1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Redeclarable.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/IdentifierTable.h" 40 #include "clang/Basic/LLVM.h" 41 #include "clang/Basic/LangOptions.h" 42 #include "clang/Basic/Linkage.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/NoSanitizeList.h" 45 #include "clang/Basic/PartialDiagnostic.h" 46 #include "clang/Basic/Sanitizers.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/TargetCXXABI.h" 51 #include "clang/Basic/TargetInfo.h" 52 #include "clang/Basic/Visibility.h" 53 #include "llvm/ADT/APSInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <type_traits> 73 74 using namespace clang; 75 76 Decl *clang::getPrimaryMergedDecl(Decl *D) { 77 return D->getASTContext().getPrimaryMergedDecl(D); 78 } 79 80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 81 SourceLocation Loc = this->Loc; 82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 83 if (Loc.isValid()) { 84 Loc.print(OS, Context.getSourceManager()); 85 OS << ": "; 86 } 87 OS << Message; 88 89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 90 OS << " '"; 91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 92 OS << "'"; 93 } 94 95 OS << '\n'; 96 } 97 98 // Defined here so that it can be inlined into its direct callers. 99 bool Decl::isOutOfLine() const { 100 return !getLexicalDeclContext()->Equals(getDeclContext()); 101 } 102 103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 104 : Decl(TranslationUnit, nullptr, SourceLocation()), 105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 106 107 //===----------------------------------------------------------------------===// 108 // NamedDecl Implementation 109 //===----------------------------------------------------------------------===// 110 111 // Visibility rules aren't rigorously externally specified, but here 112 // are the basic principles behind what we implement: 113 // 114 // 1. An explicit visibility attribute is generally a direct expression 115 // of the user's intent and should be honored. Only the innermost 116 // visibility attribute applies. If no visibility attribute applies, 117 // global visibility settings are considered. 118 // 119 // 2. There is one caveat to the above: on or in a template pattern, 120 // an explicit visibility attribute is just a default rule, and 121 // visibility can be decreased by the visibility of template 122 // arguments. But this, too, has an exception: an attribute on an 123 // explicit specialization or instantiation causes all the visibility 124 // restrictions of the template arguments to be ignored. 125 // 126 // 3. A variable that does not otherwise have explicit visibility can 127 // be restricted by the visibility of its type. 128 // 129 // 4. A visibility restriction is explicit if it comes from an 130 // attribute (or something like it), not a global visibility setting. 131 // When emitting a reference to an external symbol, visibility 132 // restrictions are ignored unless they are explicit. 133 // 134 // 5. When computing the visibility of a non-type, including a 135 // non-type member of a class, only non-type visibility restrictions 136 // are considered: the 'visibility' attribute, global value-visibility 137 // settings, and a few special cases like __private_extern. 138 // 139 // 6. When computing the visibility of a type, including a type member 140 // of a class, only type visibility restrictions are considered: 141 // the 'type_visibility' attribute and global type-visibility settings. 142 // However, a 'visibility' attribute counts as a 'type_visibility' 143 // attribute on any declaration that only has the former. 144 // 145 // The visibility of a "secondary" entity, like a template argument, 146 // is computed using the kind of that entity, not the kind of the 147 // primary entity for which we are computing visibility. For example, 148 // the visibility of a specialization of either of these templates: 149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 150 // template <class T, bool (&compare)(T, X)> class matcher; 151 // is restricted according to the type visibility of the argument 'T', 152 // the type visibility of 'bool(&)(T,X)', and the value visibility of 153 // the argument function 'compare'. That 'has_match' is a value 154 // and 'matcher' is a type only matters when looking for attributes 155 // and settings from the immediate context. 156 157 /// Does this computation kind permit us to consider additional 158 /// visibility settings from attributes and the like? 159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 160 return computation.IgnoreExplicitVisibility; 161 } 162 163 /// Given an LVComputationKind, return one of the same type/value sort 164 /// that records that it already has explicit visibility. 165 static LVComputationKind 166 withExplicitVisibilityAlready(LVComputationKind Kind) { 167 Kind.IgnoreExplicitVisibility = true; 168 return Kind; 169 } 170 171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 172 LVComputationKind kind) { 173 assert(!kind.IgnoreExplicitVisibility && 174 "asking for explicit visibility when we shouldn't be"); 175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 176 } 177 178 /// Is the given declaration a "type" or a "value" for the purposes of 179 /// visibility computation? 180 static bool usesTypeVisibility(const NamedDecl *D) { 181 return isa<TypeDecl>(D) || 182 isa<ClassTemplateDecl>(D) || 183 isa<ObjCInterfaceDecl>(D); 184 } 185 186 /// Does the given declaration have member specialization information, 187 /// and if so, is it an explicit specialization? 188 template <class T> static typename 189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 190 isExplicitMemberSpecialization(const T *D) { 191 if (const MemberSpecializationInfo *member = 192 D->getMemberSpecializationInfo()) { 193 return member->isExplicitSpecialization(); 194 } 195 return false; 196 } 197 198 /// For templates, this question is easier: a member template can't be 199 /// explicitly instantiated, so there's a single bit indicating whether 200 /// or not this is an explicit member specialization. 201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 202 return D->isMemberSpecialization(); 203 } 204 205 /// Given a visibility attribute, return the explicit visibility 206 /// associated with it. 207 template <class T> 208 static Visibility getVisibilityFromAttr(const T *attr) { 209 switch (attr->getVisibility()) { 210 case T::Default: 211 return DefaultVisibility; 212 case T::Hidden: 213 return HiddenVisibility; 214 case T::Protected: 215 return ProtectedVisibility; 216 } 217 llvm_unreachable("bad visibility kind"); 218 } 219 220 /// Return the explicit visibility of the given declaration. 221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 222 NamedDecl::ExplicitVisibilityKind kind) { 223 // If we're ultimately computing the visibility of a type, look for 224 // a 'type_visibility' attribute before looking for 'visibility'. 225 if (kind == NamedDecl::VisibilityForType) { 226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 227 return getVisibilityFromAttr(A); 228 } 229 } 230 231 // If this declaration has an explicit visibility attribute, use it. 232 if (const auto *A = D->getAttr<VisibilityAttr>()) { 233 return getVisibilityFromAttr(A); 234 } 235 236 return None; 237 } 238 239 LinkageInfo LinkageComputer::getLVForType(const Type &T, 240 LVComputationKind computation) { 241 if (computation.IgnoreAllVisibility) 242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 243 return getTypeLinkageAndVisibility(&T); 244 } 245 246 /// Get the most restrictive linkage for the types in the given 247 /// template parameter list. For visibility purposes, template 248 /// parameters are part of the signature of a template. 249 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 250 const TemplateParameterList *Params, LVComputationKind computation) { 251 LinkageInfo LV; 252 for (const NamedDecl *P : *Params) { 253 // Template type parameters are the most common and never 254 // contribute to visibility, pack or not. 255 if (isa<TemplateTypeParmDecl>(P)) 256 continue; 257 258 // Non-type template parameters can be restricted by the value type, e.g. 259 // template <enum X> class A { ... }; 260 // We have to be careful here, though, because we can be dealing with 261 // dependent types. 262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 263 // Handle the non-pack case first. 264 if (!NTTP->isExpandedParameterPack()) { 265 if (!NTTP->getType()->isDependentType()) { 266 LV.merge(getLVForType(*NTTP->getType(), computation)); 267 } 268 continue; 269 } 270 271 // Look at all the types in an expanded pack. 272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 273 QualType type = NTTP->getExpansionType(i); 274 if (!type->isDependentType()) 275 LV.merge(getTypeLinkageAndVisibility(type)); 276 } 277 continue; 278 } 279 280 // Template template parameters can be restricted by their 281 // template parameters, recursively. 282 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 283 284 // Handle the non-pack case first. 285 if (!TTP->isExpandedParameterPack()) { 286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 287 computation)); 288 continue; 289 } 290 291 // Look at all expansions in an expanded pack. 292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 293 i != n; ++i) { 294 LV.merge(getLVForTemplateParameterList( 295 TTP->getExpansionTemplateParameters(i), computation)); 296 } 297 } 298 299 return LV; 300 } 301 302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 303 const Decl *Ret = nullptr; 304 const DeclContext *DC = D->getDeclContext(); 305 while (DC->getDeclKind() != Decl::TranslationUnit) { 306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 307 Ret = cast<Decl>(DC); 308 DC = DC->getParent(); 309 } 310 return Ret; 311 } 312 313 /// Get the most restrictive linkage for the types and 314 /// declarations in the given template argument list. 315 /// 316 /// Note that we don't take an LVComputationKind because we always 317 /// want to honor the visibility of template arguments in the same way. 318 LinkageInfo 319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 320 LVComputationKind computation) { 321 LinkageInfo LV; 322 323 for (const TemplateArgument &Arg : Args) { 324 switch (Arg.getKind()) { 325 case TemplateArgument::Null: 326 case TemplateArgument::Integral: 327 case TemplateArgument::Expression: 328 continue; 329 330 case TemplateArgument::Type: 331 LV.merge(getLVForType(*Arg.getAsType(), computation)); 332 continue; 333 334 case TemplateArgument::Declaration: { 335 const NamedDecl *ND = Arg.getAsDecl(); 336 assert(!usesTypeVisibility(ND)); 337 LV.merge(getLVForDecl(ND, computation)); 338 continue; 339 } 340 341 case TemplateArgument::NullPtr: 342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 343 continue; 344 345 case TemplateArgument::Template: 346 case TemplateArgument::TemplateExpansion: 347 if (TemplateDecl *Template = 348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 349 LV.merge(getLVForDecl(Template, computation)); 350 continue; 351 352 case TemplateArgument::Pack: 353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 354 continue; 355 } 356 llvm_unreachable("bad template argument kind"); 357 } 358 359 return LV; 360 } 361 362 LinkageInfo 363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 364 LVComputationKind computation) { 365 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 366 } 367 368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 369 const FunctionTemplateSpecializationInfo *specInfo) { 370 // Include visibility from the template parameters and arguments 371 // only if this is not an explicit instantiation or specialization 372 // with direct explicit visibility. (Implicit instantiations won't 373 // have a direct attribute.) 374 if (!specInfo->isExplicitInstantiationOrSpecialization()) 375 return true; 376 377 return !fn->hasAttr<VisibilityAttr>(); 378 } 379 380 /// Merge in template-related linkage and visibility for the given 381 /// function template specialization. 382 /// 383 /// We don't need a computation kind here because we can assume 384 /// LVForValue. 385 /// 386 /// \param[out] LV the computation to use for the parent 387 void LinkageComputer::mergeTemplateLV( 388 LinkageInfo &LV, const FunctionDecl *fn, 389 const FunctionTemplateSpecializationInfo *specInfo, 390 LVComputationKind computation) { 391 bool considerVisibility = 392 shouldConsiderTemplateVisibility(fn, specInfo); 393 394 // Merge information from the template parameters. 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 LinkageInfo tempLV = 397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 399 400 // Merge information from the template arguments. 401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 404 } 405 406 /// Does the given declaration have a direct visibility attribute 407 /// that would match the given rules? 408 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 409 LVComputationKind computation) { 410 if (computation.IgnoreAllVisibility) 411 return false; 412 413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 414 D->hasAttr<VisibilityAttr>(); 415 } 416 417 /// Should we consider visibility associated with the template 418 /// arguments and parameters of the given class template specialization? 419 static bool shouldConsiderTemplateVisibility( 420 const ClassTemplateSpecializationDecl *spec, 421 LVComputationKind computation) { 422 // Include visibility from the template parameters and arguments 423 // only if this is not an explicit instantiation or specialization 424 // with direct explicit visibility (and note that implicit 425 // instantiations won't have a direct attribute). 426 // 427 // Furthermore, we want to ignore template parameters and arguments 428 // for an explicit specialization when computing the visibility of a 429 // member thereof with explicit visibility. 430 // 431 // This is a bit complex; let's unpack it. 432 // 433 // An explicit class specialization is an independent, top-level 434 // declaration. As such, if it or any of its members has an 435 // explicit visibility attribute, that must directly express the 436 // user's intent, and we should honor it. The same logic applies to 437 // an explicit instantiation of a member of such a thing. 438 439 // Fast path: if this is not an explicit instantiation or 440 // specialization, we always want to consider template-related 441 // visibility restrictions. 442 if (!spec->isExplicitInstantiationOrSpecialization()) 443 return true; 444 445 // This is the 'member thereof' check. 446 if (spec->isExplicitSpecialization() && 447 hasExplicitVisibilityAlready(computation)) 448 return false; 449 450 return !hasDirectVisibilityAttribute(spec, computation); 451 } 452 453 /// Merge in template-related linkage and visibility for the given 454 /// class template specialization. 455 void LinkageComputer::mergeTemplateLV( 456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 457 LVComputationKind computation) { 458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 459 460 // Merge information from the template parameters, but ignore 461 // visibility if we're only considering template arguments. 462 463 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 464 LinkageInfo tempLV = 465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 466 LV.mergeMaybeWithVisibility(tempLV, 467 considerVisibility && !hasExplicitVisibilityAlready(computation)); 468 469 // Merge information from the template arguments. We ignore 470 // template-argument visibility if we've got an explicit 471 // instantiation with a visibility attribute. 472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 474 if (considerVisibility) 475 LV.mergeVisibility(argsLV); 476 LV.mergeExternalVisibility(argsLV); 477 } 478 479 /// Should we consider visibility associated with the template 480 /// arguments and parameters of the given variable template 481 /// specialization? As usual, follow class template specialization 482 /// logic up to initialization. 483 static bool shouldConsiderTemplateVisibility( 484 const VarTemplateSpecializationDecl *spec, 485 LVComputationKind computation) { 486 // Include visibility from the template parameters and arguments 487 // only if this is not an explicit instantiation or specialization 488 // with direct explicit visibility (and note that implicit 489 // instantiations won't have a direct attribute). 490 if (!spec->isExplicitInstantiationOrSpecialization()) 491 return true; 492 493 // An explicit variable specialization is an independent, top-level 494 // declaration. As such, if it has an explicit visibility attribute, 495 // that must directly express the user's intent, and we should honor 496 // it. 497 if (spec->isExplicitSpecialization() && 498 hasExplicitVisibilityAlready(computation)) 499 return false; 500 501 return !hasDirectVisibilityAttribute(spec, computation); 502 } 503 504 /// Merge in template-related linkage and visibility for the given 505 /// variable template specialization. As usual, follow class template 506 /// specialization logic up to initialization. 507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 508 const VarTemplateSpecializationDecl *spec, 509 LVComputationKind computation) { 510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 511 512 // Merge information from the template parameters, but ignore 513 // visibility if we're only considering template arguments. 514 515 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 516 LinkageInfo tempLV = 517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 518 LV.mergeMaybeWithVisibility(tempLV, 519 considerVisibility && !hasExplicitVisibilityAlready(computation)); 520 521 // Merge information from the template arguments. We ignore 522 // template-argument visibility if we've got an explicit 523 // instantiation with a visibility attribute. 524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 526 if (considerVisibility) 527 LV.mergeVisibility(argsLV); 528 LV.mergeExternalVisibility(argsLV); 529 } 530 531 static bool useInlineVisibilityHidden(const NamedDecl *D) { 532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 533 const LangOptions &Opts = D->getASTContext().getLangOpts(); 534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 535 return false; 536 537 const auto *FD = dyn_cast<FunctionDecl>(D); 538 if (!FD) 539 return false; 540 541 TemplateSpecializationKind TSK = TSK_Undeclared; 542 if (FunctionTemplateSpecializationInfo *spec 543 = FD->getTemplateSpecializationInfo()) { 544 TSK = spec->getTemplateSpecializationKind(); 545 } else if (MemberSpecializationInfo *MSI = 546 FD->getMemberSpecializationInfo()) { 547 TSK = MSI->getTemplateSpecializationKind(); 548 } 549 550 const FunctionDecl *Def = nullptr; 551 // InlineVisibilityHidden only applies to definitions, and 552 // isInlined() only gives meaningful answers on definitions 553 // anyway. 554 return TSK != TSK_ExplicitInstantiationDeclaration && 555 TSK != TSK_ExplicitInstantiationDefinition && 556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 557 } 558 559 template <typename T> static bool isFirstInExternCContext(T *D) { 560 const T *First = D->getFirstDecl(); 561 return First->isInExternCContext(); 562 } 563 564 static bool isSingleLineLanguageLinkage(const Decl &D) { 565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 566 if (!SD->hasBraces()) 567 return true; 568 return false; 569 } 570 571 /// Determine whether D is declared in the purview of a named module. 572 static bool isInModulePurview(const NamedDecl *D) { 573 if (auto *M = D->getOwningModule()) 574 return M->isModulePurview(); 575 return false; 576 } 577 578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 579 // FIXME: Handle isModulePrivate. 580 switch (D->getModuleOwnershipKind()) { 581 case Decl::ModuleOwnershipKind::Unowned: 582 case Decl::ModuleOwnershipKind::ModulePrivate: 583 return false; 584 case Decl::ModuleOwnershipKind::Visible: 585 case Decl::ModuleOwnershipKind::VisibleWhenImported: 586 return isInModulePurview(D); 587 } 588 llvm_unreachable("unexpected module ownership kind"); 589 } 590 591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 592 // Internal linkage declarations within a module interface unit are modeled 593 // as "module-internal linkage", which means that they have internal linkage 594 // formally but can be indirectly accessed from outside the module via inline 595 // functions and templates defined within the module. 596 if (isInModulePurview(D)) 597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 598 599 return LinkageInfo::internal(); 600 } 601 602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 603 // C++ Modules TS [basic.link]/6.8: 604 // - A name declared at namespace scope that does not have internal linkage 605 // by the previous rules and that is introduced by a non-exported 606 // declaration has module linkage. 607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit( 608 cast<NamedDecl>(D->getCanonicalDecl()))) 609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 610 611 return LinkageInfo::external(); 612 } 613 614 static StorageClass getStorageClass(const Decl *D) { 615 if (auto *TD = dyn_cast<TemplateDecl>(D)) 616 D = TD->getTemplatedDecl(); 617 if (D) { 618 if (auto *VD = dyn_cast<VarDecl>(D)) 619 return VD->getStorageClass(); 620 if (auto *FD = dyn_cast<FunctionDecl>(D)) 621 return FD->getStorageClass(); 622 } 623 return SC_None; 624 } 625 626 LinkageInfo 627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 628 LVComputationKind computation, 629 bool IgnoreVarTypeLinkage) { 630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 631 "Not a name having namespace scope"); 632 ASTContext &Context = D->getASTContext(); 633 634 // C++ [basic.link]p3: 635 // A name having namespace scope (3.3.6) has internal linkage if it 636 // is the name of 637 638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 639 // - a variable, variable template, function, or function template 640 // that is explicitly declared static; or 641 // (This bullet corresponds to C99 6.2.2p3.) 642 return getInternalLinkageFor(D); 643 } 644 645 if (const auto *Var = dyn_cast<VarDecl>(D)) { 646 // - a non-template variable of non-volatile const-qualified type, unless 647 // - it is explicitly declared extern, or 648 // - it is inline or exported, or 649 // - it was previously declared and the prior declaration did not have 650 // internal linkage 651 // (There is no equivalent in C99.) 