xref: /freebsd/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision 73b42eff2596a2bda45ce3ef7f505720ba0f2df0)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Randstruct.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Redeclarable.h"
36 #include "clang/AST/Stmt.h"
37 #include "clang/AST/TemplateBase.h"
38 #include "clang/AST/Type.h"
39 #include "clang/AST/TypeLoc.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/Linkage.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/NoSanitizeList.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/Sanitizers.h"
49 #include "clang/Basic/SourceLocation.h"
50 #include "clang/Basic/SourceManager.h"
51 #include "clang/Basic/Specifiers.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/Visibility.h"
55 #include "llvm/ADT/APSInt.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/TargetParser/Triple.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <optional>
71 #include <string>
72 #include <tuple>
73 #include <type_traits>
74 
75 using namespace clang;
76 
77 Decl *clang::getPrimaryMergedDecl(Decl *D) {
78   return D->getASTContext().getPrimaryMergedDecl(D);
79 }
80 
81 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
82   SourceLocation Loc = this->Loc;
83   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
84   if (Loc.isValid()) {
85     Loc.print(OS, Context.getSourceManager());
86     OS << ": ";
87   }
88   OS << Message;
89 
90   if (auto *ND = dyn_cast_if_present<NamedDecl>(TheDecl)) {
91     OS << " '";
92     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
93     OS << "'";
94   }
95 
96   OS << '\n';
97 }
98 
99 // Defined here so that it can be inlined into its direct callers.
100 bool Decl::isOutOfLine() const {
101   return !getLexicalDeclContext()->Equals(getDeclContext());
102 }
103 
104 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
105     : Decl(TranslationUnit, nullptr, SourceLocation()),
106       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
107 
108 //===----------------------------------------------------------------------===//
109 // NamedDecl Implementation
110 //===----------------------------------------------------------------------===//
111 
112 // Visibility rules aren't rigorously externally specified, but here
113 // are the basic principles behind what we implement:
114 //
115 // 1. An explicit visibility attribute is generally a direct expression
116 // of the user's intent and should be honored.  Only the innermost
117 // visibility attribute applies.  If no visibility attribute applies,
118 // global visibility settings are considered.
119 //
120 // 2. There is one caveat to the above: on or in a template pattern,
121 // an explicit visibility attribute is just a default rule, and
122 // visibility can be decreased by the visibility of template
123 // arguments.  But this, too, has an exception: an attribute on an
124 // explicit specialization or instantiation causes all the visibility
125 // restrictions of the template arguments to be ignored.
126 //
127 // 3. A variable that does not otherwise have explicit visibility can
128 // be restricted by the visibility of its type.
129 //
130 // 4. A visibility restriction is explicit if it comes from an
131 // attribute (or something like it), not a global visibility setting.
132 // When emitting a reference to an external symbol, visibility
133 // restrictions are ignored unless they are explicit.
134 //
135 // 5. When computing the visibility of a non-type, including a
136 // non-type member of a class, only non-type visibility restrictions
137 // are considered: the 'visibility' attribute, global value-visibility
138 // settings, and a few special cases like __private_extern.
139 //
140 // 6. When computing the visibility of a type, including a type member
141 // of a class, only type visibility restrictions are considered:
142 // the 'type_visibility' attribute and global type-visibility settings.
143 // However, a 'visibility' attribute counts as a 'type_visibility'
144 // attribute on any declaration that only has the former.
145 //
146 // The visibility of a "secondary" entity, like a template argument,
147 // is computed using the kind of that entity, not the kind of the
148 // primary entity for which we are computing visibility.  For example,
149 // the visibility of a specialization of either of these templates:
150 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
151 //   template <class T, bool (&compare)(T, X)> class matcher;
152 // is restricted according to the type visibility of the argument 'T',
153 // the type visibility of 'bool(&)(T,X)', and the value visibility of
154 // the argument function 'compare'.  That 'has_match' is a value
155 // and 'matcher' is a type only matters when looking for attributes
156 // and settings from the immediate context.
157 
158 /// Does this computation kind permit us to consider additional
159 /// visibility settings from attributes and the like?
160 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
161   return computation.IgnoreExplicitVisibility;
162 }
163 
164 /// Given an LVComputationKind, return one of the same type/value sort
165 /// that records that it already has explicit visibility.
