1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/CanonicalType.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclOpenMP.h" 24 #include "clang/AST/DeclTemplate.h" 25 #include "clang/AST/DeclarationName.h" 26 #include "clang/AST/Expr.h" 27 #include "clang/AST/ExprCXX.h" 28 #include "clang/AST/ExternalASTSource.h" 29 #include "clang/AST/ODRHash.h" 30 #include "clang/AST/PrettyDeclStackTrace.h" 31 #include "clang/AST/PrettyPrinter.h" 32 #include "clang/AST/Redeclarable.h" 33 #include "clang/AST/Stmt.h" 34 #include "clang/AST/TemplateBase.h" 35 #include "clang/AST/Type.h" 36 #include "clang/AST/TypeLoc.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/IdentifierTable.h" 39 #include "clang/Basic/LLVM.h" 40 #include "clang/Basic/LangOptions.h" 41 #include "clang/Basic/Linkage.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/PartialDiagnostic.h" 44 #include "clang/Basic/SanitizerBlacklist.h" 45 #include "clang/Basic/Sanitizers.h" 46 #include "clang/Basic/SourceLocation.h" 47 #include "clang/Basic/SourceManager.h" 48 #include "clang/Basic/Specifiers.h" 49 #include "clang/Basic/TargetCXXABI.h" 50 #include "clang/Basic/TargetInfo.h" 51 #include "clang/Basic/Visibility.h" 52 #include "llvm/ADT/APSInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/None.h" 55 #include "llvm/ADT/Optional.h" 56 #include "llvm/ADT/STLExtras.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/StringSwitch.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Triple.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstddef> 67 #include <cstring> 68 #include <memory> 69 #include <string> 70 #include <tuple> 71 #include <type_traits> 72 73 using namespace clang; 74 75 Decl *clang::getPrimaryMergedDecl(Decl *D) { 76 return D->getASTContext().getPrimaryMergedDecl(D); 77 } 78 79 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 80 SourceLocation Loc = this->Loc; 81 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 82 if (Loc.isValid()) { 83 Loc.print(OS, Context.getSourceManager()); 84 OS << ": "; 85 } 86 OS << Message; 87 88 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 89 OS << " '"; 90 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 91 OS << "'"; 92 } 93 94 OS << '\n'; 95 } 96 97 // Defined here so that it can be inlined into its direct callers. 98 bool Decl::isOutOfLine() const { 99 return !getLexicalDeclContext()->Equals(getDeclContext()); 100 } 101 102 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 103 : Decl(TranslationUnit, nullptr, SourceLocation()), 104 DeclContext(TranslationUnit), Ctx(ctx) {} 105 106 //===----------------------------------------------------------------------===// 107 // NamedDecl Implementation 108 //===----------------------------------------------------------------------===// 109 110 // Visibility rules aren't rigorously externally specified, but here 111 // are the basic principles behind what we implement: 112 // 113 // 1. An explicit visibility attribute is generally a direct expression 114 // of the user's intent and should be honored. Only the innermost 115 // visibility attribute applies. If no visibility attribute applies, 116 // global visibility settings are considered. 117 // 118 // 2. There is one caveat to the above: on or in a template pattern, 119 // an explicit visibility attribute is just a default rule, and 120 // visibility can be decreased by the visibility of template 121 // arguments. But this, too, has an exception: an attribute on an 122 // explicit specialization or instantiation causes all the visibility 123 // restrictions of the template arguments to be ignored. 124 // 125 // 3. A variable that does not otherwise have explicit visibility can 126 // be restricted by the visibility of its type. 127 // 128 // 4. A visibility restriction is explicit if it comes from an 129 // attribute (or something like it), not a global visibility setting. 130 // When emitting a reference to an external symbol, visibility 131 // restrictions are ignored unless they are explicit. 132 // 133 // 5. When computing the visibility of a non-type, including a 134 // non-type member of a class, only non-type visibility restrictions 135 // are considered: the 'visibility' attribute, global value-visibility 136 // settings, and a few special cases like __private_extern. 137 // 138 // 6. When computing the visibility of a type, including a type member 139 // of a class, only type visibility restrictions are considered: 140 // the 'type_visibility' attribute and global type-visibility settings. 141 // However, a 'visibility' attribute counts as a 'type_visibility' 142 // attribute on any declaration that only has the former. 143 // 144 // The visibility of a "secondary" entity, like a template argument, 145 // is computed using the kind of that entity, not the kind of the 146 // primary entity for which we are computing visibility. For example, 147 // the visibility of a specialization of either of these templates: 148 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 149 // template <class T, bool (&compare)(T, X)> class matcher; 150 // is restricted according to the type visibility of the argument 'T', 151 // the type visibility of 'bool(&)(T,X)', and the value visibility of 152 // the argument function 'compare'. That 'has_match' is a value 153 // and 'matcher' is a type only matters when looking for attributes 154 // and settings from the immediate context. 155 156 /// Does this computation kind permit us to consider additional 157 /// visibility settings from attributes and the like? 158 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 159 return computation.IgnoreExplicitVisibility; 160 } 161 162 /// Given an LVComputationKind, return one of the same type/value sort 163 /// that records that it already has explicit visibility. 164 static LVComputationKind 165 withExplicitVisibilityAlready(LVComputationKind Kind) { 166 Kind.IgnoreExplicitVisibility = true; 167 return Kind; 168 } 169 170 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 171 LVComputationKind kind) { 172 assert(!kind.IgnoreExplicitVisibility && 173 "asking for explicit visibility when we shouldn't be"); 174 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 175 } 176 177 /// Is the given declaration a "type" or a "value" for the purposes of 178 /// visibility computation? 179 static bool usesTypeVisibility(const NamedDecl *D) { 180 return isa<TypeDecl>(D) || 181 isa<ClassTemplateDecl>(D) || 182 isa<ObjCInterfaceDecl>(D); 183 } 184 185 /// Does the given declaration have member specialization information, 186 /// and if so, is it an explicit specialization? 187 template <class T> static typename 188 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 189 isExplicitMemberSpecialization(const T *D) { 190 if (const MemberSpecializationInfo *member = 191 D->getMemberSpecializationInfo()) { 192 return member->isExplicitSpecialization(); 193 } 194 return false; 195 } 196 197 /// For templates, this question is easier: a member template can't be 198 /// explicitly instantiated, so there's a single bit indicating whether 199 /// or not this is an explicit member specialization. 200 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 201 return D->isMemberSpecialization(); 202 } 203 204 /// Given a visibility attribute, return the explicit visibility 205 /// associated with it. 206 template <class T> 207 static Visibility getVisibilityFromAttr(const T *attr) { 208 switch (attr->getVisibility()) { 209 case T::Default: 210 return DefaultVisibility; 211 case T::Hidden: 212 return HiddenVisibility; 213 case T::Protected: 214 return ProtectedVisibility; 215 } 216 llvm_unreachable("bad visibility kind"); 217 } 218 219 /// Return the explicit visibility of the given declaration. 220 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 221 NamedDecl::ExplicitVisibilityKind kind) { 222 // If we're ultimately computing the visibility of a type, look for 223 // a 'type_visibility' attribute before looking for 'visibility'. 224 if (kind == NamedDecl::VisibilityForType) { 225 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 226 return getVisibilityFromAttr(A); 227 } 228 } 229 230 // If this declaration has an explicit visibility attribute, use it. 231 if (const auto *A = D->getAttr<VisibilityAttr>()) { 232 return getVisibilityFromAttr(A); 233 } 234 235 return None; 236 } 237 238 LinkageInfo LinkageComputer::getLVForType(const Type &T, 239 LVComputationKind computation) { 240 if (computation.IgnoreAllVisibility) 241 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 242 return getTypeLinkageAndVisibility(&T); 243 } 244 245 /// Get the most restrictive linkage for the types in the given 246 /// template parameter list. For visibility purposes, template 247 /// parameters are part of the signature of a template. 248 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 249 const TemplateParameterList *Params, LVComputationKind computation) { 250 LinkageInfo LV; 251 for (const NamedDecl *P : *Params) { 252 // Template type parameters are the most common and never 253 // contribute to visibility, pack or not. 254 if (isa<TemplateTypeParmDecl>(P)) 255 continue; 256 257 // Non-type template parameters can be restricted by the value type, e.g. 258 // template <enum X> class A { ... }; 259 // We have to be careful here, though, because we can be dealing with 260 // dependent types. 261 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 262 // Handle the non-pack case first. 263 if (!NTTP->isExpandedParameterPack()) { 264 if (!NTTP->getType()->isDependentType()) { 265 LV.merge(getLVForType(*NTTP->getType(), computation)); 266 } 267 continue; 268 } 269 270 // Look at all the types in an expanded pack. 271 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 272 QualType type = NTTP->getExpansionType(i); 273 if (!type->isDependentType()) 274 LV.merge(getTypeLinkageAndVisibility(type)); 275 } 276 continue; 277 } 278 279 // Template template parameters can be restricted by their 280 // template parameters, recursively. 281 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 282 283 // Handle the non-pack case first. 284 if (!TTP->isExpandedParameterPack()) { 285 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 286 computation)); 287 continue; 288 } 289 290 // Look at all expansions in an expanded pack. 291 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 292 i != n; ++i) { 293 LV.merge(getLVForTemplateParameterList( 294 TTP->getExpansionTemplateParameters(i), computation)); 295 } 296 } 297 298 return LV; 299 } 300 301 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 302 const Decl *Ret = nullptr; 303 const DeclContext *DC = D->getDeclContext(); 304 while (DC->getDeclKind() != Decl::TranslationUnit) { 305 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 306 Ret = cast<Decl>(DC); 307 DC = DC->getParent(); 308 } 309 return Ret; 310 } 311 312 /// Get the most restrictive linkage for the types and 313 /// declarations in the given template argument list. 314 /// 315 /// Note that we don't take an LVComputationKind because we always 316 /// want to honor the visibility of template arguments in the same way. 317 LinkageInfo 318 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 319 LVComputationKind computation) { 320 LinkageInfo LV; 321 322 for (const TemplateArgument &Arg : Args) { 323 switch (Arg.getKind()) { 324 case TemplateArgument::Null: 325 case TemplateArgument::Integral: 326 case TemplateArgument::Expression: 327 continue; 328 329 case TemplateArgument::Type: 330 LV.merge(getLVForType(*Arg.getAsType(), computation)); 331 continue; 332 333 case TemplateArgument::Declaration: { 334 const NamedDecl *ND = Arg.getAsDecl(); 335 assert(!usesTypeVisibility(ND)); 336 LV.merge(getLVForDecl(ND, computation)); 337 continue; 338 } 339 340 case TemplateArgument::NullPtr: 341 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 342 continue; 343 344 case TemplateArgument::Template: 345 case TemplateArgument::TemplateExpansion: 346 if (TemplateDecl *Template = 347 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 348 LV.merge(getLVForDecl(Template, computation)); 349 continue; 350 351 case TemplateArgument::Pack: 352 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 353 continue; 354 } 355 llvm_unreachable("bad template argument kind"); 356 } 357 358 return LV; 359 } 360 361 LinkageInfo 362 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 363 LVComputationKind computation) { 364 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 365 } 366 367 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 368 const FunctionTemplateSpecializationInfo *specInfo) { 369 // Include visibility from the template parameters and arguments 370 // only if this is not an explicit instantiation or specialization 371 // with direct explicit visibility. (Implicit instantiations won't 372 // have a direct attribute.) 373 if (!specInfo->isExplicitInstantiationOrSpecialization()) 374 return true; 375 376 return !fn->hasAttr<VisibilityAttr>(); 377 } 378 379 /// Merge in template-related linkage and visibility for the given 380 /// function template specialization. 381 /// 382 /// We don't need a computation kind here because we can assume 383 /// LVForValue. 384 /// 385 /// \param[out] LV the computation to use for the parent 386 void LinkageComputer::mergeTemplateLV( 387 LinkageInfo &LV, const FunctionDecl *fn, 388 const FunctionTemplateSpecializationInfo *specInfo, 389 LVComputationKind computation) { 390 bool considerVisibility = 391 shouldConsiderTemplateVisibility(fn, specInfo); 392 393 // Merge information from the template parameters. 394 FunctionTemplateDecl *temp = specInfo->getTemplate(); 395 LinkageInfo tempLV = 396 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 397 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 398 399 // Merge information from the template arguments. 400 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 401 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 402 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 403 } 404 405 /// Does the given declaration have a direct visibility attribute 406 /// that would match the given rules? 407 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 408 LVComputationKind computation) { 409 if (computation.IgnoreAllVisibility) 410 return false; 411 412 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 413 D->hasAttr<VisibilityAttr>(); 414 } 415 416 /// Should we consider visibility associated with the template 417 /// arguments and parameters of the given class template specialization? 418 static bool shouldConsiderTemplateVisibility( 419 const ClassTemplateSpecializationDecl *spec, 420 LVComputationKind computation) { 421 // Include visibility from the template parameters and arguments 422 // only if this is not an explicit instantiation or specialization 423 // with direct explicit visibility (and note that implicit 424 // instantiations won't have a direct attribute). 425 // 426 // Furthermore, we want to ignore template parameters and arguments 427 // for an explicit specialization when computing the visibility of a 428 // member thereof with explicit visibility. 429 // 430 // This is a bit complex; let's unpack it. 431 // 432 // An explicit class specialization is an independent, top-level 433 // declaration. As such, if it or any of its members has an 434 // explicit visibility attribute, that must directly express the 435 // user's intent, and we should honor it. The same logic applies to 436 // an explicit instantiation of a member of such a thing. 437 438 // Fast path: if this is not an explicit instantiation or 439 // specialization, we always want to consider template-related 440 // visibility restrictions. 441 if (!spec->isExplicitInstantiationOrSpecialization()) 442 return true; 443 444 // This is the 'member thereof' check. 445 if (spec->isExplicitSpecialization() && 446 hasExplicitVisibilityAlready(computation)) 447 return false; 448 449 return !hasDirectVisibilityAttribute(spec, computation); 450 } 451 452 /// Merge in template-related linkage and visibility for the given 453 /// class template specialization. 454 void LinkageComputer::mergeTemplateLV( 455 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 456 LVComputationKind computation) { 457 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 458 459 // Merge information from the template parameters, but ignore 460 // visibility if we're only considering template arguments. 461 462 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 463 LinkageInfo tempLV = 464 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 465 LV.mergeMaybeWithVisibility(tempLV, 466 considerVisibility && !hasExplicitVisibilityAlready(computation)); 467 468 // Merge information from the template arguments. We ignore 469 // template-argument visibility if we've got an explicit 470 // instantiation with a visibility attribute. 471 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 472 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 473 if (considerVisibility) 474 LV.mergeVisibility(argsLV); 475 LV.mergeExternalVisibility(argsLV); 476 } 477 478 /// Should we consider visibility associated with the template 479 /// arguments and parameters of the given variable template 480 /// specialization? As usual, follow class template specialization 481 /// logic up to initialization. 482 static bool shouldConsiderTemplateVisibility( 483 const VarTemplateSpecializationDecl *spec, 484 LVComputationKind computation) { 485 // Include visibility from the template parameters and arguments 486 // only if this is not an explicit instantiation or specialization 487 // with direct explicit visibility (and note that implicit 488 // instantiations won't have a direct attribute). 489 if (!spec->isExplicitInstantiationOrSpecialization()) 490 return true; 491 492 // An explicit variable specialization is an independent, top-level 493 // declaration. As such, if it has an explicit visibility attribute, 494 // that must directly express the user's intent, and we should honor 495 // it. 496 if (spec->isExplicitSpecialization() && 497 hasExplicitVisibilityAlready(computation)) 498 return false; 499 500 return !hasDirectVisibilityAttribute(spec, computation); 501 } 502 503 /// Merge in template-related linkage and visibility for the given 504 /// variable template specialization. As usual, follow class template 505 /// specialization logic up to initialization. 506 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 507 const VarTemplateSpecializationDecl *spec, 508 LVComputationKind computation) { 509 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 510 511 // Merge information from the template parameters, but ignore 512 // visibility if we're only considering template arguments. 513 514 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 515 LinkageInfo tempLV = 516 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 517 LV.mergeMaybeWithVisibility(tempLV, 518 considerVisibility && !hasExplicitVisibilityAlready(computation)); 519 520 // Merge information from the template arguments. We ignore 521 // template-argument visibility if we've got an explicit 522 // instantiation with a visibility attribute. 523 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 524 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 525 if (considerVisibility) 526 LV.mergeVisibility(argsLV); 527 LV.mergeExternalVisibility(argsLV); 528 } 529 530 static bool useInlineVisibilityHidden(const NamedDecl *D) { 531 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 532 const LangOptions &Opts = D->getASTContext().getLangOpts(); 533 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 534 return false; 535 536 const auto *FD = dyn_cast<FunctionDecl>(D); 537 if (!FD) 538 return false; 539 540 TemplateSpecializationKind TSK = TSK_Undeclared; 541 if (FunctionTemplateSpecializationInfo *spec 542 = FD->getTemplateSpecializationInfo()) { 543 TSK = spec->getTemplateSpecializationKind(); 544 } else if (MemberSpecializationInfo *MSI = 545 FD->getMemberSpecializationInfo()) { 546 TSK = MSI->getTemplateSpecializationKind(); 547 } 548 549 const FunctionDecl *Def = nullptr; 550 // InlineVisibilityHidden only applies to definitions, and 551 // isInlined() only gives meaningful answers on definitions 552 // anyway. 553 return TSK != TSK_ExplicitInstantiationDeclaration && 554 TSK != TSK_ExplicitInstantiationDefinition && 555 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 556 } 557 558 template <typename T> static bool isFirstInExternCContext(T *D) { 559 const T *First = D->getFirstDecl(); 560 return First->isInExternCContext(); 561 } 562 563 static bool isSingleLineLanguageLinkage(const Decl &D) { 564 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 565 if (!SD->hasBraces()) 566 return true; 567 return false; 568 } 569 570 /// Determine whether D is declared in the purview of a named module. 571 static bool isInModulePurview(const NamedDecl *D) { 572 if (auto *M = D->getOwningModule()) 573 return M->isModulePurview(); 574 return false; 575 } 576 577 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 578 // FIXME: Handle isModulePrivate. 579 switch (D->getModuleOwnershipKind()) { 580 case Decl::ModuleOwnershipKind::Unowned: 581 case Decl::ModuleOwnershipKind::ModulePrivate: 582 return false; 583 case Decl::ModuleOwnershipKind::Visible: 584 case Decl::ModuleOwnershipKind::VisibleWhenImported: 585 return isInModulePurview(D); 586 } 587 llvm_unreachable("unexpected module ownership kind"); 588 } 589 590 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 591 // Internal linkage declarations within a module interface unit are modeled 592 // as "module-internal linkage", which means that they have internal linkage 593 // formally but can be indirectly accessed from outside the module via inline 594 // functions and templates defined within the module. 