral = false;
560 }
561 
562 bool CXXRecordDecl::hasConstexprDestructor() const {
563   auto *Dtor = getDestructor();
564   return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
565 }
566 
567 bool CXXRecordDecl::hasAnyDependentBases() const {
568   if (!isDependentContext())
569     return false;
570 
571   return !forallBases([](const CXXRecordDecl *) { return true; });
572 }
573 
574 bool CXXRecordDecl::isTriviallyCopyable() const {
575   // C++0x [class]p5:
576   //   A trivially copyable class is a class that:
577   //   -- has no non-trivial copy constructors,
578   if (hasNonTrivialCopyConstructor()) return false;
579   //   -- has no non-trivial move constructors,
580   if (hasNonTrivialMoveConstructor()) return false;
581   //   -- has no non-trivial copy assignment operators,
582   if (hasNonTrivialCopyAssignment()) return false;
583   //   -- has no non-trivial move assignment operators, and
584   if (hasNonTrivialMoveAssignment()) return false;
585   //   -- has a trivial destructor.
586   if (!hasTrivialDestructor()) return false;
587 
588   return true;
589 }
590 
591 void CXXRecordDecl::markedVirtualFunctionPure() {
592   // C++ [class.abstract]p2:
593   //   A class is abstract if it has at least one pure virtual function.
594   data().Abstract = true;
595 }
596 
597 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
598     ASTContext &Ctx, const CXXRecordDecl *XFirst) {
599   if (!getNumBases())
600     return false;
601 
602   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
603   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
604   SmallVector<const CXXRecordDecl*, 8> WorkList;
605 
606   // Visit a type that we have determined is an element of M(S).
607   auto Visit = [&](const CXXRecordDecl *RD) -> bool {
608     RD = RD->getCanonicalDecl();
609 
610     // C++2a [class]p8:
611     //   A class S is a standard-layout class if it [...] has no element of the
612     //   set M(S) of types as a base class.
613     //
614     // If we find a subobject of an empty type, it might also be a base class,
615     // so we'll need to walk the base classes to check.
616     if (!RD->data().HasBasesWithFields) {
617       // Walk the bases the first time, stopping if we find the type. Build a
618       // set of them so we don't need to walk them again.
619       if (Bases.empty()) {
620         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
621           Base = Base->getCanonicalDecl();
622           if (RD == Base)
623             return false;
624           Bases.insert(Base);
625           return true;
626         });
627         if (RDIsBase)
628           return true;
629       } else {
630         if (Bases.count(RD))
631           return true;
632       }
633     }
634 
635     if (M.insert(RD).second)
636       WorkList.push_back(RD);
637     return false;
638   };
639 
640   if (Visit(XFirst))
641     return true;
642 
643   while (!WorkList.empty()) {
644     const CXXRecordDecl *X = WorkList.pop_back_val();
645 
646     // FIXME: We don't check the bases of X. That matches the standard, but
647     // that sure looks like a wording bug.
648 
649     //   -- If X is a non-union class type with a non-static data member
650     //      [recurse to each field] that is either of zero size or is the
651     //      first non-static data member of X
652     //   -- If X is a union type, [recurse to union members]
653     bool IsFirstField = true;
654     for (auto *FD : X->fields()) {
655       // FIXME: Should we really care about the type of the first non-static
656       // data member of a non-union if there are preceding unnamed bit-fields?
657       if (FD->isUnnamedBitfield())
658         continue;
659 
660       if (!IsFirstField && !FD->isZeroSize(Ctx))
661         continue;
662 
663       //   -- If X is n array type, [visit the element type]
664       QualType T = Ctx.getBaseElementType(FD->getType());
665       if (auto *RD = T->getAsCXXRecordDecl())
666         if (Visit(RD))
667           return true;
668 
669       if (!X->isUnion())
670         IsFirstField = false;
671     }
672   }
673 
674   return false;
675 }
676 
677 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
678   assert(isLambda() && "not a lambda");
679 
680   // C++2a [expr.prim.lambda.capture]p11:
681   //   The closure type associated with a lambda-expression has no default
682   //   constructor if the lambda-expression has a lambda-capture and a
683   //   defaulted default constructor otherwise. It has a deleted copy
684   //   assignment operator if the lambda-expression has a lambda-capture and
685   //   defaulted copy and move assignment operators otherwise.
686   //
687   // C++17 [expr.prim.lambda]p21:
688   //   The closure type associated with a lambda-expression has no default
689   //   constructor and a deleted copy assignment operator.
690   if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0)
691     return false;
692   return getASTContext().getLangOpts().CPlusPlus20;
693 }
694 
695 void CXXRecordDecl::addedMember(Decl *D) {
696   if (!D->isImplicit() &&
697       !isa<FieldDecl>(D) &&
698       !isa<IndirectFieldDecl>(D) &&
699       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
700         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
701     data().HasOnlyCMembers = false;
702 
703   // Ignore friends and invalid declarations.
704   if (D->getFriendObjectKind() || D->isInvalidDecl())
705     return;
706 
707   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
708   if (FunTmpl)
709     D = FunTmpl->getTemplatedDecl();
710 
711   // FIXME: Pass NamedDecl* to addedMember?
712   Decl *DUnderlying = D;
713   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
714     DUnderlying = ND->getUnderlyingDecl();
715     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
716       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
717   }
718 
719   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
720     if (Method->isVirtual()) {
721       // C++ [dcl.init.aggr]p1:
722       //   An aggregate is an array or a class with [...] no virtual functions.
723       data().Aggregate = false;
724 
725       // C++ [class]p4:
726       //   A POD-struct is an aggregate class...
727       data().PlainOldData = false;
728 
729       // C++14 [meta.unary.prop]p4:
730       //   T is a class type [...] with [...] no virtual member functions...
731       data().Empty = false;
732 
733       // C++ [class.virtual]p1:
734       //   A class that declares or inherits a virtual function is called a
735       //   polymorphic class.
736       data().Polymorphic = true;
737 
738       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
739       //   A [default constructor, copy/move constructor, or copy/move
740       //   assignment operator for a class X] is trivial [...] if:
741       //    -- class X has no virtual functions [...]
742       data().HasTrivialSpecialMembers &= SMF_Destructor;
743       data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
744 
745       // C++0x [class]p7:
746       //   A standard-layout class is a class that: [...]
747       //    -- has no virtual functions
748       data().IsStandardLayout = false;
749       data().IsCXX11StandardLayout = false;
750     }
751   }
752 
753   // Notify the listener if an implicit member was added after the definition
754   // was completed.
755   if (!isBeingDefined() && D->isImplicit())
756     if (ASTMutationListener *L = getASTMutationListener())
757       L->AddedCXXImplicitMember(data().Definition, D);
758 
759   // The kind of special member this declaration is, if any.
760   unsigned SMKind = 0;
761 
762   // Handle constructors.
763   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
764     if (Constructor->isInheritingConstructor()) {
765       // Ignore constructor shadow declarations. They are lazily created and
766       // so shouldn't affect any properties of the class.
767     } else {
768       if (!Constructor->isImplicit()) {
769         // Note that we have a user-declared constructor.
770         data().UserDeclaredConstructor = true;
771 
772         // C++ [class]p4:
773         //   A POD-struct is an aggregate class [...]
774         // Since the POD bit is meant to be C++03 POD-ness, clear it even if
775         // the type is technically an aggregate in C++0x since it wouldn't be
776         // in 03.
777         data().PlainOldData = false;
778       }
779 
780       if (Constructor->isDefaultConstructor()) {
781         SMKind |= SMF_DefaultConstructor;
782 
783         if (Constructor->isUserProvided())
784           data().UserProvidedDefaultConstructor = true;
785         if (Constructor->isConstexpr())
786           data().HasConstexprDefaultConstructor = true;
787         if (Constructor->isDefaulted())
788           data().HasDefaultedDefaultConstructor = true;
789       }
790 
791       if (!FunTmpl) {
792         unsigned Quals;
793         if (Constructor->isCopyConstructor(Quals)) {
794           SMKind |= SMF_CopyConstructor;
795 
796           if (Quals & Qualifiers::Const)
797             data().HasDeclaredCopyConstructorWithConstParam = true;
798         } else if (Constructor->isMoveConstructor())
799           SMKind |= SMF_MoveConstructor;
800       }
801 
802       // C++11 [dcl.init.aggr]p1: DR1518
803       //   An aggregate is an array or a class with no user-provided [or]
804       //   explicit [...] constructors
805       // C++20 [dcl.init.aggr]p1:
806       //   An aggregate is an array or a class with no user-declared [...]
807       //   constructors
808       if (getASTContext().getLangOpts().CPlusPlus20
809               ? !Constructor->isImplicit()
810               : (Constructor->isUserProvided() || Constructor->isExplicit()))
811         data().Aggregate = false;
812     }
813   }
814 
815   // Handle constructors, including those inherited from base classes.
816   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
817     // Record if we see any constexpr constructors which are neither copy
818     // nor move constructors.
819     // C++1z [basic.types]p10:
820     //   [...] has at least one constexpr constructor or constructor template
821     //   (possibly inherited from a base class) that is not a copy or move
822     //   constructor [...]
823     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
824       data().HasConstexprNonCopyMoveConstructor = true;
825     if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor())
826       data().HasInheritedDefaultConstructor = true;
827   }
828 
829   // Handle destructors.
830   if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
831     SMKind |= SMF_Destructor;
832 
833     if (DD->isUserProvided())
834       data().HasIrrelevantDestructor = false;
835     // If the destructor is explicitly defaulted and not trivial or not public
836     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
837     // finishedDefaultedOrDeletedMember.
838 
839     // C++11 [class.dtor]p5:
840     //   A destructor is trivial if [...] the destructor is not virtual.
841     if (DD->isVirtual()) {
842       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
843       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
844     }
845 
846     if (DD->isNoReturn())
847       data().IsAnyDestructorNoReturn = true;
848   }
849 
850   // Handle member functions.
851   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
852     if (Method->isCopyAssignmentOperator()) {
853       SMKind |= SMF_CopyAssignment;
854 
855       const auto *ParamTy =
856           Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
857       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
858         data().HasDeclaredCopyAssignmentWithConstParam = true;
859     }
860 
861     if (Method->isMoveAssignmentOperator())
862       SMKind |= SMF_MoveAssignment;
863 
864     // Keep the list of conversion functions up-to-date.
865     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
866       // FIXME: We use the 'unsafe' accessor for the access specifier here,
867       // because Sema may not have set it yet. That's really just a misdesign
868       // in Sema. However, LLDB *will* have set the access specifier correctly,
869       // and adds declarations after the class is technically completed,
870       // so completeDefinition()'s overriding of the access specifiers doesn't
871       // work.
872       AccessSpecifier AS = Conversion->getAccessUnsafe();
873 
874       if (Conversion->getPrimaryTemplate()) {
875         // We don't record specializations.
876       } else {
877         ASTContext &Ctx = getASTContext();
878         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
879         NamedDecl *Primary =
880             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
881         if (Primary->getPreviousDecl())
882           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
883                               Primary, AS);
884         else
885           Conversions.addDecl(Ctx, Primary, AS);
886       }
887     }
888 
889     if (SMKind) {
890       // If this is the first declaration of a special member, we no longer have
891       // an implicit trivial special member.
892       data().HasTrivialSpecialMembers &=
893           data().DeclaredSpecialMembers | ~SMKind;
894       data().HasTrivialSpecialMembersForCall &=
895           data().DeclaredSpecialMembers | ~SMKind;
896 
897       if (!Method->isImplicit() && !Method->isUserProvided()) {
898         // This method is user-declared but not user-provided. We can't work out
899         // whether it's trivial yet (not until we get to the end of the class).
900         // We'll handle this method in finishedDefaultedOrDeletedMember.
