xref: /freebsd/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/PartialDiagnostic.h"
45 #include "clang/Basic/SanitizerBlacklist.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 /// Determine whether D is declared in the purview of a named module.
572 static bool isInModulePurview(const NamedDecl *D) {
573   if (auto *M = D->getOwningModule())
574     return M->isModulePurview();
575   return false;
576 }
577 
578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579   // FIXME: Handle isModulePrivate.
580   switch (D->getModuleOwnershipKind()) {
581   case Decl::ModuleOwnershipKind::Unowned:
582   case Decl::ModuleOwnershipKind::ModulePrivate:
583     return false;
584   case Decl::ModuleOwnershipKind::Visible:
585   case Decl::ModuleOwnershipKind::VisibleWhenImported:
586     return isInModulePurview(D);
587   }
588   llvm_unreachable("unexpected module ownership kind");
589 }
590 
591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592   // Internal linkage declarations within a module interface unit are modeled
593   // as "module-internal linkage", which means that they have internal linkage
594   // formally but can be indirectly accessed from outside the module via inline
595   // functions and templates defined within the module.
596   if (isInModulePurview(D))
597     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598 
599   return LinkageInfo::internal();
600 }
601 
602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603   // C++ Modules TS [basic.link]/6.8:
604   //   - A name declared at namespace scope that does not have internal linkage
605   //     by the previous rules and that is introduced by a non-exported
606   //     declaration has module linkage.
607   if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608                                   cast<NamedDecl>(D->getCanonicalDecl())))
609     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610 
611   return LinkageInfo::external();
612 }
613 
614 static StorageClass getStorageClass(const Decl *D) {
615   if (auto *TD = dyn_cast<TemplateDecl>(D))
616     D = TD->getTemplatedDecl();
617   if (D) {
618     if (auto *VD = dyn_cast<VarDecl>(D))
619       return VD->getStorageClass();
620     if (auto *FD = dyn_cast<FunctionDecl>(D))
621       return FD->getStorageClass();
622   }
623   return SC_None;
624 }
625 
626 LinkageInfo
627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628                                             LVComputationKind computation,
629                                             bool IgnoreVarTypeLinkage) {
630   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631          "Not a name having namespace scope");
632   ASTContext &Context = D->getASTContext();
633 
634   // C++ [basic.link]p3:
635   //   A name having namespace scope (3.3.6) has internal linkage if it
636   //   is the name of
637 
638   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639     // - a variable, variable template, function, or function template
640     //   that is explicitly declared static; or
641     // (This bullet corresponds to C99 6.2.2p3.)
642     return getInternalLinkageFor(D);
643   }
644 
645   if (const auto *Var = dyn_cast<VarDecl>(D)) {
646     // - a non-template variable of non-volatile const-qualified type, unless
647     //   - it is explicitly declared extern, or
648     //   - it is inline or exported, or
649     //   - it was previously declared and the prior declaration did not have
650     //     internal linkage
651     // (There is no equivalent in C99.)
652     if (Context.getLangOpts().CPlusPlus &&
653         Var->getType().isConstQualified() &&
654         !Var->getType().isVolatileQualified() &&
655         !Var->isInline() &&
656         !isExportedFromModuleInterfaceUnit(Var) &&
657         !isa<VarTemplateSpecializationDecl>(Var) &&
658         !Var->getDescribedVarTemplate()) {
659       const VarDecl *PrevVar = Var->getPreviousDecl();
660       if (PrevVar)
661         return getLVForDecl(PrevVar, computation);
662 
663       if (Var->getStorageClass() != SC_Extern &&
664           Var->getStorageClass() != SC_PrivateExtern &&
665           !isSingleLineLanguageLinkage(*Var))
666         return getInternalLinkageFor(Var);
667     }
668 
669     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670          PrevVar = PrevVar->getPreviousDecl()) {
671       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672           Var->getStorageClass() == SC_None)
673         return getDeclLinkageAndVisibility(PrevVar);
674       // Explicitly declared static.
675       if (PrevVar->getStorageClass() == SC_Static)
676         return getInternalLinkageFor(Var);
677     }
678   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679     //   - a data member of an anonymous union.
680     const VarDecl *VD = IFD->getVarDecl();
681     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683   }
684   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685 
686   // FIXME: This gives internal linkage to names that should have no linkage
687   // (those not covered by [basic.link]p6).
688   if (D->isInAnonymousNamespace()) {
689     const auto *Var = dyn_cast<VarDecl>(D);
690     const auto *Func = dyn_cast<FunctionDecl>(D);
691     // FIXME: The check for extern "C" here is not justified by the standard
692     // wording, but we retain it from the pre-DR1113 model to avoid breaking
693     // code.
694     //
695     // C++11 [basic.link]p4:
696     //   An unnamed namespace or a namespace declared directly or indirectly
697     //   within an unnamed namespace has internal linkage.
698     if ((!Var || !isFirstInExternCContext(Var)) &&
699         (!Func || !isFirstInExternCContext(Func)))
700       return getInternalLinkageFor(D);
701   }
702 
703   // Set up the defaults.
704 
705   // C99 6.2.2p5:
706   //   If the declaration of an identifier for an object has file
707   //   scope and no storage-class specifier, its linkage is
708   //   external.
709   LinkageInfo LV = getExternalLinkageFor(D);
710 
711   if (!hasExplicitVisibilityAlready(computation)) {
712     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713       LV.mergeVisibility(*Vis, true);
714     } else {
715       // If we're declared in a namespace with a visibility attribute,
716       // use that namespace's visibility, and it still counts as explicit.
717       for (const DeclContext *DC = D->getDeclContext();
718            !isa<TranslationUnitDecl>(DC);
719            DC = DC->getParent()) {
720         const auto *ND = dyn_cast<NamespaceDecl>(DC);
721         if (!ND) continue;
722         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723           LV.mergeVisibility(*Vis, true);
724           break;
725         }
726       }
727     }
728 
729     // Add in global settings if the above didn't give us direct visibility.
730     if (!LV.isVisibilityExplicit()) {
731       // Use global type/value visibility as appropriate.
732       Visibility globalVisibility =
733           computation.isValueVisibility()
734               ? Context.getLangOpts().getValueVisibilityMode()
735               : Context.getLangOpts().getTypeVisibilityMode();
736       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737 
738       // If we're paying attention to global visibility, apply
739       // -finline-visibility-hidden if this is an inline method.
740       if (useInlineVisibilityHidden(D))
741         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742     }
743   }
744 
745   // C++ [basic.link]p4:
746 
747   //   A name having namespace scope that has not been given internal linkage
748   //   above and that is the name of
749   //   [...bullets...]
750   //   has its linkage determined as follows:
751   //     - if the enclosing namespace has internal linkage, the name has
752   //       internal linkage; [handled above]
753   //     - otherwise, if the declaration of the name is attached to a named
754   //       module and is not exported, the name has module linkage;
755   //     - otherwise, the name has external linkage.
756   // LV is currently set up to handle the last two bullets.
757   //
758   //   The bullets are:
759 
760   //     - a variable; or
761   if (const auto *Var = dyn_cast<VarDecl>(D)) {
762     // GCC applies the following optimization to variables and static
763     // data members, but not to functions:
764     //
765     // Modify the variable's LV by the LV of its type unless this is
766     // C or extern "C".  This follows from [basic.link]p9:
767     //   A type without linkage shall not be used as the type of a
768     //   variable or function with external linkage unless
769     //    - the entity has C language linkage, or
770     //    - the entity is declared within an unnamed namespace, or
771     //    - the entity is not used or is defined in the same
772     //      translation unit.
773     // and [basic.link]p10:
774     //   ...the types specified by all declarations referring to a
775     //   given variable or function shall be identical...
776     // C does not have an equivalent rule.
777     //
778     // Ignore this if we've got an explicit attribute;  the user
779     // probably knows what they're doing.
780     //
781     // Note that we don't want to make the variable non-external
782     // because of this, but unique-external linkage suits us.
783     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784         !IgnoreVarTypeLinkage) {
785       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786       if (!isExternallyVisible(TypeLV.getLinkage()))
787         return LinkageInfo::uniqueExternal();
788       if (!LV.isVisibilityExplicit())
789         LV.mergeVisibility(TypeLV);
790     }
791 
792     if (Var->getStorageClass() == SC_PrivateExtern)
793       LV.mergeVisibility(HiddenVisibility, true);
794 
795     // Note that Sema::MergeVarDecl already takes care of implementing
796     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797     // to do it here.
798 
799     // As per function and class template specializations (below),
800     // consider LV for the template and template arguments.  We're at file
801     // scope, so we do not need to worry about nested specializations.
802     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803       mergeTemplateLV(LV, spec, computation);
804     }
805 
806   //     - a function; or
807   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808     // In theory, we can modify the function's LV by the LV of its
809     // type unless it has C linkage (see comment above about variables
810     // for justification).  In practice, GCC doesn't do this, so it's
811     // just too painful to make work.
812 
813     if (Function->getStorageClass() == SC_PrivateExtern)
814       LV.mergeVisibility(HiddenVisibility, true);
815 
816     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817     // merging storage classes and visibility attributes, so we don't have to
818     // look at previous decls in here.
819 
820     // In C++, then if the type of the function uses a type with
821     // unique-external linkage, it's not legally usable from outside
822     // this translation unit.  However, we should use the C linkage
823     // rules instead for extern "C" declarations.
824     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825       // Only look at the type-as-written. Otherwise, deducing the return type
826       // of a function could change its linkage.
827       QualType TypeAsWritten = Function->getType();
828       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829         TypeAsWritten = TSI->getType();
830       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831         return LinkageInfo::uniqueExternal();
832     }
833 
834     // Consider LV from the template and the template arguments.
835     // We're at file scope, so we do not need to worry about nested
836     // specializations.
837     if (FunctionTemplateSpecializationInfo *specInfo
838                                = Function->getTemplateSpecializationInfo()) {
839       mergeTemplateLV(LV, Function, specInfo, computation);
840     }
841 
842   //     - a named class (Clause 9), or an unnamed class defined in a
843   //       typedef declaration in which the class has the typedef name
844   //       for linkage purposes (7.1.3); or
845   //     - a named enumeration (7.2), or an unnamed enumeration
846   //       defined in a typedef declaration in which the enumeration
847   //       has the typedef name for linkage purposes (7.1.3); or
848   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849     // Unnamed tags have no linkage.
850     if (!Tag->hasNameForLinkage())
851       return LinkageInfo::none();
852 
853     // If this is a class template specialization, consider the
854     // linkage of the template and template arguments.  We're at file
855     // scope, so we do not need to worry about nested specializations.
856     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857       mergeTemplateLV(LV, spec, computation);
858     }
859 
860   // FIXME: This is not part of the C++ standard any more.
861   //     - an enumerator belonging to an enumeration with external linkage; or
862   } else if (isa<EnumConstantDecl>(D)) {
863     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864                                       computation);
865     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866       return LinkageInfo::none();
867     LV.merge(EnumLV);
868 
869   //     - a template
870   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872     LinkageInfo tempLV =
873       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875 
876   //     An unnamed namespace or a namespace declared directly or indirectly
877   //     within an unnamed namespace has internal linkage. All other namespaces
878   //     have external linkage.
879   //
880   // We handled names in anonymous namespaces above.
881   } else if (isa<NamespaceDecl>(D)) {
882     return LV;
883 
884   // By extension, we assign external linkage to Objective-C
885   // interfaces.
886   } else if (isa<ObjCInterfaceDecl>(D)) {
887     // fallout
888 
889   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890     // A typedef declaration has linkage if it gives a type a name for
891     // linkage purposes.
892     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893       return LinkageInfo::none();
894 
895   // Everything not covered here has no linkage.
896   } else {
897     return LinkageInfo::none();
898   }
899 
900   // If we ended up with non-externally-visible linkage, visibility should
901   // always be default.
902   if (!isExternallyVisible(LV.getLinkage()))
903     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
904 
905   // Mark the symbols as hidden when compiling for the device.
906   if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
907     LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
908 
909   return LV;
910 }
911 
912 LinkageInfo
913 LinkageComputer::getLVForClassMember(const NamedDecl *D,
914                                      LVComputationKind computation,
915                                      bool IgnoreVarTypeLinkage) {
916   // Only certain class members have linkage.  Note that fields don't
917   // really have linkage, but it's convenient to say they do for the
918   // purposes of calculating linkage of pointer-to-data-member
919   // template arguments.
920   //
921   // Templates also don't officially have linkage, but since we ignore
922   // the C++ standard and look at template arguments when determining
923   // linkage and visibility of a template specialization, we might hit
924   // a template template argument that way. If we do, we need to
925   // consider its linkage.
926   if (!(isa<CXXMethodDecl>(D) ||
927         isa<VarDecl>(D) ||
928         isa<FieldDecl>(D) ||
929         isa<IndirectFieldDecl>(D) ||
930         isa<TagDecl>(D) ||
931         isa<TemplateDecl>(D)))
932     return LinkageInfo::none();
933 
934   LinkageInfo LV;
935 
936   // If we have an explicit visibility attribute, merge that in.
937   if (!hasExplicitVisibilityAlready(computation)) {
938     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
939       LV.mergeVisibility(*Vis, true);
940     // If we're paying attention to global visibility, apply
941     // -finline-visibility-hidden if this is an inline method.
942     //
943     // Note that we do this before merging information about
944     // the class visibility.
945     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
946       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
947   }
948 
949   // If this class member has an explicit visibility attribute, the only
950   // thing that can change its visibility is the template arguments, so
951   // only look for them when processing the class.
952   LVComputationKind classComputation = computation;
953   if (LV.isVisibilityExplicit())
954     classComputation = withExplicitVisibilityAlready(computation);
955 
956   LinkageInfo classLV =
957     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
958   // The member has the same linkage as the class. If that's not externally
959   // visible, we don't need to compute anything about the linkage.
960   // FIXME: If we're only computing linkage, can we bail out here?
961   if (!isExternallyVisible(classLV.getLinkage()))
962     return classLV;
963 
964 
965   // Otherwise, don't merge in classLV yet, because in certain cases
966   // we need to completely ignore the visibility from it.
967 
968   // Specifically, if this decl exists and has an explicit attribute.
969   const NamedDecl *explicitSpecSuppressor = nullptr;
970 
971   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
972     // Only look at the type-as-written. Otherwise, deducing the return type
973     // of a function could change its linkage.
974     QualType TypeAsWritten = MD->getType();
975     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
976       TypeAsWritten = TSI->getType();
977     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
978       return LinkageInfo::uniqueExternal();
979 
980     // If this is a method template specialization, use the linkage for
981     // the template parameters and arguments.
982     if (FunctionTemplateSpecializationInfo *spec
983            = MD->getTemplateSpecializationInfo()) {
984       mergeTemplateLV(LV, MD, spec, computation);
985       if (spec->isExplicitSpecialization()) {
986         explicitSpecSuppressor = MD;
987       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
988         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
989       }
990     } else if (isExplicitMemberSpecialization(MD)) {
991       explicitSpecSuppressor = MD;
992     }
993 
994   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
995     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
996       mergeTemplateLV(LV, spec, computation);
997       if (spec->isExplicitSpecialization()) {
998         explicitSpecSuppressor = spec;
999       } else {
1000         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1001         if (isExplicitMemberSpecialization(temp)) {
1002           explicitSpecSuppressor = temp->getTemplatedDecl();
1003         }
1004       }
1005     } else if (isExplicitMemberSpecialization(RD)) {
1006       explicitSpecSuppressor = RD;
1007     }
1008 
1009   // Static data members.
1010   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1011     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1012       mergeTemplateLV(LV, spec, computation);
1013 
1014     // Modify the variable's linkage by its type, but ignore the
1015     // type's visibility unless it's a definition.
1016     if (!IgnoreVarTypeLinkage) {
1017       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1018       // FIXME: If the type's linkage is not externally visible, we can
1019       // give this static data member UniqueExternalLinkage.
1020       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1021         LV.mergeVisibility(typeLV);
1022       LV.mergeExternalVisibility(typeLV);
1023     }
1024 
1025     if (isExplicitMemberSpecialization(VD)) {
1026       explicitSpecSuppressor = VD;
1027     }
1028 
1029   // Template members.
1030   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1031     bool considerVisibility =
1032       (!LV.isVisibilityExplicit() &&
1033        !classLV.isVisibilityExplicit() &&
1034        !hasExplicitVisibilityAlready(computation));
1035     LinkageInfo tempLV =
1036       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1037     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1038 
1039     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1040       if (isExplicitMemberSpecialization(redeclTemp)) {
1041         explicitSpecSuppressor = temp->getTemplatedDecl();
1042       }
1043     }
1044   }
1045 
1046   // We should never be looking for an attribute directly on a template.
1047   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1048 
1049   // If this member is an explicit member specialization, and it has
1050   // an explicit attribute, ignore visibility from the parent.
1051   bool considerClassVisibility = true;
1052   if (explicitSpecSuppressor &&
1053       // optimization: hasDVA() is true only with explicit visibility.
1054       LV.isVisibilityExplicit() &&
1055       classLV.getVisibility() != DefaultVisibility &&
1056       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1057     considerClassVisibility = false;
1058   }
1059 
1060   // Finally, merge in information from the class.
