xref: /freebsd/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision ba7b7f94c239ce43343d7af403734fdc941b7664)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Randstruct.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Redeclarable.h"
36 #include "clang/AST/Stmt.h"
37 #include "clang/AST/TemplateBase.h"
38 #include "clang/AST/Type.h"
39 #include "clang/AST/TypeLoc.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/Linkage.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/NoSanitizeList.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/Sanitizers.h"
49 #include "clang/Basic/SourceLocation.h"
50 #include "clang/Basic/SourceManager.h"
51 #include "clang/Basic/Specifiers.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/Visibility.h"
55 #include "llvm/ADT/APSInt.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/TargetParser/Triple.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <optional>
71 #include <string>
72 #include <tuple>
73 #include <type_traits>
74 
75 using namespace clang;
76 
77 Decl *clang::getPrimaryMergedDecl(Decl *D) {
78   return D->getASTContext().getPrimaryMergedDecl(D);
79 }
80 
81 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
82   SourceLocation Loc = this->Loc;
83   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
84   if (Loc.isValid()) {
85     Loc.print(OS, Context.getSourceManager());
86     OS << ": ";
87   }
88   OS << Message;
89 
90   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
91     OS << " '";
92     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
93     OS << "'";
94   }
95 
96   OS << '\n';
97 }
98 
99 // Defined here so that it can be inlined into its direct callers.
100 bool Decl::isOutOfLine() const {
101   return !getLexicalDeclContext()->Equals(getDeclContext());
102 }
103 
104 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
105     : Decl(TranslationUnit, nullptr, SourceLocation()),
106       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
107 
108 //===----------------------------------------------------------------------===//
109 // NamedDecl Implementation
110 //===----------------------------------------------------------------------===//
111 
112 // Visibility rules aren't rigorously externally specified, but here
113 // are the basic principles behind what we implement:
114 //
115 // 1. An explicit visibility attribute is generally a direct expression
116 // of the user's intent and should be honored.  Only the innermost
117 // visibility attribute applies.  If no visibility attribute applies,
118 // global visibility settings are considered.
119 //
120 // 2. There is one caveat to the above: on or in a template pattern,
121 // an explicit visibility attribute is just a default rule, and
122 // visibility can be decreased by the visibility of template
123 // arguments.  But this, too, has an exception: an attribute on an
124 // explicit specialization or instantiation causes all the visibility
125 // restrictions of the template arguments to be ignored.
126 //
127 // 3. A variable that does not otherwise have explicit visibility can
128 // be restricted by the visibility of its type.
129 //
130 // 4. A visibility restriction is explicit if it comes from an
131 // attribute (or something like it), not a global visibility setting.
132 // When emitting a reference to an external symbol, visibility
133 // restrictions are ignored unless they are explicit.
134 //
135 // 5. When computing the visibility of a non-type, including a
136 // non-type member of a class, only non-type visibility restrictions
137 // are considered: the 'visibility' attribute, global value-visibility
138 // settings, and a few special cases like __private_extern.
139 //
140 // 6. When computing the visibility of a type, including a type member
141 // of a class, only type visibility restrictions are considered:
142 // the 'type_visibility' attribute and global type-visibility settings.
143 // However, a 'visibility' attribute counts as a 'type_visibility'
144 // attribute on any declaration that only has the former.
145 //
146 // The visibility of a "secondary" entity, like a template argument,
147 // is computed using the kind of that entity, not the kind of the
148 // primary entity for which we are computing visibility.  For example,
149 // the visibility of a specialization of either of these templates:
150 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
151 //   template <class T, bool (&compare)(T, X)> class matcher;
152 // is restricted according to the type visibility of the argument 'T',
153 // the type visibility of 'bool(&)(T,X)', and the value visibility of
154 // the argument function 'compare'.  That 'has_match' is a value
155 // and 'matcher' is a type only matters when looking for attributes
156 // and settings from the immediate context.
157 
158 /// Does this computation kind permit us to consider additional
159 /// visibility settings from attributes and the like?
160 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
161   return computation.IgnoreExplicitVisibility;
162 }
163 
164 /// Given an LVComputationKind, return one of the same type/value sort
165 /// that records that it already has explicit visibility.
166 static LVComputationKind
167 withExplicitVisibilityAlready(LVComputationKind Kind) {
168   Kind.IgnoreExplicitVisibility = true;
169   return Kind;
170 }
171 
172 static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
173                                                        LVComputationKind kind) {
174   assert(!kind.IgnoreExplicitVisibility &&
175          "asking for explicit visibility when we shouldn't be");
176   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
177 }
178 
179 /// Is the given declaration a "type" or a "value" for the purposes of
180 /// visibility computation?
181 static bool usesTypeVisibility(const NamedDecl *D) {
182   return isa<TypeDecl>(D) ||
183          isa<ClassTemplateDecl>(D) ||
184          isa<ObjCInterfaceDecl>(D);
185 }
186 
187 /// Does the given declaration have member specialization information,
188 /// and if so, is it an explicit specialization?
189 template <class T>
190 static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
191 isExplicitMemberSpecialization(const T *D) {
192   if (const MemberSpecializationInfo *member =
193         D->getMemberSpecializationInfo()) {
194     return member->isExplicitSpecialization();
195   }
196   return false;
197 }
198 
199 /// For templates, this question is easier: a member template can't be
200 /// explicitly instantiated, so there's a single bit indicating whether
201 /// or not this is an explicit member specialization.
202 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
203   return D->isMemberSpecialization();
204 }
205 
206 /// Given a visibility attribute, return the explicit visibility
207 /// associated with it.
208 template <class T>
209 static Visibility getVisibilityFromAttr(const T *attr) {
210   switch (attr->getVisibility()) {
211   case T::Default:
212     return DefaultVisibility;
213   case T::Hidden:
214     return HiddenVisibility;
215   case T::Protected:
216     return ProtectedVisibility;
217   }
218   llvm_unreachable("bad visibility kind");
219 }
220 
221 /// Return the explicit visibility of the given declaration.
222 static std::optional<Visibility>
223 getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) {
224   // If we're ultimately computing the visibility of a type, look for
225   // a 'type_visibility' attribute before looking for 'visibility'.
226   if (kind == NamedDecl::VisibilityForType) {
227     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
228       return getVisibilityFromAttr(A);
229     }
230   }
231 
232   // If this declaration has an explicit visibility attribute, use it.
233   if (const auto *A = D->getAttr<VisibilityAttr>()) {
234     return getVisibilityFromAttr(A);
235   }
236 
237   return std::nullopt;
238 }
239 
240 LinkageInfo LinkageComputer::getLVForType(const Type &T,
241                                           LVComputationKind computation) {
242   if (computation.IgnoreAllVisibility)
243     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
244   return getTypeLinkageAndVisibility(&T);
245 }
246 
247 /// Get the most restrictive linkage for the types in the given
248 /// template parameter list.  For visibility purposes, template
249 /// parameters are part of the signature of a template.
250 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
251     const TemplateParameterList *Params, LVComputationKind computation) {
252   LinkageInfo LV;
253   for (const NamedDecl *P : *Params) {
254     // Template type parameters are the most common and never
255     // contribute to visibility, pack or not.
256     if (isa<TemplateTypeParmDecl>(P))
257       continue;
258 
259     // Non-type template parameters can be restricted by the value type, e.g.
260     //   template <enum X> class A { ... };
261     // We have to be careful here, though, because we can be dealing with
262     // dependent types.
263     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
264       // Handle the non-pack case first.
265       if (!NTTP->isExpandedParameterPack()) {
266         if (!NTTP->getType()->isDependentType()) {
267           LV.merge(getLVForType(*NTTP->getType(), computation));
268         }
269         continue;
270       }
271 
272       // Look at all the types in an expanded pack.
273       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
274         QualType type = NTTP->getExpansionType(i);
275         if (!type->isDependentType())
276           LV.merge(getTypeLinkageAndVisibility(type));
277       }
278       continue;
279     }
280 
281     // Template template parameters can be restricted by their
282     // template parameters, recursively.
283     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
284 
285     // Handle the non-pack case first.
286     if (!TTP->isExpandedParameterPack()) {
287       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
288                                              computation));
289       continue;
290     }
291 
292     // Look at all expansions in an expanded pack.
293     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
294            i != n; ++i) {
295       LV.merge(getLVForTemplateParameterList(
296           TTP->getExpansionTemplateParameters(i), computation));
297     }
298   }
299 
300   return LV;
301 }
302 
303 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
304   const Decl *Ret = nullptr;
305   const DeclContext *DC = D->getDeclContext();
306   while (DC->getDeclKind() != Decl::TranslationUnit) {
307     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
308       Ret = cast<Decl>(DC);
309     DC = DC->getParent();
310   }
311   return Ret;
312 }
313 
314 /// Get the most restrictive linkage for the types and
315 /// declarations in the given template argument list.
316 ///
317 /// Note that we don't take an LVComputationKind because we always
318 /// want to honor the visibility of template arguments in the same way.
319 LinkageInfo
320 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
321                                               LVComputationKind computation) {
322   LinkageInfo LV;
323 
324   for (const TemplateArgument &Arg : Args) {
325     switch (Arg.getKind()) {
326     case TemplateArgument::Null:
327     case TemplateArgument::Integral:
328     case TemplateArgument::Expression:
329       continue;
330 
331     case TemplateArgument::Type:
332       LV.merge(getLVForType(*Arg.getAsType(), computation));
333       continue;
334 
335     case TemplateArgument::Declaration: {
336       const NamedDecl *ND = Arg.getAsDecl();
337       assert(!usesTypeVisibility(ND));
338       LV.merge(getLVForDecl(ND, computation));
339       continue;
340     }
341 
342     case TemplateArgument::NullPtr:
343       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
344       continue;
345 
346     case TemplateArgument::Template:
347     case TemplateArgument::TemplateExpansion:
348       if (TemplateDecl *Template =
349               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
350         LV.merge(getLVForDecl(Template, computation));
351       continue;
352 
353     case TemplateArgument::Pack:
354       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
355       continue;
356     }
357     llvm_unreachable("bad template argument kind");
358   }
359 
360   return LV;
361 }
362 
363 LinkageInfo
364 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
365                                               LVComputationKind computation) {
366   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
367 }
368 
369 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
370                         const FunctionTemplateSpecializationInfo *specInfo) {
371   // Include visibility from the template parameters and arguments
372   // only if this is not an explicit instantiation or specialization
373   // with direct explicit visibility.  (Implicit instantiations won't
374   // have a direct attribute.)
375   if (!specInfo->isExplicitInstantiationOrSpecialization())
376     return true;
377 
378   return !fn->hasAttr<VisibilityAttr>();
379 }
380 
381 /// Merge in template-related linkage and visibility for the given
382 /// function template specialization.
383 ///
384 /// We don't need a computation kind here because we can assume
385 /// LVForValue.
386 ///
387 /// \param[out] LV the computation to use for the parent
388 void LinkageComputer::mergeTemplateLV(
389     LinkageInfo &LV, const FunctionDecl *fn,
390     const FunctionTemplateSpecializationInfo *specInfo,
391     LVComputationKind computation) {
392   bool considerVisibility =
393     shouldConsiderTemplateVisibility(fn, specInfo);
394 
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   // Merge information from the template declaration.
397   LinkageInfo tempLV = getLVForDecl(temp, computation);
398   // The linkage of the specialization should be consistent with the
399   // template declaration.
400   LV.setLinkage(tempLV.getLinkage());
401 
402   // Merge information from the template parameters.
403   LinkageInfo paramsLV =
404       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
405   LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
406 
407   // Merge information from the template arguments.
408   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
409   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
410   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
411 }
412 
413 /// Does the given declaration have a direct visibility attribute
414 /// that would match the given rules?
415 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
416                                          LVComputationKind computation) {
417   if (computation.IgnoreAllVisibility)
418     return false;
419 
420   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
421          D->hasAttr<VisibilityAttr>();
422 }
423 
424 /// Should we consider visibility associated with the template
425 /// arguments and parameters of the given class template specialization?
426 static bool shouldConsiderTemplateVisibility(
427                                  const ClassTemplateSpecializationDecl *spec,
428                                  LVComputationKind computation) {
429   // Include visibility from the template parameters and arguments
430   // only if this is not an explicit instantiation or specialization
431   // with direct explicit visibility (and note that implicit
432   // instantiations won't have a direct attribute).
433   //
434   // Furthermore, we want to ignore template parameters and arguments
435   // for an explicit specialization when computing the visibility of a
436   // member thereof with explicit visibility.
437   //
438   // This is a bit complex; let's unpack it.
439   //
440   // An explicit class specialization is an independent, top-level
441   // declaration.  As such, if it or any of its members has an
442   // explicit visibility attribute, that must directly express the
443   // user's intent, and we should honor it.  The same logic applies to
444   // an explicit instantiation of a member of such a thing.
445 
446   // Fast path: if this is not an explicit instantiation or
447   // specialization, we always want to consider template-related
448   // visibility restrictions.
449   if (!spec->isExplicitInstantiationOrSpecialization())
450     return true;
451 
452   // This is the 'member thereof' check.
453   if (spec->isExplicitSpecialization() &&
454       hasExplicitVisibilityAlready(computation))
455     return false;
456 
457   return !hasDirectVisibilityAttribute(spec, computation);
458 }
459 
460 /// Merge in template-related linkage and visibility for the given
461 /// class template specialization.
462 void LinkageComputer::mergeTemplateLV(
463     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
464     LVComputationKind computation) {
465   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
466 
467   // Merge information from the template parameters, but ignore
468   // visibility if we're only considering template arguments.
469   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
470   // Merge information from the template declaration.
471   LinkageInfo tempLV = getLVForDecl(temp, computation);
472   // The linkage of the specialization should be consistent with the
473   // template declaration.
474   LV.setLinkage(tempLV.getLinkage());
475 
476   LinkageInfo paramsLV =
477     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
478   LV.mergeMaybeWithVisibility(paramsLV,
479            considerVisibility && !hasExplicitVisibilityAlready(computation));
480 
481   // Merge information from the template arguments.  We ignore
482   // template-argument visibility if we've got an explicit
483   // instantiation with a visibility attribute.
484   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
485   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
486   if (considerVisibility)
487     LV.mergeVisibility(argsLV);
488   LV.mergeExternalVisibility(argsLV);
489 }
490 
491 /// Should we consider visibility associated with the template
492 /// arguments and parameters of the given variable template
493 /// specialization? As usual, follow class template specialization
494 /// logic up to initialization.
495 static bool shouldConsiderTemplateVisibility(
496                                  const VarTemplateSpecializationDecl *spec,
497                                  LVComputationKind computation) {
498   // Include visibility from the template parameters and arguments
499   // only if this is not an explicit instantiation or specialization
500   // with direct explicit visibility (and note that implicit
501   // instantiations won't have a direct attribute).
502   if (!spec->isExplicitInstantiationOrSpecialization())
503     return true;
504 
505   // An explicit variable specialization is an independent, top-level
506   // declaration.  As such, if it has an explicit visibility attribute,
507   // that must directly express the user's intent, and we should honor
508   // it.
509   if (spec->isExplicitSpecialization() &&
510       hasExplicitVisibilityAlready(computation))
511     return false;
512 
513   return !hasDirectVisibilityAttribute(spec, computation);
514 }
515 
516 /// Merge in template-related linkage and visibility for the given
517 /// variable template specialization. As usual, follow class template
518 /// specialization logic up to initialization.
519 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
520                                       const VarTemplateSpecializationDecl *spec,
521                                       LVComputationKind computation) {
522   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
523 
524   // Merge information from the template parameters, but ignore
525   // visibility if we're only considering template arguments.
526   VarTemplateDecl *temp = spec->getSpecializedTemplate();
527   LinkageInfo tempLV =
528     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
529   LV.mergeMaybeWithVisibility(tempLV,
530            considerVisibility && !hasExplicitVisibilityAlready(computation));
531 
532   // Merge information from the template arguments.  We ignore
533   // template-argument visibility if we've got an explicit
534   // instantiation with a visibility attribute.
535   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
536   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
537   if (considerVisibility)
538     LV.mergeVisibility(argsLV);
539   LV.mergeExternalVisibility(argsLV);
540 }
541 
542 static bool useInlineVisibilityHidden(const NamedDecl *D) {
543   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
544   const LangOptions &Opts = D->getASTContext().getLangOpts();
545   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
546     return false;
547 
548   const auto *FD = dyn_cast<FunctionDecl>(D);
549   if (!FD)
550     return false;
551 
552   TemplateSpecializationKind TSK = TSK_Undeclared;
553   if (FunctionTemplateSpecializationInfo *spec
554       = FD->getTemplateSpecializationInfo()) {
555     TSK = spec->getTemplateSpecializationKind();
556   } else if (MemberSpecializationInfo *MSI =
557              FD->getMemberSpecializationInfo()) {
558     TSK = MSI->getTemplateSpecializationKind();
559   }
560 
561   const FunctionDecl *Def = nullptr;
562   // InlineVisibilityHidden only applies to definitions, and
563   // isInlined() only gives meaningful answers on definitions
564   // anyway.
565   return TSK != TSK_ExplicitInstantiationDeclaration &&
566     TSK != TSK_ExplicitInstantiationDefinition &&
567     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
568 }
569 
570 template <typename T> static bool isFirstInExternCContext(T *D) {
571   const T *First = D->getFirstDecl();
572   return First->isInExternCContext();
573 }
574 
575 static bool isSingleLineLanguageLinkage(const Decl &D) {
576   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
577     if (!SD->hasBraces())
578       return true;
579   return false;
580 }
581 
582 /// Determine whether D is declared in the purview of a named module.
583 static bool isInModulePurview(const NamedDecl *D) {
584   if (auto *M = D->getOwningModule())
585     return M->isModulePurview();
586   return false;
587 }
588 
589 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
590   // FIXME: Handle isModulePrivate.
591   switch (D->getModuleOwnershipKind()) {
592   case Decl::ModuleOwnershipKind::Unowned:
593   case Decl::ModuleOwnershipKind::ReachableWhenImported:
594   case Decl::ModuleOwnershipKind::ModulePrivate:
595     return false;
596   case Decl::ModuleOwnershipKind::Visible:
597   case Decl::ModuleOwnershipKind::VisibleWhenImported:
598     return isInModulePurview(D);
599   }
600   llvm_unreachable("unexpected module ownership kind");
601 }
602 
603 static bool isDeclaredInModuleInterfaceOrPartition(const NamedDecl *D) {
604   if (auto *M = D->getOwningModule())
605     return M->isInterfaceOrPartition();
606   return false;
607 }
608 
609 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
610   return LinkageInfo::external();
611 }
612 
613 static StorageClass getStorageClass(const Decl *D) {
614   if (auto *TD = dyn_cast<TemplateDecl>(D))
615     D = TD->getTemplatedDecl();
616   if (D) {
617     if (auto *VD = dyn_cast<VarDecl>(D))
618       return VD->getStorageClass();
619     if (auto *FD = dyn_cast<FunctionDecl>(D))
620       return FD->getStorageClass();
621   }
622   return SC_None;
623 }
624 
625 LinkageInfo
626 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
627                                             LVComputationKind computation,
628                                             bool IgnoreVarTypeLinkage) {
629   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
630          "Not a name having namespace scope");
631   ASTContext &Context = D->getASTContext();
632 
633   // C++ [basic.link]p3:
634   //   A name having namespace scope (3.3.6) has internal linkage if it
635   //   is the name of
636 
637   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
638     // - a variable, variable template, function, or function template
639     //   that is explicitly declared static; or
640     // (This bullet corresponds to C99 6.2.2p3.)
641     return LinkageInfo::internal();
642   }
643 
644   if (const auto *Var = dyn_cast<VarDecl>(D)) {
645     // - a non-template variable of non-volatile const-qualified type, unless
646     //   - it is explicitly declared extern, or
647     //   - it is declared in the purview of a module interface unit
648     //     (outside the private-module-fragment, if any) or module partition, or
649     //   - it is inline, or
650     //   - it was previously declared and the prior declaration did not have
651     //     internal linkage
652     // (There is no equivalent in C99.)
653     if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
654         !Var->getType().isVolatileQualified() && !Var->isInline() &&
655         !isDeclaredInModuleInterfaceOrPartition(Var) &&
656         !isa<VarTemplateSpecializationDecl>(Var) &&
657         !Var->getDescribedVarTemplate()) {
658       const VarDecl *PrevVar = Var->getPreviousDecl();
659       if (PrevVar)
660         return getLVForDecl(PrevVar, computation);
661 
662       if (Var->getStorageClass() != SC_Extern &&
663           Var->getStorageClass() != SC_PrivateExtern &&
664           !isSingleLineLanguageLinkage(*Var))
665         return LinkageInfo::internal();
666     }
667 
668     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
669          PrevVar = PrevVar->getPreviousDecl()) {
670       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
671           Var->getStorageClass() == SC_None)
672         return getDeclLinkageAndVisibility(PrevVar);
673       // Explicitly declared static.
674       if (PrevVar->getStorageClass() == SC_Static)
675         return LinkageInfo::internal();
676     }
677   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
678     //   - a data member of an anonymous union.
679     const VarDecl *VD = IFD->getVarDecl();
680     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
681     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
682   }
683   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
684 
685   // FIXME: This gives internal linkage to names that should have no linkage
686   // (those not covered by [basic.link]p6).
687   if (D->isInAnonymousNamespace()) {
688     const auto *Var = dyn_cast<VarDecl>(D);
689     const auto *Func = dyn_cast<FunctionDecl>(D);
690     // FIXME: The check for extern "C" here is not justified by the standard
691     // wording, but we retain it from the pre-DR1113 model to avoid breaking
692     // code.
693     //
694     // C++11 [basic.link]p4:
695     //   An unnamed namespace or a namespace declared directly or indirectly
696     //   within an unnamed namespace has internal linkage.
697     if ((!Var || !isFirstInExternCContext(Var)) &&
698         (!Func || !isFirstInExternCContext(Func)))
699       return LinkageInfo::internal();
700   }
701 
702   // Set up the defaults.