652 if (Context.getLangOpts().CPlusPlus && 653 Var->getType().isConstQualified() && 654 !Var->getType().isVolatileQualified() && 655 !Var->isInline() && 656 !isExportedFromModuleInterfaceUnit(Var) && 657 !isa<VarTemplateSpecializationDecl>(Var) && 658 !Var->getDescribedVarTemplate()) { 659 const VarDecl *PrevVar = Var->getPreviousDecl(); 660 if (PrevVar) 661 return getLVForDecl(PrevVar, computation); 662 663 if (Var->getStorageClass() != SC_Extern && 664 Var->getStorageClass() != SC_PrivateExtern && 665 !isSingleLineLanguageLinkage(*Var)) 666 return getInternalLinkageFor(Var); 667 } 668 669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 670 PrevVar = PrevVar->getPreviousDecl()) { 671 if (PrevVar->getStorageClass() == SC_PrivateExtern && 672 Var->getStorageClass() == SC_None) 673 return getDeclLinkageAndVisibility(PrevVar); 674 // Explicitly declared static. 675 if (PrevVar->getStorageClass() == SC_Static) 676 return getInternalLinkageFor(Var); 677 } 678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 679 // - a data member of an anonymous union. 680 const VarDecl *VD = IFD->getVarDecl(); 681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 683 } 684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 685 686 // FIXME: This gives internal linkage to names that should have no linkage 687 // (those not covered by [basic.link]p6). 688 if (D->isInAnonymousNamespace()) { 689 const auto *Var = dyn_cast<VarDecl>(D); 690 const auto *Func = dyn_cast<FunctionDecl>(D); 691 // FIXME: The check for extern "C" here is not justified by the standard 692 // wording, but we retain it from the pre-DR1113 model to avoid breaking 693 // code. 694 // 695 // C++11 [basic.link]p4: 696 // An unnamed namespace or a namespace declared directly or indirectly 697 // within an unnamed namespace has internal linkage. 698 if ((!Var || !isFirstInExternCContext(Var)) && 699 (!Func || !isFirstInExternCContext(Func))) 700 return getInternalLinkageFor(D); 701 } 702 703 // Set up the defaults. 704 705 // C99 6.2.2p5: 706 // If the declaration of an identifier for an object has file 707 // scope and no storage-class specifier, its linkage is 708 // external. 709 LinkageInfo LV = getExternalLinkageFor(D); 710 711 if (!hasExplicitVisibilityAlready(computation)) { 712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 713 LV.mergeVisibility(*Vis, true); 714 } else { 715 // If we're declared in a namespace with a visibility attribute, 716 // use that namespace's visibility, and it still counts as explicit. 717 for (const DeclContext *DC = D->getDeclContext(); 718 !isa<TranslationUnitDecl>(DC); 719 DC = DC->getParent()) { 720 const auto *ND = dyn_cast<NamespaceDecl>(DC); 721 if (!ND) continue; 722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 723 LV.mergeVisibility(*Vis, true); 724 break; 725 } 726 } 727 } 728 729 // Add in global settings if the above didn't give us direct visibility. 730 if (!LV.isVisibilityExplicit()) { 731 // Use global type/value visibility as appropriate. 732 Visibility globalVisibility = 733 computation.isValueVisibility() 734 ? Context.getLangOpts().getValueVisibilityMode() 735 : Context.getLangOpts().getTypeVisibilityMode(); 736 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 737 738 // If we're paying attention to global visibility, apply 739 // -finline-visibility-hidden if this is an inline method. 740 if (useInlineVisibilityHidden(D)) 741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 742 } 743 } 744 745 // C++ [basic.link]p4: 746 747 // A name having namespace scope that has not been given internal linkage 748 // above and that is the name of 749 // [...bullets...] 750 // has its linkage determined as follows: 751 // - if the enclosing namespace has internal linkage, the name has 752 // internal linkage; [handled above] 753 // - otherwise, if the declaration of the name is attached to a named 754 // module and is not exported, the name has module linkage; 755 // - otherwise, the name has external linkage. 756 // LV is currently set up to handle the last two bullets. 757 // 758 // The bullets are: 759 760 // - a variable; or 761 if (const auto *Var = dyn_cast<VarDecl>(D)) { 762 // GCC applies the following optimization to variables and static 763 // data members, but not to functions: 764 // 765 // Modify the variable's LV by the LV of its type unless this is 766 // C or extern "C". This follows from [basic.link]p9: 767 // A type without linkage shall not be used as the type of a 768 // variable or function with external linkage unless 769 // - the entity has C language linkage, or 770 // - the entity is declared within an unnamed namespace, or 771 // - the entity is not used or is defined in the same 772 // translation unit. 773 // and [basic.link]p10: 774 // ...the types specified by all declarations referring to a 775 // given variable or function shall be identical... 776 // C does not have an equivalent rule. 777 // 778 // Ignore this if we've got an explicit attribute; the user 779 // probably knows what they're doing. 780 // 781 // Note that we don't want to make the variable non-external 782 // because of this, but unique-external linkage suits us. 783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 784 !IgnoreVarTypeLinkage) { 785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 786 if (!isExternallyVisible(TypeLV.getLinkage())) 787 return LinkageInfo::uniqueExternal(); 788 if (!LV.isVisibilityExplicit()) 789 LV.mergeVisibility(TypeLV); 790 } 791 792 if (Var->getStorageClass() == SC_PrivateExtern) 793 LV.mergeVisibility(HiddenVisibility, true); 794 795 // Note that Sema::MergeVarDecl already takes care of implementing 796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 797 // to do it here. 798 799 // As per function and class template specializations (below), 800 // consider LV for the template and template arguments. We're at file 801 // scope, so we do not need to worry about nested specializations. 802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 803 mergeTemplateLV(LV, spec, computation); 804 } 805 806 // - a function; or 807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 808 // In theory, we can modify the function's LV by the LV of its 809 // type unless it has C linkage (see comment above about variables 810 // for justification). In practice, GCC doesn't do this, so it's 811 // just too painful to make work. 812 813 if (Function->getStorageClass() == SC_PrivateExtern) 814 LV.mergeVisibility(HiddenVisibility, true); 815 816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 817 // merging storage classes and visibility attributes, so we don't have to 818 // look at previous decls in here. 819 820 // In C++, then if the type of the function uses a type with 821 // unique-external linkage, it's not legally usable from outside 822 // this translation unit. However, we should use the C linkage 823 // rules instead for extern "C" declarations. 824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 825 // Only look at the type-as-written. Otherwise, deducing the return type 826 // of a function could change its linkage. 827 QualType TypeAsWritten = Function->getType(); 828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 829 TypeAsWritten = TSI->getType(); 830 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 831 return LinkageInfo::uniqueExternal(); 832 } 833 834 // Consider LV from the template and the template arguments. 835 // We're at file scope, so we do not need to worry about nested 836 // specializations. 837 if (FunctionTemplateSpecializationInfo *specInfo 838 = Function->getTemplateSpecializationInfo()) { 839 mergeTemplateLV(LV, Function, specInfo, computation); 840 } 841 842 // - a named class (Clause 9), or an unnamed class defined in a 843 // typedef declaration in which the class has the typedef name 844 // for linkage purposes (7.1.3); or 845 // - a named enumeration (7.2), or an unnamed enumeration 846 // defined in a typedef declaration in which the enumeration 847 // has the typedef name for linkage purposes (7.1.3); or 848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 849 // Unnamed tags have no linkage. 850 if (!Tag->hasNameForLinkage()) 851 return LinkageInfo::none(); 852 853 // If this is a class template specialization, consider the 854 // linkage of the template and template arguments. We're at file 855 // scope, so we do not need to worry about nested specializations. 856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 857 mergeTemplateLV(LV, spec, computation); 858 } 859 860 // FIXME: This is not part of the C++ standard any more. 861 // - an enumerator belonging to an enumeration with external linkage; or 862 } else if (isa<EnumConstantDecl>(D)) { 863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 864 computation); 865 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 866 return LinkageInfo::none(); 867 LV.merge(EnumLV); 868 869 // - a template 870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 871 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 872 LinkageInfo tempLV = 873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 875 876 // An unnamed namespace or a namespace declared directly or indirectly 877 // within an unnamed namespace has internal linkage. All other namespaces 878 // have external linkage. 879 // 880 // We handled names in anonymous namespaces above. 881 } else if (isa<NamespaceDecl>(D)) { 882 return LV; 883 884 // By extension, we assign external linkage to Objective-C 885 // interfaces. 886 } else if (isa<ObjCInterfaceDecl>(D)) { 887 // fallout 888 889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 890 // A typedef declaration has linkage if it gives a type a name for 891 // linkage purposes. 892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 893 return LinkageInfo::none(); 894 895 } else if (isa<MSGuidDecl>(D)) { 896 // A GUID behaves like an inline variable with external linkage. Fall 897 // through. 898 899 // Everything not covered here has no linkage. 900 } else { 901 return LinkageInfo::none(); 902 } 903 904 // If we ended up with non-externally-visible linkage, visibility should 905 // always be default. 906 if (!isExternallyVisible(LV.getLinkage())) 907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 908 909 // Mark the symbols as hidden when compiling for the device. 910 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice) 911 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 912 913 return LV; 914 } 915 916 LinkageInfo 917 LinkageComputer::getLVForClassMember(const NamedDecl *D, 918 LVComputationKind computation, 919 bool IgnoreVarTypeLinkage) { 920 // Only certain class members have linkage. Note that fields don't 921 // really have linkage, but it's convenient to say they do for the 922 // purposes of calculating linkage of pointer-to-data-member 923 // template arguments. 924 // 925 // Templates also don't officially have linkage, but since we ignore 926 // the C++ standard and look at template arguments when determining 927 // linkage and visibility of a template specialization, we might hit 928 // a template template argument that way. If we do, we need to 929 // consider its linkage. 930 if (!(isa<CXXMethodDecl>(D) || 931 isa<VarDecl>(D) || 932 isa<FieldDecl>(D) || 933 isa<IndirectFieldDecl>(D) || 934 isa<TagDecl>(D) || 935 isa<TemplateDecl>(D))) 936 return LinkageInfo::none(); 937 938 LinkageInfo LV; 939 940 // If we have an explicit visibility attribute, merge that in. 941 if (!hasExplicitVisibilityAlready(computation)) { 942 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 943 LV.mergeVisibility(*Vis, true); 944 // If we're paying attention to global visibility, apply 945 // -finline-visibility-hidden if this is an inline method. 946 // 947 // Note that we do this before merging information about 948 // the class visibility. 949 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 950 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 951 } 952 953 // If this class member has an explicit visibility attribute, the only 954 // thing that can change its visibility is the template arguments, so 955 // only look for them when processing the class. 956 LVComputationKind classComputation = computation; 957 if (LV.isVisibilityExplicit()) 958 classComputation = withExplicitVisibilityAlready(computation); 959 960 LinkageInfo classLV = 961 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 962 // The member has the same linkage as the class. If that's not externally 963 // visible, we don't need to compute anything about the linkage. 964 // FIXME: If we're only computing linkage, can we bail out here? 965 if (!isExternallyVisible(classLV.getLinkage())) 966 return classLV; 967 968 969 // Otherwise, don't merge in classLV yet, because in certain cases 970 // we need to completely ignore the visibility from it. 971 972 // Specifically, if this decl exists and has an explicit attribute. 973 const NamedDecl *explicitSpecSuppressor = nullptr; 974 975 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 976 // Only look at the type-as-written. Otherwise, deducing the return type 977 // of a function could change its linkage. 978 QualType TypeAsWritten = MD->getType(); 979 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 980 TypeAsWritten = TSI->getType(); 981 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 982 return LinkageInfo::uniqueExternal(); 983 984 // If this is a method template specialization, use the linkage for 985 // the template parameters and arguments. 986 if (FunctionTemplateSpecializationInfo *spec 987 = MD->getTemplateSpecializationInfo()) { 988 mergeTemplateLV(LV, MD, spec, computation); 989 if (spec->isExplicitSpecialization()) { 990 explicitSpecSuppressor = MD; 991 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 992 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 993 } 994 } else if (isExplicitMemberSpecialization(MD)) { 995 explicitSpecSuppressor = MD; 996 } 997 998 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 999 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1000 mergeTemplateLV(LV, spec, computation); 1001 if (spec->isExplicitSpecialization()) { 1002 explicitSpecSuppressor = spec; 1003 } else { 1004 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1005 if (isExplicitMemberSpecialization(temp)) { 1006 explicitSpecSuppressor = temp->getTemplatedDecl(); 1007 } 1008 } 1009 } else if (isExplicitMemberSpecialization(RD)) { 1010 explicitSpecSuppressor = RD; 1011 } 1012 1013 // Static data members. 1014 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1015 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1016 mergeTemplateLV(LV, spec, computation); 1017 1018 // Modify the variable's linkage by its type, but ignore the 1019 // type's visibility unless it's a definition. 1020 if (!IgnoreVarTypeLinkage) { 1021 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1022 // FIXME: If the type's linkage is not externally visible, we can 1023 // give this static data member UniqueExternalLinkage. 1024 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1025 LV.mergeVisibility(typeLV); 1026 LV.mergeExternalVisibility(typeLV); 1027 } 1028 1029 if (isExplicitMemberSpecialization(VD)) { 1030 explicitSpecSuppressor = VD; 1031 } 1032 1033 // Template members. 1034 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1035 bool considerVisibility = 1036 (!LV.isVisibilityExplicit() && 1037 !classLV.isVisibilityExplicit() && 1038 !hasExplicitVisibilityAlready(computation)); 1039 LinkageInfo tempLV = 1040 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1041 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1042 1043 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1044 if (isExplicitMemberSpecialization(redeclTemp)) { 1045 explicitSpecSuppressor = temp->getTemplatedDecl(); 1046 } 1047 } 1048 } 1049 1050 // We should never be looking for an attribute directly on a template. 1051 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1052 1053 // If this member is an explicit member specialization, and it has 1054 // an explicit attribute, ignore visibility from the parent. 1055 bool considerClassVisibility = true; 1056 if (explicitSpecSuppressor && 1057 // optimization: hasDVA() is true only with explicit visibility. 1058 LV.isVisibilityExplicit() && 1059 classLV.getVisibility() != DefaultVisibility && 1060 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1061 considerClassVisibility = false; 1062 } 1063 1064 // Finally, merge in information from the class. 1065 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1066 return LV; 1067 } 1068 1069 void NamedDecl::anchor() {} 1070 1071 bool NamedDecl::isLinkageValid() const { 1072 if (!hasCachedLinkage()) 1073 return true; 1074 1075 Linkage L = LinkageComputer{} 1076 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1077 .getLinkage(); 1078 return L == getCachedLinkage(); 1079 } 1080 1081 ReservedIdentifierStatus 1082 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1083 const IdentifierInfo *II = getIdentifier(); 1084 1085 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1086 // at lexing time. 1087 if (!II) 1088 return ReservedIdentifierStatus::NotReserved; 1089 1090 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1091 if (Status == ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope) { 1092 // Check if we're at TU level or not. 1093 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1094 return ReservedIdentifierStatus::NotReserved; 1095 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1096 if (!DC->isTranslationUnit()) 1097 return ReservedIdentifierStatus::NotReserved; 1098 } 1099 1100 return Status; 1101 } 1102 1103 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1104 StringRef name = getName(); 1105 if (name.empty()) return SFF_None; 1106 1107 if (name.front() == 'C') 1108 if (name == "CFStringCreateWithFormat" || 1109 name == "CFStringCreateWithFormatAndArguments" || 1110 name == "CFStringAppendFormat" || 1111 name == "CFStringAppendFormatAndArguments") 1112 return SFF_CFString; 1113 return SFF_None; 1114 } 1115 1116 Linkage NamedDecl::getLinkageInternal() const { 1117 // We don't care about visibility here, so ask for the cheapest 1118 // possible visibility analysis. 1119 return LinkageComputer{} 1120 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1121 .getLinkage(); 1122 } 1123 1124 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1125 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1126 } 1127 1128 static Optional<Visibility> 1129 getExplicitVisibilityAux(const NamedDecl *ND, 1130 NamedDecl::ExplicitVisibilityKind kind, 1131 bool IsMostRecent) { 1132 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1133 1134 // Check the declaration itself first. 1135 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1136 return V; 1137 1138 // If this is a member class of a specialization of a class template 1139 // and the corresponding decl has explicit visibility, use that. 1140 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1141 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1142 if (InstantiatedFrom) 1143 return getVisibilityOf(InstantiatedFrom, kind); 1144 } 1145 1146 // If there wasn't explicit visibility there, and this is a 1147 // specialization of a class template, check for visibility 1148 // on the pattern. 1149 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1150 // Walk all the template decl till this point to see if there are 1151 // explicit visibility attributes. 1152 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1153 while (TD != nullptr) { 1154 auto Vis = getVisibilityOf(TD, kind); 1155 if (Vis != None) 1156 return Vis; 1157 TD = TD->getPreviousDecl(); 1158 } 1159 return None; 1160 } 1161 1162 // Use the most recent declaration. 1163 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1164 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1165 if (MostRecent != ND) 1166 return getExplicitVisibilityAux(MostRecent, kind, true); 1167 } 1168 1169 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1170 if (Var->isStaticDataMember()) { 1171 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1172 if (InstantiatedFrom) 1173 return getVisibilityOf(InstantiatedFrom, kind); 1174 } 1175 1176 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1177 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1178 kind); 1179 1180 return None; 1181 } 1182 // Also handle function template specializations. 1183 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1184 // If the function is a specialization of a template with an 1185 // explicit visibility attribute, use that. 1186 if (FunctionTemplateSpecializationInfo *templateInfo 1187 = fn->getTemplateSpecializationInfo()) 1188 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1189 kind); 1190 1191 // If the function is a member of a specialization of a class template 1192 // and the corresponding decl has explicit visibility, use that. 1193 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1194 if (InstantiatedFrom) 1195 return getVisibilityOf(InstantiatedFrom, kind); 1196 1197 return None; 1198 } 1199 1200 // The visibility of a template is stored in the templated decl. 1201 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1202 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1203 1204 return None; 1205 } 1206 1207 Optional<Visibility> 1208 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1209 return getExplicitVisibilityAux(this, kind, false); 1210 } 1211 1212 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1213 Decl *ContextDecl, 1214 LVComputationKind computation) { 1215 // This lambda has its linkage/visibility determined by its owner. 1216 const NamedDecl *Owner; 1217 if (!ContextDecl) 1218 Owner = dyn_cast<NamedDecl>(DC); 1219 else if (isa<ParmVarDecl>(ContextDecl)) 1220 Owner = 1221 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1222 else 1223 Owner = cast<NamedDecl>(ContextDecl); 1224 1225 if (!Owner) 1226 return LinkageInfo::none(); 1227 1228 // If the owner has a deduced type, we need to skip querying the linkage and 1229 // visibility of that type, because it might involve this closure type. The 1230 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1231 // than NoLinkage when we don't strictly need to, which is benign. 1232 auto *VD = dyn_cast<VarDecl>(Owner); 1233 LinkageInfo OwnerLV = 1234 VD && VD->getType()->getContainedDeducedType() 1235 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1236 : getLVForDecl(Owner, computation); 1237 1238 // A lambda never formally has linkage. But if the owner is externally 1239 // visible, then the lambda is too. We apply the same rules to blocks. 