1061   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1062   return LV;
1063 }
1064 
1065 void NamedDecl::anchor() {}
1066 
1067 bool NamedDecl::isLinkageValid() const {
1068   if (!hasCachedLinkage())
1069     return true;
1070 
1071   Linkage L = LinkageComputer{}
1072                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1073                   .getLinkage();
1074   return L == getCachedLinkage();
1075 }
1076 
1077 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1078   StringRef name = getName();
1079   if (name.empty()) return SFF_None;
1080 
1081   if (name.front() == 'C')
1082     if (name == "CFStringCreateWithFormat" ||
1083         name == "CFStringCreateWithFormatAndArguments" ||
1084         name == "CFStringAppendFormat" ||
1085         name == "CFStringAppendFormatAndArguments")
1086       return SFF_CFString;
1087   return SFF_None;
1088 }
1089 
1090 Linkage NamedDecl::getLinkageInternal() const {
1091   // We don't care about visibility here, so ask for the cheapest
1092   // possible visibility analysis.
1093   return LinkageComputer{}
1094       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1095       .getLinkage();
1096 }
1097 
1098 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1099   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1100 }
1101 
1102 static Optional<Visibility>
1103 getExplicitVisibilityAux(const NamedDecl *ND,
1104                          NamedDecl::ExplicitVisibilityKind kind,
1105                          bool IsMostRecent) {
1106   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1107 
1108   // Check the declaration itself first.
1109   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1110     return V;
1111 
1112   // If this is a member class of a specialization of a class template
1113   // and the corresponding decl has explicit visibility, use that.
1114   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1115     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1116     if (InstantiatedFrom)
1117       return getVisibilityOf(InstantiatedFrom, kind);
1118   }
1119 
1120   // If there wasn't explicit visibility there, and this is a
1121   // specialization of a class template, check for visibility
1122   // on the pattern.
1123   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1124     // Walk all the template decl till this point to see if there are
1125     // explicit visibility attributes.
1126     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1127     while (TD != nullptr) {
1128       auto Vis = getVisibilityOf(TD, kind);
1129       if (Vis != None)
1130         return Vis;
1131       TD = TD->getPreviousDecl();
1132     }
1133     return None;
1134   }
1135 
1136   // Use the most recent declaration.
1137   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1138     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1139     if (MostRecent != ND)
1140       return getExplicitVisibilityAux(MostRecent, kind, true);
1141   }
1142 
1143   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1144     if (Var->isStaticDataMember()) {
1145       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1146       if (InstantiatedFrom)
1147         return getVisibilityOf(InstantiatedFrom, kind);
1148     }
1149 
1150     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1151       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1152                              kind);
1153 
1154     return None;
1155   }
1156   // Also handle function template specializations.
1157   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1158     // If the function is a specialization of a template with an
1159     // explicit visibility attribute, use that.
1160     if (FunctionTemplateSpecializationInfo *templateInfo
1161           = fn->getTemplateSpecializationInfo())
1162       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1163                              kind);
1164 
1165     // If the function is a member of a specialization of a class template
1166     // and the corresponding decl has explicit visibility, use that.
1167     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1168     if (InstantiatedFrom)
1169       return getVisibilityOf(InstantiatedFrom, kind);
1170 
1171     return None;
1172   }
1173 
1174   // The visibility of a template is stored in the templated decl.
1175   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1176     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1177 
1178   return None;
1179 }
1180 
1181 Optional<Visibility>
1182 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1183   return getExplicitVisibilityAux(this, kind, false);
1184 }
1185 
1186 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1187                                              Decl *ContextDecl,
1188                                              LVComputationKind computation) {
1189   // This lambda has its linkage/visibility determined by its owner.
1190   const NamedDecl *Owner;
1191   if (!ContextDecl)
1192     Owner = dyn_cast<NamedDecl>(DC);
1193   else if (isa<ParmVarDecl>(ContextDecl))
1194     Owner =
1195         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1196   else
1197     Owner = cast<NamedDecl>(ContextDecl);
1198 
1199   if (!Owner)
1200     return LinkageInfo::none();
1201 
1202   // If the owner has a deduced type, we need to skip querying the linkage and
1203   // visibility of that type, because it might involve this closure type.  The
1204   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1205   // than NoLinkage when we don't strictly need to, which is benign.
1206   auto *VD = dyn_cast<VarDecl>(Owner);
1207   LinkageInfo OwnerLV =
1208       VD && VD->getType()->getContainedDeducedType()
1209           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1210           : getLVForDecl(Owner, computation);
1211 
1212   // A lambda never formally has linkage. But if the owner is externally
1213   // visible, then the lambda is too. We apply the same rules to blocks.
1214   if (!isExternallyVisible(OwnerLV.getLinkage()))
1215     return LinkageInfo::none();
1216   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1217                      OwnerLV.isVisibilityExplicit());
1218 }
1219 
1220 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1221                                                LVComputationKind computation) {
1222   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1223     if (Function->isInAnonymousNamespace() &&
1224         !isFirstInExternCContext(Function))
1225       return getInternalLinkageFor(Function);
1226 
1227     // This is a "void f();" which got merged with a file static.
1228     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1229       return getInternalLinkageFor(Function);
1230 
1231     LinkageInfo LV;
1232     if (!hasExplicitVisibilityAlready(computation)) {
1233       if (Optional<Visibility> Vis =
1234               getExplicitVisibility(Function, computation))
1235         LV.mergeVisibility(*Vis, true);
1236     }
1237 
1238     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1239     // merging storage classes and visibility attributes, so we don't have to
1240     // look at previous decls in here.
1241 
1242     return LV;
1243   }
1244 
1245   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1246     if (Var->hasExternalStorage()) {
1247       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1248         return getInternalLinkageFor(Var);
1249 
1250       LinkageInfo LV;
1251       if (Var->getStorageClass() == SC_PrivateExtern)
1252         LV.mergeVisibility(HiddenVisibility, true);
1253       else if (!hasExplicitVisibilityAlready(computation)) {
1254         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1255           LV.mergeVisibility(*Vis, true);
1256       }
1257 
1258       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1259         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1260         if (PrevLV.getLinkage())
1261           LV.setLinkage(PrevLV.getLinkage());
1262         LV.mergeVisibility(PrevLV);
1263       }
1264 
1265       return LV;
1266     }
1267 
1268     if (!Var->isStaticLocal())
1269       return LinkageInfo::none();
1270   }
1271 
1272   ASTContext &Context = D->getASTContext();
1273   if (!Context.getLangOpts().CPlusPlus)
1274     return LinkageInfo::none();
1275 
1276   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1277   if (!OuterD || OuterD->isInvalidDecl())
1278     return LinkageInfo::none();
1279 
1280   LinkageInfo LV;
1281   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1282     if (!BD->getBlockManglingNumber())
1283       return LinkageInfo::none();
1284 
1285     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1286                          BD->getBlockManglingContextDecl(), computation);
1287   } else {
1288     const auto *FD = cast<FunctionDecl>(OuterD);
1289     if (!FD->isInlined() &&
1290         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1291       return LinkageInfo::none();
1292 
1293     // If a function is hidden by -fvisibility-inlines-hidden option and
1294     // is not explicitly attributed as a hidden function,
1295     // we should not make static local variables in the function hidden.
1296     LV = getLVForDecl(FD, computation);
1297     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1298         !LV.isVisibilityExplicit()) {
1299       assert(cast<VarDecl>(D)->isStaticLocal());
1300       // If this was an implicitly hidden inline method, check again for
1301       // explicit visibility on the parent class, and use that for static locals
1302       // if present.
1303       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1304         LV = getLVForDecl(MD->getParent(), computation);
1305       if (!LV.isVisibilityExplicit()) {
1306         Visibility globalVisibility =
1307             computation.isValueVisibility()
1308                 ? Context.getLangOpts().getValueVisibilityMode()
1309                 : Context.getLangOpts().getTypeVisibilityMode();
1310         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1311                            /*visibilityExplicit=*/false);
1312       }
1313     }
1314   }
1315   if (!isExternallyVisible(LV.getLinkage()))
1316     return LinkageInfo::none();
1317   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1318                      LV.isVisibilityExplicit());
1319 }
1320 
1321 static inline const CXXRecordDecl*
1322 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1323   const CXXRecordDecl *Ret = Record;
1324   while (Record && Record->isLambda()) {
1325     Ret = Record;
1326     if (!Record->getParent()) break;
1327     // Get the Containing Class of this Lambda Class
1328     Record = dyn_cast_or_null<CXXRecordDecl>(
1329       Record->getParent()->getParent());
1330   }
1331   return Ret;
1332 }
1333 
1334 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1335                                               LVComputationKind computation,
1336                                               bool IgnoreVarTypeLinkage) {
1337   // Internal_linkage attribute overrides other considerations.
1338   if (D->hasAttr<InternalLinkageAttr>())
1339     return getInternalLinkageFor(D);
1340 
1341   // Objective-C: treat all Objective-C declarations as having external
1342   // linkage.
1343   switch (D->getKind()) {
1344     default:
1345       break;
1346 
1347     // Per C++ [basic.link]p2, only the names of objects, references,
1348     // functions, types, templates, namespaces, and values ever have linkage.
1349     //
1350     // Note that the name of a typedef, namespace alias, using declaration,
1351     // and so on are not the name of the corresponding type, namespace, or
1352     // declaration, so they do *not* have linkage.
1353     case Decl::ImplicitParam:
1354     case Decl::Label:
1355     case Decl::NamespaceAlias:
1356     case Decl::ParmVar:
1357     case Decl::Using:
1358     case Decl::UsingShadow:
1359     case Decl::UsingDirective:
1360       return LinkageInfo::none();
1361 
1362     case Decl::EnumConstant:
1363       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1364       if (D->getASTContext().getLangOpts().CPlusPlus)
1365         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1366       return LinkageInfo::visible_none();
1367 
1368     case Decl::Typedef:
1369     case Decl::TypeAlias:
1370       // A typedef declaration has linkage if it gives a type a name for
1371       // linkage purposes.
1372       if (!cast<TypedefNameDecl>(D)
1373                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1374         return LinkageInfo::none();
1375       break;
1376 
1377     case Decl::TemplateTemplateParm: // count these as external
1378     case Decl::NonTypeTemplateParm:
1379     case Decl::ObjCAtDefsField:
1380     case Decl::ObjCCategory:
1381     case Decl::ObjCCategoryImpl:
1382     case Decl::ObjCCompatibleAlias:
1383     case Decl::ObjCImplementation:
1384     case Decl::ObjCMethod:
1385     case Decl::ObjCProperty:
1386     case Decl::ObjCPropertyImpl:
1387     case Decl::ObjCProtocol:
1388       return getExternalLinkageFor(D);
1389 
1390     case Decl::CXXRecord: {
1391       const auto *Record = cast<CXXRecordDecl>(D);
1392       if (Record->isLambda()) {
1393         if (Record->hasKnownLambdaInternalLinkage() ||
1394             !Record->getLambdaManglingNumber()) {
1395           // This lambda has no mangling number, so it's internal.
1396           return getInternalLinkageFor(D);
1397         }
1398 
1399         // This lambda has its linkage/visibility determined:
1400         //  - either by the outermost lambda if that lambda has no mangling
1401         //    number.
1402         //  - or by the parent of the outer most lambda
1403         // This prevents infinite recursion in settings such as nested lambdas
1404         // used in NSDMI's, for e.g.
1405         //  struct L {
1406         //    int t{};
1407         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1408         //  };
1409         const CXXRecordDecl *OuterMostLambda =
1410             getOutermostEnclosingLambda(Record);
1411         if (OuterMostLambda->hasKnownLambdaInternalLinkage() ||
1412             !OuterMostLambda->getLambdaManglingNumber())
1413           return getInternalLinkageFor(D);
1414 
1415         return getLVForClosure(
1416                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1417                   OuterMostLambda->getLambdaContextDecl(), computation);
1418       }
1419 
1420       break;
1421     }
1422   }
1423 
1424   // Handle linkage for namespace-scope names.
1425   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1426     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1427 
1428   // C++ [basic.link]p5:
1429   //   In addition, a member function, static data member, a named
1430   //   class or enumeration of class scope, or an unnamed class or
1431   //   enumeration defined in a class-scope typedef declaration such
1432   //   that the class or enumeration has the typedef name for linkage
1433   //   purposes (7.1.3), has external linkage if the name of the class
1434   //   has external linkage.
1435   if (D->getDeclContext()->isRecord())
1436     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1437 
1438   // C++ [basic.link]p6:
1439   //   The name of a function declared in block scope and the name of
1440   //   an object declared by a block scope extern declaration have
1441   //   linkage. If there is a visible declaration of an entity with
1442   //   linkage having the same name and type, ignoring entities
1443   //   declared outside the innermost enclosing namespace scope, the
1444   //   block scope declaration declares that same entity and receives
1445   //   the linkage of the previous declaration. If there is more than
1446   //   one such matching entity, the program is ill-formed. Otherwise,
1447   //   if no matching entity is found, the block scope entity receives
1448   //   external linkage.
1449   if (D->getDeclContext()->isFunctionOrMethod())
1450     return getLVForLocalDecl(D, computation);
1451 
1452   // C++ [basic.link]p6:
1453   //   Names not covered by these rules have no linkage.
1454   return LinkageInfo::none();
1455 }
1456 
1457 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1458 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1459                                           LVComputationKind computation) {
1460   // Internal_linkage attribute overrides other considerations.
1461   if (D->hasAttr<InternalLinkageAttr>())
1462     return getInternalLinkageFor(D);
1463 
1464   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1465     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1466 
1467   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1468     return *LI;
1469 
1470   LinkageInfo LV = computeLVForDecl(D, computation);
1471   if (D->hasCachedLinkage())
1472     assert(D->getCachedLinkage() == LV.getLinkage());
1473 
1474   D->setCachedLinkage(LV.getLinkage());
1475   cache(D, computation, LV);
1476 
1477 #ifndef NDEBUG
1478   // In C (because of gnu inline) and in c++ with microsoft extensions an
1479   // static can follow an extern, so we can have two decls with different
1480   // linkages.
1481   const LangOptions &Opts = D->getASTContext().getLangOpts();
1482   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1483     return LV;
1484 
1485   // We have just computed the linkage for this decl. By induction we know
1486   // that all other computed linkages match, check that the one we just
1487   // computed also does.
1488   NamedDecl *Old = nullptr;
1489   for (auto I : D->redecls()) {
1490     auto *T = cast<NamedDecl>(I);
1491     if (T == D)
1492       continue;
1493     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1494       Old = T;
1495       break;
1496     }
1497   }
1498   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1499 #endif
1500 
1501   return LV;
1502 }
1503 
1504 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1505   return getLVForDecl(D,
1506                       LVComputationKind(usesTypeVisibility(D)
1507                                             ? NamedDecl::VisibilityForType
1508                                             : NamedDecl::VisibilityForValue));
1509 }
1510 
1511 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1512   Module *M = getOwningModule();
1513   if (!M)
1514     return nullptr;
1515 
1516   switch (M->Kind) {
1517   case Module::ModuleMapModule:
1518     // Module map modules have no special linkage semantics.
1519     return nullptr;
1520 
1521   case Module::ModuleInterfaceUnit:
1522     return M;
1523 
1524   case Module::GlobalModuleFragment: {
1525     // External linkage declarations in the global module have no owning module
1526     // for linkage purposes. But internal linkage declarations in the global
1527     // module fragment of a particular module are owned by that module for
1528     // linkage purposes.
1529     if (IgnoreLinkage)
1530       return nullptr;
1531     bool InternalLinkage;
1532     if (auto *ND = dyn_cast<NamedDecl>(this))
1533       InternalLinkage = !ND->hasExternalFormalLinkage();
1534     else {
1535       auto *NSD = dyn_cast<NamespaceDecl>(this);
1536       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1537                         isInAnonymousNamespace();
1538     }
1539     return InternalLinkage ? M->Parent : nullptr;
1540   }
1541 
1542   case Module::PrivateModuleFragment:
1543     // The private module fragment is part of its containing module for linkage
1544     // purposes.
1545     return M->Parent;
1546   }
1547 
1548   llvm_unreachable("unknown module kind");
1549 }
1550 
1551 void NamedDecl::printName(raw_ostream &os) const {
1552   os << Name;
1553 }
1554 
1555 std::string NamedDecl::getQualifiedNameAsString() const {
1556   std::string QualName;
1557   llvm::raw_string_ostream OS(QualName);
1558   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1559   return OS.str();
1560 }
1561 
1562 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1563   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1564 }
1565 
1566 void NamedDecl::printQualifiedName(raw_ostream &OS,
1567                                    const PrintingPolicy &P) const {
1568   if (getDeclContext()->isFunctionOrMethod()) {
1569     // We do not print '(anonymous)' for function parameters without name.
1570     printName(OS);
1571     return;
1572   }
1573   printNestedNameSpecifier(OS, P);
1574   if (getDeclName() || isa<DecompositionDecl>(this))
1575     OS << *this;
1576   else
1577     OS << "(anonymous)";
1578 }
1579 
1580 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1581   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1582 }
1583 
1584 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1585                                          const PrintingPolicy &P) const {
1586   const DeclContext *Ctx = getDeclContext();
1587 
1588   // For ObjC methods and properties, look through categories and use the
1589   // interface as context.
