1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Randstruct.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/Redeclarable.h" 36 #include "clang/AST/Stmt.h" 37 #include "clang/AST/TemplateBase.h" 38 #include "clang/AST/Type.h" 39 #include "clang/AST/TypeLoc.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/IdentifierTable.h" 42 #include "clang/Basic/LLVM.h" 43 #include "clang/Basic/LangOptions.h" 44 #include "clang/Basic/Linkage.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/NoSanitizeList.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/Sanitizers.h" 49 #include "clang/Basic/SourceLocation.h" 50 #include "clang/Basic/SourceManager.h" 51 #include "clang/Basic/Specifiers.h" 52 #include "clang/Basic/TargetCXXABI.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "clang/Basic/Visibility.h" 55 #include "llvm/ADT/APSInt.h" 56 #include "llvm/ADT/ArrayRef.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <optional> 71 #include <string> 72 #include <tuple> 73 #include <type_traits> 74 75 using namespace clang; 76 77 Decl *clang::getPrimaryMergedDecl(Decl *D) { 78 return D->getASTContext().getPrimaryMergedDecl(D); 79 } 80 81 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 82 SourceLocation Loc = this->Loc; 83 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 84 if (Loc.isValid()) { 85 Loc.print(OS, Context.getSourceManager()); 86 OS << ": "; 87 } 88 OS << Message; 89 90 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 91 OS << " '"; 92 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 93 OS << "'"; 94 } 95 96 OS << '\n'; 97 } 98 99 // Defined here so that it can be inlined into its direct callers. 100 bool Decl::isOutOfLine() const { 101 return !getLexicalDeclContext()->Equals(getDeclContext()); 102 } 103 104 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 105 : Decl(TranslationUnit, nullptr, SourceLocation()), 106 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 107 108 //===----------------------------------------------------------------------===// 109 // NamedDecl Implementation 110 //===----------------------------------------------------------------------===// 111 112 // Visibility rules aren't rigorously externally specified, but here 113 // are the basic principles behind what we implement: 114 // 115 // 1. An explicit visibility attribute is generally a direct expression 116 // of the user's intent and should be honored. Only the innermost 117 // visibility attribute applies. If no visibility attribute applies, 118 // global visibility settings are considered. 119 // 120 // 2. There is one caveat to the above: on or in a template pattern, 121 // an explicit visibility attribute is just a default rule, and 122 // visibility can be decreased by the visibility of template 123 // arguments. But this, too, has an exception: an attribute on an 124 // explicit specialization or instantiation causes all the visibility 125 // restrictions of the template arguments to be ignored. 126 // 127 // 3. A variable that does not otherwise have explicit visibility can 128 // be restricted by the visibility of its type. 129 // 130 // 4. A visibility restriction is explicit if it comes from an 131 // attribute (or something like it), not a global visibility setting. 132 // When emitting a reference to an external symbol, visibility 133 // restrictions are ignored unless they are explicit. 134 // 135 // 5. When computing the visibility of a non-type, including a 136 // non-type member of a class, only non-type visibility restrictions 137 // are considered: the 'visibility' attribute, global value-visibility 138 // settings, and a few special cases like __private_extern. 139 // 140 // 6. When computing the visibility of a type, including a type member 141 // of a class, only type visibility restrictions are considered: 142 // the 'type_visibility' attribute and global type-visibility settings. 143 // However, a 'visibility' attribute counts as a 'type_visibility' 144 // attribute on any declaration that only has the former. 145 // 146 // The visibility of a "secondary" entity, like a template argument, 147 // is computed using the kind of that entity, not the kind of the 148 // primary entity for which we are computing visibility. For example, 149 // the visibility of a specialization of either of these templates: 150 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 151 // template <class T, bool (&compare)(T, X)> class matcher; 152 // is restricted according to the type visibility of the argument 'T', 153 // the type visibility of 'bool(&)(T,X)', and the value visibility of 154 // the argument function 'compare'. That 'has_match' is a value 155 // and 'matcher' is a type only matters when looking for attributes 156 // and settings from the immediate context. 157 158 /// Does this computation kind permit us to consider additional 159 /// visibility settings from attributes and the like? 160 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 161 return computation.IgnoreExplicitVisibility; 162 } 163 164 /// Given an LVComputationKind, return one of the same type/value sort 165 /// that records that it already has explicit visibility. 166 static LVComputationKind 167 withExplicitVisibilityAlready(LVComputationKind Kind) { 168 Kind.IgnoreExplicitVisibility = true; 169 return Kind; 170 } 171 172 static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D, 173 LVComputationKind kind) { 174 assert(!kind.IgnoreExplicitVisibility && 175 "asking for explicit visibility when we shouldn't be"); 176 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 177 } 178 179 /// Is the given declaration a "type" or a "value" for the purposes of 180 /// visibility computation? 181 static bool usesTypeVisibility(const NamedDecl *D) { 182 return isa<TypeDecl>(D) || 183 isa<ClassTemplateDecl>(D) || 184 isa<ObjCInterfaceDecl>(D); 185 } 186 187 /// Does the given declaration have member specialization information, 188 /// and if so, is it an explicit specialization? 189 template <class T> 190 static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool> 191 isExplicitMemberSpecialization(const T *D) { 192 if (const MemberSpecializationInfo *member = 193 D->getMemberSpecializationInfo()) { 194 return member->isExplicitSpecialization(); 195 } 196 return false; 197 } 198 199 /// For templates, this question is easier: a member template can't be 200 /// explicitly instantiated, so there's a single bit indicating whether 201 /// or not this is an explicit member specialization. 202 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 203 return D->isMemberSpecialization(); 204 } 205 206 /// Given a visibility attribute, return the explicit visibility 207 /// associated with it. 208 template <class T> 209 static Visibility getVisibilityFromAttr(const T *attr) { 210 switch (attr->getVisibility()) { 211 case T::Default: 212 return DefaultVisibility; 213 case T::Hidden: 214 return HiddenVisibility; 215 case T::Protected: 216 return ProtectedVisibility; 217 } 218 llvm_unreachable("bad visibility kind"); 219 } 220 221 /// Return the explicit visibility of the given declaration. 222 static std::optional<Visibility> 223 getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) { 224 // If we're ultimately computing the visibility of a type, look for 225 // a 'type_visibility' attribute before looking for 'visibility'. 226 if (kind == NamedDecl::VisibilityForType) { 227 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 228 return getVisibilityFromAttr(A); 229 } 230 } 231 232 // If this declaration has an explicit visibility attribute, use it. 233 if (const auto *A = D->getAttr<VisibilityAttr>()) { 234 return getVisibilityFromAttr(A); 235 } 236 237 return std::nullopt; 238 } 239 240 LinkageInfo LinkageComputer::getLVForType(const Type &T, 241 LVComputationKind computation) { 242 if (computation.IgnoreAllVisibility) 243 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 244 return getTypeLinkageAndVisibility(&T); 245 } 246 247 /// Get the most restrictive linkage for the types in the given 248 /// template parameter list. For visibility purposes, template 249 /// parameters are part of the signature of a template. 250 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 251 const TemplateParameterList *Params, LVComputationKind computation) { 252 LinkageInfo LV; 253 for (const NamedDecl *P : *Params) { 254 // Template type parameters are the most common and never 255 // contribute to visibility, pack or not. 256 if (isa<TemplateTypeParmDecl>(P)) 257 continue; 258 259 // Non-type template parameters can be restricted by the value type, e.g. 260 // template <enum X> class A { ... }; 261 // We have to be careful here, though, because we can be dealing with 262 // dependent types. 263 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 264 // Handle the non-pack case first. 265 if (!NTTP->isExpandedParameterPack()) { 266 if (!NTTP->getType()->isDependentType()) { 267 LV.merge(getLVForType(*NTTP->getType(), computation)); 268 } 269 continue; 270 } 271 272 // Look at all the types in an expanded pack. 273 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 274 QualType type = NTTP->getExpansionType(i); 275 if (!type->isDependentType()) 276 LV.merge(getTypeLinkageAndVisibility(type)); 277 } 278 continue; 279 } 280 281 // Template template parameters can be restricted by their 282 // template parameters, recursively. 283 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 284 285 // Handle the non-pack case first. 286 if (!TTP->isExpandedParameterPack()) { 287 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 288 computation)); 289 continue; 290 } 291 292 // Look at all expansions in an expanded pack. 293 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 294 i != n; ++i) { 295 LV.merge(getLVForTemplateParameterList( 296 TTP->getExpansionTemplateParameters(i), computation)); 297 } 298 } 299 300 return LV; 301 } 302 303 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 304 const Decl *Ret = nullptr; 305 const DeclContext *DC = D->getDeclContext(); 306 while (DC->getDeclKind() != Decl::TranslationUnit) { 307 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 308 Ret = cast<Decl>(DC); 309 DC = DC->getParent(); 310 } 311 return Ret; 312 } 313 314 /// Get the most restrictive linkage for the types and 315 /// declarations in the given template argument list. 316 /// 317 /// Note that we don't take an LVComputationKind because we always 318 /// want to honor the visibility of template arguments in the same way. 319 LinkageInfo 320 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 321 LVComputationKind computation) { 322 LinkageInfo LV; 323 324 for (const TemplateArgument &Arg : Args) { 325 switch (Arg.getKind()) { 326 case TemplateArgument::Null: 327 case TemplateArgument::Integral: 328 case TemplateArgument::Expression: 329 continue; 330 331 case TemplateArgument::Type: 332 LV.merge(getLVForType(*Arg.getAsType(), computation)); 333 continue; 334 335 case TemplateArgument::Declaration: { 336 const NamedDecl *ND = Arg.getAsDecl(); 337 assert(!usesTypeVisibility(ND)); 338 LV.merge(getLVForDecl(ND, computation)); 339 continue; 340 } 341 342 case TemplateArgument::NullPtr: 343 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 344 continue; 345 346 case TemplateArgument::Template: 347 case TemplateArgument::TemplateExpansion: 348 if (TemplateDecl *Template = 349 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 350 LV.merge(getLVForDecl(Template, computation)); 351 continue; 352 353 case TemplateArgument::Pack: 354 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 355 continue; 356 } 357 llvm_unreachable("bad template argument kind"); 358 } 359 360 return LV; 361 } 362 363 LinkageInfo 364 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 365 LVComputationKind computation) { 366 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 367 } 368 369 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 370 const FunctionTemplateSpecializationInfo *specInfo) { 371 // Include visibility from the template parameters and arguments 372 // only if this is not an explicit instantiation or specialization 373 // with direct explicit visibility. (Implicit instantiations won't 374 // have a direct attribute.) 375 if (!specInfo->isExplicitInstantiationOrSpecialization()) 376 return true; 377 378 return !fn->hasAttr<VisibilityAttr>(); 379 } 380 381 /// Merge in template-related linkage and visibility for the given 382 /// function template specialization. 383 /// 384 /// We don't need a computation kind here because we can assume 385 /// LVForValue. 386 /// 387 /// \param[out] LV the computation to use for the parent 388 void LinkageComputer::mergeTemplateLV( 389 LinkageInfo &LV, const FunctionDecl *fn, 390 const FunctionTemplateSpecializationInfo *specInfo, 391 LVComputationKind computation) { 392 bool considerVisibility = 393 shouldConsiderTemplateVisibility(fn, specInfo); 394 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 // Merge information from the template declaration. 397 LinkageInfo tempLV = getLVForDecl(temp, computation); 398 // The linkage of the specialization should be consistent with the 399 // template declaration. 400 LV.setLinkage(tempLV.getLinkage()); 401 402 // Merge information from the template parameters. 403 LinkageInfo paramsLV = 404 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 405 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility); 406 407 // Merge information from the template arguments. 408 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 409 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 410 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 411 } 412 413 /// Does the given declaration have a direct visibility attribute 414 /// that would match the given rules? 415 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 416 LVComputationKind computation) { 417 if (computation.IgnoreAllVisibility) 418 return false; 419 420 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 421 D->hasAttr<VisibilityAttr>(); 422 } 423 424 /// Should we consider visibility associated with the template 425 /// arguments and parameters of the given class template specialization? 426 static bool shouldConsiderTemplateVisibility( 427 const ClassTemplateSpecializationDecl *spec, 428 LVComputationKind computation) { 429 // Include visibility from the template parameters and arguments 430 // only if this is not an explicit instantiation or specialization 431 // with direct explicit visibility (and note that implicit 432 // instantiations won't have a direct attribute). 433 // 434 // Furthermore, we want to ignore template parameters and arguments 435 // for an explicit specialization when computing the visibility of a 436 // member thereof with explicit visibility. 437 // 438 // This is a bit complex; let's unpack it. 439 // 440 // An explicit class specialization is an independent, top-level 441 // declaration. As such, if it or any of its members has an 442 // explicit visibility attribute, that must directly express the 443 // user's intent, and we should honor it. The same logic applies to 444 // an explicit instantiation of a member of such a thing. 445 446 // Fast path: if this is not an explicit instantiation or 447 // specialization, we always want to consider template-related 448 // visibility restrictions. 449 if (!spec->isExplicitInstantiationOrSpecialization()) 450 return true; 451 452 // This is the 'member thereof' check. 453 if (spec->isExplicitSpecialization() && 454 hasExplicitVisibilityAlready(computation)) 455 return false; 456 457 return !hasDirectVisibilityAttribute(spec, computation); 458 } 459 460 /// Merge in template-related linkage and visibility for the given 461 /// class template specialization. 462 void LinkageComputer::mergeTemplateLV( 463 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 464 LVComputationKind computation) { 465 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 466 467 // Merge information from the template parameters, but ignore 468 // visibility if we're only considering template arguments. 469 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 470 // Merge information from the template declaration. 471 LinkageInfo tempLV = getLVForDecl(temp, computation); 472 // The linkage of the specialization should be consistent with the 473 // template declaration. 474 LV.setLinkage(tempLV.getLinkage()); 475 476 LinkageInfo paramsLV = 477 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 478 LV.mergeMaybeWithVisibility(paramsLV, 479 considerVisibility && !hasExplicitVisibilityAlready(computation)); 480 481 // Merge information from the template arguments. We ignore 482 // template-argument visibility if we've got an explicit 483 // instantiation with a visibility attribute. 484 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 485 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 486 if (considerVisibility) 487 LV.mergeVisibility(argsLV); 488 LV.mergeExternalVisibility(argsLV); 489 } 490 491 /// Should we consider visibility associated with the template 492 /// arguments and parameters of the given variable template 493 /// specialization? As usual, follow class template specialization 494 /// logic up to initialization. 495 static bool shouldConsiderTemplateVisibility( 496 const VarTemplateSpecializationDecl *spec, 497 LVComputationKind computation) { 498 // Include visibility from the template parameters and arguments 499 // only if this is not an explicit instantiation or specialization 500 // with direct explicit visibility (and note that implicit 501 // instantiations won't have a direct attribute). 502 if (!spec->isExplicitInstantiationOrSpecialization()) 503 return true; 504 505 // An explicit variable specialization is an independent, top-level 506 // declaration. As such, if it has an explicit visibility attribute, 507 // that must directly express the user's intent, and we should honor 508 // it. 509 if (spec->isExplicitSpecialization() && 510 hasExplicitVisibilityAlready(computation)) 511 return false; 512 513 return !hasDirectVisibilityAttribute(spec, computation); 514 } 515 516 /// Merge in template-related linkage and visibility for the given 517 /// variable template specialization. As usual, follow class template 518 /// specialization logic up to initialization. 519 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 520 const VarTemplateSpecializationDecl *spec, 521 LVComputationKind computation) { 522 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 523 524 // Merge information from the template parameters, but ignore 525 // visibility if we're only considering template arguments. 526 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 527 LinkageInfo tempLV = 528 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 529 LV.mergeMaybeWithVisibility(tempLV, 530 considerVisibility && !hasExplicitVisibilityAlready(computation)); 531 532 // Merge information from the template arguments. We ignore 533 // template-argument visibility if we've got an explicit 534 // instantiation with a visibility attribute. 535 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 536 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 537 if (considerVisibility) 538 LV.mergeVisibility(argsLV); 539 LV.mergeExternalVisibility(argsLV); 540 } 541 542 static bool useInlineVisibilityHidden(const NamedDecl *D) { 543 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 544 const LangOptions &Opts = D->getASTContext().getLangOpts(); 545 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 546 return false; 547 548 const auto *FD = dyn_cast<FunctionDecl>(D); 549 if (!FD) 550 return false; 551 552 TemplateSpecializationKind TSK = TSK_Undeclared; 553 if (FunctionTemplateSpecializationInfo *spec 554 = FD->getTemplateSpecializationInfo()) { 555 TSK = spec->getTemplateSpecializationKind(); 556 } else if (MemberSpecializationInfo *MSI = 557 FD->getMemberSpecializationInfo()) { 558 TSK = MSI->getTemplateSpecializationKind(); 559 } 560 561 const FunctionDecl *Def = nullptr; 562 // InlineVisibilityHidden only applies to definitions, and 563 // isInlined() only gives meaningful answers on definitions 564 // anyway. 565 return TSK != TSK_ExplicitInstantiationDeclaration && 566 TSK != TSK_ExplicitInstantiationDefinition && 567 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 568 } 569 570 template <typename T> static bool isFirstInExternCContext(T *D) { 571 const T *First = D->getFirstDecl(); 572 return First->isInExternCContext(); 573 } 574 575 static bool isSingleLineLanguageLinkage(const Decl &D) { 576 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 577 if (!SD->hasBraces()) 578 return true; 579 return false; 580 } 581 582 /// Determine whether D is declared in the purview of a named module. 583 static bool isInModulePurview(const NamedDecl *D) { 584 if (auto *M = D->getOwningModule()) 585 return M->isModulePurview(); 586 return false; 587 } 588 589 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 590 // FIXME: Handle isModulePrivate. 591 switch (D->getModuleOwnershipKind()) { 592 case Decl::ModuleOwnershipKind::Unowned: 593 case Decl::ModuleOwnershipKind::ReachableWhenImported: 594 case Decl::ModuleOwnershipKind::ModulePrivate: 595 return false; 596 case Decl::ModuleOwnershipKind::Visible: 597 case Decl::ModuleOwnershipKind::VisibleWhenImported: 598 return isInModulePurview(D); 599 } 600 llvm_unreachable("unexpected module ownership kind"); 601 } 602 603 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 604 // (for the modules ts) Internal linkage declarations within a module 605 // interface unit are modeled as "module-internal linkage", which means that 606 // they have internal linkage formally but can be indirectly accessed from 607 // outside the module via inline functions and templates defined within the 608 // module. 609 if (isInModulePurview(D) && D->getASTContext().getLangOpts().ModulesTS) 610 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 611 612 return LinkageInfo::internal(); 613 } 614 615 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 616 // C++ Modules TS [basic.link]/6.8: 617 // - A name declared at namespace scope that does not have internal linkage 618 // by the previous rules and that is introduced by a non-exported 619 // declaration has module linkage. 620 // 621 // [basic.namespace.general]/p2 622 // A namespace is never attached to a named module and never has a name with 623 // module linkage. 624 if (isInModulePurview(D) && 625 !isExportedFromModuleInterfaceUnit( 626 cast<NamedDecl>(D->getCanonicalDecl())) && 627 !isa<NamespaceDecl>(D)) 628 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 629 630 return LinkageInfo::external(); 631 } 632 633 static StorageClass getStorageClass(const Decl *D) { 634 if (auto *TD = dyn_cast<TemplateDecl>(D)) 635 D = TD->getTemplatedDecl(); 636 if (D) { 637 if (auto *VD = dyn_cast<VarDecl>(D)) 638 return VD->getStorageClass(); 639 if (auto *FD = dyn_cast<FunctionDecl>(D)) 640 return FD->getStorageClass(); 641 } 642 return SC_None; 643 } 644 645 LinkageInfo 646 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 647 LVComputationKind computation, 648 bool IgnoreVarTypeLinkage) { 649 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 650 "Not a name having namespace scope"); 651 ASTContext &Context = D->getASTContext(); 652 653 // C++ [basic.link]p3: 654 // A name having namespace scope (3.3.6) has internal linkage if it 655 // is the name of 656 657 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 658 // - a variable, variable template, function, or function template 659 // that is explicitly declared static; or 660 // (This bullet corresponds to C99 6.2.2p3.) 661 return getInternalLinkageFor(D); 662 } 663 664 if (const auto *Var = dyn_cast<VarDecl>(D)) { 665 // - a non-template variable of non-volatile const-qualified type, unless 666 // - it is explicitly declared extern, or 667 // - it is inline or exported, or 668 // - it was previously declared and the prior declaration did not have 669 // internal linkage 670 // (There is no equivalent in C99.) 