1240 if (!isExternallyVisible(OwnerLV.getLinkage())) 1241 return LinkageInfo::none(); 1242 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1243 OwnerLV.isVisibilityExplicit()); 1244 } 1245 1246 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1247 LVComputationKind computation) { 1248 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1249 if (Function->isInAnonymousNamespace() && 1250 !isFirstInExternCContext(Function)) 1251 return getInternalLinkageFor(Function); 1252 1253 // This is a "void f();" which got merged with a file static. 1254 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1255 return getInternalLinkageFor(Function); 1256 1257 LinkageInfo LV; 1258 if (!hasExplicitVisibilityAlready(computation)) { 1259 if (Optional<Visibility> Vis = 1260 getExplicitVisibility(Function, computation)) 1261 LV.mergeVisibility(*Vis, true); 1262 } 1263 1264 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1265 // merging storage classes and visibility attributes, so we don't have to 1266 // look at previous decls in here. 1267 1268 return LV; 1269 } 1270 1271 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1272 if (Var->hasExternalStorage()) { 1273 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1274 return getInternalLinkageFor(Var); 1275 1276 LinkageInfo LV; 1277 if (Var->getStorageClass() == SC_PrivateExtern) 1278 LV.mergeVisibility(HiddenVisibility, true); 1279 else if (!hasExplicitVisibilityAlready(computation)) { 1280 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1281 LV.mergeVisibility(*Vis, true); 1282 } 1283 1284 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1285 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1286 if (PrevLV.getLinkage()) 1287 LV.setLinkage(PrevLV.getLinkage()); 1288 LV.mergeVisibility(PrevLV); 1289 } 1290 1291 return LV; 1292 } 1293 1294 if (!Var->isStaticLocal()) 1295 return LinkageInfo::none(); 1296 } 1297 1298 ASTContext &Context = D->getASTContext(); 1299 if (!Context.getLangOpts().CPlusPlus) 1300 return LinkageInfo::none(); 1301 1302 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1303 if (!OuterD || OuterD->isInvalidDecl()) 1304 return LinkageInfo::none(); 1305 1306 LinkageInfo LV; 1307 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1308 if (!BD->getBlockManglingNumber()) 1309 return LinkageInfo::none(); 1310 1311 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1312 BD->getBlockManglingContextDecl(), computation); 1313 } else { 1314 const auto *FD = cast<FunctionDecl>(OuterD); 1315 if (!FD->isInlined() && 1316 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1317 return LinkageInfo::none(); 1318 1319 // If a function is hidden by -fvisibility-inlines-hidden option and 1320 // is not explicitly attributed as a hidden function, 1321 // we should not make static local variables in the function hidden. 1322 LV = getLVForDecl(FD, computation); 1323 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1324 !LV.isVisibilityExplicit() && 1325 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1326 assert(cast<VarDecl>(D)->isStaticLocal()); 1327 // If this was an implicitly hidden inline method, check again for 1328 // explicit visibility on the parent class, and use that for static locals 1329 // if present. 1330 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1331 LV = getLVForDecl(MD->getParent(), computation); 1332 if (!LV.isVisibilityExplicit()) { 1333 Visibility globalVisibility = 1334 computation.isValueVisibility() 1335 ? Context.getLangOpts().getValueVisibilityMode() 1336 : Context.getLangOpts().getTypeVisibilityMode(); 1337 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1338 /*visibilityExplicit=*/false); 1339 } 1340 } 1341 } 1342 if (!isExternallyVisible(LV.getLinkage())) 1343 return LinkageInfo::none(); 1344 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1345 LV.isVisibilityExplicit()); 1346 } 1347 1348 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1349 LVComputationKind computation, 1350 bool IgnoreVarTypeLinkage) { 1351 // Internal_linkage attribute overrides other considerations. 1352 if (D->hasAttr<InternalLinkageAttr>()) 1353 return getInternalLinkageFor(D); 1354 1355 // Objective-C: treat all Objective-C declarations as having external 1356 // linkage. 1357 switch (D->getKind()) { 1358 default: 1359 break; 1360 1361 // Per C++ [basic.link]p2, only the names of objects, references, 1362 // functions, types, templates, namespaces, and values ever have linkage. 1363 // 1364 // Note that the name of a typedef, namespace alias, using declaration, 1365 // and so on are not the name of the corresponding type, namespace, or 1366 // declaration, so they do *not* have linkage. 1367 case Decl::ImplicitParam: 1368 case Decl::Label: 1369 case Decl::NamespaceAlias: 1370 case Decl::ParmVar: 1371 case Decl::Using: 1372 case Decl::UsingEnum: 1373 case Decl::UsingShadow: 1374 case Decl::UsingDirective: 1375 return LinkageInfo::none(); 1376 1377 case Decl::EnumConstant: 1378 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1379 if (D->getASTContext().getLangOpts().CPlusPlus) 1380 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1381 return LinkageInfo::visible_none(); 1382 1383 case Decl::Typedef: 1384 case Decl::TypeAlias: 1385 // A typedef declaration has linkage if it gives a type a name for 1386 // linkage purposes. 1387 if (!cast<TypedefNameDecl>(D) 1388 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1389 return LinkageInfo::none(); 1390 break; 1391 1392 case Decl::TemplateTemplateParm: // count these as external 1393 case Decl::NonTypeTemplateParm: 1394 case Decl::ObjCAtDefsField: 1395 case Decl::ObjCCategory: 1396 case Decl::ObjCCategoryImpl: 1397 case Decl::ObjCCompatibleAlias: 1398 case Decl::ObjCImplementation: 1399 case Decl::ObjCMethod: 1400 case Decl::ObjCProperty: 1401 case Decl::ObjCPropertyImpl: 1402 case Decl::ObjCProtocol: 1403 return getExternalLinkageFor(D); 1404 1405 case Decl::CXXRecord: { 1406 const auto *Record = cast<CXXRecordDecl>(D); 1407 if (Record->isLambda()) { 1408 if (Record->hasKnownLambdaInternalLinkage() || 1409 !Record->getLambdaManglingNumber()) { 1410 // This lambda has no mangling number, so it's internal. 1411 return getInternalLinkageFor(D); 1412 } 1413 1414 return getLVForClosure( 1415 Record->getDeclContext()->getRedeclContext(), 1416 Record->getLambdaContextDecl(), computation); 1417 } 1418 1419 break; 1420 } 1421 1422 case Decl::TemplateParamObject: { 1423 // The template parameter object can be referenced from anywhere its type 1424 // and value can be referenced. 1425 auto *TPO = cast<TemplateParamObjectDecl>(D); 1426 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1427 LV.merge(getLVForValue(TPO->getValue(), computation)); 1428 return LV; 1429 } 1430 } 1431 1432 // Handle linkage for namespace-scope names. 1433 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1434 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1435 1436 // C++ [basic.link]p5: 1437 // In addition, a member function, static data member, a named 1438 // class or enumeration of class scope, or an unnamed class or 1439 // enumeration defined in a class-scope typedef declaration such 1440 // that the class or enumeration has the typedef name for linkage 1441 // purposes (7.1.3), has external linkage if the name of the class 1442 // has external linkage. 1443 if (D->getDeclContext()->isRecord()) 1444 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1445 1446 // C++ [basic.link]p6: 1447 // The name of a function declared in block scope and the name of 1448 // an object declared by a block scope extern declaration have 1449 // linkage. If there is a visible declaration of an entity with 1450 // linkage having the same name and type, ignoring entities 1451 // declared outside the innermost enclosing namespace scope, the 1452 // block scope declaration declares that same entity and receives 1453 // the linkage of the previous declaration. If there is more than 1454 // one such matching entity, the program is ill-formed. Otherwise, 1455 // if no matching entity is found, the block scope entity receives 1456 // external linkage. 1457 if (D->getDeclContext()->isFunctionOrMethod()) 1458 return getLVForLocalDecl(D, computation); 1459 1460 // C++ [basic.link]p6: 1461 // Names not covered by these rules have no linkage. 1462 return LinkageInfo::none(); 1463 } 1464 1465 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1466 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1467 LVComputationKind computation) { 1468 // Internal_linkage attribute overrides other considerations. 1469 if (D->hasAttr<InternalLinkageAttr>()) 1470 return getInternalLinkageFor(D); 1471 1472 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1473 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1474 1475 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1476 return *LI; 1477 1478 LinkageInfo LV = computeLVForDecl(D, computation); 1479 if (D->hasCachedLinkage()) 1480 assert(D->getCachedLinkage() == LV.getLinkage()); 1481 1482 D->setCachedLinkage(LV.getLinkage()); 1483 cache(D, computation, LV); 1484 1485 #ifndef NDEBUG 1486 // In C (because of gnu inline) and in c++ with microsoft extensions an 1487 // static can follow an extern, so we can have two decls with different 1488 // linkages. 1489 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1490 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1491 return LV; 1492 1493 // We have just computed the linkage for this decl. By induction we know 1494 // that all other computed linkages match, check that the one we just 1495 // computed also does. 1496 NamedDecl *Old = nullptr; 1497 for (auto I : D->redecls()) { 1498 auto *T = cast<NamedDecl>(I); 1499 if (T == D) 1500 continue; 1501 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1502 Old = T; 1503 break; 1504 } 1505 } 1506 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1507 #endif 1508 1509 return LV; 1510 } 1511 1512 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1513 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1514 ? NamedDecl::VisibilityForType 1515 : NamedDecl::VisibilityForValue; 1516 LVComputationKind CK(EK); 1517 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1518 ? CK.forLinkageOnly() 1519 : CK); 1520 } 1521 1522 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1523 Module *M = getOwningModule(); 1524 if (!M) 1525 return nullptr; 1526 1527 switch (M->Kind) { 1528 case Module::ModuleMapModule: 1529 // Module map modules have no special linkage semantics. 1530 return nullptr; 1531 1532 case Module::ModuleInterfaceUnit: 1533 return M; 1534 1535 case Module::GlobalModuleFragment: { 1536 // External linkage declarations in the global module have no owning module 1537 // for linkage purposes. But internal linkage declarations in the global 1538 // module fragment of a particular module are owned by that module for 1539 // linkage purposes. 1540 if (IgnoreLinkage) 1541 return nullptr; 1542 bool InternalLinkage; 1543 if (auto *ND = dyn_cast<NamedDecl>(this)) 1544 InternalLinkage = !ND->hasExternalFormalLinkage(); 1545 else { 1546 auto *NSD = dyn_cast<NamespaceDecl>(this); 1547 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || 1548 isInAnonymousNamespace(); 1549 } 1550 return InternalLinkage ? M->Parent : nullptr; 1551 } 1552 1553 case Module::PrivateModuleFragment: 1554 // The private module fragment is part of its containing module for linkage 1555 // purposes. 1556 return M->Parent; 1557 } 1558 1559 llvm_unreachable("unknown module kind"); 1560 } 1561 1562 void NamedDecl::printName(raw_ostream &os) const { 1563 os << Name; 1564 } 1565 1566 std::string NamedDecl::getQualifiedNameAsString() const { 1567 std::string QualName; 1568 llvm::raw_string_ostream OS(QualName); 1569 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1570 return OS.str(); 1571 } 1572 1573 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1574 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1575 } 1576 1577 void NamedDecl::printQualifiedName(raw_ostream &OS, 1578 const PrintingPolicy &P) const { 1579 if (getDeclContext()->isFunctionOrMethod()) { 1580 // We do not print '(anonymous)' for function parameters without name. 1581 printName(OS); 1582 return; 1583 } 1584 printNestedNameSpecifier(OS, P); 1585 if (getDeclName()) 1586 OS << *this; 1587 else { 1588 // Give the printName override a chance to pick a different name before we 1589 // fall back to "(anonymous)". 1590 SmallString<64> NameBuffer; 1591 llvm::raw_svector_ostream NameOS(NameBuffer); 1592 printName(NameOS); 1593 if (NameBuffer.empty()) 1594 OS << "(anonymous)"; 1595 else 1596 OS << NameBuffer; 1597 } 1598 } 1599 1600 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1601 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1602 } 1603 1604 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1605 const PrintingPolicy &P) const { 1606 const DeclContext *Ctx = getDeclContext(); 1607 1608 // For ObjC methods and properties, look through categories and use the 1609 // interface as context. 1610 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1611 if (auto *ID = MD->getClassInterface()) 1612 Ctx = ID; 1613 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1614 if (auto *MD = PD->getGetterMethodDecl()) 1615 if (auto *ID = MD->getClassInterface()) 1616 Ctx = ID; 1617 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1618 if (auto *CI = ID->getContainingInterface()) 1619 Ctx = CI; 1620 } 1621 1622 if (Ctx->isFunctionOrMethod()) 1623 return; 1624 1625 using ContextsTy = SmallVector<const DeclContext *, 8>; 1626 ContextsTy Contexts; 1627 1628 // Collect named contexts. 1629 DeclarationName NameInScope = getDeclName(); 1630 for (; Ctx; Ctx = Ctx->getParent()) { 1631 // Suppress anonymous namespace if requested. 1632 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1633 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1634 continue; 1635 1636 // Suppress inline namespace if it doesn't make the result ambiguous. 1637 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1638 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1639 continue; 1640 1641 // Skip non-named contexts such as linkage specifications and ExportDecls. 1642 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1643 if (!ND) 1644 continue; 1645 1646 Contexts.push_back(Ctx); 1647 NameInScope = ND->getDeclName(); 1648 } 1649 1650 for (unsigned I = Contexts.size(); I != 0; --I) { 1651 const DeclContext *DC = Contexts[I - 1]; 1652 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1653 OS << Spec->getName(); 1654 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1655 printTemplateArgumentList( 1656 OS, TemplateArgs.asArray(), P, 1657 Spec->getSpecializedTemplate()->getTemplateParameters()); 1658 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1659 if (ND->isAnonymousNamespace()) { 1660 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1661 : "(anonymous namespace)"); 1662 } 1663 else 1664 OS << *ND; 1665 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1666 if (!RD->getIdentifier()) 1667 OS << "(anonymous " << RD->getKindName() << ')'; 1668 else 1669 OS << *RD; 1670 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1671 const FunctionProtoType *FT = nullptr; 1672 if (FD->hasWrittenPrototype()) 1673 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1674 1675 OS << *FD << '('; 1676 if (FT) { 1677 unsigned NumParams = FD->getNumParams(); 1678 for (unsigned i = 0; i < NumParams; ++i) { 1679 if (i) 1680 OS << ", "; 1681 OS << FD->getParamDecl(i)->getType().stream(P); 1682 } 1683 1684 if (FT->isVariadic()) { 1685 if (NumParams > 0) 1686 OS << ", "; 1687 OS << "..."; 1688 } 1689 } 1690 OS << ')'; 1691 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1692 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1693 // enumerator is declared in the scope that immediately contains 1694 // the enum-specifier. Each scoped enumerator is declared in the 1695 // scope of the enumeration. 1696 // For the case of unscoped enumerator, do not include in the qualified 1697 // name any information about its enum enclosing scope, as its visibility 1698 // is global. 1699 if (ED->isScoped()) 1700 OS << *ED; 1701 else 1702 continue; 1703 } else { 1704 OS << *cast<NamedDecl>(DC); 1705 } 1706 OS << "::"; 1707 } 1708 } 1709 1710 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1711 const PrintingPolicy &Policy, 1712 bool Qualified) const { 1713 if (Qualified) 1714 printQualifiedName(OS, Policy); 1715 else 1716 printName(OS); 1717 } 1718 1719 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1720 return true; 1721 } 1722 static bool isRedeclarableImpl(...) { return false; } 1723 static bool isRedeclarable(Decl::Kind K) { 1724 switch (K) { 1725 #define DECL(Type, Base) \ 1726 case Decl::Type: \ 1727 return isRedeclarableImpl((Type##Decl *)nullptr); 1728 #define ABSTRACT_DECL(DECL) 1729 #include "clang/AST/DeclNodes.inc" 1730 } 1731 llvm_unreachable("unknown decl kind"); 1732 } 1733 1734 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1735 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1736 1737 // Never replace one imported declaration with another; we need both results 1738 // when re-exporting. 1739 if (OldD->isFromASTFile() && isFromASTFile()) 1740 return false; 1741 1742 // A kind mismatch implies that the declaration is not replaced. 1743 if (OldD->getKind() != getKind()) 1744 return false; 1745 1746 // For method declarations, we never replace. (Why?) 1747 if (isa<ObjCMethodDecl>(this)) 1748 return false; 1749 1750 // For parameters, pick the newer one. This is either an error or (in 1751 // Objective-C) permitted as an extension. 1752 if (isa<ParmVarDecl>(this)) 1753 return true; 1754 1755 // Inline namespaces can give us two declarations with the same 1756 // name and kind in the same scope but different contexts; we should 1757 // keep both declarations in this case. 1758 if (!this->getDeclContext()->getRedeclContext()->Equals( 1759 OldD->getDeclContext()->getRedeclContext())) 1760 return false; 1761 1762 // Using declarations can be replaced if they import the same name from the 1763 // same context. 1764 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1765 ASTContext &Context = getASTContext(); 1766 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1767 Context.getCanonicalNestedNameSpecifier( 1768 cast<UsingDecl>(OldD)->getQualifier()); 1769 } 1770 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1771 ASTContext &Context = getASTContext(); 1772 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1773 Context.getCanonicalNestedNameSpecifier( 1774 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1775 } 1776 1777 if (isRedeclarable(getKind())) { 1778 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1779 return false; 1780 1781 if (IsKnownNewer) 1782 return true; 1783 1784 // Check whether this is actually newer than OldD. We want to keep the 1785 // newer declaration. This loop will usually only iterate once, because 1786 // OldD is usually the previous declaration. 1787 for (auto D : redecls()) { 1788 if (D == OldD) 1789 break; 1790 1791 // If we reach the canonical declaration, then OldD is not actually older 1792 // than this one. 1793 // 1794 // FIXME: In this case, we should not add this decl to the lookup table. 1795 if (D->isCanonicalDecl()) 1796 return false; 1797 } 1798 1799 // It's a newer declaration of the same kind of declaration in the same 1800 // scope: we want this decl instead of the existing one. 1801 return true; 1802 } 1803 1804 // In all other cases, we need to keep both declarations in case they have 1805 // different visibility. Any attempt to use the name will result in an 1806 // ambiguity if more than one is visible. 1807 return false; 1808 } 1809 1810 bool NamedDecl::hasLinkage() const { 1811 return getFormalLinkage() != NoLinkage; 1812 } 1813 1814 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1815 NamedDecl *ND = this; 1816 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1817 ND = UD->getTargetDecl(); 1818 1819 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1820 return AD->getClassInterface(); 1821 1822 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1823 return AD->getNamespace(); 1824 1825 return ND; 1826 } 1827 1828 bool NamedDecl::isCXXInstanceMember() const { 1829 if (!isCXXClassMember()) 1830 return false; 1831 1832 const NamedDecl *D = this; 1833 if (isa<UsingShadowDecl>(D)) 1834 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1835 1836 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1837 return true; 1838 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1839 return MD->isInstance(); 1840 return false; 1841 } 1842 1843 //===----------------------------------------------------------------------===// 1844 // DeclaratorDecl Implementation 1845 //===----------------------------------------------------------------------===// 1846 1847 template <typename DeclT> 1848 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1849 if (decl->getNumTemplateParameterLists() > 0) 1850 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1851 return decl->getInnerLocStart(); 1852 } 1853 1854 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1855 TypeSourceInfo *TSI = getTypeSourceInfo(); 1856 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1857 return SourceLocation(); 1858 } 1859 1860 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1861 TypeSourceInfo *TSI = getTypeSourceInfo(); 1862 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1863 return SourceLocation(); 1864 } 1865 1866 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1867 if (QualifierLoc) { 1868 // Make sure the extended decl info is allocated. 1869 if (!hasExtInfo()) { 1870 // Save (non-extended) type source info pointer. 1871 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1872 // Allocate external info struct. 1873 DeclInfo = new (getASTContext()) ExtInfo; 1874 // Restore savedTInfo into (extended) decl info. 1875 getExtInfo()->TInfo = savedTInfo; 1876 } 1877 // Set qualifier info. 1878 getExtInfo()->QualifierLoc = QualifierLoc; 1879 } else if (hasExtInfo()) { 1880 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1881 getExtInfo()->QualifierLoc = QualifierLoc; 1882 } 1883 } 1884 1885 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1886 assert(TrailingRequiresClause); 1887 // Make sure the extended decl info is allocated. 