xref: /freebsd/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision ebacd8013fe5f7fdf9f6a5b286f6680dd2891036)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Randstruct.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Redeclarable.h"
36 #include "clang/AST/Stmt.h"
37 #include "clang/AST/TemplateBase.h"
38 #include "clang/AST/Type.h"
39 #include "clang/AST/TypeLoc.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/Linkage.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/NoSanitizeList.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/Sanitizers.h"
49 #include "clang/Basic/SourceLocation.h"
50 #include "clang/Basic/SourceManager.h"
51 #include "clang/Basic/Specifiers.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/Visibility.h"
55 #include "llvm/ADT/APSInt.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/None.h"
58 #include "llvm/ADT/Optional.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringRef.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/ADT/Triple.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstring>
71 #include <memory>
72 #include <string>
73 #include <tuple>
74 #include <type_traits>
75 
76 using namespace clang;
77 
78 Decl *clang::getPrimaryMergedDecl(Decl *D) {
79   return D->getASTContext().getPrimaryMergedDecl(D);
80 }
81 
82 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
83   SourceLocation Loc = this->Loc;
84   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
85   if (Loc.isValid()) {
86     Loc.print(OS, Context.getSourceManager());
87     OS << ": ";
88   }
89   OS << Message;
90 
91   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
92     OS << " '";
93     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
94     OS << "'";
95   }
96 
97   OS << '\n';
98 }
99 
100 // Defined here so that it can be inlined into its direct callers.
101 bool Decl::isOutOfLine() const {
102   return !getLexicalDeclContext()->Equals(getDeclContext());
103 }
104 
105 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
106     : Decl(TranslationUnit, nullptr, SourceLocation()),
107       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
108 
109 //===----------------------------------------------------------------------===//
110 // NamedDecl Implementation
111 //===----------------------------------------------------------------------===//
112 
113 // Visibility rules aren't rigorously externally specified, but here
114 // are the basic principles behind what we implement:
115 //
116 // 1. An explicit visibility attribute is generally a direct expression
117 // of the user's intent and should be honored.  Only the innermost
118 // visibility attribute applies.  If no visibility attribute applies,
119 // global visibility settings are considered.
120 //
121 // 2. There is one caveat to the above: on or in a template pattern,
122 // an explicit visibility attribute is just a default rule, and
123 // visibility can be decreased by the visibility of template
124 // arguments.  But this, too, has an exception: an attribute on an
125 // explicit specialization or instantiation causes all the visibility
126 // restrictions of the template arguments to be ignored.
127 //
128 // 3. A variable that does not otherwise have explicit visibility can
129 // be restricted by the visibility of its type.
130 //
131 // 4. A visibility restriction is explicit if it comes from an
132 // attribute (or something like it), not a global visibility setting.
133 // When emitting a reference to an external symbol, visibility
134 // restrictions are ignored unless they are explicit.
135 //
136 // 5. When computing the visibility of a non-type, including a
137 // non-type member of a class, only non-type visibility restrictions
138 // are considered: the 'visibility' attribute, global value-visibility
139 // settings, and a few special cases like __private_extern.
140 //
141 // 6. When computing the visibility of a type, including a type member
142 // of a class, only type visibility restrictions are considered:
143 // the 'type_visibility' attribute and global type-visibility settings.
144 // However, a 'visibility' attribute counts as a 'type_visibility'
145 // attribute on any declaration that only has the former.
146 //
147 // The visibility of a "secondary" entity, like a template argument,
148 // is computed using the kind of that entity, not the kind of the
149 // primary entity for which we are computing visibility.  For example,
150 // the visibility of a specialization of either of these templates:
151 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
152 //   template <class T, bool (&compare)(T, X)> class matcher;
153 // is restricted according to the type visibility of the argument 'T',
154 // the type visibility of 'bool(&)(T,X)', and the value visibility of
155 // the argument function 'compare'.  That 'has_match' is a value
156 // and 'matcher' is a type only matters when looking for attributes
157 // and settings from the immediate context.
158 
159 /// Does this computation kind permit us to consider additional
160 /// visibility settings from attributes and the like?
161 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
162   return computation.IgnoreExplicitVisibility;
163 }
164 
165 /// Given an LVComputationKind, return one of the same type/value sort
166 /// that records that it already has explicit visibility.
167 static LVComputationKind
168 withExplicitVisibilityAlready(LVComputationKind Kind) {
169   Kind.IgnoreExplicitVisibility = true;
170   return Kind;
171 }
172 
173 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
174                                                   LVComputationKind kind) {
175   assert(!kind.IgnoreExplicitVisibility &&
176          "asking for explicit visibility when we shouldn't be");
177   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
178 }
179 
180 /// Is the given declaration a "type" or a "value" for the purposes of
181 /// visibility computation?
182 static bool usesTypeVisibility(const NamedDecl *D) {
183   return isa<TypeDecl>(D) ||
184          isa<ClassTemplateDecl>(D) ||
185          isa<ObjCInterfaceDecl>(D);
186 }
187 
188 /// Does the given declaration have member specialization information,
189 /// and if so, is it an explicit specialization?
190 template <class T> static typename
191 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
192 isExplicitMemberSpecialization(const T *D) {
193   if (const MemberSpecializationInfo *member =
194         D->getMemberSpecializationInfo()) {
195     return member->isExplicitSpecialization();
196   }
197   return false;
198 }
199 
200 /// For templates, this question is easier: a member template can't be
201 /// explicitly instantiated, so there's a single bit indicating whether
202 /// or not this is an explicit member specialization.
203 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
204   return D->isMemberSpecialization();
205 }
206 
207 /// Given a visibility attribute, return the explicit visibility
208 /// associated with it.
209 template <class T>
210 static Visibility getVisibilityFromAttr(const T *attr) {
211   switch (attr->getVisibility()) {
212   case T::Default:
213     return DefaultVisibility;
214   case T::Hidden:
215     return HiddenVisibility;
216   case T::Protected:
217     return ProtectedVisibility;
218   }
219   llvm_unreachable("bad visibility kind");
220 }
221 
222 /// Return the explicit visibility of the given declaration.
223 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
224                                     NamedDecl::ExplicitVisibilityKind kind) {
225   // If we're ultimately computing the visibility of a type, look for
226   // a 'type_visibility' attribute before looking for 'visibility'.
227   if (kind == NamedDecl::VisibilityForType) {
228     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
229       return getVisibilityFromAttr(A);
230     }
231   }
232 
233   // If this declaration has an explicit visibility attribute, use it.
234   if (const auto *A = D->getAttr<VisibilityAttr>()) {
235     return getVisibilityFromAttr(A);
236   }
237 
238   return None;
239 }
240 
241 LinkageInfo LinkageComputer::getLVForType(const Type &T,
242                                           LVComputationKind computation) {
243   if (computation.IgnoreAllVisibility)
244     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
245   return getTypeLinkageAndVisibility(&T);
246 }
247 
248 /// Get the most restrictive linkage for the types in the given
249 /// template parameter list.  For visibility purposes, template
250 /// parameters are part of the signature of a template.
251 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
252     const TemplateParameterList *Params, LVComputationKind computation) {
253   LinkageInfo LV;
254   for (const NamedDecl *P : *Params) {
255     // Template type parameters are the most common and never
256     // contribute to visibility, pack or not.
257     if (isa<TemplateTypeParmDecl>(P))
258       continue;
259 
260     // Non-type template parameters can be restricted by the value type, e.g.
261     //   template <enum X> class A { ... };
262     // We have to be careful here, though, because we can be dealing with
263     // dependent types.
264     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
265       // Handle the non-pack case first.
266       if (!NTTP->isExpandedParameterPack()) {
267         if (!NTTP->getType()->isDependentType()) {
268           LV.merge(getLVForType(*NTTP->getType(), computation));
269         }
270         continue;
271       }
272 
273       // Look at all the types in an expanded pack.
274       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
275         QualType type = NTTP->getExpansionType(i);
276         if (!type->isDependentType())
277           LV.merge(getTypeLinkageAndVisibility(type));
278       }
279       continue;
280     }
281 
282     // Template template parameters can be restricted by their
283     // template parameters, recursively.
284     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
285 
286     // Handle the non-pack case first.
287     if (!TTP->isExpandedParameterPack()) {
288       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
289                                              computation));
290       continue;
291     }
292 
293     // Look at all expansions in an expanded pack.
294     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
295            i != n; ++i) {
296       LV.merge(getLVForTemplateParameterList(
297           TTP->getExpansionTemplateParameters(i), computation));
298     }
299   }
300 
301   return LV;
302 }
303 
304 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
305   const Decl *Ret = nullptr;
306   const DeclContext *DC = D->getDeclContext();
307   while (DC->getDeclKind() != Decl::TranslationUnit) {
308     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
309       Ret = cast<Decl>(DC);
310     DC = DC->getParent();
311   }
312   return Ret;
313 }
314 
315 /// Get the most restrictive linkage for the types and
316 /// declarations in the given template argument list.
317 ///
318 /// Note that we don't take an LVComputationKind because we always
319 /// want to honor the visibility of template arguments in the same way.
320 LinkageInfo
321 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
322                                               LVComputationKind computation) {
323   LinkageInfo LV;
324 
325   for (const TemplateArgument &Arg : Args) {
326     switch (Arg.getKind()) {
327     case TemplateArgument::Null:
328     case TemplateArgument::Integral:
329     case TemplateArgument::Expression:
330       continue;
331 
332     case TemplateArgument::Type:
333       LV.merge(getLVForType(*Arg.getAsType(), computation));
334       continue;
335 
336     case TemplateArgument::Declaration: {
337       const NamedDecl *ND = Arg.getAsDecl();
338       assert(!usesTypeVisibility(ND));
339       LV.merge(getLVForDecl(ND, computation));
340       continue;
341     }
342 
343     case TemplateArgument::NullPtr:
344       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
345       continue;
346 
347     case TemplateArgument::Template:
348     case TemplateArgument::TemplateExpansion:
349       if (TemplateDecl *Template =
350               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
351         LV.merge(getLVForDecl(Template, computation));
352       continue;
353 
354     case TemplateArgument::Pack:
355       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
356       continue;
357     }
358     llvm_unreachable("bad template argument kind");
359   }
360 
361   return LV;
362 }
363 
364 LinkageInfo
365 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
366                                               LVComputationKind computation) {
367   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
368 }
369 
370 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
371                         const FunctionTemplateSpecializationInfo *specInfo) {
372   // Include visibility from the template parameters and arguments
373   // only if this is not an explicit instantiation or specialization
374   // with direct explicit visibility.  (Implicit instantiations won't
375   // have a direct attribute.)
376   if (!specInfo->isExplicitInstantiationOrSpecialization())
377     return true;
378 
379   return !fn->hasAttr<VisibilityAttr>();
380 }
381 
382 /// Merge in template-related linkage and visibility for the given
383 /// function template specialization.
384 ///
385 /// We don't need a computation kind here because we can assume
386 /// LVForValue.
387 ///
388 /// \param[out] LV the computation to use for the parent
389 void LinkageComputer::mergeTemplateLV(
390     LinkageInfo &LV, const FunctionDecl *fn,
391     const FunctionTemplateSpecializationInfo *specInfo,
392     LVComputationKind computation) {
393   bool considerVisibility =
394     shouldConsiderTemplateVisibility(fn, specInfo);
395 
396   FunctionTemplateDecl *temp = specInfo->getTemplate();
397   // Merge information from the template declaration.
398   LinkageInfo tempLV = getLVForDecl(temp, computation);
399   // The linkage of the specialization should be consistent with the
400   // template declaration.
401   LV.setLinkage(tempLV.getLinkage());
402 
403   // Merge information from the template parameters.
404   LinkageInfo paramsLV =
405       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
406   LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
407 
408   // Merge information from the template arguments.
409   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
410   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
411   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
412 }
413 
414 /// Does the given declaration have a direct visibility attribute
415 /// that would match the given rules?
416 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
417                                          LVComputationKind computation) {
418   if (computation.IgnoreAllVisibility)
419     return false;
420 
421   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
422          D->hasAttr<VisibilityAttr>();
423 }
424 
425 /// Should we consider visibility associated with the template
426 /// arguments and parameters of the given class template specialization?
427 static bool shouldConsiderTemplateVisibility(
428                                  const ClassTemplateSpecializationDecl *spec,
429                                  LVComputationKind computation) {
430   // Include visibility from the template parameters and arguments
431   // only if this is not an explicit instantiation or specialization
432   // with direct explicit visibility (and note that implicit
433   // instantiations won't have a direct attribute).
434   //
435   // Furthermore, we want to ignore template parameters and arguments
436   // for an explicit specialization when computing the visibility of a
437   // member thereof with explicit visibility.
438   //
439   // This is a bit complex; let's unpack it.
440   //
441   // An explicit class specialization is an independent, top-level
442   // declaration.  As such, if it or any of its members has an
443   // explicit visibility attribute, that must directly express the
444   // user's intent, and we should honor it.  The same logic applies to
445   // an explicit instantiation of a member of such a thing.
446 
447   // Fast path: if this is not an explicit instantiation or
448   // specialization, we always want to consider template-related
449   // visibility restrictions.
450   if (!spec->isExplicitInstantiationOrSpecialization())
451     return true;
452 
453   // This is the 'member thereof' check.
454   if (spec->isExplicitSpecialization() &&
455       hasExplicitVisibilityAlready(computation))
456     return false;
457 
458   return !hasDirectVisibilityAttribute(spec, computation);
459 }
460 
461 /// Merge in template-related linkage and visibility for the given
462 /// class template specialization.
463 void LinkageComputer::mergeTemplateLV(
464     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
465     LVComputationKind computation) {
466   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
467 
468   // Merge information from the template parameters, but ignore
469   // visibility if we're only considering template arguments.
470   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
471   // Merge information from the template declaration.
472   LinkageInfo tempLV = getLVForDecl(temp, computation);
473   // The linkage of the specialization should be consistent with the
474   // template declaration.
475   LV.setLinkage(tempLV.getLinkage());
476 
477   LinkageInfo paramsLV =
478     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
479   LV.mergeMaybeWithVisibility(paramsLV,
480            considerVisibility && !hasExplicitVisibilityAlready(computation));
481 
482   // Merge information from the template arguments.  We ignore
483   // template-argument visibility if we've got an explicit
484   // instantiation with a visibility attribute.
485   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
486   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
487   if (considerVisibility)
488     LV.mergeVisibility(argsLV);
489   LV.mergeExternalVisibility(argsLV);
490 }
491 
492 /// Should we consider visibility associated with the template
493 /// arguments and parameters of the given variable template
494 /// specialization? As usual, follow class template specialization
495 /// logic up to initialization.
496 static bool shouldConsiderTemplateVisibility(
497                                  const VarTemplateSpecializationDecl *spec,
498                                  LVComputationKind computation) {
499   // Include visibility from the template parameters and arguments
500   // only if this is not an explicit instantiation or specialization
501   // with direct explicit visibility (and note that implicit
502   // instantiations won't have a direct attribute).
503   if (!spec->isExplicitInstantiationOrSpecialization())
504     return true;
505 
506   // An explicit variable specialization is an independent, top-level
507   // declaration.  As such, if it has an explicit visibility attribute,
508   // that must directly express the user's intent, and we should honor
509   // it.
510   if (spec->isExplicitSpecialization() &&
511       hasExplicitVisibilityAlready(computation))
512     return false;
513 
514   return !hasDirectVisibilityAttribute(spec, computation);
515 }
516 
517 /// Merge in template-related linkage and visibility for the given
518 /// variable template specialization. As usual, follow class template
519 /// specialization logic up to initialization.
520 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
521                                       const VarTemplateSpecializationDecl *spec,
522                                       LVComputationKind computation) {
523   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
524 
525   // Merge information from the template parameters, but ignore
526   // visibility if we're only considering template arguments.
527   VarTemplateDecl *temp = spec->getSpecializedTemplate();
528   LinkageInfo tempLV =
529     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
530   LV.mergeMaybeWithVisibility(tempLV,
531            considerVisibility && !hasExplicitVisibilityAlready(computation));
532 
533   // Merge information from the template arguments.  We ignore
534   // template-argument visibility if we've got an explicit
535   // instantiation with a visibility attribute.
536   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
537   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
538   if (considerVisibility)
539     LV.mergeVisibility(argsLV);
540   LV.mergeExternalVisibility(argsLV);
541 }
542 
543 static bool useInlineVisibilityHidden(const NamedDecl *D) {
544   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
545   const LangOptions &Opts = D->getASTContext().getLangOpts();
546   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
547     return false;
548 
549   const auto *FD = dyn_cast<FunctionDecl>(D);
550   if (!FD)
551     return false;
552 
553   TemplateSpecializationKind TSK = TSK_Undeclared;
554   if (FunctionTemplateSpecializationInfo *spec
555       = FD->getTemplateSpecializationInfo()) {
556     TSK = spec->getTemplateSpecializationKind();
557   } else if (MemberSpecializationInfo *MSI =
558              FD->getMemberSpecializationInfo()) {
559     TSK = MSI->getTemplateSpecializationKind();
560   }
561 
562   const FunctionDecl *Def = nullptr;
563   // InlineVisibilityHidden only applies to definitions, and
564   // isInlined() only gives meaningful answers on definitions
565   // anyway.
566   return TSK != TSK_ExplicitInstantiationDeclaration &&
567     TSK != TSK_ExplicitInstantiationDefinition &&
568     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
569 }
570 
571 template <typename T> static bool isFirstInExternCContext(T *D) {
572   const T *First = D->getFirstDecl();
573   return First->isInExternCContext();
574 }
575 
576 static bool isSingleLineLanguageLinkage(const Decl &D) {
577   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
578     if (!SD->hasBraces())
579       return true;
580   return false;
581 }
582 
583 /// Determine whether D is declared in the purview of a named module.
584 static bool isInModulePurview(const NamedDecl *D) {
585   if (auto *M = D->getOwningModule())
586     return M->isModulePurview();
587   return false;
588 }
589 
590 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
591   // FIXME: Handle isModulePrivate.
592   switch (D->getModuleOwnershipKind()) {
593   case Decl::ModuleOwnershipKind::Unowned:
594   case Decl::ModuleOwnershipKind::ReachableWhenImported:
595   case Decl::ModuleOwnershipKind::ModulePrivate:
596     return false;
597   case Decl::ModuleOwnershipKind::Visible:
598   case Decl::ModuleOwnershipKind::VisibleWhenImported:
599     return isInModulePurview(D);
600   }
601   llvm_unreachable("unexpected module ownership kind");
602 }
603 
604 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
605   // (for the modules ts) Internal linkage declarations within a module
606   // interface unit are modeled as "module-internal linkage", which means that
607   // they have internal linkage formally but can be indirectly accessed from
608   // outside the module via inline functions and templates defined within the
609   // module.
610   if (isInModulePurview(D) && D->getASTContext().getLangOpts().ModulesTS)
611     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
612 
613   return LinkageInfo::internal();
614 }
615 
616 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
617   // C++ Modules TS [basic.link]/6.8:
618   //   - A name declared at namespace scope that does not have internal linkage
619   //     by the previous rules and that is introduced by a non-exported
620   //     declaration has module linkage.
621   //
622   // [basic.namespace.general]/p2
623   //   A namespace is never attached to a named module and never has a name with
624   //   module linkage.
625   if (isInModulePurview(D) &&
626       !isExportedFromModuleInterfaceUnit(
627           cast<NamedDecl>(D->getCanonicalDecl())) &&
628       !isa<NamespaceDecl>(D))
629     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
630 
631   return LinkageInfo::external();
632 }
633 
634 static StorageClass getStorageClass(const Decl *D) {
635   if (auto *TD = dyn_cast<TemplateDecl>(D))
636     D = TD->getTemplatedDecl();
637   if (D) {
638     if (auto *VD = dyn_cast<VarDecl>(D))
639       return VD->getStorageClass();
640     if (auto *FD = dyn_cast<FunctionDecl>(D))
641       return FD->getStorageClass();
642   }
643   return SC_None;
644 }
645 
646 LinkageInfo
647 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
648                                             LVComputationKind computation,
649                                             bool IgnoreVarTypeLinkage) {
650   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
651          "Not a name having namespace scope");
652   ASTContext &Context = D->getASTContext();
653 
654   // C++ [basic.link]p3:
655   //   A name having namespace scope (3.3.6) has internal linkage if it
656   //   is the name of
657 
658   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
659     // - a variable, variable template, function, or function template
660     //   that is explicitly declared static; or
661     // (This bullet corresponds to C99 6.2.2p3.)
