xref: /freebsd/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/PartialDiagnostic.h"
45 #include "clang/Basic/SanitizerBlacklist.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 /// Determine whether D is declared in the purview of a named module.
572 static bool isInModulePurview(const NamedDecl *D) {
573   if (auto *M = D->getOwningModule())
574     return M->isModulePurview();
575   return false;
576 }
577 
578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579   // FIXME: Handle isModulePrivate.
580   switch (D->getModuleOwnershipKind()) {
581   case Decl::ModuleOwnershipKind::Unowned:
582   case Decl::ModuleOwnershipKind::ModulePrivate:
583     return false;
584   case Decl::ModuleOwnershipKind::Visible:
585   case Decl::ModuleOwnershipKind::VisibleWhenImported:
586     return isInModulePurview(D);
587   }
588   llvm_unreachable("unexpected module ownership kind");
589 }
590 
591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592   // Internal linkage declarations within a module interface unit are modeled
593   // as "module-internal linkage", which means that they have internal linkage
594   // formally but can be indirectly accessed from outside the module via inline
595   // functions and templates defined within the module.
596   if (isInModulePurview(D))
597     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598 
599   return LinkageInfo::internal();
600 }
601 
602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603   // C++ Modules TS [basic.link]/6.8:
604   //   - A name declared at namespace scope that does not have internal linkage
605   //     by the previous rules and that is introduced by a non-exported
606   //     declaration has module linkage.
607   if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608                                   cast<NamedDecl>(D->getCanonicalDecl())))
609     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610 
611   return LinkageInfo::external();
612 }
613 
614 static StorageClass getStorageClass(const Decl *D) {
615   if (auto *TD = dyn_cast<TemplateDecl>(D))
616     D = TD->getTemplatedDecl();
617   if (D) {
618     if (auto *VD = dyn_cast<VarDecl>(D))
619       return VD->getStorageClass();
620     if (auto *FD = dyn_cast<FunctionDecl>(D))
621       return FD->getStorageClass();
622   }
623   return SC_None;
624 }
625 
626 LinkageInfo
627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628                                             LVComputationKind computation,
629                                             bool IgnoreVarTypeLinkage) {
630   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631          "Not a name having namespace scope");
632   ASTContext &Context = D->getASTContext();
633 
634   // C++ [basic.link]p3:
635   //   A name having namespace scope (3.3.6) has internal linkage if it
636   //   is the name of
637 
638   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639     // - a variable, variable template, function, or function template
640     //   that is explicitly declared static; or
641     // (This bullet corresponds to C99 6.2.2p3.)
642     return getInternalLinkageFor(D);
643   }
644 
645   if (const auto *Var = dyn_cast<VarDecl>(D)) {
646     // - a non-template variable of non-volatile const-qualified type, unless
647     //   - it is explicitly declared extern, or
648     //   - it is inline or exported, or
649     //   - it was previously declared and the prior declaration did not have
650     //     internal linkage
651     // (There is no equivalent in C99.)
652     if (Context.getLangOpts().CPlusPlus &&
653         Var->getType().isConstQualified() &&
654         !Var->getType().isVolatileQualified() &&
655         !Var->isInline() &&
656         !isExportedFromModuleInterfaceUnit(Var) &&
657         !isa<VarTemplateSpecializationDecl>(Var) &&
658         !Var->getDescribedVarTemplate()) {
659       const VarDecl *PrevVar = Var->getPreviousDecl();
660       if (PrevVar)
661         return getLVForDecl(PrevVar, computation);
662 
663       if (Var->getStorageClass() != SC_Extern &&
664           Var->getStorageClass() != SC_PrivateExtern &&
665           !isSingleLineLanguageLinkage(*Var))
666         return getInternalLinkageFor(Var);
667     }
668 
669     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670          PrevVar = PrevVar->getPreviousDecl()) {
671       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672           Var->getStorageClass() == SC_None)
673         return getDeclLinkageAndVisibility(PrevVar);
674       // Explicitly declared static.
675       if (PrevVar->getStorageClass() == SC_Static)
676         return getInternalLinkageFor(Var);
677     }
678   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679     //   - a data member of an anonymous union.
680     const VarDecl *VD = IFD->getVarDecl();
681     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683   }
684   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685 
686   // FIXME: This gives internal linkage to names that should have no linkage
687   // (those not covered by [basic.link]p6).
688   if (D->isInAnonymousNamespace()) {
689     const auto *Var = dyn_cast<VarDecl>(D);
690     const auto *Func = dyn_cast<FunctionDecl>(D);
691     // FIXME: The check for extern "C" here is not justified by the standard
692     // wording, but we retain it from the pre-DR1113 model to avoid breaking
693     // code.
694     //
695     // C++11 [basic.link]p4:
696     //   An unnamed namespace or a namespace declared directly or indirectly
697     //   within an unnamed namespace has internal linkage.
698     if ((!Var || !isFirstInExternCContext(Var)) &&
699         (!Func || !isFirstInExternCContext(Func)))
700       return getInternalLinkageFor(D);
701   }
702 
703   // Set up the defaults.
704 
705   // C99 6.2.2p5:
706   //   If the declaration of an identifier for an object has file
707   //   scope and no storage-class specifier, its linkage is
708   //   external.
709   LinkageInfo LV = getExternalLinkageFor(D);
710 
711   if (!hasExplicitVisibilityAlready(computation)) {
712     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713       LV.mergeVisibility(*Vis, true);
714     } else {
715       // If we're declared in a namespace with a visibility attribute,
716       // use that namespace's visibility, and it still counts as explicit.
717       for (const DeclContext *DC = D->getDeclContext();
718            !isa<TranslationUnitDecl>(DC);
719            DC = DC->getParent()) {
720         const auto *ND = dyn_cast<NamespaceDecl>(DC);
721         if (!ND) continue;
722         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723           LV.mergeVisibility(*Vis, true);
724           break;
725         }
726       }
727     }
728 
729     // Add in global settings if the above didn't give us direct visibility.
730     if (!LV.isVisibilityExplicit()) {
731       // Use global type/value visibility as appropriate.
732       Visibility globalVisibility =
733           computation.isValueVisibility()
734               ? Context.getLangOpts().getValueVisibilityMode()
735               : Context.getLangOpts().getTypeVisibilityMode();
736       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737 
738       // If we're paying attention to global visibility, apply
739       // -finline-visibility-hidden if this is an inline method.
740       if (useInlineVisibilityHidden(D))
741         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742     }
743   }
744 
745   // C++ [basic.link]p4:
746 
747   //   A name having namespace scope that has not been given internal linkage
748   //   above and that is the name of
749   //   [...bullets...]
750   //   has its linkage determined as follows:
751   //     - if the enclosing namespace has internal linkage, the name has
752   //       internal linkage; [handled above]
753   //     - otherwise, if the declaration of the name is attached to a named
754   //       module and is not exported, the name has module linkage;
755   //     - otherwise, the name has external linkage.
756   // LV is currently set up to handle the last two bullets.
757   //
758   //   The bullets are:
759 
760   //     - a variable; or
761   if (const auto *Var = dyn_cast<VarDecl>(D)) {
762     // GCC applies the following optimization to variables and static
763     // data members, but not to functions:
764     //
765     // Modify the variable's LV by the LV of its type unless this is
766     // C or extern "C".  This follows from [basic.link]p9:
767     //   A type without linkage shall not be used as the type of a
768     //   variable or function with external linkage unless
769     //    - the entity has C language linkage, or
770     //    - the entity is declared within an unnamed namespace, or
771     //    - the entity is not used or is defined in the same
772     //      translation unit.
773     // and [basic.link]p10:
774     //   ...the types specified by all declarations referring to a
775     //   given variable or function shall be identical...
776     // C does not have an equivalent rule.
777     //
778     // Ignore this if we've got an explicit attribute;  the user
779     // probably knows what they're doing.
780     //
781     // Note that we don't want to make the variable non-external
782     // because of this, but unique-external linkage suits us.
783     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784         !IgnoreVarTypeLinkage) {
785       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786       if (!isExternallyVisible(TypeLV.getLinkage()))
787         return LinkageInfo::uniqueExternal();
788       if (!LV.isVisibilityExplicit())
789         LV.mergeVisibility(TypeLV);
790     }
791 
792     if (Var->getStorageClass() == SC_PrivateExtern)
793       LV.mergeVisibility(HiddenVisibility, true);
794 
795     // Note that Sema::MergeVarDecl already takes care of implementing
796     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797     // to do it here.
798 
799     // As per function and class template specializations (below),
800     // consider LV for the template and template arguments.  We're at file
801     // scope, so we do not need to worry about nested specializations.
802     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803       mergeTemplateLV(LV, spec, computation);
804     }
805 
806   //     - a function; or
807   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808     // In theory, we can modify the function's LV by the LV of its
809     // type unless it has C linkage (see comment above about variables
810     // for justification).  In practice, GCC doesn't do this, so it's
811     // just too painful to make work.
812 
813     if (Function->getStorageClass() == SC_PrivateExtern)
814       LV.mergeVisibility(HiddenVisibility, true);
815 
816     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817     // merging storage classes and visibility attributes, so we don't have to
818     // look at previous decls in here.
819 
820     // In C++, then if the type of the function uses a type with
821     // unique-external linkage, it's not legally usable from outside
822     // this translation unit.  However, we should use the C linkage
823     // rules instead for extern "C" declarations.
824     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825       // Only look at the type-as-written. Otherwise, deducing the return type
826       // of a function could change its linkage.
827       QualType TypeAsWritten = Function->getType();
828       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829         TypeAsWritten = TSI->getType();
830       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831         return LinkageInfo::uniqueExternal();
832     }
833 
834     // Consider LV from the template and the template arguments.
835     // We're at file scope, so we do not need to worry about nested
836     // specializations.
837     if (FunctionTemplateSpecializationInfo *specInfo
838                                = Function->getTemplateSpecializationInfo()) {
839       mergeTemplateLV(LV, Function, specInfo, computation);
840     }
841 
842   //     - a named class (Clause 9), or an unnamed class defined in a
843   //       typedef declaration in which the class has the typedef name
844   //       for linkage purposes (7.1.3); or
845   //     - a named enumeration (7.2), or an unnamed enumeration
846   //       defined in a typedef declaration in which the enumeration
847   //       has the typedef name for linkage purposes (7.1.3); or
848   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849     // Unnamed tags have no linkage.
850     if (!Tag->hasNameForLinkage())
851       return LinkageInfo::none();
852 
853     // If this is a class template specialization, consider the
854     // linkage of the template and template arguments.  We're at file
855     // scope, so we do not need to worry about nested specializations.
856     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857       mergeTemplateLV(LV, spec, computation);
858     }
859 
860   // FIXME: This is not part of the C++ standard any more.
861   //     - an enumerator belonging to an enumeration with external linkage; or
862   } else if (isa<EnumConstantDecl>(D)) {
863     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864                                       computation);
865     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866       return LinkageInfo::none();
867     LV.merge(EnumLV);
868 
869   //     - a template
870   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872     LinkageInfo tempLV =
873       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875 
876   //     An unnamed namespace or a namespace declared directly or indirectly
877   //     within an unnamed namespace has internal linkage. All other namespaces
878   //     have external linkage.
879   //
880   // We handled names in anonymous namespaces above.
881   } else if (isa<NamespaceDecl>(D)) {
882     return LV;
883 
884   // By extension, we assign external linkage to Objective-C
885   // interfaces.
886   } else if (isa<ObjCInterfaceDecl>(D)) {
887     // fallout
888 
889   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890     // A typedef declaration has linkage if it gives a type a name for
891     // linkage purposes.
892     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893       return LinkageInfo::none();
894 
895   } else if (isa<MSGuidDecl>(D)) {
896     // A GUID behaves like an inline variable with external linkage. Fall
897     // through.
898 
899   // Everything not covered here has no linkage.
900   } else {
901     return LinkageInfo::none();
902   }
903 
904   // If we ended up with non-externally-visible linkage, visibility should
905   // always be default.
906   if (!isExternallyVisible(LV.getLinkage()))
907     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908 
909   // Mark the symbols as hidden when compiling for the device.
910   if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911     LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912 
913   return LV;
914 }
915 
916 LinkageInfo
917 LinkageComputer::getLVForClassMember(const NamedDecl *D,
918                                      LVComputationKind computation,
919                                      bool IgnoreVarTypeLinkage) {
920   // Only certain class members have linkage.  Note that fields don't
921   // really have linkage, but it's convenient to say they do for the
922   // purposes of calculating linkage of pointer-to-data-member
923   // template arguments.
924   //
925   // Templates also don't officially have linkage, but since we ignore
926   // the C++ standard and look at template arguments when determining
927   // linkage and visibility of a template specialization, we might hit
928   // a template template argument that way. If we do, we need to
929   // consider its linkage.
930   if (!(isa<CXXMethodDecl>(D) ||
931         isa<VarDecl>(D) ||
932         isa<FieldDecl>(D) ||
933         isa<IndirectFieldDecl>(D) ||
934         isa<TagDecl>(D) ||
935         isa<TemplateDecl>(D)))
936     return LinkageInfo::none();
937 
938   LinkageInfo LV;
939 
940   // If we have an explicit visibility attribute, merge that in.
941   if (!hasExplicitVisibilityAlready(computation)) {
942     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943       LV.mergeVisibility(*Vis, true);
944     // If we're paying attention to global visibility, apply
945     // -finline-visibility-hidden if this is an inline method.
946     //
947     // Note that we do this before merging information about
948     // the class visibility.
949     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951   }
952 
953   // If this class member has an explicit visibility attribute, the only
954   // thing that can change its visibility is the template arguments, so
955   // only look for them when processing the class.
956   LVComputationKind classComputation = computation;
957   if (LV.isVisibilityExplicit())
958     classComputation = withExplicitVisibilityAlready(computation);
959 
960   LinkageInfo classLV =
961     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962   // The member has the same linkage as the class. If that's not externally
963   // visible, we don't need to compute anything about the linkage.
964   // FIXME: If we're only computing linkage, can we bail out here?
965   if (!isExternallyVisible(classLV.getLinkage()))
966     return classLV;
967 
968 
969   // Otherwise, don't merge in classLV yet, because in certain cases
970   // we need to completely ignore the visibility from it.
971 
972   // Specifically, if this decl exists and has an explicit attribute.
973   const NamedDecl *explicitSpecSuppressor = nullptr;
974 
975   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976     // Only look at the type-as-written. Otherwise, deducing the return type
977     // of a function could change its linkage.
978     QualType TypeAsWritten = MD->getType();
979     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980       TypeAsWritten = TSI->getType();
981     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982       return LinkageInfo::uniqueExternal();
983 
984     // If this is a method template specialization, use the linkage for
985     // the template parameters and arguments.
986     if (FunctionTemplateSpecializationInfo *spec
987            = MD->getTemplateSpecializationInfo()) {
988       mergeTemplateLV(LV, MD, spec, computation);
989       if (spec->isExplicitSpecialization()) {
990         explicitSpecSuppressor = MD;
991       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993       }
994     } else if (isExplicitMemberSpecialization(MD)) {
995       explicitSpecSuppressor = MD;
996     }
997 
998   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000       mergeTemplateLV(LV, spec, computation);
1001       if (spec->isExplicitSpecialization()) {
1002         explicitSpecSuppressor = spec;
1003       } else {
1004         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005         if (isExplicitMemberSpecialization(temp)) {
1006           explicitSpecSuppressor = temp->getTemplatedDecl();
1007         }
1008       }
1009     } else if (isExplicitMemberSpecialization(RD)) {
1010       explicitSpecSuppressor = RD;
1011     }
1012 
1013   // Static data members.
1014   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016       mergeTemplateLV(LV, spec, computation);
1017 
1018     // Modify the variable's linkage by its type, but ignore the
1019     // type's visibility unless it's a definition.
1020     if (!IgnoreVarTypeLinkage) {
1021       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022       // FIXME: If the type's linkage is not externally visible, we can
1023       // give this static data member UniqueExternalLinkage.
1024       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025         LV.mergeVisibility(typeLV);
1026       LV.mergeExternalVisibility(typeLV);
1027     }
1028 
1029     if (isExplicitMemberSpecialization(VD)) {
1030       explicitSpecSuppressor = VD;
1031     }
1032 
1033   // Template members.
1034   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035     bool considerVisibility =
1036       (!LV.isVisibilityExplicit() &&
1037        !classLV.isVisibilityExplicit() &&
1038        !hasExplicitVisibilityAlready(computation));
1039     LinkageInfo tempLV =
1040       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042 
1043     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044       if (isExplicitMemberSpecialization(redeclTemp)) {
1045         explicitSpecSuppressor = temp->getTemplatedDecl();
1046       }
1047     }
1048   }
1049 
1050   // We should never be looking for an attribute directly on a template.
1051   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1052 
1053   // If this member is an explicit member specialization, and it has
1054   // an explicit attribute, ignore visibility from the parent.
1055   bool considerClassVisibility = true;
1056   if (explicitSpecSuppressor &&
1057       // optimization: hasDVA() is true only with explicit visibility.
1058       LV.isVisibilityExplicit() &&
1059       classLV.getVisibility() != DefaultVisibility &&
1060       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061     considerClassVisibility = false;
1062   }
1063 
1064   // Finally, merge in information from the class.