671 if (Context.getLangOpts().CPlusPlus && 672 Var->getType().isConstQualified() && 673 !Var->getType().isVolatileQualified() && 674 !Var->isInline() && 675 !isExportedFromModuleInterfaceUnit(Var) && 676 !isa<VarTemplateSpecializationDecl>(Var) && 677 !Var->getDescribedVarTemplate()) { 678 const VarDecl *PrevVar = Var->getPreviousDecl(); 679 if (PrevVar) 680 return getLVForDecl(PrevVar, computation); 681 682 if (Var->getStorageClass() != SC_Extern && 683 Var->getStorageClass() != SC_PrivateExtern && 684 !isSingleLineLanguageLinkage(*Var)) 685 return getInternalLinkageFor(Var); 686 } 687 688 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 689 PrevVar = PrevVar->getPreviousDecl()) { 690 if (PrevVar->getStorageClass() == SC_PrivateExtern && 691 Var->getStorageClass() == SC_None) 692 return getDeclLinkageAndVisibility(PrevVar); 693 // Explicitly declared static. 694 if (PrevVar->getStorageClass() == SC_Static) 695 return getInternalLinkageFor(Var); 696 } 697 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 698 // - a data member of an anonymous union. 699 const VarDecl *VD = IFD->getVarDecl(); 700 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 701 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 702 } 703 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 704 705 // FIXME: This gives internal linkage to names that should have no linkage 706 // (those not covered by [basic.link]p6). 707 if (D->isInAnonymousNamespace()) { 708 const auto *Var = dyn_cast<VarDecl>(D); 709 const auto *Func = dyn_cast<FunctionDecl>(D); 710 // FIXME: The check for extern "C" here is not justified by the standard 711 // wording, but we retain it from the pre-DR1113 model to avoid breaking 712 // code. 713 // 714 // C++11 [basic.link]p4: 715 // An unnamed namespace or a namespace declared directly or indirectly 716 // within an unnamed namespace has internal linkage. 717 if ((!Var || !isFirstInExternCContext(Var)) && 718 (!Func || !isFirstInExternCContext(Func))) 719 return getInternalLinkageFor(D); 720 } 721 722 // Set up the defaults. 723 724 // C99 6.2.2p5: 725 // If the declaration of an identifier for an object has file 726 // scope and no storage-class specifier, its linkage is 727 // external. 728 LinkageInfo LV = getExternalLinkageFor(D); 729 730 if (!hasExplicitVisibilityAlready(computation)) { 731 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 732 LV.mergeVisibility(*Vis, true); 733 } else { 734 // If we're declared in a namespace with a visibility attribute, 735 // use that namespace's visibility, and it still counts as explicit. 736 for (const DeclContext *DC = D->getDeclContext(); 737 !isa<TranslationUnitDecl>(DC); 738 DC = DC->getParent()) { 739 const auto *ND = dyn_cast<NamespaceDecl>(DC); 740 if (!ND) continue; 741 if (std::optional<Visibility> Vis = 742 getExplicitVisibility(ND, computation)) { 743 LV.mergeVisibility(*Vis, true); 744 break; 745 } 746 } 747 } 748 749 // Add in global settings if the above didn't give us direct visibility. 750 if (!LV.isVisibilityExplicit()) { 751 // Use global type/value visibility as appropriate. 752 Visibility globalVisibility = 753 computation.isValueVisibility() 754 ? Context.getLangOpts().getValueVisibilityMode() 755 : Context.getLangOpts().getTypeVisibilityMode(); 756 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 757 758 // If we're paying attention to global visibility, apply 759 // -finline-visibility-hidden if this is an inline method. 760 if (useInlineVisibilityHidden(D)) 761 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 762 } 763 } 764 765 // C++ [basic.link]p4: 766 767 // A name having namespace scope that has not been given internal linkage 768 // above and that is the name of 769 // [...bullets...] 770 // has its linkage determined as follows: 771 // - if the enclosing namespace has internal linkage, the name has 772 // internal linkage; [handled above] 773 // - otherwise, if the declaration of the name is attached to a named 774 // module and is not exported, the name has module linkage; 775 // - otherwise, the name has external linkage. 776 // LV is currently set up to handle the last two bullets. 777 // 778 // The bullets are: 779 780 // - a variable; or 781 if (const auto *Var = dyn_cast<VarDecl>(D)) { 782 // GCC applies the following optimization to variables and static 783 // data members, but not to functions: 784 // 785 // Modify the variable's LV by the LV of its type unless this is 786 // C or extern "C". This follows from [basic.link]p9: 787 // A type without linkage shall not be used as the type of a 788 // variable or function with external linkage unless 789 // - the entity has C language linkage, or 790 // - the entity is declared within an unnamed namespace, or 791 // - the entity is not used or is defined in the same 792 // translation unit. 793 // and [basic.link]p10: 794 // ...the types specified by all declarations referring to a 795 // given variable or function shall be identical... 796 // C does not have an equivalent rule. 797 // 798 // Ignore this if we've got an explicit attribute; the user 799 // probably knows what they're doing. 800 // 801 // Note that we don't want to make the variable non-external 802 // because of this, but unique-external linkage suits us. 803 804 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 805 !IgnoreVarTypeLinkage) { 806 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 807 if (!isExternallyVisible(TypeLV.getLinkage())) 808 return LinkageInfo::uniqueExternal(); 809 if (!LV.isVisibilityExplicit()) 810 LV.mergeVisibility(TypeLV); 811 } 812 813 if (Var->getStorageClass() == SC_PrivateExtern) 814 LV.mergeVisibility(HiddenVisibility, true); 815 816 // Note that Sema::MergeVarDecl already takes care of implementing 817 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 818 // to do it here. 819 820 // As per function and class template specializations (below), 821 // consider LV for the template and template arguments. We're at file 822 // scope, so we do not need to worry about nested specializations. 823 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 824 mergeTemplateLV(LV, spec, computation); 825 } 826 827 // - a function; or 828 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 829 // In theory, we can modify the function's LV by the LV of its 830 // type unless it has C linkage (see comment above about variables 831 // for justification). In practice, GCC doesn't do this, so it's 832 // just too painful to make work. 833 834 if (Function->getStorageClass() == SC_PrivateExtern) 835 LV.mergeVisibility(HiddenVisibility, true); 836 837 // OpenMP target declare device functions are not callable from the host so 838 // they should not be exported from the device image. This applies to all 839 // functions as the host-callable kernel functions are emitted at codegen. 840 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice && 841 ((Context.getTargetInfo().getTriple().isAMDGPU() || 842 Context.getTargetInfo().getTriple().isNVPTX()) || 843 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function))) 844 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 845 846 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 847 // merging storage classes and visibility attributes, so we don't have to 848 // look at previous decls in here. 849 850 // In C++, then if the type of the function uses a type with 851 // unique-external linkage, it's not legally usable from outside 852 // this translation unit. However, we should use the C linkage 853 // rules instead for extern "C" declarations. 854 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 855 // Only look at the type-as-written. Otherwise, deducing the return type 856 // of a function could change its linkage. 857 QualType TypeAsWritten = Function->getType(); 858 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 859 TypeAsWritten = TSI->getType(); 860 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 861 return LinkageInfo::uniqueExternal(); 862 } 863 864 // Consider LV from the template and the template arguments. 865 // We're at file scope, so we do not need to worry about nested 866 // specializations. 867 if (FunctionTemplateSpecializationInfo *specInfo 868 = Function->getTemplateSpecializationInfo()) { 869 mergeTemplateLV(LV, Function, specInfo, computation); 870 } 871 872 // - a named class (Clause 9), or an unnamed class defined in a 873 // typedef declaration in which the class has the typedef name 874 // for linkage purposes (7.1.3); or 875 // - a named enumeration (7.2), or an unnamed enumeration 876 // defined in a typedef declaration in which the enumeration 877 // has the typedef name for linkage purposes (7.1.3); or 878 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 879 // Unnamed tags have no linkage. 880 if (!Tag->hasNameForLinkage()) 881 return LinkageInfo::none(); 882 883 // If this is a class template specialization, consider the 884 // linkage of the template and template arguments. We're at file 885 // scope, so we do not need to worry about nested specializations. 886 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 887 mergeTemplateLV(LV, spec, computation); 888 } 889 890 // FIXME: This is not part of the C++ standard any more. 891 // - an enumerator belonging to an enumeration with external linkage; or 892 } else if (isa<EnumConstantDecl>(D)) { 893 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 894 computation); 895 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 896 return LinkageInfo::none(); 897 LV.merge(EnumLV); 898 899 // - a template 900 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 901 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 902 LinkageInfo tempLV = 903 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 904 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 905 906 // An unnamed namespace or a namespace declared directly or indirectly 907 // within an unnamed namespace has internal linkage. All other namespaces 908 // have external linkage. 909 // 910 // We handled names in anonymous namespaces above. 911 } else if (isa<NamespaceDecl>(D)) { 912 return LV; 913 914 // By extension, we assign external linkage to Objective-C 915 // interfaces. 916 } else if (isa<ObjCInterfaceDecl>(D)) { 917 // fallout 918 919 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 920 // A typedef declaration has linkage if it gives a type a name for 921 // linkage purposes. 922 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 923 return LinkageInfo::none(); 924 925 } else if (isa<MSGuidDecl>(D)) { 926 // A GUID behaves like an inline variable with external linkage. Fall 927 // through. 928 929 // Everything not covered here has no linkage. 930 } else { 931 return LinkageInfo::none(); 932 } 933 934 // If we ended up with non-externally-visible linkage, visibility should 935 // always be default. 936 if (!isExternallyVisible(LV.getLinkage())) 937 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 938 939 return LV; 940 } 941 942 LinkageInfo 943 LinkageComputer::getLVForClassMember(const NamedDecl *D, 944 LVComputationKind computation, 945 bool IgnoreVarTypeLinkage) { 946 // Only certain class members have linkage. Note that fields don't 947 // really have linkage, but it's convenient to say they do for the 948 // purposes of calculating linkage of pointer-to-data-member 949 // template arguments. 950 // 951 // Templates also don't officially have linkage, but since we ignore 952 // the C++ standard and look at template arguments when determining 953 // linkage and visibility of a template specialization, we might hit 954 // a template template argument that way. If we do, we need to 955 // consider its linkage. 956 if (!(isa<CXXMethodDecl>(D) || 957 isa<VarDecl>(D) || 958 isa<FieldDecl>(D) || 959 isa<IndirectFieldDecl>(D) || 960 isa<TagDecl>(D) || 961 isa<TemplateDecl>(D))) 962 return LinkageInfo::none(); 963 964 LinkageInfo LV; 965 966 // If we have an explicit visibility attribute, merge that in. 967 if (!hasExplicitVisibilityAlready(computation)) { 968 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) 969 LV.mergeVisibility(*Vis, true); 970 // If we're paying attention to global visibility, apply 971 // -finline-visibility-hidden if this is an inline method. 972 // 973 // Note that we do this before merging information about 974 // the class visibility. 975 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 976 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 977 } 978 979 // If this class member has an explicit visibility attribute, the only 980 // thing that can change its visibility is the template arguments, so 981 // only look for them when processing the class. 982 LVComputationKind classComputation = computation; 983 if (LV.isVisibilityExplicit()) 984 classComputation = withExplicitVisibilityAlready(computation); 985 986 LinkageInfo classLV = 987 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 988 // The member has the same linkage as the class. If that's not externally 989 // visible, we don't need to compute anything about the linkage. 990 // FIXME: If we're only computing linkage, can we bail out here? 991 if (!isExternallyVisible(classLV.getLinkage())) 992 return classLV; 993 994 995 // Otherwise, don't merge in classLV yet, because in certain cases 996 // we need to completely ignore the visibility from it. 997 998 // Specifically, if this decl exists and has an explicit attribute. 999 const NamedDecl *explicitSpecSuppressor = nullptr; 1000 1001 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 1002 // Only look at the type-as-written. Otherwise, deducing the return type 1003 // of a function could change its linkage. 1004 QualType TypeAsWritten = MD->getType(); 1005 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 1006 TypeAsWritten = TSI->getType(); 1007 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 1008 return LinkageInfo::uniqueExternal(); 1009 1010 // If this is a method template specialization, use the linkage for 1011 // the template parameters and arguments. 1012 if (FunctionTemplateSpecializationInfo *spec 1013 = MD->getTemplateSpecializationInfo()) { 1014 mergeTemplateLV(LV, MD, spec, computation); 1015 if (spec->isExplicitSpecialization()) { 1016 explicitSpecSuppressor = MD; 1017 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 1018 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 1019 } 1020 } else if (isExplicitMemberSpecialization(MD)) { 1021 explicitSpecSuppressor = MD; 1022 } 1023 1024 // OpenMP target declare device functions are not callable from the host so 1025 // they should not be exported from the device image. This applies to all 1026 // functions as the host-callable kernel functions are emitted at codegen. 1027 ASTContext &Context = D->getASTContext(); 1028 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice && 1029 ((Context.getTargetInfo().getTriple().isAMDGPU() || 1030 Context.getTargetInfo().getTriple().isNVPTX()) || 1031 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD))) 1032 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 1033 1034 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 1035 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1036 mergeTemplateLV(LV, spec, computation); 1037 if (spec->isExplicitSpecialization()) { 1038 explicitSpecSuppressor = spec; 1039 } else { 1040 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1041 if (isExplicitMemberSpecialization(temp)) { 1042 explicitSpecSuppressor = temp->getTemplatedDecl(); 1043 } 1044 } 1045 } else if (isExplicitMemberSpecialization(RD)) { 1046 explicitSpecSuppressor = RD; 1047 } 1048 1049 // Static data members. 1050 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1051 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1052 mergeTemplateLV(LV, spec, computation); 1053 1054 // Modify the variable's linkage by its type, but ignore the 1055 // type's visibility unless it's a definition. 1056 if (!IgnoreVarTypeLinkage) { 1057 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1058 // FIXME: If the type's linkage is not externally visible, we can 1059 // give this static data member UniqueExternalLinkage. 1060 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1061 LV.mergeVisibility(typeLV); 1062 LV.mergeExternalVisibility(typeLV); 1063 } 1064 1065 if (isExplicitMemberSpecialization(VD)) { 1066 explicitSpecSuppressor = VD; 1067 } 1068 1069 // Template members. 1070 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1071 bool considerVisibility = 1072 (!LV.isVisibilityExplicit() && 1073 !classLV.isVisibilityExplicit() && 1074 !hasExplicitVisibilityAlready(computation)); 1075 LinkageInfo tempLV = 1076 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1077 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1078 1079 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1080 if (isExplicitMemberSpecialization(redeclTemp)) { 1081 explicitSpecSuppressor = temp->getTemplatedDecl(); 1082 } 1083 } 1084 } 1085 1086 // We should never be looking for an attribute directly on a template. 1087 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1088 1089 // If this member is an explicit member specialization, and it has 1090 // an explicit attribute, ignore visibility from the parent. 1091 bool considerClassVisibility = true; 1092 if (explicitSpecSuppressor && 1093 // optimization: hasDVA() is true only with explicit visibility. 1094 LV.isVisibilityExplicit() && 1095 classLV.getVisibility() != DefaultVisibility && 1096 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1097 considerClassVisibility = false; 1098 } 1099 1100 // Finally, merge in information from the class. 1101 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1102 return LV; 1103 } 1104 1105 void NamedDecl::anchor() {} 1106 1107 bool NamedDecl::isLinkageValid() const { 1108 if (!hasCachedLinkage()) 1109 return true; 1110 1111 Linkage L = LinkageComputer{} 1112 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1113 .getLinkage(); 1114 return L == getCachedLinkage(); 1115 } 1116 1117 ReservedIdentifierStatus 1118 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1119 const IdentifierInfo *II = getIdentifier(); 1120 1121 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1122 // at lexing time. 1123 if (!II) 1124 return ReservedIdentifierStatus::NotReserved; 1125 1126 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1127 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) { 1128 // This name is only reserved at global scope. Check if this declaration 1129 // conflicts with a global scope declaration. 1130 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1131 return ReservedIdentifierStatus::NotReserved; 1132 1133 // C++ [dcl.link]/7: 1134 // Two declarations [conflict] if [...] one declares a function or 1135 // variable with C language linkage, and the other declares [...] a 1136 // variable that belongs to the global scope. 1137 // 1138 // Therefore names that are reserved at global scope are also reserved as 1139 // names of variables and functions with C language linkage. 1140 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1141 if (DC->isTranslationUnit()) 1142 return Status; 1143 if (auto *VD = dyn_cast<VarDecl>(this)) 1144 if (VD->isExternC()) 1145 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1146 if (auto *FD = dyn_cast<FunctionDecl>(this)) 1147 if (FD->isExternC()) 1148 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1149 return ReservedIdentifierStatus::NotReserved; 1150 } 1151 1152 return Status; 1153 } 1154 1155 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1156 StringRef name = getName(); 1157 if (name.empty()) return SFF_None; 1158 1159 if (name.front() == 'C') 1160 if (name == "CFStringCreateWithFormat" || 1161 name == "CFStringCreateWithFormatAndArguments" || 1162 name == "CFStringAppendFormat" || 1163 name == "CFStringAppendFormatAndArguments") 1164 return SFF_CFString; 1165 return SFF_None; 1166 } 1167 1168 Linkage NamedDecl::getLinkageInternal() const { 1169 // We don't care about visibility here, so ask for the cheapest 1170 // possible visibility analysis. 1171 return LinkageComputer{} 1172 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1173 .getLinkage(); 1174 } 1175 1176 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1177 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1178 } 1179 1180 static std::optional<Visibility> 1181 getExplicitVisibilityAux(const NamedDecl *ND, 1182 NamedDecl::ExplicitVisibilityKind kind, 1183 bool IsMostRecent) { 1184 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1185 1186 // Check the declaration itself first. 1187 if (std::optional<Visibility> V = getVisibilityOf(ND, kind)) 1188 return V; 1189 1190 // If this is a member class of a specialization of a class template 1191 // and the corresponding decl has explicit visibility, use that. 1192 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1193 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1194 if (InstantiatedFrom) 1195 return getVisibilityOf(InstantiatedFrom, kind); 1196 } 1197 1198 // If there wasn't explicit visibility there, and this is a 1199 // specialization of a class template, check for visibility 1200 // on the pattern. 1201 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1202 // Walk all the template decl till this point to see if there are 1203 // explicit visibility attributes. 1204 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1205 while (TD != nullptr) { 1206 auto Vis = getVisibilityOf(TD, kind); 1207 if (Vis != std::nullopt) 1208 return Vis; 1209 TD = TD->getPreviousDecl(); 1210 } 1211 return std::nullopt; 1212 } 1213 1214 // Use the most recent declaration. 1215 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1216 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1217 if (MostRecent != ND) 1218 return getExplicitVisibilityAux(MostRecent, kind, true); 1219 } 1220 1221 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1222 if (Var->isStaticDataMember()) { 1223 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1224 if (InstantiatedFrom) 1225 return getVisibilityOf(InstantiatedFrom, kind); 1226 } 1227 1228 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1229 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1230 kind); 1231 1232 return std::nullopt; 1233 } 1234 // Also handle function template specializations. 1235 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1236 // If the function is a specialization of a template with an 1237 // explicit visibility attribute, use that. 1238 if (FunctionTemplateSpecializationInfo *templateInfo 1239 = fn->getTemplateSpecializationInfo()) 1240 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1241 kind); 1242 1243 // If the function is a member of a specialization of a class template 1244 // and the corresponding decl has explicit visibility, use that. 1245 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1246 if (InstantiatedFrom) 1247 return getVisibilityOf(InstantiatedFrom, kind); 1248 1249 return std::nullopt; 1250 } 1251 1252 // The visibility of a template is stored in the templated decl. 1253 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1254 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1255 1256 return std::nullopt; 1257 } 1258 1259 std::optional<Visibility> 1260 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1261 return getExplicitVisibilityAux(this, kind, false); 1262 } 1263 1264 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1265 Decl *ContextDecl, 1266 LVComputationKind computation) { 1267 // This lambda has its linkage/visibility determined by its owner. 