662     return getInternalLinkageFor(D);
663   }
664 
665   if (const auto *Var = dyn_cast<VarDecl>(D)) {
666     // - a non-template variable of non-volatile const-qualified type, unless
667     //   - it is explicitly declared extern, or
668     //   - it is inline or exported, or
669     //   - it was previously declared and the prior declaration did not have
670     //     internal linkage
671     // (There is no equivalent in C99.)
672     if (Context.getLangOpts().CPlusPlus &&
673         Var->getType().isConstQualified() &&
674         !Var->getType().isVolatileQualified() &&
675         !Var->isInline() &&
676         !isExportedFromModuleInterfaceUnit(Var) &&
677         !isa<VarTemplateSpecializationDecl>(Var) &&
678         !Var->getDescribedVarTemplate()) {
679       const VarDecl *PrevVar = Var->getPreviousDecl();
680       if (PrevVar)
681         return getLVForDecl(PrevVar, computation);
682 
683       if (Var->getStorageClass() != SC_Extern &&
684           Var->getStorageClass() != SC_PrivateExtern &&
685           !isSingleLineLanguageLinkage(*Var))
686         return getInternalLinkageFor(Var);
687     }
688 
689     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
690          PrevVar = PrevVar->getPreviousDecl()) {
691       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
692           Var->getStorageClass() == SC_None)
693         return getDeclLinkageAndVisibility(PrevVar);
694       // Explicitly declared static.
695       if (PrevVar->getStorageClass() == SC_Static)
696         return getInternalLinkageFor(Var);
697     }
698   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
699     //   - a data member of an anonymous union.
700     const VarDecl *VD = IFD->getVarDecl();
701     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
702     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
703   }
704   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
705 
706   // FIXME: This gives internal linkage to names that should have no linkage
707   // (those not covered by [basic.link]p6).
708   if (D->isInAnonymousNamespace()) {
709     const auto *Var = dyn_cast<VarDecl>(D);
710     const auto *Func = dyn_cast<FunctionDecl>(D);
711     // FIXME: The check for extern "C" here is not justified by the standard
712     // wording, but we retain it from the pre-DR1113 model to avoid breaking
713     // code.
714     //
715     // C++11 [basic.link]p4:
716     //   An unnamed namespace or a namespace declared directly or indirectly
717     //   within an unnamed namespace has internal linkage.
718     if ((!Var || !isFirstInExternCContext(Var)) &&
719         (!Func || !isFirstInExternCContext(Func)))
720       return getInternalLinkageFor(D);
721   }
722 
723   // Set up the defaults.
724 
725   // C99 6.2.2p5:
726   //   If the declaration of an identifier for an object has file
727   //   scope and no storage-class specifier, its linkage is
728   //   external.
729   LinkageInfo LV = getExternalLinkageFor(D);
730 
731   if (!hasExplicitVisibilityAlready(computation)) {
732     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
733       LV.mergeVisibility(*Vis, true);
734     } else {
735       // If we're declared in a namespace with a visibility attribute,
736       // use that namespace's visibility, and it still counts as explicit.
737       for (const DeclContext *DC = D->getDeclContext();
738            !isa<TranslationUnitDecl>(DC);
739            DC = DC->getParent()) {
740         const auto *ND = dyn_cast<NamespaceDecl>(DC);
741         if (!ND) continue;
742         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
743           LV.mergeVisibility(*Vis, true);
744           break;
745         }
746       }
747     }
748 
749     // Add in global settings if the above didn't give us direct visibility.
750     if (!LV.isVisibilityExplicit()) {
751       // Use global type/value visibility as appropriate.
752       Visibility globalVisibility =
753           computation.isValueVisibility()
754               ? Context.getLangOpts().getValueVisibilityMode()
755               : Context.getLangOpts().getTypeVisibilityMode();
756       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
757 
758       // If we're paying attention to global visibility, apply
759       // -finline-visibility-hidden if this is an inline method.
760       if (useInlineVisibilityHidden(D))
761         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
762     }
763   }
764 
765   // C++ [basic.link]p4:
766 
767   //   A name having namespace scope that has not been given internal linkage
768   //   above and that is the name of
769   //   [...bullets...]
770   //   has its linkage determined as follows:
771   //     - if the enclosing namespace has internal linkage, the name has
772   //       internal linkage; [handled above]
773   //     - otherwise, if the declaration of the name is attached to a named
774   //       module and is not exported, the name has module linkage;
775   //     - otherwise, the name has external linkage.
776   // LV is currently set up to handle the last two bullets.
777   //
778   //   The bullets are:
779 
780   //     - a variable; or
781   if (const auto *Var = dyn_cast<VarDecl>(D)) {
782     // GCC applies the following optimization to variables and static
783     // data members, but not to functions:
784     //
785     // Modify the variable's LV by the LV of its type unless this is
786     // C or extern "C".  This follows from [basic.link]p9:
787     //   A type without linkage shall not be used as the type of a
788     //   variable or function with external linkage unless
789     //    - the entity has C language linkage, or
790     //    - the entity is declared within an unnamed namespace, or
791     //    - the entity is not used or is defined in the same
792     //      translation unit.
793     // and [basic.link]p10:
794     //   ...the types specified by all declarations referring to a
795     //   given variable or function shall be identical...
796     // C does not have an equivalent rule.
797     //
798     // Ignore this if we've got an explicit attribute;  the user
799     // probably knows what they're doing.
800     //
801     // Note that we don't want to make the variable non-external
802     // because of this, but unique-external linkage suits us.
803 
804     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
805         !IgnoreVarTypeLinkage) {
806       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
807       if (!isExternallyVisible(TypeLV.getLinkage()))
808         return LinkageInfo::uniqueExternal();
809       if (!LV.isVisibilityExplicit())
810         LV.mergeVisibility(TypeLV);
811     }
812 
813     if (Var->getStorageClass() == SC_PrivateExtern)
814       LV.mergeVisibility(HiddenVisibility, true);
815 
816     // Note that Sema::MergeVarDecl already takes care of implementing
817     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
818     // to do it here.
819 
820     // As per function and class template specializations (below),
821     // consider LV for the template and template arguments.  We're at file
822     // scope, so we do not need to worry about nested specializations.
823     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
824       mergeTemplateLV(LV, spec, computation);
825     }
826 
827   //     - a function; or
828   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
829     // In theory, we can modify the function's LV by the LV of its
830     // type unless it has C linkage (see comment above about variables
831     // for justification).  In practice, GCC doesn't do this, so it's
832     // just too painful to make work.
833 
834     if (Function->getStorageClass() == SC_PrivateExtern)
835       LV.mergeVisibility(HiddenVisibility, true);
836 
837     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
838     // merging storage classes and visibility attributes, so we don't have to
839     // look at previous decls in here.
840 
841     // In C++, then if the type of the function uses a type with
842     // unique-external linkage, it's not legally usable from outside
843     // this translation unit.  However, we should use the C linkage
844     // rules instead for extern "C" declarations.
845     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
846       // Only look at the type-as-written. Otherwise, deducing the return type
847       // of a function could change its linkage.
848       QualType TypeAsWritten = Function->getType();
849       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
850         TypeAsWritten = TSI->getType();
851       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
852         return LinkageInfo::uniqueExternal();
853     }
854 
855     // Consider LV from the template and the template arguments.
856     // We're at file scope, so we do not need to worry about nested
857     // specializations.
858     if (FunctionTemplateSpecializationInfo *specInfo
859                                = Function->getTemplateSpecializationInfo()) {
860       mergeTemplateLV(LV, Function, specInfo, computation);
861     }
862 
863   //     - a named class (Clause 9), or an unnamed class defined in a
864   //       typedef declaration in which the class has the typedef name
865   //       for linkage purposes (7.1.3); or
866   //     - a named enumeration (7.2), or an unnamed enumeration
867   //       defined in a typedef declaration in which the enumeration
868   //       has the typedef name for linkage purposes (7.1.3); or
869   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
870     // Unnamed tags have no linkage.
871     if (!Tag->hasNameForLinkage())
872       return LinkageInfo::none();
873 
874     // If this is a class template specialization, consider the
875     // linkage of the template and template arguments.  We're at file
876     // scope, so we do not need to worry about nested specializations.
877     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
878       mergeTemplateLV(LV, spec, computation);
879     }
880 
881   // FIXME: This is not part of the C++ standard any more.
882   //     - an enumerator belonging to an enumeration with external linkage; or
883   } else if (isa<EnumConstantDecl>(D)) {
884     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
885                                       computation);
886     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
887       return LinkageInfo::none();
888     LV.merge(EnumLV);
889 
890   //     - a template
891   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
892     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
893     LinkageInfo tempLV =
894       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
895     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
896 
897   //     An unnamed namespace or a namespace declared directly or indirectly
898   //     within an unnamed namespace has internal linkage. All other namespaces
899   //     have external linkage.
900   //
901   // We handled names in anonymous namespaces above.
902   } else if (isa<NamespaceDecl>(D)) {
903     return LV;
904 
905   // By extension, we assign external linkage to Objective-C
906   // interfaces.
907   } else if (isa<ObjCInterfaceDecl>(D)) {
908     // fallout
909 
910   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
911     // A typedef declaration has linkage if it gives a type a name for
912     // linkage purposes.
913     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
914       return LinkageInfo::none();
915 
916   } else if (isa<MSGuidDecl>(D)) {
917     // A GUID behaves like an inline variable with external linkage. Fall
918     // through.
919 
920   // Everything not covered here has no linkage.
921   } else {
922     return LinkageInfo::none();
923   }
924 
925   // If we ended up with non-externally-visible linkage, visibility should
926   // always be default.
927   if (!isExternallyVisible(LV.getLinkage()))
928     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
929 
930   return LV;
931 }
932 
933 LinkageInfo
934 LinkageComputer::getLVForClassMember(const NamedDecl *D,
935                                      LVComputationKind computation,
936                                      bool IgnoreVarTypeLinkage) {
937   // Only certain class members have linkage.  Note that fields don't
938   // really have linkage, but it's convenient to say they do for the
939   // purposes of calculating linkage of pointer-to-data-member
940   // template arguments.
941   //
942   // Templates also don't officially have linkage, but since we ignore
943   // the C++ standard and look at template arguments when determining
944   // linkage and visibility of a template specialization, we might hit
945   // a template template argument that way. If we do, we need to
946   // consider its linkage.
947   if (!(isa<CXXMethodDecl>(D) ||
948         isa<VarDecl>(D) ||
949         isa<FieldDecl>(D) ||
950         isa<IndirectFieldDecl>(D) ||
951         isa<TagDecl>(D) ||
952         isa<TemplateDecl>(D)))
953     return LinkageInfo::none();
954 
955   LinkageInfo LV;
956 
957   // If we have an explicit visibility attribute, merge that in.
958   if (!hasExplicitVisibilityAlready(computation)) {
959     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
960       LV.mergeVisibility(*Vis, true);
961     // If we're paying attention to global visibility, apply
962     // -finline-visibility-hidden if this is an inline method.
963     //
964     // Note that we do this before merging information about
965     // the class visibility.
966     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
967       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
968   }
969 
970   // If this class member has an explicit visibility attribute, the only
971   // thing that can change its visibility is the template arguments, so
972   // only look for them when processing the class.
973   LVComputationKind classComputation = computation;
974   if (LV.isVisibilityExplicit())
975     classComputation = withExplicitVisibilityAlready(computation);
976 
977   LinkageInfo classLV =
978     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
979   // The member has the same linkage as the class. If that's not externally
980   // visible, we don't need to compute anything about the linkage.
981   // FIXME: If we're only computing linkage, can we bail out here?
982   if (!isExternallyVisible(classLV.getLinkage()))
983     return classLV;
984 
985 
986   // Otherwise, don't merge in classLV yet, because in certain cases
987   // we need to completely ignore the visibility from it.
988 
989   // Specifically, if this decl exists and has an explicit attribute.
990   const NamedDecl *explicitSpecSuppressor = nullptr;
991 
992   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
993     // Only look at the type-as-written. Otherwise, deducing the return type
994     // of a function could change its linkage.
995     QualType TypeAsWritten = MD->getType();
996     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
997       TypeAsWritten = TSI->getType();
998     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
999       return LinkageInfo::uniqueExternal();
1000 
1001     // If this is a method template specialization, use the linkage for
1002     // the template parameters and arguments.
1003     if (FunctionTemplateSpecializationInfo *spec
1004            = MD->getTemplateSpecializationInfo()) {
1005       mergeTemplateLV(LV, MD, spec, computation);
1006       if (spec->isExplicitSpecialization()) {
1007         explicitSpecSuppressor = MD;
1008       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
1009         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
1010       }
1011     } else if (isExplicitMemberSpecialization(MD)) {
1012       explicitSpecSuppressor = MD;
1013     }
1014 
1015   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1016     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1017       mergeTemplateLV(LV, spec, computation);
1018       if (spec->isExplicitSpecialization()) {
1019         explicitSpecSuppressor = spec;
1020       } else {
1021         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1022         if (isExplicitMemberSpecialization(temp)) {
1023           explicitSpecSuppressor = temp->getTemplatedDecl();
1024         }
1025       }
1026     } else if (isExplicitMemberSpecialization(RD)) {
1027       explicitSpecSuppressor = RD;
1028     }
1029 
1030   // Static data members.
1031   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1032     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1033       mergeTemplateLV(LV, spec, computation);
1034 
1035     // Modify the variable's linkage by its type, but ignore the
1036     // type's visibility unless it's a definition.
1037     if (!IgnoreVarTypeLinkage) {
1038       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1039       // FIXME: If the type's linkage is not externally visible, we can
1040       // give this static data member UniqueExternalLinkage.
1041       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1042         LV.mergeVisibility(typeLV);
1043       LV.mergeExternalVisibility(typeLV);
1044     }
1045 
1046     if (isExplicitMemberSpecialization(VD)) {
1047       explicitSpecSuppressor = VD;
1048     }
1049 
1050   // Template members.
1051   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1052     bool considerVisibility =
1053       (!LV.isVisibilityExplicit() &&
1054        !classLV.isVisibilityExplicit() &&
1055        !hasExplicitVisibilityAlready(computation));
1056     LinkageInfo tempLV =
1057       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1058     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1059 
1060     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1061       if (isExplicitMemberSpecialization(redeclTemp)) {
1062         explicitSpecSuppressor = temp->getTemplatedDecl();
1063       }
1064     }
1065   }
1066 
1067   // We should never be looking for an attribute directly on a template.
1068   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1069 
1070   // If this member is an explicit member specialization, and it has
1071   // an explicit attribute, ignore visibility from the parent.
1072   bool considerClassVisibility = true;
1073   if (explicitSpecSuppressor &&
1074       // optimization: hasDVA() is true only with explicit visibility.
1075       LV.isVisibilityExplicit() &&
1076       classLV.getVisibility() != DefaultVisibility &&
1077       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1078     considerClassVisibility = false;
1079   }
1080 
1081   // Finally, merge in information from the class.
1082   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1083   return LV;
1084 }
1085 
1086 void NamedDecl::anchor() {}
1087 
1088 bool NamedDecl::isLinkageValid() const {
1089   if (!hasCachedLinkage())
1090     return true;
1091 
1092   Linkage L = LinkageComputer{}
1093                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1094                   .getLinkage();
1095   return L == getCachedLinkage();
1096 }
1097 
1098 ReservedIdentifierStatus
1099 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1100   const IdentifierInfo *II = getIdentifier();
1101 
1102   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1103   // at lexing time.
1104   if (!II)
1105     return ReservedIdentifierStatus::NotReserved;
1106 
1107   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1108   if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1109     // This name is only reserved at global scope. Check if this declaration
1110     // conflicts with a global scope declaration.
1111     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1112       return ReservedIdentifierStatus::NotReserved;
1113 
1114     // C++ [dcl.link]/7:
1115     //   Two declarations [conflict] if [...] one declares a function or
1116     //   variable with C language linkage, and the other declares [...] a
1117     //   variable that belongs to the global scope.
1118     //
1119     // Therefore names that are reserved at global scope are also reserved as
1120     // names of variables and functions with C language linkage.
1121     const DeclContext *DC = getDeclContext()->getRedeclContext();
1122     if (DC->isTranslationUnit())
1123       return Status;
1124     if (auto *VD = dyn_cast<VarDecl>(this))
1125       if (VD->isExternC())
1126         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1127     if (auto *FD = dyn_cast<FunctionDecl>(this))
1128       if (FD->isExternC())
1129         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1130     return ReservedIdentifierStatus::NotReserved;
1131   }
1132 
1133   return Status;
1134 }
1135 
1136 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1137   StringRef name = getName();
1138   if (name.empty()) return SFF_None;
1139 
1140   if (name.front() == 'C')
1141     if (name == "CFStringCreateWithFormat" ||
1142         name == "CFStringCreateWithFormatAndArguments" ||
1143         name == "CFStringAppendFormat" ||
1144         name == "CFStringAppendFormatAndArguments")
1145       return SFF_CFString;
1146   return SFF_None;
1147 }
1148 
1149 Linkage NamedDecl::getLinkageInternal() const {
1150   // We don't care about visibility here, so ask for the cheapest
1151   // possible visibility analysis.
1152   return LinkageComputer{}
1153       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1154       .getLinkage();
1155 }
1156 
1157 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1158   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1159 }
1160 
1161 static Optional<Visibility>
1162 getExplicitVisibilityAux(const NamedDecl *ND,
1163                          NamedDecl::ExplicitVisibilityKind kind,
1164                          bool IsMostRecent) {
1165   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1166 
1167   // Check the declaration itself first.
1168   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1169     return V;
1170 
1171   // If this is a member class of a specialization of a class template
1172   // and the corresponding decl has explicit visibility, use that.
1173   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1174     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1175     if (InstantiatedFrom)
1176       return getVisibilityOf(InstantiatedFrom, kind);
1177   }
1178 
1179   // If there wasn't explicit visibility there, and this is a
1180   // specialization of a class template, check for visibility
1181   // on the pattern.
1182   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1183     // Walk all the template decl till this point to see if there are
1184     // explicit visibility attributes.
1185     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1186     while (TD != nullptr) {
1187       auto Vis = getVisibilityOf(TD, kind);
1188       if (Vis != None)
1189         return Vis;
1190       TD = TD->getPreviousDecl();
1191     }
1192     return None;
1193   }
1194 
1195   // Use the most recent declaration.
1196   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1197     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1198     if (MostRecent != ND)
1199       return getExplicitVisibilityAux(MostRecent, kind, true);
1200   }
1201 
1202   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1203     if (Var->isStaticDataMember()) {
1204       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1205       if (InstantiatedFrom)
1206         return getVisibilityOf(InstantiatedFrom, kind);
1207     }
1208 
1209     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1210       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1211                              kind);
1212 
1213     return None;
1214   }
1215   // Also handle function template specializations.
1216   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1217     // If the function is a specialization of a template with an
1218     // explicit visibility attribute, use that.
1219     if (FunctionTemplateSpecializationInfo *templateInfo
1220           = fn->getTemplateSpecializationInfo())
1221       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1222                              kind);
1223 
1224     // If the function is a member of a specialization of a class template
1225     // and the corresponding decl has explicit visibility, use that.
1226     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1227     if (InstantiatedFrom)
1228       return getVisibilityOf(InstantiatedFrom, kind);
1229 
1230     return None;
1231   }
1232 
1233   // The visibility of a template is stored in the templated decl.
1234   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1235     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1236 
1237   return None;
1238 }
1239 
1240 Optional<Visibility>
1241 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1242   return getExplicitVisibilityAux(this, kind, false);
1243 }
1244 
1245 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1246                                              Decl *ContextDecl,
1247                                              LVComputationKind computation) {
1248   // This lambda has its linkage/visibility determined by its owner.
1249   const NamedDecl *Owner;
1250   if (!ContextDecl)
1251     Owner = dyn_cast<NamedDecl>(DC);
1252   else if (isa<ParmVarDecl>(ContextDecl))
1253     Owner =
1254         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1255   else
1256     Owner = cast<NamedDecl>(ContextDecl);
1257 
1258   if (!Owner)
1259     return LinkageInfo::none();
1260 
1261   // If the owner has a deduced type, we need to skip querying the linkage and
1262   // visibility of that type, because it might involve this closure type.  The
1263   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1264   // than NoLinkage when we don't strictly need to, which is benign.
1265   auto *VD = dyn_cast<VarDecl>(Owner);
1266   LinkageInfo OwnerLV =
1267       VD && VD->getType()->getContainedDeducedType()
1268           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1269           : getLVForDecl(Owner, computation);
1270 
1271   // A lambda never formally has linkage. But if the owner is externally
1272   // visible, then the lambda is too. We apply the same rules to blocks.