595 if (isInModulePurview(D)) 596 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 597 598 return LinkageInfo::internal(); 599 } 600 601 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 602 // C++ Modules TS [basic.link]/6.8: 603 // - A name declared at namespace scope that does not have internal linkage 604 // by the previous rules and that is introduced by a non-exported 605 // declaration has module linkage. 606 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit( 607 cast<NamedDecl>(D->getCanonicalDecl()))) 608 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 609 610 return LinkageInfo::external(); 611 } 612 613 static StorageClass getStorageClass(const Decl *D) { 614 if (auto *TD = dyn_cast<TemplateDecl>(D)) 615 D = TD->getTemplatedDecl(); 616 if (D) { 617 if (auto *VD = dyn_cast<VarDecl>(D)) 618 return VD->getStorageClass(); 619 if (auto *FD = dyn_cast<FunctionDecl>(D)) 620 return FD->getStorageClass(); 621 } 622 return SC_None; 623 } 624 625 LinkageInfo 626 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 627 LVComputationKind computation, 628 bool IgnoreVarTypeLinkage) { 629 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 630 "Not a name having namespace scope"); 631 ASTContext &Context = D->getASTContext(); 632 633 // C++ [basic.link]p3: 634 // A name having namespace scope (3.3.6) has internal linkage if it 635 // is the name of 636 637 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 638 // - a variable, variable template, function, or function template 639 // that is explicitly declared static; or 640 // (This bullet corresponds to C99 6.2.2p3.) 641 return getInternalLinkageFor(D); 642 } 643 644 if (const auto *Var = dyn_cast<VarDecl>(D)) { 645 // - a non-template variable of non-volatile const-qualified type, unless 646 // - it is explicitly declared extern, or 647 // - it is inline or exported, or 648 // - it was previously declared and the prior declaration did not have 649 // internal linkage 650 // (There is no equivalent in C99.) 651 if (Context.getLangOpts().CPlusPlus && 652 Var->getType().isConstQualified() && 653 !Var->getType().isVolatileQualified() && 654 !Var->isInline() && 655 !isExportedFromModuleInterfaceUnit(Var) && 656 !isa<VarTemplateSpecializationDecl>(Var) && 657 !Var->getDescribedVarTemplate()) { 658 const VarDecl *PrevVar = Var->getPreviousDecl(); 659 if (PrevVar) 660 return getLVForDecl(PrevVar, computation); 661 662 if (Var->getStorageClass() != SC_Extern && 663 Var->getStorageClass() != SC_PrivateExtern && 664 !isSingleLineLanguageLinkage(*Var)) 665 return getInternalLinkageFor(Var); 666 } 667 668 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 669 PrevVar = PrevVar->getPreviousDecl()) { 670 if (PrevVar->getStorageClass() == SC_PrivateExtern && 671 Var->getStorageClass() == SC_None) 672 return getDeclLinkageAndVisibility(PrevVar); 673 // Explicitly declared static. 674 if (PrevVar->getStorageClass() == SC_Static) 675 return getInternalLinkageFor(Var); 676 } 677 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 678 // - a data member of an anonymous union. 679 const VarDecl *VD = IFD->getVarDecl(); 680 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 681 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 682 } 683 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 684 685 // FIXME: This gives internal linkage to names that should have no linkage 686 // (those not covered by [basic.link]p6). 687 if (D->isInAnonymousNamespace()) { 688 const auto *Var = dyn_cast<VarDecl>(D); 689 const auto *Func = dyn_cast<FunctionDecl>(D); 690 // FIXME: The check for extern "C" here is not justified by the standard 691 // wording, but we retain it from the pre-DR1113 model to avoid breaking 692 // code. 693 // 694 // C++11 [basic.link]p4: 695 // An unnamed namespace or a namespace declared directly or indirectly 696 // within an unnamed namespace has internal linkage. 697 if ((!Var || !isFirstInExternCContext(Var)) && 698 (!Func || !isFirstInExternCContext(Func))) 699 return getInternalLinkageFor(D); 700 } 701 702 // Set up the defaults. 703 704 // C99 6.2.2p5: 705 // If the declaration of an identifier for an object has file 706 // scope and no storage-class specifier, its linkage is 707 // external. 708 LinkageInfo LV = getExternalLinkageFor(D); 709 710 if (!hasExplicitVisibilityAlready(computation)) { 711 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 712 LV.mergeVisibility(*Vis, true); 713 } else { 714 // If we're declared in a namespace with a visibility attribute, 715 // use that namespace's visibility, and it still counts as explicit. 716 for (const DeclContext *DC = D->getDeclContext(); 717 !isa<TranslationUnitDecl>(DC); 718 DC = DC->getParent()) { 719 const auto *ND = dyn_cast<NamespaceDecl>(DC); 720 if (!ND) continue; 721 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 722 LV.mergeVisibility(*Vis, true); 723 break; 724 } 725 } 726 } 727 728 // Add in global settings if the above didn't give us direct visibility. 729 if (!LV.isVisibilityExplicit()) { 730 // Use global type/value visibility as appropriate. 731 Visibility globalVisibility = 732 computation.isValueVisibility() 733 ? Context.getLangOpts().getValueVisibilityMode() 734 : Context.getLangOpts().getTypeVisibilityMode(); 735 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 736 737 // If we're paying attention to global visibility, apply 738 // -finline-visibility-hidden if this is an inline method. 739 if (useInlineVisibilityHidden(D)) 740 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 741 } 742 } 743 744 // C++ [basic.link]p4: 745 746 // A name having namespace scope that has not been given internal linkage 747 // above and that is the name of 748 // [...bullets...] 749 // has its linkage determined as follows: 750 // - if the enclosing namespace has internal linkage, the name has 751 // internal linkage; [handled above] 752 // - otherwise, if the declaration of the name is attached to a named 753 // module and is not exported, the name has module linkage; 754 // - otherwise, the name has external linkage. 755 // LV is currently set up to handle the last two bullets. 756 // 757 // The bullets are: 758 759 // - a variable; or 760 if (const auto *Var = dyn_cast<VarDecl>(D)) { 761 // GCC applies the following optimization to variables and static 762 // data members, but not to functions: 763 // 764 // Modify the variable's LV by the LV of its type unless this is 765 // C or extern "C". This follows from [basic.link]p9: 766 // A type without linkage shall not be used as the type of a 767 // variable or function with external linkage unless 768 // - the entity has C language linkage, or 769 // - the entity is declared within an unnamed namespace, or 770 // - the entity is not used or is defined in the same 771 // translation unit. 772 // and [basic.link]p10: 773 // ...the types specified by all declarations referring to a 774 // given variable or function shall be identical... 775 // C does not have an equivalent rule. 776 // 777 // Ignore this if we've got an explicit attribute; the user 778 // probably knows what they're doing. 779 // 780 // Note that we don't want to make the variable non-external 781 // because of this, but unique-external linkage suits us. 782 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 783 !IgnoreVarTypeLinkage) { 784 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 785 if (!isExternallyVisible(TypeLV.getLinkage())) 786 return LinkageInfo::uniqueExternal(); 787 if (!LV.isVisibilityExplicit()) 788 LV.mergeVisibility(TypeLV); 789 } 790 791 if (Var->getStorageClass() == SC_PrivateExtern) 792 LV.mergeVisibility(HiddenVisibility, true); 793 794 // Note that Sema::MergeVarDecl already takes care of implementing 795 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 796 // to do it here. 797 798 // As per function and class template specializations (below), 799 // consider LV for the template and template arguments. We're at file 800 // scope, so we do not need to worry about nested specializations. 801 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 802 mergeTemplateLV(LV, spec, computation); 803 } 804 805 // - a function; or 806 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 807 // In theory, we can modify the function's LV by the LV of its 808 // type unless it has C linkage (see comment above about variables 809 // for justification). In practice, GCC doesn't do this, so it's 810 // just too painful to make work. 811 812 if (Function->getStorageClass() == SC_PrivateExtern) 813 LV.mergeVisibility(HiddenVisibility, true); 814 815 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 816 // merging storage classes and visibility attributes, so we don't have to 817 // look at previous decls in here. 818 819 // In C++, then if the type of the function uses a type with 820 // unique-external linkage, it's not legally usable from outside 821 // this translation unit. However, we should use the C linkage 822 // rules instead for extern "C" declarations. 823 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 824 // Only look at the type-as-written. Otherwise, deducing the return type 825 // of a function could change its linkage. 826 QualType TypeAsWritten = Function->getType(); 827 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 828 TypeAsWritten = TSI->getType(); 829 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 830 return LinkageInfo::uniqueExternal(); 831 } 832 833 // Consider LV from the template and the template arguments. 834 // We're at file scope, so we do not need to worry about nested 835 // specializations. 836 if (FunctionTemplateSpecializationInfo *specInfo 837 = Function->getTemplateSpecializationInfo()) { 838 mergeTemplateLV(LV, Function, specInfo, computation); 839 } 840 841 // - a named class (Clause 9), or an unnamed class defined in a 842 // typedef declaration in which the class has the typedef name 843 // for linkage purposes (7.1.3); or 844 // - a named enumeration (7.2), or an unnamed enumeration 845 // defined in a typedef declaration in which the enumeration 846 // has the typedef name for linkage purposes (7.1.3); or 847 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 848 // Unnamed tags have no linkage. 849 if (!Tag->hasNameForLinkage()) 850 return LinkageInfo::none(); 851 852 // If this is a class template specialization, consider the 853 // linkage of the template and template arguments. We're at file 854 // scope, so we do not need to worry about nested specializations. 855 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 856 mergeTemplateLV(LV, spec, computation); 857 } 858 859 // FIXME: This is not part of the C++ standard any more. 860 // - an enumerator belonging to an enumeration with external linkage; or 861 } else if (isa<EnumConstantDecl>(D)) { 862 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 863 computation); 864 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 865 return LinkageInfo::none(); 866 LV.merge(EnumLV); 867 868 // - a template 869 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 870 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 871 LinkageInfo tempLV = 872 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 873 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 874 875 // An unnamed namespace or a namespace declared directly or indirectly 876 // within an unnamed namespace has internal linkage. All other namespaces 877 // have external linkage. 878 // 879 // We handled names in anonymous namespaces above. 880 } else if (isa<NamespaceDecl>(D)) { 881 return LV; 882 883 // By extension, we assign external linkage to Objective-C 884 // interfaces. 885 } else if (isa<ObjCInterfaceDecl>(D)) { 886 // fallout 887 888 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 889 // A typedef declaration has linkage if it gives a type a name for 890 // linkage purposes. 891 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 892 return LinkageInfo::none(); 893 894 // Everything not covered here has no linkage. 895 } else { 896 return LinkageInfo::none(); 897 } 898 899 // If we ended up with non-externally-visible linkage, visibility should 900 // always be default. 901 if (!isExternallyVisible(LV.getLinkage())) 902 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 903 904 return LV; 905 } 906 907 LinkageInfo 908 LinkageComputer::getLVForClassMember(const NamedDecl *D, 909 LVComputationKind computation, 910 bool IgnoreVarTypeLinkage) { 911 // Only certain class members have linkage. Note that fields don't 912 // really have linkage, but it's convenient to say they do for the 913 // purposes of calculating linkage of pointer-to-data-member 914 // template arguments. 915 // 916 // Templates also don't officially have linkage, but since we ignore 917 // the C++ standard and look at template arguments when determining 918 // linkage and visibility of a template specialization, we might hit 919 // a template template argument that way. If we do, we need to 920 // consider its linkage. 921 if (!(isa<CXXMethodDecl>(D) || 922 isa<VarDecl>(D) || 923 isa<FieldDecl>(D) || 924 isa<IndirectFieldDecl>(D) || 925 isa<TagDecl>(D) || 926 isa<TemplateDecl>(D))) 927 return LinkageInfo::none(); 928 929 LinkageInfo LV; 930 931 // If we have an explicit visibility attribute, merge that in. 932 if (!hasExplicitVisibilityAlready(computation)) { 933 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 934 LV.mergeVisibility(*Vis, true); 935 // If we're paying attention to global visibility, apply 936 // -finline-visibility-hidden if this is an inline method. 937 // 938 // Note that we do this before merging information about 939 // the class visibility. 940 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 941 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 942 } 943 944 // If this class member has an explicit visibility attribute, the only 945 // thing that can change its visibility is the template arguments, so 946 // only look for them when processing the class. 947 LVComputationKind classComputation = computation; 948 if (LV.isVisibilityExplicit()) 949 classComputation = withExplicitVisibilityAlready(computation); 950 951 LinkageInfo classLV = 952 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 953 // The member has the same linkage as the class. If that's not externally 954 // visible, we don't need to compute anything about the linkage. 955 // FIXME: If we're only computing linkage, can we bail out here? 956 if (!isExternallyVisible(classLV.getLinkage())) 957 return classLV; 958 959 960 // Otherwise, don't merge in classLV yet, because in certain cases 961 // we need to completely ignore the visibility from it. 962 963 // Specifically, if this decl exists and has an explicit attribute. 964 const NamedDecl *explicitSpecSuppressor = nullptr; 965 966 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 967 // Only look at the type-as-written. Otherwise, deducing the return type 968 // of a function could change its linkage. 969 QualType TypeAsWritten = MD->getType(); 970 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 971 TypeAsWritten = TSI->getType(); 972 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 973 return LinkageInfo::uniqueExternal(); 974 975 // If this is a method template specialization, use the linkage for 976 // the template parameters and arguments. 977 if (FunctionTemplateSpecializationInfo *spec 978 = MD->getTemplateSpecializationInfo()) { 979 mergeTemplateLV(LV, MD, spec, computation); 980 if (spec->isExplicitSpecialization()) { 981 explicitSpecSuppressor = MD; 982 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 983 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 984 } 985 } else if (isExplicitMemberSpecialization(MD)) { 986 explicitSpecSuppressor = MD; 987 } 988 989 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 990 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 991 mergeTemplateLV(LV, spec, computation); 992 if (spec->isExplicitSpecialization()) { 993 explicitSpecSuppressor = spec; 994 } else { 995 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 996 if (isExplicitMemberSpecialization(temp)) { 997 explicitSpecSuppressor = temp->getTemplatedDecl(); 998 } 999 } 1000 } else if (isExplicitMemberSpecialization(RD)) { 1001 explicitSpecSuppressor = RD; 1002 } 1003 1004 // Static data members. 1005 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1006 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1007 mergeTemplateLV(LV, spec, computation); 1008 1009 // Modify the variable's linkage by its type, but ignore the 1010 // type's visibility unless it's a definition. 1011 if (!IgnoreVarTypeLinkage) { 1012 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1013 // FIXME: If the type's linkage is not externally visible, we can 1014 // give this static data member UniqueExternalLinkage. 1015 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1016 LV.mergeVisibility(typeLV); 1017 LV.mergeExternalVisibility(typeLV); 1018 } 1019 1020 if (isExplicitMemberSpecialization(VD)) { 1021 explicitSpecSuppressor = VD; 1022 } 1023 1024 // Template members. 1025 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1026 bool considerVisibility = 1027 (!LV.isVisibilityExplicit() && 1028 !classLV.isVisibilityExplicit() && 1029 !hasExplicitVisibilityAlready(computation)); 1030 LinkageInfo tempLV = 1031 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1032 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1033 1034 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1035 if (isExplicitMemberSpecialization(redeclTemp)) { 1036 explicitSpecSuppressor = temp->getTemplatedDecl(); 1037 } 1038 } 1039 } 1040 1041 // We should never be looking for an attribute directly on a template. 1042 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1043 1044 // If this member is an explicit member specialization, and it has 1045 // an explicit attribute, ignore visibility from the parent. 1046 bool considerClassVisibility = true; 1047 if (explicitSpecSuppressor && 1048 // optimization: hasDVA() is true only with explicit visibility. 1049 LV.isVisibilityExplicit() && 1050 classLV.getVisibility() != DefaultVisibility && 1051 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1052 considerClassVisibility = false; 1053 } 1054 1055 // Finally, merge in information from the class. 1056 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1057 return LV; 1058 } 1059 1060 void NamedDecl::anchor() {} 1061 1062 bool NamedDecl::isLinkageValid() const { 1063 if (!hasCachedLinkage()) 1064 return true; 1065 1066 Linkage L = LinkageComputer{} 1067 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1068 .getLinkage(); 1069 return L == getCachedLinkage(); 1070 } 1071 1072 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1073 StringRef name = getName(); 1074 if (name.empty()) return SFF_None; 1075 1076 if (name.front() == 'C') 1077 if (name == "CFStringCreateWithFormat" || 1078 name == "CFStringCreateWithFormatAndArguments" || 1079 name == "CFStringAppendFormat" || 1080 name == "CFStringAppendFormatAndArguments") 1081 return SFF_CFString; 1082 return SFF_None; 1083 } 1084 1085 Linkage NamedDecl::getLinkageInternal() const { 1086 // We don't care about visibility here, so ask for the cheapest 1087 // possible visibility analysis. 1088 return LinkageComputer{} 1089 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1090 .getLinkage(); 1091 } 1092 1093 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1094 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1095 } 1096 1097 static Optional<Visibility> 1098 getExplicitVisibilityAux(const NamedDecl *ND, 1099 NamedDecl::ExplicitVisibilityKind kind, 1100 bool IsMostRecent) { 1101 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1102 1103 // Check the declaration itself first. 1104 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1105 return V; 1106 1107 // If this is a member class of a specialization of a class template 1108 // and the corresponding decl has explicit visibility, use that. 1109 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1110 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1111 if (InstantiatedFrom) 1112 return getVisibilityOf(InstantiatedFrom, kind); 1113 } 1114 1115 // If there wasn't explicit visibility there, and this is a 1116 // specialization of a class template, check for visibility 1117 // on the pattern. 1118 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1119 // Walk all the template decl till this point to see if there are 1120 // explicit visibility attributes. 1121 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1122 while (TD != nullptr) { 1123 auto Vis = getVisibilityOf(TD, kind); 1124 if (Vis != None) 1125 return Vis; 1126 TD = TD->getPreviousDecl(); 1127 } 1128 return None; 1129 } 1130 1131 // Use the most recent declaration. 1132 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1133 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1134 if (MostRecent != ND) 1135 return getExplicitVisibilityAux(MostRecent, kind, true); 1136 } 1137 1138 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1139 if (Var->isStaticDataMember()) { 1140 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1141 if (InstantiatedFrom) 1142 return getVisibilityOf(InstantiatedFrom, kind); 1143 } 1144 1145 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1146 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1147 kind); 1148 1149 return None; 1150 } 1151 // Also handle function template specializations. 