901       } else if (Method->isTrivial()) {
902         data().HasTrivialSpecialMembers |= SMKind;
903         data().HasTrivialSpecialMembersForCall |= SMKind;
904       } else if (Method->isTrivialForCall()) {
905         data().HasTrivialSpecialMembersForCall |= SMKind;
906         data().DeclaredNonTrivialSpecialMembers |= SMKind;
907       } else {
908         data().DeclaredNonTrivialSpecialMembers |= SMKind;
909         // If this is a user-provided function, do not set
910         // DeclaredNonTrivialSpecialMembersForCall here since we don't know
911         // yet whether the method would be considered non-trivial for the
912         // purpose of calls (attribute "trivial_abi" can be dropped from the
913         // class later, which can change the special method's triviality).
914         if (!Method->isUserProvided())
915           data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
916       }
917 
918       // Note when we have declared a declared special member, and suppress the
919       // implicit declaration of this special member.
920       data().DeclaredSpecialMembers |= SMKind;
921 
922       if (!Method->isImplicit()) {
923         data().UserDeclaredSpecialMembers |= SMKind;
924 
925         // C++03 [class]p4:
926         //   A POD-struct is an aggregate class that has [...] no user-defined
927         //   copy assignment operator and no user-defined destructor.
928         //
929         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
930         // aggregates could not have any constructors, clear it even for an
931         // explicitly defaulted or deleted constructor.
932         // type is technically an aggregate in C++0x since it wouldn't be in 03.
933         //
934         // Also, a user-declared move assignment operator makes a class non-POD.
935         // This is an extension in C++03.
936         data().PlainOldData = false;
937       }
938     }
939 
940     return;
941   }
942 
943   // Handle non-static data members.
944   if (const auto *Field = dyn_cast<FieldDecl>(D)) {
945     ASTContext &Context = getASTContext();
946 
947     // C++2a [class]p7:
948     //   A standard-layout class is a class that:
949     //    [...]
950     //    -- has all non-static data members and bit-fields in the class and
951     //       its base classes first declared in the same class
952     if (data().HasBasesWithFields)
953       data().IsStandardLayout = false;
954 
955     // C++ [class.bit]p2:
956     //   A declaration for a bit-field that omits the identifier declares an
957     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
958     //   initialized.
959     if (Field->isUnnamedBitfield()) {
960       // C++ [meta.unary.prop]p4: [LWG2358]
961       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
962       //   length
963       if (data().Empty && !Field->isZeroLengthBitField(Context) &&
964           Context.getLangOpts().getClangABICompat() >
965               LangOptions::ClangABI::Ver6)
966         data().Empty = false;
967       return;
968     }
969 
970     // C++11 [class]p7:
971     //   A standard-layout class is a class that:
972     //    -- either has no non-static data members in the most derived class
973     //       [...] or has no base classes with non-static data members
974     if (data().HasBasesWithNonStaticDataMembers)
975       data().IsCXX11StandardLayout = false;
976 
977     // C++ [dcl.init.aggr]p1:
978     //   An aggregate is an array or a class (clause 9) with [...] no
979     //   private or protected non-static data members (clause 11).
980     //
981     // A POD must be an aggregate.
982     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
983       data().Aggregate = false;
984       data().PlainOldData = false;
985 
986       // C++20 [temp.param]p7:
987       //   A structural type is [...] a literal class type [for which] all
988       //   non-static data members are public
989       data().StructuralIfLiteral = false;
990     }
991 
992     // Track whether this is the first field. We use this when checking
993     // whether the class is standard-layout below.
994     bool IsFirstField = !data().HasPrivateFields &&
995                         !data().HasProtectedFields && !data().HasPublicFields;
996 
997     // C++0x [class]p7:
998     //   A standard-layout class is a class that:
999     //    [...]
1000     //    -- has the same access control for all non-static data members,
1001     switch (D->getAccess()) {
1002     case AS_private:    data().HasPrivateFields = true;   break;
1003     case AS_protected:  data().HasProtectedFields = true; break;
1004     case AS_public:     data().HasPublicFields = true;    break;
1005     case AS_none:       llvm_unreachable("Invalid access specifier");
1006     };
1007     if ((data().HasPrivateFields + data().HasProtectedFields +
1008          data().HasPublicFields) > 1) {
1009       data().IsStandardLayout = false;
1010       data().IsCXX11StandardLayout = false;
1011     }
1012 
1013     // Keep track of the presence of mutable fields.
1014     if (Field->isMutable()) {
1015       data().HasMutableFields = true;
1016 
1017       // C++20 [temp.param]p7:
1018       //   A structural type is [...] a literal class type [for which] all
1019       //   non-static data members are public
1020       data().StructuralIfLiteral = false;
1021     }
1022 
1023     // C++11 [class.union]p8, DR1460:
1024     //   If X is a union, a non-static data member of X that is not an anonymous
1025     //   union is a variant member of X.
1026     if (isUnion() && !Field->isAnonymousStructOrUnion())
1027       data().HasVariantMembers = true;
1028 
1029     // C++0x [class]p9:
1030     //   A POD struct is a class that is both a trivial class and a
1031     //   standard-layout class, and has no non-static data members of type
1032     //   non-POD struct, non-POD union (or array of such types).
1033     //
1034     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1035     // that does not explicitly have no lifetime makes the class a non-POD.
1036     QualType T = Context.getBaseElementType(Field->getType());
1037     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1038       if (T.hasNonTrivialObjCLifetime()) {
1039         // Objective-C Automatic Reference Counting:
1040         //   If a class has a non-static data member of Objective-C pointer
1041         //   type (or array thereof), it is a non-POD type and its
1042         //   default constructor (if any), copy constructor, move constructor,
1043         //   copy assignment operator, move assignment operator, and destructor are
1044         //   non-trivial.
1045         setHasObjectMember(true);
1046         struct DefinitionData &Data = data();
1047         Data.PlainOldData = false;
1048         Data.HasTrivialSpecialMembers = 0;
1049 
1050         // __strong or __weak fields do not make special functions non-trivial
1051         // for the purpose of calls.
1052         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1053         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1054           data().HasTrivialSpecialMembersForCall = 0;
1055 
1056         // Structs with __weak fields should never be passed directly.
1057         if (LT == Qualifiers::OCL_Weak)
1058           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1059 
1060         Data.HasIrrelevantDestructor = false;
1061 
1062         if (isUnion()) {
1063           data().DefaultedCopyConstructorIsDeleted = true;
1064           data().DefaultedMoveConstructorIsDeleted = true;
1065           data().DefaultedCopyAssignmentIsDeleted = true;
1066           data().DefaultedMoveAssignmentIsDeleted = true;
1067           data().DefaultedDestructorIsDeleted = true;
1068           data().NeedOverloadResolutionForCopyConstructor = true;
1069           data().NeedOverloadResolutionForMoveConstructor = true;
1070           data().NeedOverloadResolutionForCopyAssignment = true;
1071           data().NeedOverloadResolutionForMoveAssignment = true;
1072           data().NeedOverloadResolutionForDestructor = true;
1073         }
1074       } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1075         setHasObjectMember(true);
1076       }
1077     } else if (!T.isCXX98PODType(Context))
1078       data().PlainOldData = false;
1079 
1080     if (T->isReferenceType()) {
1081       if (!Field->hasInClassInitializer())
1082         data().HasUninitializedReferenceMember = true;
1083 
1084       // C++0x [class]p7:
1085       //   A standard-layout class is a class that:
1086       //    -- has no non-static data members of type [...] reference,
1087       data().IsStandardLayout = false;
1088       data().IsCXX11StandardLayout = false;
1089 
1090       // C++1z [class.copy.ctor]p10:
1091       //   A defaulted copy constructor for a class X is defined as deleted if X has:
1092       //    -- a non-static data member of rvalue reference type
1093       if (T->isRValueReferenceType())
1094         data().DefaultedCopyConstructorIsDeleted = true;
1095     }
1096 
1097     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1098       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1099         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1100           data().HasUninitializedFields = true;
1101       } else {
1102         data().HasUninitializedFields = true;
1103       }
1104     }
1105 
1106     // Record if this field is the first non-literal or volatile field or base.
1107     if (!T->isLiteralType(Context) || T.isVolatileQualified())
1108       data().HasNonLiteralTypeFieldsOrBases = true;
1109 
1110     if (Field->hasInClassInitializer() ||
1111         (Field->isAnonymousStructOrUnion() &&
1112          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1113       data().HasInClassInitializer = true;
1114 
1115       // C++11 [class]p5:
1116       //   A default constructor is trivial if [...] no non-static data member
1117       //   of its class has a brace-or-equal-initializer.
1118       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1119 
1120       // C++11 [dcl.init.aggr]p1:
1121       //   An aggregate is a [...] class with [...] no
1122       //   brace-or-equal-initializers for non-static data members.
1123       //
1124       // This rule was removed in C++14.
1125       if (!getASTContext().getLangOpts().CPlusPlus14)
1126         data().Aggregate = false;
1127 
1128       // C++11 [class]p10:
1129       //   A POD struct is [...] a trivial class.
1130       data().PlainOldData = false;
1131     }
1132 
1133     // C++11 [class.copy]p23:
1134     //   A defaulted copy/move assignment operator for a class X is defined
1135     //   as deleted if X has:
1136     //    -- a non-static data member of reference type
1137     if (T->isReferenceType()) {
1138       data().DefaultedCopyAssignmentIsDeleted = true;
1139       data().DefaultedMoveAssignmentIsDeleted = true;
1140     }
1141 
1142     // Bitfields of length 0 are also zero-sized, but we already bailed out for
1143     // those because they are always unnamed.
1144     bool IsZeroSize = Field->isZeroSize(Context);
1145 
1146     if (const auto *RecordTy = T->getAs<RecordType>()) {
1147       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1148       if (FieldRec->getDefinition()) {
1149         addedClassSubobject(FieldRec);
1150 
1151         // We may need to perform overload resolution to determine whether a
1152         // field can be moved if it's const or volatile qualified.
1153         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1154           // We need to care about 'const' for the copy constructor because an
1155           // implicit copy constructor might be declared with a non-const
1156           // parameter.
1157           data().NeedOverloadResolutionForCopyConstructor = true;
1158           data().NeedOverloadResolutionForMoveConstructor = true;
1159           data().NeedOverloadResolutionForCopyAssignment = true;
1160           data().NeedOverloadResolutionForMoveAssignment = true;
1161         }
1162 
1163         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1164         //   A defaulted [special member] for a class X is defined as
1165         //   deleted if:
1166         //    -- X is a union-like class that has a variant member with a
1167         //       non-trivial [corresponding special member]
1168         if (isUnion()) {
1169           if (FieldRec->hasNonTrivialCopyConstructor())
1170             data().DefaultedCopyConstructorIsDeleted = true;
1171           if (FieldRec->hasNonTrivialMoveConstructor())
1172             data().DefaultedMoveConstructorIsDeleted = true;
1173           if (FieldRec->hasNonTrivialCopyAssignment())
1174             data().DefaultedCopyAssignmentIsDeleted = true;
1175           if (FieldRec->hasNonTrivialMoveAssignment())
1176             data().DefaultedMoveAssignmentIsDeleted = true;
1177           if (FieldRec->hasNonTrivialDestructor())
1178             data().DefaultedDestructorIsDeleted = true;
1179         }
1180 
1181         // For an anonymous union member, our overload resolution will perform
1182         // overload resolution for its members.
1183         if (Field->isAnonymousStructOrUnion()) {
1184           data().NeedOverloadResolutionForCopyConstructor |=
1185               FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1186           data().NeedOverloadResolutionForMoveConstructor |=
1187               FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1188           data().NeedOverloadResolutionForCopyAssignment |=
1189               FieldRec->data().NeedOverloadResolutionForCopyAssignment;
1190           data().NeedOverloadResolutionForMoveAssignment |=
1191               FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1192           data().NeedOverloadResolutionForDestructor |=
1193               FieldRec->data().NeedOverloadResolutionForDestructor;
1194         }
1195 
1196         // C++0x [class.ctor]p5:
1197         //   A default constructor is trivial [...] if:
1198         //    -- for all the non-static data members of its class that are of
1199         //       class type (or array thereof), each such class has a trivial
1200         //       default constructor.
