1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Redeclarable.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/IdentifierTable.h" 40 #include "clang/Basic/LLVM.h" 41 #include "clang/Basic/LangOptions.h" 42 #include "clang/Basic/Linkage.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/PartialDiagnostic.h" 45 #include "clang/Basic/SanitizerBlacklist.h" 46 #include "clang/Basic/Sanitizers.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/TargetCXXABI.h" 51 #include "clang/Basic/TargetInfo.h" 52 #include "clang/Basic/Visibility.h" 53 #include "llvm/ADT/APSInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <type_traits> 73 74 using namespace clang; 75 76 Decl *clang::getPrimaryMergedDecl(Decl *D) { 77 return D->getASTContext().getPrimaryMergedDecl(D); 78 } 79 80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 81 SourceLocation Loc = this->Loc; 82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 83 if (Loc.isValid()) { 84 Loc.print(OS, Context.getSourceManager()); 85 OS << ": "; 86 } 87 OS << Message; 88 89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 90 OS << " '"; 91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 92 OS << "'"; 93 } 94 95 OS << '\n'; 96 } 97 98 // Defined here so that it can be inlined into its direct callers. 99 bool Decl::isOutOfLine() const { 100 return !getLexicalDeclContext()->Equals(getDeclContext()); 101 } 102 103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 104 : Decl(TranslationUnit, nullptr, SourceLocation()), 105 DeclContext(TranslationUnit), Ctx(ctx) {} 106 107 //===----------------------------------------------------------------------===// 108 // NamedDecl Implementation 109 //===----------------------------------------------------------------------===// 110 111 // Visibility rules aren't rigorously externally specified, but here 112 // are the basic principles behind what we implement: 113 // 114 // 1. An explicit visibility attribute is generally a direct expression 115 // of the user's intent and should be honored. Only the innermost 116 // visibility attribute applies. If no visibility attribute applies, 117 // global visibility settings are considered. 118 // 119 // 2. There is one caveat to the above: on or in a template pattern, 120 // an explicit visibility attribute is just a default rule, and 121 // visibility can be decreased by the visibility of template 122 // arguments. But this, too, has an exception: an attribute on an 123 // explicit specialization or instantiation causes all the visibility 124 // restrictions of the template arguments to be ignored. 125 // 126 // 3. A variable that does not otherwise have explicit visibility can 127 // be restricted by the visibility of its type. 128 // 129 // 4. A visibility restriction is explicit if it comes from an 130 // attribute (or something like it), not a global visibility setting. 131 // When emitting a reference to an external symbol, visibility 132 // restrictions are ignored unless they are explicit. 133 // 134 // 5. When computing the visibility of a non-type, including a 135 // non-type member of a class, only non-type visibility restrictions 136 // are considered: the 'visibility' attribute, global value-visibility 137 // settings, and a few special cases like __private_extern. 138 // 139 // 6. When computing the visibility of a type, including a type member 140 // of a class, only type visibility restrictions are considered: 141 // the 'type_visibility' attribute and global type-visibility settings. 142 // However, a 'visibility' attribute counts as a 'type_visibility' 143 // attribute on any declaration that only has the former. 144 // 145 // The visibility of a "secondary" entity, like a template argument, 146 // is computed using the kind of that entity, not the kind of the 147 // primary entity for which we are computing visibility. For example, 148 // the visibility of a specialization of either of these templates: 149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 150 // template <class T, bool (&compare)(T, X)> class matcher; 151 // is restricted according to the type visibility of the argument 'T', 152 // the type visibility of 'bool(&)(T,X)', and the value visibility of 153 // the argument function 'compare'. That 'has_match' is a value 154 // and 'matcher' is a type only matters when looking for attributes 155 // and settings from the immediate context. 156 157 /// Does this computation kind permit us to consider additional 158 /// visibility settings from attributes and the like? 159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 160 return computation.IgnoreExplicitVisibility; 161 } 162 163 /// Given an LVComputationKind, return one of the same type/value sort 164 /// that records that it already has explicit visibility. 165 static LVComputationKind 166 withExplicitVisibilityAlready(LVComputationKind Kind) { 167 Kind.IgnoreExplicitVisibility = true; 168 return Kind; 169 } 170 171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 172 LVComputationKind kind) { 173 assert(!kind.IgnoreExplicitVisibility && 174 "asking for explicit visibility when we shouldn't be"); 175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 176 } 177 178 /// Is the given declaration a "type" or a "value" for the purposes of 179 /// visibility computation? 180 static bool usesTypeVisibility(const NamedDecl *D) { 181 return isa<TypeDecl>(D) || 182 isa<ClassTemplateDecl>(D) || 183 isa<ObjCInterfaceDecl>(D); 184 } 185 186 /// Does the given declaration have member specialization information, 187 /// and if so, is it an explicit specialization? 188 template <class T> static typename 189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 190 isExplicitMemberSpecialization(const T *D) { 191 if (const MemberSpecializationInfo *member = 192 D->getMemberSpecializationInfo()) { 193 return member->isExplicitSpecialization(); 194 } 195 return false; 196 } 197 198 /// For templates, this question is easier: a member template can't be 199 /// explicitly instantiated, so there's a single bit indicating whether 200 /// or not this is an explicit member specialization. 201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 202 return D->isMemberSpecialization(); 203 } 204 205 /// Given a visibility attribute, return the explicit visibility 206 /// associated with it. 207 template <class T> 208 static Visibility getVisibilityFromAttr(const T *attr) { 209 switch (attr->getVisibility()) { 210 case T::Default: 211 return DefaultVisibility; 212 case T::Hidden: 213 return HiddenVisibility; 214 case T::Protected: 215 return ProtectedVisibility; 216 } 217 llvm_unreachable("bad visibility kind"); 218 } 219 220 /// Return the explicit visibility of the given declaration. 221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 222 NamedDecl::ExplicitVisibilityKind kind) { 223 // If we're ultimately computing the visibility of a type, look for 224 // a 'type_visibility' attribute before looking for 'visibility'. 225 if (kind == NamedDecl::VisibilityForType) { 226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 227 return getVisibilityFromAttr(A); 228 } 229 } 230 231 // If this declaration has an explicit visibility attribute, use it. 232 if (const auto *A = D->getAttr<VisibilityAttr>()) { 233 return getVisibilityFromAttr(A); 234 } 235 236 return None; 237 } 238 239 LinkageInfo LinkageComputer::getLVForType(const Type &T, 240 LVComputationKind computation) { 241 if (computation.IgnoreAllVisibility) 242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 243 return getTypeLinkageAndVisibility(&T); 244 } 245 246 /// Get the most restrictive linkage for the types in the given 247 /// template parameter list. For visibility purposes, template 248 /// parameters are part of the signature of a template. 249 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 250 const TemplateParameterList *Params, LVComputationKind computation) { 251 LinkageInfo LV; 252 for (const NamedDecl *P : *Params) { 253 // Template type parameters are the most common and never 254 // contribute to visibility, pack or not. 255 if (isa<TemplateTypeParmDecl>(P)) 256 continue; 257 258 // Non-type template parameters can be restricted by the value type, e.g. 259 // template <enum X> class A { ... }; 260 // We have to be careful here, though, because we can be dealing with 261 // dependent types. 262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 263 // Handle the non-pack case first. 264 if (!NTTP->isExpandedParameterPack()) { 265 if (!NTTP->getType()->isDependentType()) { 266 LV.merge(getLVForType(*NTTP->getType(), computation)); 267 } 268 continue; 269 } 270 271 // Look at all the types in an expanded pack. 272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 273 QualType type = NTTP->getExpansionType(i); 274 if (!type->isDependentType()) 275 LV.merge(getTypeLinkageAndVisibility(type)); 276 } 277 continue; 278 } 279 280 // Template template parameters can be restricted by their 281 // template parameters, recursively. 282 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 283 284 // Handle the non-pack case first. 285 if (!TTP->isExpandedParameterPack()) { 286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 287 computation)); 288 continue; 289 } 290 291 // Look at all expansions in an expanded pack. 292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 293 i != n; ++i) { 294 LV.merge(getLVForTemplateParameterList( 295 TTP->getExpansionTemplateParameters(i), computation)); 296 } 297 } 298 299 return LV; 300 } 301 302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 303 const Decl *Ret = nullptr; 304 const DeclContext *DC = D->getDeclContext(); 305 while (DC->getDeclKind() != Decl::TranslationUnit) { 306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 307 Ret = cast<Decl>(DC); 308 DC = DC->getParent(); 309 } 310 return Ret; 311 } 312 313 /// Get the most restrictive linkage for the types and 314 /// declarations in the given template argument list. 315 /// 316 /// Note that we don't take an LVComputationKind because we always 317 /// want to honor the visibility of template arguments in the same way. 318 LinkageInfo 319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 320 LVComputationKind computation) { 321 LinkageInfo LV; 322 323 for (const TemplateArgument &Arg : Args) { 324 switch (Arg.getKind()) { 325 case TemplateArgument::Null: 326 case TemplateArgument::Integral: 327 case TemplateArgument::Expression: 328 continue; 329 330 case TemplateArgument::Type: 331 LV.merge(getLVForType(*Arg.getAsType(), computation)); 332 continue; 333 334 case TemplateArgument::Declaration: { 335 const NamedDecl *ND = Arg.getAsDecl(); 336 assert(!usesTypeVisibility(ND)); 337 LV.merge(getLVForDecl(ND, computation)); 338 continue; 339 } 340 341 case TemplateArgument::NullPtr: 342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 343 continue; 344 345 case TemplateArgument::Template: 346 case TemplateArgument::TemplateExpansion: 347 if (TemplateDecl *Template = 348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 349 LV.merge(getLVForDecl(Template, computation)); 350 continue; 351 352 case TemplateArgument::Pack: 353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 354 continue; 355 } 356 llvm_unreachable("bad template argument kind"); 357 } 358 359 return LV; 360 } 361 362 LinkageInfo 363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 364 LVComputationKind computation) { 365 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 366 } 367 368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 369 const FunctionTemplateSpecializationInfo *specInfo) { 370 // Include visibility from the template parameters and arguments 371 // only if this is not an explicit instantiation or specialization 372 // with direct explicit visibility. (Implicit instantiations won't 373 // have a direct attribute.) 374 if (!specInfo->isExplicitInstantiationOrSpecialization()) 375 return true; 376 377 return !fn->hasAttr<VisibilityAttr>(); 378 } 379 380 /// Merge in template-related linkage and visibility for the given 381 /// function template specialization. 382 /// 383 /// We don't need a computation kind here because we can assume 384 /// LVForValue. 385 /// 386 /// \param[out] LV the computation to use for the parent 387 void LinkageComputer::mergeTemplateLV( 388 LinkageInfo &LV, const FunctionDecl *fn, 389 const FunctionTemplateSpecializationInfo *specInfo, 390 LVComputationKind computation) { 391 bool considerVisibility = 392 shouldConsiderTemplateVisibility(fn, specInfo); 393 394 // Merge information from the template parameters. 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 LinkageInfo tempLV = 397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 399 400 // Merge information from the template arguments. 401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 404 } 405 406 /// Does the given declaration have a direct visibility attribute 407 /// that would match the given rules? 408 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 409 LVComputationKind computation) { 410 if (computation.IgnoreAllVisibility) 411 return false; 412 413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 414 D->hasAttr<VisibilityAttr>(); 415 } 416 417 /// Should we consider visibility associated with the template 418 /// arguments and parameters of the given class template specialization? 419 static bool shouldConsiderTemplateVisibility( 420 const ClassTemplateSpecializationDecl *spec, 421 LVComputationKind computation) { 422 // Include visibility from the template parameters and arguments 423 // only if this is not an explicit instantiation or specialization 424 // with direct explicit visibility (and note that implicit 425 // instantiations won't have a direct attribute). 426 // 427 // Furthermore, we want to ignore template parameters and arguments 428 // for an explicit specialization when computing the visibility of a 429 // member thereof with explicit visibility. 430 // 431 // This is a bit complex; let's unpack it. 432 // 433 // An explicit class specialization is an independent, top-level 434 // declaration. As such, if it or any of its members has an 435 // explicit visibility attribute, that must directly express the 436 // user's intent, and we should honor it. The same logic applies to 437 // an explicit instantiation of a member of such a thing. 438 439 // Fast path: if this is not an explicit instantiation or 440 // specialization, we always want to consider template-related 441 // visibility restrictions. 442 if (!spec->isExplicitInstantiationOrSpecialization()) 443 return true; 444 445 // This is the 'member thereof' check. 446 if (spec->isExplicitSpecialization() && 447 hasExplicitVisibilityAlready(computation)) 448 return false; 449 450 return !hasDirectVisibilityAttribute(spec, computation); 451 } 452 453 /// Merge in template-related linkage and visibility for the given 454 /// class template specialization. 455 void LinkageComputer::mergeTemplateLV( 456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 457 LVComputationKind computation) { 458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 459 460 // Merge information from the template parameters, but ignore 461 // visibility if we're only considering template arguments. 462 463 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 464 LinkageInfo tempLV = 465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 466 LV.mergeMaybeWithVisibility(tempLV, 467 considerVisibility && !hasExplicitVisibilityAlready(computation)); 468 469 // Merge information from the template arguments. We ignore 470 // template-argument visibility if we've got an explicit 471 // instantiation with a visibility attribute. 472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 474 if (considerVisibility) 475 LV.mergeVisibility(argsLV); 476 LV.mergeExternalVisibility(argsLV); 477 } 478 479 /// Should we consider visibility associated with the template 480 /// arguments and parameters of the given variable template 481 /// specialization? As usual, follow class template specialization 482 /// logic up to initialization. 483 static bool shouldConsiderTemplateVisibility( 484 const VarTemplateSpecializationDecl *spec, 485 LVComputationKind computation) { 486 // Include visibility from the template parameters and arguments 487 // only if this is not an explicit instantiation or specialization 488 // with direct explicit visibility (and note that implicit 489 // instantiations won't have a direct attribute). 490 if (!spec->isExplicitInstantiationOrSpecialization()) 491 return true; 492 493 // An explicit variable specialization is an independent, top-level 494 // declaration. As such, if it has an explicit visibility attribute, 495 // that must directly express the user's intent, and we should honor 496 // it. 497 if (spec->isExplicitSpecialization() && 498 hasExplicitVisibilityAlready(computation)) 499 return false; 500 501 return !hasDirectVisibilityAttribute(spec, computation); 502 } 503 504 /// Merge in template-related linkage and visibility for the given 505 /// variable template specialization. As usual, follow class template 506 /// specialization logic up to initialization. 507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 508 const VarTemplateSpecializationDecl *spec, 509 LVComputationKind computation) { 510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 511 512 // Merge information from the template parameters, but ignore 513 // visibility if we're only considering template arguments. 514 515 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 516 LinkageInfo tempLV = 517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 518 LV.mergeMaybeWithVisibility(tempLV, 519 considerVisibility && !hasExplicitVisibilityAlready(computation)); 520 521 // Merge information from the template arguments. We ignore 522 // template-argument visibility if we've got an explicit 523 // instantiation with a visibility attribute. 524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 526 if (considerVisibility) 527 LV.mergeVisibility(argsLV); 528 LV.mergeExternalVisibility(argsLV); 529 } 530 531 static bool useInlineVisibilityHidden(const NamedDecl *D) { 532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 533 const LangOptions &Opts = D->getASTContext().getLangOpts(); 534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 535 return false; 536 537 const auto *FD = dyn_cast<FunctionDecl>(D); 538 if (!FD) 539 return false; 540 541 TemplateSpecializationKind TSK = TSK_Undeclared; 542 if (FunctionTemplateSpecializationInfo *spec 543 = FD->getTemplateSpecializationInfo()) { 544 TSK = spec->getTemplateSpecializationKind(); 545 } else if (MemberSpecializationInfo *MSI = 546 FD->getMemberSpecializationInfo()) { 547 TSK = MSI->getTemplateSpecializationKind(); 548 } 549 550 const FunctionDecl *Def = nullptr; 551 // InlineVisibilityHidden only applies to definitions, and 552 // isInlined() only gives meaningful answers on definitions 553 // anyway. 554 return TSK != TSK_ExplicitInstantiationDeclaration && 555 TSK != TSK_ExplicitInstantiationDefinition && 556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 557 } 558 559 template <typename T> static bool isFirstInExternCContext(T *D) { 560 const T *First = D->getFirstDecl(); 561 return First->isInExternCContext(); 562 } 563 564 static bool isSingleLineLanguageLinkage(const Decl &D) { 565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 566 if (!SD->hasBraces()) 567 return true; 568 return false; 569 } 570 571 /// Determine whether D is declared in the purview of a named module. 572 static bool isInModulePurview(const NamedDecl *D) { 573 if (auto *M = D->getOwningModule()) 574 return M->isModulePurview(); 575 return false; 576 } 577 578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 579 // FIXME: Handle isModulePrivate. 580 switch (D->getModuleOwnershipKind()) { 581 case Decl::ModuleOwnershipKind::Unowned: 582 case Decl::ModuleOwnershipKind::ModulePrivate: 583 return false; 584 case Decl::ModuleOwnershipKind::Visible: 585 case Decl::ModuleOwnershipKind::VisibleWhenImported: 586 return isInModulePurview(D); 587 } 588 llvm_unreachable("unexpected module ownership kind"); 589 } 590 591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 592 // Internal linkage declarations within a module interface unit are modeled 593 // as "module-internal linkage", which means that they have internal linkage 594 // formally but can be indirectly accessed from outside the module via inline 595 // functions and templates defined within the module. 596 if (isInModulePurview(D)) 597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 598 599 return LinkageInfo::internal(); 600 } 601 602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 603 // C++ Modules TS [basic.link]/6.8: 604 // - A name declared at namespace scope that does not have internal linkage 605 // by the previous rules and that is introduced by a non-exported 606 // declaration has module linkage. 607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit( 608 cast<NamedDecl>(D->getCanonicalDecl()))) 609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 610 611 return LinkageInfo::external(); 612 } 613 614 static StorageClass getStorageClass(const Decl *D) { 615 if (auto *TD = dyn_cast<TemplateDecl>(D)) 616 D = TD->getTemplatedDecl(); 617 if (D) { 618 if (auto *VD = dyn_cast<VarDecl>(D)) 619 return VD->getStorageClass(); 620 if (auto *FD = dyn_cast<FunctionDecl>(D)) 621 return FD->getStorageClass(); 622 } 623 return SC_None; 624 } 625 626 LinkageInfo 627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 628 LVComputationKind computation, 629 bool IgnoreVarTypeLinkage) { 630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 631 "Not a name having namespace scope"); 632 ASTContext &Context = D->getASTContext(); 633 634 // C++ [basic.link]p3: 635 // A name having namespace scope (3.3.6) has internal linkage if it 636 // is the name of 637 638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 639 // - a variable, variable template, function, or function template 640 // that is explicitly declared static; or 641 // (This bullet corresponds to C99 6.2.2p3.) 