xref: /freebsd/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/NoSanitizeList.h"
45 #include "clang/Basic/PartialDiagnostic.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 /// Determine whether D is declared in the purview of a named module.
572 static bool isInModulePurview(const NamedDecl *D) {
573   if (auto *M = D->getOwningModule())
574     return M->isModulePurview();
575   return false;
576 }
577 
578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579   // FIXME: Handle isModulePrivate.
580   switch (D->getModuleOwnershipKind()) {
581   case Decl::ModuleOwnershipKind::Unowned:
582   case Decl::ModuleOwnershipKind::ModulePrivate:
583     return false;
584   case Decl::ModuleOwnershipKind::Visible:
585   case Decl::ModuleOwnershipKind::VisibleWhenImported:
586     return isInModulePurview(D);
587   }
588   llvm_unreachable("unexpected module ownership kind");
589 }
590 
591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592   // Internal linkage declarations within a module interface unit are modeled
593   // as "module-internal linkage", which means that they have internal linkage
594   // formally but can be indirectly accessed from outside the module via inline
595   // functions and templates defined within the module.
596   if (isInModulePurview(D))
597     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598 
599   return LinkageInfo::internal();
600 }
601 
602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603   // C++ Modules TS [basic.link]/6.8:
604   //   - A name declared at namespace scope that does not have internal linkage
605   //     by the previous rules and that is introduced by a non-exported
606   //     declaration has module linkage.
607   //
608   // [basic.namespace.general]/p2
609   //   A namespace is never attached to a named module and never has a name with
610   //   module linkage.
611   if (isInModulePurview(D) &&
612       !isExportedFromModuleInterfaceUnit(
613           cast<NamedDecl>(D->getCanonicalDecl())) &&
614       !isa<NamespaceDecl>(D))
615     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
616 
617   return LinkageInfo::external();
618 }
619 
620 static StorageClass getStorageClass(const Decl *D) {
621   if (auto *TD = dyn_cast<TemplateDecl>(D))
622     D = TD->getTemplatedDecl();
623   if (D) {
624     if (auto *VD = dyn_cast<VarDecl>(D))
625       return VD->getStorageClass();
626     if (auto *FD = dyn_cast<FunctionDecl>(D))
627       return FD->getStorageClass();
628   }
629   return SC_None;
630 }
631 
632 LinkageInfo
633 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
634                                             LVComputationKind computation,
635                                             bool IgnoreVarTypeLinkage) {
636   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
637          "Not a name having namespace scope");
638   ASTContext &Context = D->getASTContext();
639 
640   // C++ [basic.link]p3:
641   //   A name having namespace scope (3.3.6) has internal linkage if it
642   //   is the name of
643 
644   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
645     // - a variable, variable template, function, or function template
646     //   that is explicitly declared static; or
647     // (This bullet corresponds to C99 6.2.2p3.)
648     return getInternalLinkageFor(D);
649   }
650 
651   if (const auto *Var = dyn_cast<VarDecl>(D)) {
652     // - a non-template variable of non-volatile const-qualified type, unless
653     //   - it is explicitly declared extern, or
654     //   - it is inline or exported, or
655     //   - it was previously declared and the prior declaration did not have
656     //     internal linkage
657     // (There is no equivalent in C99.)
658     if (Context.getLangOpts().CPlusPlus &&
659         Var->getType().isConstQualified() &&
660         !Var->getType().isVolatileQualified() &&
661         !Var->isInline() &&
662         !isExportedFromModuleInterfaceUnit(Var) &&
663         !isa<VarTemplateSpecializationDecl>(Var) &&
664         !Var->getDescribedVarTemplate()) {
665       const VarDecl *PrevVar = Var->getPreviousDecl();
666       if (PrevVar)
667         return getLVForDecl(PrevVar, computation);
668 
669       if (Var->getStorageClass() != SC_Extern &&
670           Var->getStorageClass() != SC_PrivateExtern &&
671           !isSingleLineLanguageLinkage(*Var))
672         return getInternalLinkageFor(Var);
673     }
674 
675     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
676          PrevVar = PrevVar->getPreviousDecl()) {
677       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
678           Var->getStorageClass() == SC_None)
679         return getDeclLinkageAndVisibility(PrevVar);
680       // Explicitly declared static.
681       if (PrevVar->getStorageClass() == SC_Static)
682         return getInternalLinkageFor(Var);
683     }
684   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
685     //   - a data member of an anonymous union.
686     const VarDecl *VD = IFD->getVarDecl();
687     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
688     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
689   }
690   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
691 
692   // FIXME: This gives internal linkage to names that should have no linkage
693   // (those not covered by [basic.link]p6).
694   if (D->isInAnonymousNamespace()) {
695     const auto *Var = dyn_cast<VarDecl>(D);
696     const auto *Func = dyn_cast<FunctionDecl>(D);
697     // FIXME: The check for extern "C" here is not justified by the standard
698     // wording, but we retain it from the pre-DR1113 model to avoid breaking
699     // code.
700     //
701     // C++11 [basic.link]p4:
702     //   An unnamed namespace or a namespace declared directly or indirectly
703     //   within an unnamed namespace has internal linkage.
704     if ((!Var || !isFirstInExternCContext(Var)) &&
705         (!Func || !isFirstInExternCContext(Func)))
706       return getInternalLinkageFor(D);
707   }
708 
709   // Set up the defaults.
710 
711   // C99 6.2.2p5:
712   //   If the declaration of an identifier for an object has file
713   //   scope and no storage-class specifier, its linkage is
714   //   external.
715   LinkageInfo LV = getExternalLinkageFor(D);
716 
717   if (!hasExplicitVisibilityAlready(computation)) {
718     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
719       LV.mergeVisibility(*Vis, true);
720     } else {
721       // If we're declared in a namespace with a visibility attribute,
722       // use that namespace's visibility, and it still counts as explicit.
723       for (const DeclContext *DC = D->getDeclContext();
724            !isa<TranslationUnitDecl>(DC);
725            DC = DC->getParent()) {
726         const auto *ND = dyn_cast<NamespaceDecl>(DC);
727         if (!ND) continue;
728         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
729           LV.mergeVisibility(*Vis, true);
730           break;
731         }
732       }
733     }
734 
735     // Add in global settings if the above didn't give us direct visibility.
736     if (!LV.isVisibilityExplicit()) {
737       // Use global type/value visibility as appropriate.
738       Visibility globalVisibility =
739           computation.isValueVisibility()
740               ? Context.getLangOpts().getValueVisibilityMode()
741               : Context.getLangOpts().getTypeVisibilityMode();
742       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
743 
744       // If we're paying attention to global visibility, apply
745       // -finline-visibility-hidden if this is an inline method.
746       if (useInlineVisibilityHidden(D))
747         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
748     }
749   }
750 
751   // C++ [basic.link]p4:
752 
753   //   A name having namespace scope that has not been given internal linkage
754   //   above and that is the name of
755   //   [...bullets...]
756   //   has its linkage determined as follows:
757   //     - if the enclosing namespace has internal linkage, the name has
758   //       internal linkage; [handled above]
759   //     - otherwise, if the declaration of the name is attached to a named
760   //       module and is not exported, the name has module linkage;
761   //     - otherwise, the name has external linkage.
762   // LV is currently set up to handle the last two bullets.
763   //
764   //   The bullets are:
765 
766   //     - a variable; or
767   if (const auto *Var = dyn_cast<VarDecl>(D)) {
768     // GCC applies the following optimization to variables and static
769     // data members, but not to functions:
770     //
771     // Modify the variable's LV by the LV of its type unless this is
772     // C or extern "C".  This follows from [basic.link]p9:
773     //   A type without linkage shall not be used as the type of a
774     //   variable or function with external linkage unless
775     //    - the entity has C language linkage, or
776     //    - the entity is declared within an unnamed namespace, or
777     //    - the entity is not used or is defined in the same
778     //      translation unit.
779     // and [basic.link]p10:
780     //   ...the types specified by all declarations referring to a
781     //   given variable or function shall be identical...
782     // C does not have an equivalent rule.
783     //
784     // Ignore this if we've got an explicit attribute;  the user
785     // probably knows what they're doing.
786     //
787     // Note that we don't want to make the variable non-external
788     // because of this, but unique-external linkage suits us.
789 
790     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
791         !IgnoreVarTypeLinkage) {
792       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
793       if (!isExternallyVisible(TypeLV.getLinkage()))
794         return LinkageInfo::uniqueExternal();
795       if (!LV.isVisibilityExplicit())
796         LV.mergeVisibility(TypeLV);
797     }
798 
799     if (Var->getStorageClass() == SC_PrivateExtern)
800       LV.mergeVisibility(HiddenVisibility, true);
801 
802     // Note that Sema::MergeVarDecl already takes care of implementing
803     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
804     // to do it here.
805 
806     // As per function and class template specializations (below),
807     // consider LV for the template and template arguments.  We're at file
808     // scope, so we do not need to worry about nested specializations.
809     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
810       mergeTemplateLV(LV, spec, computation);
811     }
812 
813   //     - a function; or
814   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
815     // In theory, we can modify the function's LV by the LV of its
816     // type unless it has C linkage (see comment above about variables
817     // for justification).  In practice, GCC doesn't do this, so it's
818     // just too painful to make work.
819 
820     if (Function->getStorageClass() == SC_PrivateExtern)
821       LV.mergeVisibility(HiddenVisibility, true);
822 
823     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
824     // merging storage classes and visibility attributes, so we don't have to
825     // look at previous decls in here.
826 
827     // In C++, then if the type of the function uses a type with
828     // unique-external linkage, it's not legally usable from outside
829     // this translation unit.  However, we should use the C linkage
830     // rules instead for extern "C" declarations.
831     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
832       // Only look at the type-as-written. Otherwise, deducing the return type
833       // of a function could change its linkage.
834       QualType TypeAsWritten = Function->getType();
835       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
836         TypeAsWritten = TSI->getType();
837       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
838         return LinkageInfo::uniqueExternal();
839     }
840 
841     // Consider LV from the template and the template arguments.
842     // We're at file scope, so we do not need to worry about nested
843     // specializations.
844     if (FunctionTemplateSpecializationInfo *specInfo
845                                = Function->getTemplateSpecializationInfo()) {
846       mergeTemplateLV(LV, Function, specInfo, computation);
847     }
848 
849   //     - a named class (Clause 9), or an unnamed class defined in a
850   //       typedef declaration in which the class has the typedef name
851   //       for linkage purposes (7.1.3); or
852   //     - a named enumeration (7.2), or an unnamed enumeration
853   //       defined in a typedef declaration in which the enumeration
854   //       has the typedef name for linkage purposes (7.1.3); or
855   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
856     // Unnamed tags have no linkage.
857     if (!Tag->hasNameForLinkage())
858       return LinkageInfo::none();
859 
860     // If this is a class template specialization, consider the
861     // linkage of the template and template arguments.  We're at file
862     // scope, so we do not need to worry about nested specializations.
863     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
864       mergeTemplateLV(LV, spec, computation);
865     }
866 
867   // FIXME: This is not part of the C++ standard any more.
868   //     - an enumerator belonging to an enumeration with external linkage; or
869   } else if (isa<EnumConstantDecl>(D)) {
870     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
871                                       computation);
872     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
873       return LinkageInfo::none();
874     LV.merge(EnumLV);
875 
876   //     - a template
877   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
878     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
879     LinkageInfo tempLV =
880       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
881     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
882 
883   //     An unnamed namespace or a namespace declared directly or indirectly
884   //     within an unnamed namespace has internal linkage. All other namespaces
885   //     have external linkage.
886   //
887   // We handled names in anonymous namespaces above.
888   } else if (isa<NamespaceDecl>(D)) {
889     return LV;
890 
891   // By extension, we assign external linkage to Objective-C
892   // interfaces.
893   } else if (isa<ObjCInterfaceDecl>(D)) {
894     // fallout
895 
896   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
897     // A typedef declaration has linkage if it gives a type a name for
898     // linkage purposes.
899     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
900       return LinkageInfo::none();
901 
902   } else if (isa<MSGuidDecl>(D)) {
903     // A GUID behaves like an inline variable with external linkage. Fall
904     // through.
905 
906   // Everything not covered here has no linkage.
907   } else {
908     return LinkageInfo::none();
909   }
910 
911   // If we ended up with non-externally-visible linkage, visibility should
912   // always be default.
913   if (!isExternallyVisible(LV.getLinkage()))
914     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
915 
916   return LV;
917 }
918 
919 LinkageInfo
920 LinkageComputer::getLVForClassMember(const NamedDecl *D,
921                                      LVComputationKind computation,
922                                      bool IgnoreVarTypeLinkage) {
923   // Only certain class members have linkage.  Note that fields don't
924   // really have linkage, but it's convenient to say they do for the
925   // purposes of calculating linkage of pointer-to-data-member
926   // template arguments.
927   //
928   // Templates also don't officially have linkage, but since we ignore
929   // the C++ standard and look at template arguments when determining
930   // linkage and visibility of a template specialization, we might hit
931   // a template template argument that way. If we do, we need to
932   // consider its linkage.
933   if (!(isa<CXXMethodDecl>(D) ||
934         isa<VarDecl>(D) ||
935         isa<FieldDecl>(D) ||
936         isa<IndirectFieldDecl>(D) ||
937         isa<TagDecl>(D) ||
938         isa<TemplateDecl>(D)))
939     return LinkageInfo::none();
940 
941   LinkageInfo LV;
942 
943   // If we have an explicit visibility attribute, merge that in.
944   if (!hasExplicitVisibilityAlready(computation)) {
945     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
946       LV.mergeVisibility(*Vis, true);
947     // If we're paying attention to global visibility, apply
948     // -finline-visibility-hidden if this is an inline method.
949     //
950     // Note that we do this before merging information about
951     // the class visibility.
952     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
953       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
954   }
955 
956   // If this class member has an explicit visibility attribute, the only
957   // thing that can change its visibility is the template arguments, so
958   // only look for them when processing the class.
959   LVComputationKind classComputation = computation;
960   if (LV.isVisibilityExplicit())
961     classComputation = withExplicitVisibilityAlready(computation);
962 
963   LinkageInfo classLV =
964     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
965   // The member has the same linkage as the class. If that's not externally
966   // visible, we don't need to compute anything about the linkage.
967   // FIXME: If we're only computing linkage, can we bail out here?
968   if (!isExternallyVisible(classLV.getLinkage()))
969     return classLV;
970 
971 
972   // Otherwise, don't merge in classLV yet, because in certain cases
973   // we need to completely ignore the visibility from it.
974 
975   // Specifically, if this decl exists and has an explicit attribute.
976   const NamedDecl *explicitSpecSuppressor = nullptr;
977 
978   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
979     // Only look at the type-as-written. Otherwise, deducing the return type
980     // of a function could change its linkage.
981     QualType TypeAsWritten = MD->getType();
982     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
983       TypeAsWritten = TSI->getType();
984     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
985       return LinkageInfo::uniqueExternal();
986 
987     // If this is a method template specialization, use the linkage for
988     // the template parameters and arguments.
989     if (FunctionTemplateSpecializationInfo *spec
990            = MD->getTemplateSpecializationInfo()) {
991       mergeTemplateLV(LV, MD, spec, computation);
992       if (spec->isExplicitSpecialization()) {
993         explicitSpecSuppressor = MD;
994       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
995         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
996       }
997     } else if (isExplicitMemberSpecialization(MD)) {
998       explicitSpecSuppressor = MD;
999     }
1000 
1001   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1002     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1003       mergeTemplateLV(LV, spec, computation);
1004       if (spec->isExplicitSpecialization()) {
1005         explicitSpecSuppressor = spec;
1006       } else {
1007         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1008         if (isExplicitMemberSpecialization(temp)) {
1009           explicitSpecSuppressor = temp->getTemplatedDecl();
1010         }
1011       }
1012     } else if (isExplicitMemberSpecialization(RD)) {
1013       explicitSpecSuppressor = RD;
1014     }
1015 
1016   // Static data members.
1017   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1018     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1019       mergeTemplateLV(LV, spec, computation);
1020 
1021     // Modify the variable's linkage by its type, but ignore the
1022     // type's visibility unless it's a definition.
1023     if (!IgnoreVarTypeLinkage) {
1024       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1025       // FIXME: If the type's linkage is not externally visible, we can
1026       // give this static data member UniqueExternalLinkage.
1027       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1028         LV.mergeVisibility(typeLV);
1029       LV.mergeExternalVisibility(typeLV);
1030     }
1031 
1032     if (isExplicitMemberSpecialization(VD)) {
1033       explicitSpecSuppressor = VD;
1034     }
1035 
1036   // Template members.
1037   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1038     bool considerVisibility =
1039       (!LV.isVisibilityExplicit() &&
1040        !classLV.isVisibilityExplicit() &&
1041        !hasExplicitVisibilityAlready(computation));
1042     LinkageInfo tempLV =
1043       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1044     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1045 
1046     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1047       if (isExplicitMemberSpecialization(redeclTemp)) {
1048         explicitSpecSuppressor = temp->getTemplatedDecl();
1049       }
1050     }
1051   }
1052 
1053   // We should never be looking for an attribute directly on a template.
1054   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1055 
1056   // If this member is an explicit member specialization, and it has
1057   // an explicit attribute, ignore visibility from the parent.
1058   bool considerClassVisibility = true;
1059   if (explicitSpecSuppressor &&
1060       // optimization: hasDVA() is true only with explicit visibility.
1061       LV.isVisibilityExplicit() &&
1062       classLV.getVisibility() != DefaultVisibility &&
1063       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1064     considerClassVisibility = false;
1065   }
1066 
1067   // Finally, merge in information from the class.
1068   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1069 
1070   return LV;
1071 }
1072 
1073 void NamedDecl::anchor() {}
1074 
1075 bool NamedDecl::isLinkageValid() const {
1076   if (!hasCachedLinkage())
1077     return true;
1078 
1079   Linkage L = LinkageComputer{}
1080                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1081                   .getLinkage();
1082   return L == getCachedLinkage();
1083 }
1084 
1085 ReservedIdentifierStatus
1086 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1087   const IdentifierInfo *II = getIdentifier();
1088 
1089   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1090   // at lexing time.