1273   if (!isExternallyVisible(OwnerLV.getLinkage()))
1274     return LinkageInfo::none();
1275   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1276                      OwnerLV.isVisibilityExplicit());
1277 }
1278 
1279 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1280                                                LVComputationKind computation) {
1281   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1282     if (Function->isInAnonymousNamespace() &&
1283         !isFirstInExternCContext(Function))
1284       return getInternalLinkageFor(Function);
1285 
1286     // This is a "void f();" which got merged with a file static.
1287     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1288       return getInternalLinkageFor(Function);
1289 
1290     LinkageInfo LV;
1291     if (!hasExplicitVisibilityAlready(computation)) {
1292       if (Optional<Visibility> Vis =
1293               getExplicitVisibility(Function, computation))
1294         LV.mergeVisibility(*Vis, true);
1295     }
1296 
1297     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1298     // merging storage classes and visibility attributes, so we don't have to
1299     // look at previous decls in here.
1300 
1301     return LV;
1302   }
1303 
1304   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1305     if (Var->hasExternalStorage()) {
1306       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1307         return getInternalLinkageFor(Var);
1308 
1309       LinkageInfo LV;
1310       if (Var->getStorageClass() == SC_PrivateExtern)
1311         LV.mergeVisibility(HiddenVisibility, true);
1312       else if (!hasExplicitVisibilityAlready(computation)) {
1313         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1314           LV.mergeVisibility(*Vis, true);
1315       }
1316 
1317       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1318         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1319         if (PrevLV.getLinkage())
1320           LV.setLinkage(PrevLV.getLinkage());
1321         LV.mergeVisibility(PrevLV);
1322       }
1323 
1324       return LV;
1325     }
1326 
1327     if (!Var->isStaticLocal())
1328       return LinkageInfo::none();
1329   }
1330 
1331   ASTContext &Context = D->getASTContext();
1332   if (!Context.getLangOpts().CPlusPlus)
1333     return LinkageInfo::none();
1334 
1335   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1336   if (!OuterD || OuterD->isInvalidDecl())
1337     return LinkageInfo::none();
1338 
1339   LinkageInfo LV;
1340   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1341     if (!BD->getBlockManglingNumber())
1342       return LinkageInfo::none();
1343 
1344     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1345                          BD->getBlockManglingContextDecl(), computation);
1346   } else {
1347     const auto *FD = cast<FunctionDecl>(OuterD);
1348     if (!FD->isInlined() &&
1349         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1350       return LinkageInfo::none();
1351 
1352     // If a function is hidden by -fvisibility-inlines-hidden option and
1353     // is not explicitly attributed as a hidden function,
1354     // we should not make static local variables in the function hidden.
1355     LV = getLVForDecl(FD, computation);
1356     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1357         !LV.isVisibilityExplicit() &&
1358         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1359       assert(cast<VarDecl>(D)->isStaticLocal());
1360       // If this was an implicitly hidden inline method, check again for
1361       // explicit visibility on the parent class, and use that for static locals
1362       // if present.
1363       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1364         LV = getLVForDecl(MD->getParent(), computation);
1365       if (!LV.isVisibilityExplicit()) {
1366         Visibility globalVisibility =
1367             computation.isValueVisibility()
1368                 ? Context.getLangOpts().getValueVisibilityMode()
1369                 : Context.getLangOpts().getTypeVisibilityMode();
1370         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1371                            /*visibilityExplicit=*/false);
1372       }
1373     }
1374   }
1375   if (!isExternallyVisible(LV.getLinkage()))
1376     return LinkageInfo::none();
1377   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1378                      LV.isVisibilityExplicit());
1379 }
1380 
1381 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1382                                               LVComputationKind computation,
1383                                               bool IgnoreVarTypeLinkage) {
1384   // Internal_linkage attribute overrides other considerations.
1385   if (D->hasAttr<InternalLinkageAttr>())
1386     return getInternalLinkageFor(D);
1387 
1388   // Objective-C: treat all Objective-C declarations as having external
1389   // linkage.
1390   switch (D->getKind()) {
1391     default:
1392       break;
1393 
1394     // Per C++ [basic.link]p2, only the names of objects, references,
1395     // functions, types, templates, namespaces, and values ever have linkage.
1396     //
1397     // Note that the name of a typedef, namespace alias, using declaration,
1398     // and so on are not the name of the corresponding type, namespace, or
1399     // declaration, so they do *not* have linkage.
1400     case Decl::ImplicitParam:
1401     case Decl::Label:
1402     case Decl::NamespaceAlias:
1403     case Decl::ParmVar:
1404     case Decl::Using:
1405     case Decl::UsingEnum:
1406     case Decl::UsingShadow:
1407     case Decl::UsingDirective:
1408       return LinkageInfo::none();
1409 
1410     case Decl::EnumConstant:
1411       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1412       if (D->getASTContext().getLangOpts().CPlusPlus)
1413         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1414       return LinkageInfo::visible_none();
1415 
1416     case Decl::Typedef:
1417     case Decl::TypeAlias:
1418       // A typedef declaration has linkage if it gives a type a name for
1419       // linkage purposes.
1420       if (!cast<TypedefNameDecl>(D)
1421                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1422         return LinkageInfo::none();
1423       break;
1424 
1425     case Decl::TemplateTemplateParm: // count these as external
1426     case Decl::NonTypeTemplateParm:
1427     case Decl::ObjCAtDefsField:
1428     case Decl::ObjCCategory:
1429     case Decl::ObjCCategoryImpl:
1430     case Decl::ObjCCompatibleAlias:
1431     case Decl::ObjCImplementation:
1432     case Decl::ObjCMethod:
1433     case Decl::ObjCProperty:
1434     case Decl::ObjCPropertyImpl:
1435     case Decl::ObjCProtocol:
1436       return getExternalLinkageFor(D);
1437 
1438     case Decl::CXXRecord: {
1439       const auto *Record = cast<CXXRecordDecl>(D);
1440       if (Record->isLambda()) {
1441         if (Record->hasKnownLambdaInternalLinkage() ||
1442             !Record->getLambdaManglingNumber()) {
1443           // This lambda has no mangling number, so it's internal.
1444           return getInternalLinkageFor(D);
1445         }
1446 
1447         return getLVForClosure(
1448                   Record->getDeclContext()->getRedeclContext(),
1449                   Record->getLambdaContextDecl(), computation);
1450       }
1451 
1452       break;
1453     }
1454 
1455     case Decl::TemplateParamObject: {
1456       // The template parameter object can be referenced from anywhere its type
1457       // and value can be referenced.
1458       auto *TPO = cast<TemplateParamObjectDecl>(D);
1459       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1460       LV.merge(getLVForValue(TPO->getValue(), computation));
1461       return LV;
1462     }
1463   }
1464 
1465   // Handle linkage for namespace-scope names.
1466   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1467     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1468 
1469   // C++ [basic.link]p5:
1470   //   In addition, a member function, static data member, a named
1471   //   class or enumeration of class scope, or an unnamed class or
1472   //   enumeration defined in a class-scope typedef declaration such
1473   //   that the class or enumeration has the typedef name for linkage
1474   //   purposes (7.1.3), has external linkage if the name of the class
1475   //   has external linkage.
1476   if (D->getDeclContext()->isRecord())
1477     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1478 
1479   // C++ [basic.link]p6:
1480   //   The name of a function declared in block scope and the name of
1481   //   an object declared by a block scope extern declaration have
1482   //   linkage. If there is a visible declaration of an entity with
1483   //   linkage having the same name and type, ignoring entities
1484   //   declared outside the innermost enclosing namespace scope, the
1485   //   block scope declaration declares that same entity and receives
1486   //   the linkage of the previous declaration. If there is more than
1487   //   one such matching entity, the program is ill-formed. Otherwise,
1488   //   if no matching entity is found, the block scope entity receives
1489   //   external linkage.
1490   if (D->getDeclContext()->isFunctionOrMethod())
1491     return getLVForLocalDecl(D, computation);
1492 
1493   // C++ [basic.link]p6:
1494   //   Names not covered by these rules have no linkage.
1495   return LinkageInfo::none();
1496 }
1497 
1498 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1499 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1500                                           LVComputationKind computation) {
1501   // Internal_linkage attribute overrides other considerations.
1502   if (D->hasAttr<InternalLinkageAttr>())
1503     return getInternalLinkageFor(D);
1504 
1505   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1506     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1507 
1508   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1509     return *LI;
1510 
1511   LinkageInfo LV = computeLVForDecl(D, computation);
1512   if (D->hasCachedLinkage())
1513     assert(D->getCachedLinkage() == LV.getLinkage());
1514 
1515   D->setCachedLinkage(LV.getLinkage());
1516   cache(D, computation, LV);
1517 
1518 #ifndef NDEBUG
1519   // In C (because of gnu inline) and in c++ with microsoft extensions an
1520   // static can follow an extern, so we can have two decls with different
1521   // linkages.
1522   const LangOptions &Opts = D->getASTContext().getLangOpts();
1523   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1524     return LV;
1525 
1526   // We have just computed the linkage for this decl. By induction we know
1527   // that all other computed linkages match, check that the one we just
1528   // computed also does.
1529   NamedDecl *Old = nullptr;
1530   for (auto I : D->redecls()) {
1531     auto *T = cast<NamedDecl>(I);
1532     if (T == D)
1533       continue;
1534     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1535       Old = T;
1536       break;
1537     }
1538   }
1539   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1540 #endif
1541 
1542   return LV;
1543 }
1544 
1545 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1546   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1547                                              ? NamedDecl::VisibilityForType
1548                                              : NamedDecl::VisibilityForValue;
1549   LVComputationKind CK(EK);
1550   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1551                              ? CK.forLinkageOnly()
1552                              : CK);
1553 }
1554 
1555 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1556   if (isa<NamespaceDecl>(this))
1557     // Namespaces never have module linkage.  It is the entities within them
1558     // that [may] do.
1559     return nullptr;
1560 
1561   Module *M = getOwningModule();
1562   if (!M)
1563     return nullptr;
1564 
1565   switch (M->Kind) {
1566   case Module::ModuleMapModule:
1567     // Module map modules have no special linkage semantics.
1568     return nullptr;
1569 
1570   case Module::ModuleInterfaceUnit:
1571   case Module::ModulePartitionInterface:
1572   case Module::ModulePartitionImplementation:
1573     return M;
1574 
1575   case Module::ModuleHeaderUnit:
1576   case Module::GlobalModuleFragment: {
1577     // External linkage declarations in the global module have no owning module
1578     // for linkage purposes. But internal linkage declarations in the global
1579     // module fragment of a particular module are owned by that module for
1580     // linkage purposes.
1581     // FIXME: p1815 removes the need for this distinction -- there are no
1582     // internal linkage declarations that need to be referred to from outside
1583     // this TU.
1584     if (IgnoreLinkage)
1585       return nullptr;
1586     bool InternalLinkage;
1587     if (auto *ND = dyn_cast<NamedDecl>(this))
1588       InternalLinkage = !ND->hasExternalFormalLinkage();
1589     else
1590       InternalLinkage = isInAnonymousNamespace();
1591     return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent
1592                            : nullptr;
1593   }
1594 
1595   case Module::PrivateModuleFragment:
1596     // The private module fragment is part of its containing module for linkage
1597     // purposes.
1598     return M->Parent;
1599   }
1600 
1601   llvm_unreachable("unknown module kind");
1602 }
1603 
1604 void NamedDecl::printName(raw_ostream &os) const {
1605   os << Name;
1606 }
1607 
1608 std::string NamedDecl::getQualifiedNameAsString() const {
1609   std::string QualName;
1610   llvm::raw_string_ostream OS(QualName);
1611   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1612   return QualName;
1613 }
1614 
1615 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1616   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1617 }
1618 
1619 void NamedDecl::printQualifiedName(raw_ostream &OS,
1620                                    const PrintingPolicy &P) const {
1621   if (getDeclContext()->isFunctionOrMethod()) {
1622     // We do not print '(anonymous)' for function parameters without name.
1623     printName(OS);
1624     return;
1625   }
1626   printNestedNameSpecifier(OS, P);
1627   if (getDeclName())
1628     OS << *this;
1629   else {
1630     // Give the printName override a chance to pick a different name before we
1631     // fall back to "(anonymous)".
1632     SmallString<64> NameBuffer;
1633     llvm::raw_svector_ostream NameOS(NameBuffer);
1634     printName(NameOS);
1635     if (NameBuffer.empty())
1636       OS << "(anonymous)";
1637     else
1638       OS << NameBuffer;
1639   }
1640 }
1641 
1642 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1643   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1644 }
1645 
1646 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1647                                          const PrintingPolicy &P) const {
1648   const DeclContext *Ctx = getDeclContext();
1649 
1650   // For ObjC methods and properties, look through categories and use the
1651   // interface as context.
1652   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1653     if (auto *ID = MD->getClassInterface())
1654       Ctx = ID;
1655   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1656     if (auto *MD = PD->getGetterMethodDecl())
1657       if (auto *ID = MD->getClassInterface())
1658         Ctx = ID;
1659   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1660     if (auto *CI = ID->getContainingInterface())
1661       Ctx = CI;
1662   }
1663 
1664   if (Ctx->isFunctionOrMethod())
1665     return;
1666 
1667   using ContextsTy = SmallVector<const DeclContext *, 8>;
1668   ContextsTy Contexts;
1669 
1670   // Collect named contexts.
1671   DeclarationName NameInScope = getDeclName();
1672   for (; Ctx; Ctx = Ctx->getParent()) {
1673     // Suppress anonymous namespace if requested.
1674     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1675         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1676       continue;
1677 
1678     // Suppress inline namespace if it doesn't make the result ambiguous.
1679     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1680         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1681       continue;
1682 
1683     // Skip non-named contexts such as linkage specifications and ExportDecls.
1684     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1685     if (!ND)
1686       continue;
1687 
1688     Contexts.push_back(Ctx);
1689     NameInScope = ND->getDeclName();
1690   }
1691 
1692   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1693     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1694       OS << Spec->getName();
1695       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1696       printTemplateArgumentList(
1697           OS, TemplateArgs.asArray(), P,
1698           Spec->getSpecializedTemplate()->getTemplateParameters());
1699     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1700       if (ND->isAnonymousNamespace()) {
1701         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1702                                 : "(anonymous namespace)");
1703       }
1704       else
1705         OS << *ND;
1706     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1707       if (!RD->getIdentifier())
1708         OS << "(anonymous " << RD->getKindName() << ')';
1709       else
1710         OS << *RD;
1711     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1712       const FunctionProtoType *FT = nullptr;
1713       if (FD->hasWrittenPrototype())
1714         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1715 
1716       OS << *FD << '(';
1717       if (FT) {
1718         unsigned NumParams = FD->getNumParams();
1719         for (unsigned i = 0; i < NumParams; ++i) {
1720           if (i)
1721             OS << ", ";
1722           OS << FD->getParamDecl(i)->getType().stream(P);
1723         }
1724 
1725         if (FT->isVariadic()) {
1726           if (NumParams > 0)
1727             OS << ", ";
1728           OS << "...";
1729         }
1730       }
1731       OS << ')';
1732     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1733       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1734       // enumerator is declared in the scope that immediately contains
1735       // the enum-specifier. Each scoped enumerator is declared in the
1736       // scope of the enumeration.
1737       // For the case of unscoped enumerator, do not include in the qualified
1738       // name any information about its enum enclosing scope, as its visibility
1739       // is global.
1740       if (ED->isScoped())
1741         OS << *ED;
1742       else
1743         continue;
1744     } else {
1745       OS << *cast<NamedDecl>(DC);
1746     }
1747     OS << "::";
1748   }
1749 }
1750 
1751 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1752                                      const PrintingPolicy &Policy,
1753                                      bool Qualified) const {
1754   if (Qualified)
1755     printQualifiedName(OS, Policy);
1756   else
1757     printName(OS);
1758 }
1759 
1760 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1761   return true;
1762 }
1763 static bool isRedeclarableImpl(...) { return false; }
1764 static bool isRedeclarable(Decl::Kind K) {
1765   switch (K) {
1766 #define DECL(Type, Base) \
1767   case Decl::Type: \
1768     return isRedeclarableImpl((Type##Decl *)nullptr);
1769 #define ABSTRACT_DECL(DECL)
1770 #include "clang/AST/DeclNodes.inc"
1771   }
1772   llvm_unreachable("unknown decl kind");
1773 }
1774 
1775 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1776   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1777 
1778   // Never replace one imported declaration with another; we need both results
1779   // when re-exporting.
1780   if (OldD->isFromASTFile() && isFromASTFile())
1781     return false;
1782 
1783   // A kind mismatch implies that the declaration is not replaced.
1784   if (OldD->getKind() != getKind())
1785     return false;
1786 
1787   // For method declarations, we never replace. (Why?)
1788   if (isa<ObjCMethodDecl>(this))
1789     return false;
1790 
1791   // For parameters, pick the newer one. This is either an error or (in
1792   // Objective-C) permitted as an extension.
1793   if (isa<ParmVarDecl>(this))
1794     return true;
1795 
1796   // Inline namespaces can give us two declarations with the same
1797   // name and kind in the same scope but different contexts; we should
1798   // keep both declarations in this case.
1799   if (!this->getDeclContext()->getRedeclContext()->Equals(
1800           OldD->getDeclContext()->getRedeclContext()))
1801     return false;
1802 
1803   // Using declarations can be replaced if they import the same name from the
1804   // same context.
1805   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1806     ASTContext &Context = getASTContext();
1807     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1808            Context.getCanonicalNestedNameSpecifier(
1809                cast<UsingDecl>(OldD)->getQualifier());
1810   }
1811   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1812     ASTContext &Context = getASTContext();
1813     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1814            Context.getCanonicalNestedNameSpecifier(
1815                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1816   }
1817 
1818   if (isRedeclarable(getKind())) {
1819     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1820       return false;
1821 
1822     if (IsKnownNewer)
1823       return true;
1824 
1825     // Check whether this is actually newer than OldD. We want to keep the
1826     // newer declaration. This loop will usually only iterate once, because
1827     // OldD is usually the previous declaration.
1828     for (auto D : redecls()) {
1829       if (D == OldD)
1830         break;
1831 
1832       // If we reach the canonical declaration, then OldD is not actually older
1833       // than this one.
1834       //
1835       // FIXME: In this case, we should not add this decl to the lookup table.
1836       if (D->isCanonicalDecl())
1837         return false;
1838     }
1839 
1840     // It's a newer declaration of the same kind of declaration in the same
1841     // scope: we want this decl instead of the existing one.
1842     return true;
1843   }
1844 
1845   // In all other cases, we need to keep both declarations in case they have
1846   // different visibility. Any attempt to use the name will result in an
1847   // ambiguity if more than one is visible.
1848   return false;
1849 }
1850 
1851 bool NamedDecl::hasLinkage() const {
1852   return getFormalLinkage() != NoLinkage;
1853 }
1854 
1855 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1856   NamedDecl *ND = this;
1857   if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1858     ND = UD->getTargetDecl();
1859 
1860   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1861     return AD->getClassInterface();
1862 
1863   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1864     return AD->getNamespace();
1865 
1866   return ND;
1867 }
1868 
1869 bool NamedDecl::isCXXInstanceMember() const {
1870   if (!isCXXClassMember())
1871     return false;
1872 
1873   const NamedDecl *D = this;
1874   if (isa<UsingShadowDecl>(D))
1875     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1876 
1877   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1878     return true;
1879   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1880     return MD->isInstance();
1881   return false;
1882 }
1883 
1884 //===----------------------------------------------------------------------===//
1885 // DeclaratorDecl Implementation
1886 //===----------------------------------------------------------------------===//
1887 
1888 template <typename DeclT>
1889 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1890   if (decl->getNumTemplateParameterLists() > 0)
1891     return decl->getTemplateParameterList(0)->getTemplateLoc();
1892   return decl->getInnerLocStart();
1893 }
1894 
1895 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1896   TypeSourceInfo *TSI = getTypeSourceInfo();
1897   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1898   return SourceLocation();
1899 }
1900 
1901 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1902   TypeSourceInfo *TSI = getTypeSourceInfo();
1903   if (TSI) return TSI->getTypeLoc().getEndLoc();
1904   return SourceLocation();
1905 }
1906 
1907 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1908   if (QualifierLoc) {
1909     // Make sure the extended decl info is allocated.
1910     if (!hasExtInfo()) {
1911       // Save (non-extended) type source info pointer.
1912       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1913       // Allocate external info struct.