1065   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066   return LV;
1067 }
1068 
1069 void NamedDecl::anchor() {}
1070 
1071 bool NamedDecl::isLinkageValid() const {
1072   if (!hasCachedLinkage())
1073     return true;
1074 
1075   Linkage L = LinkageComputer{}
1076                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077                   .getLinkage();
1078   return L == getCachedLinkage();
1079 }
1080 
1081 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1082   StringRef name = getName();
1083   if (name.empty()) return SFF_None;
1084 
1085   if (name.front() == 'C')
1086     if (name == "CFStringCreateWithFormat" ||
1087         name == "CFStringCreateWithFormatAndArguments" ||
1088         name == "CFStringAppendFormat" ||
1089         name == "CFStringAppendFormatAndArguments")
1090       return SFF_CFString;
1091   return SFF_None;
1092 }
1093 
1094 Linkage NamedDecl::getLinkageInternal() const {
1095   // We don't care about visibility here, so ask for the cheapest
1096   // possible visibility analysis.
1097   return LinkageComputer{}
1098       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1099       .getLinkage();
1100 }
1101 
1102 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1103   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1104 }
1105 
1106 static Optional<Visibility>
1107 getExplicitVisibilityAux(const NamedDecl *ND,
1108                          NamedDecl::ExplicitVisibilityKind kind,
1109                          bool IsMostRecent) {
1110   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1111 
1112   // Check the declaration itself first.
1113   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1114     return V;
1115 
1116   // If this is a member class of a specialization of a class template
1117   // and the corresponding decl has explicit visibility, use that.
1118   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1119     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1120     if (InstantiatedFrom)
1121       return getVisibilityOf(InstantiatedFrom, kind);
1122   }
1123 
1124   // If there wasn't explicit visibility there, and this is a
1125   // specialization of a class template, check for visibility
1126   // on the pattern.
1127   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1128     // Walk all the template decl till this point to see if there are
1129     // explicit visibility attributes.
1130     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1131     while (TD != nullptr) {
1132       auto Vis = getVisibilityOf(TD, kind);
1133       if (Vis != None)
1134         return Vis;
1135       TD = TD->getPreviousDecl();
1136     }
1137     return None;
1138   }
1139 
1140   // Use the most recent declaration.
1141   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1142     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1143     if (MostRecent != ND)
1144       return getExplicitVisibilityAux(MostRecent, kind, true);
1145   }
1146 
1147   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1148     if (Var->isStaticDataMember()) {
1149       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1150       if (InstantiatedFrom)
1151         return getVisibilityOf(InstantiatedFrom, kind);
1152     }
1153 
1154     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1155       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1156                              kind);
1157 
1158     return None;
1159   }
1160   // Also handle function template specializations.
1161   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1162     // If the function is a specialization of a template with an
1163     // explicit visibility attribute, use that.
1164     if (FunctionTemplateSpecializationInfo *templateInfo
1165           = fn->getTemplateSpecializationInfo())
1166       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1167                              kind);
1168 
1169     // If the function is a member of a specialization of a class template
1170     // and the corresponding decl has explicit visibility, use that.
1171     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1172     if (InstantiatedFrom)
1173       return getVisibilityOf(InstantiatedFrom, kind);
1174 
1175     return None;
1176   }
1177 
1178   // The visibility of a template is stored in the templated decl.
1179   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1180     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1181 
1182   return None;
1183 }
1184 
1185 Optional<Visibility>
1186 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1187   return getExplicitVisibilityAux(this, kind, false);
1188 }
1189 
1190 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1191                                              Decl *ContextDecl,
1192                                              LVComputationKind computation) {
1193   // This lambda has its linkage/visibility determined by its owner.
1194   const NamedDecl *Owner;
1195   if (!ContextDecl)
1196     Owner = dyn_cast<NamedDecl>(DC);
1197   else if (isa<ParmVarDecl>(ContextDecl))
1198     Owner =
1199         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1200   else
1201     Owner = cast<NamedDecl>(ContextDecl);
1202 
1203   if (!Owner)
1204     return LinkageInfo::none();
1205 
1206   // If the owner has a deduced type, we need to skip querying the linkage and
1207   // visibility of that type, because it might involve this closure type.  The
1208   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1209   // than NoLinkage when we don't strictly need to, which is benign.
1210   auto *VD = dyn_cast<VarDecl>(Owner);
1211   LinkageInfo OwnerLV =
1212       VD && VD->getType()->getContainedDeducedType()
1213           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1214           : getLVForDecl(Owner, computation);
1215 
1216   // A lambda never formally has linkage. But if the owner is externally
1217   // visible, then the lambda is too. We apply the same rules to blocks.
1218   if (!isExternallyVisible(OwnerLV.getLinkage()))
1219     return LinkageInfo::none();
1220   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1221                      OwnerLV.isVisibilityExplicit());
1222 }
1223 
1224 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1225                                                LVComputationKind computation) {
1226   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1227     if (Function->isInAnonymousNamespace() &&
1228         !isFirstInExternCContext(Function))
1229       return getInternalLinkageFor(Function);
1230 
1231     // This is a "void f();" which got merged with a file static.
1232     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1233       return getInternalLinkageFor(Function);
1234 
1235     LinkageInfo LV;
1236     if (!hasExplicitVisibilityAlready(computation)) {
1237       if (Optional<Visibility> Vis =
1238               getExplicitVisibility(Function, computation))
1239         LV.mergeVisibility(*Vis, true);
1240     }
1241 
1242     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1243     // merging storage classes and visibility attributes, so we don't have to
1244     // look at previous decls in here.
1245 
1246     return LV;
1247   }
1248 
1249   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1250     if (Var->hasExternalStorage()) {
1251       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1252         return getInternalLinkageFor(Var);
1253 
1254       LinkageInfo LV;
1255       if (Var->getStorageClass() == SC_PrivateExtern)
1256         LV.mergeVisibility(HiddenVisibility, true);
1257       else if (!hasExplicitVisibilityAlready(computation)) {
1258         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1259           LV.mergeVisibility(*Vis, true);
1260       }
1261 
1262       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1263         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1264         if (PrevLV.getLinkage())
1265           LV.setLinkage(PrevLV.getLinkage());
1266         LV.mergeVisibility(PrevLV);
1267       }
1268 
1269       return LV;
1270     }
1271 
1272     if (!Var->isStaticLocal())
1273       return LinkageInfo::none();
1274   }
1275 
1276   ASTContext &Context = D->getASTContext();
1277   if (!Context.getLangOpts().CPlusPlus)
1278     return LinkageInfo::none();
1279 
1280   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1281   if (!OuterD || OuterD->isInvalidDecl())
1282     return LinkageInfo::none();
1283 
1284   LinkageInfo LV;
1285   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1286     if (!BD->getBlockManglingNumber())
1287       return LinkageInfo::none();
1288 
1289     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1290                          BD->getBlockManglingContextDecl(), computation);
1291   } else {
1292     const auto *FD = cast<FunctionDecl>(OuterD);
1293     if (!FD->isInlined() &&
1294         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1295       return LinkageInfo::none();
1296 
1297     // If a function is hidden by -fvisibility-inlines-hidden option and
1298     // is not explicitly attributed as a hidden function,
1299     // we should not make static local variables in the function hidden.
1300     LV = getLVForDecl(FD, computation);
1301     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1302         !LV.isVisibilityExplicit()) {
1303       assert(cast<VarDecl>(D)->isStaticLocal());
1304       // If this was an implicitly hidden inline method, check again for
1305       // explicit visibility on the parent class, and use that for static locals
1306       // if present.
1307       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1308         LV = getLVForDecl(MD->getParent(), computation);
1309       if (!LV.isVisibilityExplicit()) {
1310         Visibility globalVisibility =
1311             computation.isValueVisibility()
1312                 ? Context.getLangOpts().getValueVisibilityMode()
1313                 : Context.getLangOpts().getTypeVisibilityMode();
1314         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1315                            /*visibilityExplicit=*/false);
1316       }
1317     }
1318   }
1319   if (!isExternallyVisible(LV.getLinkage()))
1320     return LinkageInfo::none();
1321   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1322                      LV.isVisibilityExplicit());
1323 }
1324 
1325 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1326                                               LVComputationKind computation,
1327                                               bool IgnoreVarTypeLinkage) {
1328   // Internal_linkage attribute overrides other considerations.
1329   if (D->hasAttr<InternalLinkageAttr>())
1330     return getInternalLinkageFor(D);
1331 
1332   // Objective-C: treat all Objective-C declarations as having external
1333   // linkage.
1334   switch (D->getKind()) {
1335     default:
1336       break;
1337 
1338     // Per C++ [basic.link]p2, only the names of objects, references,
1339     // functions, types, templates, namespaces, and values ever have linkage.
1340     //
1341     // Note that the name of a typedef, namespace alias, using declaration,
1342     // and so on are not the name of the corresponding type, namespace, or
1343     // declaration, so they do *not* have linkage.
1344     case Decl::ImplicitParam:
1345     case Decl::Label:
1346     case Decl::NamespaceAlias:
1347     case Decl::ParmVar:
1348     case Decl::Using:
1349     case Decl::UsingShadow:
1350     case Decl::UsingDirective:
1351       return LinkageInfo::none();
1352 
1353     case Decl::EnumConstant:
1354       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1355       if (D->getASTContext().getLangOpts().CPlusPlus)
1356         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1357       return LinkageInfo::visible_none();
1358 
1359     case Decl::Typedef:
1360     case Decl::TypeAlias:
1361       // A typedef declaration has linkage if it gives a type a name for
1362       // linkage purposes.
1363       if (!cast<TypedefNameDecl>(D)
1364                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1365         return LinkageInfo::none();
1366       break;
1367 
1368     case Decl::TemplateTemplateParm: // count these as external
1369     case Decl::NonTypeTemplateParm:
1370     case Decl::ObjCAtDefsField:
1371     case Decl::ObjCCategory:
1372     case Decl::ObjCCategoryImpl:
1373     case Decl::ObjCCompatibleAlias:
1374     case Decl::ObjCImplementation:
1375     case Decl::ObjCMethod:
1376     case Decl::ObjCProperty:
1377     case Decl::ObjCPropertyImpl:
1378     case Decl::ObjCProtocol:
1379       return getExternalLinkageFor(D);
1380 
1381     case Decl::CXXRecord: {
1382       const auto *Record = cast<CXXRecordDecl>(D);
1383       if (Record->isLambda()) {
1384         if (Record->hasKnownLambdaInternalLinkage() ||
1385             !Record->getLambdaManglingNumber()) {
1386           // This lambda has no mangling number, so it's internal.
1387           return getInternalLinkageFor(D);
1388         }
1389 
1390         return getLVForClosure(
1391                   Record->getDeclContext()->getRedeclContext(),
1392                   Record->getLambdaContextDecl(), computation);
1393       }
1394 
1395       break;
1396     }
1397   }
1398 
1399   // Handle linkage for namespace-scope names.
1400   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1401     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1402 
1403   // C++ [basic.link]p5:
1404   //   In addition, a member function, static data member, a named
1405   //   class or enumeration of class scope, or an unnamed class or
1406   //   enumeration defined in a class-scope typedef declaration such
1407   //   that the class or enumeration has the typedef name for linkage
1408   //   purposes (7.1.3), has external linkage if the name of the class
1409   //   has external linkage.
1410   if (D->getDeclContext()->isRecord())
1411     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1412 
1413   // C++ [basic.link]p6:
1414   //   The name of a function declared in block scope and the name of
1415   //   an object declared by a block scope extern declaration have
1416   //   linkage. If there is a visible declaration of an entity with
1417   //   linkage having the same name and type, ignoring entities
1418   //   declared outside the innermost enclosing namespace scope, the
1419   //   block scope declaration declares that same entity and receives
1420   //   the linkage of the previous declaration. If there is more than
1421   //   one such matching entity, the program is ill-formed. Otherwise,
1422   //   if no matching entity is found, the block scope entity receives
1423   //   external linkage.
1424   if (D->getDeclContext()->isFunctionOrMethod())
1425     return getLVForLocalDecl(D, computation);
1426 
1427   // C++ [basic.link]p6:
1428   //   Names not covered by these rules have no linkage.
1429   return LinkageInfo::none();
1430 }
1431 
1432 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1433 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1434                                           LVComputationKind computation) {
1435   // Internal_linkage attribute overrides other considerations.
1436   if (D->hasAttr<InternalLinkageAttr>())
1437     return getInternalLinkageFor(D);
1438 
1439   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1440     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1441 
1442   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1443     return *LI;
1444 
1445   LinkageInfo LV = computeLVForDecl(D, computation);
1446   if (D->hasCachedLinkage())
1447     assert(D->getCachedLinkage() == LV.getLinkage());
1448 
1449   D->setCachedLinkage(LV.getLinkage());
1450   cache(D, computation, LV);
1451 
1452 #ifndef NDEBUG
1453   // In C (because of gnu inline) and in c++ with microsoft extensions an
1454   // static can follow an extern, so we can have two decls with different
1455   // linkages.
1456   const LangOptions &Opts = D->getASTContext().getLangOpts();
1457   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1458     return LV;
1459 
1460   // We have just computed the linkage for this decl. By induction we know
1461   // that all other computed linkages match, check that the one we just
1462   // computed also does.
1463   NamedDecl *Old = nullptr;
1464   for (auto I : D->redecls()) {
1465     auto *T = cast<NamedDecl>(I);
1466     if (T == D)
1467       continue;
1468     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1469       Old = T;
1470       break;
1471     }
1472   }
1473   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1474 #endif
1475 
1476   return LV;
1477 }
1478 
1479 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1480   return getLVForDecl(D,
1481                       LVComputationKind(usesTypeVisibility(D)
1482                                             ? NamedDecl::VisibilityForType
1483                                             : NamedDecl::VisibilityForValue));
1484 }
1485 
1486 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1487   Module *M = getOwningModule();
1488   if (!M)
1489     return nullptr;
1490 
1491   switch (M->Kind) {
1492   case Module::ModuleMapModule:
1493     // Module map modules have no special linkage semantics.
1494     return nullptr;
1495 
1496   case Module::ModuleInterfaceUnit:
1497     return M;
1498 
1499   case Module::GlobalModuleFragment: {
1500     // External linkage declarations in the global module have no owning module
1501     // for linkage purposes. But internal linkage declarations in the global
1502     // module fragment of a particular module are owned by that module for
1503     // linkage purposes.
1504     if (IgnoreLinkage)
1505       return nullptr;
1506     bool InternalLinkage;
1507     if (auto *ND = dyn_cast<NamedDecl>(this))
1508       InternalLinkage = !ND->hasExternalFormalLinkage();
1509     else {
1510       auto *NSD = dyn_cast<NamespaceDecl>(this);
1511       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1512                         isInAnonymousNamespace();
1513     }
1514     return InternalLinkage ? M->Parent : nullptr;
1515   }
1516 
1517   case Module::PrivateModuleFragment:
1518     // The private module fragment is part of its containing module for linkage
1519     // purposes.
1520     return M->Parent;
1521   }
1522 
1523   llvm_unreachable("unknown module kind");
1524 }
1525 
1526 void NamedDecl::printName(raw_ostream &os) const {
1527   os << Name;
1528 }
1529 
1530 std::string NamedDecl::getQualifiedNameAsString() const {
1531   std::string QualName;
1532   llvm::raw_string_ostream OS(QualName);
1533   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1534   return OS.str();
1535 }
1536 
1537 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1538   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1539 }
1540 
1541 void NamedDecl::printQualifiedName(raw_ostream &OS,
1542                                    const PrintingPolicy &P) const {
1543   if (getDeclContext()->isFunctionOrMethod()) {
1544     // We do not print '(anonymous)' for function parameters without name.
1545     printName(OS);
1546     return;
1547   }
1548   printNestedNameSpecifier(OS, P);
1549   if (getDeclName())
1550     OS << *this;
1551   else {
1552     // Give the printName override a chance to pick a different name before we
1553     // fall back to "(anonymous)".
1554     SmallString<64> NameBuffer;
1555     llvm::raw_svector_ostream NameOS(NameBuffer);
1556     printName(NameOS);
1557     if (NameBuffer.empty())
1558       OS << "(anonymous)";
1559     else
1560       OS << NameBuffer;
1561   }
1562 }
1563 
1564 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1565   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1566 }
1567 
1568 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1569                                          const PrintingPolicy &P) const {
1570   const DeclContext *Ctx = getDeclContext();
1571 
1572   // For ObjC methods and properties, look through categories and use the
1573   // interface as context.
1574   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1575     if (auto *ID = MD->getClassInterface())
1576       Ctx = ID;
1577   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1578     if (auto *MD = PD->getGetterMethodDecl())
1579       if (auto *ID = MD->getClassInterface())
1580         Ctx = ID;
1581   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1582     if (auto *CI = ID->getContainingInterface())
1583       Ctx = CI;
1584   }
1585 
1586   if (Ctx->isFunctionOrMethod())
1587     return;
1588 
1589   using ContextsTy = SmallVector<const DeclContext *, 8>;
1590   ContextsTy Contexts;
1591 
1592   // Collect named contexts.