1091   if (!II)
1092     return ReservedIdentifierStatus::NotReserved;
1093 
1094   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1095   if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1096     // This name is only reserved at global scope. Check if this declaration
1097     // conflicts with a global scope declaration.
1098     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1099       return ReservedIdentifierStatus::NotReserved;
1100 
1101     // C++ [dcl.link]/7:
1102     //   Two declarations [conflict] if [...] one declares a function or
1103     //   variable with C language linkage, and the other declares [...] a
1104     //   variable that belongs to the global scope.
1105     //
1106     // Therefore names that are reserved at global scope are also reserved as
1107     // names of variables and functions with C language linkage.
1108     const DeclContext *DC = getDeclContext()->getRedeclContext();
1109     if (DC->isTranslationUnit())
1110       return Status;
1111     if (auto *VD = dyn_cast<VarDecl>(this))
1112       if (VD->isExternC())
1113         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1114     if (auto *FD = dyn_cast<FunctionDecl>(this))
1115       if (FD->isExternC())
1116         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1117     return ReservedIdentifierStatus::NotReserved;
1118   }
1119 
1120   return Status;
1121 }
1122 
1123 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1124   StringRef name = getName();
1125   if (name.empty()) return SFF_None;
1126 
1127   if (name.front() == 'C')
1128     if (name == "CFStringCreateWithFormat" ||
1129         name == "CFStringCreateWithFormatAndArguments" ||
1130         name == "CFStringAppendFormat" ||
1131         name == "CFStringAppendFormatAndArguments")
1132       return SFF_CFString;
1133   return SFF_None;
1134 }
1135 
1136 Linkage NamedDecl::getLinkageInternal() const {
1137   // We don't care about visibility here, so ask for the cheapest
1138   // possible visibility analysis.
1139   return LinkageComputer{}
1140       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1141       .getLinkage();
1142 }
1143 
1144 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1145   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1146 }
1147 
1148 static Optional<Visibility>
1149 getExplicitVisibilityAux(const NamedDecl *ND,
1150                          NamedDecl::ExplicitVisibilityKind kind,
1151                          bool IsMostRecent) {
1152   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1153 
1154   // Check the declaration itself first.
1155   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1156     return V;
1157 
1158   // If this is a member class of a specialization of a class template
1159   // and the corresponding decl has explicit visibility, use that.
1160   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1161     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1162     if (InstantiatedFrom)
1163       return getVisibilityOf(InstantiatedFrom, kind);
1164   }
1165 
1166   // If there wasn't explicit visibility there, and this is a
1167   // specialization of a class template, check for visibility
1168   // on the pattern.
1169   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1170     // Walk all the template decl till this point to see if there are
1171     // explicit visibility attributes.
1172     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1173     while (TD != nullptr) {
1174       auto Vis = getVisibilityOf(TD, kind);
1175       if (Vis != None)
1176         return Vis;
1177       TD = TD->getPreviousDecl();
1178     }
1179     return None;
1180   }
1181 
1182   // Use the most recent declaration.
1183   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1184     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1185     if (MostRecent != ND)
1186       return getExplicitVisibilityAux(MostRecent, kind, true);
1187   }
1188 
1189   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1190     if (Var->isStaticDataMember()) {
1191       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1192       if (InstantiatedFrom)
1193         return getVisibilityOf(InstantiatedFrom, kind);
1194     }
1195 
1196     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1197       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1198                              kind);
1199 
1200     return None;
1201   }
1202   // Also handle function template specializations.
1203   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1204     // If the function is a specialization of a template with an
1205     // explicit visibility attribute, use that.
1206     if (FunctionTemplateSpecializationInfo *templateInfo
1207           = fn->getTemplateSpecializationInfo())
1208       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1209                              kind);
1210 
1211     // If the function is a member of a specialization of a class template
1212     // and the corresponding decl has explicit visibility, use that.
1213     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1214     if (InstantiatedFrom)
1215       return getVisibilityOf(InstantiatedFrom, kind);
1216 
1217     return None;
1218   }
1219 
1220   // The visibility of a template is stored in the templated decl.
1221   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1222     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1223 
1224   return None;
1225 }
1226 
1227 Optional<Visibility>
1228 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1229   return getExplicitVisibilityAux(this, kind, false);
1230 }
1231 
1232 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1233                                              Decl *ContextDecl,
1234                                              LVComputationKind computation) {
1235   // This lambda has its linkage/visibility determined by its owner.
1236   const NamedDecl *Owner;
1237   if (!ContextDecl)
1238     Owner = dyn_cast<NamedDecl>(DC);
1239   else if (isa<ParmVarDecl>(ContextDecl))
1240     Owner =
1241         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1242   else
1243     Owner = cast<NamedDecl>(ContextDecl);
1244 
1245   if (!Owner)
1246     return LinkageInfo::none();
1247 
1248   // If the owner has a deduced type, we need to skip querying the linkage and
1249   // visibility of that type, because it might involve this closure type.  The
1250   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1251   // than NoLinkage when we don't strictly need to, which is benign.
1252   auto *VD = dyn_cast<VarDecl>(Owner);
1253   LinkageInfo OwnerLV =
1254       VD && VD->getType()->getContainedDeducedType()
1255           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1256           : getLVForDecl(Owner, computation);
1257 
1258   // A lambda never formally has linkage. But if the owner is externally
1259   // visible, then the lambda is too. We apply the same rules to blocks.
1260   if (!isExternallyVisible(OwnerLV.getLinkage()))
1261     return LinkageInfo::none();
1262   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1263                      OwnerLV.isVisibilityExplicit());
1264 }
1265 
1266 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1267                                                LVComputationKind computation) {
1268   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1269     if (Function->isInAnonymousNamespace() &&
1270         !isFirstInExternCContext(Function))
1271       return getInternalLinkageFor(Function);
1272 
1273     // This is a "void f();" which got merged with a file static.
1274     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1275       return getInternalLinkageFor(Function);
1276 
1277     LinkageInfo LV;
1278     if (!hasExplicitVisibilityAlready(computation)) {
1279       if (Optional<Visibility> Vis =
1280               getExplicitVisibility(Function, computation))
1281         LV.mergeVisibility(*Vis, true);
1282     }
1283 
1284     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1285     // merging storage classes and visibility attributes, so we don't have to
1286     // look at previous decls in here.
1287 
1288     return LV;
1289   }
1290 
1291   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1292     if (Var->hasExternalStorage()) {
1293       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1294         return getInternalLinkageFor(Var);
1295 
1296       LinkageInfo LV;
1297       if (Var->getStorageClass() == SC_PrivateExtern)
1298         LV.mergeVisibility(HiddenVisibility, true);
1299       else if (!hasExplicitVisibilityAlready(computation)) {
1300         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1301           LV.mergeVisibility(*Vis, true);
1302       }
1303 
1304       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1305         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1306         if (PrevLV.getLinkage())
1307           LV.setLinkage(PrevLV.getLinkage());
1308         LV.mergeVisibility(PrevLV);
1309       }
1310 
1311       return LV;
1312     }
1313 
1314     if (!Var->isStaticLocal())
1315       return LinkageInfo::none();
1316   }
1317 
1318   ASTContext &Context = D->getASTContext();
1319   if (!Context.getLangOpts().CPlusPlus)
1320     return LinkageInfo::none();
1321 
1322   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1323   if (!OuterD || OuterD->isInvalidDecl())
1324     return LinkageInfo::none();
1325 
1326   LinkageInfo LV;
1327   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1328     if (!BD->getBlockManglingNumber())
1329       return LinkageInfo::none();
1330 
1331     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1332                          BD->getBlockManglingContextDecl(), computation);
1333   } else {
1334     const auto *FD = cast<FunctionDecl>(OuterD);
1335     if (!FD->isInlined() &&
1336         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1337       return LinkageInfo::none();
1338 
1339     // If a function is hidden by -fvisibility-inlines-hidden option and
1340     // is not explicitly attributed as a hidden function,
1341     // we should not make static local variables in the function hidden.
1342     LV = getLVForDecl(FD, computation);
1343     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1344         !LV.isVisibilityExplicit() &&
1345         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1346       assert(cast<VarDecl>(D)->isStaticLocal());
1347       // If this was an implicitly hidden inline method, check again for
1348       // explicit visibility on the parent class, and use that for static locals
1349       // if present.
1350       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1351         LV = getLVForDecl(MD->getParent(), computation);
1352       if (!LV.isVisibilityExplicit()) {
1353         Visibility globalVisibility =
1354             computation.isValueVisibility()
1355                 ? Context.getLangOpts().getValueVisibilityMode()
1356                 : Context.getLangOpts().getTypeVisibilityMode();
1357         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1358                            /*visibilityExplicit=*/false);
1359       }
1360     }
1361   }
1362   if (!isExternallyVisible(LV.getLinkage()))
1363     return LinkageInfo::none();
1364   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1365                      LV.isVisibilityExplicit());
1366 }
1367 
1368 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1369                                               LVComputationKind computation,
1370                                               bool IgnoreVarTypeLinkage) {
1371   // Internal_linkage attribute overrides other considerations.
1372   if (D->hasAttr<InternalLinkageAttr>())
1373     return getInternalLinkageFor(D);
1374 
1375   // Objective-C: treat all Objective-C declarations as having external
1376   // linkage.
1377   switch (D->getKind()) {
1378     default:
1379       break;
1380 
1381     // Per C++ [basic.link]p2, only the names of objects, references,
1382     // functions, types, templates, namespaces, and values ever have linkage.
1383     //
1384     // Note that the name of a typedef, namespace alias, using declaration,
1385     // and so on are not the name of the corresponding type, namespace, or
1386     // declaration, so they do *not* have linkage.
1387     case Decl::ImplicitParam:
1388     case Decl::Label:
1389     case Decl::NamespaceAlias:
1390     case Decl::ParmVar:
1391     case Decl::Using:
1392     case Decl::UsingEnum:
1393     case Decl::UsingShadow:
1394     case Decl::UsingDirective:
1395       return LinkageInfo::none();
1396 
1397     case Decl::EnumConstant:
1398       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1399       if (D->getASTContext().getLangOpts().CPlusPlus)
1400         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1401       return LinkageInfo::visible_none();
1402 
1403     case Decl::Typedef:
1404     case Decl::TypeAlias:
1405       // A typedef declaration has linkage if it gives a type a name for
1406       // linkage purposes.
1407       if (!cast<TypedefNameDecl>(D)
1408                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1409         return LinkageInfo::none();
1410       break;
1411 
1412     case Decl::TemplateTemplateParm: // count these as external
1413     case Decl::NonTypeTemplateParm:
1414     case Decl::ObjCAtDefsField:
1415     case Decl::ObjCCategory:
1416     case Decl::ObjCCategoryImpl:
1417     case Decl::ObjCCompatibleAlias:
1418     case Decl::ObjCImplementation:
1419     case Decl::ObjCMethod:
1420     case Decl::ObjCProperty:
1421     case Decl::ObjCPropertyImpl:
1422     case Decl::ObjCProtocol:
1423       return getExternalLinkageFor(D);
1424 
1425     case Decl::CXXRecord: {
1426       const auto *Record = cast<CXXRecordDecl>(D);
1427       if (Record->isLambda()) {
1428         if (Record->hasKnownLambdaInternalLinkage() ||
1429             !Record->getLambdaManglingNumber()) {
1430           // This lambda has no mangling number, so it's internal.
1431           return getInternalLinkageFor(D);
1432         }
1433 
1434         return getLVForClosure(
1435                   Record->getDeclContext()->getRedeclContext(),
1436                   Record->getLambdaContextDecl(), computation);
1437       }
1438 
1439       break;
1440     }
1441 
1442     case Decl::TemplateParamObject: {
1443       // The template parameter object can be referenced from anywhere its type
1444       // and value can be referenced.
1445       auto *TPO = cast<TemplateParamObjectDecl>(D);
1446       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1447       LV.merge(getLVForValue(TPO->getValue(), computation));
1448       return LV;
1449     }
1450   }
1451 
1452   // Handle linkage for namespace-scope names.
1453   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1454     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1455 
1456   // C++ [basic.link]p5:
1457   //   In addition, a member function, static data member, a named
1458   //   class or enumeration of class scope, or an unnamed class or
1459   //   enumeration defined in a class-scope typedef declaration such
1460   //   that the class or enumeration has the typedef name for linkage
1461   //   purposes (7.1.3), has external linkage if the name of the class
1462   //   has external linkage.
1463   if (D->getDeclContext()->isRecord())
1464     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1465 
1466   // C++ [basic.link]p6:
1467   //   The name of a function declared in block scope and the name of
1468   //   an object declared by a block scope extern declaration have
1469   //   linkage. If there is a visible declaration of an entity with
1470   //   linkage having the same name and type, ignoring entities
1471   //   declared outside the innermost enclosing namespace scope, the
1472   //   block scope declaration declares that same entity and receives
1473   //   the linkage of the previous declaration. If there is more than
1474   //   one such matching entity, the program is ill-formed. Otherwise,
1475   //   if no matching entity is found, the block scope entity receives
1476   //   external linkage.
1477   if (D->getDeclContext()->isFunctionOrMethod())
1478     return getLVForLocalDecl(D, computation);
1479 
1480   // C++ [basic.link]p6:
1481   //   Names not covered by these rules have no linkage.
1482   return LinkageInfo::none();
1483 }
1484 
1485 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1486 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1487                                           LVComputationKind computation) {
1488   // Internal_linkage attribute overrides other considerations.
1489   if (D->hasAttr<InternalLinkageAttr>())
1490     return getInternalLinkageFor(D);
1491 
1492   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1493     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1494 
1495   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1496     return *LI;
1497 
1498   LinkageInfo LV = computeLVForDecl(D, computation);
1499   if (D->hasCachedLinkage())
1500     assert(D->getCachedLinkage() == LV.getLinkage());
1501 
1502   D->setCachedLinkage(LV.getLinkage());
1503   cache(D, computation, LV);
1504 
1505 #ifndef NDEBUG
1506   // In C (because of gnu inline) and in c++ with microsoft extensions an
1507   // static can follow an extern, so we can have two decls with different
1508   // linkages.
1509   const LangOptions &Opts = D->getASTContext().getLangOpts();
1510   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1511     return LV;
1512 
1513   // We have just computed the linkage for this decl. By induction we know
1514   // that all other computed linkages match, check that the one we just
1515   // computed also does.
1516   NamedDecl *Old = nullptr;
1517   for (auto I : D->redecls()) {
1518     auto *T = cast<NamedDecl>(I);
1519     if (T == D)
1520       continue;
1521     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1522       Old = T;
1523       break;
1524     }
1525   }
1526   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1527 #endif
1528 
1529   return LV;
1530 }
1531 
1532 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1533   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1534                                              ? NamedDecl::VisibilityForType
1535                                              : NamedDecl::VisibilityForValue;
1536   LVComputationKind CK(EK);
1537   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1538                              ? CK.forLinkageOnly()
1539                              : CK);
1540 }
1541 
1542 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1543   Module *M = getOwningModule();
1544   if (!M)
1545     return nullptr;
1546 
1547   switch (M->Kind) {
1548   case Module::ModuleMapModule:
1549     // Module map modules have no special linkage semantics.
1550     return nullptr;
1551 
1552   case Module::ModuleInterfaceUnit:
1553     return M;
1554 
1555   case Module::GlobalModuleFragment: {
1556     // External linkage declarations in the global module have no owning module
1557     // for linkage purposes. But internal linkage declarations in the global
1558     // module fragment of a particular module are owned by that module for
1559     // linkage purposes.
1560     if (IgnoreLinkage)
1561       return nullptr;
1562     bool InternalLinkage;
1563     if (auto *ND = dyn_cast<NamedDecl>(this))
1564       InternalLinkage = !ND->hasExternalFormalLinkage();
1565     else {
1566       auto *NSD = dyn_cast<NamespaceDecl>(this);
1567       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1568                         isInAnonymousNamespace();
1569     }
1570     return InternalLinkage ? M->Parent : nullptr;
1571   }
1572 
1573   case Module::PrivateModuleFragment:
1574     // The private module fragment is part of its containing module for linkage
1575     // purposes.
1576     return M->Parent;
1577   }
1578 
1579   llvm_unreachable("unknown module kind");
1580 }
1581 
1582 void NamedDecl::printName(raw_ostream &os) const {
1583   os << Name;
1584 }
1585 
1586 std::string NamedDecl::getQualifiedNameAsString() const {
1587   std::string QualName;
1588   llvm::raw_string_ostream OS(QualName);
1589   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1590   return QualName;
1591 }
1592 
1593 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1594   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1595 }
1596 
1597 void NamedDecl::printQualifiedName(raw_ostream &OS,
1598                                    const PrintingPolicy &P) const {
1599   if (getDeclContext()->isFunctionOrMethod()) {
1600     // We do not print '(anonymous)' for function parameters without name.
1601     printName(OS);
1602     return;
1603   }
1604   printNestedNameSpecifier(OS, P);
1605   if (getDeclName())
1606     OS << *this;
1607   else {
1608     // Give the printName override a chance to pick a different name before we
1609     // fall back to "(anonymous)".
1610     SmallString<64> NameBuffer;
1611     llvm::raw_svector_ostream NameOS(NameBuffer);
1612     printName(NameOS);
1613     if (NameBuffer.empty())
1614       OS << "(anonymous)";
1615     else
1616       OS << NameBuffer;
1617   }
1618 }
1619 
1620 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1621   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1622 }
1623 
1624 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1625                                          const PrintingPolicy &P) const {
1626   const DeclContext *Ctx = getDeclContext();
1627 
1628   // For ObjC methods and properties, look through categories and use the
1629   // interface as context.
1630   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1631     if (auto *ID = MD->getClassInterface())
1632       Ctx = ID;
1633   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1634     if (auto *MD = PD->getGetterMethodDecl())
1635       if (auto *ID = MD->getClassInterface())
1636         Ctx = ID;
1637   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1638     if (auto *CI = ID->getContainingInterface())
1639       Ctx = CI;
1640   }
1641 
1642   if (Ctx->isFunctionOrMethod())
1643     return;
1644 
1645   using ContextsTy = SmallVector<const DeclContext *, 8>;
1646   ContextsTy Contexts;
1647 
1648   // Collect named contexts.