1152 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1153 // If the function is a specialization of a template with an 1154 // explicit visibility attribute, use that. 1155 if (FunctionTemplateSpecializationInfo *templateInfo 1156 = fn->getTemplateSpecializationInfo()) 1157 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1158 kind); 1159 1160 // If the function is a member of a specialization of a class template 1161 // and the corresponding decl has explicit visibility, use that. 1162 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1163 if (InstantiatedFrom) 1164 return getVisibilityOf(InstantiatedFrom, kind); 1165 1166 return None; 1167 } 1168 1169 // The visibility of a template is stored in the templated decl. 1170 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1171 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1172 1173 return None; 1174 } 1175 1176 Optional<Visibility> 1177 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1178 return getExplicitVisibilityAux(this, kind, false); 1179 } 1180 1181 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1182 Decl *ContextDecl, 1183 LVComputationKind computation) { 1184 // This lambda has its linkage/visibility determined by its owner. 1185 const NamedDecl *Owner; 1186 if (!ContextDecl) 1187 Owner = dyn_cast<NamedDecl>(DC); 1188 else if (isa<ParmVarDecl>(ContextDecl)) 1189 Owner = 1190 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1191 else 1192 Owner = cast<NamedDecl>(ContextDecl); 1193 1194 if (!Owner) 1195 return LinkageInfo::none(); 1196 1197 // If the owner has a deduced type, we need to skip querying the linkage and 1198 // visibility of that type, because it might involve this closure type. The 1199 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1200 // than NoLinkage when we don't strictly need to, which is benign. 1201 auto *VD = dyn_cast<VarDecl>(Owner); 1202 LinkageInfo OwnerLV = 1203 VD && VD->getType()->getContainedDeducedType() 1204 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1205 : getLVForDecl(Owner, computation); 1206 1207 // A lambda never formally has linkage. But if the owner is externally 1208 // visible, then the lambda is too. We apply the same rules to blocks. 1209 if (!isExternallyVisible(OwnerLV.getLinkage())) 1210 return LinkageInfo::none(); 1211 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1212 OwnerLV.isVisibilityExplicit()); 1213 } 1214 1215 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1216 LVComputationKind computation) { 1217 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1218 if (Function->isInAnonymousNamespace() && 1219 !isFirstInExternCContext(Function)) 1220 return getInternalLinkageFor(Function); 1221 1222 // This is a "void f();" which got merged with a file static. 1223 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1224 return getInternalLinkageFor(Function); 1225 1226 LinkageInfo LV; 1227 if (!hasExplicitVisibilityAlready(computation)) { 1228 if (Optional<Visibility> Vis = 1229 getExplicitVisibility(Function, computation)) 1230 LV.mergeVisibility(*Vis, true); 1231 } 1232 1233 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1234 // merging storage classes and visibility attributes, so we don't have to 1235 // look at previous decls in here. 1236 1237 return LV; 1238 } 1239 1240 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1241 if (Var->hasExternalStorage()) { 1242 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1243 return getInternalLinkageFor(Var); 1244 1245 LinkageInfo LV; 1246 if (Var->getStorageClass() == SC_PrivateExtern) 1247 LV.mergeVisibility(HiddenVisibility, true); 1248 else if (!hasExplicitVisibilityAlready(computation)) { 1249 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1250 LV.mergeVisibility(*Vis, true); 1251 } 1252 1253 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1254 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1255 if (PrevLV.getLinkage()) 1256 LV.setLinkage(PrevLV.getLinkage()); 1257 LV.mergeVisibility(PrevLV); 1258 } 1259 1260 return LV; 1261 } 1262 1263 if (!Var->isStaticLocal()) 1264 return LinkageInfo::none(); 1265 } 1266 1267 ASTContext &Context = D->getASTContext(); 1268 if (!Context.getLangOpts().CPlusPlus) 1269 return LinkageInfo::none(); 1270 1271 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1272 if (!OuterD || OuterD->isInvalidDecl()) 1273 return LinkageInfo::none(); 1274 1275 LinkageInfo LV; 1276 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1277 if (!BD->getBlockManglingNumber()) 1278 return LinkageInfo::none(); 1279 1280 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1281 BD->getBlockManglingContextDecl(), computation); 1282 } else { 1283 const auto *FD = cast<FunctionDecl>(OuterD); 1284 if (!FD->isInlined() && 1285 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1286 return LinkageInfo::none(); 1287 1288 // If a function is hidden by -fvisibility-inlines-hidden option and 1289 // is not explicitly attributed as a hidden function, 1290 // we should not make static local variables in the function hidden. 1291 LV = getLVForDecl(FD, computation); 1292 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1293 !LV.isVisibilityExplicit()) { 1294 assert(cast<VarDecl>(D)->isStaticLocal()); 1295 // If this was an implicitly hidden inline method, check again for 1296 // explicit visibility on the parent class, and use that for static locals 1297 // if present. 1298 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1299 LV = getLVForDecl(MD->getParent(), computation); 1300 if (!LV.isVisibilityExplicit()) { 1301 Visibility globalVisibility = 1302 computation.isValueVisibility() 1303 ? Context.getLangOpts().getValueVisibilityMode() 1304 : Context.getLangOpts().getTypeVisibilityMode(); 1305 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1306 /*visibilityExplicit=*/false); 1307 } 1308 } 1309 } 1310 if (!isExternallyVisible(LV.getLinkage())) 1311 return LinkageInfo::none(); 1312 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1313 LV.isVisibilityExplicit()); 1314 } 1315 1316 static inline const CXXRecordDecl* 1317 getOutermostEnclosingLambda(const CXXRecordDecl *Record) { 1318 const CXXRecordDecl *Ret = Record; 1319 while (Record && Record->isLambda()) { 1320 Ret = Record; 1321 if (!Record->getParent()) break; 1322 // Get the Containing Class of this Lambda Class 1323 Record = dyn_cast_or_null<CXXRecordDecl>( 1324 Record->getParent()->getParent()); 1325 } 1326 return Ret; 1327 } 1328 1329 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1330 LVComputationKind computation, 1331 bool IgnoreVarTypeLinkage) { 1332 // Internal_linkage attribute overrides other considerations. 1333 if (D->hasAttr<InternalLinkageAttr>()) 1334 return getInternalLinkageFor(D); 1335 1336 // Objective-C: treat all Objective-C declarations as having external 1337 // linkage. 1338 switch (D->getKind()) { 1339 default: 1340 break; 1341 1342 // Per C++ [basic.link]p2, only the names of objects, references, 1343 // functions, types, templates, namespaces, and values ever have linkage. 1344 // 1345 // Note that the name of a typedef, namespace alias, using declaration, 1346 // and so on are not the name of the corresponding type, namespace, or 1347 // declaration, so they do *not* have linkage. 1348 case Decl::ImplicitParam: 1349 case Decl::Label: 1350 case Decl::NamespaceAlias: 1351 case Decl::ParmVar: 1352 case Decl::Using: 1353 case Decl::UsingShadow: 1354 case Decl::UsingDirective: 1355 return LinkageInfo::none(); 1356 1357 case Decl::EnumConstant: 1358 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1359 if (D->getASTContext().getLangOpts().CPlusPlus) 1360 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1361 return LinkageInfo::visible_none(); 1362 1363 case Decl::Typedef: 1364 case Decl::TypeAlias: 1365 // A typedef declaration has linkage if it gives a type a name for 1366 // linkage purposes. 1367 if (!cast<TypedefNameDecl>(D) 1368 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1369 return LinkageInfo::none(); 1370 break; 1371 1372 case Decl::TemplateTemplateParm: // count these as external 1373 case Decl::NonTypeTemplateParm: 1374 case Decl::ObjCAtDefsField: 1375 case Decl::ObjCCategory: 1376 case Decl::ObjCCategoryImpl: 1377 case Decl::ObjCCompatibleAlias: 1378 case Decl::ObjCImplementation: 1379 case Decl::ObjCMethod: 1380 case Decl::ObjCProperty: 1381 case Decl::ObjCPropertyImpl: 1382 case Decl::ObjCProtocol: 1383 return getExternalLinkageFor(D); 1384 1385 case Decl::CXXRecord: { 1386 const auto *Record = cast<CXXRecordDecl>(D); 1387 if (Record->isLambda()) { 1388 if (Record->hasKnownLambdaInternalLinkage() || 1389 !Record->getLambdaManglingNumber()) { 1390 // This lambda has no mangling number, so it's internal. 1391 return getInternalLinkageFor(D); 1392 } 1393 1394 // This lambda has its linkage/visibility determined: 1395 // - either by the outermost lambda if that lambda has no mangling 1396 // number. 1397 // - or by the parent of the outer most lambda 1398 // This prevents infinite recursion in settings such as nested lambdas 1399 // used in NSDMI's, for e.g. 1400 // struct L { 1401 // int t{}; 1402 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); 1403 // }; 1404 const CXXRecordDecl *OuterMostLambda = 1405 getOutermostEnclosingLambda(Record); 1406 if (OuterMostLambda->hasKnownLambdaInternalLinkage() || 1407 !OuterMostLambda->getLambdaManglingNumber()) 1408 return getInternalLinkageFor(D); 1409 1410 return getLVForClosure( 1411 OuterMostLambda->getDeclContext()->getRedeclContext(), 1412 OuterMostLambda->getLambdaContextDecl(), computation); 1413 } 1414 1415 break; 1416 } 1417 } 1418 1419 // Handle linkage for namespace-scope names. 1420 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1421 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1422 1423 // C++ [basic.link]p5: 1424 // In addition, a member function, static data member, a named 1425 // class or enumeration of class scope, or an unnamed class or 1426 // enumeration defined in a class-scope typedef declaration such 1427 // that the class or enumeration has the typedef name for linkage 1428 // purposes (7.1.3), has external linkage if the name of the class 1429 // has external linkage. 1430 if (D->getDeclContext()->isRecord()) 1431 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1432 1433 // C++ [basic.link]p6: 1434 // The name of a function declared in block scope and the name of 1435 // an object declared by a block scope extern declaration have 1436 // linkage. If there is a visible declaration of an entity with 1437 // linkage having the same name and type, ignoring entities 1438 // declared outside the innermost enclosing namespace scope, the 1439 // block scope declaration declares that same entity and receives 1440 // the linkage of the previous declaration. If there is more than 1441 // one such matching entity, the program is ill-formed. Otherwise, 1442 // if no matching entity is found, the block scope entity receives 1443 // external linkage. 1444 if (D->getDeclContext()->isFunctionOrMethod()) 1445 return getLVForLocalDecl(D, computation); 1446 1447 // C++ [basic.link]p6: 1448 // Names not covered by these rules have no linkage. 1449 return LinkageInfo::none(); 1450 } 1451 1452 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1453 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1454 LVComputationKind computation) { 1455 // Internal_linkage attribute overrides other considerations. 1456 if (D->hasAttr<InternalLinkageAttr>()) 1457 return getInternalLinkageFor(D); 1458 1459 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1460 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1461 1462 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1463 return *LI; 1464 1465 LinkageInfo LV = computeLVForDecl(D, computation); 1466 if (D->hasCachedLinkage()) 1467 assert(D->getCachedLinkage() == LV.getLinkage()); 1468 1469 D->setCachedLinkage(LV.getLinkage()); 1470 cache(D, computation, LV); 1471 1472 #ifndef NDEBUG 1473 // In C (because of gnu inline) and in c++ with microsoft extensions an 1474 // static can follow an extern, so we can have two decls with different 1475 // linkages. 1476 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1477 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1478 return LV; 1479 1480 // We have just computed the linkage for this decl. By induction we know 1481 // that all other computed linkages match, check that the one we just 1482 // computed also does. 1483 NamedDecl *Old = nullptr; 1484 for (auto I : D->redecls()) { 1485 auto *T = cast<NamedDecl>(I); 1486 if (T == D) 1487 continue; 1488 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1489 Old = T; 1490 break; 1491 } 1492 } 1493 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1494 #endif 1495 1496 return LV; 1497 } 1498 1499 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1500 return getLVForDecl(D, 1501 LVComputationKind(usesTypeVisibility(D) 1502 ? NamedDecl::VisibilityForType 1503 : NamedDecl::VisibilityForValue)); 1504 } 1505 1506 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1507 Module *M = getOwningModule(); 1508 if (!M) 1509 return nullptr; 1510 1511 switch (M->Kind) { 1512 case Module::ModuleMapModule: 1513 // Module map modules have no special linkage semantics. 1514 return nullptr; 1515 1516 case Module::ModuleInterfaceUnit: 1517 return M; 1518 1519 case Module::GlobalModuleFragment: { 1520 // External linkage declarations in the global module have no owning module 1521 // for linkage purposes. But internal linkage declarations in the global 1522 // module fragment of a particular module are owned by that module for 1523 // linkage purposes. 1524 if (IgnoreLinkage) 1525 return nullptr; 1526 bool InternalLinkage; 1527 if (auto *ND = dyn_cast<NamedDecl>(this)) 1528 InternalLinkage = !ND->hasExternalFormalLinkage(); 1529 else { 1530 auto *NSD = dyn_cast<NamespaceDecl>(this); 1531 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || 1532 isInAnonymousNamespace(); 1533 } 1534 return InternalLinkage ? M->Parent : nullptr; 1535 } 1536 1537 case Module::PrivateModuleFragment: 1538 // The private module fragment is part of its containing module for linkage 1539 // purposes. 1540 return M->Parent; 1541 } 1542 1543 llvm_unreachable("unknown module kind"); 1544 } 1545 1546 void NamedDecl::printName(raw_ostream &os) const { 1547 os << Name; 1548 } 1549 1550 std::string NamedDecl::getQualifiedNameAsString() const { 1551 std::string QualName; 1552 llvm::raw_string_ostream OS(QualName); 1553 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1554 return OS.str(); 1555 } 1556 1557 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1558 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1559 } 1560 1561 void NamedDecl::printQualifiedName(raw_ostream &OS, 1562 const PrintingPolicy &P) const { 1563 if (getDeclContext()->isFunctionOrMethod()) { 1564 // We do not print '(anonymous)' for function parameters without name. 1565 printName(OS); 1566 return; 1567 } 1568 printNestedNameSpecifier(OS, P); 1569 if (getDeclName() || isa<DecompositionDecl>(this)) 1570 OS << *this; 1571 else 1572 OS << "(anonymous)"; 1573 } 1574 1575 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1576 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1577 } 1578 1579 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1580 const PrintingPolicy &P) const { 1581 const DeclContext *Ctx = getDeclContext(); 1582 1583 // For ObjC methods and properties, look through categories and use the 1584 // interface as context. 1585 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) 1586 if (auto *ID = MD->getClassInterface()) 1587 Ctx = ID; 1588 if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1589 if (auto *MD = PD->getGetterMethodDecl()) 1590 if (auto *ID = MD->getClassInterface()) 1591 Ctx = ID; 1592 } 1593 1594 if (Ctx->isFunctionOrMethod()) 1595 return; 1596 1597 using ContextsTy = SmallVector<const DeclContext *, 8>; 1598 ContextsTy Contexts; 1599 1600 // Collect named contexts. 1601 while (Ctx) { 1602 if (isa<NamedDecl>(Ctx)) 1603 Contexts.push_back(Ctx); 1604 Ctx = Ctx->getParent(); 1605 } 1606 1607 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1608 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1609 OS << Spec->getName(); 1610 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1611 printTemplateArgumentList(OS, TemplateArgs.asArray(), P); 1612 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1613 if (P.SuppressUnwrittenScope && 1614 (ND->isAnonymousNamespace() || ND->isInline())) 1615 continue; 1616 if (ND->isAnonymousNamespace()) { 1617 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1618 : "(anonymous namespace)"); 1619 } 1620 else 1621 OS << *ND; 1622 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1623 if (!RD->getIdentifier()) 1624 OS << "(anonymous " << RD->getKindName() << ')'; 1625 else 1626 OS << *RD; 1627 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1628 const FunctionProtoType *FT = nullptr; 1629 if (FD->hasWrittenPrototype()) 1630 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1631 1632 OS << *FD << '('; 1633 if (FT) { 1634 unsigned NumParams = FD->getNumParams(); 1635 for (unsigned i = 0; i < NumParams; ++i) { 1636 if (i) 1637 OS << ", "; 1638 OS << FD->getParamDecl(i)->getType().stream(P); 1639 } 1640 1641 if (FT->isVariadic()) { 1642 if (NumParams > 0) 1643 OS << ", "; 1644 OS << "..."; 1645 } 1646 } 1647 OS << ')'; 1648 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1649 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1650 // enumerator is declared in the scope that immediately contains 1651 // the enum-specifier. Each scoped enumerator is declared in the 1652 // scope of the enumeration. 1653 // For the case of unscoped enumerator, do not include in the qualified 1654 // name any information about its enum enclosing scope, as its visibility 1655 // is global. 1656 if (ED->isScoped()) 1657 OS << *ED; 1658 else 1659 continue; 1660 } else { 1661 OS << *cast<NamedDecl>(DC); 1662 } 1663 OS << "::"; 1664 } 1665 } 1666 1667 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1668 const PrintingPolicy &Policy, 1669 bool Qualified) const { 1670 if (Qualified) 1671 printQualifiedName(OS, Policy); 1672 else 1673 printName(OS); 1674 } 1675 1676 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1677 return true; 1678 } 1679 static bool isRedeclarableImpl(...) { return false; } 1680 static bool isRedeclarable(Decl::Kind K) { 1681 switch (K) { 1682 #define DECL(Type, Base) \ 1683 case Decl::Type: \ 1684 return isRedeclarableImpl((Type##Decl *)nullptr); 1685 #define ABSTRACT_DECL(DECL) 1686 #include "clang/AST/DeclNodes.inc" 1687 } 1688 llvm_unreachable("unknown decl kind"); 1689 } 1690 1691 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1692 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1693 1694 // Never replace one imported declaration with another; we need both results 1695 // when re-exporting. 1696 if (OldD->isFromASTFile() && isFromASTFile()) 1697 return false; 1698 1699 // A kind mismatch implies that the declaration is not replaced. 1700 if (OldD->getKind() != getKind()) 1701 return false; 1702 1703 // For method declarations, we never replace. (Why?) 1704 if (isa<ObjCMethodDecl>(this)) 1705 return false; 1706 1707 // For parameters, pick the newer one. This is either an error or (in 1708 // Objective-C) permitted as an extension. 1709 if (isa<ParmVarDecl>(this)) 1710 return true; 1711 1712 // Inline namespaces can give us two declarations with the same 1713 // name and kind in the same scope but different contexts; we should 1714 // keep both declarations in this case. 1715 if (!this->getDeclContext()->getRedeclContext()->Equals( 1716 OldD->getDeclContext()->getRedeclContext())) 1717 return false; 1718 1719 // Using declarations can be replaced if they import the same name from the 1720 // same context. 1721 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1722 ASTContext &Context = getASTContext(); 1723 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1724 Context.getCanonicalNestedNameSpecifier( 1725 cast<UsingDecl>(OldD)->getQualifier()); 1726 } 1727 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1728 ASTContext &Context = getASTContext(); 1729 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1730 Context.getCanonicalNestedNameSpecifier( 1731 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1732 } 1733 1734 if (isRedeclarable(getKind())) { 1735 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1736 return false; 1737 1738 if (IsKnownNewer) 1739 return true; 1740 1741 // Check whether this is actually newer than OldD. We want to keep the 1742 // newer declaration. This loop will usually only iterate once, because 1743 // OldD is usually the previous declaration. 1744 for (auto D : redecls()) { 1745 if (D == OldD) 1746 break; 1747 1748 // If we reach the canonical declaration, then OldD is not actually older 1749 // than this one. 1750 // 1751 // FIXME: In this case, we should not add this decl to the lookup table. 1752 if (D->isCanonicalDecl()) 1753 return false; 1754 } 1755 1756 // It's a newer declaration of the same kind of declaration in the same 1757 // scope: we want this decl instead of the existing one. 1758 return true; 1759 } 1760 1761 // In all other cases, we need to keep both declarations in case they have 1762 // different visibility. Any attempt to use the name will result in an 1763 // ambiguity if more than one is visible. 