703 
704   // C99 6.2.2p5:
705   //   If the declaration of an identifier for an object has file
706   //   scope and no storage-class specifier, its linkage is
707   //   external.
708   LinkageInfo LV = getExternalLinkageFor(D);
709 
710   if (!hasExplicitVisibilityAlready(computation)) {
711     if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
712       LV.mergeVisibility(*Vis, true);
713     } else {
714       // If we're declared in a namespace with a visibility attribute,
715       // use that namespace's visibility, and it still counts as explicit.
716       for (const DeclContext *DC = D->getDeclContext();
717            !isa<TranslationUnitDecl>(DC);
718            DC = DC->getParent()) {
719         const auto *ND = dyn_cast<NamespaceDecl>(DC);
720         if (!ND) continue;
721         if (std::optional<Visibility> Vis =
722                 getExplicitVisibility(ND, computation)) {
723           LV.mergeVisibility(*Vis, true);
724           break;
725         }
726       }
727     }
728 
729     // Add in global settings if the above didn't give us direct visibility.
730     if (!LV.isVisibilityExplicit()) {
731       // Use global type/value visibility as appropriate.
732       Visibility globalVisibility =
733           computation.isValueVisibility()
734               ? Context.getLangOpts().getValueVisibilityMode()
735               : Context.getLangOpts().getTypeVisibilityMode();
736       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737 
738       // If we're paying attention to global visibility, apply
739       // -finline-visibility-hidden if this is an inline method.
740       if (useInlineVisibilityHidden(D))
741         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742     }
743   }
744 
745   // C++ [basic.link]p4:
746 
747   //   A name having namespace scope that has not been given internal linkage
748   //   above and that is the name of
749   //   [...bullets...]
750   //   has its linkage determined as follows:
751   //     - if the enclosing namespace has internal linkage, the name has
752   //       internal linkage; [handled above]
753   //     - otherwise, if the declaration of the name is attached to a named
754   //       module and is not exported, the name has module linkage;
755   //     - otherwise, the name has external linkage.
756   // LV is currently set up to handle the last two bullets.
757   //
758   //   The bullets are:
759 
760   //     - a variable; or
761   if (const auto *Var = dyn_cast<VarDecl>(D)) {
762     // GCC applies the following optimization to variables and static
763     // data members, but not to functions:
764     //
765     // Modify the variable's LV by the LV of its type unless this is
766     // C or extern "C".  This follows from [basic.link]p9:
767     //   A type without linkage shall not be used as the type of a
768     //   variable or function with external linkage unless
769     //    - the entity has C language linkage, or
770     //    - the entity is declared within an unnamed namespace, or
771     //    - the entity is not used or is defined in the same
772     //      translation unit.
773     // and [basic.link]p10:
774     //   ...the types specified by all declarations referring to a
775     //   given variable or function shall be identical...
776     // C does not have an equivalent rule.
777     //
778     // Ignore this if we've got an explicit attribute;  the user
779     // probably knows what they're doing.
780     //
781     // Note that we don't want to make the variable non-external
782     // because of this, but unique-external linkage suits us.
783 
784     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
785         !IgnoreVarTypeLinkage) {
786       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
787       if (!isExternallyVisible(TypeLV.getLinkage()))
788         return LinkageInfo::uniqueExternal();
789       if (!LV.isVisibilityExplicit())
790         LV.mergeVisibility(TypeLV);
791     }
792 
793     if (Var->getStorageClass() == SC_PrivateExtern)
794       LV.mergeVisibility(HiddenVisibility, true);
795 
796     // Note that Sema::MergeVarDecl already takes care of implementing
797     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
798     // to do it here.
799 
800     // As per function and class template specializations (below),
801     // consider LV for the template and template arguments.  We're at file
802     // scope, so we do not need to worry about nested specializations.
803     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
804       mergeTemplateLV(LV, spec, computation);
805     }
806 
807   //     - a function; or
808   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
809     // In theory, we can modify the function's LV by the LV of its
810     // type unless it has C linkage (see comment above about variables
811     // for justification).  In practice, GCC doesn't do this, so it's
812     // just too painful to make work.
813 
814     if (Function->getStorageClass() == SC_PrivateExtern)
815       LV.mergeVisibility(HiddenVisibility, true);
816 
817     // OpenMP target declare device functions are not callable from the host so
818     // they should not be exported from the device image. This applies to all
819     // functions as the host-callable kernel functions are emitted at codegen.
820     if (Context.getLangOpts().OpenMP &&
821         Context.getLangOpts().OpenMPIsTargetDevice &&
822         ((Context.getTargetInfo().getTriple().isAMDGPU() ||
823           Context.getTargetInfo().getTriple().isNVPTX()) ||
824          OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
825       LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
826 
827     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
828     // merging storage classes and visibility attributes, so we don't have to
829     // look at previous decls in here.
830 
831     // In C++, then if the type of the function uses a type with
832     // unique-external linkage, it's not legally usable from outside
833     // this translation unit.  However, we should use the C linkage
834     // rules instead for extern "C" declarations.
835     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
836       // Only look at the type-as-written. Otherwise, deducing the return type
837       // of a function could change its linkage.
838       QualType TypeAsWritten = Function->getType();
839       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
840         TypeAsWritten = TSI->getType();
841       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
842         return LinkageInfo::uniqueExternal();
843     }
844 
845     // Consider LV from the template and the template arguments.
846     // We're at file scope, so we do not need to worry about nested
847     // specializations.
848     if (FunctionTemplateSpecializationInfo *specInfo
849                                = Function->getTemplateSpecializationInfo()) {
850       mergeTemplateLV(LV, Function, specInfo, computation);
851     }
852 
853   //     - a named class (Clause 9), or an unnamed class defined in a
854   //       typedef declaration in which the class has the typedef name
855   //       for linkage purposes (7.1.3); or
856   //     - a named enumeration (7.2), or an unnamed enumeration
857   //       defined in a typedef declaration in which the enumeration
858   //       has the typedef name for linkage purposes (7.1.3); or
859   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
860     // Unnamed tags have no linkage.
861     if (!Tag->hasNameForLinkage())
862       return LinkageInfo::none();
863 
864     // If this is a class template specialization, consider the
865     // linkage of the template and template arguments.  We're at file
866     // scope, so we do not need to worry about nested specializations.
867     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
868       mergeTemplateLV(LV, spec, computation);
869     }
870 
871   // FIXME: This is not part of the C++ standard any more.
872   //     - an enumerator belonging to an enumeration with external linkage; or
873   } else if (isa<EnumConstantDecl>(D)) {
874     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
875                                       computation);
876     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
877       return LinkageInfo::none();
878     LV.merge(EnumLV);
879 
880   //     - a template
881   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
882     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
883     LinkageInfo tempLV =
884       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
885     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
886 
887   //     An unnamed namespace or a namespace declared directly or indirectly
888   //     within an unnamed namespace has internal linkage. All other namespaces
889   //     have external linkage.
890   //
891   // We handled names in anonymous namespaces above.
892   } else if (isa<NamespaceDecl>(D)) {
893     return LV;
894 
895   // By extension, we assign external linkage to Objective-C
896   // interfaces.
897   } else if (isa<ObjCInterfaceDecl>(D)) {
898     // fallout
899 
900   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
901     // A typedef declaration has linkage if it gives a type a name for
902     // linkage purposes.
903     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
904       return LinkageInfo::none();
905 
906   } else if (isa<MSGuidDecl>(D)) {
907     // A GUID behaves like an inline variable with external linkage. Fall
908     // through.
909 
910   // Everything not covered here has no linkage.
911   } else {
912     return LinkageInfo::none();
913   }
914 
915   // If we ended up with non-externally-visible linkage, visibility should
916   // always be default.
917   if (!isExternallyVisible(LV.getLinkage()))
918     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
919 
920   return LV;
921 }
922 
923 LinkageInfo
924 LinkageComputer::getLVForClassMember(const NamedDecl *D,
925                                      LVComputationKind computation,
926                                      bool IgnoreVarTypeLinkage) {
927   // Only certain class members have linkage.  Note that fields don't
928   // really have linkage, but it's convenient to say they do for the
929   // purposes of calculating linkage of pointer-to-data-member
930   // template arguments.
931   //
932   // Templates also don't officially have linkage, but since we ignore
933   // the C++ standard and look at template arguments when determining
934   // linkage and visibility of a template specialization, we might hit
935   // a template template argument that way. If we do, we need to
936   // consider its linkage.
937   if (!(isa<CXXMethodDecl>(D) ||
938         isa<VarDecl>(D) ||
939         isa<FieldDecl>(D) ||
940         isa<IndirectFieldDecl>(D) ||
941         isa<TagDecl>(D) ||
942         isa<TemplateDecl>(D)))
943     return LinkageInfo::none();
944 
945   LinkageInfo LV;
946 
947   // If we have an explicit visibility attribute, merge that in.
948   if (!hasExplicitVisibilityAlready(computation)) {
949     if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
950       LV.mergeVisibility(*Vis, true);
951     // If we're paying attention to global visibility, apply
952     // -finline-visibility-hidden if this is an inline method.
953     //
954     // Note that we do this before merging information about
955     // the class visibility.
956     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
957       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
958   }
959 
960   // If this class member has an explicit visibility attribute, the only
961   // thing that can change its visibility is the template arguments, so
962   // only look for them when processing the class.
963   LVComputationKind classComputation = computation;
964   if (LV.isVisibilityExplicit())
965     classComputation = withExplicitVisibilityAlready(computation);
966 
967   LinkageInfo classLV =
968     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
969   // The member has the same linkage as the class. If that's not externally
970   // visible, we don't need to compute anything about the linkage.
971   // FIXME: If we're only computing linkage, can we bail out here?
972   if (!isExternallyVisible(classLV.getLinkage()))
973     return classLV;
974 
975 
976   // Otherwise, don't merge in classLV yet, because in certain cases
977   // we need to completely ignore the visibility from it.
978 
979   // Specifically, if this decl exists and has an explicit attribute.
980   const NamedDecl *explicitSpecSuppressor = nullptr;
981 
982   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
983     // Only look at the type-as-written. Otherwise, deducing the return type
984     // of a function could change its linkage.
985     QualType TypeAsWritten = MD->getType();
986     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
987       TypeAsWritten = TSI->getType();
988     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
989       return LinkageInfo::uniqueExternal();
990 
991     // If this is a method template specialization, use the linkage for
992     // the template parameters and arguments.
993     if (FunctionTemplateSpecializationInfo *spec
994            = MD->getTemplateSpecializationInfo()) {
995       mergeTemplateLV(LV, MD, spec, computation);
996       if (spec->isExplicitSpecialization()) {
997         explicitSpecSuppressor = MD;
998       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
999         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
1000       }
1001     } else if (isExplicitMemberSpecialization(MD)) {
1002       explicitSpecSuppressor = MD;
1003     }
1004 
1005     // OpenMP target declare device functions are not callable from the host so
1006     // they should not be exported from the device image. This applies to all
1007     // functions as the host-callable kernel functions are emitted at codegen.
1008     ASTContext &Context = D->getASTContext();
1009     if (Context.getLangOpts().OpenMP &&
1010         Context.getLangOpts().OpenMPIsTargetDevice &&
1011         ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1012           Context.getTargetInfo().getTriple().isNVPTX()) ||
1013          OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1014       LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1015 
1016   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1017     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1018       mergeTemplateLV(LV, spec, computation);
1019       if (spec->isExplicitSpecialization()) {
1020         explicitSpecSuppressor = spec;
1021       } else {
1022         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1023         if (isExplicitMemberSpecialization(temp)) {
1024           explicitSpecSuppressor = temp->getTemplatedDecl();
1025         }
1026       }
1027     } else if (isExplicitMemberSpecialization(RD)) {
1028       explicitSpecSuppressor = RD;
1029     }
1030 
1031   // Static data members.
1032   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1033     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1034       mergeTemplateLV(LV, spec, computation);
1035 
1036     // Modify the variable's linkage by its type, but ignore the
1037     // type's visibility unless it's a definition.
1038     if (!IgnoreVarTypeLinkage) {
1039       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1040       // FIXME: If the type's linkage is not externally visible, we can
1041       // give this static data member UniqueExternalLinkage.
1042       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1043         LV.mergeVisibility(typeLV);
1044       LV.mergeExternalVisibility(typeLV);
1045     }
1046 
1047     if (isExplicitMemberSpecialization(VD)) {
1048       explicitSpecSuppressor = VD;
1049     }
1050 
1051   // Template members.
1052   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1053     bool considerVisibility =
1054       (!LV.isVisibilityExplicit() &&
1055        !classLV.isVisibilityExplicit() &&
1056        !hasExplicitVisibilityAlready(computation));
1057     LinkageInfo tempLV =
1058       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1059     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1060 
1061     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1062       if (isExplicitMemberSpecialization(redeclTemp)) {
1063         explicitSpecSuppressor = temp->getTemplatedDecl();
1064       }
1065     }
1066   }
1067 
1068   // We should never be looking for an attribute directly on a template.
1069   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1070 
1071   // If this member is an explicit member specialization, and it has
1072   // an explicit attribute, ignore visibility from the parent.
1073   bool considerClassVisibility = true;
1074   if (explicitSpecSuppressor &&
1075       // optimization: hasDVA() is true only with explicit visibility.
1076       LV.isVisibilityExplicit() &&
1077       classLV.getVisibility() != DefaultVisibility &&
1078       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1079     considerClassVisibility = false;
1080   }
1081 
1082   // Finally, merge in information from the class.
1083   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1084   return LV;
1085 }
1086 
1087 void NamedDecl::anchor() {}
1088 
1089 bool NamedDecl::isLinkageValid() const {
1090   if (!hasCachedLinkage())
1091     return true;
1092 
1093   Linkage L = LinkageComputer{}
1094                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1095                   .getLinkage();
1096   return L == getCachedLinkage();
1097 }
1098 
1099 ReservedIdentifierStatus
1100 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1101   const IdentifierInfo *II = getIdentifier();
1102 
1103   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1104   // at lexing time.
1105   if (!II)
1106     return ReservedIdentifierStatus::NotReserved;
1107 
1108   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1109   if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1110     // This name is only reserved at global scope. Check if this declaration
1111     // conflicts with a global scope declaration.
1112     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1113       return ReservedIdentifierStatus::NotReserved;
1114 
1115     // C++ [dcl.link]/7:
1116     //   Two declarations [conflict] if [...] one declares a function or
1117     //   variable with C language linkage, and the other declares [...] a
1118     //   variable that belongs to the global scope.
1119     //
1120     // Therefore names that are reserved at global scope are also reserved as
1121     // names of variables and functions with C language linkage.
1122     const DeclContext *DC = getDeclContext()->getRedeclContext();
1123     if (DC->isTranslationUnit())
1124       return Status;
1125     if (auto *VD = dyn_cast<VarDecl>(this))
1126       if (VD->isExternC())
1127         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1128     if (auto *FD = dyn_cast<FunctionDecl>(this))
1129       if (FD->isExternC())
1130         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1131     return ReservedIdentifierStatus::NotReserved;
1132   }
1133 
1134   return Status;
1135 }
1136 
1137 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1138   StringRef name = getName();
1139   if (name.empty()) return SFF_None;
1140 
1141   if (name.front() == 'C')
1142     if (name == "CFStringCreateWithFormat" ||
1143         name == "CFStringCreateWithFormatAndArguments" ||
1144         name == "CFStringAppendFormat" ||
1145         name == "CFStringAppendFormatAndArguments")
1146       return SFF_CFString;
1147   return SFF_None;
1148 }
1149 
1150 Linkage NamedDecl::getLinkageInternal() const {
1151   // We don't care about visibility here, so ask for the cheapest
1152   // possible visibility analysis.
1153   return LinkageComputer{}
1154       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1155       .getLinkage();
1156 }
1157 
1158 /// Get the linkage from a semantic point of view. Entities in
1159 /// anonymous namespaces are external (in c++98).
1160 Linkage NamedDecl::getFormalLinkage() const {
1161   Linkage InternalLinkage = getLinkageInternal();
1162 
1163   // C++ [basic.link]p4.8:
1164   //   - if the declaration of the name is attached to a named module and is not
1165   //   exported
1166   //     the name has module linkage;
1167   //
1168   // [basic.namespace.general]/p2
1169   //   A namespace is never attached to a named module and never has a name with
1170   //   module linkage.
1171   if (isInModulePurview(this) &&
1172       InternalLinkage == ExternalLinkage &&
1173       !isExportedFromModuleInterfaceUnit(
1174           cast<NamedDecl>(this->getCanonicalDecl())) &&
1175       !isa<NamespaceDecl>(this))
1176     InternalLinkage = ModuleLinkage;
1177 
1178   return clang::getFormalLinkage(InternalLinkage);
1179 }
1180 
1181 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1182   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1183 }
1184 
1185 static std::optional<Visibility>
1186 getExplicitVisibilityAux(const NamedDecl *ND,
1187                          NamedDecl::ExplicitVisibilityKind kind,
1188                          bool IsMostRecent) {
1189   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1190 
1191   // Check the declaration itself first.
1192   if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1193     return V;
1194 
1195   // If this is a member class of a specialization of a class template
1196   // and the corresponding decl has explicit visibility, use that.
1197   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1198     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1199     if (InstantiatedFrom)
1200       return getVisibilityOf(InstantiatedFrom, kind);
1201   }
1202 
1203   // If there wasn't explicit visibility there, and this is a
1204   // specialization of a class template, check for visibility
1205   // on the pattern.
1206   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1207     // Walk all the template decl till this point to see if there are
1208     // explicit visibility attributes.
1209     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1210     while (TD != nullptr) {
1211       auto Vis = getVisibilityOf(TD, kind);
1212       if (Vis != std::nullopt)
1213         return Vis;
1214       TD = TD->getPreviousDecl();
1215     }
1216     return std::nullopt;
1217   }
1218 
1219   // Use the most recent declaration.
1220   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1221     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1222     if (MostRecent != ND)
1223       return getExplicitVisibilityAux(MostRecent, kind, true);
1224   }
1225 
1226   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1227     if (Var->isStaticDataMember()) {
1228       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1229       if (InstantiatedFrom)
1230         return getVisibilityOf(InstantiatedFrom, kind);
1231     }
1232 
1233     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1234       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1235                              kind);
1236 
1237     return std::nullopt;
1238   }
1239   // Also handle function template specializations.
1240   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1241     // If the function is a specialization of a template with an
1242     // explicit visibility attribute, use that.
1243     if (FunctionTemplateSpecializationInfo *templateInfo
1244           = fn->getTemplateSpecializationInfo())
1245       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1246                              kind);
1247 
1248     // If the function is a member of a specialization of a class template
1249     // and the corresponding decl has explicit visibility, use that.
1250     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1251     if (InstantiatedFrom)
1252       return getVisibilityOf(InstantiatedFrom, kind);
1253 
1254     return std::nullopt;
1255   }
1256 
1257   // The visibility of a template is stored in the templated decl.
1258   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1259     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1260 
1261   return std::nullopt;
1262 }
1263 
1264 std::optional<Visibility>
1265 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1266   return getExplicitVisibilityAux(this, kind, false);
1267 }
1268 
1269 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1270                                              Decl *ContextDecl,
1271                                              LVComputationKind computation) {
1272   // This lambda has its linkage/visibility determined by its owner.
1273   const NamedDecl *Owner;
1274   if (!ContextDecl)
1275     Owner = dyn_cast<NamedDecl>(DC);
1276   else if (isa<ParmVarDecl>(ContextDecl))
1277     Owner =
1278         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1279   else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1280     // Replace with the concept's owning decl, which is either a namespace or a
1281     // TU, so this needs a dyn_cast.
1282     Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1283   } else {
1284     Owner = cast<NamedDecl>(ContextDecl);
1285   }
1286 
1287   if (!Owner)
1288     return LinkageInfo::none();
1289 
1290   // If the owner has a deduced type, we need to skip querying the linkage and
1291   // visibility of that type, because it might involve this closure type.  The
1292   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1293   // than NoLinkage when we don't strictly need to, which is benign.
1294   auto *VD = dyn_cast<VarDecl>(Owner);
1295   LinkageInfo OwnerLV =
1296       VD && VD->getType()->getContainedDeducedType()
1297           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1298           : getLVForDecl(Owner, computation);
1299 
1300   // A lambda never formally has linkage. But if the owner is externally
1301   // visible, then the lambda is too. We apply the same rules to blocks.
1302   if (!isExternallyVisible(OwnerLV.getLinkage()))
1303     return LinkageInfo::none();
1304   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1305                      OwnerLV.isVisibilityExplicit());
1306 }
1307 
1308 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1309                                                LVComputationKind computation) {
1310   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1311     if (Function->isInAnonymousNamespace() &&
1312         !isFirstInExternCContext(Function))
1313       return LinkageInfo::internal();
1314 
1315     // This is a "void f();" which got merged with a file static.
1316     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1317       return LinkageInfo::internal();
1318 
1319     LinkageInfo LV;
1320     if (!hasExplicitVisibilityAlready(computation)) {
1321       if (std::optional<Visibility> Vis =
1322               getExplicitVisibility(Function, computation))
1323         LV.mergeVisibility(*Vis, true);
1324     }
1325 
1326     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1327     // merging storage classes and visibility attributes, so we don't have to
1328     // look at previous decls in here.