1914       DeclInfo = new (getASTContext()) ExtInfo;
1915       // Restore savedTInfo into (extended) decl info.
1916       getExtInfo()->TInfo = savedTInfo;
1917     }
1918     // Set qualifier info.
1919     getExtInfo()->QualifierLoc = QualifierLoc;
1920   } else if (hasExtInfo()) {
1921     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1922     getExtInfo()->QualifierLoc = QualifierLoc;
1923   }
1924 }
1925 
1926 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1927   assert(TrailingRequiresClause);
1928   // Make sure the extended decl info is allocated.
1929   if (!hasExtInfo()) {
1930     // Save (non-extended) type source info pointer.
1931     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1932     // Allocate external info struct.
1933     DeclInfo = new (getASTContext()) ExtInfo;
1934     // Restore savedTInfo into (extended) decl info.
1935     getExtInfo()->TInfo = savedTInfo;
1936   }
1937   // Set requires clause info.
1938   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1939 }
1940 
1941 void DeclaratorDecl::setTemplateParameterListsInfo(
1942     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1943   assert(!TPLists.empty());
1944   // Make sure the extended decl info is allocated.
1945   if (!hasExtInfo()) {
1946     // Save (non-extended) type source info pointer.
1947     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1948     // Allocate external info struct.
1949     DeclInfo = new (getASTContext()) ExtInfo;
1950     // Restore savedTInfo into (extended) decl info.
1951     getExtInfo()->TInfo = savedTInfo;
1952   }
1953   // Set the template parameter lists info.
1954   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1955 }
1956 
1957 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1958   return getTemplateOrInnerLocStart(this);
1959 }
1960 
1961 // Helper function: returns true if QT is or contains a type
1962 // having a postfix component.
1963 static bool typeIsPostfix(QualType QT) {
1964   while (true) {
1965     const Type* T = QT.getTypePtr();
1966     switch (T->getTypeClass()) {
1967     default:
1968       return false;
1969     case Type::Pointer:
1970       QT = cast<PointerType>(T)->getPointeeType();
1971       break;
1972     case Type::BlockPointer:
1973       QT = cast<BlockPointerType>(T)->getPointeeType();
1974       break;
1975     case Type::MemberPointer:
1976       QT = cast<MemberPointerType>(T)->getPointeeType();
1977       break;
1978     case Type::LValueReference:
1979     case Type::RValueReference:
1980       QT = cast<ReferenceType>(T)->getPointeeType();
1981       break;
1982     case Type::PackExpansion:
1983       QT = cast<PackExpansionType>(T)->getPattern();
1984       break;
1985     case Type::Paren:
1986     case Type::ConstantArray:
1987     case Type::DependentSizedArray:
1988     case Type::IncompleteArray:
1989     case Type::VariableArray:
1990     case Type::FunctionProto:
1991     case Type::FunctionNoProto:
1992       return true;
1993     }
1994   }
1995 }
1996 
1997 SourceRange DeclaratorDecl::getSourceRange() const {
1998   SourceLocation RangeEnd = getLocation();
1999   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2000     // If the declaration has no name or the type extends past the name take the
2001     // end location of the type.
2002     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2003       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2004   }
2005   return SourceRange(getOuterLocStart(), RangeEnd);
2006 }
2007 
2008 void QualifierInfo::setTemplateParameterListsInfo(
2009     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2010   // Free previous template parameters (if any).
2011   if (NumTemplParamLists > 0) {
2012     Context.Deallocate(TemplParamLists);
2013     TemplParamLists = nullptr;
2014     NumTemplParamLists = 0;
2015   }
2016   // Set info on matched template parameter lists (if any).
2017   if (!TPLists.empty()) {
2018     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2019     NumTemplParamLists = TPLists.size();
2020     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2021   }
2022 }
2023 
2024 //===----------------------------------------------------------------------===//
2025 // VarDecl Implementation
2026 //===----------------------------------------------------------------------===//
2027 
2028 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2029   switch (SC) {
2030   case SC_None:                 break;
2031   case SC_Auto:                 return "auto";
2032   case SC_Extern:               return "extern";
2033   case SC_PrivateExtern:        return "__private_extern__";
2034   case SC_Register:             return "register";
2035   case SC_Static:               return "static";
2036   }
2037 
2038   llvm_unreachable("Invalid storage class");
2039 }
2040 
2041 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2042                  SourceLocation StartLoc, SourceLocation IdLoc,
2043                  const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2044                  StorageClass SC)
2045     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2046       redeclarable_base(C) {
2047   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2048                 "VarDeclBitfields too large!");
2049   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2050                 "ParmVarDeclBitfields too large!");
2051   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2052                 "NonParmVarDeclBitfields too large!");
2053   AllBits = 0;
2054   VarDeclBits.SClass = SC;
2055   // Everything else is implicitly initialized to false.
2056 }
2057 
2058 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2059                          SourceLocation IdL, const IdentifierInfo *Id,
2060                          QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2061   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2062 }
2063 
2064 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2065   return new (C, ID)
2066       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2067               QualType(), nullptr, SC_None);
2068 }
2069 
2070 void VarDecl::setStorageClass(StorageClass SC) {
2071   assert(isLegalForVariable(SC));
2072   VarDeclBits.SClass = SC;
2073 }
2074 
2075 VarDecl::TLSKind VarDecl::getTLSKind() const {
2076   switch (VarDeclBits.TSCSpec) {
2077   case TSCS_unspecified:
2078     if (!hasAttr<ThreadAttr>() &&
2079         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2080           getASTContext().getTargetInfo().isTLSSupported() &&
2081           hasAttr<OMPThreadPrivateDeclAttr>()))
2082       return TLS_None;
2083     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2084                 LangOptions::MSVC2015)) ||
2085             hasAttr<OMPThreadPrivateDeclAttr>())
2086                ? TLS_Dynamic
2087                : TLS_Static;
2088   case TSCS___thread: // Fall through.
2089   case TSCS__Thread_local:
2090     return TLS_Static;
2091   case TSCS_thread_local:
2092     return TLS_Dynamic;
2093   }
2094   llvm_unreachable("Unknown thread storage class specifier!");
2095 }
2096 
2097 SourceRange VarDecl::getSourceRange() const {
2098   if (const Expr *Init = getInit()) {
2099     SourceLocation InitEnd = Init->getEndLoc();
2100     // If Init is implicit, ignore its source range and fallback on
2101     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2102     if (InitEnd.isValid() && InitEnd != getLocation())
2103       return SourceRange(getOuterLocStart(), InitEnd);
2104   }
2105   return DeclaratorDecl::getSourceRange();
2106 }
2107 
2108 template<typename T>
2109 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2110   // C++ [dcl.link]p1: All function types, function names with external linkage,
2111   // and variable names with external linkage have a language linkage.
2112   if (!D.hasExternalFormalLinkage())
2113     return NoLanguageLinkage;
2114 
2115   // Language linkage is a C++ concept, but saying that everything else in C has
2116   // C language linkage fits the implementation nicely.
2117   ASTContext &Context = D.getASTContext();
2118   if (!Context.getLangOpts().CPlusPlus)
2119     return CLanguageLinkage;
2120 
2121   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2122   // language linkage of the names of class members and the function type of
2123   // class member functions.
2124   const DeclContext *DC = D.getDeclContext();
2125   if (DC->isRecord())
2126     return CXXLanguageLinkage;
2127 
2128   // If the first decl is in an extern "C" context, any other redeclaration
2129   // will have C language linkage. If the first one is not in an extern "C"
2130   // context, we would have reported an error for any other decl being in one.
2131   if (isFirstInExternCContext(&D))
2132     return CLanguageLinkage;
2133   return CXXLanguageLinkage;
2134 }
2135 
2136 template<typename T>
2137 static bool isDeclExternC(const T &D) {
2138   // Since the context is ignored for class members, they can only have C++
2139   // language linkage or no language linkage.
2140   const DeclContext *DC = D.getDeclContext();
2141   if (DC->isRecord()) {
2142     assert(D.getASTContext().getLangOpts().CPlusPlus);
2143     return false;
2144   }
2145 
2146   return D.getLanguageLinkage() == CLanguageLinkage;
2147 }
2148 
2149 LanguageLinkage VarDecl::getLanguageLinkage() const {
2150   return getDeclLanguageLinkage(*this);
2151 }
2152 
2153 bool VarDecl::isExternC() const {
2154   return isDeclExternC(*this);
2155 }
2156 
2157 bool VarDecl::isInExternCContext() const {
2158   return getLexicalDeclContext()->isExternCContext();
2159 }
2160 
2161 bool VarDecl::isInExternCXXContext() const {
2162   return getLexicalDeclContext()->isExternCXXContext();
2163 }
2164 
2165 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2166 
2167 VarDecl::DefinitionKind
2168 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2169   if (isThisDeclarationADemotedDefinition())
2170     return DeclarationOnly;
2171 
2172   // C++ [basic.def]p2:
2173   //   A declaration is a definition unless [...] it contains the 'extern'
2174   //   specifier or a linkage-specification and neither an initializer [...],
2175   //   it declares a non-inline static data member in a class declaration [...],
2176   //   it declares a static data member outside a class definition and the variable
2177   //   was defined within the class with the constexpr specifier [...],
2178   // C++1y [temp.expl.spec]p15:
2179   //   An explicit specialization of a static data member or an explicit
2180   //   specialization of a static data member template is a definition if the
2181   //   declaration includes an initializer; otherwise, it is a declaration.
2182   //
2183   // FIXME: How do you declare (but not define) a partial specialization of
2184   // a static data member template outside the containing class?
2185   if (isStaticDataMember()) {
2186     if (isOutOfLine() &&
2187         !(getCanonicalDecl()->isInline() &&
2188           getCanonicalDecl()->isConstexpr()) &&
2189         (hasInit() ||
2190          // If the first declaration is out-of-line, this may be an
2191          // instantiation of an out-of-line partial specialization of a variable
2192          // template for which we have not yet instantiated the initializer.
2193          (getFirstDecl()->isOutOfLine()
2194               ? getTemplateSpecializationKind() == TSK_Undeclared
2195               : getTemplateSpecializationKind() !=
2196                     TSK_ExplicitSpecialization) ||
2197          isa<VarTemplatePartialSpecializationDecl>(this)))
2198       return Definition;
2199     if (!isOutOfLine() && isInline())
2200       return Definition;
2201     return DeclarationOnly;
2202   }
2203   // C99 6.7p5:
2204   //   A definition of an identifier is a declaration for that identifier that
2205   //   [...] causes storage to be reserved for that object.
2206   // Note: that applies for all non-file-scope objects.
2207   // C99 6.9.2p1:
2208   //   If the declaration of an identifier for an object has file scope and an
2209   //   initializer, the declaration is an external definition for the identifier
2210   if (hasInit())
2211     return Definition;
2212 
2213   if (hasDefiningAttr())
2214     return Definition;
2215 
2216   if (const auto *SAA = getAttr<SelectAnyAttr>())
2217     if (!SAA->isInherited())
2218       return Definition;
2219 
2220   // A variable template specialization (other than a static data member
2221   // template or an explicit specialization) is a declaration until we
2222   // instantiate its initializer.
2223   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2224     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2225         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2226         !VTSD->IsCompleteDefinition)
2227       return DeclarationOnly;
2228   }
2229 
2230   if (hasExternalStorage())
2231     return DeclarationOnly;
2232 
2233   // [dcl.link] p7:
2234   //   A declaration directly contained in a linkage-specification is treated
2235   //   as if it contains the extern specifier for the purpose of determining
2236   //   the linkage of the declared name and whether it is a definition.
2237   if (isSingleLineLanguageLinkage(*this))
2238     return DeclarationOnly;
2239 
2240   // C99 6.9.2p2:
2241   //   A declaration of an object that has file scope without an initializer,
2242   //   and without a storage class specifier or the scs 'static', constitutes
2243   //   a tentative definition.
2244   // No such thing in C++.
2245   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2246     return TentativeDefinition;
2247 
2248   // What's left is (in C, block-scope) declarations without initializers or
2249   // external storage. These are definitions.
2250   return Definition;
2251 }
2252 
2253 VarDecl *VarDecl::getActingDefinition() {
2254   DefinitionKind Kind = isThisDeclarationADefinition();
2255   if (Kind != TentativeDefinition)
2256     return nullptr;
2257 
2258   VarDecl *LastTentative = nullptr;
2259 
2260   // Loop through the declaration chain, starting with the most recent.
2261   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2262        Decl = Decl->getPreviousDecl()) {
2263     Kind = Decl->isThisDeclarationADefinition();
2264     if (Kind == Definition)
2265       return nullptr;
2266     // Record the first (most recent) TentativeDefinition that is encountered.
2267     if (Kind == TentativeDefinition && !LastTentative)
2268       LastTentative = Decl;
2269   }
2270 
2271   return LastTentative;
2272 }
2273 
2274 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2275   VarDecl *First = getFirstDecl();
2276   for (auto I : First->redecls()) {
2277     if (I->isThisDeclarationADefinition(C) == Definition)
2278       return I;
2279   }
2280   return nullptr;
2281 }
2282 
2283 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2284   DefinitionKind Kind = DeclarationOnly;
2285 
2286   const VarDecl *First = getFirstDecl();
2287   for (auto I : First->redecls()) {
2288     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2289     if (Kind == Definition)
2290       break;
2291   }
2292 
2293   return Kind;
2294 }
2295 
2296 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2297   for (auto I : redecls()) {
2298     if (auto Expr = I->getInit()) {
2299       D = I;
2300       return Expr;
2301     }
2302   }
2303   return nullptr;
2304 }
2305 
2306 bool VarDecl::hasInit() const {
2307   if (auto *P = dyn_cast<ParmVarDecl>(this))
2308     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2309       return false;
2310 
2311   return !Init.isNull();
2312 }
2313 
2314 Expr *VarDecl::getInit() {
2315   if (!hasInit())
2316     return nullptr;
2317 
2318   if (auto *S = Init.dyn_cast<Stmt *>())
2319     return cast<Expr>(S);
2320 
2321   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2322 }
2323 
2324 Stmt **VarDecl::getInitAddress() {
2325   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2326     return &ES->Value;
2327 
2328   return Init.getAddrOfPtr1();
2329 }
2330 
2331 VarDecl *VarDecl::getInitializingDeclaration() {
2332   VarDecl *Def = nullptr;
2333   for (auto I : redecls()) {
2334     if (I->hasInit())
2335       return I;
2336 
2337     if (I->isThisDeclarationADefinition()) {
2338       if (isStaticDataMember())
2339         return I;
2340       Def = I;
2341     }
2342   }
2343   return Def;
2344 }
2345 
2346 bool VarDecl::isOutOfLine() const {
2347   if (Decl::isOutOfLine())
2348     return true;
2349 
2350   if (!isStaticDataMember())
2351     return false;
2352 
2353   // If this static data member was instantiated from a static data member of
2354   // a class template, check whether that static data member was defined
2355   // out-of-line.
2356   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2357     return VD->isOutOfLine();
2358 
2359   return false;
2360 }
2361 
2362 void VarDecl::setInit(Expr *I) {
2363   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2364     Eval->~EvaluatedStmt();
2365     getASTContext().Deallocate(Eval);
2366   }
2367 
2368   Init = I;
2369 }
2370 
2371 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2372   const LangOptions &Lang = C.getLangOpts();
2373 
2374   // OpenCL permits const integral variables to be used in constant
2375   // expressions, like in C++98.
2376   if (!Lang.CPlusPlus && !Lang.OpenCL)
2377     return false;
2378 
2379   // Function parameters are never usable in constant expressions.
2380   if (isa<ParmVarDecl>(this))
2381     return false;
2382 
2383   // The values of weak variables are never usable in constant expressions.
2384   if (isWeak())
2385     return false;
2386 
2387   // In C++11, any variable of reference type can be used in a constant
2388   // expression if it is initialized by a constant expression.
2389   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2390     return true;
2391 
2392   // Only const objects can be used in constant expressions in C++. C++98 does
2393   // not require the variable to be non-volatile, but we consider this to be a
2394   // defect.
2395   if (!getType().isConstant(C) || getType().isVolatileQualified())
2396     return false;
2397 
2398   // In C++, const, non-volatile variables of integral or enumeration types
2399   // can be used in constant expressions.
2400   if (getType()->isIntegralOrEnumerationType())
2401     return true;
2402 
2403   // Additionally, in C++11, non-volatile constexpr variables can be used in
2404   // constant expressions.
2405   return Lang.CPlusPlus11 && isConstexpr();
2406 }
2407 
2408 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2409   // C++2a [expr.const]p3:
2410   //   A variable is usable in constant expressions after its initializing
2411   //   declaration is encountered...
2412   const VarDecl *DefVD = nullptr;
2413   const Expr *Init = getAnyInitializer(DefVD);
2414   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2415     return false;
2416   //   ... if it is a constexpr variable, or it is of reference type or of
2417   //   const-qualified integral or enumeration type, ...
2418   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2419     return false;
2420   //   ... and its initializer is a constant initializer.
2421   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2422     return false;
2423   // C++98 [expr.const]p1:
2424   //   An integral constant-expression can involve only [...] const variables
2425   //   or static data members of integral or enumeration types initialized with
2426   //   [integer] constant expressions (dcl.init)
2427   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2428       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2429     return false;
2430   return true;
2431 }
2432 
2433 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2434 /// form, which contains extra information on the evaluated value of the
2435 /// initializer.
2436 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2437   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2438   if (!Eval) {
2439     // Note: EvaluatedStmt contains an APValue, which usually holds
2440     // resources not allocated from the ASTContext.  We need to do some
2441     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2442     // where we can detect whether there's anything to clean up or not.
2443     Eval = new (getASTContext()) EvaluatedStmt;
2444     Eval->Value = Init.get<Stmt *>();
2445     Init = Eval;
2446   }
2447   return Eval;
2448 }
2449 
2450 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2451   return Init.dyn_cast<EvaluatedStmt *>();
2452 }
2453 
2454 APValue *VarDecl::evaluateValue() const {
2455   SmallVector<PartialDiagnosticAt, 8> Notes;
2456   return evaluateValue(Notes);
2457 }
2458 
2459 APValue *VarDecl::evaluateValue(
2460     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2461   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2462 
2463   const auto *Init = cast<Expr>(Eval->Value);
2464   assert(!Init->isValueDependent());
2465 
2466   // We only produce notes indicating why an initializer is non-constant the
2467   // first time it is evaluated. FIXME: The notes won't always be emitted the
2468   // first time we try evaluation, so might not be produced at all.
2469   if (Eval->WasEvaluated)
2470     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2471 
2472   if (Eval->IsEvaluating) {
2473     // FIXME: Produce a diagnostic for self-initialization.
2474     return nullptr;
2475   }
2476 
2477   Eval->IsEvaluating = true;
2478 
2479   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2480                                             this, Notes);
2481 
2482   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2483   // or that it's empty (so that there's nothing to clean up) if evaluation
2484   // failed.
2485   if (!Result)
2486     Eval->Evaluated = APValue();
2487   else if (Eval->Evaluated.needsCleanup())
2488     getASTContext().addDestruction(&Eval->Evaluated);
2489 
2490   Eval->IsEvaluating = false;
2491   Eval->WasEvaluated = true;
2492 
2493   return Result ? &Eval->Evaluated : nullptr;
2494 }
2495 
2496 APValue *VarDecl::getEvaluatedValue() const {
2497   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2498     if (Eval->WasEvaluated)
2499       return &Eval->Evaluated;
2500 
2501   return nullptr;
2502 }
2503 
2504 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2505   const Expr *Init = getInit();
2506   assert(Init && "no initializer");
2507 
2508   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2509   if (!Eval->CheckedForICEInit) {
2510     Eval->CheckedForICEInit = true;
2511     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2512   }
2513   return Eval->HasICEInit;
2514 }
2515 
2516 bool VarDecl::hasConstantInitialization() const {
2517   // In C, all globals (and only globals) have constant initialization.
2518   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2519     return true;
2520 
2521   // In C++, it depends on whether the evaluation at the point of definition
2522   // was evaluatable as a constant initializer.
2523   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2524     return Eval->HasConstantInitialization;
2525 
2526   return false;
2527 }
2528 
2529 bool VarDecl::checkForConstantInitialization(
2530     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2531   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2532   // If we ask for the value before we know whether we have a constant
2533   // initializer, we can compute the wrong value (for example, due to
2534   // std::is_constant_evaluated()).
2535   assert(!Eval->WasEvaluated &&
2536          "already evaluated var value before checking for constant init");
2537   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2538 
2539   assert(!cast<Expr>(Eval->Value)->isValueDependent());
2540 
2541   // Evaluate the initializer to check whether it's a constant expression.