1649   DeclarationName NameInScope = getDeclName();
1650   for (; Ctx; Ctx = Ctx->getParent()) {
1651     // Suppress anonymous namespace if requested.
1652     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1653         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1654       continue;
1655 
1656     // Suppress inline namespace if it doesn't make the result ambiguous.
1657     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1658         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1659       continue;
1660 
1661     // Skip non-named contexts such as linkage specifications and ExportDecls.
1662     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1663     if (!ND)
1664       continue;
1665 
1666     Contexts.push_back(Ctx);
1667     NameInScope = ND->getDeclName();
1668   }
1669 
1670   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1671     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1672       OS << Spec->getName();
1673       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1674       printTemplateArgumentList(
1675           OS, TemplateArgs.asArray(), P,
1676           Spec->getSpecializedTemplate()->getTemplateParameters());
1677     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1678       if (ND->isAnonymousNamespace()) {
1679         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1680                                 : "(anonymous namespace)");
1681       }
1682       else
1683         OS << *ND;
1684     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1685       if (!RD->getIdentifier())
1686         OS << "(anonymous " << RD->getKindName() << ')';
1687       else
1688         OS << *RD;
1689     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1690       const FunctionProtoType *FT = nullptr;
1691       if (FD->hasWrittenPrototype())
1692         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1693 
1694       OS << *FD << '(';
1695       if (FT) {
1696         unsigned NumParams = FD->getNumParams();
1697         for (unsigned i = 0; i < NumParams; ++i) {
1698           if (i)
1699             OS << ", ";
1700           OS << FD->getParamDecl(i)->getType().stream(P);
1701         }
1702 
1703         if (FT->isVariadic()) {
1704           if (NumParams > 0)
1705             OS << ", ";
1706           OS << "...";
1707         }
1708       }
1709       OS << ')';
1710     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1711       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1712       // enumerator is declared in the scope that immediately contains
1713       // the enum-specifier. Each scoped enumerator is declared in the
1714       // scope of the enumeration.
1715       // For the case of unscoped enumerator, do not include in the qualified
1716       // name any information about its enum enclosing scope, as its visibility
1717       // is global.
1718       if (ED->isScoped())
1719         OS << *ED;
1720       else
1721         continue;
1722     } else {
1723       OS << *cast<NamedDecl>(DC);
1724     }
1725     OS << "::";
1726   }
1727 }
1728 
1729 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1730                                      const PrintingPolicy &Policy,
1731                                      bool Qualified) const {
1732   if (Qualified)
1733     printQualifiedName(OS, Policy);
1734   else
1735     printName(OS);
1736 }
1737 
1738 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1739   return true;
1740 }
1741 static bool isRedeclarableImpl(...) { return false; }
1742 static bool isRedeclarable(Decl::Kind K) {
1743   switch (K) {
1744 #define DECL(Type, Base) \
1745   case Decl::Type: \
1746     return isRedeclarableImpl((Type##Decl *)nullptr);
1747 #define ABSTRACT_DECL(DECL)
1748 #include "clang/AST/DeclNodes.inc"
1749   }
1750   llvm_unreachable("unknown decl kind");
1751 }
1752 
1753 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1754   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1755 
1756   // Never replace one imported declaration with another; we need both results
1757   // when re-exporting.
1758   if (OldD->isFromASTFile() && isFromASTFile())
1759     return false;
1760 
1761   // A kind mismatch implies that the declaration is not replaced.
1762   if (OldD->getKind() != getKind())
1763     return false;
1764 
1765   // For method declarations, we never replace. (Why?)
1766   if (isa<ObjCMethodDecl>(this))
1767     return false;
1768 
1769   // For parameters, pick the newer one. This is either an error or (in
1770   // Objective-C) permitted as an extension.
1771   if (isa<ParmVarDecl>(this))
1772     return true;
1773 
1774   // Inline namespaces can give us two declarations with the same
1775   // name and kind in the same scope but different contexts; we should
1776   // keep both declarations in this case.
1777   if (!this->getDeclContext()->getRedeclContext()->Equals(
1778           OldD->getDeclContext()->getRedeclContext()))
1779     return false;
1780 
1781   // Using declarations can be replaced if they import the same name from the
1782   // same context.
1783   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1784     ASTContext &Context = getASTContext();
1785     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1786            Context.getCanonicalNestedNameSpecifier(
1787                cast<UsingDecl>(OldD)->getQualifier());
1788   }
1789   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1790     ASTContext &Context = getASTContext();
1791     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1792            Context.getCanonicalNestedNameSpecifier(
1793                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1794   }
1795 
1796   if (isRedeclarable(getKind())) {
1797     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1798       return false;
1799 
1800     if (IsKnownNewer)
1801       return true;
1802 
1803     // Check whether this is actually newer than OldD. We want to keep the
1804     // newer declaration. This loop will usually only iterate once, because
1805     // OldD is usually the previous declaration.
1806     for (auto D : redecls()) {
1807       if (D == OldD)
1808         break;
1809 
1810       // If we reach the canonical declaration, then OldD is not actually older
1811       // than this one.
1812       //
1813       // FIXME: In this case, we should not add this decl to the lookup table.
1814       if (D->isCanonicalDecl())
1815         return false;
1816     }
1817 
1818     // It's a newer declaration of the same kind of declaration in the same
1819     // scope: we want this decl instead of the existing one.
1820     return true;
1821   }
1822 
1823   // In all other cases, we need to keep both declarations in case they have
1824   // different visibility. Any attempt to use the name will result in an
1825   // ambiguity if more than one is visible.
1826   return false;
1827 }
1828 
1829 bool NamedDecl::hasLinkage() const {
1830   return getFormalLinkage() != NoLinkage;
1831 }
1832 
1833 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1834   NamedDecl *ND = this;
1835   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1836     ND = UD->getTargetDecl();
1837 
1838   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1839     return AD->getClassInterface();
1840 
1841   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1842     return AD->getNamespace();
1843 
1844   return ND;
1845 }
1846 
1847 bool NamedDecl::isCXXInstanceMember() const {
1848   if (!isCXXClassMember())
1849     return false;
1850 
1851   const NamedDecl *D = this;
1852   if (isa<UsingShadowDecl>(D))
1853     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1854 
1855   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1856     return true;
1857   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1858     return MD->isInstance();
1859   return false;
1860 }
1861 
1862 //===----------------------------------------------------------------------===//
1863 // DeclaratorDecl Implementation
1864 //===----------------------------------------------------------------------===//
1865 
1866 template <typename DeclT>
1867 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1868   if (decl->getNumTemplateParameterLists() > 0)
1869     return decl->getTemplateParameterList(0)->getTemplateLoc();
1870   return decl->getInnerLocStart();
1871 }
1872 
1873 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1874   TypeSourceInfo *TSI = getTypeSourceInfo();
1875   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1876   return SourceLocation();
1877 }
1878 
1879 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1880   TypeSourceInfo *TSI = getTypeSourceInfo();
1881   if (TSI) return TSI->getTypeLoc().getEndLoc();
1882   return SourceLocation();
1883 }
1884 
1885 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1886   if (QualifierLoc) {
1887     // Make sure the extended decl info is allocated.
1888     if (!hasExtInfo()) {
1889       // Save (non-extended) type source info pointer.
1890       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1891       // Allocate external info struct.
1892       DeclInfo = new (getASTContext()) ExtInfo;
1893       // Restore savedTInfo into (extended) decl info.
1894       getExtInfo()->TInfo = savedTInfo;
1895     }
1896     // Set qualifier info.
1897     getExtInfo()->QualifierLoc = QualifierLoc;
1898   } else if (hasExtInfo()) {
1899     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1900     getExtInfo()->QualifierLoc = QualifierLoc;
1901   }
1902 }
1903 
1904 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1905   assert(TrailingRequiresClause);
1906   // Make sure the extended decl info is allocated.
1907   if (!hasExtInfo()) {
1908     // Save (non-extended) type source info pointer.
1909     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1910     // Allocate external info struct.
1911     DeclInfo = new (getASTContext()) ExtInfo;
1912     // Restore savedTInfo into (extended) decl info.
1913     getExtInfo()->TInfo = savedTInfo;
1914   }
1915   // Set requires clause info.
1916   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1917 }
1918 
1919 void DeclaratorDecl::setTemplateParameterListsInfo(
1920     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1921   assert(!TPLists.empty());
1922   // Make sure the extended decl info is allocated.
1923   if (!hasExtInfo()) {
1924     // Save (non-extended) type source info pointer.
1925     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1926     // Allocate external info struct.
1927     DeclInfo = new (getASTContext()) ExtInfo;
1928     // Restore savedTInfo into (extended) decl info.
1929     getExtInfo()->TInfo = savedTInfo;
1930   }
1931   // Set the template parameter lists info.
1932   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1933 }
1934 
1935 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1936   return getTemplateOrInnerLocStart(this);
1937 }
1938 
1939 // Helper function: returns true if QT is or contains a type
1940 // having a postfix component.
1941 static bool typeIsPostfix(QualType QT) {
1942   while (true) {
1943     const Type* T = QT.getTypePtr();
1944     switch (T->getTypeClass()) {
1945     default:
1946       return false;
1947     case Type::Pointer:
1948       QT = cast<PointerType>(T)->getPointeeType();
1949       break;
1950     case Type::BlockPointer:
1951       QT = cast<BlockPointerType>(T)->getPointeeType();
1952       break;
1953     case Type::MemberPointer:
1954       QT = cast<MemberPointerType>(T)->getPointeeType();
1955       break;
1956     case Type::LValueReference:
1957     case Type::RValueReference:
1958       QT = cast<ReferenceType>(T)->getPointeeType();
1959       break;
1960     case Type::PackExpansion:
1961       QT = cast<PackExpansionType>(T)->getPattern();
1962       break;
1963     case Type::Paren:
1964     case Type::ConstantArray:
1965     case Type::DependentSizedArray:
1966     case Type::IncompleteArray:
1967     case Type::VariableArray:
1968     case Type::FunctionProto:
1969     case Type::FunctionNoProto:
1970       return true;
1971     }
1972   }
1973 }
1974 
1975 SourceRange DeclaratorDecl::getSourceRange() const {
1976   SourceLocation RangeEnd = getLocation();
1977   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1978     // If the declaration has no name or the type extends past the name take the
1979     // end location of the type.
1980     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1981       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1982   }
1983   return SourceRange(getOuterLocStart(), RangeEnd);
1984 }
1985 
1986 void QualifierInfo::setTemplateParameterListsInfo(
1987     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1988   // Free previous template parameters (if any).
1989   if (NumTemplParamLists > 0) {
1990     Context.Deallocate(TemplParamLists);
1991     TemplParamLists = nullptr;
1992     NumTemplParamLists = 0;
1993   }
1994   // Set info on matched template parameter lists (if any).
1995   if (!TPLists.empty()) {
1996     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1997     NumTemplParamLists = TPLists.size();
1998     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1999   }
2000 }
2001 
2002 //===----------------------------------------------------------------------===//
2003 // VarDecl Implementation
2004 //===----------------------------------------------------------------------===//
2005 
2006 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2007   switch (SC) {
2008   case SC_None:                 break;
2009   case SC_Auto:                 return "auto";
2010   case SC_Extern:               return "extern";
2011   case SC_PrivateExtern:        return "__private_extern__";
2012   case SC_Register:             return "register";
2013   case SC_Static:               return "static";
2014   }
2015 
2016   llvm_unreachable("Invalid storage class");
2017 }
2018 
2019 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2020                  SourceLocation StartLoc, SourceLocation IdLoc,
2021                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2022                  StorageClass SC)
2023     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2024       redeclarable_base(C) {
2025   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2026                 "VarDeclBitfields too large!");
2027   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2028                 "ParmVarDeclBitfields too large!");
2029   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2030                 "NonParmVarDeclBitfields too large!");
2031   AllBits = 0;
2032   VarDeclBits.SClass = SC;
2033   // Everything else is implicitly initialized to false.
2034 }
2035 
2036 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
2037                          SourceLocation StartL, SourceLocation IdL,
2038                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2039                          StorageClass S) {
2040   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2041 }
2042 
2043 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2044   return new (C, ID)
2045       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2046               QualType(), nullptr, SC_None);
2047 }
2048 
2049 void VarDecl::setStorageClass(StorageClass SC) {
2050   assert(isLegalForVariable(SC));
2051   VarDeclBits.SClass = SC;
2052 }
2053 
2054 VarDecl::TLSKind VarDecl::getTLSKind() const {
2055   switch (VarDeclBits.TSCSpec) {
2056   case TSCS_unspecified:
2057     if (!hasAttr<ThreadAttr>() &&
2058         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2059           getASTContext().getTargetInfo().isTLSSupported() &&
2060           hasAttr<OMPThreadPrivateDeclAttr>()))
2061       return TLS_None;
2062     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2063                 LangOptions::MSVC2015)) ||
2064             hasAttr<OMPThreadPrivateDeclAttr>())
2065                ? TLS_Dynamic
2066                : TLS_Static;
2067   case TSCS___thread: // Fall through.
2068   case TSCS__Thread_local:
2069     return TLS_Static;
2070   case TSCS_thread_local:
2071     return TLS_Dynamic;
2072   }
2073   llvm_unreachable("Unknown thread storage class specifier!");
2074 }
2075 
2076 SourceRange VarDecl::getSourceRange() const {
2077   if (const Expr *Init = getInit()) {
2078     SourceLocation InitEnd = Init->getEndLoc();
2079     // If Init is implicit, ignore its source range and fallback on
2080     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2081     if (InitEnd.isValid() && InitEnd != getLocation())
2082       return SourceRange(getOuterLocStart(), InitEnd);
2083   }
2084   return DeclaratorDecl::getSourceRange();
2085 }
2086 
2087 template<typename T>
2088 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2089   // C++ [dcl.link]p1: All function types, function names with external linkage,
2090   // and variable names with external linkage have a language linkage.
2091   if (!D.hasExternalFormalLinkage())
2092     return NoLanguageLinkage;
2093 
2094   // Language linkage is a C++ concept, but saying that everything else in C has
2095   // C language linkage fits the implementation nicely.
2096   ASTContext &Context = D.getASTContext();
2097   if (!Context.getLangOpts().CPlusPlus)
2098     return CLanguageLinkage;
2099 
2100   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2101   // language linkage of the names of class members and the function type of
2102   // class member functions.
2103   const DeclContext *DC = D.getDeclContext();
2104   if (DC->isRecord())
2105     return CXXLanguageLinkage;
2106 
2107   // If the first decl is in an extern "C" context, any other redeclaration
2108   // will have C language linkage. If the first one is not in an extern "C"
2109   // context, we would have reported an error for any other decl being in one.
2110   if (isFirstInExternCContext(&D))
2111     return CLanguageLinkage;
2112   return CXXLanguageLinkage;
2113 }
2114 
2115 template<typename T>
2116 static bool isDeclExternC(const T &D) {
2117   // Since the context is ignored for class members, they can only have C++
2118   // language linkage or no language linkage.
2119   const DeclContext *DC = D.getDeclContext();
2120   if (DC->isRecord()) {
2121     assert(D.getASTContext().getLangOpts().CPlusPlus);
2122     return false;
2123   }
2124 
2125   return D.getLanguageLinkage() == CLanguageLinkage;
2126 }
2127 
2128 LanguageLinkage VarDecl::getLanguageLinkage() const {
2129   return getDeclLanguageLinkage(*this);
2130 }
2131 
2132 bool VarDecl::isExternC() const {
2133   return isDeclExternC(*this);
2134 }
2135 
2136 bool VarDecl::isInExternCContext() const {
2137   return getLexicalDeclContext()->isExternCContext();
2138 }
2139 
2140 bool VarDecl::isInExternCXXContext() const {
2141   return getLexicalDeclContext()->isExternCXXContext();
2142 }
2143 
2144 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2145 
2146 VarDecl::DefinitionKind
2147 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2148   if (isThisDeclarationADemotedDefinition())
2149     return DeclarationOnly;
2150 
2151   // C++ [basic.def]p2:
2152   //   A declaration is a definition unless [...] it contains the 'extern'
2153   //   specifier or a linkage-specification and neither an initializer [...],
2154   //   it declares a non-inline static data member in a class declaration [...],
2155   //   it declares a static data member outside a class definition and the variable
2156   //   was defined within the class with the constexpr specifier [...],
2157   // C++1y [temp.expl.spec]p15:
2158   //   An explicit specialization of a static data member or an explicit
2159   //   specialization of a static data member template is a definition if the
2160   //   declaration includes an initializer; otherwise, it is a declaration.
2161   //
2162   // FIXME: How do you declare (but not define) a partial specialization of
2163   // a static data member template outside the containing class?
2164   if (isStaticDataMember()) {
2165     if (isOutOfLine() &&
2166         !(getCanonicalDecl()->isInline() &&
2167           getCanonicalDecl()->isConstexpr()) &&
2168         (hasInit() ||
2169          // If the first declaration is out-of-line, this may be an
2170          // instantiation of an out-of-line partial specialization of a variable
2171          // template for which we have not yet instantiated the initializer.
2172          (getFirstDecl()->isOutOfLine()
2173               ? getTemplateSpecializationKind() == TSK_Undeclared
2174               : getTemplateSpecializationKind() !=
2175                     TSK_ExplicitSpecialization) ||
2176          isa<VarTemplatePartialSpecializationDecl>(this)))
2177       return Definition;
2178     if (!isOutOfLine() && isInline())
2179       return Definition;
2180     return DeclarationOnly;
2181   }
2182   // C99 6.7p5:
2183   //   A definition of an identifier is a declaration for that identifier that
2184   //   [...] causes storage to be reserved for that object.
2185   // Note: that applies for all non-file-scope objects.