642 return getInternalLinkageFor(D); 643 } 644 645 if (const auto *Var = dyn_cast<VarDecl>(D)) { 646 // - a non-template variable of non-volatile const-qualified type, unless 647 // - it is explicitly declared extern, or 648 // - it is inline or exported, or 649 // - it was previously declared and the prior declaration did not have 650 // internal linkage 651 // (There is no equivalent in C99.) 652 if (Context.getLangOpts().CPlusPlus && 653 Var->getType().isConstQualified() && 654 !Var->getType().isVolatileQualified() && 655 !Var->isInline() && 656 !isExportedFromModuleInterfaceUnit(Var) && 657 !isa<VarTemplateSpecializationDecl>(Var) && 658 !Var->getDescribedVarTemplate()) { 659 const VarDecl *PrevVar = Var->getPreviousDecl(); 660 if (PrevVar) 661 return getLVForDecl(PrevVar, computation); 662 663 if (Var->getStorageClass() != SC_Extern && 664 Var->getStorageClass() != SC_PrivateExtern && 665 !isSingleLineLanguageLinkage(*Var)) 666 return getInternalLinkageFor(Var); 667 } 668 669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 670 PrevVar = PrevVar->getPreviousDecl()) { 671 if (PrevVar->getStorageClass() == SC_PrivateExtern && 672 Var->getStorageClass() == SC_None) 673 return getDeclLinkageAndVisibility(PrevVar); 674 // Explicitly declared static. 675 if (PrevVar->getStorageClass() == SC_Static) 676 return getInternalLinkageFor(Var); 677 } 678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 679 // - a data member of an anonymous union. 680 const VarDecl *VD = IFD->getVarDecl(); 681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 683 } 684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 685 686 // FIXME: This gives internal linkage to names that should have no linkage 687 // (those not covered by [basic.link]p6). 688 if (D->isInAnonymousNamespace()) { 689 const auto *Var = dyn_cast<VarDecl>(D); 690 const auto *Func = dyn_cast<FunctionDecl>(D); 691 // FIXME: The check for extern "C" here is not justified by the standard 692 // wording, but we retain it from the pre-DR1113 model to avoid breaking 693 // code. 694 // 695 // C++11 [basic.link]p4: 696 // An unnamed namespace or a namespace declared directly or indirectly 697 // within an unnamed namespace has internal linkage. 698 if ((!Var || !isFirstInExternCContext(Var)) && 699 (!Func || !isFirstInExternCContext(Func))) 700 return getInternalLinkageFor(D); 701 } 702 703 // Set up the defaults. 704 705 // C99 6.2.2p5: 706 // If the declaration of an identifier for an object has file 707 // scope and no storage-class specifier, its linkage is 708 // external. 709 LinkageInfo LV = getExternalLinkageFor(D); 710 711 if (!hasExplicitVisibilityAlready(computation)) { 712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 713 LV.mergeVisibility(*Vis, true); 714 } else { 715 // If we're declared in a namespace with a visibility attribute, 716 // use that namespace's visibility, and it still counts as explicit. 717 for (const DeclContext *DC = D->getDeclContext(); 718 !isa<TranslationUnitDecl>(DC); 719 DC = DC->getParent()) { 720 const auto *ND = dyn_cast<NamespaceDecl>(DC); 721 if (!ND) continue; 722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 723 LV.mergeVisibility(*Vis, true); 724 break; 725 } 726 } 727 } 728 729 // Add in global settings if the above didn't give us direct visibility. 730 if (!LV.isVisibilityExplicit()) { 731 // Use global type/value visibility as appropriate. 732 Visibility globalVisibility = 733 computation.isValueVisibility() 734 ? Context.getLangOpts().getValueVisibilityMode() 735 : Context.getLangOpts().getTypeVisibilityMode(); 736 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 737 738 // If we're paying attention to global visibility, apply 739 // -finline-visibility-hidden if this is an inline method. 740 if (useInlineVisibilityHidden(D)) 741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 742 } 743 } 744 745 // C++ [basic.link]p4: 746 747 // A name having namespace scope that has not been given internal linkage 748 // above and that is the name of 749 // [...bullets...] 750 // has its linkage determined as follows: 751 // - if the enclosing namespace has internal linkage, the name has 752 // internal linkage; [handled above] 753 // - otherwise, if the declaration of the name is attached to a named 754 // module and is not exported, the name has module linkage; 755 // - otherwise, the name has external linkage. 756 // LV is currently set up to handle the last two bullets. 757 // 758 // The bullets are: 759 760 // - a variable; or 761 if (const auto *Var = dyn_cast<VarDecl>(D)) { 762 // GCC applies the following optimization to variables and static 763 // data members, but not to functions: 764 // 765 // Modify the variable's LV by the LV of its type unless this is 766 // C or extern "C". This follows from [basic.link]p9: 767 // A type without linkage shall not be used as the type of a 768 // variable or function with external linkage unless 769 // - the entity has C language linkage, or 770 // - the entity is declared within an unnamed namespace, or 771 // - the entity is not used or is defined in the same 772 // translation unit. 773 // and [basic.link]p10: 774 // ...the types specified by all declarations referring to a 775 // given variable or function shall be identical... 776 // C does not have an equivalent rule. 777 // 778 // Ignore this if we've got an explicit attribute; the user 779 // probably knows what they're doing. 780 // 781 // Note that we don't want to make the variable non-external 782 // because of this, but unique-external linkage suits us. 783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 784 !IgnoreVarTypeLinkage) { 785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 786 if (!isExternallyVisible(TypeLV.getLinkage())) 787 return LinkageInfo::uniqueExternal(); 788 if (!LV.isVisibilityExplicit()) 789 LV.mergeVisibility(TypeLV); 790 } 791 792 if (Var->getStorageClass() == SC_PrivateExtern) 793 LV.mergeVisibility(HiddenVisibility, true); 794 795 // Note that Sema::MergeVarDecl already takes care of implementing 796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 797 // to do it here. 798 799 // As per function and class template specializations (below), 800 // consider LV for the template and template arguments. We're at file 801 // scope, so we do not need to worry about nested specializations. 802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 803 mergeTemplateLV(LV, spec, computation); 804 } 805 806 // - a function; or 807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 808 // In theory, we can modify the function's LV by the LV of its 809 // type unless it has C linkage (see comment above about variables 810 // for justification). In practice, GCC doesn't do this, so it's 811 // just too painful to make work. 812 813 if (Function->getStorageClass() == SC_PrivateExtern) 814 LV.mergeVisibility(HiddenVisibility, true); 815 816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 817 // merging storage classes and visibility attributes, so we don't have to 818 // look at previous decls in here. 819 820 // In C++, then if the type of the function uses a type with 821 // unique-external linkage, it's not legally usable from outside 822 // this translation unit. However, we should use the C linkage 823 // rules instead for extern "C" declarations. 824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 825 // Only look at the type-as-written. Otherwise, deducing the return type 826 // of a function could change its linkage. 827 QualType TypeAsWritten = Function->getType(); 828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 829 TypeAsWritten = TSI->getType(); 830 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 831 return LinkageInfo::uniqueExternal(); 832 } 833 834 // Consider LV from the template and the template arguments. 835 // We're at file scope, so we do not need to worry about nested 836 // specializations. 837 if (FunctionTemplateSpecializationInfo *specInfo 838 = Function->getTemplateSpecializationInfo()) { 839 mergeTemplateLV(LV, Function, specInfo, computation); 840 } 841 842 // - a named class (Clause 9), or an unnamed class defined in a 843 // typedef declaration in which the class has the typedef name 844 // for linkage purposes (7.1.3); or 845 // - a named enumeration (7.2), or an unnamed enumeration 846 // defined in a typedef declaration in which the enumeration 847 // has the typedef name for linkage purposes (7.1.3); or 848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 849 // Unnamed tags have no linkage. 850 if (!Tag->hasNameForLinkage()) 851 return LinkageInfo::none(); 852 853 // If this is a class template specialization, consider the 854 // linkage of the template and template arguments. We're at file 855 // scope, so we do not need to worry about nested specializations. 856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 857 mergeTemplateLV(LV, spec, computation); 858 } 859 860 // FIXME: This is not part of the C++ standard any more. 861 // - an enumerator belonging to an enumeration with external linkage; or 862 } else if (isa<EnumConstantDecl>(D)) { 863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 864 computation); 865 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 866 return LinkageInfo::none(); 867 LV.merge(EnumLV); 868 869 // - a template 870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 871 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 872 LinkageInfo tempLV = 873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 875 876 // An unnamed namespace or a namespace declared directly or indirectly 877 // within an unnamed namespace has internal linkage. All other namespaces 878 // have external linkage. 879 // 880 // We handled names in anonymous namespaces above. 881 } else if (isa<NamespaceDecl>(D)) { 882 return LV; 883 884 // By extension, we assign external linkage to Objective-C 885 // interfaces. 886 } else if (isa<ObjCInterfaceDecl>(D)) { 887 // fallout 888 889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 890 // A typedef declaration has linkage if it gives a type a name for 891 // linkage purposes. 892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 893 return LinkageInfo::none(); 894 895 // Everything not covered here has no linkage. 896 } else { 897 return LinkageInfo::none(); 898 } 899 900 // If we ended up with non-externally-visible linkage, visibility should 901 // always be default. 902 if (!isExternallyVisible(LV.getLinkage())) 903 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 904 905 // Mark the symbols as hidden when compiling for the device. 906 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice) 907 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 908 909 return LV; 910 } 911 912 LinkageInfo 913 LinkageComputer::getLVForClassMember(const NamedDecl *D, 914 LVComputationKind computation, 915 bool IgnoreVarTypeLinkage) { 916 // Only certain class members have linkage. Note that fields don't 917 // really have linkage, but it's convenient to say they do for the 918 // purposes of calculating linkage of pointer-to-data-member 919 // template arguments. 920 // 921 // Templates also don't officially have linkage, but since we ignore 922 // the C++ standard and look at template arguments when determining 923 // linkage and visibility of a template specialization, we might hit 924 // a template template argument that way. If we do, we need to 925 // consider its linkage. 926 if (!(isa<CXXMethodDecl>(D) || 927 isa<VarDecl>(D) || 928 isa<FieldDecl>(D) || 929 isa<IndirectFieldDecl>(D) || 930 isa<TagDecl>(D) || 931 isa<TemplateDecl>(D))) 932 return LinkageInfo::none(); 933 934 LinkageInfo LV; 935 936 // If we have an explicit visibility attribute, merge that in. 937 if (!hasExplicitVisibilityAlready(computation)) { 938 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 939 LV.mergeVisibility(*Vis, true); 940 // If we're paying attention to global visibility, apply 941 // -finline-visibility-hidden if this is an inline method. 942 // 943 // Note that we do this before merging information about 944 // the class visibility. 945 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 946 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 947 } 948 949 // If this class member has an explicit visibility attribute, the only 950 // thing that can change its visibility is the template arguments, so 951 // only look for them when processing the class. 952 LVComputationKind classComputation = computation; 953 if (LV.isVisibilityExplicit()) 954 classComputation = withExplicitVisibilityAlready(computation); 955 956 LinkageInfo classLV = 957 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 958 // The member has the same linkage as the class. If that's not externally 959 // visible, we don't need to compute anything about the linkage. 960 // FIXME: If we're only computing linkage, can we bail out here? 961 if (!isExternallyVisible(classLV.getLinkage())) 962 return classLV; 963 964 965 // Otherwise, don't merge in classLV yet, because in certain cases 966 // we need to completely ignore the visibility from it. 967 968 // Specifically, if this decl exists and has an explicit attribute. 969 const NamedDecl *explicitSpecSuppressor = nullptr; 970 971 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 972 // Only look at the type-as-written. Otherwise, deducing the return type 973 // of a function could change its linkage. 974 QualType TypeAsWritten = MD->getType(); 975 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 976 TypeAsWritten = TSI->getType(); 977 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 978 return LinkageInfo::uniqueExternal(); 979 980 // If this is a method template specialization, use the linkage for 981 // the template parameters and arguments. 982 if (FunctionTemplateSpecializationInfo *spec 983 = MD->getTemplateSpecializationInfo()) { 984 mergeTemplateLV(LV, MD, spec, computation); 985 if (spec->isExplicitSpecialization()) { 986 explicitSpecSuppressor = MD; 987 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 988 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 989 } 990 } else if (isExplicitMemberSpecialization(MD)) { 991 explicitSpecSuppressor = MD; 992 } 993 994 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 995 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 996 mergeTemplateLV(LV, spec, computation); 997 if (spec->isExplicitSpecialization()) { 998 explicitSpecSuppressor = spec; 999 } else { 1000 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1001 if (isExplicitMemberSpecialization(temp)) { 1002 explicitSpecSuppressor = temp->getTemplatedDecl(); 1003 } 1004 } 1005 } else if (isExplicitMemberSpecialization(RD)) { 1006 explicitSpecSuppressor = RD; 1007 } 1008 1009 // Static data members. 1010 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1011 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1012 mergeTemplateLV(LV, spec, computation); 1013 1014 // Modify the variable's linkage by its type, but ignore the 1015 // type's visibility unless it's a definition. 1016 if (!IgnoreVarTypeLinkage) { 1017 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1018 // FIXME: If the type's linkage is not externally visible, we can 1019 // give this static data member UniqueExternalLinkage. 1020 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1021 LV.mergeVisibility(typeLV); 1022 LV.mergeExternalVisibility(typeLV); 1023 } 1024 1025 if (isExplicitMemberSpecialization(VD)) { 1026 explicitSpecSuppressor = VD; 1027 } 1028 1029 // Template members. 1030 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1031 bool considerVisibility = 1032 (!LV.isVisibilityExplicit() && 1033 !classLV.isVisibilityExplicit() && 1034 !hasExplicitVisibilityAlready(computation)); 1035 LinkageInfo tempLV = 1036 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1037 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1038 1039 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1040 if (isExplicitMemberSpecialization(redeclTemp)) { 1041 explicitSpecSuppressor = temp->getTemplatedDecl(); 1042 } 1043 } 1044 } 1045 1046 // We should never be looking for an attribute directly on a template. 1047 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1048 1049 // If this member is an explicit member specialization, and it has 1050 // an explicit attribute, ignore visibility from the parent. 1051 bool considerClassVisibility = true; 1052 if (explicitSpecSuppressor && 1053 // optimization: hasDVA() is true only with explicit visibility. 1054 LV.isVisibilityExplicit() && 1055 classLV.getVisibility() != DefaultVisibility && 1056 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1057 considerClassVisibility = false; 1058 } 1059 1060 // Finally, merge in information from the class. 1061 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1062 return LV; 1063 } 1064 1065 void NamedDecl::anchor() {} 1066 1067 bool NamedDecl::isLinkageValid() const { 1068 if (!hasCachedLinkage()) 1069 return true; 1070 1071 Linkage L = LinkageComputer{} 1072 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1073 .getLinkage(); 1074 return L == getCachedLinkage(); 1075 } 1076 1077 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1078 StringRef name = getName(); 1079 if (name.empty()) return SFF_None; 1080 1081 if (name.front() == 'C') 1082 if (name == "CFStringCreateWithFormat" || 1083 name == "CFStringCreateWithFormatAndArguments" || 1084 name == "CFStringAppendFormat" || 1085 name == "CFStringAppendFormatAndArguments") 1086 return SFF_CFString; 1087 return SFF_None; 1088 } 1089 1090 Linkage NamedDecl::getLinkageInternal() const { 1091 // We don't care about visibility here, so ask for the cheapest 1092 // possible visibility analysis. 1093 return LinkageComputer{} 1094 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1095 .getLinkage(); 1096 } 1097 1098 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1099 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1100 } 1101 1102 static Optional<Visibility> 1103 getExplicitVisibilityAux(const NamedDecl *ND, 1104 NamedDecl::ExplicitVisibilityKind kind, 1105 bool IsMostRecent) { 1106 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1107 1108 // Check the declaration itself first. 1109 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1110 return V; 1111 1112 // If this is a member class of a specialization of a class template 1113 // and the corresponding decl has explicit visibility, use that. 1114 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1115 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1116 if (InstantiatedFrom) 1117 return getVisibilityOf(InstantiatedFrom, kind); 1118 } 1119 1120 // If there wasn't explicit visibility there, and this is a 1121 // specialization of a class template, check for visibility 1122 // on the pattern. 1123 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1124 // Walk all the template decl till this point to see if there are 1125 // explicit visibility attributes. 1126 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1127 while (TD != nullptr) { 1128 auto Vis = getVisibilityOf(TD, kind); 1129 if (Vis != None) 1130 return Vis; 1131 TD = TD->getPreviousDecl(); 1132 } 1133 return None; 1134 } 1135 1136 // Use the most recent declaration. 1137 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1138 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1139 if (MostRecent != ND) 1140 return getExplicitVisibilityAux(MostRecent, kind, true); 1141 } 1142 1143 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1144 if (Var->isStaticDataMember()) { 1145 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1146 if (InstantiatedFrom) 1147 return getVisibilityOf(InstantiatedFrom, kind); 1148 } 1149 1150 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1151 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1152 kind); 1153 1154 return None; 1155 } 1156 // Also handle function template specializations. 1157 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1158 // If the function is a specialization of a template with an 1159 // explicit visibility attribute, use that. 1160 if (FunctionTemplateSpecializationInfo *templateInfo 1161 = fn->getTemplateSpecializationInfo()) 1162 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1163 kind); 1164 1165 // If the function is a member of a specialization of a class template 1166 // and the corresponding decl has explicit visibility, use that. 1167 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1168 if (InstantiatedFrom) 1169 return getVisibilityOf(InstantiatedFrom, kind); 1170 1171 return None; 1172 } 1173 1174 // The visibility of a template is stored in the templated decl. 1175 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1176 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1177 1178 return None; 1179 } 1180 1181 Optional<Visibility> 1182 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1183 return getExplicitVisibilityAux(this, kind, false); 1184 } 1185 1186 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1187 Decl *ContextDecl, 1188 LVComputationKind computation) { 1189 // This lambda has its linkage/visibility determined by its owner. 