1201         if (!FieldRec->hasTrivialDefaultConstructor())
1202           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1203 
1204         // C++0x [class.copy]p13:
1205         //   A copy/move constructor for class X is trivial if [...]
1206         //    [...]
1207         //    -- for each non-static data member of X that is of class type (or
1208         //       an array thereof), the constructor selected to copy/move that
1209         //       member is trivial;
1210         if (!FieldRec->hasTrivialCopyConstructor())
1211           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1212 
1213         if (!FieldRec->hasTrivialCopyConstructorForCall())
1214           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1215 
1216         // If the field doesn't have a simple move constructor, we'll eagerly
1217         // declare the move constructor for this class and we'll decide whether
1218         // it's trivial then.
1219         if (!FieldRec->hasTrivialMoveConstructor())
1220           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1221 
1222         if (!FieldRec->hasTrivialMoveConstructorForCall())
1223           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1224 
1225         // C++0x [class.copy]p27:
1226         //   A copy/move assignment operator for class X is trivial if [...]
1227         //    [...]
1228         //    -- for each non-static data member of X that is of class type (or
1229         //       an array thereof), the assignment operator selected to
1230         //       copy/move that member is trivial;
1231         if (!FieldRec->hasTrivialCopyAssignment())
1232           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1233         // If the field doesn't have a simple move assignment, we'll eagerly
1234         // declare the move assignment for this class and we'll decide whether
1235         // it's trivial then.
1236         if (!FieldRec->hasTrivialMoveAssignment())
1237           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1238 
1239         if (!FieldRec->hasTrivialDestructor())
1240           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1241         if (!FieldRec->hasTrivialDestructorForCall())
1242           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1243         if (!FieldRec->hasIrrelevantDestructor())
1244           data().HasIrrelevantDestructor = false;
1245         if (FieldRec->isAnyDestructorNoReturn())
1246           data().IsAnyDestructorNoReturn = true;
1247         if (FieldRec->hasObjectMember())
1248           setHasObjectMember(true);
1249         if (FieldRec->hasVolatileMember())
1250           setHasVolatileMember(true);
1251         if (FieldRec->getArgPassingRestrictions() ==
1252             RecordDecl::APK_CanNeverPassInRegs)
1253           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1254 
1255         // C++0x [class]p7:
1256         //   A standard-layout class is a class that:
1257         //    -- has no non-static data members of type non-standard-layout
1258         //       class (or array of such types) [...]
1259         if (!FieldRec->isStandardLayout())
1260           data().IsStandardLayout = false;
1261         if (!FieldRec->isCXX11StandardLayout())
1262           data().IsCXX11StandardLayout = false;
1263 
1264         // C++2a [class]p7:
1265         //   A standard-layout class is a class that:
1266         //    [...]
1267         //    -- has no element of the set M(S) of types as a base class.
1268         if (data().IsStandardLayout &&
1269             (isUnion() || IsFirstField || IsZeroSize) &&
1270             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1271           data().IsStandardLayout = false;
1272 
1273         // C++11 [class]p7:
1274         //   A standard-layout class is a class that:
1275         //    -- has no base classes of the same type as the first non-static
1276         //       data member
1277         if (data().IsCXX11StandardLayout && IsFirstField) {
1278           // FIXME: We should check all base classes here, not just direct
1279           // base classes.
1280           for (const auto &BI : bases()) {
1281             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1282               data().IsCXX11StandardLayout = false;
1283               break;
1284             }
1285           }
1286         }
1287 
1288         // Keep track of the presence of mutable fields.
1289         if (FieldRec->hasMutableFields())
1290           data().HasMutableFields = true;
1291 
1292         if (Field->isMutable()) {
1293           // Our copy constructor/assignment might call something other than
1294           // the subobject's copy constructor/assignment if it's mutable and of
1295           // class type.
1296           data().NeedOverloadResolutionForCopyConstructor = true;
1297           data().NeedOverloadResolutionForCopyAssignment = true;
1298         }
1299 
1300         // C++11 [class.copy]p13:
1301         //   If the implicitly-defined constructor would satisfy the
1302         //   requirements of a constexpr constructor, the implicitly-defined
1303         //   constructor is constexpr.
1304         // C++11 [dcl.constexpr]p4:
1305         //    -- every constructor involved in initializing non-static data
1306         //       members [...] shall be a constexpr constructor
1307         if (!Field->hasInClassInitializer() &&
1308             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1309           // The standard requires any in-class initializer to be a constant
1310           // expression. We consider this to be a defect.
1311           data().DefaultedDefaultConstructorIsConstexpr = false;
1312 
1313         // C++11 [class.copy]p8:
1314         //   The implicitly-declared copy constructor for a class X will have
1315         //   the form 'X::X(const X&)' if each potentially constructed subobject
1316         //   of a class type M (or array thereof) has a copy constructor whose
1317         //   first parameter is of type 'const M&' or 'const volatile M&'.
1318         if (!FieldRec->hasCopyConstructorWithConstParam())
1319           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1320 
1321         // C++11 [class.copy]p18:
1322         //   The implicitly-declared copy assignment oeprator for a class X will
1323         //   have the form 'X& X::operator=(const X&)' if [...] for all the
1324         //   non-static data members of X that are of a class type M (or array
1325         //   thereof), each such class type has a copy assignment operator whose
1326         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1327         if (!FieldRec->hasCopyAssignmentWithConstParam())
1328           data().ImplicitCopyAssignmentHasConstParam = false;
1329 
1330         if (FieldRec->hasUninitializedReferenceMember() &&
1331             !Field->hasInClassInitializer())
1332           data().HasUninitializedReferenceMember = true;
1333 
1334         // C++11 [class.union]p8, DR1460:
1335         //   a non-static data member of an anonymous union that is a member of
1336         //   X is also a variant member of X.
1337         if (FieldRec->hasVariantMembers() &&
1338             Field->isAnonymousStructOrUnion())
1339           data().HasVariantMembers = true;
1340       }
1341     } else {
1342       // Base element type of field is a non-class type.
1343       if (!T->isLiteralType(Context) ||
1344           (!Field->hasInClassInitializer() && !isUnion() &&
1345            !Context.getLangOpts().CPlusPlus20))
1346         data().DefaultedDefaultConstructorIsConstexpr = false;
1347 
1348       // C++11 [class.copy]p23:
1349       //   A defaulted copy/move assignment operator for a class X is defined
1350       //   as deleted if X has:
1351       //    -- a non-static data member of const non-class type (or array
1352       //       thereof)
1353       if (T.isConstQualified()) {
1354         data().DefaultedCopyAssignmentIsDeleted = true;
1355         data().DefaultedMoveAssignmentIsDeleted = true;
1356       }
1357 
1358       // C++20 [temp.param]p7:
1359       //   A structural type is [...] a literal class type [for which] the
1360       //   types of all non-static data members are structural types or
1361       //   (possibly multidimensional) array thereof
1362       // We deal with class types elsewhere.
1363       if (!T->isStructuralType())
1364         data().StructuralIfLiteral = false;
1365     }
1366 
1367     // C++14 [meta.unary.prop]p4:
1368     //   T is a class type [...] with [...] no non-static data members other
1369     //   than subobjects of zero size
1370     if (data().Empty && !IsZeroSize)
1371       data().Empty = false;
1372   }
1373 
1374   // Handle using declarations of conversion functions.
1375   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1376     if (Shadow->getDeclName().getNameKind()
1377           == DeclarationName::CXXConversionFunctionName) {
1378       ASTContext &Ctx = getASTContext();
1379       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1380     }
1381   }
1382 
1383   if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1384     if (Using->getDeclName().getNameKind() ==
1385         DeclarationName::CXXConstructorName) {
1386       data().HasInheritedConstructor = true;
1387       // C++1z [dcl.init.aggr]p1:
1388       //  An aggregate is [...] a class [...] with no inherited constructors
1389       data().Aggregate = false;
1390     }
1391 
1392     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1393       data().HasInheritedAssignment = true;
1394   }
1395 }
1396 
1397 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1398   assert(!D->isImplicit() && !D->isUserProvided());
1399 
1400   // The kind of special member this declaration is, if any.
1401   unsigned SMKind = 0;
1402 
1403   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1404     if (Constructor->isDefaultConstructor()) {
1405       SMKind |= SMF_DefaultConstructor;
1406       if (Constructor->isConstexpr())
1407         data().HasConstexprDefaultConstructor = true;
1408     }
1409     if (Constructor->isCopyConstructor())
1410       SMKind |= SMF_CopyConstructor;
1411     else if (Constructor->isMoveConstructor())
1412       SMKind |= SMF_MoveConstructor;
1413     else if (Constructor->isConstexpr())
1414       // We may now know that the constructor is constexpr.
1415       data().HasConstexprNonCopyMoveConstructor = true;
1416   } else if (isa<CXXDestructorDecl>(D)) {
1417     SMKind |= SMF_Destructor;
1418     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1419       data().HasIrrelevantDestructor = false;
1420   } else if (D->isCopyAssignmentOperator())
1421     SMKind |= SMF_CopyAssignment;
1422   else if (D->isMoveAssignmentOperator())
1423     SMKind |= SMF_MoveAssignment;
1424 
1425   // Update which trivial / non-trivial special members we have.
1426   // addedMember will have skipped this step for this member.
1427   if (D->isTrivial())
1428     data().HasTrivialSpecialMembers |= SMKind;
1429   else
1430     data().DeclaredNonTrivialSpecialMembers |= SMKind;
1431 }
1432 
1433 void CXXRecordDecl::setCaptures(ASTContext &Context,
1434                                 ArrayRef<LambdaCapture> Captures) {
1435   CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
1436 
1437   // Copy captures.