2542   Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty();
2543   return Eval->HasConstantInitialization;
2544 }
2545 
2546 bool VarDecl::isParameterPack() const {
2547   return isa<PackExpansionType>(getType());
2548 }
2549 
2550 template<typename DeclT>
2551 static DeclT *getDefinitionOrSelf(DeclT *D) {
2552   assert(D);
2553   if (auto *Def = D->getDefinition())
2554     return Def;
2555   return D;
2556 }
2557 
2558 bool VarDecl::isEscapingByref() const {
2559   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2560 }
2561 
2562 bool VarDecl::isNonEscapingByref() const {
2563   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2564 }
2565 
2566 bool VarDecl::hasDependentAlignment() const {
2567   QualType T = getType();
2568   return T->isDependentType() || T->isUndeducedAutoType() ||
2569          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2570            return AA->isAlignmentDependent();
2571          });
2572 }
2573 
2574 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2575   const VarDecl *VD = this;
2576 
2577   // If this is an instantiated member, walk back to the template from which
2578   // it was instantiated.
2579   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2580     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2581       VD = VD->getInstantiatedFromStaticDataMember();
2582       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2583         VD = NewVD;
2584     }
2585   }
2586 
2587   // If it's an instantiated variable template specialization, find the
2588   // template or partial specialization from which it was instantiated.
2589   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2590     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2591       auto From = VDTemplSpec->getInstantiatedFrom();
2592       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2593         while (!VTD->isMemberSpecialization()) {
2594           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2595           if (!NewVTD)
2596             break;
2597           VTD = NewVTD;
2598         }
2599         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2600       }
2601       if (auto *VTPSD =
2602               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2603         while (!VTPSD->isMemberSpecialization()) {
2604           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2605           if (!NewVTPSD)
2606             break;
2607           VTPSD = NewVTPSD;
2608         }
2609         return getDefinitionOrSelf<VarDecl>(VTPSD);
2610       }
2611     }
2612   }
2613 
2614   // If this is the pattern of a variable template, find where it was
2615   // instantiated from. FIXME: Is this necessary?
2616   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2617     while (!VarTemplate->isMemberSpecialization()) {
2618       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2619       if (!NewVT)
2620         break;
2621       VarTemplate = NewVT;
2622     }
2623 
2624     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2625   }
2626 
2627   if (VD == this)
2628     return nullptr;
2629   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2630 }
2631 
2632 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2633   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2634     return cast<VarDecl>(MSI->getInstantiatedFrom());
2635 
2636   return nullptr;
2637 }
2638 
2639 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2640   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2641     return Spec->getSpecializationKind();
2642 
2643   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2644     return MSI->getTemplateSpecializationKind();
2645 
2646   return TSK_Undeclared;
2647 }
2648 
2649 TemplateSpecializationKind
2650 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2651   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2652     return MSI->getTemplateSpecializationKind();
2653 
2654   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2655     return Spec->getSpecializationKind();
2656 
2657   return TSK_Undeclared;
2658 }
2659 
2660 SourceLocation VarDecl::getPointOfInstantiation() const {
2661   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2662     return Spec->getPointOfInstantiation();
2663 
2664   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2665     return MSI->getPointOfInstantiation();
2666 
2667   return SourceLocation();
2668 }
2669 
2670 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2671   return getASTContext().getTemplateOrSpecializationInfo(this)
2672       .dyn_cast<VarTemplateDecl *>();
2673 }
2674 
2675 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2676   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2677 }
2678 
2679 bool VarDecl::isKnownToBeDefined() const {
2680   const auto &LangOpts = getASTContext().getLangOpts();
2681   // In CUDA mode without relocatable device code, variables of form 'extern
2682   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2683   // memory pool.  These are never undefined variables, even if they appear
2684   // inside of an anon namespace or static function.
2685   //
2686   // With CUDA relocatable device code enabled, these variables don't get
2687   // special handling; they're treated like regular extern variables.
2688   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2689       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2690       isa<IncompleteArrayType>(getType()))
2691     return true;
2692 
2693   return hasDefinition();
2694 }
2695 
2696 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2697   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2698                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2699                                  !hasAttr<AlwaysDestroyAttr>()));
2700 }
2701 
2702 QualType::DestructionKind
2703 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2704   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2705     if (Eval->HasConstantDestruction)
2706       return QualType::DK_none;
2707 
2708   if (isNoDestroy(Ctx))
2709     return QualType::DK_none;
2710 
2711   return getType().isDestructedType();
2712 }
2713 
2714 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2715   assert(hasInit() && "Expect initializer to check for flexible array init");
2716   auto *Ty = getType()->getAs<RecordType>();
2717   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2718     return false;
2719   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2720   if (!List)
2721     return false;
2722   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2723   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2724   if (!InitTy)
2725     return false;
2726   return InitTy->getSize() != 0;
2727 }
2728 
2729 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2730   assert(hasInit() && "Expect initializer to check for flexible array init");
2731   auto *Ty = getType()->getAs<RecordType>();
2732   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2733     return CharUnits::Zero();
2734   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2735   if (!List)
2736     return CharUnits::Zero();
2737   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2738   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2739   if (!InitTy)
2740     return CharUnits::Zero();
2741   CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2742   const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2743   CharUnits FlexibleArrayOffset =
2744       Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2745   if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2746     return CharUnits::Zero();
2747   return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2748 }
2749 
2750 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2751   if (isStaticDataMember())
2752     // FIXME: Remove ?
2753     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2754     return getASTContext().getTemplateOrSpecializationInfo(this)
2755         .dyn_cast<MemberSpecializationInfo *>();
2756   return nullptr;
2757 }
2758 
2759 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2760                                          SourceLocation PointOfInstantiation) {
2761   assert((isa<VarTemplateSpecializationDecl>(this) ||
2762           getMemberSpecializationInfo()) &&
2763          "not a variable or static data member template specialization");
2764 
2765   if (VarTemplateSpecializationDecl *Spec =
2766           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2767     Spec->setSpecializationKind(TSK);
2768     if (TSK != TSK_ExplicitSpecialization &&
2769         PointOfInstantiation.isValid() &&
2770         Spec->getPointOfInstantiation().isInvalid()) {
2771       Spec->setPointOfInstantiation(PointOfInstantiation);
2772       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2773         L->InstantiationRequested(this);
2774     }
2775   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2776     MSI->setTemplateSpecializationKind(TSK);
2777     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2778         MSI->getPointOfInstantiation().isInvalid()) {
2779       MSI->setPointOfInstantiation(PointOfInstantiation);
2780       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2781         L->InstantiationRequested(this);
2782     }
2783   }
2784 }
2785 
2786 void
2787 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2788                                             TemplateSpecializationKind TSK) {
2789   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2790          "Previous template or instantiation?");
2791   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2792 }
2793 
2794 //===----------------------------------------------------------------------===//
2795 // ParmVarDecl Implementation
2796 //===----------------------------------------------------------------------===//
2797 
2798 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2799                                  SourceLocation StartLoc,
2800                                  SourceLocation IdLoc, IdentifierInfo *Id,
2801                                  QualType T, TypeSourceInfo *TInfo,
2802                                  StorageClass S, Expr *DefArg) {
2803   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2804                                  S, DefArg);
2805 }
2806 
2807 QualType ParmVarDecl::getOriginalType() const {
2808   TypeSourceInfo *TSI = getTypeSourceInfo();
2809   QualType T = TSI ? TSI->getType() : getType();
2810   if (const auto *DT = dyn_cast<DecayedType>(T))
2811     return DT->getOriginalType();
2812   return T;
2813 }
2814 
2815 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2816   return new (C, ID)
2817       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2818                   nullptr, QualType(), nullptr, SC_None, nullptr);
2819 }
2820 
2821 SourceRange ParmVarDecl::getSourceRange() const {
2822   if (!hasInheritedDefaultArg()) {
2823     SourceRange ArgRange = getDefaultArgRange();
2824     if (ArgRange.isValid())
2825       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2826   }
2827 
2828   // DeclaratorDecl considers the range of postfix types as overlapping with the
2829   // declaration name, but this is not the case with parameters in ObjC methods.
2830   if (isa<ObjCMethodDecl>(getDeclContext()))
2831     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2832 
2833   return DeclaratorDecl::getSourceRange();
2834 }
2835 
2836 bool ParmVarDecl::isDestroyedInCallee() const {
2837   // ns_consumed only affects code generation in ARC
2838   if (hasAttr<NSConsumedAttr>())
2839     return getASTContext().getLangOpts().ObjCAutoRefCount;
2840 
2841   // FIXME: isParamDestroyedInCallee() should probably imply
2842   // isDestructedType()
2843   auto *RT = getType()->getAs<RecordType>();
2844   if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2845       getType().isDestructedType())
2846     return true;
2847 
2848   return false;
2849 }
2850 
2851 Expr *ParmVarDecl::getDefaultArg() {
2852   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2853   assert(!hasUninstantiatedDefaultArg() &&
2854          "Default argument is not yet instantiated!");
2855 
2856   Expr *Arg = getInit();
2857   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2858     if (!isa<ConstantExpr>(E))
2859       return E->getSubExpr();
2860 
2861   return Arg;
2862 }
2863 
2864 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2865   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2866   Init = defarg;
2867 }
2868 
2869 SourceRange ParmVarDecl::getDefaultArgRange() const {
2870   switch (ParmVarDeclBits.DefaultArgKind) {
2871   case DAK_None:
2872   case DAK_Unparsed:
2873     // Nothing we can do here.
2874     return SourceRange();
2875 
2876   case DAK_Uninstantiated:
2877     return getUninstantiatedDefaultArg()->getSourceRange();
2878 
2879   case DAK_Normal:
2880     if (const Expr *E = getInit())
2881       return E->getSourceRange();
2882 
2883     // Missing an actual expression, may be invalid.
2884     return SourceRange();
2885   }
2886   llvm_unreachable("Invalid default argument kind.");
2887 }
2888 
2889 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2890   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2891   Init = arg;
2892 }
2893 
2894 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2895   assert(hasUninstantiatedDefaultArg() &&
2896          "Wrong kind of initialization expression!");
2897   return cast_or_null<Expr>(Init.get<Stmt *>());
2898 }
2899 
2900 bool ParmVarDecl::hasDefaultArg() const {
2901   // FIXME: We should just return false for DAK_None here once callers are
2902   // prepared for the case that we encountered an invalid default argument and
2903   // were unable to even build an invalid expression.
2904   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2905          !Init.isNull();
2906 }
2907 
2908 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2909   getASTContext().setParameterIndex(this, parameterIndex);
2910   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2911 }
2912 
2913 unsigned ParmVarDecl::getParameterIndexLarge() const {
2914   return getASTContext().getParameterIndex(this);
2915 }
2916 
2917 //===----------------------------------------------------------------------===//
2918 // FunctionDecl Implementation
2919 //===----------------------------------------------------------------------===//
2920 
2921 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2922                            SourceLocation StartLoc,
2923                            const DeclarationNameInfo &NameInfo, QualType T,
2924                            TypeSourceInfo *TInfo, StorageClass S,
2925                            bool UsesFPIntrin, bool isInlineSpecified,
2926                            ConstexprSpecKind ConstexprKind,
2927                            Expr *TrailingRequiresClause)
2928     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2929                      StartLoc),
2930       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2931       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2932   assert(T.isNull() || T->isFunctionType());
2933   FunctionDeclBits.SClass = S;
2934   FunctionDeclBits.IsInline = isInlineSpecified;
2935   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2936   FunctionDeclBits.IsVirtualAsWritten = false;
2937   FunctionDeclBits.IsPure = false;
2938   FunctionDeclBits.HasInheritedPrototype = false;
2939   FunctionDeclBits.HasWrittenPrototype = true;
2940   FunctionDeclBits.IsDeleted = false;
2941   FunctionDeclBits.IsTrivial = false;
2942   FunctionDeclBits.IsTrivialForCall = false;
2943   FunctionDeclBits.IsDefaulted = false;
2944   FunctionDeclBits.IsExplicitlyDefaulted = false;
2945   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2946   FunctionDeclBits.IsIneligibleOrNotSelected = false;
2947   FunctionDeclBits.HasImplicitReturnZero = false;
2948   FunctionDeclBits.IsLateTemplateParsed = false;
2949   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2950   FunctionDeclBits.InstantiationIsPending = false;
2951   FunctionDeclBits.UsesSEHTry = false;
2952   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
2953   FunctionDeclBits.HasSkippedBody = false;
2954   FunctionDeclBits.WillHaveBody = false;
2955   FunctionDeclBits.IsMultiVersion = false;
2956   FunctionDeclBits.IsCopyDeductionCandidate = false;
2957   FunctionDeclBits.HasODRHash = false;
2958   if (TrailingRequiresClause)
2959     setTrailingRequiresClause(TrailingRequiresClause);
2960 }
2961 
2962 void FunctionDecl::getNameForDiagnostic(
2963     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2964   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2965   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2966   if (TemplateArgs)
2967     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2968 }
2969 
2970 bool FunctionDecl::isVariadic() const {
2971   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2972     return FT->isVariadic();
2973   return false;
2974 }
2975 
2976 FunctionDecl::DefaultedFunctionInfo *
2977 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2978                                             ArrayRef<DeclAccessPair> Lookups) {
2979   DefaultedFunctionInfo *Info = new (Context.Allocate(
2980       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2981       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2982       DefaultedFunctionInfo;
2983   Info->NumLookups = Lookups.size();
2984   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2985                           Info->getTrailingObjects<DeclAccessPair>());
2986   return Info;
2987 }
2988 
2989 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2990   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2991   assert(!Body && "can't replace function body with defaulted function info");
2992 
2993   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2994   DefaultedInfo = Info;
2995 }
2996 
2997 FunctionDecl::DefaultedFunctionInfo *
2998 FunctionDecl::getDefaultedFunctionInfo() const {
2999   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
3000 }
3001 
3002 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3003   for (auto I : redecls()) {
3004     if (I->doesThisDeclarationHaveABody()) {
3005       Definition = I;
3006       return true;
3007     }
3008   }
3009 
3010   return false;
3011 }
3012 
3013 bool FunctionDecl::hasTrivialBody() const {
3014   Stmt *S = getBody();
3015   if (!S) {
3016     // Since we don't have a body for this function, we don't know if it's
3017     // trivial or not.
3018     return false;
3019   }
3020 
3021   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3022     return true;
3023   return false;
3024 }
3025 
3026 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3027   if (!getFriendObjectKind())
3028     return false;
3029 
3030   // Check for a friend function instantiated from a friend function
3031   // definition in a templated class.
3032   if (const FunctionDecl *InstantiatedFrom =
3033           getInstantiatedFromMemberFunction())
3034     return InstantiatedFrom->getFriendObjectKind() &&
3035            InstantiatedFrom->isThisDeclarationADefinition();
3036 
3037   // Check for a friend function template instantiated from a friend
3038   // function template definition in a templated class.
3039   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3040     if (const FunctionTemplateDecl *InstantiatedFrom =
3041             Template->getInstantiatedFromMemberTemplate())
3042       return InstantiatedFrom->getFriendObjectKind() &&
3043              InstantiatedFrom->isThisDeclarationADefinition();
3044   }
3045 
3046   return false;
3047 }
3048 
3049 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3050                              bool CheckForPendingFriendDefinition) const {
3051   for (const FunctionDecl *FD : redecls()) {
3052     if (FD->isThisDeclarationADefinition()) {
3053       Definition = FD;
3054       return true;
3055     }
3056 
3057     // If this is a friend function defined in a class template, it does not
3058     // have a body until it is used, nevertheless it is a definition, see
3059     // [temp.inst]p2:
3060     //
3061     // ... for the purpose of determining whether an instantiated redeclaration
3062     // is valid according to [basic.def.odr] and [class.mem], a declaration that
3063     // corresponds to a definition in the template is considered to be a
3064     // definition.
3065     //
3066     // The following code must produce redefinition error:
3067     //
3068     //     template<typename T> struct C20 { friend void func_20() {} };
3069     //     C20<int> c20i;
3070     //     void func_20() {}
3071     //
3072     if (CheckForPendingFriendDefinition &&
3073         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3074       Definition = FD;
3075       return true;
3076     }
3077   }
3078 
3079   return false;
3080 }
3081 
3082 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3083   if (!hasBody(Definition))
3084     return nullptr;
3085 
3086   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3087          "definition should not have a body");
3088   if (Definition->Body)
3089     return Definition->Body.get(getASTContext().getExternalSource());
3090 
3091   return nullptr;
3092 }
3093 
3094 void FunctionDecl::setBody(Stmt *B) {
3095   FunctionDeclBits.HasDefaultedFunctionInfo = false;
3096   Body = LazyDeclStmtPtr(B);
3097   if (B)
3098     EndRangeLoc = B->getEndLoc();
3099 }
3100 
3101 void FunctionDecl::setPure(bool P) {
3102   FunctionDeclBits.IsPure = P;
3103   if (P)
3104     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3105       Parent->markedVirtualFunctionPure();
3106 }
3107 
3108 template<std::size_t Len>
3109 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3110   IdentifierInfo *II = ND->getIdentifier();
3111   return II && II->isStr(Str);
3112 }
3113 
3114 bool FunctionDecl::isMain() const {
3115   const TranslationUnitDecl *tunit =
3116     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3117   return tunit &&
3118          !tunit->getASTContext().getLangOpts().Freestanding &&
3119          isNamed(this, "main");
3120 }
3121 
3122 bool FunctionDecl::isMSVCRTEntryPoint() const {
3123   const TranslationUnitDecl *TUnit =
3124       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3125   if (!TUnit)
3126     return false;
3127 
3128   // Even though we aren't really targeting MSVCRT if we are freestanding,
3129   // semantic analysis for these functions remains the same.
3130 
3131   // MSVCRT entry points only exist on MSVCRT targets.
3132   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3133     return false;
3134 
3135   // Nameless functions like constructors cannot be entry points.
3136   if (!getIdentifier())
3137     return false;
3138 
3139   return llvm::StringSwitch<bool>(getName())
3140       .Cases("main",     // an ANSI console app
3141              "wmain",    // a Unicode console App
3142              "WinMain",  // an ANSI GUI app
3143              "wWinMain", // a Unicode GUI app
3144              "DllMain",  // a DLL
3145              true)
3146       .Default(false);
3147 }
3148 
3149 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3150   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3151   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3152          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3153          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3154          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3155 
3156   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3157     return false;
3158 
3159   const auto *proto = getType()->castAs<FunctionProtoType>();
3160   if (proto->getNumParams() != 2 || proto->isVariadic())
3161     return false;
3162 
3163   ASTContext &Context =
3164     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3165       ->getASTContext();
3166 
3167   // The result type and first argument type are constant across all
3168   // these operators.  The second argument must be exactly void*.
3169   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3170 }
3171 
3172 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3173     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3174   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3175     return false;
3176   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3177       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3178       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3179       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3180     return false;
3181 
3182   if (isa<CXXRecordDecl>(getDeclContext()))
3183     return false;
3184 
3185   // This can only fail for an invalid 'operator new' declaration.
3186   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3187     return false;
3188 
3189   const auto *FPT = getType()->castAs<FunctionProtoType>();
3190   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3191     return false;
3192 
3193   // If this is a single-parameter function, it must be a replaceable global
3194   // allocation or deallocation function.
3195   if (FPT->getNumParams() == 1)
3196     return true;
3197 
3198   unsigned Params = 1;
3199   QualType Ty = FPT->getParamType(Params);
3200   ASTContext &Ctx = getASTContext();
3201 
3202   auto Consume = [&] {
3203     ++Params;
3204     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3205   };
3206 
3207   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3208   bool IsSizedDelete = false;
3209   if (Ctx.getLangOpts().SizedDeallocation &&
3210       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3211        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3212       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3213     IsSizedDelete = true;
3214     Consume();
3215   }
3216 
3217   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3218   // new/delete.
3219   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3220     Consume();
3221     if (AlignmentParam)
3222       *AlignmentParam = Params;
3223   }
3224 
3225   // Finally, if this is not a sized delete, the final parameter can
3226   // be a 'const std::nothrow_t&'.