1590   if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1591     if (auto *ID = MD->getClassInterface())
1592       Ctx = ID;
1593   if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1594     if (auto *MD = PD->getGetterMethodDecl())
1595       if (auto *ID = MD->getClassInterface())
1596         Ctx = ID;
1597   }
1598 
1599   if (Ctx->isFunctionOrMethod())
1600     return;
1601 
1602   using ContextsTy = SmallVector<const DeclContext *, 8>;
1603   ContextsTy Contexts;
1604 
1605   // Collect named contexts.
1606   while (Ctx) {
1607     if (isa<NamedDecl>(Ctx))
1608       Contexts.push_back(Ctx);
1609     Ctx = Ctx->getParent();
1610   }
1611 
1612   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1613     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1614       OS << Spec->getName();
1615       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1616       printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1617     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1618       if (P.SuppressUnwrittenScope &&
1619           (ND->isAnonymousNamespace() || ND->isInline()))
1620         continue;
1621       if (ND->isAnonymousNamespace()) {
1622         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1623                                 : "(anonymous namespace)");
1624       }
1625       else
1626         OS << *ND;
1627     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1628       if (!RD->getIdentifier())
1629         OS << "(anonymous " << RD->getKindName() << ')';
1630       else
1631         OS << *RD;
1632     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1633       const FunctionProtoType *FT = nullptr;
1634       if (FD->hasWrittenPrototype())
1635         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1636 
1637       OS << *FD << '(';
1638       if (FT) {
1639         unsigned NumParams = FD->getNumParams();
1640         for (unsigned i = 0; i < NumParams; ++i) {
1641           if (i)
1642             OS << ", ";
1643           OS << FD->getParamDecl(i)->getType().stream(P);
1644         }
1645 
1646         if (FT->isVariadic()) {
1647           if (NumParams > 0)
1648             OS << ", ";
1649           OS << "...";
1650         }
1651       }
1652       OS << ')';
1653     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1654       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1655       // enumerator is declared in the scope that immediately contains
1656       // the enum-specifier. Each scoped enumerator is declared in the
1657       // scope of the enumeration.
1658       // For the case of unscoped enumerator, do not include in the qualified
1659       // name any information about its enum enclosing scope, as its visibility
1660       // is global.
1661       if (ED->isScoped())
1662         OS << *ED;
1663       else
1664         continue;
1665     } else {
1666       OS << *cast<NamedDecl>(DC);
1667     }
1668     OS << "::";
1669   }
1670 }
1671 
1672 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1673                                      const PrintingPolicy &Policy,
1674                                      bool Qualified) const {
1675   if (Qualified)
1676     printQualifiedName(OS, Policy);
1677   else
1678     printName(OS);
1679 }
1680 
1681 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1682   return true;
1683 }
1684 static bool isRedeclarableImpl(...) { return false; }
1685 static bool isRedeclarable(Decl::Kind K) {
1686   switch (K) {
1687 #define DECL(Type, Base) \
1688   case Decl::Type: \
1689     return isRedeclarableImpl((Type##Decl *)nullptr);
1690 #define ABSTRACT_DECL(DECL)
1691 #include "clang/AST/DeclNodes.inc"
1692   }
1693   llvm_unreachable("unknown decl kind");
1694 }
1695 
1696 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1697   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1698 
1699   // Never replace one imported declaration with another; we need both results
1700   // when re-exporting.
1701   if (OldD->isFromASTFile() && isFromASTFile())
1702     return false;
1703 
1704   // A kind mismatch implies that the declaration is not replaced.
1705   if (OldD->getKind() != getKind())
1706     return false;
1707 
1708   // For method declarations, we never replace. (Why?)
1709   if (isa<ObjCMethodDecl>(this))
1710     return false;
1711 
1712   // For parameters, pick the newer one. This is either an error or (in
1713   // Objective-C) permitted as an extension.
1714   if (isa<ParmVarDecl>(this))
1715     return true;
1716 
1717   // Inline namespaces can give us two declarations with the same
1718   // name and kind in the same scope but different contexts; we should
1719   // keep both declarations in this case.
1720   if (!this->getDeclContext()->getRedeclContext()->Equals(
1721           OldD->getDeclContext()->getRedeclContext()))
1722     return false;
1723 
1724   // Using declarations can be replaced if they import the same name from the
1725   // same context.
1726   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1727     ASTContext &Context = getASTContext();
1728     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1729            Context.getCanonicalNestedNameSpecifier(
1730                cast<UsingDecl>(OldD)->getQualifier());
1731   }
1732   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1733     ASTContext &Context = getASTContext();
1734     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1735            Context.getCanonicalNestedNameSpecifier(
1736                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1737   }
1738 
1739   if (isRedeclarable(getKind())) {
1740     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1741       return false;
1742 
1743     if (IsKnownNewer)
1744       return true;
1745 
1746     // Check whether this is actually newer than OldD. We want to keep the
1747     // newer declaration. This loop will usually only iterate once, because
1748     // OldD is usually the previous declaration.
1749     for (auto D : redecls()) {
1750       if (D == OldD)
1751         break;
1752 
1753       // If we reach the canonical declaration, then OldD is not actually older
1754       // than this one.
1755       //
1756       // FIXME: In this case, we should not add this decl to the lookup table.
1757       if (D->isCanonicalDecl())
1758         return false;
1759     }
1760 
1761     // It's a newer declaration of the same kind of declaration in the same
1762     // scope: we want this decl instead of the existing one.
1763     return true;
1764   }
1765 
1766   // In all other cases, we need to keep both declarations in case they have
1767   // different visibility. Any attempt to use the name will result in an
1768   // ambiguity if more than one is visible.
1769   return false;
1770 }
1771 
1772 bool NamedDecl::hasLinkage() const {
1773   return getFormalLinkage() != NoLinkage;
1774 }
1775 
1776 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1777   NamedDecl *ND = this;
1778   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1779     ND = UD->getTargetDecl();
1780 
1781   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1782     return AD->getClassInterface();
1783 
1784   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1785     return AD->getNamespace();
1786 
1787   return ND;
1788 }
1789 
1790 bool NamedDecl::isCXXInstanceMember() const {
1791   if (!isCXXClassMember())
1792     return false;
1793 
1794   const NamedDecl *D = this;
1795   if (isa<UsingShadowDecl>(D))
1796     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1797 
1798   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1799     return true;
1800   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1801     return MD->isInstance();
1802   return false;
1803 }
1804 
1805 //===----------------------------------------------------------------------===//
1806 // DeclaratorDecl Implementation
1807 //===----------------------------------------------------------------------===//
1808 
1809 template <typename DeclT>
1810 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1811   if (decl->getNumTemplateParameterLists() > 0)
1812     return decl->getTemplateParameterList(0)->getTemplateLoc();
1813   else
1814     return decl->getInnerLocStart();
1815 }
1816 
1817 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1818   TypeSourceInfo *TSI = getTypeSourceInfo();
1819   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1820   return SourceLocation();
1821 }
1822 
1823 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1824   TypeSourceInfo *TSI = getTypeSourceInfo();
1825   if (TSI) return TSI->getTypeLoc().getEndLoc();
1826   return SourceLocation();
1827 }
1828 
1829 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1830   if (QualifierLoc) {
1831     // Make sure the extended decl info is allocated.
1832     if (!hasExtInfo()) {
1833       // Save (non-extended) type source info pointer.
1834       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1835       // Allocate external info struct.
1836       DeclInfo = new (getASTContext()) ExtInfo;
1837       // Restore savedTInfo into (extended) decl info.
1838       getExtInfo()->TInfo = savedTInfo;
1839     }
1840     // Set qualifier info.
1841     getExtInfo()->QualifierLoc = QualifierLoc;
1842   } else if (hasExtInfo()) {
1843     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1844     getExtInfo()->QualifierLoc = QualifierLoc;
1845   }
1846 }
1847 
1848 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1849   assert(TrailingRequiresClause);
1850   // Make sure the extended decl info is allocated.
1851   if (!hasExtInfo()) {
1852     // Save (non-extended) type source info pointer.
1853     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1854     // Allocate external info struct.
1855     DeclInfo = new (getASTContext()) ExtInfo;
1856     // Restore savedTInfo into (extended) decl info.
1857     getExtInfo()->TInfo = savedTInfo;
1858   }
1859   // Set requires clause info.
1860   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1861 }
1862 
1863 void DeclaratorDecl::setTemplateParameterListsInfo(
1864     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1865   assert(!TPLists.empty());
1866   // Make sure the extended decl info is allocated.
1867   if (!hasExtInfo()) {
1868     // Save (non-extended) type source info pointer.
1869     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1870     // Allocate external info struct.
1871     DeclInfo = new (getASTContext()) ExtInfo;
1872     // Restore savedTInfo into (extended) decl info.
1873     getExtInfo()->TInfo = savedTInfo;
1874   }
1875   // Set the template parameter lists info.
1876   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1877 }
1878 
1879 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1880   return getTemplateOrInnerLocStart(this);
1881 }
1882 
1883 // Helper function: returns true if QT is or contains a type
1884 // having a postfix component.
1885 static bool typeIsPostfix(QualType QT) {
1886   while (true) {
1887     const Type* T = QT.getTypePtr();
1888     switch (T->getTypeClass()) {
1889     default:
1890       return false;
1891     case Type::Pointer:
1892       QT = cast<PointerType>(T)->getPointeeType();
1893       break;
1894     case Type::BlockPointer:
1895       QT = cast<BlockPointerType>(T)->getPointeeType();
1896       break;
1897     case Type::MemberPointer:
1898       QT = cast<MemberPointerType>(T)->getPointeeType();
1899       break;
1900     case Type::LValueReference:
1901     case Type::RValueReference:
1902       QT = cast<ReferenceType>(T)->getPointeeType();
1903       break;
1904     case Type::PackExpansion:
1905       QT = cast<PackExpansionType>(T)->getPattern();
1906       break;
1907     case Type::Paren:
1908     case Type::ConstantArray:
1909     case Type::DependentSizedArray:
1910     case Type::IncompleteArray:
1911     case Type::VariableArray:
1912     case Type::FunctionProto:
1913     case Type::FunctionNoProto:
1914       return true;
1915     }
1916   }
1917 }
1918 
1919 SourceRange DeclaratorDecl::getSourceRange() const {
1920   SourceLocation RangeEnd = getLocation();
1921   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1922     // If the declaration has no name or the type extends past the name take the
1923     // end location of the type.
1924     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1925       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1926   }
1927   return SourceRange(getOuterLocStart(), RangeEnd);
1928 }
1929 
1930 void QualifierInfo::setTemplateParameterListsInfo(
1931     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1932   // Free previous template parameters (if any).
1933   if (NumTemplParamLists > 0) {
1934     Context.Deallocate(TemplParamLists);
1935     TemplParamLists = nullptr;
1936     NumTemplParamLists = 0;
1937   }
1938   // Set info on matched template parameter lists (if any).
1939   if (!TPLists.empty()) {
1940     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1941     NumTemplParamLists = TPLists.size();
1942     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1943   }
1944 }
1945 
1946 //===----------------------------------------------------------------------===//
1947 // VarDecl Implementation
1948 //===----------------------------------------------------------------------===//
1949 
1950 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1951   switch (SC) {
1952   case SC_None:                 break;
1953   case SC_Auto:                 return "auto";
1954   case SC_Extern:               return "extern";
1955   case SC_PrivateExtern:        return "__private_extern__";
1956   case SC_Register:             return "register";
1957   case SC_Static:               return "static";
1958   }
1959 
1960   llvm_unreachable("Invalid storage class");
1961 }
1962 
1963 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1964                  SourceLocation StartLoc, SourceLocation IdLoc,
1965                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1966                  StorageClass SC)
1967     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1968       redeclarable_base(C) {
1969   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1970                 "VarDeclBitfields too large!");
1971   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1972                 "ParmVarDeclBitfields too large!");
1973   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1974                 "NonParmVarDeclBitfields too large!");
1975   AllBits = 0;
1976   VarDeclBits.SClass = SC;
1977   // Everything else is implicitly initialized to false.
1978 }
1979 
1980 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1981                          SourceLocation StartL, SourceLocation IdL,
1982                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1983                          StorageClass S) {
1984   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1985 }
1986 
1987 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1988   return new (C, ID)
1989       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1990               QualType(), nullptr, SC_None);
1991 }
1992 
1993 void VarDecl::setStorageClass(StorageClass SC) {
1994   assert(isLegalForVariable(SC));
1995   VarDeclBits.SClass = SC;
1996 }
1997 
1998 VarDecl::TLSKind VarDecl::getTLSKind() const {
1999   switch (VarDeclBits.TSCSpec) {
2000   case TSCS_unspecified:
2001     if (!hasAttr<ThreadAttr>() &&
2002         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2003           getASTContext().getTargetInfo().isTLSSupported() &&
2004           hasAttr<OMPThreadPrivateDeclAttr>()))
2005       return TLS_None;
2006     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2007                 LangOptions::MSVC2015)) ||
2008             hasAttr<OMPThreadPrivateDeclAttr>())
2009                ? TLS_Dynamic
2010                : TLS_Static;
2011   case TSCS___thread: // Fall through.
2012   case TSCS__Thread_local:
2013     return TLS_Static;
2014   case TSCS_thread_local:
2015     return TLS_Dynamic;
2016   }
2017   llvm_unreachable("Unknown thread storage class specifier!");
2018 }
2019 
2020 SourceRange VarDecl::getSourceRange() const {
2021   if (const Expr *Init = getInit()) {
2022     SourceLocation InitEnd = Init->getEndLoc();
2023     // If Init is implicit, ignore its source range and fallback on
2024     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2025     if (InitEnd.isValid() && InitEnd != getLocation())
2026       return SourceRange(getOuterLocStart(), InitEnd);
2027   }
2028   return DeclaratorDecl::getSourceRange();
2029 }
2030 
2031 template<typename T>
2032 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2033   // C++ [dcl.link]p1: All function types, function names with external linkage,
2034   // and variable names with external linkage have a language linkage.
2035   if (!D.hasExternalFormalLinkage())
2036     return NoLanguageLinkage;
2037 
2038   // Language linkage is a C++ concept, but saying that everything else in C has
2039   // C language linkage fits the implementation nicely.
2040   ASTContext &Context = D.getASTContext();
2041   if (!Context.getLangOpts().CPlusPlus)
2042     return CLanguageLinkage;
2043 
2044   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2045   // language linkage of the names of class members and the function type of
2046   // class member functions.
2047   const DeclContext *DC = D.getDeclContext();
2048   if (DC->isRecord())
2049     return CXXLanguageLinkage;
2050 
2051   // If the first decl is in an extern "C" context, any other redeclaration
2052   // will have C language linkage. If the first one is not in an extern "C"
2053   // context, we would have reported an error for any other decl being in one.
2054   if (isFirstInExternCContext(&D))
2055     return CLanguageLinkage;
2056   return CXXLanguageLinkage;
2057 }
2058 
2059 template<typename T>
2060 static bool isDeclExternC(const T &D) {
2061   // Since the context is ignored for class members, they can only have C++
2062   // language linkage or no language linkage.
2063   const DeclContext *DC = D.getDeclContext();
2064   if (DC->isRecord()) {
2065     assert(D.getASTContext().getLangOpts().CPlusPlus);
2066     return false;
2067   }
2068 
2069   return D.getLanguageLinkage() == CLanguageLinkage;
2070 }
2071 
2072 LanguageLinkage VarDecl::getLanguageLinkage() const {
2073   return getDeclLanguageLinkage(*this);
2074 }
2075 
2076 bool VarDecl::isExternC() const {
2077   return isDeclExternC(*this);
2078 }
2079 
2080 bool VarDecl::isInExternCContext() const {
2081   return getLexicalDeclContext()->isExternCContext();
2082 }
2083 
2084 bool VarDecl::isInExternCXXContext() const {
2085   return getLexicalDeclContext()->isExternCXXContext();
2086 }
2087 
2088 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2089 
2090 VarDecl::DefinitionKind
2091 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2092   if (isThisDeclarationADemotedDefinition())
2093     return DeclarationOnly;
2094 
2095   // C++ [basic.def]p2:
2096   //   A declaration is a definition unless [...] it contains the 'extern'
2097   //   specifier or a linkage-specification and neither an initializer [...],
2098   //   it declares a non-inline static data member in a class declaration [...],
2099   //   it declares a static data member outside a class definition and the variable
2100   //   was defined within the class with the constexpr specifier [...],
2101   // C++1y [temp.expl.spec]p15:
2102   //   An explicit specialization of a static data member or an explicit
2103   //   specialization of a static data member template is a definition if the
2104   //   declaration includes an initializer; otherwise, it is a declaration.
2105   //
2106   // FIXME: How do you declare (but not define) a partial specialization of
2107   // a static data member template outside the containing class?
2108   if (isStaticDataMember()) {
2109     if (isOutOfLine() &&
2110         !(getCanonicalDecl()->isInline() &&
2111           getCanonicalDecl()->isConstexpr()) &&
2112         (hasInit() ||
2113          // If the first declaration is out-of-line, this may be an
2114          // instantiation of an out-of-line partial specialization of a variable
2115          // template for which we have not yet instantiated the initializer.
2116          (getFirstDecl()->isOutOfLine()
2117               ? getTemplateSpecializationKind() == TSK_Undeclared
2118               : getTemplateSpecializationKind() !=
2119                     TSK_ExplicitSpecialization) ||
2120          isa<VarTemplatePartialSpecializationDecl>(this)))
2121       return Definition;
2122     else if (!isOutOfLine() && isInline())
2123       return Definition;
2124     else
2125       return DeclarationOnly;
2126   }
2127   // C99 6.7p5:
2128   //   A definition of an identifier is a declaration for that identifier that
2129   //   [...] causes storage to be reserved for that object.