2186   // C99 6.9.2p1:
2187   //   If the declaration of an identifier for an object has file scope and an
2188   //   initializer, the declaration is an external definition for the identifier
2189   if (hasInit())
2190     return Definition;
2191 
2192   if (hasDefiningAttr())
2193     return Definition;
2194 
2195   if (const auto *SAA = getAttr<SelectAnyAttr>())
2196     if (!SAA->isInherited())
2197       return Definition;
2198 
2199   // A variable template specialization (other than a static data member
2200   // template or an explicit specialization) is a declaration until we
2201   // instantiate its initializer.
2202   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2203     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2204         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2205         !VTSD->IsCompleteDefinition)
2206       return DeclarationOnly;
2207   }
2208 
2209   if (hasExternalStorage())
2210     return DeclarationOnly;
2211 
2212   // [dcl.link] p7:
2213   //   A declaration directly contained in a linkage-specification is treated
2214   //   as if it contains the extern specifier for the purpose of determining
2215   //   the linkage of the declared name and whether it is a definition.
2216   if (isSingleLineLanguageLinkage(*this))
2217     return DeclarationOnly;
2218 
2219   // C99 6.9.2p2:
2220   //   A declaration of an object that has file scope without an initializer,
2221   //   and without a storage class specifier or the scs 'static', constitutes
2222   //   a tentative definition.
2223   // No such thing in C++.
2224   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2225     return TentativeDefinition;
2226 
2227   // What's left is (in C, block-scope) declarations without initializers or
2228   // external storage. These are definitions.
2229   return Definition;
2230 }
2231 
2232 VarDecl *VarDecl::getActingDefinition() {
2233   DefinitionKind Kind = isThisDeclarationADefinition();
2234   if (Kind != TentativeDefinition)
2235     return nullptr;
2236 
2237   VarDecl *LastTentative = nullptr;
2238 
2239   // Loop through the declaration chain, starting with the most recent.
2240   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2241        Decl = Decl->getPreviousDecl()) {
2242     Kind = Decl->isThisDeclarationADefinition();
2243     if (Kind == Definition)
2244       return nullptr;
2245     // Record the first (most recent) TentativeDefinition that is encountered.
2246     if (Kind == TentativeDefinition && !LastTentative)
2247       LastTentative = Decl;
2248   }
2249 
2250   return LastTentative;
2251 }
2252 
2253 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2254   VarDecl *First = getFirstDecl();
2255   for (auto I : First->redecls()) {
2256     if (I->isThisDeclarationADefinition(C) == Definition)
2257       return I;
2258   }
2259   return nullptr;
2260 }
2261 
2262 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2263   DefinitionKind Kind = DeclarationOnly;
2264 
2265   const VarDecl *First = getFirstDecl();
2266   for (auto I : First->redecls()) {
2267     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2268     if (Kind == Definition)
2269       break;
2270   }
2271 
2272   return Kind;
2273 }
2274 
2275 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2276   for (auto I : redecls()) {
2277     if (auto Expr = I->getInit()) {
2278       D = I;
2279       return Expr;
2280     }
2281   }
2282   return nullptr;
2283 }
2284 
2285 bool VarDecl::hasInit() const {
2286   if (auto *P = dyn_cast<ParmVarDecl>(this))
2287     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2288       return false;
2289 
2290   return !Init.isNull();
2291 }
2292 
2293 Expr *VarDecl::getInit() {
2294   if (!hasInit())
2295     return nullptr;
2296 
2297   if (auto *S = Init.dyn_cast<Stmt *>())
2298     return cast<Expr>(S);
2299 
2300   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2301 }
2302 
2303 Stmt **VarDecl::getInitAddress() {
2304   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2305     return &ES->Value;
2306 
2307   return Init.getAddrOfPtr1();
2308 }
2309 
2310 VarDecl *VarDecl::getInitializingDeclaration() {
2311   VarDecl *Def = nullptr;
2312   for (auto I : redecls()) {
2313     if (I->hasInit())
2314       return I;
2315 
2316     if (I->isThisDeclarationADefinition()) {
2317       if (isStaticDataMember())
2318         return I;
2319       Def = I;
2320     }
2321   }
2322   return Def;
2323 }
2324 
2325 bool VarDecl::isOutOfLine() const {
2326   if (Decl::isOutOfLine())
2327     return true;
2328 
2329   if (!isStaticDataMember())
2330     return false;
2331 
2332   // If this static data member was instantiated from a static data member of
2333   // a class template, check whether that static data member was defined
2334   // out-of-line.
2335   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2336     return VD->isOutOfLine();
2337 
2338   return false;
2339 }
2340 
2341 void VarDecl::setInit(Expr *I) {
2342   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2343     Eval->~EvaluatedStmt();
2344     getASTContext().Deallocate(Eval);
2345   }
2346 
2347   Init = I;
2348 }
2349 
2350 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2351   const LangOptions &Lang = C.getLangOpts();
2352 
2353   // OpenCL permits const integral variables to be used in constant
2354   // expressions, like in C++98.
2355   if (!Lang.CPlusPlus && !Lang.OpenCL)
2356     return false;
2357 
2358   // Function parameters are never usable in constant expressions.
2359   if (isa<ParmVarDecl>(this))
2360     return false;
2361 
2362   // The values of weak variables are never usable in constant expressions.
2363   if (isWeak())
2364     return false;
2365 
2366   // In C++11, any variable of reference type can be used in a constant
2367   // expression if it is initialized by a constant expression.
2368   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2369     return true;
2370 
2371   // Only const objects can be used in constant expressions in C++. C++98 does
2372   // not require the variable to be non-volatile, but we consider this to be a
2373   // defect.
2374   if (!getType().isConstant(C) || getType().isVolatileQualified())
2375     return false;
2376 
2377   // In C++, const, non-volatile variables of integral or enumeration types
2378   // can be used in constant expressions.
2379   if (getType()->isIntegralOrEnumerationType())
2380     return true;
2381 
2382   // Additionally, in C++11, non-volatile constexpr variables can be used in
2383   // constant expressions.
2384   return Lang.CPlusPlus11 && isConstexpr();
2385 }
2386 
2387 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2388   // C++2a [expr.const]p3:
2389   //   A variable is usable in constant expressions after its initializing
2390   //   declaration is encountered...
2391   const VarDecl *DefVD = nullptr;
2392   const Expr *Init = getAnyInitializer(DefVD);
2393   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2394     return false;
2395   //   ... if it is a constexpr variable, or it is of reference type or of
2396   //   const-qualified integral or enumeration type, ...
2397   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2398     return false;
2399   //   ... and its initializer is a constant initializer.
2400   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2401     return false;
2402   // C++98 [expr.const]p1:
2403   //   An integral constant-expression can involve only [...] const variables
2404   //   or static data members of integral or enumeration types initialized with
2405   //   [integer] constant expressions (dcl.init)
2406   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2407       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2408     return false;
2409   return true;
2410 }
2411 
2412 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2413 /// form, which contains extra information on the evaluated value of the
2414 /// initializer.
2415 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2416   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2417   if (!Eval) {
2418     // Note: EvaluatedStmt contains an APValue, which usually holds
2419     // resources not allocated from the ASTContext.  We need to do some
2420     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2421     // where we can detect whether there's anything to clean up or not.
2422     Eval = new (getASTContext()) EvaluatedStmt;
2423     Eval->Value = Init.get<Stmt *>();
2424     Init = Eval;
2425   }
2426   return Eval;
2427 }
2428 
2429 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2430   return Init.dyn_cast<EvaluatedStmt *>();
2431 }
2432 
2433 APValue *VarDecl::evaluateValue() const {
2434   SmallVector<PartialDiagnosticAt, 8> Notes;
2435   return evaluateValue(Notes);
2436 }
2437 
2438 APValue *VarDecl::evaluateValue(
2439     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2440   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2441 
2442   const auto *Init = cast<Expr>(Eval->Value);
2443   assert(!Init->isValueDependent());
2444 
2445   // We only produce notes indicating why an initializer is non-constant the
2446   // first time it is evaluated. FIXME: The notes won't always be emitted the
2447   // first time we try evaluation, so might not be produced at all.
2448   if (Eval->WasEvaluated)
2449     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2450 
2451   if (Eval->IsEvaluating) {
2452     // FIXME: Produce a diagnostic for self-initialization.
2453     return nullptr;
2454   }
2455 
2456   Eval->IsEvaluating = true;
2457 
2458   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2459                                             this, Notes);
2460 
2461   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2462   // or that it's empty (so that there's nothing to clean up) if evaluation
2463   // failed.
2464   if (!Result)
2465     Eval->Evaluated = APValue();
2466   else if (Eval->Evaluated.needsCleanup())
2467     getASTContext().addDestruction(&Eval->Evaluated);
2468 
2469   Eval->IsEvaluating = false;
2470   Eval->WasEvaluated = true;
2471 
2472   return Result ? &Eval->Evaluated : nullptr;
2473 }
2474 
2475 APValue *VarDecl::getEvaluatedValue() const {
2476   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2477     if (Eval->WasEvaluated)
2478       return &Eval->Evaluated;
2479 
2480   return nullptr;
2481 }
2482 
2483 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2484   const Expr *Init = getInit();
2485   assert(Init && "no initializer");
2486 
2487   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2488   if (!Eval->CheckedForICEInit) {
2489     Eval->CheckedForICEInit = true;
2490     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2491   }
2492   return Eval->HasICEInit;
2493 }
2494 
2495 bool VarDecl::hasConstantInitialization() const {
2496   // In C, all globals (and only globals) have constant initialization.
2497   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2498     return true;
2499 
2500   // In C++, it depends on whether the evaluation at the point of definition
2501   // was evaluatable as a constant initializer.
2502   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2503     return Eval->HasConstantInitialization;
2504 
2505   return false;
2506 }
2507 
2508 bool VarDecl::checkForConstantInitialization(
2509     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2510   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2511   // If we ask for the value before we know whether we have a constant
2512   // initializer, we can compute the wrong value (for example, due to
2513   // std::is_constant_evaluated()).
2514   assert(!Eval->WasEvaluated &&
2515          "already evaluated var value before checking for constant init");
2516   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2517 
2518   assert(!cast<Expr>(Eval->Value)->isValueDependent());
2519 
2520   // Evaluate the initializer to check whether it's a constant expression.
2521   Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty();
2522   return Eval->HasConstantInitialization;
2523 }
2524 
2525 bool VarDecl::isParameterPack() const {
2526   return isa<PackExpansionType>(getType());
2527 }
2528 
2529 template<typename DeclT>
2530 static DeclT *getDefinitionOrSelf(DeclT *D) {
2531   assert(D);
2532   if (auto *Def = D->getDefinition())
2533     return Def;
2534   return D;
2535 }
2536 
2537 bool VarDecl::isEscapingByref() const {
2538   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2539 }
2540 
2541 bool VarDecl::isNonEscapingByref() const {
2542   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2543 }
2544 
2545 bool VarDecl::hasDependentAlignment() const {
2546   QualType T = getType();
2547   return T->isDependentType() || T->isUndeducedAutoType() ||
2548          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2549            return AA->isAlignmentDependent();
2550          });
2551 }
2552 
2553 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2554   const VarDecl *VD = this;
2555 
2556   // If this is an instantiated member, walk back to the template from which
2557   // it was instantiated.
2558   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2559     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2560       VD = VD->getInstantiatedFromStaticDataMember();
2561       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2562         VD = NewVD;
2563     }
2564   }
2565 
2566   // If it's an instantiated variable template specialization, find the
2567   // template or partial specialization from which it was instantiated.
2568   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2569     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2570       auto From = VDTemplSpec->getInstantiatedFrom();
2571       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2572         while (!VTD->isMemberSpecialization()) {
2573           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2574           if (!NewVTD)
2575             break;
2576           VTD = NewVTD;
2577         }
2578         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2579       }
2580       if (auto *VTPSD =
2581               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2582         while (!VTPSD->isMemberSpecialization()) {
2583           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2584           if (!NewVTPSD)
2585             break;
2586           VTPSD = NewVTPSD;
2587         }
2588         return getDefinitionOrSelf<VarDecl>(VTPSD);
2589       }
2590     }
2591   }
2592 
2593   // If this is the pattern of a variable template, find where it was
2594   // instantiated from. FIXME: Is this necessary?
2595   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2596     while (!VarTemplate->isMemberSpecialization()) {
2597       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2598       if (!NewVT)
2599         break;
2600       VarTemplate = NewVT;
2601     }
2602 
2603     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2604   }
2605 
2606   if (VD == this)
2607     return nullptr;
2608   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2609 }
2610 
2611 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2612   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2613     return cast<VarDecl>(MSI->getInstantiatedFrom());
2614 
2615   return nullptr;
2616 }
2617 
2618 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2619   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2620     return Spec->getSpecializationKind();
2621 
2622   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2623     return MSI->getTemplateSpecializationKind();
2624 
2625   return TSK_Undeclared;
2626 }
2627 
2628 TemplateSpecializationKind
2629 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2630   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2631     return MSI->getTemplateSpecializationKind();
2632 
2633   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2634     return Spec->getSpecializationKind();
2635 
2636   return TSK_Undeclared;
2637 }
2638 
2639 SourceLocation VarDecl::getPointOfInstantiation() const {
2640   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2641     return Spec->getPointOfInstantiation();
2642 
2643   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2644     return MSI->getPointOfInstantiation();
2645 
2646   return SourceLocation();
2647 }
2648 
2649 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2650   return getASTContext().getTemplateOrSpecializationInfo(this)
2651       .dyn_cast<VarTemplateDecl *>();
2652 }
2653 
2654 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2655   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2656 }
2657 
2658 bool VarDecl::isKnownToBeDefined() const {
2659   const auto &LangOpts = getASTContext().getLangOpts();
2660   // In CUDA mode without relocatable device code, variables of form 'extern
2661   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2662   // memory pool.  These are never undefined variables, even if they appear
2663   // inside of an anon namespace or static function.
2664   //
2665   // With CUDA relocatable device code enabled, these variables don't get
2666   // special handling; they're treated like regular extern variables.
2667   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2668       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2669       isa<IncompleteArrayType>(getType()))
2670     return true;
2671 
2672   return hasDefinition();
2673 }
2674 
2675 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2676   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2677                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2678                                  !hasAttr<AlwaysDestroyAttr>()));
2679 }
2680 
2681 QualType::DestructionKind
2682 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2683   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2684     if (Eval->HasConstantDestruction)
2685       return QualType::DK_none;
2686 
2687   if (isNoDestroy(Ctx))
2688     return QualType::DK_none;
2689 
2690   return getType().isDestructedType();
2691 }
2692 
2693 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2694   if (isStaticDataMember())
2695     // FIXME: Remove ?
2696     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2697     return getASTContext().getTemplateOrSpecializationInfo(this)
2698         .dyn_cast<MemberSpecializationInfo *>();
2699   return nullptr;
2700 }
2701 
2702 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2703                                          SourceLocation PointOfInstantiation) {
2704   assert((isa<VarTemplateSpecializationDecl>(this) ||
2705           getMemberSpecializationInfo()) &&
2706          "not a variable or static data member template specialization");
2707 
2708   if (VarTemplateSpecializationDecl *Spec =
2709           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2710     Spec->setSpecializationKind(TSK);
2711     if (TSK != TSK_ExplicitSpecialization &&
2712         PointOfInstantiation.isValid() &&
2713         Spec->getPointOfInstantiation().isInvalid()) {
2714       Spec->setPointOfInstantiation(PointOfInstantiation);
2715       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2716         L->InstantiationRequested(this);
2717     }
2718   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2719     MSI->setTemplateSpecializationKind(TSK);
2720     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2721         MSI->getPointOfInstantiation().isInvalid()) {
2722       MSI->setPointOfInstantiation(PointOfInstantiation);
2723       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2724         L->InstantiationRequested(this);
2725     }
2726   }
2727 }
2728 
2729 void
2730 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2731                                             TemplateSpecializationKind TSK) {
2732   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2733          "Previous template or instantiation?");
2734   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2735 }
2736 
2737 //===----------------------------------------------------------------------===//
2738 // ParmVarDecl Implementation
2739 //===----------------------------------------------------------------------===//
2740 
2741 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2742                                  SourceLocation StartLoc,
2743                                  SourceLocation IdLoc, IdentifierInfo *Id,
2744                                  QualType T, TypeSourceInfo *TInfo,
2745                                  StorageClass S, Expr *DefArg) {
2746   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2747                                  S, DefArg);
2748 }
2749 
2750 QualType ParmVarDecl::getOriginalType() const {
2751   TypeSourceInfo *TSI = getTypeSourceInfo();
2752   QualType T = TSI ? TSI->getType() : getType();
2753   if (const auto *DT = dyn_cast<DecayedType>(T))
2754     return DT->getOriginalType();
2755   return T;
2756 }
2757 
2758 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2759   return new (C, ID)
2760       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2761                   nullptr, QualType(), nullptr, SC_None, nullptr);
2762 }
2763 
2764 SourceRange ParmVarDecl::getSourceRange() const {
2765   if (!hasInheritedDefaultArg()) {
2766     SourceRange ArgRange = getDefaultArgRange();
2767     if (ArgRange.isValid())
2768       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2769   }
2770 
2771   // DeclaratorDecl considers the range of postfix types as overlapping with the
2772   // declaration name, but this is not the case with parameters in ObjC methods.
2773   if (isa<ObjCMethodDecl>(getDeclContext()))
2774     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2775 
2776   return DeclaratorDecl::getSourceRange();
2777 }
2778 
2779 bool ParmVarDecl::isDestroyedInCallee() const {
2780   // ns_consumed only affects code generation in ARC
2781   if (hasAttr<NSConsumedAttr>())
2782     return getASTContext().getLangOpts().ObjCAutoRefCount;
2783 
2784   // FIXME: isParamDestroyedInCallee() should probably imply
2785   // isDestructedType()
2786   auto *RT = getType()->getAs<RecordType>();
2787   if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2788       getType().isDestructedType())
2789     return true;
2790 
2791   return false;
2792 }
2793 
2794 Expr *ParmVarDecl::getDefaultArg() {
2795   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2796   assert(!hasUninstantiatedDefaultArg() &&
2797          "Default argument is not yet instantiated!");
2798 
2799   Expr *Arg = getInit();
2800   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2801     return E->getSubExpr();
2802 
2803   return Arg;
2804 }
2805 
2806 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2807   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2808   Init = defarg;
2809 }
2810 
2811 SourceRange ParmVarDecl::getDefaultArgRange() const {
2812   switch (ParmVarDeclBits.DefaultArgKind) {
2813   case DAK_None:
2814   case DAK_Unparsed:
2815     // Nothing we can do here.