1268 const NamedDecl *Owner; 1269 if (!ContextDecl) 1270 Owner = dyn_cast<NamedDecl>(DC); 1271 else if (isa<ParmVarDecl>(ContextDecl)) 1272 Owner = 1273 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1274 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) { 1275 // Replace with the concept's owning decl, which is either a namespace or a 1276 // TU, so this needs a dyn_cast. 1277 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext()); 1278 } else { 1279 Owner = cast<NamedDecl>(ContextDecl); 1280 } 1281 1282 if (!Owner) 1283 return LinkageInfo::none(); 1284 1285 // If the owner has a deduced type, we need to skip querying the linkage and 1286 // visibility of that type, because it might involve this closure type. The 1287 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1288 // than NoLinkage when we don't strictly need to, which is benign. 1289 auto *VD = dyn_cast<VarDecl>(Owner); 1290 LinkageInfo OwnerLV = 1291 VD && VD->getType()->getContainedDeducedType() 1292 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1293 : getLVForDecl(Owner, computation); 1294 1295 // A lambda never formally has linkage. But if the owner is externally 1296 // visible, then the lambda is too. We apply the same rules to blocks. 1297 if (!isExternallyVisible(OwnerLV.getLinkage())) 1298 return LinkageInfo::none(); 1299 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1300 OwnerLV.isVisibilityExplicit()); 1301 } 1302 1303 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1304 LVComputationKind computation) { 1305 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1306 if (Function->isInAnonymousNamespace() && 1307 !isFirstInExternCContext(Function)) 1308 return getInternalLinkageFor(Function); 1309 1310 // This is a "void f();" which got merged with a file static. 1311 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1312 return getInternalLinkageFor(Function); 1313 1314 LinkageInfo LV; 1315 if (!hasExplicitVisibilityAlready(computation)) { 1316 if (std::optional<Visibility> Vis = 1317 getExplicitVisibility(Function, computation)) 1318 LV.mergeVisibility(*Vis, true); 1319 } 1320 1321 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1322 // merging storage classes and visibility attributes, so we don't have to 1323 // look at previous decls in here. 1324 1325 return LV; 1326 } 1327 1328 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1329 if (Var->hasExternalStorage()) { 1330 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1331 return getInternalLinkageFor(Var); 1332 1333 LinkageInfo LV; 1334 if (Var->getStorageClass() == SC_PrivateExtern) 1335 LV.mergeVisibility(HiddenVisibility, true); 1336 else if (!hasExplicitVisibilityAlready(computation)) { 1337 if (std::optional<Visibility> Vis = 1338 getExplicitVisibility(Var, computation)) 1339 LV.mergeVisibility(*Vis, true); 1340 } 1341 1342 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1343 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1344 if (PrevLV.getLinkage()) 1345 LV.setLinkage(PrevLV.getLinkage()); 1346 LV.mergeVisibility(PrevLV); 1347 } 1348 1349 return LV; 1350 } 1351 1352 if (!Var->isStaticLocal()) 1353 return LinkageInfo::none(); 1354 } 1355 1356 ASTContext &Context = D->getASTContext(); 1357 if (!Context.getLangOpts().CPlusPlus) 1358 return LinkageInfo::none(); 1359 1360 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1361 if (!OuterD || OuterD->isInvalidDecl()) 1362 return LinkageInfo::none(); 1363 1364 LinkageInfo LV; 1365 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1366 if (!BD->getBlockManglingNumber()) 1367 return LinkageInfo::none(); 1368 1369 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1370 BD->getBlockManglingContextDecl(), computation); 1371 } else { 1372 const auto *FD = cast<FunctionDecl>(OuterD); 1373 if (!FD->isInlined() && 1374 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1375 return LinkageInfo::none(); 1376 1377 // If a function is hidden by -fvisibility-inlines-hidden option and 1378 // is not explicitly attributed as a hidden function, 1379 // we should not make static local variables in the function hidden. 1380 LV = getLVForDecl(FD, computation); 1381 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1382 !LV.isVisibilityExplicit() && 1383 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1384 assert(cast<VarDecl>(D)->isStaticLocal()); 1385 // If this was an implicitly hidden inline method, check again for 1386 // explicit visibility on the parent class, and use that for static locals 1387 // if present. 1388 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1389 LV = getLVForDecl(MD->getParent(), computation); 1390 if (!LV.isVisibilityExplicit()) { 1391 Visibility globalVisibility = 1392 computation.isValueVisibility() 1393 ? Context.getLangOpts().getValueVisibilityMode() 1394 : Context.getLangOpts().getTypeVisibilityMode(); 1395 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1396 /*visibilityExplicit=*/false); 1397 } 1398 } 1399 } 1400 if (!isExternallyVisible(LV.getLinkage())) 1401 return LinkageInfo::none(); 1402 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1403 LV.isVisibilityExplicit()); 1404 } 1405 1406 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1407 LVComputationKind computation, 1408 bool IgnoreVarTypeLinkage) { 1409 // Internal_linkage attribute overrides other considerations. 1410 if (D->hasAttr<InternalLinkageAttr>()) 1411 return getInternalLinkageFor(D); 1412 1413 // Objective-C: treat all Objective-C declarations as having external 1414 // linkage. 1415 switch (D->getKind()) { 1416 default: 1417 break; 1418 1419 // Per C++ [basic.link]p2, only the names of objects, references, 1420 // functions, types, templates, namespaces, and values ever have linkage. 1421 // 1422 // Note that the name of a typedef, namespace alias, using declaration, 1423 // and so on are not the name of the corresponding type, namespace, or 1424 // declaration, so they do *not* have linkage. 1425 case Decl::ImplicitParam: 1426 case Decl::Label: 1427 case Decl::NamespaceAlias: 1428 case Decl::ParmVar: 1429 case Decl::Using: 1430 case Decl::UsingEnum: 1431 case Decl::UsingShadow: 1432 case Decl::UsingDirective: 1433 return LinkageInfo::none(); 1434 1435 case Decl::EnumConstant: 1436 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1437 if (D->getASTContext().getLangOpts().CPlusPlus) 1438 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1439 return LinkageInfo::visible_none(); 1440 1441 case Decl::Typedef: 1442 case Decl::TypeAlias: 1443 // A typedef declaration has linkage if it gives a type a name for 1444 // linkage purposes. 1445 if (!cast<TypedefNameDecl>(D) 1446 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1447 return LinkageInfo::none(); 1448 break; 1449 1450 case Decl::TemplateTemplateParm: // count these as external 1451 case Decl::NonTypeTemplateParm: 1452 case Decl::ObjCAtDefsField: 1453 case Decl::ObjCCategory: 1454 case Decl::ObjCCategoryImpl: 1455 case Decl::ObjCCompatibleAlias: 1456 case Decl::ObjCImplementation: 1457 case Decl::ObjCMethod: 1458 case Decl::ObjCProperty: 1459 case Decl::ObjCPropertyImpl: 1460 case Decl::ObjCProtocol: 1461 return getExternalLinkageFor(D); 1462 1463 case Decl::CXXRecord: { 1464 const auto *Record = cast<CXXRecordDecl>(D); 1465 if (Record->isLambda()) { 1466 if (Record->hasKnownLambdaInternalLinkage() || 1467 !Record->getLambdaManglingNumber()) { 1468 // This lambda has no mangling number, so it's internal. 1469 return getInternalLinkageFor(D); 1470 } 1471 1472 return getLVForClosure( 1473 Record->getDeclContext()->getRedeclContext(), 1474 Record->getLambdaContextDecl(), computation); 1475 } 1476 1477 break; 1478 } 1479 1480 case Decl::TemplateParamObject: { 1481 // The template parameter object can be referenced from anywhere its type 1482 // and value can be referenced. 1483 auto *TPO = cast<TemplateParamObjectDecl>(D); 1484 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1485 LV.merge(getLVForValue(TPO->getValue(), computation)); 1486 return LV; 1487 } 1488 } 1489 1490 // Handle linkage for namespace-scope names. 1491 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1492 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1493 1494 // C++ [basic.link]p5: 1495 // In addition, a member function, static data member, a named 1496 // class or enumeration of class scope, or an unnamed class or 1497 // enumeration defined in a class-scope typedef declaration such 1498 // that the class or enumeration has the typedef name for linkage 1499 // purposes (7.1.3), has external linkage if the name of the class 1500 // has external linkage. 1501 if (D->getDeclContext()->isRecord()) 1502 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1503 1504 // C++ [basic.link]p6: 1505 // The name of a function declared in block scope and the name of 1506 // an object declared by a block scope extern declaration have 1507 // linkage. If there is a visible declaration of an entity with 1508 // linkage having the same name and type, ignoring entities 1509 // declared outside the innermost enclosing namespace scope, the 1510 // block scope declaration declares that same entity and receives 1511 // the linkage of the previous declaration. If there is more than 1512 // one such matching entity, the program is ill-formed. Otherwise, 1513 // if no matching entity is found, the block scope entity receives 1514 // external linkage. 1515 if (D->getDeclContext()->isFunctionOrMethod()) 1516 return getLVForLocalDecl(D, computation); 1517 1518 // C++ [basic.link]p6: 1519 // Names not covered by these rules have no linkage. 1520 return LinkageInfo::none(); 1521 } 1522 1523 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1524 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1525 LVComputationKind computation) { 1526 // Internal_linkage attribute overrides other considerations. 1527 if (D->hasAttr<InternalLinkageAttr>()) 1528 return getInternalLinkageFor(D); 1529 1530 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1531 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1532 1533 if (std::optional<LinkageInfo> LI = lookup(D, computation)) 1534 return *LI; 1535 1536 LinkageInfo LV = computeLVForDecl(D, computation); 1537 if (D->hasCachedLinkage()) 1538 assert(D->getCachedLinkage() == LV.getLinkage()); 1539 1540 D->setCachedLinkage(LV.getLinkage()); 1541 cache(D, computation, LV); 1542 1543 #ifndef NDEBUG 1544 // In C (because of gnu inline) and in c++ with microsoft extensions an 1545 // static can follow an extern, so we can have two decls with different 1546 // linkages. 1547 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1548 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1549 return LV; 1550 1551 // We have just computed the linkage for this decl. By induction we know 1552 // that all other computed linkages match, check that the one we just 1553 // computed also does. 1554 NamedDecl *Old = nullptr; 1555 for (auto *I : D->redecls()) { 1556 auto *T = cast<NamedDecl>(I); 1557 if (T == D) 1558 continue; 1559 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1560 Old = T; 1561 break; 1562 } 1563 } 1564 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1565 #endif 1566 1567 return LV; 1568 } 1569 1570 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1571 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1572 ? NamedDecl::VisibilityForType 1573 : NamedDecl::VisibilityForValue; 1574 LVComputationKind CK(EK); 1575 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1576 ? CK.forLinkageOnly() 1577 : CK); 1578 } 1579 1580 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1581 if (isa<NamespaceDecl>(this)) 1582 // Namespaces never have module linkage. It is the entities within them 1583 // that [may] do. 1584 return nullptr; 1585 1586 Module *M = getOwningModule(); 1587 if (!M) 1588 return nullptr; 1589 1590 switch (M->Kind) { 1591 case Module::ModuleMapModule: 1592 // Module map modules have no special linkage semantics. 1593 return nullptr; 1594 1595 case Module::ModuleInterfaceUnit: 1596 case Module::ModulePartitionInterface: 1597 case Module::ModulePartitionImplementation: 1598 return M; 1599 1600 case Module::ModuleHeaderUnit: 1601 case Module::GlobalModuleFragment: { 1602 // External linkage declarations in the global module have no owning module 1603 // for linkage purposes. But internal linkage declarations in the global 1604 // module fragment of a particular module are owned by that module for 1605 // linkage purposes. 1606 // FIXME: p1815 removes the need for this distinction -- there are no 1607 // internal linkage declarations that need to be referred to from outside 1608 // this TU. 1609 if (IgnoreLinkage) 1610 return nullptr; 1611 bool InternalLinkage; 1612 if (auto *ND = dyn_cast<NamedDecl>(this)) 1613 InternalLinkage = !ND->hasExternalFormalLinkage(); 1614 else 1615 InternalLinkage = isInAnonymousNamespace(); 1616 return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent 1617 : nullptr; 1618 } 1619 1620 case Module::PrivateModuleFragment: 1621 // The private module fragment is part of its containing module for linkage 1622 // purposes. 1623 return M->Parent; 1624 } 1625 1626 llvm_unreachable("unknown module kind"); 1627 } 1628 1629 void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy&) const { 1630 OS << Name; 1631 } 1632 1633 void NamedDecl::printName(raw_ostream &OS) const { 1634 printName(OS, getASTContext().getPrintingPolicy()); 1635 } 1636 1637 std::string NamedDecl::getQualifiedNameAsString() const { 1638 std::string QualName; 1639 llvm::raw_string_ostream OS(QualName); 1640 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1641 return QualName; 1642 } 1643 1644 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1645 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1646 } 1647 1648 void NamedDecl::printQualifiedName(raw_ostream &OS, 1649 const PrintingPolicy &P) const { 1650 if (getDeclContext()->isFunctionOrMethod()) { 1651 // We do not print '(anonymous)' for function parameters without name. 1652 printName(OS, P); 1653 return; 1654 } 1655 printNestedNameSpecifier(OS, P); 1656 if (getDeclName()) 1657 OS << *this; 1658 else { 1659 // Give the printName override a chance to pick a different name before we 1660 // fall back to "(anonymous)". 1661 SmallString<64> NameBuffer; 1662 llvm::raw_svector_ostream NameOS(NameBuffer); 1663 printName(NameOS, P); 1664 if (NameBuffer.empty()) 1665 OS << "(anonymous)"; 1666 else 1667 OS << NameBuffer; 1668 } 1669 } 1670 1671 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1672 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1673 } 1674 1675 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1676 const PrintingPolicy &P) const { 1677 const DeclContext *Ctx = getDeclContext(); 1678 1679 // For ObjC methods and properties, look through categories and use the 1680 // interface as context. 1681 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1682 if (auto *ID = MD->getClassInterface()) 1683 Ctx = ID; 1684 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1685 if (auto *MD = PD->getGetterMethodDecl()) 1686 if (auto *ID = MD->getClassInterface()) 1687 Ctx = ID; 1688 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1689 if (auto *CI = ID->getContainingInterface()) 1690 Ctx = CI; 1691 } 1692 1693 if (Ctx->isFunctionOrMethod()) 1694 return; 1695 1696 using ContextsTy = SmallVector<const DeclContext *, 8>; 1697 ContextsTy Contexts; 1698 1699 // Collect named contexts. 1700 DeclarationName NameInScope = getDeclName(); 1701 for (; Ctx; Ctx = Ctx->getParent()) { 1702 // Suppress anonymous namespace if requested. 1703 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1704 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1705 continue; 1706 1707 // Suppress inline namespace if it doesn't make the result ambiguous. 1708 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1709 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1710 continue; 1711 1712 // Skip non-named contexts such as linkage specifications and ExportDecls. 1713 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1714 if (!ND) 1715 continue; 1716 1717 Contexts.push_back(Ctx); 1718 NameInScope = ND->getDeclName(); 1719 } 1720 1721 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1722 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1723 OS << Spec->getName(); 1724 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1725 printTemplateArgumentList( 1726 OS, TemplateArgs.asArray(), P, 1727 Spec->getSpecializedTemplate()->getTemplateParameters()); 1728 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1729 if (ND->isAnonymousNamespace()) { 1730 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1731 : "(anonymous namespace)"); 1732 } 1733 else 1734 OS << *ND; 1735 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1736 if (!RD->getIdentifier()) 1737 OS << "(anonymous " << RD->getKindName() << ')'; 1738 else 1739 OS << *RD; 1740 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1741 const FunctionProtoType *FT = nullptr; 1742 if (FD->hasWrittenPrototype()) 1743 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1744 1745 OS << *FD << '('; 1746 if (FT) { 1747 unsigned NumParams = FD->getNumParams(); 1748 for (unsigned i = 0; i < NumParams; ++i) { 1749 if (i) 1750 OS << ", "; 1751 OS << FD->getParamDecl(i)->getType().stream(P); 1752 } 1753 1754 if (FT->isVariadic()) { 1755 if (NumParams > 0) 1756 OS << ", "; 1757 OS << "..."; 1758 } 1759 } 1760 OS << ')'; 1761 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1762 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1763 // enumerator is declared in the scope that immediately contains 1764 // the enum-specifier. Each scoped enumerator is declared in the 1765 // scope of the enumeration. 1766 // For the case of unscoped enumerator, do not include in the qualified 1767 // name any information about its enum enclosing scope, as its visibility 1768 // is global. 1769 if (ED->isScoped()) 1770 OS << *ED; 1771 else 1772 continue; 1773 } else { 1774 OS << *cast<NamedDecl>(DC); 1775 } 1776 OS << "::"; 1777 } 1778 } 1779 1780 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1781 const PrintingPolicy &Policy, 1782 bool Qualified) const { 1783 if (Qualified) 1784 printQualifiedName(OS, Policy); 1785 else 1786 printName(OS, Policy); 1787 } 1788 1789 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1790 return true; 1791 } 1792 static bool isRedeclarableImpl(...) { return false; } 1793 static bool isRedeclarable(Decl::Kind K) { 1794 switch (K) { 1795 #define DECL(Type, Base) \ 1796 case Decl::Type: \ 1797 return isRedeclarableImpl((Type##Decl *)nullptr); 1798 #define ABSTRACT_DECL(DECL) 1799 #include "clang/AST/DeclNodes.inc" 1800 } 1801 llvm_unreachable("unknown decl kind"); 1802 } 1803 1804 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1805 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1806 1807 // Never replace one imported declaration with another; we need both results 1808 // when re-exporting. 1809 if (OldD->isFromASTFile() && isFromASTFile()) 1810 return false; 1811 1812 // A kind mismatch implies that the declaration is not replaced. 1813 if (OldD->getKind() != getKind()) 1814 return false; 1815 1816 // For method declarations, we never replace. (Why?) 1817 if (isa<ObjCMethodDecl>(this)) 1818 return false; 1819 1820 // For parameters, pick the newer one. This is either an error or (in 1821 // Objective-C) permitted as an extension. 1822 if (isa<ParmVarDecl>(this)) 1823 return true; 1824 1825 // Inline namespaces can give us two declarations with the same 1826 // name and kind in the same scope but different contexts; we should 1827 // keep both declarations in this case. 1828 if (!this->getDeclContext()->getRedeclContext()->Equals( 1829 OldD->getDeclContext()->getRedeclContext())) 1830 return false; 1831 1832 // Using declarations can be replaced if they import the same name from the 1833 // same context. 1834 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1835 ASTContext &Context = getASTContext(); 1836 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1837 Context.getCanonicalNestedNameSpecifier( 1838 cast<UsingDecl>(OldD)->getQualifier()); 1839 } 1840 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1841 ASTContext &Context = getASTContext(); 1842 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1843 Context.getCanonicalNestedNameSpecifier( 1844 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1845 } 1846 1847 if (isRedeclarable(getKind())) { 1848 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1849 return false; 1850 1851 if (IsKnownNewer) 1852 return true; 1853 1854 // Check whether this is actually newer than OldD. We want to keep the 1855 // newer declaration. This loop will usually only iterate once, because 1856 // OldD is usually the previous declaration. 1857 for (auto *D : redecls()) { 1858 if (D == OldD) 1859 break; 1860 1861 // If we reach the canonical declaration, then OldD is not actually older 1862 // than this one. 1863 // 1864 // FIXME: In this case, we should not add this decl to the lookup table. 1865 if (D->isCanonicalDecl()) 1866 return false; 1867 } 1868 1869 // It's a newer declaration of the same kind of declaration in the same 1870 // scope: we want this decl instead of the existing one. 1871 return true; 1872 } 1873 1874 // In all other cases, we need to keep both declarations in case they have 1875 // different visibility. Any attempt to use the name will result in an 1876 // ambiguity if more than one is visible. 1877 return false; 1878 } 1879 1880 bool NamedDecl::hasLinkage() const { 1881 return getFormalLinkage() != NoLinkage; 1882 } 1883 1884 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1885 NamedDecl *ND = this; 1886 if (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1887 ND = UD->getTargetDecl(); 1888 1889 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1890 return AD->getClassInterface(); 1891 1892 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1893 return AD->getNamespace(); 1894 1895 return ND; 1896 } 1897 1898 bool NamedDecl::isCXXInstanceMember() const { 1899 if (!isCXXClassMember()) 1900 return false; 1901 1902 const NamedDecl *D = this; 1903 if (isa<UsingShadowDecl>(D)) 1904 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1905 1906 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1907 return true; 1908 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1909 return MD->isInstance(); 1910 return false; 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // DeclaratorDecl Implementation 1915 //===----------------------------------------------------------------------===// 1916 1917 template <typename DeclT> 1918 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1919 if (decl->getNumTemplateParameterLists() > 0) 1920 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1921 return decl->getInnerLocStart(); 1922 } 1923 1924 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1925 TypeSourceInfo *TSI = getTypeSourceInfo(); 1926 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1927 return SourceLocation(); 1928 } 1929 1930 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1931 TypeSourceInfo *TSI = getTypeSourceInfo(); 1932 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1933 return SourceLocation(); 1934 } 1935 1936 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1937 if (QualifierLoc) { 1938 // Make sure the extended decl info is allocated. 1939 if (!hasExtInfo()) { 1940 // Save (non-extended) type source info pointer. 1941 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1942 // Allocate external info struct. 1943 DeclInfo = new (getASTContext()) ExtInfo; 1944 // Restore savedTInfo into (extended) decl info. 1945 getExtInfo()->TInfo = savedTInfo; 1946 } 1947 // Set qualifier info. 1948 getExtInfo()->QualifierLoc = QualifierLoc; 1949 } else if (hasExtInfo()) { 1950 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1951 getExtInfo()->QualifierLoc = QualifierLoc; 1952 } 1953 } 1954 1955 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1956 assert(TrailingRequiresClause); 1957 // Make sure the extended decl info is allocated. 1958 if (!hasExtInfo()) { 1959 // Save (non-extended) type source info pointer. 1960 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1961 // Allocate external info struct. 