1438   Data.NumCaptures = Captures.size();
1439   Data.NumExplicitCaptures = 0;
1440   Data.Captures = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
1441                                                     Captures.size());
1442   LambdaCapture *ToCapture = Data.Captures;
1443   for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
1444     if (Captures[I].isExplicit())
1445       ++Data.NumExplicitCaptures;
1446 
1447     *ToCapture++ = Captures[I];
1448   }
1449 
1450   if (!lambdaIsDefaultConstructibleAndAssignable())
1451     Data.DefaultedCopyAssignmentIsDeleted = true;
1452 }
1453 
1454 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1455   unsigned SMKind = 0;
1456 
1457   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1458     if (Constructor->isCopyConstructor())
1459       SMKind = SMF_CopyConstructor;
1460     else if (Constructor->isMoveConstructor())
1461       SMKind = SMF_MoveConstructor;
1462   } else if (isa<CXXDestructorDecl>(D))
1463     SMKind = SMF_Destructor;
1464 
1465   if (D->isTrivialForCall())
1466     data().HasTrivialSpecialMembersForCall |= SMKind;
1467   else
1468     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1469 }
1470 
1471 bool CXXRecordDecl::isCLike() const {
1472   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1473       !TemplateOrInstantiation.isNull())
1474     return false;
1475   if (!hasDefinition())
1476     return true;
1477 
1478   return isPOD() && data().HasOnlyCMembers;
1479 }
1480 
1481 bool CXXRecordDecl::isGenericLambda() const {
1482   if (!isLambda()) return false;
1483   return getLambdaData().IsGenericLambda;
1484 }
1485 
1486 #ifndef NDEBUG
1487 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1488   for (auto *D : R)
1489     if (!declaresSameEntity(D, R.front()))
1490       return false;
1491   return true;
1492 }
1493 #endif
1494 
1495 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1496   if (!RD.isLambda()) return nullptr;
1497   DeclarationName Name =
1498     RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1499   DeclContext::lookup_result Calls = RD.lookup(Name);
1500 
1501   assert(!Calls.empty() && "Missing lambda call operator!");
1502   assert(allLookupResultsAreTheSame(Calls) &&
1503          "More than one lambda call operator!");
1504   return Calls.front();
1505 }
1506 
1507 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1508   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1509   return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1510 }
1511 
1512 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1513   NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1514 
1515   if (CallOp == nullptr)
1516     return nullptr;
1517 
1518   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1519     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1520 
1521   return cast<CXXMethodDecl>(CallOp);
1522 }
1523 
1524 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1525   CXXMethodDecl *CallOp = getLambdaCallOperator();
1526   CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv();
1527   return getLambdaStaticInvoker(CC);
1528 }
1529 
1530 static DeclContext::lookup_result
1531 getLambdaStaticInvokers(const CXXRecordDecl &RD) {
1532   assert(RD.isLambda() && "Must be a lambda");
1533   DeclarationName Name =
1534       &RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
1535   return RD.lookup(Name);
1536 }
1537 
1538 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
1539   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
1540     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1541   return cast<CXXMethodDecl>(ND);
1542 }
1543 
1544 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
1545   if (!isLambda())
1546     return nullptr;
1547   DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
1548 
1549   for (NamedDecl *ND : Invoker) {
1550     const auto *FTy =
1551         cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>();
1552     if (FTy->getCallConv() == CC)
1553       return getInvokerAsMethod(ND);
1554   }
1555 
1556   return nullptr;
1557 }
1558 
1559 void CXXRecordDecl::getCaptureFields(
1560        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1561        FieldDecl *&ThisCapture) const {
1562   Captures.clear();
1563   ThisCapture = nullptr;
1564 
1565   LambdaDefinitionData &Lambda = getLambdaData();
1566   RecordDecl::field_iterator Field = field_begin();
1567   for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1568        C != CEnd; ++C, ++Field) {
1569     if (C->capturesThis())
1570       ThisCapture = *Field;
1571     else if (C->capturesVariable())
1572       Captures[C->getCapturedVar()] = *Field;
1573   }
1574   assert(Field == field_end());
1575 }
1576 
1577 TemplateParameterList *
1578 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1579   if (!isGenericLambda()) return nullptr;
1580   CXXMethodDecl *CallOp = getLambdaCallOperator();
1581   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1582     return Tmpl->getTemplateParameters();
1583   return nullptr;
1584 }
1585 
1586 ArrayRef<NamedDecl *>
1587 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1588   TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1589   if (!List)
1590     return {};
1591 
1592   assert(std::is_partitioned(List->begin(), List->end(),
1593                              [](const NamedDecl *D) { return !D->isImplicit(); })
1594          && "Explicit template params should be ordered before implicit ones");
1595 
1596   const auto ExplicitEnd = llvm::partition_point(
1597       *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1598   return llvm::makeArrayRef(List->begin(), ExplicitEnd);
1599 }
1600 
1601 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1602   assert(isLambda() && "Not a lambda closure type!");
1603   ExternalASTSource *Source = getParentASTContext().getExternalSource();
1604   return getLambdaData().ContextDecl.get(Source);
1605 }
1606 
1607 void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const {
1608   assert(isLambda() && "Not a lambda closure type!");
1609   if (Num)
1610     getASTContext().DeviceLambdaManglingNumbers[this] = Num;
1611 }
1612 
1613 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const {
1614   assert(isLambda() && "Not a lambda closure type!");
1615   auto I = getASTContext().DeviceLambdaManglingNumbers.find(this);
1616   if (I != getASTContext().DeviceLambdaManglingNumbers.end())
1617     return I->second;
1618   return 0;
1619 }
1620 
1621 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1622   QualType T =
1623       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1624           ->getConversionType();
1625   return Context.getCanonicalType(T);
1626 }
1627 
1628 /// Collect the visible conversions of a base class.
1629 ///
1630 /// \param Record a base class of the class we're considering
1631 /// \param InVirtual whether this base class is a virtual base (or a base
1632 ///   of a virtual base)
1633 /// \param Access the access along the inheritance path to this base
1634 /// \param ParentHiddenTypes the conversions provided by the inheritors
1635 ///   of this base
1636 /// \param Output the set to which to add conversions from non-virtual bases
1637 /// \param VOutput the set to which to add conversions from virtual bases
1638 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1639 ///   virtual base along some inheritance path
1640 static void CollectVisibleConversions(
1641     ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1642     AccessSpecifier Access,
1643     const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1644     ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1645     llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1646   // The set of types which have conversions in this class or its
1647   // subclasses.  As an optimization, we don't copy the derived set
1648   // unless it might change.
1649   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1650   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1651 
1652   // Collect the direct conversions and figure out which conversions
1653   // will be hidden in the subclasses.
1654   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1655   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1656   if (ConvI != ConvE) {
1657     HiddenTypesBuffer = ParentHiddenTypes;
1658     HiddenTypes = &HiddenTypesBuffer;
1659 
1660     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1661       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1662       bool Hidden = ParentHiddenTypes.count(ConvType);
1663       if (!Hidden)
1664         HiddenTypesBuffer.insert(ConvType);
1665 
1666       // If this conversion is hidden and we're in a virtual base,
1667       // remember that it's hidden along some inheritance path.
1668       if (Hidden && InVirtual)
1669         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1670 
1671       // If this conversion isn't hidden, add it to the appropriate output.
1672       else if (!Hidden) {
1673         AccessSpecifier IAccess
1674           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1675 
1676         if (InVirtual)
1677           VOutput.addDecl(I.getDecl(), IAccess);
1678         else
1679           Output.addDecl(Context, I.getDecl(), IAccess);
1680       }
1681     }
1682   }
1683 
1684   // Collect information recursively from any base classes.
1685   for (const auto &I : Record->bases()) {
1686     const auto *RT = I.getType()->getAs<RecordType>();
1687     if (!RT) continue;
1688 
1689     AccessSpecifier BaseAccess
1690       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1691     bool BaseInVirtual = InVirtual || I.isVirtual();
1692 
1693     auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1694     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1695                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1696   }
1697 }
1698 
1699 /// Collect the visible conversions of a class.
1700 ///
1701 /// This would be extremely straightforward if it weren't for virtual
1702 /// bases.  It might be worth special-casing that, really.
1703 static void CollectVisibleConversions(ASTContext &Context,
1704                                       const CXXRecordDecl *Record,
1705                                       ASTUnresolvedSet &Output) {
1706   // The collection of all conversions in virtual bases that we've
1707   // found.  These will be added to the output as long as they don't
1708   // appear in the hidden-conversions set.
1709   UnresolvedSet<8> VBaseCs;
1710 
1711   // The set of conversions in virtual bases that we've determined to
1712   // be hidden.
1713   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1714 
1715   // The set of types hidden by classes derived from this one.
1716   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1717 
1718   // Go ahead and collect the direct conversions and add them to the
1719   // hidden-types set.
1720   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1721   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1722   Output.append(Context, ConvI, ConvE);
1723   for (; ConvI != ConvE; ++ConvI)
1724     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1725 
1726   // Recursively collect conversions from base classes.
1727   for (const auto &I : Record->bases()) {
1728     const auto *RT = I.getType()->getAs<RecordType>();
1729     if (!RT) continue;
1730 
1731     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1732                               I.isVirtual(), I.getAccessSpecifier(),
1733                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1734   }
1735 
1736   // Add any unhidden conversions provided by virtual bases.
1737   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1738          I != E; ++I) {
1739     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1740       Output.addDecl(Context, I.getDecl(), I.getAccess());
1741   }
1742 }
1743 
1744 /// getVisibleConversionFunctions - get all conversion functions visible
1745 /// in current class; including conversion function templates.
1746 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1747 CXXRecordDecl::getVisibleConversionFunctions() const {
1748   ASTContext &Ctx = getASTContext();
1749 
1750   ASTUnresolvedSet *Set;
1751   if (bases_begin() == bases_end()) {
1752     // If root class, all conversions are visible.
1753     Set = &data().Conversions.get(Ctx);
1754   } else {
1755     Set = &data().VisibleConversions.get(Ctx);
1756     // If visible conversion list is not evaluated, evaluate it.
1757     if (!data().ComputedVisibleConversions) {
1758       CollectVisibleConversions(Ctx, this, *Set);
1759       data().ComputedVisibleConversions = true;
1760     }
1761   }
1762   return llvm::make_range(Set->begin(), Set->end());
1763 }
1764 
1765 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1766   // This operation is O(N) but extremely rare.  Sema only uses it to
1767   // remove UsingShadowDecls in a class that were followed by a direct
1768   // declaration, e.g.:
1769   //   class A : B {
1770   //     using B::operator int;
1771   //     operator int();
1772   //   };
1773   // This is uncommon by itself and even more uncommon in conjunction
1774   // with sufficiently large numbers of directly-declared conversions
1775   // that asymptotic behavior matters.
1776 
1777   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1778   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1779     if (Convs[I].getDecl() == ConvDecl) {
1780       Convs.erase(I);
1781       assert(!llvm::is_contained(Convs, ConvDecl) &&
1782              "conversion was found multiple times in unresolved set");
1783       return;
1784     }
1785   }
1786 
1787   llvm_unreachable("conversion not found in set!");
1788 }
1789 
1790 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1791   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1792     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1793 
1794   return nullptr;
1795 }
1796 
1797 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1798   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1799 }
1800 
1801 void
1802 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1803                                              TemplateSpecializationKind TSK) {
1804   assert(TemplateOrInstantiation.isNull() &&
1805          "Previous template or instantiation?");
1806   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1807   TemplateOrInstantiation
1808     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1809 }
1810 
1811 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1812   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1813 }
1814 
1815 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1816   TemplateOrInstantiation = Template;
1817 }
1818 
1819 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1820   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1821     return Spec->getSpecializationKind();
1822 
1823   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1824     return MSInfo->getTemplateSpecializationKind();
1825 
1826   return TSK_Undeclared;
1827 }
1828 
1829 void
1830 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1831   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1832     Spec->setSpecializationKind(TSK);
1833     return;
1834   }
1835 
1836   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1837     MSInfo->setTemplateSpecializationKind(TSK);
1838     return;
1839   }
1840 
1841   llvm_unreachable("Not a class template or member class specialization");
1842 }
1843 
1844 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1845   auto GetDefinitionOrSelf =
1846       [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1847     if (auto *Def = D->getDefinition())
1848       return Def;
1849     return D;
1850   };
1851 
1852   // If it's a class template specialization, find the template or partial
1853   // specialization from which it was instantiated.
1854   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1855     auto From = TD->getInstantiatedFrom();
1856     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1857       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1858         if (NewCTD->isMemberSpecialization())
1859           break;
1860         CTD = NewCTD;
1861       }
1862       return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1863     }
1864     if (auto *CTPSD =
1865             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1866       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1867         if (NewCTPSD->isMemberSpecialization())
1868           break;
1869         CTPSD = NewCTPSD;
1870       }
1871       return GetDefinitionOrSelf(CTPSD);
1872     }
1873   }
1874 
1875   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1876     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1877       const CXXRecordDecl *RD = this;
1878       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1879         RD = NewRD;
1880       return GetDefinitionOrSelf(RD);
1881     }
1882   }
1883 
1884   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1885          "couldn't find pattern for class template instantiation");
1886   return nullptr;
1887 }
1888 
1889 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1890   ASTContext &Context = getASTContext();
1891   QualType ClassType = Context.getTypeDeclType(this);
1892 
1893   DeclarationName Name
1894     = Context.DeclarationNames.getCXXDestructorName(
1895                                           Context.getCanonicalType(ClassType));
1896 
1897   DeclContext::lookup_result R = lookup(Name);
1898 
1899   return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front());
1900 }
1901 
1902 static bool isDeclContextInNamespace(const DeclContext *DC) {
1903   while (!DC->isTranslationUnit()) {
1904     if (DC->isNamespace())
1905       return true;
1906     DC = DC->getParent();
1907   }
1908   return false;
1909 }
1910 
1911 bool CXXRecordDecl::isInterfaceLike() const {
1912   assert(hasDefinition() && "checking for interface-like without a definition");
1913   // All __interfaces are inheritently interface-like.