2816     return SourceRange();
2817 
2818   case DAK_Uninstantiated:
2819     return getUninstantiatedDefaultArg()->getSourceRange();
2820 
2821   case DAK_Normal:
2822     if (const Expr *E = getInit())
2823       return E->getSourceRange();
2824 
2825     // Missing an actual expression, may be invalid.
2826     return SourceRange();
2827   }
2828   llvm_unreachable("Invalid default argument kind.");
2829 }
2830 
2831 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2832   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2833   Init = arg;
2834 }
2835 
2836 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2837   assert(hasUninstantiatedDefaultArg() &&
2838          "Wrong kind of initialization expression!");
2839   return cast_or_null<Expr>(Init.get<Stmt *>());
2840 }
2841 
2842 bool ParmVarDecl::hasDefaultArg() const {
2843   // FIXME: We should just return false for DAK_None here once callers are
2844   // prepared for the case that we encountered an invalid default argument and
2845   // were unable to even build an invalid expression.
2846   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2847          !Init.isNull();
2848 }
2849 
2850 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2851   getASTContext().setParameterIndex(this, parameterIndex);
2852   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2853 }
2854 
2855 unsigned ParmVarDecl::getParameterIndexLarge() const {
2856   return getASTContext().getParameterIndex(this);
2857 }
2858 
2859 //===----------------------------------------------------------------------===//
2860 // FunctionDecl Implementation
2861 //===----------------------------------------------------------------------===//
2862 
2863 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2864                            SourceLocation StartLoc,
2865                            const DeclarationNameInfo &NameInfo, QualType T,
2866                            TypeSourceInfo *TInfo, StorageClass S,
2867                            bool UsesFPIntrin, bool isInlineSpecified,
2868                            ConstexprSpecKind ConstexprKind,
2869                            Expr *TrailingRequiresClause)
2870     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2871                      StartLoc),
2872       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2873       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2874   assert(T.isNull() || T->isFunctionType());
2875   FunctionDeclBits.SClass = S;
2876   FunctionDeclBits.IsInline = isInlineSpecified;
2877   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2878   FunctionDeclBits.IsVirtualAsWritten = false;
2879   FunctionDeclBits.IsPure = false;
2880   FunctionDeclBits.HasInheritedPrototype = false;
2881   FunctionDeclBits.HasWrittenPrototype = true;
2882   FunctionDeclBits.IsDeleted = false;
2883   FunctionDeclBits.IsTrivial = false;
2884   FunctionDeclBits.IsTrivialForCall = false;
2885   FunctionDeclBits.IsDefaulted = false;
2886   FunctionDeclBits.IsExplicitlyDefaulted = false;
2887   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2888   FunctionDeclBits.HasImplicitReturnZero = false;
2889   FunctionDeclBits.IsLateTemplateParsed = false;
2890   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2891   FunctionDeclBits.InstantiationIsPending = false;
2892   FunctionDeclBits.UsesSEHTry = false;
2893   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
2894   FunctionDeclBits.HasSkippedBody = false;
2895   FunctionDeclBits.WillHaveBody = false;
2896   FunctionDeclBits.IsMultiVersion = false;
2897   FunctionDeclBits.IsCopyDeductionCandidate = false;
2898   FunctionDeclBits.HasODRHash = false;
2899   if (TrailingRequiresClause)
2900     setTrailingRequiresClause(TrailingRequiresClause);
2901 }
2902 
2903 void FunctionDecl::getNameForDiagnostic(
2904     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2905   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2906   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2907   if (TemplateArgs)
2908     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2909 }
2910 
2911 bool FunctionDecl::isVariadic() const {
2912   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2913     return FT->isVariadic();
2914   return false;
2915 }
2916 
2917 FunctionDecl::DefaultedFunctionInfo *
2918 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2919                                             ArrayRef<DeclAccessPair> Lookups) {
2920   DefaultedFunctionInfo *Info = new (Context.Allocate(
2921       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2922       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2923       DefaultedFunctionInfo;
2924   Info->NumLookups = Lookups.size();
2925   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2926                           Info->getTrailingObjects<DeclAccessPair>());
2927   return Info;
2928 }
2929 
2930 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2931   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2932   assert(!Body && "can't replace function body with defaulted function info");
2933 
2934   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2935   DefaultedInfo = Info;
2936 }
2937 
2938 FunctionDecl::DefaultedFunctionInfo *
2939 FunctionDecl::getDefaultedFunctionInfo() const {
2940   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2941 }
2942 
2943 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2944   for (auto I : redecls()) {
2945     if (I->doesThisDeclarationHaveABody()) {
2946       Definition = I;
2947       return true;
2948     }
2949   }
2950 
2951   return false;
2952 }
2953 
2954 bool FunctionDecl::hasTrivialBody() const {
2955   Stmt *S = getBody();
2956   if (!S) {
2957     // Since we don't have a body for this function, we don't know if it's
2958     // trivial or not.
2959     return false;
2960   }
2961 
2962   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2963     return true;
2964   return false;
2965 }
2966 
2967 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2968   if (!getFriendObjectKind())
2969     return false;
2970 
2971   // Check for a friend function instantiated from a friend function
2972   // definition in a templated class.
2973   if (const FunctionDecl *InstantiatedFrom =
2974           getInstantiatedFromMemberFunction())
2975     return InstantiatedFrom->getFriendObjectKind() &&
2976            InstantiatedFrom->isThisDeclarationADefinition();
2977 
2978   // Check for a friend function template instantiated from a friend
2979   // function template definition in a templated class.
2980   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2981     if (const FunctionTemplateDecl *InstantiatedFrom =
2982             Template->getInstantiatedFromMemberTemplate())
2983       return InstantiatedFrom->getFriendObjectKind() &&
2984              InstantiatedFrom->isThisDeclarationADefinition();
2985   }
2986 
2987   return false;
2988 }
2989 
2990 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2991                              bool CheckForPendingFriendDefinition) const {
2992   for (const FunctionDecl *FD : redecls()) {
2993     if (FD->isThisDeclarationADefinition()) {
2994       Definition = FD;
2995       return true;
2996     }
2997 
2998     // If this is a friend function defined in a class template, it does not
2999     // have a body until it is used, nevertheless it is a definition, see
3000     // [temp.inst]p2:
3001     //
3002     // ... for the purpose of determining whether an instantiated redeclaration
3003     // is valid according to [basic.def.odr] and [class.mem], a declaration that
3004     // corresponds to a definition in the template is considered to be a
3005     // definition.
3006     //
3007     // The following code must produce redefinition error:
3008     //
3009     //     template<typename T> struct C20 { friend void func_20() {} };
3010     //     C20<int> c20i;
3011     //     void func_20() {}
3012     //
3013     if (CheckForPendingFriendDefinition &&
3014         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3015       Definition = FD;
3016       return true;
3017     }
3018   }
3019 
3020   return false;
3021 }
3022 
3023 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3024   if (!hasBody(Definition))
3025     return nullptr;
3026 
3027   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3028          "definition should not have a body");
3029   if (Definition->Body)
3030     return Definition->Body.get(getASTContext().getExternalSource());
3031 
3032   return nullptr;
3033 }
3034 
3035 void FunctionDecl::setBody(Stmt *B) {
3036   FunctionDeclBits.HasDefaultedFunctionInfo = false;
3037   Body = LazyDeclStmtPtr(B);
3038   if (B)
3039     EndRangeLoc = B->getEndLoc();
3040 }
3041 
3042 void FunctionDecl::setPure(bool P) {
3043   FunctionDeclBits.IsPure = P;
3044   if (P)
3045     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3046       Parent->markedVirtualFunctionPure();
3047 }
3048 
3049 template<std::size_t Len>
3050 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3051   IdentifierInfo *II = ND->getIdentifier();
3052   return II && II->isStr(Str);
3053 }
3054 
3055 bool FunctionDecl::isMain() const {
3056   const TranslationUnitDecl *tunit =
3057     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3058   return tunit &&
3059          !tunit->getASTContext().getLangOpts().Freestanding &&
3060          isNamed(this, "main");
3061 }
3062 
3063 bool FunctionDecl::isMSVCRTEntryPoint() const {
3064   const TranslationUnitDecl *TUnit =
3065       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3066   if (!TUnit)
3067     return false;
3068 
3069   // Even though we aren't really targeting MSVCRT if we are freestanding,
3070   // semantic analysis for these functions remains the same.
3071 
3072   // MSVCRT entry points only exist on MSVCRT targets.
3073   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3074     return false;
3075 
3076   // Nameless functions like constructors cannot be entry points.
3077   if (!getIdentifier())
3078     return false;
3079 
3080   return llvm::StringSwitch<bool>(getName())
3081       .Cases("main",     // an ANSI console app
3082              "wmain",    // a Unicode console App
3083              "WinMain",  // an ANSI GUI app
3084              "wWinMain", // a Unicode GUI app
3085              "DllMain",  // a DLL
3086              true)
3087       .Default(false);
3088 }
3089 
3090 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3091   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3092   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3093          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3094          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3095          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3096 
3097   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3098     return false;
3099 
3100   const auto *proto = getType()->castAs<FunctionProtoType>();
3101   if (proto->getNumParams() != 2 || proto->isVariadic())
3102     return false;
3103 
3104   ASTContext &Context =
3105     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3106       ->getASTContext();
3107 
3108   // The result type and first argument type are constant across all
3109   // these operators.  The second argument must be exactly void*.
3110   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3111 }
3112 
3113 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3114     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3115   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3116     return false;
3117   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3118       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3119       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3120       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3121     return false;
3122 
3123   if (isa<CXXRecordDecl>(getDeclContext()))
3124     return false;
3125 
3126   // This can only fail for an invalid 'operator new' declaration.
3127   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3128     return false;
3129 
3130   const auto *FPT = getType()->castAs<FunctionProtoType>();
3131   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3132     return false;
3133 
3134   // If this is a single-parameter function, it must be a replaceable global
3135   // allocation or deallocation function.
3136   if (FPT->getNumParams() == 1)
3137     return true;
3138 
3139   unsigned Params = 1;
3140   QualType Ty = FPT->getParamType(Params);
3141   ASTContext &Ctx = getASTContext();
3142 
3143   auto Consume = [&] {
3144     ++Params;
3145     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3146   };
3147 
3148   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3149   bool IsSizedDelete = false;
3150   if (Ctx.getLangOpts().SizedDeallocation &&
3151       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3152        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3153       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3154     IsSizedDelete = true;
3155     Consume();
3156   }
3157 
3158   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3159   // new/delete.
3160   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3161     Consume();
3162     if (AlignmentParam)
3163       *AlignmentParam = Params;
3164   }
3165 
3166   // Finally, if this is not a sized delete, the final parameter can
3167   // be a 'const std::nothrow_t&'.
3168   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3169     Ty = Ty->getPointeeType();
3170     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3171       return false;
3172     if (Ty->isNothrowT()) {
3173       if (IsNothrow)
3174         *IsNothrow = true;
3175       Consume();
3176     }
3177   }
3178 
3179   return Params == FPT->getNumParams();
3180 }
3181 
3182 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3183   if (!getBuiltinID())
3184     return false;
3185 
3186   const FunctionDecl *Definition;
3187   return hasBody(Definition) && Definition->isInlineSpecified() &&
3188          Definition->hasAttr<AlwaysInlineAttr>() &&
3189          Definition->hasAttr<GNUInlineAttr>();
3190 }
3191 
3192 bool FunctionDecl::isDestroyingOperatorDelete() const {
3193   // C++ P0722:
3194   //   Within a class C, a single object deallocation function with signature
3195   //     (T, std::destroying_delete_t, <more params>)
3196   //   is a destroying operator delete.
3197   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3198       getNumParams() < 2)
3199     return false;
3200 
3201   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3202   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3203          RD->getIdentifier()->isStr("destroying_delete_t");
3204 }
3205 
3206 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3207   return getDeclLanguageLinkage(*this);
3208 }
3209 
3210 bool FunctionDecl::isExternC() const {
3211   return isDeclExternC(*this);
3212 }
3213 
3214 bool FunctionDecl::isInExternCContext() const {
3215   if (hasAttr<OpenCLKernelAttr>())
3216     return true;
3217   return getLexicalDeclContext()->isExternCContext();
3218 }
3219 
3220 bool FunctionDecl::isInExternCXXContext() const {
3221   return getLexicalDeclContext()->isExternCXXContext();
3222 }
3223 
3224 bool FunctionDecl::isGlobal() const {
3225   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3226     return Method->isStatic();
3227 
3228   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3229     return false;
3230 
3231   for (const DeclContext *DC = getDeclContext();
3232        DC->isNamespace();
3233        DC = DC->getParent()) {
3234     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3235       if (!Namespace->getDeclName())
3236         return false;
3237     }
3238   }
3239 
3240   return true;
3241 }
3242 
3243 bool FunctionDecl::isNoReturn() const {
3244   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3245       hasAttr<C11NoReturnAttr>())
3246     return true;
3247 
3248   if (auto *FnTy = getType()->getAs<FunctionType>())
3249     return FnTy->getNoReturnAttr();
3250 
3251   return false;
3252 }
3253 
3254 
3255 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3256   if (hasAttr<TargetAttr>())
3257     return MultiVersionKind::Target;
3258   if (hasAttr<CPUDispatchAttr>())
3259     return MultiVersionKind::CPUDispatch;
3260   if (hasAttr<CPUSpecificAttr>())
3261     return MultiVersionKind::CPUSpecific;
3262   if (hasAttr<TargetClonesAttr>())
3263     return MultiVersionKind::TargetClones;
3264   return MultiVersionKind::None;
3265 }
3266 
3267 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3268   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3269 }
3270 
3271 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3272   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3273 }
3274 
3275 bool FunctionDecl::isTargetMultiVersion() const {
3276   return isMultiVersion() && hasAttr<TargetAttr>();
3277 }
3278 
3279 bool FunctionDecl::isTargetClonesMultiVersion() const {
3280   return isMultiVersion() && hasAttr<TargetClonesAttr>();
3281 }
3282 
3283 void
3284 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3285   redeclarable_base::setPreviousDecl(PrevDecl);
3286 
3287   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3288     FunctionTemplateDecl *PrevFunTmpl
3289       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3290     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3291     FunTmpl->setPreviousDecl(PrevFunTmpl);
3292   }
3293 
3294   if (PrevDecl && PrevDecl->isInlined())
3295     setImplicitlyInline(true);
3296 }
3297 
3298 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3299 
3300 /// Returns a value indicating whether this function corresponds to a builtin
3301 /// function.
3302 ///
3303 /// The function corresponds to a built-in function if it is declared at
3304 /// translation scope or within an extern "C" block and its name matches with
3305 /// the name of a builtin. The returned value will be 0 for functions that do
3306 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3307 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3308 /// value.
3309 ///
3310 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3311 /// functions as their wrapped builtins. This shouldn't be done in general, but
3312 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3313 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3314   unsigned BuiltinID = 0;
3315 
3316   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3317     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3318   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3319     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3320   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3321     BuiltinID = A->getID();
3322   }
3323 
3324   if (!BuiltinID)
3325     return 0;
3326 
3327   // If the function is marked "overloadable", it has a different mangled name
3328   // and is not the C library function.
3329   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3330       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3331     return 0;
3332 
3333   ASTContext &Context = getASTContext();
3334   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3335     return BuiltinID;
3336 
3337   // This function has the name of a known C library
3338   // function. Determine whether it actually refers to the C library
3339   // function or whether it just has the same name.
3340 
3341   // If this is a static function, it's not a builtin.
3342   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3343     return 0;
3344 
3345   // OpenCL v1.2 s6.9.f - The library functions defined in
3346   // the C99 standard headers are not available.
3347   if (Context.getLangOpts().OpenCL &&
3348       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3349     return 0;
3350 
3351   // CUDA does not have device-side standard library. printf and malloc are the
3352   // only special cases that are supported by device-side runtime.
3353   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3354       !hasAttr<CUDAHostAttr>() &&
3355       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3356     return 0;
3357 
3358   // As AMDGCN implementation of OpenMP does not have a device-side standard
3359   // library, none of the predefined library functions except printf and malloc
3360   // should be treated as a builtin i.e. 0 should be returned for them.
3361   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3362       Context.getLangOpts().OpenMPIsDevice &&
3363       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3364       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3365     return 0;
3366 
3367   return BuiltinID;
3368 }
3369 
3370 /// getNumParams - Return the number of parameters this function must have
3371 /// based on its FunctionType.  This is the length of the ParamInfo array
3372 /// after it has been created.
3373 unsigned FunctionDecl::getNumParams() const {
3374   const auto *FPT = getType()->getAs<FunctionProtoType>();
3375   return FPT ? FPT->getNumParams() : 0;
3376 }
3377 
3378 void FunctionDecl::setParams(ASTContext &C,
3379                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3380   assert(!ParamInfo && "Already has param info!");
3381   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3382 
3383   // Zero params -> null pointer.
3384   if (!NewParamInfo.empty()) {
3385     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3386     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3387   }
3388 }
3389 
3390 /// getMinRequiredArguments - Returns the minimum number of arguments
3391 /// needed to call this function. This may be fewer than the number of
3392 /// function parameters, if some of the parameters have default
3393 /// arguments (in C++) or are parameter packs (C++11).
3394 unsigned FunctionDecl::getMinRequiredArguments() const {
3395   if (!getASTContext().getLangOpts().CPlusPlus)
3396     return getNumParams();
3397 
3398   // Note that it is possible for a parameter with no default argument to
3399   // follow a parameter with a default argument.
