1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the C++ related Decl classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/DeclCXX.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/ASTUnresolvedSet.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/DeclarationName.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/LambdaCapture.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/ODRHash.h" 28 #include "clang/AST/Type.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/AST/UnresolvedSet.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/IdentifierTable.h" 33 #include "clang/Basic/LLVM.h" 34 #include "clang/Basic/LangOptions.h" 35 #include "clang/Basic/OperatorKinds.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "llvm/ADT/None.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 52 using namespace clang; 53 54 //===----------------------------------------------------------------------===// 55 // Decl Allocation/Deallocation Method Implementations 56 //===----------------------------------------------------------------------===// 57 58 void AccessSpecDecl::anchor() {} 59 60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 61 return new (C, ID) AccessSpecDecl(EmptyShell()); 62 } 63 64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { 65 ExternalASTSource *Source = C.getExternalSource(); 66 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); 67 assert(Source && "getFromExternalSource with no external source"); 68 69 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) 70 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( 71 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); 72 Impl.Decls.setLazy(false); 73 } 74 75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) 76 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), 77 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), 78 Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), 79 HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), 80 HasPrivateFields(false), HasProtectedFields(false), 81 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), 82 HasOnlyCMembers(true), HasInClassInitializer(false), 83 HasUninitializedReferenceMember(false), HasUninitializedFields(false), 84 HasInheritedConstructor(false), 85 HasInheritedDefaultConstructor(false), 86 HasInheritedAssignment(false), 87 NeedOverloadResolutionForCopyConstructor(false), 88 NeedOverloadResolutionForMoveConstructor(false), 89 NeedOverloadResolutionForCopyAssignment(false), 90 NeedOverloadResolutionForMoveAssignment(false), 91 NeedOverloadResolutionForDestructor(false), 92 DefaultedCopyConstructorIsDeleted(false), 93 DefaultedMoveConstructorIsDeleted(false), 94 DefaultedCopyAssignmentIsDeleted(false), 95 DefaultedMoveAssignmentIsDeleted(false), 96 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), 97 HasTrivialSpecialMembersForCall(SMF_All), 98 DeclaredNonTrivialSpecialMembers(0), 99 DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), 100 HasConstexprNonCopyMoveConstructor(false), 101 HasDefaultedDefaultConstructor(false), 102 DefaultedDefaultConstructorIsConstexpr(true), 103 HasConstexprDefaultConstructor(false), 104 DefaultedDestructorIsConstexpr(true), 105 HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true), 106 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), 107 ImplicitCopyConstructorCanHaveConstParamForVBase(true), 108 ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), 109 ImplicitCopyAssignmentHasConstParam(true), 110 HasDeclaredCopyConstructorWithConstParam(false), 111 HasDeclaredCopyAssignmentWithConstParam(false), 112 IsAnyDestructorNoReturn(false), IsLambda(false), 113 IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), 114 HasODRHash(false), Definition(D) {} 115 116 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { 117 return Bases.get(Definition->getASTContext().getExternalSource()); 118 } 119 120 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { 121 return VBases.get(Definition->getASTContext().getExternalSource()); 122 } 123 124 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, 125 DeclContext *DC, SourceLocation StartLoc, 126 SourceLocation IdLoc, IdentifierInfo *Id, 127 CXXRecordDecl *PrevDecl) 128 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), 129 DefinitionData(PrevDecl ? PrevDecl->DefinitionData 130 : nullptr) {} 131 132 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, 133 DeclContext *DC, SourceLocation StartLoc, 134 SourceLocation IdLoc, IdentifierInfo *Id, 135 CXXRecordDecl *PrevDecl, 136 bool DelayTypeCreation) { 137 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, 138 PrevDecl); 139 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 140 141 // FIXME: DelayTypeCreation seems like such a hack 142 if (!DelayTypeCreation) 143 C.getTypeDeclType(R, PrevDecl); 144 return R; 145 } 146 147 CXXRecordDecl * 148 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, 149 TypeSourceInfo *Info, SourceLocation Loc, 150 bool Dependent, bool IsGeneric, 151 LambdaCaptureDefault CaptureDefault) { 152 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, 153 nullptr, nullptr); 154 R->setBeingDefined(true); 155 R->DefinitionData = 156 new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric, 157 CaptureDefault); 158 R->setMayHaveOutOfDateDef(false); 159 R->setImplicit(true); 160 C.getTypeDeclType(R, /*PrevDecl=*/nullptr); 161 return R; 162 } 163 164 CXXRecordDecl * 165 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 166 auto *R = new (C, ID) CXXRecordDecl( 167 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), 168 nullptr, nullptr); 169 R->setMayHaveOutOfDateDef(false); 170 return R; 171 } 172 173 /// Determine whether a class has a repeated base class. This is intended for 174 /// use when determining if a class is standard-layout, so makes no attempt to 175 /// handle virtual bases. 176 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { 177 llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; 178 SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; 179 while (!WorkList.empty()) { 180 const CXXRecordDecl *RD = WorkList.pop_back_val(); 181 if (RD->getTypeForDecl()->isDependentType()) 182 continue; 183 for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { 184 if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { 185 if (!SeenBaseTypes.insert(B).second) 186 return true; 187 WorkList.push_back(B); 188 } 189 } 190 } 191 return false; 192 } 193 194 void 195 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, 196 unsigned NumBases) { 197 ASTContext &C = getASTContext(); 198 199 if (!data().Bases.isOffset() && data().NumBases > 0) 200 C.Deallocate(data().getBases()); 201 202 if (NumBases) { 203 if (!C.getLangOpts().CPlusPlus17) { 204 // C++ [dcl.init.aggr]p1: 205 // An aggregate is [...] a class with [...] no base classes [...]. 206 data().Aggregate = false; 207 } 208 209 // C++ [class]p4: 210 // A POD-struct is an aggregate class... 211 data().PlainOldData = false; 212 } 213 214 // The set of seen virtual base types. 215 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; 216 217 // The virtual bases of this class. 218 SmallVector<const CXXBaseSpecifier *, 8> VBases; 219 220 data().Bases = new(C) CXXBaseSpecifier [NumBases]; 221 data().NumBases = NumBases; 222 for (unsigned i = 0; i < NumBases; ++i) { 223 data().getBases()[i] = *Bases[i]; 224 // Keep track of inherited vbases for this base class. 225 const CXXBaseSpecifier *Base = Bases[i]; 226 QualType BaseType = Base->getType(); 227 // Skip dependent types; we can't do any checking on them now. 228 if (BaseType->isDependentType()) 229 continue; 230 auto *BaseClassDecl = 231 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); 232 233 // C++2a [class]p7: 234 // A standard-layout class is a class that: 235 // [...] 236 // -- has all non-static data members and bit-fields in the class and 237 // its base classes first declared in the same class 238 if (BaseClassDecl->data().HasBasesWithFields || 239 !BaseClassDecl->field_empty()) { 240 if (data().HasBasesWithFields) 241 // Two bases have members or bit-fields: not standard-layout. 242 data().IsStandardLayout = false; 243 data().HasBasesWithFields = true; 244 } 245 246 // C++11 [class]p7: 247 // A standard-layout class is a class that: 248 // -- [...] has [...] at most one base class with non-static data 249 // members 250 if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || 251 BaseClassDecl->hasDirectFields()) { 252 if (data().HasBasesWithNonStaticDataMembers) 253 data().IsCXX11StandardLayout = false; 254 data().HasBasesWithNonStaticDataMembers = true; 255 } 256 257 if (!BaseClassDecl->isEmpty()) { 258 // C++14 [meta.unary.prop]p4: 259 // T is a class type [...] with [...] no base class B for which 260 // is_empty<B>::value is false. 261 data().Empty = false; 262 } 263 264 // C++1z [dcl.init.agg]p1: 265 // An aggregate is a class with [...] no private or protected base classes 266 if (Base->getAccessSpecifier() != AS_public) { 267 data().Aggregate = false; 268 269 // C++20 [temp.param]p7: 270 // A structural type is [...] a literal class type with [...] all base 271 // classes [...] public 272 data().StructuralIfLiteral = false; 273 } 274 275 // C++ [class.virtual]p1: 276 // A class that declares or inherits a virtual function is called a 277 // polymorphic class. 278 if (BaseClassDecl->isPolymorphic()) { 279 data().Polymorphic = true; 280 281 // An aggregate is a class with [...] no virtual functions. 282 data().Aggregate = false; 283 } 284 285 // C++0x [class]p7: 286 // A standard-layout class is a class that: [...] 287 // -- has no non-standard-layout base classes 288 if (!BaseClassDecl->isStandardLayout()) 289 data().IsStandardLayout = false; 290 if (!BaseClassDecl->isCXX11StandardLayout()) 291 data().IsCXX11StandardLayout = false; 292 293 // Record if this base is the first non-literal field or base. 294 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) 295 data().HasNonLiteralTypeFieldsOrBases = true; 296 297 // Now go through all virtual bases of this base and add them. 298 for (const auto &VBase : BaseClassDecl->vbases()) { 299 // Add this base if it's not already in the list. 300 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { 301 VBases.push_back(&VBase); 302 303 // C++11 [class.copy]p8: 304 // The implicitly-declared copy constructor for a class X will have 305 // the form 'X::X(const X&)' if each [...] virtual base class B of X 306 // has a copy constructor whose first parameter is of type 307 // 'const B&' or 'const volatile B&' [...] 308 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) 309 if (!VBaseDecl->hasCopyConstructorWithConstParam()) 310 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 311 312 // C++1z [dcl.init.agg]p1: 313 // An aggregate is a class with [...] no virtual base classes 314 data().Aggregate = false; 315 } 316 } 317 318 if (Base->isVirtual()) { 319 // Add this base if it's not already in the list. 320 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) 321 VBases.push_back(Base); 322 323 // C++14 [meta.unary.prop] is_empty: 324 // T is a class type, but not a union type, with ... no virtual base 325 // classes 326 data().Empty = false; 327 328 // C++1z [dcl.init.agg]p1: 329 // An aggregate is a class with [...] no virtual base classes 330 data().Aggregate = false; 331 332 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 333 // A [default constructor, copy/move constructor, or copy/move assignment 334 // operator for a class X] is trivial [...] if: 335 // -- class X has [...] no virtual base classes 336 data().HasTrivialSpecialMembers &= SMF_Destructor; 337 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 338 339 // C++0x [class]p7: 340 // A standard-layout class is a class that: [...] 341 // -- has [...] no virtual base classes 342 data().IsStandardLayout = false; 343 data().IsCXX11StandardLayout = false; 344 345 // C++20 [dcl.constexpr]p3: 346 // In the definition of a constexpr function [...] 347 // -- if the function is a constructor or destructor, 348 // its class shall not have any virtual base classes 349 data().DefaultedDefaultConstructorIsConstexpr = false; 350 data().DefaultedDestructorIsConstexpr = false; 351 352 // C++1z [class.copy]p8: 353 // The implicitly-declared copy constructor for a class X will have 354 // the form 'X::X(const X&)' if each potentially constructed subobject 355 // has a copy constructor whose first parameter is of type 356 // 'const B&' or 'const volatile B&' [...] 357 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 358 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; 359 } else { 360 // C++ [class.ctor]p5: 361 // A default constructor is trivial [...] if: 362 // -- all the direct base classes of its class have trivial default 363 // constructors. 364 if (!BaseClassDecl->hasTrivialDefaultConstructor()) 365 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 366 367 // C++0x [class.copy]p13: 368 // A copy/move constructor for class X is trivial if [...] 369 // [...] 370 // -- the constructor selected to copy/move each direct base class 371 // subobject is trivial, and 372 if (!BaseClassDecl->hasTrivialCopyConstructor()) 373 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 374 375 if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) 376 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 377 378 // If the base class doesn't have a simple move constructor, we'll eagerly 379 // declare it and perform overload resolution to determine which function 380 // it actually calls. If it does have a simple move constructor, this 381 // check is correct. 382 if (!BaseClassDecl->hasTrivialMoveConstructor()) 383 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 384 385 if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) 386 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 387 388 // C++0x [class.copy]p27: 389 // A copy/move assignment operator for class X is trivial if [...] 390 // [...] 391 // -- the assignment operator selected to copy/move each direct base 392 // class subobject is trivial, and 393 if (!BaseClassDecl->hasTrivialCopyAssignment()) 394 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 395 // If the base class doesn't have a simple move assignment, we'll eagerly 396 // declare it and perform overload resolution to determine which function 397 // it actually calls. If it does have a simple move assignment, this 398 // check is correct. 399 if (!BaseClassDecl->hasTrivialMoveAssignment()) 400 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 401 402 // C++11 [class.ctor]p6: 403 // If that user-written default constructor would satisfy the 404 // requirements of a constexpr constructor, the implicitly-defined 405 // default constructor is constexpr. 406 if (!BaseClassDecl->hasConstexprDefaultConstructor()) 407 data().DefaultedDefaultConstructorIsConstexpr = false; 408 409 // C++1z [class.copy]p8: 410 // The implicitly-declared copy constructor for a class X will have 411 // the form 'X::X(const X&)' if each potentially constructed subobject 412 // has a copy constructor whose first parameter is of type 413 // 'const B&' or 'const volatile B&' [...] 414 if (!BaseClassDecl->hasCopyConstructorWithConstParam()) 415 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 416 } 417 418 // C++ [class.ctor]p3: 419 // A destructor is trivial if all the direct base classes of its class 420 // have trivial destructors. 