1962 DeclInfo = new (getASTContext()) ExtInfo; 1963 // Restore savedTInfo into (extended) decl info. 1964 getExtInfo()->TInfo = savedTInfo; 1965 } 1966 // Set requires clause info. 1967 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1968 } 1969 1970 void DeclaratorDecl::setTemplateParameterListsInfo( 1971 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1972 assert(!TPLists.empty()); 1973 // Make sure the extended decl info is allocated. 1974 if (!hasExtInfo()) { 1975 // Save (non-extended) type source info pointer. 1976 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1977 // Allocate external info struct. 1978 DeclInfo = new (getASTContext()) ExtInfo; 1979 // Restore savedTInfo into (extended) decl info. 1980 getExtInfo()->TInfo = savedTInfo; 1981 } 1982 // Set the template parameter lists info. 1983 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1984 } 1985 1986 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1987 return getTemplateOrInnerLocStart(this); 1988 } 1989 1990 // Helper function: returns true if QT is or contains a type 1991 // having a postfix component. 1992 static bool typeIsPostfix(QualType QT) { 1993 while (true) { 1994 const Type* T = QT.getTypePtr(); 1995 switch (T->getTypeClass()) { 1996 default: 1997 return false; 1998 case Type::Pointer: 1999 QT = cast<PointerType>(T)->getPointeeType(); 2000 break; 2001 case Type::BlockPointer: 2002 QT = cast<BlockPointerType>(T)->getPointeeType(); 2003 break; 2004 case Type::MemberPointer: 2005 QT = cast<MemberPointerType>(T)->getPointeeType(); 2006 break; 2007 case Type::LValueReference: 2008 case Type::RValueReference: 2009 QT = cast<ReferenceType>(T)->getPointeeType(); 2010 break; 2011 case Type::PackExpansion: 2012 QT = cast<PackExpansionType>(T)->getPattern(); 2013 break; 2014 case Type::Paren: 2015 case Type::ConstantArray: 2016 case Type::DependentSizedArray: 2017 case Type::IncompleteArray: 2018 case Type::VariableArray: 2019 case Type::FunctionProto: 2020 case Type::FunctionNoProto: 2021 return true; 2022 } 2023 } 2024 } 2025 2026 SourceRange DeclaratorDecl::getSourceRange() const { 2027 SourceLocation RangeEnd = getLocation(); 2028 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 2029 // If the declaration has no name or the type extends past the name take the 2030 // end location of the type. 2031 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 2032 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 2033 } 2034 return SourceRange(getOuterLocStart(), RangeEnd); 2035 } 2036 2037 void QualifierInfo::setTemplateParameterListsInfo( 2038 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 2039 // Free previous template parameters (if any). 2040 if (NumTemplParamLists > 0) { 2041 Context.Deallocate(TemplParamLists); 2042 TemplParamLists = nullptr; 2043 NumTemplParamLists = 0; 2044 } 2045 // Set info on matched template parameter lists (if any). 2046 if (!TPLists.empty()) { 2047 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 2048 NumTemplParamLists = TPLists.size(); 2049 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 2050 } 2051 } 2052 2053 //===----------------------------------------------------------------------===// 2054 // VarDecl Implementation 2055 //===----------------------------------------------------------------------===// 2056 2057 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 2058 switch (SC) { 2059 case SC_None: break; 2060 case SC_Auto: return "auto"; 2061 case SC_Extern: return "extern"; 2062 case SC_PrivateExtern: return "__private_extern__"; 2063 case SC_Register: return "register"; 2064 case SC_Static: return "static"; 2065 } 2066 2067 llvm_unreachable("Invalid storage class"); 2068 } 2069 2070 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2071 SourceLocation StartLoc, SourceLocation IdLoc, 2072 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2073 StorageClass SC) 2074 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2075 redeclarable_base(C) { 2076 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2077 "VarDeclBitfields too large!"); 2078 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2079 "ParmVarDeclBitfields too large!"); 2080 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2081 "NonParmVarDeclBitfields too large!"); 2082 AllBits = 0; 2083 VarDeclBits.SClass = SC; 2084 // Everything else is implicitly initialized to false. 2085 } 2086 2087 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL, 2088 SourceLocation IdL, const IdentifierInfo *Id, 2089 QualType T, TypeSourceInfo *TInfo, StorageClass S) { 2090 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2091 } 2092 2093 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2094 return new (C, ID) 2095 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2096 QualType(), nullptr, SC_None); 2097 } 2098 2099 void VarDecl::setStorageClass(StorageClass SC) { 2100 assert(isLegalForVariable(SC)); 2101 VarDeclBits.SClass = SC; 2102 } 2103 2104 VarDecl::TLSKind VarDecl::getTLSKind() const { 2105 switch (VarDeclBits.TSCSpec) { 2106 case TSCS_unspecified: 2107 if (!hasAttr<ThreadAttr>() && 2108 !(getASTContext().getLangOpts().OpenMPUseTLS && 2109 getASTContext().getTargetInfo().isTLSSupported() && 2110 hasAttr<OMPThreadPrivateDeclAttr>())) 2111 return TLS_None; 2112 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2113 LangOptions::MSVC2015)) || 2114 hasAttr<OMPThreadPrivateDeclAttr>()) 2115 ? TLS_Dynamic 2116 : TLS_Static; 2117 case TSCS___thread: // Fall through. 2118 case TSCS__Thread_local: 2119 return TLS_Static; 2120 case TSCS_thread_local: 2121 return TLS_Dynamic; 2122 } 2123 llvm_unreachable("Unknown thread storage class specifier!"); 2124 } 2125 2126 SourceRange VarDecl::getSourceRange() const { 2127 if (const Expr *Init = getInit()) { 2128 SourceLocation InitEnd = Init->getEndLoc(); 2129 // If Init is implicit, ignore its source range and fallback on 2130 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2131 if (InitEnd.isValid() && InitEnd != getLocation()) 2132 return SourceRange(getOuterLocStart(), InitEnd); 2133 } 2134 return DeclaratorDecl::getSourceRange(); 2135 } 2136 2137 template<typename T> 2138 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2139 // C++ [dcl.link]p1: All function types, function names with external linkage, 2140 // and variable names with external linkage have a language linkage. 2141 if (!D.hasExternalFormalLinkage()) 2142 return NoLanguageLinkage; 2143 2144 // Language linkage is a C++ concept, but saying that everything else in C has 2145 // C language linkage fits the implementation nicely. 2146 ASTContext &Context = D.getASTContext(); 2147 if (!Context.getLangOpts().CPlusPlus) 2148 return CLanguageLinkage; 2149 2150 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2151 // language linkage of the names of class members and the function type of 2152 // class member functions. 2153 const DeclContext *DC = D.getDeclContext(); 2154 if (DC->isRecord()) 2155 return CXXLanguageLinkage; 2156 2157 // If the first decl is in an extern "C" context, any other redeclaration 2158 // will have C language linkage. If the first one is not in an extern "C" 2159 // context, we would have reported an error for any other decl being in one. 2160 if (isFirstInExternCContext(&D)) 2161 return CLanguageLinkage; 2162 return CXXLanguageLinkage; 2163 } 2164 2165 template<typename T> 2166 static bool isDeclExternC(const T &D) { 2167 // Since the context is ignored for class members, they can only have C++ 2168 // language linkage or no language linkage. 2169 const DeclContext *DC = D.getDeclContext(); 2170 if (DC->isRecord()) { 2171 assert(D.getASTContext().getLangOpts().CPlusPlus); 2172 return false; 2173 } 2174 2175 return D.getLanguageLinkage() == CLanguageLinkage; 2176 } 2177 2178 LanguageLinkage VarDecl::getLanguageLinkage() const { 2179 return getDeclLanguageLinkage(*this); 2180 } 2181 2182 bool VarDecl::isExternC() const { 2183 return isDeclExternC(*this); 2184 } 2185 2186 bool VarDecl::isInExternCContext() const { 2187 return getLexicalDeclContext()->isExternCContext(); 2188 } 2189 2190 bool VarDecl::isInExternCXXContext() const { 2191 return getLexicalDeclContext()->isExternCXXContext(); 2192 } 2193 2194 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2195 2196 VarDecl::DefinitionKind 2197 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2198 if (isThisDeclarationADemotedDefinition()) 2199 return DeclarationOnly; 2200 2201 // C++ [basic.def]p2: 2202 // A declaration is a definition unless [...] it contains the 'extern' 2203 // specifier or a linkage-specification and neither an initializer [...], 2204 // it declares a non-inline static data member in a class declaration [...], 2205 // it declares a static data member outside a class definition and the variable 2206 // was defined within the class with the constexpr specifier [...], 2207 // C++1y [temp.expl.spec]p15: 2208 // An explicit specialization of a static data member or an explicit 2209 // specialization of a static data member template is a definition if the 2210 // declaration includes an initializer; otherwise, it is a declaration. 2211 // 2212 // FIXME: How do you declare (but not define) a partial specialization of 2213 // a static data member template outside the containing class? 2214 if (isStaticDataMember()) { 2215 if (isOutOfLine() && 2216 !(getCanonicalDecl()->isInline() && 2217 getCanonicalDecl()->isConstexpr()) && 2218 (hasInit() || 2219 // If the first declaration is out-of-line, this may be an 2220 // instantiation of an out-of-line partial specialization of a variable 2221 // template for which we have not yet instantiated the initializer. 2222 (getFirstDecl()->isOutOfLine() 2223 ? getTemplateSpecializationKind() == TSK_Undeclared 2224 : getTemplateSpecializationKind() != 2225 TSK_ExplicitSpecialization) || 2226 isa<VarTemplatePartialSpecializationDecl>(this))) 2227 return Definition; 2228 if (!isOutOfLine() && isInline()) 2229 return Definition; 2230 return DeclarationOnly; 2231 } 2232 // C99 6.7p5: 2233 // A definition of an identifier is a declaration for that identifier that 2234 // [...] causes storage to be reserved for that object. 2235 // Note: that applies for all non-file-scope objects. 2236 // C99 6.9.2p1: 2237 // If the declaration of an identifier for an object has file scope and an 2238 // initializer, the declaration is an external definition for the identifier 2239 if (hasInit()) 2240 return Definition; 2241 2242 if (hasDefiningAttr()) 2243 return Definition; 2244 2245 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2246 if (!SAA->isInherited()) 2247 return Definition; 2248 2249 // A variable template specialization (other than a static data member 2250 // template or an explicit specialization) is a declaration until we 2251 // instantiate its initializer. 2252 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2253 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2254 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2255 !VTSD->IsCompleteDefinition) 2256 return DeclarationOnly; 2257 } 2258 2259 if (hasExternalStorage()) 2260 return DeclarationOnly; 2261 2262 // [dcl.link] p7: 2263 // A declaration directly contained in a linkage-specification is treated 2264 // as if it contains the extern specifier for the purpose of determining 2265 // the linkage of the declared name and whether it is a definition. 2266 if (isSingleLineLanguageLinkage(*this)) 2267 return DeclarationOnly; 2268 2269 // C99 6.9.2p2: 2270 // A declaration of an object that has file scope without an initializer, 2271 // and without a storage class specifier or the scs 'static', constitutes 2272 // a tentative definition. 2273 // No such thing in C++. 2274 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2275 return TentativeDefinition; 2276 2277 // What's left is (in C, block-scope) declarations without initializers or 2278 // external storage. These are definitions. 2279 return Definition; 2280 } 2281 2282 VarDecl *VarDecl::getActingDefinition() { 2283 DefinitionKind Kind = isThisDeclarationADefinition(); 2284 if (Kind != TentativeDefinition) 2285 return nullptr; 2286 2287 VarDecl *LastTentative = nullptr; 2288 2289 // Loop through the declaration chain, starting with the most recent. 2290 for (VarDecl *Decl = getMostRecentDecl(); Decl; 2291 Decl = Decl->getPreviousDecl()) { 2292 Kind = Decl->isThisDeclarationADefinition(); 2293 if (Kind == Definition) 2294 return nullptr; 2295 // Record the first (most recent) TentativeDefinition that is encountered. 2296 if (Kind == TentativeDefinition && !LastTentative) 2297 LastTentative = Decl; 2298 } 2299 2300 return LastTentative; 2301 } 2302 2303 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2304 VarDecl *First = getFirstDecl(); 2305 for (auto *I : First->redecls()) { 2306 if (I->isThisDeclarationADefinition(C) == Definition) 2307 return I; 2308 } 2309 return nullptr; 2310 } 2311 2312 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2313 DefinitionKind Kind = DeclarationOnly; 2314 2315 const VarDecl *First = getFirstDecl(); 2316 for (auto *I : First->redecls()) { 2317 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2318 if (Kind == Definition) 2319 break; 2320 } 2321 2322 return Kind; 2323 } 2324 2325 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2326 for (auto *I : redecls()) { 2327 if (auto Expr = I->getInit()) { 2328 D = I; 2329 return Expr; 2330 } 2331 } 2332 return nullptr; 2333 } 2334 2335 bool VarDecl::hasInit() const { 2336 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2337 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2338 return false; 2339 2340 return !Init.isNull(); 2341 } 2342 2343 Expr *VarDecl::getInit() { 2344 if (!hasInit()) 2345 return nullptr; 2346 2347 if (auto *S = Init.dyn_cast<Stmt *>()) 2348 return cast<Expr>(S); 2349 2350 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2351 } 2352 2353 Stmt **VarDecl::getInitAddress() { 2354 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2355 return &ES->Value; 2356 2357 return Init.getAddrOfPtr1(); 2358 } 2359 2360 VarDecl *VarDecl::getInitializingDeclaration() { 2361 VarDecl *Def = nullptr; 2362 for (auto *I : redecls()) { 2363 if (I->hasInit()) 2364 return I; 2365 2366 if (I->isThisDeclarationADefinition()) { 2367 if (isStaticDataMember()) 2368 return I; 2369 Def = I; 2370 } 2371 } 2372 return Def; 2373 } 2374 2375 bool VarDecl::isOutOfLine() const { 2376 if (Decl::isOutOfLine()) 2377 return true; 2378 2379 if (!isStaticDataMember()) 2380 return false; 2381 2382 // If this static data member was instantiated from a static data member of 2383 // a class template, check whether that static data member was defined 2384 // out-of-line. 2385 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2386 return VD->isOutOfLine(); 2387 2388 return false; 2389 } 2390 2391 void VarDecl::setInit(Expr *I) { 2392 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2393 Eval->~EvaluatedStmt(); 2394 getASTContext().Deallocate(Eval); 2395 } 2396 2397 Init = I; 2398 } 2399 2400 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2401 const LangOptions &Lang = C.getLangOpts(); 2402 2403 // OpenCL permits const integral variables to be used in constant 2404 // expressions, like in C++98. 2405 if (!Lang.CPlusPlus && !Lang.OpenCL) 2406 return false; 2407 2408 // Function parameters are never usable in constant expressions. 2409 if (isa<ParmVarDecl>(this)) 2410 return false; 2411 2412 // The values of weak variables are never usable in constant expressions. 2413 if (isWeak()) 2414 return false; 2415 2416 // In C++11, any variable of reference type can be used in a constant 2417 // expression if it is initialized by a constant expression. 2418 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2419 return true; 2420 2421 // Only const objects can be used in constant expressions in C++. C++98 does 2422 // not require the variable to be non-volatile, but we consider this to be a 2423 // defect. 2424 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2425 return false; 2426 2427 // In C++, const, non-volatile variables of integral or enumeration types 2428 // can be used in constant expressions. 2429 if (getType()->isIntegralOrEnumerationType()) 2430 return true; 2431 2432 // Additionally, in C++11, non-volatile constexpr variables can be used in 2433 // constant expressions. 2434 return Lang.CPlusPlus11 && isConstexpr(); 2435 } 2436 2437 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2438 // C++2a [expr.const]p3: 2439 // A variable is usable in constant expressions after its initializing 2440 // declaration is encountered... 2441 const VarDecl *DefVD = nullptr; 2442 const Expr *Init = getAnyInitializer(DefVD); 2443 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2444 return false; 2445 // ... if it is a constexpr variable, or it is of reference type or of 2446 // const-qualified integral or enumeration type, ... 2447 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2448 return false; 2449 // ... and its initializer is a constant initializer. 2450 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2451 return false; 2452 // C++98 [expr.const]p1: 2453 // An integral constant-expression can involve only [...] const variables 2454 // or static data members of integral or enumeration types initialized with 2455 // [integer] constant expressions (dcl.init) 2456 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2457 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2458 return false; 2459 return true; 2460 } 2461 2462 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2463 /// form, which contains extra information on the evaluated value of the 2464 /// initializer. 2465 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2466 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2467 if (!Eval) { 2468 // Note: EvaluatedStmt contains an APValue, which usually holds 2469 // resources not allocated from the ASTContext. We need to do some 2470 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2471 // where we can detect whether there's anything to clean up or not. 2472 Eval = new (getASTContext()) EvaluatedStmt; 2473 Eval->Value = Init.get<Stmt *>(); 2474 Init = Eval; 2475 } 2476 return Eval; 2477 } 2478 2479 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2480 return Init.dyn_cast<EvaluatedStmt *>(); 2481 } 2482 2483 APValue *VarDecl::evaluateValue() const { 2484 SmallVector<PartialDiagnosticAt, 8> Notes; 2485 return evaluateValue(Notes); 2486 } 2487 2488 APValue *VarDecl::evaluateValue( 2489 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2490 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2491 2492 const auto *Init = cast<Expr>(Eval->Value); 2493 assert(!Init->isValueDependent()); 2494 2495 // We only produce notes indicating why an initializer is non-constant the 2496 // first time it is evaluated. FIXME: The notes won't always be emitted the 2497 // first time we try evaluation, so might not be produced at all. 2498 if (Eval->WasEvaluated) 2499 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2500 2501 if (Eval->IsEvaluating) { 2502 // FIXME: Produce a diagnostic for self-initialization. 2503 return nullptr; 2504 } 2505 2506 Eval->IsEvaluating = true; 2507 2508 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2509 this, Notes); 2510 2511 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2512 // or that it's empty (so that there's nothing to clean up) if evaluation 2513 // failed. 2514 if (!Result) 2515 Eval->Evaluated = APValue(); 2516 else if (Eval->Evaluated.needsCleanup()) 2517 getASTContext().addDestruction(&Eval->Evaluated); 2518 2519 Eval->IsEvaluating = false; 2520 Eval->WasEvaluated = true; 2521 2522 return Result ? &Eval->Evaluated : nullptr; 2523 } 2524 2525 APValue *VarDecl::getEvaluatedValue() const { 2526 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2527 if (Eval->WasEvaluated) 2528 return &Eval->Evaluated; 2529 2530 return nullptr; 2531 } 2532 2533 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2534 const Expr *Init = getInit(); 2535 assert(Init && "no initializer"); 2536 2537 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2538 if (!Eval->CheckedForICEInit) { 2539 Eval->CheckedForICEInit = true; 2540 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2541 } 2542 return Eval->HasICEInit; 2543 } 2544 2545 bool VarDecl::hasConstantInitialization() const { 2546 // In C, all globals (and only globals) have constant initialization. 2547 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2548 return true; 2549 2550 // In C++, it depends on whether the evaluation at the point of definition 2551 // was evaluatable as a constant initializer. 2552 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2553 return Eval->HasConstantInitialization; 2554 2555 return false; 2556 } 2557 2558 bool VarDecl::checkForConstantInitialization( 2559 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2560 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2561 // If we ask for the value before we know whether we have a constant 2562 // initializer, we can compute the wrong value (for example, due to 2563 // std::is_constant_evaluated()). 2564 assert(!Eval->WasEvaluated && 2565 "already evaluated var value before checking for constant init"); 2566 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2567 2568 assert(!cast<Expr>(Eval->Value)->isValueDependent()); 2569 2570 // Evaluate the initializer to check whether it's a constant expression. 2571 Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty(); 2572 return Eval->HasConstantInitialization; 2573 } 2574 2575 bool VarDecl::isParameterPack() const { 2576 return isa<PackExpansionType>(getType()); 2577 } 2578 2579 template<typename DeclT> 2580 static DeclT *getDefinitionOrSelf(DeclT *D) { 2581 assert(D); 2582 if (auto *Def = D->getDefinition()) 2583 return Def; 2584 return D; 2585 } 2586 2587 bool VarDecl::isEscapingByref() const { 2588 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2589 } 2590 2591 bool VarDecl::isNonEscapingByref() const { 2592 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2593 } 2594 2595 bool VarDecl::hasDependentAlignment() const { 2596 QualType T = getType(); 2597 return T->isDependentType() || T->isUndeducedType() || 2598 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2599 return AA->isAlignmentDependent(); 2600 }); 2601 } 2602 2603 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2604 const VarDecl *VD = this; 2605 2606 // If this is an instantiated member, walk back to the template from which 2607 // it was instantiated. 2608 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2609 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2610 VD = VD->getInstantiatedFromStaticDataMember(); 2611 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2612 VD = NewVD; 2613 } 2614 } 2615 2616 // If it's an instantiated variable template specialization, find the 2617 // template or partial specialization from which it was instantiated. 2618 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2619 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2620 auto From = VDTemplSpec->getInstantiatedFrom(); 2621 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2622 while (!VTD->isMemberSpecialization()) { 2623 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2624 if (!NewVTD) 2625 break; 2626 VTD = NewVTD; 2627 } 2628 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2629 } 2630 if (auto *VTPSD = 2631 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2632 while (!VTPSD->isMemberSpecialization()) { 2633 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2634 if (!NewVTPSD) 2635 break; 2636 VTPSD = NewVTPSD; 2637 } 2638 return getDefinitionOrSelf<VarDecl>(VTPSD); 2639 } 2640 } 2641 } 2642 2643 // If this is the pattern of a variable template, find where it was 2644 // instantiated from. FIXME: Is this necessary? 