1190 const NamedDecl *Owner; 1191 if (!ContextDecl) 1192 Owner = dyn_cast<NamedDecl>(DC); 1193 else if (isa<ParmVarDecl>(ContextDecl)) 1194 Owner = 1195 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1196 else 1197 Owner = cast<NamedDecl>(ContextDecl); 1198 1199 if (!Owner) 1200 return LinkageInfo::none(); 1201 1202 // If the owner has a deduced type, we need to skip querying the linkage and 1203 // visibility of that type, because it might involve this closure type. The 1204 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1205 // than NoLinkage when we don't strictly need to, which is benign. 1206 auto *VD = dyn_cast<VarDecl>(Owner); 1207 LinkageInfo OwnerLV = 1208 VD && VD->getType()->getContainedDeducedType() 1209 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1210 : getLVForDecl(Owner, computation); 1211 1212 // A lambda never formally has linkage. But if the owner is externally 1213 // visible, then the lambda is too. We apply the same rules to blocks. 1214 if (!isExternallyVisible(OwnerLV.getLinkage())) 1215 return LinkageInfo::none(); 1216 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1217 OwnerLV.isVisibilityExplicit()); 1218 } 1219 1220 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1221 LVComputationKind computation) { 1222 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1223 if (Function->isInAnonymousNamespace() && 1224 !isFirstInExternCContext(Function)) 1225 return getInternalLinkageFor(Function); 1226 1227 // This is a "void f();" which got merged with a file static. 1228 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1229 return getInternalLinkageFor(Function); 1230 1231 LinkageInfo LV; 1232 if (!hasExplicitVisibilityAlready(computation)) { 1233 if (Optional<Visibility> Vis = 1234 getExplicitVisibility(Function, computation)) 1235 LV.mergeVisibility(*Vis, true); 1236 } 1237 1238 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1239 // merging storage classes and visibility attributes, so we don't have to 1240 // look at previous decls in here. 1241 1242 return LV; 1243 } 1244 1245 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1246 if (Var->hasExternalStorage()) { 1247 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1248 return getInternalLinkageFor(Var); 1249 1250 LinkageInfo LV; 1251 if (Var->getStorageClass() == SC_PrivateExtern) 1252 LV.mergeVisibility(HiddenVisibility, true); 1253 else if (!hasExplicitVisibilityAlready(computation)) { 1254 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1255 LV.mergeVisibility(*Vis, true); 1256 } 1257 1258 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1259 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1260 if (PrevLV.getLinkage()) 1261 LV.setLinkage(PrevLV.getLinkage()); 1262 LV.mergeVisibility(PrevLV); 1263 } 1264 1265 return LV; 1266 } 1267 1268 if (!Var->isStaticLocal()) 1269 return LinkageInfo::none(); 1270 } 1271 1272 ASTContext &Context = D->getASTContext(); 1273 if (!Context.getLangOpts().CPlusPlus) 1274 return LinkageInfo::none(); 1275 1276 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1277 if (!OuterD || OuterD->isInvalidDecl()) 1278 return LinkageInfo::none(); 1279 1280 LinkageInfo LV; 1281 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1282 if (!BD->getBlockManglingNumber()) 1283 return LinkageInfo::none(); 1284 1285 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1286 BD->getBlockManglingContextDecl(), computation); 1287 } else { 1288 const auto *FD = cast<FunctionDecl>(OuterD); 1289 if (!FD->isInlined() && 1290 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1291 return LinkageInfo::none(); 1292 1293 // If a function is hidden by -fvisibility-inlines-hidden option and 1294 // is not explicitly attributed as a hidden function, 1295 // we should not make static local variables in the function hidden. 1296 LV = getLVForDecl(FD, computation); 1297 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1298 !LV.isVisibilityExplicit()) { 1299 assert(cast<VarDecl>(D)->isStaticLocal()); 1300 // If this was an implicitly hidden inline method, check again for 1301 // explicit visibility on the parent class, and use that for static locals 1302 // if present. 1303 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1304 LV = getLVForDecl(MD->getParent(), computation); 1305 if (!LV.isVisibilityExplicit()) { 1306 Visibility globalVisibility = 1307 computation.isValueVisibility() 1308 ? Context.getLangOpts().getValueVisibilityMode() 1309 : Context.getLangOpts().getTypeVisibilityMode(); 1310 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1311 /*visibilityExplicit=*/false); 1312 } 1313 } 1314 } 1315 if (!isExternallyVisible(LV.getLinkage())) 1316 return LinkageInfo::none(); 1317 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1318 LV.isVisibilityExplicit()); 1319 } 1320 1321 static inline const CXXRecordDecl* 1322 getOutermostEnclosingLambda(const CXXRecordDecl *Record) { 1323 const CXXRecordDecl *Ret = Record; 1324 while (Record && Record->isLambda()) { 1325 Ret = Record; 1326 if (!Record->getParent()) break; 1327 // Get the Containing Class of this Lambda Class 1328 Record = dyn_cast_or_null<CXXRecordDecl>( 1329 Record->getParent()->getParent()); 1330 } 1331 return Ret; 1332 } 1333 1334 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1335 LVComputationKind computation, 1336 bool IgnoreVarTypeLinkage) { 1337 // Internal_linkage attribute overrides other considerations. 1338 if (D->hasAttr<InternalLinkageAttr>()) 1339 return getInternalLinkageFor(D); 1340 1341 // Objective-C: treat all Objective-C declarations as having external 1342 // linkage. 1343 switch (D->getKind()) { 1344 default: 1345 break; 1346 1347 // Per C++ [basic.link]p2, only the names of objects, references, 1348 // functions, types, templates, namespaces, and values ever have linkage. 1349 // 1350 // Note that the name of a typedef, namespace alias, using declaration, 1351 // and so on are not the name of the corresponding type, namespace, or 1352 // declaration, so they do *not* have linkage. 1353 case Decl::ImplicitParam: 1354 case Decl::Label: 1355 case Decl::NamespaceAlias: 1356 case Decl::ParmVar: 1357 case Decl::Using: 1358 case Decl::UsingShadow: 1359 case Decl::UsingDirective: 1360 return LinkageInfo::none(); 1361 1362 case Decl::EnumConstant: 1363 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1364 if (D->getASTContext().getLangOpts().CPlusPlus) 1365 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1366 return LinkageInfo::visible_none(); 1367 1368 case Decl::Typedef: 1369 case Decl::TypeAlias: 1370 // A typedef declaration has linkage if it gives a type a name for 1371 // linkage purposes. 1372 if (!cast<TypedefNameDecl>(D) 1373 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1374 return LinkageInfo::none(); 1375 break; 1376 1377 case Decl::TemplateTemplateParm: // count these as external 1378 case Decl::NonTypeTemplateParm: 1379 case Decl::ObjCAtDefsField: 1380 case Decl::ObjCCategory: 1381 case Decl::ObjCCategoryImpl: 1382 case Decl::ObjCCompatibleAlias: 1383 case Decl::ObjCImplementation: 1384 case Decl::ObjCMethod: 1385 case Decl::ObjCProperty: 1386 case Decl::ObjCPropertyImpl: 1387 case Decl::ObjCProtocol: 1388 return getExternalLinkageFor(D); 1389 1390 case Decl::CXXRecord: { 1391 const auto *Record = cast<CXXRecordDecl>(D); 1392 if (Record->isLambda()) { 1393 if (Record->hasKnownLambdaInternalLinkage() || 1394 !Record->getLambdaManglingNumber()) { 1395 // This lambda has no mangling number, so it's internal. 1396 return getInternalLinkageFor(D); 1397 } 1398 1399 // This lambda has its linkage/visibility determined: 1400 // - either by the outermost lambda if that lambda has no mangling 1401 // number. 1402 // - or by the parent of the outer most lambda 1403 // This prevents infinite recursion in settings such as nested lambdas 1404 // used in NSDMI's, for e.g. 1405 // struct L { 1406 // int t{}; 1407 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); 1408 // }; 1409 const CXXRecordDecl *OuterMostLambda = 1410 getOutermostEnclosingLambda(Record); 1411 if (OuterMostLambda->hasKnownLambdaInternalLinkage() || 1412 !OuterMostLambda->getLambdaManglingNumber()) 1413 return getInternalLinkageFor(D); 1414 1415 return getLVForClosure( 1416 OuterMostLambda->getDeclContext()->getRedeclContext(), 1417 OuterMostLambda->getLambdaContextDecl(), computation); 1418 } 1419 1420 break; 1421 } 1422 } 1423 1424 // Handle linkage for namespace-scope names. 1425 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1426 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1427 1428 // C++ [basic.link]p5: 1429 // In addition, a member function, static data member, a named 1430 // class or enumeration of class scope, or an unnamed class or 1431 // enumeration defined in a class-scope typedef declaration such 1432 // that the class or enumeration has the typedef name for linkage 1433 // purposes (7.1.3), has external linkage if the name of the class 1434 // has external linkage. 1435 if (D->getDeclContext()->isRecord()) 1436 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1437 1438 // C++ [basic.link]p6: 1439 // The name of a function declared in block scope and the name of 1440 // an object declared by a block scope extern declaration have 1441 // linkage. If there is a visible declaration of an entity with 1442 // linkage having the same name and type, ignoring entities 1443 // declared outside the innermost enclosing namespace scope, the 1444 // block scope declaration declares that same entity and receives 1445 // the linkage of the previous declaration. If there is more than 1446 // one such matching entity, the program is ill-formed. Otherwise, 1447 // if no matching entity is found, the block scope entity receives 1448 // external linkage. 1449 if (D->getDeclContext()->isFunctionOrMethod()) 1450 return getLVForLocalDecl(D, computation); 1451 1452 // C++ [basic.link]p6: 1453 // Names not covered by these rules have no linkage. 1454 return LinkageInfo::none(); 1455 } 1456 1457 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1458 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1459 LVComputationKind computation) { 1460 // Internal_linkage attribute overrides other considerations. 1461 if (D->hasAttr<InternalLinkageAttr>()) 1462 return getInternalLinkageFor(D); 1463 1464 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1465 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1466 1467 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1468 return *LI; 1469 1470 LinkageInfo LV = computeLVForDecl(D, computation); 1471 if (D->hasCachedLinkage()) 1472 assert(D->getCachedLinkage() == LV.getLinkage()); 1473 1474 D->setCachedLinkage(LV.getLinkage()); 1475 cache(D, computation, LV); 1476 1477 #ifndef NDEBUG 1478 // In C (because of gnu inline) and in c++ with microsoft extensions an 1479 // static can follow an extern, so we can have two decls with different 1480 // linkages. 1481 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1482 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1483 return LV; 1484 1485 // We have just computed the linkage for this decl. By induction we know 1486 // that all other computed linkages match, check that the one we just 1487 // computed also does. 1488 NamedDecl *Old = nullptr; 1489 for (auto I : D->redecls()) { 1490 auto *T = cast<NamedDecl>(I); 1491 if (T == D) 1492 continue; 1493 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1494 Old = T; 1495 break; 1496 } 1497 } 1498 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1499 #endif 1500 1501 return LV; 1502 } 1503 1504 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1505 return getLVForDecl(D, 1506 LVComputationKind(usesTypeVisibility(D) 1507 ? NamedDecl::VisibilityForType 1508 : NamedDecl::VisibilityForValue)); 1509 } 1510 1511 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1512 Module *M = getOwningModule(); 1513 if (!M) 1514 return nullptr; 1515 1516 switch (M->Kind) { 1517 case Module::ModuleMapModule: 1518 // Module map modules have no special linkage semantics. 1519 return nullptr; 1520 1521 case Module::ModuleInterfaceUnit: 1522 return M; 1523 1524 case Module::GlobalModuleFragment: { 1525 // External linkage declarations in the global module have no owning module 1526 // for linkage purposes. But internal linkage declarations in the global 1527 // module fragment of a particular module are owned by that module for 1528 // linkage purposes. 1529 if (IgnoreLinkage) 1530 return nullptr; 1531 bool InternalLinkage; 1532 if (auto *ND = dyn_cast<NamedDecl>(this)) 1533 InternalLinkage = !ND->hasExternalFormalLinkage(); 1534 else { 1535 auto *NSD = dyn_cast<NamespaceDecl>(this); 1536 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || 1537 isInAnonymousNamespace(); 1538 } 1539 return InternalLinkage ? M->Parent : nullptr; 1540 } 1541 1542 case Module::PrivateModuleFragment: 1543 // The private module fragment is part of its containing module for linkage 1544 // purposes. 1545 return M->Parent; 1546 } 1547 1548 llvm_unreachable("unknown module kind"); 1549 } 1550 1551 void NamedDecl::printName(raw_ostream &os) const { 1552 os << Name; 1553 } 1554 1555 std::string NamedDecl::getQualifiedNameAsString() const { 1556 std::string QualName; 1557 llvm::raw_string_ostream OS(QualName); 1558 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1559 return OS.str(); 1560 } 1561 1562 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1563 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1564 } 1565 1566 void NamedDecl::printQualifiedName(raw_ostream &OS, 1567 const PrintingPolicy &P) const { 1568 if (getDeclContext()->isFunctionOrMethod()) { 1569 // We do not print '(anonymous)' for function parameters without name. 1570 printName(OS); 1571 return; 1572 } 1573 printNestedNameSpecifier(OS, P); 1574 if (getDeclName() || isa<DecompositionDecl>(this)) 1575 OS << *this; 1576 else 1577 OS << "(anonymous)"; 1578 } 1579 1580 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1581 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1582 } 1583 1584 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1585 const PrintingPolicy &P) const { 1586 const DeclContext *Ctx = getDeclContext(); 1587 1588 // For ObjC methods and properties, look through categories and use the 1589 // interface as context. 1590 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) 1591 if (auto *ID = MD->getClassInterface()) 1592 Ctx = ID; 1593 if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1594 if (auto *MD = PD->getGetterMethodDecl()) 1595 if (auto *ID = MD->getClassInterface()) 1596 Ctx = ID; 1597 } 1598 1599 if (Ctx->isFunctionOrMethod()) 1600 return; 1601 1602 using ContextsTy = SmallVector<const DeclContext *, 8>; 1603 ContextsTy Contexts; 1604 1605 // Collect named contexts. 1606 while (Ctx) { 1607 if (isa<NamedDecl>(Ctx)) 1608 Contexts.push_back(Ctx); 1609 Ctx = Ctx->getParent(); 1610 } 1611 1612 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1613 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1614 OS << Spec->getName(); 1615 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1616 printTemplateArgumentList(OS, TemplateArgs.asArray(), P); 1617 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1618 if (P.SuppressUnwrittenScope && 1619 (ND->isAnonymousNamespace() || ND->isInline())) 1620 continue; 1621 if (ND->isAnonymousNamespace()) { 1622 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1623 : "(anonymous namespace)"); 1624 } 1625 else 1626 OS << *ND; 1627 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1628 if (!RD->getIdentifier()) 1629 OS << "(anonymous " << RD->getKindName() << ')'; 1630 else 1631 OS << *RD; 1632 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1633 const FunctionProtoType *FT = nullptr; 1634 if (FD->hasWrittenPrototype()) 1635 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1636 1637 OS << *FD << '('; 1638 if (FT) { 1639 unsigned NumParams = FD->getNumParams(); 1640 for (unsigned i = 0; i < NumParams; ++i) { 1641 if (i) 1642 OS << ", "; 1643 OS << FD->getParamDecl(i)->getType().stream(P); 1644 } 1645 1646 if (FT->isVariadic()) { 1647 if (NumParams > 0) 1648 OS << ", "; 1649 OS << "..."; 1650 } 1651 } 1652 OS << ')'; 1653 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1654 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1655 // enumerator is declared in the scope that immediately contains 1656 // the enum-specifier. Each scoped enumerator is declared in the 1657 // scope of the enumeration. 1658 // For the case of unscoped enumerator, do not include in the qualified 1659 // name any information about its enum enclosing scope, as its visibility 1660 // is global. 1661 if (ED->isScoped()) 1662 OS << *ED; 1663 else 1664 continue; 1665 } else { 1666 OS << *cast<NamedDecl>(DC); 1667 } 1668 OS << "::"; 1669 } 1670 } 1671 1672 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1673 const PrintingPolicy &Policy, 1674 bool Qualified) const { 1675 if (Qualified) 1676 printQualifiedName(OS, Policy); 1677 else 1678 printName(OS); 1679 } 1680 1681 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1682 return true; 1683 } 1684 static bool isRedeclarableImpl(...) { return false; } 1685 static bool isRedeclarable(Decl::Kind K) { 1686 switch (K) { 1687 #define DECL(Type, Base) \ 1688 case Decl::Type: \ 1689 return isRedeclarableImpl((Type##Decl *)nullptr); 1690 #define ABSTRACT_DECL(DECL) 1691 #include "clang/AST/DeclNodes.inc" 1692 } 1693 llvm_unreachable("unknown decl kind"); 1694 } 1695 1696 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1697 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1698 1699 // Never replace one imported declaration with another; we need both results 1700 // when re-exporting. 1701 if (OldD->isFromASTFile() && isFromASTFile()) 1702 return false; 1703 1704 // A kind mismatch implies that the declaration is not replaced. 1705 if (OldD->getKind() != getKind()) 1706 return false; 1707 1708 // For method declarations, we never replace. (Why?) 1709 if (isa<ObjCMethodDecl>(this)) 1710 return false; 1711 1712 // For parameters, pick the newer one. This is either an error or (in 1713 // Objective-C) permitted as an extension. 1714 if (isa<ParmVarDecl>(this)) 1715 return true; 1716 1717 // Inline namespaces can give us two declarations with the same 1718 // name and kind in the same scope but different contexts; we should 1719 // keep both declarations in this case. 1720 if (!this->getDeclContext()->getRedeclContext()->Equals( 1721 OldD->getDeclContext()->getRedeclContext())) 1722 return false; 1723 1724 // Using declarations can be replaced if they import the same name from the 1725 // same context. 1726 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1727 ASTContext &Context = getASTContext(); 1728 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1729 Context.getCanonicalNestedNameSpecifier( 1730 cast<UsingDecl>(OldD)->getQualifier()); 1731 } 1732 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1733 ASTContext &Context = getASTContext(); 1734 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1735 Context.getCanonicalNestedNameSpecifier( 1736 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1737 } 1738 1739 if (isRedeclarable(getKind())) { 1740 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1741 return false; 1742 1743 if (IsKnownNewer) 1744 return true; 1745 1746 // Check whether this is actually newer than OldD. We want to keep the 1747 // newer declaration. This loop will usually only iterate once, because 1748 // OldD is usually the previous declaration. 1749 for (auto D : redecls()) { 1750 if (D == OldD) 1751 break; 1752 1753 // If we reach the canonical declaration, then OldD is not actually older 1754 // than this one. 1755 // 1756 // FIXME: In this case, we should not add this decl to the lookup table. 1757 if (D->isCanonicalDecl()) 1758 return false; 1759 } 1760 1761 // It's a newer declaration of the same kind of declaration in the same 1762 // scope: we want this decl instead of the existing one. 1763 return true; 1764 } 1765 1766 // In all other cases, we need to keep both declarations in case they have 1767 // different visibility. Any attempt to use the name will result in an 1768 // ambiguity if more than one is visible. 1769 return false; 1770 } 1771 1772 bool NamedDecl::hasLinkage() const { 1773 return getFormalLinkage() != NoLinkage; 1774 } 1775 1776 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1777 NamedDecl *ND = this; 1778 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1779 ND = UD->getTargetDecl(); 1780 1781 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1782 return AD->getClassInterface(); 1783 1784 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1785 return AD->getNamespace(); 1786 1787 return ND; 1788 } 1789 1790 bool NamedDecl::isCXXInstanceMember() const { 1791 if (!isCXXClassMember()) 1792 return false; 1793 1794 const NamedDecl *D = this; 1795 if (isa<UsingShadowDecl>(D)) 1796 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1797 1798 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1799 return true; 1800 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1801 return MD->isInstance(); 1802 return false; 1803 } 1804 1805 //===----------------------------------------------------------------------===// 1806 // DeclaratorDecl Implementation 1807 //===----------------------------------------------------------------------===// 1808 1809 template <typename DeclT> 1810 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1811 if (decl->getNumTemplateParameterLists() > 0) 1812 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1813 else 1814 return decl->getInnerLocStart(); 1815 } 1816 1817 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1818 TypeSourceInfo *TSI = getTypeSourceInfo(); 1819 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1820 return SourceLocation(); 1821 } 1822 1823 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1824 TypeSourceInfo *TSI = getTypeSourceInfo(); 1825 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1826 return SourceLocation(); 1827 } 1828 1829 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1830 if (QualifierLoc) { 1831 // Make sure the extended decl info is allocated. 