421 if (!BaseClassDecl->hasTrivialDestructor()) 422 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 423 424 if (!BaseClassDecl->hasTrivialDestructorForCall()) 425 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 426 427 if (!BaseClassDecl->hasIrrelevantDestructor()) 428 data().HasIrrelevantDestructor = false; 429 430 if (BaseClassDecl->isAnyDestructorNoReturn()) 431 data().IsAnyDestructorNoReturn = true; 432 433 // C++11 [class.copy]p18: 434 // The implicitly-declared copy assignment operator for a class X will 435 // have the form 'X& X::operator=(const X&)' if each direct base class B 436 // of X has a copy assignment operator whose parameter is of type 'const 437 // B&', 'const volatile B&', or 'B' [...] 438 if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) 439 data().ImplicitCopyAssignmentHasConstParam = false; 440 441 // A class has an Objective-C object member if... or any of its bases 442 // has an Objective-C object member. 443 if (BaseClassDecl->hasObjectMember()) 444 setHasObjectMember(true); 445 446 if (BaseClassDecl->hasVolatileMember()) 447 setHasVolatileMember(true); 448 449 if (BaseClassDecl->getArgPassingRestrictions() == 450 RecordDecl::APK_CanNeverPassInRegs) 451 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 452 453 // Keep track of the presence of mutable fields. 454 if (BaseClassDecl->hasMutableFields()) 455 data().HasMutableFields = true; 456 457 if (BaseClassDecl->hasUninitializedReferenceMember()) 458 data().HasUninitializedReferenceMember = true; 459 460 if (!BaseClassDecl->allowConstDefaultInit()) 461 data().HasUninitializedFields = true; 462 463 addedClassSubobject(BaseClassDecl); 464 } 465 466 // C++2a [class]p7: 467 // A class S is a standard-layout class if it: 468 // -- has at most one base class subobject of any given type 469 // 470 // Note that we only need to check this for classes with more than one base 471 // class. If there's only one base class, and it's standard layout, then 472 // we know there are no repeated base classes. 473 if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) 474 data().IsStandardLayout = false; 475 476 if (VBases.empty()) { 477 data().IsParsingBaseSpecifiers = false; 478 return; 479 } 480 481 // Create base specifier for any direct or indirect virtual bases. 482 data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; 483 data().NumVBases = VBases.size(); 484 for (int I = 0, E = VBases.size(); I != E; ++I) { 485 QualType Type = VBases[I]->getType(); 486 if (!Type->isDependentType()) 487 addedClassSubobject(Type->getAsCXXRecordDecl()); 488 data().getVBases()[I] = *VBases[I]; 489 } 490 491 data().IsParsingBaseSpecifiers = false; 492 } 493 494 unsigned CXXRecordDecl::getODRHash() const { 495 assert(hasDefinition() && "ODRHash only for records with definitions"); 496 497 // Previously calculated hash is stored in DefinitionData. 498 if (DefinitionData->HasODRHash) 499 return DefinitionData->ODRHash; 500 501 // Only calculate hash on first call of getODRHash per record. 502 ODRHash Hash; 503 Hash.AddCXXRecordDecl(getDefinition()); 504 DefinitionData->HasODRHash = true; 505 DefinitionData->ODRHash = Hash.CalculateHash(); 506 507 return DefinitionData->ODRHash; 508 } 509 510 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { 511 // C++11 [class.copy]p11: 512 // A defaulted copy/move constructor for a class X is defined as 513 // deleted if X has: 514 // -- a direct or virtual base class B that cannot be copied/moved [...] 515 // -- a non-static data member of class type M (or array thereof) 516 // that cannot be copied or moved [...] 517 if (!Subobj->hasSimpleCopyConstructor()) 518 data().NeedOverloadResolutionForCopyConstructor = true; 519 if (!Subobj->hasSimpleMoveConstructor()) 520 data().NeedOverloadResolutionForMoveConstructor = true; 521 522 // C++11 [class.copy]p23: 523 // A defaulted copy/move assignment operator for a class X is defined as 524 // deleted if X has: 525 // -- a direct or virtual base class B that cannot be copied/moved [...] 526 // -- a non-static data member of class type M (or array thereof) 527 // that cannot be copied or moved [...] 528 if (!Subobj->hasSimpleCopyAssignment()) 529 data().NeedOverloadResolutionForCopyAssignment = true; 530 if (!Subobj->hasSimpleMoveAssignment()) 531 data().NeedOverloadResolutionForMoveAssignment = true; 532 533 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: 534 // A defaulted [ctor or dtor] for a class X is defined as 535 // deleted if X has: 536 // -- any direct or virtual base class [...] has a type with a destructor 537 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 538 // -- any non-static data member has a type with a destructor 539 // that is deleted or inaccessible from the defaulted [ctor or dtor]. 540 if (!Subobj->hasSimpleDestructor()) { 541 data().NeedOverloadResolutionForCopyConstructor = true; 542 data().NeedOverloadResolutionForMoveConstructor = true; 543 data().NeedOverloadResolutionForDestructor = true; 544 } 545 546 // C++2a [dcl.constexpr]p4: 547 // The definition of a constexpr destructor [shall] satisfy the 548 // following requirement: 549 // -- for every subobject of class type or (possibly multi-dimensional) 550 // array thereof, that class type shall have a constexpr destructor 551 if (!Subobj->hasConstexprDestructor()) 552 data().DefaultedDestructorIsConstexpr = false; 553 554 // C++20 [temp.param]p7: 555 // A structural type is [...] a literal class type [for which] the types 556 // of all base classes and non-static data members are structural types or 557 // (possibly multi-dimensional) array thereof 558 if (!Subobj->data().StructuralIfLiteral) 559 data().StructuralIfLiteral = false; 560 } 561 562 bool CXXRecordDecl::hasConstexprDestructor() const { 563 auto *Dtor = getDestructor(); 564 return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); 565 } 566 567 bool CXXRecordDecl::hasAnyDependentBases() const { 568 if (!isDependentContext()) 569 return false; 570 571 return !forallBases([](const CXXRecordDecl *) { return true; }); 572 } 573 574 bool CXXRecordDecl::isTriviallyCopyable() const { 575 // C++0x [class]p5: 576 // A trivially copyable class is a class that: 577 // -- has no non-trivial copy constructors, 578 if (hasNonTrivialCopyConstructor()) return false; 579 // -- has no non-trivial move constructors, 580 if (hasNonTrivialMoveConstructor()) return false; 581 // -- has no non-trivial copy assignment operators, 582 if (hasNonTrivialCopyAssignment()) return false; 583 // -- has no non-trivial move assignment operators, and 584 if (hasNonTrivialMoveAssignment()) return false; 585 // -- has a trivial destructor. 586 if (!hasTrivialDestructor()) return false; 587 588 return true; 589 } 590 591 void CXXRecordDecl::markedVirtualFunctionPure() { 592 // C++ [class.abstract]p2: 593 // A class is abstract if it has at least one pure virtual function. 594 data().Abstract = true; 595 } 596 597 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( 598 ASTContext &Ctx, const CXXRecordDecl *XFirst) { 599 if (!getNumBases()) 600 return false; 601 602 llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; 603 llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; 604 SmallVector<const CXXRecordDecl*, 8> WorkList; 605 606 // Visit a type that we have determined is an element of M(S). 607 auto Visit = [&](const CXXRecordDecl *RD) -> bool { 608 RD = RD->getCanonicalDecl(); 609 610 // C++2a [class]p8: 611 // A class S is a standard-layout class if it [...] has no element of the 612 // set M(S) of types as a base class. 613 // 614 // If we find a subobject of an empty type, it might also be a base class, 615 // so we'll need to walk the base classes to check. 616 if (!RD->data().HasBasesWithFields) { 617 // Walk the bases the first time, stopping if we find the type. Build a 618 // set of them so we don't need to walk them again. 619 if (Bases.empty()) { 620 bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { 621 Base = Base->getCanonicalDecl(); 622 if (RD == Base) 623 return false; 624 Bases.insert(Base); 625 return true; 626 }); 627 if (RDIsBase) 628 return true; 629 } else { 630 if (Bases.count(RD)) 631 return true; 632 } 633 } 634 635 if (M.insert(RD).second) 636 WorkList.push_back(RD); 637 return false; 638 }; 639 640 if (Visit(XFirst)) 641 return true; 642 643 while (!WorkList.empty()) { 644 const CXXRecordDecl *X = WorkList.pop_back_val(); 645 646 // FIXME: We don't check the bases of X. That matches the standard, but 647 // that sure looks like a wording bug. 648 649 // -- If X is a non-union class type with a non-static data member 650 // [recurse to each field] that is either of zero size or is the 651 // first non-static data member of X 652 // -- If X is a union type, [recurse to union members] 653 bool IsFirstField = true; 654 for (auto *FD : X->fields()) { 655 // FIXME: Should we really care about the type of the first non-static 656 // data member of a non-union if there are preceding unnamed bit-fields? 657 if (FD->isUnnamedBitfield()) 658 continue; 659 660 if (!IsFirstField && !FD->isZeroSize(Ctx)) 661 continue; 662 663 // -- If X is n array type, [visit the element type] 664 QualType T = Ctx.getBaseElementType(FD->getType()); 665 if (auto *RD = T->getAsCXXRecordDecl()) 666 if (Visit(RD)) 667 return true; 668 669 if (!X->isUnion()) 670 IsFirstField = false; 671 } 672 } 673 674 return false; 675 } 676 677 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { 678 assert(isLambda() && "not a lambda"); 679 680 // C++2a [expr.prim.lambda.capture]p11: 681 // The closure type associated with a lambda-expression has no default 682 // constructor if the lambda-expression has a lambda-capture and a 683 // defaulted default constructor otherwise. It has a deleted copy 684 // assignment operator if the lambda-expression has a lambda-capture and 685 // defaulted copy and move assignment operators otherwise. 686 // 687 // C++17 [expr.prim.lambda]p21: 688 // The closure type associated with a lambda-expression has no default 689 // constructor and a deleted copy assignment operator. 690 if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0) 691 return false; 692 return getASTContext().getLangOpts().CPlusPlus20; 693 } 694 695 void CXXRecordDecl::addedMember(Decl *D) { 696 if (!D->isImplicit() && 697 !isa<FieldDecl>(D) && 698 !isa<IndirectFieldDecl>(D) && 699 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || 700 cast<TagDecl>(D)->getTagKind() == TTK_Interface)) 701 data().HasOnlyCMembers = false; 702 703 // Ignore friends and invalid declarations. 704 if (D->getFriendObjectKind() || D->isInvalidDecl()) 705 return; 706 707 auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 708 if (FunTmpl) 709 D = FunTmpl->getTemplatedDecl(); 710 711 // FIXME: Pass NamedDecl* to addedMember? 712 Decl *DUnderlying = D; 713 if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) { 714 DUnderlying = ND->getUnderlyingDecl(); 715 if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying)) 716 DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); 717 } 718 719 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 720 if (Method->isVirtual()) { 721 // C++ [dcl.init.aggr]p1: 722 // An aggregate is an array or a class with [...] no virtual functions. 723 data().Aggregate = false; 724 725 // C++ [class]p4: 726 // A POD-struct is an aggregate class... 727 data().PlainOldData = false; 728 729 // C++14 [meta.unary.prop]p4: 730 // T is a class type [...] with [...] no virtual member functions... 731 data().Empty = false; 732 733 // C++ [class.virtual]p1: 734 // A class that declares or inherits a virtual function is called a 735 // polymorphic class. 736 data().Polymorphic = true; 737 738 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 739 // A [default constructor, copy/move constructor, or copy/move 740 // assignment operator for a class X] is trivial [...] if: 741 // -- class X has no virtual functions [...] 742 data().HasTrivialSpecialMembers &= SMF_Destructor; 743 data().HasTrivialSpecialMembersForCall &= SMF_Destructor; 744 745 // C++0x [class]p7: 746 // A standard-layout class is a class that: [...] 747 // -- has no virtual functions 748 data().IsStandardLayout = false; 749 data().IsCXX11StandardLayout = false; 750 } 751 } 752 753 // Notify the listener if an implicit member was added after the definition 754 // was completed. 755 if (!isBeingDefined() && D->isImplicit()) 756 if (ASTMutationListener *L = getASTMutationListener()) 757 L->AddedCXXImplicitMember(data().Definition, D); 758 759 // The kind of special member this declaration is, if any. 760 unsigned SMKind = 0; 761 762 // Handle constructors. 763 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 764 if (Constructor->isInheritingConstructor()) { 765 // Ignore constructor shadow declarations. They are lazily created and 766 // so shouldn't affect any properties of the class. 767 } else { 768 if (!Constructor->isImplicit()) { 769 // Note that we have a user-declared constructor. 770 data().UserDeclaredConstructor = true; 771 772 // C++ [class]p4: 773 // A POD-struct is an aggregate class [...] 774 // Since the POD bit is meant to be C++03 POD-ness, clear it even if 775 // the type is technically an aggregate in C++0x since it wouldn't be 776 // in 03. 777 data().PlainOldData = false; 778 } 779 780 if (Constructor->isDefaultConstructor()) { 781 SMKind |= SMF_DefaultConstructor; 782 783 if (Constructor->isUserProvided()) 784 data().UserProvidedDefaultConstructor = true; 785 if (Constructor->isConstexpr()) 786 data().HasConstexprDefaultConstructor = true; 787 if (Constructor->isDefaulted()) 788 data().HasDefaultedDefaultConstructor = true; 789 } 790 791 if (!FunTmpl) { 792 unsigned Quals; 793 if (Constructor->isCopyConstructor(Quals)) { 794 SMKind |= SMF_CopyConstructor; 795 796 if (Quals & Qualifiers::Const) 797 data().HasDeclaredCopyConstructorWithConstParam = true; 798 } else if (Constructor->isMoveConstructor()) 799 SMKind |= SMF_MoveConstructor; 800 } 801 802 // C++11 [dcl.init.aggr]p1: DR1518 803 // An aggregate is an array or a class with no user-provided [or] 804 // explicit [...] constructors 805 // C++20 [dcl.init.aggr]p1: 806 // An aggregate is an array or a class with no user-declared [...] 807 // constructors 808 if (getASTContext().getLangOpts().CPlusPlus20 809 ? !Constructor->isImplicit() 810 : (Constructor->isUserProvided() || Constructor->isExplicit())) 811 data().Aggregate = false; 812 } 813 } 814 815 // Handle constructors, including those inherited from base classes. 816 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) { 817 // Record if we see any constexpr constructors which are neither copy 818 // nor move constructors. 819 // C++1z [basic.types]p10: 820 // [...] has at least one constexpr constructor or constructor template 821 // (possibly inherited from a base class) that is not a copy or move 822 // constructor [...] 823 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) 824 data().HasConstexprNonCopyMoveConstructor = true; 825 if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor()) 826 data().HasInheritedDefaultConstructor = true; 827 } 828 829 // Handle destructors. 830 if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 831 SMKind |= SMF_Destructor; 832 833 if (DD->isUserProvided()) 834 data().HasIrrelevantDestructor = false; 835 // If the destructor is explicitly defaulted and not trivial or not public 836 // or if the destructor is deleted, we clear HasIrrelevantDestructor in 837 // finishedDefaultedOrDeletedMember. 838 839 // C++11 [class.dtor]p5: 840 // A destructor is trivial if [...] the destructor is not virtual. 841 if (DD->isVirtual()) { 842 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 843 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 844 } 845 846 if (DD->isNoReturn()) 847 data().IsAnyDestructorNoReturn = true; 848 } 849 850 // Handle member functions. 