1593   while (Ctx) {
1594     if (isa<NamedDecl>(Ctx))
1595       Contexts.push_back(Ctx);
1596     Ctx = Ctx->getParent();
1597   }
1598 
1599   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1600     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1601       OS << Spec->getName();
1602       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1603       printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1604     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1605       if (P.SuppressUnwrittenScope &&
1606           (ND->isAnonymousNamespace() || ND->isInline()))
1607         continue;
1608       if (ND->isAnonymousNamespace()) {
1609         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1610                                 : "(anonymous namespace)");
1611       }
1612       else
1613         OS << *ND;
1614     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1615       if (!RD->getIdentifier())
1616         OS << "(anonymous " << RD->getKindName() << ')';
1617       else
1618         OS << *RD;
1619     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1620       const FunctionProtoType *FT = nullptr;
1621       if (FD->hasWrittenPrototype())
1622         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1623 
1624       OS << *FD << '(';
1625       if (FT) {
1626         unsigned NumParams = FD->getNumParams();
1627         for (unsigned i = 0; i < NumParams; ++i) {
1628           if (i)
1629             OS << ", ";
1630           OS << FD->getParamDecl(i)->getType().stream(P);
1631         }
1632 
1633         if (FT->isVariadic()) {
1634           if (NumParams > 0)
1635             OS << ", ";
1636           OS << "...";
1637         }
1638       }
1639       OS << ')';
1640     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1641       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1642       // enumerator is declared in the scope that immediately contains
1643       // the enum-specifier. Each scoped enumerator is declared in the
1644       // scope of the enumeration.
1645       // For the case of unscoped enumerator, do not include in the qualified
1646       // name any information about its enum enclosing scope, as its visibility
1647       // is global.
1648       if (ED->isScoped())
1649         OS << *ED;
1650       else
1651         continue;
1652     } else {
1653       OS << *cast<NamedDecl>(DC);
1654     }
1655     OS << "::";
1656   }
1657 }
1658 
1659 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1660                                      const PrintingPolicy &Policy,
1661                                      bool Qualified) const {
1662   if (Qualified)
1663     printQualifiedName(OS, Policy);
1664   else
1665     printName(OS);
1666 }
1667 
1668 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1669   return true;
1670 }
1671 static bool isRedeclarableImpl(...) { return false; }
1672 static bool isRedeclarable(Decl::Kind K) {
1673   switch (K) {
1674 #define DECL(Type, Base) \
1675   case Decl::Type: \
1676     return isRedeclarableImpl((Type##Decl *)nullptr);
1677 #define ABSTRACT_DECL(DECL)
1678 #include "clang/AST/DeclNodes.inc"
1679   }
1680   llvm_unreachable("unknown decl kind");
1681 }
1682 
1683 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1684   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1685 
1686   // Never replace one imported declaration with another; we need both results
1687   // when re-exporting.
1688   if (OldD->isFromASTFile() && isFromASTFile())
1689     return false;
1690 
1691   // A kind mismatch implies that the declaration is not replaced.
1692   if (OldD->getKind() != getKind())
1693     return false;
1694 
1695   // For method declarations, we never replace. (Why?)
1696   if (isa<ObjCMethodDecl>(this))
1697     return false;
1698 
1699   // For parameters, pick the newer one. This is either an error or (in
1700   // Objective-C) permitted as an extension.
1701   if (isa<ParmVarDecl>(this))
1702     return true;
1703 
1704   // Inline namespaces can give us two declarations with the same
1705   // name and kind in the same scope but different contexts; we should
1706   // keep both declarations in this case.
1707   if (!this->getDeclContext()->getRedeclContext()->Equals(
1708           OldD->getDeclContext()->getRedeclContext()))
1709     return false;
1710 
1711   // Using declarations can be replaced if they import the same name from the
1712   // same context.
1713   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1714     ASTContext &Context = getASTContext();
1715     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1716            Context.getCanonicalNestedNameSpecifier(
1717                cast<UsingDecl>(OldD)->getQualifier());
1718   }
1719   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1720     ASTContext &Context = getASTContext();
1721     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1722            Context.getCanonicalNestedNameSpecifier(
1723                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1724   }
1725 
1726   if (isRedeclarable(getKind())) {
1727     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1728       return false;
1729 
1730     if (IsKnownNewer)
1731       return true;
1732 
1733     // Check whether this is actually newer than OldD. We want to keep the
1734     // newer declaration. This loop will usually only iterate once, because
1735     // OldD is usually the previous declaration.
1736     for (auto D : redecls()) {
1737       if (D == OldD)
1738         break;
1739 
1740       // If we reach the canonical declaration, then OldD is not actually older
1741       // than this one.
1742       //
1743       // FIXME: In this case, we should not add this decl to the lookup table.
1744       if (D->isCanonicalDecl())
1745         return false;
1746     }
1747 
1748     // It's a newer declaration of the same kind of declaration in the same
1749     // scope: we want this decl instead of the existing one.
1750     return true;
1751   }
1752 
1753   // In all other cases, we need to keep both declarations in case they have
1754   // different visibility. Any attempt to use the name will result in an
1755   // ambiguity if more than one is visible.
1756   return false;
1757 }
1758 
1759 bool NamedDecl::hasLinkage() const {
1760   return getFormalLinkage() != NoLinkage;
1761 }
1762 
1763 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1764   NamedDecl *ND = this;
1765   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1766     ND = UD->getTargetDecl();
1767 
1768   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1769     return AD->getClassInterface();
1770 
1771   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1772     return AD->getNamespace();
1773 
1774   return ND;
1775 }
1776 
1777 bool NamedDecl::isCXXInstanceMember() const {
1778   if (!isCXXClassMember())
1779     return false;
1780 
1781   const NamedDecl *D = this;
1782   if (isa<UsingShadowDecl>(D))
1783     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1784 
1785   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1786     return true;
1787   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1788     return MD->isInstance();
1789   return false;
1790 }
1791 
1792 //===----------------------------------------------------------------------===//
1793 // DeclaratorDecl Implementation
1794 //===----------------------------------------------------------------------===//
1795 
1796 template <typename DeclT>
1797 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1798   if (decl->getNumTemplateParameterLists() > 0)
1799     return decl->getTemplateParameterList(0)->getTemplateLoc();
1800   else
1801     return decl->getInnerLocStart();
1802 }
1803 
1804 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1805   TypeSourceInfo *TSI = getTypeSourceInfo();
1806   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1807   return SourceLocation();
1808 }
1809 
1810 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1811   TypeSourceInfo *TSI = getTypeSourceInfo();
1812   if (TSI) return TSI->getTypeLoc().getEndLoc();
1813   return SourceLocation();
1814 }
1815 
1816 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1817   if (QualifierLoc) {
1818     // Make sure the extended decl info is allocated.
1819     if (!hasExtInfo()) {
1820       // Save (non-extended) type source info pointer.
1821       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1822       // Allocate external info struct.
1823       DeclInfo = new (getASTContext()) ExtInfo;
1824       // Restore savedTInfo into (extended) decl info.
1825       getExtInfo()->TInfo = savedTInfo;
1826     }
1827     // Set qualifier info.
1828     getExtInfo()->QualifierLoc = QualifierLoc;
1829   } else if (hasExtInfo()) {
1830     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1831     getExtInfo()->QualifierLoc = QualifierLoc;
1832   }
1833 }
1834 
1835 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1836   assert(TrailingRequiresClause);
1837   // Make sure the extended decl info is allocated.
1838   if (!hasExtInfo()) {
1839     // Save (non-extended) type source info pointer.
1840     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1841     // Allocate external info struct.
1842     DeclInfo = new (getASTContext()) ExtInfo;
1843     // Restore savedTInfo into (extended) decl info.
1844     getExtInfo()->TInfo = savedTInfo;
1845   }
1846   // Set requires clause info.
1847   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1848 }
1849 
1850 void DeclaratorDecl::setTemplateParameterListsInfo(
1851     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1852   assert(!TPLists.empty());
1853   // Make sure the extended decl info is allocated.
1854   if (!hasExtInfo()) {
1855     // Save (non-extended) type source info pointer.
1856     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1857     // Allocate external info struct.
1858     DeclInfo = new (getASTContext()) ExtInfo;
1859     // Restore savedTInfo into (extended) decl info.
1860     getExtInfo()->TInfo = savedTInfo;
1861   }
1862   // Set the template parameter lists info.
1863   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1864 }
1865 
1866 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1867   return getTemplateOrInnerLocStart(this);
1868 }
1869 
1870 // Helper function: returns true if QT is or contains a type
1871 // having a postfix component.
1872 static bool typeIsPostfix(QualType QT) {
1873   while (true) {
1874     const Type* T = QT.getTypePtr();
1875     switch (T->getTypeClass()) {
1876     default:
1877       return false;
1878     case Type::Pointer:
1879       QT = cast<PointerType>(T)->getPointeeType();
1880       break;
1881     case Type::BlockPointer:
1882       QT = cast<BlockPointerType>(T)->getPointeeType();
1883       break;
1884     case Type::MemberPointer:
1885       QT = cast<MemberPointerType>(T)->getPointeeType();
1886       break;
1887     case Type::LValueReference:
1888     case Type::RValueReference:
1889       QT = cast<ReferenceType>(T)->getPointeeType();
1890       break;
1891     case Type::PackExpansion:
1892       QT = cast<PackExpansionType>(T)->getPattern();
1893       break;
1894     case Type::Paren:
1895     case Type::ConstantArray:
1896     case Type::DependentSizedArray:
1897     case Type::IncompleteArray:
1898     case Type::VariableArray:
1899     case Type::FunctionProto:
1900     case Type::FunctionNoProto:
1901       return true;
1902     }
1903   }
1904 }
1905 
1906 SourceRange DeclaratorDecl::getSourceRange() const {
1907   SourceLocation RangeEnd = getLocation();
1908   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1909     // If the declaration has no name or the type extends past the name take the
1910     // end location of the type.
1911     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1912       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1913   }
1914   return SourceRange(getOuterLocStart(), RangeEnd);
1915 }
1916 
1917 void QualifierInfo::setTemplateParameterListsInfo(
1918     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1919   // Free previous template parameters (if any).
1920   if (NumTemplParamLists > 0) {
1921     Context.Deallocate(TemplParamLists);
1922     TemplParamLists = nullptr;
1923     NumTemplParamLists = 0;
1924   }
1925   // Set info on matched template parameter lists (if any).
1926   if (!TPLists.empty()) {
1927     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1928     NumTemplParamLists = TPLists.size();
1929     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1930   }
1931 }
1932 
1933 //===----------------------------------------------------------------------===//
1934 // VarDecl Implementation
1935 //===----------------------------------------------------------------------===//
1936 
1937 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1938   switch (SC) {
1939   case SC_None:                 break;
1940   case SC_Auto:                 return "auto";
1941   case SC_Extern:               return "extern";
1942   case SC_PrivateExtern:        return "__private_extern__";
1943   case SC_Register:             return "register";
1944   case SC_Static:               return "static";
1945   }
1946 
1947   llvm_unreachable("Invalid storage class");
1948 }
1949 
1950 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1951                  SourceLocation StartLoc, SourceLocation IdLoc,
1952                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1953                  StorageClass SC)
1954     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1955       redeclarable_base(C) {
1956   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1957                 "VarDeclBitfields too large!");
1958   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1959                 "ParmVarDeclBitfields too large!");
1960   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1961                 "NonParmVarDeclBitfields too large!");
1962   AllBits = 0;
1963   VarDeclBits.SClass = SC;
1964   // Everything else is implicitly initialized to false.
1965 }
1966 
1967 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1968                          SourceLocation StartL, SourceLocation IdL,
1969                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1970                          StorageClass S) {
1971   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1972 }
1973 
1974 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1975   return new (C, ID)
1976       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1977               QualType(), nullptr, SC_None);
1978 }
1979 
1980 void VarDecl::setStorageClass(StorageClass SC) {
1981   assert(isLegalForVariable(SC));
1982   VarDeclBits.SClass = SC;
1983 }
1984 
1985 VarDecl::TLSKind VarDecl::getTLSKind() const {
1986   switch (VarDeclBits.TSCSpec) {
1987   case TSCS_unspecified:
1988     if (!hasAttr<ThreadAttr>() &&
1989         !(getASTContext().getLangOpts().OpenMPUseTLS &&
1990           getASTContext().getTargetInfo().isTLSSupported() &&
1991           hasAttr<OMPThreadPrivateDeclAttr>()))
1992       return TLS_None;
1993     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1994                 LangOptions::MSVC2015)) ||
1995             hasAttr<OMPThreadPrivateDeclAttr>())
1996                ? TLS_Dynamic
1997                : TLS_Static;
1998   case TSCS___thread: // Fall through.
1999   case TSCS__Thread_local:
2000     return TLS_Static;
2001   case TSCS_thread_local:
2002     return TLS_Dynamic;
2003   }
2004   llvm_unreachable("Unknown thread storage class specifier!");
2005 }
2006 
2007 SourceRange VarDecl::getSourceRange() const {
2008   if (const Expr *Init = getInit()) {
2009     SourceLocation InitEnd = Init->getEndLoc();
2010     // If Init is implicit, ignore its source range and fallback on
2011     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2012     if (InitEnd.isValid() && InitEnd != getLocation())
2013       return SourceRange(getOuterLocStart(), InitEnd);
2014   }
2015   return DeclaratorDecl::getSourceRange();
2016 }
2017 
2018 template<typename T>
2019 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2020   // C++ [dcl.link]p1: All function types, function names with external linkage,
2021   // and variable names with external linkage have a language linkage.
2022   if (!D.hasExternalFormalLinkage())
2023     return NoLanguageLinkage;
2024 
2025   // Language linkage is a C++ concept, but saying that everything else in C has
2026   // C language linkage fits the implementation nicely.
2027   ASTContext &Context = D.getASTContext();
2028   if (!Context.getLangOpts().CPlusPlus)
2029     return CLanguageLinkage;
2030 
2031   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2032   // language linkage of the names of class members and the function type of
2033   // class member functions.
2034   const DeclContext *DC = D.getDeclContext();
2035   if (DC->isRecord())
2036     return CXXLanguageLinkage;
2037 
2038   // If the first decl is in an extern "C" context, any other redeclaration
2039   // will have C language linkage. If the first one is not in an extern "C"
2040   // context, we would have reported an error for any other decl being in one.
2041   if (isFirstInExternCContext(&D))
2042     return CLanguageLinkage;
2043   return CXXLanguageLinkage;
2044 }
2045 
2046 template<typename T>
2047 static bool isDeclExternC(const T &D) {
2048   // Since the context is ignored for class members, they can only have C++
2049   // language linkage or no language linkage.
2050   const DeclContext *DC = D.getDeclContext();
2051   if (DC->isRecord()) {
2052     assert(D.getASTContext().getLangOpts().CPlusPlus);
2053     return false;
2054   }
2055 
2056   return D.getLanguageLinkage() == CLanguageLinkage;
2057 }
2058 
2059 LanguageLinkage VarDecl::getLanguageLinkage() const {
2060   return getDeclLanguageLinkage(*this);
2061 }
2062 
2063 bool VarDecl::isExternC() const {
2064   return isDeclExternC(*this);
2065 }
2066 
2067 bool VarDecl::isInExternCContext() const {
2068   return getLexicalDeclContext()->isExternCContext();
2069 }
2070 
2071 bool VarDecl::isInExternCXXContext() const {
2072   return getLexicalDeclContext()->isExternCXXContext();
2073 }
2074 
2075 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2076 
2077 VarDecl::DefinitionKind
2078 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2079   if (isThisDeclarationADemotedDefinition())
2080     return DeclarationOnly;
2081 
2082   // C++ [basic.def]p2:
2083   //   A declaration is a definition unless [...] it contains the 'extern'
2084   //   specifier or a linkage-specification and neither an initializer [...],
2085   //   it declares a non-inline static data member in a class declaration [...],
2086   //   it declares a static data member outside a class definition and the variable
2087   //   was defined within the class with the constexpr specifier [...],
2088   // C++1y [temp.expl.spec]p15:
2089   //   An explicit specialization of a static data member or an explicit
2090   //   specialization of a static data member template is a definition if the
2091   //   declaration includes an initializer; otherwise, it is a declaration.
2092   //
2093   // FIXME: How do you declare (but not define) a partial specialization of
2094   // a static data member template outside the containing class?
2095   if (isStaticDataMember()) {
2096     if (isOutOfLine() &&
2097         !(getCanonicalDecl()->isInline() &&
2098           getCanonicalDecl()->isConstexpr()) &&
2099         (hasInit() ||
2100          // If the first declaration is out-of-line, this may be an
2101          // instantiation of an out-of-line partial specialization of a variable
2102          // template for which we have not yet instantiated the initializer.
2103          (getFirstDecl()->isOutOfLine()
2104               ? getTemplateSpecializationKind() == TSK_Undeclared
2105               : getTemplateSpecializationKind() !=
2106                     TSK_ExplicitSpecialization) ||
2107          isa<VarTemplatePartialSpecializationDecl>(this)))
2108       return Definition;
2109     else if (!isOutOfLine() && isInline())
2110       return Definition;
2111     else
2112       return DeclarationOnly;
2113   }
2114   // C99 6.7p5:
2115   //   A definition of an identifier is a declaration for that identifier that
2116   //   [...] causes storage to be reserved for that object.
2117   // Note: that applies for all non-file-scope objects.