1764 return false; 1765 } 1766 1767 bool NamedDecl::hasLinkage() const { 1768 return getFormalLinkage() != NoLinkage; 1769 } 1770 1771 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1772 NamedDecl *ND = this; 1773 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1774 ND = UD->getTargetDecl(); 1775 1776 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1777 return AD->getClassInterface(); 1778 1779 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1780 return AD->getNamespace(); 1781 1782 return ND; 1783 } 1784 1785 bool NamedDecl::isCXXInstanceMember() const { 1786 if (!isCXXClassMember()) 1787 return false; 1788 1789 const NamedDecl *D = this; 1790 if (isa<UsingShadowDecl>(D)) 1791 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1792 1793 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1794 return true; 1795 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1796 return MD->isInstance(); 1797 return false; 1798 } 1799 1800 //===----------------------------------------------------------------------===// 1801 // DeclaratorDecl Implementation 1802 //===----------------------------------------------------------------------===// 1803 1804 template <typename DeclT> 1805 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1806 if (decl->getNumTemplateParameterLists() > 0) 1807 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1808 else 1809 return decl->getInnerLocStart(); 1810 } 1811 1812 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1813 TypeSourceInfo *TSI = getTypeSourceInfo(); 1814 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1815 return SourceLocation(); 1816 } 1817 1818 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1819 if (QualifierLoc) { 1820 // Make sure the extended decl info is allocated. 1821 if (!hasExtInfo()) { 1822 // Save (non-extended) type source info pointer. 1823 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1824 // Allocate external info struct. 1825 DeclInfo = new (getASTContext()) ExtInfo; 1826 // Restore savedTInfo into (extended) decl info. 1827 getExtInfo()->TInfo = savedTInfo; 1828 } 1829 // Set qualifier info. 1830 getExtInfo()->QualifierLoc = QualifierLoc; 1831 } else { 1832 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1833 if (hasExtInfo()) { 1834 if (getExtInfo()->NumTemplParamLists == 0) { 1835 // Save type source info pointer. 1836 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; 1837 // Deallocate the extended decl info. 1838 getASTContext().Deallocate(getExtInfo()); 1839 // Restore savedTInfo into (non-extended) decl info. 1840 DeclInfo = savedTInfo; 1841 } 1842 else 1843 getExtInfo()->QualifierLoc = QualifierLoc; 1844 } 1845 } 1846 } 1847 1848 void DeclaratorDecl::setTemplateParameterListsInfo( 1849 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1850 assert(!TPLists.empty()); 1851 // Make sure the extended decl info is allocated. 1852 if (!hasExtInfo()) { 1853 // Save (non-extended) type source info pointer. 1854 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1855 // Allocate external info struct. 1856 DeclInfo = new (getASTContext()) ExtInfo; 1857 // Restore savedTInfo into (extended) decl info. 1858 getExtInfo()->TInfo = savedTInfo; 1859 } 1860 // Set the template parameter lists info. 1861 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1862 } 1863 1864 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1865 return getTemplateOrInnerLocStart(this); 1866 } 1867 1868 // Helper function: returns true if QT is or contains a type 1869 // having a postfix component. 1870 static bool typeIsPostfix(QualType QT) { 1871 while (true) { 1872 const Type* T = QT.getTypePtr(); 1873 switch (T->getTypeClass()) { 1874 default: 1875 return false; 1876 case Type::Pointer: 1877 QT = cast<PointerType>(T)->getPointeeType(); 1878 break; 1879 case Type::BlockPointer: 1880 QT = cast<BlockPointerType>(T)->getPointeeType(); 1881 break; 1882 case Type::MemberPointer: 1883 QT = cast<MemberPointerType>(T)->getPointeeType(); 1884 break; 1885 case Type::LValueReference: 1886 case Type::RValueReference: 1887 QT = cast<ReferenceType>(T)->getPointeeType(); 1888 break; 1889 case Type::PackExpansion: 1890 QT = cast<PackExpansionType>(T)->getPattern(); 1891 break; 1892 case Type::Paren: 1893 case Type::ConstantArray: 1894 case Type::DependentSizedArray: 1895 case Type::IncompleteArray: 1896 case Type::VariableArray: 1897 case Type::FunctionProto: 1898 case Type::FunctionNoProto: 1899 return true; 1900 } 1901 } 1902 } 1903 1904 SourceRange DeclaratorDecl::getSourceRange() const { 1905 SourceLocation RangeEnd = getLocation(); 1906 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1907 // If the declaration has no name or the type extends past the name take the 1908 // end location of the type. 1909 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1910 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1911 } 1912 return SourceRange(getOuterLocStart(), RangeEnd); 1913 } 1914 1915 void QualifierInfo::setTemplateParameterListsInfo( 1916 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1917 // Free previous template parameters (if any). 1918 if (NumTemplParamLists > 0) { 1919 Context.Deallocate(TemplParamLists); 1920 TemplParamLists = nullptr; 1921 NumTemplParamLists = 0; 1922 } 1923 // Set info on matched template parameter lists (if any). 1924 if (!TPLists.empty()) { 1925 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1926 NumTemplParamLists = TPLists.size(); 1927 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1928 } 1929 } 1930 1931 //===----------------------------------------------------------------------===// 1932 // VarDecl Implementation 1933 //===----------------------------------------------------------------------===// 1934 1935 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1936 switch (SC) { 1937 case SC_None: break; 1938 case SC_Auto: return "auto"; 1939 case SC_Extern: return "extern"; 1940 case SC_PrivateExtern: return "__private_extern__"; 1941 case SC_Register: return "register"; 1942 case SC_Static: return "static"; 1943 } 1944 1945 llvm_unreachable("Invalid storage class"); 1946 } 1947 1948 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 1949 SourceLocation StartLoc, SourceLocation IdLoc, 1950 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1951 StorageClass SC) 1952 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 1953 redeclarable_base(C) { 1954 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 1955 "VarDeclBitfields too large!"); 1956 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 1957 "ParmVarDeclBitfields too large!"); 1958 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 1959 "NonParmVarDeclBitfields too large!"); 1960 AllBits = 0; 1961 VarDeclBits.SClass = SC; 1962 // Everything else is implicitly initialized to false. 1963 } 1964 1965 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 1966 SourceLocation StartL, SourceLocation IdL, 1967 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1968 StorageClass S) { 1969 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 1970 } 1971 1972 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 1973 return new (C, ID) 1974 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 1975 QualType(), nullptr, SC_None); 1976 } 1977 1978 void VarDecl::setStorageClass(StorageClass SC) { 1979 assert(isLegalForVariable(SC)); 1980 VarDeclBits.SClass = SC; 1981 } 1982 1983 VarDecl::TLSKind VarDecl::getTLSKind() const { 1984 switch (VarDeclBits.TSCSpec) { 1985 case TSCS_unspecified: 1986 if (!hasAttr<ThreadAttr>() && 1987 !(getASTContext().getLangOpts().OpenMPUseTLS && 1988 getASTContext().getTargetInfo().isTLSSupported() && 1989 hasAttr<OMPThreadPrivateDeclAttr>())) 1990 return TLS_None; 1991 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 1992 LangOptions::MSVC2015)) || 1993 hasAttr<OMPThreadPrivateDeclAttr>()) 1994 ? TLS_Dynamic 1995 : TLS_Static; 1996 case TSCS___thread: // Fall through. 1997 case TSCS__Thread_local: 1998 return TLS_Static; 1999 case TSCS_thread_local: 2000 return TLS_Dynamic; 2001 } 2002 llvm_unreachable("Unknown thread storage class specifier!"); 2003 } 2004 2005 SourceRange VarDecl::getSourceRange() const { 2006 if (const Expr *Init = getInit()) { 2007 SourceLocation InitEnd = Init->getEndLoc(); 2008 // If Init is implicit, ignore its source range and fallback on 2009 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2010 if (InitEnd.isValid() && InitEnd != getLocation()) 2011 return SourceRange(getOuterLocStart(), InitEnd); 2012 } 2013 return DeclaratorDecl::getSourceRange(); 2014 } 2015 2016 template<typename T> 2017 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2018 // C++ [dcl.link]p1: All function types, function names with external linkage, 2019 // and variable names with external linkage have a language linkage. 2020 if (!D.hasExternalFormalLinkage()) 2021 return NoLanguageLinkage; 2022 2023 // Language linkage is a C++ concept, but saying that everything else in C has 2024 // C language linkage fits the implementation nicely. 2025 ASTContext &Context = D.getASTContext(); 2026 if (!Context.getLangOpts().CPlusPlus) 2027 return CLanguageLinkage; 2028 2029 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2030 // language linkage of the names of class members and the function type of 2031 // class member functions. 2032 const DeclContext *DC = D.getDeclContext(); 2033 if (DC->isRecord()) 2034 return CXXLanguageLinkage; 2035 2036 // If the first decl is in an extern "C" context, any other redeclaration 2037 // will have C language linkage. If the first one is not in an extern "C" 2038 // context, we would have reported an error for any other decl being in one. 2039 if (isFirstInExternCContext(&D)) 2040 return CLanguageLinkage; 2041 return CXXLanguageLinkage; 2042 } 2043 2044 template<typename T> 2045 static bool isDeclExternC(const T &D) { 2046 // Since the context is ignored for class members, they can only have C++ 2047 // language linkage or no language linkage. 2048 const DeclContext *DC = D.getDeclContext(); 2049 if (DC->isRecord()) { 2050 assert(D.getASTContext().getLangOpts().CPlusPlus); 2051 return false; 2052 } 2053 2054 return D.getLanguageLinkage() == CLanguageLinkage; 2055 } 2056 2057 LanguageLinkage VarDecl::getLanguageLinkage() const { 2058 return getDeclLanguageLinkage(*this); 2059 } 2060 2061 bool VarDecl::isExternC() const { 2062 return isDeclExternC(*this); 2063 } 2064 2065 bool VarDecl::isInExternCContext() const { 2066 return getLexicalDeclContext()->isExternCContext(); 2067 } 2068 2069 bool VarDecl::isInExternCXXContext() const { 2070 return getLexicalDeclContext()->isExternCXXContext(); 2071 } 2072 2073 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2074 2075 VarDecl::DefinitionKind 2076 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2077 if (isThisDeclarationADemotedDefinition()) 2078 return DeclarationOnly; 2079 2080 // C++ [basic.def]p2: 2081 // A declaration is a definition unless [...] it contains the 'extern' 2082 // specifier or a linkage-specification and neither an initializer [...], 2083 // it declares a non-inline static data member in a class declaration [...], 2084 // it declares a static data member outside a class definition and the variable 2085 // was defined within the class with the constexpr specifier [...], 2086 // C++1y [temp.expl.spec]p15: 2087 // An explicit specialization of a static data member or an explicit 2088 // specialization of a static data member template is a definition if the 2089 // declaration includes an initializer; otherwise, it is a declaration. 2090 // 2091 // FIXME: How do you declare (but not define) a partial specialization of 2092 // a static data member template outside the containing class? 2093 if (isStaticDataMember()) { 2094 if (isOutOfLine() && 2095 !(getCanonicalDecl()->isInline() && 2096 getCanonicalDecl()->isConstexpr()) && 2097 (hasInit() || 2098 // If the first declaration is out-of-line, this may be an 2099 // instantiation of an out-of-line partial specialization of a variable 2100 // template for which we have not yet instantiated the initializer. 2101 (getFirstDecl()->isOutOfLine() 2102 ? getTemplateSpecializationKind() == TSK_Undeclared 2103 : getTemplateSpecializationKind() != 2104 TSK_ExplicitSpecialization) || 2105 isa<VarTemplatePartialSpecializationDecl>(this))) 2106 return Definition; 2107 else if (!isOutOfLine() && isInline()) 2108 return Definition; 2109 else 2110 return DeclarationOnly; 2111 } 2112 // C99 6.7p5: 2113 // A definition of an identifier is a declaration for that identifier that 2114 // [...] causes storage to be reserved for that object. 2115 // Note: that applies for all non-file-scope objects. 2116 // C99 6.9.2p1: 2117 // If the declaration of an identifier for an object has file scope and an 2118 // initializer, the declaration is an external definition for the identifier 2119 if (hasInit()) 2120 return Definition; 2121 2122 if (hasDefiningAttr()) 2123 return Definition; 2124 2125 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2126 if (!SAA->isInherited()) 2127 return Definition; 2128 2129 // A variable template specialization (other than a static data member 2130 // template or an explicit specialization) is a declaration until we 2131 // instantiate its initializer. 2132 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2133 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2134 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2135 !VTSD->IsCompleteDefinition) 2136 return DeclarationOnly; 2137 } 2138 2139 if (hasExternalStorage()) 2140 return DeclarationOnly; 2141 2142 // [dcl.link] p7: 2143 // A declaration directly contained in a linkage-specification is treated 2144 // as if it contains the extern specifier for the purpose of determining 2145 // the linkage of the declared name and whether it is a definition. 2146 if (isSingleLineLanguageLinkage(*this)) 2147 return DeclarationOnly; 2148 2149 // C99 6.9.2p2: 2150 // A declaration of an object that has file scope without an initializer, 2151 // and without a storage class specifier or the scs 'static', constitutes 2152 // a tentative definition. 2153 // No such thing in C++. 2154 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2155 return TentativeDefinition; 2156 2157 // What's left is (in C, block-scope) declarations without initializers or 2158 // external storage. These are definitions. 2159 return Definition; 2160 } 2161 2162 VarDecl *VarDecl::getActingDefinition() { 2163 DefinitionKind Kind = isThisDeclarationADefinition(); 2164 if (Kind != TentativeDefinition) 2165 return nullptr; 2166 2167 VarDecl *LastTentative = nullptr; 2168 VarDecl *First = getFirstDecl(); 2169 for (auto I : First->redecls()) { 2170 Kind = I->isThisDeclarationADefinition(); 2171 if (Kind == Definition) 2172 return nullptr; 2173 else if (Kind == TentativeDefinition) 2174 LastTentative = I; 2175 } 2176 return LastTentative; 2177 } 2178 2179 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2180 VarDecl *First = getFirstDecl(); 2181 for (auto I : First->redecls()) { 2182 if (I->isThisDeclarationADefinition(C) == Definition) 2183 return I; 2184 } 2185 return nullptr; 2186 } 2187 2188 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2189 DefinitionKind Kind = DeclarationOnly; 2190 2191 const VarDecl *First = getFirstDecl(); 2192 for (auto I : First->redecls()) { 2193 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2194 if (Kind == Definition) 2195 break; 2196 } 2197 2198 return Kind; 2199 } 2200 2201 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2202 for (auto I : redecls()) { 2203 if (auto Expr = I->getInit()) { 2204 D = I; 2205 return Expr; 2206 } 2207 } 2208 return nullptr; 2209 } 2210 2211 bool VarDecl::hasInit() const { 2212 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2213 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2214 return false; 2215 2216 return !Init.isNull(); 2217 } 2218 2219 Expr *VarDecl::getInit() { 2220 if (!hasInit()) 2221 return nullptr; 2222 2223 if (auto *S = Init.dyn_cast<Stmt *>()) 2224 return cast<Expr>(S); 2225 2226 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2227 } 2228 2229 Stmt **VarDecl::getInitAddress() { 2230 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2231 return &ES->Value; 2232 2233 return Init.getAddrOfPtr1(); 2234 } 2235 2236 VarDecl *VarDecl::getInitializingDeclaration() { 2237 VarDecl *Def = nullptr; 2238 for (auto I : redecls()) { 2239 if (I->hasInit()) 2240 return I; 2241 2242 if (I->isThisDeclarationADefinition()) { 2243 if (isStaticDataMember()) 2244 return I; 2245 else 2246 Def = I; 2247 } 2248 } 2249 return Def; 2250 } 2251 2252 bool VarDecl::isOutOfLine() const { 2253 if (Decl::isOutOfLine()) 2254 return true; 2255 2256 if (!isStaticDataMember()) 2257 return false; 2258 2259 // If this static data member was instantiated from a static data member of 2260 // a class template, check whether that static data member was defined 2261 // out-of-line. 2262 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2263 return VD->isOutOfLine(); 2264 2265 return false; 2266 } 2267 2268 void VarDecl::setInit(Expr *I) { 2269 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2270 Eval->~EvaluatedStmt(); 2271 getASTContext().Deallocate(Eval); 2272 } 2273 2274 Init = I; 2275 } 2276 2277 bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const { 2278 const LangOptions &Lang = C.getLangOpts(); 2279 2280 if (!Lang.CPlusPlus) 2281 return false; 2282 2283 // Function parameters are never usable in constant expressions. 2284 if (isa<ParmVarDecl>(this)) 2285 return false; 2286 2287 // In C++11, any variable of reference type can be used in a constant 2288 // expression if it is initialized by a constant expression. 2289 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2290 return true; 2291 2292 // Only const objects can be used in constant expressions in C++. C++98 does 2293 // not require the variable to be non-volatile, but we consider this to be a 2294 // defect. 2295 if (!getType().isConstQualified() || getType().isVolatileQualified()) 2296 return false; 2297 2298 // In C++, const, non-volatile variables of integral or enumeration types 2299 // can be used in constant expressions. 2300 if (getType()->isIntegralOrEnumerationType()) 2301 return true; 2302 2303 // Additionally, in C++11, non-volatile constexpr variables can be used in 2304 // constant expressions. 2305 return Lang.CPlusPlus11 && isConstexpr(); 2306 } 2307 2308 bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const { 2309 // C++2a [expr.const]p3: 2310 // A variable is usable in constant expressions after its initializing 2311 // declaration is encountered... 2312 const VarDecl *DefVD = nullptr; 2313 const Expr *Init = getAnyInitializer(DefVD); 2314 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2315 return false; 2316 // ... if it is a constexpr variable, or it is of reference type or of 2317 // const-qualified integral or enumeration type, ... 2318 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2319 return false; 2320 // ... and its initializer is a constant initializer. 2321 return DefVD->checkInitIsICE(); 2322 } 2323 2324 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2325 /// form, which contains extra information on the evaluated value of the 2326 /// initializer. 2327 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2328 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2329 if (!Eval) { 2330 // Note: EvaluatedStmt contains an APValue, which usually holds 2331 // resources not allocated from the ASTContext. We need to do some 2332 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2333 // where we can detect whether there's anything to clean up or not. 2334 Eval = new (getASTContext()) EvaluatedStmt; 2335 Eval->Value = Init.get<Stmt *>(); 2336 Init = Eval; 2337 } 2338 return Eval; 2339 } 2340 2341 APValue *VarDecl::evaluateValue() const { 2342 SmallVector<PartialDiagnosticAt, 8> Notes; 2343 return evaluateValue(Notes); 2344 } 2345 2346 APValue *VarDecl::evaluateValue( 2347 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2348 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2349 2350 // We only produce notes indicating why an initializer is non-constant the 2351 // first time it is evaluated. FIXME: The notes won't always be emitted the 2352 // first time we try evaluation, so might not be produced at all. 2353 if (Eval->WasEvaluated) 2354 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2355 2356 const auto *Init = cast<Expr>(Eval->Value); 2357 assert(!Init->isValueDependent()); 2358 2359 if (Eval->IsEvaluating) { 2360 // FIXME: Produce a diagnostic for self-initialization. 2361 Eval->CheckedICE = true; 2362 Eval->IsICE = false; 2363 return nullptr; 2364 } 2365 2366 Eval->IsEvaluating = true; 2367 2368 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2369 this, Notes); 2370 2371 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2372 // or that it's empty (so that there's nothing to clean up) if evaluation 2373 // failed. 2374 if (!Result) 2375 Eval->Evaluated = APValue(); 2376 else if (Eval->Evaluated.needsCleanup()) 2377 getASTContext().addDestruction(&Eval->Evaluated); 2378 2379 Eval->IsEvaluating = false; 2380 Eval->WasEvaluated = true; 2381 2382 // In C++11, we have determined whether the initializer was a constant 2383 // expression as a side-effect. 