1888 if (!hasExtInfo()) { 1889 // Save (non-extended) type source info pointer. 1890 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1891 // Allocate external info struct. 1892 DeclInfo = new (getASTContext()) ExtInfo; 1893 // Restore savedTInfo into (extended) decl info. 1894 getExtInfo()->TInfo = savedTInfo; 1895 } 1896 // Set requires clause info. 1897 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1898 } 1899 1900 void DeclaratorDecl::setTemplateParameterListsInfo( 1901 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1902 assert(!TPLists.empty()); 1903 // Make sure the extended decl info is allocated. 1904 if (!hasExtInfo()) { 1905 // Save (non-extended) type source info pointer. 1906 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1907 // Allocate external info struct. 1908 DeclInfo = new (getASTContext()) ExtInfo; 1909 // Restore savedTInfo into (extended) decl info. 1910 getExtInfo()->TInfo = savedTInfo; 1911 } 1912 // Set the template parameter lists info. 1913 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1914 } 1915 1916 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1917 return getTemplateOrInnerLocStart(this); 1918 } 1919 1920 // Helper function: returns true if QT is or contains a type 1921 // having a postfix component. 1922 static bool typeIsPostfix(QualType QT) { 1923 while (true) { 1924 const Type* T = QT.getTypePtr(); 1925 switch (T->getTypeClass()) { 1926 default: 1927 return false; 1928 case Type::Pointer: 1929 QT = cast<PointerType>(T)->getPointeeType(); 1930 break; 1931 case Type::BlockPointer: 1932 QT = cast<BlockPointerType>(T)->getPointeeType(); 1933 break; 1934 case Type::MemberPointer: 1935 QT = cast<MemberPointerType>(T)->getPointeeType(); 1936 break; 1937 case Type::LValueReference: 1938 case Type::RValueReference: 1939 QT = cast<ReferenceType>(T)->getPointeeType(); 1940 break; 1941 case Type::PackExpansion: 1942 QT = cast<PackExpansionType>(T)->getPattern(); 1943 break; 1944 case Type::Paren: 1945 case Type::ConstantArray: 1946 case Type::DependentSizedArray: 1947 case Type::IncompleteArray: 1948 case Type::VariableArray: 1949 case Type::FunctionProto: 1950 case Type::FunctionNoProto: 1951 return true; 1952 } 1953 } 1954 } 1955 1956 SourceRange DeclaratorDecl::getSourceRange() const { 1957 SourceLocation RangeEnd = getLocation(); 1958 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1959 // If the declaration has no name or the type extends past the name take the 1960 // end location of the type. 1961 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1962 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1963 } 1964 return SourceRange(getOuterLocStart(), RangeEnd); 1965 } 1966 1967 void QualifierInfo::setTemplateParameterListsInfo( 1968 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1969 // Free previous template parameters (if any). 1970 if (NumTemplParamLists > 0) { 1971 Context.Deallocate(TemplParamLists); 1972 TemplParamLists = nullptr; 1973 NumTemplParamLists = 0; 1974 } 1975 // Set info on matched template parameter lists (if any). 1976 if (!TPLists.empty()) { 1977 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1978 NumTemplParamLists = TPLists.size(); 1979 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1980 } 1981 } 1982 1983 //===----------------------------------------------------------------------===// 1984 // VarDecl Implementation 1985 //===----------------------------------------------------------------------===// 1986 1987 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1988 switch (SC) { 1989 case SC_None: break; 1990 case SC_Auto: return "auto"; 1991 case SC_Extern: return "extern"; 1992 case SC_PrivateExtern: return "__private_extern__"; 1993 case SC_Register: return "register"; 1994 case SC_Static: return "static"; 1995 } 1996 1997 llvm_unreachable("Invalid storage class"); 1998 } 1999 2000 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2001 SourceLocation StartLoc, SourceLocation IdLoc, 2002 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2003 StorageClass SC) 2004 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2005 redeclarable_base(C) { 2006 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2007 "VarDeclBitfields too large!"); 2008 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2009 "ParmVarDeclBitfields too large!"); 2010 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2011 "NonParmVarDeclBitfields too large!"); 2012 AllBits = 0; 2013 VarDeclBits.SClass = SC; 2014 // Everything else is implicitly initialized to false. 2015 } 2016 2017 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 2018 SourceLocation StartL, SourceLocation IdL, 2019 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2020 StorageClass S) { 2021 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2022 } 2023 2024 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2025 return new (C, ID) 2026 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2027 QualType(), nullptr, SC_None); 2028 } 2029 2030 void VarDecl::setStorageClass(StorageClass SC) { 2031 assert(isLegalForVariable(SC)); 2032 VarDeclBits.SClass = SC; 2033 } 2034 2035 VarDecl::TLSKind VarDecl::getTLSKind() const { 2036 switch (VarDeclBits.TSCSpec) { 2037 case TSCS_unspecified: 2038 if (!hasAttr<ThreadAttr>() && 2039 !(getASTContext().getLangOpts().OpenMPUseTLS && 2040 getASTContext().getTargetInfo().isTLSSupported() && 2041 hasAttr<OMPThreadPrivateDeclAttr>())) 2042 return TLS_None; 2043 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2044 LangOptions::MSVC2015)) || 2045 hasAttr<OMPThreadPrivateDeclAttr>()) 2046 ? TLS_Dynamic 2047 : TLS_Static; 2048 case TSCS___thread: // Fall through. 2049 case TSCS__Thread_local: 2050 return TLS_Static; 2051 case TSCS_thread_local: 2052 return TLS_Dynamic; 2053 } 2054 llvm_unreachable("Unknown thread storage class specifier!"); 2055 } 2056 2057 SourceRange VarDecl::getSourceRange() const { 2058 if (const Expr *Init = getInit()) { 2059 SourceLocation InitEnd = Init->getEndLoc(); 2060 // If Init is implicit, ignore its source range and fallback on 2061 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2062 if (InitEnd.isValid() && InitEnd != getLocation()) 2063 return SourceRange(getOuterLocStart(), InitEnd); 2064 } 2065 return DeclaratorDecl::getSourceRange(); 2066 } 2067 2068 template<typename T> 2069 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2070 // C++ [dcl.link]p1: All function types, function names with external linkage, 2071 // and variable names with external linkage have a language linkage. 2072 if (!D.hasExternalFormalLinkage()) 2073 return NoLanguageLinkage; 2074 2075 // Language linkage is a C++ concept, but saying that everything else in C has 2076 // C language linkage fits the implementation nicely. 2077 ASTContext &Context = D.getASTContext(); 2078 if (!Context.getLangOpts().CPlusPlus) 2079 return CLanguageLinkage; 2080 2081 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2082 // language linkage of the names of class members and the function type of 2083 // class member functions. 2084 const DeclContext *DC = D.getDeclContext(); 2085 if (DC->isRecord()) 2086 return CXXLanguageLinkage; 2087 2088 // If the first decl is in an extern "C" context, any other redeclaration 2089 // will have C language linkage. If the first one is not in an extern "C" 2090 // context, we would have reported an error for any other decl being in one. 2091 if (isFirstInExternCContext(&D)) 2092 return CLanguageLinkage; 2093 return CXXLanguageLinkage; 2094 } 2095 2096 template<typename T> 2097 static bool isDeclExternC(const T &D) { 2098 // Since the context is ignored for class members, they can only have C++ 2099 // language linkage or no language linkage. 2100 const DeclContext *DC = D.getDeclContext(); 2101 if (DC->isRecord()) { 2102 assert(D.getASTContext().getLangOpts().CPlusPlus); 2103 return false; 2104 } 2105 2106 return D.getLanguageLinkage() == CLanguageLinkage; 2107 } 2108 2109 LanguageLinkage VarDecl::getLanguageLinkage() const { 2110 return getDeclLanguageLinkage(*this); 2111 } 2112 2113 bool VarDecl::isExternC() const { 2114 return isDeclExternC(*this); 2115 } 2116 2117 bool VarDecl::isInExternCContext() const { 2118 return getLexicalDeclContext()->isExternCContext(); 2119 } 2120 2121 bool VarDecl::isInExternCXXContext() const { 2122 return getLexicalDeclContext()->isExternCXXContext(); 2123 } 2124 2125 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2126 2127 VarDecl::DefinitionKind 2128 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2129 if (isThisDeclarationADemotedDefinition()) 2130 return DeclarationOnly; 2131 2132 // C++ [basic.def]p2: 2133 // A declaration is a definition unless [...] it contains the 'extern' 2134 // specifier or a linkage-specification and neither an initializer [...], 2135 // it declares a non-inline static data member in a class declaration [...], 2136 // it declares a static data member outside a class definition and the variable 2137 // was defined within the class with the constexpr specifier [...], 2138 // C++1y [temp.expl.spec]p15: 2139 // An explicit specialization of a static data member or an explicit 2140 // specialization of a static data member template is a definition if the 2141 // declaration includes an initializer; otherwise, it is a declaration. 2142 // 2143 // FIXME: How do you declare (but not define) a partial specialization of 2144 // a static data member template outside the containing class? 2145 if (isStaticDataMember()) { 2146 if (isOutOfLine() && 2147 !(getCanonicalDecl()->isInline() && 2148 getCanonicalDecl()->isConstexpr()) && 2149 (hasInit() || 2150 // If the first declaration is out-of-line, this may be an 2151 // instantiation of an out-of-line partial specialization of a variable 2152 // template for which we have not yet instantiated the initializer. 2153 (getFirstDecl()->isOutOfLine() 2154 ? getTemplateSpecializationKind() == TSK_Undeclared 2155 : getTemplateSpecializationKind() != 2156 TSK_ExplicitSpecialization) || 2157 isa<VarTemplatePartialSpecializationDecl>(this))) 2158 return Definition; 2159 if (!isOutOfLine() && isInline()) 2160 return Definition; 2161 return DeclarationOnly; 2162 } 2163 // C99 6.7p5: 2164 // A definition of an identifier is a declaration for that identifier that 2165 // [...] causes storage to be reserved for that object. 2166 // Note: that applies for all non-file-scope objects. 2167 // C99 6.9.2p1: 2168 // If the declaration of an identifier for an object has file scope and an 2169 // initializer, the declaration is an external definition for the identifier 2170 if (hasInit()) 2171 return Definition; 2172 2173 if (hasDefiningAttr()) 2174 return Definition; 2175 2176 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2177 if (!SAA->isInherited()) 2178 return Definition; 2179 2180 // A variable template specialization (other than a static data member 2181 // template or an explicit specialization) is a declaration until we 2182 // instantiate its initializer. 2183 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2184 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2185 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2186 !VTSD->IsCompleteDefinition) 2187 return DeclarationOnly; 2188 } 2189 2190 if (hasExternalStorage()) 2191 return DeclarationOnly; 2192 2193 // [dcl.link] p7: 2194 // A declaration directly contained in a linkage-specification is treated 2195 // as if it contains the extern specifier for the purpose of determining 2196 // the linkage of the declared name and whether it is a definition. 2197 if (isSingleLineLanguageLinkage(*this)) 2198 return DeclarationOnly; 2199 2200 // C99 6.9.2p2: 2201 // A declaration of an object that has file scope without an initializer, 2202 // and without a storage class specifier or the scs 'static', constitutes 2203 // a tentative definition. 2204 // No such thing in C++. 2205 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2206 return TentativeDefinition; 2207 2208 // What's left is (in C, block-scope) declarations without initializers or 2209 // external storage. These are definitions. 2210 return Definition; 2211 } 2212 2213 VarDecl *VarDecl::getActingDefinition() { 2214 DefinitionKind Kind = isThisDeclarationADefinition(); 2215 if (Kind != TentativeDefinition) 2216 return nullptr; 2217 2218 VarDecl *LastTentative = nullptr; 2219 VarDecl *First = getFirstDecl(); 2220 for (auto I : First->redecls()) { 2221 Kind = I->isThisDeclarationADefinition(); 2222 if (Kind == Definition) 2223 return nullptr; 2224 if (Kind == TentativeDefinition) 2225 LastTentative = I; 2226 } 2227 return LastTentative; 2228 } 2229 2230 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2231 VarDecl *First = getFirstDecl(); 2232 for (auto I : First->redecls()) { 2233 if (I->isThisDeclarationADefinition(C) == Definition) 2234 return I; 2235 } 2236 return nullptr; 2237 } 2238 2239 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2240 DefinitionKind Kind = DeclarationOnly; 2241 2242 const VarDecl *First = getFirstDecl(); 2243 for (auto I : First->redecls()) { 2244 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2245 if (Kind == Definition) 2246 break; 2247 } 2248 2249 return Kind; 2250 } 2251 2252 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2253 for (auto I : redecls()) { 2254 if (auto Expr = I->getInit()) { 2255 D = I; 2256 return Expr; 2257 } 2258 } 2259 return nullptr; 2260 } 2261 2262 bool VarDecl::hasInit() const { 2263 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2264 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2265 return false; 2266 2267 return !Init.isNull(); 2268 } 2269 2270 Expr *VarDecl::getInit() { 2271 if (!hasInit()) 2272 return nullptr; 2273 2274 if (auto *S = Init.dyn_cast<Stmt *>()) 2275 return cast<Expr>(S); 2276 2277 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2278 } 2279 2280 Stmt **VarDecl::getInitAddress() { 2281 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2282 return &ES->Value; 2283 2284 return Init.getAddrOfPtr1(); 2285 } 2286 2287 VarDecl *VarDecl::getInitializingDeclaration() { 2288 VarDecl *Def = nullptr; 2289 for (auto I : redecls()) { 2290 if (I->hasInit()) 2291 return I; 2292 2293 if (I->isThisDeclarationADefinition()) { 2294 if (isStaticDataMember()) 2295 return I; 2296 Def = I; 2297 } 2298 } 2299 return Def; 2300 } 2301 2302 bool VarDecl::isOutOfLine() const { 2303 if (Decl::isOutOfLine()) 2304 return true; 2305 2306 if (!isStaticDataMember()) 2307 return false; 2308 2309 // If this static data member was instantiated from a static data member of 2310 // a class template, check whether that static data member was defined 2311 // out-of-line. 2312 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2313 return VD->isOutOfLine(); 2314 2315 return false; 2316 } 2317 2318 void VarDecl::setInit(Expr *I) { 2319 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2320 Eval->~EvaluatedStmt(); 2321 getASTContext().Deallocate(Eval); 2322 } 2323 2324 Init = I; 2325 } 2326 2327 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2328 const LangOptions &Lang = C.getLangOpts(); 2329 2330 // OpenCL permits const integral variables to be used in constant 2331 // expressions, like in C++98. 2332 if (!Lang.CPlusPlus && !Lang.OpenCL) 2333 return false; 2334 2335 // Function parameters are never usable in constant expressions. 2336 if (isa<ParmVarDecl>(this)) 2337 return false; 2338 2339 // The values of weak variables are never usable in constant expressions. 2340 if (isWeak()) 2341 return false; 2342 2343 // In C++11, any variable of reference type can be used in a constant 2344 // expression if it is initialized by a constant expression. 2345 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2346 return true; 2347 2348 // Only const objects can be used in constant expressions in C++. C++98 does 2349 // not require the variable to be non-volatile, but we consider this to be a 2350 // defect. 2351 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2352 return false; 2353 2354 // In C++, const, non-volatile variables of integral or enumeration types 2355 // can be used in constant expressions. 2356 if (getType()->isIntegralOrEnumerationType()) 2357 return true; 2358 2359 // Additionally, in C++11, non-volatile constexpr variables can be used in 2360 // constant expressions. 2361 return Lang.CPlusPlus11 && isConstexpr(); 2362 } 2363 2364 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2365 // C++2a [expr.const]p3: 2366 // A variable is usable in constant expressions after its initializing 2367 // declaration is encountered... 2368 const VarDecl *DefVD = nullptr; 2369 const Expr *Init = getAnyInitializer(DefVD); 2370 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2371 return false; 2372 // ... if it is a constexpr variable, or it is of reference type or of 2373 // const-qualified integral or enumeration type, ... 2374 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2375 return false; 2376 // ... and its initializer is a constant initializer. 2377 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2378 return false; 2379 // C++98 [expr.const]p1: 2380 // An integral constant-expression can involve only [...] const variables 2381 // or static data members of integral or enumeration types initialized with 2382 // [integer] constant expressions (dcl.init) 2383 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2384 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2385 return false; 2386 return true; 2387 } 2388 2389 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2390 /// form, which contains extra information on the evaluated value of the 2391 /// initializer. 2392 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2393 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2394 if (!Eval) { 2395 // Note: EvaluatedStmt contains an APValue, which usually holds 2396 // resources not allocated from the ASTContext. We need to do some 2397 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2398 // where we can detect whether there's anything to clean up or not. 2399 Eval = new (getASTContext()) EvaluatedStmt; 2400 Eval->Value = Init.get<Stmt *>(); 2401 Init = Eval; 2402 } 2403 return Eval; 2404 } 2405 2406 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2407 return Init.dyn_cast<EvaluatedStmt *>(); 2408 } 2409 2410 APValue *VarDecl::evaluateValue() const { 2411 SmallVector<PartialDiagnosticAt, 8> Notes; 2412 return evaluateValue(Notes); 2413 } 2414 2415 APValue *VarDecl::evaluateValue( 2416 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2417 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2418 2419 const auto *Init = cast<Expr>(Eval->Value); 2420 assert(!Init->isValueDependent()); 2421 2422 // We only produce notes indicating why an initializer is non-constant the 2423 // first time it is evaluated. FIXME: The notes won't always be emitted the 2424 // first time we try evaluation, so might not be produced at all. 2425 if (Eval->WasEvaluated) 2426 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2427 2428 if (Eval->IsEvaluating) { 2429 // FIXME: Produce a diagnostic for self-initialization. 2430 return nullptr; 2431 } 2432 2433 Eval->IsEvaluating = true; 2434 2435 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2436 this, Notes); 2437 2438 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2439 // or that it's empty (so that there's nothing to clean up) if evaluation 2440 // failed. 2441 if (!Result) 2442 Eval->Evaluated = APValue(); 2443 else if (Eval->Evaluated.needsCleanup()) 2444 getASTContext().addDestruction(&Eval->Evaluated); 2445 2446 Eval->IsEvaluating = false; 2447 Eval->WasEvaluated = true; 2448 2449 return Result ? &Eval->Evaluated : nullptr; 2450 } 2451 2452 APValue *VarDecl::getEvaluatedValue() const { 2453 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2454 if (Eval->WasEvaluated) 2455 return &Eval->Evaluated; 2456 2457 return nullptr; 2458 } 2459 2460 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2461 const Expr *Init = getInit(); 2462 assert(Init && "no initializer"); 2463 2464 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2465 if (!Eval->CheckedForICEInit) { 2466 Eval->CheckedForICEInit = true; 2467 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2468 } 2469 return Eval->HasICEInit; 2470 } 2471 2472 bool VarDecl::hasConstantInitialization() const { 2473 // In C, all globals (and only globals) have constant initialization. 2474 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2475 return true; 2476 2477 // In C++, it depends on whether the evaluation at the point of definition 2478 // was evaluatable as a constant initializer. 2479 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2480 return Eval->HasConstantInitialization; 2481 2482 return false; 2483 } 2484 2485 bool VarDecl::checkForConstantInitialization( 2486 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2487 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2488 // If we ask for the value before we know whether we have a constant 2489 // initializer, we can compute the wrong value (for example, due to 2490 // std::is_constant_evaluated()). 2491 assert(!Eval->WasEvaluated && 2492 "already evaluated var value before checking for constant init"); 2493 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2494 2495 assert(!cast<Expr>(Eval->Value)->isValueDependent()); 2496 2497 // Evaluate the initializer to check whether it's a constant expression. 2498 Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty(); 2499 return Eval->HasConstantInitialization; 2500 } 2501 2502 bool VarDecl::isParameterPack() const { 2503 return isa<PackExpansionType>(getType()); 2504 } 2505 2506 template<typename DeclT> 2507 static DeclT *getDefinitionOrSelf(DeclT *D) { 2508 assert(D); 2509 if (auto *Def = D->getDefinition()) 2510 return Def; 2511 return D; 2512 } 2513 2514 bool VarDecl::isEscapingByref() const { 2515 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2516 } 2517 2518 bool VarDecl::isNonEscapingByref() const { 2519 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2520 } 2521 2522 bool VarDecl::hasDependentAlignment() const { 2523 QualType T = getType(); 2524 return T->isDependentType() || T->isUndeducedAutoType() || 2525 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2526 return AA->isAlignmentDependent(); 2527 }); 2528 } 2529 2530 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2531 const VarDecl *VD = this; 2532 2533 // If this is an instantiated member, walk back to the template from which 2534 // it was instantiated. 