851 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 852 if (Method->isCopyAssignmentOperator()) { 853 SMKind |= SMF_CopyAssignment; 854 855 const auto *ParamTy = 856 Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); 857 if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) 858 data().HasDeclaredCopyAssignmentWithConstParam = true; 859 } 860 861 if (Method->isMoveAssignmentOperator()) 862 SMKind |= SMF_MoveAssignment; 863 864 // Keep the list of conversion functions up-to-date. 865 if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) { 866 // FIXME: We use the 'unsafe' accessor for the access specifier here, 867 // because Sema may not have set it yet. That's really just a misdesign 868 // in Sema. However, LLDB *will* have set the access specifier correctly, 869 // and adds declarations after the class is technically completed, 870 // so completeDefinition()'s overriding of the access specifiers doesn't 871 // work. 872 AccessSpecifier AS = Conversion->getAccessUnsafe(); 873 874 if (Conversion->getPrimaryTemplate()) { 875 // We don't record specializations. 876 } else { 877 ASTContext &Ctx = getASTContext(); 878 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); 879 NamedDecl *Primary = 880 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); 881 if (Primary->getPreviousDecl()) 882 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), 883 Primary, AS); 884 else 885 Conversions.addDecl(Ctx, Primary, AS); 886 } 887 } 888 889 if (SMKind) { 890 // If this is the first declaration of a special member, we no longer have 891 // an implicit trivial special member. 892 data().HasTrivialSpecialMembers &= 893 data().DeclaredSpecialMembers | ~SMKind; 894 data().HasTrivialSpecialMembersForCall &= 895 data().DeclaredSpecialMembers | ~SMKind; 896 897 if (!Method->isImplicit() && !Method->isUserProvided()) { 898 // This method is user-declared but not user-provided. We can't work out 899 // whether it's trivial yet (not until we get to the end of the class). 900 // We'll handle this method in finishedDefaultedOrDeletedMember. 901 } else if (Method->isTrivial()) { 902 data().HasTrivialSpecialMembers |= SMKind; 903 data().HasTrivialSpecialMembersForCall |= SMKind; 904 } else if (Method->isTrivialForCall()) { 905 data().HasTrivialSpecialMembersForCall |= SMKind; 906 data().DeclaredNonTrivialSpecialMembers |= SMKind; 907 } else { 908 data().DeclaredNonTrivialSpecialMembers |= SMKind; 909 // If this is a user-provided function, do not set 910 // DeclaredNonTrivialSpecialMembersForCall here since we don't know 911 // yet whether the method would be considered non-trivial for the 912 // purpose of calls (attribute "trivial_abi" can be dropped from the 913 // class later, which can change the special method's triviality). 914 if (!Method->isUserProvided()) 915 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 916 } 917 918 // Note when we have declared a declared special member, and suppress the 919 // implicit declaration of this special member. 920 data().DeclaredSpecialMembers |= SMKind; 921 922 if (!Method->isImplicit()) { 923 data().UserDeclaredSpecialMembers |= SMKind; 924 925 // C++03 [class]p4: 926 // A POD-struct is an aggregate class that has [...] no user-defined 927 // copy assignment operator and no user-defined destructor. 928 // 929 // Since the POD bit is meant to be C++03 POD-ness, and in C++03, 930 // aggregates could not have any constructors, clear it even for an 931 // explicitly defaulted or deleted constructor. 932 // type is technically an aggregate in C++0x since it wouldn't be in 03. 933 // 934 // Also, a user-declared move assignment operator makes a class non-POD. 935 // This is an extension in C++03. 936 data().PlainOldData = false; 937 } 938 } 939 940 return; 941 } 942 943 // Handle non-static data members. 944 if (const auto *Field = dyn_cast<FieldDecl>(D)) { 945 ASTContext &Context = getASTContext(); 946 947 // C++2a [class]p7: 948 // A standard-layout class is a class that: 949 // [...] 950 // -- has all non-static data members and bit-fields in the class and 951 // its base classes first declared in the same class 952 if (data().HasBasesWithFields) 953 data().IsStandardLayout = false; 954 955 // C++ [class.bit]p2: 956 // A declaration for a bit-field that omits the identifier declares an 957 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 958 // initialized. 959 if (Field->isUnnamedBitfield()) { 960 // C++ [meta.unary.prop]p4: [LWG2358] 961 // T is a class type [...] with [...] no unnamed bit-fields of non-zero 962 // length 963 if (data().Empty && !Field->isZeroLengthBitField(Context) && 964 Context.getLangOpts().getClangABICompat() > 965 LangOptions::ClangABI::Ver6) 966 data().Empty = false; 967 return; 968 } 969 970 // C++11 [class]p7: 971 // A standard-layout class is a class that: 972 // -- either has no non-static data members in the most derived class 973 // [...] or has no base classes with non-static data members 974 if (data().HasBasesWithNonStaticDataMembers) 975 data().IsCXX11StandardLayout = false; 976 977 // C++ [dcl.init.aggr]p1: 978 // An aggregate is an array or a class (clause 9) with [...] no 979 // private or protected non-static data members (clause 11). 980 // 981 // A POD must be an aggregate. 982 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { 983 data().Aggregate = false; 984 data().PlainOldData = false; 985 986 // C++20 [temp.param]p7: 987 // A structural type is [...] a literal class type [for which] all 988 // non-static data members are public 989 data().StructuralIfLiteral = false; 990 } 991 992 // Track whether this is the first field. We use this when checking 993 // whether the class is standard-layout below. 994 bool IsFirstField = !data().HasPrivateFields && 995 !data().HasProtectedFields && !data().HasPublicFields; 996 997 // C++0x [class]p7: 998 // A standard-layout class is a class that: 999 // [...] 1000 // -- has the same access control for all non-static data members, 1001 switch (D->getAccess()) { 1002 case AS_private: data().HasPrivateFields = true; break; 1003 case AS_protected: data().HasProtectedFields = true; break; 1004 case AS_public: data().HasPublicFields = true; break; 1005 case AS_none: llvm_unreachable("Invalid access specifier"); 1006 }; 1007 if ((data().HasPrivateFields + data().HasProtectedFields + 1008 data().HasPublicFields) > 1) { 1009 data().IsStandardLayout = false; 1010 data().IsCXX11StandardLayout = false; 1011 } 1012 1013 // Keep track of the presence of mutable fields. 1014 if (Field->isMutable()) { 1015 data().HasMutableFields = true; 1016 1017 // C++20 [temp.param]p7: 1018 // A structural type is [...] a literal class type [for which] all 1019 // non-static data members are public 1020 data().StructuralIfLiteral = false; 1021 } 1022 1023 // C++11 [class.union]p8, DR1460: 1024 // If X is a union, a non-static data member of X that is not an anonymous 1025 // union is a variant member of X. 1026 if (isUnion() && !Field->isAnonymousStructOrUnion()) 1027 data().HasVariantMembers = true; 1028 1029 // C++0x [class]p9: 1030 // A POD struct is a class that is both a trivial class and a 1031 // standard-layout class, and has no non-static data members of type 1032 // non-POD struct, non-POD union (or array of such types). 1033 // 1034 // Automatic Reference Counting: the presence of a member of Objective-C pointer type 1035 // that does not explicitly have no lifetime makes the class a non-POD. 1036 QualType T = Context.getBaseElementType(Field->getType()); 1037 if (T->isObjCRetainableType() || T.isObjCGCStrong()) { 1038 if (T.hasNonTrivialObjCLifetime()) { 1039 // Objective-C Automatic Reference Counting: 1040 // If a class has a non-static data member of Objective-C pointer 1041 // type (or array thereof), it is a non-POD type and its 1042 // default constructor (if any), copy constructor, move constructor, 1043 // copy assignment operator, move assignment operator, and destructor are 1044 // non-trivial. 1045 setHasObjectMember(true); 1046 struct DefinitionData &Data = data(); 1047 Data.PlainOldData = false; 1048 Data.HasTrivialSpecialMembers = 0; 1049 1050 // __strong or __weak fields do not make special functions non-trivial 1051 // for the purpose of calls. 1052 Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); 1053 if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) 1054 data().HasTrivialSpecialMembersForCall = 0; 1055 1056 // Structs with __weak fields should never be passed directly. 1057 if (LT == Qualifiers::OCL_Weak) 1058 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1059 1060 Data.HasIrrelevantDestructor = false; 1061 1062 if (isUnion()) { 1063 data().DefaultedCopyConstructorIsDeleted = true; 1064 data().DefaultedMoveConstructorIsDeleted = true; 1065 data().DefaultedCopyAssignmentIsDeleted = true; 1066 data().DefaultedMoveAssignmentIsDeleted = true; 1067 data().DefaultedDestructorIsDeleted = true; 1068 data().NeedOverloadResolutionForCopyConstructor = true; 1069 data().NeedOverloadResolutionForMoveConstructor = true; 1070 data().NeedOverloadResolutionForCopyAssignment = true; 1071 data().NeedOverloadResolutionForMoveAssignment = true; 1072 data().NeedOverloadResolutionForDestructor = true; 1073 } 1074 } else if (!Context.getLangOpts().ObjCAutoRefCount) { 1075 setHasObjectMember(true); 1076 } 1077 } else if (!T.isCXX98PODType(Context)) 1078 data().PlainOldData = false; 1079 1080 if (T->isReferenceType()) { 1081 if (!Field->hasInClassInitializer()) 1082 data().HasUninitializedReferenceMember = true; 1083 1084 // C++0x [class]p7: 1085 // A standard-layout class is a class that: 1086 // -- has no non-static data members of type [...] reference, 1087 data().IsStandardLayout = false; 1088 data().IsCXX11StandardLayout = false; 1089 1090 // C++1z [class.copy.ctor]p10: 1091 // A defaulted copy constructor for a class X is defined as deleted if X has: 1092 // -- a non-static data member of rvalue reference type 1093 if (T->isRValueReferenceType()) 1094 data().DefaultedCopyConstructorIsDeleted = true; 1095 } 1096 1097 if (!Field->hasInClassInitializer() && !Field->isMutable()) { 1098 if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { 1099 if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) 1100 data().HasUninitializedFields = true; 1101 } else { 1102 data().HasUninitializedFields = true; 1103 } 1104 } 1105 1106 // Record if this field is the first non-literal or volatile field or base. 1107 if (!T->isLiteralType(Context) || T.isVolatileQualified()) 1108 data().HasNonLiteralTypeFieldsOrBases = true; 1109 1110 if (Field->hasInClassInitializer() || 1111 (Field->isAnonymousStructOrUnion() && 1112 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { 1113 data().HasInClassInitializer = true; 1114 1115 // C++11 [class]p5: 1116 // A default constructor is trivial if [...] no non-static data member 1117 // of its class has a brace-or-equal-initializer. 1118 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1119 1120 // C++11 [dcl.init.aggr]p1: 1121 // An aggregate is a [...] class with [...] no 1122 // brace-or-equal-initializers for non-static data members. 1123 // 1124 // This rule was removed in C++14. 1125 if (!getASTContext().getLangOpts().CPlusPlus14) 1126 data().Aggregate = false; 1127 1128 // C++11 [class]p10: 1129 // A POD struct is [...] a trivial class. 1130 data().PlainOldData = false; 1131 } 1132 1133 // C++11 [class.copy]p23: 1134 // A defaulted copy/move assignment operator for a class X is defined 1135 // as deleted if X has: 1136 // -- a non-static data member of reference type 1137 if (T->isReferenceType()) { 1138 data().DefaultedCopyAssignmentIsDeleted = true; 1139 data().DefaultedMoveAssignmentIsDeleted = true; 1140 } 1141 1142 // Bitfields of length 0 are also zero-sized, but we already bailed out for 1143 // those because they are always unnamed. 1144 bool IsZeroSize = Field->isZeroSize(Context); 1145 1146 if (const auto *RecordTy = T->getAs<RecordType>()) { 1147 auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); 1148 if (FieldRec->getDefinition()) { 1149 addedClassSubobject(FieldRec); 1150 1151 // We may need to perform overload resolution to determine whether a 1152 // field can be moved if it's const or volatile qualified. 1153 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { 1154 // We need to care about 'const' for the copy constructor because an 1155 // implicit copy constructor might be declared with a non-const 1156 // parameter. 1157 data().NeedOverloadResolutionForCopyConstructor = true; 1158 data().NeedOverloadResolutionForMoveConstructor = true; 1159 data().NeedOverloadResolutionForCopyAssignment = true; 1160 data().NeedOverloadResolutionForMoveAssignment = true; 1161 } 1162 1163 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 1164 // A defaulted [special member] for a class X is defined as 1165 // deleted if: 1166 // -- X is a union-like class that has a variant member with a 1167 // non-trivial [corresponding special member] 1168 if (isUnion()) { 1169 if (FieldRec->hasNonTrivialCopyConstructor()) 1170 data().DefaultedCopyConstructorIsDeleted = true; 1171 if (FieldRec->hasNonTrivialMoveConstructor()) 1172 data().DefaultedMoveConstructorIsDeleted = true; 1173 if (FieldRec->hasNonTrivialCopyAssignment()) 1174 data().DefaultedCopyAssignmentIsDeleted = true; 1175 if (FieldRec->hasNonTrivialMoveAssignment()) 1176 data().DefaultedMoveAssignmentIsDeleted = true; 1177 if (FieldRec->hasNonTrivialDestructor()) 1178 data().DefaultedDestructorIsDeleted = true; 1179 } 1180 1181 // For an anonymous union member, our overload resolution will perform 1182 // overload resolution for its members. 1183 if (Field->isAnonymousStructOrUnion()) { 1184 data().NeedOverloadResolutionForCopyConstructor |= 1185 FieldRec->data().NeedOverloadResolutionForCopyConstructor; 1186 data().NeedOverloadResolutionForMoveConstructor |= 1187 FieldRec->data().NeedOverloadResolutionForMoveConstructor; 1188 data().NeedOverloadResolutionForCopyAssignment |= 1189 FieldRec->data().NeedOverloadResolutionForCopyAssignment; 1190 data().NeedOverloadResolutionForMoveAssignment |= 1191 FieldRec->data().NeedOverloadResolutionForMoveAssignment; 1192 data().NeedOverloadResolutionForDestructor |= 1193 FieldRec->data().NeedOverloadResolutionForDestructor; 1194 } 1195 1196 // C++0x [class.ctor]p5: 1197 // A default constructor is trivial [...] if: 1198 // -- for all the non-static data members of its class that are of 1199 // class type (or array thereof), each such class has a trivial 1200 // default constructor. 1201 if (!FieldRec->hasTrivialDefaultConstructor()) 1202 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; 1203 1204 // C++0x [class.copy]p13: 1205 // A copy/move constructor for class X is trivial if [...] 1206 // [...] 1207 // -- for each non-static data member of X that is of class type (or 1208 // an array thereof), the constructor selected to copy/move that 1209 // member is trivial; 1210 if (!FieldRec->hasTrivialCopyConstructor()) 1211 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; 1212 1213 if (!FieldRec->hasTrivialCopyConstructorForCall()) 1214 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; 1215 1216 // If the field doesn't have a simple move constructor, we'll eagerly 1217 // declare the move constructor for this class and we'll decide whether 1218 // it's trivial then. 1219 if (!FieldRec->hasTrivialMoveConstructor()) 1220 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; 1221 1222 if (!FieldRec->hasTrivialMoveConstructorForCall()) 1223 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; 1224 1225 // C++0x [class.copy]p27: 1226 // A copy/move assignment operator for class X is trivial if [...] 