2384 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { 2385 Eval->CheckedICE = true; 2386 Eval->IsICE = Result && Notes.empty(); 2387 } 2388 2389 return Result ? &Eval->Evaluated : nullptr; 2390 } 2391 2392 APValue *VarDecl::getEvaluatedValue() const { 2393 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2394 if (Eval->WasEvaluated) 2395 return &Eval->Evaluated; 2396 2397 return nullptr; 2398 } 2399 2400 bool VarDecl::isInitKnownICE() const { 2401 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2402 return Eval->CheckedICE; 2403 2404 return false; 2405 } 2406 2407 bool VarDecl::isInitICE() const { 2408 assert(isInitKnownICE() && 2409 "Check whether we already know that the initializer is an ICE"); 2410 return Init.get<EvaluatedStmt *>()->IsICE; 2411 } 2412 2413 bool VarDecl::checkInitIsICE() const { 2414 // Initializers of weak variables are never ICEs. 2415 if (isWeak()) 2416 return false; 2417 2418 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2419 if (Eval->CheckedICE) 2420 // We have already checked whether this subexpression is an 2421 // integral constant expression. 2422 return Eval->IsICE; 2423 2424 const auto *Init = cast<Expr>(Eval->Value); 2425 assert(!Init->isValueDependent()); 2426 2427 // In C++11, evaluate the initializer to check whether it's a constant 2428 // expression. 2429 if (getASTContext().getLangOpts().CPlusPlus11) { 2430 SmallVector<PartialDiagnosticAt, 8> Notes; 2431 evaluateValue(Notes); 2432 return Eval->IsICE; 2433 } 2434 2435 // It's an ICE whether or not the definition we found is 2436 // out-of-line. See DR 721 and the discussion in Clang PR 2437 // 6206 for details. 2438 2439 if (Eval->CheckingICE) 2440 return false; 2441 Eval->CheckingICE = true; 2442 2443 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); 2444 Eval->CheckingICE = false; 2445 Eval->CheckedICE = true; 2446 return Eval->IsICE; 2447 } 2448 2449 bool VarDecl::isParameterPack() const { 2450 return isa<PackExpansionType>(getType()); 2451 } 2452 2453 template<typename DeclT> 2454 static DeclT *getDefinitionOrSelf(DeclT *D) { 2455 assert(D); 2456 if (auto *Def = D->getDefinition()) 2457 return Def; 2458 return D; 2459 } 2460 2461 bool VarDecl::isEscapingByref() const { 2462 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2463 } 2464 2465 bool VarDecl::isNonEscapingByref() const { 2466 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2467 } 2468 2469 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2470 const VarDecl *VD = this; 2471 2472 // If this is an instantiated member, walk back to the template from which 2473 // it was instantiated. 2474 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2475 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2476 VD = VD->getInstantiatedFromStaticDataMember(); 2477 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2478 VD = NewVD; 2479 } 2480 } 2481 2482 // If it's an instantiated variable template specialization, find the 2483 // template or partial specialization from which it was instantiated. 2484 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2485 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2486 auto From = VDTemplSpec->getInstantiatedFrom(); 2487 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2488 while (!VTD->isMemberSpecialization()) { 2489 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2490 if (!NewVTD) 2491 break; 2492 VTD = NewVTD; 2493 } 2494 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2495 } 2496 if (auto *VTPSD = 2497 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2498 while (!VTPSD->isMemberSpecialization()) { 2499 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2500 if (!NewVTPSD) 2501 break; 2502 VTPSD = NewVTPSD; 2503 } 2504 return getDefinitionOrSelf<VarDecl>(VTPSD); 2505 } 2506 } 2507 } 2508 2509 // If this is the pattern of a variable template, find where it was 2510 // instantiated from. FIXME: Is this necessary? 2511 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2512 while (!VarTemplate->isMemberSpecialization()) { 2513 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2514 if (!NewVT) 2515 break; 2516 VarTemplate = NewVT; 2517 } 2518 2519 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2520 } 2521 2522 if (VD == this) 2523 return nullptr; 2524 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2525 } 2526 2527 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2528 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2529 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2530 2531 return nullptr; 2532 } 2533 2534 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2535 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2536 return Spec->getSpecializationKind(); 2537 2538 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2539 return MSI->getTemplateSpecializationKind(); 2540 2541 return TSK_Undeclared; 2542 } 2543 2544 TemplateSpecializationKind 2545 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2546 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2547 return MSI->getTemplateSpecializationKind(); 2548 2549 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2550 return Spec->getSpecializationKind(); 2551 2552 return TSK_Undeclared; 2553 } 2554 2555 SourceLocation VarDecl::getPointOfInstantiation() const { 2556 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2557 return Spec->getPointOfInstantiation(); 2558 2559 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2560 return MSI->getPointOfInstantiation(); 2561 2562 return SourceLocation(); 2563 } 2564 2565 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2566 return getASTContext().getTemplateOrSpecializationInfo(this) 2567 .dyn_cast<VarTemplateDecl *>(); 2568 } 2569 2570 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2571 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2572 } 2573 2574 bool VarDecl::isKnownToBeDefined() const { 2575 const auto &LangOpts = getASTContext().getLangOpts(); 2576 // In CUDA mode without relocatable device code, variables of form 'extern 2577 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2578 // memory pool. These are never undefined variables, even if they appear 2579 // inside of an anon namespace or static function. 2580 // 2581 // With CUDA relocatable device code enabled, these variables don't get 2582 // special handling; they're treated like regular extern variables. 2583 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2584 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2585 isa<IncompleteArrayType>(getType())) 2586 return true; 2587 2588 return hasDefinition(); 2589 } 2590 2591 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2592 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2593 (!Ctx.getLangOpts().RegisterStaticDestructors && 2594 !hasAttr<AlwaysDestroyAttr>())); 2595 } 2596 2597 QualType::DestructionKind 2598 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2599 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2600 if (Eval->HasConstantDestruction) 2601 return QualType::DK_none; 2602 2603 if (isNoDestroy(Ctx)) 2604 return QualType::DK_none; 2605 2606 return getType().isDestructedType(); 2607 } 2608 2609 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2610 if (isStaticDataMember()) 2611 // FIXME: Remove ? 2612 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2613 return getASTContext().getTemplateOrSpecializationInfo(this) 2614 .dyn_cast<MemberSpecializationInfo *>(); 2615 return nullptr; 2616 } 2617 2618 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2619 SourceLocation PointOfInstantiation) { 2620 assert((isa<VarTemplateSpecializationDecl>(this) || 2621 getMemberSpecializationInfo()) && 2622 "not a variable or static data member template specialization"); 2623 2624 if (VarTemplateSpecializationDecl *Spec = 2625 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2626 Spec->setSpecializationKind(TSK); 2627 if (TSK != TSK_ExplicitSpecialization && 2628 PointOfInstantiation.isValid() && 2629 Spec->getPointOfInstantiation().isInvalid()) { 2630 Spec->setPointOfInstantiation(PointOfInstantiation); 2631 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2632 L->InstantiationRequested(this); 2633 } 2634 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2635 MSI->setTemplateSpecializationKind(TSK); 2636 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2637 MSI->getPointOfInstantiation().isInvalid()) { 2638 MSI->setPointOfInstantiation(PointOfInstantiation); 2639 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2640 L->InstantiationRequested(this); 2641 } 2642 } 2643 } 2644 2645 void 2646 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2647 TemplateSpecializationKind TSK) { 2648 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2649 "Previous template or instantiation?"); 2650 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2651 } 2652 2653 //===----------------------------------------------------------------------===// 2654 // ParmVarDecl Implementation 2655 //===----------------------------------------------------------------------===// 2656 2657 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2658 SourceLocation StartLoc, 2659 SourceLocation IdLoc, IdentifierInfo *Id, 2660 QualType T, TypeSourceInfo *TInfo, 2661 StorageClass S, Expr *DefArg) { 2662 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2663 S, DefArg); 2664 } 2665 2666 QualType ParmVarDecl::getOriginalType() const { 2667 TypeSourceInfo *TSI = getTypeSourceInfo(); 2668 QualType T = TSI ? TSI->getType() : getType(); 2669 if (const auto *DT = dyn_cast<DecayedType>(T)) 2670 return DT->getOriginalType(); 2671 return T; 2672 } 2673 2674 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2675 return new (C, ID) 2676 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2677 nullptr, QualType(), nullptr, SC_None, nullptr); 2678 } 2679 2680 SourceRange ParmVarDecl::getSourceRange() const { 2681 if (!hasInheritedDefaultArg()) { 2682 SourceRange ArgRange = getDefaultArgRange(); 2683 if (ArgRange.isValid()) 2684 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2685 } 2686 2687 // DeclaratorDecl considers the range of postfix types as overlapping with the 2688 // declaration name, but this is not the case with parameters in ObjC methods. 2689 if (isa<ObjCMethodDecl>(getDeclContext())) 2690 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2691 2692 return DeclaratorDecl::getSourceRange(); 2693 } 2694 2695 Expr *ParmVarDecl::getDefaultArg() { 2696 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2697 assert(!hasUninstantiatedDefaultArg() && 2698 "Default argument is not yet instantiated!"); 2699 2700 Expr *Arg = getInit(); 2701 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2702 return E->getSubExpr(); 2703 2704 return Arg; 2705 } 2706 2707 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2708 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2709 Init = defarg; 2710 } 2711 2712 SourceRange ParmVarDecl::getDefaultArgRange() const { 2713 switch (ParmVarDeclBits.DefaultArgKind) { 2714 case DAK_None: 2715 case DAK_Unparsed: 2716 // Nothing we can do here. 2717 return SourceRange(); 2718 2719 case DAK_Uninstantiated: 2720 return getUninstantiatedDefaultArg()->getSourceRange(); 2721 2722 case DAK_Normal: 2723 if (const Expr *E = getInit()) 2724 return E->getSourceRange(); 2725 2726 // Missing an actual expression, may be invalid. 2727 return SourceRange(); 2728 } 2729 llvm_unreachable("Invalid default argument kind."); 2730 } 2731 2732 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2733 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2734 Init = arg; 2735 } 2736 2737 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2738 assert(hasUninstantiatedDefaultArg() && 2739 "Wrong kind of initialization expression!"); 2740 return cast_or_null<Expr>(Init.get<Stmt *>()); 2741 } 2742 2743 bool ParmVarDecl::hasDefaultArg() const { 2744 // FIXME: We should just return false for DAK_None here once callers are 2745 // prepared for the case that we encountered an invalid default argument and 2746 // were unable to even build an invalid expression. 2747 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2748 !Init.isNull(); 2749 } 2750 2751 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2752 getASTContext().setParameterIndex(this, parameterIndex); 2753 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2754 } 2755 2756 unsigned ParmVarDecl::getParameterIndexLarge() const { 2757 return getASTContext().getParameterIndex(this); 2758 } 2759 2760 //===----------------------------------------------------------------------===// 2761 // FunctionDecl Implementation 2762 //===----------------------------------------------------------------------===// 2763 2764 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2765 SourceLocation StartLoc, 2766 const DeclarationNameInfo &NameInfo, QualType T, 2767 TypeSourceInfo *TInfo, StorageClass S, 2768 bool isInlineSpecified, 2769 ConstexprSpecKind ConstexprKind) 2770 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2771 StartLoc), 2772 DeclContext(DK), redeclarable_base(C), ODRHash(0), 2773 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2774 assert(T.isNull() || T->isFunctionType()); 2775 FunctionDeclBits.SClass = S; 2776 FunctionDeclBits.IsInline = isInlineSpecified; 2777 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2778 FunctionDeclBits.IsVirtualAsWritten = false; 2779 FunctionDeclBits.IsPure = false; 2780 FunctionDeclBits.HasInheritedPrototype = false; 2781 FunctionDeclBits.HasWrittenPrototype = true; 2782 FunctionDeclBits.IsDeleted = false; 2783 FunctionDeclBits.IsTrivial = false; 2784 FunctionDeclBits.IsTrivialForCall = false; 2785 FunctionDeclBits.IsDefaulted = false; 2786 FunctionDeclBits.IsExplicitlyDefaulted = false; 2787 FunctionDeclBits.HasImplicitReturnZero = false; 2788 FunctionDeclBits.IsLateTemplateParsed = false; 2789 FunctionDeclBits.ConstexprKind = ConstexprKind; 2790 FunctionDeclBits.InstantiationIsPending = false; 2791 FunctionDeclBits.UsesSEHTry = false; 2792 FunctionDeclBits.HasSkippedBody = false; 2793 FunctionDeclBits.WillHaveBody = false; 2794 FunctionDeclBits.IsMultiVersion = false; 2795 FunctionDeclBits.IsCopyDeductionCandidate = false; 2796 FunctionDeclBits.HasODRHash = false; 2797 } 2798 2799 void FunctionDecl::getNameForDiagnostic( 2800 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2801 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2802 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2803 if (TemplateArgs) 2804 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2805 } 2806 2807 bool FunctionDecl::isVariadic() const { 2808 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2809 return FT->isVariadic(); 2810 return false; 2811 } 2812 2813 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2814 for (auto I : redecls()) { 2815 if (I->doesThisDeclarationHaveABody()) { 2816 Definition = I; 2817 return true; 2818 } 2819 } 2820 2821 return false; 2822 } 2823 2824 bool FunctionDecl::hasTrivialBody() const 2825 { 2826 Stmt *S = getBody(); 2827 if (!S) { 2828 // Since we don't have a body for this function, we don't know if it's 2829 // trivial or not. 2830 return false; 2831 } 2832 2833 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2834 return true; 2835 return false; 2836 } 2837 2838 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { 2839 for (auto I : redecls()) { 2840 if (I->isThisDeclarationADefinition()) { 2841 Definition = I; 2842 return true; 2843 } 2844 } 2845 2846 return false; 2847 } 2848 2849 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2850 if (!hasBody(Definition)) 2851 return nullptr; 2852 2853 if (Definition->Body) 2854 return Definition->Body.get(getASTContext().getExternalSource()); 2855 2856 return nullptr; 2857 } 2858 2859 void FunctionDecl::setBody(Stmt *B) { 2860 Body = B; 2861 if (B) 2862 EndRangeLoc = B->getEndLoc(); 2863 } 2864 2865 void FunctionDecl::setPure(bool P) { 2866 FunctionDeclBits.IsPure = P; 2867 if (P) 2868 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 2869 Parent->markedVirtualFunctionPure(); 2870 } 2871 2872 template<std::size_t Len> 2873 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 2874 IdentifierInfo *II = ND->getIdentifier(); 2875 return II && II->isStr(Str); 2876 } 2877 2878 bool FunctionDecl::isMain() const { 2879 const TranslationUnitDecl *tunit = 2880 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2881 return tunit && 2882 !tunit->getASTContext().getLangOpts().Freestanding && 2883 isNamed(this, "main"); 2884 } 2885 2886 bool FunctionDecl::isMSVCRTEntryPoint() const { 2887 const TranslationUnitDecl *TUnit = 2888 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2889 if (!TUnit) 2890 return false; 2891 2892 // Even though we aren't really targeting MSVCRT if we are freestanding, 2893 // semantic analysis for these functions remains the same. 2894 2895 // MSVCRT entry points only exist on MSVCRT targets. 2896 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 2897 return false; 2898 2899 // Nameless functions like constructors cannot be entry points. 2900 if (!getIdentifier()) 2901 return false; 2902 2903 return llvm::StringSwitch<bool>(getName()) 2904 .Cases("main", // an ANSI console app 2905 "wmain", // a Unicode console App 2906 "WinMain", // an ANSI GUI app 2907 "wWinMain", // a Unicode GUI app 2908 "DllMain", // a DLL 2909 true) 2910 .Default(false); 2911 } 2912 2913 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 2914 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 2915 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 2916 getDeclName().getCXXOverloadedOperator() == OO_Delete || 2917 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 2918 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 2919 2920 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2921 return false; 2922 2923 const auto *proto = getType()->castAs<FunctionProtoType>(); 2924 if (proto->getNumParams() != 2 || proto->isVariadic()) 2925 return false; 2926 2927 ASTContext &Context = 2928 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 2929 ->getASTContext(); 2930 2931 // The result type and first argument type are constant across all 2932 // these operators. The second argument must be exactly void*. 2933 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 2934 } 2935 2936 bool FunctionDecl::isReplaceableGlobalAllocationFunction(bool *IsAligned) const { 2937 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2938 return false; 2939 if (getDeclName().getCXXOverloadedOperator() != OO_New && 2940 getDeclName().getCXXOverloadedOperator() != OO_Delete && 2941 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 2942 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2943 return false; 2944 2945 if (isa<CXXRecordDecl>(getDeclContext())) 2946 return false; 2947 2948 // This can only fail for an invalid 'operator new' declaration. 2949 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2950 return false; 2951 2952 const auto *FPT = getType()->castAs<FunctionProtoType>(); 2953 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 2954 return false; 2955 2956 // If this is a single-parameter function, it must be a replaceable global 2957 // allocation or deallocation function. 2958 if (FPT->getNumParams() == 1) 2959 return true; 2960 2961 unsigned Params = 1; 2962 QualType Ty = FPT->getParamType(Params); 2963 ASTContext &Ctx = getASTContext(); 2964 2965 auto Consume = [&] { 2966 ++Params; 2967 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 2968 }; 2969 2970 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 2971 bool IsSizedDelete = false; 2972 if (Ctx.getLangOpts().SizedDeallocation && 2973 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 2974 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 2975 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 2976 IsSizedDelete = true; 2977 Consume(); 2978 } 2979 2980 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 2981 // new/delete. 2982 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 2983 if (IsAligned) 2984 *IsAligned = true; 2985 Consume(); 2986 } 2987 2988 // Finally, if this is not a sized delete, the final parameter can 2989 // be a 'const std::nothrow_t&'. 2990 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 2991 Ty = Ty->getPointeeType(); 2992 if (Ty.getCVRQualifiers() != Qualifiers::Const) 2993 return false; 2994 if (Ty->isNothrowT()) 2995 Consume(); 2996 } 2997 2998 return Params == FPT->getNumParams(); 2999 } 3000 3001 bool FunctionDecl::isDestroyingOperatorDelete() const { 3002 // C++ P0722: 3003 // Within a class C, a single object deallocation function with signature 3004 // (T, std::destroying_delete_t, <more params>) 3005 // is a destroying operator delete. 