2130   // Note: that applies for all non-file-scope objects.
2131   // C99 6.9.2p1:
2132   //   If the declaration of an identifier for an object has file scope and an
2133   //   initializer, the declaration is an external definition for the identifier
2134   if (hasInit())
2135     return Definition;
2136 
2137   if (hasDefiningAttr())
2138     return Definition;
2139 
2140   if (const auto *SAA = getAttr<SelectAnyAttr>())
2141     if (!SAA->isInherited())
2142       return Definition;
2143 
2144   // A variable template specialization (other than a static data member
2145   // template or an explicit specialization) is a declaration until we
2146   // instantiate its initializer.
2147   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2148     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2149         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2150         !VTSD->IsCompleteDefinition)
2151       return DeclarationOnly;
2152   }
2153 
2154   if (hasExternalStorage())
2155     return DeclarationOnly;
2156 
2157   // [dcl.link] p7:
2158   //   A declaration directly contained in a linkage-specification is treated
2159   //   as if it contains the extern specifier for the purpose of determining
2160   //   the linkage of the declared name and whether it is a definition.
2161   if (isSingleLineLanguageLinkage(*this))
2162     return DeclarationOnly;
2163 
2164   // C99 6.9.2p2:
2165   //   A declaration of an object that has file scope without an initializer,
2166   //   and without a storage class specifier or the scs 'static', constitutes
2167   //   a tentative definition.
2168   // No such thing in C++.
2169   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2170     return TentativeDefinition;
2171 
2172   // What's left is (in C, block-scope) declarations without initializers or
2173   // external storage. These are definitions.
2174   return Definition;
2175 }
2176 
2177 VarDecl *VarDecl::getActingDefinition() {
2178   DefinitionKind Kind = isThisDeclarationADefinition();
2179   if (Kind != TentativeDefinition)
2180     return nullptr;
2181 
2182   VarDecl *LastTentative = nullptr;
2183   VarDecl *First = getFirstDecl();
2184   for (auto I : First->redecls()) {
2185     Kind = I->isThisDeclarationADefinition();
2186     if (Kind == Definition)
2187       return nullptr;
2188     else if (Kind == TentativeDefinition)
2189       LastTentative = I;
2190   }
2191   return LastTentative;
2192 }
2193 
2194 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2195   VarDecl *First = getFirstDecl();
2196   for (auto I : First->redecls()) {
2197     if (I->isThisDeclarationADefinition(C) == Definition)
2198       return I;
2199   }
2200   return nullptr;
2201 }
2202 
2203 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2204   DefinitionKind Kind = DeclarationOnly;
2205 
2206   const VarDecl *First = getFirstDecl();
2207   for (auto I : First->redecls()) {
2208     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2209     if (Kind == Definition)
2210       break;
2211   }
2212 
2213   return Kind;
2214 }
2215 
2216 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2217   for (auto I : redecls()) {
2218     if (auto Expr = I->getInit()) {
2219       D = I;
2220       return Expr;
2221     }
2222   }
2223   return nullptr;
2224 }
2225 
2226 bool VarDecl::hasInit() const {
2227   if (auto *P = dyn_cast<ParmVarDecl>(this))
2228     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2229       return false;
2230 
2231   return !Init.isNull();
2232 }
2233 
2234 Expr *VarDecl::getInit() {
2235   if (!hasInit())
2236     return nullptr;
2237 
2238   if (auto *S = Init.dyn_cast<Stmt *>())
2239     return cast<Expr>(S);
2240 
2241   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2242 }
2243 
2244 Stmt **VarDecl::getInitAddress() {
2245   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2246     return &ES->Value;
2247 
2248   return Init.getAddrOfPtr1();
2249 }
2250 
2251 VarDecl *VarDecl::getInitializingDeclaration() {
2252   VarDecl *Def = nullptr;
2253   for (auto I : redecls()) {
2254     if (I->hasInit())
2255       return I;
2256 
2257     if (I->isThisDeclarationADefinition()) {
2258       if (isStaticDataMember())
2259         return I;
2260       else
2261         Def = I;
2262     }
2263   }
2264   return Def;
2265 }
2266 
2267 bool VarDecl::isOutOfLine() const {
2268   if (Decl::isOutOfLine())
2269     return true;
2270 
2271   if (!isStaticDataMember())
2272     return false;
2273 
2274   // If this static data member was instantiated from a static data member of
2275   // a class template, check whether that static data member was defined
2276   // out-of-line.
2277   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2278     return VD->isOutOfLine();
2279 
2280   return false;
2281 }
2282 
2283 void VarDecl::setInit(Expr *I) {
2284   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2285     Eval->~EvaluatedStmt();
2286     getASTContext().Deallocate(Eval);
2287   }
2288 
2289   Init = I;
2290 }
2291 
2292 bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const {
2293   const LangOptions &Lang = C.getLangOpts();
2294 
2295   if (!Lang.CPlusPlus)
2296     return false;
2297 
2298   // Function parameters are never usable in constant expressions.
2299   if (isa<ParmVarDecl>(this))
2300     return false;
2301 
2302   // In C++11, any variable of reference type can be used in a constant
2303   // expression if it is initialized by a constant expression.
2304   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2305     return true;
2306 
2307   // Only const objects can be used in constant expressions in C++. C++98 does
2308   // not require the variable to be non-volatile, but we consider this to be a
2309   // defect.
2310   if (!getType().isConstQualified() || getType().isVolatileQualified())
2311     return false;
2312 
2313   // In C++, const, non-volatile variables of integral or enumeration types
2314   // can be used in constant expressions.
2315   if (getType()->isIntegralOrEnumerationType())
2316     return true;
2317 
2318   // Additionally, in C++11, non-volatile constexpr variables can be used in
2319   // constant expressions.
2320   return Lang.CPlusPlus11 && isConstexpr();
2321 }
2322 
2323 bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const {
2324   // C++2a [expr.const]p3:
2325   //   A variable is usable in constant expressions after its initializing
2326   //   declaration is encountered...
2327   const VarDecl *DefVD = nullptr;
2328   const Expr *Init = getAnyInitializer(DefVD);
2329   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2330     return false;
2331   //   ... if it is a constexpr variable, or it is of reference type or of
2332   //   const-qualified integral or enumeration type, ...
2333   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2334     return false;
2335   //   ... and its initializer is a constant initializer.
2336   return DefVD->checkInitIsICE();
2337 }
2338 
2339 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2340 /// form, which contains extra information on the evaluated value of the
2341 /// initializer.
2342 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2343   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2344   if (!Eval) {
2345     // Note: EvaluatedStmt contains an APValue, which usually holds
2346     // resources not allocated from the ASTContext.  We need to do some
2347     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2348     // where we can detect whether there's anything to clean up or not.
2349     Eval = new (getASTContext()) EvaluatedStmt;
2350     Eval->Value = Init.get<Stmt *>();
2351     Init = Eval;
2352   }
2353   return Eval;
2354 }
2355 
2356 APValue *VarDecl::evaluateValue() const {
2357   SmallVector<PartialDiagnosticAt, 8> Notes;
2358   return evaluateValue(Notes);
2359 }
2360 
2361 APValue *VarDecl::evaluateValue(
2362     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2363   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2364 
2365   // We only produce notes indicating why an initializer is non-constant the
2366   // first time it is evaluated. FIXME: The notes won't always be emitted the
2367   // first time we try evaluation, so might not be produced at all.
2368   if (Eval->WasEvaluated)
2369     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2370 
2371   const auto *Init = cast<Expr>(Eval->Value);
2372   assert(!Init->isValueDependent());
2373 
2374   if (Eval->IsEvaluating) {
2375     // FIXME: Produce a diagnostic for self-initialization.
2376     Eval->CheckedICE = true;
2377     Eval->IsICE = false;
2378     return nullptr;
2379   }
2380 
2381   Eval->IsEvaluating = true;
2382 
2383   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2384                                             this, Notes);
2385 
2386   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2387   // or that it's empty (so that there's nothing to clean up) if evaluation
2388   // failed.
2389   if (!Result)
2390     Eval->Evaluated = APValue();
2391   else if (Eval->Evaluated.needsCleanup())
2392     getASTContext().addDestruction(&Eval->Evaluated);
2393 
2394   Eval->IsEvaluating = false;
2395   Eval->WasEvaluated = true;
2396 
2397   // In C++11, we have determined whether the initializer was a constant
2398   // expression as a side-effect.
2399   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2400     Eval->CheckedICE = true;
2401     Eval->IsICE = Result && Notes.empty();
2402   }
2403 
2404   return Result ? &Eval->Evaluated : nullptr;
2405 }
2406 
2407 APValue *VarDecl::getEvaluatedValue() const {
2408   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2409     if (Eval->WasEvaluated)
2410       return &Eval->Evaluated;
2411 
2412   return nullptr;
2413 }
2414 
2415 bool VarDecl::isInitKnownICE() const {
2416   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2417     return Eval->CheckedICE;
2418 
2419   return false;
2420 }
2421 
2422 bool VarDecl::isInitICE() const {
2423   assert(isInitKnownICE() &&
2424          "Check whether we already know that the initializer is an ICE");
2425   return Init.get<EvaluatedStmt *>()->IsICE;
2426 }
2427 
2428 bool VarDecl::checkInitIsICE() const {
2429   // Initializers of weak variables are never ICEs.
2430   if (isWeak())
2431     return false;
2432 
2433   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2434   if (Eval->CheckedICE)
2435     // We have already checked whether this subexpression is an
2436     // integral constant expression.
2437     return Eval->IsICE;
2438 
2439   const auto *Init = cast<Expr>(Eval->Value);
2440   assert(!Init->isValueDependent());
2441 
2442   // In C++11, evaluate the initializer to check whether it's a constant
2443   // expression.
2444   if (getASTContext().getLangOpts().CPlusPlus11) {
2445     SmallVector<PartialDiagnosticAt, 8> Notes;
2446     evaluateValue(Notes);
2447     return Eval->IsICE;
2448   }
2449 
2450   // It's an ICE whether or not the definition we found is
2451   // out-of-line.  See DR 721 and the discussion in Clang PR
2452   // 6206 for details.
2453 
2454   if (Eval->CheckingICE)
2455     return false;
2456   Eval->CheckingICE = true;
2457 
2458   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2459   Eval->CheckingICE = false;
2460   Eval->CheckedICE = true;
2461   return Eval->IsICE;
2462 }
2463 
2464 bool VarDecl::isParameterPack() const {
2465   return isa<PackExpansionType>(getType());
2466 }
2467 
2468 template<typename DeclT>
2469 static DeclT *getDefinitionOrSelf(DeclT *D) {
2470   assert(D);
2471   if (auto *Def = D->getDefinition())
2472     return Def;
2473   return D;
2474 }
2475 
2476 bool VarDecl::isEscapingByref() const {
2477   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2478 }
2479 
2480 bool VarDecl::isNonEscapingByref() const {
2481   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2482 }
2483 
2484 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2485   const VarDecl *VD = this;
2486 
2487   // If this is an instantiated member, walk back to the template from which
2488   // it was instantiated.
2489   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2490     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2491       VD = VD->getInstantiatedFromStaticDataMember();
2492       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2493         VD = NewVD;
2494     }
2495   }
2496 
2497   // If it's an instantiated variable template specialization, find the
2498   // template or partial specialization from which it was instantiated.
2499   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2500     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2501       auto From = VDTemplSpec->getInstantiatedFrom();
2502       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2503         while (!VTD->isMemberSpecialization()) {
2504           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2505           if (!NewVTD)
2506             break;
2507           VTD = NewVTD;
2508         }
2509         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2510       }
2511       if (auto *VTPSD =
2512               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2513         while (!VTPSD->isMemberSpecialization()) {
2514           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2515           if (!NewVTPSD)
2516             break;
2517           VTPSD = NewVTPSD;
2518         }
2519         return getDefinitionOrSelf<VarDecl>(VTPSD);
2520       }
2521     }
2522   }
2523 
2524   // If this is the pattern of a variable template, find where it was
2525   // instantiated from. FIXME: Is this necessary?
2526   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2527     while (!VarTemplate->isMemberSpecialization()) {
2528       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2529       if (!NewVT)
2530         break;
2531       VarTemplate = NewVT;
2532     }
2533 
2534     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2535   }
2536 
2537   if (VD == this)
2538     return nullptr;
2539   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2540 }
2541 
2542 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2543   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2544     return cast<VarDecl>(MSI->getInstantiatedFrom());
2545 
2546   return nullptr;
2547 }
2548 
2549 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2550   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2551     return Spec->getSpecializationKind();
2552 
2553   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2554     return MSI->getTemplateSpecializationKind();
2555 
2556   return TSK_Undeclared;
2557 }
2558 
2559 TemplateSpecializationKind
2560 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2561   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2562     return MSI->getTemplateSpecializationKind();
2563 
2564   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2565     return Spec->getSpecializationKind();
2566 
2567   return TSK_Undeclared;
2568 }
2569 
2570 SourceLocation VarDecl::getPointOfInstantiation() const {
2571   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2572     return Spec->getPointOfInstantiation();
2573 
2574   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2575     return MSI->getPointOfInstantiation();
2576 
2577   return SourceLocation();
2578 }
2579 
2580 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2581   return getASTContext().getTemplateOrSpecializationInfo(this)
2582       .dyn_cast<VarTemplateDecl *>();
2583 }
2584 
2585 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2586   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2587 }
2588 
2589 bool VarDecl::isKnownToBeDefined() const {
2590   const auto &LangOpts = getASTContext().getLangOpts();
2591   // In CUDA mode without relocatable device code, variables of form 'extern
2592   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2593   // memory pool.  These are never undefined variables, even if they appear
2594   // inside of an anon namespace or static function.
2595   //
2596   // With CUDA relocatable device code enabled, these variables don't get
2597   // special handling; they're treated like regular extern variables.
2598   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2599       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2600       isa<IncompleteArrayType>(getType()))
2601     return true;
2602 
2603   return hasDefinition();
2604 }
2605 
2606 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2607   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2608                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2609                                  !hasAttr<AlwaysDestroyAttr>()));
2610 }
2611 
2612 QualType::DestructionKind
2613 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2614   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2615     if (Eval->HasConstantDestruction)
2616       return QualType::DK_none;
2617 
2618   if (isNoDestroy(Ctx))
2619     return QualType::DK_none;
2620 
2621   return getType().isDestructedType();
2622 }
2623 
2624 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2625   if (isStaticDataMember())
2626     // FIXME: Remove ?
2627     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2628     return getASTContext().getTemplateOrSpecializationInfo(this)
2629         .dyn_cast<MemberSpecializationInfo *>();
2630   return nullptr;
2631 }
2632 
2633 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2634                                          SourceLocation PointOfInstantiation) {
2635   assert((isa<VarTemplateSpecializationDecl>(this) ||
2636           getMemberSpecializationInfo()) &&
2637          "not a variable or static data member template specialization");
2638 
2639   if (VarTemplateSpecializationDecl *Spec =
2640           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2641     Spec->setSpecializationKind(TSK);
2642     if (TSK != TSK_ExplicitSpecialization &&
2643         PointOfInstantiation.isValid() &&
2644         Spec->getPointOfInstantiation().isInvalid()) {
2645       Spec->setPointOfInstantiation(PointOfInstantiation);
2646       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2647         L->InstantiationRequested(this);
2648     }
2649   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2650     MSI->setTemplateSpecializationKind(TSK);
2651     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2652         MSI->getPointOfInstantiation().isInvalid()) {
2653       MSI->setPointOfInstantiation(PointOfInstantiation);
2654       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2655         L->InstantiationRequested(this);
2656     }
2657   }
2658 }
2659 
2660 void
2661 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2662                                             TemplateSpecializationKind TSK) {
2663   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2664          "Previous template or instantiation?");
2665   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2666 }
2667 
2668 //===----------------------------------------------------------------------===//
2669 // ParmVarDecl Implementation
2670 //===----------------------------------------------------------------------===//
2671 
2672 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2673                                  SourceLocation StartLoc,
2674                                  SourceLocation IdLoc, IdentifierInfo *Id,
2675                                  QualType T, TypeSourceInfo *TInfo,
2676                                  StorageClass S, Expr *DefArg) {
2677   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2678                                  S, DefArg);
2679 }
2680 
2681 QualType ParmVarDecl::getOriginalType() const {
2682   TypeSourceInfo *TSI = getTypeSourceInfo();
2683   QualType T = TSI ? TSI->getType() : getType();
2684   if (const auto *DT = dyn_cast<DecayedType>(T))
2685     return DT->getOriginalType();
2686   return T;
2687 }
2688 
2689 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2690   return new (C, ID)
2691       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2692                   nullptr, QualType(), nullptr, SC_None, nullptr);
2693 }
2694 
2695 SourceRange ParmVarDecl::getSourceRange() const {
2696   if (!hasInheritedDefaultArg()) {
2697     SourceRange ArgRange = getDefaultArgRange();
2698     if (ArgRange.isValid())
2699       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2700   }
2701 
2702   // DeclaratorDecl considers the range of postfix types as overlapping with the
2703   // declaration name, but this is not the case with parameters in ObjC methods.