1227 // [...] 1228 // -- for each non-static data member of X that is of class type (or 1229 // an array thereof), the assignment operator selected to 1230 // copy/move that member is trivial; 1231 if (!FieldRec->hasTrivialCopyAssignment()) 1232 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; 1233 // If the field doesn't have a simple move assignment, we'll eagerly 1234 // declare the move assignment for this class and we'll decide whether 1235 // it's trivial then. 1236 if (!FieldRec->hasTrivialMoveAssignment()) 1237 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; 1238 1239 if (!FieldRec->hasTrivialDestructor()) 1240 data().HasTrivialSpecialMembers &= ~SMF_Destructor; 1241 if (!FieldRec->hasTrivialDestructorForCall()) 1242 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; 1243 if (!FieldRec->hasIrrelevantDestructor()) 1244 data().HasIrrelevantDestructor = false; 1245 if (FieldRec->isAnyDestructorNoReturn()) 1246 data().IsAnyDestructorNoReturn = true; 1247 if (FieldRec->hasObjectMember()) 1248 setHasObjectMember(true); 1249 if (FieldRec->hasVolatileMember()) 1250 setHasVolatileMember(true); 1251 if (FieldRec->getArgPassingRestrictions() == 1252 RecordDecl::APK_CanNeverPassInRegs) 1253 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 1254 1255 // C++0x [class]p7: 1256 // A standard-layout class is a class that: 1257 // -- has no non-static data members of type non-standard-layout 1258 // class (or array of such types) [...] 1259 if (!FieldRec->isStandardLayout()) 1260 data().IsStandardLayout = false; 1261 if (!FieldRec->isCXX11StandardLayout()) 1262 data().IsCXX11StandardLayout = false; 1263 1264 // C++2a [class]p7: 1265 // A standard-layout class is a class that: 1266 // [...] 1267 // -- has no element of the set M(S) of types as a base class. 1268 if (data().IsStandardLayout && 1269 (isUnion() || IsFirstField || IsZeroSize) && 1270 hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) 1271 data().IsStandardLayout = false; 1272 1273 // C++11 [class]p7: 1274 // A standard-layout class is a class that: 1275 // -- has no base classes of the same type as the first non-static 1276 // data member 1277 if (data().IsCXX11StandardLayout && IsFirstField) { 1278 // FIXME: We should check all base classes here, not just direct 1279 // base classes. 1280 for (const auto &BI : bases()) { 1281 if (Context.hasSameUnqualifiedType(BI.getType(), T)) { 1282 data().IsCXX11StandardLayout = false; 1283 break; 1284 } 1285 } 1286 } 1287 1288 // Keep track of the presence of mutable fields. 1289 if (FieldRec->hasMutableFields()) 1290 data().HasMutableFields = true; 1291 1292 if (Field->isMutable()) { 1293 // Our copy constructor/assignment might call something other than 1294 // the subobject's copy constructor/assignment if it's mutable and of 1295 // class type. 1296 data().NeedOverloadResolutionForCopyConstructor = true; 1297 data().NeedOverloadResolutionForCopyAssignment = true; 1298 } 1299 1300 // C++11 [class.copy]p13: 1301 // If the implicitly-defined constructor would satisfy the 1302 // requirements of a constexpr constructor, the implicitly-defined 1303 // constructor is constexpr. 1304 // C++11 [dcl.constexpr]p4: 1305 // -- every constructor involved in initializing non-static data 1306 // members [...] shall be a constexpr constructor 1307 if (!Field->hasInClassInitializer() && 1308 !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) 1309 // The standard requires any in-class initializer to be a constant 1310 // expression. We consider this to be a defect. 1311 data().DefaultedDefaultConstructorIsConstexpr = false; 1312 1313 // C++11 [class.copy]p8: 1314 // The implicitly-declared copy constructor for a class X will have 1315 // the form 'X::X(const X&)' if each potentially constructed subobject 1316 // of a class type M (or array thereof) has a copy constructor whose 1317 // first parameter is of type 'const M&' or 'const volatile M&'. 1318 if (!FieldRec->hasCopyConstructorWithConstParam()) 1319 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; 1320 1321 // C++11 [class.copy]p18: 1322 // The implicitly-declared copy assignment oeprator for a class X will 1323 // have the form 'X& X::operator=(const X&)' if [...] for all the 1324 // non-static data members of X that are of a class type M (or array 1325 // thereof), each such class type has a copy assignment operator whose 1326 // parameter is of type 'const M&', 'const volatile M&' or 'M'. 1327 if (!FieldRec->hasCopyAssignmentWithConstParam()) 1328 data().ImplicitCopyAssignmentHasConstParam = false; 1329 1330 if (FieldRec->hasUninitializedReferenceMember() && 1331 !Field->hasInClassInitializer()) 1332 data().HasUninitializedReferenceMember = true; 1333 1334 // C++11 [class.union]p8, DR1460: 1335 // a non-static data member of an anonymous union that is a member of 1336 // X is also a variant member of X. 1337 if (FieldRec->hasVariantMembers() && 1338 Field->isAnonymousStructOrUnion()) 1339 data().HasVariantMembers = true; 1340 } 1341 } else { 1342 // Base element type of field is a non-class type. 1343 if (!T->isLiteralType(Context) || 1344 (!Field->hasInClassInitializer() && !isUnion() && 1345 !Context.getLangOpts().CPlusPlus20)) 1346 data().DefaultedDefaultConstructorIsConstexpr = false; 1347 1348 // C++11 [class.copy]p23: 1349 // A defaulted copy/move assignment operator for a class X is defined 1350 // as deleted if X has: 1351 // -- a non-static data member of const non-class type (or array 1352 // thereof) 1353 if (T.isConstQualified()) { 1354 data().DefaultedCopyAssignmentIsDeleted = true; 1355 data().DefaultedMoveAssignmentIsDeleted = true; 1356 } 1357 1358 // C++20 [temp.param]p7: 1359 // A structural type is [...] a literal class type [for which] the 1360 // types of all non-static data members are structural types or 1361 // (possibly multidimensional) array thereof 1362 // We deal with class types elsewhere. 1363 if (!T->isStructuralType()) 1364 data().StructuralIfLiteral = false; 1365 } 1366 1367 // C++14 [meta.unary.prop]p4: 1368 // T is a class type [...] with [...] no non-static data members other 1369 // than subobjects of zero size 1370 if (data().Empty && !IsZeroSize) 1371 data().Empty = false; 1372 } 1373 1374 // Handle using declarations of conversion functions. 1375 if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) { 1376 if (Shadow->getDeclName().getNameKind() 1377 == DeclarationName::CXXConversionFunctionName) { 1378 ASTContext &Ctx = getASTContext(); 1379 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); 1380 } 1381 } 1382 1383 if (const auto *Using = dyn_cast<UsingDecl>(D)) { 1384 if (Using->getDeclName().getNameKind() == 1385 DeclarationName::CXXConstructorName) { 1386 data().HasInheritedConstructor = true; 1387 // C++1z [dcl.init.aggr]p1: 1388 // An aggregate is [...] a class [...] with no inherited constructors 1389 data().Aggregate = false; 1390 } 1391 1392 if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) 1393 data().HasInheritedAssignment = true; 1394 } 1395 } 1396 1397 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { 1398 assert(!D->isImplicit() && !D->isUserProvided()); 1399 1400 // The kind of special member this declaration is, if any. 1401 unsigned SMKind = 0; 1402 1403 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1404 if (Constructor->isDefaultConstructor()) { 1405 SMKind |= SMF_DefaultConstructor; 1406 if (Constructor->isConstexpr()) 1407 data().HasConstexprDefaultConstructor = true; 1408 } 1409 if (Constructor->isCopyConstructor()) 1410 SMKind |= SMF_CopyConstructor; 1411 else if (Constructor->isMoveConstructor()) 1412 SMKind |= SMF_MoveConstructor; 1413 else if (Constructor->isConstexpr()) 1414 // We may now know that the constructor is constexpr. 1415 data().HasConstexprNonCopyMoveConstructor = true; 1416 } else if (isa<CXXDestructorDecl>(D)) { 1417 SMKind |= SMF_Destructor; 1418 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) 1419 data().HasIrrelevantDestructor = false; 1420 } else if (D->isCopyAssignmentOperator()) 1421 SMKind |= SMF_CopyAssignment; 1422 else if (D->isMoveAssignmentOperator()) 1423 SMKind |= SMF_MoveAssignment; 1424 1425 // Update which trivial / non-trivial special members we have. 1426 // addedMember will have skipped this step for this member. 1427 if (D->isTrivial()) 1428 data().HasTrivialSpecialMembers |= SMKind; 1429 else 1430 data().DeclaredNonTrivialSpecialMembers |= SMKind; 1431 } 1432 1433 void CXXRecordDecl::setCaptures(ASTContext &Context, 1434 ArrayRef<LambdaCapture> Captures) { 1435 CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); 1436 1437 // Copy captures. 1438 Data.NumCaptures = Captures.size(); 1439 Data.NumExplicitCaptures = 0; 1440 Data.Captures = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) * 1441 Captures.size()); 1442 LambdaCapture *ToCapture = Data.Captures; 1443 for (unsigned I = 0, N = Captures.size(); I != N; ++I) { 1444 if (Captures[I].isExplicit()) 1445 ++Data.NumExplicitCaptures; 1446 1447 *ToCapture++ = Captures[I]; 1448 } 1449 1450 if (!lambdaIsDefaultConstructibleAndAssignable()) 1451 Data.DefaultedCopyAssignmentIsDeleted = true; 1452 } 1453 1454 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { 1455 unsigned SMKind = 0; 1456 1457 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1458 if (Constructor->isCopyConstructor()) 1459 SMKind = SMF_CopyConstructor; 1460 else if (Constructor->isMoveConstructor()) 1461 SMKind = SMF_MoveConstructor; 1462 } else if (isa<CXXDestructorDecl>(D)) 1463 SMKind = SMF_Destructor; 1464 1465 if (D->isTrivialForCall()) 1466 data().HasTrivialSpecialMembersForCall |= SMKind; 1467 else 1468 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; 1469 } 1470 1471 bool CXXRecordDecl::isCLike() const { 1472 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || 1473 !TemplateOrInstantiation.isNull()) 1474 return false; 1475 if (!hasDefinition()) 1476 return true; 1477 1478 return isPOD() && data().HasOnlyCMembers; 1479 } 1480 1481 bool CXXRecordDecl::isGenericLambda() const { 1482 if (!isLambda()) return false; 1483 return getLambdaData().IsGenericLambda; 1484 } 1485 1486 #ifndef NDEBUG 1487 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { 1488 for (auto *D : R) 1489 if (!declaresSameEntity(D, R.front())) 1490 return false; 1491 return true; 1492 } 1493 #endif 1494 1495 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { 1496 if (!RD.isLambda()) return nullptr; 1497 DeclarationName Name = 1498 RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); 1499 DeclContext::lookup_result Calls = RD.lookup(Name); 1500 1501 assert(!Calls.empty() && "Missing lambda call operator!"); 1502 assert(allLookupResultsAreTheSame(Calls) && 1503 "More than one lambda call operator!"); 1504 return Calls.front(); 1505 } 1506 1507 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { 1508 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1509 return dyn_cast_or_null<FunctionTemplateDecl>(CallOp); 1510 } 1511 1512 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { 1513 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); 1514 1515 if (CallOp == nullptr) 1516 return nullptr; 1517 1518 if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) 1519 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); 1520 1521 return cast<CXXMethodDecl>(CallOp); 1522 } 1523 1524 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { 1525 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1526 CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv(); 1527 return getLambdaStaticInvoker(CC); 1528 } 1529 1530 static DeclContext::lookup_result 1531 getLambdaStaticInvokers(const CXXRecordDecl &RD) { 1532 assert(RD.isLambda() && "Must be a lambda"); 1533 DeclarationName Name = 1534 &RD.getASTContext().Idents.get(getLambdaStaticInvokerName()); 1535 return RD.lookup(Name); 1536 } 1537 1538 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) { 1539 if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND)) 1540 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); 1541 return cast<CXXMethodDecl>(ND); 1542 } 1543 1544 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const { 1545 if (!isLambda()) 1546 return nullptr; 1547 DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this); 1548 1549 for (NamedDecl *ND : Invoker) { 1550 const auto *FTy = 1551 cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>(); 1552 if (FTy->getCallConv() == CC) 1553 return getInvokerAsMethod(ND); 1554 } 1555 1556 return nullptr; 1557 } 1558 1559 void CXXRecordDecl::getCaptureFields( 1560 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, 1561 FieldDecl *&ThisCapture) const { 1562 Captures.clear(); 1563 ThisCapture = nullptr; 1564 1565 LambdaDefinitionData &Lambda = getLambdaData(); 1566 RecordDecl::field_iterator Field = field_begin(); 1567 for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; 1568 C != CEnd; ++C, ++Field) { 1569 if (C->capturesThis()) 1570 ThisCapture = *Field; 1571 else if (C->capturesVariable()) 1572 Captures[C->getCapturedVar()] = *Field; 1573 } 1574 assert(Field == field_end()); 1575 } 1576 1577 TemplateParameterList * 1578 CXXRecordDecl::getGenericLambdaTemplateParameterList() const { 1579 if (!isGenericLambda()) return nullptr; 1580 CXXMethodDecl *CallOp = getLambdaCallOperator(); 1581 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) 1582 return Tmpl->getTemplateParameters(); 1583 return nullptr; 1584 } 1585 1586 ArrayRef<NamedDecl *> 1587 CXXRecordDecl::getLambdaExplicitTemplateParameters() const { 1588 TemplateParameterList *List = getGenericLambdaTemplateParameterList(); 1589 if (!List) 1590 return {}; 1591 1592 assert(std::is_partitioned(List->begin(), List->end(), 1593 [](const NamedDecl *D) { return !D->isImplicit(); }) 1594 && "Explicit template params should be ordered before implicit ones"); 1595 1596 const auto ExplicitEnd = llvm::partition_point( 1597 *List, [](const NamedDecl *D) { return !D->isImplicit(); }); 1598 return llvm::makeArrayRef(List->begin(), ExplicitEnd); 1599 } 1600 1601 Decl *CXXRecordDecl::getLambdaContextDecl() const { 1602 assert(isLambda() && "Not a lambda closure type!"); 1603 ExternalASTSource *Source = getParentASTContext().getExternalSource(); 1604 return getLambdaData().ContextDecl.get(Source); 1605 } 1606 1607 void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const { 1608 assert(isLambda() && "Not a lambda closure type!"); 1609 if (Num) 1610 getASTContext().DeviceLambdaManglingNumbers[this] = Num; 1611 } 1612 1613 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const { 1614 assert(isLambda() && "Not a lambda closure type!"); 1615 auto I = getASTContext().DeviceLambdaManglingNumbers.find(this); 1616 if (I != getASTContext().DeviceLambdaManglingNumbers.end()) 1617 return I->second; 1618 return 0; 1619 } 1620 1621 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { 1622 QualType T = 1623 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) 1624 ->getConversionType(); 1625 return Context.getCanonicalType(T); 1626 } 1627 1628 /// Collect the visible conversions of a base class. 1629 /// 1630 /// \param Record a base class of the class we're considering 1631 /// \param InVirtual whether this base class is a virtual base (or a base 1632 /// of a virtual base) 1633 /// \param Access the access along the inheritance path to this base 1634 /// \param ParentHiddenTypes the conversions provided by the inheritors 1635 /// of this base 1636 /// \param Output the set to which to add conversions from non-virtual bases 1637 /// \param VOutput the set to which to add conversions from virtual bases 1638 /// \param HiddenVBaseCs the set of conversions which were hidden in a 1639 /// virtual base along some inheritance path 1640 static void CollectVisibleConversions( 1641 ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, 1642 AccessSpecifier Access, 1643 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, 1644 ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, 1645 llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) { 1646 // The set of types which have conversions in this class or its 1647 // subclasses. As an optimization, we don't copy the derived set 1648 // unless it might change. 