1914   if (isInterface())
1915     return true;
1916 
1917   // Interface-like types cannot have a user declared constructor, destructor,
1918   // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1919   // cannot be interface types.
1920   if (isLambda() || hasUserDeclaredConstructor() ||
1921       hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1922       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1923     return false;
1924 
1925   // No interface-like type can have a method with a definition.
1926   for (const auto *const Method : methods())
1927     if (Method->isDefined() && !Method->isImplicit())
1928       return false;
1929 
1930   // Check "Special" types.
1931   const auto *Uuid = getAttr<UuidAttr>();
1932   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1933   // extern C++ block directly in the TU.  These are only valid if in one
1934   // of these two situations.
1935   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1936       !isDeclContextInNamespace(getDeclContext()) &&
1937       ((getName() == "IUnknown" &&
1938         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1939        (getName() == "IDispatch" &&
1940         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1941     if (getNumBases() > 0)
1942       return false;
1943     return true;
1944   }
1945 
1946   // FIXME: Any access specifiers is supposed to make this no longer interface
1947   // like.
1948 
1949   // If this isn't a 'special' type, it must have a single interface-like base.
1950   if (getNumBases() != 1)
1951     return false;
1952 
1953   const auto BaseSpec = *bases_begin();
1954   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
1955     return false;
1956   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
1957   if (Base->isInterface() || !Base->isInterfaceLike())
1958     return false;
1959   return true;
1960 }
1961 
1962 void CXXRecordDecl::completeDefinition() {
1963   completeDefinition(nullptr);
1964 }
1965 
1966 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1967   RecordDecl::completeDefinition();
1968 
1969   // If the class may be abstract (but hasn't been marked as such), check for
1970   // any pure final overriders.
1971   if (mayBeAbstract()) {
1972     CXXFinalOverriderMap MyFinalOverriders;
1973     if (!FinalOverriders) {
1974       getFinalOverriders(MyFinalOverriders);
1975       FinalOverriders = &MyFinalOverriders;
1976     }
1977 
1978     bool Done = false;
1979     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1980                                      MEnd = FinalOverriders->end();
1981          M != MEnd && !Done; ++M) {
1982       for (OverridingMethods::iterator SO = M->second.begin(),
1983                                     SOEnd = M->second.end();
1984            SO != SOEnd && !Done; ++SO) {
1985         assert(SO->second.size() > 0 &&
1986                "All virtual functions have overriding virtual functions");
1987 
1988         // C++ [class.abstract]p4:
1989         //   A class is abstract if it contains or inherits at least one
1990         //   pure virtual function for which the final overrider is pure
1991         //   virtual.
1992         if (SO->second.front().Method->isPure()) {
1993           data().Abstract = true;
1994           Done = true;
1995           break;
1996         }
1997       }
1998     }
1999   }
2000 
2001   // Set access bits correctly on the directly-declared conversions.
2002   for (conversion_iterator I = conversion_begin(), E = conversion_end();
2003        I != E; ++I)
2004     I.setAccess((*I)->getAccess());
2005 }
2006 
2007 bool CXXRecordDecl::mayBeAbstract() const {
2008   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
2009       isDependentContext())
2010     return false;
2011 
2012   for (const auto &B : bases()) {
2013     const auto *BaseDecl =
2014         cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
2015     if (BaseDecl->isAbstract())
2016       return true;
2017   }
2018 
2019   return false;
2020 }
2021 
2022 bool CXXRecordDecl::isEffectivelyFinal() const {
2023   auto *Def = getDefinition();
2024   if (!Def)
2025     return false;
2026   if (Def->hasAttr<FinalAttr>())
2027     return true;
2028   if (const auto *Dtor = Def->getDestructor())
2029     if (Dtor->hasAttr<FinalAttr>())
2030       return true;
2031   return false;
2032 }
2033 
2034 void CXXDeductionGuideDecl::anchor() {}
2035 
2036 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
2037   if ((getKind() != Other.getKind() ||
2038        getKind() == ExplicitSpecKind::Unresolved)) {
2039     if (getKind() == ExplicitSpecKind::Unresolved &&
2040         Other.getKind() == ExplicitSpecKind::Unresolved) {
2041       ODRHash SelfHash, OtherHash;
2042       SelfHash.AddStmt(getExpr());
2043       OtherHash.AddStmt(Other.getExpr());
2044       return SelfHash.CalculateHash() == OtherHash.CalculateHash();
2045     } else
2046       return false;
2047   }
2048   return true;
2049 }
2050 
2051 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
2052   switch (Function->getDeclKind()) {
2053   case Decl::Kind::CXXConstructor:
2054     return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
2055   case Decl::Kind::CXXConversion:
2056     return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
2057   case Decl::Kind::CXXDeductionGuide:
2058     return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
2059   default:
2060     return {};
2061   }
2062 }
2063 
2064 CXXDeductionGuideDecl *
2065 CXXDeductionGuideDecl::Create(ASTContext &C, DeclContext *DC,
2066                               SourceLocation StartLoc, ExplicitSpecifier ES,
2067                               const DeclarationNameInfo &NameInfo, QualType T,
2068                               TypeSourceInfo *TInfo, SourceLocation EndLocation,
2069                               CXXConstructorDecl *Ctor) {
2070   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
2071                                            TInfo, EndLocation, Ctor);
2072 }
2073 
2074 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
2075                                                                  unsigned ID) {
2076   return new (C, ID) CXXDeductionGuideDecl(
2077       C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2078       QualType(), nullptr, SourceLocation(), nullptr);
2079 }
2080 
2081 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
2082     ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
2083   return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
2084 }
2085 
2086 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
2087                                                                unsigned ID) {
2088   return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
2089 }
2090 
2091 void CXXMethodDecl::anchor() {}
2092 
2093 bool CXXMethodDecl::isStatic() const {
2094   const CXXMethodDecl *MD = getCanonicalDecl();
2095 
2096   if (MD->getStorageClass() == SC_Static)
2097     return true;
2098 
2099   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
2100   return isStaticOverloadedOperator(OOK);
2101 }
2102 
2103 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
2104                                  const CXXMethodDecl *BaseMD) {
2105   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
2106     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
2107       return true;
2108     if (recursivelyOverrides(MD, BaseMD))
2109       return true;
2110   }
2111   return false;
2112 }
2113 
2114 CXXMethodDecl *
2115 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2116                                                      bool MayBeBase) {
2117   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2118     return this;
2119 
2120   // Lookup doesn't work for destructors, so handle them separately.
2121   if (isa<CXXDestructorDecl>(this)) {
2122     CXXMethodDecl *MD = RD->getDestructor();
2123     if (MD) {
2124       if (recursivelyOverrides(MD, this))
2125         return MD;
2126       if (MayBeBase && recursivelyOverrides(this, MD))
2127         return MD;
2128     }
2129     return nullptr;
2130   }
2131 
2132   for (auto *ND : RD->lookup(getDeclName())) {
2133     auto *MD = dyn_cast<CXXMethodDecl>(ND);
2134     if (!MD)
2135       continue;
2136     if (recursivelyOverrides(MD, this))
2137       return MD;
2138     if (MayBeBase && recursivelyOverrides(this, MD))
2139       return MD;
2140   }
2141 
2142   return nullptr;
2143 }
2144 
2145 CXXMethodDecl *
2146 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2147                                              bool MayBeBase) {
2148   if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2149     return MD;
2150 
2151   llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
2152   auto AddFinalOverrider = [&](CXXMethodDecl *D) {
2153     // If this function is overridden by a candidate final overrider, it is not
2154     // a final overrider.
2155     for (CXXMethodDecl *OtherD : FinalOverriders) {
2156       if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
2157         return;
2158     }
2159 
2160     // Other candidate final overriders might be overridden by this function.
2161     llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) {
2162       return recursivelyOverrides(D, OtherD);
2163     });
2164 
2165     FinalOverriders.push_back(D);
2166   };
2167 
2168   for (const auto &I : RD->bases()) {
2169     const RecordType *RT = I.getType()->getAs<RecordType>();
2170     if (!RT)
2171       continue;
2172     const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2173     if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
2174       AddFinalOverrider(D);
2175   }
2176 
2177   return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
2178 }
2179 
2180 CXXMethodDecl *
2181 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2182                       const DeclarationNameInfo &NameInfo, QualType T,
2183                       TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
2184                       bool isInline, ConstexprSpecKind ConstexprKind,
2185                       SourceLocation EndLocation,
2186                       Expr *TrailingRequiresClause) {
2187   return new (C, RD) CXXMethodDecl(
2188       CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2189       isInline, ConstexprKind, EndLocation, TrailingRequiresClause);
2190 }
2191 
2192 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2193   return new (C, ID) CXXMethodDecl(
2194       CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2195       QualType(), nullptr, SC_None, false, false,
2196       ConstexprSpecKind::Unspecified, SourceLocation(), nullptr);
2197 }
2198 
2199 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2200                                                      bool IsAppleKext) {
2201   assert(isVirtual() && "this method is expected to be virtual");
2202 
2203   // When building with -fapple-kext, all calls must go through the vtable since
2204   // the kernel linker can do runtime patching of vtables.
2205   if (IsAppleKext)
2206     return nullptr;
2207 
2208   // If the member function is marked 'final', we know that it can't be
2209   // overridden and can therefore devirtualize it unless it's pure virtual.
2210   if (hasAttr<FinalAttr>())
2211     return isPure() ? nullptr : this;
2212 
2213   // If Base is unknown, we cannot devirtualize.
2214   if (!Base)
2215     return nullptr;
2216 
2217   // If the base expression (after skipping derived-to-base conversions) is a
2218   // class prvalue, then we can devirtualize.
2219   Base = Base->getBestDynamicClassTypeExpr();
2220   if (Base->isPRValue() && Base->getType()->isRecordType())
2221     return this;
2222 
2223   // If we don't even know what we would call, we can't devirtualize.
2224   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2225   if (!BestDynamicDecl)
2226     return nullptr;
2227 
2228   // There may be a method corresponding to MD in a derived class.
2229   CXXMethodDecl *DevirtualizedMethod =
2230       getCorrespondingMethodInClass(BestDynamicDecl);
2231 
2232   // If there final overrider in the dynamic type is ambiguous, we can't
2233   // devirtualize this call.
2234   if (!DevirtualizedMethod)
2235     return nullptr;
2236 
2237   // If that method is pure virtual, we can't devirtualize. If this code is
2238   // reached, the result would be UB, not a direct call to the derived class
2239   // function, and we can't assume the derived class function is defined.
2240   if (DevirtualizedMethod->isPure())
2241     return nullptr;
2242 
2243   // If that method is marked final, we can devirtualize it.
2244   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2245     return DevirtualizedMethod;
2246 
2247   // Similarly, if the class itself or its destructor is marked 'final',
2248   // the class can't be derived from and we can therefore devirtualize the
2249   // member function call.
2250   if (BestDynamicDecl->isEffectivelyFinal())
2251     return DevirtualizedMethod;
2252 
2253   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2254     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2255       if (VD->getType()->isRecordType())
2256         // This is a record decl. We know the type and can devirtualize it.
2257         return DevirtualizedMethod;
2258 
2259     return nullptr;
2260   }
2261 
2262   // We can devirtualize calls on an object accessed by a class member access
2263   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2264   // a derived class object constructed in the same location.