3227   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3228     Ty = Ty->getPointeeType();
3229     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3230       return false;
3231     if (Ty->isNothrowT()) {
3232       if (IsNothrow)
3233         *IsNothrow = true;
3234       Consume();
3235     }
3236   }
3237 
3238   return Params == FPT->getNumParams();
3239 }
3240 
3241 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3242   if (!getBuiltinID())
3243     return false;
3244 
3245   const FunctionDecl *Definition;
3246   return hasBody(Definition) && Definition->isInlineSpecified() &&
3247          Definition->hasAttr<AlwaysInlineAttr>() &&
3248          Definition->hasAttr<GNUInlineAttr>();
3249 }
3250 
3251 bool FunctionDecl::isDestroyingOperatorDelete() const {
3252   // C++ P0722:
3253   //   Within a class C, a single object deallocation function with signature
3254   //     (T, std::destroying_delete_t, <more params>)
3255   //   is a destroying operator delete.
3256   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3257       getNumParams() < 2)
3258     return false;
3259 
3260   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3261   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3262          RD->getIdentifier()->isStr("destroying_delete_t");
3263 }
3264 
3265 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3266   return getDeclLanguageLinkage(*this);
3267 }
3268 
3269 bool FunctionDecl::isExternC() const {
3270   return isDeclExternC(*this);
3271 }
3272 
3273 bool FunctionDecl::isInExternCContext() const {
3274   if (hasAttr<OpenCLKernelAttr>())
3275     return true;
3276   return getLexicalDeclContext()->isExternCContext();
3277 }
3278 
3279 bool FunctionDecl::isInExternCXXContext() const {
3280   return getLexicalDeclContext()->isExternCXXContext();
3281 }
3282 
3283 bool FunctionDecl::isGlobal() const {
3284   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3285     return Method->isStatic();
3286 
3287   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3288     return false;
3289 
3290   for (const DeclContext *DC = getDeclContext();
3291        DC->isNamespace();
3292        DC = DC->getParent()) {
3293     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3294       if (!Namespace->getDeclName())
3295         return false;
3296     }
3297   }
3298 
3299   return true;
3300 }
3301 
3302 bool FunctionDecl::isNoReturn() const {
3303   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3304       hasAttr<C11NoReturnAttr>())
3305     return true;
3306 
3307   if (auto *FnTy = getType()->getAs<FunctionType>())
3308     return FnTy->getNoReturnAttr();
3309 
3310   return false;
3311 }
3312 
3313 
3314 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3315   if (hasAttr<TargetAttr>())
3316     return MultiVersionKind::Target;
3317   if (hasAttr<CPUDispatchAttr>())
3318     return MultiVersionKind::CPUDispatch;
3319   if (hasAttr<CPUSpecificAttr>())
3320     return MultiVersionKind::CPUSpecific;
3321   if (hasAttr<TargetClonesAttr>())
3322     return MultiVersionKind::TargetClones;
3323   return MultiVersionKind::None;
3324 }
3325 
3326 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3327   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3328 }
3329 
3330 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3331   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3332 }
3333 
3334 bool FunctionDecl::isTargetMultiVersion() const {
3335   return isMultiVersion() && hasAttr<TargetAttr>();
3336 }
3337 
3338 bool FunctionDecl::isTargetClonesMultiVersion() const {
3339   return isMultiVersion() && hasAttr<TargetClonesAttr>();
3340 }
3341 
3342 void
3343 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3344   redeclarable_base::setPreviousDecl(PrevDecl);
3345 
3346   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3347     FunctionTemplateDecl *PrevFunTmpl
3348       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3349     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3350     FunTmpl->setPreviousDecl(PrevFunTmpl);
3351   }
3352 
3353   if (PrevDecl && PrevDecl->isInlined())
3354     setImplicitlyInline(true);
3355 }
3356 
3357 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3358 
3359 /// Returns a value indicating whether this function corresponds to a builtin
3360 /// function.
3361 ///
3362 /// The function corresponds to a built-in function if it is declared at
3363 /// translation scope or within an extern "C" block and its name matches with
3364 /// the name of a builtin. The returned value will be 0 for functions that do
3365 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3366 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3367 /// value.
3368 ///
3369 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3370 /// functions as their wrapped builtins. This shouldn't be done in general, but
3371 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3372 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3373   unsigned BuiltinID = 0;
3374 
3375   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3376     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3377   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3378     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3379   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3380     BuiltinID = A->getID();
3381   }
3382 
3383   if (!BuiltinID)
3384     return 0;
3385 
3386   // If the function is marked "overloadable", it has a different mangled name
3387   // and is not the C library function.
3388   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3389       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3390     return 0;
3391 
3392   ASTContext &Context = getASTContext();
3393   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3394     return BuiltinID;
3395 
3396   // This function has the name of a known C library
3397   // function. Determine whether it actually refers to the C library
3398   // function or whether it just has the same name.
3399 
3400   // If this is a static function, it's not a builtin.
3401   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3402     return 0;
3403 
3404   // OpenCL v1.2 s6.9.f - The library functions defined in
3405   // the C99 standard headers are not available.
3406   if (Context.getLangOpts().OpenCL &&
3407       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3408     return 0;
3409 
3410   // CUDA does not have device-side standard library. printf and malloc are the
3411   // only special cases that are supported by device-side runtime.
3412   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3413       !hasAttr<CUDAHostAttr>() &&
3414       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3415     return 0;
3416 
3417   // As AMDGCN implementation of OpenMP does not have a device-side standard
3418   // library, none of the predefined library functions except printf and malloc
3419   // should be treated as a builtin i.e. 0 should be returned for them.
3420   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3421       Context.getLangOpts().OpenMPIsDevice &&
3422       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3423       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3424     return 0;
3425 
3426   return BuiltinID;
3427 }
3428 
3429 /// getNumParams - Return the number of parameters this function must have
3430 /// based on its FunctionType.  This is the length of the ParamInfo array
3431 /// after it has been created.
3432 unsigned FunctionDecl::getNumParams() const {
3433   const auto *FPT = getType()->getAs<FunctionProtoType>();
3434   return FPT ? FPT->getNumParams() : 0;
3435 }
3436 
3437 void FunctionDecl::setParams(ASTContext &C,
3438                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3439   assert(!ParamInfo && "Already has param info!");
3440   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3441 
3442   // Zero params -> null pointer.
3443   if (!NewParamInfo.empty()) {
3444     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3445     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3446   }
3447 }
3448 
3449 /// getMinRequiredArguments - Returns the minimum number of arguments
3450 /// needed to call this function. This may be fewer than the number of
3451 /// function parameters, if some of the parameters have default
3452 /// arguments (in C++) or are parameter packs (C++11).
3453 unsigned FunctionDecl::getMinRequiredArguments() const {
3454   if (!getASTContext().getLangOpts().CPlusPlus)
3455     return getNumParams();
3456 
3457   // Note that it is possible for a parameter with no default argument to
3458   // follow a parameter with a default argument.
3459   unsigned NumRequiredArgs = 0;
3460   unsigned MinParamsSoFar = 0;
3461   for (auto *Param : parameters()) {
3462     if (!Param->isParameterPack()) {
3463       ++MinParamsSoFar;
3464       if (!Param->hasDefaultArg())
3465         NumRequiredArgs = MinParamsSoFar;
3466     }
3467   }
3468   return NumRequiredArgs;
3469 }
3470 
3471 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3472   return getNumParams() == 1 ||
3473          (getNumParams() > 1 &&
3474           std::all_of(param_begin() + 1, param_end(),
3475                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3476 }
3477 
3478 /// The combination of the extern and inline keywords under MSVC forces
3479 /// the function to be required.
3480 ///
3481 /// Note: This function assumes that we will only get called when isInlined()
3482 /// would return true for this FunctionDecl.
3483 bool FunctionDecl::isMSExternInline() const {
3484   assert(isInlined() && "expected to get called on an inlined function!");
3485 
3486   const ASTContext &Context = getASTContext();
3487   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3488       !hasAttr<DLLExportAttr>())
3489     return false;
3490 
3491   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3492        FD = FD->getPreviousDecl())
3493     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3494       return true;
3495 
3496   return false;
3497 }
3498 
3499 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3500   if (Redecl->getStorageClass() != SC_Extern)
3501     return false;
3502 
3503   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3504        FD = FD->getPreviousDecl())
3505     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3506       return false;
3507 
3508   return true;
3509 }
3510 
3511 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3512   // Only consider file-scope declarations in this test.
3513   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3514     return false;
3515 
3516   // Only consider explicit declarations; the presence of a builtin for a
3517   // libcall shouldn't affect whether a definition is externally visible.
3518   if (Redecl->isImplicit())
3519     return false;
3520 
3521   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3522     return true; // Not an inline definition
3523 
3524   return false;
3525 }
3526 
3527 /// For a function declaration in C or C++, determine whether this
3528 /// declaration causes the definition to be externally visible.
3529 ///
3530 /// For instance, this determines if adding the current declaration to the set
3531 /// of redeclarations of the given functions causes
3532 /// isInlineDefinitionExternallyVisible to change from false to true.
3533 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3534   assert(!doesThisDeclarationHaveABody() &&
3535          "Must have a declaration without a body.");
3536 
3537   ASTContext &Context = getASTContext();
3538 
3539   if (Context.getLangOpts().MSVCCompat) {
3540     const FunctionDecl *Definition;
3541     if (hasBody(Definition) && Definition->isInlined() &&
3542         redeclForcesDefMSVC(this))
3543       return true;
3544   }
3545 
3546   if (Context.getLangOpts().CPlusPlus)
3547     return false;
3548 
3549   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3550     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3551     // an externally visible definition.
3552     //
3553     // FIXME: What happens if gnu_inline gets added on after the first
3554     // declaration?
3555     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3556       return false;
3557 
3558     const FunctionDecl *Prev = this;
3559     bool FoundBody = false;
3560     while ((Prev = Prev->getPreviousDecl())) {
3561       FoundBody |= Prev->doesThisDeclarationHaveABody();
3562 
3563       if (Prev->doesThisDeclarationHaveABody()) {
3564         // If it's not the case that both 'inline' and 'extern' are
3565         // specified on the definition, then it is always externally visible.
3566         if (!Prev->isInlineSpecified() ||
3567             Prev->getStorageClass() != SC_Extern)
3568           return false;
3569       } else if (Prev->isInlineSpecified() &&
3570                  Prev->getStorageClass() != SC_Extern) {
3571         return false;
3572       }
3573     }
3574     return FoundBody;
3575   }
3576 
3577   // C99 6.7.4p6:
3578   //   [...] If all of the file scope declarations for a function in a
3579   //   translation unit include the inline function specifier without extern,
3580   //   then the definition in that translation unit is an inline definition.
3581   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3582     return false;
3583   const FunctionDecl *Prev = this;
3584   bool FoundBody = false;
3585   while ((Prev = Prev->getPreviousDecl())) {
3586     FoundBody |= Prev->doesThisDeclarationHaveABody();
3587     if (RedeclForcesDefC99(Prev))
3588       return false;
3589   }
3590   return FoundBody;
3591 }
3592 
3593 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3594   const TypeSourceInfo *TSI = getTypeSourceInfo();
3595   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3596              : FunctionTypeLoc();
3597 }
3598 
3599 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3600   FunctionTypeLoc FTL = getFunctionTypeLoc();
3601   if (!FTL)
3602     return SourceRange();
3603 
3604   // Skip self-referential return types.
3605   const SourceManager &SM = getASTContext().getSourceManager();
3606   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3607   SourceLocation Boundary = getNameInfo().getBeginLoc();
3608   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3609       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3610     return SourceRange();
3611 
3612   return RTRange;
3613 }
3614 
3615 SourceRange FunctionDecl::getParametersSourceRange() const {
3616   unsigned NP = getNumParams();
3617   SourceLocation EllipsisLoc = getEllipsisLoc();
3618 
3619   if (NP == 0 && EllipsisLoc.isInvalid())
3620     return SourceRange();
3621 
3622   SourceLocation Begin =
3623       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3624   SourceLocation End = EllipsisLoc.isValid()
3625                            ? EllipsisLoc
3626                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3627 
3628   return SourceRange(Begin, End);
3629 }
3630 
3631 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3632   FunctionTypeLoc FTL = getFunctionTypeLoc();
3633   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3634 }
3635 
3636 /// For an inline function definition in C, or for a gnu_inline function
3637 /// in C++, determine whether the definition will be externally visible.
3638 ///
3639 /// Inline function definitions are always available for inlining optimizations.
3640 /// However, depending on the language dialect, declaration specifiers, and
3641 /// attributes, the definition of an inline function may or may not be
3642 /// "externally" visible to other translation units in the program.
3643 ///
3644 /// In C99, inline definitions are not externally visible by default. However,
3645 /// if even one of the global-scope declarations is marked "extern inline", the
3646 /// inline definition becomes externally visible (C99 6.7.4p6).
3647 ///
3648 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3649 /// definition, we use the GNU semantics for inline, which are nearly the
3650 /// opposite of C99 semantics. In particular, "inline" by itself will create
3651 /// an externally visible symbol, but "extern inline" will not create an
3652 /// externally visible symbol.
3653 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3654   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3655           hasAttr<AliasAttr>()) &&
3656          "Must be a function definition");
3657   assert(isInlined() && "Function must be inline");
3658   ASTContext &Context = getASTContext();
3659 
3660   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3661     // Note: If you change the logic here, please change
3662     // doesDeclarationForceExternallyVisibleDefinition as well.
3663     //
3664     // If it's not the case that both 'inline' and 'extern' are
3665     // specified on the definition, then this inline definition is
3666     // externally visible.
3667     if (Context.getLangOpts().CPlusPlus)
3668       return false;
3669     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3670       return true;
3671 
3672     // If any declaration is 'inline' but not 'extern', then this definition
3673     // is externally visible.
3674     for (auto Redecl : redecls()) {
3675       if (Redecl->isInlineSpecified() &&
3676           Redecl->getStorageClass() != SC_Extern)
3677         return true;
3678     }
3679 
3680     return false;
3681   }
3682 
3683   // The rest of this function is C-only.
3684   assert(!Context.getLangOpts().CPlusPlus &&
3685          "should not use C inline rules in C++");
3686 
3687   // C99 6.7.4p6:
3688   //   [...] If all of the file scope declarations for a function in a
3689   //   translation unit include the inline function specifier without extern,
3690   //   then the definition in that translation unit is an inline definition.
3691   for (auto Redecl : redecls()) {
3692     if (RedeclForcesDefC99(Redecl))
3693       return true;
3694   }
3695 
3696   // C99 6.7.4p6:
3697   //   An inline definition does not provide an external definition for the
3698   //   function, and does not forbid an external definition in another
3699   //   translation unit.
3700   return false;
3701 }
3702 
3703 /// getOverloadedOperator - Which C++ overloaded operator this
3704 /// function represents, if any.
3705 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3706   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3707     return getDeclName().getCXXOverloadedOperator();
3708   return OO_None;
3709 }
3710 
3711 /// getLiteralIdentifier - The literal suffix identifier this function
3712 /// represents, if any.
3713 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3714   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3715     return getDeclName().getCXXLiteralIdentifier();
3716   return nullptr;
3717 }
3718 
3719 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3720   if (TemplateOrSpecialization.isNull())
3721     return TK_NonTemplate;
3722   if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
3723     if (isa<FunctionDecl>(ND))
3724       return TK_DependentNonTemplate;
3725     assert(isa<FunctionTemplateDecl>(ND) &&
3726            "No other valid types in NamedDecl");
3727     return TK_FunctionTemplate;
3728   }
3729   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3730     return TK_MemberSpecialization;
3731   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3732     return TK_FunctionTemplateSpecialization;
3733   if (TemplateOrSpecialization.is
3734                                <DependentFunctionTemplateSpecializationInfo*>())
3735     return TK_DependentFunctionTemplateSpecialization;
3736 
3737   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3738 }
3739 
3740 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3741   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3742     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3743 
3744   return nullptr;
3745 }
3746 
3747 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3748   if (auto *MSI =
3749           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3750     return MSI;
3751   if (auto *FTSI = TemplateOrSpecialization
3752                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3753     return FTSI->getMemberSpecializationInfo();
3754   return nullptr;
3755 }
3756 
3757 void
3758 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3759                                                FunctionDecl *FD,
3760                                                TemplateSpecializationKind TSK) {
3761   assert(TemplateOrSpecialization.isNull() &&
3762          "Member function is already a specialization");
3763   MemberSpecializationInfo *Info
3764     = new (C) MemberSpecializationInfo(FD, TSK);
3765   TemplateOrSpecialization = Info;
3766 }
3767 
3768 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3769   return dyn_cast_or_null<FunctionTemplateDecl>(
3770       TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3771 }
3772 
3773 void FunctionDecl::setDescribedFunctionTemplate(
3774     FunctionTemplateDecl *Template) {
3775   assert(TemplateOrSpecialization.isNull() &&
3776          "Member function is already a specialization");
3777   TemplateOrSpecialization = Template;
3778 }
3779 
3780 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
3781   assert(TemplateOrSpecialization.isNull() &&
3782          "Function is already a specialization");
3783   TemplateOrSpecialization = FD;
3784 }
3785 
3786 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
3787   return dyn_cast_or_null<FunctionDecl>(
3788       TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3789 }
3790 
3791 bool FunctionDecl::isImplicitlyInstantiable() const {
3792   // If the function is invalid, it can't be implicitly instantiated.
3793   if (isInvalidDecl())
3794     return false;
3795 
3796   switch (getTemplateSpecializationKindForInstantiation()) {
3797   case TSK_Undeclared:
3798   case TSK_ExplicitInstantiationDefinition:
3799   case TSK_ExplicitSpecialization:
3800     return false;
3801 
3802   case TSK_ImplicitInstantiation:
3803     return true;
3804 
3805   case TSK_ExplicitInstantiationDeclaration:
3806     // Handled below.
3807     break;
3808   }
3809 
3810   // Find the actual template from which we will instantiate.
3811   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3812   bool HasPattern = false;
3813   if (PatternDecl)
3814     HasPattern = PatternDecl->hasBody(PatternDecl);
3815 
3816   // C++0x [temp.explicit]p9:
3817   //   Except for inline functions, other explicit instantiation declarations
3818   //   have the effect of suppressing the implicit instantiation of the entity
3819   //   to which they refer.
3820   if (!HasPattern || !PatternDecl)
3821     return true;
3822 
3823   return PatternDecl->isInlined();
3824 }
3825 
3826 bool FunctionDecl::isTemplateInstantiation() const {
3827   // FIXME: Remove this, it's not clear what it means. (Which template
3828   // specialization kind?)
3829   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3830 }
3831 
3832 FunctionDecl *
3833 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3834   // If this is a generic lambda call operator specialization, its
3835   // instantiation pattern is always its primary template's pattern
3836   // even if its primary template was instantiated from another
3837   // member template (which happens with nested generic lambdas).
3838   // Since a lambda's call operator's body is transformed eagerly,
3839   // we don't have to go hunting for a prototype definition template
3840   // (i.e. instantiated-from-member-template) to use as an instantiation
3841   // pattern.
3842 
3843   if (isGenericLambdaCallOperatorSpecialization(
3844           dyn_cast<CXXMethodDecl>(this))) {
3845     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3846     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3847   }
3848 
3849   // Check for a declaration of this function that was instantiated from a
3850   // friend definition.
3851   const FunctionDecl *FD = nullptr;
3852   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3853     FD = this;
3854 
3855   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3856     if (ForDefinition &&
3857         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3858       return nullptr;
3859     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3860   }
3861 
3862   if (ForDefinition &&
3863       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3864     return nullptr;
3865 
3866   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3867     // If we hit a point where the user provided a specialization of this
3868     // template, we're done looking.