3400   unsigned NumRequiredArgs = 0;
3401   unsigned MinParamsSoFar = 0;
3402   for (auto *Param : parameters()) {
3403     if (!Param->isParameterPack()) {
3404       ++MinParamsSoFar;
3405       if (!Param->hasDefaultArg())
3406         NumRequiredArgs = MinParamsSoFar;
3407     }
3408   }
3409   return NumRequiredArgs;
3410 }
3411 
3412 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3413   return getNumParams() == 1 ||
3414          (getNumParams() > 1 &&
3415           std::all_of(param_begin() + 1, param_end(),
3416                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3417 }
3418 
3419 /// The combination of the extern and inline keywords under MSVC forces
3420 /// the function to be required.
3421 ///
3422 /// Note: This function assumes that we will only get called when isInlined()
3423 /// would return true for this FunctionDecl.
3424 bool FunctionDecl::isMSExternInline() const {
3425   assert(isInlined() && "expected to get called on an inlined function!");
3426 
3427   const ASTContext &Context = getASTContext();
3428   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3429       !hasAttr<DLLExportAttr>())
3430     return false;
3431 
3432   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3433        FD = FD->getPreviousDecl())
3434     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3435       return true;
3436 
3437   return false;
3438 }
3439 
3440 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3441   if (Redecl->getStorageClass() != SC_Extern)
3442     return false;
3443 
3444   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3445        FD = FD->getPreviousDecl())
3446     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3447       return false;
3448 
3449   return true;
3450 }
3451 
3452 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3453   // Only consider file-scope declarations in this test.
3454   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3455     return false;
3456 
3457   // Only consider explicit declarations; the presence of a builtin for a
3458   // libcall shouldn't affect whether a definition is externally visible.
3459   if (Redecl->isImplicit())
3460     return false;
3461 
3462   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3463     return true; // Not an inline definition
3464 
3465   return false;
3466 }
3467 
3468 /// For a function declaration in C or C++, determine whether this
3469 /// declaration causes the definition to be externally visible.
3470 ///
3471 /// For instance, this determines if adding the current declaration to the set
3472 /// of redeclarations of the given functions causes
3473 /// isInlineDefinitionExternallyVisible to change from false to true.
3474 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3475   assert(!doesThisDeclarationHaveABody() &&
3476          "Must have a declaration without a body.");
3477 
3478   ASTContext &Context = getASTContext();
3479 
3480   if (Context.getLangOpts().MSVCCompat) {
3481     const FunctionDecl *Definition;
3482     if (hasBody(Definition) && Definition->isInlined() &&
3483         redeclForcesDefMSVC(this))
3484       return true;
3485   }
3486 
3487   if (Context.getLangOpts().CPlusPlus)
3488     return false;
3489 
3490   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3491     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3492     // an externally visible definition.
3493     //
3494     // FIXME: What happens if gnu_inline gets added on after the first
3495     // declaration?
3496     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3497       return false;
3498 
3499     const FunctionDecl *Prev = this;
3500     bool FoundBody = false;
3501     while ((Prev = Prev->getPreviousDecl())) {
3502       FoundBody |= Prev->doesThisDeclarationHaveABody();
3503 
3504       if (Prev->doesThisDeclarationHaveABody()) {
3505         // If it's not the case that both 'inline' and 'extern' are
3506         // specified on the definition, then it is always externally visible.
3507         if (!Prev->isInlineSpecified() ||
3508             Prev->getStorageClass() != SC_Extern)
3509           return false;
3510       } else if (Prev->isInlineSpecified() &&
3511                  Prev->getStorageClass() != SC_Extern) {
3512         return false;
3513       }
3514     }
3515     return FoundBody;
3516   }
3517 
3518   // C99 6.7.4p6:
3519   //   [...] If all of the file scope declarations for a function in a
3520   //   translation unit include the inline function specifier without extern,
3521   //   then the definition in that translation unit is an inline definition.
3522   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3523     return false;
3524   const FunctionDecl *Prev = this;
3525   bool FoundBody = false;
3526   while ((Prev = Prev->getPreviousDecl())) {
3527     FoundBody |= Prev->doesThisDeclarationHaveABody();
3528     if (RedeclForcesDefC99(Prev))
3529       return false;
3530   }
3531   return FoundBody;
3532 }
3533 
3534 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3535   const TypeSourceInfo *TSI = getTypeSourceInfo();
3536   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3537              : FunctionTypeLoc();
3538 }
3539 
3540 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3541   FunctionTypeLoc FTL = getFunctionTypeLoc();
3542   if (!FTL)
3543     return SourceRange();
3544 
3545   // Skip self-referential return types.
3546   const SourceManager &SM = getASTContext().getSourceManager();
3547   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3548   SourceLocation Boundary = getNameInfo().getBeginLoc();
3549   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3550       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3551     return SourceRange();
3552 
3553   return RTRange;
3554 }
3555 
3556 SourceRange FunctionDecl::getParametersSourceRange() const {
3557   unsigned NP = getNumParams();
3558   SourceLocation EllipsisLoc = getEllipsisLoc();
3559 
3560   if (NP == 0 && EllipsisLoc.isInvalid())
3561     return SourceRange();
3562 
3563   SourceLocation Begin =
3564       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3565   SourceLocation End = EllipsisLoc.isValid()
3566                            ? EllipsisLoc
3567                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3568 
3569   return SourceRange(Begin, End);
3570 }
3571 
3572 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3573   FunctionTypeLoc FTL = getFunctionTypeLoc();
3574   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3575 }
3576 
3577 /// For an inline function definition in C, or for a gnu_inline function
3578 /// in C++, determine whether the definition will be externally visible.
3579 ///
3580 /// Inline function definitions are always available for inlining optimizations.
3581 /// However, depending on the language dialect, declaration specifiers, and
3582 /// attributes, the definition of an inline function may or may not be
3583 /// "externally" visible to other translation units in the program.
3584 ///
3585 /// In C99, inline definitions are not externally visible by default. However,
3586 /// if even one of the global-scope declarations is marked "extern inline", the
3587 /// inline definition becomes externally visible (C99 6.7.4p6).
3588 ///
3589 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3590 /// definition, we use the GNU semantics for inline, which are nearly the
3591 /// opposite of C99 semantics. In particular, "inline" by itself will create
3592 /// an externally visible symbol, but "extern inline" will not create an
3593 /// externally visible symbol.
3594 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3595   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3596           hasAttr<AliasAttr>()) &&
3597          "Must be a function definition");
3598   assert(isInlined() && "Function must be inline");
3599   ASTContext &Context = getASTContext();
3600 
3601   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3602     // Note: If you change the logic here, please change
3603     // doesDeclarationForceExternallyVisibleDefinition as well.
3604     //
3605     // If it's not the case that both 'inline' and 'extern' are
3606     // specified on the definition, then this inline definition is
3607     // externally visible.
3608     if (Context.getLangOpts().CPlusPlus)
3609       return false;
3610     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3611       return true;
3612 
3613     // If any declaration is 'inline' but not 'extern', then this definition
3614     // is externally visible.
3615     for (auto Redecl : redecls()) {
3616       if (Redecl->isInlineSpecified() &&
3617           Redecl->getStorageClass() != SC_Extern)
3618         return true;
3619     }
3620 
3621     return false;
3622   }
3623 
3624   // The rest of this function is C-only.
3625   assert(!Context.getLangOpts().CPlusPlus &&
3626          "should not use C inline rules in C++");
3627 
3628   // C99 6.7.4p6:
3629   //   [...] If all of the file scope declarations for a function in a
3630   //   translation unit include the inline function specifier without extern,
3631   //   then the definition in that translation unit is an inline definition.
3632   for (auto Redecl : redecls()) {
3633     if (RedeclForcesDefC99(Redecl))
3634       return true;
3635   }
3636 
3637   // C99 6.7.4p6:
3638   //   An inline definition does not provide an external definition for the
3639   //   function, and does not forbid an external definition in another
3640   //   translation unit.
3641   return false;
3642 }
3643 
3644 /// getOverloadedOperator - Which C++ overloaded operator this
3645 /// function represents, if any.
3646 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3647   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3648     return getDeclName().getCXXOverloadedOperator();
3649   return OO_None;
3650 }
3651 
3652 /// getLiteralIdentifier - The literal suffix identifier this function
3653 /// represents, if any.
3654 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3655   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3656     return getDeclName().getCXXLiteralIdentifier();
3657   return nullptr;
3658 }
3659 
3660 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3661   if (TemplateOrSpecialization.isNull())
3662     return TK_NonTemplate;
3663   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3664     return TK_FunctionTemplate;
3665   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3666     return TK_MemberSpecialization;
3667   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3668     return TK_FunctionTemplateSpecialization;
3669   if (TemplateOrSpecialization.is
3670                                <DependentFunctionTemplateSpecializationInfo*>())
3671     return TK_DependentFunctionTemplateSpecialization;
3672 
3673   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3674 }
3675 
3676 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3677   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3678     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3679 
3680   return nullptr;
3681 }
3682 
3683 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3684   if (auto *MSI =
3685           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3686     return MSI;
3687   if (auto *FTSI = TemplateOrSpecialization
3688                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3689     return FTSI->getMemberSpecializationInfo();
3690   return nullptr;
3691 }
3692 
3693 void
3694 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3695                                                FunctionDecl *FD,
3696                                                TemplateSpecializationKind TSK) {
3697   assert(TemplateOrSpecialization.isNull() &&
3698          "Member function is already a specialization");
3699   MemberSpecializationInfo *Info
3700     = new (C) MemberSpecializationInfo(FD, TSK);
3701   TemplateOrSpecialization = Info;
3702 }
3703 
3704 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3705   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3706 }
3707 
3708 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3709   assert(TemplateOrSpecialization.isNull() &&
3710          "Member function is already a specialization");
3711   TemplateOrSpecialization = Template;
3712 }
3713 
3714 bool FunctionDecl::isImplicitlyInstantiable() const {
3715   // If the function is invalid, it can't be implicitly instantiated.
3716   if (isInvalidDecl())
3717     return false;
3718 
3719   switch (getTemplateSpecializationKindForInstantiation()) {
3720   case TSK_Undeclared:
3721   case TSK_ExplicitInstantiationDefinition:
3722   case TSK_ExplicitSpecialization:
3723     return false;
3724 
3725   case TSK_ImplicitInstantiation:
3726     return true;
3727 
3728   case TSK_ExplicitInstantiationDeclaration:
3729     // Handled below.
3730     break;
3731   }
3732 
3733   // Find the actual template from which we will instantiate.
3734   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3735   bool HasPattern = false;
3736   if (PatternDecl)
3737     HasPattern = PatternDecl->hasBody(PatternDecl);
3738 
3739   // C++0x [temp.explicit]p9:
3740   //   Except for inline functions, other explicit instantiation declarations
3741   //   have the effect of suppressing the implicit instantiation of the entity
3742   //   to which they refer.
3743   if (!HasPattern || !PatternDecl)
3744     return true;
3745 
3746   return PatternDecl->isInlined();
3747 }
3748 
3749 bool FunctionDecl::isTemplateInstantiation() const {
3750   // FIXME: Remove this, it's not clear what it means. (Which template
3751   // specialization kind?)
3752   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3753 }
3754 
3755 FunctionDecl *
3756 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3757   // If this is a generic lambda call operator specialization, its
3758   // instantiation pattern is always its primary template's pattern
3759   // even if its primary template was instantiated from another
3760   // member template (which happens with nested generic lambdas).
3761   // Since a lambda's call operator's body is transformed eagerly,
3762   // we don't have to go hunting for a prototype definition template
3763   // (i.e. instantiated-from-member-template) to use as an instantiation
3764   // pattern.
3765 
3766   if (isGenericLambdaCallOperatorSpecialization(
3767           dyn_cast<CXXMethodDecl>(this))) {
3768     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3769     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3770   }
3771 
3772   // Check for a declaration of this function that was instantiated from a
3773   // friend definition.
3774   const FunctionDecl *FD = nullptr;
3775   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3776     FD = this;
3777 
3778   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3779     if (ForDefinition &&
3780         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3781       return nullptr;
3782     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3783   }
3784 
3785   if (ForDefinition &&
3786       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3787     return nullptr;
3788 
3789   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3790     // If we hit a point where the user provided a specialization of this
3791     // template, we're done looking.
3792     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3793       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3794       if (!NewPrimary)
3795         break;
3796       Primary = NewPrimary;
3797     }
3798 
3799     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3800   }
3801 
3802   return nullptr;
3803 }
3804 
3805 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3806   if (FunctionTemplateSpecializationInfo *Info
3807         = TemplateOrSpecialization
3808             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3809     return Info->getTemplate();
3810   }
3811   return nullptr;
3812 }
3813 
3814 FunctionTemplateSpecializationInfo *
3815 FunctionDecl::getTemplateSpecializationInfo() const {
3816   return TemplateOrSpecialization
3817       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3818 }
3819 
3820 const TemplateArgumentList *
3821 FunctionDecl::getTemplateSpecializationArgs() const {
3822   if (FunctionTemplateSpecializationInfo *Info
3823         = TemplateOrSpecialization
3824             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3825     return Info->TemplateArguments;
3826   }
3827   return nullptr;
3828 }
3829 
3830 const ASTTemplateArgumentListInfo *
3831 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3832   if (FunctionTemplateSpecializationInfo *Info
3833         = TemplateOrSpecialization
3834             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3835     return Info->TemplateArgumentsAsWritten;
3836   }
3837   return nullptr;
3838 }
3839 
3840 void
3841 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3842                                                 FunctionTemplateDecl *Template,
3843                                      const TemplateArgumentList *TemplateArgs,
3844                                                 void *InsertPos,
3845                                                 TemplateSpecializationKind TSK,
3846                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3847                                           SourceLocation PointOfInstantiation) {
3848   assert((TemplateOrSpecialization.isNull() ||
3849           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3850          "Member function is already a specialization");
3851   assert(TSK != TSK_Undeclared &&
3852          "Must specify the type of function template specialization");
3853   assert((TemplateOrSpecialization.isNull() ||
3854           TSK == TSK_ExplicitSpecialization) &&
3855          "Member specialization must be an explicit specialization");
3856   FunctionTemplateSpecializationInfo *Info =
3857       FunctionTemplateSpecializationInfo::Create(
3858           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3859           PointOfInstantiation,
3860           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3861   TemplateOrSpecialization = Info;
3862   Template->addSpecialization(Info, InsertPos);
3863 }
3864 
3865 void
3866 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3867                                     const UnresolvedSetImpl &Templates,
3868                              const TemplateArgumentListInfo &TemplateArgs) {
3869   assert(TemplateOrSpecialization.isNull());
3870   DependentFunctionTemplateSpecializationInfo *Info =
3871       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3872                                                           TemplateArgs);
3873   TemplateOrSpecialization = Info;
3874 }
3875 
3876 DependentFunctionTemplateSpecializationInfo *
3877 FunctionDecl::getDependentSpecializationInfo() const {
3878   return TemplateOrSpecialization
3879       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3880 }
3881 
3882 DependentFunctionTemplateSpecializationInfo *
3883 DependentFunctionTemplateSpecializationInfo::Create(
3884     ASTContext &Context, const UnresolvedSetImpl &Ts,
3885     const TemplateArgumentListInfo &TArgs) {
3886   void *Buffer = Context.Allocate(
3887       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3888           TArgs.size(), Ts.size()));
3889   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3890 }
3891 
3892 DependentFunctionTemplateSpecializationInfo::
3893 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3894                                       const TemplateArgumentListInfo &TArgs)
3895   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3896   NumTemplates = Ts.size();
3897   NumArgs = TArgs.size();
3898 
3899   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3900   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3901     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3902 
3903   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3904   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3905     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3906 }
3907 
3908 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3909   // For a function template specialization, query the specialization
3910   // information object.
3911   if (FunctionTemplateSpecializationInfo *FTSInfo =
3912           TemplateOrSpecialization
3913               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3914     return FTSInfo->getTemplateSpecializationKind();
3915 
3916   if (MemberSpecializationInfo *MSInfo =
3917           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3918     return MSInfo->getTemplateSpecializationKind();
3919 
3920   return TSK_Undeclared;
3921 }
3922 
3923 TemplateSpecializationKind
3924 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3925   // This is the same as getTemplateSpecializationKind(), except that for a
3926   // function that is both a function template specialization and a member
3927   // specialization, we prefer the member specialization information. Eg:
3928   //
3929   // template<typename T> struct A {
3930   //   template<typename U> void f() {}
3931   //   template<> void f<int>() {}
3932   // };
3933   //
3934   // For A<int>::f<int>():
3935   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3936   // * getTemplateSpecializationKindForInstantiation() will return
3937   //       TSK_ImplicitInstantiation
3938   //
3939   // This reflects the facts that A<int>::f<int> is an explicit specialization
3940   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3941   // from A::f<int> if a definition is needed.
3942   if (FunctionTemplateSpecializationInfo *FTSInfo =
3943           TemplateOrSpecialization
3944               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3945     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3946       return MSInfo->getTemplateSpecializationKind();
3947     return FTSInfo->getTemplateSpecializationKind();
3948   }
3949 
3950   if (MemberSpecializationInfo *MSInfo =
3951           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3952     return MSInfo->getTemplateSpecializationKind();
3953 
3954   return TSK_Undeclared;
3955 }
3956 
3957 void
3958 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3959                                           SourceLocation PointOfInstantiation) {
3960   if (FunctionTemplateSpecializationInfo *FTSInfo
3961         = TemplateOrSpecialization.dyn_cast<
3962                                     FunctionTemplateSpecializationInfo*>()) {
3963     FTSInfo->setTemplateSpecializationKind(TSK);
3964     if (TSK != TSK_ExplicitSpecialization &&
3965         PointOfInstantiation.isValid() &&
3966         FTSInfo->getPointOfInstantiation().isInvalid()) {
3967       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3968       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3969         L->InstantiationRequested(this);
3970     }
3971   } else if (MemberSpecializationInfo *MSInfo
3972              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3973     MSInfo->setTemplateSpecializationKind(TSK);
3974     if (TSK != TSK_ExplicitSpecialization &&
3975         PointOfInstantiation.isValid() &&
3976         MSInfo->getPointOfInstantiation().isInvalid()) {
3977       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3978       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3979         L->InstantiationRequested(this);
3980     }
3981   } else
3982     llvm_unreachable("Function cannot have a template specialization kind");
3983 }
3984 
3985 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3986   if (FunctionTemplateSpecializationInfo *FTSInfo
3987         = TemplateOrSpecialization.dyn_cast<
3988                                         FunctionTemplateSpecializationInfo*>())
3989     return FTSInfo->getPointOfInstantiation();
3990   if (MemberSpecializationInfo *MSInfo =
3991           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3992     return MSInfo->getPointOfInstantiation();
3993 
3994   return SourceLocation();
3995 }
3996 
3997 bool FunctionDecl::isOutOfLine() const {
3998   if (Decl::isOutOfLine())
3999     return true;
4000 
4001   // If this function was instantiated from a member function of a
4002   // class template, check whether that member function was defined out-of-line.