2265   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2266     const ValueDecl *VD = ME->getMemberDecl();
2267     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2268   }
2269 
2270   // Likewise for calls on an object accessed by a (non-reference) pointer to
2271   // member access.
2272   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2273     if (BO->isPtrMemOp()) {
2274       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2275       if (MPT->getPointeeType()->isRecordType())
2276         return DevirtualizedMethod;
2277     }
2278   }
2279 
2280   // We can't devirtualize the call.
2281   return nullptr;
2282 }
2283 
2284 bool CXXMethodDecl::isUsualDeallocationFunction(
2285     SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2286   assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2287   if (getOverloadedOperator() != OO_Delete &&
2288       getOverloadedOperator() != OO_Array_Delete)
2289     return false;
2290 
2291   // C++ [basic.stc.dynamic.deallocation]p2:
2292   //   A template instance is never a usual deallocation function,
2293   //   regardless of its signature.
2294   if (getPrimaryTemplate())
2295     return false;
2296 
2297   // C++ [basic.stc.dynamic.deallocation]p2:
2298   //   If a class T has a member deallocation function named operator delete
2299   //   with exactly one parameter, then that function is a usual (non-placement)
2300   //   deallocation function. [...]
2301   if (getNumParams() == 1)
2302     return true;
2303   unsigned UsualParams = 1;
2304 
2305   // C++ P0722:
2306   //   A destroying operator delete is a usual deallocation function if
2307   //   removing the std::destroying_delete_t parameter and changing the
2308   //   first parameter type from T* to void* results in the signature of
2309   //   a usual deallocation function.
2310   if (isDestroyingOperatorDelete())
2311     ++UsualParams;
2312 
2313   // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2314   //   [...] If class T does not declare such an operator delete but does
2315   //   declare a member deallocation function named operator delete with
2316   //   exactly two parameters, the second of which has type std::size_t (18.1),
2317   //   then this function is a usual deallocation function.
2318   //
2319   // C++17 says a usual deallocation function is one with the signature
2320   //   (void* [, size_t] [, std::align_val_t] [, ...])
2321   // and all such functions are usual deallocation functions. It's not clear
2322   // that allowing varargs functions was intentional.
2323   ASTContext &Context = getASTContext();
2324   if (UsualParams < getNumParams() &&
2325       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2326                                      Context.getSizeType()))
2327     ++UsualParams;
2328 
2329   if (UsualParams < getNumParams() &&
2330       getParamDecl(UsualParams)->getType()->isAlignValT())
2331     ++UsualParams;
2332 
2333   if (UsualParams != getNumParams())
2334     return false;
2335 
2336   // In C++17 onwards, all potential usual deallocation functions are actual
2337   // usual deallocation functions. Honor this behavior when post-C++14
2338   // deallocation functions are offered as extensions too.
2339   // FIXME(EricWF): Destroying Delete should be a language option. How do we
2340   // handle when destroying delete is used prior to C++17?
2341   if (Context.getLangOpts().CPlusPlus17 ||
2342       Context.getLangOpts().AlignedAllocation ||
2343       isDestroyingOperatorDelete())
2344     return true;
2345 
2346   // This function is a usual deallocation function if there are no
2347   // single-parameter deallocation functions of the same kind.
2348   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2349   bool Result = true;
2350   for (const auto *D : R) {
2351     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2352       if (FD->getNumParams() == 1) {
2353         PreventedBy.push_back(FD);
2354         Result = false;
2355       }
2356     }
2357   }
2358   return Result;
2359 }
2360 
2361 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2362   // C++0x [class.copy]p17:
2363   //  A user-declared copy assignment operator X::operator= is a non-static
2364   //  non-template member function of class X with exactly one parameter of
2365   //  type X, X&, const X&, volatile X& or const volatile X&.
2366   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2367       /*non-static*/ isStatic() ||
2368       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2369       getNumParams() != 1)
2370     return false;
2371 
2372   QualType ParamType = getParamDecl(0)->getType();
2373   if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2374     ParamType = Ref->getPointeeType();
2375 
2376   ASTContext &Context = getASTContext();
2377   QualType ClassType
2378     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2379   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2380 }
2381 
2382 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2383   // C++0x [class.copy]p19:
2384   //  A user-declared move assignment operator X::operator= is a non-static
2385   //  non-template member function of class X with exactly one parameter of type
2386   //  X&&, const X&&, volatile X&&, or const volatile X&&.
2387   if (getOverloadedOperator() != OO_Equal || isStatic() ||
2388       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2389       getNumParams() != 1)
2390     return false;
2391 
2392   QualType ParamType = getParamDecl(0)->getType();
2393   if (!isa<RValueReferenceType>(ParamType))
2394     return false;
2395   ParamType = ParamType->getPointeeType();
2396 
2397   ASTContext &Context = getASTContext();
2398   QualType ClassType
2399     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2400   return Context.hasSameUnqualifiedType(ClassType, ParamType);
2401 }
2402 
2403 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2404   assert(MD->isCanonicalDecl() && "Method is not canonical!");
2405   assert(!MD->getParent()->isDependentContext() &&
2406          "Can't add an overridden method to a class template!");
2407   assert(MD->isVirtual() && "Method is not virtual!");
2408 
2409   getASTContext().addOverriddenMethod(this, MD);
2410 }
2411 
2412 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2413   if (isa<CXXConstructorDecl>(this)) return nullptr;
2414   return getASTContext().overridden_methods_begin(this);
2415 }
2416 
2417 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2418   if (isa<CXXConstructorDecl>(this)) return nullptr;
2419   return getASTContext().overridden_methods_end(this);
2420 }
2421 
2422 unsigned CXXMethodDecl::size_overridden_methods() const {
2423   if (isa<CXXConstructorDecl>(this)) return 0;
2424   return getASTContext().overridden_methods_size(this);
2425 }
2426 
2427 CXXMethodDecl::overridden_method_range
2428 CXXMethodDecl::overridden_methods() const {
2429   if (isa<CXXConstructorDecl>(this))
2430     return overridden_method_range(nullptr, nullptr);
2431   return getASTContext().overridden_methods(this);
2432 }
2433 
2434 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2435                                   const CXXRecordDecl *Decl) {
2436   QualType ClassTy = C.getTypeDeclType(Decl);
2437   return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2438 }
2439 
2440 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2441                                     const CXXRecordDecl *Decl) {
2442   ASTContext &C = Decl->getASTContext();
2443   QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2444   return C.getPointerType(ObjectTy);
2445 }
2446 
2447 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
2448                                           const CXXRecordDecl *Decl) {
2449   ASTContext &C = Decl->getASTContext();
2450   return ::getThisObjectType(C, FPT, Decl);
2451 }
2452 
2453 QualType CXXMethodDecl::getThisType() const {
2454   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2455   // If the member function is declared const, the type of this is const X*,
2456   // if the member function is declared volatile, the type of this is
2457   // volatile X*, and if the member function is declared const volatile,
2458   // the type of this is const volatile X*.
2459   assert(isInstance() && "No 'this' for static methods!");
2460   return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
2461                                     getParent());
2462 }
2463 
2464 QualType CXXMethodDecl::getThisObjectType() const {
2465   // Ditto getThisType.
2466   assert(isInstance() && "No 'this' for static methods!");
2467   return CXXMethodDecl::getThisObjectType(
2468       getType()->castAs<FunctionProtoType>(), getParent());
2469 }
2470 
2471 bool CXXMethodDecl::hasInlineBody() const {
2472   // If this function is a template instantiation, look at the template from
2473   // which it was instantiated.
2474   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2475   if (!CheckFn)
2476     CheckFn = this;
2477 
2478   const FunctionDecl *fn;
2479   return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2480          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2481 }
2482 
2483 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2484   const CXXRecordDecl *P = getParent();
2485   return P->isLambda() && getDeclName().isIdentifier() &&
2486          getName() == getLambdaStaticInvokerName();
2487 }
2488 
2489 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2490                                        TypeSourceInfo *TInfo, bool IsVirtual,
2491                                        SourceLocation L, Expr *Init,
2492                                        SourceLocation R,
2493                                        SourceLocation EllipsisLoc)
2494     : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc),
2495       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2496       IsWritten(false), SourceOrder(0) {}
2497 
2498 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2499                                        SourceLocation MemberLoc,
2500                                        SourceLocation L, Expr *Init,
2501                                        SourceLocation R)
2502     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2503       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2504       IsWritten(false), SourceOrder(0) {}
2505 
2506 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2507                                        IndirectFieldDecl *Member,
2508                                        SourceLocation MemberLoc,
2509                                        SourceLocation L, Expr *Init,
2510                                        SourceLocation R)
2511     : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2512       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2513       IsWritten(false), SourceOrder(0) {}
2514 
2515 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2516                                        TypeSourceInfo *TInfo,
2517                                        SourceLocation L, Expr *Init,
2518                                        SourceLocation R)
2519     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2520       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2521 
2522 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2523   return Context.getAllocator()
2524                 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2525 }
2526 
2527 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2528   if (isBaseInitializer())
2529     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2530   else
2531     return {};
2532 }
2533 
2534 const Type *CXXCtorInitializer::getBaseClass() const {
2535   if (isBaseInitializer())
2536     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2537   else
2538     return nullptr;
2539 }
2540 
2541 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2542   if (isInClassMemberInitializer())
2543     return getAnyMember()->getLocation();
2544 
2545   if (isAnyMemberInitializer())
2546     return getMemberLocation();
2547 
2548   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2549     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
2550 
2551   return {};
2552 }
2553 
2554 SourceRange CXXCtorInitializer::getSourceRange() const {
2555   if (isInClassMemberInitializer()) {
2556     FieldDecl *D = getAnyMember();
2557     if (Expr *I = D->getInClassInitializer())
2558       return I->getSourceRange();
2559     return {};
2560   }
2561 
2562   return SourceRange(getSourceLocation(), getRParenLoc());
2563 }
2564 
2565 CXXConstructorDecl::CXXConstructorDecl(
2566     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2567     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2568     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2569     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2570     InheritedConstructor Inherited, Expr *TrailingRequiresClause)
2571     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2572                     SC_None, UsesFPIntrin, isInline, ConstexprKind,
2573                     SourceLocation(), TrailingRequiresClause) {
2574   setNumCtorInitializers(0);
2575   setInheritingConstructor(static_cast<bool>(Inherited));
2576   setImplicit(isImplicitlyDeclared);
2577   CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2578   if (Inherited)
2579     *getTrailingObjects<InheritedConstructor>() = Inherited;
2580   setExplicitSpecifier(ES);
2581 }
2582 
2583 void CXXConstructorDecl::anchor() {}
2584 
2585 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2586                                                            unsigned ID,
2587                                                            uint64_t AllocKind) {
2588   bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2589   bool isInheritingConstructor =
2590       static_cast<bool>(AllocKind & TAKInheritsConstructor);
2591   unsigned Extra =
2592       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2593           isInheritingConstructor, hasTrailingExplicit);
2594   auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2595       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2596       ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified,
2597       InheritedConstructor(), nullptr);
2598   Result->setInheritingConstructor(isInheritingConstructor);
2599   Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2600       hasTrailingExplicit;
2601   Result->setExplicitSpecifier(ExplicitSpecifier());
2602   return Result;
2603 }
2604 
2605 CXXConstructorDecl *CXXConstructorDecl::Create(
2606     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2607     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2608     ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2609     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2610     InheritedConstructor Inherited, Expr *TrailingRequiresClause) {
2611   assert(NameInfo.getName().getNameKind()
2612          == DeclarationName::CXXConstructorName &&
2613          "Name must refer to a constructor");
2614   unsigned Extra =
2615       additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2616           Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2617   return new (C, RD, Extra) CXXConstructorDecl(
2618       C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline,
2619       isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause);
2620 }
2621 
2622 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2623   return CtorInitializers.get(getASTContext().getExternalSource());
2624 }
2625 
2626 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2627   assert(isDelegatingConstructor() && "Not a delegating constructor!");
2628   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2629   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2630     return Construct->getConstructor();
2631 
2632   return nullptr;
2633 }
2634 
2635 bool CXXConstructorDecl::isDefaultConstructor() const {
2636   // C++ [class.default.ctor]p1:
2637   //   A default constructor for a class X is a constructor of class X for
2638   //   which each parameter that is not a function parameter pack has a default
2639   //   argument (including the case of a constructor with no parameters)
2640   return getMinRequiredArguments() == 0;
2641 }
2642 
2643 bool
2644 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2645   return isCopyOrMoveConstructor(TypeQuals) &&
2646          getParamDecl(0)->getType()->isLValueReferenceType();
2647 }
2648 
2649 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2650   return isCopyOrMoveConstructor(TypeQuals) &&
2651          getParamDecl(0)->getType()->isRValueReferenceType();
2652 }
2653 
2654 /// Determine whether this is a copy or move constructor.