3869     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3870       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3871       if (!NewPrimary)
3872         break;
3873       Primary = NewPrimary;
3874     }
3875 
3876     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3877   }
3878 
3879   return nullptr;
3880 }
3881 
3882 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3883   if (FunctionTemplateSpecializationInfo *Info
3884         = TemplateOrSpecialization
3885             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3886     return Info->getTemplate();
3887   }
3888   return nullptr;
3889 }
3890 
3891 FunctionTemplateSpecializationInfo *
3892 FunctionDecl::getTemplateSpecializationInfo() const {
3893   return TemplateOrSpecialization
3894       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3895 }
3896 
3897 const TemplateArgumentList *
3898 FunctionDecl::getTemplateSpecializationArgs() const {
3899   if (FunctionTemplateSpecializationInfo *Info
3900         = TemplateOrSpecialization
3901             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3902     return Info->TemplateArguments;
3903   }
3904   return nullptr;
3905 }
3906 
3907 const ASTTemplateArgumentListInfo *
3908 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3909   if (FunctionTemplateSpecializationInfo *Info
3910         = TemplateOrSpecialization
3911             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3912     return Info->TemplateArgumentsAsWritten;
3913   }
3914   return nullptr;
3915 }
3916 
3917 void
3918 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3919                                                 FunctionTemplateDecl *Template,
3920                                      const TemplateArgumentList *TemplateArgs,
3921                                                 void *InsertPos,
3922                                                 TemplateSpecializationKind TSK,
3923                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3924                                           SourceLocation PointOfInstantiation) {
3925   assert((TemplateOrSpecialization.isNull() ||
3926           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3927          "Member function is already a specialization");
3928   assert(TSK != TSK_Undeclared &&
3929          "Must specify the type of function template specialization");
3930   assert((TemplateOrSpecialization.isNull() ||
3931           TSK == TSK_ExplicitSpecialization) &&
3932          "Member specialization must be an explicit specialization");
3933   FunctionTemplateSpecializationInfo *Info =
3934       FunctionTemplateSpecializationInfo::Create(
3935           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3936           PointOfInstantiation,
3937           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3938   TemplateOrSpecialization = Info;
3939   Template->addSpecialization(Info, InsertPos);
3940 }
3941 
3942 void
3943 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3944                                     const UnresolvedSetImpl &Templates,
3945                              const TemplateArgumentListInfo &TemplateArgs) {
3946   assert(TemplateOrSpecialization.isNull());
3947   DependentFunctionTemplateSpecializationInfo *Info =
3948       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3949                                                           TemplateArgs);
3950   TemplateOrSpecialization = Info;
3951 }
3952 
3953 DependentFunctionTemplateSpecializationInfo *
3954 FunctionDecl::getDependentSpecializationInfo() const {
3955   return TemplateOrSpecialization
3956       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3957 }
3958 
3959 DependentFunctionTemplateSpecializationInfo *
3960 DependentFunctionTemplateSpecializationInfo::Create(
3961     ASTContext &Context, const UnresolvedSetImpl &Ts,
3962     const TemplateArgumentListInfo &TArgs) {
3963   void *Buffer = Context.Allocate(
3964       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3965           TArgs.size(), Ts.size()));
3966   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3967 }
3968 
3969 DependentFunctionTemplateSpecializationInfo::
3970 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3971                                       const TemplateArgumentListInfo &TArgs)
3972   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3973   NumTemplates = Ts.size();
3974   NumArgs = TArgs.size();
3975 
3976   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3977   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3978     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3979 
3980   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3981   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3982     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3983 }
3984 
3985 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3986   // For a function template specialization, query the specialization
3987   // information object.
3988   if (FunctionTemplateSpecializationInfo *FTSInfo =
3989           TemplateOrSpecialization
3990               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3991     return FTSInfo->getTemplateSpecializationKind();
3992 
3993   if (MemberSpecializationInfo *MSInfo =
3994           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3995     return MSInfo->getTemplateSpecializationKind();
3996 
3997   return TSK_Undeclared;
3998 }
3999 
4000 TemplateSpecializationKind
4001 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4002   // This is the same as getTemplateSpecializationKind(), except that for a
4003   // function that is both a function template specialization and a member
4004   // specialization, we prefer the member specialization information. Eg:
4005   //
4006   // template<typename T> struct A {
4007   //   template<typename U> void f() {}
4008   //   template<> void f<int>() {}
4009   // };
4010   //
4011   // For A<int>::f<int>():
4012   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4013   // * getTemplateSpecializationKindForInstantiation() will return
4014   //       TSK_ImplicitInstantiation
4015   //
4016   // This reflects the facts that A<int>::f<int> is an explicit specialization
4017   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4018   // from A::f<int> if a definition is needed.
4019   if (FunctionTemplateSpecializationInfo *FTSInfo =
4020           TemplateOrSpecialization
4021               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4022     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4023       return MSInfo->getTemplateSpecializationKind();
4024     return FTSInfo->getTemplateSpecializationKind();
4025   }
4026 
4027   if (MemberSpecializationInfo *MSInfo =
4028           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4029     return MSInfo->getTemplateSpecializationKind();
4030 
4031   return TSK_Undeclared;
4032 }
4033 
4034 void
4035 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4036                                           SourceLocation PointOfInstantiation) {
4037   if (FunctionTemplateSpecializationInfo *FTSInfo
4038         = TemplateOrSpecialization.dyn_cast<
4039                                     FunctionTemplateSpecializationInfo*>()) {
4040     FTSInfo->setTemplateSpecializationKind(TSK);
4041     if (TSK != TSK_ExplicitSpecialization &&
4042         PointOfInstantiation.isValid() &&
4043         FTSInfo->getPointOfInstantiation().isInvalid()) {
4044       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4045       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4046         L->InstantiationRequested(this);
4047     }
4048   } else if (MemberSpecializationInfo *MSInfo
4049              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4050     MSInfo->setTemplateSpecializationKind(TSK);
4051     if (TSK != TSK_ExplicitSpecialization &&
4052         PointOfInstantiation.isValid() &&
4053         MSInfo->getPointOfInstantiation().isInvalid()) {
4054       MSInfo->setPointOfInstantiation(PointOfInstantiation);
4055       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4056         L->InstantiationRequested(this);
4057     }
4058   } else
4059     llvm_unreachable("Function cannot have a template specialization kind");
4060 }
4061 
4062 SourceLocation FunctionDecl::getPointOfInstantiation() const {
4063   if (FunctionTemplateSpecializationInfo *FTSInfo
4064         = TemplateOrSpecialization.dyn_cast<
4065                                         FunctionTemplateSpecializationInfo*>())
4066     return FTSInfo->getPointOfInstantiation();
4067   if (MemberSpecializationInfo *MSInfo =
4068           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4069     return MSInfo->getPointOfInstantiation();
4070 
4071   return SourceLocation();
4072 }
4073 
4074 bool FunctionDecl::isOutOfLine() const {
4075   if (Decl::isOutOfLine())
4076     return true;
4077 
4078   // If this function was instantiated from a member function of a
4079   // class template, check whether that member function was defined out-of-line.
4080   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4081     const FunctionDecl *Definition;
4082     if (FD->hasBody(Definition))
4083       return Definition->isOutOfLine();
4084   }
4085 
4086   // If this function was instantiated from a function template,
4087   // check whether that function template was defined out-of-line.
4088   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4089     const FunctionDecl *Definition;
4090     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4091       return Definition->isOutOfLine();
4092   }
4093 
4094   return false;
4095 }
4096 
4097 SourceRange FunctionDecl::getSourceRange() const {
4098   return SourceRange(getOuterLocStart(), EndRangeLoc);
4099 }
4100 
4101 unsigned FunctionDecl::getMemoryFunctionKind() const {
4102   IdentifierInfo *FnInfo = getIdentifier();
4103 
4104   if (!FnInfo)
4105     return 0;
4106 
4107   // Builtin handling.
4108   switch (getBuiltinID()) {
4109   case Builtin::BI__builtin_memset:
4110   case Builtin::BI__builtin___memset_chk:
4111   case Builtin::BImemset:
4112     return Builtin::BImemset;
4113 
4114   case Builtin::BI__builtin_memcpy:
4115   case Builtin::BI__builtin___memcpy_chk:
4116   case Builtin::BImemcpy:
4117     return Builtin::BImemcpy;
4118 
4119   case Builtin::BI__builtin_mempcpy:
4120   case Builtin::BI__builtin___mempcpy_chk:
4121   case Builtin::BImempcpy:
4122     return Builtin::BImempcpy;
4123 
4124   case Builtin::BI__builtin_memmove:
4125   case Builtin::BI__builtin___memmove_chk:
4126   case Builtin::BImemmove:
4127     return Builtin::BImemmove;
4128 
4129   case Builtin::BIstrlcpy:
4130   case Builtin::BI__builtin___strlcpy_chk:
4131     return Builtin::BIstrlcpy;
4132 
4133   case Builtin::BIstrlcat:
4134   case Builtin::BI__builtin___strlcat_chk:
4135     return Builtin::BIstrlcat;
4136 
4137   case Builtin::BI__builtin_memcmp:
4138   case Builtin::BImemcmp:
4139     return Builtin::BImemcmp;
4140 
4141   case Builtin::BI__builtin_bcmp:
4142   case Builtin::BIbcmp:
4143     return Builtin::BIbcmp;
4144 
4145   case Builtin::BI__builtin_strncpy:
4146   case Builtin::BI__builtin___strncpy_chk:
4147   case Builtin::BIstrncpy:
4148     return Builtin::BIstrncpy;
4149 
4150   case Builtin::BI__builtin_strncmp:
4151   case Builtin::BIstrncmp:
4152     return Builtin::BIstrncmp;
4153 
4154   case Builtin::BI__builtin_strncasecmp:
4155   case Builtin::BIstrncasecmp:
4156     return Builtin::BIstrncasecmp;
4157 
4158   case Builtin::BI__builtin_strncat:
4159   case Builtin::BI__builtin___strncat_chk:
4160   case Builtin::BIstrncat:
4161     return Builtin::BIstrncat;
4162 
4163   case Builtin::BI__builtin_strndup:
4164   case Builtin::BIstrndup:
4165     return Builtin::BIstrndup;
4166 
4167   case Builtin::BI__builtin_strlen:
4168   case Builtin::BIstrlen:
4169     return Builtin::BIstrlen;
4170 
4171   case Builtin::BI__builtin_bzero:
4172   case Builtin::BIbzero:
4173     return Builtin::BIbzero;
4174 
4175   case Builtin::BIfree:
4176     return Builtin::BIfree;
4177 
4178   default:
4179     if (isExternC()) {
4180       if (FnInfo->isStr("memset"))
4181         return Builtin::BImemset;
4182       if (FnInfo->isStr("memcpy"))
4183         return Builtin::BImemcpy;
4184       if (FnInfo->isStr("mempcpy"))
4185         return Builtin::BImempcpy;
4186       if (FnInfo->isStr("memmove"))
4187         return Builtin::BImemmove;
4188       if (FnInfo->isStr("memcmp"))
4189         return Builtin::BImemcmp;
4190       if (FnInfo->isStr("bcmp"))
4191         return Builtin::BIbcmp;
4192       if (FnInfo->isStr("strncpy"))
4193         return Builtin::BIstrncpy;
4194       if (FnInfo->isStr("strncmp"))
4195         return Builtin::BIstrncmp;
4196       if (FnInfo->isStr("strncasecmp"))
4197         return Builtin::BIstrncasecmp;
4198       if (FnInfo->isStr("strncat"))
4199         return Builtin::BIstrncat;
4200       if (FnInfo->isStr("strndup"))
4201         return Builtin::BIstrndup;
4202       if (FnInfo->isStr("strlen"))
4203         return Builtin::BIstrlen;
4204       if (FnInfo->isStr("bzero"))
4205         return Builtin::BIbzero;
4206     } else if (isInStdNamespace()) {
4207       if (FnInfo->isStr("free"))
4208         return Builtin::BIfree;
4209     }
4210     break;
4211   }
4212   return 0;
4213 }
4214 
4215 unsigned FunctionDecl::getODRHash() const {
4216   assert(hasODRHash());
4217   return ODRHash;
4218 }
4219 
4220 unsigned FunctionDecl::getODRHash() {
4221   if (hasODRHash())
4222     return ODRHash;
4223 
4224   if (auto *FT = getInstantiatedFromMemberFunction()) {
4225     setHasODRHash(true);
4226     ODRHash = FT->getODRHash();
4227     return ODRHash;
4228   }
4229 
4230   class ODRHash Hash;
4231   Hash.AddFunctionDecl(this);
4232   setHasODRHash(true);
4233   ODRHash = Hash.CalculateHash();
4234   return ODRHash;
4235 }
4236 
4237 //===----------------------------------------------------------------------===//
4238 // FieldDecl Implementation
4239 //===----------------------------------------------------------------------===//
4240 
4241 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4242                              SourceLocation StartLoc, SourceLocation IdLoc,
4243                              IdentifierInfo *Id, QualType T,
4244                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4245                              InClassInitStyle InitStyle) {
4246   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4247                                BW, Mutable, InitStyle);
4248 }
4249 
4250 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4251   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4252                                SourceLocation(), nullptr, QualType(), nullptr,
4253                                nullptr, false, ICIS_NoInit);
4254 }
4255 
4256 bool FieldDecl::isAnonymousStructOrUnion() const {
4257   if (!isImplicit() || getDeclName())
4258     return false;
4259 
4260   if (const auto *Record = getType()->getAs<RecordType>())
4261     return Record->getDecl()->isAnonymousStructOrUnion();
4262 
4263   return false;
4264 }
4265 
4266 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4267   assert(isBitField() && "not a bitfield");
4268   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4269 }
4270 
4271 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4272   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4273          getBitWidthValue(Ctx) == 0;
4274 }
4275 
4276 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4277   if (isZeroLengthBitField(Ctx))
4278     return true;
4279 
4280   // C++2a [intro.object]p7:
4281   //   An object has nonzero size if it
4282   //     -- is not a potentially-overlapping subobject, or
4283   if (!hasAttr<NoUniqueAddressAttr>())
4284     return false;
4285 
4286   //     -- is not of class type, or
4287   const auto *RT = getType()->getAs<RecordType>();
4288   if (!RT)
4289     return false;
4290   const RecordDecl *RD = RT->getDecl()->getDefinition();
4291   if (!RD) {
4292     assert(isInvalidDecl() && "valid field has incomplete type");
4293     return false;
4294   }
4295 
4296   //     -- [has] virtual member functions or virtual base classes, or
4297   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4298   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4299   if (!CXXRD->isEmpty())
4300     return false;
4301 
4302   // Otherwise, [...] the circumstances under which the object has zero size
4303   // are implementation-defined.
4304   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4305   // ABI will do.
4306   return true;
4307 }
4308 
4309 unsigned FieldDecl::getFieldIndex() const {
4310   const FieldDecl *Canonical = getCanonicalDecl();
4311   if (Canonical != this)
4312     return Canonical->getFieldIndex();
4313 
4314   if (CachedFieldIndex) return CachedFieldIndex - 1;
4315 
4316   unsigned Index = 0;
4317   const RecordDecl *RD = getParent()->getDefinition();
4318   assert(RD && "requested index for field of struct with no definition");
4319 
4320   for (auto *Field : RD->fields()) {
4321     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4322     ++Index;
4323   }
4324 
4325   assert(CachedFieldIndex && "failed to find field in parent");
4326   return CachedFieldIndex - 1;
4327 }
4328 
4329 SourceRange FieldDecl::getSourceRange() const {
4330   const Expr *FinalExpr = getInClassInitializer();
4331   if (!FinalExpr)
4332     FinalExpr = getBitWidth();
4333   if (FinalExpr)
4334     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4335   return DeclaratorDecl::getSourceRange();
4336 }
4337 
4338 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4339   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4340          "capturing type in non-lambda or captured record.");
4341   assert(InitStorage.getInt() == ISK_NoInit &&
4342          InitStorage.getPointer() == nullptr &&
4343          "bit width, initializer or captured type already set");
4344   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4345                                ISK_CapturedVLAType);
4346 }
4347 
4348 //===----------------------------------------------------------------------===//
4349 // TagDecl Implementation
4350 //===----------------------------------------------------------------------===//
4351 
4352 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4353                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4354                  SourceLocation StartL)
4355     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4356       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4357   assert((DK != Enum || TK == TTK_Enum) &&
4358          "EnumDecl not matched with TTK_Enum");
4359   setPreviousDecl(PrevDecl);
4360   setTagKind(TK);
4361   setCompleteDefinition(false);
4362   setBeingDefined(false);
4363   setEmbeddedInDeclarator(false);
4364   setFreeStanding(false);
4365   setCompleteDefinitionRequired(false);
4366   TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4367 }
4368 
4369 SourceLocation TagDecl::getOuterLocStart() const {
4370   return getTemplateOrInnerLocStart(this);
4371 }
4372 
4373 SourceRange TagDecl::getSourceRange() const {
4374   SourceLocation RBraceLoc = BraceRange.getEnd();
4375   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4376   return SourceRange(getOuterLocStart(), E);
4377 }
4378 
4379 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4380 
4381 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4382   TypedefNameDeclOrQualifier = TDD;
4383   if (const Type *T = getTypeForDecl()) {
4384     (void)T;
4385     assert(T->isLinkageValid());
4386   }
4387   assert(isLinkageValid());
4388 }
4389 
4390 void TagDecl::startDefinition() {
4391   setBeingDefined(true);
4392 
4393   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4394     struct CXXRecordDecl::DefinitionData *Data =
4395       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4396     for (auto I : redecls())
4397       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4398   }
4399 }
4400 
4401 void TagDecl::completeDefinition() {
4402   assert((!isa<CXXRecordDecl>(this) ||
4403           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4404          "definition completed but not started");
4405 
4406   setCompleteDefinition(true);
4407   setBeingDefined(false);
4408 
4409   if (ASTMutationListener *L = getASTMutationListener())
4410     L->CompletedTagDefinition(this);
4411 }
4412 
4413 TagDecl *TagDecl::getDefinition() const {
4414   if (isCompleteDefinition())
4415     return const_cast<TagDecl *>(this);
4416 
4417   // If it's possible for us to have an out-of-date definition, check now.
4418   if (mayHaveOutOfDateDef()) {
4419     if (IdentifierInfo *II = getIdentifier()) {
4420       if (II->isOutOfDate()) {
4421         updateOutOfDate(*II);
4422       }
4423     }
4424   }
4425 
4426   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4427     return CXXRD->getDefinition();
4428 
4429   for (auto R : redecls())
4430     if (R->isCompleteDefinition())
4431       return R;
4432 
4433   return nullptr;
4434 }
4435 
4436 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4437   if (QualifierLoc) {
4438     // Make sure the extended qualifier info is allocated.
4439     if (!hasExtInfo())
4440       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4441     // Set qualifier info.
4442     getExtInfo()->QualifierLoc = QualifierLoc;
4443   } else {
4444     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4445     if (hasExtInfo()) {
4446       if (getExtInfo()->NumTemplParamLists == 0) {
4447         getASTContext().Deallocate(getExtInfo());
4448         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4449       }
4450       else
4451         getExtInfo()->QualifierLoc = QualifierLoc;
4452     }
4453   }
4454 }
4455 
4456 void TagDecl::setTemplateParameterListsInfo(
4457     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4458   assert(!TPLists.empty());
4459   // Make sure the extended decl info is allocated.
4460   if (!hasExtInfo())
4461     // Allocate external info struct.
4462     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4463   // Set the template parameter lists info.
4464   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4465 }
4466 
4467 //===----------------------------------------------------------------------===//
4468 // EnumDecl Implementation
4469 //===----------------------------------------------------------------------===//
4470 
4471 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4472                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4473                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4474     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4475   assert(Scoped || !ScopedUsingClassTag);
4476   IntegerType = nullptr;
4477   setNumPositiveBits(0);
4478   setNumNegativeBits(0);
4479   setScoped(Scoped);
4480   setScopedUsingClassTag(ScopedUsingClassTag);
4481   setFixed(Fixed);
4482   setHasODRHash(false);
4483   ODRHash = 0;
4484 }
4485 
4486 void EnumDecl::anchor() {}
4487 
4488 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4489                            SourceLocation StartLoc, SourceLocation IdLoc,
4490                            IdentifierInfo *Id,
4491                            EnumDecl *PrevDecl, bool IsScoped,
4492                            bool IsScopedUsingClassTag, bool IsFixed) {
4493   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4494                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4495   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4496   C.getTypeDeclType(Enum, PrevDecl);
4497   return Enum;
4498 }
4499 
4500 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4501   EnumDecl *Enum =
4502       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4503                            nullptr, nullptr, false, false, false);
4504   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4505   return Enum;
4506 }
4507 
4508 SourceRange EnumDecl::getIntegerTypeRange() const {
4509   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4510     return TI->getTypeLoc().getSourceRange();
4511   return SourceRange();
4512 }
4513 
4514 void EnumDecl::completeDefinition(QualType NewType,
4515                                   QualType NewPromotionType,
4516                                   unsigned NumPositiveBits,
4517                                   unsigned NumNegativeBits) {
4518   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4519   if (!IntegerType)
4520     IntegerType = NewType.getTypePtr();
4521   PromotionType = NewPromotionType;
4522   setNumPositiveBits(NumPositiveBits);
4523   setNumNegativeBits(NumNegativeBits);
4524   TagDecl::completeDefinition();
4525 }
4526 
4527 bool EnumDecl::isClosed() const {
4528   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4529     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4530   return true;
4531 }
4532 
4533 bool EnumDecl::isClosedFlag() const {
4534   return isClosed() && hasAttr<FlagEnumAttr>();
4535 }
4536 
4537 bool EnumDecl::isClosedNonFlag() const {
4538   return isClosed() && !hasAttr<FlagEnumAttr>();
4539 }
4540 
4541 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4542   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4543     return MSI->getTemplateSpecializationKind();
4544 
4545   return TSK_Undeclared;
4546 }
4547 
4548 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4549                                          SourceLocation PointOfInstantiation) {
4550   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4551   assert(MSI && "Not an instantiated member enumeration?");
4552   MSI->setTemplateSpecializationKind(TSK);
4553   if (TSK != TSK_ExplicitSpecialization &&
4554       PointOfInstantiation.isValid() &&
4555       MSI->getPointOfInstantiation().isInvalid())
4556     MSI->setPointOfInstantiation(PointOfInstantiation);
4557 }
4558 
4559 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4560   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4561     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4562       EnumDecl *ED = getInstantiatedFromMemberEnum();
4563       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4564         ED = NewED;
4565       return getDefinitionOrSelf(ED);
4566     }
4567   }
4568 
4569   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4570          "couldn't find pattern for enum instantiation");
4571   return nullptr;
4572 }
4573 
4574 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4575   if (SpecializationInfo)
4576     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4577 
4578   return nullptr;
4579 }
4580 
4581 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4582                                             TemplateSpecializationKind TSK) {
4583   assert(!SpecializationInfo && "Member enum is already a specialization");
4584   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4585 }
4586 
4587 unsigned EnumDecl::getODRHash() {
4588   if (hasODRHash())
4589     return ODRHash;
4590 
4591   class ODRHash Hash;
4592   Hash.AddEnumDecl(this);
4593   setHasODRHash(true);
4594   ODRHash = Hash.CalculateHash();
4595   return ODRHash;
4596 }
4597 
4598 SourceRange EnumDecl::getSourceRange() const {
4599   auto Res = TagDecl::getSourceRange();
4600   // Set end-point to enum-base, e.g. enum foo : ^bar
4601   if (auto *TSI = getIntegerTypeSourceInfo()) {
4602     // TagDecl doesn't know about the enum base.