1832 if (!hasExtInfo()) { 1833 // Save (non-extended) type source info pointer. 1834 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1835 // Allocate external info struct. 1836 DeclInfo = new (getASTContext()) ExtInfo; 1837 // Restore savedTInfo into (extended) decl info. 1838 getExtInfo()->TInfo = savedTInfo; 1839 } 1840 // Set qualifier info. 1841 getExtInfo()->QualifierLoc = QualifierLoc; 1842 } else if (hasExtInfo()) { 1843 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1844 getExtInfo()->QualifierLoc = QualifierLoc; 1845 } 1846 } 1847 1848 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1849 assert(TrailingRequiresClause); 1850 // Make sure the extended decl info is allocated. 1851 if (!hasExtInfo()) { 1852 // Save (non-extended) type source info pointer. 1853 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1854 // Allocate external info struct. 1855 DeclInfo = new (getASTContext()) ExtInfo; 1856 // Restore savedTInfo into (extended) decl info. 1857 getExtInfo()->TInfo = savedTInfo; 1858 } 1859 // Set requires clause info. 1860 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1861 } 1862 1863 void DeclaratorDecl::setTemplateParameterListsInfo( 1864 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1865 assert(!TPLists.empty()); 1866 // Make sure the extended decl info is allocated. 1867 if (!hasExtInfo()) { 1868 // Save (non-extended) type source info pointer. 1869 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1870 // Allocate external info struct. 1871 DeclInfo = new (getASTContext()) ExtInfo; 1872 // Restore savedTInfo into (extended) decl info. 1873 getExtInfo()->TInfo = savedTInfo; 1874 } 1875 // Set the template parameter lists info. 1876 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1877 } 1878 1879 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1880 return getTemplateOrInnerLocStart(this); 1881 } 1882 1883 // Helper function: returns true if QT is or contains a type 1884 // having a postfix component. 1885 static bool typeIsPostfix(QualType QT) { 1886 while (true) { 1887 const Type* T = QT.getTypePtr(); 1888 switch (T->getTypeClass()) { 1889 default: 1890 return false; 1891 case Type::Pointer: 1892 QT = cast<PointerType>(T)->getPointeeType(); 1893 break; 1894 case Type::BlockPointer: 1895 QT = cast<BlockPointerType>(T)->getPointeeType(); 1896 break; 1897 case Type::MemberPointer: 1898 QT = cast<MemberPointerType>(T)->getPointeeType(); 1899 break; 1900 case Type::LValueReference: 1901 case Type::RValueReference: 1902 QT = cast<ReferenceType>(T)->getPointeeType(); 1903 break; 1904 case Type::PackExpansion: 1905 QT = cast<PackExpansionType>(T)->getPattern(); 1906 break; 1907 case Type::Paren: 1908 case Type::ConstantArray: 1909 case Type::DependentSizedArray: 1910 case Type::IncompleteArray: 1911 case Type::VariableArray: 1912 case Type::FunctionProto: 1913 case Type::FunctionNoProto: 1914 return true; 1915 } 1916 } 1917 } 1918 1919 SourceRange DeclaratorDecl::getSourceRange() const { 1920 SourceLocation RangeEnd = getLocation(); 1921 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1922 // If the declaration has no name or the type extends past the name take the 1923 // end location of the type. 1924 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1925 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1926 } 1927 return SourceRange(getOuterLocStart(), RangeEnd); 1928 } 1929 1930 void QualifierInfo::setTemplateParameterListsInfo( 1931 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1932 // Free previous template parameters (if any). 1933 if (NumTemplParamLists > 0) { 1934 Context.Deallocate(TemplParamLists); 1935 TemplParamLists = nullptr; 1936 NumTemplParamLists = 0; 1937 } 1938 // Set info on matched template parameter lists (if any). 1939 if (!TPLists.empty()) { 1940 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1941 NumTemplParamLists = TPLists.size(); 1942 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1943 } 1944 } 1945 1946 //===----------------------------------------------------------------------===// 1947 // VarDecl Implementation 1948 //===----------------------------------------------------------------------===// 1949 1950 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1951 switch (SC) { 1952 case SC_None: break; 1953 case SC_Auto: return "auto"; 1954 case SC_Extern: return "extern"; 1955 case SC_PrivateExtern: return "__private_extern__"; 1956 case SC_Register: return "register"; 1957 case SC_Static: return "static"; 1958 } 1959 1960 llvm_unreachable("Invalid storage class"); 1961 } 1962 1963 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 1964 SourceLocation StartLoc, SourceLocation IdLoc, 1965 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1966 StorageClass SC) 1967 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 1968 redeclarable_base(C) { 1969 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 1970 "VarDeclBitfields too large!"); 1971 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 1972 "ParmVarDeclBitfields too large!"); 1973 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 1974 "NonParmVarDeclBitfields too large!"); 1975 AllBits = 0; 1976 VarDeclBits.SClass = SC; 1977 // Everything else is implicitly initialized to false. 1978 } 1979 1980 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 1981 SourceLocation StartL, SourceLocation IdL, 1982 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1983 StorageClass S) { 1984 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 1985 } 1986 1987 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 1988 return new (C, ID) 1989 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 1990 QualType(), nullptr, SC_None); 1991 } 1992 1993 void VarDecl::setStorageClass(StorageClass SC) { 1994 assert(isLegalForVariable(SC)); 1995 VarDeclBits.SClass = SC; 1996 } 1997 1998 VarDecl::TLSKind VarDecl::getTLSKind() const { 1999 switch (VarDeclBits.TSCSpec) { 2000 case TSCS_unspecified: 2001 if (!hasAttr<ThreadAttr>() && 2002 !(getASTContext().getLangOpts().OpenMPUseTLS && 2003 getASTContext().getTargetInfo().isTLSSupported() && 2004 hasAttr<OMPThreadPrivateDeclAttr>())) 2005 return TLS_None; 2006 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2007 LangOptions::MSVC2015)) || 2008 hasAttr<OMPThreadPrivateDeclAttr>()) 2009 ? TLS_Dynamic 2010 : TLS_Static; 2011 case TSCS___thread: // Fall through. 2012 case TSCS__Thread_local: 2013 return TLS_Static; 2014 case TSCS_thread_local: 2015 return TLS_Dynamic; 2016 } 2017 llvm_unreachable("Unknown thread storage class specifier!"); 2018 } 2019 2020 SourceRange VarDecl::getSourceRange() const { 2021 if (const Expr *Init = getInit()) { 2022 SourceLocation InitEnd = Init->getEndLoc(); 2023 // If Init is implicit, ignore its source range and fallback on 2024 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2025 if (InitEnd.isValid() && InitEnd != getLocation()) 2026 return SourceRange(getOuterLocStart(), InitEnd); 2027 } 2028 return DeclaratorDecl::getSourceRange(); 2029 } 2030 2031 template<typename T> 2032 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2033 // C++ [dcl.link]p1: All function types, function names with external linkage, 2034 // and variable names with external linkage have a language linkage. 2035 if (!D.hasExternalFormalLinkage()) 2036 return NoLanguageLinkage; 2037 2038 // Language linkage is a C++ concept, but saying that everything else in C has 2039 // C language linkage fits the implementation nicely. 2040 ASTContext &Context = D.getASTContext(); 2041 if (!Context.getLangOpts().CPlusPlus) 2042 return CLanguageLinkage; 2043 2044 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2045 // language linkage of the names of class members and the function type of 2046 // class member functions. 2047 const DeclContext *DC = D.getDeclContext(); 2048 if (DC->isRecord()) 2049 return CXXLanguageLinkage; 2050 2051 // If the first decl is in an extern "C" context, any other redeclaration 2052 // will have C language linkage. If the first one is not in an extern "C" 2053 // context, we would have reported an error for any other decl being in one. 2054 if (isFirstInExternCContext(&D)) 2055 return CLanguageLinkage; 2056 return CXXLanguageLinkage; 2057 } 2058 2059 template<typename T> 2060 static bool isDeclExternC(const T &D) { 2061 // Since the context is ignored for class members, they can only have C++ 2062 // language linkage or no language linkage. 2063 const DeclContext *DC = D.getDeclContext(); 2064 if (DC->isRecord()) { 2065 assert(D.getASTContext().getLangOpts().CPlusPlus); 2066 return false; 2067 } 2068 2069 return D.getLanguageLinkage() == CLanguageLinkage; 2070 } 2071 2072 LanguageLinkage VarDecl::getLanguageLinkage() const { 2073 return getDeclLanguageLinkage(*this); 2074 } 2075 2076 bool VarDecl::isExternC() const { 2077 return isDeclExternC(*this); 2078 } 2079 2080 bool VarDecl::isInExternCContext() const { 2081 return getLexicalDeclContext()->isExternCContext(); 2082 } 2083 2084 bool VarDecl::isInExternCXXContext() const { 2085 return getLexicalDeclContext()->isExternCXXContext(); 2086 } 2087 2088 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2089 2090 VarDecl::DefinitionKind 2091 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2092 if (isThisDeclarationADemotedDefinition()) 2093 return DeclarationOnly; 2094 2095 // C++ [basic.def]p2: 2096 // A declaration is a definition unless [...] it contains the 'extern' 2097 // specifier or a linkage-specification and neither an initializer [...], 2098 // it declares a non-inline static data member in a class declaration [...], 2099 // it declares a static data member outside a class definition and the variable 2100 // was defined within the class with the constexpr specifier [...], 2101 // C++1y [temp.expl.spec]p15: 2102 // An explicit specialization of a static data member or an explicit 2103 // specialization of a static data member template is a definition if the 2104 // declaration includes an initializer; otherwise, it is a declaration. 2105 // 2106 // FIXME: How do you declare (but not define) a partial specialization of 2107 // a static data member template outside the containing class? 2108 if (isStaticDataMember()) { 2109 if (isOutOfLine() && 2110 !(getCanonicalDecl()->isInline() && 2111 getCanonicalDecl()->isConstexpr()) && 2112 (hasInit() || 2113 // If the first declaration is out-of-line, this may be an 2114 // instantiation of an out-of-line partial specialization of a variable 2115 // template for which we have not yet instantiated the initializer. 2116 (getFirstDecl()->isOutOfLine() 2117 ? getTemplateSpecializationKind() == TSK_Undeclared 2118 : getTemplateSpecializationKind() != 2119 TSK_ExplicitSpecialization) || 2120 isa<VarTemplatePartialSpecializationDecl>(this))) 2121 return Definition; 2122 else if (!isOutOfLine() && isInline()) 2123 return Definition; 2124 else 2125 return DeclarationOnly; 2126 } 2127 // C99 6.7p5: 2128 // A definition of an identifier is a declaration for that identifier that 2129 // [...] causes storage to be reserved for that object. 2130 // Note: that applies for all non-file-scope objects. 2131 // C99 6.9.2p1: 2132 // If the declaration of an identifier for an object has file scope and an 2133 // initializer, the declaration is an external definition for the identifier 2134 if (hasInit()) 2135 return Definition; 2136 2137 if (hasDefiningAttr()) 2138 return Definition; 2139 2140 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2141 if (!SAA->isInherited()) 2142 return Definition; 2143 2144 // A variable template specialization (other than a static data member 2145 // template or an explicit specialization) is a declaration until we 2146 // instantiate its initializer. 2147 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2148 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2149 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2150 !VTSD->IsCompleteDefinition) 2151 return DeclarationOnly; 2152 } 2153 2154 if (hasExternalStorage()) 2155 return DeclarationOnly; 2156 2157 // [dcl.link] p7: 2158 // A declaration directly contained in a linkage-specification is treated 2159 // as if it contains the extern specifier for the purpose of determining 2160 // the linkage of the declared name and whether it is a definition. 2161 if (isSingleLineLanguageLinkage(*this)) 2162 return DeclarationOnly; 2163 2164 // C99 6.9.2p2: 2165 // A declaration of an object that has file scope without an initializer, 2166 // and without a storage class specifier or the scs 'static', constitutes 2167 // a tentative definition. 2168 // No such thing in C++. 2169 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2170 return TentativeDefinition; 2171 2172 // What's left is (in C, block-scope) declarations without initializers or 2173 // external storage. These are definitions. 2174 return Definition; 2175 } 2176 2177 VarDecl *VarDecl::getActingDefinition() { 2178 DefinitionKind Kind = isThisDeclarationADefinition(); 2179 if (Kind != TentativeDefinition) 2180 return nullptr; 2181 2182 VarDecl *LastTentative = nullptr; 2183 VarDecl *First = getFirstDecl(); 2184 for (auto I : First->redecls()) { 2185 Kind = I->isThisDeclarationADefinition(); 2186 if (Kind == Definition) 2187 return nullptr; 2188 else if (Kind == TentativeDefinition) 2189 LastTentative = I; 2190 } 2191 return LastTentative; 2192 } 2193 2194 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2195 VarDecl *First = getFirstDecl(); 2196 for (auto I : First->redecls()) { 2197 if (I->isThisDeclarationADefinition(C) == Definition) 2198 return I; 2199 } 2200 return nullptr; 2201 } 2202 2203 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2204 DefinitionKind Kind = DeclarationOnly; 2205 2206 const VarDecl *First = getFirstDecl(); 2207 for (auto I : First->redecls()) { 2208 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2209 if (Kind == Definition) 2210 break; 2211 } 2212 2213 return Kind; 2214 } 2215 2216 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2217 for (auto I : redecls()) { 2218 if (auto Expr = I->getInit()) { 2219 D = I; 2220 return Expr; 2221 } 2222 } 2223 return nullptr; 2224 } 2225 2226 bool VarDecl::hasInit() const { 2227 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2228 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2229 return false; 2230 2231 return !Init.isNull(); 2232 } 2233 2234 Expr *VarDecl::getInit() { 2235 if (!hasInit()) 2236 return nullptr; 2237 2238 if (auto *S = Init.dyn_cast<Stmt *>()) 2239 return cast<Expr>(S); 2240 2241 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2242 } 2243 2244 Stmt **VarDecl::getInitAddress() { 2245 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2246 return &ES->Value; 2247 2248 return Init.getAddrOfPtr1(); 2249 } 2250 2251 VarDecl *VarDecl::getInitializingDeclaration() { 2252 VarDecl *Def = nullptr; 2253 for (auto I : redecls()) { 2254 if (I->hasInit()) 2255 return I; 2256 2257 if (I->isThisDeclarationADefinition()) { 2258 if (isStaticDataMember()) 2259 return I; 2260 else 2261 Def = I; 2262 } 2263 } 2264 return Def; 2265 } 2266 2267 bool VarDecl::isOutOfLine() const { 2268 if (Decl::isOutOfLine()) 2269 return true; 2270 2271 if (!isStaticDataMember()) 2272 return false; 2273 2274 // If this static data member was instantiated from a static data member of 2275 // a class template, check whether that static data member was defined 2276 // out-of-line. 2277 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2278 return VD->isOutOfLine(); 2279 2280 return false; 2281 } 2282 2283 void VarDecl::setInit(Expr *I) { 2284 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2285 Eval->~EvaluatedStmt(); 2286 getASTContext().Deallocate(Eval); 2287 } 2288 2289 Init = I; 2290 } 2291 2292 bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const { 2293 const LangOptions &Lang = C.getLangOpts(); 2294 2295 if (!Lang.CPlusPlus) 2296 return false; 2297 2298 // Function parameters are never usable in constant expressions. 2299 if (isa<ParmVarDecl>(this)) 2300 return false; 2301 2302 // In C++11, any variable of reference type can be used in a constant 2303 // expression if it is initialized by a constant expression. 2304 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2305 return true; 2306 2307 // Only const objects can be used in constant expressions in C++. C++98 does 2308 // not require the variable to be non-volatile, but we consider this to be a 2309 // defect. 2310 if (!getType().isConstQualified() || getType().isVolatileQualified()) 2311 return false; 2312 2313 // In C++, const, non-volatile variables of integral or enumeration types 2314 // can be used in constant expressions. 2315 if (getType()->isIntegralOrEnumerationType()) 2316 return true; 2317 2318 // Additionally, in C++11, non-volatile constexpr variables can be used in 2319 // constant expressions. 2320 return Lang.CPlusPlus11 && isConstexpr(); 2321 } 2322 2323 bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const { 2324 // C++2a [expr.const]p3: 2325 // A variable is usable in constant expressions after its initializing 2326 // declaration is encountered... 2327 const VarDecl *DefVD = nullptr; 2328 const Expr *Init = getAnyInitializer(DefVD); 2329 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2330 return false; 2331 // ... if it is a constexpr variable, or it is of reference type or of 2332 // const-qualified integral or enumeration type, ... 2333 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2334 return false; 2335 // ... and its initializer is a constant initializer. 2336 return DefVD->checkInitIsICE(); 2337 } 2338 2339 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2340 /// form, which contains extra information on the evaluated value of the 2341 /// initializer. 2342 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2343 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2344 if (!Eval) { 2345 // Note: EvaluatedStmt contains an APValue, which usually holds 2346 // resources not allocated from the ASTContext. We need to do some 2347 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2348 // where we can detect whether there's anything to clean up or not. 2349 Eval = new (getASTContext()) EvaluatedStmt; 2350 Eval->Value = Init.get<Stmt *>(); 2351 Init = Eval; 2352 } 2353 return Eval; 2354 } 2355 2356 APValue *VarDecl::evaluateValue() const { 2357 SmallVector<PartialDiagnosticAt, 8> Notes; 2358 return evaluateValue(Notes); 2359 } 2360 2361 APValue *VarDecl::evaluateValue( 2362 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2363 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2364 2365 // We only produce notes indicating why an initializer is non-constant the 2366 // first time it is evaluated. FIXME: The notes won't always be emitted the 2367 // first time we try evaluation, so might not be produced at all. 2368 if (Eval->WasEvaluated) 2369 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2370 2371 const auto *Init = cast<Expr>(Eval->Value); 2372 assert(!Init->isValueDependent()); 2373 2374 if (Eval->IsEvaluating) { 2375 // FIXME: Produce a diagnostic for self-initialization. 2376 Eval->CheckedICE = true; 2377 Eval->IsICE = false; 2378 return nullptr; 2379 } 2380 2381 Eval->IsEvaluating = true; 2382 2383 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2384 this, Notes); 2385 2386 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2387 // or that it's empty (so that there's nothing to clean up) if evaluation 2388 // failed. 2389 if (!Result) 2390 Eval->Evaluated = APValue(); 2391 else if (Eval->Evaluated.needsCleanup()) 2392 getASTContext().addDestruction(&Eval->Evaluated); 2393 2394 Eval->IsEvaluating = false; 2395 Eval->WasEvaluated = true; 2396 2397 // In C++11, we have determined whether the initializer was a constant 2398 // expression as a side-effect. 2399 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { 2400 Eval->CheckedICE = true; 2401 Eval->IsICE = Result && Notes.empty(); 2402 } 2403 2404 return Result ? &Eval->Evaluated : nullptr; 2405 } 2406 2407 APValue *VarDecl::getEvaluatedValue() const { 2408 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2409 if (Eval->WasEvaluated) 2410 return &Eval->Evaluated; 2411 2412 return nullptr; 2413 } 2414 2415 bool VarDecl::isInitKnownICE() const { 2416 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2417 return Eval->CheckedICE; 2418 2419 return false; 2420 } 2421 2422 bool VarDecl::isInitICE() const { 2423 assert(isInitKnownICE() && 2424 "Check whether we already know that the initializer is an ICE"); 2425 return Init.get<EvaluatedStmt *>()->IsICE; 2426 } 2427 2428 bool VarDecl::checkInitIsICE() const { 2429 // Initializers of weak variables are never ICEs. 2430 if (isWeak()) 2431 return false; 2432 2433 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2434 if (Eval->CheckedICE) 2435 // We have already checked whether this subexpression is an 2436 // integral constant expression. 2437 return Eval->IsICE; 2438 2439 const auto *Init = cast<Expr>(Eval->Value); 2440 assert(!Init->isValueDependent()); 2441 2442 // In C++11, evaluate the initializer to check whether it's a constant 2443 // expression. 2444 if (getASTContext().getLangOpts().CPlusPlus11) { 2445 SmallVector<PartialDiagnosticAt, 8> Notes; 2446 evaluateValue(Notes); 2447 return Eval->IsICE; 2448 } 2449 2450 // It's an ICE whether or not the definition we found is 2451 // out-of-line. See DR 721 and the discussion in Clang PR 2452 // 6206 for details. 