1329 
1330     return LV;
1331   }
1332 
1333   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1334     if (Var->hasExternalStorage()) {
1335       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1336         return LinkageInfo::internal();
1337 
1338       LinkageInfo LV;
1339       if (Var->getStorageClass() == SC_PrivateExtern)
1340         LV.mergeVisibility(HiddenVisibility, true);
1341       else if (!hasExplicitVisibilityAlready(computation)) {
1342         if (std::optional<Visibility> Vis =
1343                 getExplicitVisibility(Var, computation))
1344           LV.mergeVisibility(*Vis, true);
1345       }
1346 
1347       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1348         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1349         if (PrevLV.getLinkage())
1350           LV.setLinkage(PrevLV.getLinkage());
1351         LV.mergeVisibility(PrevLV);
1352       }
1353 
1354       return LV;
1355     }
1356 
1357     if (!Var->isStaticLocal())
1358       return LinkageInfo::none();
1359   }
1360 
1361   ASTContext &Context = D->getASTContext();
1362   if (!Context.getLangOpts().CPlusPlus)
1363     return LinkageInfo::none();
1364 
1365   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1366   if (!OuterD || OuterD->isInvalidDecl())
1367     return LinkageInfo::none();
1368 
1369   LinkageInfo LV;
1370   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1371     if (!BD->getBlockManglingNumber())
1372       return LinkageInfo::none();
1373 
1374     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1375                          BD->getBlockManglingContextDecl(), computation);
1376   } else {
1377     const auto *FD = cast<FunctionDecl>(OuterD);
1378     if (!FD->isInlined() &&
1379         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1380       return LinkageInfo::none();
1381 
1382     // If a function is hidden by -fvisibility-inlines-hidden option and
1383     // is not explicitly attributed as a hidden function,
1384     // we should not make static local variables in the function hidden.
1385     LV = getLVForDecl(FD, computation);
1386     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1387         !LV.isVisibilityExplicit() &&
1388         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1389       assert(cast<VarDecl>(D)->isStaticLocal());
1390       // If this was an implicitly hidden inline method, check again for
1391       // explicit visibility on the parent class, and use that for static locals
1392       // if present.
1393       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1394         LV = getLVForDecl(MD->getParent(), computation);
1395       if (!LV.isVisibilityExplicit()) {
1396         Visibility globalVisibility =
1397             computation.isValueVisibility()
1398                 ? Context.getLangOpts().getValueVisibilityMode()
1399                 : Context.getLangOpts().getTypeVisibilityMode();
1400         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1401                            /*visibilityExplicit=*/false);
1402       }
1403     }
1404   }
1405   if (!isExternallyVisible(LV.getLinkage()))
1406     return LinkageInfo::none();
1407   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1408                      LV.isVisibilityExplicit());
1409 }
1410 
1411 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1412                                               LVComputationKind computation,
1413                                               bool IgnoreVarTypeLinkage) {
1414   // Internal_linkage attribute overrides other considerations.
1415   if (D->hasAttr<InternalLinkageAttr>())
1416     return LinkageInfo::internal();
1417 
1418   // Objective-C: treat all Objective-C declarations as having external
1419   // linkage.
1420   switch (D->getKind()) {
1421     default:
1422       break;
1423 
1424     // Per C++ [basic.link]p2, only the names of objects, references,
1425     // functions, types, templates, namespaces, and values ever have linkage.
1426     //
1427     // Note that the name of a typedef, namespace alias, using declaration,
1428     // and so on are not the name of the corresponding type, namespace, or
1429     // declaration, so they do *not* have linkage.
1430     case Decl::ImplicitParam:
1431     case Decl::Label:
1432     case Decl::NamespaceAlias:
1433     case Decl::ParmVar:
1434     case Decl::Using:
1435     case Decl::UsingEnum:
1436     case Decl::UsingShadow:
1437     case Decl::UsingDirective:
1438       return LinkageInfo::none();
1439 
1440     case Decl::EnumConstant:
1441       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1442       if (D->getASTContext().getLangOpts().CPlusPlus)
1443         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1444       return LinkageInfo::visible_none();
1445 
1446     case Decl::Typedef:
1447     case Decl::TypeAlias:
1448       // A typedef declaration has linkage if it gives a type a name for
1449       // linkage purposes.
1450       if (!cast<TypedefNameDecl>(D)
1451                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1452         return LinkageInfo::none();
1453       break;
1454 
1455     case Decl::TemplateTemplateParm: // count these as external
1456     case Decl::NonTypeTemplateParm:
1457     case Decl::ObjCAtDefsField:
1458     case Decl::ObjCCategory:
1459     case Decl::ObjCCategoryImpl:
1460     case Decl::ObjCCompatibleAlias:
1461     case Decl::ObjCImplementation:
1462     case Decl::ObjCMethod:
1463     case Decl::ObjCProperty:
1464     case Decl::ObjCPropertyImpl:
1465     case Decl::ObjCProtocol:
1466       return getExternalLinkageFor(D);
1467 
1468     case Decl::CXXRecord: {
1469       const auto *Record = cast<CXXRecordDecl>(D);
1470       if (Record->isLambda()) {
1471         if (Record->hasKnownLambdaInternalLinkage() ||
1472             !Record->getLambdaManglingNumber()) {
1473           // This lambda has no mangling number, so it's internal.
1474           return LinkageInfo::internal();
1475         }
1476 
1477         return getLVForClosure(
1478                   Record->getDeclContext()->getRedeclContext(),
1479                   Record->getLambdaContextDecl(), computation);
1480       }
1481 
1482       break;
1483     }
1484 
1485     case Decl::TemplateParamObject: {
1486       // The template parameter object can be referenced from anywhere its type
1487       // and value can be referenced.
1488       auto *TPO = cast<TemplateParamObjectDecl>(D);
1489       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1490       LV.merge(getLVForValue(TPO->getValue(), computation));
1491       return LV;
1492     }
1493   }
1494 
1495   // Handle linkage for namespace-scope names.
1496   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1497     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1498 
1499   // C++ [basic.link]p5:
1500   //   In addition, a member function, static data member, a named
1501   //   class or enumeration of class scope, or an unnamed class or
1502   //   enumeration defined in a class-scope typedef declaration such
1503   //   that the class or enumeration has the typedef name for linkage
1504   //   purposes (7.1.3), has external linkage if the name of the class
1505   //   has external linkage.
1506   if (D->getDeclContext()->isRecord())
1507     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1508 
1509   // C++ [basic.link]p6:
1510   //   The name of a function declared in block scope and the name of
1511   //   an object declared by a block scope extern declaration have
1512   //   linkage. If there is a visible declaration of an entity with
1513   //   linkage having the same name and type, ignoring entities
1514   //   declared outside the innermost enclosing namespace scope, the
1515   //   block scope declaration declares that same entity and receives
1516   //   the linkage of the previous declaration. If there is more than
1517   //   one such matching entity, the program is ill-formed. Otherwise,
1518   //   if no matching entity is found, the block scope entity receives
1519   //   external linkage.
1520   if (D->getDeclContext()->isFunctionOrMethod())
1521     return getLVForLocalDecl(D, computation);
1522 
1523   // C++ [basic.link]p6:
1524   //   Names not covered by these rules have no linkage.
1525   return LinkageInfo::none();
1526 }
1527 
1528 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1529 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1530                                           LVComputationKind computation) {
1531   // Internal_linkage attribute overrides other considerations.
1532   if (D->hasAttr<InternalLinkageAttr>())
1533     return LinkageInfo::internal();
1534 
1535   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1536     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1537 
1538   if (std::optional<LinkageInfo> LI = lookup(D, computation))
1539     return *LI;
1540 
1541   LinkageInfo LV = computeLVForDecl(D, computation);
1542   if (D->hasCachedLinkage())
1543     assert(D->getCachedLinkage() == LV.getLinkage());
1544 
1545   D->setCachedLinkage(LV.getLinkage());
1546   cache(D, computation, LV);
1547 
1548 #ifndef NDEBUG
1549   // In C (because of gnu inline) and in c++ with microsoft extensions an
1550   // static can follow an extern, so we can have two decls with different
1551   // linkages.
1552   const LangOptions &Opts = D->getASTContext().getLangOpts();
1553   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1554     return LV;
1555 
1556   // We have just computed the linkage for this decl. By induction we know
1557   // that all other computed linkages match, check that the one we just
1558   // computed also does.
1559   NamedDecl *Old = nullptr;
1560   for (auto *I : D->redecls()) {
1561     auto *T = cast<NamedDecl>(I);
1562     if (T == D)
1563       continue;
1564     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1565       Old = T;
1566       break;
1567     }
1568   }
1569   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1570 #endif
1571 
1572   return LV;
1573 }
1574 
1575 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1576   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1577                                              ? NamedDecl::VisibilityForType
1578                                              : NamedDecl::VisibilityForValue;
1579   LVComputationKind CK(EK);
1580   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1581                              ? CK.forLinkageOnly()
1582                              : CK);
1583 }
1584 
1585 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1586   if (isa<NamespaceDecl>(this))
1587     // Namespaces never have module linkage.  It is the entities within them
1588     // that [may] do.
1589     return nullptr;
1590 
1591   Module *M = getOwningModule();
1592   if (!M)
1593     return nullptr;
1594 
1595   switch (M->Kind) {
1596   case Module::ModuleMapModule:
1597     // Module map modules have no special linkage semantics.
1598     return nullptr;
1599 
1600   case Module::ModuleInterfaceUnit:
1601   case Module::ModuleImplementationUnit:
1602   case Module::ModulePartitionInterface:
1603   case Module::ModulePartitionImplementation:
1604     return M;
1605 
1606   case Module::ModuleHeaderUnit:
1607   case Module::ExplicitGlobalModuleFragment:
1608   case Module::ImplicitGlobalModuleFragment: {
1609     // External linkage declarations in the global module have no owning module
1610     // for linkage purposes. But internal linkage declarations in the global
1611     // module fragment of a particular module are owned by that module for
1612     // linkage purposes.
1613     // FIXME: p1815 removes the need for this distinction -- there are no
1614     // internal linkage declarations that need to be referred to from outside
1615     // this TU.
1616     if (IgnoreLinkage)
1617       return nullptr;
1618     bool InternalLinkage;
1619     if (auto *ND = dyn_cast<NamedDecl>(this))
1620       InternalLinkage = !ND->hasExternalFormalLinkage();
1621     else
1622       InternalLinkage = isInAnonymousNamespace();
1623     return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent
1624                            : nullptr;
1625   }
1626 
1627   case Module::PrivateModuleFragment:
1628     // The private module fragment is part of its containing module for linkage
1629     // purposes.
1630     return M->Parent;
1631   }
1632 
1633   llvm_unreachable("unknown module kind");
1634 }
1635 
1636 void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
1637   Name.print(OS, Policy);
1638 }
1639 
1640 void NamedDecl::printName(raw_ostream &OS) const {
1641   printName(OS, getASTContext().getPrintingPolicy());
1642 }
1643 
1644 std::string NamedDecl::getQualifiedNameAsString() const {
1645   std::string QualName;
1646   llvm::raw_string_ostream OS(QualName);
1647   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1648   return QualName;
1649 }
1650 
1651 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1652   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1653 }
1654 
1655 void NamedDecl::printQualifiedName(raw_ostream &OS,
1656                                    const PrintingPolicy &P) const {
1657   if (getDeclContext()->isFunctionOrMethod()) {
1658     // We do not print '(anonymous)' for function parameters without name.
1659     printName(OS, P);
1660     return;
1661   }
1662   printNestedNameSpecifier(OS, P);
1663   if (getDeclName())
1664     OS << *this;
1665   else {
1666     // Give the printName override a chance to pick a different name before we
1667     // fall back to "(anonymous)".
1668     SmallString<64> NameBuffer;
1669     llvm::raw_svector_ostream NameOS(NameBuffer);
1670     printName(NameOS, P);
1671     if (NameBuffer.empty())
1672       OS << "(anonymous)";
1673     else
1674       OS << NameBuffer;
1675   }
1676 }
1677 
1678 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1679   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1680 }
1681 
1682 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1683                                          const PrintingPolicy &P) const {
1684   const DeclContext *Ctx = getDeclContext();
1685 
1686   // For ObjC methods and properties, look through categories and use the
1687   // interface as context.
1688   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1689     if (auto *ID = MD->getClassInterface())
1690       Ctx = ID;
1691   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1692     if (auto *MD = PD->getGetterMethodDecl())
1693       if (auto *ID = MD->getClassInterface())
1694         Ctx = ID;
1695   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1696     if (auto *CI = ID->getContainingInterface())
1697       Ctx = CI;
1698   }
1699 
1700   if (Ctx->isFunctionOrMethod())
1701     return;
1702 
1703   using ContextsTy = SmallVector<const DeclContext *, 8>;
1704   ContextsTy Contexts;
1705 
1706   // Collect named contexts.
1707   DeclarationName NameInScope = getDeclName();
1708   for (; Ctx; Ctx = Ctx->getParent()) {
1709     // Suppress anonymous namespace if requested.
1710     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1711         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1712       continue;
1713 
1714     // Suppress inline namespace if it doesn't make the result ambiguous.
1715     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1716         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1717       continue;
1718 
1719     // Skip non-named contexts such as linkage specifications and ExportDecls.
1720     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1721     if (!ND)
1722       continue;
1723 
1724     Contexts.push_back(Ctx);
1725     NameInScope = ND->getDeclName();
1726   }
1727 
1728   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1729     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1730       OS << Spec->getName();
1731       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1732       printTemplateArgumentList(
1733           OS, TemplateArgs.asArray(), P,
1734           Spec->getSpecializedTemplate()->getTemplateParameters());
1735     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1736       if (ND->isAnonymousNamespace()) {
1737         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1738                                 : "(anonymous namespace)");
1739       }
1740       else
1741         OS << *ND;
1742     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1743       if (!RD->getIdentifier())
1744         OS << "(anonymous " << RD->getKindName() << ')';
1745       else
1746         OS << *RD;
1747     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1748       const FunctionProtoType *FT = nullptr;
1749       if (FD->hasWrittenPrototype())
1750         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1751 
1752       OS << *FD << '(';
1753       if (FT) {
1754         unsigned NumParams = FD->getNumParams();
1755         for (unsigned i = 0; i < NumParams; ++i) {
1756           if (i)
1757             OS << ", ";
1758           OS << FD->getParamDecl(i)->getType().stream(P);
1759         }
1760 
1761         if (FT->isVariadic()) {
1762           if (NumParams > 0)
1763             OS << ", ";
1764           OS << "...";
1765         }
1766       }
1767       OS << ')';
1768     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1769       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1770       // enumerator is declared in the scope that immediately contains
1771       // the enum-specifier. Each scoped enumerator is declared in the
1772       // scope of the enumeration.
1773       // For the case of unscoped enumerator, do not include in the qualified
1774       // name any information about its enum enclosing scope, as its visibility
1775       // is global.
1776       if (ED->isScoped())
1777         OS << *ED;
1778       else
1779         continue;
1780     } else {
1781       OS << *cast<NamedDecl>(DC);
1782     }
1783     OS << "::";
1784   }
1785 }
1786 
1787 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1788                                      const PrintingPolicy &Policy,
1789                                      bool Qualified) const {
1790   if (Qualified)
1791     printQualifiedName(OS, Policy);
1792   else
1793     printName(OS, Policy);
1794 }
1795 
1796 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1797   return true;
1798 }
1799 static bool isRedeclarableImpl(...) { return false; }
1800 static bool isRedeclarable(Decl::Kind K) {
1801   switch (K) {
1802 #define DECL(Type, Base) \
1803   case Decl::Type: \
1804     return isRedeclarableImpl((Type##Decl *)nullptr);
1805 #define ABSTRACT_DECL(DECL)
1806 #include "clang/AST/DeclNodes.inc"
1807   }
1808   llvm_unreachable("unknown decl kind");
1809 }
1810 
1811 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1812   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1813 
1814   // Never replace one imported declaration with another; we need both results
1815   // when re-exporting.
1816   if (OldD->isFromASTFile() && isFromASTFile())
1817     return false;
1818 
1819   // A kind mismatch implies that the declaration is not replaced.
1820   if (OldD->getKind() != getKind())
1821     return false;
1822 
1823   // For method declarations, we never replace. (Why?)
1824   if (isa<ObjCMethodDecl>(this))
1825     return false;
1826 
1827   // For parameters, pick the newer one. This is either an error or (in
1828   // Objective-C) permitted as an extension.
1829   if (isa<ParmVarDecl>(this))
1830     return true;
1831 
1832   // Inline namespaces can give us two declarations with the same
1833   // name and kind in the same scope but different contexts; we should
1834   // keep both declarations in this case.
1835   if (!this->getDeclContext()->getRedeclContext()->Equals(
1836           OldD->getDeclContext()->getRedeclContext()))
1837     return false;
1838 
1839   // Using declarations can be replaced if they import the same name from the
1840   // same context.
1841   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1842     ASTContext &Context = getASTContext();
1843     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1844            Context.getCanonicalNestedNameSpecifier(
1845                cast<UsingDecl>(OldD)->getQualifier());
1846   }
1847   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1848     ASTContext &Context = getASTContext();
1849     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1850            Context.getCanonicalNestedNameSpecifier(
1851                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1852   }
1853 
1854   if (isRedeclarable(getKind())) {
1855     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1856       return false;
1857 
1858     if (IsKnownNewer)
1859       return true;
1860 
1861     // Check whether this is actually newer than OldD. We want to keep the
1862     // newer declaration. This loop will usually only iterate once, because
1863     // OldD is usually the previous declaration.
1864     for (auto *D : redecls()) {
1865       if (D == OldD)
1866         break;
1867 
1868       // If we reach the canonical declaration, then OldD is not actually older
1869       // than this one.
1870       //
1871       // FIXME: In this case, we should not add this decl to the lookup table.
1872       if (D->isCanonicalDecl())
1873         return false;
1874     }
1875 
1876     // It's a newer declaration of the same kind of declaration in the same
1877     // scope: we want this decl instead of the existing one.
1878     return true;
1879   }
1880 
1881   // In all other cases, we need to keep both declarations in case they have
1882   // different visibility. Any attempt to use the name will result in an
1883   // ambiguity if more than one is visible.
1884   return false;
1885 }
1886 
1887 bool NamedDecl::hasLinkage() const {
1888   return getFormalLinkage() != NoLinkage;
1889 }
1890 
1891 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1892   NamedDecl *ND = this;
1893   if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1894     ND = UD->getTargetDecl();
1895 
1896   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1897     return AD->getClassInterface();
1898 
1899   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1900     return AD->getNamespace();
1901 
1902   return ND;
1903 }
1904 
1905 bool NamedDecl::isCXXInstanceMember() const {
1906   if (!isCXXClassMember())
1907     return false;
1908 
1909   const NamedDecl *D = this;
1910   if (isa<UsingShadowDecl>(D))
1911     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1912 
1913   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1914     return true;
1915   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1916     return MD->isInstance();
1917   return false;
1918 }
1919 
1920 //===----------------------------------------------------------------------===//
1921 // DeclaratorDecl Implementation
1922 //===----------------------------------------------------------------------===//
1923 
1924 template <typename DeclT>
1925 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1926   if (decl->getNumTemplateParameterLists() > 0)
1927     return decl->getTemplateParameterList(0)->getTemplateLoc();
1928   return decl->getInnerLocStart();
1929 }
1930 
1931 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1932   TypeSourceInfo *TSI = getTypeSourceInfo();
1933   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1934   return SourceLocation();
1935 }
1936 
1937 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1938   TypeSourceInfo *TSI = getTypeSourceInfo();
1939   if (TSI) return TSI->getTypeLoc().getEndLoc();
1940   return SourceLocation();
1941 }
1942 
1943 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1944   if (QualifierLoc) {
1945     // Make sure the extended decl info is allocated.
1946     if (!hasExtInfo()) {
1947       // Save (non-extended) type source info pointer.
1948       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1949       // Allocate external info struct.
1950       DeclInfo = new (getASTContext()) ExtInfo;
1951       // Restore savedTInfo into (extended) decl info.
1952       getExtInfo()->TInfo = savedTInfo;
1953     }
1954     // Set qualifier info.
1955     getExtInfo()->QualifierLoc = QualifierLoc;
1956   } else if (hasExtInfo()) {
1957     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1958     getExtInfo()->QualifierLoc = QualifierLoc;
1959   }
1960 }
1961 
1962 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1963   assert(TrailingRequiresClause);
1964   // Make sure the extended decl info is allocated.
1965   if (!hasExtInfo()) {
1966     // Save (non-extended) type source info pointer.
1967     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1968     // Allocate external info struct.
1969     DeclInfo = new (getASTContext()) ExtInfo;
1970     // Restore savedTInfo into (extended) decl info.
1971     getExtInfo()->TInfo = savedTInfo;
1972   }
1973   // Set requires clause info.
1974   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1975 }
1976 
1977 void DeclaratorDecl::setTemplateParameterListsInfo(
1978     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1979   assert(!TPLists.empty());
1980   // Make sure the extended decl info is allocated.
1981   if (!hasExtInfo()) {
1982     // Save (non-extended) type source info pointer.
1983     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1984     // Allocate external info struct.
1985     DeclInfo = new (getASTContext()) ExtInfo;
1986     // Restore savedTInfo into (extended) decl info.
1987     getExtInfo()->TInfo = savedTInfo;
1988   }
1989   // Set the template parameter lists info.
1990   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1991 }
1992 
1993 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1994   return getTemplateOrInnerLocStart(this);
1995 }
1996 
1997 // Helper function: returns true if QT is or contains a type
1998 // having a postfix component.
1999 static bool typeIsPostfix(QualType QT) {
2000   while (true) {
2001     const Type* T = QT.getTypePtr();
2002     switch (T->getTypeClass()) {
2003     default:
2004       return false;
2005     case Type::Pointer:
2006       QT = cast<PointerType>(T)->getPointeeType();
2007       break;
2008     case Type::BlockPointer:
2009       QT = cast<BlockPointerType>(T)->getPointeeType();
2010       break;
2011     case Type::MemberPointer:
2012       QT = cast<MemberPointerType>(T)->getPointeeType();
2013       break;
2014     case Type::LValueReference:
2015     case Type::RValueReference:
2016       QT = cast<ReferenceType>(T)->getPointeeType();
2017       break;
2018     case Type::PackExpansion:
2019       QT = cast<PackExpansionType>(T)->getPattern();
2020       break;
2021     case Type::Paren:
2022     case Type::ConstantArray:
2023     case Type::DependentSizedArray:
2024     case Type::IncompleteArray:
2025     case Type::VariableArray:
2026     case Type::FunctionProto:
2027     case Type::FunctionNoProto:
2028       return true;
2029     }
2030   }
2031 }
2032 
2033 SourceRange DeclaratorDecl::getSourceRange() const {
2034   SourceLocation RangeEnd = getLocation();
2035   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2036     // If the declaration has no name or the type extends past the name take the
2037     // end location of the type.