4003   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4004     const FunctionDecl *Definition;
4005     if (FD->hasBody(Definition))
4006       return Definition->isOutOfLine();
4007   }
4008 
4009   // If this function was instantiated from a function template,
4010   // check whether that function template was defined out-of-line.
4011   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4012     const FunctionDecl *Definition;
4013     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4014       return Definition->isOutOfLine();
4015   }
4016 
4017   return false;
4018 }
4019 
4020 SourceRange FunctionDecl::getSourceRange() const {
4021   return SourceRange(getOuterLocStart(), EndRangeLoc);
4022 }
4023 
4024 unsigned FunctionDecl::getMemoryFunctionKind() const {
4025   IdentifierInfo *FnInfo = getIdentifier();
4026 
4027   if (!FnInfo)
4028     return 0;
4029 
4030   // Builtin handling.
4031   switch (getBuiltinID()) {
4032   case Builtin::BI__builtin_memset:
4033   case Builtin::BI__builtin___memset_chk:
4034   case Builtin::BImemset:
4035     return Builtin::BImemset;
4036 
4037   case Builtin::BI__builtin_memcpy:
4038   case Builtin::BI__builtin___memcpy_chk:
4039   case Builtin::BImemcpy:
4040     return Builtin::BImemcpy;
4041 
4042   case Builtin::BI__builtin_mempcpy:
4043   case Builtin::BI__builtin___mempcpy_chk:
4044   case Builtin::BImempcpy:
4045     return Builtin::BImempcpy;
4046 
4047   case Builtin::BI__builtin_memmove:
4048   case Builtin::BI__builtin___memmove_chk:
4049   case Builtin::BImemmove:
4050     return Builtin::BImemmove;
4051 
4052   case Builtin::BIstrlcpy:
4053   case Builtin::BI__builtin___strlcpy_chk:
4054     return Builtin::BIstrlcpy;
4055 
4056   case Builtin::BIstrlcat:
4057   case Builtin::BI__builtin___strlcat_chk:
4058     return Builtin::BIstrlcat;
4059 
4060   case Builtin::BI__builtin_memcmp:
4061   case Builtin::BImemcmp:
4062     return Builtin::BImemcmp;
4063 
4064   case Builtin::BI__builtin_bcmp:
4065   case Builtin::BIbcmp:
4066     return Builtin::BIbcmp;
4067 
4068   case Builtin::BI__builtin_strncpy:
4069   case Builtin::BI__builtin___strncpy_chk:
4070   case Builtin::BIstrncpy:
4071     return Builtin::BIstrncpy;
4072 
4073   case Builtin::BI__builtin_strncmp:
4074   case Builtin::BIstrncmp:
4075     return Builtin::BIstrncmp;
4076 
4077   case Builtin::BI__builtin_strncasecmp:
4078   case Builtin::BIstrncasecmp:
4079     return Builtin::BIstrncasecmp;
4080 
4081   case Builtin::BI__builtin_strncat:
4082   case Builtin::BI__builtin___strncat_chk:
4083   case Builtin::BIstrncat:
4084     return Builtin::BIstrncat;
4085 
4086   case Builtin::BI__builtin_strndup:
4087   case Builtin::BIstrndup:
4088     return Builtin::BIstrndup;
4089 
4090   case Builtin::BI__builtin_strlen:
4091   case Builtin::BIstrlen:
4092     return Builtin::BIstrlen;
4093 
4094   case Builtin::BI__builtin_bzero:
4095   case Builtin::BIbzero:
4096     return Builtin::BIbzero;
4097 
4098   case Builtin::BIfree:
4099     return Builtin::BIfree;
4100 
4101   default:
4102     if (isExternC()) {
4103       if (FnInfo->isStr("memset"))
4104         return Builtin::BImemset;
4105       if (FnInfo->isStr("memcpy"))
4106         return Builtin::BImemcpy;
4107       if (FnInfo->isStr("mempcpy"))
4108         return Builtin::BImempcpy;
4109       if (FnInfo->isStr("memmove"))
4110         return Builtin::BImemmove;
4111       if (FnInfo->isStr("memcmp"))
4112         return Builtin::BImemcmp;
4113       if (FnInfo->isStr("bcmp"))
4114         return Builtin::BIbcmp;
4115       if (FnInfo->isStr("strncpy"))
4116         return Builtin::BIstrncpy;
4117       if (FnInfo->isStr("strncmp"))
4118         return Builtin::BIstrncmp;
4119       if (FnInfo->isStr("strncasecmp"))
4120         return Builtin::BIstrncasecmp;
4121       if (FnInfo->isStr("strncat"))
4122         return Builtin::BIstrncat;
4123       if (FnInfo->isStr("strndup"))
4124         return Builtin::BIstrndup;
4125       if (FnInfo->isStr("strlen"))
4126         return Builtin::BIstrlen;
4127       if (FnInfo->isStr("bzero"))
4128         return Builtin::BIbzero;
4129     } else if (isInStdNamespace()) {
4130       if (FnInfo->isStr("free"))
4131         return Builtin::BIfree;
4132     }
4133     break;
4134   }
4135   return 0;
4136 }
4137 
4138 unsigned FunctionDecl::getODRHash() const {
4139   assert(hasODRHash());
4140   return ODRHash;
4141 }
4142 
4143 unsigned FunctionDecl::getODRHash() {
4144   if (hasODRHash())
4145     return ODRHash;
4146 
4147   if (auto *FT = getInstantiatedFromMemberFunction()) {
4148     setHasODRHash(true);
4149     ODRHash = FT->getODRHash();
4150     return ODRHash;
4151   }
4152 
4153   class ODRHash Hash;
4154   Hash.AddFunctionDecl(this);
4155   setHasODRHash(true);
4156   ODRHash = Hash.CalculateHash();
4157   return ODRHash;
4158 }
4159 
4160 //===----------------------------------------------------------------------===//
4161 // FieldDecl Implementation
4162 //===----------------------------------------------------------------------===//
4163 
4164 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4165                              SourceLocation StartLoc, SourceLocation IdLoc,
4166                              IdentifierInfo *Id, QualType T,
4167                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4168                              InClassInitStyle InitStyle) {
4169   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4170                                BW, Mutable, InitStyle);
4171 }
4172 
4173 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4174   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4175                                SourceLocation(), nullptr, QualType(), nullptr,
4176                                nullptr, false, ICIS_NoInit);
4177 }
4178 
4179 bool FieldDecl::isAnonymousStructOrUnion() const {
4180   if (!isImplicit() || getDeclName())
4181     return false;
4182 
4183   if (const auto *Record = getType()->getAs<RecordType>())
4184     return Record->getDecl()->isAnonymousStructOrUnion();
4185 
4186   return false;
4187 }
4188 
4189 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4190   assert(isBitField() && "not a bitfield");
4191   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4192 }
4193 
4194 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4195   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4196          getBitWidthValue(Ctx) == 0;
4197 }
4198 
4199 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4200   if (isZeroLengthBitField(Ctx))
4201     return true;
4202 
4203   // C++2a [intro.object]p7:
4204   //   An object has nonzero size if it
4205   //     -- is not a potentially-overlapping subobject, or
4206   if (!hasAttr<NoUniqueAddressAttr>())
4207     return false;
4208 
4209   //     -- is not of class type, or
4210   const auto *RT = getType()->getAs<RecordType>();
4211   if (!RT)
4212     return false;
4213   const RecordDecl *RD = RT->getDecl()->getDefinition();
4214   if (!RD) {
4215     assert(isInvalidDecl() && "valid field has incomplete type");
4216     return false;
4217   }
4218 
4219   //     -- [has] virtual member functions or virtual base classes, or
4220   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4221   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4222   if (!CXXRD->isEmpty())
4223     return false;
4224 
4225   // Otherwise, [...] the circumstances under which the object has zero size
4226   // are implementation-defined.
4227   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4228   // ABI will do.
4229   return true;
4230 }
4231 
4232 unsigned FieldDecl::getFieldIndex() const {
4233   const FieldDecl *Canonical = getCanonicalDecl();
4234   if (Canonical != this)
4235     return Canonical->getFieldIndex();
4236 
4237   if (CachedFieldIndex) return CachedFieldIndex - 1;
4238 
4239   unsigned Index = 0;
4240   const RecordDecl *RD = getParent()->getDefinition();
4241   assert(RD && "requested index for field of struct with no definition");
4242 
4243   for (auto *Field : RD->fields()) {
4244     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4245     ++Index;
4246   }
4247 
4248   assert(CachedFieldIndex && "failed to find field in parent");
4249   return CachedFieldIndex - 1;
4250 }
4251 
4252 SourceRange FieldDecl::getSourceRange() const {
4253   const Expr *FinalExpr = getInClassInitializer();
4254   if (!FinalExpr)
4255     FinalExpr = getBitWidth();
4256   if (FinalExpr)
4257     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4258   return DeclaratorDecl::getSourceRange();
4259 }
4260 
4261 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4262   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4263          "capturing type in non-lambda or captured record.");
4264   assert(InitStorage.getInt() == ISK_NoInit &&
4265          InitStorage.getPointer() == nullptr &&
4266          "bit width, initializer or captured type already set");
4267   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4268                                ISK_CapturedVLAType);
4269 }
4270 
4271 //===----------------------------------------------------------------------===//
4272 // TagDecl Implementation
4273 //===----------------------------------------------------------------------===//
4274 
4275 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4276                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4277                  SourceLocation StartL)
4278     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4279       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4280   assert((DK != Enum || TK == TTK_Enum) &&
4281          "EnumDecl not matched with TTK_Enum");
4282   setPreviousDecl(PrevDecl);
4283   setTagKind(TK);
4284   setCompleteDefinition(false);
4285   setBeingDefined(false);
4286   setEmbeddedInDeclarator(false);
4287   setFreeStanding(false);
4288   setCompleteDefinitionRequired(false);
4289 }
4290 
4291 SourceLocation TagDecl::getOuterLocStart() const {
4292   return getTemplateOrInnerLocStart(this);
4293 }
4294 
4295 SourceRange TagDecl::getSourceRange() const {
4296   SourceLocation RBraceLoc = BraceRange.getEnd();
4297   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4298   return SourceRange(getOuterLocStart(), E);
4299 }
4300 
4301 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4302 
4303 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4304   TypedefNameDeclOrQualifier = TDD;
4305   if (const Type *T = getTypeForDecl()) {
4306     (void)T;
4307     assert(T->isLinkageValid());
4308   }
4309   assert(isLinkageValid());
4310 }
4311 
4312 void TagDecl::startDefinition() {
4313   setBeingDefined(true);
4314 
4315   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4316     struct CXXRecordDecl::DefinitionData *Data =
4317       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4318     for (auto I : redecls())
4319       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4320   }
4321 }
4322 
4323 void TagDecl::completeDefinition() {
4324   assert((!isa<CXXRecordDecl>(this) ||
4325           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4326          "definition completed but not started");
4327 
4328   setCompleteDefinition(true);
4329   setBeingDefined(false);
4330 
4331   if (ASTMutationListener *L = getASTMutationListener())
4332     L->CompletedTagDefinition(this);
4333 }
4334 
4335 TagDecl *TagDecl::getDefinition() const {
4336   if (isCompleteDefinition())
4337     return const_cast<TagDecl *>(this);
4338 
4339   // If it's possible for us to have an out-of-date definition, check now.
4340   if (mayHaveOutOfDateDef()) {
4341     if (IdentifierInfo *II = getIdentifier()) {
4342       if (II->isOutOfDate()) {
4343         updateOutOfDate(*II);
4344       }
4345     }
4346   }
4347 
4348   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4349     return CXXRD->getDefinition();
4350 
4351   for (auto R : redecls())
4352     if (R->isCompleteDefinition())
4353       return R;
4354 
4355   return nullptr;
4356 }
4357 
4358 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4359   if (QualifierLoc) {
4360     // Make sure the extended qualifier info is allocated.
4361     if (!hasExtInfo())
4362       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4363     // Set qualifier info.
4364     getExtInfo()->QualifierLoc = QualifierLoc;
4365   } else {
4366     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4367     if (hasExtInfo()) {
4368       if (getExtInfo()->NumTemplParamLists == 0) {
4369         getASTContext().Deallocate(getExtInfo());
4370         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4371       }
4372       else
4373         getExtInfo()->QualifierLoc = QualifierLoc;
4374     }
4375   }
4376 }
4377 
4378 void TagDecl::setTemplateParameterListsInfo(
4379     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4380   assert(!TPLists.empty());
4381   // Make sure the extended decl info is allocated.
4382   if (!hasExtInfo())
4383     // Allocate external info struct.
4384     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4385   // Set the template parameter lists info.
4386   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4387 }
4388 
4389 //===----------------------------------------------------------------------===//
4390 // EnumDecl Implementation
4391 //===----------------------------------------------------------------------===//
4392 
4393 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4394                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4395                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4396     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4397   assert(Scoped || !ScopedUsingClassTag);
4398   IntegerType = nullptr;
4399   setNumPositiveBits(0);
4400   setNumNegativeBits(0);
4401   setScoped(Scoped);
4402   setScopedUsingClassTag(ScopedUsingClassTag);
4403   setFixed(Fixed);
4404   setHasODRHash(false);
4405   ODRHash = 0;
4406 }
4407 
4408 void EnumDecl::anchor() {}
4409 
4410 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4411                            SourceLocation StartLoc, SourceLocation IdLoc,
4412                            IdentifierInfo *Id,
4413                            EnumDecl *PrevDecl, bool IsScoped,
4414                            bool IsScopedUsingClassTag, bool IsFixed) {
4415   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4416                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4417   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4418   C.getTypeDeclType(Enum, PrevDecl);
4419   return Enum;
4420 }
4421 
4422 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4423   EnumDecl *Enum =
4424       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4425                            nullptr, nullptr, false, false, false);
4426   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4427   return Enum;
4428 }
4429 
4430 SourceRange EnumDecl::getIntegerTypeRange() const {
4431   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4432     return TI->getTypeLoc().getSourceRange();
4433   return SourceRange();
4434 }
4435 
4436 void EnumDecl::completeDefinition(QualType NewType,
4437                                   QualType NewPromotionType,
4438                                   unsigned NumPositiveBits,
4439                                   unsigned NumNegativeBits) {
4440   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4441   if (!IntegerType)
4442     IntegerType = NewType.getTypePtr();
4443   PromotionType = NewPromotionType;
4444   setNumPositiveBits(NumPositiveBits);
4445   setNumNegativeBits(NumNegativeBits);
4446   TagDecl::completeDefinition();
4447 }
4448 
4449 bool EnumDecl::isClosed() const {
4450   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4451     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4452   return true;
4453 }
4454 
4455 bool EnumDecl::isClosedFlag() const {
4456   return isClosed() && hasAttr<FlagEnumAttr>();
4457 }
4458 
4459 bool EnumDecl::isClosedNonFlag() const {
4460   return isClosed() && !hasAttr<FlagEnumAttr>();
4461 }
4462 
4463 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4464   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4465     return MSI->getTemplateSpecializationKind();
4466 
4467   return TSK_Undeclared;
4468 }
4469 
4470 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4471                                          SourceLocation PointOfInstantiation) {
4472   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4473   assert(MSI && "Not an instantiated member enumeration?");
4474   MSI->setTemplateSpecializationKind(TSK);
4475   if (TSK != TSK_ExplicitSpecialization &&
4476       PointOfInstantiation.isValid() &&
4477       MSI->getPointOfInstantiation().isInvalid())
4478     MSI->setPointOfInstantiation(PointOfInstantiation);
4479 }
4480 
4481 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4482   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4483     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4484       EnumDecl *ED = getInstantiatedFromMemberEnum();
4485       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4486         ED = NewED;
4487       return getDefinitionOrSelf(ED);
4488     }
4489   }
4490 
4491   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4492          "couldn't find pattern for enum instantiation");
4493   return nullptr;
4494 }
4495 
4496 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4497   if (SpecializationInfo)
4498     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4499 
4500   return nullptr;
4501 }
4502 
4503 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4504                                             TemplateSpecializationKind TSK) {
4505   assert(!SpecializationInfo && "Member enum is already a specialization");
4506   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4507 }
4508 
4509 unsigned EnumDecl::getODRHash() {
4510   if (hasODRHash())
4511     return ODRHash;
4512 
4513   class ODRHash Hash;
4514   Hash.AddEnumDecl(this);
4515   setHasODRHash(true);
4516   ODRHash = Hash.CalculateHash();
4517   return ODRHash;
4518 }
4519 
4520 SourceRange EnumDecl::getSourceRange() const {
4521   auto Res = TagDecl::getSourceRange();
4522   // Set end-point to enum-base, e.g. enum foo : ^bar
4523   if (auto *TSI = getIntegerTypeSourceInfo()) {
4524     // TagDecl doesn't know about the enum base.