2704   if (isa<ObjCMethodDecl>(getDeclContext()))
2705     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2706 
2707   return DeclaratorDecl::getSourceRange();
2708 }
2709 
2710 Expr *ParmVarDecl::getDefaultArg() {
2711   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2712   assert(!hasUninstantiatedDefaultArg() &&
2713          "Default argument is not yet instantiated!");
2714 
2715   Expr *Arg = getInit();
2716   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2717     return E->getSubExpr();
2718 
2719   return Arg;
2720 }
2721 
2722 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2723   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2724   Init = defarg;
2725 }
2726 
2727 SourceRange ParmVarDecl::getDefaultArgRange() const {
2728   switch (ParmVarDeclBits.DefaultArgKind) {
2729   case DAK_None:
2730   case DAK_Unparsed:
2731     // Nothing we can do here.
2732     return SourceRange();
2733 
2734   case DAK_Uninstantiated:
2735     return getUninstantiatedDefaultArg()->getSourceRange();
2736 
2737   case DAK_Normal:
2738     if (const Expr *E = getInit())
2739       return E->getSourceRange();
2740 
2741     // Missing an actual expression, may be invalid.
2742     return SourceRange();
2743   }
2744   llvm_unreachable("Invalid default argument kind.");
2745 }
2746 
2747 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2748   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2749   Init = arg;
2750 }
2751 
2752 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2753   assert(hasUninstantiatedDefaultArg() &&
2754          "Wrong kind of initialization expression!");
2755   return cast_or_null<Expr>(Init.get<Stmt *>());
2756 }
2757 
2758 bool ParmVarDecl::hasDefaultArg() const {
2759   // FIXME: We should just return false for DAK_None here once callers are
2760   // prepared for the case that we encountered an invalid default argument and
2761   // were unable to even build an invalid expression.
2762   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2763          !Init.isNull();
2764 }
2765 
2766 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2767   getASTContext().setParameterIndex(this, parameterIndex);
2768   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2769 }
2770 
2771 unsigned ParmVarDecl::getParameterIndexLarge() const {
2772   return getASTContext().getParameterIndex(this);
2773 }
2774 
2775 //===----------------------------------------------------------------------===//
2776 // FunctionDecl Implementation
2777 //===----------------------------------------------------------------------===//
2778 
2779 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2780                            SourceLocation StartLoc,
2781                            const DeclarationNameInfo &NameInfo, QualType T,
2782                            TypeSourceInfo *TInfo, StorageClass S,
2783                            bool isInlineSpecified,
2784                            ConstexprSpecKind ConstexprKind,
2785                            Expr *TrailingRequiresClause)
2786     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2787                      StartLoc),
2788       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2789       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2790   assert(T.isNull() || T->isFunctionType());
2791   FunctionDeclBits.SClass = S;
2792   FunctionDeclBits.IsInline = isInlineSpecified;
2793   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2794   FunctionDeclBits.IsVirtualAsWritten = false;
2795   FunctionDeclBits.IsPure = false;
2796   FunctionDeclBits.HasInheritedPrototype = false;
2797   FunctionDeclBits.HasWrittenPrototype = true;
2798   FunctionDeclBits.IsDeleted = false;
2799   FunctionDeclBits.IsTrivial = false;
2800   FunctionDeclBits.IsTrivialForCall = false;
2801   FunctionDeclBits.IsDefaulted = false;
2802   FunctionDeclBits.IsExplicitlyDefaulted = false;
2803   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2804   FunctionDeclBits.HasImplicitReturnZero = false;
2805   FunctionDeclBits.IsLateTemplateParsed = false;
2806   FunctionDeclBits.ConstexprKind = ConstexprKind;
2807   FunctionDeclBits.InstantiationIsPending = false;
2808   FunctionDeclBits.UsesSEHTry = false;
2809   FunctionDeclBits.UsesFPIntrin = false;
2810   FunctionDeclBits.HasSkippedBody = false;
2811   FunctionDeclBits.WillHaveBody = false;
2812   FunctionDeclBits.IsMultiVersion = false;
2813   FunctionDeclBits.IsCopyDeductionCandidate = false;
2814   FunctionDeclBits.HasODRHash = false;
2815   if (TrailingRequiresClause)
2816     setTrailingRequiresClause(TrailingRequiresClause);
2817 }
2818 
2819 void FunctionDecl::getNameForDiagnostic(
2820     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2821   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2822   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2823   if (TemplateArgs)
2824     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2825 }
2826 
2827 bool FunctionDecl::isVariadic() const {
2828   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2829     return FT->isVariadic();
2830   return false;
2831 }
2832 
2833 FunctionDecl::DefaultedFunctionInfo *
2834 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2835                                             ArrayRef<DeclAccessPair> Lookups) {
2836   DefaultedFunctionInfo *Info = new (Context.Allocate(
2837       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2838       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2839       DefaultedFunctionInfo;
2840   Info->NumLookups = Lookups.size();
2841   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2842                           Info->getTrailingObjects<DeclAccessPair>());
2843   return Info;
2844 }
2845 
2846 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2847   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2848   assert(!Body && "can't replace function body with defaulted function info");
2849 
2850   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2851   DefaultedInfo = Info;
2852 }
2853 
2854 FunctionDecl::DefaultedFunctionInfo *
2855 FunctionDecl::getDefaultedFunctionInfo() const {
2856   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2857 }
2858 
2859 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2860   for (auto I : redecls()) {
2861     if (I->doesThisDeclarationHaveABody()) {
2862       Definition = I;
2863       return true;
2864     }
2865   }
2866 
2867   return false;
2868 }
2869 
2870 bool FunctionDecl::hasTrivialBody() const {
2871   Stmt *S = getBody();
2872   if (!S) {
2873     // Since we don't have a body for this function, we don't know if it's
2874     // trivial or not.
2875     return false;
2876   }
2877 
2878   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2879     return true;
2880   return false;
2881 }
2882 
2883 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2884   for (auto I : redecls()) {
2885     if (I->isThisDeclarationADefinition()) {
2886       Definition = I;
2887       return true;
2888     }
2889   }
2890 
2891   return false;
2892 }
2893 
2894 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2895   if (!hasBody(Definition))
2896     return nullptr;
2897 
2898   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
2899          "definition should not have a body");
2900   if (Definition->Body)
2901     return Definition->Body.get(getASTContext().getExternalSource());
2902 
2903   return nullptr;
2904 }
2905 
2906 void FunctionDecl::setBody(Stmt *B) {
2907   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2908   Body = LazyDeclStmtPtr(B);
2909   if (B)
2910     EndRangeLoc = B->getEndLoc();
2911 }
2912 
2913 void FunctionDecl::setPure(bool P) {
2914   FunctionDeclBits.IsPure = P;
2915   if (P)
2916     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2917       Parent->markedVirtualFunctionPure();
2918 }
2919 
2920 template<std::size_t Len>
2921 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2922   IdentifierInfo *II = ND->getIdentifier();
2923   return II && II->isStr(Str);
2924 }
2925 
2926 bool FunctionDecl::isMain() const {
2927   const TranslationUnitDecl *tunit =
2928     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2929   return tunit &&
2930          !tunit->getASTContext().getLangOpts().Freestanding &&
2931          isNamed(this, "main");
2932 }
2933 
2934 bool FunctionDecl::isMSVCRTEntryPoint() const {
2935   const TranslationUnitDecl *TUnit =
2936       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2937   if (!TUnit)
2938     return false;
2939 
2940   // Even though we aren't really targeting MSVCRT if we are freestanding,
2941   // semantic analysis for these functions remains the same.
2942 
2943   // MSVCRT entry points only exist on MSVCRT targets.
2944   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2945     return false;
2946 
2947   // Nameless functions like constructors cannot be entry points.
2948   if (!getIdentifier())
2949     return false;
2950 
2951   return llvm::StringSwitch<bool>(getName())
2952       .Cases("main",     // an ANSI console app
2953              "wmain",    // a Unicode console App
2954              "WinMain",  // an ANSI GUI app
2955              "wWinMain", // a Unicode GUI app
2956              "DllMain",  // a DLL
2957              true)
2958       .Default(false);
2959 }
2960 
2961 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2962   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2963   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2964          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2965          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2966          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2967 
2968   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2969     return false;
2970 
2971   const auto *proto = getType()->castAs<FunctionProtoType>();
2972   if (proto->getNumParams() != 2 || proto->isVariadic())
2973     return false;
2974 
2975   ASTContext &Context =
2976     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2977       ->getASTContext();
2978 
2979   // The result type and first argument type are constant across all
2980   // these operators.  The second argument must be exactly void*.
2981   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2982 }
2983 
2984 bool FunctionDecl::isReplaceableGlobalAllocationFunction(bool *IsAligned) const {
2985   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2986     return false;
2987   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2988       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2989       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2990       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2991     return false;
2992 
2993   if (isa<CXXRecordDecl>(getDeclContext()))
2994     return false;
2995 
2996   // This can only fail for an invalid 'operator new' declaration.
2997   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2998     return false;
2999 
3000   const auto *FPT = getType()->castAs<FunctionProtoType>();
3001   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3002     return false;
3003 
3004   // If this is a single-parameter function, it must be a replaceable global
3005   // allocation or deallocation function.
3006   if (FPT->getNumParams() == 1)
3007     return true;
3008 
3009   unsigned Params = 1;
3010   QualType Ty = FPT->getParamType(Params);
3011   ASTContext &Ctx = getASTContext();
3012 
3013   auto Consume = [&] {
3014     ++Params;
3015     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3016   };
3017 
3018   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3019   bool IsSizedDelete = false;
3020   if (Ctx.getLangOpts().SizedDeallocation &&
3021       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3022        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3023       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3024     IsSizedDelete = true;
3025     Consume();
3026   }
3027 
3028   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3029   // new/delete.
3030   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3031     if (IsAligned)
3032       *IsAligned = true;
3033     Consume();
3034   }
3035 
3036   // Finally, if this is not a sized delete, the final parameter can
3037   // be a 'const std::nothrow_t&'.
3038   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3039     Ty = Ty->getPointeeType();
3040     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3041       return false;
3042     if (Ty->isNothrowT())
3043       Consume();
3044   }
3045 
3046   return Params == FPT->getNumParams();
3047 }
3048 
3049 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3050   if (!getBuiltinID())
3051     return false;
3052 
3053   const FunctionDecl *Definition;
3054   return hasBody(Definition) && Definition->isInlineSpecified();
3055 }
3056 
3057 bool FunctionDecl::isDestroyingOperatorDelete() const {
3058   // C++ P0722:
3059   //   Within a class C, a single object deallocation function with signature
3060   //     (T, std::destroying_delete_t, <more params>)
3061   //   is a destroying operator delete.
3062   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3063       getNumParams() < 2)
3064     return false;
3065 
3066   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3067   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3068          RD->getIdentifier()->isStr("destroying_delete_t");
3069 }
3070 
3071 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3072   return getDeclLanguageLinkage(*this);
3073 }
3074 
3075 bool FunctionDecl::isExternC() const {
3076   return isDeclExternC(*this);
3077 }
3078 
3079 bool FunctionDecl::isInExternCContext() const {
3080   if (hasAttr<OpenCLKernelAttr>())
3081     return true;
3082   return getLexicalDeclContext()->isExternCContext();
3083 }
3084 
3085 bool FunctionDecl::isInExternCXXContext() const {
3086   return getLexicalDeclContext()->isExternCXXContext();
3087 }
3088 
3089 bool FunctionDecl::isGlobal() const {
3090   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3091     return Method->isStatic();
3092 
3093   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3094     return false;
3095 
3096   for (const DeclContext *DC = getDeclContext();
3097        DC->isNamespace();
3098        DC = DC->getParent()) {
3099     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3100       if (!Namespace->getDeclName())
3101         return false;
3102       break;
3103     }
3104   }
3105 
3106   return true;
3107 }
3108 
3109 bool FunctionDecl::isNoReturn() const {
3110   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3111       hasAttr<C11NoReturnAttr>())
3112     return true;
3113 
3114   if (auto *FnTy = getType()->getAs<FunctionType>())
3115     return FnTy->getNoReturnAttr();
3116 
3117   return false;
3118 }
3119 
3120 
3121 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3122   if (hasAttr<TargetAttr>())
3123     return MultiVersionKind::Target;
3124   if (hasAttr<CPUDispatchAttr>())
3125     return MultiVersionKind::CPUDispatch;
3126   if (hasAttr<CPUSpecificAttr>())
3127     return MultiVersionKind::CPUSpecific;
3128   return MultiVersionKind::None;
3129 }
3130 
3131 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3132   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3133 }
3134 
3135 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3136   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3137 }
3138 
3139 bool FunctionDecl::isTargetMultiVersion() const {
3140   return isMultiVersion() && hasAttr<TargetAttr>();
3141 }
3142 
3143 void
3144 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3145   redeclarable_base::setPreviousDecl(PrevDecl);
3146 
3147   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3148     FunctionTemplateDecl *PrevFunTmpl
3149       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3150     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3151     FunTmpl->setPreviousDecl(PrevFunTmpl);
3152   }
3153 
3154   if (PrevDecl && PrevDecl->isInlined())
3155     setImplicitlyInline(true);
3156 }
3157 
3158 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3159 
3160 /// Returns a value indicating whether this function corresponds to a builtin
3161 /// function.
3162 ///
3163 /// The function corresponds to a built-in function if it is declared at
3164 /// translation scope or within an extern "C" block and its name matches with
3165 /// the name of a builtin. The returned value will be 0 for functions that do
3166 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3167 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3168 /// value.
3169 ///
3170 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3171 /// functions as their wrapped builtins. This shouldn't be done in general, but
3172 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3173 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3174   unsigned BuiltinID;
3175 
3176   if (const auto *AMAA = getAttr<ArmMveAliasAttr>()) {
3177     BuiltinID = AMAA->getBuiltinName()->getBuiltinID();
3178   } else {
3179     if (!getIdentifier())
3180       return 0;
3181 
3182     BuiltinID = getIdentifier()->getBuiltinID();
3183   }
3184 
3185   if (!BuiltinID)
3186     return 0;
3187 
3188   ASTContext &Context = getASTContext();
3189   if (Context.getLangOpts().CPlusPlus) {
3190     const auto *LinkageDecl =
3191         dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
3192     // In C++, the first declaration of a builtin is always inside an implicit
3193     // extern "C".
3194     // FIXME: A recognised library function may not be directly in an extern "C"
3195     // declaration, for instance "extern "C" { namespace std { decl } }".
3196     if (!LinkageDecl) {
3197       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3198           Context.getTargetInfo().getCXXABI().isMicrosoft())
3199         return Builtin::BI__GetExceptionInfo;
3200       return 0;
3201     }
3202     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3203       return 0;
3204   }
3205 
3206   // If the function is marked "overloadable", it has a different mangled name
3207   // and is not the C library function.
3208   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3209       !hasAttr<ArmMveAliasAttr>())
3210     return 0;
3211 
3212   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3213     return BuiltinID;
3214 
3215   // This function has the name of a known C library
3216   // function. Determine whether it actually refers to the C library
3217   // function or whether it just has the same name.
3218 
3219   // If this is a static function, it's not a builtin.
3220   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3221     return 0;
3222 
3223   // OpenCL v1.2 s6.9.f - The library functions defined in
3224   // the C99 standard headers are not available.
3225   if (Context.getLangOpts().OpenCL &&
3226       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3227     return 0;
3228 
3229   // CUDA does not have device-side standard library. printf and malloc are the
3230   // only special cases that are supported by device-side runtime.
3231   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3232       !hasAttr<CUDAHostAttr>() &&
3233       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3234     return 0;
3235 
3236   return BuiltinID;
3237 }
3238 
3239 /// getNumParams - Return the number of parameters this function must have
3240 /// based on its FunctionType.  This is the length of the ParamInfo array
3241 /// after it has been created.
3242 unsigned FunctionDecl::getNumParams() const {
3243   const auto *FPT = getType()->getAs<FunctionProtoType>();
3244   return FPT ? FPT->getNumParams() : 0;
3245 }
3246 
3247 void FunctionDecl::setParams(ASTContext &C,
3248                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3249   assert(!ParamInfo && "Already has param info!");
3250   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3251 
3252   // Zero params -> null pointer.
3253   if (!NewParamInfo.empty()) {
3254     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3255     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3256   }
3257 }
3258 
3259 /// getMinRequiredArguments - Returns the minimum number of arguments
3260 /// needed to call this function. This may be fewer than the number of
3261 /// function parameters, if some of the parameters have default
3262 /// arguments (in C++) or are parameter packs (C++11).
3263 unsigned FunctionDecl::getMinRequiredArguments() const {
3264   if (!getASTContext().getLangOpts().CPlusPlus)
3265     return getNumParams();
3266 
3267   unsigned NumRequiredArgs = 0;
3268   for (auto *Param : parameters())
3269     if (!Param->isParameterPack() && !Param->hasDefaultArg())
3270       ++NumRequiredArgs;
3271   return NumRequiredArgs;
3272 }
3273 
3274 /// The combination of the extern and inline keywords under MSVC forces
3275 /// the function to be required.
3276 ///
3277 /// Note: This function assumes that we will only get called when isInlined()
3278 /// would return true for this FunctionDecl.