2655 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2656   // C++ [class.copy]p2:
2657   //   A non-template constructor for class X is a copy constructor
2658   //   if its first parameter is of type X&, const X&, volatile X& or
2659   //   const volatile X&, and either there are no other parameters
2660   //   or else all other parameters have default arguments (8.3.6).
2661   // C++0x [class.copy]p3:
2662   //   A non-template constructor for class X is a move constructor if its
2663   //   first parameter is of type X&&, const X&&, volatile X&&, or
2664   //   const volatile X&&, and either there are no other parameters or else
2665   //   all other parameters have default arguments.
2666   if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2667       getDescribedFunctionTemplate() != nullptr)
2668     return false;
2669 
2670   const ParmVarDecl *Param = getParamDecl(0);
2671 
2672   // Do we have a reference type?
2673   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2674   if (!ParamRefType)
2675     return false;
2676 
2677   // Is it a reference to our class type?
2678   ASTContext &Context = getASTContext();
2679 
2680   CanQualType PointeeType
2681     = Context.getCanonicalType(ParamRefType->getPointeeType());
2682   CanQualType ClassTy
2683     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2684   if (PointeeType.getUnqualifiedType() != ClassTy)
2685     return false;
2686 
2687   // FIXME: other qualifiers?
2688 
2689   // We have a copy or move constructor.
2690   TypeQuals = PointeeType.getCVRQualifiers();
2691   return true;
2692 }
2693 
2694 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2695   // C++ [class.conv.ctor]p1:
2696   //   A constructor declared without the function-specifier explicit
2697   //   that can be called with a single parameter specifies a
2698   //   conversion from the type of its first parameter to the type of
2699   //   its class. Such a constructor is called a converting
2700   //   constructor.
2701   if (isExplicit() && !AllowExplicit)
2702     return false;
2703 
2704   // FIXME: This has nothing to do with the definition of converting
2705   // constructor, but is convenient for how we use this function in overload
2706   // resolution.
2707   return getNumParams() == 0
2708              ? getType()->castAs<FunctionProtoType>()->isVariadic()
2709              : getMinRequiredArguments() <= 1;
2710 }
2711 
2712 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2713   if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2714     return false;
2715 
2716   const ParmVarDecl *Param = getParamDecl(0);
2717 
2718   ASTContext &Context = getASTContext();
2719   CanQualType ParamType = Context.getCanonicalType(Param->getType());
2720 
2721   // Is it the same as our class type?
2722   CanQualType ClassTy
2723     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2724   if (ParamType.getUnqualifiedType() != ClassTy)
2725     return false;
2726 
2727   return true;
2728 }
2729 
2730 void CXXDestructorDecl::anchor() {}
2731 
2732 CXXDestructorDecl *
2733 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2734   return new (C, ID) CXXDestructorDecl(
2735       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2736       false, false, false, ConstexprSpecKind::Unspecified, nullptr);
2737 }
2738 
2739 CXXDestructorDecl *CXXDestructorDecl::Create(
2740     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2741     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2742     bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2743     ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) {
2744   assert(NameInfo.getName().getNameKind()
2745          == DeclarationName::CXXDestructorName &&
2746          "Name must refer to a destructor");
2747   return new (C, RD) CXXDestructorDecl(
2748       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline,
2749       isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause);
2750 }
2751 
2752 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2753   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2754   if (OD && !First->OperatorDelete) {
2755     First->OperatorDelete = OD;
2756     First->OperatorDeleteThisArg = ThisArg;
2757     if (auto *L = getASTMutationListener())
2758       L->ResolvedOperatorDelete(First, OD, ThisArg);
2759   }
2760 }
2761 
2762 void CXXConversionDecl::anchor() {}
2763 
2764 CXXConversionDecl *
2765 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2766   return new (C, ID) CXXConversionDecl(
2767       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2768       false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
2769       SourceLocation(), nullptr);
2770 }
2771 
2772 CXXConversionDecl *CXXConversionDecl::Create(
2773     ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2774     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2775     bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2776     ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2777     Expr *TrailingRequiresClause) {
2778   assert(NameInfo.getName().getNameKind()
2779          == DeclarationName::CXXConversionFunctionName &&
2780          "Name must refer to a conversion function");
2781   return new (C, RD) CXXConversionDecl(
2782       C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES,
2783       ConstexprKind, EndLocation, TrailingRequiresClause);
2784 }
2785 
2786 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2787   return isImplicit() && getParent()->isLambda() &&
2788          getConversionType()->isBlockPointerType();
2789 }
2790 
2791 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2792                                  SourceLocation LangLoc, LanguageIDs lang,
2793                                  bool HasBraces)
2794     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2795       ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2796   setLanguage(lang);
2797   LinkageSpecDeclBits.HasBraces = HasBraces;
2798 }
2799 
2800 void LinkageSpecDecl::anchor() {}
2801 
2802 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2803                                          DeclContext *DC,
2804                                          SourceLocation ExternLoc,
2805                                          SourceLocation LangLoc,
2806                                          LanguageIDs Lang,
2807                                          bool HasBraces) {
2808   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2809 }
2810 
2811 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2812                                                      unsigned ID) {
2813   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2814                                      SourceLocation(), lang_c, false);
2815 }
2816 
2817 void UsingDirectiveDecl::anchor() {}
2818 
2819 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2820                                                SourceLocation L,
2821                                                SourceLocation NamespaceLoc,
2822                                            NestedNameSpecifierLoc QualifierLoc,
2823                                                SourceLocation IdentLoc,
2824                                                NamedDecl *Used,
2825                                                DeclContext *CommonAncestor) {
2826   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2827     Used = NS->getOriginalNamespace();
2828   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2829                                         IdentLoc, Used, CommonAncestor);
2830 }
2831 
2832 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2833                                                            unsigned ID) {
2834   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2835                                         SourceLocation(),
2836                                         NestedNameSpecifierLoc(),
2837                                         SourceLocation(), nullptr, nullptr);
2838 }
2839 
2840 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2841   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2842     return NA->getNamespace();
2843   return cast_or_null<NamespaceDecl>(NominatedNamespace);
2844 }
2845 
2846 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2847                              SourceLocation StartLoc, SourceLocation IdLoc,
2848                              IdentifierInfo *Id, NamespaceDecl *PrevDecl)
2849     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2850       redeclarable_base(C), LocStart(StartLoc),
2851       AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2852   setPreviousDecl(PrevDecl);
2853 
2854   if (PrevDecl)
2855     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2856 }
2857 
2858 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2859                                      bool Inline, SourceLocation StartLoc,
2860                                      SourceLocation IdLoc, IdentifierInfo *Id,
2861                                      NamespaceDecl *PrevDecl) {
2862   return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2863                                    PrevDecl);
2864 }
2865 
2866 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2867   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2868                                    SourceLocation(), nullptr, nullptr);
2869 }
2870 
2871 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2872   if (isFirstDecl())
2873     return this;
2874 
2875   return AnonOrFirstNamespaceAndInline.getPointer();
2876 }
2877 
2878 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2879   if (isFirstDecl())
2880     return this;
2881 
2882   return AnonOrFirstNamespaceAndInline.getPointer();
2883 }
2884 
2885 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2886 
2887 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2888   return getNextRedeclaration();
2889 }
2890 
2891 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2892   return getPreviousDecl();
2893 }
2894 
2895 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2896   return getMostRecentDecl();
2897 }
2898 
2899 void NamespaceAliasDecl::anchor() {}
2900 
2901 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2902   return getNextRedeclaration();
2903 }
2904 
2905 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2906   return getPreviousDecl();
2907 }
2908 
2909 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2910   return getMostRecentDecl();
2911 }
2912 
2913 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2914                                                SourceLocation UsingLoc,
2915                                                SourceLocation AliasLoc,
2916                                                IdentifierInfo *Alias,
2917                                            NestedNameSpecifierLoc QualifierLoc,
2918                                                SourceLocation IdentLoc,
2919                                                NamedDecl *Namespace) {
2920   // FIXME: Preserve the aliased namespace as written.
2921   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2922     Namespace = NS->getOriginalNamespace();
2923   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2924                                         QualifierLoc, IdentLoc, Namespace);
2925 }
2926 
2927 NamespaceAliasDecl *
2928 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2929   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2930                                         SourceLocation(), nullptr,
2931                                         NestedNameSpecifierLoc(),
2932                                         SourceLocation(), nullptr);
2933 }
2934 
2935 void LifetimeExtendedTemporaryDecl::anchor() {}
2936 
2937 /// Retrieve the storage duration for the materialized temporary.
2938 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
2939   const ValueDecl *ExtendingDecl = getExtendingDecl();
2940   if (!ExtendingDecl)
2941     return SD_FullExpression;
2942   // FIXME: This is not necessarily correct for a temporary materialized
2943   // within a default initializer.
2944   if (isa<FieldDecl>(ExtendingDecl))
2945     return SD_Automatic;
2946   // FIXME: This only works because storage class specifiers are not allowed
2947   // on decomposition declarations.