2645 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2646 while (!VarTemplate->isMemberSpecialization()) { 2647 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2648 if (!NewVT) 2649 break; 2650 VarTemplate = NewVT; 2651 } 2652 2653 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2654 } 2655 2656 if (VD == this) 2657 return nullptr; 2658 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2659 } 2660 2661 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2662 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2663 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2664 2665 return nullptr; 2666 } 2667 2668 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2669 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2670 return Spec->getSpecializationKind(); 2671 2672 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2673 return MSI->getTemplateSpecializationKind(); 2674 2675 return TSK_Undeclared; 2676 } 2677 2678 TemplateSpecializationKind 2679 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2680 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2681 return MSI->getTemplateSpecializationKind(); 2682 2683 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2684 return Spec->getSpecializationKind(); 2685 2686 return TSK_Undeclared; 2687 } 2688 2689 SourceLocation VarDecl::getPointOfInstantiation() const { 2690 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2691 return Spec->getPointOfInstantiation(); 2692 2693 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2694 return MSI->getPointOfInstantiation(); 2695 2696 return SourceLocation(); 2697 } 2698 2699 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2700 return getASTContext().getTemplateOrSpecializationInfo(this) 2701 .dyn_cast<VarTemplateDecl *>(); 2702 } 2703 2704 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2705 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2706 } 2707 2708 bool VarDecl::isKnownToBeDefined() const { 2709 const auto &LangOpts = getASTContext().getLangOpts(); 2710 // In CUDA mode without relocatable device code, variables of form 'extern 2711 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2712 // memory pool. These are never undefined variables, even if they appear 2713 // inside of an anon namespace or static function. 2714 // 2715 // With CUDA relocatable device code enabled, these variables don't get 2716 // special handling; they're treated like regular extern variables. 2717 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2718 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2719 isa<IncompleteArrayType>(getType())) 2720 return true; 2721 2722 return hasDefinition(); 2723 } 2724 2725 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2726 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2727 (!Ctx.getLangOpts().RegisterStaticDestructors && 2728 !hasAttr<AlwaysDestroyAttr>())); 2729 } 2730 2731 QualType::DestructionKind 2732 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2733 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2734 if (Eval->HasConstantDestruction) 2735 return QualType::DK_none; 2736 2737 if (isNoDestroy(Ctx)) 2738 return QualType::DK_none; 2739 2740 return getType().isDestructedType(); 2741 } 2742 2743 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const { 2744 assert(hasInit() && "Expect initializer to check for flexible array init"); 2745 auto *Ty = getType()->getAs<RecordType>(); 2746 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember()) 2747 return false; 2748 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens()); 2749 if (!List) 2750 return false; 2751 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1); 2752 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType()); 2753 if (!InitTy) 2754 return false; 2755 return InitTy->getSize() != 0; 2756 } 2757 2758 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const { 2759 assert(hasInit() && "Expect initializer to check for flexible array init"); 2760 auto *Ty = getType()->getAs<RecordType>(); 2761 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember()) 2762 return CharUnits::Zero(); 2763 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens()); 2764 if (!List) 2765 return CharUnits::Zero(); 2766 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1); 2767 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType()); 2768 if (!InitTy) 2769 return CharUnits::Zero(); 2770 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy); 2771 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl()); 2772 CharUnits FlexibleArrayOffset = 2773 Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1)); 2774 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize()) 2775 return CharUnits::Zero(); 2776 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize(); 2777 } 2778 2779 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2780 if (isStaticDataMember()) 2781 // FIXME: Remove ? 2782 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2783 return getASTContext().getTemplateOrSpecializationInfo(this) 2784 .dyn_cast<MemberSpecializationInfo *>(); 2785 return nullptr; 2786 } 2787 2788 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2789 SourceLocation PointOfInstantiation) { 2790 assert((isa<VarTemplateSpecializationDecl>(this) || 2791 getMemberSpecializationInfo()) && 2792 "not a variable or static data member template specialization"); 2793 2794 if (VarTemplateSpecializationDecl *Spec = 2795 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2796 Spec->setSpecializationKind(TSK); 2797 if (TSK != TSK_ExplicitSpecialization && 2798 PointOfInstantiation.isValid() && 2799 Spec->getPointOfInstantiation().isInvalid()) { 2800 Spec->setPointOfInstantiation(PointOfInstantiation); 2801 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2802 L->InstantiationRequested(this); 2803 } 2804 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2805 MSI->setTemplateSpecializationKind(TSK); 2806 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2807 MSI->getPointOfInstantiation().isInvalid()) { 2808 MSI->setPointOfInstantiation(PointOfInstantiation); 2809 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2810 L->InstantiationRequested(this); 2811 } 2812 } 2813 } 2814 2815 void 2816 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2817 TemplateSpecializationKind TSK) { 2818 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2819 "Previous template or instantiation?"); 2820 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2821 } 2822 2823 //===----------------------------------------------------------------------===// 2824 // ParmVarDecl Implementation 2825 //===----------------------------------------------------------------------===// 2826 2827 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2828 SourceLocation StartLoc, 2829 SourceLocation IdLoc, IdentifierInfo *Id, 2830 QualType T, TypeSourceInfo *TInfo, 2831 StorageClass S, Expr *DefArg) { 2832 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2833 S, DefArg); 2834 } 2835 2836 QualType ParmVarDecl::getOriginalType() const { 2837 TypeSourceInfo *TSI = getTypeSourceInfo(); 2838 QualType T = TSI ? TSI->getType() : getType(); 2839 if (const auto *DT = dyn_cast<DecayedType>(T)) 2840 return DT->getOriginalType(); 2841 return T; 2842 } 2843 2844 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2845 return new (C, ID) 2846 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2847 nullptr, QualType(), nullptr, SC_None, nullptr); 2848 } 2849 2850 SourceRange ParmVarDecl::getSourceRange() const { 2851 if (!hasInheritedDefaultArg()) { 2852 SourceRange ArgRange = getDefaultArgRange(); 2853 if (ArgRange.isValid()) 2854 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2855 } 2856 2857 // DeclaratorDecl considers the range of postfix types as overlapping with the 2858 // declaration name, but this is not the case with parameters in ObjC methods. 2859 if (isa<ObjCMethodDecl>(getDeclContext())) 2860 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2861 2862 return DeclaratorDecl::getSourceRange(); 2863 } 2864 2865 bool ParmVarDecl::isDestroyedInCallee() const { 2866 // ns_consumed only affects code generation in ARC 2867 if (hasAttr<NSConsumedAttr>()) 2868 return getASTContext().getLangOpts().ObjCAutoRefCount; 2869 2870 // FIXME: isParamDestroyedInCallee() should probably imply 2871 // isDestructedType() 2872 auto *RT = getType()->getAs<RecordType>(); 2873 if (RT && RT->getDecl()->isParamDestroyedInCallee() && 2874 getType().isDestructedType()) 2875 return true; 2876 2877 return false; 2878 } 2879 2880 Expr *ParmVarDecl::getDefaultArg() { 2881 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2882 assert(!hasUninstantiatedDefaultArg() && 2883 "Default argument is not yet instantiated!"); 2884 2885 Expr *Arg = getInit(); 2886 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2887 return E->getSubExpr(); 2888 2889 return Arg; 2890 } 2891 2892 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2893 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2894 Init = defarg; 2895 } 2896 2897 SourceRange ParmVarDecl::getDefaultArgRange() const { 2898 switch (ParmVarDeclBits.DefaultArgKind) { 2899 case DAK_None: 2900 case DAK_Unparsed: 2901 // Nothing we can do here. 2902 return SourceRange(); 2903 2904 case DAK_Uninstantiated: 2905 return getUninstantiatedDefaultArg()->getSourceRange(); 2906 2907 case DAK_Normal: 2908 if (const Expr *E = getInit()) 2909 return E->getSourceRange(); 2910 2911 // Missing an actual expression, may be invalid. 2912 return SourceRange(); 2913 } 2914 llvm_unreachable("Invalid default argument kind."); 2915 } 2916 2917 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2918 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2919 Init = arg; 2920 } 2921 2922 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2923 assert(hasUninstantiatedDefaultArg() && 2924 "Wrong kind of initialization expression!"); 2925 return cast_or_null<Expr>(Init.get<Stmt *>()); 2926 } 2927 2928 bool ParmVarDecl::hasDefaultArg() const { 2929 // FIXME: We should just return false for DAK_None here once callers are 2930 // prepared for the case that we encountered an invalid default argument and 2931 // were unable to even build an invalid expression. 2932 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2933 !Init.isNull(); 2934 } 2935 2936 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2937 getASTContext().setParameterIndex(this, parameterIndex); 2938 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2939 } 2940 2941 unsigned ParmVarDecl::getParameterIndexLarge() const { 2942 return getASTContext().getParameterIndex(this); 2943 } 2944 2945 //===----------------------------------------------------------------------===// 2946 // FunctionDecl Implementation 2947 //===----------------------------------------------------------------------===// 2948 2949 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2950 SourceLocation StartLoc, 2951 const DeclarationNameInfo &NameInfo, QualType T, 2952 TypeSourceInfo *TInfo, StorageClass S, 2953 bool UsesFPIntrin, bool isInlineSpecified, 2954 ConstexprSpecKind ConstexprKind, 2955 Expr *TrailingRequiresClause) 2956 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2957 StartLoc), 2958 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2959 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2960 assert(T.isNull() || T->isFunctionType()); 2961 FunctionDeclBits.SClass = S; 2962 FunctionDeclBits.IsInline = isInlineSpecified; 2963 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2964 FunctionDeclBits.IsVirtualAsWritten = false; 2965 FunctionDeclBits.IsPure = false; 2966 FunctionDeclBits.HasInheritedPrototype = false; 2967 FunctionDeclBits.HasWrittenPrototype = true; 2968 FunctionDeclBits.IsDeleted = false; 2969 FunctionDeclBits.IsTrivial = false; 2970 FunctionDeclBits.IsTrivialForCall = false; 2971 FunctionDeclBits.IsDefaulted = false; 2972 FunctionDeclBits.IsExplicitlyDefaulted = false; 2973 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2974 FunctionDeclBits.IsIneligibleOrNotSelected = false; 2975 FunctionDeclBits.HasImplicitReturnZero = false; 2976 FunctionDeclBits.IsLateTemplateParsed = false; 2977 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 2978 FunctionDeclBits.InstantiationIsPending = false; 2979 FunctionDeclBits.UsesSEHTry = false; 2980 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin; 2981 FunctionDeclBits.HasSkippedBody = false; 2982 FunctionDeclBits.WillHaveBody = false; 2983 FunctionDeclBits.IsMultiVersion = false; 2984 FunctionDeclBits.IsCopyDeductionCandidate = false; 2985 FunctionDeclBits.HasODRHash = false; 2986 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false; 2987 if (TrailingRequiresClause) 2988 setTrailingRequiresClause(TrailingRequiresClause); 2989 } 2990 2991 void FunctionDecl::getNameForDiagnostic( 2992 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2993 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2994 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2995 if (TemplateArgs) 2996 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2997 } 2998 2999 bool FunctionDecl::isVariadic() const { 3000 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 3001 return FT->isVariadic(); 3002 return false; 3003 } 3004 3005 FunctionDecl::DefaultedFunctionInfo * 3006 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 3007 ArrayRef<DeclAccessPair> Lookups) { 3008 DefaultedFunctionInfo *Info = new (Context.Allocate( 3009 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 3010 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 3011 DefaultedFunctionInfo; 3012 Info->NumLookups = Lookups.size(); 3013 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 3014 Info->getTrailingObjects<DeclAccessPair>()); 3015 return Info; 3016 } 3017 3018 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 3019 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 3020 assert(!Body && "can't replace function body with defaulted function info"); 3021 3022 FunctionDeclBits.HasDefaultedFunctionInfo = true; 3023 DefaultedInfo = Info; 3024 } 3025 3026 FunctionDecl::DefaultedFunctionInfo * 3027 FunctionDecl::getDefaultedFunctionInfo() const { 3028 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 3029 } 3030 3031 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 3032 for (auto *I : redecls()) { 3033 if (I->doesThisDeclarationHaveABody()) { 3034 Definition = I; 3035 return true; 3036 } 3037 } 3038 3039 return false; 3040 } 3041 3042 bool FunctionDecl::hasTrivialBody() const { 3043 Stmt *S = getBody(); 3044 if (!S) { 3045 // Since we don't have a body for this function, we don't know if it's 3046 // trivial or not. 3047 return false; 3048 } 3049 3050 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 3051 return true; 3052 return false; 3053 } 3054 3055 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 3056 if (!getFriendObjectKind()) 3057 return false; 3058 3059 // Check for a friend function instantiated from a friend function 3060 // definition in a templated class. 3061 if (const FunctionDecl *InstantiatedFrom = 3062 getInstantiatedFromMemberFunction()) 3063 return InstantiatedFrom->getFriendObjectKind() && 3064 InstantiatedFrom->isThisDeclarationADefinition(); 3065 3066 // Check for a friend function template instantiated from a friend 3067 // function template definition in a templated class. 3068 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 3069 if (const FunctionTemplateDecl *InstantiatedFrom = 3070 Template->getInstantiatedFromMemberTemplate()) 3071 return InstantiatedFrom->getFriendObjectKind() && 3072 InstantiatedFrom->isThisDeclarationADefinition(); 3073 } 3074 3075 return false; 3076 } 3077 3078 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 3079 bool CheckForPendingFriendDefinition) const { 3080 for (const FunctionDecl *FD : redecls()) { 3081 if (FD->isThisDeclarationADefinition()) { 3082 Definition = FD; 3083 return true; 3084 } 3085 3086 // If this is a friend function defined in a class template, it does not 3087 // have a body until it is used, nevertheless it is a definition, see 3088 // [temp.inst]p2: 3089 // 3090 // ... for the purpose of determining whether an instantiated redeclaration 3091 // is valid according to [basic.def.odr] and [class.mem], a declaration that 3092 // corresponds to a definition in the template is considered to be a 3093 // definition. 3094 // 3095 // The following code must produce redefinition error: 3096 // 3097 // template<typename T> struct C20 { friend void func_20() {} }; 3098 // C20<int> c20i; 3099 // void func_20() {} 3100 // 3101 if (CheckForPendingFriendDefinition && 3102 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 3103 Definition = FD; 3104 return true; 3105 } 3106 } 3107 3108 return false; 3109 } 3110 3111 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 3112 if (!hasBody(Definition)) 3113 return nullptr; 3114 3115 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3116 "definition should not have a body"); 3117 if (Definition->Body) 3118 return Definition->Body.get(getASTContext().getExternalSource()); 3119 3120 return nullptr; 3121 } 3122 3123 void FunctionDecl::setBody(Stmt *B) { 3124 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3125 Body = LazyDeclStmtPtr(B); 3126 if (B) 3127 EndRangeLoc = B->getEndLoc(); 3128 } 3129 3130 void FunctionDecl::setPure(bool P) { 3131 FunctionDeclBits.IsPure = P; 3132 if (P) 3133 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3134 Parent->markedVirtualFunctionPure(); 3135 } 3136 3137 template<std::size_t Len> 3138 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3139 IdentifierInfo *II = ND->getIdentifier(); 3140 return II && II->isStr(Str); 3141 } 3142 3143 bool FunctionDecl::isMain() const { 3144 const TranslationUnitDecl *tunit = 3145 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3146 return tunit && 3147 !tunit->getASTContext().getLangOpts().Freestanding && 3148 isNamed(this, "main"); 3149 } 3150 3151 bool FunctionDecl::isMSVCRTEntryPoint() const { 3152 const TranslationUnitDecl *TUnit = 3153 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3154 if (!TUnit) 3155 return false; 3156 3157 // Even though we aren't really targeting MSVCRT if we are freestanding, 3158 // semantic analysis for these functions remains the same. 3159 3160 // MSVCRT entry points only exist on MSVCRT targets. 3161 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3162 return false; 3163 3164 // Nameless functions like constructors cannot be entry points. 3165 if (!getIdentifier()) 3166 return false; 3167 3168 return llvm::StringSwitch<bool>(getName()) 3169 .Cases("main", // an ANSI console app 3170 "wmain", // a Unicode console App 3171 "WinMain", // an ANSI GUI app 3172 "wWinMain", // a Unicode GUI app 3173 "DllMain", // a DLL 3174 true) 3175 .Default(false); 3176 } 3177 3178 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3179 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3180 return false; 3181 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3182 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3183 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3184 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3185 return false; 3186 3187 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3188 return false; 3189 3190 const auto *proto = getType()->castAs<FunctionProtoType>(); 3191 if (proto->getNumParams() != 2 || proto->isVariadic()) 3192 return false; 3193 3194 ASTContext &Context = 3195 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3196 ->getASTContext(); 3197 3198 // The result type and first argument type are constant across all 3199 // these operators. The second argument must be exactly void*. 3200 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3201 } 3202 3203 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3204 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3205 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3206 return false; 3207 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3208 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3209 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3210 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3211 return false; 3212 3213 if (isa<CXXRecordDecl>(getDeclContext())) 3214 return false; 3215 3216 // This can only fail for an invalid 'operator new' declaration. 3217 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3218 return false; 3219 3220 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3221 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3222 return false; 3223 3224 // If this is a single-parameter function, it must be a replaceable global 3225 // allocation or deallocation function. 3226 if (FPT->getNumParams() == 1) 3227 return true; 3228 3229 unsigned Params = 1; 3230 QualType Ty = FPT->getParamType(Params); 3231 ASTContext &Ctx = getASTContext(); 3232 3233 auto Consume = [&] { 3234 ++Params; 3235 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3236 }; 3237 3238 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3239 bool IsSizedDelete = false; 3240 if (Ctx.getLangOpts().SizedDeallocation && 3241 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3242 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3243 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3244 IsSizedDelete = true; 3245 Consume(); 3246 } 3247 3248 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3249 // new/delete. 3250 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3251 Consume(); 3252 if (AlignmentParam) 3253 *AlignmentParam = Params; 3254 } 3255 3256 // Finally, if this is not a sized delete, the final parameter can 3257 // be a 'const std::nothrow_t&'. 3258 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3259 Ty = Ty->getPointeeType(); 3260 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3261 return false; 3262 if (Ty->isNothrowT()) { 3263 if (IsNothrow) 3264 *IsNothrow = true; 3265 Consume(); 3266 } 3267 } 3268 3269 return Params == FPT->getNumParams(); 3270 } 3271 3272 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3273 if (!getBuiltinID()) 3274 return false; 3275 3276 const FunctionDecl *Definition; 3277 return hasBody(Definition) && Definition->isInlineSpecified() && 3278 Definition->hasAttr<AlwaysInlineAttr>() && 3279 Definition->hasAttr<GNUInlineAttr>(); 3280 } 3281 3282 bool FunctionDecl::isDestroyingOperatorDelete() const { 3283 // C++ P0722: 3284 // Within a class C, a single object deallocation function with signature 3285 // (T, std::destroying_delete_t, <more params>) 3286 // is a destroying operator delete. 