3279 bool FunctionDecl::isMSExternInline() const {
3280   assert(isInlined() && "expected to get called on an inlined function!");
3281 
3282   const ASTContext &Context = getASTContext();
3283   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3284       !hasAttr<DLLExportAttr>())
3285     return false;
3286 
3287   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3288        FD = FD->getPreviousDecl())
3289     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3290       return true;
3291 
3292   return false;
3293 }
3294 
3295 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3296   if (Redecl->getStorageClass() != SC_Extern)
3297     return false;
3298 
3299   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3300        FD = FD->getPreviousDecl())
3301     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3302       return false;
3303 
3304   return true;
3305 }
3306 
3307 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3308   // Only consider file-scope declarations in this test.
3309   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3310     return false;
3311 
3312   // Only consider explicit declarations; the presence of a builtin for a
3313   // libcall shouldn't affect whether a definition is externally visible.
3314   if (Redecl->isImplicit())
3315     return false;
3316 
3317   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3318     return true; // Not an inline definition
3319 
3320   return false;
3321 }
3322 
3323 /// For a function declaration in C or C++, determine whether this
3324 /// declaration causes the definition to be externally visible.
3325 ///
3326 /// For instance, this determines if adding the current declaration to the set
3327 /// of redeclarations of the given functions causes
3328 /// isInlineDefinitionExternallyVisible to change from false to true.
3329 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3330   assert(!doesThisDeclarationHaveABody() &&
3331          "Must have a declaration without a body.");
3332 
3333   ASTContext &Context = getASTContext();
3334 
3335   if (Context.getLangOpts().MSVCCompat) {
3336     const FunctionDecl *Definition;
3337     if (hasBody(Definition) && Definition->isInlined() &&
3338         redeclForcesDefMSVC(this))
3339       return true;
3340   }
3341 
3342   if (Context.getLangOpts().CPlusPlus)
3343     return false;
3344 
3345   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3346     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3347     // an externally visible definition.
3348     //
3349     // FIXME: What happens if gnu_inline gets added on after the first
3350     // declaration?
3351     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3352       return false;
3353 
3354     const FunctionDecl *Prev = this;
3355     bool FoundBody = false;
3356     while ((Prev = Prev->getPreviousDecl())) {
3357       FoundBody |= Prev->doesThisDeclarationHaveABody();
3358 
3359       if (Prev->doesThisDeclarationHaveABody()) {
3360         // If it's not the case that both 'inline' and 'extern' are
3361         // specified on the definition, then it is always externally visible.
3362         if (!Prev->isInlineSpecified() ||
3363             Prev->getStorageClass() != SC_Extern)
3364           return false;
3365       } else if (Prev->isInlineSpecified() &&
3366                  Prev->getStorageClass() != SC_Extern) {
3367         return false;
3368       }
3369     }
3370     return FoundBody;
3371   }
3372 
3373   // C99 6.7.4p6:
3374   //   [...] If all of the file scope declarations for a function in a
3375   //   translation unit include the inline function specifier without extern,
3376   //   then the definition in that translation unit is an inline definition.
3377   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3378     return false;
3379   const FunctionDecl *Prev = this;
3380   bool FoundBody = false;
3381   while ((Prev = Prev->getPreviousDecl())) {
3382     FoundBody |= Prev->doesThisDeclarationHaveABody();
3383     if (RedeclForcesDefC99(Prev))
3384       return false;
3385   }
3386   return FoundBody;
3387 }
3388 
3389 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3390   const TypeSourceInfo *TSI = getTypeSourceInfo();
3391   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3392              : FunctionTypeLoc();
3393 }
3394 
3395 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3396   FunctionTypeLoc FTL = getFunctionTypeLoc();
3397   if (!FTL)
3398     return SourceRange();
3399 
3400   // Skip self-referential return types.
3401   const SourceManager &SM = getASTContext().getSourceManager();
3402   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3403   SourceLocation Boundary = getNameInfo().getBeginLoc();
3404   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3405       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3406     return SourceRange();
3407 
3408   return RTRange;
3409 }
3410 
3411 SourceRange FunctionDecl::getParametersSourceRange() const {
3412   unsigned NP = getNumParams();
3413   SourceLocation EllipsisLoc = getEllipsisLoc();
3414 
3415   if (NP == 0 && EllipsisLoc.isInvalid())
3416     return SourceRange();
3417 
3418   SourceLocation Begin =
3419       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3420   SourceLocation End = EllipsisLoc.isValid()
3421                            ? EllipsisLoc
3422                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3423 
3424   return SourceRange(Begin, End);
3425 }
3426 
3427 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3428   FunctionTypeLoc FTL = getFunctionTypeLoc();
3429   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3430 }
3431 
3432 /// For an inline function definition in C, or for a gnu_inline function
3433 /// in C++, determine whether the definition will be externally visible.
3434 ///
3435 /// Inline function definitions are always available for inlining optimizations.
3436 /// However, depending on the language dialect, declaration specifiers, and
3437 /// attributes, the definition of an inline function may or may not be
3438 /// "externally" visible to other translation units in the program.
3439 ///
3440 /// In C99, inline definitions are not externally visible by default. However,
3441 /// if even one of the global-scope declarations is marked "extern inline", the
3442 /// inline definition becomes externally visible (C99 6.7.4p6).
3443 ///
3444 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3445 /// definition, we use the GNU semantics for inline, which are nearly the
3446 /// opposite of C99 semantics. In particular, "inline" by itself will create
3447 /// an externally visible symbol, but "extern inline" will not create an
3448 /// externally visible symbol.
3449 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3450   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3451           hasAttr<AliasAttr>()) &&
3452          "Must be a function definition");
3453   assert(isInlined() && "Function must be inline");
3454   ASTContext &Context = getASTContext();
3455 
3456   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3457     // Note: If you change the logic here, please change
3458     // doesDeclarationForceExternallyVisibleDefinition as well.
3459     //
3460     // If it's not the case that both 'inline' and 'extern' are
3461     // specified on the definition, then this inline definition is
3462     // externally visible.
3463     if (Context.getLangOpts().CPlusPlus)
3464       return false;
3465     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3466       return true;
3467 
3468     // If any declaration is 'inline' but not 'extern', then this definition
3469     // is externally visible.
3470     for (auto Redecl : redecls()) {
3471       if (Redecl->isInlineSpecified() &&
3472           Redecl->getStorageClass() != SC_Extern)
3473         return true;
3474     }
3475 
3476     return false;
3477   }
3478 
3479   // The rest of this function is C-only.
3480   assert(!Context.getLangOpts().CPlusPlus &&
3481          "should not use C inline rules in C++");
3482 
3483   // C99 6.7.4p6:
3484   //   [...] If all of the file scope declarations for a function in a
3485   //   translation unit include the inline function specifier without extern,
3486   //   then the definition in that translation unit is an inline definition.
3487   for (auto Redecl : redecls()) {
3488     if (RedeclForcesDefC99(Redecl))
3489       return true;
3490   }
3491 
3492   // C99 6.7.4p6:
3493   //   An inline definition does not provide an external definition for the
3494   //   function, and does not forbid an external definition in another
3495   //   translation unit.
3496   return false;
3497 }
3498 
3499 /// getOverloadedOperator - Which C++ overloaded operator this
3500 /// function represents, if any.
3501 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3502   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3503     return getDeclName().getCXXOverloadedOperator();
3504   else
3505     return OO_None;
3506 }
3507 
3508 /// getLiteralIdentifier - The literal suffix identifier this function
3509 /// represents, if any.
3510 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3511   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3512     return getDeclName().getCXXLiteralIdentifier();
3513   else
3514     return nullptr;
3515 }
3516 
3517 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3518   if (TemplateOrSpecialization.isNull())
3519     return TK_NonTemplate;
3520   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3521     return TK_FunctionTemplate;
3522   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3523     return TK_MemberSpecialization;
3524   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3525     return TK_FunctionTemplateSpecialization;
3526   if (TemplateOrSpecialization.is
3527                                <DependentFunctionTemplateSpecializationInfo*>())
3528     return TK_DependentFunctionTemplateSpecialization;
3529 
3530   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3531 }
3532 
3533 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3534   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3535     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3536 
3537   return nullptr;
3538 }
3539 
3540 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3541   if (auto *MSI =
3542           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3543     return MSI;
3544   if (auto *FTSI = TemplateOrSpecialization
3545                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3546     return FTSI->getMemberSpecializationInfo();
3547   return nullptr;
3548 }
3549 
3550 void
3551 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3552                                                FunctionDecl *FD,
3553                                                TemplateSpecializationKind TSK) {
3554   assert(TemplateOrSpecialization.isNull() &&
3555          "Member function is already a specialization");
3556   MemberSpecializationInfo *Info
3557     = new (C) MemberSpecializationInfo(FD, TSK);
3558   TemplateOrSpecialization = Info;
3559 }
3560 
3561 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3562   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3563 }
3564 
3565 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3566   assert(TemplateOrSpecialization.isNull() &&
3567          "Member function is already a specialization");
3568   TemplateOrSpecialization = Template;
3569 }
3570 
3571 bool FunctionDecl::isImplicitlyInstantiable() const {
3572   // If the function is invalid, it can't be implicitly instantiated.
3573   if (isInvalidDecl())
3574     return false;
3575 
3576   switch (getTemplateSpecializationKindForInstantiation()) {
3577   case TSK_Undeclared:
3578   case TSK_ExplicitInstantiationDefinition:
3579   case TSK_ExplicitSpecialization:
3580     return false;
3581 
3582   case TSK_ImplicitInstantiation:
3583     return true;
3584 
3585   case TSK_ExplicitInstantiationDeclaration:
3586     // Handled below.
3587     break;
3588   }
3589 
3590   // Find the actual template from which we will instantiate.
3591   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3592   bool HasPattern = false;
3593   if (PatternDecl)
3594     HasPattern = PatternDecl->hasBody(PatternDecl);
3595 
3596   // C++0x [temp.explicit]p9:
3597   //   Except for inline functions, other explicit instantiation declarations
3598   //   have the effect of suppressing the implicit instantiation of the entity
3599   //   to which they refer.
3600   if (!HasPattern || !PatternDecl)
3601     return true;
3602 
3603   return PatternDecl->isInlined();
3604 }
3605 
3606 bool FunctionDecl::isTemplateInstantiation() const {
3607   // FIXME: Remove this, it's not clear what it means. (Which template
3608   // specialization kind?)
3609   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3610 }
3611 
3612 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3613   // If this is a generic lambda call operator specialization, its
3614   // instantiation pattern is always its primary template's pattern
3615   // even if its primary template was instantiated from another
3616   // member template (which happens with nested generic lambdas).
3617   // Since a lambda's call operator's body is transformed eagerly,
3618   // we don't have to go hunting for a prototype definition template
3619   // (i.e. instantiated-from-member-template) to use as an instantiation
3620   // pattern.
3621 
3622   if (isGenericLambdaCallOperatorSpecialization(
3623           dyn_cast<CXXMethodDecl>(this))) {
3624     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3625     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3626   }
3627 
3628   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) {
3629     if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3630       return nullptr;
3631     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3632   }
3633 
3634   if (!clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3635     return nullptr;
3636 
3637   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3638     // If we hit a point where the user provided a specialization of this
3639     // template, we're done looking.
3640     while (!Primary->isMemberSpecialization()) {
3641       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3642       if (!NewPrimary)
3643         break;
3644       Primary = NewPrimary;
3645     }
3646 
3647     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3648   }
3649 
3650   return nullptr;
3651 }
3652 
3653 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3654   if (FunctionTemplateSpecializationInfo *Info
3655         = TemplateOrSpecialization
3656             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3657     return Info->getTemplate();
3658   }
3659   return nullptr;
3660 }
3661 
3662 FunctionTemplateSpecializationInfo *
3663 FunctionDecl::getTemplateSpecializationInfo() const {
3664   return TemplateOrSpecialization
3665       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3666 }
3667 
3668 const TemplateArgumentList *
3669 FunctionDecl::getTemplateSpecializationArgs() const {
3670   if (FunctionTemplateSpecializationInfo *Info
3671         = TemplateOrSpecialization
3672             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3673     return Info->TemplateArguments;
3674   }
3675   return nullptr;
3676 }
3677 
3678 const ASTTemplateArgumentListInfo *
3679 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3680   if (FunctionTemplateSpecializationInfo *Info
3681         = TemplateOrSpecialization
3682             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3683     return Info->TemplateArgumentsAsWritten;
3684   }
3685   return nullptr;
3686 }
3687 
3688 void
3689 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3690                                                 FunctionTemplateDecl *Template,
3691                                      const TemplateArgumentList *TemplateArgs,
3692                                                 void *InsertPos,
3693                                                 TemplateSpecializationKind TSK,
3694                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3695                                           SourceLocation PointOfInstantiation) {
3696   assert((TemplateOrSpecialization.isNull() ||
3697           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3698          "Member function is already a specialization");
3699   assert(TSK != TSK_Undeclared &&
3700          "Must specify the type of function template specialization");
3701   assert((TemplateOrSpecialization.isNull() ||
3702           TSK == TSK_ExplicitSpecialization) &&
3703          "Member specialization must be an explicit specialization");
3704   FunctionTemplateSpecializationInfo *Info =
3705       FunctionTemplateSpecializationInfo::Create(
3706           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3707           PointOfInstantiation,
3708           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3709   TemplateOrSpecialization = Info;
3710   Template->addSpecialization(Info, InsertPos);
3711 }
3712 
3713 void
3714 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3715                                     const UnresolvedSetImpl &Templates,
3716                              const TemplateArgumentListInfo &TemplateArgs) {
3717   assert(TemplateOrSpecialization.isNull());
3718   DependentFunctionTemplateSpecializationInfo *Info =
3719       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3720                                                           TemplateArgs);
3721   TemplateOrSpecialization = Info;
3722 }
3723 
3724 DependentFunctionTemplateSpecializationInfo *
3725 FunctionDecl::getDependentSpecializationInfo() const {
3726   return TemplateOrSpecialization
3727       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3728 }
3729 
3730 DependentFunctionTemplateSpecializationInfo *
3731 DependentFunctionTemplateSpecializationInfo::Create(
3732     ASTContext &Context, const UnresolvedSetImpl &Ts,
3733     const TemplateArgumentListInfo &TArgs) {
3734   void *Buffer = Context.Allocate(
3735       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3736           TArgs.size(), Ts.size()));
3737   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3738 }
3739 
3740 DependentFunctionTemplateSpecializationInfo::
3741 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3742                                       const TemplateArgumentListInfo &TArgs)
3743   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3744   NumTemplates = Ts.size();
3745   NumArgs = TArgs.size();
3746 
3747   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3748   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3749     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3750 
3751   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3752   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3753     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3754 }
3755 
3756 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3757   // For a function template specialization, query the specialization
3758   // information object.
3759   if (FunctionTemplateSpecializationInfo *FTSInfo =
3760           TemplateOrSpecialization
3761               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3762     return FTSInfo->getTemplateSpecializationKind();
3763 
3764   if (MemberSpecializationInfo *MSInfo =
3765           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3766     return MSInfo->getTemplateSpecializationKind();
3767 
3768   return TSK_Undeclared;
3769 }
3770 
3771 TemplateSpecializationKind
3772 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3773   // This is the same as getTemplateSpecializationKind(), except that for a
3774   // function that is both a function template specialization and a member
3775   // specialization, we prefer the member specialization information. Eg:
3776   //
3777   // template<typename T> struct A {
3778   //   template<typename U> void f() {}
3779   //   template<> void f<int>() {}
3780   // };
3781   //
3782   // For A<int>::f<int>():
3783   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3784   // * getTemplateSpecializationKindForInstantiation() will return
3785   //       TSK_ImplicitInstantiation
3786   //
3787   // This reflects the facts that A<int>::f<int> is an explicit specialization
3788   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3789   // from A::f<int> if a definition is needed.
3790   if (FunctionTemplateSpecializationInfo *FTSInfo =
3791           TemplateOrSpecialization
3792               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3793     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3794       return MSInfo->getTemplateSpecializationKind();
3795     return FTSInfo->getTemplateSpecializationKind();
3796   }
3797 
3798   if (MemberSpecializationInfo *MSInfo =
3799           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3800     return MSInfo->getTemplateSpecializationKind();
3801 
3802   return TSK_Undeclared;
3803 }
3804 
3805 void
3806 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3807                                           SourceLocation PointOfInstantiation) {
3808   if (FunctionTemplateSpecializationInfo *FTSInfo
3809         = TemplateOrSpecialization.dyn_cast<
3810                                     FunctionTemplateSpecializationInfo*>()) {
3811     FTSInfo->setTemplateSpecializationKind(TSK);
3812     if (TSK != TSK_ExplicitSpecialization &&
3813         PointOfInstantiation.isValid() &&
3814         FTSInfo->getPointOfInstantiation().isInvalid()) {
3815       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3816       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3817         L->InstantiationRequested(this);
3818     }
3819   } else if (MemberSpecializationInfo *MSInfo
3820              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3821     MSInfo->setTemplateSpecializationKind(TSK);
3822     if (TSK != TSK_ExplicitSpecialization &&
3823         PointOfInstantiation.isValid() &&
3824         MSInfo->getPointOfInstantiation().isInvalid()) {
3825       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3826       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3827         L->InstantiationRequested(this);
3828     }
3829   } else
3830     llvm_unreachable("Function cannot have a template specialization kind");
3831 }
3832 
3833 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3834   if (FunctionTemplateSpecializationInfo *FTSInfo
3835         = TemplateOrSpecialization.dyn_cast<
3836                                         FunctionTemplateSpecializationInfo*>())
3837     return FTSInfo->getPointOfInstantiation();
3838   else if (MemberSpecializationInfo *MSInfo
3839              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3840     return MSInfo->getPointOfInstantiation();
3841 
3842   return SourceLocation();
3843 }
3844 
3845 bool FunctionDecl::isOutOfLine() const {
3846   if (Decl::isOutOfLine())
3847     return true;
3848 
3849   // If this function was instantiated from a member function of a
3850   // class template, check whether that member function was defined out-of-line.