2453 2454 if (Eval->CheckingICE) 2455 return false; 2456 Eval->CheckingICE = true; 2457 2458 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); 2459 Eval->CheckingICE = false; 2460 Eval->CheckedICE = true; 2461 return Eval->IsICE; 2462 } 2463 2464 bool VarDecl::isParameterPack() const { 2465 return isa<PackExpansionType>(getType()); 2466 } 2467 2468 template<typename DeclT> 2469 static DeclT *getDefinitionOrSelf(DeclT *D) { 2470 assert(D); 2471 if (auto *Def = D->getDefinition()) 2472 return Def; 2473 return D; 2474 } 2475 2476 bool VarDecl::isEscapingByref() const { 2477 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2478 } 2479 2480 bool VarDecl::isNonEscapingByref() const { 2481 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2482 } 2483 2484 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2485 const VarDecl *VD = this; 2486 2487 // If this is an instantiated member, walk back to the template from which 2488 // it was instantiated. 2489 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2490 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2491 VD = VD->getInstantiatedFromStaticDataMember(); 2492 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2493 VD = NewVD; 2494 } 2495 } 2496 2497 // If it's an instantiated variable template specialization, find the 2498 // template or partial specialization from which it was instantiated. 2499 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2500 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2501 auto From = VDTemplSpec->getInstantiatedFrom(); 2502 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2503 while (!VTD->isMemberSpecialization()) { 2504 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2505 if (!NewVTD) 2506 break; 2507 VTD = NewVTD; 2508 } 2509 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2510 } 2511 if (auto *VTPSD = 2512 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2513 while (!VTPSD->isMemberSpecialization()) { 2514 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2515 if (!NewVTPSD) 2516 break; 2517 VTPSD = NewVTPSD; 2518 } 2519 return getDefinitionOrSelf<VarDecl>(VTPSD); 2520 } 2521 } 2522 } 2523 2524 // If this is the pattern of a variable template, find where it was 2525 // instantiated from. FIXME: Is this necessary? 2526 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2527 while (!VarTemplate->isMemberSpecialization()) { 2528 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2529 if (!NewVT) 2530 break; 2531 VarTemplate = NewVT; 2532 } 2533 2534 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2535 } 2536 2537 if (VD == this) 2538 return nullptr; 2539 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2540 } 2541 2542 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2543 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2544 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2545 2546 return nullptr; 2547 } 2548 2549 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2550 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2551 return Spec->getSpecializationKind(); 2552 2553 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2554 return MSI->getTemplateSpecializationKind(); 2555 2556 return TSK_Undeclared; 2557 } 2558 2559 TemplateSpecializationKind 2560 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2561 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2562 return MSI->getTemplateSpecializationKind(); 2563 2564 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2565 return Spec->getSpecializationKind(); 2566 2567 return TSK_Undeclared; 2568 } 2569 2570 SourceLocation VarDecl::getPointOfInstantiation() const { 2571 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2572 return Spec->getPointOfInstantiation(); 2573 2574 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2575 return MSI->getPointOfInstantiation(); 2576 2577 return SourceLocation(); 2578 } 2579 2580 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2581 return getASTContext().getTemplateOrSpecializationInfo(this) 2582 .dyn_cast<VarTemplateDecl *>(); 2583 } 2584 2585 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2586 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2587 } 2588 2589 bool VarDecl::isKnownToBeDefined() const { 2590 const auto &LangOpts = getASTContext().getLangOpts(); 2591 // In CUDA mode without relocatable device code, variables of form 'extern 2592 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2593 // memory pool. These are never undefined variables, even if they appear 2594 // inside of an anon namespace or static function. 2595 // 2596 // With CUDA relocatable device code enabled, these variables don't get 2597 // special handling; they're treated like regular extern variables. 2598 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2599 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2600 isa<IncompleteArrayType>(getType())) 2601 return true; 2602 2603 return hasDefinition(); 2604 } 2605 2606 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2607 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2608 (!Ctx.getLangOpts().RegisterStaticDestructors && 2609 !hasAttr<AlwaysDestroyAttr>())); 2610 } 2611 2612 QualType::DestructionKind 2613 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2614 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2615 if (Eval->HasConstantDestruction) 2616 return QualType::DK_none; 2617 2618 if (isNoDestroy(Ctx)) 2619 return QualType::DK_none; 2620 2621 return getType().isDestructedType(); 2622 } 2623 2624 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2625 if (isStaticDataMember()) 2626 // FIXME: Remove ? 2627 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2628 return getASTContext().getTemplateOrSpecializationInfo(this) 2629 .dyn_cast<MemberSpecializationInfo *>(); 2630 return nullptr; 2631 } 2632 2633 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2634 SourceLocation PointOfInstantiation) { 2635 assert((isa<VarTemplateSpecializationDecl>(this) || 2636 getMemberSpecializationInfo()) && 2637 "not a variable or static data member template specialization"); 2638 2639 if (VarTemplateSpecializationDecl *Spec = 2640 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2641 Spec->setSpecializationKind(TSK); 2642 if (TSK != TSK_ExplicitSpecialization && 2643 PointOfInstantiation.isValid() && 2644 Spec->getPointOfInstantiation().isInvalid()) { 2645 Spec->setPointOfInstantiation(PointOfInstantiation); 2646 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2647 L->InstantiationRequested(this); 2648 } 2649 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2650 MSI->setTemplateSpecializationKind(TSK); 2651 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2652 MSI->getPointOfInstantiation().isInvalid()) { 2653 MSI->setPointOfInstantiation(PointOfInstantiation); 2654 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2655 L->InstantiationRequested(this); 2656 } 2657 } 2658 } 2659 2660 void 2661 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2662 TemplateSpecializationKind TSK) { 2663 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2664 "Previous template or instantiation?"); 2665 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2666 } 2667 2668 //===----------------------------------------------------------------------===// 2669 // ParmVarDecl Implementation 2670 //===----------------------------------------------------------------------===// 2671 2672 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2673 SourceLocation StartLoc, 2674 SourceLocation IdLoc, IdentifierInfo *Id, 2675 QualType T, TypeSourceInfo *TInfo, 2676 StorageClass S, Expr *DefArg) { 2677 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2678 S, DefArg); 2679 } 2680 2681 QualType ParmVarDecl::getOriginalType() const { 2682 TypeSourceInfo *TSI = getTypeSourceInfo(); 2683 QualType T = TSI ? TSI->getType() : getType(); 2684 if (const auto *DT = dyn_cast<DecayedType>(T)) 2685 return DT->getOriginalType(); 2686 return T; 2687 } 2688 2689 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2690 return new (C, ID) 2691 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2692 nullptr, QualType(), nullptr, SC_None, nullptr); 2693 } 2694 2695 SourceRange ParmVarDecl::getSourceRange() const { 2696 if (!hasInheritedDefaultArg()) { 2697 SourceRange ArgRange = getDefaultArgRange(); 2698 if (ArgRange.isValid()) 2699 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2700 } 2701 2702 // DeclaratorDecl considers the range of postfix types as overlapping with the 2703 // declaration name, but this is not the case with parameters in ObjC methods. 2704 if (isa<ObjCMethodDecl>(getDeclContext())) 2705 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2706 2707 return DeclaratorDecl::getSourceRange(); 2708 } 2709 2710 Expr *ParmVarDecl::getDefaultArg() { 2711 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2712 assert(!hasUninstantiatedDefaultArg() && 2713 "Default argument is not yet instantiated!"); 2714 2715 Expr *Arg = getInit(); 2716 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2717 return E->getSubExpr(); 2718 2719 return Arg; 2720 } 2721 2722 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2723 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2724 Init = defarg; 2725 } 2726 2727 SourceRange ParmVarDecl::getDefaultArgRange() const { 2728 switch (ParmVarDeclBits.DefaultArgKind) { 2729 case DAK_None: 2730 case DAK_Unparsed: 2731 // Nothing we can do here. 2732 return SourceRange(); 2733 2734 case DAK_Uninstantiated: 2735 return getUninstantiatedDefaultArg()->getSourceRange(); 2736 2737 case DAK_Normal: 2738 if (const Expr *E = getInit()) 2739 return E->getSourceRange(); 2740 2741 // Missing an actual expression, may be invalid. 2742 return SourceRange(); 2743 } 2744 llvm_unreachable("Invalid default argument kind."); 2745 } 2746 2747 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2748 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2749 Init = arg; 2750 } 2751 2752 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2753 assert(hasUninstantiatedDefaultArg() && 2754 "Wrong kind of initialization expression!"); 2755 return cast_or_null<Expr>(Init.get<Stmt *>()); 2756 } 2757 2758 bool ParmVarDecl::hasDefaultArg() const { 2759 // FIXME: We should just return false for DAK_None here once callers are 2760 // prepared for the case that we encountered an invalid default argument and 2761 // were unable to even build an invalid expression. 2762 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2763 !Init.isNull(); 2764 } 2765 2766 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2767 getASTContext().setParameterIndex(this, parameterIndex); 2768 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2769 } 2770 2771 unsigned ParmVarDecl::getParameterIndexLarge() const { 2772 return getASTContext().getParameterIndex(this); 2773 } 2774 2775 //===----------------------------------------------------------------------===// 2776 // FunctionDecl Implementation 2777 //===----------------------------------------------------------------------===// 2778 2779 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2780 SourceLocation StartLoc, 2781 const DeclarationNameInfo &NameInfo, QualType T, 2782 TypeSourceInfo *TInfo, StorageClass S, 2783 bool isInlineSpecified, 2784 ConstexprSpecKind ConstexprKind, 2785 Expr *TrailingRequiresClause) 2786 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2787 StartLoc), 2788 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2789 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2790 assert(T.isNull() || T->isFunctionType()); 2791 FunctionDeclBits.SClass = S; 2792 FunctionDeclBits.IsInline = isInlineSpecified; 2793 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2794 FunctionDeclBits.IsVirtualAsWritten = false; 2795 FunctionDeclBits.IsPure = false; 2796 FunctionDeclBits.HasInheritedPrototype = false; 2797 FunctionDeclBits.HasWrittenPrototype = true; 2798 FunctionDeclBits.IsDeleted = false; 2799 FunctionDeclBits.IsTrivial = false; 2800 FunctionDeclBits.IsTrivialForCall = false; 2801 FunctionDeclBits.IsDefaulted = false; 2802 FunctionDeclBits.IsExplicitlyDefaulted = false; 2803 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2804 FunctionDeclBits.HasImplicitReturnZero = false; 2805 FunctionDeclBits.IsLateTemplateParsed = false; 2806 FunctionDeclBits.ConstexprKind = ConstexprKind; 2807 FunctionDeclBits.InstantiationIsPending = false; 2808 FunctionDeclBits.UsesSEHTry = false; 2809 FunctionDeclBits.UsesFPIntrin = false; 2810 FunctionDeclBits.HasSkippedBody = false; 2811 FunctionDeclBits.WillHaveBody = false; 2812 FunctionDeclBits.IsMultiVersion = false; 2813 FunctionDeclBits.IsCopyDeductionCandidate = false; 2814 FunctionDeclBits.HasODRHash = false; 2815 if (TrailingRequiresClause) 2816 setTrailingRequiresClause(TrailingRequiresClause); 2817 } 2818 2819 void FunctionDecl::getNameForDiagnostic( 2820 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2821 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2822 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2823 if (TemplateArgs) 2824 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2825 } 2826 2827 bool FunctionDecl::isVariadic() const { 2828 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2829 return FT->isVariadic(); 2830 return false; 2831 } 2832 2833 FunctionDecl::DefaultedFunctionInfo * 2834 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 2835 ArrayRef<DeclAccessPair> Lookups) { 2836 DefaultedFunctionInfo *Info = new (Context.Allocate( 2837 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 2838 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 2839 DefaultedFunctionInfo; 2840 Info->NumLookups = Lookups.size(); 2841 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 2842 Info->getTrailingObjects<DeclAccessPair>()); 2843 return Info; 2844 } 2845 2846 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 2847 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 2848 assert(!Body && "can't replace function body with defaulted function info"); 2849 2850 FunctionDeclBits.HasDefaultedFunctionInfo = true; 2851 DefaultedInfo = Info; 2852 } 2853 2854 FunctionDecl::DefaultedFunctionInfo * 2855 FunctionDecl::getDefaultedFunctionInfo() const { 2856 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 2857 } 2858 2859 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2860 for (auto I : redecls()) { 2861 if (I->doesThisDeclarationHaveABody()) { 2862 Definition = I; 2863 return true; 2864 } 2865 } 2866 2867 return false; 2868 } 2869 2870 bool FunctionDecl::hasTrivialBody() const { 2871 Stmt *S = getBody(); 2872 if (!S) { 2873 // Since we don't have a body for this function, we don't know if it's 2874 // trivial or not. 2875 return false; 2876 } 2877 2878 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2879 return true; 2880 return false; 2881 } 2882 2883 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { 2884 for (auto I : redecls()) { 2885 if (I->isThisDeclarationADefinition()) { 2886 Definition = I; 2887 return true; 2888 } 2889 } 2890 2891 return false; 2892 } 2893 2894 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2895 if (!hasBody(Definition)) 2896 return nullptr; 2897 2898 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 2899 "definition should not have a body"); 2900 if (Definition->Body) 2901 return Definition->Body.get(getASTContext().getExternalSource()); 2902 2903 return nullptr; 2904 } 2905 2906 void FunctionDecl::setBody(Stmt *B) { 2907 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2908 Body = LazyDeclStmtPtr(B); 2909 if (B) 2910 EndRangeLoc = B->getEndLoc(); 2911 } 2912 2913 void FunctionDecl::setPure(bool P) { 2914 FunctionDeclBits.IsPure = P; 2915 if (P) 2916 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 2917 Parent->markedVirtualFunctionPure(); 2918 } 2919 2920 template<std::size_t Len> 2921 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 2922 IdentifierInfo *II = ND->getIdentifier(); 2923 return II && II->isStr(Str); 2924 } 2925 2926 bool FunctionDecl::isMain() const { 2927 const TranslationUnitDecl *tunit = 2928 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2929 return tunit && 2930 !tunit->getASTContext().getLangOpts().Freestanding && 2931 isNamed(this, "main"); 2932 } 2933 2934 bool FunctionDecl::isMSVCRTEntryPoint() const { 2935 const TranslationUnitDecl *TUnit = 2936 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2937 if (!TUnit) 2938 return false; 2939 2940 // Even though we aren't really targeting MSVCRT if we are freestanding, 2941 // semantic analysis for these functions remains the same. 2942 2943 // MSVCRT entry points only exist on MSVCRT targets. 2944 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 2945 return false; 2946 2947 // Nameless functions like constructors cannot be entry points. 2948 if (!getIdentifier()) 2949 return false; 2950 2951 return llvm::StringSwitch<bool>(getName()) 2952 .Cases("main", // an ANSI console app 2953 "wmain", // a Unicode console App 2954 "WinMain", // an ANSI GUI app 2955 "wWinMain", // a Unicode GUI app 2956 "DllMain", // a DLL 2957 true) 2958 .Default(false); 2959 } 2960 2961 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 2962 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 2963 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 2964 getDeclName().getCXXOverloadedOperator() == OO_Delete || 2965 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 2966 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 2967 2968 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2969 return false; 2970 2971 const auto *proto = getType()->castAs<FunctionProtoType>(); 2972 if (proto->getNumParams() != 2 || proto->isVariadic()) 2973 return false; 2974 2975 ASTContext &Context = 2976 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 2977 ->getASTContext(); 2978 2979 // The result type and first argument type are constant across all 2980 // these operators. The second argument must be exactly void*. 2981 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 2982 } 2983 2984 bool FunctionDecl::isReplaceableGlobalAllocationFunction(bool *IsAligned) const { 2985 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2986 return false; 2987 if (getDeclName().getCXXOverloadedOperator() != OO_New && 2988 getDeclName().getCXXOverloadedOperator() != OO_Delete && 2989 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 2990 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2991 return false; 2992 2993 if (isa<CXXRecordDecl>(getDeclContext())) 2994 return false; 2995 2996 // This can only fail for an invalid 'operator new' declaration. 2997 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2998 return false; 2999 3000 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3001 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3002 return false; 3003 3004 // If this is a single-parameter function, it must be a replaceable global 3005 // allocation or deallocation function. 3006 if (FPT->getNumParams() == 1) 3007 return true; 3008 3009 unsigned Params = 1; 3010 QualType Ty = FPT->getParamType(Params); 3011 ASTContext &Ctx = getASTContext(); 3012 3013 auto Consume = [&] { 3014 ++Params; 3015 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3016 }; 3017 3018 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3019 bool IsSizedDelete = false; 3020 if (Ctx.getLangOpts().SizedDeallocation && 3021 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3022 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3023 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3024 IsSizedDelete = true; 3025 Consume(); 3026 } 3027 3028 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3029 // new/delete. 3030 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3031 if (IsAligned) 3032 *IsAligned = true; 3033 Consume(); 3034 } 3035 3036 // Finally, if this is not a sized delete, the final parameter can 3037 // be a 'const std::nothrow_t&'. 3038 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3039 Ty = Ty->getPointeeType(); 3040 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3041 return false; 3042 if (Ty->isNothrowT()) 3043 Consume(); 3044 } 3045 3046 return Params == FPT->getNumParams(); 3047 } 3048 3049 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3050 if (!getBuiltinID()) 3051 return false; 3052 3053 const FunctionDecl *Definition; 3054 return hasBody(Definition) && Definition->isInlineSpecified(); 3055 } 3056 3057 bool FunctionDecl::isDestroyingOperatorDelete() const { 3058 // C++ P0722: 3059 // Within a class C, a single object deallocation function with signature 3060 // (T, std::destroying_delete_t, <more params>) 3061 // is a destroying operator delete. 