1649 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; 1650 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; 1651 1652 // Collect the direct conversions and figure out which conversions 1653 // will be hidden in the subclasses. 1654 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1655 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1656 if (ConvI != ConvE) { 1657 HiddenTypesBuffer = ParentHiddenTypes; 1658 HiddenTypes = &HiddenTypesBuffer; 1659 1660 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { 1661 CanQualType ConvType(GetConversionType(Context, I.getDecl())); 1662 bool Hidden = ParentHiddenTypes.count(ConvType); 1663 if (!Hidden) 1664 HiddenTypesBuffer.insert(ConvType); 1665 1666 // If this conversion is hidden and we're in a virtual base, 1667 // remember that it's hidden along some inheritance path. 1668 if (Hidden && InVirtual) 1669 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); 1670 1671 // If this conversion isn't hidden, add it to the appropriate output. 1672 else if (!Hidden) { 1673 AccessSpecifier IAccess 1674 = CXXRecordDecl::MergeAccess(Access, I.getAccess()); 1675 1676 if (InVirtual) 1677 VOutput.addDecl(I.getDecl(), IAccess); 1678 else 1679 Output.addDecl(Context, I.getDecl(), IAccess); 1680 } 1681 } 1682 } 1683 1684 // Collect information recursively from any base classes. 1685 for (const auto &I : Record->bases()) { 1686 const auto *RT = I.getType()->getAs<RecordType>(); 1687 if (!RT) continue; 1688 1689 AccessSpecifier BaseAccess 1690 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); 1691 bool BaseInVirtual = InVirtual || I.isVirtual(); 1692 1693 auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 1694 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, 1695 *HiddenTypes, Output, VOutput, HiddenVBaseCs); 1696 } 1697 } 1698 1699 /// Collect the visible conversions of a class. 1700 /// 1701 /// This would be extremely straightforward if it weren't for virtual 1702 /// bases. It might be worth special-casing that, really. 1703 static void CollectVisibleConversions(ASTContext &Context, 1704 const CXXRecordDecl *Record, 1705 ASTUnresolvedSet &Output) { 1706 // The collection of all conversions in virtual bases that we've 1707 // found. These will be added to the output as long as they don't 1708 // appear in the hidden-conversions set. 1709 UnresolvedSet<8> VBaseCs; 1710 1711 // The set of conversions in virtual bases that we've determined to 1712 // be hidden. 1713 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; 1714 1715 // The set of types hidden by classes derived from this one. 1716 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; 1717 1718 // Go ahead and collect the direct conversions and add them to the 1719 // hidden-types set. 1720 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); 1721 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); 1722 Output.append(Context, ConvI, ConvE); 1723 for (; ConvI != ConvE; ++ConvI) 1724 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); 1725 1726 // Recursively collect conversions from base classes. 1727 for (const auto &I : Record->bases()) { 1728 const auto *RT = I.getType()->getAs<RecordType>(); 1729 if (!RT) continue; 1730 1731 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), 1732 I.isVirtual(), I.getAccessSpecifier(), 1733 HiddenTypes, Output, VBaseCs, HiddenVBaseCs); 1734 } 1735 1736 // Add any unhidden conversions provided by virtual bases. 1737 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); 1738 I != E; ++I) { 1739 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) 1740 Output.addDecl(Context, I.getDecl(), I.getAccess()); 1741 } 1742 } 1743 1744 /// getVisibleConversionFunctions - get all conversion functions visible 1745 /// in current class; including conversion function templates. 1746 llvm::iterator_range<CXXRecordDecl::conversion_iterator> 1747 CXXRecordDecl::getVisibleConversionFunctions() const { 1748 ASTContext &Ctx = getASTContext(); 1749 1750 ASTUnresolvedSet *Set; 1751 if (bases_begin() == bases_end()) { 1752 // If root class, all conversions are visible. 1753 Set = &data().Conversions.get(Ctx); 1754 } else { 1755 Set = &data().VisibleConversions.get(Ctx); 1756 // If visible conversion list is not evaluated, evaluate it. 1757 if (!data().ComputedVisibleConversions) { 1758 CollectVisibleConversions(Ctx, this, *Set); 1759 data().ComputedVisibleConversions = true; 1760 } 1761 } 1762 return llvm::make_range(Set->begin(), Set->end()); 1763 } 1764 1765 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { 1766 // This operation is O(N) but extremely rare. Sema only uses it to 1767 // remove UsingShadowDecls in a class that were followed by a direct 1768 // declaration, e.g.: 1769 // class A : B { 1770 // using B::operator int; 1771 // operator int(); 1772 // }; 1773 // This is uncommon by itself and even more uncommon in conjunction 1774 // with sufficiently large numbers of directly-declared conversions 1775 // that asymptotic behavior matters. 1776 1777 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); 1778 for (unsigned I = 0, E = Convs.size(); I != E; ++I) { 1779 if (Convs[I].getDecl() == ConvDecl) { 1780 Convs.erase(I); 1781 assert(!llvm::is_contained(Convs, ConvDecl) && 1782 "conversion was found multiple times in unresolved set"); 1783 return; 1784 } 1785 } 1786 1787 llvm_unreachable("conversion not found in set!"); 1788 } 1789 1790 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { 1791 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1792 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); 1793 1794 return nullptr; 1795 } 1796 1797 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { 1798 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); 1799 } 1800 1801 void 1802 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, 1803 TemplateSpecializationKind TSK) { 1804 assert(TemplateOrInstantiation.isNull() && 1805 "Previous template or instantiation?"); 1806 assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); 1807 TemplateOrInstantiation 1808 = new (getASTContext()) MemberSpecializationInfo(RD, TSK); 1809 } 1810 1811 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { 1812 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); 1813 } 1814 1815 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { 1816 TemplateOrInstantiation = Template; 1817 } 1818 1819 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ 1820 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) 1821 return Spec->getSpecializationKind(); 1822 1823 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) 1824 return MSInfo->getTemplateSpecializationKind(); 1825 1826 return TSK_Undeclared; 1827 } 1828 1829 void 1830 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { 1831 if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1832 Spec->setSpecializationKind(TSK); 1833 return; 1834 } 1835 1836 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1837 MSInfo->setTemplateSpecializationKind(TSK); 1838 return; 1839 } 1840 1841 llvm_unreachable("Not a class template or member class specialization"); 1842 } 1843 1844 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { 1845 auto GetDefinitionOrSelf = 1846 [](const CXXRecordDecl *D) -> const CXXRecordDecl * { 1847 if (auto *Def = D->getDefinition()) 1848 return Def; 1849 return D; 1850 }; 1851 1852 // If it's a class template specialization, find the template or partial 1853 // specialization from which it was instantiated. 1854 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { 1855 auto From = TD->getInstantiatedFrom(); 1856 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { 1857 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { 1858 if (NewCTD->isMemberSpecialization()) 1859 break; 1860 CTD = NewCTD; 1861 } 1862 return GetDefinitionOrSelf(CTD->getTemplatedDecl()); 1863 } 1864 if (auto *CTPSD = 1865 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 1866 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { 1867 if (NewCTPSD->isMemberSpecialization()) 1868 break; 1869 CTPSD = NewCTPSD; 1870 } 1871 return GetDefinitionOrSelf(CTPSD); 1872 } 1873 } 1874 1875 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 1876 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 1877 const CXXRecordDecl *RD = this; 1878 while (auto *NewRD = RD->getInstantiatedFromMemberClass()) 1879 RD = NewRD; 1880 return GetDefinitionOrSelf(RD); 1881 } 1882 } 1883 1884 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && 1885 "couldn't find pattern for class template instantiation"); 1886 return nullptr; 1887 } 1888 1889 CXXDestructorDecl *CXXRecordDecl::getDestructor() const { 1890 ASTContext &Context = getASTContext(); 1891 QualType ClassType = Context.getTypeDeclType(this); 1892 1893 DeclarationName Name 1894 = Context.DeclarationNames.getCXXDestructorName( 1895 Context.getCanonicalType(ClassType)); 1896 1897 DeclContext::lookup_result R = lookup(Name); 1898 1899 return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front()); 1900 } 1901 1902 static bool isDeclContextInNamespace(const DeclContext *DC) { 1903 while (!DC->isTranslationUnit()) { 1904 if (DC->isNamespace()) 1905 return true; 1906 DC = DC->getParent(); 1907 } 1908 return false; 1909 } 1910 1911 bool CXXRecordDecl::isInterfaceLike() const { 1912 assert(hasDefinition() && "checking for interface-like without a definition"); 1913 // All __interfaces are inheritently interface-like. 1914 if (isInterface()) 1915 return true; 1916 1917 // Interface-like types cannot have a user declared constructor, destructor, 1918 // friends, VBases, conversion functions, or fields. Additionally, lambdas 1919 // cannot be interface types. 1920 if (isLambda() || hasUserDeclaredConstructor() || 1921 hasUserDeclaredDestructor() || !field_empty() || hasFriends() || 1922 getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) 1923 return false; 1924 1925 // No interface-like type can have a method with a definition. 1926 for (const auto *const Method : methods()) 1927 if (Method->isDefined() && !Method->isImplicit()) 1928 return false; 1929 1930 // Check "Special" types. 1931 const auto *Uuid = getAttr<UuidAttr>(); 1932 // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an 1933 // extern C++ block directly in the TU. These are only valid if in one 1934 // of these two situations. 1935 if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && 1936 !isDeclContextInNamespace(getDeclContext()) && 1937 ((getName() == "IUnknown" && 1938 Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || 1939 (getName() == "IDispatch" && 1940 Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { 1941 if (getNumBases() > 0) 1942 return false; 1943 return true; 1944 } 1945 1946 // FIXME: Any access specifiers is supposed to make this no longer interface 1947 // like. 1948 1949 // If this isn't a 'special' type, it must have a single interface-like base. 1950 if (getNumBases() != 1) 1951 return false; 1952 1953 const auto BaseSpec = *bases_begin(); 1954 if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) 1955 return false; 1956 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 1957 if (Base->isInterface() || !Base->isInterfaceLike()) 1958 return false; 1959 return true; 1960 } 1961 1962 void CXXRecordDecl::completeDefinition() { 1963 completeDefinition(nullptr); 1964 } 1965 1966 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { 1967 RecordDecl::completeDefinition(); 1968 1969 // If the class may be abstract (but hasn't been marked as such), check for 1970 // any pure final overriders. 1971 if (mayBeAbstract()) { 1972 CXXFinalOverriderMap MyFinalOverriders; 1973 if (!FinalOverriders) { 1974 getFinalOverriders(MyFinalOverriders); 1975 FinalOverriders = &MyFinalOverriders; 1976 } 1977 1978 bool Done = false; 1979 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 1980 MEnd = FinalOverriders->end(); 1981 M != MEnd && !Done; ++M) { 1982 for (OverridingMethods::iterator SO = M->second.begin(), 1983 SOEnd = M->second.end(); 1984 SO != SOEnd && !Done; ++SO) { 1985 assert(SO->second.size() > 0 && 1986 "All virtual functions have overriding virtual functions"); 1987 1988 // C++ [class.abstract]p4: 1989 // A class is abstract if it contains or inherits at least one 1990 // pure virtual function for which the final overrider is pure 1991 // virtual. 1992 if (SO->second.front().Method->isPure()) { 1993 data().Abstract = true; 1994 Done = true; 1995 break; 1996 } 1997 } 1998 } 1999 } 2000 2001 // Set access bits correctly on the directly-declared conversions. 2002 for (conversion_iterator I = conversion_begin(), E = conversion_end(); 2003 I != E; ++I) 2004 I.setAccess((*I)->getAccess()); 2005 } 2006 2007 bool CXXRecordDecl::mayBeAbstract() const { 2008 if (data().Abstract || isInvalidDecl() || !data().Polymorphic || 2009 isDependentContext()) 2010 return false; 2011 2012 for (const auto &B : bases()) { 2013 const auto *BaseDecl = 2014 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); 2015 if (BaseDecl->isAbstract()) 2016 return true; 2017 } 2018 2019 return false; 2020 } 2021 2022 bool CXXRecordDecl::isEffectivelyFinal() const { 2023 auto *Def = getDefinition(); 2024 if (!Def) 2025 return false; 2026 if (Def->hasAttr<FinalAttr>()) 2027 return true; 2028 if (const auto *Dtor = Def->getDestructor()) 2029 if (Dtor->hasAttr<FinalAttr>()) 2030 return true; 2031 return false; 2032 } 2033 2034 void CXXDeductionGuideDecl::anchor() {} 2035 2036 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { 2037 if ((getKind() != Other.getKind() || 2038 getKind() == ExplicitSpecKind::Unresolved)) { 2039 if (getKind() == ExplicitSpecKind::Unresolved && 2040 Other.getKind() == ExplicitSpecKind::Unresolved) { 2041 ODRHash SelfHash, OtherHash; 2042 SelfHash.AddStmt(getExpr()); 2043 OtherHash.AddStmt(Other.getExpr()); 2044 return SelfHash.CalculateHash() == OtherHash.CalculateHash(); 2045 } else 2046 return false; 2047 } 2048 return true; 2049 } 2050 2051 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { 2052 switch (Function->getDeclKind()) { 2053 case Decl::Kind::CXXConstructor: 2054 return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier(); 2055 case Decl::Kind::CXXConversion: 2056 return cast<CXXConversionDecl>(Function)->getExplicitSpecifier(); 2057 case Decl::Kind::CXXDeductionGuide: 2058 return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier(); 2059 default: 2060 return {}; 2061 } 2062 } 2063 2064 CXXDeductionGuideDecl * 2065 CXXDeductionGuideDecl::Create(ASTContext &C, DeclContext *DC, 2066 SourceLocation StartLoc, ExplicitSpecifier ES, 2067 const DeclarationNameInfo &NameInfo, QualType T, 2068 TypeSourceInfo *TInfo, SourceLocation EndLocation, 2069 CXXConstructorDecl *Ctor) { 2070 return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, 2071 TInfo, EndLocation, Ctor); 2072 } 2073 2074 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, 2075 unsigned ID) { 2076 return new (C, ID) CXXDeductionGuideDecl( 2077 C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), 2078 QualType(), nullptr, SourceLocation(), nullptr); 2079 } 2080 2081 RequiresExprBodyDecl *RequiresExprBodyDecl::Create( 2082 ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { 2083 return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); 2084 } 2085 2086 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, 2087 unsigned ID) { 2088 return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); 2089 } 2090 2091 void CXXMethodDecl::anchor() {} 2092 2093 bool CXXMethodDecl::isStatic() const { 2094 const CXXMethodDecl *MD = getCanonicalDecl(); 2095 2096 if (MD->getStorageClass() == SC_Static) 2097 return true; 2098 2099 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); 2100 return isStaticOverloadedOperator(OOK); 2101 } 2102 2103 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, 2104 const CXXMethodDecl *BaseMD) { 2105 for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { 2106 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) 2107 return true; 2108 if (recursivelyOverrides(MD, BaseMD)) 2109 return true; 2110 } 2111 return false; 2112 } 2113 2114 CXXMethodDecl * 2115 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, 2116 bool MayBeBase) { 2117 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) 2118 return this; 2119 2120 // Lookup doesn't work for destructors, so handle them separately. 