2948   if (isa<BindingDecl>(ExtendingDecl))
2949     return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
2950                                                                  : SD_Static;
2951   return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
2952 }
2953 
2954 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
2955   assert(getStorageDuration() == SD_Static &&
2956          "don't need to cache the computed value for this temporary");
2957   if (MayCreate && !Value) {
2958     Value = (new (getASTContext()) APValue);
2959     getASTContext().addDestruction(Value);
2960   }
2961   assert(Value && "may not be null");
2962   return Value;
2963 }
2964 
2965 void UsingShadowDecl::anchor() {}
2966 
2967 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
2968                                  SourceLocation Loc, DeclarationName Name,
2969                                  BaseUsingDecl *Introducer, NamedDecl *Target)
2970     : NamedDecl(K, DC, Loc, Name), redeclarable_base(C),
2971       UsingOrNextShadow(Introducer) {
2972   if (Target)
2973     setTargetDecl(Target);
2974   setImplicit();
2975 }
2976 
2977 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
2978     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
2979       redeclarable_base(C) {}
2980 
2981 UsingShadowDecl *
2982 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2983   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
2984 }
2985 
2986 BaseUsingDecl *UsingShadowDecl::getIntroducer() const {
2987   const UsingShadowDecl *Shadow = this;
2988   while (const auto *NextShadow =
2989              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2990     Shadow = NextShadow;
2991   return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow);
2992 }
2993 
2994 void ConstructorUsingShadowDecl::anchor() {}
2995 
2996 ConstructorUsingShadowDecl *
2997 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
2998                                    SourceLocation Loc, UsingDecl *Using,
2999                                    NamedDecl *Target, bool IsVirtual) {
3000   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
3001                                                 IsVirtual);
3002 }
3003 
3004 ConstructorUsingShadowDecl *
3005 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3006   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
3007 }
3008 
3009 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3010   return getIntroducer()->getQualifier()->getAsRecordDecl();
3011 }
3012 
3013 void BaseUsingDecl::anchor() {}
3014 
3015 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) {
3016   assert(!llvm::is_contained(shadows(), S) && "declaration already in set");
3017   assert(S->getIntroducer() == this);
3018 
3019   if (FirstUsingShadow.getPointer())
3020     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
3021   FirstUsingShadow.setPointer(S);
3022 }
3023 
3024 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) {
3025   assert(llvm::is_contained(shadows(), S) && "declaration not in set");
3026   assert(S->getIntroducer() == this);
3027 
3028   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3029 
3030   if (FirstUsingShadow.getPointer() == S) {
3031     FirstUsingShadow.setPointer(
3032       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
3033     S->UsingOrNextShadow = this;
3034     return;
3035   }
3036 
3037   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
3038   while (Prev->UsingOrNextShadow != S)
3039     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
3040   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
3041   S->UsingOrNextShadow = this;
3042 }
3043 
3044 void UsingDecl::anchor() {}
3045 
3046 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
3047                              NestedNameSpecifierLoc QualifierLoc,
3048                              const DeclarationNameInfo &NameInfo,
3049                              bool HasTypename) {
3050   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
3051 }
3052 
3053 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3054   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
3055                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
3056                                false);
3057 }
3058 
3059 SourceRange UsingDecl::getSourceRange() const {
3060   SourceLocation Begin = isAccessDeclaration()
3061     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3062   return SourceRange(Begin, getNameInfo().getEndLoc());
3063 }
3064 
3065 void UsingEnumDecl::anchor() {}
3066 
3067 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC,
3068                                      SourceLocation UL, SourceLocation EL,
3069                                      SourceLocation NL, EnumDecl *Enum) {
3070   return new (C, DC) UsingEnumDecl(DC, Enum->getDeclName(), UL, EL, NL, Enum);
3071 }
3072 
3073 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3074   return new (C, ID) UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(),
3075                                    SourceLocation(), SourceLocation(), nullptr);
3076 }
3077 
3078 SourceRange UsingEnumDecl::getSourceRange() const {
3079   return SourceRange(EnumLocation, getLocation());
3080 }
3081 
3082 void UsingPackDecl::anchor() {}
3083 
3084 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
3085                                      NamedDecl *InstantiatedFrom,
3086                                      ArrayRef<NamedDecl *> UsingDecls) {
3087   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
3088   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
3089 }
3090 
3091 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3092                                                  unsigned NumExpansions) {
3093   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
3094   auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
3095   Result->NumExpansions = NumExpansions;
3096   auto *Trail = Result->getTrailingObjects<NamedDecl *>();
3097   for (unsigned I = 0; I != NumExpansions; ++I)
3098     new (Trail + I) NamedDecl*(nullptr);
3099   return Result;
3100 }
3101 
3102 void UnresolvedUsingValueDecl::anchor() {}
3103 
3104 UnresolvedUsingValueDecl *
3105 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
3106                                  SourceLocation UsingLoc,
3107                                  NestedNameSpecifierLoc QualifierLoc,
3108                                  const DeclarationNameInfo &NameInfo,
3109                                  SourceLocation EllipsisLoc) {
3110   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
3111                                               QualifierLoc, NameInfo,
3112                                               EllipsisLoc);
3113 }
3114 
3115 UnresolvedUsingValueDecl *
3116 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3117   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
3118                                               SourceLocation(),
3119                                               NestedNameSpecifierLoc(),
3120                                               DeclarationNameInfo(),
3121                                               SourceLocation());
3122 }
3123 
3124 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
3125   SourceLocation Begin = isAccessDeclaration()
3126     ? getQualifierLoc().getBeginLoc() : UsingLocation;
3127   return SourceRange(Begin, getNameInfo().getEndLoc());
3128 }
3129 
3130 void UnresolvedUsingTypenameDecl::anchor() {}
3131 
3132 UnresolvedUsingTypenameDecl *
3133 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3134                                     SourceLocation UsingLoc,
3135                                     SourceLocation TypenameLoc,
3136                                     NestedNameSpecifierLoc QualifierLoc,
3137                                     SourceLocation TargetNameLoc,
3138                                     DeclarationName TargetName,
3139                                     SourceLocation EllipsisLoc) {
3140   return new (C, DC) UnresolvedUsingTypenameDecl(
3141       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3142       TargetName.getAsIdentifierInfo(), EllipsisLoc);
3143 }
3144 
3145 UnresolvedUsingTypenameDecl *
3146 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3147   return new (C, ID) UnresolvedUsingTypenameDecl(
3148       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3149       SourceLocation(), nullptr, SourceLocation());
3150 }
3151 
3152 UnresolvedUsingIfExistsDecl *
3153 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC,
3154                                     SourceLocation Loc, DeclarationName Name) {
3155   return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name);
3156 }
3157 
3158 UnresolvedUsingIfExistsDecl *
3159 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) {
3160   return new (Ctx, ID)
3161       UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName());
3162 }
3163 
3164 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC,
3165                                                          SourceLocation Loc,
3166                                                          DeclarationName Name)
3167     : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {}
3168 
3169 void UnresolvedUsingIfExistsDecl::anchor() {}
3170 
3171 void StaticAssertDecl::anchor() {}
3172 
3173 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3174                                            SourceLocation StaticAssertLoc,
3175                                            Expr *AssertExpr,
3176                                            StringLiteral *Message,
3177                                            SourceLocation RParenLoc,
3178                                            bool Failed) {
3179   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3180                                       RParenLoc, Failed);
3181 }
3182 
3183 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3184                                                        unsigned ID) {
3185   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3186                                       nullptr, SourceLocation(), false);
3187 }
3188 
3189 void BindingDecl::anchor() {}
3190 
3191 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3192                                  SourceLocation IdLoc, IdentifierInfo *Id) {
3193   return new (C, DC) BindingDecl(DC, IdLoc, Id);
3194 }
3195 
3196 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3197   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3198 }
3199 
3200 VarDecl *BindingDecl::getHoldingVar() const {
3201   Expr *B = getBinding();
3202   if (!B)
3203     return nullptr;
3204   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3205   if (!DRE)
3206     return nullptr;
3207 
3208   auto *VD = cast<VarDecl>(DRE->getDecl());
3209   assert(VD->isImplicit() && "holding var for binding decl not implicit");
3210   return VD;
3211 }
3212 
3213 void DecompositionDecl::anchor() {}
3214 
3215 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3216                                              SourceLocation StartLoc,
3217                                              SourceLocation LSquareLoc,
3218                                              QualType T, TypeSourceInfo *TInfo,
3219                                              StorageClass SC,
3220                                              ArrayRef<BindingDecl *> Bindings) {
3221   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3222   return new (C, DC, Extra)
3223       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3224 }
3225 
3226 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3227                                                          unsigned ID,
3228                                                          unsigned NumBindings) {
3229   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3230   auto *Result = new (C, ID, Extra)
3231       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3232                         QualType(), nullptr, StorageClass(), None);
3233   // Set up and clean out the bindings array.
3234   Result->NumBindings = NumBindings;
3235   auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3236   for (unsigned I = 0; I != NumBindings; ++I)
3237     new (Trail + I) BindingDecl*(nullptr);
3238   return Result;
3239 }
3240 
3241 void DecompositionDecl::printName(llvm::raw_ostream &os) const {
3242   os << '[';
3243   bool Comma = false;
3244   for (const auto *B : bindings()) {
3245     if (Comma)
3246       os << ", ";
3247     B->printName(os);
3248     Comma = true;
3249   }
3250   os << ']';
3251 }
3252 
3253 void MSPropertyDecl::anchor() {}
3254 
3255 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3256                                        SourceLocation L, DeclarationName N,
3257                                        QualType T, TypeSourceInfo *TInfo,
3258                                        SourceLocation StartL,
3259                                        IdentifierInfo *Getter,
3260                                        IdentifierInfo *Setter) {
3261   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3262 }
3263 
3264 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3265                                                    unsigned ID) {
3266   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3267                                     DeclarationName(), QualType(), nullptr,
3268                                     SourceLocation(), nullptr, nullptr);
3269 }
3270 
3271 void MSGuidDecl::anchor() {}
3272 
3273 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
3274     : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
3275       PartVal(P), APVal() {}
3276 
3277 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
3278   DeclContext *DC = C.getTranslationUnitDecl();
3279   return new (C, DC) MSGuidDecl(DC, T, P);
3280 }
3281 
3282 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3283   return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
3284 }
3285 
3286 void MSGuidDecl::printName(llvm::raw_ostream &OS) const {
3287   OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
3288                      PartVal.Part1, PartVal.Part2, PartVal.Part3);
3289   unsigned I = 0;
3290   for (uint8_t Byte : PartVal.Part4And5) {
3291     OS << llvm::format("%02" PRIx8, Byte);
3292     if (++I == 2)
3293       OS << '-';
3294   }
3295   OS << '}';
3296 }
3297 
3298 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
3299 static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
3300   // FIXME: We only need to check this once, not once each time we compute a
3301   // GUID APValue.
3302   using MatcherRef = llvm::function_ref<bool(QualType)>;
3303 
3304   auto IsInt = [&Ctx](unsigned N) {
3305     return [&Ctx, N](QualType T) {
3306       return T->isUnsignedIntegerOrEnumerationType() &&
3307              Ctx.getIntWidth(T) == N;
3308     };
3309   };
3310 
3311   auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
3312     return [&Ctx, Elem, N](QualType T) {
3313       const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
3314       return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
3315     };
3316   };
3317 
3318   auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
3319     return [Fields](QualType T) {
3320       const RecordDecl *RD = T->getAsRecordDecl();
3321       if (!RD || RD->isUnion())
3322         return false;
3323       RD = RD->getDefinition();
3324       if (!RD)
3325         return false;
3326       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3327         if (CXXRD->getNumBases())
3328           return false;
3329       auto MatcherIt = Fields.begin();
3330       for (const FieldDecl *FD : RD->fields()) {
3331         if (FD->isUnnamedBitfield()) continue;
3332         if (FD->isBitField() || MatcherIt == Fields.end() ||
3333             !(*MatcherIt)(FD->getType()))
3334           return false;
3335         ++MatcherIt;
3336       }
3337       return MatcherIt == Fields.end();
3338     };
3339   };
3340 
3341   // We expect an {i32, i16, i16, [8 x i8]}.
3342   return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
3343 }
3344 
3345 APValue &MSGuidDecl::getAsAPValue() const {
3346   if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3347     using llvm::APInt;
3348     using llvm::APSInt;
3349     APVal = APValue(APValue::UninitStruct(), 0, 4);
3350     APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
3351     APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
3352     APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
3353     APValue &Arr = APVal.getStructField(3) =
3354         APValue(APValue::UninitArray(), 8, 8);
3355     for (unsigned I = 0; I != 8; ++I) {
3356       Arr.getArrayInitializedElt(I) =
3357           APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
3358     }
3359     // Register this APValue to be destroyed if necessary. (Note that the
3360     // MSGuidDecl destructor is never run.)
3361     getASTContext().addDestruction(&APVal);
3362   }
3363 
3364   return APVal;
3365 }
3366 
3367 static const char *getAccessName(AccessSpecifier AS) {
3368   switch (AS) {
3369     case AS_none:
3370       llvm_unreachable("Invalid access specifier!");
3371     case AS_public:
3372       return "public";
3373     case AS_private:
3374       return "private";
3375     case AS_protected:
3376       return "protected";
3377   }
3378   llvm_unreachable("Invalid access specifier!");
3379 }
3380 
3381 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
3382                                              AccessSpecifier AS) {
3383   return DB << getAccessName(AS);
3384 }
3385