3287 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3288 getNumParams() < 2) 3289 return false; 3290 3291 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3292 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3293 RD->getIdentifier()->isStr("destroying_delete_t"); 3294 } 3295 3296 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3297 return getDeclLanguageLinkage(*this); 3298 } 3299 3300 bool FunctionDecl::isExternC() const { 3301 return isDeclExternC(*this); 3302 } 3303 3304 bool FunctionDecl::isInExternCContext() const { 3305 if (hasAttr<OpenCLKernelAttr>()) 3306 return true; 3307 return getLexicalDeclContext()->isExternCContext(); 3308 } 3309 3310 bool FunctionDecl::isInExternCXXContext() const { 3311 return getLexicalDeclContext()->isExternCXXContext(); 3312 } 3313 3314 bool FunctionDecl::isGlobal() const { 3315 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3316 return Method->isStatic(); 3317 3318 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3319 return false; 3320 3321 for (const DeclContext *DC = getDeclContext(); 3322 DC->isNamespace(); 3323 DC = DC->getParent()) { 3324 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3325 if (!Namespace->getDeclName()) 3326 return false; 3327 } 3328 } 3329 3330 return true; 3331 } 3332 3333 bool FunctionDecl::isNoReturn() const { 3334 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3335 hasAttr<C11NoReturnAttr>()) 3336 return true; 3337 3338 if (auto *FnTy = getType()->getAs<FunctionType>()) 3339 return FnTy->getNoReturnAttr(); 3340 3341 return false; 3342 } 3343 3344 3345 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3346 if (hasAttr<TargetAttr>()) 3347 return MultiVersionKind::Target; 3348 if (hasAttr<TargetVersionAttr>()) 3349 return MultiVersionKind::TargetVersion; 3350 if (hasAttr<CPUDispatchAttr>()) 3351 return MultiVersionKind::CPUDispatch; 3352 if (hasAttr<CPUSpecificAttr>()) 3353 return MultiVersionKind::CPUSpecific; 3354 if (hasAttr<TargetClonesAttr>()) 3355 return MultiVersionKind::TargetClones; 3356 return MultiVersionKind::None; 3357 } 3358 3359 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3360 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3361 } 3362 3363 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3364 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3365 } 3366 3367 bool FunctionDecl::isTargetMultiVersion() const { 3368 return isMultiVersion() && 3369 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>()); 3370 } 3371 3372 bool FunctionDecl::isTargetClonesMultiVersion() const { 3373 return isMultiVersion() && hasAttr<TargetClonesAttr>(); 3374 } 3375 3376 void 3377 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3378 redeclarable_base::setPreviousDecl(PrevDecl); 3379 3380 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3381 FunctionTemplateDecl *PrevFunTmpl 3382 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3383 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3384 FunTmpl->setPreviousDecl(PrevFunTmpl); 3385 } 3386 3387 if (PrevDecl && PrevDecl->isInlined()) 3388 setImplicitlyInline(true); 3389 } 3390 3391 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3392 3393 /// Returns a value indicating whether this function corresponds to a builtin 3394 /// function. 3395 /// 3396 /// The function corresponds to a built-in function if it is declared at 3397 /// translation scope or within an extern "C" block and its name matches with 3398 /// the name of a builtin. The returned value will be 0 for functions that do 3399 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3400 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3401 /// value. 3402 /// 3403 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3404 /// functions as their wrapped builtins. This shouldn't be done in general, but 3405 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3406 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3407 unsigned BuiltinID = 0; 3408 3409 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3410 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3411 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3412 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3413 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3414 BuiltinID = A->getID(); 3415 } 3416 3417 if (!BuiltinID) 3418 return 0; 3419 3420 // If the function is marked "overloadable", it has a different mangled name 3421 // and is not the C library function. 3422 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3423 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3424 return 0; 3425 3426 ASTContext &Context = getASTContext(); 3427 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3428 return BuiltinID; 3429 3430 // This function has the name of a known C library 3431 // function. Determine whether it actually refers to the C library 3432 // function or whether it just has the same name. 3433 3434 // If this is a static function, it's not a builtin. 3435 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3436 return 0; 3437 3438 // OpenCL v1.2 s6.9.f - The library functions defined in 3439 // the C99 standard headers are not available. 3440 if (Context.getLangOpts().OpenCL && 3441 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3442 return 0; 3443 3444 // CUDA does not have device-side standard library. printf and malloc are the 3445 // only special cases that are supported by device-side runtime. 3446 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3447 !hasAttr<CUDAHostAttr>() && 3448 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3449 return 0; 3450 3451 // As AMDGCN implementation of OpenMP does not have a device-side standard 3452 // library, none of the predefined library functions except printf and malloc 3453 // should be treated as a builtin i.e. 0 should be returned for them. 3454 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3455 Context.getLangOpts().OpenMPIsDevice && 3456 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3457 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3458 return 0; 3459 3460 return BuiltinID; 3461 } 3462 3463 /// getNumParams - Return the number of parameters this function must have 3464 /// based on its FunctionType. This is the length of the ParamInfo array 3465 /// after it has been created. 3466 unsigned FunctionDecl::getNumParams() const { 3467 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3468 return FPT ? FPT->getNumParams() : 0; 3469 } 3470 3471 void FunctionDecl::setParams(ASTContext &C, 3472 ArrayRef<ParmVarDecl *> NewParamInfo) { 3473 assert(!ParamInfo && "Already has param info!"); 3474 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3475 3476 // Zero params -> null pointer. 3477 if (!NewParamInfo.empty()) { 3478 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3479 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3480 } 3481 } 3482 3483 /// getMinRequiredArguments - Returns the minimum number of arguments 3484 /// needed to call this function. This may be fewer than the number of 3485 /// function parameters, if some of the parameters have default 3486 /// arguments (in C++) or are parameter packs (C++11). 3487 unsigned FunctionDecl::getMinRequiredArguments() const { 3488 if (!getASTContext().getLangOpts().CPlusPlus) 3489 return getNumParams(); 3490 3491 // Note that it is possible for a parameter with no default argument to 3492 // follow a parameter with a default argument. 3493 unsigned NumRequiredArgs = 0; 3494 unsigned MinParamsSoFar = 0; 3495 for (auto *Param : parameters()) { 3496 if (!Param->isParameterPack()) { 3497 ++MinParamsSoFar; 3498 if (!Param->hasDefaultArg()) 3499 NumRequiredArgs = MinParamsSoFar; 3500 } 3501 } 3502 return NumRequiredArgs; 3503 } 3504 3505 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3506 return getNumParams() == 1 || 3507 (getNumParams() > 1 && 3508 llvm::all_of(llvm::drop_begin(parameters()), 3509 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3510 } 3511 3512 /// The combination of the extern and inline keywords under MSVC forces 3513 /// the function to be required. 3514 /// 3515 /// Note: This function assumes that we will only get called when isInlined() 3516 /// would return true for this FunctionDecl. 3517 bool FunctionDecl::isMSExternInline() const { 3518 assert(isInlined() && "expected to get called on an inlined function!"); 3519 3520 const ASTContext &Context = getASTContext(); 3521 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3522 !hasAttr<DLLExportAttr>()) 3523 return false; 3524 3525 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3526 FD = FD->getPreviousDecl()) 3527 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3528 return true; 3529 3530 return false; 3531 } 3532 3533 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3534 if (Redecl->getStorageClass() != SC_Extern) 3535 return false; 3536 3537 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3538 FD = FD->getPreviousDecl()) 3539 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3540 return false; 3541 3542 return true; 3543 } 3544 3545 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3546 // Only consider file-scope declarations in this test. 3547 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3548 return false; 3549 3550 // Only consider explicit declarations; the presence of a builtin for a 3551 // libcall shouldn't affect whether a definition is externally visible. 3552 if (Redecl->isImplicit()) 3553 return false; 3554 3555 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3556 return true; // Not an inline definition 3557 3558 return false; 3559 } 3560 3561 /// For a function declaration in C or C++, determine whether this 3562 /// declaration causes the definition to be externally visible. 3563 /// 3564 /// For instance, this determines if adding the current declaration to the set 3565 /// of redeclarations of the given functions causes 3566 /// isInlineDefinitionExternallyVisible to change from false to true. 3567 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3568 assert(!doesThisDeclarationHaveABody() && 3569 "Must have a declaration without a body."); 3570 3571 ASTContext &Context = getASTContext(); 3572 3573 if (Context.getLangOpts().MSVCCompat) { 3574 const FunctionDecl *Definition; 3575 if (hasBody(Definition) && Definition->isInlined() && 3576 redeclForcesDefMSVC(this)) 3577 return true; 3578 } 3579 3580 if (Context.getLangOpts().CPlusPlus) 3581 return false; 3582 3583 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3584 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3585 // an externally visible definition. 3586 // 3587 // FIXME: What happens if gnu_inline gets added on after the first 3588 // declaration? 3589 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3590 return false; 3591 3592 const FunctionDecl *Prev = this; 3593 bool FoundBody = false; 3594 while ((Prev = Prev->getPreviousDecl())) { 3595 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3596 3597 if (Prev->doesThisDeclarationHaveABody()) { 3598 // If it's not the case that both 'inline' and 'extern' are 3599 // specified on the definition, then it is always externally visible. 3600 if (!Prev->isInlineSpecified() || 3601 Prev->getStorageClass() != SC_Extern) 3602 return false; 3603 } else if (Prev->isInlineSpecified() && 3604 Prev->getStorageClass() != SC_Extern) { 3605 return false; 3606 } 3607 } 3608 return FoundBody; 3609 } 3610 3611 // C99 6.7.4p6: 3612 // [...] If all of the file scope declarations for a function in a 3613 // translation unit include the inline function specifier without extern, 3614 // then the definition in that translation unit is an inline definition. 3615 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3616 return false; 3617 const FunctionDecl *Prev = this; 3618 bool FoundBody = false; 3619 while ((Prev = Prev->getPreviousDecl())) { 3620 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3621 if (RedeclForcesDefC99(Prev)) 3622 return false; 3623 } 3624 return FoundBody; 3625 } 3626 3627 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3628 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3629 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3630 : FunctionTypeLoc(); 3631 } 3632 3633 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3634 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3635 if (!FTL) 3636 return SourceRange(); 3637 3638 // Skip self-referential return types. 3639 const SourceManager &SM = getASTContext().getSourceManager(); 3640 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3641 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3642 if (RTRange.isInvalid() || Boundary.isInvalid() || 3643 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3644 return SourceRange(); 3645 3646 return RTRange; 3647 } 3648 3649 SourceRange FunctionDecl::getParametersSourceRange() const { 3650 unsigned NP = getNumParams(); 3651 SourceLocation EllipsisLoc = getEllipsisLoc(); 3652 3653 if (NP == 0 && EllipsisLoc.isInvalid()) 3654 return SourceRange(); 3655 3656 SourceLocation Begin = 3657 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3658 SourceLocation End = EllipsisLoc.isValid() 3659 ? EllipsisLoc 3660 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3661 3662 return SourceRange(Begin, End); 3663 } 3664 3665 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3666 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3667 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3668 } 3669 3670 /// For an inline function definition in C, or for a gnu_inline function 3671 /// in C++, determine whether the definition will be externally visible. 3672 /// 3673 /// Inline function definitions are always available for inlining optimizations. 3674 /// However, depending on the language dialect, declaration specifiers, and 3675 /// attributes, the definition of an inline function may or may not be 3676 /// "externally" visible to other translation units in the program. 3677 /// 3678 /// In C99, inline definitions are not externally visible by default. However, 3679 /// if even one of the global-scope declarations is marked "extern inline", the 3680 /// inline definition becomes externally visible (C99 6.7.4p6). 3681 /// 3682 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3683 /// definition, we use the GNU semantics for inline, which are nearly the 3684 /// opposite of C99 semantics. In particular, "inline" by itself will create 3685 /// an externally visible symbol, but "extern inline" will not create an 3686 /// externally visible symbol. 3687 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3688 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3689 hasAttr<AliasAttr>()) && 3690 "Must be a function definition"); 3691 assert(isInlined() && "Function must be inline"); 3692 ASTContext &Context = getASTContext(); 3693 3694 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3695 // Note: If you change the logic here, please change 3696 // doesDeclarationForceExternallyVisibleDefinition as well. 3697 // 3698 // If it's not the case that both 'inline' and 'extern' are 3699 // specified on the definition, then this inline definition is 3700 // externally visible. 3701 if (Context.getLangOpts().CPlusPlus) 3702 return false; 3703 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3704 return true; 3705 3706 // If any declaration is 'inline' but not 'extern', then this definition 3707 // is externally visible. 3708 for (auto *Redecl : redecls()) { 3709 if (Redecl->isInlineSpecified() && 3710 Redecl->getStorageClass() != SC_Extern) 3711 return true; 3712 } 3713 3714 return false; 3715 } 3716 3717 // The rest of this function is C-only. 3718 assert(!Context.getLangOpts().CPlusPlus && 3719 "should not use C inline rules in C++"); 3720 3721 // C99 6.7.4p6: 3722 // [...] If all of the file scope declarations for a function in a 3723 // translation unit include the inline function specifier without extern, 3724 // then the definition in that translation unit is an inline definition. 3725 for (auto *Redecl : redecls()) { 3726 if (RedeclForcesDefC99(Redecl)) 3727 return true; 3728 } 3729 3730 // C99 6.7.4p6: 3731 // An inline definition does not provide an external definition for the 3732 // function, and does not forbid an external definition in another 3733 // translation unit. 3734 return false; 3735 } 3736 3737 /// getOverloadedOperator - Which C++ overloaded operator this 3738 /// function represents, if any. 3739 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3740 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3741 return getDeclName().getCXXOverloadedOperator(); 3742 return OO_None; 3743 } 3744 3745 /// getLiteralIdentifier - The literal suffix identifier this function 3746 /// represents, if any. 3747 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3748 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3749 return getDeclName().getCXXLiteralIdentifier(); 3750 return nullptr; 3751 } 3752 3753 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3754 if (TemplateOrSpecialization.isNull()) 3755 return TK_NonTemplate; 3756 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) { 3757 if (isa<FunctionDecl>(ND)) 3758 return TK_DependentNonTemplate; 3759 assert(isa<FunctionTemplateDecl>(ND) && 3760 "No other valid types in NamedDecl"); 3761 return TK_FunctionTemplate; 3762 } 3763 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3764 return TK_MemberSpecialization; 3765 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3766 return TK_FunctionTemplateSpecialization; 3767 if (TemplateOrSpecialization.is 3768 <DependentFunctionTemplateSpecializationInfo*>()) 3769 return TK_DependentFunctionTemplateSpecialization; 3770 3771 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3772 } 3773 3774 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3775 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3776 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3777 3778 return nullptr; 3779 } 3780 3781 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3782 if (auto *MSI = 3783 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3784 return MSI; 3785 if (auto *FTSI = TemplateOrSpecialization 3786 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3787 return FTSI->getMemberSpecializationInfo(); 3788 return nullptr; 3789 } 3790 3791 void 3792 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3793 FunctionDecl *FD, 3794 TemplateSpecializationKind TSK) { 3795 assert(TemplateOrSpecialization.isNull() && 3796 "Member function is already a specialization"); 3797 MemberSpecializationInfo *Info 3798 = new (C) MemberSpecializationInfo(FD, TSK); 3799 TemplateOrSpecialization = Info; 3800 } 3801 3802 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3803 return dyn_cast_or_null<FunctionTemplateDecl>( 3804 TemplateOrSpecialization.dyn_cast<NamedDecl *>()); 3805 } 3806 3807 void FunctionDecl::setDescribedFunctionTemplate( 3808 FunctionTemplateDecl *Template) { 3809 assert(TemplateOrSpecialization.isNull() && 3810 "Member function is already a specialization"); 3811 TemplateOrSpecialization = Template; 3812 } 3813 3814 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) { 3815 assert(TemplateOrSpecialization.isNull() && 3816 "Function is already a specialization"); 3817 TemplateOrSpecialization = FD; 3818 } 3819 3820 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const { 3821 return dyn_cast_or_null<FunctionDecl>( 3822 TemplateOrSpecialization.dyn_cast<NamedDecl *>()); 3823 } 3824 3825 bool FunctionDecl::isImplicitlyInstantiable() const { 3826 // If the function is invalid, it can't be implicitly instantiated. 3827 if (isInvalidDecl()) 3828 return false; 3829 3830 switch (getTemplateSpecializationKindForInstantiation()) { 3831 case TSK_Undeclared: 3832 case TSK_ExplicitInstantiationDefinition: 3833 case TSK_ExplicitSpecialization: 3834 return false; 3835 3836 case TSK_ImplicitInstantiation: 3837 return true; 3838 3839 case TSK_ExplicitInstantiationDeclaration: 3840 // Handled below. 3841 break; 3842 } 3843 3844 // Find the actual template from which we will instantiate. 3845 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3846 bool HasPattern = false; 3847 if (PatternDecl) 3848 HasPattern = PatternDecl->hasBody(PatternDecl); 3849 3850 // C++0x [temp.explicit]p9: 3851 // Except for inline functions, other explicit instantiation declarations 3852 // have the effect of suppressing the implicit instantiation of the entity 3853 // to which they refer. 3854 if (!HasPattern || !PatternDecl) 3855 return true; 3856 3857 return PatternDecl->isInlined(); 3858 } 3859 3860 bool FunctionDecl::isTemplateInstantiation() const { 3861 // FIXME: Remove this, it's not clear what it means. (Which template 3862 // specialization kind?) 3863 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3864 } 3865 3866 FunctionDecl * 3867 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 3868 // If this is a generic lambda call operator specialization, its 3869 // instantiation pattern is always its primary template's pattern 3870 // even if its primary template was instantiated from another 3871 // member template (which happens with nested generic lambdas). 3872 // Since a lambda's call operator's body is transformed eagerly, 3873 // we don't have to go hunting for a prototype definition template 3874 // (i.e. instantiated-from-member-template) to use as an instantiation 3875 // pattern. 3876 3877 if (isGenericLambdaCallOperatorSpecialization( 3878 dyn_cast<CXXMethodDecl>(this))) { 3879 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3880 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3881 } 3882 3883 // Check for a declaration of this function that was instantiated from a 3884 // friend definition. 3885 const FunctionDecl *FD = nullptr; 3886 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 3887 FD = this; 3888 3889 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 3890 if (ForDefinition && 3891 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3892 return nullptr; 3893 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3894 } 3895 3896 if (ForDefinition && 3897 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3898 return nullptr; 3899 3900 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3901 // If we hit a point where the user provided a specialization of this 3902 // template, we're done looking. 3903 while (!ForDefinition || !Primary->isMemberSpecialization()) { 3904 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3905 if (!NewPrimary) 3906 break; 3907 Primary = NewPrimary; 3908 } 3909 3910 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3911 } 3912 3913 return nullptr; 3914 } 3915 3916 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3917 if (FunctionTemplateSpecializationInfo *Info 3918 = TemplateOrSpecialization 3919 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3920 return Info->getTemplate(); 3921 } 3922 return nullptr; 3923 } 3924 3925 FunctionTemplateSpecializationInfo * 3926 FunctionDecl::getTemplateSpecializationInfo() const { 3927 return TemplateOrSpecialization 3928 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3929 } 3930 3931 const TemplateArgumentList * 3932 FunctionDecl::getTemplateSpecializationArgs() const { 3933 if (FunctionTemplateSpecializationInfo *Info 3934 = TemplateOrSpecialization 3935 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3936 return Info->TemplateArguments; 3937 } 3938 return nullptr; 3939 } 3940 3941 const ASTTemplateArgumentListInfo * 3942 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3943 if (FunctionTemplateSpecializationInfo *Info 3944 = TemplateOrSpecialization 3945 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3946 return Info->TemplateArgumentsAsWritten; 3947 } 3948 return nullptr; 3949 } 3950 3951 void 3952 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3953 FunctionTemplateDecl *Template, 3954 const TemplateArgumentList *TemplateArgs, 3955 void *InsertPos, 3956 TemplateSpecializationKind TSK, 3957 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3958 SourceLocation PointOfInstantiation) { 3959 assert((TemplateOrSpecialization.isNull() || 3960 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3961 "Member function is already a specialization"); 3962 assert(TSK != TSK_Undeclared && 3963 "Must specify the type of function template specialization"); 3964 assert((TemplateOrSpecialization.isNull() || 3965 TSK == TSK_ExplicitSpecialization) && 3966 "Member specialization must be an explicit specialization"); 3967 FunctionTemplateSpecializationInfo *Info = 3968 FunctionTemplateSpecializationInfo::Create( 3969 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3970 PointOfInstantiation, 3971 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3972 TemplateOrSpecialization = Info; 3973 Template->addSpecialization(Info, InsertPos); 3974 } 3975 3976 void 3977 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3978 const UnresolvedSetImpl &Templates, 3979 const TemplateArgumentListInfo &TemplateArgs) { 3980 assert(TemplateOrSpecialization.isNull()); 3981 DependentFunctionTemplateSpecializationInfo *Info = 3982 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3983 TemplateArgs); 3984 TemplateOrSpecialization = Info; 3985 } 3986 3987 DependentFunctionTemplateSpecializationInfo * 3988 FunctionDecl::getDependentSpecializationInfo() const { 3989 return TemplateOrSpecialization 3990 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3991 } 3992 3993 DependentFunctionTemplateSpecializationInfo * 3994 DependentFunctionTemplateSpecializationInfo::Create( 3995 ASTContext &Context, const UnresolvedSetImpl &Ts, 3996 const TemplateArgumentListInfo &TArgs) { 3997 void *Buffer = Context.Allocate( 3998 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3999 TArgs.size(), Ts.size())); 4000 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 4001 } 4002 4003 DependentFunctionTemplateSpecializationInfo:: 4004 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 4005 const TemplateArgumentListInfo &TArgs) 4006 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 4007 NumTemplates = Ts.size(); 4008 NumArgs = TArgs.size(); 4009 4010 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 4011 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 4012 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 4013 4014 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 4015 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 4016 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 4017 } 4018 4019 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 4020 // For a function template specialization, query the specialization 4021 // information object. 