2535 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2536 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2537 VD = VD->getInstantiatedFromStaticDataMember(); 2538 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2539 VD = NewVD; 2540 } 2541 } 2542 2543 // If it's an instantiated variable template specialization, find the 2544 // template or partial specialization from which it was instantiated. 2545 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2546 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2547 auto From = VDTemplSpec->getInstantiatedFrom(); 2548 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2549 while (!VTD->isMemberSpecialization()) { 2550 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2551 if (!NewVTD) 2552 break; 2553 VTD = NewVTD; 2554 } 2555 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2556 } 2557 if (auto *VTPSD = 2558 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2559 while (!VTPSD->isMemberSpecialization()) { 2560 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2561 if (!NewVTPSD) 2562 break; 2563 VTPSD = NewVTPSD; 2564 } 2565 return getDefinitionOrSelf<VarDecl>(VTPSD); 2566 } 2567 } 2568 } 2569 2570 // If this is the pattern of a variable template, find where it was 2571 // instantiated from. FIXME: Is this necessary? 2572 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2573 while (!VarTemplate->isMemberSpecialization()) { 2574 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2575 if (!NewVT) 2576 break; 2577 VarTemplate = NewVT; 2578 } 2579 2580 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2581 } 2582 2583 if (VD == this) 2584 return nullptr; 2585 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2586 } 2587 2588 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2589 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2590 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2591 2592 return nullptr; 2593 } 2594 2595 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2596 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2597 return Spec->getSpecializationKind(); 2598 2599 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2600 return MSI->getTemplateSpecializationKind(); 2601 2602 return TSK_Undeclared; 2603 } 2604 2605 TemplateSpecializationKind 2606 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2607 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2608 return MSI->getTemplateSpecializationKind(); 2609 2610 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2611 return Spec->getSpecializationKind(); 2612 2613 return TSK_Undeclared; 2614 } 2615 2616 SourceLocation VarDecl::getPointOfInstantiation() const { 2617 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2618 return Spec->getPointOfInstantiation(); 2619 2620 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2621 return MSI->getPointOfInstantiation(); 2622 2623 return SourceLocation(); 2624 } 2625 2626 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2627 return getASTContext().getTemplateOrSpecializationInfo(this) 2628 .dyn_cast<VarTemplateDecl *>(); 2629 } 2630 2631 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2632 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2633 } 2634 2635 bool VarDecl::isKnownToBeDefined() const { 2636 const auto &LangOpts = getASTContext().getLangOpts(); 2637 // In CUDA mode without relocatable device code, variables of form 'extern 2638 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2639 // memory pool. These are never undefined variables, even if they appear 2640 // inside of an anon namespace or static function. 2641 // 2642 // With CUDA relocatable device code enabled, these variables don't get 2643 // special handling; they're treated like regular extern variables. 2644 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2645 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2646 isa<IncompleteArrayType>(getType())) 2647 return true; 2648 2649 return hasDefinition(); 2650 } 2651 2652 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2653 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2654 (!Ctx.getLangOpts().RegisterStaticDestructors && 2655 !hasAttr<AlwaysDestroyAttr>())); 2656 } 2657 2658 QualType::DestructionKind 2659 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2660 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2661 if (Eval->HasConstantDestruction) 2662 return QualType::DK_none; 2663 2664 if (isNoDestroy(Ctx)) 2665 return QualType::DK_none; 2666 2667 return getType().isDestructedType(); 2668 } 2669 2670 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2671 if (isStaticDataMember()) 2672 // FIXME: Remove ? 2673 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2674 return getASTContext().getTemplateOrSpecializationInfo(this) 2675 .dyn_cast<MemberSpecializationInfo *>(); 2676 return nullptr; 2677 } 2678 2679 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2680 SourceLocation PointOfInstantiation) { 2681 assert((isa<VarTemplateSpecializationDecl>(this) || 2682 getMemberSpecializationInfo()) && 2683 "not a variable or static data member template specialization"); 2684 2685 if (VarTemplateSpecializationDecl *Spec = 2686 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2687 Spec->setSpecializationKind(TSK); 2688 if (TSK != TSK_ExplicitSpecialization && 2689 PointOfInstantiation.isValid() && 2690 Spec->getPointOfInstantiation().isInvalid()) { 2691 Spec->setPointOfInstantiation(PointOfInstantiation); 2692 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2693 L->InstantiationRequested(this); 2694 } 2695 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2696 MSI->setTemplateSpecializationKind(TSK); 2697 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2698 MSI->getPointOfInstantiation().isInvalid()) { 2699 MSI->setPointOfInstantiation(PointOfInstantiation); 2700 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2701 L->InstantiationRequested(this); 2702 } 2703 } 2704 } 2705 2706 void 2707 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2708 TemplateSpecializationKind TSK) { 2709 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2710 "Previous template or instantiation?"); 2711 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2712 } 2713 2714 //===----------------------------------------------------------------------===// 2715 // ParmVarDecl Implementation 2716 //===----------------------------------------------------------------------===// 2717 2718 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2719 SourceLocation StartLoc, 2720 SourceLocation IdLoc, IdentifierInfo *Id, 2721 QualType T, TypeSourceInfo *TInfo, 2722 StorageClass S, Expr *DefArg) { 2723 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2724 S, DefArg); 2725 } 2726 2727 QualType ParmVarDecl::getOriginalType() const { 2728 TypeSourceInfo *TSI = getTypeSourceInfo(); 2729 QualType T = TSI ? TSI->getType() : getType(); 2730 if (const auto *DT = dyn_cast<DecayedType>(T)) 2731 return DT->getOriginalType(); 2732 return T; 2733 } 2734 2735 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2736 return new (C, ID) 2737 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2738 nullptr, QualType(), nullptr, SC_None, nullptr); 2739 } 2740 2741 SourceRange ParmVarDecl::getSourceRange() const { 2742 if (!hasInheritedDefaultArg()) { 2743 SourceRange ArgRange = getDefaultArgRange(); 2744 if (ArgRange.isValid()) 2745 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2746 } 2747 2748 // DeclaratorDecl considers the range of postfix types as overlapping with the 2749 // declaration name, but this is not the case with parameters in ObjC methods. 2750 if (isa<ObjCMethodDecl>(getDeclContext())) 2751 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2752 2753 return DeclaratorDecl::getSourceRange(); 2754 } 2755 2756 bool ParmVarDecl::isDestroyedInCallee() const { 2757 if (hasAttr<NSConsumedAttr>()) 2758 return true; 2759 2760 auto *RT = getType()->getAs<RecordType>(); 2761 if (RT && RT->getDecl()->isParamDestroyedInCallee()) 2762 return true; 2763 2764 return false; 2765 } 2766 2767 Expr *ParmVarDecl::getDefaultArg() { 2768 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2769 assert(!hasUninstantiatedDefaultArg() && 2770 "Default argument is not yet instantiated!"); 2771 2772 Expr *Arg = getInit(); 2773 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2774 return E->getSubExpr(); 2775 2776 return Arg; 2777 } 2778 2779 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2780 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2781 Init = defarg; 2782 } 2783 2784 SourceRange ParmVarDecl::getDefaultArgRange() const { 2785 switch (ParmVarDeclBits.DefaultArgKind) { 2786 case DAK_None: 2787 case DAK_Unparsed: 2788 // Nothing we can do here. 2789 return SourceRange(); 2790 2791 case DAK_Uninstantiated: 2792 return getUninstantiatedDefaultArg()->getSourceRange(); 2793 2794 case DAK_Normal: 2795 if (const Expr *E = getInit()) 2796 return E->getSourceRange(); 2797 2798 // Missing an actual expression, may be invalid. 2799 return SourceRange(); 2800 } 2801 llvm_unreachable("Invalid default argument kind."); 2802 } 2803 2804 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2805 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2806 Init = arg; 2807 } 2808 2809 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2810 assert(hasUninstantiatedDefaultArg() && 2811 "Wrong kind of initialization expression!"); 2812 return cast_or_null<Expr>(Init.get<Stmt *>()); 2813 } 2814 2815 bool ParmVarDecl::hasDefaultArg() const { 2816 // FIXME: We should just return false for DAK_None here once callers are 2817 // prepared for the case that we encountered an invalid default argument and 2818 // were unable to even build an invalid expression. 2819 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2820 !Init.isNull(); 2821 } 2822 2823 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2824 getASTContext().setParameterIndex(this, parameterIndex); 2825 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2826 } 2827 2828 unsigned ParmVarDecl::getParameterIndexLarge() const { 2829 return getASTContext().getParameterIndex(this); 2830 } 2831 2832 //===----------------------------------------------------------------------===// 2833 // FunctionDecl Implementation 2834 //===----------------------------------------------------------------------===// 2835 2836 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2837 SourceLocation StartLoc, 2838 const DeclarationNameInfo &NameInfo, QualType T, 2839 TypeSourceInfo *TInfo, StorageClass S, 2840 bool isInlineSpecified, 2841 ConstexprSpecKind ConstexprKind, 2842 Expr *TrailingRequiresClause) 2843 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2844 StartLoc), 2845 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2846 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2847 assert(T.isNull() || T->isFunctionType()); 2848 FunctionDeclBits.SClass = S; 2849 FunctionDeclBits.IsInline = isInlineSpecified; 2850 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2851 FunctionDeclBits.IsVirtualAsWritten = false; 2852 FunctionDeclBits.IsPure = false; 2853 FunctionDeclBits.HasInheritedPrototype = false; 2854 FunctionDeclBits.HasWrittenPrototype = true; 2855 FunctionDeclBits.IsDeleted = false; 2856 FunctionDeclBits.IsTrivial = false; 2857 FunctionDeclBits.IsTrivialForCall = false; 2858 FunctionDeclBits.IsDefaulted = false; 2859 FunctionDeclBits.IsExplicitlyDefaulted = false; 2860 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2861 FunctionDeclBits.HasImplicitReturnZero = false; 2862 FunctionDeclBits.IsLateTemplateParsed = false; 2863 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 2864 FunctionDeclBits.InstantiationIsPending = false; 2865 FunctionDeclBits.UsesSEHTry = false; 2866 FunctionDeclBits.UsesFPIntrin = false; 2867 FunctionDeclBits.HasSkippedBody = false; 2868 FunctionDeclBits.WillHaveBody = false; 2869 FunctionDeclBits.IsMultiVersion = false; 2870 FunctionDeclBits.IsCopyDeductionCandidate = false; 2871 FunctionDeclBits.HasODRHash = false; 2872 if (TrailingRequiresClause) 2873 setTrailingRequiresClause(TrailingRequiresClause); 2874 } 2875 2876 void FunctionDecl::getNameForDiagnostic( 2877 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2878 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2879 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2880 if (TemplateArgs) 2881 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2882 } 2883 2884 bool FunctionDecl::isVariadic() const { 2885 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2886 return FT->isVariadic(); 2887 return false; 2888 } 2889 2890 FunctionDecl::DefaultedFunctionInfo * 2891 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 2892 ArrayRef<DeclAccessPair> Lookups) { 2893 DefaultedFunctionInfo *Info = new (Context.Allocate( 2894 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 2895 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 2896 DefaultedFunctionInfo; 2897 Info->NumLookups = Lookups.size(); 2898 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 2899 Info->getTrailingObjects<DeclAccessPair>()); 2900 return Info; 2901 } 2902 2903 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 2904 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 2905 assert(!Body && "can't replace function body with defaulted function info"); 2906 2907 FunctionDeclBits.HasDefaultedFunctionInfo = true; 2908 DefaultedInfo = Info; 2909 } 2910 2911 FunctionDecl::DefaultedFunctionInfo * 2912 FunctionDecl::getDefaultedFunctionInfo() const { 2913 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 2914 } 2915 2916 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2917 for (auto I : redecls()) { 2918 if (I->doesThisDeclarationHaveABody()) { 2919 Definition = I; 2920 return true; 2921 } 2922 } 2923 2924 return false; 2925 } 2926 2927 bool FunctionDecl::hasTrivialBody() const { 2928 Stmt *S = getBody(); 2929 if (!S) { 2930 // Since we don't have a body for this function, we don't know if it's 2931 // trivial or not. 2932 return false; 2933 } 2934 2935 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2936 return true; 2937 return false; 2938 } 2939 2940 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 2941 if (!getFriendObjectKind()) 2942 return false; 2943 2944 // Check for a friend function instantiated from a friend function 2945 // definition in a templated class. 2946 if (const FunctionDecl *InstantiatedFrom = 2947 getInstantiatedFromMemberFunction()) 2948 return InstantiatedFrom->getFriendObjectKind() && 2949 InstantiatedFrom->isThisDeclarationADefinition(); 2950 2951 // Check for a friend function template instantiated from a friend 2952 // function template definition in a templated class. 2953 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 2954 if (const FunctionTemplateDecl *InstantiatedFrom = 2955 Template->getInstantiatedFromMemberTemplate()) 2956 return InstantiatedFrom->getFriendObjectKind() && 2957 InstantiatedFrom->isThisDeclarationADefinition(); 2958 } 2959 2960 return false; 2961 } 2962 2963 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 2964 bool CheckForPendingFriendDefinition) const { 2965 for (const FunctionDecl *FD : redecls()) { 2966 if (FD->isThisDeclarationADefinition()) { 2967 Definition = FD; 2968 return true; 2969 } 2970 2971 // If this is a friend function defined in a class template, it does not 2972 // have a body until it is used, nevertheless it is a definition, see 2973 // [temp.inst]p2: 2974 // 2975 // ... for the purpose of determining whether an instantiated redeclaration 2976 // is valid according to [basic.def.odr] and [class.mem], a declaration that 2977 // corresponds to a definition in the template is considered to be a 2978 // definition. 2979 // 2980 // The following code must produce redefinition error: 2981 // 2982 // template<typename T> struct C20 { friend void func_20() {} }; 2983 // C20<int> c20i; 2984 // void func_20() {} 2985 // 2986 if (CheckForPendingFriendDefinition && 2987 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 2988 Definition = FD; 2989 return true; 2990 } 2991 } 2992 2993 return false; 2994 } 2995 2996 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2997 if (!hasBody(Definition)) 2998 return nullptr; 2999 3000 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3001 "definition should not have a body"); 3002 if (Definition->Body) 3003 return Definition->Body.get(getASTContext().getExternalSource()); 3004 3005 return nullptr; 3006 } 3007 3008 void FunctionDecl::setBody(Stmt *B) { 3009 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3010 Body = LazyDeclStmtPtr(B); 3011 if (B) 3012 EndRangeLoc = B->getEndLoc(); 3013 } 3014 3015 void FunctionDecl::setPure(bool P) { 3016 FunctionDeclBits.IsPure = P; 3017 if (P) 3018 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3019 Parent->markedVirtualFunctionPure(); 3020 } 3021 3022 template<std::size_t Len> 3023 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3024 IdentifierInfo *II = ND->getIdentifier(); 3025 return II && II->isStr(Str); 3026 } 3027 3028 bool FunctionDecl::isMain() const { 3029 const TranslationUnitDecl *tunit = 3030 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3031 return tunit && 3032 !tunit->getASTContext().getLangOpts().Freestanding && 3033 isNamed(this, "main"); 3034 } 3035 3036 bool FunctionDecl::isMSVCRTEntryPoint() const { 3037 const TranslationUnitDecl *TUnit = 3038 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3039 if (!TUnit) 3040 return false; 3041 3042 // Even though we aren't really targeting MSVCRT if we are freestanding, 3043 // semantic analysis for these functions remains the same. 3044 3045 // MSVCRT entry points only exist on MSVCRT targets. 3046 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3047 return false; 3048 3049 // Nameless functions like constructors cannot be entry points. 3050 if (!getIdentifier()) 3051 return false; 3052 3053 return llvm::StringSwitch<bool>(getName()) 3054 .Cases("main", // an ANSI console app 3055 "wmain", // a Unicode console App 3056 "WinMain", // an ANSI GUI app 3057 "wWinMain", // a Unicode GUI app 3058 "DllMain", // a DLL 3059 true) 3060 .Default(false); 3061 } 3062 3063 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3064 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 3065 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 3066 getDeclName().getCXXOverloadedOperator() == OO_Delete || 3067 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 3068 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 3069 3070 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3071 return false; 3072 3073 const auto *proto = getType()->castAs<FunctionProtoType>(); 3074 if (proto->getNumParams() != 2 || proto->isVariadic()) 3075 return false; 3076 3077 ASTContext &Context = 3078 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3079 ->getASTContext(); 3080 3081 // The result type and first argument type are constant across all 3082 // these operators. The second argument must be exactly void*. 3083 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3084 } 3085 3086 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3087 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3088 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3089 return false; 3090 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3091 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3092 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3093 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3094 return false; 3095 3096 if (isa<CXXRecordDecl>(getDeclContext())) 3097 return false; 3098 3099 // This can only fail for an invalid 'operator new' declaration. 3100 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3101 return false; 3102 3103 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3104 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3105 return false; 3106 3107 // If this is a single-parameter function, it must be a replaceable global 3108 // allocation or deallocation function. 3109 if (FPT->getNumParams() == 1) 3110 return true; 3111 3112 unsigned Params = 1; 3113 QualType Ty = FPT->getParamType(Params); 3114 ASTContext &Ctx = getASTContext(); 3115 3116 auto Consume = [&] { 3117 ++Params; 3118 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3119 }; 3120 3121 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3122 bool IsSizedDelete = false; 3123 if (Ctx.getLangOpts().SizedDeallocation && 3124 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3125 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3126 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3127 IsSizedDelete = true; 3128 Consume(); 3129 } 3130 3131 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3132 // new/delete. 3133 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3134 Consume(); 3135 if (AlignmentParam) 3136 *AlignmentParam = Params; 3137 } 3138 3139 // Finally, if this is not a sized delete, the final parameter can 3140 // be a 'const std::nothrow_t&'. 3141 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3142 Ty = Ty->getPointeeType(); 3143 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3144 return false; 3145 if (Ty->isNothrowT()) { 3146 if (IsNothrow) 3147 *IsNothrow = true; 3148 Consume(); 3149 } 3150 } 3151 3152 return Params == FPT->getNumParams(); 3153 } 3154 3155 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3156 if (!getBuiltinID()) 3157 return false; 3158 3159 const FunctionDecl *Definition; 3160 return hasBody(Definition) && Definition->isInlineSpecified(); 3161 } 3162 3163 bool FunctionDecl::isDestroyingOperatorDelete() const { 3164 // C++ P0722: 3165 // Within a class C, a single object deallocation function with signature 3166 // (T, std::destroying_delete_t, <more params>) 3167 // is a destroying operator delete. 