2121 if (isa<CXXDestructorDecl>(this)) { 2122 CXXMethodDecl *MD = RD->getDestructor(); 2123 if (MD) { 2124 if (recursivelyOverrides(MD, this)) 2125 return MD; 2126 if (MayBeBase && recursivelyOverrides(this, MD)) 2127 return MD; 2128 } 2129 return nullptr; 2130 } 2131 2132 for (auto *ND : RD->lookup(getDeclName())) { 2133 auto *MD = dyn_cast<CXXMethodDecl>(ND); 2134 if (!MD) 2135 continue; 2136 if (recursivelyOverrides(MD, this)) 2137 return MD; 2138 if (MayBeBase && recursivelyOverrides(this, MD)) 2139 return MD; 2140 } 2141 2142 return nullptr; 2143 } 2144 2145 CXXMethodDecl * 2146 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, 2147 bool MayBeBase) { 2148 if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) 2149 return MD; 2150 2151 llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders; 2152 auto AddFinalOverrider = [&](CXXMethodDecl *D) { 2153 // If this function is overridden by a candidate final overrider, it is not 2154 // a final overrider. 2155 for (CXXMethodDecl *OtherD : FinalOverriders) { 2156 if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D)) 2157 return; 2158 } 2159 2160 // Other candidate final overriders might be overridden by this function. 2161 llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) { 2162 return recursivelyOverrides(D, OtherD); 2163 }); 2164 2165 FinalOverriders.push_back(D); 2166 }; 2167 2168 for (const auto &I : RD->bases()) { 2169 const RecordType *RT = I.getType()->getAs<RecordType>(); 2170 if (!RT) 2171 continue; 2172 const auto *Base = cast<CXXRecordDecl>(RT->getDecl()); 2173 if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base)) 2174 AddFinalOverrider(D); 2175 } 2176 2177 return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; 2178 } 2179 2180 CXXMethodDecl * 2181 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2182 const DeclarationNameInfo &NameInfo, QualType T, 2183 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 2184 bool isInline, ConstexprSpecKind ConstexprKind, 2185 SourceLocation EndLocation, 2186 Expr *TrailingRequiresClause) { 2187 return new (C, RD) CXXMethodDecl( 2188 CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 2189 isInline, ConstexprKind, EndLocation, TrailingRequiresClause); 2190 } 2191 2192 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2193 return new (C, ID) CXXMethodDecl( 2194 CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(), 2195 QualType(), nullptr, SC_None, false, false, 2196 ConstexprSpecKind::Unspecified, SourceLocation(), nullptr); 2197 } 2198 2199 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, 2200 bool IsAppleKext) { 2201 assert(isVirtual() && "this method is expected to be virtual"); 2202 2203 // When building with -fapple-kext, all calls must go through the vtable since 2204 // the kernel linker can do runtime patching of vtables. 2205 if (IsAppleKext) 2206 return nullptr; 2207 2208 // If the member function is marked 'final', we know that it can't be 2209 // overridden and can therefore devirtualize it unless it's pure virtual. 2210 if (hasAttr<FinalAttr>()) 2211 return isPure() ? nullptr : this; 2212 2213 // If Base is unknown, we cannot devirtualize. 2214 if (!Base) 2215 return nullptr; 2216 2217 // If the base expression (after skipping derived-to-base conversions) is a 2218 // class prvalue, then we can devirtualize. 2219 Base = Base->getBestDynamicClassTypeExpr(); 2220 if (Base->isPRValue() && Base->getType()->isRecordType()) 2221 return this; 2222 2223 // If we don't even know what we would call, we can't devirtualize. 2224 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 2225 if (!BestDynamicDecl) 2226 return nullptr; 2227 2228 // There may be a method corresponding to MD in a derived class. 2229 CXXMethodDecl *DevirtualizedMethod = 2230 getCorrespondingMethodInClass(BestDynamicDecl); 2231 2232 // If there final overrider in the dynamic type is ambiguous, we can't 2233 // devirtualize this call. 2234 if (!DevirtualizedMethod) 2235 return nullptr; 2236 2237 // If that method is pure virtual, we can't devirtualize. If this code is 2238 // reached, the result would be UB, not a direct call to the derived class 2239 // function, and we can't assume the derived class function is defined. 2240 if (DevirtualizedMethod->isPure()) 2241 return nullptr; 2242 2243 // If that method is marked final, we can devirtualize it. 2244 if (DevirtualizedMethod->hasAttr<FinalAttr>()) 2245 return DevirtualizedMethod; 2246 2247 // Similarly, if the class itself or its destructor is marked 'final', 2248 // the class can't be derived from and we can therefore devirtualize the 2249 // member function call. 2250 if (BestDynamicDecl->isEffectivelyFinal()) 2251 return DevirtualizedMethod; 2252 2253 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) { 2254 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 2255 if (VD->getType()->isRecordType()) 2256 // This is a record decl. We know the type and can devirtualize it. 2257 return DevirtualizedMethod; 2258 2259 return nullptr; 2260 } 2261 2262 // We can devirtualize calls on an object accessed by a class member access 2263 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2264 // a derived class object constructed in the same location. 2265 if (const auto *ME = dyn_cast<MemberExpr>(Base)) { 2266 const ValueDecl *VD = ME->getMemberDecl(); 2267 return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; 2268 } 2269 2270 // Likewise for calls on an object accessed by a (non-reference) pointer to 2271 // member access. 2272 if (auto *BO = dyn_cast<BinaryOperator>(Base)) { 2273 if (BO->isPtrMemOp()) { 2274 auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); 2275 if (MPT->getPointeeType()->isRecordType()) 2276 return DevirtualizedMethod; 2277 } 2278 } 2279 2280 // We can't devirtualize the call. 2281 return nullptr; 2282 } 2283 2284 bool CXXMethodDecl::isUsualDeallocationFunction( 2285 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { 2286 assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); 2287 if (getOverloadedOperator() != OO_Delete && 2288 getOverloadedOperator() != OO_Array_Delete) 2289 return false; 2290 2291 // C++ [basic.stc.dynamic.deallocation]p2: 2292 // A template instance is never a usual deallocation function, 2293 // regardless of its signature. 2294 if (getPrimaryTemplate()) 2295 return false; 2296 2297 // C++ [basic.stc.dynamic.deallocation]p2: 2298 // If a class T has a member deallocation function named operator delete 2299 // with exactly one parameter, then that function is a usual (non-placement) 2300 // deallocation function. [...] 2301 if (getNumParams() == 1) 2302 return true; 2303 unsigned UsualParams = 1; 2304 2305 // C++ P0722: 2306 // A destroying operator delete is a usual deallocation function if 2307 // removing the std::destroying_delete_t parameter and changing the 2308 // first parameter type from T* to void* results in the signature of 2309 // a usual deallocation function. 2310 if (isDestroyingOperatorDelete()) 2311 ++UsualParams; 2312 2313 // C++ <=14 [basic.stc.dynamic.deallocation]p2: 2314 // [...] If class T does not declare such an operator delete but does 2315 // declare a member deallocation function named operator delete with 2316 // exactly two parameters, the second of which has type std::size_t (18.1), 2317 // then this function is a usual deallocation function. 2318 // 2319 // C++17 says a usual deallocation function is one with the signature 2320 // (void* [, size_t] [, std::align_val_t] [, ...]) 2321 // and all such functions are usual deallocation functions. It's not clear 2322 // that allowing varargs functions was intentional. 2323 ASTContext &Context = getASTContext(); 2324 if (UsualParams < getNumParams() && 2325 Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), 2326 Context.getSizeType())) 2327 ++UsualParams; 2328 2329 if (UsualParams < getNumParams() && 2330 getParamDecl(UsualParams)->getType()->isAlignValT()) 2331 ++UsualParams; 2332 2333 if (UsualParams != getNumParams()) 2334 return false; 2335 2336 // In C++17 onwards, all potential usual deallocation functions are actual 2337 // usual deallocation functions. Honor this behavior when post-C++14 2338 // deallocation functions are offered as extensions too. 2339 // FIXME(EricWF): Destroying Delete should be a language option. How do we 2340 // handle when destroying delete is used prior to C++17? 2341 if (Context.getLangOpts().CPlusPlus17 || 2342 Context.getLangOpts().AlignedAllocation || 2343 isDestroyingOperatorDelete()) 2344 return true; 2345 2346 // This function is a usual deallocation function if there are no 2347 // single-parameter deallocation functions of the same kind. 2348 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); 2349 bool Result = true; 2350 for (const auto *D : R) { 2351 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2352 if (FD->getNumParams() == 1) { 2353 PreventedBy.push_back(FD); 2354 Result = false; 2355 } 2356 } 2357 } 2358 return Result; 2359 } 2360 2361 bool CXXMethodDecl::isCopyAssignmentOperator() const { 2362 // C++0x [class.copy]p17: 2363 // A user-declared copy assignment operator X::operator= is a non-static 2364 // non-template member function of class X with exactly one parameter of 2365 // type X, X&, const X&, volatile X& or const volatile X&. 2366 if (/*operator=*/getOverloadedOperator() != OO_Equal || 2367 /*non-static*/ isStatic() || 2368 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || 2369 getNumParams() != 1) 2370 return false; 2371 2372 QualType ParamType = getParamDecl(0)->getType(); 2373 if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) 2374 ParamType = Ref->getPointeeType(); 2375 2376 ASTContext &Context = getASTContext(); 2377 QualType ClassType 2378 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2379 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2380 } 2381 2382 bool CXXMethodDecl::isMoveAssignmentOperator() const { 2383 // C++0x [class.copy]p19: 2384 // A user-declared move assignment operator X::operator= is a non-static 2385 // non-template member function of class X with exactly one parameter of type 2386 // X&&, const X&&, volatile X&&, or const volatile X&&. 2387 if (getOverloadedOperator() != OO_Equal || isStatic() || 2388 getPrimaryTemplate() || getDescribedFunctionTemplate() || 2389 getNumParams() != 1) 2390 return false; 2391 2392 QualType ParamType = getParamDecl(0)->getType(); 2393 if (!isa<RValueReferenceType>(ParamType)) 2394 return false; 2395 ParamType = ParamType->getPointeeType(); 2396 2397 ASTContext &Context = getASTContext(); 2398 QualType ClassType 2399 = Context.getCanonicalType(Context.getTypeDeclType(getParent())); 2400 return Context.hasSameUnqualifiedType(ClassType, ParamType); 2401 } 2402 2403 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { 2404 assert(MD->isCanonicalDecl() && "Method is not canonical!"); 2405 assert(!MD->getParent()->isDependentContext() && 2406 "Can't add an overridden method to a class template!"); 2407 assert(MD->isVirtual() && "Method is not virtual!"); 2408 2409 getASTContext().addOverriddenMethod(this, MD); 2410 } 2411 2412 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { 2413 if (isa<CXXConstructorDecl>(this)) return nullptr; 2414 return getASTContext().overridden_methods_begin(this); 2415 } 2416 2417 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { 2418 if (isa<CXXConstructorDecl>(this)) return nullptr; 2419 return getASTContext().overridden_methods_end(this); 2420 } 2421 2422 unsigned CXXMethodDecl::size_overridden_methods() const { 2423 if (isa<CXXConstructorDecl>(this)) return 0; 2424 return getASTContext().overridden_methods_size(this); 2425 } 2426 2427 CXXMethodDecl::overridden_method_range 2428 CXXMethodDecl::overridden_methods() const { 2429 if (isa<CXXConstructorDecl>(this)) 2430 return overridden_method_range(nullptr, nullptr); 2431 return getASTContext().overridden_methods(this); 2432 } 2433 2434 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, 2435 const CXXRecordDecl *Decl) { 2436 QualType ClassTy = C.getTypeDeclType(Decl); 2437 return C.getQualifiedType(ClassTy, FPT->getMethodQuals()); 2438 } 2439 2440 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, 2441 const CXXRecordDecl *Decl) { 2442 ASTContext &C = Decl->getASTContext(); 2443 QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); 2444 return C.getPointerType(ObjectTy); 2445 } 2446 2447 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT, 2448 const CXXRecordDecl *Decl) { 2449 ASTContext &C = Decl->getASTContext(); 2450 return ::getThisObjectType(C, FPT, Decl); 2451 } 2452 2453 QualType CXXMethodDecl::getThisType() const { 2454 // C++ 9.3.2p1: The type of this in a member function of a class X is X*. 2455 // If the member function is declared const, the type of this is const X*, 2456 // if the member function is declared volatile, the type of this is 2457 // volatile X*, and if the member function is declared const volatile, 2458 // the type of this is const volatile X*. 2459 assert(isInstance() && "No 'this' for static methods!"); 2460 return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(), 2461 getParent()); 2462 } 2463 2464 QualType CXXMethodDecl::getThisObjectType() const { 2465 // Ditto getThisType. 2466 assert(isInstance() && "No 'this' for static methods!"); 2467 return CXXMethodDecl::getThisObjectType( 2468 getType()->castAs<FunctionProtoType>(), getParent()); 2469 } 2470 2471 bool CXXMethodDecl::hasInlineBody() const { 2472 // If this function is a template instantiation, look at the template from 2473 // which it was instantiated. 