4022 if (FunctionTemplateSpecializationInfo *FTSInfo = 4023 TemplateOrSpecialization 4024 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 4025 return FTSInfo->getTemplateSpecializationKind(); 4026 4027 if (MemberSpecializationInfo *MSInfo = 4028 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4029 return MSInfo->getTemplateSpecializationKind(); 4030 4031 return TSK_Undeclared; 4032 } 4033 4034 TemplateSpecializationKind 4035 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 4036 // This is the same as getTemplateSpecializationKind(), except that for a 4037 // function that is both a function template specialization and a member 4038 // specialization, we prefer the member specialization information. Eg: 4039 // 4040 // template<typename T> struct A { 4041 // template<typename U> void f() {} 4042 // template<> void f<int>() {} 4043 // }; 4044 // 4045 // For A<int>::f<int>(): 4046 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 4047 // * getTemplateSpecializationKindForInstantiation() will return 4048 // TSK_ImplicitInstantiation 4049 // 4050 // This reflects the facts that A<int>::f<int> is an explicit specialization 4051 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 4052 // from A::f<int> if a definition is needed. 4053 if (FunctionTemplateSpecializationInfo *FTSInfo = 4054 TemplateOrSpecialization 4055 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 4056 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 4057 return MSInfo->getTemplateSpecializationKind(); 4058 return FTSInfo->getTemplateSpecializationKind(); 4059 } 4060 4061 if (MemberSpecializationInfo *MSInfo = 4062 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4063 return MSInfo->getTemplateSpecializationKind(); 4064 4065 return TSK_Undeclared; 4066 } 4067 4068 void 4069 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4070 SourceLocation PointOfInstantiation) { 4071 if (FunctionTemplateSpecializationInfo *FTSInfo 4072 = TemplateOrSpecialization.dyn_cast< 4073 FunctionTemplateSpecializationInfo*>()) { 4074 FTSInfo->setTemplateSpecializationKind(TSK); 4075 if (TSK != TSK_ExplicitSpecialization && 4076 PointOfInstantiation.isValid() && 4077 FTSInfo->getPointOfInstantiation().isInvalid()) { 4078 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 4079 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4080 L->InstantiationRequested(this); 4081 } 4082 } else if (MemberSpecializationInfo *MSInfo 4083 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 4084 MSInfo->setTemplateSpecializationKind(TSK); 4085 if (TSK != TSK_ExplicitSpecialization && 4086 PointOfInstantiation.isValid() && 4087 MSInfo->getPointOfInstantiation().isInvalid()) { 4088 MSInfo->setPointOfInstantiation(PointOfInstantiation); 4089 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4090 L->InstantiationRequested(this); 4091 } 4092 } else 4093 llvm_unreachable("Function cannot have a template specialization kind"); 4094 } 4095 4096 SourceLocation FunctionDecl::getPointOfInstantiation() const { 4097 if (FunctionTemplateSpecializationInfo *FTSInfo 4098 = TemplateOrSpecialization.dyn_cast< 4099 FunctionTemplateSpecializationInfo*>()) 4100 return FTSInfo->getPointOfInstantiation(); 4101 if (MemberSpecializationInfo *MSInfo = 4102 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4103 return MSInfo->getPointOfInstantiation(); 4104 4105 return SourceLocation(); 4106 } 4107 4108 bool FunctionDecl::isOutOfLine() const { 4109 if (Decl::isOutOfLine()) 4110 return true; 4111 4112 // If this function was instantiated from a member function of a 4113 // class template, check whether that member function was defined out-of-line. 4114 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 4115 const FunctionDecl *Definition; 4116 if (FD->hasBody(Definition)) 4117 return Definition->isOutOfLine(); 4118 } 4119 4120 // If this function was instantiated from a function template, 4121 // check whether that function template was defined out-of-line. 4122 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 4123 const FunctionDecl *Definition; 4124 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 4125 return Definition->isOutOfLine(); 4126 } 4127 4128 return false; 4129 } 4130 4131 SourceRange FunctionDecl::getSourceRange() const { 4132 return SourceRange(getOuterLocStart(), EndRangeLoc); 4133 } 4134 4135 unsigned FunctionDecl::getMemoryFunctionKind() const { 4136 IdentifierInfo *FnInfo = getIdentifier(); 4137 4138 if (!FnInfo) 4139 return 0; 4140 4141 // Builtin handling. 4142 switch (getBuiltinID()) { 4143 case Builtin::BI__builtin_memset: 4144 case Builtin::BI__builtin___memset_chk: 4145 case Builtin::BImemset: 4146 return Builtin::BImemset; 4147 4148 case Builtin::BI__builtin_memcpy: 4149 case Builtin::BI__builtin___memcpy_chk: 4150 case Builtin::BImemcpy: 4151 return Builtin::BImemcpy; 4152 4153 case Builtin::BI__builtin_mempcpy: 4154 case Builtin::BI__builtin___mempcpy_chk: 4155 case Builtin::BImempcpy: 4156 return Builtin::BImempcpy; 4157 4158 case Builtin::BI__builtin_memmove: 4159 case Builtin::BI__builtin___memmove_chk: 4160 case Builtin::BImemmove: 4161 return Builtin::BImemmove; 4162 4163 case Builtin::BIstrlcpy: 4164 case Builtin::BI__builtin___strlcpy_chk: 4165 return Builtin::BIstrlcpy; 4166 4167 case Builtin::BIstrlcat: 4168 case Builtin::BI__builtin___strlcat_chk: 4169 return Builtin::BIstrlcat; 4170 4171 case Builtin::BI__builtin_memcmp: 4172 case Builtin::BImemcmp: 4173 return Builtin::BImemcmp; 4174 4175 case Builtin::BI__builtin_bcmp: 4176 case Builtin::BIbcmp: 4177 return Builtin::BIbcmp; 4178 4179 case Builtin::BI__builtin_strncpy: 4180 case Builtin::BI__builtin___strncpy_chk: 4181 case Builtin::BIstrncpy: 4182 return Builtin::BIstrncpy; 4183 4184 case Builtin::BI__builtin_strncmp: 4185 case Builtin::BIstrncmp: 4186 return Builtin::BIstrncmp; 4187 4188 case Builtin::BI__builtin_strncasecmp: 4189 case Builtin::BIstrncasecmp: 4190 return Builtin::BIstrncasecmp; 4191 4192 case Builtin::BI__builtin_strncat: 4193 case Builtin::BI__builtin___strncat_chk: 4194 case Builtin::BIstrncat: 4195 return Builtin::BIstrncat; 4196 4197 case Builtin::BI__builtin_strndup: 4198 case Builtin::BIstrndup: 4199 return Builtin::BIstrndup; 4200 4201 case Builtin::BI__builtin_strlen: 4202 case Builtin::BIstrlen: 4203 return Builtin::BIstrlen; 4204 4205 case Builtin::BI__builtin_bzero: 4206 case Builtin::BIbzero: 4207 return Builtin::BIbzero; 4208 4209 case Builtin::BIfree: 4210 return Builtin::BIfree; 4211 4212 default: 4213 if (isExternC()) { 4214 if (FnInfo->isStr("memset")) 4215 return Builtin::BImemset; 4216 if (FnInfo->isStr("memcpy")) 4217 return Builtin::BImemcpy; 4218 if (FnInfo->isStr("mempcpy")) 4219 return Builtin::BImempcpy; 4220 if (FnInfo->isStr("memmove")) 4221 return Builtin::BImemmove; 4222 if (FnInfo->isStr("memcmp")) 4223 return Builtin::BImemcmp; 4224 if (FnInfo->isStr("bcmp")) 4225 return Builtin::BIbcmp; 4226 if (FnInfo->isStr("strncpy")) 4227 return Builtin::BIstrncpy; 4228 if (FnInfo->isStr("strncmp")) 4229 return Builtin::BIstrncmp; 4230 if (FnInfo->isStr("strncasecmp")) 4231 return Builtin::BIstrncasecmp; 4232 if (FnInfo->isStr("strncat")) 4233 return Builtin::BIstrncat; 4234 if (FnInfo->isStr("strndup")) 4235 return Builtin::BIstrndup; 4236 if (FnInfo->isStr("strlen")) 4237 return Builtin::BIstrlen; 4238 if (FnInfo->isStr("bzero")) 4239 return Builtin::BIbzero; 4240 } else if (isInStdNamespace()) { 4241 if (FnInfo->isStr("free")) 4242 return Builtin::BIfree; 4243 } 4244 break; 4245 } 4246 return 0; 4247 } 4248 4249 unsigned FunctionDecl::getODRHash() const { 4250 assert(hasODRHash()); 4251 return ODRHash; 4252 } 4253 4254 unsigned FunctionDecl::getODRHash() { 4255 if (hasODRHash()) 4256 return ODRHash; 4257 4258 if (auto *FT = getInstantiatedFromMemberFunction()) { 4259 setHasODRHash(true); 4260 ODRHash = FT->getODRHash(); 4261 return ODRHash; 4262 } 4263 4264 class ODRHash Hash; 4265 Hash.AddFunctionDecl(this); 4266 setHasODRHash(true); 4267 ODRHash = Hash.CalculateHash(); 4268 return ODRHash; 4269 } 4270 4271 //===----------------------------------------------------------------------===// 4272 // FieldDecl Implementation 4273 //===----------------------------------------------------------------------===// 4274 4275 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4276 SourceLocation StartLoc, SourceLocation IdLoc, 4277 IdentifierInfo *Id, QualType T, 4278 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4279 InClassInitStyle InitStyle) { 4280 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4281 BW, Mutable, InitStyle); 4282 } 4283 4284 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4285 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4286 SourceLocation(), nullptr, QualType(), nullptr, 4287 nullptr, false, ICIS_NoInit); 4288 } 4289 4290 bool FieldDecl::isAnonymousStructOrUnion() const { 4291 if (!isImplicit() || getDeclName()) 4292 return false; 4293 4294 if (const auto *Record = getType()->getAs<RecordType>()) 4295 return Record->getDecl()->isAnonymousStructOrUnion(); 4296 4297 return false; 4298 } 4299 4300 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4301 assert(isBitField() && "not a bitfield"); 4302 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4303 } 4304 4305 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4306 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4307 getBitWidthValue(Ctx) == 0; 4308 } 4309 4310 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4311 if (isZeroLengthBitField(Ctx)) 4312 return true; 4313 4314 // C++2a [intro.object]p7: 4315 // An object has nonzero size if it 4316 // -- is not a potentially-overlapping subobject, or 4317 if (!hasAttr<NoUniqueAddressAttr>()) 4318 return false; 4319 4320 // -- is not of class type, or 4321 const auto *RT = getType()->getAs<RecordType>(); 4322 if (!RT) 4323 return false; 4324 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4325 if (!RD) { 4326 assert(isInvalidDecl() && "valid field has incomplete type"); 4327 return false; 4328 } 4329 4330 // -- [has] virtual member functions or virtual base classes, or 4331 // -- has subobjects of nonzero size or bit-fields of nonzero length 4332 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4333 if (!CXXRD->isEmpty()) 4334 return false; 4335 4336 // Otherwise, [...] the circumstances under which the object has zero size 4337 // are implementation-defined. 4338 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4339 // ABI will do. 4340 return true; 4341 } 4342 4343 unsigned FieldDecl::getFieldIndex() const { 4344 const FieldDecl *Canonical = getCanonicalDecl(); 4345 if (Canonical != this) 4346 return Canonical->getFieldIndex(); 4347 4348 if (CachedFieldIndex) return CachedFieldIndex - 1; 4349 4350 unsigned Index = 0; 4351 const RecordDecl *RD = getParent()->getDefinition(); 4352 assert(RD && "requested index for field of struct with no definition"); 4353 4354 for (auto *Field : RD->fields()) { 4355 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4356 ++Index; 4357 } 4358 4359 assert(CachedFieldIndex && "failed to find field in parent"); 4360 return CachedFieldIndex - 1; 4361 } 4362 4363 SourceRange FieldDecl::getSourceRange() const { 4364 const Expr *FinalExpr = getInClassInitializer(); 4365 if (!FinalExpr) 4366 FinalExpr = getBitWidth(); 4367 if (FinalExpr) 4368 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4369 return DeclaratorDecl::getSourceRange(); 4370 } 4371 4372 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4373 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4374 "capturing type in non-lambda or captured record."); 4375 assert(InitStorage.getInt() == ISK_NoInit && 4376 InitStorage.getPointer() == nullptr && 4377 "bit width, initializer or captured type already set"); 4378 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4379 ISK_CapturedVLAType); 4380 } 4381 4382 //===----------------------------------------------------------------------===// 4383 // TagDecl Implementation 4384 //===----------------------------------------------------------------------===// 4385 4386 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4387 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4388 SourceLocation StartL) 4389 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4390 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4391 assert((DK != Enum || TK == TTK_Enum) && 4392 "EnumDecl not matched with TTK_Enum"); 4393 setPreviousDecl(PrevDecl); 4394 setTagKind(TK); 4395 setCompleteDefinition(false); 4396 setBeingDefined(false); 4397 setEmbeddedInDeclarator(false); 4398 setFreeStanding(false); 4399 setCompleteDefinitionRequired(false); 4400 TagDeclBits.IsThisDeclarationADemotedDefinition = false; 4401 } 4402 4403 SourceLocation TagDecl::getOuterLocStart() const { 4404 return getTemplateOrInnerLocStart(this); 4405 } 4406 4407 SourceRange TagDecl::getSourceRange() const { 4408 SourceLocation RBraceLoc = BraceRange.getEnd(); 4409 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4410 return SourceRange(getOuterLocStart(), E); 4411 } 4412 4413 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4414 4415 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4416 TypedefNameDeclOrQualifier = TDD; 4417 if (const Type *T = getTypeForDecl()) { 4418 (void)T; 4419 assert(T->isLinkageValid()); 4420 } 4421 assert(isLinkageValid()); 4422 } 4423 4424 void TagDecl::startDefinition() { 4425 setBeingDefined(true); 4426 4427 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4428 struct CXXRecordDecl::DefinitionData *Data = 4429 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4430 for (auto *I : redecls()) 4431 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4432 } 4433 } 4434 4435 void TagDecl::completeDefinition() { 4436 assert((!isa<CXXRecordDecl>(this) || 4437 cast<CXXRecordDecl>(this)->hasDefinition()) && 4438 "definition completed but not started"); 4439 4440 setCompleteDefinition(true); 4441 setBeingDefined(false); 4442 4443 if (ASTMutationListener *L = getASTMutationListener()) 4444 L->CompletedTagDefinition(this); 4445 } 4446 4447 TagDecl *TagDecl::getDefinition() const { 4448 if (isCompleteDefinition()) 4449 return const_cast<TagDecl *>(this); 4450 4451 // If it's possible for us to have an out-of-date definition, check now. 4452 if (mayHaveOutOfDateDef()) { 4453 if (IdentifierInfo *II = getIdentifier()) { 4454 if (II->isOutOfDate()) { 4455 updateOutOfDate(*II); 4456 } 4457 } 4458 } 4459 4460 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4461 return CXXRD->getDefinition(); 4462 4463 for (auto *R : redecls()) 4464 if (R->isCompleteDefinition()) 4465 return R; 4466 4467 return nullptr; 4468 } 4469 4470 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4471 if (QualifierLoc) { 4472 // Make sure the extended qualifier info is allocated. 4473 if (!hasExtInfo()) 4474 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4475 // Set qualifier info. 4476 getExtInfo()->QualifierLoc = QualifierLoc; 4477 } else { 4478 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4479 if (hasExtInfo()) { 4480 if (getExtInfo()->NumTemplParamLists == 0) { 4481 getASTContext().Deallocate(getExtInfo()); 4482 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4483 } 4484 else 4485 getExtInfo()->QualifierLoc = QualifierLoc; 4486 } 4487 } 4488 } 4489 4490 void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const { 4491 DeclarationName Name = getDeclName(); 4492 // If the name is supposed to have an identifier but does not have one, then 4493 // the tag is anonymous and we should print it differently. 4494 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) { 4495 // If the caller wanted to print a qualified name, they've already printed 4496 // the scope. And if the caller doesn't want that, the scope information 4497 // is already printed as part of the type. 4498 PrintingPolicy Copy(Policy); 4499 Copy.SuppressScope = true; 4500 getASTContext().getTagDeclType(this).print(OS, Copy); 4501 return; 4502 } 4503 // Otherwise, do the normal printing. 4504 Name.print(OS, Policy); 4505 } 4506 4507 void TagDecl::setTemplateParameterListsInfo( 4508 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4509 assert(!TPLists.empty()); 4510 // Make sure the extended decl info is allocated. 4511 if (!hasExtInfo()) 4512 // Allocate external info struct. 4513 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4514 // Set the template parameter lists info. 4515 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4516 } 4517 4518 //===----------------------------------------------------------------------===// 4519 // EnumDecl Implementation 4520 //===----------------------------------------------------------------------===// 4521 4522 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4523 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4524 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4525 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4526 assert(Scoped || !ScopedUsingClassTag); 4527 IntegerType = nullptr; 4528 setNumPositiveBits(0); 4529 setNumNegativeBits(0); 4530 setScoped(Scoped); 4531 setScopedUsingClassTag(ScopedUsingClassTag); 4532 setFixed(Fixed); 4533 setHasODRHash(false); 4534 ODRHash = 0; 4535 } 4536 4537 void EnumDecl::anchor() {} 4538 4539 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4540 SourceLocation StartLoc, SourceLocation IdLoc, 4541 IdentifierInfo *Id, 4542 EnumDecl *PrevDecl, bool IsScoped, 4543 bool IsScopedUsingClassTag, bool IsFixed) { 4544 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4545 IsScoped, IsScopedUsingClassTag, IsFixed); 4546 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4547 C.getTypeDeclType(Enum, PrevDecl); 4548 return Enum; 4549 } 4550 4551 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4552 EnumDecl *Enum = 4553 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4554 nullptr, nullptr, false, false, false); 4555 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4556 return Enum; 4557 } 4558 4559 SourceRange EnumDecl::getIntegerTypeRange() const { 4560 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4561 return TI->getTypeLoc().getSourceRange(); 4562 return SourceRange(); 4563 } 4564 4565 void EnumDecl::completeDefinition(QualType NewType, 4566 QualType NewPromotionType, 4567 unsigned NumPositiveBits, 4568 unsigned NumNegativeBits) { 4569 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4570 if (!IntegerType) 4571 IntegerType = NewType.getTypePtr(); 4572 PromotionType = NewPromotionType; 4573 setNumPositiveBits(NumPositiveBits); 4574 setNumNegativeBits(NumNegativeBits); 4575 TagDecl::completeDefinition(); 4576 } 4577 4578 bool EnumDecl::isClosed() const { 4579 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4580 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4581 return true; 4582 } 4583 4584 bool EnumDecl::isClosedFlag() const { 4585 return isClosed() && hasAttr<FlagEnumAttr>(); 4586 } 4587 4588 bool EnumDecl::isClosedNonFlag() const { 4589 return isClosed() && !hasAttr<FlagEnumAttr>(); 4590 } 4591 4592 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4593 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4594 return MSI->getTemplateSpecializationKind(); 4595 4596 return TSK_Undeclared; 4597 } 4598 4599 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4600 SourceLocation PointOfInstantiation) { 4601 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4602 assert(MSI && "Not an instantiated member enumeration?"); 4603 MSI->setTemplateSpecializationKind(TSK); 4604 if (TSK != TSK_ExplicitSpecialization && 4605 PointOfInstantiation.isValid() && 4606 MSI->getPointOfInstantiation().isInvalid()) 4607 MSI->setPointOfInstantiation(PointOfInstantiation); 4608 } 4609 4610 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4611 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4612 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4613 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4614 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4615 ED = NewED; 4616 return getDefinitionOrSelf(ED); 4617 } 4618 } 4619 4620 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4621 "couldn't find pattern for enum instantiation"); 4622 return nullptr; 4623 } 4624 4625 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4626 if (SpecializationInfo) 4627 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4628 4629 return nullptr; 4630 } 4631 4632 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4633 TemplateSpecializationKind TSK) { 4634 assert(!SpecializationInfo && "Member enum is already a specialization"); 4635 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4636 } 4637 4638 unsigned EnumDecl::getODRHash() { 4639 if (hasODRHash()) 4640 return ODRHash; 4641 4642 class ODRHash Hash; 4643 Hash.AddEnumDecl(this); 4644 setHasODRHash(true); 4645 ODRHash = Hash.CalculateHash(); 4646 return ODRHash; 4647 } 4648 4649 SourceRange EnumDecl::getSourceRange() const { 4650 auto Res = TagDecl::getSourceRange(); 4651 // Set end-point to enum-base, e.g. enum foo : ^bar 4652 if (auto *TSI = getIntegerTypeSourceInfo()) { 4653 // TagDecl doesn't know about the enum base. 4654 if (!getBraceRange().getEnd().isValid()) 4655 Res.setEnd(TSI->getTypeLoc().getEndLoc()); 4656 } 4657 return Res; 4658 } 4659 4660 void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const { 4661 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType()); 4662 unsigned NumNegativeBits = getNumNegativeBits(); 4663 unsigned NumPositiveBits = getNumPositiveBits(); 4664 4665 if (NumNegativeBits) { 4666 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 4667 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 4668 Min = -Max; 4669 } else { 4670 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 4671 Min = llvm::APInt::getZero(Bitwidth); 4672 } 4673 } 4674 4675 //===----------------------------------------------------------------------===// 4676 // RecordDecl Implementation 4677 //===----------------------------------------------------------------------===// 4678 4679 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4680 DeclContext *DC, SourceLocation StartLoc, 4681 SourceLocation IdLoc, IdentifierInfo *Id, 4682 RecordDecl *PrevDecl) 4683 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4684 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4685 setHasFlexibleArrayMember(false); 4686 setAnonymousStructOrUnion(false); 4687 setHasObjectMember(false); 4688 setHasVolatileMember(false); 4689 setHasLoadedFieldsFromExternalStorage(false); 4690 setNonTrivialToPrimitiveDefaultInitialize(false); 4691 setNonTrivialToPrimitiveCopy(false); 4692 setNonTrivialToPrimitiveDestroy(false); 4693 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4694 setHasNonTrivialToPrimitiveDestructCUnion(false); 4695 setHasNonTrivialToPrimitiveCopyCUnion(false); 4696 setParamDestroyedInCallee(false); 4697 setArgPassingRestrictions(APK_CanPassInRegs); 4698 setIsRandomized(false); 4699 setODRHash(0); 4700 } 4701 4702 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4703 SourceLocation StartLoc, SourceLocation IdLoc, 4704 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4705 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4706 StartLoc, IdLoc, Id, PrevDecl); 4707 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4708 4709 C.getTypeDeclType(R, PrevDecl); 4710 return R; 4711 } 4712 4713 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4714 RecordDecl *R = 4715 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4716 SourceLocation(), nullptr, nullptr); 4717 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4718 return R; 4719 } 4720 4721 bool RecordDecl::isInjectedClassName() const { 4722 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4723 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4724 } 4725 4726 bool RecordDecl::isLambda() const { 4727 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4728 return RD->isLambda(); 4729 return false; 4730 } 4731 4732 bool RecordDecl::isCapturedRecord() const { 4733 return hasAttr<CapturedRecordAttr>(); 4734 } 4735 4736 void RecordDecl::setCapturedRecord() { 4737 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4738 } 4739 4740 bool RecordDecl::isOrContainsUnion() const { 4741 if (isUnion()) 4742 return true; 4743 4744 if (const RecordDecl *Def = getDefinition()) { 4745 for (const FieldDecl *FD : Def->fields()) { 4746 const RecordType *RT = FD->getType()->getAs<RecordType>(); 4747 if (RT && RT->getDecl()->isOrContainsUnion()) 4748 return true; 4749 } 4750 } 4751 4752 return false; 4753 } 4754 4755 RecordDecl::field_iterator RecordDecl::field_begin() const { 4756 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4757 LoadFieldsFromExternalStorage(); 4758 4759 return field_iterator(decl_iterator(FirstDecl)); 4760 } 4761 4762 /// completeDefinition - Notes that the definition of this type is now 4763 /// complete. 