3062 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3063 getNumParams() < 2) 3064 return false; 3065 3066 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3067 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3068 RD->getIdentifier()->isStr("destroying_delete_t"); 3069 } 3070 3071 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3072 return getDeclLanguageLinkage(*this); 3073 } 3074 3075 bool FunctionDecl::isExternC() const { 3076 return isDeclExternC(*this); 3077 } 3078 3079 bool FunctionDecl::isInExternCContext() const { 3080 if (hasAttr<OpenCLKernelAttr>()) 3081 return true; 3082 return getLexicalDeclContext()->isExternCContext(); 3083 } 3084 3085 bool FunctionDecl::isInExternCXXContext() const { 3086 return getLexicalDeclContext()->isExternCXXContext(); 3087 } 3088 3089 bool FunctionDecl::isGlobal() const { 3090 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3091 return Method->isStatic(); 3092 3093 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3094 return false; 3095 3096 for (const DeclContext *DC = getDeclContext(); 3097 DC->isNamespace(); 3098 DC = DC->getParent()) { 3099 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3100 if (!Namespace->getDeclName()) 3101 return false; 3102 break; 3103 } 3104 } 3105 3106 return true; 3107 } 3108 3109 bool FunctionDecl::isNoReturn() const { 3110 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3111 hasAttr<C11NoReturnAttr>()) 3112 return true; 3113 3114 if (auto *FnTy = getType()->getAs<FunctionType>()) 3115 return FnTy->getNoReturnAttr(); 3116 3117 return false; 3118 } 3119 3120 3121 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3122 if (hasAttr<TargetAttr>()) 3123 return MultiVersionKind::Target; 3124 if (hasAttr<CPUDispatchAttr>()) 3125 return MultiVersionKind::CPUDispatch; 3126 if (hasAttr<CPUSpecificAttr>()) 3127 return MultiVersionKind::CPUSpecific; 3128 return MultiVersionKind::None; 3129 } 3130 3131 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3132 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3133 } 3134 3135 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3136 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3137 } 3138 3139 bool FunctionDecl::isTargetMultiVersion() const { 3140 return isMultiVersion() && hasAttr<TargetAttr>(); 3141 } 3142 3143 void 3144 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3145 redeclarable_base::setPreviousDecl(PrevDecl); 3146 3147 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3148 FunctionTemplateDecl *PrevFunTmpl 3149 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3150 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3151 FunTmpl->setPreviousDecl(PrevFunTmpl); 3152 } 3153 3154 if (PrevDecl && PrevDecl->isInlined()) 3155 setImplicitlyInline(true); 3156 } 3157 3158 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3159 3160 /// Returns a value indicating whether this function corresponds to a builtin 3161 /// function. 3162 /// 3163 /// The function corresponds to a built-in function if it is declared at 3164 /// translation scope or within an extern "C" block and its name matches with 3165 /// the name of a builtin. The returned value will be 0 for functions that do 3166 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3167 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3168 /// value. 3169 /// 3170 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3171 /// functions as their wrapped builtins. This shouldn't be done in general, but 3172 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3173 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3174 unsigned BuiltinID; 3175 3176 if (const auto *AMAA = getAttr<ArmMveAliasAttr>()) { 3177 BuiltinID = AMAA->getBuiltinName()->getBuiltinID(); 3178 } else { 3179 if (!getIdentifier()) 3180 return 0; 3181 3182 BuiltinID = getIdentifier()->getBuiltinID(); 3183 } 3184 3185 if (!BuiltinID) 3186 return 0; 3187 3188 ASTContext &Context = getASTContext(); 3189 if (Context.getLangOpts().CPlusPlus) { 3190 const auto *LinkageDecl = 3191 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext()); 3192 // In C++, the first declaration of a builtin is always inside an implicit 3193 // extern "C". 3194 // FIXME: A recognised library function may not be directly in an extern "C" 3195 // declaration, for instance "extern "C" { namespace std { decl } }". 3196 if (!LinkageDecl) { 3197 if (BuiltinID == Builtin::BI__GetExceptionInfo && 3198 Context.getTargetInfo().getCXXABI().isMicrosoft()) 3199 return Builtin::BI__GetExceptionInfo; 3200 return 0; 3201 } 3202 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) 3203 return 0; 3204 } 3205 3206 // If the function is marked "overloadable", it has a different mangled name 3207 // and is not the C library function. 3208 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3209 !hasAttr<ArmMveAliasAttr>()) 3210 return 0; 3211 3212 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3213 return BuiltinID; 3214 3215 // This function has the name of a known C library 3216 // function. Determine whether it actually refers to the C library 3217 // function or whether it just has the same name. 3218 3219 // If this is a static function, it's not a builtin. 3220 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3221 return 0; 3222 3223 // OpenCL v1.2 s6.9.f - The library functions defined in 3224 // the C99 standard headers are not available. 3225 if (Context.getLangOpts().OpenCL && 3226 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3227 return 0; 3228 3229 // CUDA does not have device-side standard library. printf and malloc are the 3230 // only special cases that are supported by device-side runtime. 3231 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3232 !hasAttr<CUDAHostAttr>() && 3233 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3234 return 0; 3235 3236 return BuiltinID; 3237 } 3238 3239 /// getNumParams - Return the number of parameters this function must have 3240 /// based on its FunctionType. This is the length of the ParamInfo array 3241 /// after it has been created. 3242 unsigned FunctionDecl::getNumParams() const { 3243 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3244 return FPT ? FPT->getNumParams() : 0; 3245 } 3246 3247 void FunctionDecl::setParams(ASTContext &C, 3248 ArrayRef<ParmVarDecl *> NewParamInfo) { 3249 assert(!ParamInfo && "Already has param info!"); 3250 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3251 3252 // Zero params -> null pointer. 3253 if (!NewParamInfo.empty()) { 3254 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3255 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3256 } 3257 } 3258 3259 /// getMinRequiredArguments - Returns the minimum number of arguments 3260 /// needed to call this function. This may be fewer than the number of 3261 /// function parameters, if some of the parameters have default 3262 /// arguments (in C++) or are parameter packs (C++11). 3263 unsigned FunctionDecl::getMinRequiredArguments() const { 3264 if (!getASTContext().getLangOpts().CPlusPlus) 3265 return getNumParams(); 3266 3267 unsigned NumRequiredArgs = 0; 3268 for (auto *Param : parameters()) 3269 if (!Param->isParameterPack() && !Param->hasDefaultArg()) 3270 ++NumRequiredArgs; 3271 return NumRequiredArgs; 3272 } 3273 3274 /// The combination of the extern and inline keywords under MSVC forces 3275 /// the function to be required. 3276 /// 3277 /// Note: This function assumes that we will only get called when isInlined() 3278 /// would return true for this FunctionDecl. 3279 bool FunctionDecl::isMSExternInline() const { 3280 assert(isInlined() && "expected to get called on an inlined function!"); 3281 3282 const ASTContext &Context = getASTContext(); 3283 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3284 !hasAttr<DLLExportAttr>()) 3285 return false; 3286 3287 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3288 FD = FD->getPreviousDecl()) 3289 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3290 return true; 3291 3292 return false; 3293 } 3294 3295 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3296 if (Redecl->getStorageClass() != SC_Extern) 3297 return false; 3298 3299 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3300 FD = FD->getPreviousDecl()) 3301 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3302 return false; 3303 3304 return true; 3305 } 3306 3307 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3308 // Only consider file-scope declarations in this test. 3309 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3310 return false; 3311 3312 // Only consider explicit declarations; the presence of a builtin for a 3313 // libcall shouldn't affect whether a definition is externally visible. 3314 if (Redecl->isImplicit()) 3315 return false; 3316 3317 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3318 return true; // Not an inline definition 3319 3320 return false; 3321 } 3322 3323 /// For a function declaration in C or C++, determine whether this 3324 /// declaration causes the definition to be externally visible. 3325 /// 3326 /// For instance, this determines if adding the current declaration to the set 3327 /// of redeclarations of the given functions causes 3328 /// isInlineDefinitionExternallyVisible to change from false to true. 3329 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3330 assert(!doesThisDeclarationHaveABody() && 3331 "Must have a declaration without a body."); 3332 3333 ASTContext &Context = getASTContext(); 3334 3335 if (Context.getLangOpts().MSVCCompat) { 3336 const FunctionDecl *Definition; 3337 if (hasBody(Definition) && Definition->isInlined() && 3338 redeclForcesDefMSVC(this)) 3339 return true; 3340 } 3341 3342 if (Context.getLangOpts().CPlusPlus) 3343 return false; 3344 3345 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3346 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3347 // an externally visible definition. 3348 // 3349 // FIXME: What happens if gnu_inline gets added on after the first 3350 // declaration? 3351 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3352 return false; 3353 3354 const FunctionDecl *Prev = this; 3355 bool FoundBody = false; 3356 while ((Prev = Prev->getPreviousDecl())) { 3357 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3358 3359 if (Prev->doesThisDeclarationHaveABody()) { 3360 // If it's not the case that both 'inline' and 'extern' are 3361 // specified on the definition, then it is always externally visible. 3362 if (!Prev->isInlineSpecified() || 3363 Prev->getStorageClass() != SC_Extern) 3364 return false; 3365 } else if (Prev->isInlineSpecified() && 3366 Prev->getStorageClass() != SC_Extern) { 3367 return false; 3368 } 3369 } 3370 return FoundBody; 3371 } 3372 3373 // C99 6.7.4p6: 3374 // [...] If all of the file scope declarations for a function in a 3375 // translation unit include the inline function specifier without extern, 3376 // then the definition in that translation unit is an inline definition. 3377 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3378 return false; 3379 const FunctionDecl *Prev = this; 3380 bool FoundBody = false; 3381 while ((Prev = Prev->getPreviousDecl())) { 3382 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3383 if (RedeclForcesDefC99(Prev)) 3384 return false; 3385 } 3386 return FoundBody; 3387 } 3388 3389 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3390 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3391 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3392 : FunctionTypeLoc(); 3393 } 3394 3395 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3396 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3397 if (!FTL) 3398 return SourceRange(); 3399 3400 // Skip self-referential return types. 3401 const SourceManager &SM = getASTContext().getSourceManager(); 3402 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3403 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3404 if (RTRange.isInvalid() || Boundary.isInvalid() || 3405 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3406 return SourceRange(); 3407 3408 return RTRange; 3409 } 3410 3411 SourceRange FunctionDecl::getParametersSourceRange() const { 3412 unsigned NP = getNumParams(); 3413 SourceLocation EllipsisLoc = getEllipsisLoc(); 3414 3415 if (NP == 0 && EllipsisLoc.isInvalid()) 3416 return SourceRange(); 3417 3418 SourceLocation Begin = 3419 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3420 SourceLocation End = EllipsisLoc.isValid() 3421 ? EllipsisLoc 3422 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3423 3424 return SourceRange(Begin, End); 3425 } 3426 3427 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3428 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3429 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3430 } 3431 3432 /// For an inline function definition in C, or for a gnu_inline function 3433 /// in C++, determine whether the definition will be externally visible. 3434 /// 3435 /// Inline function definitions are always available for inlining optimizations. 3436 /// However, depending on the language dialect, declaration specifiers, and 3437 /// attributes, the definition of an inline function may or may not be 3438 /// "externally" visible to other translation units in the program. 3439 /// 3440 /// In C99, inline definitions are not externally visible by default. However, 3441 /// if even one of the global-scope declarations is marked "extern inline", the 3442 /// inline definition becomes externally visible (C99 6.7.4p6). 3443 /// 3444 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3445 /// definition, we use the GNU semantics for inline, which are nearly the 3446 /// opposite of C99 semantics. In particular, "inline" by itself will create 3447 /// an externally visible symbol, but "extern inline" will not create an 3448 /// externally visible symbol. 3449 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3450 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3451 hasAttr<AliasAttr>()) && 3452 "Must be a function definition"); 3453 assert(isInlined() && "Function must be inline"); 3454 ASTContext &Context = getASTContext(); 3455 3456 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3457 // Note: If you change the logic here, please change 3458 // doesDeclarationForceExternallyVisibleDefinition as well. 3459 // 3460 // If it's not the case that both 'inline' and 'extern' are 3461 // specified on the definition, then this inline definition is 3462 // externally visible. 3463 if (Context.getLangOpts().CPlusPlus) 3464 return false; 3465 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3466 return true; 3467 3468 // If any declaration is 'inline' but not 'extern', then this definition 3469 // is externally visible. 3470 for (auto Redecl : redecls()) { 3471 if (Redecl->isInlineSpecified() && 3472 Redecl->getStorageClass() != SC_Extern) 3473 return true; 3474 } 3475 3476 return false; 3477 } 3478 3479 // The rest of this function is C-only. 3480 assert(!Context.getLangOpts().CPlusPlus && 3481 "should not use C inline rules in C++"); 3482 3483 // C99 6.7.4p6: 3484 // [...] If all of the file scope declarations for a function in a 3485 // translation unit include the inline function specifier without extern, 3486 // then the definition in that translation unit is an inline definition. 3487 for (auto Redecl : redecls()) { 3488 if (RedeclForcesDefC99(Redecl)) 3489 return true; 3490 } 3491 3492 // C99 6.7.4p6: 3493 // An inline definition does not provide an external definition for the 3494 // function, and does not forbid an external definition in another 3495 // translation unit. 3496 return false; 3497 } 3498 3499 /// getOverloadedOperator - Which C++ overloaded operator this 3500 /// function represents, if any. 3501 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3502 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3503 return getDeclName().getCXXOverloadedOperator(); 3504 else 3505 return OO_None; 3506 } 3507 3508 /// getLiteralIdentifier - The literal suffix identifier this function 3509 /// represents, if any. 3510 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3511 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3512 return getDeclName().getCXXLiteralIdentifier(); 3513 else 3514 return nullptr; 3515 } 3516 3517 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3518 if (TemplateOrSpecialization.isNull()) 3519 return TK_NonTemplate; 3520 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3521 return TK_FunctionTemplate; 3522 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3523 return TK_MemberSpecialization; 3524 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3525 return TK_FunctionTemplateSpecialization; 3526 if (TemplateOrSpecialization.is 3527 <DependentFunctionTemplateSpecializationInfo*>()) 3528 return TK_DependentFunctionTemplateSpecialization; 3529 3530 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3531 } 3532 3533 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3534 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3535 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3536 3537 return nullptr; 3538 } 3539 3540 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3541 if (auto *MSI = 3542 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3543 return MSI; 3544 if (auto *FTSI = TemplateOrSpecialization 3545 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3546 return FTSI->getMemberSpecializationInfo(); 3547 return nullptr; 3548 } 3549 3550 void 3551 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3552 FunctionDecl *FD, 3553 TemplateSpecializationKind TSK) { 3554 assert(TemplateOrSpecialization.isNull() && 3555 "Member function is already a specialization"); 3556 MemberSpecializationInfo *Info 3557 = new (C) MemberSpecializationInfo(FD, TSK); 3558 TemplateOrSpecialization = Info; 3559 } 3560 3561 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3562 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3563 } 3564 3565 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3566 assert(TemplateOrSpecialization.isNull() && 3567 "Member function is already a specialization"); 3568 TemplateOrSpecialization = Template; 3569 } 3570 3571 bool FunctionDecl::isImplicitlyInstantiable() const { 3572 // If the function is invalid, it can't be implicitly instantiated. 3573 if (isInvalidDecl()) 3574 return false; 3575 3576 switch (getTemplateSpecializationKindForInstantiation()) { 3577 case TSK_Undeclared: 3578 case TSK_ExplicitInstantiationDefinition: 3579 case TSK_ExplicitSpecialization: 3580 return false; 3581 3582 case TSK_ImplicitInstantiation: 3583 return true; 3584 3585 case TSK_ExplicitInstantiationDeclaration: 3586 // Handled below. 3587 break; 3588 } 3589 3590 // Find the actual template from which we will instantiate. 3591 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3592 bool HasPattern = false; 3593 if (PatternDecl) 3594 HasPattern = PatternDecl->hasBody(PatternDecl); 3595 3596 // C++0x [temp.explicit]p9: 3597 // Except for inline functions, other explicit instantiation declarations 3598 // have the effect of suppressing the implicit instantiation of the entity 3599 // to which they refer. 3600 if (!HasPattern || !PatternDecl) 3601 return true; 3602 3603 return PatternDecl->isInlined(); 3604 } 3605 3606 bool FunctionDecl::isTemplateInstantiation() const { 3607 // FIXME: Remove this, it's not clear what it means. (Which template 3608 // specialization kind?) 3609 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3610 } 3611 3612 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { 3613 // If this is a generic lambda call operator specialization, its 3614 // instantiation pattern is always its primary template's pattern 3615 // even if its primary template was instantiated from another 3616 // member template (which happens with nested generic lambdas). 3617 // Since a lambda's call operator's body is transformed eagerly, 3618 // we don't have to go hunting for a prototype definition template 3619 // (i.e. instantiated-from-member-template) to use as an instantiation 3620 // pattern. 3621 3622 if (isGenericLambdaCallOperatorSpecialization( 3623 dyn_cast<CXXMethodDecl>(this))) { 3624 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3625 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3626 } 3627 3628 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) { 3629 if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3630 return nullptr; 3631 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3632 } 3633 3634 if (!clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3635 return nullptr; 3636 3637 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3638 // If we hit a point where the user provided a specialization of this 3639 // template, we're done looking. 3640 while (!Primary->isMemberSpecialization()) { 3641 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3642 if (!NewPrimary) 3643 break; 3644 Primary = NewPrimary; 3645 } 3646 3647 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3648 } 3649 3650 return nullptr; 3651 } 3652 3653 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3654 if (FunctionTemplateSpecializationInfo *Info 3655 = TemplateOrSpecialization 3656 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3657 return Info->getTemplate(); 3658 } 3659 return nullptr; 3660 } 3661 3662 FunctionTemplateSpecializationInfo * 3663 FunctionDecl::getTemplateSpecializationInfo() const { 3664 return TemplateOrSpecialization 3665 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3666 } 3667 3668 const TemplateArgumentList * 3669 FunctionDecl::getTemplateSpecializationArgs() const { 3670 if (FunctionTemplateSpecializationInfo *Info 3671 = TemplateOrSpecialization 3672 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3673 return Info->TemplateArguments; 3674 } 3675 return nullptr; 3676 } 3677 3678 const ASTTemplateArgumentListInfo * 3679 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3680 if (FunctionTemplateSpecializationInfo *Info 3681 = TemplateOrSpecialization 3682 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3683 return Info->TemplateArgumentsAsWritten; 3684 } 3685 return nullptr; 3686 } 3687 3688 void 3689 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3690 FunctionTemplateDecl *Template, 3691 const TemplateArgumentList *TemplateArgs, 3692 void *InsertPos, 3693 TemplateSpecializationKind TSK, 3694 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3695 SourceLocation PointOfInstantiation) { 3696 assert((TemplateOrSpecialization.isNull() || 3697 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3698 "Member function is already a specialization"); 3699 assert(TSK != TSK_Undeclared && 3700 "Must specify the type of function template specialization"); 3701 assert((TemplateOrSpecialization.isNull() || 3702 TSK == TSK_ExplicitSpecialization) && 3703 "Member specialization must be an explicit specialization"); 3704 FunctionTemplateSpecializationInfo *Info = 3705 FunctionTemplateSpecializationInfo::Create( 3706 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3707 PointOfInstantiation, 3708 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3709 TemplateOrSpecialization = Info; 3710 Template->addSpecialization(Info, InsertPos); 3711 } 3712 3713 void 3714 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3715 const UnresolvedSetImpl &Templates, 3716 const TemplateArgumentListInfo &TemplateArgs) { 3717 assert(TemplateOrSpecialization.isNull()); 3718 DependentFunctionTemplateSpecializationInfo *Info = 3719 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3720 TemplateArgs); 3721 TemplateOrSpecialization = Info; 3722 } 3723 3724 DependentFunctionTemplateSpecializationInfo * 3725 FunctionDecl::getDependentSpecializationInfo() const { 3726 return TemplateOrSpecialization 3727 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3728 } 3729 3730 DependentFunctionTemplateSpecializationInfo * 3731 DependentFunctionTemplateSpecializationInfo::Create( 3732 ASTContext &Context, const UnresolvedSetImpl &Ts, 3733 const TemplateArgumentListInfo &TArgs) { 3734 void *Buffer = Context.Allocate( 3735 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3736 TArgs.size(), Ts.size())); 3737 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3738 } 3739 3740 DependentFunctionTemplateSpecializationInfo:: 3741 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3742 const TemplateArgumentListInfo &TArgs) 3743 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3744 NumTemplates = Ts.size(); 3745 NumArgs = TArgs.size(); 3746 3747 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3748 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3749 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3750 3751 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3752 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3753 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3754 } 3755 3756 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3757 // For a function template specialization, query the specialization 3758 // information object. 