3006 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3007 getNumParams() < 2) 3008 return false; 3009 3010 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3011 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3012 RD->getIdentifier()->isStr("destroying_delete_t"); 3013 } 3014 3015 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3016 return getDeclLanguageLinkage(*this); 3017 } 3018 3019 bool FunctionDecl::isExternC() const { 3020 return isDeclExternC(*this); 3021 } 3022 3023 bool FunctionDecl::isInExternCContext() const { 3024 if (hasAttr<OpenCLKernelAttr>()) 3025 return true; 3026 return getLexicalDeclContext()->isExternCContext(); 3027 } 3028 3029 bool FunctionDecl::isInExternCXXContext() const { 3030 return getLexicalDeclContext()->isExternCXXContext(); 3031 } 3032 3033 bool FunctionDecl::isGlobal() const { 3034 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3035 return Method->isStatic(); 3036 3037 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3038 return false; 3039 3040 for (const DeclContext *DC = getDeclContext(); 3041 DC->isNamespace(); 3042 DC = DC->getParent()) { 3043 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3044 if (!Namespace->getDeclName()) 3045 return false; 3046 break; 3047 } 3048 } 3049 3050 return true; 3051 } 3052 3053 bool FunctionDecl::isNoReturn() const { 3054 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3055 hasAttr<C11NoReturnAttr>()) 3056 return true; 3057 3058 if (auto *FnTy = getType()->getAs<FunctionType>()) 3059 return FnTy->getNoReturnAttr(); 3060 3061 return false; 3062 } 3063 3064 3065 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3066 if (hasAttr<TargetAttr>()) 3067 return MultiVersionKind::Target; 3068 if (hasAttr<CPUDispatchAttr>()) 3069 return MultiVersionKind::CPUDispatch; 3070 if (hasAttr<CPUSpecificAttr>()) 3071 return MultiVersionKind::CPUSpecific; 3072 return MultiVersionKind::None; 3073 } 3074 3075 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3076 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3077 } 3078 3079 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3080 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3081 } 3082 3083 bool FunctionDecl::isTargetMultiVersion() const { 3084 return isMultiVersion() && hasAttr<TargetAttr>(); 3085 } 3086 3087 void 3088 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3089 redeclarable_base::setPreviousDecl(PrevDecl); 3090 3091 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3092 FunctionTemplateDecl *PrevFunTmpl 3093 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3094 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3095 FunTmpl->setPreviousDecl(PrevFunTmpl); 3096 } 3097 3098 if (PrevDecl && PrevDecl->isInlined()) 3099 setImplicitlyInline(true); 3100 } 3101 3102 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3103 3104 /// Returns a value indicating whether this function corresponds to a builtin 3105 /// function. 3106 /// 3107 /// The function corresponds to a built-in function if it is declared at 3108 /// translation scope or within an extern "C" block and its name matches with 3109 /// the name of a builtin. The returned value will be 0 for functions that do 3110 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3111 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3112 /// value. 3113 /// 3114 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3115 /// functions as their wrapped builtins. This shouldn't be done in general, but 3116 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3117 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3118 if (!getIdentifier()) 3119 return 0; 3120 3121 unsigned BuiltinID = getIdentifier()->getBuiltinID(); 3122 if (!BuiltinID) 3123 return 0; 3124 3125 ASTContext &Context = getASTContext(); 3126 if (Context.getLangOpts().CPlusPlus) { 3127 const auto *LinkageDecl = 3128 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext()); 3129 // In C++, the first declaration of a builtin is always inside an implicit 3130 // extern "C". 3131 // FIXME: A recognised library function may not be directly in an extern "C" 3132 // declaration, for instance "extern "C" { namespace std { decl } }". 3133 if (!LinkageDecl) { 3134 if (BuiltinID == Builtin::BI__GetExceptionInfo && 3135 Context.getTargetInfo().getCXXABI().isMicrosoft()) 3136 return Builtin::BI__GetExceptionInfo; 3137 return 0; 3138 } 3139 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) 3140 return 0; 3141 } 3142 3143 // If the function is marked "overloadable", it has a different mangled name 3144 // and is not the C library function. 3145 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>()) 3146 return 0; 3147 3148 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3149 return BuiltinID; 3150 3151 // This function has the name of a known C library 3152 // function. Determine whether it actually refers to the C library 3153 // function or whether it just has the same name. 3154 3155 // If this is a static function, it's not a builtin. 3156 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3157 return 0; 3158 3159 // OpenCL v1.2 s6.9.f - The library functions defined in 3160 // the C99 standard headers are not available. 3161 if (Context.getLangOpts().OpenCL && 3162 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3163 return 0; 3164 3165 // CUDA does not have device-side standard library. printf and malloc are the 3166 // only special cases that are supported by device-side runtime. 3167 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3168 !hasAttr<CUDAHostAttr>() && 3169 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3170 return 0; 3171 3172 return BuiltinID; 3173 } 3174 3175 /// getNumParams - Return the number of parameters this function must have 3176 /// based on its FunctionType. This is the length of the ParamInfo array 3177 /// after it has been created. 3178 unsigned FunctionDecl::getNumParams() const { 3179 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3180 return FPT ? FPT->getNumParams() : 0; 3181 } 3182 3183 void FunctionDecl::setParams(ASTContext &C, 3184 ArrayRef<ParmVarDecl *> NewParamInfo) { 3185 assert(!ParamInfo && "Already has param info!"); 3186 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3187 3188 // Zero params -> null pointer. 3189 if (!NewParamInfo.empty()) { 3190 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3191 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3192 } 3193 } 3194 3195 /// getMinRequiredArguments - Returns the minimum number of arguments 3196 /// needed to call this function. This may be fewer than the number of 3197 /// function parameters, if some of the parameters have default 3198 /// arguments (in C++) or are parameter packs (C++11). 3199 unsigned FunctionDecl::getMinRequiredArguments() const { 3200 if (!getASTContext().getLangOpts().CPlusPlus) 3201 return getNumParams(); 3202 3203 unsigned NumRequiredArgs = 0; 3204 for (auto *Param : parameters()) 3205 if (!Param->isParameterPack() && !Param->hasDefaultArg()) 3206 ++NumRequiredArgs; 3207 return NumRequiredArgs; 3208 } 3209 3210 /// The combination of the extern and inline keywords under MSVC forces 3211 /// the function to be required. 3212 /// 3213 /// Note: This function assumes that we will only get called when isInlined() 3214 /// would return true for this FunctionDecl. 3215 bool FunctionDecl::isMSExternInline() const { 3216 assert(isInlined() && "expected to get called on an inlined function!"); 3217 3218 const ASTContext &Context = getASTContext(); 3219 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3220 !hasAttr<DLLExportAttr>()) 3221 return false; 3222 3223 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3224 FD = FD->getPreviousDecl()) 3225 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3226 return true; 3227 3228 return false; 3229 } 3230 3231 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3232 if (Redecl->getStorageClass() != SC_Extern) 3233 return false; 3234 3235 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3236 FD = FD->getPreviousDecl()) 3237 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3238 return false; 3239 3240 return true; 3241 } 3242 3243 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3244 // Only consider file-scope declarations in this test. 3245 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3246 return false; 3247 3248 // Only consider explicit declarations; the presence of a builtin for a 3249 // libcall shouldn't affect whether a definition is externally visible. 3250 if (Redecl->isImplicit()) 3251 return false; 3252 3253 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3254 return true; // Not an inline definition 3255 3256 return false; 3257 } 3258 3259 /// For a function declaration in C or C++, determine whether this 3260 /// declaration causes the definition to be externally visible. 3261 /// 3262 /// For instance, this determines if adding the current declaration to the set 3263 /// of redeclarations of the given functions causes 3264 /// isInlineDefinitionExternallyVisible to change from false to true. 3265 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3266 assert(!doesThisDeclarationHaveABody() && 3267 "Must have a declaration without a body."); 3268 3269 ASTContext &Context = getASTContext(); 3270 3271 if (Context.getLangOpts().MSVCCompat) { 3272 const FunctionDecl *Definition; 3273 if (hasBody(Definition) && Definition->isInlined() && 3274 redeclForcesDefMSVC(this)) 3275 return true; 3276 } 3277 3278 if (Context.getLangOpts().CPlusPlus) 3279 return false; 3280 3281 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3282 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3283 // an externally visible definition. 3284 // 3285 // FIXME: What happens if gnu_inline gets added on after the first 3286 // declaration? 3287 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3288 return false; 3289 3290 const FunctionDecl *Prev = this; 3291 bool FoundBody = false; 3292 while ((Prev = Prev->getPreviousDecl())) { 3293 FoundBody |= Prev->Body.isValid(); 3294 3295 if (Prev->Body) { 3296 // If it's not the case that both 'inline' and 'extern' are 3297 // specified on the definition, then it is always externally visible. 3298 if (!Prev->isInlineSpecified() || 3299 Prev->getStorageClass() != SC_Extern) 3300 return false; 3301 } else if (Prev->isInlineSpecified() && 3302 Prev->getStorageClass() != SC_Extern) { 3303 return false; 3304 } 3305 } 3306 return FoundBody; 3307 } 3308 3309 // C99 6.7.4p6: 3310 // [...] If all of the file scope declarations for a function in a 3311 // translation unit include the inline function specifier without extern, 3312 // then the definition in that translation unit is an inline definition. 3313 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3314 return false; 3315 const FunctionDecl *Prev = this; 3316 bool FoundBody = false; 3317 while ((Prev = Prev->getPreviousDecl())) { 3318 FoundBody |= Prev->Body.isValid(); 3319 if (RedeclForcesDefC99(Prev)) 3320 return false; 3321 } 3322 return FoundBody; 3323 } 3324 3325 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3326 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3327 if (!TSI) 3328 return SourceRange(); 3329 FunctionTypeLoc FTL = 3330 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 3331 if (!FTL) 3332 return SourceRange(); 3333 3334 // Skip self-referential return types. 3335 const SourceManager &SM = getASTContext().getSourceManager(); 3336 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3337 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3338 if (RTRange.isInvalid() || Boundary.isInvalid() || 3339 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3340 return SourceRange(); 3341 3342 return RTRange; 3343 } 3344 3345 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3346 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3347 if (!TSI) 3348 return SourceRange(); 3349 FunctionTypeLoc FTL = 3350 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 3351 if (!FTL) 3352 return SourceRange(); 3353 3354 return FTL.getExceptionSpecRange(); 3355 } 3356 3357 /// For an inline function definition in C, or for a gnu_inline function 3358 /// in C++, determine whether the definition will be externally visible. 3359 /// 3360 /// Inline function definitions are always available for inlining optimizations. 3361 /// However, depending on the language dialect, declaration specifiers, and 3362 /// attributes, the definition of an inline function may or may not be 3363 /// "externally" visible to other translation units in the program. 3364 /// 3365 /// In C99, inline definitions are not externally visible by default. However, 3366 /// if even one of the global-scope declarations is marked "extern inline", the 3367 /// inline definition becomes externally visible (C99 6.7.4p6). 3368 /// 3369 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3370 /// definition, we use the GNU semantics for inline, which are nearly the 3371 /// opposite of C99 semantics. In particular, "inline" by itself will create 3372 /// an externally visible symbol, but "extern inline" will not create an 3373 /// externally visible symbol. 3374 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3375 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3376 hasAttr<AliasAttr>()) && 3377 "Must be a function definition"); 3378 assert(isInlined() && "Function must be inline"); 3379 ASTContext &Context = getASTContext(); 3380 3381 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3382 // Note: If you change the logic here, please change 3383 // doesDeclarationForceExternallyVisibleDefinition as well. 3384 // 3385 // If it's not the case that both 'inline' and 'extern' are 3386 // specified on the definition, then this inline definition is 3387 // externally visible. 3388 if (Context.getLangOpts().CPlusPlus) 3389 return false; 3390 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3391 return true; 3392 3393 // If any declaration is 'inline' but not 'extern', then this definition 3394 // is externally visible. 3395 for (auto Redecl : redecls()) { 3396 if (Redecl->isInlineSpecified() && 3397 Redecl->getStorageClass() != SC_Extern) 3398 return true; 3399 } 3400 3401 return false; 3402 } 3403 3404 // The rest of this function is C-only. 3405 assert(!Context.getLangOpts().CPlusPlus && 3406 "should not use C inline rules in C++"); 3407 3408 // C99 6.7.4p6: 3409 // [...] If all of the file scope declarations for a function in a 3410 // translation unit include the inline function specifier without extern, 3411 // then the definition in that translation unit is an inline definition. 3412 for (auto Redecl : redecls()) { 3413 if (RedeclForcesDefC99(Redecl)) 3414 return true; 3415 } 3416 3417 // C99 6.7.4p6: 3418 // An inline definition does not provide an external definition for the 3419 // function, and does not forbid an external definition in another 3420 // translation unit. 3421 return false; 3422 } 3423 3424 /// getOverloadedOperator - Which C++ overloaded operator this 3425 /// function represents, if any. 3426 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3427 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3428 return getDeclName().getCXXOverloadedOperator(); 3429 else 3430 return OO_None; 3431 } 3432 3433 /// getLiteralIdentifier - The literal suffix identifier this function 3434 /// represents, if any. 3435 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3436 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3437 return getDeclName().getCXXLiteralIdentifier(); 3438 else 3439 return nullptr; 3440 } 3441 3442 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3443 if (TemplateOrSpecialization.isNull()) 3444 return TK_NonTemplate; 3445 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3446 return TK_FunctionTemplate; 3447 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3448 return TK_MemberSpecialization; 3449 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3450 return TK_FunctionTemplateSpecialization; 3451 if (TemplateOrSpecialization.is 3452 <DependentFunctionTemplateSpecializationInfo*>()) 3453 return TK_DependentFunctionTemplateSpecialization; 3454 3455 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3456 } 3457 3458 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3459 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3460 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3461 3462 return nullptr; 3463 } 3464 3465 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3466 if (auto *MSI = 3467 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3468 return MSI; 3469 if (auto *FTSI = TemplateOrSpecialization 3470 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3471 return FTSI->getMemberSpecializationInfo(); 3472 return nullptr; 3473 } 3474 3475 void 3476 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3477 FunctionDecl *FD, 3478 TemplateSpecializationKind TSK) { 3479 assert(TemplateOrSpecialization.isNull() && 3480 "Member function is already a specialization"); 3481 MemberSpecializationInfo *Info 3482 = new (C) MemberSpecializationInfo(FD, TSK); 3483 TemplateOrSpecialization = Info; 3484 } 3485 3486 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3487 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3488 } 3489 3490 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3491 assert(TemplateOrSpecialization.isNull() && 3492 "Member function is already a specialization"); 3493 TemplateOrSpecialization = Template; 3494 } 3495 3496 bool FunctionDecl::isImplicitlyInstantiable() const { 3497 // If the function is invalid, it can't be implicitly instantiated. 3498 if (isInvalidDecl()) 3499 return false; 3500 3501 switch (getTemplateSpecializationKindForInstantiation()) { 3502 case TSK_Undeclared: 3503 case TSK_ExplicitInstantiationDefinition: 3504 case TSK_ExplicitSpecialization: 3505 return false; 3506 3507 case TSK_ImplicitInstantiation: 3508 return true; 3509 3510 case TSK_ExplicitInstantiationDeclaration: 3511 // Handled below. 3512 break; 3513 } 3514 3515 // Find the actual template from which we will instantiate. 3516 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3517 bool HasPattern = false; 3518 if (PatternDecl) 3519 HasPattern = PatternDecl->hasBody(PatternDecl); 3520 3521 // C++0x [temp.explicit]p9: 3522 // Except for inline functions, other explicit instantiation declarations 3523 // have the effect of suppressing the implicit instantiation of the entity 3524 // to which they refer. 3525 if (!HasPattern || !PatternDecl) 3526 return true; 3527 3528 return PatternDecl->isInlined(); 3529 } 3530 3531 bool FunctionDecl::isTemplateInstantiation() const { 3532 // FIXME: Remove this, it's not clear what it means. (Which template 3533 // specialization kind?) 3534 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3535 } 3536 3537 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { 3538 // If this is a generic lambda call operator specialization, its 3539 // instantiation pattern is always its primary template's pattern 3540 // even if its primary template was instantiated from another 3541 // member template (which happens with nested generic lambdas). 3542 // Since a lambda's call operator's body is transformed eagerly, 3543 // we don't have to go hunting for a prototype definition template 3544 // (i.e. instantiated-from-member-template) to use as an instantiation 3545 // pattern. 3546 3547 if (isGenericLambdaCallOperatorSpecialization( 3548 dyn_cast<CXXMethodDecl>(this))) { 3549 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3550 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3551 } 3552 3553 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) { 3554 if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3555 return nullptr; 3556 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3557 } 3558 3559 if (!clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3560 return nullptr; 3561 3562 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3563 // If we hit a point where the user provided a specialization of this 3564 // template, we're done looking. 3565 while (!Primary->isMemberSpecialization()) { 3566 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3567 if (!NewPrimary) 3568 break; 3569 Primary = NewPrimary; 3570 } 3571 3572 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3573 } 3574 3575 return nullptr; 3576 } 3577 3578 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3579 if (FunctionTemplateSpecializationInfo *Info 3580 = TemplateOrSpecialization 3581 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3582 return Info->getTemplate(); 3583 } 3584 return nullptr; 3585 } 3586 3587 FunctionTemplateSpecializationInfo * 3588 FunctionDecl::getTemplateSpecializationInfo() const { 3589 return TemplateOrSpecialization 3590 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3591 } 3592 3593 const TemplateArgumentList * 3594 FunctionDecl::getTemplateSpecializationArgs() const { 3595 if (FunctionTemplateSpecializationInfo *Info 3596 = TemplateOrSpecialization 3597 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3598 return Info->TemplateArguments; 3599 } 3600 return nullptr; 3601 } 3602 3603 const ASTTemplateArgumentListInfo * 3604 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3605 if (FunctionTemplateSpecializationInfo *Info 3606 = TemplateOrSpecialization 3607 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3608 return Info->TemplateArgumentsAsWritten; 3609 } 3610 return nullptr; 3611 } 3612 3613 void 3614 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3615 FunctionTemplateDecl *Template, 3616 const TemplateArgumentList *TemplateArgs, 3617 void *InsertPos, 3618 TemplateSpecializationKind TSK, 3619 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3620 SourceLocation PointOfInstantiation) { 3621 assert((TemplateOrSpecialization.isNull() || 3622 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3623 "Member function is already a specialization"); 3624 assert(TSK != TSK_Undeclared && 3625 "Must specify the type of function template specialization"); 3626 assert((TemplateOrSpecialization.isNull() || 3627 TSK == TSK_ExplicitSpecialization) && 3628 "Member specialization must be an explicit specialization"); 3629 FunctionTemplateSpecializationInfo *Info = 3630 FunctionTemplateSpecializationInfo::Create( 3631 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3632 PointOfInstantiation, 3633 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3634 TemplateOrSpecialization = Info; 3635 Template->addSpecialization(Info, InsertPos); 3636 } 3637 3638 void 3639 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3640 const UnresolvedSetImpl &Templates, 3641 const TemplateArgumentListInfo &TemplateArgs) { 3642 assert(TemplateOrSpecialization.isNull()); 3643 DependentFunctionTemplateSpecializationInfo *Info = 3644 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3645 TemplateArgs); 3646 TemplateOrSpecialization = Info; 3647 } 3648 3649 DependentFunctionTemplateSpecializationInfo * 3650 FunctionDecl::getDependentSpecializationInfo() const { 3651 return TemplateOrSpecialization 3652 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3653 } 3654 3655 DependentFunctionTemplateSpecializationInfo * 3656 DependentFunctionTemplateSpecializationInfo::Create( 3657 ASTContext &Context, const UnresolvedSetImpl &Ts, 3658 const TemplateArgumentListInfo &TArgs) { 3659 void *Buffer = Context.Allocate( 3660 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3661 TArgs.size(), Ts.size())); 3662 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3663 } 3664 3665 DependentFunctionTemplateSpecializationInfo:: 3666 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3667 const TemplateArgumentListInfo &TArgs) 3668 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3669 NumTemplates = Ts.size(); 3670 NumArgs = TArgs.size(); 3671 3672 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3673 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3674 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3675 3676 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3677 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3678 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3679 } 3680 3681 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3682 // For a function template specialization, query the specialization 3683 // information object. 