3851   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3852     const FunctionDecl *Definition;
3853     if (FD->hasBody(Definition))
3854       return Definition->isOutOfLine();
3855   }
3856 
3857   // If this function was instantiated from a function template,
3858   // check whether that function template was defined out-of-line.
3859   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3860     const FunctionDecl *Definition;
3861     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3862       return Definition->isOutOfLine();
3863   }
3864 
3865   return false;
3866 }
3867 
3868 SourceRange FunctionDecl::getSourceRange() const {
3869   return SourceRange(getOuterLocStart(), EndRangeLoc);
3870 }
3871 
3872 unsigned FunctionDecl::getMemoryFunctionKind() const {
3873   IdentifierInfo *FnInfo = getIdentifier();
3874 
3875   if (!FnInfo)
3876     return 0;
3877 
3878   // Builtin handling.
3879   switch (getBuiltinID()) {
3880   case Builtin::BI__builtin_memset:
3881   case Builtin::BI__builtin___memset_chk:
3882   case Builtin::BImemset:
3883     return Builtin::BImemset;
3884 
3885   case Builtin::BI__builtin_memcpy:
3886   case Builtin::BI__builtin___memcpy_chk:
3887   case Builtin::BImemcpy:
3888     return Builtin::BImemcpy;
3889 
3890   case Builtin::BI__builtin_mempcpy:
3891   case Builtin::BI__builtin___mempcpy_chk:
3892   case Builtin::BImempcpy:
3893     return Builtin::BImempcpy;
3894 
3895   case Builtin::BI__builtin_memmove:
3896   case Builtin::BI__builtin___memmove_chk:
3897   case Builtin::BImemmove:
3898     return Builtin::BImemmove;
3899 
3900   case Builtin::BIstrlcpy:
3901   case Builtin::BI__builtin___strlcpy_chk:
3902     return Builtin::BIstrlcpy;
3903 
3904   case Builtin::BIstrlcat:
3905   case Builtin::BI__builtin___strlcat_chk:
3906     return Builtin::BIstrlcat;
3907 
3908   case Builtin::BI__builtin_memcmp:
3909   case Builtin::BImemcmp:
3910     return Builtin::BImemcmp;
3911 
3912   case Builtin::BI__builtin_bcmp:
3913   case Builtin::BIbcmp:
3914     return Builtin::BIbcmp;
3915 
3916   case Builtin::BI__builtin_strncpy:
3917   case Builtin::BI__builtin___strncpy_chk:
3918   case Builtin::BIstrncpy:
3919     return Builtin::BIstrncpy;
3920 
3921   case Builtin::BI__builtin_strncmp:
3922   case Builtin::BIstrncmp:
3923     return Builtin::BIstrncmp;
3924 
3925   case Builtin::BI__builtin_strncasecmp:
3926   case Builtin::BIstrncasecmp:
3927     return Builtin::BIstrncasecmp;
3928 
3929   case Builtin::BI__builtin_strncat:
3930   case Builtin::BI__builtin___strncat_chk:
3931   case Builtin::BIstrncat:
3932     return Builtin::BIstrncat;
3933 
3934   case Builtin::BI__builtin_strndup:
3935   case Builtin::BIstrndup:
3936     return Builtin::BIstrndup;
3937 
3938   case Builtin::BI__builtin_strlen:
3939   case Builtin::BIstrlen:
3940     return Builtin::BIstrlen;
3941 
3942   case Builtin::BI__builtin_bzero:
3943   case Builtin::BIbzero:
3944     return Builtin::BIbzero;
3945 
3946   default:
3947     if (isExternC()) {
3948       if (FnInfo->isStr("memset"))
3949         return Builtin::BImemset;
3950       else if (FnInfo->isStr("memcpy"))
3951         return Builtin::BImemcpy;
3952       else if (FnInfo->isStr("mempcpy"))
3953         return Builtin::BImempcpy;
3954       else if (FnInfo->isStr("memmove"))
3955         return Builtin::BImemmove;
3956       else if (FnInfo->isStr("memcmp"))
3957         return Builtin::BImemcmp;
3958       else if (FnInfo->isStr("bcmp"))
3959         return Builtin::BIbcmp;
3960       else if (FnInfo->isStr("strncpy"))
3961         return Builtin::BIstrncpy;
3962       else if (FnInfo->isStr("strncmp"))
3963         return Builtin::BIstrncmp;
3964       else if (FnInfo->isStr("strncasecmp"))
3965         return Builtin::BIstrncasecmp;
3966       else if (FnInfo->isStr("strncat"))
3967         return Builtin::BIstrncat;
3968       else if (FnInfo->isStr("strndup"))
3969         return Builtin::BIstrndup;
3970       else if (FnInfo->isStr("strlen"))
3971         return Builtin::BIstrlen;
3972       else if (FnInfo->isStr("bzero"))
3973         return Builtin::BIbzero;
3974     }
3975     break;
3976   }
3977   return 0;
3978 }
3979 
3980 unsigned FunctionDecl::getODRHash() const {
3981   assert(hasODRHash());
3982   return ODRHash;
3983 }
3984 
3985 unsigned FunctionDecl::getODRHash() {
3986   if (hasODRHash())
3987     return ODRHash;
3988 
3989   if (auto *FT = getInstantiatedFromMemberFunction()) {
3990     setHasODRHash(true);
3991     ODRHash = FT->getODRHash();
3992     return ODRHash;
3993   }
3994 
3995   class ODRHash Hash;
3996   Hash.AddFunctionDecl(this);
3997   setHasODRHash(true);
3998   ODRHash = Hash.CalculateHash();
3999   return ODRHash;
4000 }
4001 
4002 //===----------------------------------------------------------------------===//
4003 // FieldDecl Implementation
4004 //===----------------------------------------------------------------------===//
4005 
4006 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4007                              SourceLocation StartLoc, SourceLocation IdLoc,
4008                              IdentifierInfo *Id, QualType T,
4009                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4010                              InClassInitStyle InitStyle) {
4011   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4012                                BW, Mutable, InitStyle);
4013 }
4014 
4015 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4016   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4017                                SourceLocation(), nullptr, QualType(), nullptr,
4018                                nullptr, false, ICIS_NoInit);
4019 }
4020 
4021 bool FieldDecl::isAnonymousStructOrUnion() const {
4022   if (!isImplicit() || getDeclName())
4023     return false;
4024 
4025   if (const auto *Record = getType()->getAs<RecordType>())
4026     return Record->getDecl()->isAnonymousStructOrUnion();
4027 
4028   return false;
4029 }
4030 
4031 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4032   assert(isBitField() && "not a bitfield");
4033   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4034 }
4035 
4036 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4037   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4038          getBitWidthValue(Ctx) == 0;
4039 }
4040 
4041 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4042   if (isZeroLengthBitField(Ctx))
4043     return true;
4044 
4045   // C++2a [intro.object]p7:
4046   //   An object has nonzero size if it
4047   //     -- is not a potentially-overlapping subobject, or
4048   if (!hasAttr<NoUniqueAddressAttr>())
4049     return false;
4050 
4051   //     -- is not of class type, or
4052   const auto *RT = getType()->getAs<RecordType>();
4053   if (!RT)
4054     return false;
4055   const RecordDecl *RD = RT->getDecl()->getDefinition();
4056   if (!RD) {
4057     assert(isInvalidDecl() && "valid field has incomplete type");
4058     return false;
4059   }
4060 
4061   //     -- [has] virtual member functions or virtual base classes, or
4062   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4063   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4064   if (!CXXRD->isEmpty())
4065     return false;
4066 
4067   // Otherwise, [...] the circumstances under which the object has zero size
4068   // are implementation-defined.
4069   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4070   // ABI will do.
4071   return true;
4072 }
4073 
4074 unsigned FieldDecl::getFieldIndex() const {
4075   const FieldDecl *Canonical = getCanonicalDecl();
4076   if (Canonical != this)
4077     return Canonical->getFieldIndex();
4078 
4079   if (CachedFieldIndex) return CachedFieldIndex - 1;
4080 
4081   unsigned Index = 0;
4082   const RecordDecl *RD = getParent()->getDefinition();
4083   assert(RD && "requested index for field of struct with no definition");
4084 
4085   for (auto *Field : RD->fields()) {
4086     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4087     ++Index;
4088   }
4089 
4090   assert(CachedFieldIndex && "failed to find field in parent");
4091   return CachedFieldIndex - 1;
4092 }
4093 
4094 SourceRange FieldDecl::getSourceRange() const {
4095   const Expr *FinalExpr = getInClassInitializer();
4096   if (!FinalExpr)
4097     FinalExpr = getBitWidth();
4098   if (FinalExpr)
4099     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4100   return DeclaratorDecl::getSourceRange();
4101 }
4102 
4103 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4104   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4105          "capturing type in non-lambda or captured record.");
4106   assert(InitStorage.getInt() == ISK_NoInit &&
4107          InitStorage.getPointer() == nullptr &&
4108          "bit width, initializer or captured type already set");
4109   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4110                                ISK_CapturedVLAType);
4111 }
4112 
4113 //===----------------------------------------------------------------------===//
4114 // TagDecl Implementation
4115 //===----------------------------------------------------------------------===//
4116 
4117 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4118                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4119                  SourceLocation StartL)
4120     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4121       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4122   assert((DK != Enum || TK == TTK_Enum) &&
4123          "EnumDecl not matched with TTK_Enum");
4124   setPreviousDecl(PrevDecl);
4125   setTagKind(TK);
4126   setCompleteDefinition(false);
4127   setBeingDefined(false);
4128   setEmbeddedInDeclarator(false);
4129   setFreeStanding(false);
4130   setCompleteDefinitionRequired(false);
4131 }
4132 
4133 SourceLocation TagDecl::getOuterLocStart() const {
4134   return getTemplateOrInnerLocStart(this);
4135 }
4136 
4137 SourceRange TagDecl::getSourceRange() const {
4138   SourceLocation RBraceLoc = BraceRange.getEnd();
4139   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4140   return SourceRange(getOuterLocStart(), E);
4141 }
4142 
4143 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4144 
4145 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4146   TypedefNameDeclOrQualifier = TDD;
4147   if (const Type *T = getTypeForDecl()) {
4148     (void)T;
4149     assert(T->isLinkageValid());
4150   }
4151   assert(isLinkageValid());
4152 }
4153 
4154 void TagDecl::startDefinition() {
4155   setBeingDefined(true);
4156 
4157   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4158     struct CXXRecordDecl::DefinitionData *Data =
4159       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4160     for (auto I : redecls())
4161       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4162   }
4163 }
4164 
4165 void TagDecl::completeDefinition() {
4166   assert((!isa<CXXRecordDecl>(this) ||
4167           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4168          "definition completed but not started");
4169 
4170   setCompleteDefinition(true);
4171   setBeingDefined(false);
4172 
4173   if (ASTMutationListener *L = getASTMutationListener())
4174     L->CompletedTagDefinition(this);
4175 }
4176 
4177 TagDecl *TagDecl::getDefinition() const {
4178   if (isCompleteDefinition())
4179     return const_cast<TagDecl *>(this);
4180 
4181   // If it's possible for us to have an out-of-date definition, check now.
4182   if (mayHaveOutOfDateDef()) {
4183     if (IdentifierInfo *II = getIdentifier()) {
4184       if (II->isOutOfDate()) {
4185         updateOutOfDate(*II);
4186       }
4187     }
4188   }
4189 
4190   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4191     return CXXRD->getDefinition();
4192 
4193   for (auto R : redecls())
4194     if (R->isCompleteDefinition())
4195       return R;
4196 
4197   return nullptr;
4198 }
4199 
4200 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4201   if (QualifierLoc) {
4202     // Make sure the extended qualifier info is allocated.
4203     if (!hasExtInfo())
4204       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4205     // Set qualifier info.
4206     getExtInfo()->QualifierLoc = QualifierLoc;
4207   } else {
4208     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4209     if (hasExtInfo()) {
4210       if (getExtInfo()->NumTemplParamLists == 0) {
4211         getASTContext().Deallocate(getExtInfo());
4212         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4213       }
4214       else
4215         getExtInfo()->QualifierLoc = QualifierLoc;
4216     }
4217   }
4218 }
4219 
4220 void TagDecl::setTemplateParameterListsInfo(
4221     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4222   assert(!TPLists.empty());
4223   // Make sure the extended decl info is allocated.
4224   if (!hasExtInfo())
4225     // Allocate external info struct.
4226     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4227   // Set the template parameter lists info.
4228   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4229 }
4230 
4231 //===----------------------------------------------------------------------===//
4232 // EnumDecl Implementation
4233 //===----------------------------------------------------------------------===//
4234 
4235 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4236                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4237                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4238     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4239   assert(Scoped || !ScopedUsingClassTag);
4240   IntegerType = nullptr;
4241   setNumPositiveBits(0);
4242   setNumNegativeBits(0);
4243   setScoped(Scoped);
4244   setScopedUsingClassTag(ScopedUsingClassTag);
4245   setFixed(Fixed);
4246   setHasODRHash(false);
4247   ODRHash = 0;
4248 }
4249 
4250 void EnumDecl::anchor() {}
4251 
4252 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4253                            SourceLocation StartLoc, SourceLocation IdLoc,
4254                            IdentifierInfo *Id,
4255                            EnumDecl *PrevDecl, bool IsScoped,
4256                            bool IsScopedUsingClassTag, bool IsFixed) {
4257   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4258                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4259   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4260   C.getTypeDeclType(Enum, PrevDecl);
4261   return Enum;
4262 }
4263 
4264 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4265   EnumDecl *Enum =
4266       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4267                            nullptr, nullptr, false, false, false);
4268   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4269   return Enum;
4270 }
4271 
4272 SourceRange EnumDecl::getIntegerTypeRange() const {
4273   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4274     return TI->getTypeLoc().getSourceRange();
4275   return SourceRange();
4276 }
4277 
4278 void EnumDecl::completeDefinition(QualType NewType,
4279                                   QualType NewPromotionType,
4280                                   unsigned NumPositiveBits,
4281                                   unsigned NumNegativeBits) {
4282   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4283   if (!IntegerType)
4284     IntegerType = NewType.getTypePtr();
4285   PromotionType = NewPromotionType;
4286   setNumPositiveBits(NumPositiveBits);
4287   setNumNegativeBits(NumNegativeBits);
4288   TagDecl::completeDefinition();
4289 }
4290 
4291 bool EnumDecl::isClosed() const {
4292   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4293     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4294   return true;
4295 }
4296 
4297 bool EnumDecl::isClosedFlag() const {
4298   return isClosed() && hasAttr<FlagEnumAttr>();
4299 }
4300 
4301 bool EnumDecl::isClosedNonFlag() const {
4302   return isClosed() && !hasAttr<FlagEnumAttr>();
4303 }
4304 
4305 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4306   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4307     return MSI->getTemplateSpecializationKind();
4308 
4309   return TSK_Undeclared;
4310 }
4311 
4312 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4313                                          SourceLocation PointOfInstantiation) {
4314   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4315   assert(MSI && "Not an instantiated member enumeration?");
4316   MSI->setTemplateSpecializationKind(TSK);
4317   if (TSK != TSK_ExplicitSpecialization &&
4318       PointOfInstantiation.isValid() &&
4319       MSI->getPointOfInstantiation().isInvalid())
4320     MSI->setPointOfInstantiation(PointOfInstantiation);
4321 }
4322 
4323 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4324   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4325     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4326       EnumDecl *ED = getInstantiatedFromMemberEnum();
4327       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4328         ED = NewED;
4329       return getDefinitionOrSelf(ED);
4330     }
4331   }
4332 
4333   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4334          "couldn't find pattern for enum instantiation");
4335   return nullptr;
4336 }
4337 
4338 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4339   if (SpecializationInfo)
4340     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4341 
4342   return nullptr;
4343 }
4344 
4345 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4346                                             TemplateSpecializationKind TSK) {
4347   assert(!SpecializationInfo && "Member enum is already a specialization");
4348   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4349 }
4350 
4351 unsigned EnumDecl::getODRHash() {
4352   if (hasODRHash())
4353     return ODRHash;
4354 
4355   class ODRHash Hash;
4356   Hash.AddEnumDecl(this);
4357   setHasODRHash(true);
4358   ODRHash = Hash.CalculateHash();
4359   return ODRHash;
4360 }
4361 
4362 //===----------------------------------------------------------------------===//
4363 // RecordDecl Implementation
4364 //===----------------------------------------------------------------------===//
4365 
4366 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4367                        DeclContext *DC, SourceLocation StartLoc,
4368                        SourceLocation IdLoc, IdentifierInfo *Id,
4369                        RecordDecl *PrevDecl)
4370     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4371   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4372   setHasFlexibleArrayMember(false);
4373   setAnonymousStructOrUnion(false);
4374   setHasObjectMember(false);
4375   setHasVolatileMember(false);
4376   setHasLoadedFieldsFromExternalStorage(false);
4377   setNonTrivialToPrimitiveDefaultInitialize(false);
4378   setNonTrivialToPrimitiveCopy(false);
4379   setNonTrivialToPrimitiveDestroy(false);
4380   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4381   setHasNonTrivialToPrimitiveDestructCUnion(false);
4382   setHasNonTrivialToPrimitiveCopyCUnion(false);
4383   setParamDestroyedInCallee(false);
4384   setArgPassingRestrictions(APK_CanPassInRegs);
4385 }
4386 
4387 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4388                                SourceLocation StartLoc, SourceLocation IdLoc,
4389                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4390   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4391                                          StartLoc, IdLoc, Id, PrevDecl);
4392   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4393 
4394   C.getTypeDeclType(R, PrevDecl);
4395   return R;
4396 }
4397 
4398 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4399   RecordDecl *R =
4400       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4401                              SourceLocation(), nullptr, nullptr);
4402   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4403   return R;
4404 }
4405 
4406 bool RecordDecl::isInjectedClassName() const {
4407   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4408     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4409 }
4410 
4411 bool RecordDecl::isLambda() const {
4412   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4413     return RD->isLambda();
4414   return false;
4415 }
4416 
4417 bool RecordDecl::isCapturedRecord() const {
4418   return hasAttr<CapturedRecordAttr>();
4419 }
4420 
4421 void RecordDecl::setCapturedRecord() {
4422   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4423 }
4424 
4425 RecordDecl::field_iterator RecordDecl::field_begin() const {
4426   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4427     LoadFieldsFromExternalStorage();
4428 
4429   return field_iterator(decl_iterator(FirstDecl));
4430 }
4431 
4432 /// completeDefinition - Notes that the definition of this type is now
4433 /// complete.