2474 const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); 2475 if (!CheckFn) 2476 CheckFn = this; 2477 2478 const FunctionDecl *fn; 2479 return CheckFn->isDefined(fn) && !fn->isOutOfLine() && 2480 (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); 2481 } 2482 2483 bool CXXMethodDecl::isLambdaStaticInvoker() const { 2484 const CXXRecordDecl *P = getParent(); 2485 return P->isLambda() && getDeclName().isIdentifier() && 2486 getName() == getLambdaStaticInvokerName(); 2487 } 2488 2489 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2490 TypeSourceInfo *TInfo, bool IsVirtual, 2491 SourceLocation L, Expr *Init, 2492 SourceLocation R, 2493 SourceLocation EllipsisLoc) 2494 : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc), 2495 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), 2496 IsWritten(false), SourceOrder(0) {} 2497 2498 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, 2499 SourceLocation MemberLoc, 2500 SourceLocation L, Expr *Init, 2501 SourceLocation R) 2502 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), 2503 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2504 IsWritten(false), SourceOrder(0) {} 2505 2506 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2507 IndirectFieldDecl *Member, 2508 SourceLocation MemberLoc, 2509 SourceLocation L, Expr *Init, 2510 SourceLocation R) 2511 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), 2512 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), 2513 IsWritten(false), SourceOrder(0) {} 2514 2515 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, 2516 TypeSourceInfo *TInfo, 2517 SourceLocation L, Expr *Init, 2518 SourceLocation R) 2519 : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), 2520 IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} 2521 2522 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { 2523 return Context.getAllocator() 2524 .identifyKnownAlignedObject<CXXCtorInitializer>(this); 2525 } 2526 2527 TypeLoc CXXCtorInitializer::getBaseClassLoc() const { 2528 if (isBaseInitializer()) 2529 return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); 2530 else 2531 return {}; 2532 } 2533 2534 const Type *CXXCtorInitializer::getBaseClass() const { 2535 if (isBaseInitializer()) 2536 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); 2537 else 2538 return nullptr; 2539 } 2540 2541 SourceLocation CXXCtorInitializer::getSourceLocation() const { 2542 if (isInClassMemberInitializer()) 2543 return getAnyMember()->getLocation(); 2544 2545 if (isAnyMemberInitializer()) 2546 return getMemberLocation(); 2547 2548 if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) 2549 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); 2550 2551 return {}; 2552 } 2553 2554 SourceRange CXXCtorInitializer::getSourceRange() const { 2555 if (isInClassMemberInitializer()) { 2556 FieldDecl *D = getAnyMember(); 2557 if (Expr *I = D->getInClassInitializer()) 2558 return I->getSourceRange(); 2559 return {}; 2560 } 2561 2562 return SourceRange(getSourceLocation(), getRParenLoc()); 2563 } 2564 2565 CXXConstructorDecl::CXXConstructorDecl( 2566 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2567 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2568 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, 2569 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, 2570 InheritedConstructor Inherited, Expr *TrailingRequiresClause) 2571 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, 2572 SC_None, UsesFPIntrin, isInline, ConstexprKind, 2573 SourceLocation(), TrailingRequiresClause) { 2574 setNumCtorInitializers(0); 2575 setInheritingConstructor(static_cast<bool>(Inherited)); 2576 setImplicit(isImplicitlyDeclared); 2577 CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; 2578 if (Inherited) 2579 *getTrailingObjects<InheritedConstructor>() = Inherited; 2580 setExplicitSpecifier(ES); 2581 } 2582 2583 void CXXConstructorDecl::anchor() {} 2584 2585 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, 2586 unsigned ID, 2587 uint64_t AllocKind) { 2588 bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); 2589 bool isInheritingConstructor = 2590 static_cast<bool>(AllocKind & TAKInheritsConstructor); 2591 unsigned Extra = 2592 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2593 isInheritingConstructor, hasTrailingExplicit); 2594 auto *Result = new (C, ID, Extra) CXXConstructorDecl( 2595 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2596 ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified, 2597 InheritedConstructor(), nullptr); 2598 Result->setInheritingConstructor(isInheritingConstructor); 2599 Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = 2600 hasTrailingExplicit; 2601 Result->setExplicitSpecifier(ExplicitSpecifier()); 2602 return Result; 2603 } 2604 2605 CXXConstructorDecl *CXXConstructorDecl::Create( 2606 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2607 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2608 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, 2609 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, 2610 InheritedConstructor Inherited, Expr *TrailingRequiresClause) { 2611 assert(NameInfo.getName().getNameKind() 2612 == DeclarationName::CXXConstructorName && 2613 "Name must refer to a constructor"); 2614 unsigned Extra = 2615 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( 2616 Inherited ? 1 : 0, ES.getExpr() ? 1 : 0); 2617 return new (C, RD, Extra) CXXConstructorDecl( 2618 C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline, 2619 isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause); 2620 } 2621 2622 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { 2623 return CtorInitializers.get(getASTContext().getExternalSource()); 2624 } 2625 2626 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { 2627 assert(isDelegatingConstructor() && "Not a delegating constructor!"); 2628 Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); 2629 if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) 2630 return Construct->getConstructor(); 2631 2632 return nullptr; 2633 } 2634 2635 bool CXXConstructorDecl::isDefaultConstructor() const { 2636 // C++ [class.default.ctor]p1: 2637 // A default constructor for a class X is a constructor of class X for 2638 // which each parameter that is not a function parameter pack has a default 2639 // argument (including the case of a constructor with no parameters) 2640 return getMinRequiredArguments() == 0; 2641 } 2642 2643 bool 2644 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { 2645 return isCopyOrMoveConstructor(TypeQuals) && 2646 getParamDecl(0)->getType()->isLValueReferenceType(); 2647 } 2648 2649 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { 2650 return isCopyOrMoveConstructor(TypeQuals) && 2651 getParamDecl(0)->getType()->isRValueReferenceType(); 2652 } 2653 2654 /// Determine whether this is a copy or move constructor. 2655 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { 2656 // C++ [class.copy]p2: 2657 // A non-template constructor for class X is a copy constructor 2658 // if its first parameter is of type X&, const X&, volatile X& or 2659 // const volatile X&, and either there are no other parameters 2660 // or else all other parameters have default arguments (8.3.6). 2661 // C++0x [class.copy]p3: 2662 // A non-template constructor for class X is a move constructor if its 2663 // first parameter is of type X&&, const X&&, volatile X&&, or 2664 // const volatile X&&, and either there are no other parameters or else 2665 // all other parameters have default arguments. 2666 if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || 2667 getDescribedFunctionTemplate() != nullptr) 2668 return false; 2669 2670 const ParmVarDecl *Param = getParamDecl(0); 2671 2672 // Do we have a reference type? 2673 const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); 2674 if (!ParamRefType) 2675 return false; 2676 2677 // Is it a reference to our class type? 2678 ASTContext &Context = getASTContext(); 2679 2680 CanQualType PointeeType 2681 = Context.getCanonicalType(ParamRefType->getPointeeType()); 2682 CanQualType ClassTy 2683 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2684 if (PointeeType.getUnqualifiedType() != ClassTy) 2685 return false; 2686 2687 // FIXME: other qualifiers? 2688 2689 // We have a copy or move constructor. 2690 TypeQuals = PointeeType.getCVRQualifiers(); 2691 return true; 2692 } 2693 2694 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { 2695 // C++ [class.conv.ctor]p1: 2696 // A constructor declared without the function-specifier explicit 2697 // that can be called with a single parameter specifies a 2698 // conversion from the type of its first parameter to the type of 2699 // its class. Such a constructor is called a converting 2700 // constructor. 2701 if (isExplicit() && !AllowExplicit) 2702 return false; 2703 2704 // FIXME: This has nothing to do with the definition of converting 2705 // constructor, but is convenient for how we use this function in overload 2706 // resolution. 2707 return getNumParams() == 0 2708 ? getType()->castAs<FunctionProtoType>()->isVariadic() 2709 : getMinRequiredArguments() <= 1; 2710 } 2711 2712 bool CXXConstructorDecl::isSpecializationCopyingObject() const { 2713 if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) 2714 return false; 2715 2716 const ParmVarDecl *Param = getParamDecl(0); 2717 2718 ASTContext &Context = getASTContext(); 2719 CanQualType ParamType = Context.getCanonicalType(Param->getType()); 2720 2721 // Is it the same as our class type? 2722 CanQualType ClassTy 2723 = Context.getCanonicalType(Context.getTagDeclType(getParent())); 2724 if (ParamType.getUnqualifiedType() != ClassTy) 2725 return false; 2726 2727 return true; 2728 } 2729 2730 void CXXDestructorDecl::anchor() {} 2731 2732 CXXDestructorDecl * 2733 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2734 return new (C, ID) CXXDestructorDecl( 2735 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2736 false, false, false, ConstexprSpecKind::Unspecified, nullptr); 2737 } 2738 2739 CXXDestructorDecl *CXXDestructorDecl::Create( 2740 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2741 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2742 bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared, 2743 ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) { 2744 assert(NameInfo.getName().getNameKind() 2745 == DeclarationName::CXXDestructorName && 2746 "Name must refer to a destructor"); 2747 return new (C, RD) CXXDestructorDecl( 2748 C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, 2749 isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause); 2750 } 2751 2752 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { 2753 auto *First = cast<CXXDestructorDecl>(getFirstDecl()); 2754 if (OD && !First->OperatorDelete) { 2755 First->OperatorDelete = OD; 2756 First->OperatorDeleteThisArg = ThisArg; 2757 if (auto *L = getASTMutationListener()) 2758 L->ResolvedOperatorDelete(First, OD, ThisArg); 2759 } 2760 } 2761 2762 void CXXConversionDecl::anchor() {} 2763 2764 CXXConversionDecl * 2765 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2766 return new (C, ID) CXXConversionDecl( 2767 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, 2768 false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 2769 SourceLocation(), nullptr); 2770 } 2771 2772 CXXConversionDecl *CXXConversionDecl::Create( 2773 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2774 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, 2775 bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES, 2776 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, 2777 Expr *TrailingRequiresClause) { 2778 assert(NameInfo.getName().getNameKind() 2779 == DeclarationName::CXXConversionFunctionName && 2780 "Name must refer to a conversion function"); 2781 return new (C, RD) CXXConversionDecl( 2782 C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES, 2783 ConstexprKind, EndLocation, TrailingRequiresClause); 2784 } 2785 2786 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { 2787 return isImplicit() && getParent()->isLambda() && 2788 getConversionType()->isBlockPointerType(); 2789 } 2790 2791 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, 2792 SourceLocation LangLoc, LanguageIDs lang, 2793 bool HasBraces) 2794 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), 2795 ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { 2796 setLanguage(lang); 2797 LinkageSpecDeclBits.HasBraces = HasBraces; 2798 } 2799 2800 void LinkageSpecDecl::anchor() {} 2801 2802 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, 2803 DeclContext *DC, 2804 SourceLocation ExternLoc, 2805 SourceLocation LangLoc, 2806 LanguageIDs Lang, 2807 bool HasBraces) { 2808 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); 2809 } 2810 2811 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, 2812 unsigned ID) { 2813 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), 2814 SourceLocation(), lang_c, false); 2815 } 2816 2817 void UsingDirectiveDecl::anchor() {} 2818 2819 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, 2820 SourceLocation L, 2821 SourceLocation NamespaceLoc, 2822 NestedNameSpecifierLoc QualifierLoc, 2823 SourceLocation IdentLoc, 2824 NamedDecl *Used, 2825 DeclContext *CommonAncestor) { 2826 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used)) 2827 Used = NS->getOriginalNamespace(); 2828 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, 2829 IdentLoc, Used, CommonAncestor); 2830 } 2831 2832 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, 2833 unsigned ID) { 2834 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), 2835 SourceLocation(), 2836 NestedNameSpecifierLoc(), 2837 SourceLocation(), nullptr, nullptr); 2838 } 2839 2840 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { 2841 if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) 2842 return NA->getNamespace(); 2843 return cast_or_null<NamespaceDecl>(NominatedNamespace); 2844 } 2845 2846 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, 2847 SourceLocation StartLoc, SourceLocation IdLoc, 2848 IdentifierInfo *Id, NamespaceDecl *PrevDecl) 2849 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), 2850 redeclarable_base(C), LocStart(StartLoc), 2851 AnonOrFirstNamespaceAndInline(nullptr, Inline) { 2852 setPreviousDecl(PrevDecl); 2853 2854 if (PrevDecl) 2855 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); 2856 } 2857 2858 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, 2859 bool Inline, SourceLocation StartLoc, 2860 SourceLocation IdLoc, IdentifierInfo *Id, 2861 NamespaceDecl *PrevDecl) { 2862 return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, 2863 PrevDecl); 2864 } 2865 2866 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2867 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), 2868 SourceLocation(), nullptr, nullptr); 2869 } 2870 2871 NamespaceDecl *NamespaceDecl::getOriginalNamespace() { 2872 if (isFirstDecl()) 2873 return this; 2874 2875 return AnonOrFirstNamespaceAndInline.getPointer(); 2876 } 2877 2878 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { 2879 if (isFirstDecl()) 2880 return this; 2881 2882 return AnonOrFirstNamespaceAndInline.getPointer(); 2883 } 2884 2885 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } 2886 2887 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { 2888 return getNextRedeclaration(); 2889 } 2890 2891 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { 2892 return getPreviousDecl(); 2893 } 2894 2895 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { 2896 return getMostRecentDecl(); 2897 } 2898 2899 void NamespaceAliasDecl::anchor() {} 2900 2901 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { 2902 return getNextRedeclaration(); 2903 } 2904 2905 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { 2906 return getPreviousDecl(); 2907 } 2908 2909 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { 2910 return getMostRecentDecl(); 2911 } 2912 2913 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, 2914 SourceLocation UsingLoc, 2915 SourceLocation AliasLoc, 2916 IdentifierInfo *Alias, 2917 NestedNameSpecifierLoc QualifierLoc, 2918 SourceLocation IdentLoc, 2919 NamedDecl *Namespace) { 2920 // FIXME: Preserve the aliased namespace as written. 