166 static LVComputationKind
167 withExplicitVisibilityAlready(LVComputationKind Kind) {
168   Kind.IgnoreExplicitVisibility = true;
169   return Kind;
170 }
171 
172 static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
173                                                        LVComputationKind kind) {
174   assert(!kind.IgnoreExplicitVisibility &&
175          "asking for explicit visibility when we shouldn't be");
176   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
177 }
178 
179 /// Is the given declaration a "type" or a "value" for the purposes of
180 /// visibility computation?
181 static bool usesTypeVisibility(const NamedDecl *D) {
182   return isa<TypeDecl>(D) ||
183          isa<ClassTemplateDecl>(D) ||
184          isa<ObjCInterfaceDecl>(D);
185 }
186 
187 /// Does the given declaration have member specialization information,
188 /// and if so, is it an explicit specialization?
189 template <class T>
190 static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
191 isExplicitMemberSpecialization(const T *D) {
192   if (const MemberSpecializationInfo *member =
193         D->getMemberSpecializationInfo()) {
194     return member->isExplicitSpecialization();
195   }
196   return false;
197 }
198 
199 /// For templates, this question is easier: a member template can't be
200 /// explicitly instantiated, so there's a single bit indicating whether
201 /// or not this is an explicit member specialization.
202 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
203   return D->isMemberSpecialization();
204 }
205 
206 /// Given a visibility attribute, return the explicit visibility
207 /// associated with it.
208 template <class T>
209 static Visibility getVisibilityFromAttr(const T *attr) {
210   switch (attr->getVisibility()) {
211   case T::Default:
212     return DefaultVisibility;
213   case T::Hidden:
214     return HiddenVisibility;
215   case T::Protected:
216     return ProtectedVisibility;
217   }
218   llvm_unreachable("bad visibility kind");
219 }
220 
221 /// Return the explicit visibility of the given declaration.
222 static std::optional<Visibility>
223 getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) {
224   // If we're ultimately computing the visibility of a type, look for
225   // a 'type_visibility' attribute before looking for 'visibility'.
226   if (kind == NamedDecl::VisibilityForType) {
227     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
228       return getVisibilityFromAttr(A);
229     }
230   }
231 
232   // If this declaration has an explicit visibility attribute, use it.
233   if (const auto *A = D->getAttr<VisibilityAttr>()) {
234     return getVisibilityFromAttr(A);
235   }
236 
237   return std::nullopt;
238 }
239 
240 LinkageInfo LinkageComputer::getLVForType(const Type &T,
241                                           LVComputationKind computation) {
242   if (computation.IgnoreAllVisibility)
243     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
244   return getTypeLinkageAndVisibility(&T);
245 }
246 
247 /// Get the most restrictive linkage for the types in the given
248 /// template parameter list.  For visibility purposes, template
249 /// parameters are part of the signature of a template.
250 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
251     const TemplateParameterList *Params, LVComputationKind computation) {
252   LinkageInfo LV;
253   for (const NamedDecl *P : *Params) {
254     // Template type parameters are the most common and never
255     // contribute to visibility, pack or not.
256     if (isa<TemplateTypeParmDecl>(P))
257       continue;
258 
259     // Non-type template parameters can be restricted by the value type, e.g.
260     //   template <enum X> class A { ... };
261     // We have to be careful here, though, because we can be dealing with
262     // dependent types.
263     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
264       // Handle the non-pack case first.
265       if (!NTTP->isExpandedParameterPack()) {
266         if (!NTTP->getType()->isDependentType()) {
267           LV.merge(getLVForType(*NTTP->getType(), computation));
268         }
269         continue;
270       }
271 
272       // Look at all the types in an expanded pack.
273       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
274         QualType type = NTTP->getExpansionType(i);
275         if (!type->isDependentType())
276           LV.merge(getTypeLinkageAndVisibility(type));
277       }
278       continue;
279     }
280 
281     // Template template parameters can be restricted by their
282     // template parameters, recursively.
283     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
284 
285     // Handle the non-pack case first.
286     if (!TTP->isExpandedParameterPack()) {
287       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
288                                              computation));
289       continue;
290     }
291 
292     // Look at all expansions in an expanded pack.
293     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
294            i != n; ++i) {
295       LV.merge(getLVForTemplateParameterList(
296           TTP->getExpansionTemplateParameters(i), computation));
297     }
298   }
299 
300   return LV;
301 }
302 
303 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
304   const Decl *Ret = nullptr;
305   const DeclContext *DC = D->getDeclContext();
306   while (DC->getDeclKind() != Decl::TranslationUnit) {
307     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
308       Ret = cast<Decl>(DC);
309     DC = DC->getParent();
310   }
311   return Ret;
312 }
313 
314 /// Get the most restrictive linkage for the types and
315 /// declarations in the given template argument list.