2118   // C99 6.9.2p1:
2119   //   If the declaration of an identifier for an object has file scope and an
2120   //   initializer, the declaration is an external definition for the identifier
2121   if (hasInit())
2122     return Definition;
2123 
2124   if (hasDefiningAttr())
2125     return Definition;
2126 
2127   if (const auto *SAA = getAttr<SelectAnyAttr>())
2128     if (!SAA->isInherited())
2129       return Definition;
2130 
2131   // A variable template specialization (other than a static data member
2132   // template or an explicit specialization) is a declaration until we
2133   // instantiate its initializer.
2134   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2135     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2136         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2137         !VTSD->IsCompleteDefinition)
2138       return DeclarationOnly;
2139   }
2140 
2141   if (hasExternalStorage())
2142     return DeclarationOnly;
2143 
2144   // [dcl.link] p7:
2145   //   A declaration directly contained in a linkage-specification is treated
2146   //   as if it contains the extern specifier for the purpose of determining
2147   //   the linkage of the declared name and whether it is a definition.
2148   if (isSingleLineLanguageLinkage(*this))
2149     return DeclarationOnly;
2150 
2151   // C99 6.9.2p2:
2152   //   A declaration of an object that has file scope without an initializer,
2153   //   and without a storage class specifier or the scs 'static', constitutes
2154   //   a tentative definition.
2155   // No such thing in C++.
2156   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2157     return TentativeDefinition;
2158 
2159   // What's left is (in C, block-scope) declarations without initializers or
2160   // external storage. These are definitions.
2161   return Definition;
2162 }
2163 
2164 VarDecl *VarDecl::getActingDefinition() {
2165   DefinitionKind Kind = isThisDeclarationADefinition();
2166   if (Kind != TentativeDefinition)
2167     return nullptr;
2168 
2169   VarDecl *LastTentative = nullptr;
2170   VarDecl *First = getFirstDecl();
2171   for (auto I : First->redecls()) {
2172     Kind = I->isThisDeclarationADefinition();
2173     if (Kind == Definition)
2174       return nullptr;
2175     else if (Kind == TentativeDefinition)
2176       LastTentative = I;
2177   }
2178   return LastTentative;
2179 }
2180 
2181 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2182   VarDecl *First = getFirstDecl();
2183   for (auto I : First->redecls()) {
2184     if (I->isThisDeclarationADefinition(C) == Definition)
2185       return I;
2186   }
2187   return nullptr;
2188 }
2189 
2190 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2191   DefinitionKind Kind = DeclarationOnly;
2192 
2193   const VarDecl *First = getFirstDecl();
2194   for (auto I : First->redecls()) {
2195     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2196     if (Kind == Definition)
2197       break;
2198   }
2199 
2200   return Kind;
2201 }
2202 
2203 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2204   for (auto I : redecls()) {
2205     if (auto Expr = I->getInit()) {
2206       D = I;
2207       return Expr;
2208     }
2209   }
2210   return nullptr;
2211 }
2212 
2213 bool VarDecl::hasInit() const {
2214   if (auto *P = dyn_cast<ParmVarDecl>(this))
2215     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2216       return false;
2217 
2218   return !Init.isNull();
2219 }
2220 
2221 Expr *VarDecl::getInit() {
2222   if (!hasInit())
2223     return nullptr;
2224 
2225   if (auto *S = Init.dyn_cast<Stmt *>())
2226     return cast<Expr>(S);
2227 
2228   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2229 }
2230 
2231 Stmt **VarDecl::getInitAddress() {
2232   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2233     return &ES->Value;
2234 
2235   return Init.getAddrOfPtr1();
2236 }
2237 
2238 VarDecl *VarDecl::getInitializingDeclaration() {
2239   VarDecl *Def = nullptr;
2240   for (auto I : redecls()) {
2241     if (I->hasInit())
2242       return I;
2243 
2244     if (I->isThisDeclarationADefinition()) {
2245       if (isStaticDataMember())
2246         return I;
2247       else
2248         Def = I;
2249     }
2250   }
2251   return Def;
2252 }
2253 
2254 bool VarDecl::isOutOfLine() const {
2255   if (Decl::isOutOfLine())
2256     return true;
2257 
2258   if (!isStaticDataMember())
2259     return false;
2260 
2261   // If this static data member was instantiated from a static data member of
2262   // a class template, check whether that static data member was defined
2263   // out-of-line.
2264   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2265     return VD->isOutOfLine();
2266 
2267   return false;
2268 }
2269 
2270 void VarDecl::setInit(Expr *I) {
2271   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2272     Eval->~EvaluatedStmt();
2273     getASTContext().Deallocate(Eval);
2274   }
2275 
2276   Init = I;
2277 }
2278 
2279 bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const {
2280   const LangOptions &Lang = C.getLangOpts();
2281 
2282   if (!Lang.CPlusPlus)
2283     return false;
2284 
2285   // Function parameters are never usable in constant expressions.
2286   if (isa<ParmVarDecl>(this))
2287     return false;
2288 
2289   // In C++11, any variable of reference type can be used in a constant
2290   // expression if it is initialized by a constant expression.
2291   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2292     return true;
2293 
2294   // Only const objects can be used in constant expressions in C++. C++98 does
2295   // not require the variable to be non-volatile, but we consider this to be a
2296   // defect.
2297   if (!getType().isConstQualified() || getType().isVolatileQualified())
2298     return false;
2299 
2300   // In C++, const, non-volatile variables of integral or enumeration types
2301   // can be used in constant expressions.
2302   if (getType()->isIntegralOrEnumerationType())
2303     return true;
2304 
2305   // Additionally, in C++11, non-volatile constexpr variables can be used in
2306   // constant expressions.
2307   return Lang.CPlusPlus11 && isConstexpr();
2308 }
2309 
2310 bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const {
2311   // C++2a [expr.const]p3:
2312   //   A variable is usable in constant expressions after its initializing
2313   //   declaration is encountered...
2314   const VarDecl *DefVD = nullptr;
2315   const Expr *Init = getAnyInitializer(DefVD);
2316   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2317     return false;
2318   //   ... if it is a constexpr variable, or it is of reference type or of
2319   //   const-qualified integral or enumeration type, ...
2320   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2321     return false;
2322   //   ... and its initializer is a constant initializer.
2323   return DefVD->checkInitIsICE();
2324 }
2325 
2326 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2327 /// form, which contains extra information on the evaluated value of the
2328 /// initializer.
2329 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2330   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2331   if (!Eval) {
2332     // Note: EvaluatedStmt contains an APValue, which usually holds
2333     // resources not allocated from the ASTContext.  We need to do some
2334     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2335     // where we can detect whether there's anything to clean up or not.
2336     Eval = new (getASTContext()) EvaluatedStmt;
2337     Eval->Value = Init.get<Stmt *>();
2338     Init = Eval;
2339   }
2340   return Eval;
2341 }
2342 
2343 APValue *VarDecl::evaluateValue() const {
2344   SmallVector<PartialDiagnosticAt, 8> Notes;
2345   return evaluateValue(Notes);
2346 }
2347 
2348 APValue *VarDecl::evaluateValue(
2349     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2350   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2351 
2352   // We only produce notes indicating why an initializer is non-constant the
2353   // first time it is evaluated. FIXME: The notes won't always be emitted the
2354   // first time we try evaluation, so might not be produced at all.
2355   if (Eval->WasEvaluated)
2356     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2357 
2358   const auto *Init = cast<Expr>(Eval->Value);
2359   assert(!Init->isValueDependent());
2360 
2361   if (Eval->IsEvaluating) {
2362     // FIXME: Produce a diagnostic for self-initialization.
2363     Eval->CheckedICE = true;
2364     Eval->IsICE = false;
2365     return nullptr;
2366   }
2367 
2368   Eval->IsEvaluating = true;
2369 
2370   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2371                                             this, Notes);
2372 
2373   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2374   // or that it's empty (so that there's nothing to clean up) if evaluation
2375   // failed.
2376   if (!Result)
2377     Eval->Evaluated = APValue();
2378   else if (Eval->Evaluated.needsCleanup())
2379     getASTContext().addDestruction(&Eval->Evaluated);
2380 
2381   Eval->IsEvaluating = false;
2382   Eval->WasEvaluated = true;
2383 
2384   // In C++11, we have determined whether the initializer was a constant
2385   // expression as a side-effect.
2386   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2387     Eval->CheckedICE = true;
2388     Eval->IsICE = Result && Notes.empty();
2389   }
2390 
2391   return Result ? &Eval->Evaluated : nullptr;
2392 }
2393 
2394 APValue *VarDecl::getEvaluatedValue() const {
2395   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2396     if (Eval->WasEvaluated)
2397       return &Eval->Evaluated;
2398 
2399   return nullptr;
2400 }
2401 
2402 bool VarDecl::isInitKnownICE() const {
2403   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2404     return Eval->CheckedICE;
2405 
2406   return false;
2407 }
2408 
2409 bool VarDecl::isInitICE() const {
2410   assert(isInitKnownICE() &&
2411          "Check whether we already know that the initializer is an ICE");
2412   return Init.get<EvaluatedStmt *>()->IsICE;
2413 }
2414 
2415 bool VarDecl::checkInitIsICE() const {
2416   // Initializers of weak variables are never ICEs.
2417   if (isWeak())
2418     return false;
2419 
2420   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2421   if (Eval->CheckedICE)
2422     // We have already checked whether this subexpression is an
2423     // integral constant expression.
2424     return Eval->IsICE;
2425 
2426   const auto *Init = cast<Expr>(Eval->Value);
2427   assert(!Init->isValueDependent());
2428 
2429   // In C++11, evaluate the initializer to check whether it's a constant
2430   // expression.
2431   if (getASTContext().getLangOpts().CPlusPlus11) {
2432     SmallVector<PartialDiagnosticAt, 8> Notes;
2433     evaluateValue(Notes);
2434     return Eval->IsICE;
2435   }
2436 
2437   // It's an ICE whether or not the definition we found is
2438   // out-of-line.  See DR 721 and the discussion in Clang PR
2439   // 6206 for details.
2440 
2441   if (Eval->CheckingICE)
2442     return false;
2443   Eval->CheckingICE = true;
2444 
2445   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2446   Eval->CheckingICE = false;
2447   Eval->CheckedICE = true;
2448   return Eval->IsICE;
2449 }
2450 
2451 bool VarDecl::isParameterPack() const {
2452   return isa<PackExpansionType>(getType());
2453 }
2454 
2455 template<typename DeclT>
2456 static DeclT *getDefinitionOrSelf(DeclT *D) {
2457   assert(D);
2458   if (auto *Def = D->getDefinition())
2459     return Def;
2460   return D;
2461 }
2462 
2463 bool VarDecl::isEscapingByref() const {
2464   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2465 }
2466 
2467 bool VarDecl::isNonEscapingByref() const {
2468   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2469 }
2470 
2471 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2472   const VarDecl *VD = this;
2473 
2474   // If this is an instantiated member, walk back to the template from which
2475   // it was instantiated.
2476   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2477     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2478       VD = VD->getInstantiatedFromStaticDataMember();
2479       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2480         VD = NewVD;
2481     }
2482   }
2483 
2484   // If it's an instantiated variable template specialization, find the
2485   // template or partial specialization from which it was instantiated.
2486   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2487     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2488       auto From = VDTemplSpec->getInstantiatedFrom();
2489       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2490         while (!VTD->isMemberSpecialization()) {
2491           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2492           if (!NewVTD)
2493             break;
2494           VTD = NewVTD;
2495         }
2496         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2497       }
2498       if (auto *VTPSD =
2499               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2500         while (!VTPSD->isMemberSpecialization()) {
2501           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2502           if (!NewVTPSD)
2503             break;
2504           VTPSD = NewVTPSD;
2505         }
2506         return getDefinitionOrSelf<VarDecl>(VTPSD);
2507       }
2508     }
2509   }
2510 
2511   // If this is the pattern of a variable template, find where it was
2512   // instantiated from. FIXME: Is this necessary?
2513   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2514     while (!VarTemplate->isMemberSpecialization()) {
2515       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2516       if (!NewVT)
2517         break;
2518       VarTemplate = NewVT;
2519     }
2520 
2521     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2522   }
2523 
2524   if (VD == this)
2525     return nullptr;
2526   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2527 }
2528 
2529 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2530   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2531     return cast<VarDecl>(MSI->getInstantiatedFrom());
2532 
2533   return nullptr;
2534 }
2535 
2536 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2537   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2538     return Spec->getSpecializationKind();
2539 
2540   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2541     return MSI->getTemplateSpecializationKind();
2542 
2543   return TSK_Undeclared;
2544 }
2545 
2546 TemplateSpecializationKind
2547 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2548   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2549     return MSI->getTemplateSpecializationKind();
2550 
2551   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2552     return Spec->getSpecializationKind();
2553 
2554   return TSK_Undeclared;
2555 }
2556 
2557 SourceLocation VarDecl::getPointOfInstantiation() const {
2558   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2559     return Spec->getPointOfInstantiation();
2560 
2561   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2562     return MSI->getPointOfInstantiation();
2563 
2564   return SourceLocation();
2565 }
2566 
2567 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2568   return getASTContext().getTemplateOrSpecializationInfo(this)
2569       .dyn_cast<VarTemplateDecl *>();
2570 }
2571 
2572 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2573   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2574 }
2575 
2576 bool VarDecl::isKnownToBeDefined() const {
2577   const auto &LangOpts = getASTContext().getLangOpts();
2578   // In CUDA mode without relocatable device code, variables of form 'extern
2579   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2580   // memory pool.  These are never undefined variables, even if they appear
2581   // inside of an anon namespace or static function.
2582   //
2583   // With CUDA relocatable device code enabled, these variables don't get
2584   // special handling; they're treated like regular extern variables.
2585   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2586       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2587       isa<IncompleteArrayType>(getType()))
2588     return true;
2589 
2590   return hasDefinition();
2591 }
2592 
2593 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2594   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2595                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2596                                  !hasAttr<AlwaysDestroyAttr>()));
2597 }
2598 
2599 QualType::DestructionKind
2600 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2601   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2602     if (Eval->HasConstantDestruction)
2603       return QualType::DK_none;
2604 
2605   if (isNoDestroy(Ctx))
2606     return QualType::DK_none;
2607 
2608   return getType().isDestructedType();
2609 }
2610 
2611 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2612   if (isStaticDataMember())
2613     // FIXME: Remove ?
2614     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2615     return getASTContext().getTemplateOrSpecializationInfo(this)
2616         .dyn_cast<MemberSpecializationInfo *>();
2617   return nullptr;
2618 }
2619 
2620 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2621                                          SourceLocation PointOfInstantiation) {
2622   assert((isa<VarTemplateSpecializationDecl>(this) ||
2623           getMemberSpecializationInfo()) &&
2624          "not a variable or static data member template specialization");
2625 
2626   if (VarTemplateSpecializationDecl *Spec =
2627           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2628     Spec->setSpecializationKind(TSK);
2629     if (TSK != TSK_ExplicitSpecialization &&
2630         PointOfInstantiation.isValid() &&
2631         Spec->getPointOfInstantiation().isInvalid()) {
2632       Spec->setPointOfInstantiation(PointOfInstantiation);
2633       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2634         L->InstantiationRequested(this);
2635     }
2636   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2637     MSI->setTemplateSpecializationKind(TSK);
2638     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2639         MSI->getPointOfInstantiation().isInvalid()) {
2640       MSI->setPointOfInstantiation(PointOfInstantiation);
2641       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2642         L->InstantiationRequested(this);
2643     }
2644   }
2645 }
2646 
2647 void
2648 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2649                                             TemplateSpecializationKind TSK) {
2650   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2651          "Previous template or instantiation?");
2652   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2653 }
2654 
2655 //===----------------------------------------------------------------------===//
2656 // ParmVarDecl Implementation
2657 //===----------------------------------------------------------------------===//
2658 
2659 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2660                                  SourceLocation StartLoc,
2661                                  SourceLocation IdLoc, IdentifierInfo *Id,
2662                                  QualType T, TypeSourceInfo *TInfo,
2663                                  StorageClass S, Expr *DefArg) {
2664   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2665                                  S, DefArg);
2666 }
2667 
2668 QualType ParmVarDecl::getOriginalType() const {
2669   TypeSourceInfo *TSI = getTypeSourceInfo();
2670   QualType T = TSI ? TSI->getType() : getType();
2671   if (const auto *DT = dyn_cast<DecayedType>(T))
2672     return DT->getOriginalType();
2673   return T;
2674 }
2675 
2676 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2677   return new (C, ID)
2678       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2679                   nullptr, QualType(), nullptr, SC_None, nullptr);
2680 }
2681 
2682 SourceRange ParmVarDecl::getSourceRange() const {
2683   if (!hasInheritedDefaultArg()) {
2684     SourceRange ArgRange = getDefaultArgRange();
2685     if (ArgRange.isValid())
2686       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2687   }
2688 
2689   // DeclaratorDecl considers the range of postfix types as overlapping with the
2690   // declaration name, but this is not the case with parameters in ObjC methods.
2691   if (isa<ObjCMethodDecl>(getDeclContext()))
2692     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2693 
2694   return DeclaratorDecl::getSourceRange();
2695 }
2696 
2697 Expr *ParmVarDecl::getDefaultArg() {
2698   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2699   assert(!hasUninstantiatedDefaultArg() &&
2700          "Default argument is not yet instantiated!");
2701 
2702   Expr *Arg = getInit();
2703   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2704     return E->getSubExpr();
2705 
2706   return Arg;
2707 }
2708 
2709 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2710   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2711   Init = defarg;
2712 }
2713 
2714 SourceRange ParmVarDecl::getDefaultArgRange() const {
2715   switch (ParmVarDeclBits.DefaultArgKind) {
2716   case DAK_None:
2717   case DAK_Unparsed:
2718     // Nothing we can do here.