3168 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3169 getNumParams() < 2) 3170 return false; 3171 3172 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3173 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3174 RD->getIdentifier()->isStr("destroying_delete_t"); 3175 } 3176 3177 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3178 return getDeclLanguageLinkage(*this); 3179 } 3180 3181 bool FunctionDecl::isExternC() const { 3182 return isDeclExternC(*this); 3183 } 3184 3185 bool FunctionDecl::isInExternCContext() const { 3186 if (hasAttr<OpenCLKernelAttr>()) 3187 return true; 3188 return getLexicalDeclContext()->isExternCContext(); 3189 } 3190 3191 bool FunctionDecl::isInExternCXXContext() const { 3192 return getLexicalDeclContext()->isExternCXXContext(); 3193 } 3194 3195 bool FunctionDecl::isGlobal() const { 3196 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3197 return Method->isStatic(); 3198 3199 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3200 return false; 3201 3202 for (const DeclContext *DC = getDeclContext(); 3203 DC->isNamespace(); 3204 DC = DC->getParent()) { 3205 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3206 if (!Namespace->getDeclName()) 3207 return false; 3208 break; 3209 } 3210 } 3211 3212 return true; 3213 } 3214 3215 bool FunctionDecl::isNoReturn() const { 3216 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3217 hasAttr<C11NoReturnAttr>()) 3218 return true; 3219 3220 if (auto *FnTy = getType()->getAs<FunctionType>()) 3221 return FnTy->getNoReturnAttr(); 3222 3223 return false; 3224 } 3225 3226 3227 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3228 if (hasAttr<TargetAttr>()) 3229 return MultiVersionKind::Target; 3230 if (hasAttr<CPUDispatchAttr>()) 3231 return MultiVersionKind::CPUDispatch; 3232 if (hasAttr<CPUSpecificAttr>()) 3233 return MultiVersionKind::CPUSpecific; 3234 return MultiVersionKind::None; 3235 } 3236 3237 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3238 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3239 } 3240 3241 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3242 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3243 } 3244 3245 bool FunctionDecl::isTargetMultiVersion() const { 3246 return isMultiVersion() && hasAttr<TargetAttr>(); 3247 } 3248 3249 void 3250 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3251 redeclarable_base::setPreviousDecl(PrevDecl); 3252 3253 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3254 FunctionTemplateDecl *PrevFunTmpl 3255 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3256 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3257 FunTmpl->setPreviousDecl(PrevFunTmpl); 3258 } 3259 3260 if (PrevDecl && PrevDecl->isInlined()) 3261 setImplicitlyInline(true); 3262 } 3263 3264 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3265 3266 /// Returns a value indicating whether this function corresponds to a builtin 3267 /// function. 3268 /// 3269 /// The function corresponds to a built-in function if it is declared at 3270 /// translation scope or within an extern "C" block and its name matches with 3271 /// the name of a builtin. The returned value will be 0 for functions that do 3272 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3273 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3274 /// value. 3275 /// 3276 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3277 /// functions as their wrapped builtins. This shouldn't be done in general, but 3278 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3279 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3280 unsigned BuiltinID = 0; 3281 3282 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3283 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3284 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3285 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3286 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3287 BuiltinID = A->getID(); 3288 } 3289 3290 if (!BuiltinID) 3291 return 0; 3292 3293 // If the function is marked "overloadable", it has a different mangled name 3294 // and is not the C library function. 3295 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3296 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3297 return 0; 3298 3299 ASTContext &Context = getASTContext(); 3300 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3301 return BuiltinID; 3302 3303 // This function has the name of a known C library 3304 // function. Determine whether it actually refers to the C library 3305 // function or whether it just has the same name. 3306 3307 // If this is a static function, it's not a builtin. 3308 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3309 return 0; 3310 3311 // OpenCL v1.2 s6.9.f - The library functions defined in 3312 // the C99 standard headers are not available. 3313 if (Context.getLangOpts().OpenCL && 3314 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3315 return 0; 3316 3317 // CUDA does not have device-side standard library. printf and malloc are the 3318 // only special cases that are supported by device-side runtime. 3319 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3320 !hasAttr<CUDAHostAttr>() && 3321 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3322 return 0; 3323 3324 // As AMDGCN implementation of OpenMP does not have a device-side standard 3325 // library, none of the predefined library functions except printf and malloc 3326 // should be treated as a builtin i.e. 0 should be returned for them. 3327 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3328 Context.getLangOpts().OpenMPIsDevice && 3329 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3330 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3331 return 0; 3332 3333 return BuiltinID; 3334 } 3335 3336 /// getNumParams - Return the number of parameters this function must have 3337 /// based on its FunctionType. This is the length of the ParamInfo array 3338 /// after it has been created. 3339 unsigned FunctionDecl::getNumParams() const { 3340 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3341 return FPT ? FPT->getNumParams() : 0; 3342 } 3343 3344 void FunctionDecl::setParams(ASTContext &C, 3345 ArrayRef<ParmVarDecl *> NewParamInfo) { 3346 assert(!ParamInfo && "Already has param info!"); 3347 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3348 3349 // Zero params -> null pointer. 3350 if (!NewParamInfo.empty()) { 3351 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3352 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3353 } 3354 } 3355 3356 /// getMinRequiredArguments - Returns the minimum number of arguments 3357 /// needed to call this function. This may be fewer than the number of 3358 /// function parameters, if some of the parameters have default 3359 /// arguments (in C++) or are parameter packs (C++11). 3360 unsigned FunctionDecl::getMinRequiredArguments() const { 3361 if (!getASTContext().getLangOpts().CPlusPlus) 3362 return getNumParams(); 3363 3364 // Note that it is possible for a parameter with no default argument to 3365 // follow a parameter with a default argument. 3366 unsigned NumRequiredArgs = 0; 3367 unsigned MinParamsSoFar = 0; 3368 for (auto *Param : parameters()) { 3369 if (!Param->isParameterPack()) { 3370 ++MinParamsSoFar; 3371 if (!Param->hasDefaultArg()) 3372 NumRequiredArgs = MinParamsSoFar; 3373 } 3374 } 3375 return NumRequiredArgs; 3376 } 3377 3378 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3379 return getNumParams() == 1 || 3380 (getNumParams() > 1 && 3381 std::all_of(param_begin() + 1, param_end(), 3382 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3383 } 3384 3385 /// The combination of the extern and inline keywords under MSVC forces 3386 /// the function to be required. 3387 /// 3388 /// Note: This function assumes that we will only get called when isInlined() 3389 /// would return true for this FunctionDecl. 3390 bool FunctionDecl::isMSExternInline() const { 3391 assert(isInlined() && "expected to get called on an inlined function!"); 3392 3393 const ASTContext &Context = getASTContext(); 3394 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3395 !hasAttr<DLLExportAttr>()) 3396 return false; 3397 3398 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3399 FD = FD->getPreviousDecl()) 3400 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3401 return true; 3402 3403 return false; 3404 } 3405 3406 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3407 if (Redecl->getStorageClass() != SC_Extern) 3408 return false; 3409 3410 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3411 FD = FD->getPreviousDecl()) 3412 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3413 return false; 3414 3415 return true; 3416 } 3417 3418 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3419 // Only consider file-scope declarations in this test. 3420 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3421 return false; 3422 3423 // Only consider explicit declarations; the presence of a builtin for a 3424 // libcall shouldn't affect whether a definition is externally visible. 3425 if (Redecl->isImplicit()) 3426 return false; 3427 3428 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3429 return true; // Not an inline definition 3430 3431 return false; 3432 } 3433 3434 /// For a function declaration in C or C++, determine whether this 3435 /// declaration causes the definition to be externally visible. 3436 /// 3437 /// For instance, this determines if adding the current declaration to the set 3438 /// of redeclarations of the given functions causes 3439 /// isInlineDefinitionExternallyVisible to change from false to true. 3440 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3441 assert(!doesThisDeclarationHaveABody() && 3442 "Must have a declaration without a body."); 3443 3444 ASTContext &Context = getASTContext(); 3445 3446 if (Context.getLangOpts().MSVCCompat) { 3447 const FunctionDecl *Definition; 3448 if (hasBody(Definition) && Definition->isInlined() && 3449 redeclForcesDefMSVC(this)) 3450 return true; 3451 } 3452 3453 if (Context.getLangOpts().CPlusPlus) 3454 return false; 3455 3456 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3457 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3458 // an externally visible definition. 3459 // 3460 // FIXME: What happens if gnu_inline gets added on after the first 3461 // declaration? 3462 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3463 return false; 3464 3465 const FunctionDecl *Prev = this; 3466 bool FoundBody = false; 3467 while ((Prev = Prev->getPreviousDecl())) { 3468 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3469 3470 if (Prev->doesThisDeclarationHaveABody()) { 3471 // If it's not the case that both 'inline' and 'extern' are 3472 // specified on the definition, then it is always externally visible. 3473 if (!Prev->isInlineSpecified() || 3474 Prev->getStorageClass() != SC_Extern) 3475 return false; 3476 } else if (Prev->isInlineSpecified() && 3477 Prev->getStorageClass() != SC_Extern) { 3478 return false; 3479 } 3480 } 3481 return FoundBody; 3482 } 3483 3484 // C99 6.7.4p6: 3485 // [...] If all of the file scope declarations for a function in a 3486 // translation unit include the inline function specifier without extern, 3487 // then the definition in that translation unit is an inline definition. 3488 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3489 return false; 3490 const FunctionDecl *Prev = this; 3491 bool FoundBody = false; 3492 while ((Prev = Prev->getPreviousDecl())) { 3493 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3494 if (RedeclForcesDefC99(Prev)) 3495 return false; 3496 } 3497 return FoundBody; 3498 } 3499 3500 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3501 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3502 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3503 : FunctionTypeLoc(); 3504 } 3505 3506 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3507 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3508 if (!FTL) 3509 return SourceRange(); 3510 3511 // Skip self-referential return types. 3512 const SourceManager &SM = getASTContext().getSourceManager(); 3513 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3514 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3515 if (RTRange.isInvalid() || Boundary.isInvalid() || 3516 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3517 return SourceRange(); 3518 3519 return RTRange; 3520 } 3521 3522 SourceRange FunctionDecl::getParametersSourceRange() const { 3523 unsigned NP = getNumParams(); 3524 SourceLocation EllipsisLoc = getEllipsisLoc(); 3525 3526 if (NP == 0 && EllipsisLoc.isInvalid()) 3527 return SourceRange(); 3528 3529 SourceLocation Begin = 3530 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3531 SourceLocation End = EllipsisLoc.isValid() 3532 ? EllipsisLoc 3533 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3534 3535 return SourceRange(Begin, End); 3536 } 3537 3538 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3539 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3540 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3541 } 3542 3543 /// For an inline function definition in C, or for a gnu_inline function 3544 /// in C++, determine whether the definition will be externally visible. 3545 /// 3546 /// Inline function definitions are always available for inlining optimizations. 3547 /// However, depending on the language dialect, declaration specifiers, and 3548 /// attributes, the definition of an inline function may or may not be 3549 /// "externally" visible to other translation units in the program. 3550 /// 3551 /// In C99, inline definitions are not externally visible by default. However, 3552 /// if even one of the global-scope declarations is marked "extern inline", the 3553 /// inline definition becomes externally visible (C99 6.7.4p6). 3554 /// 3555 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3556 /// definition, we use the GNU semantics for inline, which are nearly the 3557 /// opposite of C99 semantics. In particular, "inline" by itself will create 3558 /// an externally visible symbol, but "extern inline" will not create an 3559 /// externally visible symbol. 3560 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3561 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3562 hasAttr<AliasAttr>()) && 3563 "Must be a function definition"); 3564 assert(isInlined() && "Function must be inline"); 3565 ASTContext &Context = getASTContext(); 3566 3567 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3568 // Note: If you change the logic here, please change 3569 // doesDeclarationForceExternallyVisibleDefinition as well. 3570 // 3571 // If it's not the case that both 'inline' and 'extern' are 3572 // specified on the definition, then this inline definition is 3573 // externally visible. 3574 if (Context.getLangOpts().CPlusPlus) 3575 return false; 3576 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3577 return true; 3578 3579 // If any declaration is 'inline' but not 'extern', then this definition 3580 // is externally visible. 3581 for (auto Redecl : redecls()) { 3582 if (Redecl->isInlineSpecified() && 3583 Redecl->getStorageClass() != SC_Extern) 3584 return true; 3585 } 3586 3587 return false; 3588 } 3589 3590 // The rest of this function is C-only. 3591 assert(!Context.getLangOpts().CPlusPlus && 3592 "should not use C inline rules in C++"); 3593 3594 // C99 6.7.4p6: 3595 // [...] If all of the file scope declarations for a function in a 3596 // translation unit include the inline function specifier without extern, 3597 // then the definition in that translation unit is an inline definition. 3598 for (auto Redecl : redecls()) { 3599 if (RedeclForcesDefC99(Redecl)) 3600 return true; 3601 } 3602 3603 // C99 6.7.4p6: 3604 // An inline definition does not provide an external definition for the 3605 // function, and does not forbid an external definition in another 3606 // translation unit. 3607 return false; 3608 } 3609 3610 /// getOverloadedOperator - Which C++ overloaded operator this 3611 /// function represents, if any. 3612 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3613 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3614 return getDeclName().getCXXOverloadedOperator(); 3615 return OO_None; 3616 } 3617 3618 /// getLiteralIdentifier - The literal suffix identifier this function 3619 /// represents, if any. 3620 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3621 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3622 return getDeclName().getCXXLiteralIdentifier(); 3623 return nullptr; 3624 } 3625 3626 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3627 if (TemplateOrSpecialization.isNull()) 3628 return TK_NonTemplate; 3629 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3630 return TK_FunctionTemplate; 3631 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3632 return TK_MemberSpecialization; 3633 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3634 return TK_FunctionTemplateSpecialization; 3635 if (TemplateOrSpecialization.is 3636 <DependentFunctionTemplateSpecializationInfo*>()) 3637 return TK_DependentFunctionTemplateSpecialization; 3638 3639 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3640 } 3641 3642 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3643 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3644 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3645 3646 return nullptr; 3647 } 3648 3649 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3650 if (auto *MSI = 3651 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3652 return MSI; 3653 if (auto *FTSI = TemplateOrSpecialization 3654 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3655 return FTSI->getMemberSpecializationInfo(); 3656 return nullptr; 3657 } 3658 3659 void 3660 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3661 FunctionDecl *FD, 3662 TemplateSpecializationKind TSK) { 3663 assert(TemplateOrSpecialization.isNull() && 3664 "Member function is already a specialization"); 3665 MemberSpecializationInfo *Info 3666 = new (C) MemberSpecializationInfo(FD, TSK); 3667 TemplateOrSpecialization = Info; 3668 } 3669 3670 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3671 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3672 } 3673 3674 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3675 assert(TemplateOrSpecialization.isNull() && 3676 "Member function is already a specialization"); 3677 TemplateOrSpecialization = Template; 3678 } 3679 3680 bool FunctionDecl::isImplicitlyInstantiable() const { 3681 // If the function is invalid, it can't be implicitly instantiated. 3682 if (isInvalidDecl()) 3683 return false; 3684 3685 switch (getTemplateSpecializationKindForInstantiation()) { 3686 case TSK_Undeclared: 3687 case TSK_ExplicitInstantiationDefinition: 3688 case TSK_ExplicitSpecialization: 3689 return false; 3690 3691 case TSK_ImplicitInstantiation: 3692 return true; 3693 3694 case TSK_ExplicitInstantiationDeclaration: 3695 // Handled below. 3696 break; 3697 } 3698 3699 // Find the actual template from which we will instantiate. 3700 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3701 bool HasPattern = false; 3702 if (PatternDecl) 3703 HasPattern = PatternDecl->hasBody(PatternDecl); 3704 3705 // C++0x [temp.explicit]p9: 3706 // Except for inline functions, other explicit instantiation declarations 3707 // have the effect of suppressing the implicit instantiation of the entity 3708 // to which they refer. 3709 if (!HasPattern || !PatternDecl) 3710 return true; 3711 3712 return PatternDecl->isInlined(); 3713 } 3714 3715 bool FunctionDecl::isTemplateInstantiation() const { 3716 // FIXME: Remove this, it's not clear what it means. (Which template 3717 // specialization kind?) 3718 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3719 } 3720 3721 FunctionDecl * 3722 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 3723 // If this is a generic lambda call operator specialization, its 3724 // instantiation pattern is always its primary template's pattern 3725 // even if its primary template was instantiated from another 3726 // member template (which happens with nested generic lambdas). 3727 // Since a lambda's call operator's body is transformed eagerly, 3728 // we don't have to go hunting for a prototype definition template 3729 // (i.e. instantiated-from-member-template) to use as an instantiation 3730 // pattern. 3731 3732 if (isGenericLambdaCallOperatorSpecialization( 3733 dyn_cast<CXXMethodDecl>(this))) { 3734 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3735 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3736 } 3737 3738 // Check for a declaration of this function that was instantiated from a 3739 // friend definition. 3740 const FunctionDecl *FD = nullptr; 3741 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 3742 FD = this; 3743 3744 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 3745 if (ForDefinition && 3746 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3747 return nullptr; 3748 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3749 } 3750 3751 if (ForDefinition && 3752 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3753 return nullptr; 3754 3755 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3756 // If we hit a point where the user provided a specialization of this 3757 // template, we're done looking. 