2038     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2039       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2040   }
2041   return SourceRange(getOuterLocStart(), RangeEnd);
2042 }
2043 
2044 void QualifierInfo::setTemplateParameterListsInfo(
2045     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2046   // Free previous template parameters (if any).
2047   if (NumTemplParamLists > 0) {
2048     Context.Deallocate(TemplParamLists);
2049     TemplParamLists = nullptr;
2050     NumTemplParamLists = 0;
2051   }
2052   // Set info on matched template parameter lists (if any).
2053   if (!TPLists.empty()) {
2054     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2055     NumTemplParamLists = TPLists.size();
2056     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2057   }
2058 }
2059 
2060 //===----------------------------------------------------------------------===//
2061 // VarDecl Implementation
2062 //===----------------------------------------------------------------------===//
2063 
2064 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2065   switch (SC) {
2066   case SC_None:                 break;
2067   case SC_Auto:                 return "auto";
2068   case SC_Extern:               return "extern";
2069   case SC_PrivateExtern:        return "__private_extern__";
2070   case SC_Register:             return "register";
2071   case SC_Static:               return "static";
2072   }
2073 
2074   llvm_unreachable("Invalid storage class");
2075 }
2076 
2077 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2078                  SourceLocation StartLoc, SourceLocation IdLoc,
2079                  const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2080                  StorageClass SC)
2081     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2082       redeclarable_base(C) {
2083   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2084                 "VarDeclBitfields too large!");
2085   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2086                 "ParmVarDeclBitfields too large!");
2087   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2088                 "NonParmVarDeclBitfields too large!");
2089   AllBits = 0;
2090   VarDeclBits.SClass = SC;
2091   // Everything else is implicitly initialized to false.
2092 }
2093 
2094 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2095                          SourceLocation IdL, const IdentifierInfo *Id,
2096                          QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2097   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2098 }
2099 
2100 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2101   return new (C, ID)
2102       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2103               QualType(), nullptr, SC_None);
2104 }
2105 
2106 void VarDecl::setStorageClass(StorageClass SC) {
2107   assert(isLegalForVariable(SC));
2108   VarDeclBits.SClass = SC;
2109 }
2110 
2111 VarDecl::TLSKind VarDecl::getTLSKind() const {
2112   switch (VarDeclBits.TSCSpec) {
2113   case TSCS_unspecified:
2114     if (!hasAttr<ThreadAttr>() &&
2115         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2116           getASTContext().getTargetInfo().isTLSSupported() &&
2117           hasAttr<OMPThreadPrivateDeclAttr>()))
2118       return TLS_None;
2119     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2120                 LangOptions::MSVC2015)) ||
2121             hasAttr<OMPThreadPrivateDeclAttr>())
2122                ? TLS_Dynamic
2123                : TLS_Static;
2124   case TSCS___thread: // Fall through.
2125   case TSCS__Thread_local:
2126     return TLS_Static;
2127   case TSCS_thread_local:
2128     return TLS_Dynamic;
2129   }
2130   llvm_unreachable("Unknown thread storage class specifier!");
2131 }
2132 
2133 SourceRange VarDecl::getSourceRange() const {
2134   if (const Expr *Init = getInit()) {
2135     SourceLocation InitEnd = Init->getEndLoc();
2136     // If Init is implicit, ignore its source range and fallback on
2137     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2138     if (InitEnd.isValid() && InitEnd != getLocation())
2139       return SourceRange(getOuterLocStart(), InitEnd);
2140   }
2141   return DeclaratorDecl::getSourceRange();
2142 }
2143 
2144 template<typename T>
2145 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2146   // C++ [dcl.link]p1: All function types, function names with external linkage,
2147   // and variable names with external linkage have a language linkage.
2148   if (!D.hasExternalFormalLinkage())
2149     return NoLanguageLinkage;
2150 
2151   // Language linkage is a C++ concept, but saying that everything else in C has
2152   // C language linkage fits the implementation nicely.
2153   ASTContext &Context = D.getASTContext();
2154   if (!Context.getLangOpts().CPlusPlus)
2155     return CLanguageLinkage;
2156 
2157   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2158   // language linkage of the names of class members and the function type of
2159   // class member functions.
2160   const DeclContext *DC = D.getDeclContext();
2161   if (DC->isRecord())
2162     return CXXLanguageLinkage;
2163 
2164   // If the first decl is in an extern "C" context, any other redeclaration
2165   // will have C language linkage. If the first one is not in an extern "C"
2166   // context, we would have reported an error for any other decl being in one.
2167   if (isFirstInExternCContext(&D))
2168     return CLanguageLinkage;
2169   return CXXLanguageLinkage;
2170 }
2171 
2172 template<typename T>
2173 static bool isDeclExternC(const T &D) {
2174   // Since the context is ignored for class members, they can only have C++
2175   // language linkage or no language linkage.
2176   const DeclContext *DC = D.getDeclContext();
2177   if (DC->isRecord()) {
2178     assert(D.getASTContext().getLangOpts().CPlusPlus);
2179     return false;
2180   }
2181 
2182   return D.getLanguageLinkage() == CLanguageLinkage;
2183 }
2184 
2185 LanguageLinkage VarDecl::getLanguageLinkage() const {
2186   return getDeclLanguageLinkage(*this);
2187 }
2188 
2189 bool VarDecl::isExternC() const {
2190   return isDeclExternC(*this);
2191 }
2192 
2193 bool VarDecl::isInExternCContext() const {
2194   return getLexicalDeclContext()->isExternCContext();
2195 }
2196 
2197 bool VarDecl::isInExternCXXContext() const {
2198   return getLexicalDeclContext()->isExternCXXContext();
2199 }
2200 
2201 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2202 
2203 VarDecl::DefinitionKind
2204 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2205   if (isThisDeclarationADemotedDefinition())
2206     return DeclarationOnly;
2207 
2208   // C++ [basic.def]p2:
2209   //   A declaration is a definition unless [...] it contains the 'extern'
2210   //   specifier or a linkage-specification and neither an initializer [...],
2211   //   it declares a non-inline static data member in a class declaration [...],
2212   //   it declares a static data member outside a class definition and the variable
2213   //   was defined within the class with the constexpr specifier [...],
2214   // C++1y [temp.expl.spec]p15:
2215   //   An explicit specialization of a static data member or an explicit
2216   //   specialization of a static data member template is a definition if the
2217   //   declaration includes an initializer; otherwise, it is a declaration.
2218   //
2219   // FIXME: How do you declare (but not define) a partial specialization of
2220   // a static data member template outside the containing class?
2221   if (isStaticDataMember()) {
2222     if (isOutOfLine() &&
2223         !(getCanonicalDecl()->isInline() &&
2224           getCanonicalDecl()->isConstexpr()) &&
2225         (hasInit() ||
2226          // If the first declaration is out-of-line, this may be an
2227          // instantiation of an out-of-line partial specialization of a variable
2228          // template for which we have not yet instantiated the initializer.
2229          (getFirstDecl()->isOutOfLine()
2230               ? getTemplateSpecializationKind() == TSK_Undeclared
2231               : getTemplateSpecializationKind() !=
2232                     TSK_ExplicitSpecialization) ||
2233          isa<VarTemplatePartialSpecializationDecl>(this)))
2234       return Definition;
2235     if (!isOutOfLine() && isInline())
2236       return Definition;
2237     return DeclarationOnly;
2238   }
2239   // C99 6.7p5:
2240   //   A definition of an identifier is a declaration for that identifier that
2241   //   [...] causes storage to be reserved for that object.
2242   // Note: that applies for all non-file-scope objects.
2243   // C99 6.9.2p1:
2244   //   If the declaration of an identifier for an object has file scope and an
2245   //   initializer, the declaration is an external definition for the identifier
2246   if (hasInit())
2247     return Definition;
2248 
2249   if (hasDefiningAttr())
2250     return Definition;
2251 
2252   if (const auto *SAA = getAttr<SelectAnyAttr>())
2253     if (!SAA->isInherited())
2254       return Definition;
2255 
2256   // A variable template specialization (other than a static data member
2257   // template or an explicit specialization) is a declaration until we
2258   // instantiate its initializer.
2259   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2260     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2261         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2262         !VTSD->IsCompleteDefinition)
2263       return DeclarationOnly;
2264   }
2265 
2266   if (hasExternalStorage())
2267     return DeclarationOnly;
2268 
2269   // [dcl.link] p7:
2270   //   A declaration directly contained in a linkage-specification is treated
2271   //   as if it contains the extern specifier for the purpose of determining
2272   //   the linkage of the declared name and whether it is a definition.
2273   if (isSingleLineLanguageLinkage(*this))
2274     return DeclarationOnly;
2275 
2276   // C99 6.9.2p2:
2277   //   A declaration of an object that has file scope without an initializer,
2278   //   and without a storage class specifier or the scs 'static', constitutes
2279   //   a tentative definition.
2280   // No such thing in C++.
2281   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2282     return TentativeDefinition;
2283 
2284   // What's left is (in C, block-scope) declarations without initializers or
2285   // external storage. These are definitions.
2286   return Definition;
2287 }
2288 
2289 VarDecl *VarDecl::getActingDefinition() {
2290   DefinitionKind Kind = isThisDeclarationADefinition();
2291   if (Kind != TentativeDefinition)
2292     return nullptr;
2293 
2294   VarDecl *LastTentative = nullptr;
2295 
2296   // Loop through the declaration chain, starting with the most recent.
2297   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2298        Decl = Decl->getPreviousDecl()) {
2299     Kind = Decl->isThisDeclarationADefinition();
2300     if (Kind == Definition)
2301       return nullptr;
2302     // Record the first (most recent) TentativeDefinition that is encountered.
2303     if (Kind == TentativeDefinition && !LastTentative)
2304       LastTentative = Decl;
2305   }
2306 
2307   return LastTentative;
2308 }
2309 
2310 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2311   VarDecl *First = getFirstDecl();
2312   for (auto *I : First->redecls()) {
2313     if (I->isThisDeclarationADefinition(C) == Definition)
2314       return I;
2315   }
2316   return nullptr;
2317 }
2318 
2319 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2320   DefinitionKind Kind = DeclarationOnly;
2321 
2322   const VarDecl *First = getFirstDecl();
2323   for (auto *I : First->redecls()) {
2324     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2325     if (Kind == Definition)
2326       break;
2327   }
2328 
2329   return Kind;
2330 }
2331 
2332 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2333   for (auto *I : redecls()) {
2334     if (auto Expr = I->getInit()) {
2335       D = I;
2336       return Expr;
2337     }
2338   }
2339   return nullptr;
2340 }
2341 
2342 bool VarDecl::hasInit() const {
2343   if (auto *P = dyn_cast<ParmVarDecl>(this))
2344     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2345       return false;
2346 
2347   return !Init.isNull();
2348 }
2349 
2350 Expr *VarDecl::getInit() {
2351   if (!hasInit())
2352     return nullptr;
2353 
2354   if (auto *S = Init.dyn_cast<Stmt *>())
2355     return cast<Expr>(S);
2356 
2357   auto *Eval = getEvaluatedStmt();
2358   return cast<Expr>(Eval->Value.isOffset()
2359                         ? Eval->Value.get(getASTContext().getExternalSource())
2360                         : Eval->Value.get(nullptr));
2361 }
2362 
2363 Stmt **VarDecl::getInitAddress() {
2364   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2365     return ES->Value.getAddressOfPointer(getASTContext().getExternalSource());
2366 
2367   return Init.getAddrOfPtr1();
2368 }
2369 
2370 VarDecl *VarDecl::getInitializingDeclaration() {
2371   VarDecl *Def = nullptr;
2372   for (auto *I : redecls()) {
2373     if (I->hasInit())
2374       return I;
2375 
2376     if (I->isThisDeclarationADefinition()) {
2377       if (isStaticDataMember())
2378         return I;
2379       Def = I;
2380     }
2381   }
2382   return Def;
2383 }
2384 
2385 bool VarDecl::isOutOfLine() const {
2386   if (Decl::isOutOfLine())
2387     return true;
2388 
2389   if (!isStaticDataMember())
2390     return false;
2391 
2392   // If this static data member was instantiated from a static data member of
2393   // a class template, check whether that static data member was defined
2394   // out-of-line.
2395   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2396     return VD->isOutOfLine();
2397 
2398   return false;
2399 }
2400 
2401 void VarDecl::setInit(Expr *I) {
2402   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2403     Eval->~EvaluatedStmt();
2404     getASTContext().Deallocate(Eval);
2405   }
2406 
2407   Init = I;
2408 }
2409 
2410 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2411   const LangOptions &Lang = C.getLangOpts();
2412 
2413   // OpenCL permits const integral variables to be used in constant
2414   // expressions, like in C++98.
2415   if (!Lang.CPlusPlus && !Lang.OpenCL)
2416     return false;
2417 
2418   // Function parameters are never usable in constant expressions.
2419   if (isa<ParmVarDecl>(this))
2420     return false;
2421 
2422   // The values of weak variables are never usable in constant expressions.
2423   if (isWeak())
2424     return false;
2425 
2426   // In C++11, any variable of reference type can be used in a constant
2427   // expression if it is initialized by a constant expression.
2428   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2429     return true;
2430 
2431   // Only const objects can be used in constant expressions in C++. C++98 does
2432   // not require the variable to be non-volatile, but we consider this to be a
2433   // defect.
2434   if (!getType().isConstant(C) || getType().isVolatileQualified())
2435     return false;
2436 
2437   // In C++, const, non-volatile variables of integral or enumeration types
2438   // can be used in constant expressions.
2439   if (getType()->isIntegralOrEnumerationType())
2440     return true;
2441 
2442   // Additionally, in C++11, non-volatile constexpr variables can be used in
2443   // constant expressions.
2444   return Lang.CPlusPlus11 && isConstexpr();
2445 }
2446 
2447 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2448   // C++2a [expr.const]p3:
2449   //   A variable is usable in constant expressions after its initializing
2450   //   declaration is encountered...
2451   const VarDecl *DefVD = nullptr;
2452   const Expr *Init = getAnyInitializer(DefVD);
2453   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2454     return false;
2455   //   ... if it is a constexpr variable, or it is of reference type or of
2456   //   const-qualified integral or enumeration type, ...
2457   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2458     return false;
2459   //   ... and its initializer is a constant initializer.
2460   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2461     return false;
2462   // C++98 [expr.const]p1:
2463   //   An integral constant-expression can involve only [...] const variables
2464   //   or static data members of integral or enumeration types initialized with
2465   //   [integer] constant expressions (dcl.init)
2466   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2467       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2468     return false;
2469   return true;
2470 }
2471 
2472 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2473 /// form, which contains extra information on the evaluated value of the
2474 /// initializer.
2475 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2476   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2477   if (!Eval) {
2478     // Note: EvaluatedStmt contains an APValue, which usually holds
2479     // resources not allocated from the ASTContext.  We need to do some
2480     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2481     // where we can detect whether there's anything to clean up or not.
2482     Eval = new (getASTContext()) EvaluatedStmt;
2483     Eval->Value = Init.get<Stmt *>();
2484     Init = Eval;
2485   }
2486   return Eval;
2487 }
2488 
2489 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2490   return Init.dyn_cast<EvaluatedStmt *>();
2491 }
2492 
2493 APValue *VarDecl::evaluateValue() const {
2494   SmallVector<PartialDiagnosticAt, 8> Notes;
2495   return evaluateValueImpl(Notes, hasConstantInitialization());
2496 }
2497 
2498 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2499                                     bool IsConstantInitialization) const {
2500   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2501 
2502   const auto *Init = getInit();
2503   assert(!Init->isValueDependent());
2504 
2505   // We only produce notes indicating why an initializer is non-constant the
2506   // first time it is evaluated. FIXME: The notes won't always be emitted the
2507   // first time we try evaluation, so might not be produced at all.
2508   if (Eval->WasEvaluated)
2509     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2510 
2511   if (Eval->IsEvaluating) {
2512     // FIXME: Produce a diagnostic for self-initialization.
2513     return nullptr;
2514   }
2515 
2516   Eval->IsEvaluating = true;
2517 
2518   ASTContext &Ctx = getASTContext();
2519   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2520                                             IsConstantInitialization);
2521 
2522   // In C++11, this isn't a constant initializer if we produced notes. In that
2523   // case, we can't keep the result, because it may only be correct under the
2524   // assumption that the initializer is a constant context.
2525   if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2526       !Notes.empty())
2527     Result = false;
2528 
2529   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2530   // or that it's empty (so that there's nothing to clean up) if evaluation
2531   // failed.
2532   if (!Result)
2533     Eval->Evaluated = APValue();
2534   else if (Eval->Evaluated.needsCleanup())
2535     Ctx.addDestruction(&Eval->Evaluated);
2536 
2537   Eval->IsEvaluating = false;
2538   Eval->WasEvaluated = true;
2539 
2540   return Result ? &Eval->Evaluated : nullptr;
2541 }
2542 
2543 APValue *VarDecl::getEvaluatedValue() const {
2544   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2545     if (Eval->WasEvaluated)
2546       return &Eval->Evaluated;
2547 
2548   return nullptr;
2549 }
2550 
2551 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2552   const Expr *Init = getInit();
2553   assert(Init && "no initializer");
2554 
2555   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2556   if (!Eval->CheckedForICEInit) {
2557     Eval->CheckedForICEInit = true;
2558     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2559   }
2560   return Eval->HasICEInit;
2561 }
2562 
2563 bool VarDecl::hasConstantInitialization() const {
2564   // In C, all globals (and only globals) have constant initialization.
2565   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2566     return true;
2567 
2568   // In C++, it depends on whether the evaluation at the point of definition
2569   // was evaluatable as a constant initializer.
2570   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2571     return Eval->HasConstantInitialization;
2572 
2573   return false;
2574 }
2575 
2576 bool VarDecl::checkForConstantInitialization(
2577     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2578   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2579   // If we ask for the value before we know whether we have a constant
2580   // initializer, we can compute the wrong value (for example, due to
2581   // std::is_constant_evaluated()).
2582   assert(!Eval->WasEvaluated &&
2583          "already evaluated var value before checking for constant init");
2584   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2585 
2586   assert(!getInit()->isValueDependent());
2587 
2588   // Evaluate the initializer to check whether it's a constant expression.
2589   Eval->HasConstantInitialization =
2590       evaluateValueImpl(Notes, true) && Notes.empty();
2591 
2592   // If evaluation as a constant initializer failed, allow re-evaluation as a
2593   // non-constant initializer if we later find we want the value.
2594   if (!Eval->HasConstantInitialization)
2595     Eval->WasEvaluated = false;
2596 
2597   return Eval->HasConstantInitialization;
2598 }
2599 
2600 bool VarDecl::isParameterPack() const {
2601   return isa<PackExpansionType>(getType());
2602 }
2603 
2604 template<typename DeclT>
2605 static DeclT *getDefinitionOrSelf(DeclT *D) {
2606   assert(D);
2607   if (auto *Def = D->getDefinition())
2608     return Def;
2609   return D;
2610 }
2611 
2612 bool VarDecl::isEscapingByref() const {
2613   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2614 }
2615 
2616 bool VarDecl::isNonEscapingByref() const {
2617   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2618 }
2619 
2620 bool VarDecl::hasDependentAlignment() const {
2621   QualType T = getType();
2622   return T->isDependentType() || T->isUndeducedType() ||
2623          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2624            return AA->isAlignmentDependent();
2625          });
2626 }
2627 
2628 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2629   const VarDecl *VD = this;
2630 
2631   // If this is an instantiated member, walk back to the template from which
2632   // it was instantiated.
2633   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2634     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2635       VD = VD->getInstantiatedFromStaticDataMember();
2636       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2637         VD = NewVD;
2638     }
2639   }
2640 
2641   // If it's an instantiated variable template specialization, find the
2642   // template or partial specialization from which it was instantiated.
2643   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2644     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2645       auto From = VDTemplSpec->getInstantiatedFrom();
2646       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2647         while (!VTD->isMemberSpecialization()) {
2648           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2649           if (!NewVTD)
2650             break;
2651           VTD = NewVTD;
2652         }
2653         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2654       }
2655       if (auto *VTPSD =
2656               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2657         while (!VTPSD->isMemberSpecialization()) {
2658           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2659           if (!NewVTPSD)
2660             break;
2661           VTPSD = NewVTPSD;
2662         }
2663         return getDefinitionOrSelf<VarDecl>(VTPSD);
2664       }
2665     }
2666   }
2667 
2668   // If this is the pattern of a variable template, find where it was
2669   // instantiated from. FIXME: Is this necessary?
2670   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2671     while (!VarTemplate->isMemberSpecialization()) {
2672       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2673       if (!NewVT)
2674         break;
2675       VarTemplate = NewVT;
2676     }
2677 
2678     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2679   }
2680 
2681   if (VD == this)
2682     return nullptr;
2683   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2684 }
2685 
2686 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2687   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2688     return cast<VarDecl>(MSI->getInstantiatedFrom());
2689 
2690   return nullptr;
2691 }
2692 
2693 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2694   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2695     return Spec->getSpecializationKind();
2696 
2697   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2698     return MSI->getTemplateSpecializationKind();
2699 
2700   return TSK_Undeclared;
2701 }
2702 
2703 TemplateSpecializationKind
2704 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2705   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2706     return MSI->getTemplateSpecializationKind();
2707 
2708   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2709     return Spec->getSpecializationKind();
2710 
2711   return TSK_Undeclared;
2712 }
2713 
2714 SourceLocation VarDecl::getPointOfInstantiation() const {
2715   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2716     return Spec->getPointOfInstantiation();
2717 
2718   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2719     return MSI->getPointOfInstantiation();
2720 
2721   return SourceLocation();
2722 }
2723 
2724 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2725   return getASTContext().getTemplateOrSpecializationInfo(this)
2726       .dyn_cast<VarTemplateDecl *>();
2727 }
2728 
2729 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2730   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2731 }
2732 
2733 bool VarDecl::isKnownToBeDefined() const {
2734   const auto &LangOpts = getASTContext().getLangOpts();
2735   // In CUDA mode without relocatable device code, variables of form 'extern
2736   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2737   // memory pool.  These are never undefined variables, even if they appear
2738   // inside of an anon namespace or static function.