316 ///
317 /// Note that we don't take an LVComputationKind because we always
318 /// want to honor the visibility of template arguments in the same way.
319 LinkageInfo
320 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
321                                               LVComputationKind computation) {
322   LinkageInfo LV;
323 
324   for (const TemplateArgument &Arg : Args) {
325     switch (Arg.getKind()) {
326     case TemplateArgument::Null:
327     case TemplateArgument::Integral:
328     case TemplateArgument::Expression:
329       continue;
330 
331     case TemplateArgument::Type:
332       LV.merge(getLVForType(*Arg.getAsType(), computation));
333       continue;
334 
335     case TemplateArgument::Declaration: {
336       const NamedDecl *ND = Arg.getAsDecl();
337       assert(!usesTypeVisibility(ND));
338       LV.merge(getLVForDecl(ND, computation));
339       continue;
340     }
341 
342     case TemplateArgument::NullPtr:
343       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
344       continue;
345 
346     case TemplateArgument::StructuralValue:
347       LV.merge(getLVForValue(Arg.getAsStructuralValue(), computation));
348       continue;
349 
350     case TemplateArgument::Template:
351     case TemplateArgument::TemplateExpansion:
352       if (TemplateDecl *Template =
353               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
354         LV.merge(getLVForDecl(Template, computation));
355       continue;
356 
357     case TemplateArgument::Pack:
358       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
359       continue;
360     }
361     llvm_unreachable("bad template argument kind");
362   }
363 
364   return LV;
365 }
366 
367 LinkageInfo
368 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
369                                               LVComputationKind computation) {
370   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
371 }
372 
373 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
374                         const FunctionTemplateSpecializationInfo *specInfo) {
375   // Include visibility from the template parameters and arguments
376   // only if this is not an explicit instantiation or specialization
377   // with direct explicit visibility.  (Implicit instantiations won't
378   // have a direct attribute.)
379   if (!specInfo->isExplicitInstantiationOrSpecialization())
380     return true;
381 
382   return !fn->hasAttr<VisibilityAttr>();
383 }
384 
385 /// Merge in template-related linkage and visibility for the given
386 /// function template specialization.
387 ///
388 /// We don't need a computation kind here because we can assume
389 /// LVForValue.
390 ///
391 /// \param[out] LV the computation to use for the parent
392 void LinkageComputer::mergeTemplateLV(
393     LinkageInfo &LV, const FunctionDecl *fn,
394     const FunctionTemplateSpecializationInfo *specInfo,
395     LVComputationKind computation) {
396   bool considerVisibility =
397     shouldConsiderTemplateVisibility(fn, specInfo);
398 
399   FunctionTemplateDecl *temp = specInfo->getTemplate();
400   // Merge information from the template declaration.
401   LinkageInfo tempLV = getLVForDecl(temp, computation);
402   // The linkage of the specialization should be consistent with the
403   // template declaration.
404   LV.setLinkage(tempLV.getLinkage());
405 
406   // Merge information from the template parameters.
407   LinkageInfo paramsLV =
408       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
409   LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
410 
411   // Merge information from the template arguments.
412   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
413   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
414   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
415 }
416 
417 /// Does the given declaration have a direct visibility attribute
418 /// that would match the given rules?
419 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
420                                          LVComputationKind computation) {
421   if (computation.IgnoreAllVisibility)
422     return false;
423 
424   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
425          D->hasAttr<VisibilityAttr>();
426 }
427 
428 /// Should we consider visibility associated with the template
429 /// arguments and parameters of the given class template specialization?
430 static bool shouldConsiderTemplateVisibility(
431                                  const ClassTemplateSpecializationDecl *spec,
432                                  LVComputationKind computation) {
433   // Include visibility from the template parameters and arguments
434   // only if this is not an explicit instantiation or specialization
435   // with direct explicit visibility (and note that implicit
436   // instantiations won't have a direct attribute).
437   //
438   // Furthermore, we want to ignore template parameters and arguments
439   // for an explicit specialization when computing the visibility of a
440   // member thereof with explicit visibility.
441   //
442   // This is a bit complex; let's unpack it.
443   //
444   // An explicit class specialization is an independent, top-level
445   // declaration.  As such, if it or any of its members has an
446   // explicit visibility attribute, that must directly express the
447   // user's intent, and we should honor it.  The same logic applies to
448   // an explicit instantiation of a member of such a thing.