3759 if (FunctionTemplateSpecializationInfo *FTSInfo = 3760 TemplateOrSpecialization 3761 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3762 return FTSInfo->getTemplateSpecializationKind(); 3763 3764 if (MemberSpecializationInfo *MSInfo = 3765 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3766 return MSInfo->getTemplateSpecializationKind(); 3767 3768 return TSK_Undeclared; 3769 } 3770 3771 TemplateSpecializationKind 3772 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 3773 // This is the same as getTemplateSpecializationKind(), except that for a 3774 // function that is both a function template specialization and a member 3775 // specialization, we prefer the member specialization information. Eg: 3776 // 3777 // template<typename T> struct A { 3778 // template<typename U> void f() {} 3779 // template<> void f<int>() {} 3780 // }; 3781 // 3782 // For A<int>::f<int>(): 3783 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 3784 // * getTemplateSpecializationKindForInstantiation() will return 3785 // TSK_ImplicitInstantiation 3786 // 3787 // This reflects the facts that A<int>::f<int> is an explicit specialization 3788 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 3789 // from A::f<int> if a definition is needed. 3790 if (FunctionTemplateSpecializationInfo *FTSInfo = 3791 TemplateOrSpecialization 3792 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 3793 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 3794 return MSInfo->getTemplateSpecializationKind(); 3795 return FTSInfo->getTemplateSpecializationKind(); 3796 } 3797 3798 if (MemberSpecializationInfo *MSInfo = 3799 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3800 return MSInfo->getTemplateSpecializationKind(); 3801 3802 return TSK_Undeclared; 3803 } 3804 3805 void 3806 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3807 SourceLocation PointOfInstantiation) { 3808 if (FunctionTemplateSpecializationInfo *FTSInfo 3809 = TemplateOrSpecialization.dyn_cast< 3810 FunctionTemplateSpecializationInfo*>()) { 3811 FTSInfo->setTemplateSpecializationKind(TSK); 3812 if (TSK != TSK_ExplicitSpecialization && 3813 PointOfInstantiation.isValid() && 3814 FTSInfo->getPointOfInstantiation().isInvalid()) { 3815 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3816 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3817 L->InstantiationRequested(this); 3818 } 3819 } else if (MemberSpecializationInfo *MSInfo 3820 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3821 MSInfo->setTemplateSpecializationKind(TSK); 3822 if (TSK != TSK_ExplicitSpecialization && 3823 PointOfInstantiation.isValid() && 3824 MSInfo->getPointOfInstantiation().isInvalid()) { 3825 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3826 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3827 L->InstantiationRequested(this); 3828 } 3829 } else 3830 llvm_unreachable("Function cannot have a template specialization kind"); 3831 } 3832 3833 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3834 if (FunctionTemplateSpecializationInfo *FTSInfo 3835 = TemplateOrSpecialization.dyn_cast< 3836 FunctionTemplateSpecializationInfo*>()) 3837 return FTSInfo->getPointOfInstantiation(); 3838 else if (MemberSpecializationInfo *MSInfo 3839 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) 3840 return MSInfo->getPointOfInstantiation(); 3841 3842 return SourceLocation(); 3843 } 3844 3845 bool FunctionDecl::isOutOfLine() const { 3846 if (Decl::isOutOfLine()) 3847 return true; 3848 3849 // If this function was instantiated from a member function of a 3850 // class template, check whether that member function was defined out-of-line. 3851 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3852 const FunctionDecl *Definition; 3853 if (FD->hasBody(Definition)) 3854 return Definition->isOutOfLine(); 3855 } 3856 3857 // If this function was instantiated from a function template, 3858 // check whether that function template was defined out-of-line. 3859 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3860 const FunctionDecl *Definition; 3861 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3862 return Definition->isOutOfLine(); 3863 } 3864 3865 return false; 3866 } 3867 3868 SourceRange FunctionDecl::getSourceRange() const { 3869 return SourceRange(getOuterLocStart(), EndRangeLoc); 3870 } 3871 3872 unsigned FunctionDecl::getMemoryFunctionKind() const { 3873 IdentifierInfo *FnInfo = getIdentifier(); 3874 3875 if (!FnInfo) 3876 return 0; 3877 3878 // Builtin handling. 3879 switch (getBuiltinID()) { 3880 case Builtin::BI__builtin_memset: 3881 case Builtin::BI__builtin___memset_chk: 3882 case Builtin::BImemset: 3883 return Builtin::BImemset; 3884 3885 case Builtin::BI__builtin_memcpy: 3886 case Builtin::BI__builtin___memcpy_chk: 3887 case Builtin::BImemcpy: 3888 return Builtin::BImemcpy; 3889 3890 case Builtin::BI__builtin_mempcpy: 3891 case Builtin::BI__builtin___mempcpy_chk: 3892 case Builtin::BImempcpy: 3893 return Builtin::BImempcpy; 3894 3895 case Builtin::BI__builtin_memmove: 3896 case Builtin::BI__builtin___memmove_chk: 3897 case Builtin::BImemmove: 3898 return Builtin::BImemmove; 3899 3900 case Builtin::BIstrlcpy: 3901 case Builtin::BI__builtin___strlcpy_chk: 3902 return Builtin::BIstrlcpy; 3903 3904 case Builtin::BIstrlcat: 3905 case Builtin::BI__builtin___strlcat_chk: 3906 return Builtin::BIstrlcat; 3907 3908 case Builtin::BI__builtin_memcmp: 3909 case Builtin::BImemcmp: 3910 return Builtin::BImemcmp; 3911 3912 case Builtin::BI__builtin_bcmp: 3913 case Builtin::BIbcmp: 3914 return Builtin::BIbcmp; 3915 3916 case Builtin::BI__builtin_strncpy: 3917 case Builtin::BI__builtin___strncpy_chk: 3918 case Builtin::BIstrncpy: 3919 return Builtin::BIstrncpy; 3920 3921 case Builtin::BI__builtin_strncmp: 3922 case Builtin::BIstrncmp: 3923 return Builtin::BIstrncmp; 3924 3925 case Builtin::BI__builtin_strncasecmp: 3926 case Builtin::BIstrncasecmp: 3927 return Builtin::BIstrncasecmp; 3928 3929 case Builtin::BI__builtin_strncat: 3930 case Builtin::BI__builtin___strncat_chk: 3931 case Builtin::BIstrncat: 3932 return Builtin::BIstrncat; 3933 3934 case Builtin::BI__builtin_strndup: 3935 case Builtin::BIstrndup: 3936 return Builtin::BIstrndup; 3937 3938 case Builtin::BI__builtin_strlen: 3939 case Builtin::BIstrlen: 3940 return Builtin::BIstrlen; 3941 3942 case Builtin::BI__builtin_bzero: 3943 case Builtin::BIbzero: 3944 return Builtin::BIbzero; 3945 3946 default: 3947 if (isExternC()) { 3948 if (FnInfo->isStr("memset")) 3949 return Builtin::BImemset; 3950 else if (FnInfo->isStr("memcpy")) 3951 return Builtin::BImemcpy; 3952 else if (FnInfo->isStr("mempcpy")) 3953 return Builtin::BImempcpy; 3954 else if (FnInfo->isStr("memmove")) 3955 return Builtin::BImemmove; 3956 else if (FnInfo->isStr("memcmp")) 3957 return Builtin::BImemcmp; 3958 else if (FnInfo->isStr("bcmp")) 3959 return Builtin::BIbcmp; 3960 else if (FnInfo->isStr("strncpy")) 3961 return Builtin::BIstrncpy; 3962 else if (FnInfo->isStr("strncmp")) 3963 return Builtin::BIstrncmp; 3964 else if (FnInfo->isStr("strncasecmp")) 3965 return Builtin::BIstrncasecmp; 3966 else if (FnInfo->isStr("strncat")) 3967 return Builtin::BIstrncat; 3968 else if (FnInfo->isStr("strndup")) 3969 return Builtin::BIstrndup; 3970 else if (FnInfo->isStr("strlen")) 3971 return Builtin::BIstrlen; 3972 else if (FnInfo->isStr("bzero")) 3973 return Builtin::BIbzero; 3974 } 3975 break; 3976 } 3977 return 0; 3978 } 3979 3980 unsigned FunctionDecl::getODRHash() const { 3981 assert(hasODRHash()); 3982 return ODRHash; 3983 } 3984 3985 unsigned FunctionDecl::getODRHash() { 3986 if (hasODRHash()) 3987 return ODRHash; 3988 3989 if (auto *FT = getInstantiatedFromMemberFunction()) { 3990 setHasODRHash(true); 3991 ODRHash = FT->getODRHash(); 3992 return ODRHash; 3993 } 3994 3995 class ODRHash Hash; 3996 Hash.AddFunctionDecl(this); 3997 setHasODRHash(true); 3998 ODRHash = Hash.CalculateHash(); 3999 return ODRHash; 4000 } 4001 4002 //===----------------------------------------------------------------------===// 4003 // FieldDecl Implementation 4004 //===----------------------------------------------------------------------===// 4005 4006 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4007 SourceLocation StartLoc, SourceLocation IdLoc, 4008 IdentifierInfo *Id, QualType T, 4009 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4010 InClassInitStyle InitStyle) { 4011 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4012 BW, Mutable, InitStyle); 4013 } 4014 4015 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4016 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4017 SourceLocation(), nullptr, QualType(), nullptr, 4018 nullptr, false, ICIS_NoInit); 4019 } 4020 4021 bool FieldDecl::isAnonymousStructOrUnion() const { 4022 if (!isImplicit() || getDeclName()) 4023 return false; 4024 4025 if (const auto *Record = getType()->getAs<RecordType>()) 4026 return Record->getDecl()->isAnonymousStructOrUnion(); 4027 4028 return false; 4029 } 4030 4031 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4032 assert(isBitField() && "not a bitfield"); 4033 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4034 } 4035 4036 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4037 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4038 getBitWidthValue(Ctx) == 0; 4039 } 4040 4041 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4042 if (isZeroLengthBitField(Ctx)) 4043 return true; 4044 4045 // C++2a [intro.object]p7: 4046 // An object has nonzero size if it 4047 // -- is not a potentially-overlapping subobject, or 4048 if (!hasAttr<NoUniqueAddressAttr>()) 4049 return false; 4050 4051 // -- is not of class type, or 4052 const auto *RT = getType()->getAs<RecordType>(); 4053 if (!RT) 4054 return false; 4055 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4056 if (!RD) { 4057 assert(isInvalidDecl() && "valid field has incomplete type"); 4058 return false; 4059 } 4060 4061 // -- [has] virtual member functions or virtual base classes, or 4062 // -- has subobjects of nonzero size or bit-fields of nonzero length 4063 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4064 if (!CXXRD->isEmpty()) 4065 return false; 4066 4067 // Otherwise, [...] the circumstances under which the object has zero size 4068 // are implementation-defined. 4069 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4070 // ABI will do. 4071 return true; 4072 } 4073 4074 unsigned FieldDecl::getFieldIndex() const { 4075 const FieldDecl *Canonical = getCanonicalDecl(); 4076 if (Canonical != this) 4077 return Canonical->getFieldIndex(); 4078 4079 if (CachedFieldIndex) return CachedFieldIndex - 1; 4080 4081 unsigned Index = 0; 4082 const RecordDecl *RD = getParent()->getDefinition(); 4083 assert(RD && "requested index for field of struct with no definition"); 4084 4085 for (auto *Field : RD->fields()) { 4086 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4087 ++Index; 4088 } 4089 4090 assert(CachedFieldIndex && "failed to find field in parent"); 4091 return CachedFieldIndex - 1; 4092 } 4093 4094 SourceRange FieldDecl::getSourceRange() const { 4095 const Expr *FinalExpr = getInClassInitializer(); 4096 if (!FinalExpr) 4097 FinalExpr = getBitWidth(); 4098 if (FinalExpr) 4099 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4100 return DeclaratorDecl::getSourceRange(); 4101 } 4102 4103 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4104 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4105 "capturing type in non-lambda or captured record."); 4106 assert(InitStorage.getInt() == ISK_NoInit && 4107 InitStorage.getPointer() == nullptr && 4108 "bit width, initializer or captured type already set"); 4109 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4110 ISK_CapturedVLAType); 4111 } 4112 4113 //===----------------------------------------------------------------------===// 4114 // TagDecl Implementation 4115 //===----------------------------------------------------------------------===// 4116 4117 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4118 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4119 SourceLocation StartL) 4120 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4121 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4122 assert((DK != Enum || TK == TTK_Enum) && 4123 "EnumDecl not matched with TTK_Enum"); 4124 setPreviousDecl(PrevDecl); 4125 setTagKind(TK); 4126 setCompleteDefinition(false); 4127 setBeingDefined(false); 4128 setEmbeddedInDeclarator(false); 4129 setFreeStanding(false); 4130 setCompleteDefinitionRequired(false); 4131 } 4132 4133 SourceLocation TagDecl::getOuterLocStart() const { 4134 return getTemplateOrInnerLocStart(this); 4135 } 4136 4137 SourceRange TagDecl::getSourceRange() const { 4138 SourceLocation RBraceLoc = BraceRange.getEnd(); 4139 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4140 return SourceRange(getOuterLocStart(), E); 4141 } 4142 4143 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4144 4145 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4146 TypedefNameDeclOrQualifier = TDD; 4147 if (const Type *T = getTypeForDecl()) { 4148 (void)T; 4149 assert(T->isLinkageValid()); 4150 } 4151 assert(isLinkageValid()); 4152 } 4153 4154 void TagDecl::startDefinition() { 4155 setBeingDefined(true); 4156 4157 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4158 struct CXXRecordDecl::DefinitionData *Data = 4159 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4160 for (auto I : redecls()) 4161 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4162 } 4163 } 4164 4165 void TagDecl::completeDefinition() { 4166 assert((!isa<CXXRecordDecl>(this) || 4167 cast<CXXRecordDecl>(this)->hasDefinition()) && 4168 "definition completed but not started"); 4169 4170 setCompleteDefinition(true); 4171 setBeingDefined(false); 4172 4173 if (ASTMutationListener *L = getASTMutationListener()) 4174 L->CompletedTagDefinition(this); 4175 } 4176 4177 TagDecl *TagDecl::getDefinition() const { 4178 if (isCompleteDefinition()) 4179 return const_cast<TagDecl *>(this); 4180 4181 // If it's possible for us to have an out-of-date definition, check now. 4182 if (mayHaveOutOfDateDef()) { 4183 if (IdentifierInfo *II = getIdentifier()) { 4184 if (II->isOutOfDate()) { 4185 updateOutOfDate(*II); 4186 } 4187 } 4188 } 4189 4190 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4191 return CXXRD->getDefinition(); 4192 4193 for (auto R : redecls()) 4194 if (R->isCompleteDefinition()) 4195 return R; 4196 4197 return nullptr; 4198 } 4199 4200 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4201 if (QualifierLoc) { 4202 // Make sure the extended qualifier info is allocated. 4203 if (!hasExtInfo()) 4204 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4205 // Set qualifier info. 4206 getExtInfo()->QualifierLoc = QualifierLoc; 4207 } else { 4208 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4209 if (hasExtInfo()) { 4210 if (getExtInfo()->NumTemplParamLists == 0) { 4211 getASTContext().Deallocate(getExtInfo()); 4212 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4213 } 4214 else 4215 getExtInfo()->QualifierLoc = QualifierLoc; 4216 } 4217 } 4218 } 4219 4220 void TagDecl::setTemplateParameterListsInfo( 4221 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4222 assert(!TPLists.empty()); 4223 // Make sure the extended decl info is allocated. 4224 if (!hasExtInfo()) 4225 // Allocate external info struct. 4226 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4227 // Set the template parameter lists info. 4228 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4229 } 4230 4231 //===----------------------------------------------------------------------===// 4232 // EnumDecl Implementation 4233 //===----------------------------------------------------------------------===// 4234 4235 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4236 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4237 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4238 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4239 assert(Scoped || !ScopedUsingClassTag); 4240 IntegerType = nullptr; 4241 setNumPositiveBits(0); 4242 setNumNegativeBits(0); 4243 setScoped(Scoped); 4244 setScopedUsingClassTag(ScopedUsingClassTag); 4245 setFixed(Fixed); 4246 setHasODRHash(false); 4247 ODRHash = 0; 4248 } 4249 4250 void EnumDecl::anchor() {} 4251 4252 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4253 SourceLocation StartLoc, SourceLocation IdLoc, 4254 IdentifierInfo *Id, 4255 EnumDecl *PrevDecl, bool IsScoped, 4256 bool IsScopedUsingClassTag, bool IsFixed) { 4257 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4258 IsScoped, IsScopedUsingClassTag, IsFixed); 4259 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4260 C.getTypeDeclType(Enum, PrevDecl); 4261 return Enum; 4262 } 4263 4264 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4265 EnumDecl *Enum = 4266 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4267 nullptr, nullptr, false, false, false); 4268 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4269 return Enum; 4270 } 4271 4272 SourceRange EnumDecl::getIntegerTypeRange() const { 4273 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4274 return TI->getTypeLoc().getSourceRange(); 4275 return SourceRange(); 4276 } 4277 4278 void EnumDecl::completeDefinition(QualType NewType, 4279 QualType NewPromotionType, 4280 unsigned NumPositiveBits, 4281 unsigned NumNegativeBits) { 4282 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4283 if (!IntegerType) 4284 IntegerType = NewType.getTypePtr(); 4285 PromotionType = NewPromotionType; 4286 setNumPositiveBits(NumPositiveBits); 4287 setNumNegativeBits(NumNegativeBits); 4288 TagDecl::completeDefinition(); 4289 } 4290 4291 bool EnumDecl::isClosed() const { 4292 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4293 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4294 return true; 4295 } 4296 4297 bool EnumDecl::isClosedFlag() const { 4298 return isClosed() && hasAttr<FlagEnumAttr>(); 4299 } 4300 4301 bool EnumDecl::isClosedNonFlag() const { 4302 return isClosed() && !hasAttr<FlagEnumAttr>(); 4303 } 4304 4305 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4306 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4307 return MSI->getTemplateSpecializationKind(); 4308 4309 return TSK_Undeclared; 4310 } 4311 4312 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4313 SourceLocation PointOfInstantiation) { 4314 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4315 assert(MSI && "Not an instantiated member enumeration?"); 4316 MSI->setTemplateSpecializationKind(TSK); 4317 if (TSK != TSK_ExplicitSpecialization && 4318 PointOfInstantiation.isValid() && 4319 MSI->getPointOfInstantiation().isInvalid()) 4320 MSI->setPointOfInstantiation(PointOfInstantiation); 4321 } 4322 4323 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4324 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4325 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4326 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4327 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4328 ED = NewED; 4329 return getDefinitionOrSelf(ED); 4330 } 4331 } 4332 4333 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4334 "couldn't find pattern for enum instantiation"); 4335 return nullptr; 4336 } 4337 4338 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4339 if (SpecializationInfo) 4340 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4341 4342 return nullptr; 4343 } 4344 4345 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4346 TemplateSpecializationKind TSK) { 4347 assert(!SpecializationInfo && "Member enum is already a specialization"); 4348 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4349 } 4350 4351 unsigned EnumDecl::getODRHash() { 4352 if (hasODRHash()) 4353 return ODRHash; 4354 4355 class ODRHash Hash; 4356 Hash.AddEnumDecl(this); 4357 setHasODRHash(true); 4358 ODRHash = Hash.CalculateHash(); 4359 return ODRHash; 4360 } 4361 4362 //===----------------------------------------------------------------------===// 4363 // RecordDecl Implementation 4364 //===----------------------------------------------------------------------===// 4365 4366 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4367 DeclContext *DC, SourceLocation StartLoc, 4368 SourceLocation IdLoc, IdentifierInfo *Id, 4369 RecordDecl *PrevDecl) 4370 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4371 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4372 setHasFlexibleArrayMember(false); 4373 setAnonymousStructOrUnion(false); 4374 setHasObjectMember(false); 4375 setHasVolatileMember(false); 4376 setHasLoadedFieldsFromExternalStorage(false); 4377 setNonTrivialToPrimitiveDefaultInitialize(false); 4378 setNonTrivialToPrimitiveCopy(false); 4379 setNonTrivialToPrimitiveDestroy(false); 4380 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4381 setHasNonTrivialToPrimitiveDestructCUnion(false); 4382 setHasNonTrivialToPrimitiveCopyCUnion(false); 4383 setParamDestroyedInCallee(false); 4384 setArgPassingRestrictions(APK_CanPassInRegs); 4385 } 4386 4387 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4388 SourceLocation StartLoc, SourceLocation IdLoc, 4389 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4390 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4391 StartLoc, IdLoc, Id, PrevDecl); 4392 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4393 4394 C.getTypeDeclType(R, PrevDecl); 4395 return R; 4396 } 4397 4398 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4399 RecordDecl *R = 4400 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4401 SourceLocation(), nullptr, nullptr); 4402 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4403 return R; 4404 } 4405 4406 bool RecordDecl::isInjectedClassName() const { 4407 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4408 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4409 } 4410 4411 bool RecordDecl::isLambda() const { 4412 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4413 return RD->isLambda(); 4414 return false; 4415 } 4416 4417 bool RecordDecl::isCapturedRecord() const { 4418 return hasAttr<CapturedRecordAttr>(); 4419 } 4420 4421 void RecordDecl::setCapturedRecord() { 4422 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4423 } 4424 4425 RecordDecl::field_iterator RecordDecl::field_begin() const { 4426 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4427 LoadFieldsFromExternalStorage(); 4428 4429 return field_iterator(decl_iterator(FirstDecl)); 4430 } 4431 4432 /// completeDefinition - Notes that the definition of this type is now 4433 /// complete. 