2739   //
2740   // With CUDA relocatable device code enabled, these variables don't get
2741   // special handling; they're treated like regular extern variables.
2742   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2743       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2744       isa<IncompleteArrayType>(getType()))
2745     return true;
2746 
2747   return hasDefinition();
2748 }
2749 
2750 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2751   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2752                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2753                                  !hasAttr<AlwaysDestroyAttr>()));
2754 }
2755 
2756 QualType::DestructionKind
2757 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2758   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2759     if (Eval->HasConstantDestruction)
2760       return QualType::DK_none;
2761 
2762   if (isNoDestroy(Ctx))
2763     return QualType::DK_none;
2764 
2765   return getType().isDestructedType();
2766 }
2767 
2768 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2769   assert(hasInit() && "Expect initializer to check for flexible array init");
2770   auto *Ty = getType()->getAs<RecordType>();
2771   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2772     return false;
2773   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2774   if (!List)
2775     return false;
2776   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2777   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2778   if (!InitTy)
2779     return false;
2780   return InitTy->getSize() != 0;
2781 }
2782 
2783 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2784   assert(hasInit() && "Expect initializer to check for flexible array init");
2785   auto *Ty = getType()->getAs<RecordType>();
2786   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2787     return CharUnits::Zero();
2788   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2789   if (!List)
2790     return CharUnits::Zero();
2791   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2792   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2793   if (!InitTy)
2794     return CharUnits::Zero();
2795   CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2796   const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2797   CharUnits FlexibleArrayOffset =
2798       Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2799   if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2800     return CharUnits::Zero();
2801   return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2802 }
2803 
2804 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2805   if (isStaticDataMember())
2806     // FIXME: Remove ?
2807     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2808     return getASTContext().getTemplateOrSpecializationInfo(this)
2809         .dyn_cast<MemberSpecializationInfo *>();
2810   return nullptr;
2811 }
2812 
2813 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2814                                          SourceLocation PointOfInstantiation) {
2815   assert((isa<VarTemplateSpecializationDecl>(this) ||
2816           getMemberSpecializationInfo()) &&
2817          "not a variable or static data member template specialization");
2818 
2819   if (VarTemplateSpecializationDecl *Spec =
2820           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2821     Spec->setSpecializationKind(TSK);
2822     if (TSK != TSK_ExplicitSpecialization &&
2823         PointOfInstantiation.isValid() &&
2824         Spec->getPointOfInstantiation().isInvalid()) {
2825       Spec->setPointOfInstantiation(PointOfInstantiation);
2826       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2827         L->InstantiationRequested(this);
2828     }
2829   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2830     MSI->setTemplateSpecializationKind(TSK);
2831     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2832         MSI->getPointOfInstantiation().isInvalid()) {
2833       MSI->setPointOfInstantiation(PointOfInstantiation);
2834       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2835         L->InstantiationRequested(this);
2836     }
2837   }
2838 }
2839 
2840 void
2841 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2842                                             TemplateSpecializationKind TSK) {
2843   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2844          "Previous template or instantiation?");
2845   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2846 }
2847 
2848 //===----------------------------------------------------------------------===//
2849 // ParmVarDecl Implementation
2850 //===----------------------------------------------------------------------===//
2851 
2852 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2853                                  SourceLocation StartLoc,
2854                                  SourceLocation IdLoc, IdentifierInfo *Id,
2855                                  QualType T, TypeSourceInfo *TInfo,
2856                                  StorageClass S, Expr *DefArg) {
2857   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2858                                  S, DefArg);
2859 }
2860 
2861 QualType ParmVarDecl::getOriginalType() const {
2862   TypeSourceInfo *TSI = getTypeSourceInfo();
2863   QualType T = TSI ? TSI->getType() : getType();
2864   if (const auto *DT = dyn_cast<DecayedType>(T))
2865     return DT->getOriginalType();
2866   return T;
2867 }
2868 
2869 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2870   return new (C, ID)
2871       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2872                   nullptr, QualType(), nullptr, SC_None, nullptr);
2873 }
2874 
2875 SourceRange ParmVarDecl::getSourceRange() const {
2876   if (!hasInheritedDefaultArg()) {
2877     SourceRange ArgRange = getDefaultArgRange();
2878     if (ArgRange.isValid())
2879       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2880   }
2881 
2882   // DeclaratorDecl considers the range of postfix types as overlapping with the
2883   // declaration name, but this is not the case with parameters in ObjC methods.
2884   if (isa<ObjCMethodDecl>(getDeclContext()))
2885     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2886 
2887   return DeclaratorDecl::getSourceRange();
2888 }
2889 
2890 bool ParmVarDecl::isDestroyedInCallee() const {
2891   // ns_consumed only affects code generation in ARC
2892   if (hasAttr<NSConsumedAttr>())
2893     return getASTContext().getLangOpts().ObjCAutoRefCount;
2894 
2895   // FIXME: isParamDestroyedInCallee() should probably imply
2896   // isDestructedType()
2897   auto *RT = getType()->getAs<RecordType>();
2898   if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2899       getType().isDestructedType())
2900     return true;
2901 
2902   return false;
2903 }
2904 
2905 Expr *ParmVarDecl::getDefaultArg() {
2906   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2907   assert(!hasUninstantiatedDefaultArg() &&
2908          "Default argument is not yet instantiated!");
2909 
2910   Expr *Arg = getInit();
2911   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2912     return E->getSubExpr();
2913 
2914   return Arg;
2915 }
2916 
2917 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2918   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2919   Init = defarg;
2920 }
2921 
2922 SourceRange ParmVarDecl::getDefaultArgRange() const {
2923   switch (ParmVarDeclBits.DefaultArgKind) {
2924   case DAK_None:
2925   case DAK_Unparsed:
2926     // Nothing we can do here.
2927     return SourceRange();
2928 
2929   case DAK_Uninstantiated:
2930     return getUninstantiatedDefaultArg()->getSourceRange();
2931 
2932   case DAK_Normal:
2933     if (const Expr *E = getInit())
2934       return E->getSourceRange();
2935 
2936     // Missing an actual expression, may be invalid.
2937     return SourceRange();
2938   }
2939   llvm_unreachable("Invalid default argument kind.");
2940 }
2941 
2942 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2943   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2944   Init = arg;
2945 }
2946 
2947 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2948   assert(hasUninstantiatedDefaultArg() &&
2949          "Wrong kind of initialization expression!");
2950   return cast_or_null<Expr>(Init.get<Stmt *>());
2951 }
2952 
2953 bool ParmVarDecl::hasDefaultArg() const {
2954   // FIXME: We should just return false for DAK_None here once callers are
2955   // prepared for the case that we encountered an invalid default argument and
2956   // were unable to even build an invalid expression.
2957   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2958          !Init.isNull();
2959 }
2960 
2961 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2962   getASTContext().setParameterIndex(this, parameterIndex);
2963   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2964 }
2965 
2966 unsigned ParmVarDecl::getParameterIndexLarge() const {
2967   return getASTContext().getParameterIndex(this);
2968 }
2969 
2970 //===----------------------------------------------------------------------===//
2971 // FunctionDecl Implementation
2972 //===----------------------------------------------------------------------===//
2973 
2974 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2975                            SourceLocation StartLoc,
2976                            const DeclarationNameInfo &NameInfo, QualType T,
2977                            TypeSourceInfo *TInfo, StorageClass S,
2978                            bool UsesFPIntrin, bool isInlineSpecified,
2979                            ConstexprSpecKind ConstexprKind,
2980                            Expr *TrailingRequiresClause)
2981     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2982                      StartLoc),
2983       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2984       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2985   assert(T.isNull() || T->isFunctionType());
2986   FunctionDeclBits.SClass = S;
2987   FunctionDeclBits.IsInline = isInlineSpecified;
2988   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2989   FunctionDeclBits.IsVirtualAsWritten = false;
2990   FunctionDeclBits.IsPure = false;
2991   FunctionDeclBits.HasInheritedPrototype = false;
2992   FunctionDeclBits.HasWrittenPrototype = true;
2993   FunctionDeclBits.IsDeleted = false;
2994   FunctionDeclBits.IsTrivial = false;
2995   FunctionDeclBits.IsTrivialForCall = false;
2996   FunctionDeclBits.IsDefaulted = false;
2997   FunctionDeclBits.IsExplicitlyDefaulted = false;
2998   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2999   FunctionDeclBits.IsIneligibleOrNotSelected = false;
3000   FunctionDeclBits.HasImplicitReturnZero = false;
3001   FunctionDeclBits.IsLateTemplateParsed = false;
3002   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3003   FunctionDeclBits.BodyContainsImmediateEscalatingExpression = false;
3004   FunctionDeclBits.InstantiationIsPending = false;
3005   FunctionDeclBits.UsesSEHTry = false;
3006   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3007   FunctionDeclBits.HasSkippedBody = false;
3008   FunctionDeclBits.WillHaveBody = false;
3009   FunctionDeclBits.IsMultiVersion = false;
3010   FunctionDeclBits.DeductionCandidateKind =
3011       static_cast<unsigned char>(DeductionCandidate::Normal);
3012   FunctionDeclBits.HasODRHash = false;
3013   FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3014   if (TrailingRequiresClause)
3015     setTrailingRequiresClause(TrailingRequiresClause);
3016 }
3017 
3018 void FunctionDecl::getNameForDiagnostic(
3019     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3020   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
3021   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
3022   if (TemplateArgs)
3023     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3024 }
3025 
3026 bool FunctionDecl::isVariadic() const {
3027   if (const auto *FT = getType()->getAs<FunctionProtoType>())
3028     return FT->isVariadic();
3029   return false;
3030 }
3031 
3032 FunctionDecl::DefaultedFunctionInfo *
3033 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
3034                                             ArrayRef<DeclAccessPair> Lookups) {
3035   DefaultedFunctionInfo *Info = new (Context.Allocate(
3036       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
3037       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
3038       DefaultedFunctionInfo;
3039   Info->NumLookups = Lookups.size();
3040   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3041                           Info->getTrailingObjects<DeclAccessPair>());
3042   return Info;
3043 }
3044 
3045 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
3046   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
3047   assert(!Body && "can't replace function body with defaulted function info");
3048 
3049   FunctionDeclBits.HasDefaultedFunctionInfo = true;
3050   DefaultedInfo = Info;
3051 }
3052 
3053 FunctionDecl::DefaultedFunctionInfo *
3054 FunctionDecl::getDefaultedFunctionInfo() const {
3055   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
3056 }
3057 
3058 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3059   for (auto *I : redecls()) {
3060     if (I->doesThisDeclarationHaveABody()) {
3061       Definition = I;
3062       return true;
3063     }
3064   }
3065 
3066   return false;
3067 }
3068 
3069 bool FunctionDecl::hasTrivialBody() const {
3070   Stmt *S = getBody();
3071   if (!S) {
3072     // Since we don't have a body for this function, we don't know if it's
3073     // trivial or not.
3074     return false;
3075   }
3076 
3077   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3078     return true;
3079   return false;
3080 }
3081 
3082 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3083   if (!getFriendObjectKind())
3084     return false;
3085 
3086   // Check for a friend function instantiated from a friend function
3087   // definition in a templated class.
3088   if (const FunctionDecl *InstantiatedFrom =
3089           getInstantiatedFromMemberFunction())
3090     return InstantiatedFrom->getFriendObjectKind() &&
3091            InstantiatedFrom->isThisDeclarationADefinition();
3092 
3093   // Check for a friend function template instantiated from a friend
3094   // function template definition in a templated class.
3095   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3096     if (const FunctionTemplateDecl *InstantiatedFrom =
3097             Template->getInstantiatedFromMemberTemplate())
3098       return InstantiatedFrom->getFriendObjectKind() &&
3099              InstantiatedFrom->isThisDeclarationADefinition();
3100   }
3101 
3102   return false;
3103 }
3104 
3105 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3106                              bool CheckForPendingFriendDefinition) const {
3107   for (const FunctionDecl *FD : redecls()) {
3108     if (FD->isThisDeclarationADefinition()) {
3109       Definition = FD;
3110       return true;
3111     }
3112 
3113     // If this is a friend function defined in a class template, it does not
3114     // have a body until it is used, nevertheless it is a definition, see
3115     // [temp.inst]p2:
3116     //
3117     // ... for the purpose of determining whether an instantiated redeclaration
3118     // is valid according to [basic.def.odr] and [class.mem], a declaration that
3119     // corresponds to a definition in the template is considered to be a
3120     // definition.
3121     //
3122     // The following code must produce redefinition error:
3123     //
3124     //     template<typename T> struct C20 { friend void func_20() {} };
3125     //     C20<int> c20i;
3126     //     void func_20() {}
3127     //
3128     if (CheckForPendingFriendDefinition &&
3129         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3130       Definition = FD;
3131       return true;
3132     }
3133   }
3134 
3135   return false;
3136 }
3137 
3138 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3139   if (!hasBody(Definition))
3140     return nullptr;
3141 
3142   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3143          "definition should not have a body");
3144   if (Definition->Body)
3145     return Definition->Body.get(getASTContext().getExternalSource());
3146 
3147   return nullptr;
3148 }
3149 
3150 void FunctionDecl::setBody(Stmt *B) {
3151   FunctionDeclBits.HasDefaultedFunctionInfo = false;
3152   Body = LazyDeclStmtPtr(B);
3153   if (B)
3154     EndRangeLoc = B->getEndLoc();
3155 }
3156 
3157 void FunctionDecl::setPure(bool P) {
3158   FunctionDeclBits.IsPure = P;
3159   if (P)
3160     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3161       Parent->markedVirtualFunctionPure();
3162 }
3163 
3164 template<std::size_t Len>
3165 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3166   IdentifierInfo *II = ND->getIdentifier();
3167   return II && II->isStr(Str);
3168 }
3169 
3170 bool FunctionDecl::isImmediateEscalating() const {
3171   // C++23 [expr.const]/p17
3172   // An immediate-escalating function is
3173   //  - the call operator of a lambda that is not declared with the consteval
3174   //  specifier,
3175   if (isLambdaCallOperator(this) && !isConsteval())
3176     return true;
3177   // - a defaulted special member function that is not declared with the
3178   // consteval specifier,
3179   if (isDefaulted() && !isConsteval())
3180     return true;
3181   // - a function that results from the instantiation of a templated entity
3182   // defined with the constexpr specifier.
3183   TemplatedKind TK = getTemplatedKind();
3184   if (TK != TK_NonTemplate && TK != TK_DependentNonTemplate &&
3185       isConstexprSpecified())
3186     return true;
3187   return false;
3188 }
3189 
3190 bool FunctionDecl::isImmediateFunction() const {
3191   // C++23 [expr.const]/p18
3192   // An immediate function is a function or constructor that is
3193   // - declared with the consteval specifier
3194   if (isConsteval())
3195     return true;
3196   // - an immediate-escalating function F whose function body contains an
3197   // immediate-escalating expression
3198   if (isImmediateEscalating() && BodyContainsImmediateEscalatingExpressions())
3199     return true;
3200 
3201   if (const auto *MD = dyn_cast<CXXMethodDecl>(this);
3202       MD && MD->isLambdaStaticInvoker())
3203     return MD->getParent()->getLambdaCallOperator()->isImmediateFunction();
3204 
3205   return false;
3206 }
3207 
3208 bool FunctionDecl::isMain() const {
3209   const TranslationUnitDecl *tunit =
3210     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3211   return tunit &&
3212          !tunit->getASTContext().getLangOpts().Freestanding &&
3213          isNamed(this, "main");
3214 }
3215 
3216 bool FunctionDecl::isMSVCRTEntryPoint() const {
3217   const TranslationUnitDecl *TUnit =
3218       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3219   if (!TUnit)
3220     return false;
3221 
3222   // Even though we aren't really targeting MSVCRT if we are freestanding,
3223   // semantic analysis for these functions remains the same.
3224 
3225   // MSVCRT entry points only exist on MSVCRT targets.
3226   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3227     return false;
3228 
3229   // Nameless functions like constructors cannot be entry points.
3230   if (!getIdentifier())
3231     return false;
3232 
3233   return llvm::StringSwitch<bool>(getName())
3234       .Cases("main",     // an ANSI console app
3235              "wmain",    // a Unicode console App
3236              "WinMain",  // an ANSI GUI app
3237              "wWinMain", // a Unicode GUI app
3238              "DllMain",  // a DLL
3239              true)
3240       .Default(false);
3241 }
3242 
3243 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3244   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3245     return false;
3246   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3247       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3248       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3249       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3250     return false;
3251 
3252   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3253     return false;
3254 
3255   const auto *proto = getType()->castAs<FunctionProtoType>();
3256   if (proto->getNumParams() != 2 || proto->isVariadic())
3257     return false;
3258 
3259   ASTContext &Context =
3260     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3261       ->getASTContext();
3262 
3263   // The result type and first argument type are constant across all
3264   // these operators.  The second argument must be exactly void*.
3265   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3266 }
3267 
3268 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3269     std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3270   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3271     return false;
3272   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3273       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3274       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3275       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3276     return false;
3277 
3278   if (isa<CXXRecordDecl>(getDeclContext()))
3279     return false;
3280 
3281   // This can only fail for an invalid 'operator new' declaration.
3282   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3283     return false;
3284 
3285   const auto *FPT = getType()->castAs<FunctionProtoType>();
3286   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4 || FPT->isVariadic())
3287     return false;
3288 
3289   // If this is a single-parameter function, it must be a replaceable global
3290   // allocation or deallocation function.
3291   if (FPT->getNumParams() == 1)
3292     return true;
3293 
3294   unsigned Params = 1;
3295   QualType Ty = FPT->getParamType(Params);
3296   ASTContext &Ctx = getASTContext();
3297 
3298   auto Consume = [&] {
3299     ++Params;
3300     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3301   };
3302 
3303   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3304   bool IsSizedDelete = false;
3305   if (Ctx.getLangOpts().SizedDeallocation &&
3306       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3307        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3308       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3309     IsSizedDelete = true;
3310     Consume();
3311   }
3312 
3313   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3314   // new/delete.
3315   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3316     Consume();
3317     if (AlignmentParam)
3318       *AlignmentParam = Params;
3319   }
3320 
3321   // If this is not a sized delete, the next parameter can be a
3322   // 'const std::nothrow_t&'.
3323   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3324     Ty = Ty->getPointeeType();
3325     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3326       return false;
3327     if (Ty->isNothrowT()) {
3328       if (IsNothrow)
3329         *IsNothrow = true;
3330       Consume();
3331     }
3332   }
3333 
3334   // Finally, recognize the not yet standard versions of new that take a
3335   // hot/cold allocation hint (__hot_cold_t). These are currently supported by
3336   // tcmalloc (see
3337   // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53).
3338   if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) {
3339     QualType T = Ty;
3340     while (const auto *TD = T->getAs<TypedefType>())
3341       T = TD->getDecl()->getUnderlyingType();
3342     IdentifierInfo *II = T->castAs<EnumType>()->getDecl()->getIdentifier();
3343     if (II && II->isStr("__hot_cold_t"))
3344       Consume();
3345   }
3346 
3347   return Params == FPT->getNumParams();
3348 }
3349 
3350 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3351   if (!getBuiltinID())
3352     return false;
3353 
3354   const FunctionDecl *Definition;
3355   if (!hasBody(Definition))
3356     return false;
3357 
3358   if (!Definition->isInlineSpecified() ||
3359       !Definition->hasAttr<AlwaysInlineAttr>())
3360     return false;
3361 
3362   ASTContext &Context = getASTContext();
3363   switch (Context.GetGVALinkageForFunction(Definition)) {
3364   case GVA_Internal:
3365   case GVA_DiscardableODR:
3366   case GVA_StrongODR:
3367     return false;
3368   case GVA_AvailableExternally:
3369   case GVA_StrongExternal:
3370     return true;
3371   }
3372   llvm_unreachable("Unknown GVALinkage");
3373 }
3374 
3375 bool FunctionDecl::isDestroyingOperatorDelete() const {
3376   // C++ P0722:
3377   //   Within a class C, a single object deallocation function with signature
3378   //     (T, std::destroying_delete_t, <more params>)
3379   //   is a destroying operator delete.
3380   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3381       getNumParams() < 2)
3382     return false;
3383 
3384   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3385   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3386          RD->getIdentifier()->isStr("destroying_delete_t");
3387 }
3388 
3389 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3390   return getDeclLanguageLinkage(*this);
3391 }
3392 
3393 bool FunctionDecl::isExternC() const {
3394   return isDeclExternC(*this);
3395 }
3396 
3397 bool FunctionDecl::isInExternCContext() const {
3398   if (hasAttr<OpenCLKernelAttr>())
3399     return true;
3400   return getLexicalDeclContext()->isExternCContext();
3401 }
3402 
3403 bool FunctionDecl::isInExternCXXContext() const {
3404   return getLexicalDeclContext()->isExternCXXContext();
3405 }
3406 
3407 bool FunctionDecl::isGlobal() const {
3408   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3409     return Method->isStatic();
3410 
3411   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3412     return false;
3413 
3414   for (const DeclContext *DC = getDeclContext();
3415        DC->isNamespace();
3416        DC = DC->getParent()) {
3417     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3418       if (!Namespace->getDeclName())
3419         return false;
3420     }
3421   }
3422 
3423   return true;
3424 }
3425 
3426 bool FunctionDecl::isNoReturn() const {
3427   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3428       hasAttr<C11NoReturnAttr>())
3429     return true;
3430 
3431   if (auto *FnTy = getType()->getAs<FunctionType>())
3432     return FnTy->getNoReturnAttr();
3433 
3434   return false;
3435 }
3436 
3437 bool FunctionDecl::isMemberLikeConstrainedFriend() const {
3438   // C++20 [temp.friend]p9:
3439   //   A non-template friend declaration with a requires-clause [or]
3440   //   a friend function template with a constraint that depends on a template
3441   //   parameter from an enclosing template [...] does not declare the same
3442   //   function or function template as a declaration in any other scope.