3758 while (!ForDefinition || !Primary->isMemberSpecialization()) { 3759 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3760 if (!NewPrimary) 3761 break; 3762 Primary = NewPrimary; 3763 } 3764 3765 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3766 } 3767 3768 return nullptr; 3769 } 3770 3771 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3772 if (FunctionTemplateSpecializationInfo *Info 3773 = TemplateOrSpecialization 3774 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3775 return Info->getTemplate(); 3776 } 3777 return nullptr; 3778 } 3779 3780 FunctionTemplateSpecializationInfo * 3781 FunctionDecl::getTemplateSpecializationInfo() const { 3782 return TemplateOrSpecialization 3783 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3784 } 3785 3786 const TemplateArgumentList * 3787 FunctionDecl::getTemplateSpecializationArgs() const { 3788 if (FunctionTemplateSpecializationInfo *Info 3789 = TemplateOrSpecialization 3790 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3791 return Info->TemplateArguments; 3792 } 3793 return nullptr; 3794 } 3795 3796 const ASTTemplateArgumentListInfo * 3797 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3798 if (FunctionTemplateSpecializationInfo *Info 3799 = TemplateOrSpecialization 3800 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3801 return Info->TemplateArgumentsAsWritten; 3802 } 3803 return nullptr; 3804 } 3805 3806 void 3807 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3808 FunctionTemplateDecl *Template, 3809 const TemplateArgumentList *TemplateArgs, 3810 void *InsertPos, 3811 TemplateSpecializationKind TSK, 3812 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3813 SourceLocation PointOfInstantiation) { 3814 assert((TemplateOrSpecialization.isNull() || 3815 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3816 "Member function is already a specialization"); 3817 assert(TSK != TSK_Undeclared && 3818 "Must specify the type of function template specialization"); 3819 assert((TemplateOrSpecialization.isNull() || 3820 TSK == TSK_ExplicitSpecialization) && 3821 "Member specialization must be an explicit specialization"); 3822 FunctionTemplateSpecializationInfo *Info = 3823 FunctionTemplateSpecializationInfo::Create( 3824 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3825 PointOfInstantiation, 3826 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3827 TemplateOrSpecialization = Info; 3828 Template->addSpecialization(Info, InsertPos); 3829 } 3830 3831 void 3832 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3833 const UnresolvedSetImpl &Templates, 3834 const TemplateArgumentListInfo &TemplateArgs) { 3835 assert(TemplateOrSpecialization.isNull()); 3836 DependentFunctionTemplateSpecializationInfo *Info = 3837 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3838 TemplateArgs); 3839 TemplateOrSpecialization = Info; 3840 } 3841 3842 DependentFunctionTemplateSpecializationInfo * 3843 FunctionDecl::getDependentSpecializationInfo() const { 3844 return TemplateOrSpecialization 3845 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3846 } 3847 3848 DependentFunctionTemplateSpecializationInfo * 3849 DependentFunctionTemplateSpecializationInfo::Create( 3850 ASTContext &Context, const UnresolvedSetImpl &Ts, 3851 const TemplateArgumentListInfo &TArgs) { 3852 void *Buffer = Context.Allocate( 3853 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3854 TArgs.size(), Ts.size())); 3855 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3856 } 3857 3858 DependentFunctionTemplateSpecializationInfo:: 3859 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3860 const TemplateArgumentListInfo &TArgs) 3861 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3862 NumTemplates = Ts.size(); 3863 NumArgs = TArgs.size(); 3864 3865 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3866 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3867 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3868 3869 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3870 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3871 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3872 } 3873 3874 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3875 // For a function template specialization, query the specialization 3876 // information object. 3877 if (FunctionTemplateSpecializationInfo *FTSInfo = 3878 TemplateOrSpecialization 3879 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3880 return FTSInfo->getTemplateSpecializationKind(); 3881 3882 if (MemberSpecializationInfo *MSInfo = 3883 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3884 return MSInfo->getTemplateSpecializationKind(); 3885 3886 return TSK_Undeclared; 3887 } 3888 3889 TemplateSpecializationKind 3890 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 3891 // This is the same as getTemplateSpecializationKind(), except that for a 3892 // function that is both a function template specialization and a member 3893 // specialization, we prefer the member specialization information. Eg: 3894 // 3895 // template<typename T> struct A { 3896 // template<typename U> void f() {} 3897 // template<> void f<int>() {} 3898 // }; 3899 // 3900 // For A<int>::f<int>(): 3901 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 3902 // * getTemplateSpecializationKindForInstantiation() will return 3903 // TSK_ImplicitInstantiation 3904 // 3905 // This reflects the facts that A<int>::f<int> is an explicit specialization 3906 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 3907 // from A::f<int> if a definition is needed. 3908 if (FunctionTemplateSpecializationInfo *FTSInfo = 3909 TemplateOrSpecialization 3910 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 3911 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 3912 return MSInfo->getTemplateSpecializationKind(); 3913 return FTSInfo->getTemplateSpecializationKind(); 3914 } 3915 3916 if (MemberSpecializationInfo *MSInfo = 3917 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3918 return MSInfo->getTemplateSpecializationKind(); 3919 3920 return TSK_Undeclared; 3921 } 3922 3923 void 3924 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3925 SourceLocation PointOfInstantiation) { 3926 if (FunctionTemplateSpecializationInfo *FTSInfo 3927 = TemplateOrSpecialization.dyn_cast< 3928 FunctionTemplateSpecializationInfo*>()) { 3929 FTSInfo->setTemplateSpecializationKind(TSK); 3930 if (TSK != TSK_ExplicitSpecialization && 3931 PointOfInstantiation.isValid() && 3932 FTSInfo->getPointOfInstantiation().isInvalid()) { 3933 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3934 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3935 L->InstantiationRequested(this); 3936 } 3937 } else if (MemberSpecializationInfo *MSInfo 3938 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3939 MSInfo->setTemplateSpecializationKind(TSK); 3940 if (TSK != TSK_ExplicitSpecialization && 3941 PointOfInstantiation.isValid() && 3942 MSInfo->getPointOfInstantiation().isInvalid()) { 3943 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3944 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3945 L->InstantiationRequested(this); 3946 } 3947 } else 3948 llvm_unreachable("Function cannot have a template specialization kind"); 3949 } 3950 3951 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3952 if (FunctionTemplateSpecializationInfo *FTSInfo 3953 = TemplateOrSpecialization.dyn_cast< 3954 FunctionTemplateSpecializationInfo*>()) 3955 return FTSInfo->getPointOfInstantiation(); 3956 if (MemberSpecializationInfo *MSInfo = 3957 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3958 return MSInfo->getPointOfInstantiation(); 3959 3960 return SourceLocation(); 3961 } 3962 3963 bool FunctionDecl::isOutOfLine() const { 3964 if (Decl::isOutOfLine()) 3965 return true; 3966 3967 // If this function was instantiated from a member function of a 3968 // class template, check whether that member function was defined out-of-line. 3969 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3970 const FunctionDecl *Definition; 3971 if (FD->hasBody(Definition)) 3972 return Definition->isOutOfLine(); 3973 } 3974 3975 // If this function was instantiated from a function template, 3976 // check whether that function template was defined out-of-line. 3977 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3978 const FunctionDecl *Definition; 3979 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3980 return Definition->isOutOfLine(); 3981 } 3982 3983 return false; 3984 } 3985 3986 SourceRange FunctionDecl::getSourceRange() const { 3987 return SourceRange(getOuterLocStart(), EndRangeLoc); 3988 } 3989 3990 unsigned FunctionDecl::getMemoryFunctionKind() const { 3991 IdentifierInfo *FnInfo = getIdentifier(); 3992 3993 if (!FnInfo) 3994 return 0; 3995 3996 // Builtin handling. 3997 switch (getBuiltinID()) { 3998 case Builtin::BI__builtin_memset: 3999 case Builtin::BI__builtin___memset_chk: 4000 case Builtin::BImemset: 4001 return Builtin::BImemset; 4002 4003 case Builtin::BI__builtin_memcpy: 4004 case Builtin::BI__builtin___memcpy_chk: 4005 case Builtin::BImemcpy: 4006 return Builtin::BImemcpy; 4007 4008 case Builtin::BI__builtin_mempcpy: 4009 case Builtin::BI__builtin___mempcpy_chk: 4010 case Builtin::BImempcpy: 4011 return Builtin::BImempcpy; 4012 4013 case Builtin::BI__builtin_memmove: 4014 case Builtin::BI__builtin___memmove_chk: 4015 case Builtin::BImemmove: 4016 return Builtin::BImemmove; 4017 4018 case Builtin::BIstrlcpy: 4019 case Builtin::BI__builtin___strlcpy_chk: 4020 return Builtin::BIstrlcpy; 4021 4022 case Builtin::BIstrlcat: 4023 case Builtin::BI__builtin___strlcat_chk: 4024 return Builtin::BIstrlcat; 4025 4026 case Builtin::BI__builtin_memcmp: 4027 case Builtin::BImemcmp: 4028 return Builtin::BImemcmp; 4029 4030 case Builtin::BI__builtin_bcmp: 4031 case Builtin::BIbcmp: 4032 return Builtin::BIbcmp; 4033 4034 case Builtin::BI__builtin_strncpy: 4035 case Builtin::BI__builtin___strncpy_chk: 4036 case Builtin::BIstrncpy: 4037 return Builtin::BIstrncpy; 4038 4039 case Builtin::BI__builtin_strncmp: 4040 case Builtin::BIstrncmp: 4041 return Builtin::BIstrncmp; 4042 4043 case Builtin::BI__builtin_strncasecmp: 4044 case Builtin::BIstrncasecmp: 4045 return Builtin::BIstrncasecmp; 4046 4047 case Builtin::BI__builtin_strncat: 4048 case Builtin::BI__builtin___strncat_chk: 4049 case Builtin::BIstrncat: 4050 return Builtin::BIstrncat; 4051 4052 case Builtin::BI__builtin_strndup: 4053 case Builtin::BIstrndup: 4054 return Builtin::BIstrndup; 4055 4056 case Builtin::BI__builtin_strlen: 4057 case Builtin::BIstrlen: 4058 return Builtin::BIstrlen; 4059 4060 case Builtin::BI__builtin_bzero: 4061 case Builtin::BIbzero: 4062 return Builtin::BIbzero; 4063 4064 case Builtin::BIfree: 4065 return Builtin::BIfree; 4066 4067 default: 4068 if (isExternC()) { 4069 if (FnInfo->isStr("memset")) 4070 return Builtin::BImemset; 4071 if (FnInfo->isStr("memcpy")) 4072 return Builtin::BImemcpy; 4073 if (FnInfo->isStr("mempcpy")) 4074 return Builtin::BImempcpy; 4075 if (FnInfo->isStr("memmove")) 4076 return Builtin::BImemmove; 4077 if (FnInfo->isStr("memcmp")) 4078 return Builtin::BImemcmp; 4079 if (FnInfo->isStr("bcmp")) 4080 return Builtin::BIbcmp; 4081 if (FnInfo->isStr("strncpy")) 4082 return Builtin::BIstrncpy; 4083 if (FnInfo->isStr("strncmp")) 4084 return Builtin::BIstrncmp; 4085 if (FnInfo->isStr("strncasecmp")) 4086 return Builtin::BIstrncasecmp; 4087 if (FnInfo->isStr("strncat")) 4088 return Builtin::BIstrncat; 4089 if (FnInfo->isStr("strndup")) 4090 return Builtin::BIstrndup; 4091 if (FnInfo->isStr("strlen")) 4092 return Builtin::BIstrlen; 4093 if (FnInfo->isStr("bzero")) 4094 return Builtin::BIbzero; 4095 } else if (isInStdNamespace()) { 4096 if (FnInfo->isStr("free")) 4097 return Builtin::BIfree; 4098 } 4099 break; 4100 } 4101 return 0; 4102 } 4103 4104 unsigned FunctionDecl::getODRHash() const { 4105 assert(hasODRHash()); 4106 return ODRHash; 4107 } 4108 4109 unsigned FunctionDecl::getODRHash() { 4110 if (hasODRHash()) 4111 return ODRHash; 4112 4113 if (auto *FT = getInstantiatedFromMemberFunction()) { 4114 setHasODRHash(true); 4115 ODRHash = FT->getODRHash(); 4116 return ODRHash; 4117 } 4118 4119 class ODRHash Hash; 4120 Hash.AddFunctionDecl(this); 4121 setHasODRHash(true); 4122 ODRHash = Hash.CalculateHash(); 4123 return ODRHash; 4124 } 4125 4126 //===----------------------------------------------------------------------===// 4127 // FieldDecl Implementation 4128 //===----------------------------------------------------------------------===// 4129 4130 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4131 SourceLocation StartLoc, SourceLocation IdLoc, 4132 IdentifierInfo *Id, QualType T, 4133 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4134 InClassInitStyle InitStyle) { 4135 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4136 BW, Mutable, InitStyle); 4137 } 4138 4139 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4140 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4141 SourceLocation(), nullptr, QualType(), nullptr, 4142 nullptr, false, ICIS_NoInit); 4143 } 4144 4145 bool FieldDecl::isAnonymousStructOrUnion() const { 4146 if (!isImplicit() || getDeclName()) 4147 return false; 4148 4149 if (const auto *Record = getType()->getAs<RecordType>()) 4150 return Record->getDecl()->isAnonymousStructOrUnion(); 4151 4152 return false; 4153 } 4154 4155 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4156 assert(isBitField() && "not a bitfield"); 4157 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4158 } 4159 4160 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4161 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4162 getBitWidthValue(Ctx) == 0; 4163 } 4164 4165 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4166 if (isZeroLengthBitField(Ctx)) 4167 return true; 4168 4169 // C++2a [intro.object]p7: 4170 // An object has nonzero size if it 4171 // -- is not a potentially-overlapping subobject, or 4172 if (!hasAttr<NoUniqueAddressAttr>()) 4173 return false; 4174 4175 // -- is not of class type, or 4176 const auto *RT = getType()->getAs<RecordType>(); 4177 if (!RT) 4178 return false; 4179 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4180 if (!RD) { 4181 assert(isInvalidDecl() && "valid field has incomplete type"); 4182 return false; 4183 } 4184 4185 // -- [has] virtual member functions or virtual base classes, or 4186 // -- has subobjects of nonzero size or bit-fields of nonzero length 4187 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4188 if (!CXXRD->isEmpty()) 4189 return false; 4190 4191 // Otherwise, [...] the circumstances under which the object has zero size 4192 // are implementation-defined. 4193 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4194 // ABI will do. 4195 return true; 4196 } 4197 4198 unsigned FieldDecl::getFieldIndex() const { 4199 const FieldDecl *Canonical = getCanonicalDecl(); 4200 if (Canonical != this) 4201 return Canonical->getFieldIndex(); 4202 4203 if (CachedFieldIndex) return CachedFieldIndex - 1; 4204 4205 unsigned Index = 0; 4206 const RecordDecl *RD = getParent()->getDefinition(); 4207 assert(RD && "requested index for field of struct with no definition"); 4208 4209 for (auto *Field : RD->fields()) { 4210 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4211 ++Index; 4212 } 4213 4214 assert(CachedFieldIndex && "failed to find field in parent"); 4215 return CachedFieldIndex - 1; 4216 } 4217 4218 SourceRange FieldDecl::getSourceRange() const { 4219 const Expr *FinalExpr = getInClassInitializer(); 4220 if (!FinalExpr) 4221 FinalExpr = getBitWidth(); 4222 if (FinalExpr) 4223 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4224 return DeclaratorDecl::getSourceRange(); 4225 } 4226 4227 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4228 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4229 "capturing type in non-lambda or captured record."); 4230 assert(InitStorage.getInt() == ISK_NoInit && 4231 InitStorage.getPointer() == nullptr && 4232 "bit width, initializer or captured type already set"); 4233 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4234 ISK_CapturedVLAType); 4235 } 4236 4237 //===----------------------------------------------------------------------===// 4238 // TagDecl Implementation 4239 //===----------------------------------------------------------------------===// 4240 4241 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4242 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4243 SourceLocation StartL) 4244 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4245 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4246 assert((DK != Enum || TK == TTK_Enum) && 4247 "EnumDecl not matched with TTK_Enum"); 4248 setPreviousDecl(PrevDecl); 4249 setTagKind(TK); 4250 setCompleteDefinition(false); 4251 setBeingDefined(false); 4252 setEmbeddedInDeclarator(false); 4253 setFreeStanding(false); 4254 setCompleteDefinitionRequired(false); 4255 } 4256 4257 SourceLocation TagDecl::getOuterLocStart() const { 4258 return getTemplateOrInnerLocStart(this); 4259 } 4260 4261 SourceRange TagDecl::getSourceRange() const { 4262 SourceLocation RBraceLoc = BraceRange.getEnd(); 4263 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4264 return SourceRange(getOuterLocStart(), E); 4265 } 4266 4267 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4268 4269 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4270 TypedefNameDeclOrQualifier = TDD; 4271 if (const Type *T = getTypeForDecl()) { 4272 (void)T; 4273 assert(T->isLinkageValid()); 4274 } 4275 assert(isLinkageValid()); 4276 } 4277 4278 void TagDecl::startDefinition() { 4279 setBeingDefined(true); 4280 4281 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4282 struct CXXRecordDecl::DefinitionData *Data = 4283 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4284 for (auto I : redecls()) 4285 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4286 } 4287 } 4288 4289 void TagDecl::completeDefinition() { 4290 assert((!isa<CXXRecordDecl>(this) || 4291 cast<CXXRecordDecl>(this)->hasDefinition()) && 4292 "definition completed but not started"); 4293 4294 setCompleteDefinition(true); 4295 setBeingDefined(false); 4296 4297 if (ASTMutationListener *L = getASTMutationListener()) 4298 L->CompletedTagDefinition(this); 4299 } 4300 4301 TagDecl *TagDecl::getDefinition() const { 4302 if (isCompleteDefinition()) 4303 return const_cast<TagDecl *>(this); 4304 4305 // If it's possible for us to have an out-of-date definition, check now. 4306 if (mayHaveOutOfDateDef()) { 4307 if (IdentifierInfo *II = getIdentifier()) { 4308 if (II->isOutOfDate()) { 4309 updateOutOfDate(*II); 4310 } 4311 } 4312 } 4313 4314 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4315 return CXXRD->getDefinition(); 4316 4317 for (auto R : redecls()) 4318 if (R->isCompleteDefinition()) 4319 return R; 4320 4321 return nullptr; 4322 } 4323 4324 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4325 if (QualifierLoc) { 4326 // Make sure the extended qualifier info is allocated. 4327 if (!hasExtInfo()) 4328 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4329 // Set qualifier info. 4330 getExtInfo()->QualifierLoc = QualifierLoc; 4331 } else { 4332 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4333 if (hasExtInfo()) { 4334 if (getExtInfo()->NumTemplParamLists == 0) { 4335 getASTContext().Deallocate(getExtInfo()); 4336 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4337 } 4338 else 4339 getExtInfo()->QualifierLoc = QualifierLoc; 4340 } 4341 } 4342 } 4343 4344 void TagDecl::setTemplateParameterListsInfo( 4345 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4346 assert(!TPLists.empty()); 4347 // Make sure the extended decl info is allocated. 4348 if (!hasExtInfo()) 4349 // Allocate external info struct. 4350 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4351 // Set the template parameter lists info. 4352 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4353 } 4354 4355 //===----------------------------------------------------------------------===// 4356 // EnumDecl Implementation 4357 //===----------------------------------------------------------------------===// 4358 4359 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4360 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4361 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4362 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4363 assert(Scoped || !ScopedUsingClassTag); 4364 IntegerType = nullptr; 4365 setNumPositiveBits(0); 4366 setNumNegativeBits(0); 4367 setScoped(Scoped); 4368 setScopedUsingClassTag(ScopedUsingClassTag); 4369 setFixed(Fixed); 4370 setHasODRHash(false); 4371 ODRHash = 0; 4372 } 4373 4374 void EnumDecl::anchor() {} 4375 4376 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4377 SourceLocation StartLoc, SourceLocation IdLoc, 4378 IdentifierInfo *Id, 4379 EnumDecl *PrevDecl, bool IsScoped, 4380 bool IsScopedUsingClassTag, bool IsFixed) { 4381 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4382 IsScoped, IsScopedUsingClassTag, IsFixed); 4383 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4384 C.getTypeDeclType(Enum, PrevDecl); 4385 return Enum; 4386 } 4387 4388 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4389 EnumDecl *Enum = 4390 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4391 nullptr, nullptr, false, false, false); 4392 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4393 return Enum; 4394 } 4395 4396 SourceRange EnumDecl::getIntegerTypeRange() const { 4397 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4398 return TI->getTypeLoc().getSourceRange(); 4399 return SourceRange(); 4400 } 4401 4402 void EnumDecl::completeDefinition(QualType NewType, 4403 QualType NewPromotionType, 4404 unsigned NumPositiveBits, 4405 unsigned NumNegativeBits) { 4406 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4407 if (!IntegerType) 4408 IntegerType = NewType.getTypePtr(); 4409 PromotionType = NewPromotionType; 4410 setNumPositiveBits(NumPositiveBits); 4411 setNumNegativeBits(NumNegativeBits); 4412 TagDecl::completeDefinition(); 4413 } 4414 4415 bool EnumDecl::isClosed() const { 4416 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4417 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4418 return true; 4419 } 4420 4421 bool EnumDecl::isClosedFlag() const { 4422 return isClosed() && hasAttr<FlagEnumAttr>(); 4423 } 4424 4425 bool EnumDecl::isClosedNonFlag() const { 4426 return isClosed() && !hasAttr<FlagEnumAttr>(); 4427 } 4428 4429 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4430 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4431 return MSI->getTemplateSpecializationKind(); 4432 4433 return TSK_Undeclared; 4434 } 4435 4436 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4437 SourceLocation PointOfInstantiation) { 4438 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4439 assert(MSI && "Not an instantiated member enumeration?"); 4440 MSI->setTemplateSpecializationKind(TSK); 4441 if (TSK != TSK_ExplicitSpecialization && 4442 PointOfInstantiation.isValid() && 4443 MSI->getPointOfInstantiation().isInvalid()) 4444 MSI->setPointOfInstantiation(PointOfInstantiation); 4445 } 4446 4447 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4448 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4449 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4450 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4451 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4452 ED = NewED; 4453 return getDefinitionOrSelf(ED); 4454 } 4455 } 4456 4457 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4458 "couldn't find pattern for enum instantiation"); 4459 return nullptr; 4460 } 4461 4462 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4463 if (SpecializationInfo) 4464 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4465 4466 return nullptr; 4467 } 4468 4469 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4470 TemplateSpecializationKind TSK) { 4471 assert(!SpecializationInfo && "Member enum is already a specialization"); 4472 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4473 } 4474 4475 unsigned EnumDecl::getODRHash() { 4476 if (hasODRHash()) 4477 return ODRHash; 4478 4479 class ODRHash Hash; 4480 Hash.AddEnumDecl(this); 4481 setHasODRHash(true); 4482 ODRHash = Hash.CalculateHash(); 4483 return ODRHash; 4484 } 4485 4486 //===----------------------------------------------------------------------===// 4487 // RecordDecl Implementation 4488 //===----------------------------------------------------------------------===// 4489 4490 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4491 DeclContext *DC, SourceLocation StartLoc, 4492 SourceLocation IdLoc, IdentifierInfo *Id, 4493 RecordDecl *PrevDecl) 4494 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4495 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4496 setHasFlexibleArrayMember(false); 4497 setAnonymousStructOrUnion(false); 4498 setHasObjectMember(false); 4499 setHasVolatileMember(false); 4500 setHasLoadedFieldsFromExternalStorage(false); 4501 setNonTrivialToPrimitiveDefaultInitialize(false); 4502 setNonTrivialToPrimitiveCopy(false); 4503 setNonTrivialToPrimitiveDestroy(false); 4504 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4505 setHasNonTrivialToPrimitiveDestructCUnion(false); 4506 setHasNonTrivialToPrimitiveCopyCUnion(false); 4507 setParamDestroyedInCallee(false); 4508 setArgPassingRestrictions(APK_CanPassInRegs); 4509 } 4510 4511 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4512 SourceLocation StartLoc, SourceLocation IdLoc, 4513 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4514 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4515 StartLoc, IdLoc, Id, PrevDecl); 4516 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4517 4518 C.getTypeDeclType(R, PrevDecl); 4519 return R; 4520 } 4521 4522 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4523 RecordDecl *R = 4524 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4525 SourceLocation(), nullptr, nullptr); 4526 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4527 return R; 4528 } 4529 4530 bool RecordDecl::isInjectedClassName() const { 4531 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4532 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4533 } 4534 4535 bool RecordDecl::isLambda() const { 4536 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4537 return RD->isLambda(); 4538 return false; 4539 } 4540 4541 bool RecordDecl::isCapturedRecord() const { 4542 return hasAttr<CapturedRecordAttr>(); 4543 } 4544 4545 void RecordDecl::setCapturedRecord() { 4546 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4547 } 4548 4549 bool RecordDecl::isOrContainsUnion() const { 4550 if (isUnion()) 4551 return true; 4552 4553 if (const RecordDecl *Def = getDefinition()) { 4554 for (const FieldDecl *FD : Def->fields()) { 4555 const RecordType *RT = FD->getType()->getAs<RecordType>(); 4556 if (RT && RT->getDecl()->isOrContainsUnion()) 4557 return true; 4558 } 4559 } 4560 4561 return false; 4562 } 4563 4564 RecordDecl::field_iterator RecordDecl::field_begin() const { 4565 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4566 LoadFieldsFromExternalStorage(); 4567 4568 return field_iterator(decl_iterator(FirstDecl)); 4569 } 4570 4571 /// completeDefinition - Notes that the definition of this type is now 4572 /// complete. 