4603     if (!getBraceRange().getEnd().isValid())
4604       Res.setEnd(TSI->getTypeLoc().getEndLoc());
4605   }
4606   return Res;
4607 }
4608 
4609 //===----------------------------------------------------------------------===//
4610 // RecordDecl Implementation
4611 //===----------------------------------------------------------------------===//
4612 
4613 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4614                        DeclContext *DC, SourceLocation StartLoc,
4615                        SourceLocation IdLoc, IdentifierInfo *Id,
4616                        RecordDecl *PrevDecl)
4617     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4618   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4619   setHasFlexibleArrayMember(false);
4620   setAnonymousStructOrUnion(false);
4621   setHasObjectMember(false);
4622   setHasVolatileMember(false);
4623   setHasLoadedFieldsFromExternalStorage(false);
4624   setNonTrivialToPrimitiveDefaultInitialize(false);
4625   setNonTrivialToPrimitiveCopy(false);
4626   setNonTrivialToPrimitiveDestroy(false);
4627   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4628   setHasNonTrivialToPrimitiveDestructCUnion(false);
4629   setHasNonTrivialToPrimitiveCopyCUnion(false);
4630   setParamDestroyedInCallee(false);
4631   setArgPassingRestrictions(APK_CanPassInRegs);
4632   setIsRandomized(false);
4633 }
4634 
4635 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4636                                SourceLocation StartLoc, SourceLocation IdLoc,
4637                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4638   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4639                                          StartLoc, IdLoc, Id, PrevDecl);
4640   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4641 
4642   C.getTypeDeclType(R, PrevDecl);
4643   return R;
4644 }
4645 
4646 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4647   RecordDecl *R =
4648       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4649                              SourceLocation(), nullptr, nullptr);
4650   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4651   return R;
4652 }
4653 
4654 bool RecordDecl::isInjectedClassName() const {
4655   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4656     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4657 }
4658 
4659 bool RecordDecl::isLambda() const {
4660   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4661     return RD->isLambda();
4662   return false;
4663 }
4664 
4665 bool RecordDecl::isCapturedRecord() const {
4666   return hasAttr<CapturedRecordAttr>();
4667 }
4668 
4669 void RecordDecl::setCapturedRecord() {
4670   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4671 }
4672 
4673 bool RecordDecl::isOrContainsUnion() const {
4674   if (isUnion())
4675     return true;
4676 
4677   if (const RecordDecl *Def = getDefinition()) {
4678     for (const FieldDecl *FD : Def->fields()) {
4679       const RecordType *RT = FD->getType()->getAs<RecordType>();
4680       if (RT && RT->getDecl()->isOrContainsUnion())
4681         return true;
4682     }
4683   }
4684 
4685   return false;
4686 }
4687 
4688 RecordDecl::field_iterator RecordDecl::field_begin() const {
4689   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4690     LoadFieldsFromExternalStorage();
4691 
4692   return field_iterator(decl_iterator(FirstDecl));
4693 }
4694 
4695 /// completeDefinition - Notes that the definition of this type is now
4696 /// complete.
4697 void RecordDecl::completeDefinition() {
4698   assert(!isCompleteDefinition() && "Cannot redefine record!");
4699   TagDecl::completeDefinition();
4700 
4701   ASTContext &Ctx = getASTContext();
4702 
4703   // Layouts are dumped when computed, so if we are dumping for all complete
4704   // types, we need to force usage to get types that wouldn't be used elsewhere.
4705   if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4706     (void)Ctx.getASTRecordLayout(this);
4707 }
4708 
4709 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4710 /// This which can be turned on with an attribute, pragma, or the
4711 /// -mms-bitfields command-line option.
4712 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4713   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4714 }
4715 
4716 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
4717   std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
4718   LastDecl->NextInContextAndBits.setPointer(nullptr);
4719   setIsRandomized(true);
4720 }
4721 
4722 void RecordDecl::LoadFieldsFromExternalStorage() const {
4723   ExternalASTSource *Source = getASTContext().getExternalSource();
4724   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4725 
4726   // Notify that we have a RecordDecl doing some initialization.
4727   ExternalASTSource::Deserializing TheFields(Source);
4728 
4729   SmallVector<Decl*, 64> Decls;
4730   setHasLoadedFieldsFromExternalStorage(true);
4731   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4732     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4733   }, Decls);
4734 
4735 #ifndef NDEBUG
4736   // Check that all decls we got were FieldDecls.
4737   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4738     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4739 #endif
4740 
4741   if (Decls.empty())
4742     return;
4743 
4744   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4745                                                  /*FieldsAlreadyLoaded=*/false);
4746 }
4747 
4748 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4749   ASTContext &Context = getASTContext();
4750   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4751       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4752   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4753     return false;
4754   const auto &NoSanitizeList = Context.getNoSanitizeList();
4755   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4756   // We may be able to relax some of these requirements.
4757   int ReasonToReject = -1;
4758   if (!CXXRD || CXXRD->isExternCContext())
4759     ReasonToReject = 0;  // is not C++.
4760   else if (CXXRD->hasAttr<PackedAttr>())
4761     ReasonToReject = 1;  // is packed.
4762   else if (CXXRD->isUnion())
4763     ReasonToReject = 2;  // is a union.
4764   else if (CXXRD->isTriviallyCopyable())
4765     ReasonToReject = 3;  // is trivially copyable.
4766   else if (CXXRD->hasTrivialDestructor())
4767     ReasonToReject = 4;  // has trivial destructor.
4768   else if (CXXRD->isStandardLayout())
4769     ReasonToReject = 5;  // is standard layout.
4770   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4771                                            "field-padding"))
4772     ReasonToReject = 6;  // is in an excluded file.
4773   else if (NoSanitizeList.containsType(
4774                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4775     ReasonToReject = 7;  // The type is excluded.
4776 
4777   if (EmitRemark) {
4778     if (ReasonToReject >= 0)
4779       Context.getDiagnostics().Report(
4780           getLocation(),
4781           diag::remark_sanitize_address_insert_extra_padding_rejected)
4782           << getQualifiedNameAsString() << ReasonToReject;
4783     else
4784       Context.getDiagnostics().Report(
4785           getLocation(),
4786           diag::remark_sanitize_address_insert_extra_padding_accepted)
4787           << getQualifiedNameAsString();
4788   }
4789   return ReasonToReject < 0;
4790 }
4791 
4792 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4793   for (const auto *I : fields()) {
4794     if (I->getIdentifier())
4795       return I;
4796 
4797     if (const auto *RT = I->getType()->getAs<RecordType>())
4798       if (const FieldDecl *NamedDataMember =
4799               RT->getDecl()->findFirstNamedDataMember())
4800         return NamedDataMember;
4801   }
4802 
4803   // We didn't find a named data member.
4804   return nullptr;
4805 }
4806 
4807 //===----------------------------------------------------------------------===//
4808 // BlockDecl Implementation
4809 //===----------------------------------------------------------------------===//
4810 
4811 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4812     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4813   setIsVariadic(false);
4814   setCapturesCXXThis(false);
4815   setBlockMissingReturnType(true);
4816   setIsConversionFromLambda(false);
4817   setDoesNotEscape(false);
4818   setCanAvoidCopyToHeap(false);
4819 }
4820 
4821 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4822   assert(!ParamInfo && "Already has param info!");
4823 
4824   // Zero params -> null pointer.
4825   if (!NewParamInfo.empty()) {
4826     NumParams = NewParamInfo.size();
4827     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4828     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4829   }
4830 }
4831 
4832 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4833                             bool CapturesCXXThis) {
4834   this->setCapturesCXXThis(CapturesCXXThis);
4835   this->NumCaptures = Captures.size();
4836 
4837   if (Captures.empty()) {
4838     this->Captures = nullptr;
4839     return;
4840   }
4841 
4842   this->Captures = Captures.copy(Context).data();
4843 }
4844 
4845 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4846   for (const auto &I : captures())
4847     // Only auto vars can be captured, so no redeclaration worries.
4848     if (I.getVariable() == variable)
4849       return true;
4850 
4851   return false;
4852 }
4853 
4854 SourceRange BlockDecl::getSourceRange() const {
4855   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4856 }
4857 
4858 //===----------------------------------------------------------------------===//
4859 // Other Decl Allocation/Deallocation Method Implementations
4860 //===----------------------------------------------------------------------===//
4861 
4862 void TranslationUnitDecl::anchor() {}
4863 
4864 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4865   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4866 }
4867 
4868 void PragmaCommentDecl::anchor() {}
4869 
4870 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4871                                              TranslationUnitDecl *DC,
4872                                              SourceLocation CommentLoc,
4873                                              PragmaMSCommentKind CommentKind,
4874                                              StringRef Arg) {
4875   PragmaCommentDecl *PCD =
4876       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4877           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4878   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4879   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4880   return PCD;
4881 }
4882 
4883 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4884                                                          unsigned ID,
4885                                                          unsigned ArgSize) {
4886   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4887       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4888 }
4889 
4890 void PragmaDetectMismatchDecl::anchor() {}
4891 
4892 PragmaDetectMismatchDecl *
4893 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4894                                  SourceLocation Loc, StringRef Name,
4895                                  StringRef Value) {
4896   size_t ValueStart = Name.size() + 1;
4897   PragmaDetectMismatchDecl *PDMD =
4898       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4899           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4900   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4901   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4902   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4903          Value.size());
4904   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4905   return PDMD;
4906 }
4907 
4908 PragmaDetectMismatchDecl *
4909 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4910                                              unsigned NameValueSize) {
4911   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4912       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4913 }
4914 
4915 void ExternCContextDecl::anchor() {}
4916 
4917 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4918                                                TranslationUnitDecl *DC) {
4919   return new (C, DC) ExternCContextDecl(DC);
4920 }
4921 
4922 void LabelDecl::anchor() {}
4923 
4924 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4925                              SourceLocation IdentL, IdentifierInfo *II) {
4926   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4927 }
4928 
4929 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4930                              SourceLocation IdentL, IdentifierInfo *II,
4931                              SourceLocation GnuLabelL) {
4932   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4933   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4934 }
4935 
4936 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4937   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4938                                SourceLocation());
4939 }
4940 
4941 void LabelDecl::setMSAsmLabel(StringRef Name) {
4942 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4943   memcpy(Buffer, Name.data(), Name.size());
4944   Buffer[Name.size()] = '\0';
4945   MSAsmName = Buffer;
4946 }
4947 
4948 void ValueDecl::anchor() {}
4949 
4950 bool ValueDecl::isWeak() const {
4951   auto *MostRecent = getMostRecentDecl();
4952   return MostRecent->hasAttr<WeakAttr>() ||
4953          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4954 }
4955 
4956 void ImplicitParamDecl::anchor() {}
4957 
4958 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4959                                              SourceLocation IdLoc,
4960                                              IdentifierInfo *Id, QualType Type,
4961                                              ImplicitParamKind ParamKind) {
4962   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4963 }
4964 
4965 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4966                                              ImplicitParamKind ParamKind) {
4967   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4968 }
4969 
4970 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4971                                                          unsigned ID) {
4972   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4973 }
4974 
4975 FunctionDecl *
4976 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4977                      const DeclarationNameInfo &NameInfo, QualType T,
4978                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
4979                      bool isInlineSpecified, bool hasWrittenPrototype,
4980                      ConstexprSpecKind ConstexprKind,
4981                      Expr *TrailingRequiresClause) {
4982   FunctionDecl *New = new (C, DC) FunctionDecl(
4983       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
4984       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
4985   New->setHasWrittenPrototype(hasWrittenPrototype);
4986   return New;
4987 }
4988 
4989 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4990   return new (C, ID) FunctionDecl(
4991       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4992       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
4993 }
4994 
4995 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4996   return new (C, DC) BlockDecl(DC, L);
4997 }
4998 
4999 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5000   return new (C, ID) BlockDecl(nullptr, SourceLocation());
5001 }
5002 
5003 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5004     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5005       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5006 
5007 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5008                                    unsigned NumParams) {
5009   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5010       CapturedDecl(DC, NumParams);
5011 }
5012 
5013 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5014                                                unsigned NumParams) {
5015   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5016       CapturedDecl(nullptr, NumParams);
5017 }
5018 
5019 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5020 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5021 
5022 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5023 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5024 
5025 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5026                                            SourceLocation L,
5027                                            IdentifierInfo *Id, QualType T,
5028                                            Expr *E, const llvm::APSInt &V) {
5029   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
5030 }
5031 
5032 EnumConstantDecl *
5033 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5034   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
5035                                       QualType(), nullptr, llvm::APSInt());
5036 }
5037 
5038 void IndirectFieldDecl::anchor() {}
5039 
5040 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5041                                      SourceLocation L, DeclarationName N,
5042                                      QualType T,
5043                                      MutableArrayRef<NamedDecl *> CH)
5044     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5045       ChainingSize(CH.size()) {
5046   // In C++, indirect field declarations conflict with tag declarations in the
5047   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5048   if (C.getLangOpts().CPlusPlus)
5049     IdentifierNamespace |= IDNS_Tag;
5050 }
5051 
5052 IndirectFieldDecl *
5053 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5054                           IdentifierInfo *Id, QualType T,
5055                           llvm::MutableArrayRef<NamedDecl *> CH) {
5056   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5057 }
5058 
5059 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5060                                                          unsigned ID) {
5061   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
5062                                        DeclarationName(), QualType(), None);
5063 }
5064 
5065 SourceRange EnumConstantDecl::getSourceRange() const {
5066   SourceLocation End = getLocation();
5067   if (Init)
5068     End = Init->getEndLoc();
5069   return SourceRange(getLocation(), End);
5070 }
5071 
5072 void TypeDecl::anchor() {}
5073 
5074 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5075                                  SourceLocation StartLoc, SourceLocation IdLoc,
5076                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
5077   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5078 }
5079 
5080 void TypedefNameDecl::anchor() {}
5081 
5082 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5083   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5084     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5085     auto *ThisTypedef = this;
5086     if (AnyRedecl && OwningTypedef) {
5087       OwningTypedef = OwningTypedef->getCanonicalDecl();
5088       ThisTypedef = ThisTypedef->getCanonicalDecl();
5089     }
5090     if (OwningTypedef == ThisTypedef)
5091       return TT->getDecl();
5092   }
5093 
5094   return nullptr;
5095 }
5096 
5097 bool TypedefNameDecl::isTransparentTagSlow() const {
5098   auto determineIsTransparent = [&]() {
5099     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5100       if (auto *TD = TT->getDecl()) {
5101         if (TD->getName() != getName())
5102           return false;
5103         SourceLocation TTLoc = getLocation();
5104         SourceLocation TDLoc = TD->getLocation();
5105         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5106           return false;
5107         SourceManager &SM = getASTContext().getSourceManager();
5108         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5109       }
5110     }
5111     return false;
5112   };
5113 
5114   bool isTransparent = determineIsTransparent();
5115   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5116   return isTransparent;
5117 }
5118 
5119 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5120   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5121                                  nullptr, nullptr);
5122 }
5123 
5124 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5125                                      SourceLocation StartLoc,
5126                                      SourceLocation IdLoc, IdentifierInfo *Id,
5127                                      TypeSourceInfo *TInfo) {
5128   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5129 }
5130 
5131 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5132   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5133                                    SourceLocation(), nullptr, nullptr);
5134 }
5135 
5136 SourceRange TypedefDecl::getSourceRange() const {
5137   SourceLocation RangeEnd = getLocation();
5138   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5139     if (typeIsPostfix(TInfo->getType()))
5140       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5141   }
5142   return SourceRange(getBeginLoc(), RangeEnd);
5143 }
5144 
5145 SourceRange TypeAliasDecl::getSourceRange() const {
5146   SourceLocation RangeEnd = getBeginLoc();
5147   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5148     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5149   return SourceRange(getBeginLoc(), RangeEnd);
5150 }
5151 
5152 void FileScopeAsmDecl::anchor() {}
5153 
5154 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5155                                            StringLiteral *Str,
5156                                            SourceLocation AsmLoc,
5157                                            SourceLocation RParenLoc) {
5158   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5159 }
5160 
5161 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5162                                                        unsigned ID) {
5163   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5164                                       SourceLocation());
5165 }
5166 
5167 void EmptyDecl::anchor() {}
5168 
5169 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5170   return new (C, DC) EmptyDecl(DC, L);
5171 }
5172 
5173 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5174   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5175 }
5176 
5177 //===----------------------------------------------------------------------===//
5178 // ImportDecl Implementation
5179 //===----------------------------------------------------------------------===//
5180 
5181 /// Retrieve the number of module identifiers needed to name the given
5182 /// module.
5183 static unsigned getNumModuleIdentifiers(Module *Mod) {
5184   unsigned Result = 1;
5185   while (Mod->Parent) {
5186     Mod = Mod->Parent;
5187     ++Result;
5188   }
5189   return Result;
5190 }
5191 
5192 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5193                        Module *Imported,
5194                        ArrayRef<SourceLocation> IdentifierLocs)
5195     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5196       NextLocalImportAndComplete(nullptr, true) {
5197   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5198   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5199   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5200                           StoredLocs);
5201 }
5202 
5203 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5204                        Module *Imported, SourceLocation EndLoc)
5205     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5206       NextLocalImportAndComplete(nullptr, false) {
5207   *getTrailingObjects<SourceLocation>() = EndLoc;
5208 }
5209 
5210 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5211                                SourceLocation StartLoc, Module *Imported,
5212                                ArrayRef<SourceLocation> IdentifierLocs) {
5213   return new (C, DC,
5214               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5215       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5216 }
5217 
5218 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5219                                        SourceLocation StartLoc,
5220                                        Module *Imported,
5221                                        SourceLocation EndLoc) {
5222   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5223       ImportDecl(DC, StartLoc, Imported, EndLoc);
5224   Import->setImplicit();
5225   return Import;
5226 }
5227 
5228 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5229                                            unsigned NumLocations) {
5230   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5231       ImportDecl(EmptyShell());
5232 }
5233 
5234 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5235   if (!isImportComplete())
5236     return None;
5237 
5238   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5239   return llvm::makeArrayRef(StoredLocs,
5240                             getNumModuleIdentifiers(getImportedModule()));
5241 }
5242 
5243 SourceRange ImportDecl::getSourceRange() const {
5244   if (!isImportComplete())
5245     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5246 
5247   return SourceRange(getLocation(), getIdentifierLocs().back());
5248 }
5249 
5250 //===----------------------------------------------------------------------===//
5251 // ExportDecl Implementation
5252 //===----------------------------------------------------------------------===//
5253 
5254 void ExportDecl::anchor() {}
5255 
5256 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5257                                SourceLocation ExportLoc) {
5258   return new (C, DC) ExportDecl(DC, ExportLoc);
5259 }
5260 
5261 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5262   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5263 }
5264