4434 void RecordDecl::completeDefinition() { 4435 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4436 TagDecl::completeDefinition(); 4437 } 4438 4439 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4440 /// This which can be turned on with an attribute, pragma, or the 4441 /// -mms-bitfields command-line option. 4442 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4443 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4444 } 4445 4446 void RecordDecl::LoadFieldsFromExternalStorage() const { 4447 ExternalASTSource *Source = getASTContext().getExternalSource(); 4448 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4449 4450 // Notify that we have a RecordDecl doing some initialization. 4451 ExternalASTSource::Deserializing TheFields(Source); 4452 4453 SmallVector<Decl*, 64> Decls; 4454 setHasLoadedFieldsFromExternalStorage(true); 4455 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4456 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4457 }, Decls); 4458 4459 #ifndef NDEBUG 4460 // Check that all decls we got were FieldDecls. 4461 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4462 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4463 #endif 4464 4465 if (Decls.empty()) 4466 return; 4467 4468 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4469 /*FieldsAlreadyLoaded=*/false); 4470 } 4471 4472 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4473 ASTContext &Context = getASTContext(); 4474 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4475 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4476 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4477 return false; 4478 const auto &Blacklist = Context.getSanitizerBlacklist(); 4479 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4480 // We may be able to relax some of these requirements. 4481 int ReasonToReject = -1; 4482 if (!CXXRD || CXXRD->isExternCContext()) 4483 ReasonToReject = 0; // is not C++. 4484 else if (CXXRD->hasAttr<PackedAttr>()) 4485 ReasonToReject = 1; // is packed. 4486 else if (CXXRD->isUnion()) 4487 ReasonToReject = 2; // is a union. 4488 else if (CXXRD->isTriviallyCopyable()) 4489 ReasonToReject = 3; // is trivially copyable. 4490 else if (CXXRD->hasTrivialDestructor()) 4491 ReasonToReject = 4; // has trivial destructor. 4492 else if (CXXRD->isStandardLayout()) 4493 ReasonToReject = 5; // is standard layout. 4494 else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(), 4495 "field-padding")) 4496 ReasonToReject = 6; // is in a blacklisted file. 4497 else if (Blacklist.isBlacklistedType(EnabledAsanMask, 4498 getQualifiedNameAsString(), 4499 "field-padding")) 4500 ReasonToReject = 7; // is blacklisted. 4501 4502 if (EmitRemark) { 4503 if (ReasonToReject >= 0) 4504 Context.getDiagnostics().Report( 4505 getLocation(), 4506 diag::remark_sanitize_address_insert_extra_padding_rejected) 4507 << getQualifiedNameAsString() << ReasonToReject; 4508 else 4509 Context.getDiagnostics().Report( 4510 getLocation(), 4511 diag::remark_sanitize_address_insert_extra_padding_accepted) 4512 << getQualifiedNameAsString(); 4513 } 4514 return ReasonToReject < 0; 4515 } 4516 4517 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4518 for (const auto *I : fields()) { 4519 if (I->getIdentifier()) 4520 return I; 4521 4522 if (const auto *RT = I->getType()->getAs<RecordType>()) 4523 if (const FieldDecl *NamedDataMember = 4524 RT->getDecl()->findFirstNamedDataMember()) 4525 return NamedDataMember; 4526 } 4527 4528 // We didn't find a named data member. 4529 return nullptr; 4530 } 4531 4532 //===----------------------------------------------------------------------===// 4533 // BlockDecl Implementation 4534 //===----------------------------------------------------------------------===// 4535 4536 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4537 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4538 setIsVariadic(false); 4539 setCapturesCXXThis(false); 4540 setBlockMissingReturnType(true); 4541 setIsConversionFromLambda(false); 4542 setDoesNotEscape(false); 4543 setCanAvoidCopyToHeap(false); 4544 } 4545 4546 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4547 assert(!ParamInfo && "Already has param info!"); 4548 4549 // Zero params -> null pointer. 4550 if (!NewParamInfo.empty()) { 4551 NumParams = NewParamInfo.size(); 4552 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4553 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4554 } 4555 } 4556 4557 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4558 bool CapturesCXXThis) { 4559 this->setCapturesCXXThis(CapturesCXXThis); 4560 this->NumCaptures = Captures.size(); 4561 4562 if (Captures.empty()) { 4563 this->Captures = nullptr; 4564 return; 4565 } 4566 4567 this->Captures = Captures.copy(Context).data(); 4568 } 4569 4570 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4571 for (const auto &I : captures()) 4572 // Only auto vars can be captured, so no redeclaration worries. 4573 if (I.getVariable() == variable) 4574 return true; 4575 4576 return false; 4577 } 4578 4579 SourceRange BlockDecl::getSourceRange() const { 4580 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4581 } 4582 4583 //===----------------------------------------------------------------------===// 4584 // Other Decl Allocation/Deallocation Method Implementations 4585 //===----------------------------------------------------------------------===// 4586 4587 void TranslationUnitDecl::anchor() {} 4588 4589 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4590 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4591 } 4592 4593 void PragmaCommentDecl::anchor() {} 4594 4595 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4596 TranslationUnitDecl *DC, 4597 SourceLocation CommentLoc, 4598 PragmaMSCommentKind CommentKind, 4599 StringRef Arg) { 4600 PragmaCommentDecl *PCD = 4601 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4602 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4603 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4604 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4605 return PCD; 4606 } 4607 4608 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4609 unsigned ID, 4610 unsigned ArgSize) { 4611 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4612 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4613 } 4614 4615 void PragmaDetectMismatchDecl::anchor() {} 4616 4617 PragmaDetectMismatchDecl * 4618 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4619 SourceLocation Loc, StringRef Name, 4620 StringRef Value) { 4621 size_t ValueStart = Name.size() + 1; 4622 PragmaDetectMismatchDecl *PDMD = 4623 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4624 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4625 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4626 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4627 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4628 Value.size()); 4629 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4630 return PDMD; 4631 } 4632 4633 PragmaDetectMismatchDecl * 4634 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4635 unsigned NameValueSize) { 4636 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4637 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4638 } 4639 4640 void ExternCContextDecl::anchor() {} 4641 4642 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4643 TranslationUnitDecl *DC) { 4644 return new (C, DC) ExternCContextDecl(DC); 4645 } 4646 4647 void LabelDecl::anchor() {} 4648 4649 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4650 SourceLocation IdentL, IdentifierInfo *II) { 4651 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4652 } 4653 4654 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4655 SourceLocation IdentL, IdentifierInfo *II, 4656 SourceLocation GnuLabelL) { 4657 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4658 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4659 } 4660 4661 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4662 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4663 SourceLocation()); 4664 } 4665 4666 void LabelDecl::setMSAsmLabel(StringRef Name) { 4667 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4668 memcpy(Buffer, Name.data(), Name.size()); 4669 Buffer[Name.size()] = '\0'; 4670 MSAsmName = Buffer; 4671 } 4672 4673 void ValueDecl::anchor() {} 4674 4675 bool ValueDecl::isWeak() const { 4676 for (const auto *I : attrs()) 4677 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) 4678 return true; 4679 4680 return isWeakImported(); 4681 } 4682 4683 void ImplicitParamDecl::anchor() {} 4684 4685 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4686 SourceLocation IdLoc, 4687 IdentifierInfo *Id, QualType Type, 4688 ImplicitParamKind ParamKind) { 4689 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4690 } 4691 4692 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4693 ImplicitParamKind ParamKind) { 4694 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4695 } 4696 4697 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4698 unsigned ID) { 4699 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4700 } 4701 4702 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 4703 SourceLocation StartLoc, 4704 const DeclarationNameInfo &NameInfo, 4705 QualType T, TypeSourceInfo *TInfo, 4706 StorageClass SC, bool isInlineSpecified, 4707 bool hasWrittenPrototype, 4708 ConstexprSpecKind ConstexprKind, 4709 Expr *TrailingRequiresClause) { 4710 FunctionDecl *New = 4711 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 4712 SC, isInlineSpecified, ConstexprKind, 4713 TrailingRequiresClause); 4714 New->setHasWrittenPrototype(hasWrittenPrototype); 4715 return New; 4716 } 4717 4718 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4719 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), 4720 DeclarationNameInfo(), QualType(), nullptr, 4721 SC_None, false, CSK_unspecified, nullptr); 4722 } 4723 4724 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4725 return new (C, DC) BlockDecl(DC, L); 4726 } 4727 4728 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4729 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4730 } 4731 4732 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4733 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4734 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4735 4736 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4737 unsigned NumParams) { 4738 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4739 CapturedDecl(DC, NumParams); 4740 } 4741 4742 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4743 unsigned NumParams) { 4744 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4745 CapturedDecl(nullptr, NumParams); 4746 } 4747 4748 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4749 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4750 4751 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4752 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4753 4754 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4755 SourceLocation L, 4756 IdentifierInfo *Id, QualType T, 4757 Expr *E, const llvm::APSInt &V) { 4758 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4759 } 4760 4761 EnumConstantDecl * 4762 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4763 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4764 QualType(), nullptr, llvm::APSInt()); 4765 } 4766 4767 void IndirectFieldDecl::anchor() {} 4768 4769 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4770 SourceLocation L, DeclarationName N, 4771 QualType T, 4772 MutableArrayRef<NamedDecl *> CH) 4773 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4774 ChainingSize(CH.size()) { 4775 // In C++, indirect field declarations conflict with tag declarations in the 4776 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4777 if (C.getLangOpts().CPlusPlus) 4778 IdentifierNamespace |= IDNS_Tag; 4779 } 4780 4781 IndirectFieldDecl * 4782 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4783 IdentifierInfo *Id, QualType T, 4784 llvm::MutableArrayRef<NamedDecl *> CH) { 4785 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4786 } 4787 4788 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4789 unsigned ID) { 4790 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4791 DeclarationName(), QualType(), None); 4792 } 4793 4794 SourceRange EnumConstantDecl::getSourceRange() const { 4795 SourceLocation End = getLocation(); 4796 if (Init) 4797 End = Init->getEndLoc(); 4798 return SourceRange(getLocation(), End); 4799 } 4800 4801 void TypeDecl::anchor() {} 4802 4803 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4804 SourceLocation StartLoc, SourceLocation IdLoc, 4805 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4806 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4807 } 4808 4809 void TypedefNameDecl::anchor() {} 4810 4811 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4812 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4813 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 4814 auto *ThisTypedef = this; 4815 if (AnyRedecl && OwningTypedef) { 4816 OwningTypedef = OwningTypedef->getCanonicalDecl(); 4817 ThisTypedef = ThisTypedef->getCanonicalDecl(); 4818 } 4819 if (OwningTypedef == ThisTypedef) 4820 return TT->getDecl(); 4821 } 4822 4823 return nullptr; 4824 } 4825 4826 bool TypedefNameDecl::isTransparentTagSlow() const { 4827 auto determineIsTransparent = [&]() { 4828 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 4829 if (auto *TD = TT->getDecl()) { 4830 if (TD->getName() != getName()) 4831 return false; 4832 SourceLocation TTLoc = getLocation(); 4833 SourceLocation TDLoc = TD->getLocation(); 4834 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 4835 return false; 4836 SourceManager &SM = getASTContext().getSourceManager(); 4837 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 4838 } 4839 } 4840 return false; 4841 }; 4842 4843 bool isTransparent = determineIsTransparent(); 4844 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 4845 return isTransparent; 4846 } 4847 4848 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4849 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 4850 nullptr, nullptr); 4851 } 4852 4853 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 4854 SourceLocation StartLoc, 4855 SourceLocation IdLoc, IdentifierInfo *Id, 4856 TypeSourceInfo *TInfo) { 4857 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4858 } 4859 4860 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4861 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 4862 SourceLocation(), nullptr, nullptr); 4863 } 4864 4865 SourceRange TypedefDecl::getSourceRange() const { 4866 SourceLocation RangeEnd = getLocation(); 4867 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 4868 if (typeIsPostfix(TInfo->getType())) 4869 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4870 } 4871 return SourceRange(getBeginLoc(), RangeEnd); 4872 } 4873 4874 SourceRange TypeAliasDecl::getSourceRange() const { 4875 SourceLocation RangeEnd = getBeginLoc(); 4876 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 4877 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4878 return SourceRange(getBeginLoc(), RangeEnd); 4879 } 4880 4881 void FileScopeAsmDecl::anchor() {} 4882 4883 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 4884 StringLiteral *Str, 4885 SourceLocation AsmLoc, 4886 SourceLocation RParenLoc) { 4887 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 4888 } 4889 4890 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 4891 unsigned ID) { 4892 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 4893 SourceLocation()); 4894 } 4895 4896 void EmptyDecl::anchor() {} 4897 4898 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4899 return new (C, DC) EmptyDecl(DC, L); 4900 } 4901 4902 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4903 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 4904 } 4905 4906 //===----------------------------------------------------------------------===// 4907 // ImportDecl Implementation 4908 //===----------------------------------------------------------------------===// 4909 4910 /// Retrieve the number of module identifiers needed to name the given 4911 /// module. 4912 static unsigned getNumModuleIdentifiers(Module *Mod) { 4913 unsigned Result = 1; 4914 while (Mod->Parent) { 4915 Mod = Mod->Parent; 4916 ++Result; 4917 } 4918 return Result; 4919 } 4920 4921 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4922 Module *Imported, 4923 ArrayRef<SourceLocation> IdentifierLocs) 4924 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) { 4925 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 4926 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4927 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 4928 StoredLocs); 4929 } 4930 4931 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4932 Module *Imported, SourceLocation EndLoc) 4933 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) { 4934 *getTrailingObjects<SourceLocation>() = EndLoc; 4935 } 4936 4937 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 4938 SourceLocation StartLoc, Module *Imported, 4939 ArrayRef<SourceLocation> IdentifierLocs) { 4940 return new (C, DC, 4941 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 4942 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 4943 } 4944 4945 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 4946 SourceLocation StartLoc, 4947 Module *Imported, 4948 SourceLocation EndLoc) { 4949 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 4950 ImportDecl(DC, StartLoc, Imported, EndLoc); 4951 Import->setImplicit(); 4952 return Import; 4953 } 4954 4955 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4956 unsigned NumLocations) { 4957 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 4958 ImportDecl(EmptyShell()); 4959 } 4960 4961 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 4962 if (!ImportedAndComplete.getInt()) 4963 return None; 4964 4965 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4966 return llvm::makeArrayRef(StoredLocs, 4967 getNumModuleIdentifiers(getImportedModule())); 4968 } 4969 4970 SourceRange ImportDecl::getSourceRange() const { 4971 if (!ImportedAndComplete.getInt()) 4972 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 4973 4974 return SourceRange(getLocation(), getIdentifierLocs().back()); 4975 } 4976 4977 //===----------------------------------------------------------------------===// 4978 // ExportDecl Implementation 4979 //===----------------------------------------------------------------------===// 4980 4981 void ExportDecl::anchor() {} 4982 4983 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 4984 SourceLocation ExportLoc) { 4985 return new (C, DC) ExportDecl(DC, ExportLoc); 4986 } 4987 4988 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4989 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 4990 } 4991