4573 void RecordDecl::completeDefinition() { 4574 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4575 TagDecl::completeDefinition(); 4576 4577 ASTContext &Ctx = getASTContext(); 4578 4579 // Layouts are dumped when computed, so if we are dumping for all complete 4580 // types, we need to force usage to get types that wouldn't be used elsewhere. 4581 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 4582 (void)Ctx.getASTRecordLayout(this); 4583 } 4584 4585 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4586 /// This which can be turned on with an attribute, pragma, or the 4587 /// -mms-bitfields command-line option. 4588 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4589 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4590 } 4591 4592 void RecordDecl::LoadFieldsFromExternalStorage() const { 4593 ExternalASTSource *Source = getASTContext().getExternalSource(); 4594 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4595 4596 // Notify that we have a RecordDecl doing some initialization. 4597 ExternalASTSource::Deserializing TheFields(Source); 4598 4599 SmallVector<Decl*, 64> Decls; 4600 setHasLoadedFieldsFromExternalStorage(true); 4601 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4602 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4603 }, Decls); 4604 4605 #ifndef NDEBUG 4606 // Check that all decls we got were FieldDecls. 4607 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4608 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4609 #endif 4610 4611 if (Decls.empty()) 4612 return; 4613 4614 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4615 /*FieldsAlreadyLoaded=*/false); 4616 } 4617 4618 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4619 ASTContext &Context = getASTContext(); 4620 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4621 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4622 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4623 return false; 4624 const auto &NoSanitizeList = Context.getNoSanitizeList(); 4625 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4626 // We may be able to relax some of these requirements. 4627 int ReasonToReject = -1; 4628 if (!CXXRD || CXXRD->isExternCContext()) 4629 ReasonToReject = 0; // is not C++. 4630 else if (CXXRD->hasAttr<PackedAttr>()) 4631 ReasonToReject = 1; // is packed. 4632 else if (CXXRD->isUnion()) 4633 ReasonToReject = 2; // is a union. 4634 else if (CXXRD->isTriviallyCopyable()) 4635 ReasonToReject = 3; // is trivially copyable. 4636 else if (CXXRD->hasTrivialDestructor()) 4637 ReasonToReject = 4; // has trivial destructor. 4638 else if (CXXRD->isStandardLayout()) 4639 ReasonToReject = 5; // is standard layout. 4640 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 4641 "field-padding")) 4642 ReasonToReject = 6; // is in an excluded file. 4643 else if (NoSanitizeList.containsType( 4644 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 4645 ReasonToReject = 7; // The type is excluded. 4646 4647 if (EmitRemark) { 4648 if (ReasonToReject >= 0) 4649 Context.getDiagnostics().Report( 4650 getLocation(), 4651 diag::remark_sanitize_address_insert_extra_padding_rejected) 4652 << getQualifiedNameAsString() << ReasonToReject; 4653 else 4654 Context.getDiagnostics().Report( 4655 getLocation(), 4656 diag::remark_sanitize_address_insert_extra_padding_accepted) 4657 << getQualifiedNameAsString(); 4658 } 4659 return ReasonToReject < 0; 4660 } 4661 4662 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4663 for (const auto *I : fields()) { 4664 if (I->getIdentifier()) 4665 return I; 4666 4667 if (const auto *RT = I->getType()->getAs<RecordType>()) 4668 if (const FieldDecl *NamedDataMember = 4669 RT->getDecl()->findFirstNamedDataMember()) 4670 return NamedDataMember; 4671 } 4672 4673 // We didn't find a named data member. 4674 return nullptr; 4675 } 4676 4677 //===----------------------------------------------------------------------===// 4678 // BlockDecl Implementation 4679 //===----------------------------------------------------------------------===// 4680 4681 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4682 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4683 setIsVariadic(false); 4684 setCapturesCXXThis(false); 4685 setBlockMissingReturnType(true); 4686 setIsConversionFromLambda(false); 4687 setDoesNotEscape(false); 4688 setCanAvoidCopyToHeap(false); 4689 } 4690 4691 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4692 assert(!ParamInfo && "Already has param info!"); 4693 4694 // Zero params -> null pointer. 4695 if (!NewParamInfo.empty()) { 4696 NumParams = NewParamInfo.size(); 4697 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4698 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4699 } 4700 } 4701 4702 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4703 bool CapturesCXXThis) { 4704 this->setCapturesCXXThis(CapturesCXXThis); 4705 this->NumCaptures = Captures.size(); 4706 4707 if (Captures.empty()) { 4708 this->Captures = nullptr; 4709 return; 4710 } 4711 4712 this->Captures = Captures.copy(Context).data(); 4713 } 4714 4715 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4716 for (const auto &I : captures()) 4717 // Only auto vars can be captured, so no redeclaration worries. 4718 if (I.getVariable() == variable) 4719 return true; 4720 4721 return false; 4722 } 4723 4724 SourceRange BlockDecl::getSourceRange() const { 4725 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4726 } 4727 4728 //===----------------------------------------------------------------------===// 4729 // Other Decl Allocation/Deallocation Method Implementations 4730 //===----------------------------------------------------------------------===// 4731 4732 void TranslationUnitDecl::anchor() {} 4733 4734 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4735 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4736 } 4737 4738 void PragmaCommentDecl::anchor() {} 4739 4740 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4741 TranslationUnitDecl *DC, 4742 SourceLocation CommentLoc, 4743 PragmaMSCommentKind CommentKind, 4744 StringRef Arg) { 4745 PragmaCommentDecl *PCD = 4746 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4747 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4748 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4749 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4750 return PCD; 4751 } 4752 4753 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4754 unsigned ID, 4755 unsigned ArgSize) { 4756 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4757 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4758 } 4759 4760 void PragmaDetectMismatchDecl::anchor() {} 4761 4762 PragmaDetectMismatchDecl * 4763 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4764 SourceLocation Loc, StringRef Name, 4765 StringRef Value) { 4766 size_t ValueStart = Name.size() + 1; 4767 PragmaDetectMismatchDecl *PDMD = 4768 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4769 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4770 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4771 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4772 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4773 Value.size()); 4774 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4775 return PDMD; 4776 } 4777 4778 PragmaDetectMismatchDecl * 4779 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4780 unsigned NameValueSize) { 4781 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4782 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4783 } 4784 4785 void ExternCContextDecl::anchor() {} 4786 4787 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4788 TranslationUnitDecl *DC) { 4789 return new (C, DC) ExternCContextDecl(DC); 4790 } 4791 4792 void LabelDecl::anchor() {} 4793 4794 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4795 SourceLocation IdentL, IdentifierInfo *II) { 4796 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4797 } 4798 4799 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4800 SourceLocation IdentL, IdentifierInfo *II, 4801 SourceLocation GnuLabelL) { 4802 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4803 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4804 } 4805 4806 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4807 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4808 SourceLocation()); 4809 } 4810 4811 void LabelDecl::setMSAsmLabel(StringRef Name) { 4812 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4813 memcpy(Buffer, Name.data(), Name.size()); 4814 Buffer[Name.size()] = '\0'; 4815 MSAsmName = Buffer; 4816 } 4817 4818 void ValueDecl::anchor() {} 4819 4820 bool ValueDecl::isWeak() const { 4821 auto *MostRecent = getMostRecentDecl(); 4822 return MostRecent->hasAttr<WeakAttr>() || 4823 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 4824 } 4825 4826 void ImplicitParamDecl::anchor() {} 4827 4828 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4829 SourceLocation IdLoc, 4830 IdentifierInfo *Id, QualType Type, 4831 ImplicitParamKind ParamKind) { 4832 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4833 } 4834 4835 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4836 ImplicitParamKind ParamKind) { 4837 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4838 } 4839 4840 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4841 unsigned ID) { 4842 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4843 } 4844 4845 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 4846 SourceLocation StartLoc, 4847 const DeclarationNameInfo &NameInfo, 4848 QualType T, TypeSourceInfo *TInfo, 4849 StorageClass SC, bool isInlineSpecified, 4850 bool hasWrittenPrototype, 4851 ConstexprSpecKind ConstexprKind, 4852 Expr *TrailingRequiresClause) { 4853 FunctionDecl *New = 4854 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 4855 SC, isInlineSpecified, ConstexprKind, 4856 TrailingRequiresClause); 4857 New->setHasWrittenPrototype(hasWrittenPrototype); 4858 return New; 4859 } 4860 4861 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4862 return new (C, ID) FunctionDecl( 4863 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 4864 nullptr, SC_None, false, ConstexprSpecKind::Unspecified, nullptr); 4865 } 4866 4867 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4868 return new (C, DC) BlockDecl(DC, L); 4869 } 4870 4871 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4872 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4873 } 4874 4875 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4876 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4877 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4878 4879 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4880 unsigned NumParams) { 4881 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4882 CapturedDecl(DC, NumParams); 4883 } 4884 4885 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4886 unsigned NumParams) { 4887 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4888 CapturedDecl(nullptr, NumParams); 4889 } 4890 4891 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4892 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4893 4894 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4895 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4896 4897 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4898 SourceLocation L, 4899 IdentifierInfo *Id, QualType T, 4900 Expr *E, const llvm::APSInt &V) { 4901 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4902 } 4903 4904 EnumConstantDecl * 4905 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4906 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4907 QualType(), nullptr, llvm::APSInt()); 4908 } 4909 4910 void IndirectFieldDecl::anchor() {} 4911 4912 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4913 SourceLocation L, DeclarationName N, 4914 QualType T, 4915 MutableArrayRef<NamedDecl *> CH) 4916 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4917 ChainingSize(CH.size()) { 4918 // In C++, indirect field declarations conflict with tag declarations in the 4919 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4920 if (C.getLangOpts().CPlusPlus) 4921 IdentifierNamespace |= IDNS_Tag; 4922 } 4923 4924 IndirectFieldDecl * 4925 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4926 IdentifierInfo *Id, QualType T, 4927 llvm::MutableArrayRef<NamedDecl *> CH) { 4928 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4929 } 4930 4931 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4932 unsigned ID) { 4933 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4934 DeclarationName(), QualType(), None); 4935 } 4936 4937 SourceRange EnumConstantDecl::getSourceRange() const { 4938 SourceLocation End = getLocation(); 4939 if (Init) 4940 End = Init->getEndLoc(); 4941 return SourceRange(getLocation(), End); 4942 } 4943 4944 void TypeDecl::anchor() {} 4945 4946 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4947 SourceLocation StartLoc, SourceLocation IdLoc, 4948 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4949 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4950 } 4951 4952 void TypedefNameDecl::anchor() {} 4953 4954 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4955 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4956 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 4957 auto *ThisTypedef = this; 4958 if (AnyRedecl && OwningTypedef) { 4959 OwningTypedef = OwningTypedef->getCanonicalDecl(); 4960 ThisTypedef = ThisTypedef->getCanonicalDecl(); 4961 } 4962 if (OwningTypedef == ThisTypedef) 4963 return TT->getDecl(); 4964 } 4965 4966 return nullptr; 4967 } 4968 4969 bool TypedefNameDecl::isTransparentTagSlow() const { 4970 auto determineIsTransparent = [&]() { 4971 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 4972 if (auto *TD = TT->getDecl()) { 4973 if (TD->getName() != getName()) 4974 return false; 4975 SourceLocation TTLoc = getLocation(); 4976 SourceLocation TDLoc = TD->getLocation(); 4977 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 4978 return false; 4979 SourceManager &SM = getASTContext().getSourceManager(); 4980 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 4981 } 4982 } 4983 return false; 4984 }; 4985 4986 bool isTransparent = determineIsTransparent(); 4987 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 4988 return isTransparent; 4989 } 4990 4991 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4992 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 4993 nullptr, nullptr); 4994 } 4995 4996 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 4997 SourceLocation StartLoc, 4998 SourceLocation IdLoc, IdentifierInfo *Id, 4999 TypeSourceInfo *TInfo) { 5000 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5001 } 5002 5003 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5004 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5005 SourceLocation(), nullptr, nullptr); 5006 } 5007 5008 SourceRange TypedefDecl::getSourceRange() const { 5009 SourceLocation RangeEnd = getLocation(); 5010 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5011 if (typeIsPostfix(TInfo->getType())) 5012 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5013 } 5014 return SourceRange(getBeginLoc(), RangeEnd); 5015 } 5016 5017 SourceRange TypeAliasDecl::getSourceRange() const { 5018 SourceLocation RangeEnd = getBeginLoc(); 5019 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5020 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5021 return SourceRange(getBeginLoc(), RangeEnd); 5022 } 5023 5024 void FileScopeAsmDecl::anchor() {} 5025 5026 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5027 StringLiteral *Str, 5028 SourceLocation AsmLoc, 5029 SourceLocation RParenLoc) { 5030 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5031 } 5032 5033 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5034 unsigned ID) { 5035 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5036 SourceLocation()); 5037 } 5038 5039 void EmptyDecl::anchor() {} 5040 5041 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5042 return new (C, DC) EmptyDecl(DC, L); 5043 } 5044 5045 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5046 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5047 } 5048 5049 //===----------------------------------------------------------------------===// 5050 // ImportDecl Implementation 5051 //===----------------------------------------------------------------------===// 5052 5053 /// Retrieve the number of module identifiers needed to name the given 5054 /// module. 5055 static unsigned getNumModuleIdentifiers(Module *Mod) { 5056 unsigned Result = 1; 5057 while (Mod->Parent) { 5058 Mod = Mod->Parent; 5059 ++Result; 5060 } 5061 return Result; 5062 } 5063 5064 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5065 Module *Imported, 5066 ArrayRef<SourceLocation> IdentifierLocs) 5067 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5068 NextLocalImportAndComplete(nullptr, true) { 5069 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5070 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5071 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5072 StoredLocs); 5073 } 5074 5075 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5076 Module *Imported, SourceLocation EndLoc) 5077 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5078 NextLocalImportAndComplete(nullptr, false) { 5079 *getTrailingObjects<SourceLocation>() = EndLoc; 5080 } 5081 5082 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5083 SourceLocation StartLoc, Module *Imported, 5084 ArrayRef<SourceLocation> IdentifierLocs) { 5085 return new (C, DC, 5086 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5087 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5088 } 5089 5090 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5091 SourceLocation StartLoc, 5092 Module *Imported, 5093 SourceLocation EndLoc) { 5094 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5095 ImportDecl(DC, StartLoc, Imported, EndLoc); 5096 Import->setImplicit(); 5097 return Import; 5098 } 5099 5100 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5101 unsigned NumLocations) { 5102 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5103 ImportDecl(EmptyShell()); 5104 } 5105 5106 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5107 if (!isImportComplete()) 5108 return None; 5109 5110 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5111 return llvm::makeArrayRef(StoredLocs, 5112 getNumModuleIdentifiers(getImportedModule())); 5113 } 5114 5115 SourceRange ImportDecl::getSourceRange() const { 5116 if (!isImportComplete()) 5117 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5118 5119 return SourceRange(getLocation(), getIdentifierLocs().back()); 5120 } 5121 5122 //===----------------------------------------------------------------------===// 5123 // ExportDecl Implementation 5124 //===----------------------------------------------------------------------===// 5125 5126 void ExportDecl::anchor() {} 5127 5128 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5129 SourceLocation ExportLoc) { 5130 return new (C, DC) ExportDecl(DC, ExportLoc); 5131 } 5132 5133 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5134 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5135 } 5136