3443 
3444   // If this isn't a friend then it's not a member-like constrained friend.
3445   if (!getFriendObjectKind()) {
3446     return false;
3447   }
3448 
3449   if (!getDescribedFunctionTemplate()) {
3450     // If these friends don't have constraints, they aren't constrained, and
3451     // thus don't fall under temp.friend p9. Else the simple presence of a
3452     // constraint makes them unique.
3453     return getTrailingRequiresClause();
3454   }
3455 
3456   return FriendConstraintRefersToEnclosingTemplate();
3457 }
3458 
3459 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3460   if (hasAttr<TargetAttr>())
3461     return MultiVersionKind::Target;
3462   if (hasAttr<TargetVersionAttr>())
3463     return MultiVersionKind::TargetVersion;
3464   if (hasAttr<CPUDispatchAttr>())
3465     return MultiVersionKind::CPUDispatch;
3466   if (hasAttr<CPUSpecificAttr>())
3467     return MultiVersionKind::CPUSpecific;
3468   if (hasAttr<TargetClonesAttr>())
3469     return MultiVersionKind::TargetClones;
3470   return MultiVersionKind::None;
3471 }
3472 
3473 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3474   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3475 }
3476 
3477 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3478   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3479 }
3480 
3481 bool FunctionDecl::isTargetMultiVersion() const {
3482   return isMultiVersion() &&
3483          (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3484 }
3485 
3486 bool FunctionDecl::isTargetClonesMultiVersion() const {
3487   return isMultiVersion() && hasAttr<TargetClonesAttr>();
3488 }
3489 
3490 void
3491 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3492   redeclarable_base::setPreviousDecl(PrevDecl);
3493 
3494   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3495     FunctionTemplateDecl *PrevFunTmpl
3496       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3497     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3498     FunTmpl->setPreviousDecl(PrevFunTmpl);
3499   }
3500 
3501   if (PrevDecl && PrevDecl->isInlined())
3502     setImplicitlyInline(true);
3503 }
3504 
3505 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3506 
3507 /// Returns a value indicating whether this function corresponds to a builtin
3508 /// function.
3509 ///
3510 /// The function corresponds to a built-in function if it is declared at
3511 /// translation scope or within an extern "C" block and its name matches with
3512 /// the name of a builtin. The returned value will be 0 for functions that do
3513 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3514 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3515 /// value.
3516 ///
3517 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3518 /// functions as their wrapped builtins. This shouldn't be done in general, but
3519 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3520 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3521   unsigned BuiltinID = 0;
3522 
3523   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3524     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3525   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3526     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3527   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3528     BuiltinID = A->getID();
3529   }
3530 
3531   if (!BuiltinID)
3532     return 0;
3533 
3534   // If the function is marked "overloadable", it has a different mangled name
3535   // and is not the C library function.
3536   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3537       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3538     return 0;
3539 
3540   ASTContext &Context = getASTContext();
3541   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3542     return BuiltinID;
3543 
3544   // This function has the name of a known C library
3545   // function. Determine whether it actually refers to the C library
3546   // function or whether it just has the same name.
3547 
3548   // If this is a static function, it's not a builtin.
3549   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3550     return 0;
3551 
3552   // OpenCL v1.2 s6.9.f - The library functions defined in
3553   // the C99 standard headers are not available.
3554   if (Context.getLangOpts().OpenCL &&
3555       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3556     return 0;
3557 
3558   // CUDA does not have device-side standard library. printf and malloc are the
3559   // only special cases that are supported by device-side runtime.
3560   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3561       !hasAttr<CUDAHostAttr>() &&
3562       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3563     return 0;
3564 
3565   // As AMDGCN implementation of OpenMP does not have a device-side standard
3566   // library, none of the predefined library functions except printf and malloc
3567   // should be treated as a builtin i.e. 0 should be returned for them.
3568   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3569       Context.getLangOpts().OpenMPIsTargetDevice &&
3570       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3571       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3572     return 0;
3573 
3574   return BuiltinID;
3575 }
3576 
3577 /// getNumParams - Return the number of parameters this function must have
3578 /// based on its FunctionType.  This is the length of the ParamInfo array
3579 /// after it has been created.
3580 unsigned FunctionDecl::getNumParams() const {
3581   const auto *FPT = getType()->getAs<FunctionProtoType>();
3582   return FPT ? FPT->getNumParams() : 0;
3583 }
3584 
3585 void FunctionDecl::setParams(ASTContext &C,
3586                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3587   assert(!ParamInfo && "Already has param info!");
3588   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3589 
3590   // Zero params -> null pointer.
3591   if (!NewParamInfo.empty()) {
3592     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3593     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3594   }
3595 }
3596 
3597 /// getMinRequiredArguments - Returns the minimum number of arguments
3598 /// needed to call this function. This may be fewer than the number of
3599 /// function parameters, if some of the parameters have default
3600 /// arguments (in C++) or are parameter packs (C++11).
3601 unsigned FunctionDecl::getMinRequiredArguments() const {
3602   if (!getASTContext().getLangOpts().CPlusPlus)
3603     return getNumParams();
3604 
3605   // Note that it is possible for a parameter with no default argument to
3606   // follow a parameter with a default argument.
3607   unsigned NumRequiredArgs = 0;
3608   unsigned MinParamsSoFar = 0;
3609   for (auto *Param : parameters()) {
3610     if (!Param->isParameterPack()) {
3611       ++MinParamsSoFar;
3612       if (!Param->hasDefaultArg())
3613         NumRequiredArgs = MinParamsSoFar;
3614     }
3615   }
3616   return NumRequiredArgs;
3617 }
3618 
3619 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3620   return getNumParams() == 1 ||
3621          (getNumParams() > 1 &&
3622           llvm::all_of(llvm::drop_begin(parameters()),
3623                        [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3624 }
3625 
3626 /// The combination of the extern and inline keywords under MSVC forces
3627 /// the function to be required.
3628 ///
3629 /// Note: This function assumes that we will only get called when isInlined()
3630 /// would return true for this FunctionDecl.
3631 bool FunctionDecl::isMSExternInline() const {
3632   assert(isInlined() && "expected to get called on an inlined function!");
3633 
3634   const ASTContext &Context = getASTContext();
3635   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3636       !hasAttr<DLLExportAttr>())
3637     return false;
3638 
3639   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3640        FD = FD->getPreviousDecl())
3641     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3642       return true;
3643 
3644   return false;
3645 }
3646 
3647 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3648   if (Redecl->getStorageClass() != SC_Extern)
3649     return false;
3650 
3651   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3652        FD = FD->getPreviousDecl())
3653     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3654       return false;
3655 
3656   return true;
3657 }
3658 
3659 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3660   // Only consider file-scope declarations in this test.
3661   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3662     return false;
3663 
3664   // Only consider explicit declarations; the presence of a builtin for a
3665   // libcall shouldn't affect whether a definition is externally visible.
3666   if (Redecl->isImplicit())
3667     return false;
3668 
3669   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3670     return true; // Not an inline definition
3671 
3672   return false;
3673 }
3674 
3675 /// For a function declaration in C or C++, determine whether this
3676 /// declaration causes the definition to be externally visible.
3677 ///
3678 /// For instance, this determines if adding the current declaration to the set
3679 /// of redeclarations of the given functions causes
3680 /// isInlineDefinitionExternallyVisible to change from false to true.
3681 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3682   assert(!doesThisDeclarationHaveABody() &&
3683          "Must have a declaration without a body.");
3684 
3685   ASTContext &Context = getASTContext();
3686 
3687   if (Context.getLangOpts().MSVCCompat) {
3688     const FunctionDecl *Definition;
3689     if (hasBody(Definition) && Definition->isInlined() &&
3690         redeclForcesDefMSVC(this))
3691       return true;
3692   }
3693 
3694   if (Context.getLangOpts().CPlusPlus)
3695     return false;
3696 
3697   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3698     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3699     // an externally visible definition.
3700     //
3701     // FIXME: What happens if gnu_inline gets added on after the first
3702     // declaration?
3703     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3704       return false;
3705 
3706     const FunctionDecl *Prev = this;
3707     bool FoundBody = false;
3708     while ((Prev = Prev->getPreviousDecl())) {
3709       FoundBody |= Prev->doesThisDeclarationHaveABody();
3710 
3711       if (Prev->doesThisDeclarationHaveABody()) {
3712         // If it's not the case that both 'inline' and 'extern' are
3713         // specified on the definition, then it is always externally visible.
3714         if (!Prev->isInlineSpecified() ||
3715             Prev->getStorageClass() != SC_Extern)
3716           return false;
3717       } else if (Prev->isInlineSpecified() &&
3718                  Prev->getStorageClass() != SC_Extern) {
3719         return false;
3720       }
3721     }
3722     return FoundBody;
3723   }
3724 
3725   // C99 6.7.4p6:
3726   //   [...] If all of the file scope declarations for a function in a
3727   //   translation unit include the inline function specifier without extern,
3728   //   then the definition in that translation unit is an inline definition.
3729   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3730     return false;
3731   const FunctionDecl *Prev = this;
3732   bool FoundBody = false;
3733   while ((Prev = Prev->getPreviousDecl())) {
3734     FoundBody |= Prev->doesThisDeclarationHaveABody();
3735     if (RedeclForcesDefC99(Prev))
3736       return false;
3737   }
3738   return FoundBody;
3739 }
3740 
3741 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3742   const TypeSourceInfo *TSI = getTypeSourceInfo();
3743   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3744              : FunctionTypeLoc();
3745 }
3746 
3747 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3748   FunctionTypeLoc FTL = getFunctionTypeLoc();
3749   if (!FTL)
3750     return SourceRange();
3751 
3752   // Skip self-referential return types.
3753   const SourceManager &SM = getASTContext().getSourceManager();
3754   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3755   SourceLocation Boundary = getNameInfo().getBeginLoc();
3756   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3757       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3758     return SourceRange();
3759 
3760   return RTRange;
3761 }
3762 
3763 SourceRange FunctionDecl::getParametersSourceRange() const {
3764   unsigned NP = getNumParams();
3765   SourceLocation EllipsisLoc = getEllipsisLoc();
3766 
3767   if (NP == 0 && EllipsisLoc.isInvalid())
3768     return SourceRange();
3769 
3770   SourceLocation Begin =
3771       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3772   SourceLocation End = EllipsisLoc.isValid()
3773                            ? EllipsisLoc
3774                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3775 
3776   return SourceRange(Begin, End);
3777 }
3778 
3779 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3780   FunctionTypeLoc FTL = getFunctionTypeLoc();
3781   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3782 }
3783 
3784 /// For an inline function definition in C, or for a gnu_inline function
3785 /// in C++, determine whether the definition will be externally visible.
3786 ///
3787 /// Inline function definitions are always available for inlining optimizations.
3788 /// However, depending on the language dialect, declaration specifiers, and
3789 /// attributes, the definition of an inline function may or may not be
3790 /// "externally" visible to other translation units in the program.
3791 ///
3792 /// In C99, inline definitions are not externally visible by default. However,
3793 /// if even one of the global-scope declarations is marked "extern inline", the
3794 /// inline definition becomes externally visible (C99 6.7.4p6).
3795 ///
3796 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3797 /// definition, we use the GNU semantics for inline, which are nearly the
3798 /// opposite of C99 semantics. In particular, "inline" by itself will create
3799 /// an externally visible symbol, but "extern inline" will not create an
3800 /// externally visible symbol.
3801 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3802   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3803           hasAttr<AliasAttr>()) &&
3804          "Must be a function definition");
3805   assert(isInlined() && "Function must be inline");
3806   ASTContext &Context = getASTContext();
3807 
3808   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3809     // Note: If you change the logic here, please change
3810     // doesDeclarationForceExternallyVisibleDefinition as well.
3811     //
3812     // If it's not the case that both 'inline' and 'extern' are
3813     // specified on the definition, then this inline definition is
3814     // externally visible.
3815     if (Context.getLangOpts().CPlusPlus)
3816       return false;
3817     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3818       return true;
3819 
3820     // If any declaration is 'inline' but not 'extern', then this definition
3821     // is externally visible.
3822     for (auto *Redecl : redecls()) {
3823       if (Redecl->isInlineSpecified() &&
3824           Redecl->getStorageClass() != SC_Extern)
3825         return true;
3826     }
3827 
3828     return false;
3829   }
3830 
3831   // The rest of this function is C-only.
3832   assert(!Context.getLangOpts().CPlusPlus &&
3833          "should not use C inline rules in C++");
3834 
3835   // C99 6.7.4p6:
3836   //   [...] If all of the file scope declarations for a function in a
3837   //   translation unit include the inline function specifier without extern,
3838   //   then the definition in that translation unit is an inline definition.
3839   for (auto *Redecl : redecls()) {
3840     if (RedeclForcesDefC99(Redecl))
3841       return true;
3842   }
3843 
3844   // C99 6.7.4p6:
3845   //   An inline definition does not provide an external definition for the
3846   //   function, and does not forbid an external definition in another
3847   //   translation unit.
3848   return false;
3849 }
3850 
3851 /// getOverloadedOperator - Which C++ overloaded operator this
3852 /// function represents, if any.
3853 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3854   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3855     return getDeclName().getCXXOverloadedOperator();
3856   return OO_None;
3857 }
3858 
3859 /// getLiteralIdentifier - The literal suffix identifier this function
3860 /// represents, if any.
3861 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3862   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3863     return getDeclName().getCXXLiteralIdentifier();
3864   return nullptr;
3865 }
3866 
3867 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3868   if (TemplateOrSpecialization.isNull())
3869     return TK_NonTemplate;
3870   if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
3871     if (isa<FunctionDecl>(ND))
3872       return TK_DependentNonTemplate;
3873     assert(isa<FunctionTemplateDecl>(ND) &&
3874            "No other valid types in NamedDecl");
3875     return TK_FunctionTemplate;
3876   }
3877   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3878     return TK_MemberSpecialization;
3879   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3880     return TK_FunctionTemplateSpecialization;
3881   if (TemplateOrSpecialization.is
3882                                <DependentFunctionTemplateSpecializationInfo*>())
3883     return TK_DependentFunctionTemplateSpecialization;
3884 
3885   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3886 }
3887 
3888 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3889   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3890     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3891 
3892   return nullptr;
3893 }
3894 
3895 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3896   if (auto *MSI =
3897           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3898     return MSI;
3899   if (auto *FTSI = TemplateOrSpecialization
3900                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3901     return FTSI->getMemberSpecializationInfo();
3902   return nullptr;
3903 }
3904 
3905 void
3906 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3907                                                FunctionDecl *FD,
3908                                                TemplateSpecializationKind TSK) {
3909   assert(TemplateOrSpecialization.isNull() &&
3910          "Member function is already a specialization");
3911   MemberSpecializationInfo *Info
3912     = new (C) MemberSpecializationInfo(FD, TSK);
3913   TemplateOrSpecialization = Info;
3914 }
3915 
3916 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3917   return dyn_cast_or_null<FunctionTemplateDecl>(
3918       TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3919 }
3920 
3921 void FunctionDecl::setDescribedFunctionTemplate(
3922     FunctionTemplateDecl *Template) {
3923   assert(TemplateOrSpecialization.isNull() &&
3924          "Member function is already a specialization");
3925   TemplateOrSpecialization = Template;
3926 }
3927 
3928 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
3929   assert(TemplateOrSpecialization.isNull() &&
3930          "Function is already a specialization");
3931   TemplateOrSpecialization = FD;
3932 }
3933 
3934 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
3935   return dyn_cast_or_null<FunctionDecl>(
3936       TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3937 }
3938 
3939 bool FunctionDecl::isImplicitlyInstantiable() const {
3940   // If the function is invalid, it can't be implicitly instantiated.
3941   if (isInvalidDecl())
3942     return false;
3943 
3944   switch (getTemplateSpecializationKindForInstantiation()) {
3945   case TSK_Undeclared:
3946   case TSK_ExplicitInstantiationDefinition:
3947   case TSK_ExplicitSpecialization:
3948     return false;
3949 
3950   case TSK_ImplicitInstantiation:
3951     return true;
3952 
3953   case TSK_ExplicitInstantiationDeclaration:
3954     // Handled below.
3955     break;
3956   }
3957 
3958   // Find the actual template from which we will instantiate.
3959   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3960   bool HasPattern = false;
3961   if (PatternDecl)
3962     HasPattern = PatternDecl->hasBody(PatternDecl);
3963 
3964   // C++0x [temp.explicit]p9:
3965   //   Except for inline functions, other explicit instantiation declarations
3966   //   have the effect of suppressing the implicit instantiation of the entity
3967   //   to which they refer.
3968   if (!HasPattern || !PatternDecl)
3969     return true;
3970 
3971   return PatternDecl->isInlined();
3972 }
3973 
3974 bool FunctionDecl::isTemplateInstantiation() const {
3975   // FIXME: Remove this, it's not clear what it means. (Which template
3976   // specialization kind?)
3977   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3978 }
3979 
3980 FunctionDecl *
3981 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3982   // If this is a generic lambda call operator specialization, its
3983   // instantiation pattern is always its primary template's pattern
3984   // even if its primary template was instantiated from another
3985   // member template (which happens with nested generic lambdas).
3986   // Since a lambda's call operator's body is transformed eagerly,
3987   // we don't have to go hunting for a prototype definition template
3988   // (i.e. instantiated-from-member-template) to use as an instantiation
3989   // pattern.
3990 
3991   if (isGenericLambdaCallOperatorSpecialization(
3992           dyn_cast<CXXMethodDecl>(this))) {
3993     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3994     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3995   }
3996 
3997   // Check for a declaration of this function that was instantiated from a
3998   // friend definition.
3999   const FunctionDecl *FD = nullptr;
4000   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
4001     FD = this;
4002 
4003   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
4004     if (ForDefinition &&
4005         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
4006       return nullptr;
4007     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
4008   }
4009 
4010   if (ForDefinition &&
4011       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
4012     return nullptr;
4013 
4014   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
4015     // If we hit a point where the user provided a specialization of this
4016     // template, we're done looking.
4017     while (!ForDefinition || !Primary->isMemberSpecialization()) {
4018       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
4019       if (!NewPrimary)
4020         break;
4021       Primary = NewPrimary;
4022     }
4023 
4024     return getDefinitionOrSelf(Primary->getTemplatedDecl());
4025   }
4026 
4027   return nullptr;
4028 }
4029 
4030 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
4031   if (FunctionTemplateSpecializationInfo *Info
4032         = TemplateOrSpecialization
4033             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4034     return Info->getTemplate();
4035   }
4036   return nullptr;
4037 }
4038 
4039 FunctionTemplateSpecializationInfo *
4040 FunctionDecl::getTemplateSpecializationInfo() const {
4041   return TemplateOrSpecialization
4042       .dyn_cast<FunctionTemplateSpecializationInfo *>();
4043 }
4044 
4045 const TemplateArgumentList *
4046 FunctionDecl::getTemplateSpecializationArgs() const {
4047   if (FunctionTemplateSpecializationInfo *Info
4048         = TemplateOrSpecialization
4049             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4050     return Info->TemplateArguments;
4051   }
4052   return nullptr;
4053 }
4054 
4055 const ASTTemplateArgumentListInfo *
4056 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
4057   if (FunctionTemplateSpecializationInfo *Info
4058         = TemplateOrSpecialization
4059             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4060     return Info->TemplateArgumentsAsWritten;
4061   }
4062   return nullptr;
4063 }
4064 
4065 void
4066 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
4067                                                 FunctionTemplateDecl *Template,
4068                                      const TemplateArgumentList *TemplateArgs,
4069                                                 void *InsertPos,
4070                                                 TemplateSpecializationKind TSK,
4071                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
4072                                           SourceLocation PointOfInstantiation) {
4073   assert((TemplateOrSpecialization.isNull() ||
4074           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
4075          "Member function is already a specialization");
4076   assert(TSK != TSK_Undeclared &&
4077          "Must specify the type of function template specialization");
4078   assert((TemplateOrSpecialization.isNull() ||
4079           TSK == TSK_ExplicitSpecialization) &&
4080          "Member specialization must be an explicit specialization");
4081   FunctionTemplateSpecializationInfo *Info =
4082       FunctionTemplateSpecializationInfo::Create(
4083           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
4084           PointOfInstantiation,
4085           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
4086   TemplateOrSpecialization = Info;
4087   Template->addSpecialization(Info, InsertPos);
4088 }
4089 
4090 void
4091 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
4092                                     const UnresolvedSetImpl &Templates,
4093                              const TemplateArgumentListInfo &TemplateArgs) {
4094   assert(TemplateOrSpecialization.isNull());
4095   DependentFunctionTemplateSpecializationInfo *Info =
4096       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
4097                                                           TemplateArgs);
4098   TemplateOrSpecialization = Info;
4099 }
4100 
4101 DependentFunctionTemplateSpecializationInfo *
4102 FunctionDecl::getDependentSpecializationInfo() const {
4103   return TemplateOrSpecialization
4104       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
4105 }
4106 
4107 DependentFunctionTemplateSpecializationInfo *
4108 DependentFunctionTemplateSpecializationInfo::Create(
4109     ASTContext &Context, const UnresolvedSetImpl &Ts,
4110     const TemplateArgumentListInfo &TArgs) {
4111   void *Buffer = Context.Allocate(
4112       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
4113           TArgs.size(), Ts.size()));
4114   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
4115 }
4116 
4117 DependentFunctionTemplateSpecializationInfo::
4118 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
4119                                       const TemplateArgumentListInfo &TArgs)
4120   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
4121   NumTemplates = Ts.size();
4122   NumArgs = TArgs.size();
4123 
4124   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
4125   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
4126     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
4127 
4128   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
4129   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
4130     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
4131 }
4132 
4133 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
4134   // For a function template specialization, query the specialization
4135   // information object.