2921 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) 2922 Namespace = NS->getOriginalNamespace(); 2923 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, 2924 QualifierLoc, IdentLoc, Namespace); 2925 } 2926 2927 NamespaceAliasDecl * 2928 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2929 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), 2930 SourceLocation(), nullptr, 2931 NestedNameSpecifierLoc(), 2932 SourceLocation(), nullptr); 2933 } 2934 2935 void LifetimeExtendedTemporaryDecl::anchor() {} 2936 2937 /// Retrieve the storage duration for the materialized temporary. 2938 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { 2939 const ValueDecl *ExtendingDecl = getExtendingDecl(); 2940 if (!ExtendingDecl) 2941 return SD_FullExpression; 2942 // FIXME: This is not necessarily correct for a temporary materialized 2943 // within a default initializer. 2944 if (isa<FieldDecl>(ExtendingDecl)) 2945 return SD_Automatic; 2946 // FIXME: This only works because storage class specifiers are not allowed 2947 // on decomposition declarations. 2948 if (isa<BindingDecl>(ExtendingDecl)) 2949 return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic 2950 : SD_Static; 2951 return cast<VarDecl>(ExtendingDecl)->getStorageDuration(); 2952 } 2953 2954 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { 2955 assert(getStorageDuration() == SD_Static && 2956 "don't need to cache the computed value for this temporary"); 2957 if (MayCreate && !Value) { 2958 Value = (new (getASTContext()) APValue); 2959 getASTContext().addDestruction(Value); 2960 } 2961 assert(Value && "may not be null"); 2962 return Value; 2963 } 2964 2965 void UsingShadowDecl::anchor() {} 2966 2967 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, 2968 SourceLocation Loc, DeclarationName Name, 2969 BaseUsingDecl *Introducer, NamedDecl *Target) 2970 : NamedDecl(K, DC, Loc, Name), redeclarable_base(C), 2971 UsingOrNextShadow(Introducer) { 2972 if (Target) 2973 setTargetDecl(Target); 2974 setImplicit(); 2975 } 2976 2977 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) 2978 : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), 2979 redeclarable_base(C) {} 2980 2981 UsingShadowDecl * 2982 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2983 return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); 2984 } 2985 2986 BaseUsingDecl *UsingShadowDecl::getIntroducer() const { 2987 const UsingShadowDecl *Shadow = this; 2988 while (const auto *NextShadow = 2989 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) 2990 Shadow = NextShadow; 2991 return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow); 2992 } 2993 2994 void ConstructorUsingShadowDecl::anchor() {} 2995 2996 ConstructorUsingShadowDecl * 2997 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, 2998 SourceLocation Loc, UsingDecl *Using, 2999 NamedDecl *Target, bool IsVirtual) { 3000 return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, 3001 IsVirtual); 3002 } 3003 3004 ConstructorUsingShadowDecl * 3005 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3006 return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); 3007 } 3008 3009 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { 3010 return getIntroducer()->getQualifier()->getAsRecordDecl(); 3011 } 3012 3013 void BaseUsingDecl::anchor() {} 3014 3015 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) { 3016 assert(!llvm::is_contained(shadows(), S) && "declaration already in set"); 3017 assert(S->getIntroducer() == this); 3018 3019 if (FirstUsingShadow.getPointer()) 3020 S->UsingOrNextShadow = FirstUsingShadow.getPointer(); 3021 FirstUsingShadow.setPointer(S); 3022 } 3023 3024 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) { 3025 assert(llvm::is_contained(shadows(), S) && "declaration not in set"); 3026 assert(S->getIntroducer() == this); 3027 3028 // Remove S from the shadow decl chain. This is O(n) but hopefully rare. 3029 3030 if (FirstUsingShadow.getPointer() == S) { 3031 FirstUsingShadow.setPointer( 3032 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); 3033 S->UsingOrNextShadow = this; 3034 return; 3035 } 3036 3037 UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); 3038 while (Prev->UsingOrNextShadow != S) 3039 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); 3040 Prev->UsingOrNextShadow = S->UsingOrNextShadow; 3041 S->UsingOrNextShadow = this; 3042 } 3043 3044 void UsingDecl::anchor() {} 3045 3046 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, 3047 NestedNameSpecifierLoc QualifierLoc, 3048 const DeclarationNameInfo &NameInfo, 3049 bool HasTypename) { 3050 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); 3051 } 3052 3053 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3054 return new (C, ID) UsingDecl(nullptr, SourceLocation(), 3055 NestedNameSpecifierLoc(), DeclarationNameInfo(), 3056 false); 3057 } 3058 3059 SourceRange UsingDecl::getSourceRange() const { 3060 SourceLocation Begin = isAccessDeclaration() 3061 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3062 return SourceRange(Begin, getNameInfo().getEndLoc()); 3063 } 3064 3065 void UsingEnumDecl::anchor() {} 3066 3067 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC, 3068 SourceLocation UL, SourceLocation EL, 3069 SourceLocation NL, EnumDecl *Enum) { 3070 return new (C, DC) UsingEnumDecl(DC, Enum->getDeclName(), UL, EL, NL, Enum); 3071 } 3072 3073 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3074 return new (C, ID) UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(), 3075 SourceLocation(), SourceLocation(), nullptr); 3076 } 3077 3078 SourceRange UsingEnumDecl::getSourceRange() const { 3079 return SourceRange(EnumLocation, getLocation()); 3080 } 3081 3082 void UsingPackDecl::anchor() {} 3083 3084 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, 3085 NamedDecl *InstantiatedFrom, 3086 ArrayRef<NamedDecl *> UsingDecls) { 3087 size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size()); 3088 return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); 3089 } 3090 3091 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3092 unsigned NumExpansions) { 3093 size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions); 3094 auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None); 3095 Result->NumExpansions = NumExpansions; 3096 auto *Trail = Result->getTrailingObjects<NamedDecl *>(); 3097 for (unsigned I = 0; I != NumExpansions; ++I) 3098 new (Trail + I) NamedDecl*(nullptr); 3099 return Result; 3100 } 3101 3102 void UnresolvedUsingValueDecl::anchor() {} 3103 3104 UnresolvedUsingValueDecl * 3105 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, 3106 SourceLocation UsingLoc, 3107 NestedNameSpecifierLoc QualifierLoc, 3108 const DeclarationNameInfo &NameInfo, 3109 SourceLocation EllipsisLoc) { 3110 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, 3111 QualifierLoc, NameInfo, 3112 EllipsisLoc); 3113 } 3114 3115 UnresolvedUsingValueDecl * 3116 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3117 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), 3118 SourceLocation(), 3119 NestedNameSpecifierLoc(), 3120 DeclarationNameInfo(), 3121 SourceLocation()); 3122 } 3123 3124 SourceRange UnresolvedUsingValueDecl::getSourceRange() const { 3125 SourceLocation Begin = isAccessDeclaration() 3126 ? getQualifierLoc().getBeginLoc() : UsingLocation; 3127 return SourceRange(Begin, getNameInfo().getEndLoc()); 3128 } 3129 3130 void UnresolvedUsingTypenameDecl::anchor() {} 3131 3132 UnresolvedUsingTypenameDecl * 3133 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, 3134 SourceLocation UsingLoc, 3135 SourceLocation TypenameLoc, 3136 NestedNameSpecifierLoc QualifierLoc, 3137 SourceLocation TargetNameLoc, 3138 DeclarationName TargetName, 3139 SourceLocation EllipsisLoc) { 3140 return new (C, DC) UnresolvedUsingTypenameDecl( 3141 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, 3142 TargetName.getAsIdentifierInfo(), EllipsisLoc); 3143 } 3144 3145 UnresolvedUsingTypenameDecl * 3146 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3147 return new (C, ID) UnresolvedUsingTypenameDecl( 3148 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), 3149 SourceLocation(), nullptr, SourceLocation()); 3150 } 3151 3152 UnresolvedUsingIfExistsDecl * 3153 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC, 3154 SourceLocation Loc, DeclarationName Name) { 3155 return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name); 3156 } 3157 3158 UnresolvedUsingIfExistsDecl * 3159 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) { 3160 return new (Ctx, ID) 3161 UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName()); 3162 } 3163 3164 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC, 3165 SourceLocation Loc, 3166 DeclarationName Name) 3167 : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {} 3168 3169 void UnresolvedUsingIfExistsDecl::anchor() {} 3170 3171 void StaticAssertDecl::anchor() {} 3172 3173 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, 3174 SourceLocation StaticAssertLoc, 3175 Expr *AssertExpr, 3176 StringLiteral *Message, 3177 SourceLocation RParenLoc, 3178 bool Failed) { 3179 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, 3180 RParenLoc, Failed); 3181 } 3182 3183 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, 3184 unsigned ID) { 3185 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, 3186 nullptr, SourceLocation(), false); 3187 } 3188 3189 void BindingDecl::anchor() {} 3190 3191 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, 3192 SourceLocation IdLoc, IdentifierInfo *Id) { 3193 return new (C, DC) BindingDecl(DC, IdLoc, Id); 3194 } 3195 3196 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3197 return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); 3198 } 3199 3200 VarDecl *BindingDecl::getHoldingVar() const { 3201 Expr *B = getBinding(); 3202 if (!B) 3203 return nullptr; 3204 auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit()); 3205 if (!DRE) 3206 return nullptr; 3207 3208 auto *VD = cast<VarDecl>(DRE->getDecl()); 3209 assert(VD->isImplicit() && "holding var for binding decl not implicit"); 3210 return VD; 3211 } 3212 3213 void DecompositionDecl::anchor() {} 3214 3215 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, 3216 SourceLocation StartLoc, 3217 SourceLocation LSquareLoc, 3218 QualType T, TypeSourceInfo *TInfo, 3219 StorageClass SC, 3220 ArrayRef<BindingDecl *> Bindings) { 3221 size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size()); 3222 return new (C, DC, Extra) 3223 DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); 3224 } 3225 3226 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, 3227 unsigned ID, 3228 unsigned NumBindings) { 3229 size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings); 3230 auto *Result = new (C, ID, Extra) 3231 DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), 3232 QualType(), nullptr, StorageClass(), None); 3233 // Set up and clean out the bindings array. 3234 Result->NumBindings = NumBindings; 3235 auto *Trail = Result->getTrailingObjects<BindingDecl *>(); 3236 for (unsigned I = 0; I != NumBindings; ++I) 3237 new (Trail + I) BindingDecl*(nullptr); 3238 return Result; 3239 } 3240 3241 void DecompositionDecl::printName(llvm::raw_ostream &os) const { 3242 os << '['; 3243 bool Comma = false; 3244 for (const auto *B : bindings()) { 3245 if (Comma) 3246 os << ", "; 3247 B->printName(os); 3248 Comma = true; 3249 } 3250 os << ']'; 3251 } 3252 3253 void MSPropertyDecl::anchor() {} 3254 3255 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, 3256 SourceLocation L, DeclarationName N, 3257 QualType T, TypeSourceInfo *TInfo, 3258 SourceLocation StartL, 3259 IdentifierInfo *Getter, 3260 IdentifierInfo *Setter) { 3261 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); 3262 } 3263 3264 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, 3265 unsigned ID) { 3266 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), 3267 DeclarationName(), QualType(), nullptr, 3268 SourceLocation(), nullptr, nullptr); 3269 } 3270 3271 void MSGuidDecl::anchor() {} 3272 3273 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) 3274 : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), 3275 PartVal(P), APVal() {} 3276 3277 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { 3278 DeclContext *DC = C.getTranslationUnitDecl(); 3279 return new (C, DC) MSGuidDecl(DC, T, P); 3280 } 3281 3282 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3283 return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); 3284 } 3285 3286 void MSGuidDecl::printName(llvm::raw_ostream &OS) const { 3287 OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-", 3288 PartVal.Part1, PartVal.Part2, PartVal.Part3); 3289 unsigned I = 0; 3290 for (uint8_t Byte : PartVal.Part4And5) { 3291 OS << llvm::format("%02" PRIx8, Byte); 3292 if (++I == 2) 3293 OS << '-'; 3294 } 3295 OS << '}'; 3296 } 3297 3298 /// Determine if T is a valid 'struct _GUID' of the shape that we expect. 3299 static bool isValidStructGUID(ASTContext &Ctx, QualType T) { 3300 // FIXME: We only need to check this once, not once each time we compute a 3301 // GUID APValue. 3302 using MatcherRef = llvm::function_ref<bool(QualType)>; 3303 3304 auto IsInt = [&Ctx](unsigned N) { 3305 return [&Ctx, N](QualType T) { 3306 return T->isUnsignedIntegerOrEnumerationType() && 3307 Ctx.getIntWidth(T) == N; 3308 }; 3309 }; 3310 3311 auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { 3312 return [&Ctx, Elem, N](QualType T) { 3313 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); 3314 return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); 3315 }; 3316 }; 3317 3318 auto IsStruct = [](std::initializer_list<MatcherRef> Fields) { 3319 return [Fields](QualType T) { 3320 const RecordDecl *RD = T->getAsRecordDecl(); 3321 if (!RD || RD->isUnion()) 3322 return false; 3323 RD = RD->getDefinition(); 3324 if (!RD) 3325 return false; 3326 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 3327 if (CXXRD->getNumBases()) 3328 return false; 3329 auto MatcherIt = Fields.begin(); 3330 for (const FieldDecl *FD : RD->fields()) { 3331 if (FD->isUnnamedBitfield()) continue; 3332 if (FD->isBitField() || MatcherIt == Fields.end() || 3333 !(*MatcherIt)(FD->getType())) 3334 return false; 3335 ++MatcherIt; 3336 } 3337 return MatcherIt == Fields.end(); 3338 }; 3339 }; 3340 3341 // We expect an {i32, i16, i16, [8 x i8]}. 3342 return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); 3343 } 3344 3345 APValue &MSGuidDecl::getAsAPValue() const { 3346 if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) { 3347 using llvm::APInt; 3348 using llvm::APSInt; 3349 APVal = APValue(APValue::UninitStruct(), 0, 4); 3350 APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); 3351 APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); 3352 APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); 3353 APValue &Arr = APVal.getStructField(3) = 3354 APValue(APValue::UninitArray(), 8, 8); 3355 for (unsigned I = 0; I != 8; ++I) { 3356 Arr.getArrayInitializedElt(I) = 3357 APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); 3358 } 3359 // Register this APValue to be destroyed if necessary. (Note that the 3360 // MSGuidDecl destructor is never run.) 3361 getASTContext().addDestruction(&APVal); 3362 } 3363 3364 return APVal; 3365 } 3366 3367 static const char *getAccessName(AccessSpecifier AS) { 3368 switch (AS) { 3369 case AS_none: 3370 llvm_unreachable("Invalid access specifier!"); 3371 case AS_public: 3372 return "public"; 3373 case AS_private: 3374 return "private"; 3375 case AS_protected: 3376 return "protected"; 3377 } 3378 llvm_unreachable("Invalid access specifier!"); 3379 } 3380 3381 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, 3382 AccessSpecifier AS) { 3383 return DB << getAccessName(AS); 3384 } 3385