4764 void RecordDecl::completeDefinition() { 4765 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4766 TagDecl::completeDefinition(); 4767 4768 ASTContext &Ctx = getASTContext(); 4769 4770 // Layouts are dumped when computed, so if we are dumping for all complete 4771 // types, we need to force usage to get types that wouldn't be used elsewhere. 4772 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 4773 (void)Ctx.getASTRecordLayout(this); 4774 } 4775 4776 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4777 /// This which can be turned on with an attribute, pragma, or the 4778 /// -mms-bitfields command-line option. 4779 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4780 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4781 } 4782 4783 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) { 4784 std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false); 4785 LastDecl->NextInContextAndBits.setPointer(nullptr); 4786 setIsRandomized(true); 4787 } 4788 4789 void RecordDecl::LoadFieldsFromExternalStorage() const { 4790 ExternalASTSource *Source = getASTContext().getExternalSource(); 4791 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4792 4793 // Notify that we have a RecordDecl doing some initialization. 4794 ExternalASTSource::Deserializing TheFields(Source); 4795 4796 SmallVector<Decl*, 64> Decls; 4797 setHasLoadedFieldsFromExternalStorage(true); 4798 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4799 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4800 }, Decls); 4801 4802 #ifndef NDEBUG 4803 // Check that all decls we got were FieldDecls. 4804 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4805 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4806 #endif 4807 4808 if (Decls.empty()) 4809 return; 4810 4811 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4812 /*FieldsAlreadyLoaded=*/false); 4813 } 4814 4815 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4816 ASTContext &Context = getASTContext(); 4817 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4818 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4819 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4820 return false; 4821 const auto &NoSanitizeList = Context.getNoSanitizeList(); 4822 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4823 // We may be able to relax some of these requirements. 4824 int ReasonToReject = -1; 4825 if (!CXXRD || CXXRD->isExternCContext()) 4826 ReasonToReject = 0; // is not C++. 4827 else if (CXXRD->hasAttr<PackedAttr>()) 4828 ReasonToReject = 1; // is packed. 4829 else if (CXXRD->isUnion()) 4830 ReasonToReject = 2; // is a union. 4831 else if (CXXRD->isTriviallyCopyable()) 4832 ReasonToReject = 3; // is trivially copyable. 4833 else if (CXXRD->hasTrivialDestructor()) 4834 ReasonToReject = 4; // has trivial destructor. 4835 else if (CXXRD->isStandardLayout()) 4836 ReasonToReject = 5; // is standard layout. 4837 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 4838 "field-padding")) 4839 ReasonToReject = 6; // is in an excluded file. 4840 else if (NoSanitizeList.containsType( 4841 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 4842 ReasonToReject = 7; // The type is excluded. 4843 4844 if (EmitRemark) { 4845 if (ReasonToReject >= 0) 4846 Context.getDiagnostics().Report( 4847 getLocation(), 4848 diag::remark_sanitize_address_insert_extra_padding_rejected) 4849 << getQualifiedNameAsString() << ReasonToReject; 4850 else 4851 Context.getDiagnostics().Report( 4852 getLocation(), 4853 diag::remark_sanitize_address_insert_extra_padding_accepted) 4854 << getQualifiedNameAsString(); 4855 } 4856 return ReasonToReject < 0; 4857 } 4858 4859 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4860 for (const auto *I : fields()) { 4861 if (I->getIdentifier()) 4862 return I; 4863 4864 if (const auto *RT = I->getType()->getAs<RecordType>()) 4865 if (const FieldDecl *NamedDataMember = 4866 RT->getDecl()->findFirstNamedDataMember()) 4867 return NamedDataMember; 4868 } 4869 4870 // We didn't find a named data member. 4871 return nullptr; 4872 } 4873 4874 unsigned RecordDecl::getODRHash() { 4875 if (hasODRHash()) 4876 return RecordDeclBits.ODRHash; 4877 4878 // Only calculate hash on first call of getODRHash per record. 4879 ODRHash Hash; 4880 Hash.AddRecordDecl(this); 4881 // For RecordDecl the ODRHash is stored in the remaining 26 4882 // bit of RecordDeclBits, adjust the hash to accomodate. 4883 setODRHash(Hash.CalculateHash() >> 6); 4884 return RecordDeclBits.ODRHash; 4885 } 4886 4887 //===----------------------------------------------------------------------===// 4888 // BlockDecl Implementation 4889 //===----------------------------------------------------------------------===// 4890 4891 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4892 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4893 setIsVariadic(false); 4894 setCapturesCXXThis(false); 4895 setBlockMissingReturnType(true); 4896 setIsConversionFromLambda(false); 4897 setDoesNotEscape(false); 4898 setCanAvoidCopyToHeap(false); 4899 } 4900 4901 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4902 assert(!ParamInfo && "Already has param info!"); 4903 4904 // Zero params -> null pointer. 4905 if (!NewParamInfo.empty()) { 4906 NumParams = NewParamInfo.size(); 4907 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4908 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4909 } 4910 } 4911 4912 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4913 bool CapturesCXXThis) { 4914 this->setCapturesCXXThis(CapturesCXXThis); 4915 this->NumCaptures = Captures.size(); 4916 4917 if (Captures.empty()) { 4918 this->Captures = nullptr; 4919 return; 4920 } 4921 4922 this->Captures = Captures.copy(Context).data(); 4923 } 4924 4925 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4926 for (const auto &I : captures()) 4927 // Only auto vars can be captured, so no redeclaration worries. 4928 if (I.getVariable() == variable) 4929 return true; 4930 4931 return false; 4932 } 4933 4934 SourceRange BlockDecl::getSourceRange() const { 4935 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4936 } 4937 4938 //===----------------------------------------------------------------------===// 4939 // Other Decl Allocation/Deallocation Method Implementations 4940 //===----------------------------------------------------------------------===// 4941 4942 void TranslationUnitDecl::anchor() {} 4943 4944 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4945 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4946 } 4947 4948 void PragmaCommentDecl::anchor() {} 4949 4950 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4951 TranslationUnitDecl *DC, 4952 SourceLocation CommentLoc, 4953 PragmaMSCommentKind CommentKind, 4954 StringRef Arg) { 4955 PragmaCommentDecl *PCD = 4956 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4957 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4958 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4959 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4960 return PCD; 4961 } 4962 4963 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4964 unsigned ID, 4965 unsigned ArgSize) { 4966 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4967 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4968 } 4969 4970 void PragmaDetectMismatchDecl::anchor() {} 4971 4972 PragmaDetectMismatchDecl * 4973 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4974 SourceLocation Loc, StringRef Name, 4975 StringRef Value) { 4976 size_t ValueStart = Name.size() + 1; 4977 PragmaDetectMismatchDecl *PDMD = 4978 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4979 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4980 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4981 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4982 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4983 Value.size()); 4984 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4985 return PDMD; 4986 } 4987 4988 PragmaDetectMismatchDecl * 4989 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4990 unsigned NameValueSize) { 4991 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4992 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4993 } 4994 4995 void ExternCContextDecl::anchor() {} 4996 4997 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4998 TranslationUnitDecl *DC) { 4999 return new (C, DC) ExternCContextDecl(DC); 5000 } 5001 5002 void LabelDecl::anchor() {} 5003 5004 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 5005 SourceLocation IdentL, IdentifierInfo *II) { 5006 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 5007 } 5008 5009 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 5010 SourceLocation IdentL, IdentifierInfo *II, 5011 SourceLocation GnuLabelL) { 5012 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 5013 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 5014 } 5015 5016 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5017 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 5018 SourceLocation()); 5019 } 5020 5021 void LabelDecl::setMSAsmLabel(StringRef Name) { 5022 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 5023 memcpy(Buffer, Name.data(), Name.size()); 5024 Buffer[Name.size()] = '\0'; 5025 MSAsmName = Buffer; 5026 } 5027 5028 void ValueDecl::anchor() {} 5029 5030 bool ValueDecl::isWeak() const { 5031 auto *MostRecent = getMostRecentDecl(); 5032 return MostRecent->hasAttr<WeakAttr>() || 5033 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 5034 } 5035 5036 bool ValueDecl::isInitCapture() const { 5037 if (auto *Var = llvm::dyn_cast<VarDecl>(this)) 5038 return Var->isInitCapture(); 5039 return false; 5040 } 5041 5042 void ImplicitParamDecl::anchor() {} 5043 5044 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 5045 SourceLocation IdLoc, 5046 IdentifierInfo *Id, QualType Type, 5047 ImplicitParamKind ParamKind) { 5048 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 5049 } 5050 5051 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 5052 ImplicitParamKind ParamKind) { 5053 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 5054 } 5055 5056 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 5057 unsigned ID) { 5058 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 5059 } 5060 5061 FunctionDecl * 5062 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 5063 const DeclarationNameInfo &NameInfo, QualType T, 5064 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 5065 bool isInlineSpecified, bool hasWrittenPrototype, 5066 ConstexprSpecKind ConstexprKind, 5067 Expr *TrailingRequiresClause) { 5068 FunctionDecl *New = new (C, DC) FunctionDecl( 5069 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 5070 isInlineSpecified, ConstexprKind, TrailingRequiresClause); 5071 New->setHasWrittenPrototype(hasWrittenPrototype); 5072 return New; 5073 } 5074 5075 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5076 return new (C, ID) FunctionDecl( 5077 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 5078 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr); 5079 } 5080 5081 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5082 return new (C, DC) BlockDecl(DC, L); 5083 } 5084 5085 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5086 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 5087 } 5088 5089 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 5090 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 5091 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 5092 5093 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 5094 unsigned NumParams) { 5095 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 5096 CapturedDecl(DC, NumParams); 5097 } 5098 5099 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5100 unsigned NumParams) { 5101 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 5102 CapturedDecl(nullptr, NumParams); 5103 } 5104 5105 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 5106 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 5107 5108 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 5109 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 5110 5111 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 5112 SourceLocation L, 5113 IdentifierInfo *Id, QualType T, 5114 Expr *E, const llvm::APSInt &V) { 5115 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 5116 } 5117 5118 EnumConstantDecl * 5119 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5120 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 5121 QualType(), nullptr, llvm::APSInt()); 5122 } 5123 5124 void IndirectFieldDecl::anchor() {} 5125 5126 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 5127 SourceLocation L, DeclarationName N, 5128 QualType T, 5129 MutableArrayRef<NamedDecl *> CH) 5130 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 5131 ChainingSize(CH.size()) { 5132 // In C++, indirect field declarations conflict with tag declarations in the 5133 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 5134 if (C.getLangOpts().CPlusPlus) 5135 IdentifierNamespace |= IDNS_Tag; 5136 } 5137 5138 IndirectFieldDecl * 5139 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 5140 IdentifierInfo *Id, QualType T, 5141 llvm::MutableArrayRef<NamedDecl *> CH) { 5142 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 5143 } 5144 5145 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 5146 unsigned ID) { 5147 return new (C, ID) 5148 IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(), 5149 QualType(), std::nullopt); 5150 } 5151 5152 SourceRange EnumConstantDecl::getSourceRange() const { 5153 SourceLocation End = getLocation(); 5154 if (Init) 5155 End = Init->getEndLoc(); 5156 return SourceRange(getLocation(), End); 5157 } 5158 5159 void TypeDecl::anchor() {} 5160 5161 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 5162 SourceLocation StartLoc, SourceLocation IdLoc, 5163 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 5164 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5165 } 5166 5167 void TypedefNameDecl::anchor() {} 5168 5169 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 5170 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 5171 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 5172 auto *ThisTypedef = this; 5173 if (AnyRedecl && OwningTypedef) { 5174 OwningTypedef = OwningTypedef->getCanonicalDecl(); 5175 ThisTypedef = ThisTypedef->getCanonicalDecl(); 5176 } 5177 if (OwningTypedef == ThisTypedef) 5178 return TT->getDecl(); 5179 } 5180 5181 return nullptr; 5182 } 5183 5184 bool TypedefNameDecl::isTransparentTagSlow() const { 5185 auto determineIsTransparent = [&]() { 5186 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 5187 if (auto *TD = TT->getDecl()) { 5188 if (TD->getName() != getName()) 5189 return false; 5190 SourceLocation TTLoc = getLocation(); 5191 SourceLocation TDLoc = TD->getLocation(); 5192 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 5193 return false; 5194 SourceManager &SM = getASTContext().getSourceManager(); 5195 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 5196 } 5197 } 5198 return false; 5199 }; 5200 5201 bool isTransparent = determineIsTransparent(); 5202 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 5203 return isTransparent; 5204 } 5205 5206 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5207 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 5208 nullptr, nullptr); 5209 } 5210 5211 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 5212 SourceLocation StartLoc, 5213 SourceLocation IdLoc, IdentifierInfo *Id, 5214 TypeSourceInfo *TInfo) { 5215 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5216 } 5217 5218 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5219 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5220 SourceLocation(), nullptr, nullptr); 5221 } 5222 5223 SourceRange TypedefDecl::getSourceRange() const { 5224 SourceLocation RangeEnd = getLocation(); 5225 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5226 if (typeIsPostfix(TInfo->getType())) 5227 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5228 } 5229 return SourceRange(getBeginLoc(), RangeEnd); 5230 } 5231 5232 SourceRange TypeAliasDecl::getSourceRange() const { 5233 SourceLocation RangeEnd = getBeginLoc(); 5234 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5235 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5236 return SourceRange(getBeginLoc(), RangeEnd); 5237 } 5238 5239 void FileScopeAsmDecl::anchor() {} 5240 5241 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5242 StringLiteral *Str, 5243 SourceLocation AsmLoc, 5244 SourceLocation RParenLoc) { 5245 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5246 } 5247 5248 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5249 unsigned ID) { 5250 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5251 SourceLocation()); 5252 } 5253 5254 void TopLevelStmtDecl::anchor() {} 5255 5256 TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) { 5257 assert(Statement); 5258 assert(C.getLangOpts().IncrementalExtensions && 5259 "Must be used only in incremental mode"); 5260 5261 SourceLocation BeginLoc = Statement->getBeginLoc(); 5262 DeclContext *DC = C.getTranslationUnitDecl(); 5263 5264 return new (C, DC) TopLevelStmtDecl(DC, BeginLoc, Statement); 5265 } 5266 5267 TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C, 5268 unsigned ID) { 5269 return new (C, ID) 5270 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr); 5271 } 5272 5273 SourceRange TopLevelStmtDecl::getSourceRange() const { 5274 return SourceRange(getLocation(), Statement->getEndLoc()); 5275 } 5276 5277 void EmptyDecl::anchor() {} 5278 5279 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5280 return new (C, DC) EmptyDecl(DC, L); 5281 } 5282 5283 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5284 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5285 } 5286 5287 HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer, 5288 SourceLocation KwLoc, IdentifierInfo *ID, 5289 SourceLocation IDLoc, SourceLocation LBrace) 5290 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)), 5291 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc), 5292 IsCBuffer(CBuffer) {} 5293 5294 HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C, 5295 DeclContext *LexicalParent, bool CBuffer, 5296 SourceLocation KwLoc, IdentifierInfo *ID, 5297 SourceLocation IDLoc, 5298 SourceLocation LBrace) { 5299 // For hlsl like this 5300 // cbuffer A { 5301 // cbuffer B { 5302 // } 5303 // } 5304 // compiler should treat it as 5305 // cbuffer A { 5306 // } 5307 // cbuffer B { 5308 // } 5309 // FIXME: support nested buffers if required for back-compat. 5310 DeclContext *DC = LexicalParent; 5311 HLSLBufferDecl *Result = 5312 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace); 5313 return Result; 5314 } 5315 5316 HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5317 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr, 5318 SourceLocation(), SourceLocation()); 5319 } 5320 5321 //===----------------------------------------------------------------------===// 5322 // ImportDecl Implementation 5323 //===----------------------------------------------------------------------===// 5324 5325 /// Retrieve the number of module identifiers needed to name the given 5326 /// module. 5327 static unsigned getNumModuleIdentifiers(Module *Mod) { 5328 unsigned Result = 1; 5329 while (Mod->Parent) { 5330 Mod = Mod->Parent; 5331 ++Result; 5332 } 5333 return Result; 5334 } 5335 5336 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5337 Module *Imported, 5338 ArrayRef<SourceLocation> IdentifierLocs) 5339 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5340 NextLocalImportAndComplete(nullptr, true) { 5341 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5342 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5343 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5344 StoredLocs); 5345 } 5346 5347 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5348 Module *Imported, SourceLocation EndLoc) 5349 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5350 NextLocalImportAndComplete(nullptr, false) { 5351 *getTrailingObjects<SourceLocation>() = EndLoc; 5352 } 5353 5354 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5355 SourceLocation StartLoc, Module *Imported, 5356 ArrayRef<SourceLocation> IdentifierLocs) { 5357 return new (C, DC, 5358 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5359 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5360 } 5361 5362 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5363 SourceLocation StartLoc, 5364 Module *Imported, 5365 SourceLocation EndLoc) { 5366 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5367 ImportDecl(DC, StartLoc, Imported, EndLoc); 5368 Import->setImplicit(); 5369 return Import; 5370 } 5371 5372 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5373 unsigned NumLocations) { 5374 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5375 ImportDecl(EmptyShell()); 5376 } 5377 5378 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5379 if (!isImportComplete()) 5380 return std::nullopt; 5381 5382 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5383 return llvm::ArrayRef(StoredLocs, 5384 getNumModuleIdentifiers(getImportedModule())); 5385 } 5386 5387 SourceRange ImportDecl::getSourceRange() const { 5388 if (!isImportComplete()) 5389 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5390 5391 return SourceRange(getLocation(), getIdentifierLocs().back()); 5392 } 5393 5394 //===----------------------------------------------------------------------===// 5395 // ExportDecl Implementation 5396 //===----------------------------------------------------------------------===// 5397 5398 void ExportDecl::anchor() {} 5399 5400 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5401 SourceLocation ExportLoc) { 5402 return new (C, DC) ExportDecl(DC, ExportLoc); 5403 } 5404 5405 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5406 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5407 } 5408