3684 if (FunctionTemplateSpecializationInfo *FTSInfo = 3685 TemplateOrSpecialization 3686 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3687 return FTSInfo->getTemplateSpecializationKind(); 3688 3689 if (MemberSpecializationInfo *MSInfo = 3690 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3691 return MSInfo->getTemplateSpecializationKind(); 3692 3693 return TSK_Undeclared; 3694 } 3695 3696 TemplateSpecializationKind 3697 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 3698 // This is the same as getTemplateSpecializationKind(), except that for a 3699 // function that is both a function template specialization and a member 3700 // specialization, we prefer the member specialization information. Eg: 3701 // 3702 // template<typename T> struct A { 3703 // template<typename U> void f() {} 3704 // template<> void f<int>() {} 3705 // }; 3706 // 3707 // For A<int>::f<int>(): 3708 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 3709 // * getTemplateSpecializationKindForInstantiation() will return 3710 // TSK_ImplicitInstantiation 3711 // 3712 // This reflects the facts that A<int>::f<int> is an explicit specialization 3713 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 3714 // from A::f<int> if a definition is needed. 3715 if (FunctionTemplateSpecializationInfo *FTSInfo = 3716 TemplateOrSpecialization 3717 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 3718 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 3719 return MSInfo->getTemplateSpecializationKind(); 3720 return FTSInfo->getTemplateSpecializationKind(); 3721 } 3722 3723 if (MemberSpecializationInfo *MSInfo = 3724 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3725 return MSInfo->getTemplateSpecializationKind(); 3726 3727 return TSK_Undeclared; 3728 } 3729 3730 void 3731 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3732 SourceLocation PointOfInstantiation) { 3733 if (FunctionTemplateSpecializationInfo *FTSInfo 3734 = TemplateOrSpecialization.dyn_cast< 3735 FunctionTemplateSpecializationInfo*>()) { 3736 FTSInfo->setTemplateSpecializationKind(TSK); 3737 if (TSK != TSK_ExplicitSpecialization && 3738 PointOfInstantiation.isValid() && 3739 FTSInfo->getPointOfInstantiation().isInvalid()) { 3740 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3741 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3742 L->InstantiationRequested(this); 3743 } 3744 } else if (MemberSpecializationInfo *MSInfo 3745 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3746 MSInfo->setTemplateSpecializationKind(TSK); 3747 if (TSK != TSK_ExplicitSpecialization && 3748 PointOfInstantiation.isValid() && 3749 MSInfo->getPointOfInstantiation().isInvalid()) { 3750 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3751 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3752 L->InstantiationRequested(this); 3753 } 3754 } else 3755 llvm_unreachable("Function cannot have a template specialization kind"); 3756 } 3757 3758 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3759 if (FunctionTemplateSpecializationInfo *FTSInfo 3760 = TemplateOrSpecialization.dyn_cast< 3761 FunctionTemplateSpecializationInfo*>()) 3762 return FTSInfo->getPointOfInstantiation(); 3763 else if (MemberSpecializationInfo *MSInfo 3764 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) 3765 return MSInfo->getPointOfInstantiation(); 3766 3767 return SourceLocation(); 3768 } 3769 3770 bool FunctionDecl::isOutOfLine() const { 3771 if (Decl::isOutOfLine()) 3772 return true; 3773 3774 // If this function was instantiated from a member function of a 3775 // class template, check whether that member function was defined out-of-line. 3776 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3777 const FunctionDecl *Definition; 3778 if (FD->hasBody(Definition)) 3779 return Definition->isOutOfLine(); 3780 } 3781 3782 // If this function was instantiated from a function template, 3783 // check whether that function template was defined out-of-line. 3784 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3785 const FunctionDecl *Definition; 3786 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3787 return Definition->isOutOfLine(); 3788 } 3789 3790 return false; 3791 } 3792 3793 SourceRange FunctionDecl::getSourceRange() const { 3794 return SourceRange(getOuterLocStart(), EndRangeLoc); 3795 } 3796 3797 unsigned FunctionDecl::getMemoryFunctionKind() const { 3798 IdentifierInfo *FnInfo = getIdentifier(); 3799 3800 if (!FnInfo) 3801 return 0; 3802 3803 // Builtin handling. 3804 switch (getBuiltinID()) { 3805 case Builtin::BI__builtin_memset: 3806 case Builtin::BI__builtin___memset_chk: 3807 case Builtin::BImemset: 3808 return Builtin::BImemset; 3809 3810 case Builtin::BI__builtin_memcpy: 3811 case Builtin::BI__builtin___memcpy_chk: 3812 case Builtin::BImemcpy: 3813 return Builtin::BImemcpy; 3814 3815 case Builtin::BI__builtin_memmove: 3816 case Builtin::BI__builtin___memmove_chk: 3817 case Builtin::BImemmove: 3818 return Builtin::BImemmove; 3819 3820 case Builtin::BIstrlcpy: 3821 case Builtin::BI__builtin___strlcpy_chk: 3822 return Builtin::BIstrlcpy; 3823 3824 case Builtin::BIstrlcat: 3825 case Builtin::BI__builtin___strlcat_chk: 3826 return Builtin::BIstrlcat; 3827 3828 case Builtin::BI__builtin_memcmp: 3829 case Builtin::BImemcmp: 3830 return Builtin::BImemcmp; 3831 3832 case Builtin::BI__builtin_bcmp: 3833 case Builtin::BIbcmp: 3834 return Builtin::BIbcmp; 3835 3836 case Builtin::BI__builtin_strncpy: 3837 case Builtin::BI__builtin___strncpy_chk: 3838 case Builtin::BIstrncpy: 3839 return Builtin::BIstrncpy; 3840 3841 case Builtin::BI__builtin_strncmp: 3842 case Builtin::BIstrncmp: 3843 return Builtin::BIstrncmp; 3844 3845 case Builtin::BI__builtin_strncasecmp: 3846 case Builtin::BIstrncasecmp: 3847 return Builtin::BIstrncasecmp; 3848 3849 case Builtin::BI__builtin_strncat: 3850 case Builtin::BI__builtin___strncat_chk: 3851 case Builtin::BIstrncat: 3852 return Builtin::BIstrncat; 3853 3854 case Builtin::BI__builtin_strndup: 3855 case Builtin::BIstrndup: 3856 return Builtin::BIstrndup; 3857 3858 case Builtin::BI__builtin_strlen: 3859 case Builtin::BIstrlen: 3860 return Builtin::BIstrlen; 3861 3862 case Builtin::BI__builtin_bzero: 3863 case Builtin::BIbzero: 3864 return Builtin::BIbzero; 3865 3866 default: 3867 if (isExternC()) { 3868 if (FnInfo->isStr("memset")) 3869 return Builtin::BImemset; 3870 else if (FnInfo->isStr("memcpy")) 3871 return Builtin::BImemcpy; 3872 else if (FnInfo->isStr("memmove")) 3873 return Builtin::BImemmove; 3874 else if (FnInfo->isStr("memcmp")) 3875 return Builtin::BImemcmp; 3876 else if (FnInfo->isStr("bcmp")) 3877 return Builtin::BIbcmp; 3878 else if (FnInfo->isStr("strncpy")) 3879 return Builtin::BIstrncpy; 3880 else if (FnInfo->isStr("strncmp")) 3881 return Builtin::BIstrncmp; 3882 else if (FnInfo->isStr("strncasecmp")) 3883 return Builtin::BIstrncasecmp; 3884 else if (FnInfo->isStr("strncat")) 3885 return Builtin::BIstrncat; 3886 else if (FnInfo->isStr("strndup")) 3887 return Builtin::BIstrndup; 3888 else if (FnInfo->isStr("strlen")) 3889 return Builtin::BIstrlen; 3890 else if (FnInfo->isStr("bzero")) 3891 return Builtin::BIbzero; 3892 } 3893 break; 3894 } 3895 return 0; 3896 } 3897 3898 unsigned FunctionDecl::getODRHash() const { 3899 assert(hasODRHash()); 3900 return ODRHash; 3901 } 3902 3903 unsigned FunctionDecl::getODRHash() { 3904 if (hasODRHash()) 3905 return ODRHash; 3906 3907 if (auto *FT = getInstantiatedFromMemberFunction()) { 3908 setHasODRHash(true); 3909 ODRHash = FT->getODRHash(); 3910 return ODRHash; 3911 } 3912 3913 class ODRHash Hash; 3914 Hash.AddFunctionDecl(this); 3915 setHasODRHash(true); 3916 ODRHash = Hash.CalculateHash(); 3917 return ODRHash; 3918 } 3919 3920 //===----------------------------------------------------------------------===// 3921 // FieldDecl Implementation 3922 //===----------------------------------------------------------------------===// 3923 3924 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 3925 SourceLocation StartLoc, SourceLocation IdLoc, 3926 IdentifierInfo *Id, QualType T, 3927 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 3928 InClassInitStyle InitStyle) { 3929 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 3930 BW, Mutable, InitStyle); 3931 } 3932 3933 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3934 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 3935 SourceLocation(), nullptr, QualType(), nullptr, 3936 nullptr, false, ICIS_NoInit); 3937 } 3938 3939 bool FieldDecl::isAnonymousStructOrUnion() const { 3940 if (!isImplicit() || getDeclName()) 3941 return false; 3942 3943 if (const auto *Record = getType()->getAs<RecordType>()) 3944 return Record->getDecl()->isAnonymousStructOrUnion(); 3945 3946 return false; 3947 } 3948 3949 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 3950 assert(isBitField() && "not a bitfield"); 3951 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 3952 } 3953 3954 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 3955 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 3956 getBitWidthValue(Ctx) == 0; 3957 } 3958 3959 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 3960 if (isZeroLengthBitField(Ctx)) 3961 return true; 3962 3963 // C++2a [intro.object]p7: 3964 // An object has nonzero size if it 3965 // -- is not a potentially-overlapping subobject, or 3966 if (!hasAttr<NoUniqueAddressAttr>()) 3967 return false; 3968 3969 // -- is not of class type, or 3970 const auto *RT = getType()->getAs<RecordType>(); 3971 if (!RT) 3972 return false; 3973 const RecordDecl *RD = RT->getDecl()->getDefinition(); 3974 if (!RD) { 3975 assert(isInvalidDecl() && "valid field has incomplete type"); 3976 return false; 3977 } 3978 3979 // -- [has] virtual member functions or virtual base classes, or 3980 // -- has subobjects of nonzero size or bit-fields of nonzero length 3981 const auto *CXXRD = cast<CXXRecordDecl>(RD); 3982 if (!CXXRD->isEmpty()) 3983 return false; 3984 3985 // Otherwise, [...] the circumstances under which the object has zero size 3986 // are implementation-defined. 3987 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 3988 // ABI will do. 3989 return true; 3990 } 3991 3992 unsigned FieldDecl::getFieldIndex() const { 3993 const FieldDecl *Canonical = getCanonicalDecl(); 3994 if (Canonical != this) 3995 return Canonical->getFieldIndex(); 3996 3997 if (CachedFieldIndex) return CachedFieldIndex - 1; 3998 3999 unsigned Index = 0; 4000 const RecordDecl *RD = getParent()->getDefinition(); 4001 assert(RD && "requested index for field of struct with no definition"); 4002 4003 for (auto *Field : RD->fields()) { 4004 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4005 ++Index; 4006 } 4007 4008 assert(CachedFieldIndex && "failed to find field in parent"); 4009 return CachedFieldIndex - 1; 4010 } 4011 4012 SourceRange FieldDecl::getSourceRange() const { 4013 const Expr *FinalExpr = getInClassInitializer(); 4014 if (!FinalExpr) 4015 FinalExpr = getBitWidth(); 4016 if (FinalExpr) 4017 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4018 return DeclaratorDecl::getSourceRange(); 4019 } 4020 4021 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4022 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4023 "capturing type in non-lambda or captured record."); 4024 assert(InitStorage.getInt() == ISK_NoInit && 4025 InitStorage.getPointer() == nullptr && 4026 "bit width, initializer or captured type already set"); 4027 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4028 ISK_CapturedVLAType); 4029 } 4030 4031 //===----------------------------------------------------------------------===// 4032 // TagDecl Implementation 4033 //===----------------------------------------------------------------------===// 4034 4035 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4036 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4037 SourceLocation StartL) 4038 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4039 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4040 assert((DK != Enum || TK == TTK_Enum) && 4041 "EnumDecl not matched with TTK_Enum"); 4042 setPreviousDecl(PrevDecl); 4043 setTagKind(TK); 4044 setCompleteDefinition(false); 4045 setBeingDefined(false); 4046 setEmbeddedInDeclarator(false); 4047 setFreeStanding(false); 4048 setCompleteDefinitionRequired(false); 4049 } 4050 4051 SourceLocation TagDecl::getOuterLocStart() const { 4052 return getTemplateOrInnerLocStart(this); 4053 } 4054 4055 SourceRange TagDecl::getSourceRange() const { 4056 SourceLocation RBraceLoc = BraceRange.getEnd(); 4057 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4058 return SourceRange(getOuterLocStart(), E); 4059 } 4060 4061 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4062 4063 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4064 TypedefNameDeclOrQualifier = TDD; 4065 if (const Type *T = getTypeForDecl()) { 4066 (void)T; 4067 assert(T->isLinkageValid()); 4068 } 4069 assert(isLinkageValid()); 4070 } 4071 4072 void TagDecl::startDefinition() { 4073 setBeingDefined(true); 4074 4075 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4076 struct CXXRecordDecl::DefinitionData *Data = 4077 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4078 for (auto I : redecls()) 4079 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4080 } 4081 } 4082 4083 void TagDecl::completeDefinition() { 4084 assert((!isa<CXXRecordDecl>(this) || 4085 cast<CXXRecordDecl>(this)->hasDefinition()) && 4086 "definition completed but not started"); 4087 4088 setCompleteDefinition(true); 4089 setBeingDefined(false); 4090 4091 if (ASTMutationListener *L = getASTMutationListener()) 4092 L->CompletedTagDefinition(this); 4093 } 4094 4095 TagDecl *TagDecl::getDefinition() const { 4096 if (isCompleteDefinition()) 4097 return const_cast<TagDecl *>(this); 4098 4099 // If it's possible for us to have an out-of-date definition, check now. 4100 if (mayHaveOutOfDateDef()) { 4101 if (IdentifierInfo *II = getIdentifier()) { 4102 if (II->isOutOfDate()) { 4103 updateOutOfDate(*II); 4104 } 4105 } 4106 } 4107 4108 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4109 return CXXRD->getDefinition(); 4110 4111 for (auto R : redecls()) 4112 if (R->isCompleteDefinition()) 4113 return R; 4114 4115 return nullptr; 4116 } 4117 4118 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4119 if (QualifierLoc) { 4120 // Make sure the extended qualifier info is allocated. 4121 if (!hasExtInfo()) 4122 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4123 // Set qualifier info. 4124 getExtInfo()->QualifierLoc = QualifierLoc; 4125 } else { 4126 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4127 if (hasExtInfo()) { 4128 if (getExtInfo()->NumTemplParamLists == 0) { 4129 getASTContext().Deallocate(getExtInfo()); 4130 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4131 } 4132 else 4133 getExtInfo()->QualifierLoc = QualifierLoc; 4134 } 4135 } 4136 } 4137 4138 void TagDecl::setTemplateParameterListsInfo( 4139 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4140 assert(!TPLists.empty()); 4141 // Make sure the extended decl info is allocated. 4142 if (!hasExtInfo()) 4143 // Allocate external info struct. 4144 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4145 // Set the template parameter lists info. 4146 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4147 } 4148 4149 //===----------------------------------------------------------------------===// 4150 // EnumDecl Implementation 4151 //===----------------------------------------------------------------------===// 4152 4153 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4154 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4155 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4156 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4157 assert(Scoped || !ScopedUsingClassTag); 4158 IntegerType = nullptr; 4159 setNumPositiveBits(0); 4160 setNumNegativeBits(0); 4161 setScoped(Scoped); 4162 setScopedUsingClassTag(ScopedUsingClassTag); 4163 setFixed(Fixed); 4164 setHasODRHash(false); 4165 ODRHash = 0; 4166 } 4167 4168 void EnumDecl::anchor() {} 4169 4170 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4171 SourceLocation StartLoc, SourceLocation IdLoc, 4172 IdentifierInfo *Id, 4173 EnumDecl *PrevDecl, bool IsScoped, 4174 bool IsScopedUsingClassTag, bool IsFixed) { 4175 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4176 IsScoped, IsScopedUsingClassTag, IsFixed); 4177 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4178 C.getTypeDeclType(Enum, PrevDecl); 4179 return Enum; 4180 } 4181 4182 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4183 EnumDecl *Enum = 4184 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4185 nullptr, nullptr, false, false, false); 4186 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4187 return Enum; 4188 } 4189 4190 SourceRange EnumDecl::getIntegerTypeRange() const { 4191 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4192 return TI->getTypeLoc().getSourceRange(); 4193 return SourceRange(); 4194 } 4195 4196 void EnumDecl::completeDefinition(QualType NewType, 4197 QualType NewPromotionType, 4198 unsigned NumPositiveBits, 4199 unsigned NumNegativeBits) { 4200 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4201 if (!IntegerType) 4202 IntegerType = NewType.getTypePtr(); 4203 PromotionType = NewPromotionType; 4204 setNumPositiveBits(NumPositiveBits); 4205 setNumNegativeBits(NumNegativeBits); 4206 TagDecl::completeDefinition(); 4207 } 4208 4209 bool EnumDecl::isClosed() const { 4210 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4211 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4212 return true; 4213 } 4214 4215 bool EnumDecl::isClosedFlag() const { 4216 return isClosed() && hasAttr<FlagEnumAttr>(); 4217 } 4218 4219 bool EnumDecl::isClosedNonFlag() const { 4220 return isClosed() && !hasAttr<FlagEnumAttr>(); 4221 } 4222 4223 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4224 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4225 return MSI->getTemplateSpecializationKind(); 4226 4227 return TSK_Undeclared; 4228 } 4229 4230 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4231 SourceLocation PointOfInstantiation) { 4232 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4233 assert(MSI && "Not an instantiated member enumeration?"); 4234 MSI->setTemplateSpecializationKind(TSK); 4235 if (TSK != TSK_ExplicitSpecialization && 4236 PointOfInstantiation.isValid() && 4237 MSI->getPointOfInstantiation().isInvalid()) 4238 MSI->setPointOfInstantiation(PointOfInstantiation); 4239 } 4240 4241 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4242 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4243 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4244 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4245 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4246 ED = NewED; 4247 return getDefinitionOrSelf(ED); 4248 } 4249 } 4250 4251 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4252 "couldn't find pattern for enum instantiation"); 4253 return nullptr; 4254 } 4255 4256 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4257 if (SpecializationInfo) 4258 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4259 4260 return nullptr; 4261 } 4262 4263 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4264 TemplateSpecializationKind TSK) { 4265 assert(!SpecializationInfo && "Member enum is already a specialization"); 4266 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4267 } 4268 4269 unsigned EnumDecl::getODRHash() { 4270 if (hasODRHash()) 4271 return ODRHash; 4272 4273 class ODRHash Hash; 4274 Hash.AddEnumDecl(this); 4275 setHasODRHash(true); 4276 ODRHash = Hash.CalculateHash(); 4277 return ODRHash; 4278 } 4279 4280 //===----------------------------------------------------------------------===// 4281 // RecordDecl Implementation 4282 //===----------------------------------------------------------------------===// 4283 4284 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4285 DeclContext *DC, SourceLocation StartLoc, 4286 SourceLocation IdLoc, IdentifierInfo *Id, 4287 RecordDecl *PrevDecl) 4288 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4289 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4290 setHasFlexibleArrayMember(false); 4291 setAnonymousStructOrUnion(false); 4292 setHasObjectMember(false); 4293 setHasVolatileMember(false); 4294 setHasLoadedFieldsFromExternalStorage(false); 4295 setNonTrivialToPrimitiveDefaultInitialize(false); 4296 setNonTrivialToPrimitiveCopy(false); 4297 setNonTrivialToPrimitiveDestroy(false); 4298 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4299 setHasNonTrivialToPrimitiveDestructCUnion(false); 4300 setHasNonTrivialToPrimitiveCopyCUnion(false); 4301 setParamDestroyedInCallee(false); 4302 setArgPassingRestrictions(APK_CanPassInRegs); 4303 } 4304 4305 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4306 SourceLocation StartLoc, SourceLocation IdLoc, 4307 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4308 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4309 StartLoc, IdLoc, Id, PrevDecl); 4310 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4311 4312 C.getTypeDeclType(R, PrevDecl); 4313 return R; 4314 } 4315 4316 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4317 RecordDecl *R = 4318 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4319 SourceLocation(), nullptr, nullptr); 4320 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4321 return R; 4322 } 4323 4324 bool RecordDecl::isInjectedClassName() const { 4325 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4326 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4327 } 4328 4329 bool RecordDecl::isLambda() const { 4330 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4331 return RD->isLambda(); 4332 return false; 4333 } 4334 4335 bool RecordDecl::isCapturedRecord() const { 4336 return hasAttr<CapturedRecordAttr>(); 4337 } 4338 4339 void RecordDecl::setCapturedRecord() { 4340 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4341 } 4342 4343 RecordDecl::field_iterator RecordDecl::field_begin() const { 4344 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4345 LoadFieldsFromExternalStorage(); 4346 4347 return field_iterator(decl_iterator(FirstDecl)); 4348 } 4349 4350 /// completeDefinition - Notes that the definition of this type is now 4351 /// complete. 