4136   if (FunctionTemplateSpecializationInfo *FTSInfo =
4137           TemplateOrSpecialization
4138               .dyn_cast<FunctionTemplateSpecializationInfo *>())
4139     return FTSInfo->getTemplateSpecializationKind();
4140 
4141   if (MemberSpecializationInfo *MSInfo =
4142           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4143     return MSInfo->getTemplateSpecializationKind();
4144 
4145   return TSK_Undeclared;
4146 }
4147 
4148 TemplateSpecializationKind
4149 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4150   // This is the same as getTemplateSpecializationKind(), except that for a
4151   // function that is both a function template specialization and a member
4152   // specialization, we prefer the member specialization information. Eg:
4153   //
4154   // template<typename T> struct A {
4155   //   template<typename U> void f() {}
4156   //   template<> void f<int>() {}
4157   // };
4158   //
4159   // For A<int>::f<int>():
4160   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4161   // * getTemplateSpecializationKindForInstantiation() will return
4162   //       TSK_ImplicitInstantiation
4163   //
4164   // This reflects the facts that A<int>::f<int> is an explicit specialization
4165   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4166   // from A::f<int> if a definition is needed.
4167   if (FunctionTemplateSpecializationInfo *FTSInfo =
4168           TemplateOrSpecialization
4169               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4170     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4171       return MSInfo->getTemplateSpecializationKind();
4172     return FTSInfo->getTemplateSpecializationKind();
4173   }
4174 
4175   if (MemberSpecializationInfo *MSInfo =
4176           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4177     return MSInfo->getTemplateSpecializationKind();
4178 
4179   return TSK_Undeclared;
4180 }
4181 
4182 void
4183 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4184                                           SourceLocation PointOfInstantiation) {
4185   if (FunctionTemplateSpecializationInfo *FTSInfo
4186         = TemplateOrSpecialization.dyn_cast<
4187                                     FunctionTemplateSpecializationInfo*>()) {
4188     FTSInfo->setTemplateSpecializationKind(TSK);
4189     if (TSK != TSK_ExplicitSpecialization &&
4190         PointOfInstantiation.isValid() &&
4191         FTSInfo->getPointOfInstantiation().isInvalid()) {
4192       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4193       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4194         L->InstantiationRequested(this);
4195     }
4196   } else if (MemberSpecializationInfo *MSInfo
4197              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4198     MSInfo->setTemplateSpecializationKind(TSK);
4199     if (TSK != TSK_ExplicitSpecialization &&
4200         PointOfInstantiation.isValid() &&
4201         MSInfo->getPointOfInstantiation().isInvalid()) {
4202       MSInfo->setPointOfInstantiation(PointOfInstantiation);
4203       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4204         L->InstantiationRequested(this);
4205     }
4206   } else
4207     llvm_unreachable("Function cannot have a template specialization kind");
4208 }
4209 
4210 SourceLocation FunctionDecl::getPointOfInstantiation() const {
4211   if (FunctionTemplateSpecializationInfo *FTSInfo
4212         = TemplateOrSpecialization.dyn_cast<
4213                                         FunctionTemplateSpecializationInfo*>())
4214     return FTSInfo->getPointOfInstantiation();
4215   if (MemberSpecializationInfo *MSInfo =
4216           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4217     return MSInfo->getPointOfInstantiation();
4218 
4219   return SourceLocation();
4220 }
4221 
4222 bool FunctionDecl::isOutOfLine() const {
4223   if (Decl::isOutOfLine())
4224     return true;
4225 
4226   // If this function was instantiated from a member function of a
4227   // class template, check whether that member function was defined out-of-line.
4228   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4229     const FunctionDecl *Definition;
4230     if (FD->hasBody(Definition))
4231       return Definition->isOutOfLine();
4232   }
4233 
4234   // If this function was instantiated from a function template,
4235   // check whether that function template was defined out-of-line.
4236   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4237     const FunctionDecl *Definition;
4238     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4239       return Definition->isOutOfLine();
4240   }
4241 
4242   return false;
4243 }
4244 
4245 SourceRange FunctionDecl::getSourceRange() const {
4246   return SourceRange(getOuterLocStart(), EndRangeLoc);
4247 }
4248 
4249 unsigned FunctionDecl::getMemoryFunctionKind() const {
4250   IdentifierInfo *FnInfo = getIdentifier();
4251 
4252   if (!FnInfo)
4253     return 0;
4254 
4255   // Builtin handling.
4256   switch (getBuiltinID()) {
4257   case Builtin::BI__builtin_memset:
4258   case Builtin::BI__builtin___memset_chk:
4259   case Builtin::BImemset:
4260     return Builtin::BImemset;
4261 
4262   case Builtin::BI__builtin_memcpy:
4263   case Builtin::BI__builtin___memcpy_chk:
4264   case Builtin::BImemcpy:
4265     return Builtin::BImemcpy;
4266 
4267   case Builtin::BI__builtin_mempcpy:
4268   case Builtin::BI__builtin___mempcpy_chk:
4269   case Builtin::BImempcpy:
4270     return Builtin::BImempcpy;
4271 
4272   case Builtin::BI__builtin_memmove:
4273   case Builtin::BI__builtin___memmove_chk:
4274   case Builtin::BImemmove:
4275     return Builtin::BImemmove;
4276 
4277   case Builtin::BIstrlcpy:
4278   case Builtin::BI__builtin___strlcpy_chk:
4279     return Builtin::BIstrlcpy;
4280 
4281   case Builtin::BIstrlcat:
4282   case Builtin::BI__builtin___strlcat_chk:
4283     return Builtin::BIstrlcat;
4284 
4285   case Builtin::BI__builtin_memcmp:
4286   case Builtin::BImemcmp:
4287     return Builtin::BImemcmp;
4288 
4289   case Builtin::BI__builtin_bcmp:
4290   case Builtin::BIbcmp:
4291     return Builtin::BIbcmp;
4292 
4293   case Builtin::BI__builtin_strncpy:
4294   case Builtin::BI__builtin___strncpy_chk:
4295   case Builtin::BIstrncpy:
4296     return Builtin::BIstrncpy;
4297 
4298   case Builtin::BI__builtin_strncmp:
4299   case Builtin::BIstrncmp:
4300     return Builtin::BIstrncmp;
4301 
4302   case Builtin::BI__builtin_strncasecmp:
4303   case Builtin::BIstrncasecmp:
4304     return Builtin::BIstrncasecmp;
4305 
4306   case Builtin::BI__builtin_strncat:
4307   case Builtin::BI__builtin___strncat_chk:
4308   case Builtin::BIstrncat:
4309     return Builtin::BIstrncat;
4310 
4311   case Builtin::BI__builtin_strndup:
4312   case Builtin::BIstrndup:
4313     return Builtin::BIstrndup;
4314 
4315   case Builtin::BI__builtin_strlen:
4316   case Builtin::BIstrlen:
4317     return Builtin::BIstrlen;
4318 
4319   case Builtin::BI__builtin_bzero:
4320   case Builtin::BIbzero:
4321     return Builtin::BIbzero;
4322 
4323   case Builtin::BIfree:
4324     return Builtin::BIfree;
4325 
4326   default:
4327     if (isExternC()) {
4328       if (FnInfo->isStr("memset"))
4329         return Builtin::BImemset;
4330       if (FnInfo->isStr("memcpy"))
4331         return Builtin::BImemcpy;
4332       if (FnInfo->isStr("mempcpy"))
4333         return Builtin::BImempcpy;
4334       if (FnInfo->isStr("memmove"))
4335         return Builtin::BImemmove;
4336       if (FnInfo->isStr("memcmp"))
4337         return Builtin::BImemcmp;
4338       if (FnInfo->isStr("bcmp"))
4339         return Builtin::BIbcmp;
4340       if (FnInfo->isStr("strncpy"))
4341         return Builtin::BIstrncpy;
4342       if (FnInfo->isStr("strncmp"))
4343         return Builtin::BIstrncmp;
4344       if (FnInfo->isStr("strncasecmp"))
4345         return Builtin::BIstrncasecmp;
4346       if (FnInfo->isStr("strncat"))
4347         return Builtin::BIstrncat;
4348       if (FnInfo->isStr("strndup"))
4349         return Builtin::BIstrndup;
4350       if (FnInfo->isStr("strlen"))
4351         return Builtin::BIstrlen;
4352       if (FnInfo->isStr("bzero"))
4353         return Builtin::BIbzero;
4354     } else if (isInStdNamespace()) {
4355       if (FnInfo->isStr("free"))
4356         return Builtin::BIfree;
4357     }
4358     break;
4359   }
4360   return 0;
4361 }
4362 
4363 unsigned FunctionDecl::getODRHash() const {
4364   assert(hasODRHash());
4365   return ODRHash;
4366 }
4367 
4368 unsigned FunctionDecl::getODRHash() {
4369   if (hasODRHash())
4370     return ODRHash;
4371 
4372   if (auto *FT = getInstantiatedFromMemberFunction()) {
4373     setHasODRHash(true);
4374     ODRHash = FT->getODRHash();
4375     return ODRHash;
4376   }
4377 
4378   class ODRHash Hash;
4379   Hash.AddFunctionDecl(this);
4380   setHasODRHash(true);
4381   ODRHash = Hash.CalculateHash();
4382   return ODRHash;
4383 }
4384 
4385 //===----------------------------------------------------------------------===//
4386 // FieldDecl Implementation
4387 //===----------------------------------------------------------------------===//
4388 
4389 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4390                              SourceLocation StartLoc, SourceLocation IdLoc,
4391                              IdentifierInfo *Id, QualType T,
4392                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4393                              InClassInitStyle InitStyle) {
4394   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4395                                BW, Mutable, InitStyle);
4396 }
4397 
4398 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4399   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4400                                SourceLocation(), nullptr, QualType(), nullptr,
4401                                nullptr, false, ICIS_NoInit);
4402 }
4403 
4404 bool FieldDecl::isAnonymousStructOrUnion() const {
4405   if (!isImplicit() || getDeclName())
4406     return false;
4407 
4408   if (const auto *Record = getType()->getAs<RecordType>())
4409     return Record->getDecl()->isAnonymousStructOrUnion();
4410 
4411   return false;
4412 }
4413 
4414 Expr *FieldDecl::getInClassInitializer() const {
4415   if (!hasInClassInitializer())
4416     return nullptr;
4417 
4418   LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init;
4419   return cast_or_null<Expr>(
4420       InitPtr.isOffset() ? InitPtr.get(getASTContext().getExternalSource())
4421                          : InitPtr.get(nullptr));
4422 }
4423 
4424 void FieldDecl::setInClassInitializer(Expr *NewInit) {
4425   setLazyInClassInitializer(LazyDeclStmtPtr(NewInit));
4426 }
4427 
4428 void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) {
4429   assert(hasInClassInitializer() && !getInClassInitializer());
4430   if (BitField)
4431     InitAndBitWidth->Init = NewInit;
4432   else
4433     Init = NewInit;
4434 }
4435 
4436 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4437   assert(isBitField() && "not a bitfield");
4438   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4439 }
4440 
4441 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4442   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4443          getBitWidthValue(Ctx) == 0;
4444 }
4445 
4446 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4447   if (isZeroLengthBitField(Ctx))
4448     return true;
4449 
4450   // C++2a [intro.object]p7:
4451   //   An object has nonzero size if it
4452   //     -- is not a potentially-overlapping subobject, or
4453   if (!hasAttr<NoUniqueAddressAttr>())
4454     return false;
4455 
4456   //     -- is not of class type, or
4457   const auto *RT = getType()->getAs<RecordType>();
4458   if (!RT)
4459     return false;
4460   const RecordDecl *RD = RT->getDecl()->getDefinition();
4461   if (!RD) {
4462     assert(isInvalidDecl() && "valid field has incomplete type");
4463     return false;
4464   }
4465 
4466   //     -- [has] virtual member functions or virtual base classes, or
4467   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4468   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4469   if (!CXXRD->isEmpty())
4470     return false;
4471 
4472   // Otherwise, [...] the circumstances under which the object has zero size
4473   // are implementation-defined.
4474   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4475   // ABI will do.
4476   return true;
4477 }
4478 
4479 bool FieldDecl::isPotentiallyOverlapping() const {
4480   return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4481 }
4482 
4483 unsigned FieldDecl::getFieldIndex() const {
4484   const FieldDecl *Canonical = getCanonicalDecl();
4485   if (Canonical != this)
4486     return Canonical->getFieldIndex();
4487 
4488   if (CachedFieldIndex) return CachedFieldIndex - 1;
4489 
4490   unsigned Index = 0;
4491   const RecordDecl *RD = getParent()->getDefinition();
4492   assert(RD && "requested index for field of struct with no definition");
4493 
4494   for (auto *Field : RD->fields()) {
4495     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4496     assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 &&
4497            "overflow in field numbering");
4498     ++Index;
4499   }
4500 
4501   assert(CachedFieldIndex && "failed to find field in parent");
4502   return CachedFieldIndex - 1;
4503 }
4504 
4505 SourceRange FieldDecl::getSourceRange() const {
4506   const Expr *FinalExpr = getInClassInitializer();
4507   if (!FinalExpr)
4508     FinalExpr = getBitWidth();
4509   if (FinalExpr)
4510     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4511   return DeclaratorDecl::getSourceRange();
4512 }
4513 
4514 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4515   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4516          "capturing type in non-lambda or captured record.");
4517   assert(StorageKind == ISK_NoInit && !BitField &&
4518          "bit-field or field with default member initializer cannot capture "
4519          "VLA type");
4520   StorageKind = ISK_CapturedVLAType;
4521   CapturedVLAType = VLAType;
4522 }
4523 
4524 //===----------------------------------------------------------------------===//
4525 // TagDecl Implementation
4526 //===----------------------------------------------------------------------===//
4527 
4528 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4529                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4530                  SourceLocation StartL)
4531     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4532       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4533   assert((DK != Enum || TK == TTK_Enum) &&
4534          "EnumDecl not matched with TTK_Enum");
4535   setPreviousDecl(PrevDecl);
4536   setTagKind(TK);
4537   setCompleteDefinition(false);
4538   setBeingDefined(false);
4539   setEmbeddedInDeclarator(false);
4540   setFreeStanding(false);
4541   setCompleteDefinitionRequired(false);
4542   TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4543 }
4544 
4545 SourceLocation TagDecl::getOuterLocStart() const {
4546   return getTemplateOrInnerLocStart(this);
4547 }
4548 
4549 SourceRange TagDecl::getSourceRange() const {
4550   SourceLocation RBraceLoc = BraceRange.getEnd();
4551   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4552   return SourceRange(getOuterLocStart(), E);
4553 }
4554 
4555 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4556 
4557 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4558   TypedefNameDeclOrQualifier = TDD;
4559   if (const Type *T = getTypeForDecl()) {
4560     (void)T;
4561     assert(T->isLinkageValid());
4562   }
4563   assert(isLinkageValid());
4564 }
4565 
4566 void TagDecl::startDefinition() {
4567   setBeingDefined(true);
4568 
4569   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4570     struct CXXRecordDecl::DefinitionData *Data =
4571       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4572     for (auto *I : redecls())
4573       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4574   }
4575 }
4576 
4577 void TagDecl::completeDefinition() {
4578   assert((!isa<CXXRecordDecl>(this) ||
4579           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4580          "definition completed but not started");
4581 
4582   setCompleteDefinition(true);
4583   setBeingDefined(false);
4584 
4585   if (ASTMutationListener *L = getASTMutationListener())
4586     L->CompletedTagDefinition(this);
4587 }
4588 
4589 TagDecl *TagDecl::getDefinition() const {
4590   if (isCompleteDefinition())
4591     return const_cast<TagDecl *>(this);
4592 
4593   // If it's possible for us to have an out-of-date definition, check now.
4594   if (mayHaveOutOfDateDef()) {
4595     if (IdentifierInfo *II = getIdentifier()) {
4596       if (II->isOutOfDate()) {
4597         updateOutOfDate(*II);
4598       }
4599     }
4600   }
4601 
4602   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4603     return CXXRD->getDefinition();
4604 
4605   for (auto *R : redecls())
4606     if (R->isCompleteDefinition())
4607       return R;
4608 
4609   return nullptr;
4610 }
4611 
4612 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4613   if (QualifierLoc) {
4614     // Make sure the extended qualifier info is allocated.
4615     if (!hasExtInfo())
4616       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4617     // Set qualifier info.
4618     getExtInfo()->QualifierLoc = QualifierLoc;
4619   } else {
4620     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4621     if (hasExtInfo()) {
4622       if (getExtInfo()->NumTemplParamLists == 0) {
4623         getASTContext().Deallocate(getExtInfo());
4624         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4625       }
4626       else
4627         getExtInfo()->QualifierLoc = QualifierLoc;
4628     }
4629   }
4630 }
4631 
4632 void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4633   DeclarationName Name = getDeclName();
4634   // If the name is supposed to have an identifier but does not have one, then
4635   // the tag is anonymous and we should print it differently.
4636   if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4637     // If the caller wanted to print a qualified name, they've already printed
4638     // the scope. And if the caller doesn't want that, the scope information
4639     // is already printed as part of the type.
4640     PrintingPolicy Copy(Policy);
4641     Copy.SuppressScope = true;
4642     getASTContext().getTagDeclType(this).print(OS, Copy);
4643     return;
4644   }
4645   // Otherwise, do the normal printing.
4646   Name.print(OS, Policy);
4647 }
4648 
4649 void TagDecl::setTemplateParameterListsInfo(
4650     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4651   assert(!TPLists.empty());
4652   // Make sure the extended decl info is allocated.
4653   if (!hasExtInfo())
4654     // Allocate external info struct.
4655     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4656   // Set the template parameter lists info.
4657   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4658 }
4659 
4660 //===----------------------------------------------------------------------===//
4661 // EnumDecl Implementation
4662 //===----------------------------------------------------------------------===//
4663 
4664 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4665                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4666                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4667     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4668   assert(Scoped || !ScopedUsingClassTag);
4669   IntegerType = nullptr;
4670   setNumPositiveBits(0);
4671   setNumNegativeBits(0);
4672   setScoped(Scoped);
4673   setScopedUsingClassTag(ScopedUsingClassTag);
4674   setFixed(Fixed);
4675   setHasODRHash(false);
4676   ODRHash = 0;
4677 }
4678 
4679 void EnumDecl::anchor() {}
4680 
4681 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4682                            SourceLocation StartLoc, SourceLocation IdLoc,
4683                            IdentifierInfo *Id,
4684                            EnumDecl *PrevDecl, bool IsScoped,
4685                            bool IsScopedUsingClassTag, bool IsFixed) {
4686   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4687                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4688   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4689   C.getTypeDeclType(Enum, PrevDecl);
4690   return Enum;
4691 }
4692 
4693 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4694   EnumDecl *Enum =
4695       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4696                            nullptr, nullptr, false, false, false);
4697   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4698   return Enum;
4699 }
4700 
4701 SourceRange EnumDecl::getIntegerTypeRange() const {
4702   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4703     return TI->getTypeLoc().getSourceRange();
4704   return SourceRange();
4705 }
4706 
4707 void EnumDecl::completeDefinition(QualType NewType,
4708                                   QualType NewPromotionType,
4709                                   unsigned NumPositiveBits,
4710                                   unsigned NumNegativeBits) {
4711   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4712   if (!IntegerType)
4713     IntegerType = NewType.getTypePtr();
4714   PromotionType = NewPromotionType;
4715   setNumPositiveBits(NumPositiveBits);
4716   setNumNegativeBits(NumNegativeBits);
4717   TagDecl::completeDefinition();
4718 }
4719 
4720 bool EnumDecl::isClosed() const {
4721   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4722     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4723   return true;
4724 }
4725 
4726 bool EnumDecl::isClosedFlag() const {
4727   return isClosed() && hasAttr<FlagEnumAttr>();
4728 }
4729 
4730 bool EnumDecl::isClosedNonFlag() const {
4731   return isClosed() && !hasAttr<FlagEnumAttr>();
4732 }
4733 
4734 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4735   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4736     return MSI->getTemplateSpecializationKind();
4737 
4738   return TSK_Undeclared;
4739 }
4740 
4741 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4742                                          SourceLocation PointOfInstantiation) {
4743   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4744   assert(MSI && "Not an instantiated member enumeration?");
4745   MSI->setTemplateSpecializationKind(TSK);
4746   if (TSK != TSK_ExplicitSpecialization &&
4747       PointOfInstantiation.isValid() &&
4748       MSI->getPointOfInstantiation().isInvalid())
4749     MSI->setPointOfInstantiation(PointOfInstantiation);
4750 }
4751 
4752 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4753   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4754     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4755       EnumDecl *ED = getInstantiatedFromMemberEnum();
4756       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4757         ED = NewED;
4758       return getDefinitionOrSelf(ED);
4759     }
4760   }
4761 
4762   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4763          "couldn't find pattern for enum instantiation");
4764   return nullptr;
4765 }
4766 
4767 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4768   if (SpecializationInfo)
4769     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4770 
4771   return nullptr;
4772 }
4773 
4774 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4775                                             TemplateSpecializationKind TSK) {
4776   assert(!SpecializationInfo && "Member enum is already a specialization");
4777   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4778 }
4779 
4780 unsigned EnumDecl::getODRHash() {
4781   if (hasODRHash())
4782     return ODRHash;
4783 
4784   class ODRHash Hash;
4785   Hash.AddEnumDecl(this);
4786   setHasODRHash(true);
4787   ODRHash = Hash.CalculateHash();
4788   return ODRHash;
4789 }
4790 
4791 SourceRange EnumDecl::getSourceRange() const {
4792   auto Res = TagDecl::getSourceRange();
4793   // Set end-point to enum-base, e.g. enum foo : ^bar
4794   if (auto *TSI = getIntegerTypeSourceInfo()) {
4795     // TagDecl doesn't know about the enum base.