4525     if (!getBraceRange().getEnd().isValid())
4526       Res.setEnd(TSI->getTypeLoc().getEndLoc());
4527   }
4528   return Res;
4529 }
4530 
4531 //===----------------------------------------------------------------------===//
4532 // RecordDecl Implementation
4533 //===----------------------------------------------------------------------===//
4534 
4535 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4536                        DeclContext *DC, SourceLocation StartLoc,
4537                        SourceLocation IdLoc, IdentifierInfo *Id,
4538                        RecordDecl *PrevDecl)
4539     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4540   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4541   setHasFlexibleArrayMember(false);
4542   setAnonymousStructOrUnion(false);
4543   setHasObjectMember(false);
4544   setHasVolatileMember(false);
4545   setHasLoadedFieldsFromExternalStorage(false);
4546   setNonTrivialToPrimitiveDefaultInitialize(false);
4547   setNonTrivialToPrimitiveCopy(false);
4548   setNonTrivialToPrimitiveDestroy(false);
4549   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4550   setHasNonTrivialToPrimitiveDestructCUnion(false);
4551   setHasNonTrivialToPrimitiveCopyCUnion(false);
4552   setParamDestroyedInCallee(false);
4553   setArgPassingRestrictions(APK_CanPassInRegs);
4554 }
4555 
4556 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4557                                SourceLocation StartLoc, SourceLocation IdLoc,
4558                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4559   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4560                                          StartLoc, IdLoc, Id, PrevDecl);
4561   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4562 
4563   C.getTypeDeclType(R, PrevDecl);
4564   return R;
4565 }
4566 
4567 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4568   RecordDecl *R =
4569       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4570                              SourceLocation(), nullptr, nullptr);
4571   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4572   return R;
4573 }
4574 
4575 bool RecordDecl::isInjectedClassName() const {
4576   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4577     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4578 }
4579 
4580 bool RecordDecl::isLambda() const {
4581   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4582     return RD->isLambda();
4583   return false;
4584 }
4585 
4586 bool RecordDecl::isCapturedRecord() const {
4587   return hasAttr<CapturedRecordAttr>();
4588 }
4589 
4590 void RecordDecl::setCapturedRecord() {
4591   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4592 }
4593 
4594 bool RecordDecl::isOrContainsUnion() const {
4595   if (isUnion())
4596     return true;
4597 
4598   if (const RecordDecl *Def = getDefinition()) {
4599     for (const FieldDecl *FD : Def->fields()) {
4600       const RecordType *RT = FD->getType()->getAs<RecordType>();
4601       if (RT && RT->getDecl()->isOrContainsUnion())
4602         return true;
4603     }
4604   }
4605 
4606   return false;
4607 }
4608 
4609 RecordDecl::field_iterator RecordDecl::field_begin() const {
4610   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4611     LoadFieldsFromExternalStorage();
4612 
4613   return field_iterator(decl_iterator(FirstDecl));
4614 }
4615 
4616 /// completeDefinition - Notes that the definition of this type is now
4617 /// complete.
4618 void RecordDecl::completeDefinition() {
4619   assert(!isCompleteDefinition() && "Cannot redefine record!");
4620   TagDecl::completeDefinition();
4621 
4622   ASTContext &Ctx = getASTContext();
4623 
4624   // Layouts are dumped when computed, so if we are dumping for all complete
4625   // types, we need to force usage to get types that wouldn't be used elsewhere.
4626   if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4627     (void)Ctx.getASTRecordLayout(this);
4628 }
4629 
4630 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4631 /// This which can be turned on with an attribute, pragma, or the
4632 /// -mms-bitfields command-line option.
4633 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4634   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4635 }
4636 
4637 void RecordDecl::LoadFieldsFromExternalStorage() const {
4638   ExternalASTSource *Source = getASTContext().getExternalSource();
4639   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4640 
4641   // Notify that we have a RecordDecl doing some initialization.
4642   ExternalASTSource::Deserializing TheFields(Source);
4643 
4644   SmallVector<Decl*, 64> Decls;
4645   setHasLoadedFieldsFromExternalStorage(true);
4646   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4647     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4648   }, Decls);
4649 
4650 #ifndef NDEBUG
4651   // Check that all decls we got were FieldDecls.
4652   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4653     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4654 #endif
4655 
4656   if (Decls.empty())
4657     return;
4658 
4659   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4660                                                  /*FieldsAlreadyLoaded=*/false);
4661 }
4662 
4663 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4664   ASTContext &Context = getASTContext();
4665   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4666       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4667   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4668     return false;
4669   const auto &NoSanitizeList = Context.getNoSanitizeList();
4670   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4671   // We may be able to relax some of these requirements.
4672   int ReasonToReject = -1;
4673   if (!CXXRD || CXXRD->isExternCContext())
4674     ReasonToReject = 0;  // is not C++.
4675   else if (CXXRD->hasAttr<PackedAttr>())
4676     ReasonToReject = 1;  // is packed.
4677   else if (CXXRD->isUnion())
4678     ReasonToReject = 2;  // is a union.
4679   else if (CXXRD->isTriviallyCopyable())
4680     ReasonToReject = 3;  // is trivially copyable.
4681   else if (CXXRD->hasTrivialDestructor())
4682     ReasonToReject = 4;  // has trivial destructor.
4683   else if (CXXRD->isStandardLayout())
4684     ReasonToReject = 5;  // is standard layout.
4685   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4686                                            "field-padding"))
4687     ReasonToReject = 6;  // is in an excluded file.
4688   else if (NoSanitizeList.containsType(
4689                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4690     ReasonToReject = 7;  // The type is excluded.
4691 
4692   if (EmitRemark) {
4693     if (ReasonToReject >= 0)
4694       Context.getDiagnostics().Report(
4695           getLocation(),
4696           diag::remark_sanitize_address_insert_extra_padding_rejected)
4697           << getQualifiedNameAsString() << ReasonToReject;
4698     else
4699       Context.getDiagnostics().Report(
4700           getLocation(),
4701           diag::remark_sanitize_address_insert_extra_padding_accepted)
4702           << getQualifiedNameAsString();
4703   }
4704   return ReasonToReject < 0;
4705 }
4706 
4707 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4708   for (const auto *I : fields()) {
4709     if (I->getIdentifier())
4710       return I;
4711 
4712     if (const auto *RT = I->getType()->getAs<RecordType>())
4713       if (const FieldDecl *NamedDataMember =
4714               RT->getDecl()->findFirstNamedDataMember())
4715         return NamedDataMember;
4716   }
4717 
4718   // We didn't find a named data member.
4719   return nullptr;
4720 }
4721 
4722 //===----------------------------------------------------------------------===//
4723 // BlockDecl Implementation
4724 //===----------------------------------------------------------------------===//
4725 
4726 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4727     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4728   setIsVariadic(false);
4729   setCapturesCXXThis(false);
4730   setBlockMissingReturnType(true);
4731   setIsConversionFromLambda(false);
4732   setDoesNotEscape(false);
4733   setCanAvoidCopyToHeap(false);
4734 }
4735 
4736 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4737   assert(!ParamInfo && "Already has param info!");
4738 
4739   // Zero params -> null pointer.
4740   if (!NewParamInfo.empty()) {
4741     NumParams = NewParamInfo.size();
4742     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4743     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4744   }
4745 }
4746 
4747 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4748                             bool CapturesCXXThis) {
4749   this->setCapturesCXXThis(CapturesCXXThis);
4750   this->NumCaptures = Captures.size();
4751 
4752   if (Captures.empty()) {
4753     this->Captures = nullptr;
4754     return;
4755   }
4756 
4757   this->Captures = Captures.copy(Context).data();
4758 }
4759 
4760 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4761   for (const auto &I : captures())
4762     // Only auto vars can be captured, so no redeclaration worries.
4763     if (I.getVariable() == variable)
4764       return true;
4765 
4766   return false;
4767 }
4768 
4769 SourceRange BlockDecl::getSourceRange() const {
4770   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4771 }
4772 
4773 //===----------------------------------------------------------------------===//
4774 // Other Decl Allocation/Deallocation Method Implementations
4775 //===----------------------------------------------------------------------===//
4776 
4777 void TranslationUnitDecl::anchor() {}
4778 
4779 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4780   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4781 }
4782 
4783 void PragmaCommentDecl::anchor() {}
4784 
4785 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4786                                              TranslationUnitDecl *DC,
4787                                              SourceLocation CommentLoc,
4788                                              PragmaMSCommentKind CommentKind,
4789                                              StringRef Arg) {
4790   PragmaCommentDecl *PCD =
4791       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4792           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4793   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4794   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4795   return PCD;
4796 }
4797 
4798 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4799                                                          unsigned ID,
4800                                                          unsigned ArgSize) {
4801   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4802       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4803 }
4804 
4805 void PragmaDetectMismatchDecl::anchor() {}
4806 
4807 PragmaDetectMismatchDecl *
4808 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4809                                  SourceLocation Loc, StringRef Name,
4810                                  StringRef Value) {
4811   size_t ValueStart = Name.size() + 1;
4812   PragmaDetectMismatchDecl *PDMD =
4813       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4814           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4815   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4816   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4817   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4818          Value.size());
4819   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4820   return PDMD;
4821 }
4822 
4823 PragmaDetectMismatchDecl *
4824 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4825                                              unsigned NameValueSize) {
4826   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4827       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4828 }
4829 
4830 void ExternCContextDecl::anchor() {}
4831 
4832 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4833                                                TranslationUnitDecl *DC) {
4834   return new (C, DC) ExternCContextDecl(DC);
4835 }
4836 
4837 void LabelDecl::anchor() {}
4838 
4839 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4840                              SourceLocation IdentL, IdentifierInfo *II) {
4841   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4842 }
4843 
4844 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4845                              SourceLocation IdentL, IdentifierInfo *II,
4846                              SourceLocation GnuLabelL) {
4847   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4848   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4849 }
4850 
4851 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4852   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4853                                SourceLocation());
4854 }
4855 
4856 void LabelDecl::setMSAsmLabel(StringRef Name) {
4857 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4858   memcpy(Buffer, Name.data(), Name.size());
4859   Buffer[Name.size()] = '\0';
4860   MSAsmName = Buffer;
4861 }
4862 
4863 void ValueDecl::anchor() {}
4864 
4865 bool ValueDecl::isWeak() const {
4866   auto *MostRecent = getMostRecentDecl();
4867   return MostRecent->hasAttr<WeakAttr>() ||
4868          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4869 }
4870 
4871 void ImplicitParamDecl::anchor() {}
4872 
4873 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4874                                              SourceLocation IdLoc,
4875                                              IdentifierInfo *Id, QualType Type,
4876                                              ImplicitParamKind ParamKind) {
4877   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4878 }
4879 
4880 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4881                                              ImplicitParamKind ParamKind) {
4882   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4883 }
4884 
4885 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4886                                                          unsigned ID) {
4887   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4888 }
4889 
4890 FunctionDecl *
4891 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4892                      const DeclarationNameInfo &NameInfo, QualType T,
4893                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
4894                      bool isInlineSpecified, bool hasWrittenPrototype,
4895                      ConstexprSpecKind ConstexprKind,
4896                      Expr *TrailingRequiresClause) {
4897   FunctionDecl *New = new (C, DC) FunctionDecl(
4898       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
4899       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
4900   New->setHasWrittenPrototype(hasWrittenPrototype);
4901   return New;
4902 }
4903 
4904 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4905   return new (C, ID) FunctionDecl(
4906       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4907       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
4908 }
4909 
4910 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4911   return new (C, DC) BlockDecl(DC, L);
4912 }
4913 
4914 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4915   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4916 }
4917 
4918 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4919     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4920       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4921 
4922 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4923                                    unsigned NumParams) {
4924   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4925       CapturedDecl(DC, NumParams);
4926 }
4927 
4928 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4929                                                unsigned NumParams) {
4930   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4931       CapturedDecl(nullptr, NumParams);
4932 }
4933 
4934 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4935 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4936 
4937 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4938 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4939 
4940 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4941                                            SourceLocation L,
4942                                            IdentifierInfo *Id, QualType T,
4943                                            Expr *E, const llvm::APSInt &V) {
4944   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4945 }
4946 
4947 EnumConstantDecl *
4948 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4949   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4950                                       QualType(), nullptr, llvm::APSInt());
4951 }
4952 
4953 void IndirectFieldDecl::anchor() {}
4954 
4955 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4956                                      SourceLocation L, DeclarationName N,
4957                                      QualType T,
4958                                      MutableArrayRef<NamedDecl *> CH)
4959     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4960       ChainingSize(CH.size()) {
4961   // In C++, indirect field declarations conflict with tag declarations in the
4962   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4963   if (C.getLangOpts().CPlusPlus)
4964     IdentifierNamespace |= IDNS_Tag;
4965 }
4966 
4967 IndirectFieldDecl *
4968 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4969                           IdentifierInfo *Id, QualType T,
4970                           llvm::MutableArrayRef<NamedDecl *> CH) {
4971   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4972 }
4973 
4974 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4975                                                          unsigned ID) {
4976   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4977                                        DeclarationName(), QualType(), None);
4978 }
4979 
4980 SourceRange EnumConstantDecl::getSourceRange() const {
4981   SourceLocation End = getLocation();
4982   if (Init)
4983     End = Init->getEndLoc();
4984   return SourceRange(getLocation(), End);
4985 }
4986 
4987 void TypeDecl::anchor() {}
4988 
4989 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4990                                  SourceLocation StartLoc, SourceLocation IdLoc,
4991                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4992   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4993 }
4994 
4995 void TypedefNameDecl::anchor() {}
4996 
4997 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4998   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4999     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5000     auto *ThisTypedef = this;
5001     if (AnyRedecl && OwningTypedef) {
5002       OwningTypedef = OwningTypedef->getCanonicalDecl();
5003       ThisTypedef = ThisTypedef->getCanonicalDecl();
5004     }
5005     if (OwningTypedef == ThisTypedef)
5006       return TT->getDecl();
5007   }
5008 
5009   return nullptr;
5010 }
5011 
5012 bool TypedefNameDecl::isTransparentTagSlow() const {
5013   auto determineIsTransparent = [&]() {
5014     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5015       if (auto *TD = TT->getDecl()) {
5016         if (TD->getName() != getName())
5017           return false;
5018         SourceLocation TTLoc = getLocation();
5019         SourceLocation TDLoc = TD->getLocation();
5020         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5021           return false;
5022         SourceManager &SM = getASTContext().getSourceManager();
5023         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5024       }
5025     }
5026     return false;
5027   };
5028 
5029   bool isTransparent = determineIsTransparent();
5030   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5031   return isTransparent;
5032 }
5033 
5034 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5035   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5036                                  nullptr, nullptr);
5037 }
5038 
5039 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5040                                      SourceLocation StartLoc,
5041                                      SourceLocation IdLoc, IdentifierInfo *Id,
5042                                      TypeSourceInfo *TInfo) {
5043   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5044 }
5045 
5046 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5047   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5048                                    SourceLocation(), nullptr, nullptr);
5049 }
5050 
5051 SourceRange TypedefDecl::getSourceRange() const {
5052   SourceLocation RangeEnd = getLocation();
5053   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5054     if (typeIsPostfix(TInfo->getType()))
5055       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5056   }
5057   return SourceRange(getBeginLoc(), RangeEnd);
5058 }
5059 
5060 SourceRange TypeAliasDecl::getSourceRange() const {
5061   SourceLocation RangeEnd = getBeginLoc();
5062   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5063     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5064   return SourceRange(getBeginLoc(), RangeEnd);
5065 }
5066 
5067 void FileScopeAsmDecl::anchor() {}
5068 
5069 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5070                                            StringLiteral *Str,
5071                                            SourceLocation AsmLoc,
5072                                            SourceLocation RParenLoc) {
5073   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5074 }
5075 
5076 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5077                                                        unsigned ID) {
5078   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5079                                       SourceLocation());
5080 }
5081 
5082 void EmptyDecl::anchor() {}
5083 
5084 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5085   return new (C, DC) EmptyDecl(DC, L);
5086 }
5087 
5088 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5089   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5090 }
5091 
5092 //===----------------------------------------------------------------------===//
5093 // ImportDecl Implementation
5094 //===----------------------------------------------------------------------===//
5095 
5096 /// Retrieve the number of module identifiers needed to name the given
5097 /// module.
5098 static unsigned getNumModuleIdentifiers(Module *Mod) {
5099   unsigned Result = 1;
5100   while (Mod->Parent) {
5101     Mod = Mod->Parent;
5102     ++Result;
5103   }
5104   return Result;
5105 }
5106 
5107 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5108                        Module *Imported,
5109                        ArrayRef<SourceLocation> IdentifierLocs)
5110     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5111       NextLocalImportAndComplete(nullptr, true) {
5112   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5113   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5114   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5115                           StoredLocs);
5116 }
5117 
5118 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5119                        Module *Imported, SourceLocation EndLoc)
5120     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5121       NextLocalImportAndComplete(nullptr, false) {
5122   *getTrailingObjects<SourceLocation>() = EndLoc;
5123 }
5124 
5125 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5126                                SourceLocation StartLoc, Module *Imported,
5127                                ArrayRef<SourceLocation> IdentifierLocs) {
5128   return new (C, DC,
5129               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5130       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5131 }
5132 
5133 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5134                                        SourceLocation StartLoc,
5135                                        Module *Imported,
5136                                        SourceLocation EndLoc) {
5137   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5138       ImportDecl(DC, StartLoc, Imported, EndLoc);
5139   Import->setImplicit();
5140   return Import;
5141 }
5142 
5143 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5144                                            unsigned NumLocations) {
5145   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5146       ImportDecl(EmptyShell());
5147 }
5148 
5149 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5150   if (!isImportComplete())
5151     return None;
5152 
5153   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5154   return llvm::makeArrayRef(StoredLocs,
5155                             getNumModuleIdentifiers(getImportedModule()));
5156 }
5157 
5158 SourceRange ImportDecl::getSourceRange() const {
5159   if (!isImportComplete())
5160     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5161 
5162   return SourceRange(getLocation(), getIdentifierLocs().back());
5163 }
5164 
5165 //===----------------------------------------------------------------------===//
5166 // ExportDecl Implementation
5167 //===----------------------------------------------------------------------===//
5168 
5169 void ExportDecl::anchor() {}
5170 
5171 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5172                                SourceLocation ExportLoc) {
5173   return new (C, DC) ExportDecl(DC, ExportLoc);
5174 }
5175 
5176 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5177   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5178 }
5179