4352 void RecordDecl::completeDefinition() { 4353 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4354 TagDecl::completeDefinition(); 4355 } 4356 4357 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4358 /// This which can be turned on with an attribute, pragma, or the 4359 /// -mms-bitfields command-line option. 4360 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4361 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4362 } 4363 4364 void RecordDecl::LoadFieldsFromExternalStorage() const { 4365 ExternalASTSource *Source = getASTContext().getExternalSource(); 4366 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4367 4368 // Notify that we have a RecordDecl doing some initialization. 4369 ExternalASTSource::Deserializing TheFields(Source); 4370 4371 SmallVector<Decl*, 64> Decls; 4372 setHasLoadedFieldsFromExternalStorage(true); 4373 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4374 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4375 }, Decls); 4376 4377 #ifndef NDEBUG 4378 // Check that all decls we got were FieldDecls. 4379 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4380 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4381 #endif 4382 4383 if (Decls.empty()) 4384 return; 4385 4386 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4387 /*FieldsAlreadyLoaded=*/false); 4388 } 4389 4390 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4391 ASTContext &Context = getASTContext(); 4392 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4393 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4394 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4395 return false; 4396 const auto &Blacklist = Context.getSanitizerBlacklist(); 4397 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4398 // We may be able to relax some of these requirements. 4399 int ReasonToReject = -1; 4400 if (!CXXRD || CXXRD->isExternCContext()) 4401 ReasonToReject = 0; // is not C++. 4402 else if (CXXRD->hasAttr<PackedAttr>()) 4403 ReasonToReject = 1; // is packed. 4404 else if (CXXRD->isUnion()) 4405 ReasonToReject = 2; // is a union. 4406 else if (CXXRD->isTriviallyCopyable()) 4407 ReasonToReject = 3; // is trivially copyable. 4408 else if (CXXRD->hasTrivialDestructor()) 4409 ReasonToReject = 4; // has trivial destructor. 4410 else if (CXXRD->isStandardLayout()) 4411 ReasonToReject = 5; // is standard layout. 4412 else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(), 4413 "field-padding")) 4414 ReasonToReject = 6; // is in a blacklisted file. 4415 else if (Blacklist.isBlacklistedType(EnabledAsanMask, 4416 getQualifiedNameAsString(), 4417 "field-padding")) 4418 ReasonToReject = 7; // is blacklisted. 4419 4420 if (EmitRemark) { 4421 if (ReasonToReject >= 0) 4422 Context.getDiagnostics().Report( 4423 getLocation(), 4424 diag::remark_sanitize_address_insert_extra_padding_rejected) 4425 << getQualifiedNameAsString() << ReasonToReject; 4426 else 4427 Context.getDiagnostics().Report( 4428 getLocation(), 4429 diag::remark_sanitize_address_insert_extra_padding_accepted) 4430 << getQualifiedNameAsString(); 4431 } 4432 return ReasonToReject < 0; 4433 } 4434 4435 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4436 for (const auto *I : fields()) { 4437 if (I->getIdentifier()) 4438 return I; 4439 4440 if (const auto *RT = I->getType()->getAs<RecordType>()) 4441 if (const FieldDecl *NamedDataMember = 4442 RT->getDecl()->findFirstNamedDataMember()) 4443 return NamedDataMember; 4444 } 4445 4446 // We didn't find a named data member. 4447 return nullptr; 4448 } 4449 4450 //===----------------------------------------------------------------------===// 4451 // BlockDecl Implementation 4452 //===----------------------------------------------------------------------===// 4453 4454 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4455 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4456 setIsVariadic(false); 4457 setCapturesCXXThis(false); 4458 setBlockMissingReturnType(true); 4459 setIsConversionFromLambda(false); 4460 setDoesNotEscape(false); 4461 setCanAvoidCopyToHeap(false); 4462 } 4463 4464 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4465 assert(!ParamInfo && "Already has param info!"); 4466 4467 // Zero params -> null pointer. 4468 if (!NewParamInfo.empty()) { 4469 NumParams = NewParamInfo.size(); 4470 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4471 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4472 } 4473 } 4474 4475 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4476 bool CapturesCXXThis) { 4477 this->setCapturesCXXThis(CapturesCXXThis); 4478 this->NumCaptures = Captures.size(); 4479 4480 if (Captures.empty()) { 4481 this->Captures = nullptr; 4482 return; 4483 } 4484 4485 this->Captures = Captures.copy(Context).data(); 4486 } 4487 4488 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4489 for (const auto &I : captures()) 4490 // Only auto vars can be captured, so no redeclaration worries. 4491 if (I.getVariable() == variable) 4492 return true; 4493 4494 return false; 4495 } 4496 4497 SourceRange BlockDecl::getSourceRange() const { 4498 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4499 } 4500 4501 //===----------------------------------------------------------------------===// 4502 // Other Decl Allocation/Deallocation Method Implementations 4503 //===----------------------------------------------------------------------===// 4504 4505 void TranslationUnitDecl::anchor() {} 4506 4507 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4508 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4509 } 4510 4511 void PragmaCommentDecl::anchor() {} 4512 4513 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4514 TranslationUnitDecl *DC, 4515 SourceLocation CommentLoc, 4516 PragmaMSCommentKind CommentKind, 4517 StringRef Arg) { 4518 PragmaCommentDecl *PCD = 4519 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4520 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4521 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4522 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4523 return PCD; 4524 } 4525 4526 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4527 unsigned ID, 4528 unsigned ArgSize) { 4529 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4530 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4531 } 4532 4533 void PragmaDetectMismatchDecl::anchor() {} 4534 4535 PragmaDetectMismatchDecl * 4536 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4537 SourceLocation Loc, StringRef Name, 4538 StringRef Value) { 4539 size_t ValueStart = Name.size() + 1; 4540 PragmaDetectMismatchDecl *PDMD = 4541 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4542 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4543 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4544 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4545 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4546 Value.size()); 4547 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4548 return PDMD; 4549 } 4550 4551 PragmaDetectMismatchDecl * 4552 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4553 unsigned NameValueSize) { 4554 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4555 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4556 } 4557 4558 void ExternCContextDecl::anchor() {} 4559 4560 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4561 TranslationUnitDecl *DC) { 4562 return new (C, DC) ExternCContextDecl(DC); 4563 } 4564 4565 void LabelDecl::anchor() {} 4566 4567 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4568 SourceLocation IdentL, IdentifierInfo *II) { 4569 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4570 } 4571 4572 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4573 SourceLocation IdentL, IdentifierInfo *II, 4574 SourceLocation GnuLabelL) { 4575 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4576 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4577 } 4578 4579 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4580 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4581 SourceLocation()); 4582 } 4583 4584 void LabelDecl::setMSAsmLabel(StringRef Name) { 4585 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4586 memcpy(Buffer, Name.data(), Name.size()); 4587 Buffer[Name.size()] = '\0'; 4588 MSAsmName = Buffer; 4589 } 4590 4591 void ValueDecl::anchor() {} 4592 4593 bool ValueDecl::isWeak() const { 4594 for (const auto *I : attrs()) 4595 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) 4596 return true; 4597 4598 return isWeakImported(); 4599 } 4600 4601 void ImplicitParamDecl::anchor() {} 4602 4603 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4604 SourceLocation IdLoc, 4605 IdentifierInfo *Id, QualType Type, 4606 ImplicitParamKind ParamKind) { 4607 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4608 } 4609 4610 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4611 ImplicitParamKind ParamKind) { 4612 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4613 } 4614 4615 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4616 unsigned ID) { 4617 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4618 } 4619 4620 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 4621 SourceLocation StartLoc, 4622 const DeclarationNameInfo &NameInfo, 4623 QualType T, TypeSourceInfo *TInfo, 4624 StorageClass SC, bool isInlineSpecified, 4625 bool hasWrittenPrototype, 4626 ConstexprSpecKind ConstexprKind) { 4627 FunctionDecl *New = 4628 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 4629 SC, isInlineSpecified, ConstexprKind); 4630 New->setHasWrittenPrototype(hasWrittenPrototype); 4631 return New; 4632 } 4633 4634 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4635 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), 4636 DeclarationNameInfo(), QualType(), nullptr, 4637 SC_None, false, CSK_unspecified); 4638 } 4639 4640 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4641 return new (C, DC) BlockDecl(DC, L); 4642 } 4643 4644 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4645 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4646 } 4647 4648 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4649 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4650 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4651 4652 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4653 unsigned NumParams) { 4654 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4655 CapturedDecl(DC, NumParams); 4656 } 4657 4658 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4659 unsigned NumParams) { 4660 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4661 CapturedDecl(nullptr, NumParams); 4662 } 4663 4664 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4665 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4666 4667 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4668 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4669 4670 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4671 SourceLocation L, 4672 IdentifierInfo *Id, QualType T, 4673 Expr *E, const llvm::APSInt &V) { 4674 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4675 } 4676 4677 EnumConstantDecl * 4678 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4679 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4680 QualType(), nullptr, llvm::APSInt()); 4681 } 4682 4683 void IndirectFieldDecl::anchor() {} 4684 4685 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4686 SourceLocation L, DeclarationName N, 4687 QualType T, 4688 MutableArrayRef<NamedDecl *> CH) 4689 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4690 ChainingSize(CH.size()) { 4691 // In C++, indirect field declarations conflict with tag declarations in the 4692 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4693 if (C.getLangOpts().CPlusPlus) 4694 IdentifierNamespace |= IDNS_Tag; 4695 } 4696 4697 IndirectFieldDecl * 4698 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4699 IdentifierInfo *Id, QualType T, 4700 llvm::MutableArrayRef<NamedDecl *> CH) { 4701 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4702 } 4703 4704 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4705 unsigned ID) { 4706 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4707 DeclarationName(), QualType(), None); 4708 } 4709 4710 SourceRange EnumConstantDecl::getSourceRange() const { 4711 SourceLocation End = getLocation(); 4712 if (Init) 4713 End = Init->getEndLoc(); 4714 return SourceRange(getLocation(), End); 4715 } 4716 4717 void TypeDecl::anchor() {} 4718 4719 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4720 SourceLocation StartLoc, SourceLocation IdLoc, 4721 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4722 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4723 } 4724 4725 void TypedefNameDecl::anchor() {} 4726 4727 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4728 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4729 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 4730 auto *ThisTypedef = this; 4731 if (AnyRedecl && OwningTypedef) { 4732 OwningTypedef = OwningTypedef->getCanonicalDecl(); 4733 ThisTypedef = ThisTypedef->getCanonicalDecl(); 4734 } 4735 if (OwningTypedef == ThisTypedef) 4736 return TT->getDecl(); 4737 } 4738 4739 return nullptr; 4740 } 4741 4742 bool TypedefNameDecl::isTransparentTagSlow() const { 4743 auto determineIsTransparent = [&]() { 4744 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 4745 if (auto *TD = TT->getDecl()) { 4746 if (TD->getName() != getName()) 4747 return false; 4748 SourceLocation TTLoc = getLocation(); 4749 SourceLocation TDLoc = TD->getLocation(); 4750 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 4751 return false; 4752 SourceManager &SM = getASTContext().getSourceManager(); 4753 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 4754 } 4755 } 4756 return false; 4757 }; 4758 4759 bool isTransparent = determineIsTransparent(); 4760 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 4761 return isTransparent; 4762 } 4763 4764 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4765 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 4766 nullptr, nullptr); 4767 } 4768 4769 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 4770 SourceLocation StartLoc, 4771 SourceLocation IdLoc, IdentifierInfo *Id, 4772 TypeSourceInfo *TInfo) { 4773 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4774 } 4775 4776 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4777 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 4778 SourceLocation(), nullptr, nullptr); 4779 } 4780 4781 SourceRange TypedefDecl::getSourceRange() const { 4782 SourceLocation RangeEnd = getLocation(); 4783 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 4784 if (typeIsPostfix(TInfo->getType())) 4785 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4786 } 4787 return SourceRange(getBeginLoc(), RangeEnd); 4788 } 4789 4790 SourceRange TypeAliasDecl::getSourceRange() const { 4791 SourceLocation RangeEnd = getBeginLoc(); 4792 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 4793 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4794 return SourceRange(getBeginLoc(), RangeEnd); 4795 } 4796 4797 void FileScopeAsmDecl::anchor() {} 4798 4799 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 4800 StringLiteral *Str, 4801 SourceLocation AsmLoc, 4802 SourceLocation RParenLoc) { 4803 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 4804 } 4805 4806 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 4807 unsigned ID) { 4808 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 4809 SourceLocation()); 4810 } 4811 4812 void EmptyDecl::anchor() {} 4813 4814 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4815 return new (C, DC) EmptyDecl(DC, L); 4816 } 4817 4818 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4819 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 4820 } 4821 4822 //===----------------------------------------------------------------------===// 4823 // ImportDecl Implementation 4824 //===----------------------------------------------------------------------===// 4825 4826 /// Retrieve the number of module identifiers needed to name the given 4827 /// module. 4828 static unsigned getNumModuleIdentifiers(Module *Mod) { 4829 unsigned Result = 1; 4830 while (Mod->Parent) { 4831 Mod = Mod->Parent; 4832 ++Result; 4833 } 4834 return Result; 4835 } 4836 4837 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4838 Module *Imported, 4839 ArrayRef<SourceLocation> IdentifierLocs) 4840 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) { 4841 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 4842 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4843 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 4844 StoredLocs); 4845 } 4846 4847 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4848 Module *Imported, SourceLocation EndLoc) 4849 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) { 4850 *getTrailingObjects<SourceLocation>() = EndLoc; 4851 } 4852 4853 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 4854 SourceLocation StartLoc, Module *Imported, 4855 ArrayRef<SourceLocation> IdentifierLocs) { 4856 return new (C, DC, 4857 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 4858 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 4859 } 4860 4861 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 4862 SourceLocation StartLoc, 4863 Module *Imported, 4864 SourceLocation EndLoc) { 4865 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 4866 ImportDecl(DC, StartLoc, Imported, EndLoc); 4867 Import->setImplicit(); 4868 return Import; 4869 } 4870 4871 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4872 unsigned NumLocations) { 4873 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 4874 ImportDecl(EmptyShell()); 4875 } 4876 4877 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 4878 if (!ImportedAndComplete.getInt()) 4879 return None; 4880 4881 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4882 return llvm::makeArrayRef(StoredLocs, 4883 getNumModuleIdentifiers(getImportedModule())); 4884 } 4885 4886 SourceRange ImportDecl::getSourceRange() const { 4887 if (!ImportedAndComplete.getInt()) 4888 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 4889 4890 return SourceRange(getLocation(), getIdentifierLocs().back()); 4891 } 4892 4893 //===----------------------------------------------------------------------===// 4894 // ExportDecl Implementation 4895 //===----------------------------------------------------------------------===// 4896 4897 void ExportDecl::anchor() {} 4898 4899 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 4900 SourceLocation ExportLoc) { 4901 return new (C, DC) ExportDecl(DC, ExportLoc); 4902 } 4903 4904 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4905 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 4906 } 4907