4796     if (!getBraceRange().getEnd().isValid())
4797       Res.setEnd(TSI->getTypeLoc().getEndLoc());
4798   }
4799   return Res;
4800 }
4801 
4802 void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4803   unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4804   unsigned NumNegativeBits = getNumNegativeBits();
4805   unsigned NumPositiveBits = getNumPositiveBits();
4806 
4807   if (NumNegativeBits) {
4808     unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
4809     Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
4810     Min = -Max;
4811   } else {
4812     Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
4813     Min = llvm::APInt::getZero(Bitwidth);
4814   }
4815 }
4816 
4817 //===----------------------------------------------------------------------===//
4818 // RecordDecl Implementation
4819 //===----------------------------------------------------------------------===//
4820 
4821 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4822                        DeclContext *DC, SourceLocation StartLoc,
4823                        SourceLocation IdLoc, IdentifierInfo *Id,
4824                        RecordDecl *PrevDecl)
4825     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4826   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4827   setHasFlexibleArrayMember(false);
4828   setAnonymousStructOrUnion(false);
4829   setHasObjectMember(false);
4830   setHasVolatileMember(false);
4831   setHasLoadedFieldsFromExternalStorage(false);
4832   setNonTrivialToPrimitiveDefaultInitialize(false);
4833   setNonTrivialToPrimitiveCopy(false);
4834   setNonTrivialToPrimitiveDestroy(false);
4835   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4836   setHasNonTrivialToPrimitiveDestructCUnion(false);
4837   setHasNonTrivialToPrimitiveCopyCUnion(false);
4838   setParamDestroyedInCallee(false);
4839   setArgPassingRestrictions(APK_CanPassInRegs);
4840   setIsRandomized(false);
4841   setODRHash(0);
4842 }
4843 
4844 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4845                                SourceLocation StartLoc, SourceLocation IdLoc,
4846                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4847   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4848                                          StartLoc, IdLoc, Id, PrevDecl);
4849   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4850 
4851   C.getTypeDeclType(R, PrevDecl);
4852   return R;
4853 }
4854 
4855 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4856   RecordDecl *R =
4857       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4858                              SourceLocation(), nullptr, nullptr);
4859   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4860   return R;
4861 }
4862 
4863 bool RecordDecl::isInjectedClassName() const {
4864   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4865     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4866 }
4867 
4868 bool RecordDecl::isLambda() const {
4869   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4870     return RD->isLambda();
4871   return false;
4872 }
4873 
4874 bool RecordDecl::isCapturedRecord() const {
4875   return hasAttr<CapturedRecordAttr>();
4876 }
4877 
4878 void RecordDecl::setCapturedRecord() {
4879   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4880 }
4881 
4882 bool RecordDecl::isOrContainsUnion() const {
4883   if (isUnion())
4884     return true;
4885 
4886   if (const RecordDecl *Def = getDefinition()) {
4887     for (const FieldDecl *FD : Def->fields()) {
4888       const RecordType *RT = FD->getType()->getAs<RecordType>();
4889       if (RT && RT->getDecl()->isOrContainsUnion())
4890         return true;
4891     }
4892   }
4893 
4894   return false;
4895 }
4896 
4897 RecordDecl::field_iterator RecordDecl::field_begin() const {
4898   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4899     LoadFieldsFromExternalStorage();
4900   // This is necessary for correctness for C++ with modules.
4901   // FIXME: Come up with a test case that breaks without definition.
4902   if (RecordDecl *D = getDefinition(); D && D != this)
4903     return D->field_begin();
4904   return field_iterator(decl_iterator(FirstDecl));
4905 }
4906 
4907 /// completeDefinition - Notes that the definition of this type is now
4908 /// complete.
4909 void RecordDecl::completeDefinition() {
4910   assert(!isCompleteDefinition() && "Cannot redefine record!");
4911   TagDecl::completeDefinition();
4912 
4913   ASTContext &Ctx = getASTContext();
4914 
4915   // Layouts are dumped when computed, so if we are dumping for all complete
4916   // types, we need to force usage to get types that wouldn't be used elsewhere.
4917   if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4918     (void)Ctx.getASTRecordLayout(this);
4919 }
4920 
4921 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4922 /// This which can be turned on with an attribute, pragma, or the
4923 /// -mms-bitfields command-line option.
4924 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4925   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4926 }
4927 
4928 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
4929   std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
4930   LastDecl->NextInContextAndBits.setPointer(nullptr);
4931   setIsRandomized(true);
4932 }
4933 
4934 void RecordDecl::LoadFieldsFromExternalStorage() const {
4935   ExternalASTSource *Source = getASTContext().getExternalSource();
4936   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4937 
4938   // Notify that we have a RecordDecl doing some initialization.
4939   ExternalASTSource::Deserializing TheFields(Source);
4940 
4941   SmallVector<Decl*, 64> Decls;
4942   setHasLoadedFieldsFromExternalStorage(true);
4943   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4944     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4945   }, Decls);
4946 
4947 #ifndef NDEBUG
4948   // Check that all decls we got were FieldDecls.
4949   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4950     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4951 #endif
4952 
4953   if (Decls.empty())
4954     return;
4955 
4956   auto [ExternalFirst, ExternalLast] =
4957       BuildDeclChain(Decls,
4958                      /*FieldsAlreadyLoaded=*/false);
4959   ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
4960   FirstDecl = ExternalFirst;
4961   if (!LastDecl)
4962     LastDecl = ExternalLast;
4963 }
4964 
4965 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4966   ASTContext &Context = getASTContext();
4967   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4968       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4969   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4970     return false;
4971   const auto &NoSanitizeList = Context.getNoSanitizeList();
4972   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4973   // We may be able to relax some of these requirements.
4974   int ReasonToReject = -1;
4975   if (!CXXRD || CXXRD->isExternCContext())
4976     ReasonToReject = 0;  // is not C++.
4977   else if (CXXRD->hasAttr<PackedAttr>())
4978     ReasonToReject = 1;  // is packed.
4979   else if (CXXRD->isUnion())
4980     ReasonToReject = 2;  // is a union.
4981   else if (CXXRD->isTriviallyCopyable())
4982     ReasonToReject = 3;  // is trivially copyable.
4983   else if (CXXRD->hasTrivialDestructor())
4984     ReasonToReject = 4;  // has trivial destructor.
4985   else if (CXXRD->isStandardLayout())
4986     ReasonToReject = 5;  // is standard layout.
4987   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4988                                            "field-padding"))
4989     ReasonToReject = 6;  // is in an excluded file.
4990   else if (NoSanitizeList.containsType(
4991                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4992     ReasonToReject = 7;  // The type is excluded.
4993 
4994   if (EmitRemark) {
4995     if (ReasonToReject >= 0)
4996       Context.getDiagnostics().Report(
4997           getLocation(),
4998           diag::remark_sanitize_address_insert_extra_padding_rejected)
4999           << getQualifiedNameAsString() << ReasonToReject;
5000     else
5001       Context.getDiagnostics().Report(
5002           getLocation(),
5003           diag::remark_sanitize_address_insert_extra_padding_accepted)
5004           << getQualifiedNameAsString();
5005   }
5006   return ReasonToReject < 0;
5007 }
5008 
5009 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
5010   for (const auto *I : fields()) {
5011     if (I->getIdentifier())
5012       return I;
5013 
5014     if (const auto *RT = I->getType()->getAs<RecordType>())
5015       if (const FieldDecl *NamedDataMember =
5016               RT->getDecl()->findFirstNamedDataMember())
5017         return NamedDataMember;
5018   }
5019 
5020   // We didn't find a named data member.
5021   return nullptr;
5022 }
5023 
5024 unsigned RecordDecl::getODRHash() {
5025   if (hasODRHash())
5026     return RecordDeclBits.ODRHash;
5027 
5028   // Only calculate hash on first call of getODRHash per record.
5029   ODRHash Hash;
5030   Hash.AddRecordDecl(this);
5031   // For RecordDecl the ODRHash is stored in the remaining 26
5032   // bit of RecordDeclBits, adjust the hash to accomodate.
5033   setODRHash(Hash.CalculateHash() >> 6);
5034   return RecordDeclBits.ODRHash;
5035 }
5036 
5037 //===----------------------------------------------------------------------===//
5038 // BlockDecl Implementation
5039 //===----------------------------------------------------------------------===//
5040 
5041 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
5042     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
5043   setIsVariadic(false);
5044   setCapturesCXXThis(false);
5045   setBlockMissingReturnType(true);
5046   setIsConversionFromLambda(false);
5047   setDoesNotEscape(false);
5048   setCanAvoidCopyToHeap(false);
5049 }
5050 
5051 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
5052   assert(!ParamInfo && "Already has param info!");
5053 
5054   // Zero params -> null pointer.
5055   if (!NewParamInfo.empty()) {
5056     NumParams = NewParamInfo.size();
5057     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
5058     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
5059   }
5060 }
5061 
5062 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
5063                             bool CapturesCXXThis) {
5064   this->setCapturesCXXThis(CapturesCXXThis);
5065   this->NumCaptures = Captures.size();
5066 
5067   if (Captures.empty()) {
5068     this->Captures = nullptr;
5069     return;
5070   }
5071 
5072   this->Captures = Captures.copy(Context).data();
5073 }
5074 
5075 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
5076   for (const auto &I : captures())
5077     // Only auto vars can be captured, so no redeclaration worries.
5078     if (I.getVariable() == variable)
5079       return true;
5080 
5081   return false;
5082 }
5083 
5084 SourceRange BlockDecl::getSourceRange() const {
5085   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
5086 }
5087 
5088 //===----------------------------------------------------------------------===//
5089 // Other Decl Allocation/Deallocation Method Implementations
5090 //===----------------------------------------------------------------------===//
5091 
5092 void TranslationUnitDecl::anchor() {}
5093 
5094 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
5095   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
5096 }
5097 
5098 void PragmaCommentDecl::anchor() {}
5099 
5100 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
5101                                              TranslationUnitDecl *DC,
5102                                              SourceLocation CommentLoc,
5103                                              PragmaMSCommentKind CommentKind,
5104                                              StringRef Arg) {
5105   PragmaCommentDecl *PCD =
5106       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
5107           PragmaCommentDecl(DC, CommentLoc, CommentKind);
5108   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
5109   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
5110   return PCD;
5111 }
5112 
5113 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
5114                                                          unsigned ID,
5115                                                          unsigned ArgSize) {
5116   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
5117       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
5118 }
5119 
5120 void PragmaDetectMismatchDecl::anchor() {}
5121 
5122 PragmaDetectMismatchDecl *
5123 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
5124                                  SourceLocation Loc, StringRef Name,
5125                                  StringRef Value) {
5126   size_t ValueStart = Name.size() + 1;
5127   PragmaDetectMismatchDecl *PDMD =
5128       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
5129           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
5130   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
5131   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
5132   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
5133          Value.size());
5134   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
5135   return PDMD;
5136 }
5137 
5138 PragmaDetectMismatchDecl *
5139 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5140                                              unsigned NameValueSize) {
5141   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
5142       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
5143 }
5144 
5145 void ExternCContextDecl::anchor() {}
5146 
5147 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
5148                                                TranslationUnitDecl *DC) {
5149   return new (C, DC) ExternCContextDecl(DC);
5150 }
5151 
5152 void LabelDecl::anchor() {}
5153 
5154 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5155                              SourceLocation IdentL, IdentifierInfo *II) {
5156   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5157 }
5158 
5159 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5160                              SourceLocation IdentL, IdentifierInfo *II,
5161                              SourceLocation GnuLabelL) {
5162   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
5163   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5164 }
5165 
5166 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5167   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5168                                SourceLocation());
5169 }
5170 
5171 void LabelDecl::setMSAsmLabel(StringRef Name) {
5172 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5173   memcpy(Buffer, Name.data(), Name.size());
5174   Buffer[Name.size()] = '\0';
5175   MSAsmName = Buffer;
5176 }
5177 
5178 void ValueDecl::anchor() {}
5179 
5180 bool ValueDecl::isWeak() const {
5181   auto *MostRecent = getMostRecentDecl();
5182   return MostRecent->hasAttr<WeakAttr>() ||
5183          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5184 }
5185 
5186 bool ValueDecl::isInitCapture() const {
5187   if (auto *Var = llvm::dyn_cast<VarDecl>(this))
5188     return Var->isInitCapture();
5189   return false;
5190 }
5191 
5192 void ImplicitParamDecl::anchor() {}
5193 
5194 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
5195                                              SourceLocation IdLoc,
5196                                              IdentifierInfo *Id, QualType Type,
5197                                              ImplicitParamKind ParamKind) {
5198   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5199 }
5200 
5201 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
5202                                              ImplicitParamKind ParamKind) {
5203   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5204 }
5205 
5206 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
5207                                                          unsigned ID) {
5208   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
5209 }
5210 
5211 FunctionDecl *
5212 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
5213                      const DeclarationNameInfo &NameInfo, QualType T,
5214                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5215                      bool isInlineSpecified, bool hasWrittenPrototype,
5216                      ConstexprSpecKind ConstexprKind,
5217                      Expr *TrailingRequiresClause) {
5218   FunctionDecl *New = new (C, DC) FunctionDecl(
5219       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5220       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5221   New->setHasWrittenPrototype(hasWrittenPrototype);
5222   return New;
5223 }
5224 
5225 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5226   return new (C, ID) FunctionDecl(
5227       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
5228       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
5229 }
5230 
5231 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5232   return new (C, DC) BlockDecl(DC, L);
5233 }
5234 
5235 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5236   return new (C, ID) BlockDecl(nullptr, SourceLocation());
5237 }
5238 
5239 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5240     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5241       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5242 
5243 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5244                                    unsigned NumParams) {
5245   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5246       CapturedDecl(DC, NumParams);
5247 }
5248 
5249 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5250                                                unsigned NumParams) {
5251   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5252       CapturedDecl(nullptr, NumParams);
5253 }
5254 
5255 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5256 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5257 
5258 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5259 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5260 
5261 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5262                                            SourceLocation L,
5263                                            IdentifierInfo *Id, QualType T,
5264                                            Expr *E, const llvm::APSInt &V) {
5265   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
5266 }
5267 
5268 EnumConstantDecl *
5269 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5270   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
5271                                       QualType(), nullptr, llvm::APSInt());
5272 }
5273 
5274 void IndirectFieldDecl::anchor() {}
5275 
5276 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5277                                      SourceLocation L, DeclarationName N,
5278                                      QualType T,
5279                                      MutableArrayRef<NamedDecl *> CH)
5280     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5281       ChainingSize(CH.size()) {
5282   // In C++, indirect field declarations conflict with tag declarations in the
5283   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5284   if (C.getLangOpts().CPlusPlus)
5285     IdentifierNamespace |= IDNS_Tag;
5286 }
5287 
5288 IndirectFieldDecl *
5289 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5290                           IdentifierInfo *Id, QualType T,
5291                           llvm::MutableArrayRef<NamedDecl *> CH) {
5292   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5293 }
5294 
5295 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5296                                                          unsigned ID) {
5297   return new (C, ID)
5298       IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(),
5299                         QualType(), std::nullopt);
5300 }
5301 
5302 SourceRange EnumConstantDecl::getSourceRange() const {
5303   SourceLocation End = getLocation();
5304   if (Init)
5305     End = Init->getEndLoc();
5306   return SourceRange(getLocation(), End);
5307 }
5308 
5309 void TypeDecl::anchor() {}
5310 
5311 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5312                                  SourceLocation StartLoc, SourceLocation IdLoc,
5313                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
5314   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5315 }
5316 
5317 void TypedefNameDecl::anchor() {}
5318 
5319 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5320   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5321     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5322     auto *ThisTypedef = this;
5323     if (AnyRedecl && OwningTypedef) {
5324       OwningTypedef = OwningTypedef->getCanonicalDecl();
5325       ThisTypedef = ThisTypedef->getCanonicalDecl();
5326     }
5327     if (OwningTypedef == ThisTypedef)
5328       return TT->getDecl();
5329   }
5330 
5331   return nullptr;
5332 }
5333 
5334 bool TypedefNameDecl::isTransparentTagSlow() const {
5335   auto determineIsTransparent = [&]() {
5336     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5337       if (auto *TD = TT->getDecl()) {
5338         if (TD->getName() != getName())
5339           return false;
5340         SourceLocation TTLoc = getLocation();
5341         SourceLocation TDLoc = TD->getLocation();
5342         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5343           return false;
5344         SourceManager &SM = getASTContext().getSourceManager();
5345         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5346       }
5347     }
5348     return false;
5349   };
5350 
5351   bool isTransparent = determineIsTransparent();
5352   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5353   return isTransparent;
5354 }
5355 
5356 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5357   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5358                                  nullptr, nullptr);
5359 }
5360 
5361 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5362                                      SourceLocation StartLoc,
5363                                      SourceLocation IdLoc, IdentifierInfo *Id,
5364                                      TypeSourceInfo *TInfo) {
5365   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5366 }
5367 
5368 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5369   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5370                                    SourceLocation(), nullptr, nullptr);
5371 }
5372 
5373 SourceRange TypedefDecl::getSourceRange() const {
5374   SourceLocation RangeEnd = getLocation();
5375   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5376     if (typeIsPostfix(TInfo->getType()))
5377       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5378   }
5379   return SourceRange(getBeginLoc(), RangeEnd);
5380 }
5381 
5382 SourceRange TypeAliasDecl::getSourceRange() const {
5383   SourceLocation RangeEnd = getBeginLoc();
5384   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5385     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5386   return SourceRange(getBeginLoc(), RangeEnd);
5387 }
5388 
5389 void FileScopeAsmDecl::anchor() {}
5390 
5391 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5392                                            StringLiteral *Str,
5393                                            SourceLocation AsmLoc,
5394                                            SourceLocation RParenLoc) {
5395   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5396 }
5397 
5398 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5399                                                        unsigned ID) {
5400   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5401                                       SourceLocation());
5402 }
5403 
5404 void TopLevelStmtDecl::anchor() {}
5405 
5406 TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) {
5407   assert(Statement);
5408   assert(C.getLangOpts().IncrementalExtensions &&
5409          "Must be used only in incremental mode");
5410 
5411   SourceLocation BeginLoc = Statement->getBeginLoc();
5412   DeclContext *DC = C.getTranslationUnitDecl();
5413 
5414   return new (C, DC) TopLevelStmtDecl(DC, BeginLoc, Statement);
5415 }
5416 
5417 TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C,
5418                                                        unsigned ID) {
5419   return new (C, ID)
5420       TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5421 }
5422 
5423 SourceRange TopLevelStmtDecl::getSourceRange() const {
5424   return SourceRange(getLocation(), Statement->getEndLoc());
5425 }
5426 
5427 void EmptyDecl::anchor() {}
5428 
5429 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5430   return new (C, DC) EmptyDecl(DC, L);
5431 }
5432 
5433 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5434   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5435 }
5436 
5437 HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5438                                SourceLocation KwLoc, IdentifierInfo *ID,
5439                                SourceLocation IDLoc, SourceLocation LBrace)
5440     : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5441       DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5442       IsCBuffer(CBuffer) {}
5443 
5444 HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C,
5445                                        DeclContext *LexicalParent, bool CBuffer,
5446                                        SourceLocation KwLoc, IdentifierInfo *ID,
5447                                        SourceLocation IDLoc,
5448                                        SourceLocation LBrace) {
5449   // For hlsl like this
5450   // cbuffer A {
5451   //     cbuffer B {
5452   //     }
5453   // }
5454   // compiler should treat it as
5455   // cbuffer A {
5456   // }
5457   // cbuffer B {
5458   // }
5459   // FIXME: support nested buffers if required for back-compat.
5460   DeclContext *DC = LexicalParent;
5461   HLSLBufferDecl *Result =
5462       new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5463   return Result;
5464 }
5465 
5466 HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5467   return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5468                                     SourceLocation(), SourceLocation());
5469 }
5470 
5471 //===----------------------------------------------------------------------===//
5472 // ImportDecl Implementation
5473 //===----------------------------------------------------------------------===//
5474 
5475 /// Retrieve the number of module identifiers needed to name the given
5476 /// module.
5477 static unsigned getNumModuleIdentifiers(Module *Mod) {
5478   unsigned Result = 1;
5479   while (Mod->Parent) {
5480     Mod = Mod->Parent;
5481     ++Result;
5482   }
5483   return Result;
5484 }
5485 
5486 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5487                        Module *Imported,
5488                        ArrayRef<SourceLocation> IdentifierLocs)
5489     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5490       NextLocalImportAndComplete(nullptr, true) {
5491   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5492   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5493   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5494                           StoredLocs);
5495 }
5496 
5497 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5498                        Module *Imported, SourceLocation EndLoc)
5499     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5500       NextLocalImportAndComplete(nullptr, false) {
5501   *getTrailingObjects<SourceLocation>() = EndLoc;
5502 }
5503 
5504 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5505                                SourceLocation StartLoc, Module *Imported,
5506                                ArrayRef<SourceLocation> IdentifierLocs) {
5507   return new (C, DC,
5508               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5509       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5510 }
5511 
5512 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5513                                        SourceLocation StartLoc,
5514                                        Module *Imported,
5515                                        SourceLocation EndLoc) {
5516   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5517       ImportDecl(DC, StartLoc, Imported, EndLoc);
5518   Import->setImplicit();
5519   return Import;
5520 }
5521 
5522 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5523                                            unsigned NumLocations) {
5524   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5525       ImportDecl(EmptyShell());
5526 }
5527 
5528 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5529   if (!isImportComplete())
5530     return std::nullopt;
5531 
5532   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5533   return llvm::ArrayRef(StoredLocs,
5534                         getNumModuleIdentifiers(getImportedModule()));
5535 }
5536 
5537 SourceRange ImportDecl::getSourceRange() const {
5538   if (!isImportComplete())
5539     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5540 
5541   return SourceRange(getLocation(), getIdentifierLocs().back());
5542 }
5543 
5544 //===----------------------------------------------------------------------===//
5545 // ExportDecl Implementation
5546 //===----------------------------------------------------------------------===//
5547 
5548 void ExportDecl::anchor() {}
5549 
5550 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5551                                SourceLocation ExportLoc) {
5552   return new (C, DC) ExportDecl(DC, ExportLoc);
5553 }
5554 
5555 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5556   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5557 }
5558