2719     return SourceRange();
2720 
2721   case DAK_Uninstantiated:
2722     return getUninstantiatedDefaultArg()->getSourceRange();
2723 
2724   case DAK_Normal:
2725     if (const Expr *E = getInit())
2726       return E->getSourceRange();
2727 
2728     // Missing an actual expression, may be invalid.
2729     return SourceRange();
2730   }
2731   llvm_unreachable("Invalid default argument kind.");
2732 }
2733 
2734 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2735   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2736   Init = arg;
2737 }
2738 
2739 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2740   assert(hasUninstantiatedDefaultArg() &&
2741          "Wrong kind of initialization expression!");
2742   return cast_or_null<Expr>(Init.get<Stmt *>());
2743 }
2744 
2745 bool ParmVarDecl::hasDefaultArg() const {
2746   // FIXME: We should just return false for DAK_None here once callers are
2747   // prepared for the case that we encountered an invalid default argument and
2748   // were unable to even build an invalid expression.
2749   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2750          !Init.isNull();
2751 }
2752 
2753 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2754   getASTContext().setParameterIndex(this, parameterIndex);
2755   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2756 }
2757 
2758 unsigned ParmVarDecl::getParameterIndexLarge() const {
2759   return getASTContext().getParameterIndex(this);
2760 }
2761 
2762 //===----------------------------------------------------------------------===//
2763 // FunctionDecl Implementation
2764 //===----------------------------------------------------------------------===//
2765 
2766 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2767                            SourceLocation StartLoc,
2768                            const DeclarationNameInfo &NameInfo, QualType T,
2769                            TypeSourceInfo *TInfo, StorageClass S,
2770                            bool isInlineSpecified,
2771                            ConstexprSpecKind ConstexprKind,
2772                            Expr *TrailingRequiresClause)
2773     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2774                      StartLoc),
2775       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2776       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2777   assert(T.isNull() || T->isFunctionType());
2778   FunctionDeclBits.SClass = S;
2779   FunctionDeclBits.IsInline = isInlineSpecified;
2780   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2781   FunctionDeclBits.IsVirtualAsWritten = false;
2782   FunctionDeclBits.IsPure = false;
2783   FunctionDeclBits.HasInheritedPrototype = false;
2784   FunctionDeclBits.HasWrittenPrototype = true;
2785   FunctionDeclBits.IsDeleted = false;
2786   FunctionDeclBits.IsTrivial = false;
2787   FunctionDeclBits.IsTrivialForCall = false;
2788   FunctionDeclBits.IsDefaulted = false;
2789   FunctionDeclBits.IsExplicitlyDefaulted = false;
2790   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2791   FunctionDeclBits.HasImplicitReturnZero = false;
2792   FunctionDeclBits.IsLateTemplateParsed = false;
2793   FunctionDeclBits.ConstexprKind = ConstexprKind;
2794   FunctionDeclBits.InstantiationIsPending = false;
2795   FunctionDeclBits.UsesSEHTry = false;
2796   FunctionDeclBits.UsesFPIntrin = false;
2797   FunctionDeclBits.HasSkippedBody = false;
2798   FunctionDeclBits.WillHaveBody = false;
2799   FunctionDeclBits.IsMultiVersion = false;
2800   FunctionDeclBits.IsCopyDeductionCandidate = false;
2801   FunctionDeclBits.HasODRHash = false;
2802   if (TrailingRequiresClause)
2803     setTrailingRequiresClause(TrailingRequiresClause);
2804 }
2805 
2806 void FunctionDecl::getNameForDiagnostic(
2807     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2808   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2809   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2810   if (TemplateArgs)
2811     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2812 }
2813 
2814 bool FunctionDecl::isVariadic() const {
2815   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2816     return FT->isVariadic();
2817   return false;
2818 }
2819 
2820 FunctionDecl::DefaultedFunctionInfo *
2821 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2822                                             ArrayRef<DeclAccessPair> Lookups) {
2823   DefaultedFunctionInfo *Info = new (Context.Allocate(
2824       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2825       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2826       DefaultedFunctionInfo;
2827   Info->NumLookups = Lookups.size();
2828   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2829                           Info->getTrailingObjects<DeclAccessPair>());
2830   return Info;
2831 }
2832 
2833 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2834   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2835   assert(!Body && "can't replace function body with defaulted function info");
2836 
2837   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2838   DefaultedInfo = Info;
2839 }
2840 
2841 FunctionDecl::DefaultedFunctionInfo *
2842 FunctionDecl::getDefaultedFunctionInfo() const {
2843   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2844 }
2845 
2846 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2847   for (auto I : redecls()) {
2848     if (I->doesThisDeclarationHaveABody()) {
2849       Definition = I;
2850       return true;
2851     }
2852   }
2853 
2854   return false;
2855 }
2856 
2857 bool FunctionDecl::hasTrivialBody() const {
2858   Stmt *S = getBody();
2859   if (!S) {
2860     // Since we don't have a body for this function, we don't know if it's
2861     // trivial or not.
2862     return false;
2863   }
2864 
2865   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2866     return true;
2867   return false;
2868 }
2869 
2870 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2871   for (auto I : redecls()) {
2872     if (I->isThisDeclarationADefinition()) {
2873       Definition = I;
2874       return true;
2875     }
2876   }
2877 
2878   return false;
2879 }
2880 
2881 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2882   if (!hasBody(Definition))
2883     return nullptr;
2884 
2885   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
2886          "definition should not have a body");
2887   if (Definition->Body)
2888     return Definition->Body.get(getASTContext().getExternalSource());
2889 
2890   return nullptr;
2891 }
2892 
2893 void FunctionDecl::setBody(Stmt *B) {
2894   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2895   Body = LazyDeclStmtPtr(B);
2896   if (B)
2897     EndRangeLoc = B->getEndLoc();
2898 }
2899 
2900 void FunctionDecl::setPure(bool P) {
2901   FunctionDeclBits.IsPure = P;
2902   if (P)
2903     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2904       Parent->markedVirtualFunctionPure();
2905 }
2906 
2907 template<std::size_t Len>
2908 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2909   IdentifierInfo *II = ND->getIdentifier();
2910   return II && II->isStr(Str);
2911 }
2912 
2913 bool FunctionDecl::isMain() const {
2914   const TranslationUnitDecl *tunit =
2915     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2916   return tunit &&
2917          !tunit->getASTContext().getLangOpts().Freestanding &&
2918          isNamed(this, "main");
2919 }
2920 
2921 bool FunctionDecl::isMSVCRTEntryPoint() const {
2922   const TranslationUnitDecl *TUnit =
2923       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2924   if (!TUnit)
2925     return false;
2926 
2927   // Even though we aren't really targeting MSVCRT if we are freestanding,
2928   // semantic analysis for these functions remains the same.
2929 
2930   // MSVCRT entry points only exist on MSVCRT targets.
2931   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2932     return false;
2933 
2934   // Nameless functions like constructors cannot be entry points.
2935   if (!getIdentifier())
2936     return false;
2937 
2938   return llvm::StringSwitch<bool>(getName())
2939       .Cases("main",     // an ANSI console app
2940              "wmain",    // a Unicode console App
2941              "WinMain",  // an ANSI GUI app
2942              "wWinMain", // a Unicode GUI app
2943              "DllMain",  // a DLL
2944              true)
2945       .Default(false);
2946 }
2947 
2948 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2949   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2950   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2951          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2952          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2953          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2954 
2955   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2956     return false;
2957 
2958   const auto *proto = getType()->castAs<FunctionProtoType>();
2959   if (proto->getNumParams() != 2 || proto->isVariadic())
2960     return false;
2961 
2962   ASTContext &Context =
2963     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2964       ->getASTContext();
2965 
2966   // The result type and first argument type are constant across all
2967   // these operators.  The second argument must be exactly void*.
2968   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2969 }
2970 
2971 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
2972     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
2973   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2974     return false;
2975   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2976       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2977       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2978       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2979     return false;
2980 
2981   if (isa<CXXRecordDecl>(getDeclContext()))
2982     return false;
2983 
2984   // This can only fail for an invalid 'operator new' declaration.
2985   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2986     return false;
2987 
2988   const auto *FPT = getType()->castAs<FunctionProtoType>();
2989   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2990     return false;
2991 
2992   // If this is a single-parameter function, it must be a replaceable global
2993   // allocation or deallocation function.
2994   if (FPT->getNumParams() == 1)
2995     return true;
2996 
2997   unsigned Params = 1;
2998   QualType Ty = FPT->getParamType(Params);
2999   ASTContext &Ctx = getASTContext();
3000 
3001   auto Consume = [&] {
3002     ++Params;
3003     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3004   };
3005 
3006   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3007   bool IsSizedDelete = false;
3008   if (Ctx.getLangOpts().SizedDeallocation &&
3009       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3010        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3011       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3012     IsSizedDelete = true;
3013     Consume();
3014   }
3015 
3016   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3017   // new/delete.
3018   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3019     Consume();
3020     if (AlignmentParam)
3021       *AlignmentParam = Params;
3022   }
3023 
3024   // Finally, if this is not a sized delete, the final parameter can
3025   // be a 'const std::nothrow_t&'.
3026   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3027     Ty = Ty->getPointeeType();
3028     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3029       return false;
3030     if (Ty->isNothrowT()) {
3031       if (IsNothrow)
3032         *IsNothrow = true;
3033       Consume();
3034     }
3035   }
3036 
3037   return Params == FPT->getNumParams();
3038 }
3039 
3040 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3041   if (!getBuiltinID())
3042     return false;
3043 
3044   const FunctionDecl *Definition;
3045   return hasBody(Definition) && Definition->isInlineSpecified();
3046 }
3047 
3048 bool FunctionDecl::isDestroyingOperatorDelete() const {
3049   // C++ P0722:
3050   //   Within a class C, a single object deallocation function with signature
3051   //     (T, std::destroying_delete_t, <more params>)
3052   //   is a destroying operator delete.
3053   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3054       getNumParams() < 2)
3055     return false;
3056 
3057   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3058   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3059          RD->getIdentifier()->isStr("destroying_delete_t");
3060 }
3061 
3062 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3063   return getDeclLanguageLinkage(*this);
3064 }
3065 
3066 bool FunctionDecl::isExternC() const {
3067   return isDeclExternC(*this);
3068 }
3069 
3070 bool FunctionDecl::isInExternCContext() const {
3071   if (hasAttr<OpenCLKernelAttr>())
3072     return true;
3073   return getLexicalDeclContext()->isExternCContext();
3074 }
3075 
3076 bool FunctionDecl::isInExternCXXContext() const {
3077   return getLexicalDeclContext()->isExternCXXContext();
3078 }
3079 
3080 bool FunctionDecl::isGlobal() const {
3081   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3082     return Method->isStatic();
3083 
3084   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3085     return false;
3086 
3087   for (const DeclContext *DC = getDeclContext();
3088        DC->isNamespace();
3089        DC = DC->getParent()) {
3090     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3091       if (!Namespace->getDeclName())
3092         return false;
3093       break;
3094     }
3095   }
3096 
3097   return true;
3098 }
3099 
3100 bool FunctionDecl::isNoReturn() const {
3101   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3102       hasAttr<C11NoReturnAttr>())
3103     return true;
3104 
3105   if (auto *FnTy = getType()->getAs<FunctionType>())
3106     return FnTy->getNoReturnAttr();
3107 
3108   return false;
3109 }
3110 
3111 
3112 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3113   if (hasAttr<TargetAttr>())
3114     return MultiVersionKind::Target;
3115   if (hasAttr<CPUDispatchAttr>())
3116     return MultiVersionKind::CPUDispatch;
3117   if (hasAttr<CPUSpecificAttr>())
3118     return MultiVersionKind::CPUSpecific;
3119   return MultiVersionKind::None;
3120 }
3121 
3122 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3123   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3124 }
3125 
3126 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3127   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3128 }
3129 
3130 bool FunctionDecl::isTargetMultiVersion() const {
3131   return isMultiVersion() && hasAttr<TargetAttr>();
3132 }
3133 
3134 void
3135 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3136   redeclarable_base::setPreviousDecl(PrevDecl);
3137 
3138   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3139     FunctionTemplateDecl *PrevFunTmpl
3140       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3141     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3142     FunTmpl->setPreviousDecl(PrevFunTmpl);
3143   }
3144 
3145   if (PrevDecl && PrevDecl->isInlined())
3146     setImplicitlyInline(true);
3147 }
3148 
3149 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3150 
3151 /// Returns a value indicating whether this function corresponds to a builtin
3152 /// function.
3153 ///
3154 /// The function corresponds to a built-in function if it is declared at
3155 /// translation scope or within an extern "C" block and its name matches with
3156 /// the name of a builtin. The returned value will be 0 for functions that do
3157 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3158 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3159 /// value.
3160 ///
3161 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3162 /// functions as their wrapped builtins. This shouldn't be done in general, but
3163 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3164 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3165   unsigned BuiltinID = 0;
3166 
3167   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3168     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3169   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3170     BuiltinID = A->getID();
3171   }
3172 
3173   if (!BuiltinID)
3174     return 0;
3175 
3176   // If the function is marked "overloadable", it has a different mangled name
3177   // and is not the C library function.
3178   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3179       !hasAttr<ArmBuiltinAliasAttr>())
3180     return 0;
3181 
3182   ASTContext &Context = getASTContext();
3183   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3184     return BuiltinID;
3185 
3186   // This function has the name of a known C library
3187   // function. Determine whether it actually refers to the C library
3188   // function or whether it just has the same name.
3189 
3190   // If this is a static function, it's not a builtin.
3191   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3192     return 0;
3193 
3194   // OpenCL v1.2 s6.9.f - The library functions defined in
3195   // the C99 standard headers are not available.
3196   if (Context.getLangOpts().OpenCL &&
3197       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3198     return 0;
3199 
3200   // CUDA does not have device-side standard library. printf and malloc are the
3201   // only special cases that are supported by device-side runtime.
3202   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3203       !hasAttr<CUDAHostAttr>() &&
3204       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3205     return 0;
3206 
3207   // As AMDGCN implementation of OpenMP does not have a device-side standard
3208   // library, none of the predefined library functions except printf and malloc
3209   // should be treated as a builtin i.e. 0 should be returned for them.
3210   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3211       Context.getLangOpts().OpenMPIsDevice &&
3212       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3213       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3214     return 0;
3215 
3216   return BuiltinID;
3217 }
3218 
3219 /// getNumParams - Return the number of parameters this function must have
3220 /// based on its FunctionType.  This is the length of the ParamInfo array
3221 /// after it has been created.
3222 unsigned FunctionDecl::getNumParams() const {
3223   const auto *FPT = getType()->getAs<FunctionProtoType>();
3224   return FPT ? FPT->getNumParams() : 0;
3225 }
3226 
3227 void FunctionDecl::setParams(ASTContext &C,
3228                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3229   assert(!ParamInfo && "Already has param info!");
3230   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3231 
3232   // Zero params -> null pointer.
3233   if (!NewParamInfo.empty()) {
3234     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3235     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3236   }
3237 }
3238 
3239 /// getMinRequiredArguments - Returns the minimum number of arguments
3240 /// needed to call this function. This may be fewer than the number of
3241 /// function parameters, if some of the parameters have default
3242 /// arguments (in C++) or are parameter packs (C++11).
3243 unsigned FunctionDecl::getMinRequiredArguments() const {
3244   if (!getASTContext().getLangOpts().CPlusPlus)
3245     return getNumParams();
3246 
3247   // Note that it is possible for a parameter with no default argument to
3248   // follow a parameter with a default argument.
3249   unsigned NumRequiredArgs = 0;
3250   unsigned MinParamsSoFar = 0;
3251   for (auto *Param : parameters()) {
3252     if (!Param->isParameterPack()) {
3253       ++MinParamsSoFar;
3254       if (!Param->hasDefaultArg())
3255         NumRequiredArgs = MinParamsSoFar;
3256     }
3257   }
3258   return NumRequiredArgs;
3259 }
3260 
3261 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3262   return getNumParams() == 1 ||
3263          (getNumParams() > 1 &&
3264           std::all_of(param_begin() + 1, param_end(),
3265                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3266 }
3267 
3268 /// The combination of the extern and inline keywords under MSVC forces
3269 /// the function to be required.
3270 ///
3271 /// Note: This function assumes that we will only get called when isInlined()
3272 /// would return true for this FunctionDecl.
3273 bool FunctionDecl::isMSExternInline() const {
3274   assert(isInlined() && "expected to get called on an inlined function!");
3275 
3276   const ASTContext &Context = getASTContext();
3277   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3278       !hasAttr<DLLExportAttr>())
3279     return false;
3280 
3281   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3282        FD = FD->getPreviousDecl())
3283     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3284       return true;
3285 
3286   return false;
3287 }
3288 
3289 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3290   if (Redecl->getStorageClass() != SC_Extern)
3291     return false;
3292 
3293   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3294        FD = FD->getPreviousDecl())
3295     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3296       return false;
3297 
3298   return true;
3299 }
3300 
3301 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3302   // Only consider file-scope declarations in this test.