4434 void RecordDecl::completeDefinition() {
4435   assert(!isCompleteDefinition() && "Cannot redefine record!");
4436   TagDecl::completeDefinition();
4437 }
4438 
4439 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4440 /// This which can be turned on with an attribute, pragma, or the
4441 /// -mms-bitfields command-line option.
4442 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4443   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4444 }
4445 
4446 void RecordDecl::LoadFieldsFromExternalStorage() const {
4447   ExternalASTSource *Source = getASTContext().getExternalSource();
4448   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4449 
4450   // Notify that we have a RecordDecl doing some initialization.
4451   ExternalASTSource::Deserializing TheFields(Source);
4452 
4453   SmallVector<Decl*, 64> Decls;
4454   setHasLoadedFieldsFromExternalStorage(true);
4455   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4456     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4457   }, Decls);
4458 
4459 #ifndef NDEBUG
4460   // Check that all decls we got were FieldDecls.
4461   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4462     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4463 #endif
4464 
4465   if (Decls.empty())
4466     return;
4467 
4468   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4469                                                  /*FieldsAlreadyLoaded=*/false);
4470 }
4471 
4472 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4473   ASTContext &Context = getASTContext();
4474   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4475       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4476   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4477     return false;
4478   const auto &Blacklist = Context.getSanitizerBlacklist();
4479   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4480   // We may be able to relax some of these requirements.
4481   int ReasonToReject = -1;
4482   if (!CXXRD || CXXRD->isExternCContext())
4483     ReasonToReject = 0;  // is not C++.
4484   else if (CXXRD->hasAttr<PackedAttr>())
4485     ReasonToReject = 1;  // is packed.
4486   else if (CXXRD->isUnion())
4487     ReasonToReject = 2;  // is a union.
4488   else if (CXXRD->isTriviallyCopyable())
4489     ReasonToReject = 3;  // is trivially copyable.
4490   else if (CXXRD->hasTrivialDestructor())
4491     ReasonToReject = 4;  // has trivial destructor.
4492   else if (CXXRD->isStandardLayout())
4493     ReasonToReject = 5;  // is standard layout.
4494   else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4495                                            "field-padding"))
4496     ReasonToReject = 6;  // is in a blacklisted file.
4497   else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4498                                        getQualifiedNameAsString(),
4499                                        "field-padding"))
4500     ReasonToReject = 7;  // is blacklisted.
4501 
4502   if (EmitRemark) {
4503     if (ReasonToReject >= 0)
4504       Context.getDiagnostics().Report(
4505           getLocation(),
4506           diag::remark_sanitize_address_insert_extra_padding_rejected)
4507           << getQualifiedNameAsString() << ReasonToReject;
4508     else
4509       Context.getDiagnostics().Report(
4510           getLocation(),
4511           diag::remark_sanitize_address_insert_extra_padding_accepted)
4512           << getQualifiedNameAsString();
4513   }
4514   return ReasonToReject < 0;
4515 }
4516 
4517 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4518   for (const auto *I : fields()) {
4519     if (I->getIdentifier())
4520       return I;
4521 
4522     if (const auto *RT = I->getType()->getAs<RecordType>())
4523       if (const FieldDecl *NamedDataMember =
4524               RT->getDecl()->findFirstNamedDataMember())
4525         return NamedDataMember;
4526   }
4527 
4528   // We didn't find a named data member.
4529   return nullptr;
4530 }
4531 
4532 //===----------------------------------------------------------------------===//
4533 // BlockDecl Implementation
4534 //===----------------------------------------------------------------------===//
4535 
4536 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4537     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4538   setIsVariadic(false);
4539   setCapturesCXXThis(false);
4540   setBlockMissingReturnType(true);
4541   setIsConversionFromLambda(false);
4542   setDoesNotEscape(false);
4543   setCanAvoidCopyToHeap(false);
4544 }
4545 
4546 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4547   assert(!ParamInfo && "Already has param info!");
4548 
4549   // Zero params -> null pointer.
4550   if (!NewParamInfo.empty()) {
4551     NumParams = NewParamInfo.size();
4552     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4553     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4554   }
4555 }
4556 
4557 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4558                             bool CapturesCXXThis) {
4559   this->setCapturesCXXThis(CapturesCXXThis);
4560   this->NumCaptures = Captures.size();
4561 
4562   if (Captures.empty()) {
4563     this->Captures = nullptr;
4564     return;
4565   }
4566 
4567   this->Captures = Captures.copy(Context).data();
4568 }
4569 
4570 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4571   for (const auto &I : captures())
4572     // Only auto vars can be captured, so no redeclaration worries.
4573     if (I.getVariable() == variable)
4574       return true;
4575 
4576   return false;
4577 }
4578 
4579 SourceRange BlockDecl::getSourceRange() const {
4580   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4581 }
4582 
4583 //===----------------------------------------------------------------------===//
4584 // Other Decl Allocation/Deallocation Method Implementations
4585 //===----------------------------------------------------------------------===//
4586 
4587 void TranslationUnitDecl::anchor() {}
4588 
4589 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4590   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4591 }
4592 
4593 void PragmaCommentDecl::anchor() {}
4594 
4595 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4596                                              TranslationUnitDecl *DC,
4597                                              SourceLocation CommentLoc,
4598                                              PragmaMSCommentKind CommentKind,
4599                                              StringRef Arg) {
4600   PragmaCommentDecl *PCD =
4601       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4602           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4603   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4604   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4605   return PCD;
4606 }
4607 
4608 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4609                                                          unsigned ID,
4610                                                          unsigned ArgSize) {
4611   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4612       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4613 }
4614 
4615 void PragmaDetectMismatchDecl::anchor() {}
4616 
4617 PragmaDetectMismatchDecl *
4618 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4619                                  SourceLocation Loc, StringRef Name,
4620                                  StringRef Value) {
4621   size_t ValueStart = Name.size() + 1;
4622   PragmaDetectMismatchDecl *PDMD =
4623       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4624           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4625   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4626   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4627   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4628          Value.size());
4629   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4630   return PDMD;
4631 }
4632 
4633 PragmaDetectMismatchDecl *
4634 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4635                                              unsigned NameValueSize) {
4636   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4637       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4638 }
4639 
4640 void ExternCContextDecl::anchor() {}
4641 
4642 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4643                                                TranslationUnitDecl *DC) {
4644   return new (C, DC) ExternCContextDecl(DC);
4645 }
4646 
4647 void LabelDecl::anchor() {}
4648 
4649 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4650                              SourceLocation IdentL, IdentifierInfo *II) {
4651   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4652 }
4653 
4654 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4655                              SourceLocation IdentL, IdentifierInfo *II,
4656                              SourceLocation GnuLabelL) {
4657   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4658   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4659 }
4660 
4661 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4662   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4663                                SourceLocation());
4664 }
4665 
4666 void LabelDecl::setMSAsmLabel(StringRef Name) {
4667 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4668   memcpy(Buffer, Name.data(), Name.size());
4669   Buffer[Name.size()] = '\0';
4670   MSAsmName = Buffer;
4671 }
4672 
4673 void ValueDecl::anchor() {}
4674 
4675 bool ValueDecl::isWeak() const {
4676   for (const auto *I : attrs())
4677     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4678       return true;
4679 
4680   return isWeakImported();
4681 }
4682 
4683 void ImplicitParamDecl::anchor() {}
4684 
4685 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4686                                              SourceLocation IdLoc,
4687                                              IdentifierInfo *Id, QualType Type,
4688                                              ImplicitParamKind ParamKind) {
4689   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4690 }
4691 
4692 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4693                                              ImplicitParamKind ParamKind) {
4694   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4695 }
4696 
4697 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4698                                                          unsigned ID) {
4699   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4700 }
4701 
4702 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4703                                    SourceLocation StartLoc,
4704                                    const DeclarationNameInfo &NameInfo,
4705                                    QualType T, TypeSourceInfo *TInfo,
4706                                    StorageClass SC, bool isInlineSpecified,
4707                                    bool hasWrittenPrototype,
4708                                    ConstexprSpecKind ConstexprKind,
4709                                    Expr *TrailingRequiresClause) {
4710   FunctionDecl *New =
4711       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4712                                SC, isInlineSpecified, ConstexprKind,
4713                                TrailingRequiresClause);
4714   New->setHasWrittenPrototype(hasWrittenPrototype);
4715   return New;
4716 }
4717 
4718 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4719   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4720                                   DeclarationNameInfo(), QualType(), nullptr,
4721                                   SC_None, false, CSK_unspecified, nullptr);
4722 }
4723 
4724 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4725   return new (C, DC) BlockDecl(DC, L);
4726 }
4727 
4728 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4729   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4730 }
4731 
4732 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4733     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4734       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4735 
4736 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4737                                    unsigned NumParams) {
4738   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4739       CapturedDecl(DC, NumParams);
4740 }
4741 
4742 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4743                                                unsigned NumParams) {
4744   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4745       CapturedDecl(nullptr, NumParams);
4746 }
4747 
4748 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4749 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4750 
4751 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4752 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4753 
4754 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4755                                            SourceLocation L,
4756                                            IdentifierInfo *Id, QualType T,
4757                                            Expr *E, const llvm::APSInt &V) {
4758   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4759 }
4760 
4761 EnumConstantDecl *
4762 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4763   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4764                                       QualType(), nullptr, llvm::APSInt());
4765 }
4766 
4767 void IndirectFieldDecl::anchor() {}
4768 
4769 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4770                                      SourceLocation L, DeclarationName N,
4771                                      QualType T,
4772                                      MutableArrayRef<NamedDecl *> CH)
4773     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4774       ChainingSize(CH.size()) {
4775   // In C++, indirect field declarations conflict with tag declarations in the
4776   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4777   if (C.getLangOpts().CPlusPlus)
4778     IdentifierNamespace |= IDNS_Tag;
4779 }
4780 
4781 IndirectFieldDecl *
4782 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4783                           IdentifierInfo *Id, QualType T,
4784                           llvm::MutableArrayRef<NamedDecl *> CH) {
4785   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4786 }
4787 
4788 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4789                                                          unsigned ID) {
4790   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4791                                        DeclarationName(), QualType(), None);
4792 }
4793 
4794 SourceRange EnumConstantDecl::getSourceRange() const {
4795   SourceLocation End = getLocation();
4796   if (Init)
4797     End = Init->getEndLoc();
4798   return SourceRange(getLocation(), End);
4799 }
4800 
4801 void TypeDecl::anchor() {}
4802 
4803 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4804                                  SourceLocation StartLoc, SourceLocation IdLoc,
4805                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4806   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4807 }
4808 
4809 void TypedefNameDecl::anchor() {}
4810 
4811 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4812   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4813     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4814     auto *ThisTypedef = this;
4815     if (AnyRedecl && OwningTypedef) {
4816       OwningTypedef = OwningTypedef->getCanonicalDecl();
4817       ThisTypedef = ThisTypedef->getCanonicalDecl();
4818     }
4819     if (OwningTypedef == ThisTypedef)
4820       return TT->getDecl();
4821   }
4822 
4823   return nullptr;
4824 }
4825 
4826 bool TypedefNameDecl::isTransparentTagSlow() const {
4827   auto determineIsTransparent = [&]() {
4828     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4829       if (auto *TD = TT->getDecl()) {
4830         if (TD->getName() != getName())
4831           return false;
4832         SourceLocation TTLoc = getLocation();
4833         SourceLocation TDLoc = TD->getLocation();
4834         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4835           return false;
4836         SourceManager &SM = getASTContext().getSourceManager();
4837         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4838       }
4839     }
4840     return false;
4841   };
4842 
4843   bool isTransparent = determineIsTransparent();
4844   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4845   return isTransparent;
4846 }
4847 
4848 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4849   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4850                                  nullptr, nullptr);
4851 }
4852 
4853 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4854                                      SourceLocation StartLoc,
4855                                      SourceLocation IdLoc, IdentifierInfo *Id,
4856                                      TypeSourceInfo *TInfo) {
4857   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4858 }
4859 
4860 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4861   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4862                                    SourceLocation(), nullptr, nullptr);
4863 }
4864 
4865 SourceRange TypedefDecl::getSourceRange() const {
4866   SourceLocation RangeEnd = getLocation();
4867   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4868     if (typeIsPostfix(TInfo->getType()))
4869       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4870   }
4871   return SourceRange(getBeginLoc(), RangeEnd);
4872 }
4873 
4874 SourceRange TypeAliasDecl::getSourceRange() const {
4875   SourceLocation RangeEnd = getBeginLoc();
4876   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4877     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4878   return SourceRange(getBeginLoc(), RangeEnd);
4879 }
4880 
4881 void FileScopeAsmDecl::anchor() {}
4882 
4883 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4884                                            StringLiteral *Str,
4885                                            SourceLocation AsmLoc,
4886                                            SourceLocation RParenLoc) {
4887   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4888 }
4889 
4890 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4891                                                        unsigned ID) {
4892   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4893                                       SourceLocation());
4894 }
4895 
4896 void EmptyDecl::anchor() {}
4897 
4898 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4899   return new (C, DC) EmptyDecl(DC, L);
4900 }
4901 
4902 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4903   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4904 }
4905 
4906 //===----------------------------------------------------------------------===//
4907 // ImportDecl Implementation
4908 //===----------------------------------------------------------------------===//
4909 
4910 /// Retrieve the number of module identifiers needed to name the given
4911 /// module.
4912 static unsigned getNumModuleIdentifiers(Module *Mod) {
4913   unsigned Result = 1;
4914   while (Mod->Parent) {
4915     Mod = Mod->Parent;
4916     ++Result;
4917   }
4918   return Result;
4919 }
4920 
4921 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4922                        Module *Imported,
4923                        ArrayRef<SourceLocation> IdentifierLocs)
4924   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4925   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4926   auto *StoredLocs = getTrailingObjects<SourceLocation>();
4927   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4928                           StoredLocs);
4929 }
4930 
4931 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4932                        Module *Imported, SourceLocation EndLoc)
4933   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4934   *getTrailingObjects<SourceLocation>() = EndLoc;
4935 }
4936 
4937 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4938                                SourceLocation StartLoc, Module *Imported,
4939                                ArrayRef<SourceLocation> IdentifierLocs) {
4940   return new (C, DC,
4941               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4942       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4943 }
4944 
4945 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4946                                        SourceLocation StartLoc,
4947                                        Module *Imported,
4948                                        SourceLocation EndLoc) {
4949   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4950       ImportDecl(DC, StartLoc, Imported, EndLoc);
4951   Import->setImplicit();
4952   return Import;
4953 }
4954 
4955 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4956                                            unsigned NumLocations) {
4957   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4958       ImportDecl(EmptyShell());
4959 }
4960 
4961 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4962   if (!ImportedAndComplete.getInt())
4963     return None;
4964 
4965   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4966   return llvm::makeArrayRef(StoredLocs,
4967                             getNumModuleIdentifiers(getImportedModule()));
4968 }
4969 
4970 SourceRange ImportDecl::getSourceRange() const {
4971   if (!ImportedAndComplete.getInt())
4972     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4973 
4974   return SourceRange(getLocation(), getIdentifierLocs().back());
4975 }
4976 
4977 //===----------------------------------------------------------------------===//
4978 // ExportDecl Implementation
4979 //===----------------------------------------------------------------------===//
4980 
4981 void ExportDecl::anchor() {}
4982 
4983 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
4984                                SourceLocation ExportLoc) {
4985   return new (C, DC) ExportDecl(DC, ExportLoc);
4986 }
4987 
4988 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4989   return new (C, ID) ExportDecl(nullptr, SourceLocation());
4990 }
4991