3303   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3304     return false;
3305 
3306   // Only consider explicit declarations; the presence of a builtin for a
3307   // libcall shouldn't affect whether a definition is externally visible.
3308   if (Redecl->isImplicit())
3309     return false;
3310 
3311   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3312     return true; // Not an inline definition
3313 
3314   return false;
3315 }
3316 
3317 /// For a function declaration in C or C++, determine whether this
3318 /// declaration causes the definition to be externally visible.
3319 ///
3320 /// For instance, this determines if adding the current declaration to the set
3321 /// of redeclarations of the given functions causes
3322 /// isInlineDefinitionExternallyVisible to change from false to true.
3323 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3324   assert(!doesThisDeclarationHaveABody() &&
3325          "Must have a declaration without a body.");
3326 
3327   ASTContext &Context = getASTContext();
3328 
3329   if (Context.getLangOpts().MSVCCompat) {
3330     const FunctionDecl *Definition;
3331     if (hasBody(Definition) && Definition->isInlined() &&
3332         redeclForcesDefMSVC(this))
3333       return true;
3334   }
3335 
3336   if (Context.getLangOpts().CPlusPlus)
3337     return false;
3338 
3339   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3340     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3341     // an externally visible definition.
3342     //
3343     // FIXME: What happens if gnu_inline gets added on after the first
3344     // declaration?
3345     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3346       return false;
3347 
3348     const FunctionDecl *Prev = this;
3349     bool FoundBody = false;
3350     while ((Prev = Prev->getPreviousDecl())) {
3351       FoundBody |= Prev->doesThisDeclarationHaveABody();
3352 
3353       if (Prev->doesThisDeclarationHaveABody()) {
3354         // If it's not the case that both 'inline' and 'extern' are
3355         // specified on the definition, then it is always externally visible.
3356         if (!Prev->isInlineSpecified() ||
3357             Prev->getStorageClass() != SC_Extern)
3358           return false;
3359       } else if (Prev->isInlineSpecified() &&
3360                  Prev->getStorageClass() != SC_Extern) {
3361         return false;
3362       }
3363     }
3364     return FoundBody;
3365   }
3366 
3367   // C99 6.7.4p6:
3368   //   [...] If all of the file scope declarations for a function in a
3369   //   translation unit include the inline function specifier without extern,
3370   //   then the definition in that translation unit is an inline definition.
3371   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3372     return false;
3373   const FunctionDecl *Prev = this;
3374   bool FoundBody = false;
3375   while ((Prev = Prev->getPreviousDecl())) {
3376     FoundBody |= Prev->doesThisDeclarationHaveABody();
3377     if (RedeclForcesDefC99(Prev))
3378       return false;
3379   }
3380   return FoundBody;
3381 }
3382 
3383 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3384   const TypeSourceInfo *TSI = getTypeSourceInfo();
3385   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3386              : FunctionTypeLoc();
3387 }
3388 
3389 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3390   FunctionTypeLoc FTL = getFunctionTypeLoc();
3391   if (!FTL)
3392     return SourceRange();
3393 
3394   // Skip self-referential return types.
3395   const SourceManager &SM = getASTContext().getSourceManager();
3396   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3397   SourceLocation Boundary = getNameInfo().getBeginLoc();
3398   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3399       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3400     return SourceRange();
3401 
3402   return RTRange;
3403 }
3404 
3405 SourceRange FunctionDecl::getParametersSourceRange() const {
3406   unsigned NP = getNumParams();
3407   SourceLocation EllipsisLoc = getEllipsisLoc();
3408 
3409   if (NP == 0 && EllipsisLoc.isInvalid())
3410     return SourceRange();
3411 
3412   SourceLocation Begin =
3413       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3414   SourceLocation End = EllipsisLoc.isValid()
3415                            ? EllipsisLoc
3416                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3417 
3418   return SourceRange(Begin, End);
3419 }
3420 
3421 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3422   FunctionTypeLoc FTL = getFunctionTypeLoc();
3423   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3424 }
3425 
3426 /// For an inline function definition in C, or for a gnu_inline function
3427 /// in C++, determine whether the definition will be externally visible.
3428 ///
3429 /// Inline function definitions are always available for inlining optimizations.
3430 /// However, depending on the language dialect, declaration specifiers, and
3431 /// attributes, the definition of an inline function may or may not be
3432 /// "externally" visible to other translation units in the program.
3433 ///
3434 /// In C99, inline definitions are not externally visible by default. However,
3435 /// if even one of the global-scope declarations is marked "extern inline", the
3436 /// inline definition becomes externally visible (C99 6.7.4p6).
3437 ///
3438 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3439 /// definition, we use the GNU semantics for inline, which are nearly the
3440 /// opposite of C99 semantics. In particular, "inline" by itself will create
3441 /// an externally visible symbol, but "extern inline" will not create an
3442 /// externally visible symbol.
3443 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3444   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3445           hasAttr<AliasAttr>()) &&
3446          "Must be a function definition");
3447   assert(isInlined() && "Function must be inline");
3448   ASTContext &Context = getASTContext();
3449 
3450   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3451     // Note: If you change the logic here, please change
3452     // doesDeclarationForceExternallyVisibleDefinition as well.
3453     //
3454     // If it's not the case that both 'inline' and 'extern' are
3455     // specified on the definition, then this inline definition is
3456     // externally visible.
3457     if (Context.getLangOpts().CPlusPlus)
3458       return false;
3459     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3460       return true;
3461 
3462     // If any declaration is 'inline' but not 'extern', then this definition
3463     // is externally visible.
3464     for (auto Redecl : redecls()) {
3465       if (Redecl->isInlineSpecified() &&
3466           Redecl->getStorageClass() != SC_Extern)
3467         return true;
3468     }
3469 
3470     return false;
3471   }
3472 
3473   // The rest of this function is C-only.
3474   assert(!Context.getLangOpts().CPlusPlus &&
3475          "should not use C inline rules in C++");
3476 
3477   // C99 6.7.4p6:
3478   //   [...] If all of the file scope declarations for a function in a
3479   //   translation unit include the inline function specifier without extern,
3480   //   then the definition in that translation unit is an inline definition.
3481   for (auto Redecl : redecls()) {
3482     if (RedeclForcesDefC99(Redecl))
3483       return true;
3484   }
3485 
3486   // C99 6.7.4p6:
3487   //   An inline definition does not provide an external definition for the
3488   //   function, and does not forbid an external definition in another
3489   //   translation unit.
3490   return false;
3491 }
3492 
3493 /// getOverloadedOperator - Which C++ overloaded operator this
3494 /// function represents, if any.
3495 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3496   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3497     return getDeclName().getCXXOverloadedOperator();
3498   else
3499     return OO_None;
3500 }
3501 
3502 /// getLiteralIdentifier - The literal suffix identifier this function
3503 /// represents, if any.
3504 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3505   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3506     return getDeclName().getCXXLiteralIdentifier();
3507   else
3508     return nullptr;
3509 }
3510 
3511 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3512   if (TemplateOrSpecialization.isNull())
3513     return TK_NonTemplate;
3514   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3515     return TK_FunctionTemplate;
3516   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3517     return TK_MemberSpecialization;
3518   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3519     return TK_FunctionTemplateSpecialization;
3520   if (TemplateOrSpecialization.is
3521                                <DependentFunctionTemplateSpecializationInfo*>())
3522     return TK_DependentFunctionTemplateSpecialization;
3523 
3524   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3525 }
3526 
3527 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3528   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3529     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3530 
3531   return nullptr;
3532 }
3533 
3534 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3535   if (auto *MSI =
3536           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3537     return MSI;
3538   if (auto *FTSI = TemplateOrSpecialization
3539                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3540     return FTSI->getMemberSpecializationInfo();
3541   return nullptr;
3542 }
3543 
3544 void
3545 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3546                                                FunctionDecl *FD,
3547                                                TemplateSpecializationKind TSK) {
3548   assert(TemplateOrSpecialization.isNull() &&
3549          "Member function is already a specialization");
3550   MemberSpecializationInfo *Info
3551     = new (C) MemberSpecializationInfo(FD, TSK);
3552   TemplateOrSpecialization = Info;
3553 }
3554 
3555 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3556   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3557 }
3558 
3559 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3560   assert(TemplateOrSpecialization.isNull() &&
3561          "Member function is already a specialization");
3562   TemplateOrSpecialization = Template;
3563 }
3564 
3565 bool FunctionDecl::isImplicitlyInstantiable() const {
3566   // If the function is invalid, it can't be implicitly instantiated.
3567   if (isInvalidDecl())
3568     return false;
3569 
3570   switch (getTemplateSpecializationKindForInstantiation()) {
3571   case TSK_Undeclared:
3572   case TSK_ExplicitInstantiationDefinition:
3573   case TSK_ExplicitSpecialization:
3574     return false;
3575 
3576   case TSK_ImplicitInstantiation:
3577     return true;
3578 
3579   case TSK_ExplicitInstantiationDeclaration:
3580     // Handled below.
3581     break;
3582   }
3583 
3584   // Find the actual template from which we will instantiate.
3585   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3586   bool HasPattern = false;
3587   if (PatternDecl)
3588     HasPattern = PatternDecl->hasBody(PatternDecl);
3589 
3590   // C++0x [temp.explicit]p9:
3591   //   Except for inline functions, other explicit instantiation declarations
3592   //   have the effect of suppressing the implicit instantiation of the entity
3593   //   to which they refer.
3594   if (!HasPattern || !PatternDecl)
3595     return true;
3596 
3597   return PatternDecl->isInlined();
3598 }
3599 
3600 bool FunctionDecl::isTemplateInstantiation() const {
3601   // FIXME: Remove this, it's not clear what it means. (Which template
3602   // specialization kind?)
3603   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3604 }
3605 
3606 FunctionDecl *
3607 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3608   // If this is a generic lambda call operator specialization, its
3609   // instantiation pattern is always its primary template's pattern
3610   // even if its primary template was instantiated from another
3611   // member template (which happens with nested generic lambdas).
3612   // Since a lambda's call operator's body is transformed eagerly,
3613   // we don't have to go hunting for a prototype definition template
3614   // (i.e. instantiated-from-member-template) to use as an instantiation
3615   // pattern.
3616 
3617   if (isGenericLambdaCallOperatorSpecialization(
3618           dyn_cast<CXXMethodDecl>(this))) {
3619     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3620     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3621   }
3622 
3623   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) {
3624     if (ForDefinition &&
3625         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3626       return nullptr;
3627     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3628   }
3629 
3630   if (ForDefinition &&
3631       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3632     return nullptr;
3633 
3634   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3635     // If we hit a point where the user provided a specialization of this
3636     // template, we're done looking.
3637     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3638       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3639       if (!NewPrimary)
3640         break;
3641       Primary = NewPrimary;
3642     }
3643 
3644     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3645   }
3646 
3647   return nullptr;
3648 }
3649 
3650 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3651   if (FunctionTemplateSpecializationInfo *Info
3652         = TemplateOrSpecialization
3653             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3654     return Info->getTemplate();
3655   }
3656   return nullptr;
3657 }
3658 
3659 FunctionTemplateSpecializationInfo *
3660 FunctionDecl::getTemplateSpecializationInfo() const {
3661   return TemplateOrSpecialization
3662       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3663 }
3664 
3665 const TemplateArgumentList *
3666 FunctionDecl::getTemplateSpecializationArgs() const {
3667   if (FunctionTemplateSpecializationInfo *Info
3668         = TemplateOrSpecialization
3669             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3670     return Info->TemplateArguments;
3671   }
3672   return nullptr;
3673 }
3674 
3675 const ASTTemplateArgumentListInfo *
3676 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3677   if (FunctionTemplateSpecializationInfo *Info
3678         = TemplateOrSpecialization
3679             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3680     return Info->TemplateArgumentsAsWritten;
3681   }
3682   return nullptr;
3683 }
3684 
3685 void
3686 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3687                                                 FunctionTemplateDecl *Template,
3688                                      const TemplateArgumentList *TemplateArgs,
3689                                                 void *InsertPos,
3690                                                 TemplateSpecializationKind TSK,
3691                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3692                                           SourceLocation PointOfInstantiation) {
3693   assert((TemplateOrSpecialization.isNull() ||
3694           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3695          "Member function is already a specialization");
3696   assert(TSK != TSK_Undeclared &&
3697          "Must specify the type of function template specialization");
3698   assert((TemplateOrSpecialization.isNull() ||
3699           TSK == TSK_ExplicitSpecialization) &&
3700          "Member specialization must be an explicit specialization");
3701   FunctionTemplateSpecializationInfo *Info =
3702       FunctionTemplateSpecializationInfo::Create(
3703           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3704           PointOfInstantiation,
3705           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3706   TemplateOrSpecialization = Info;
3707   Template->addSpecialization(Info, InsertPos);
3708 }
3709 
3710 void
3711 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3712                                     const UnresolvedSetImpl &Templates,
3713                              const TemplateArgumentListInfo &TemplateArgs) {
3714   assert(TemplateOrSpecialization.isNull());
3715   DependentFunctionTemplateSpecializationInfo *Info =
3716       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3717                                                           TemplateArgs);
3718   TemplateOrSpecialization = Info;
3719 }
3720 
3721 DependentFunctionTemplateSpecializationInfo *
3722 FunctionDecl::getDependentSpecializationInfo() const {
3723   return TemplateOrSpecialization
3724       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3725 }
3726 
3727 DependentFunctionTemplateSpecializationInfo *
3728 DependentFunctionTemplateSpecializationInfo::Create(
3729     ASTContext &Context, const UnresolvedSetImpl &Ts,
3730     const TemplateArgumentListInfo &TArgs) {
3731   void *Buffer = Context.Allocate(
3732       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3733           TArgs.size(), Ts.size()));
3734   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3735 }
3736 
3737 DependentFunctionTemplateSpecializationInfo::
3738 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3739                                       const TemplateArgumentListInfo &TArgs)
3740   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3741   NumTemplates = Ts.size();
3742   NumArgs = TArgs.size();
3743 
3744   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3745   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3746     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3747 
3748   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3749   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3750     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3751 }
3752 
3753 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3754   // For a function template specialization, query the specialization
3755   // information object.
3756   if (FunctionTemplateSpecializationInfo *FTSInfo =
3757           TemplateOrSpecialization
3758               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3759     return FTSInfo->getTemplateSpecializationKind();
3760 
3761   if (MemberSpecializationInfo *MSInfo =
3762           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3763     return MSInfo->getTemplateSpecializationKind();
3764 
3765   return TSK_Undeclared;
3766 }
3767 
3768 TemplateSpecializationKind
3769 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3770   // This is the same as getTemplateSpecializationKind(), except that for a
3771   // function that is both a function template specialization and a member
3772   // specialization, we prefer the member specialization information. Eg:
3773   //
3774   // template<typename T> struct A {
3775   //   template<typename U> void f() {}
3776   //   template<> void f<int>() {}
3777   // };
3778   //
3779   // For A<int>::f<int>():
3780   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3781   // * getTemplateSpecializationKindForInstantiation() will return
3782   //       TSK_ImplicitInstantiation
3783   //
3784   // This reflects the facts that A<int>::f<int> is an explicit specialization
3785   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3786   // from A::f<int> if a definition is needed.
3787   if (FunctionTemplateSpecializationInfo *FTSInfo =
3788           TemplateOrSpecialization
3789               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3790     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3791       return MSInfo->getTemplateSpecializationKind();
3792     return FTSInfo->getTemplateSpecializationKind();
3793   }
3794 
3795   if (MemberSpecializationInfo *MSInfo =
3796           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3797     return MSInfo->getTemplateSpecializationKind();
3798 
3799   return TSK_Undeclared;
3800 }
3801 
3802 void
3803 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3804                                           SourceLocation PointOfInstantiation) {
3805   if (FunctionTemplateSpecializationInfo *FTSInfo
3806         = TemplateOrSpecialization.dyn_cast<
3807                                     FunctionTemplateSpecializationInfo*>()) {
3808     FTSInfo->setTemplateSpecializationKind(TSK);
3809     if (TSK != TSK_ExplicitSpecialization &&
3810         PointOfInstantiation.isValid() &&
3811         FTSInfo->getPointOfInstantiation().isInvalid()) {
3812       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3813       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3814         L->InstantiationRequested(this);
3815     }
3816   } else if (MemberSpecializationInfo *MSInfo
3817              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3818     MSInfo->setTemplateSpecializationKind(TSK);
3819     if (TSK != TSK_ExplicitSpecialization &&
3820         PointOfInstantiation.isValid() &&
3821         MSInfo->getPointOfInstantiation().isInvalid()) {
3822       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3823       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3824         L->InstantiationRequested(this);
3825     }
3826   } else
3827     llvm_unreachable("Function cannot have a template specialization kind");
3828 }
3829 
3830 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3831   if (FunctionTemplateSpecializationInfo *FTSInfo
3832         = TemplateOrSpecialization.dyn_cast<
3833                                         FunctionTemplateSpecializationInfo*>())
3834     return FTSInfo->getPointOfInstantiation();
3835   else if (MemberSpecializationInfo *MSInfo
3836              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3837     return MSInfo->getPointOfInstantiation();
3838 
3839   return SourceLocation();
3840 }
3841 
3842 bool FunctionDecl::isOutOfLine() const {
3843   if (Decl::isOutOfLine())
3844     return true;
3845 
3846   // If this function was instantiated from a member function of a
3847   // class template, check whether that member function was defined out-of-line.
3848   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3849     const FunctionDecl *Definition;
3850     if (FD->hasBody(Definition))
3851       return Definition->isOutOfLine();
3852   }
3853 
3854   // If this function was instantiated from a function template,
3855   // check whether that function template was defined out-of-line.
3856   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3857     const FunctionDecl *Definition;
3858     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3859       return Definition->isOutOfLine();
3860   }
3861 
3862   return false;
3863 }
3864 
3865 SourceRange FunctionDecl::getSourceRange() const {
3866   return SourceRange(getOuterLocStart(), EndRangeLoc);
3867 }
3868 
3869 unsigned FunctionDecl::getMemoryFunctionKind() const {
3870   IdentifierInfo *FnInfo = getIdentifier();
3871 
3872   if (!FnInfo)
3873     return 0;
3874 
3875   // Builtin handling.
3876   switch (getBuiltinID()) {
3877   case Builtin::BI__builtin_memset:
3878   case Builtin::BI__builtin___memset_chk:
3879   case Builtin::BImemset:
3880     return Builtin::BImemset;
3881 
3882   case Builtin::BI__builtin_memcpy:
3883   case Builtin::BI__builtin___memcpy_chk:
3884   case Builtin::BImemcpy:
3885     return Builtin::BImemcpy;
3886 
3887   case Builtin::BI__builtin_mempcpy:
3888   case Builtin::BI__builtin___mempcpy_chk:
3889   case Builtin::BImempcpy:
3890     return Builtin::BImempcpy;
3891 
3892   case Builtin::BI__builtin_memmove:
3893   case Builtin::BI__builtin___memmove_chk:
3894   case Builtin::BImemmove:
3895     return Builtin::BImemmove;
3896 
3897   case Builtin::BIstrlcpy:
3898   case Builtin::BI__builtin___strlcpy_chk:
3899     return Builtin::BIstrlcpy;
3900 
3901   case Builtin::BIstrlcat:
3902   case Builtin::BI__builtin___strlcat_chk:
3903     return Builtin::BIstrlcat;
3904 
3905   case Builtin::BI__builtin_memcmp:
3906   case Builtin::BImemcmp:
3907     return Builtin::BImemcmp;
3908 
3909   case Builtin::BI__builtin_bcmp:
3910   case Builtin::BIbcmp:
3911     return Builtin::BIbcmp;
3912 
3913   case Builtin::BI__builtin_strncpy:
3914   case Builtin::BI__builtin___strncpy_chk:
3915   case Builtin::BIstrncpy:
3916     return Builtin::BIstrncpy;
3917 
3918   case Builtin::BI__builtin_strncmp:
3919   case Builtin::BIstrncmp:
3920     return Builtin::BIstrncmp;
3921 
3922   case Builtin::BI__builtin_strncasecmp:
3923   case Builtin::BIstrncasecmp:
3924     return Builtin::BIstrncasecmp;
3925 
3926   case Builtin::BI__builtin_strncat:
3927   case Builtin::BI__builtin___strncat_chk:
3928   case Builtin::BIstrncat:
3929     return Builtin::BIstrncat;
3930 
3931   case Builtin::BI__builtin_strndup:
3932   case Builtin::BIstrndup:
3933     return Builtin::BIstrndup;
3934 
3935   case Builtin::BI__builtin_strlen:
3936   case Builtin::BIstrlen:
3937     return Builtin::BIstrlen;
3938 
3939   case Builtin::BI__builtin_bzero:
3940   case Builtin::BIbzero:
3941     return Builtin::BIbzero;
3942 
3943   default:
3944     if (isExternC()) {
3945       if (FnInfo->isStr("memset"))
3946         return Builtin::BImemset;
3947       else if (FnInfo->isStr("memcpy"))
3948         return Builtin::BImemcpy;
3949       else if (FnInfo->isStr("mempcpy"))
3950         return Builtin::BImempcpy;
3951       else if (FnInfo->isStr("memmove"))
3952         return Builtin::BImemmove;
3953       else if (FnInfo->isStr("memcmp"))
3954         return Builtin::BImemcmp;
3955       else if (FnInfo->isStr("bcmp"))
3956         return Builtin::BIbcmp;
3957       else if (FnInfo->isStr("strncpy"))
3958         return Builtin::BIstrncpy;
3959       else if (FnInfo->isStr("strncmp"))
3960         return Builtin::BIstrncmp;
3961       else if (FnInfo->isStr("strncasecmp"))
3962         return Builtin::BIstrncasecmp;
3963       else if (FnInfo->isStr("strncat"))
3964         return Builtin::BIstrncat;
3965       else if (FnInfo->isStr("strndup"))
3966         return Builtin::BIstrndup;
3967       else if (FnInfo->isStr("strlen"))
3968         return Builtin::BIstrlen;
3969       else if (FnInfo->isStr("bzero"))
3970         return Builtin::BIbzero;
3971     }
3972     break;
3973   }
3974   return 0;
3975 }
3976 
3977 unsigned FunctionDecl::getODRHash() const {
3978   assert(hasODRHash());
3979   return ODRHash;
3980 }
3981 
3982 unsigned FunctionDecl::getODRHash() {
3983   if (hasODRHash())
3984     return ODRHash;
3985 
3986   if (auto *FT = getInstantiatedFromMemberFunction()) {
3987     setHasODRHash(true);
3988     ODRHash = FT->getODRHash();
3989     return ODRHash;
3990   }
3991 
3992   class ODRHash Hash;
3993   Hash.AddFunctionDecl(this);
3994   setHasODRHash(true);
3995   ODRHash = Hash.CalculateHash();
3996   return ODRHash;
3997 }
3998 
3999 //===----------------------------------------------------------------------===//
4000 // FieldDecl Implementation
4001 //===----------------------------------------------------------------------===//
4002 
4003 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4004                              SourceLocation StartLoc, SourceLocation IdLoc,
4005                              IdentifierInfo *Id, QualType T,
4006                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4007                              InClassInitStyle InitStyle) {
4008   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4009                                BW, Mutable, InitStyle);
4010 }
4011 
4012 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4013   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4014                                SourceLocation(), nullptr, QualType(), nullptr,
4015                                nullptr, false, ICIS_NoInit);
4016 }
4017 
4018 bool FieldDecl::isAnonymousStructOrUnion() const {
4019   if (!isImplicit() || getDeclName())
4020     return false;
4021 
4022   if (const auto *Record = getType()->getAs<RecordType>())
4023     return Record->getDecl()->isAnonymousStructOrUnion();
4024 
4025   return false;
4026 }
4027 
4028 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4029   assert(isBitField() && "not a bitfield");
4030   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4031 }
4032 
4033 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4034   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4035          getBitWidthValue(Ctx) == 0;
4036 }
4037 
4038 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4039   if (isZeroLengthBitField(Ctx))
4040     return true;
4041 
4042   // C++2a [intro.object]p7:
4043   //   An object has nonzero size if it
4044   //     -- is not a potentially-overlapping subobject, or
4045   if (!hasAttr<NoUniqueAddressAttr>())
4046     return false;
4047 
4048   //     -- is not of class type, or
4049   const auto *RT = getType()->getAs<RecordType>();
4050   if (!RT)
4051     return false;
4052   const RecordDecl *RD = RT->getDecl()->getDefinition();
4053   if (!RD) {
4054     assert(isInvalidDecl() && "valid field has incomplete type");
4055     return false;
4056   }
4057 
4058   //     -- [has] virtual member functions or virtual base classes, or
4059   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4060   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4061   if (!CXXRD->isEmpty())
4062     return false;
4063 
4064   // Otherwise, [...] the circumstances under which the object has zero size
4065   // are implementation-defined.
4066   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4067   // ABI will do.
4068   return true;
4069 }
4070 
4071 unsigned FieldDecl::getFieldIndex() const {
4072   const FieldDecl *Canonical = getCanonicalDecl();
4073   if (Canonical != this)
4074     return Canonical->getFieldIndex();
4075 
4076   if (CachedFieldIndex) return CachedFieldIndex - 1;
4077 
4078   unsigned Index = 0;
4079   const RecordDecl *RD = getParent()->getDefinition();
4080   assert(RD && "requested index for field of struct with no definition");
4081 
4082   for (auto *Field : RD->fields()) {
4083     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4084     ++Index;
4085   }
4086 
4087   assert(CachedFieldIndex && "failed to find field in parent");
4088   return CachedFieldIndex - 1;
4089 }
4090 
4091 SourceRange FieldDecl::getSourceRange() const {
4092   const Expr *FinalExpr = getInClassInitializer();
4093   if (!FinalExpr)
4094     FinalExpr = getBitWidth();
4095   if (FinalExpr)
4096     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4097   return DeclaratorDecl::getSourceRange();
4098 }
4099 
4100 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4101   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4102          "capturing type in non-lambda or captured record.");
4103   assert(InitStorage.getInt() == ISK_NoInit &&
4104          InitStorage.getPointer() == nullptr &&
4105          "bit width, initializer or captured type already set");
4106   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4107                                ISK_CapturedVLAType);
4108 }
4109 
4110 //===----------------------------------------------------------------------===//
4111 // TagDecl Implementation
4112 //===----------------------------------------------------------------------===//
4113 
4114 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4115                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4116                  SourceLocation StartL)
4117     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4118       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4119   assert((DK != Enum || TK == TTK_Enum) &&
4120          "EnumDecl not matched with TTK_Enum");
4121   setPreviousDecl(PrevDecl);
4122   setTagKind(TK);
4123   setCompleteDefinition(false);
4124   setBeingDefined(false);
4125   setEmbeddedInDeclarator(false);
4126   setFreeStanding(false);
4127   setCompleteDefinitionRequired(false);
4128 }
4129 
4130 SourceLocation TagDecl::getOuterLocStart() const {
4131   return getTemplateOrInnerLocStart(this);
4132 }
4133 
4134 SourceRange TagDecl::getSourceRange() const {
4135   SourceLocation RBraceLoc = BraceRange.getEnd();
4136   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4137   return SourceRange(getOuterLocStart(), E);
4138 }
4139 
4140 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4141 
4142 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4143   TypedefNameDeclOrQualifier = TDD;
4144   if (const Type *T = getTypeForDecl()) {
4145     (void)T;
4146     assert(T->isLinkageValid());
4147   }
4148   assert(isLinkageValid());
4149 }
4150 
4151 void TagDecl::startDefinition() {
4152   setBeingDefined(true);
4153 
4154   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4155     struct CXXRecordDecl::DefinitionData *Data =
4156       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4157     for (auto I : redecls())
4158       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4159   }
4160 }
4161 
4162 void TagDecl::completeDefinition() {
4163   assert((!isa<CXXRecordDecl>(this) ||
4164           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4165          "definition completed but not started");
4166 
4167   setCompleteDefinition(true);
4168   setBeingDefined(false);
4169 
4170   if (ASTMutationListener *L = getASTMutationListener())
4171     L->CompletedTagDefinition(this);
4172 }
4173 
4174 TagDecl *TagDecl::getDefinition() const {
4175   if (isCompleteDefinition())
4176     return const_cast<TagDecl *>(this);
4177 
4178   // If it's possible for us to have an out-of-date definition, check now.
4179   if (mayHaveOutOfDateDef()) {
4180     if (IdentifierInfo *II = getIdentifier()) {
4181       if (II->isOutOfDate()) {
4182         updateOutOfDate(*II);
4183       }
4184     }
4185   }
4186 
4187   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4188     return CXXRD->getDefinition();
4189 
4190   for (auto R : redecls())
4191     if (R->isCompleteDefinition())
4192       return R;
4193 
4194   return nullptr;
4195 }
4196 
4197 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4198   if (QualifierLoc) {
4199     // Make sure the extended qualifier info is allocated.
4200     if (!hasExtInfo())
4201       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4202     // Set qualifier info.
4203     getExtInfo()->QualifierLoc = QualifierLoc;
4204   } else {
4205     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4206     if (hasExtInfo()) {
4207       if (getExtInfo()->NumTemplParamLists == 0) {
4208         getASTContext().Deallocate(getExtInfo());
4209         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4210       }
4211       else
4212         getExtInfo()->QualifierLoc = QualifierLoc;
4213     }
4214   }
4215 }
4216 
4217 void TagDecl::setTemplateParameterListsInfo(
4218     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4219   assert(!TPLists.empty());
4220   // Make sure the extended decl info is allocated.
4221   if (!hasExtInfo())
4222     // Allocate external info struct.
4223     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4224   // Set the template parameter lists info.
4225   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4226 }
4227 
4228 //===----------------------------------------------------------------------===//
4229 // EnumDecl Implementation
4230 //===----------------------------------------------------------------------===//
4231 
4232 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4233                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4234                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4235     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4236   assert(Scoped || !ScopedUsingClassTag);
4237   IntegerType = nullptr;
4238   setNumPositiveBits(0);
4239   setNumNegativeBits(0);
4240   setScoped(Scoped);
4241   setScopedUsingClassTag(ScopedUsingClassTag);
4242   setFixed(Fixed);
4243   setHasODRHash(false);
4244   ODRHash = 0;
4245 }
4246 
4247 void EnumDecl::anchor() {}
4248 
4249 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4250                            SourceLocation StartLoc, SourceLocation IdLoc,
4251                            IdentifierInfo *Id,
4252                            EnumDecl *PrevDecl, bool IsScoped,
4253                            bool IsScopedUsingClassTag, bool IsFixed) {
4254   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4255                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4256   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4257   C.getTypeDeclType(Enum, PrevDecl);
4258   return Enum;
4259 }
4260 
4261 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4262   EnumDecl *Enum =
4263       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4264                            nullptr, nullptr, false, false, false);
4265   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4266   return Enum;
4267 }
4268 
4269 SourceRange EnumDecl::getIntegerTypeRange() const {
4270   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4271     return TI->getTypeLoc().getSourceRange();
4272   return SourceRange();
4273 }
4274 
4275 void EnumDecl::completeDefinition(QualType NewType,
4276                                   QualType NewPromotionType,
4277                                   unsigned NumPositiveBits,
4278                                   unsigned NumNegativeBits) {
4279   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4280   if (!IntegerType)
4281     IntegerType = NewType.getTypePtr();
4282   PromotionType = NewPromotionType;
4283   setNumPositiveBits(NumPositiveBits);
4284   setNumNegativeBits(NumNegativeBits);
4285   TagDecl::completeDefinition();
4286 }
4287 
4288 bool EnumDecl::isClosed() const {
4289   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4290     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4291   return true;
4292 }
4293 
4294 bool EnumDecl::isClosedFlag() const {
4295   return isClosed() && hasAttr<FlagEnumAttr>();
4296 }
4297 
4298 bool EnumDecl::isClosedNonFlag() const {
4299   return isClosed() && !hasAttr<FlagEnumAttr>();
4300 }
4301 
4302 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4303   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4304     return MSI->getTemplateSpecializationKind();
4305 
4306   return TSK_Undeclared;
4307 }
4308 
4309 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4310                                          SourceLocation PointOfInstantiation) {
4311   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4312   assert(MSI && "Not an instantiated member enumeration?");
4313   MSI->setTemplateSpecializationKind(TSK);
4314   if (TSK != TSK_ExplicitSpecialization &&
4315       PointOfInstantiation.isValid() &&
4316       MSI->getPointOfInstantiation().isInvalid())
4317     MSI->setPointOfInstantiation(PointOfInstantiation);
4318 }
4319 
4320 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4321   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4322     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4323       EnumDecl *ED = getInstantiatedFromMemberEnum();
4324       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4325         ED = NewED;
4326       return getDefinitionOrSelf(ED);
4327     }
4328   }
4329 
4330   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4331          "couldn't find pattern for enum instantiation");
4332   return nullptr;
4333 }
4334 
4335 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4336   if (SpecializationInfo)
4337     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4338 
4339   return nullptr;
4340 }
4341 
4342 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4343                                             TemplateSpecializationKind TSK) {
4344   assert(!SpecializationInfo && "Member enum is already a specialization");
4345   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4346 }
4347 
4348 unsigned EnumDecl::getODRHash() {
4349   if (hasODRHash())
4350     return ODRHash;
4351 
4352   class ODRHash Hash;
4353   Hash.AddEnumDecl(this);
4354   setHasODRHash(true);
4355   ODRHash = Hash.CalculateHash();
4356   return ODRHash;
4357 }
4358 
4359 //===----------------------------------------------------------------------===//
4360 // RecordDecl Implementation
4361 //===----------------------------------------------------------------------===//
4362 
4363 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4364                        DeclContext *DC, SourceLocation StartLoc,
4365                        SourceLocation IdLoc, IdentifierInfo *Id,
4366                        RecordDecl *PrevDecl)
4367     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4368   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4369   setHasFlexibleArrayMember(false);
4370   setAnonymousStructOrUnion(false);
4371   setHasObjectMember(false);
4372   setHasVolatileMember(false);
4373   setHasLoadedFieldsFromExternalStorage(false);
4374   setNonTrivialToPrimitiveDefaultInitialize(false);
4375   setNonTrivialToPrimitiveCopy(false);
4376   setNonTrivialToPrimitiveDestroy(false);
4377   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4378   setHasNonTrivialToPrimitiveDestructCUnion(false);
4379   setHasNonTrivialToPrimitiveCopyCUnion(false);
4380   setParamDestroyedInCallee(false);
4381   setArgPassingRestrictions(APK_CanPassInRegs);
4382 }
4383 
4384 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4385                                SourceLocation StartLoc, SourceLocation IdLoc,
4386                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4387   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4388                                          StartLoc, IdLoc, Id, PrevDecl);
4389   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4390 
4391   C.getTypeDeclType(R, PrevDecl);
4392   return R;
4393 }
4394 
4395 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4396   RecordDecl *R =
4397       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4398                              SourceLocation(), nullptr, nullptr);
4399   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4400   return R;
4401 }
4402 
4403 bool RecordDecl::isInjectedClassName() const {
4404   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4405     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4406 }
4407 
4408 bool RecordDecl::isLambda() const {
4409   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4410     return RD->isLambda();
4411   return false;
4412 }
4413 
4414 bool RecordDecl::isCapturedRecord() const {
4415   return hasAttr<CapturedRecordAttr>();
4416 }
4417 
4418 void RecordDecl::setCapturedRecord() {
4419   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4420 }
4421 
4422 bool RecordDecl::isOrContainsUnion() const {
4423   if (isUnion())
4424     return true;
4425 
4426   if (const RecordDecl *Def = getDefinition()) {
4427     for (const FieldDecl *FD : Def->fields()) {
4428       const RecordType *RT = FD->getType()->getAs<RecordType>();
4429       if (RT && RT->getDecl()->isOrContainsUnion())
4430         return true;
4431     }
4432   }
4433 
4434   return false;
4435 }
4436 
4437 RecordDecl::field_iterator RecordDecl::field_begin() const {
4438   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4439     LoadFieldsFromExternalStorage();
4440 
4441   return field_iterator(decl_iterator(FirstDecl));
4442 }
4443 
4444 /// completeDefinition - Notes that the definition of this type is now
4445 /// complete.
4446 void RecordDecl::completeDefinition() {
4447   assert(!isCompleteDefinition() && "Cannot redefine record!");
4448   TagDecl::completeDefinition();
4449 }
4450 
4451 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4452 /// This which can be turned on with an attribute, pragma, or the
4453 /// -mms-bitfields command-line option.
4454 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4455   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4456 }
4457 
4458 void RecordDecl::LoadFieldsFromExternalStorage() const {
4459   ExternalASTSource *Source = getASTContext().getExternalSource();
4460   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4461 
4462   // Notify that we have a RecordDecl doing some initialization.
4463   ExternalASTSource::Deserializing TheFields(Source);
4464 
4465   SmallVector<Decl*, 64> Decls;
4466   setHasLoadedFieldsFromExternalStorage(true);
4467   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4468     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4469   }, Decls);
4470 
4471 #ifndef NDEBUG
4472   // Check that all decls we got were FieldDecls.
4473   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4474     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4475 #endif
4476 
4477   if (Decls.empty())
4478     return;
4479 
4480   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4481                                                  /*FieldsAlreadyLoaded=*/false);
4482 }
4483 
4484 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4485   ASTContext &Context = getASTContext();
4486   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4487       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4488   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4489     return false;
4490   const auto &Blacklist = Context.getSanitizerBlacklist();
4491   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4492   // We may be able to relax some of these requirements.
4493   int ReasonToReject = -1;
4494   if (!CXXRD || CXXRD->isExternCContext())
4495     ReasonToReject = 0;  // is not C++.
4496   else if (CXXRD->hasAttr<PackedAttr>())
4497     ReasonToReject = 1;  // is packed.
4498   else if (CXXRD->isUnion())
4499     ReasonToReject = 2;  // is a union.
4500   else if (CXXRD->isTriviallyCopyable())
4501     ReasonToReject = 3;  // is trivially copyable.
4502   else if (CXXRD->hasTrivialDestructor())
4503     ReasonToReject = 4;  // has trivial destructor.
4504   else if (CXXRD->isStandardLayout())
4505     ReasonToReject = 5;  // is standard layout.
4506   else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4507                                            "field-padding"))
4508     ReasonToReject = 6;  // is in an excluded file.
4509   else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4510                                        getQualifiedNameAsString(),
4511                                        "field-padding"))
4512     ReasonToReject = 7;  // The type is excluded.
4513 
4514   if (EmitRemark) {
4515     if (ReasonToReject >= 0)
4516       Context.getDiagnostics().Report(
4517           getLocation(),
4518           diag::remark_sanitize_address_insert_extra_padding_rejected)
4519           << getQualifiedNameAsString() << ReasonToReject;
4520     else
4521       Context.getDiagnostics().Report(
4522           getLocation(),
4523           diag::remark_sanitize_address_insert_extra_padding_accepted)
4524           << getQualifiedNameAsString();
4525   }
4526   return ReasonToReject < 0;
4527 }
4528 
4529 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4530   for (const auto *I : fields()) {
4531     if (I->getIdentifier())
4532       return I;
4533 
4534     if (const auto *RT = I->getType()->getAs<RecordType>())
4535       if (const FieldDecl *NamedDataMember =
4536               RT->getDecl()->findFirstNamedDataMember())
4537         return NamedDataMember;
4538   }
4539 
4540   // We didn't find a named data member.
4541   return nullptr;
4542 }
4543 
4544 //===----------------------------------------------------------------------===//
4545 // BlockDecl Implementation
4546 //===----------------------------------------------------------------------===//
4547 
4548 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4549     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4550   setIsVariadic(false);
4551   setCapturesCXXThis(false);
4552   setBlockMissingReturnType(true);
4553   setIsConversionFromLambda(false);
4554   setDoesNotEscape(false);
4555   setCanAvoidCopyToHeap(false);
4556 }
4557 
4558 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4559   assert(!ParamInfo && "Already has param info!");
4560 
4561   // Zero params -> null pointer.
4562   if (!NewParamInfo.empty()) {
4563     NumParams = NewParamInfo.size();
4564     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4565     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4566   }
4567 }
4568 
4569 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4570                             bool CapturesCXXThis) {
4571   this->setCapturesCXXThis(CapturesCXXThis);
4572   this->NumCaptures = Captures.size();
4573 
4574   if (Captures.empty()) {
4575     this->Captures = nullptr;
4576     return;
4577   }
4578 
4579   this->Captures = Captures.copy(Context).data();
4580 }
4581 
4582 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4583   for (const auto &I : captures())
4584     // Only auto vars can be captured, so no redeclaration worries.
4585     if (I.getVariable() == variable)
4586       return true;
4587 
4588   return false;
4589 }
4590 
4591 SourceRange BlockDecl::getSourceRange() const {
4592   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4593 }
4594 
4595 //===----------------------------------------------------------------------===//
4596 // Other Decl Allocation/Deallocation Method Implementations
4597 //===----------------------------------------------------------------------===//
4598 
4599 void TranslationUnitDecl::anchor() {}
4600 
4601 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4602   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4603 }
4604 
4605 void PragmaCommentDecl::anchor() {}
4606 
4607 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4608                                              TranslationUnitDecl *DC,
4609                                              SourceLocation CommentLoc,
4610                                              PragmaMSCommentKind CommentKind,
4611                                              StringRef Arg) {
4612   PragmaCommentDecl *PCD =
4613       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4614           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4615   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4616   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4617   return PCD;
4618 }
4619 
4620 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4621                                                          unsigned ID,
4622                                                          unsigned ArgSize) {
4623   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4624       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4625 }
4626 
4627 void PragmaDetectMismatchDecl::anchor() {}
4628 
4629 PragmaDetectMismatchDecl *
4630 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4631                                  SourceLocation Loc, StringRef Name,
4632                                  StringRef Value) {
4633   size_t ValueStart = Name.size() + 1;
4634   PragmaDetectMismatchDecl *PDMD =
4635       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4636           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4637   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4638   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4639   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4640          Value.size());
4641   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4642   return PDMD;
4643 }
4644 
4645 PragmaDetectMismatchDecl *
4646 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4647                                              unsigned NameValueSize) {
4648   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4649       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4650 }
4651 
4652 void ExternCContextDecl::anchor() {}
4653 
4654 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4655                                                TranslationUnitDecl *DC) {
4656   return new (C, DC) ExternCContextDecl(DC);
4657 }
4658 
4659 void LabelDecl::anchor() {}
4660 
4661 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4662                              SourceLocation IdentL, IdentifierInfo *II) {
4663   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4664 }
4665 
4666 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4667                              SourceLocation IdentL, IdentifierInfo *II,
4668                              SourceLocation GnuLabelL) {
4669   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4670   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4671 }
4672 
4673 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4674   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4675                                SourceLocation());
4676 }
4677 
4678 void LabelDecl::setMSAsmLabel(StringRef Name) {
4679 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4680   memcpy(Buffer, Name.data(), Name.size());
4681   Buffer[Name.size()] = '\0';
4682   MSAsmName = Buffer;
4683 }
4684 
4685 void ValueDecl::anchor() {}
4686 
4687 bool ValueDecl::isWeak() const {
4688   for (const auto *I : attrs())
4689     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4690       return true;
4691 
4692   return isWeakImported();
4693 }
4694 
4695 void ImplicitParamDecl::anchor() {}
4696 
4697 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4698                                              SourceLocation IdLoc,
4699                                              IdentifierInfo *Id, QualType Type,
4700                                              ImplicitParamKind ParamKind) {
4701   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4702 }
4703 
4704 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4705                                              ImplicitParamKind ParamKind) {
4706   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4707 }
4708 
4709 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4710                                                          unsigned ID) {
4711   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4712 }
4713 
4714 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4715                                    SourceLocation StartLoc,
4716                                    const DeclarationNameInfo &NameInfo,
4717                                    QualType T, TypeSourceInfo *TInfo,
4718                                    StorageClass SC, bool isInlineSpecified,
4719                                    bool hasWrittenPrototype,
4720                                    ConstexprSpecKind ConstexprKind,
4721                                    Expr *TrailingRequiresClause) {
4722   FunctionDecl *New =
4723       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4724                                SC, isInlineSpecified, ConstexprKind,
4725                                TrailingRequiresClause);
4726   New->setHasWrittenPrototype(hasWrittenPrototype);
4727   return New;
4728 }
4729 
4730 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4731   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4732                                   DeclarationNameInfo(), QualType(), nullptr,
4733                                   SC_None, false, CSK_unspecified, nullptr);
4734 }
4735 
4736 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4737   return new (C, DC) BlockDecl(DC, L);
4738 }
4739 
4740 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4741   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4742 }
4743 
4744 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4745     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4746       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4747 
4748 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4749                                    unsigned NumParams) {
4750   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4751       CapturedDecl(DC, NumParams);
4752 }
4753 
4754 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4755                                                unsigned NumParams) {
4756   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4757       CapturedDecl(nullptr, NumParams);
4758 }
4759 
4760 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4761 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4762 
4763 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4764 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4765 
4766 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4767                                            SourceLocation L,
4768                                            IdentifierInfo *Id, QualType T,
4769                                            Expr *E, const llvm::APSInt &V) {
4770   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4771 }
4772 
4773 EnumConstantDecl *
4774 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4775   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4776                                       QualType(), nullptr, llvm::APSInt());
4777 }
4778 
4779 void IndirectFieldDecl::anchor() {}
4780 
4781 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4782                                      SourceLocation L, DeclarationName N,
4783                                      QualType T,
4784                                      MutableArrayRef<NamedDecl *> CH)
4785     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4786       ChainingSize(CH.size()) {
4787   // In C++, indirect field declarations conflict with tag declarations in the
4788   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4789   if (C.getLangOpts().CPlusPlus)
4790     IdentifierNamespace |= IDNS_Tag;
4791 }
4792 
4793 IndirectFieldDecl *
4794 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4795                           IdentifierInfo *Id, QualType T,
4796                           llvm::MutableArrayRef<NamedDecl *> CH) {
4797   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4798 }
4799 
4800 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4801                                                          unsigned ID) {
4802   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4803                                        DeclarationName(), QualType(), None);
4804 }
4805 
4806 SourceRange EnumConstantDecl::getSourceRange() const {
4807   SourceLocation End = getLocation();
4808   if (Init)
4809     End = Init->getEndLoc();
4810   return SourceRange(getLocation(), End);
4811 }
4812 
4813 void TypeDecl::anchor() {}
4814 
4815 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4816                                  SourceLocation StartLoc, SourceLocation IdLoc,
4817                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4818   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4819 }
4820 
4821 void TypedefNameDecl::anchor() {}
4822 
4823 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4824   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4825     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4826     auto *ThisTypedef = this;
4827     if (AnyRedecl && OwningTypedef) {
4828       OwningTypedef = OwningTypedef->getCanonicalDecl();
4829       ThisTypedef = ThisTypedef->getCanonicalDecl();
4830     }
4831     if (OwningTypedef == ThisTypedef)
4832       return TT->getDecl();
4833   }
4834 
4835   return nullptr;
4836 }
4837 
4838 bool TypedefNameDecl::isTransparentTagSlow() const {
4839   auto determineIsTransparent = [&]() {
4840     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4841       if (auto *TD = TT->getDecl()) {
4842         if (TD->getName() != getName())
4843           return false;
4844         SourceLocation TTLoc = getLocation();
4845         SourceLocation TDLoc = TD->getLocation();
4846         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4847           return false;
4848         SourceManager &SM = getASTContext().getSourceManager();
4849         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4850       }
4851     }
4852     return false;
4853   };
4854 
4855   bool isTransparent = determineIsTransparent();
4856   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4857   return isTransparent;
4858 }
4859 
4860 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4861   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4862                                  nullptr, nullptr);
4863 }
4864 
4865 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4866                                      SourceLocation StartLoc,
4867                                      SourceLocation IdLoc, IdentifierInfo *Id,
4868                                      TypeSourceInfo *TInfo) {
4869   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4870 }
4871 
4872 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4873   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4874                                    SourceLocation(), nullptr, nullptr);
4875 }
4876 
4877 SourceRange TypedefDecl::getSourceRange() const {
4878   SourceLocation RangeEnd = getLocation();
4879   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4880     if (typeIsPostfix(TInfo->getType()))
4881       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4882   }
4883   return SourceRange(getBeginLoc(), RangeEnd);
4884 }
4885 
4886 SourceRange TypeAliasDecl::getSourceRange() const {
4887   SourceLocation RangeEnd = getBeginLoc();
4888   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4889     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4890   return SourceRange(getBeginLoc(), RangeEnd);
4891 }
4892 
4893 void FileScopeAsmDecl::anchor() {}
4894 
4895 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4896                                            StringLiteral *Str,
4897                                            SourceLocation AsmLoc,
4898                                            SourceLocation RParenLoc) {
4899   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4900 }
4901 
4902 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4903                                                        unsigned ID) {
4904   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4905                                       SourceLocation());
4906 }
4907 
4908 void EmptyDecl::anchor() {}
4909 
4910 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4911   return new (C, DC) EmptyDecl(DC, L);
4912 }
4913 
4914 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4915   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4916 }
4917 
4918 //===----------------------------------------------------------------------===//
4919 // ImportDecl Implementation
4920 //===----------------------------------------------------------------------===//
4921 
4922 /// Retrieve the number of module identifiers needed to name the given
4923 /// module.
4924 static unsigned getNumModuleIdentifiers(Module *Mod) {
4925   unsigned Result = 1;
4926   while (Mod->Parent) {
4927     Mod = Mod->Parent;
4928     ++Result;
4929   }
4930   return Result;
4931 }
4932 
4933 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4934                        Module *Imported,
4935                        ArrayRef<SourceLocation> IdentifierLocs)
4936     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
4937       NextLocalImportAndComplete(nullptr, true) {
4938   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4939   auto *StoredLocs = getTrailingObjects<SourceLocation>();
4940   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4941                           StoredLocs);
4942 }
4943 
4944 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4945                        Module *Imported, SourceLocation EndLoc)
4946     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
4947       NextLocalImportAndComplete(nullptr, false) {
4948   *getTrailingObjects<SourceLocation>() = EndLoc;
4949 }
4950 
4951 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4952                                SourceLocation StartLoc, Module *Imported,
4953                                ArrayRef<SourceLocation> IdentifierLocs) {
4954   return new (C, DC,
4955               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4956       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4957 }
4958 
4959 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4960                                        SourceLocation StartLoc,
4961                                        Module *Imported,
4962                                        SourceLocation EndLoc) {
4963   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4964       ImportDecl(DC, StartLoc, Imported, EndLoc);
4965   Import->setImplicit();
4966   return Import;
4967 }
4968 
4969 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4970                                            unsigned NumLocations) {
4971   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4972       ImportDecl(EmptyShell());
4973 }
4974 
4975 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4976   if (!isImportComplete())
4977     return None;
4978 
4979   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4980   return llvm::makeArrayRef(StoredLocs,
4981                             getNumModuleIdentifiers(getImportedModule()));
4982 }
4983 
4984 SourceRange ImportDecl::getSourceRange() const {
4985   if (!isImportComplete())
4986     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4987 
4988   return SourceRange(getLocation(), getIdentifierLocs().back());
4989 }
4990 
4991 //===----------------------------------------------------------------------===//
4992 // ExportDecl Implementation
4993 //===----------------------------------------------------------------------===//
4994 
4995 void ExportDecl::anchor() {}
4996 
4997 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
4998                                SourceLocation ExportLoc) {
4999   return new (C, DC) ExportDecl(DC, ExportLoc);
5000 }
5001 
5002 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5003   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5004 }
5005