449 
450   // Fast path: if this is not an explicit instantiation or
451   // specialization, we always want to consider template-related
452   // visibility restrictions.
453   if (!spec->isExplicitInstantiationOrSpecialization())
454     return true;
455 
456   // This is the 'member thereof' check.
457   if (spec->isExplicitSpecialization() &&
458       hasExplicitVisibilityAlready(computation))
459     return false;
460 
461   return !hasDirectVisibilityAttribute(spec, computation);
462 }
463 
464 /// Merge in template-related linkage and visibility for the given
465 /// class template specialization.
466 void LinkageComputer::mergeTemplateLV(
467     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
468     LVComputationKind computation) {
469   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
470 
471   // Merge information from the template parameters, but ignore
472   // visibility if we're only considering template arguments.
473   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
474   // Merge information from the template declaration.
475   LinkageInfo tempLV = getLVForDecl(temp, computation);
476   // The linkage of the specialization should be consistent with the
477   // template declaration.
478   LV.setLinkage(tempLV.getLinkage());
479 
480   LinkageInfo paramsLV =
481     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
482   LV.mergeMaybeWithVisibility(paramsLV,
483            considerVisibility && !hasExplicitVisibilityAlready(computation));
484 
485   // Merge information from the template arguments.  We ignore
486   // template-argument visibility if we've got an explicit
487   // instantiation with a visibility attribute.
488   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
489   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
490   if (considerVisibility)
491     LV.mergeVisibility(argsLV);
492   LV.mergeExternalVisibility(argsLV);
493 }
494 
495 /// Should we consider visibility associated with the template
496 /// arguments and parameters of the given variable template
497 /// specialization? As usual, follow class template specialization
498 /// logic up to initialization.
499 static bool shouldConsiderTemplateVisibility(
500                                  const VarTemplateSpecializationDecl *spec,
501                                  LVComputationKind computation) {
502   // Include visibility from the template parameters and arguments
503   // only if this is not an explicit instantiation or specialization
504   // with direct explicit visibility (and note that implicit
505   // instantiations won't have a direct attribute).
506   if (!spec->isExplicitInstantiationOrSpecialization())
507     return true;
508 
509   // An explicit variable specialization is an independent, top-level
510   // declaration.  As such, if it has an explicit visibility attribute,
511   // that must directly express the user's intent, and we should honor
512   // it.
513   if (spec->isExplicitSpecialization() &&
514       hasExplicitVisibilityAlready(computation))
515     return false;
516 
517   return !hasDirectVisibilityAttribute(spec, computation);
518 }
519 
520 /// Merge in template-related linkage and visibility for the given
521 /// variable template specialization. As usual, follow class template
522 /// specialization logic up to initialization.
523 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
524                                       const VarTemplateSpecializationDecl *spec,
525                                       LVComputationKind computation) {
526   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
527 
528   // Merge information from the template parameters, but ignore
529   // visibility if we're only considering template arguments.
530   VarTemplateDecl *temp = spec->getSpecializedTemplate();
531   LinkageInfo tempLV =
532     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
533   LV.mergeMaybeWithVisibility(tempLV,
534            considerVisibility && !hasExplicitVisibilityAlready(computation));
535 
536   // Merge information from the template arguments.  We ignore
537   // template-argument visibility if we've got an explicit
538   // instantiation with a visibility attribute.
539   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
540   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
541   if (considerVisibility)
542     LV.mergeVisibility(argsLV);
543   LV.mergeExternalVisibility(argsLV);
544 }
545 
546 static bool useInlineVisibilityHidden(const NamedDecl *D) {
547   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
548   const LangOptions &Opts = D->getASTContext().getLangOpts();
549   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
550     return false;
551 
552   const auto *FD = dyn_cast<FunctionDecl>(D);
553   if (!FD)
554     return false;
555 
556   TemplateSpecializationKind TSK = TSK_Undeclared;
557   if (FunctionTemplateSpecializationInfo *spec
558       = FD->getTemplateSpecializationInfo()) {
559     TSK = spec->getTemplateSpecializationKind();
560   } else if (MemberSpecializationInfo *MSI =
561              FD->getMemberSpecializationInfo()) {
562     TSK = MSI->getTemplateSpecializationKind();
563   }
564 
565   const FunctionDecl *Def = nullptr;
566   // InlineVisibilityHidden only applies to definitions, and
567   // isInlined() only gives meaningful answers on definitions
568   // anyway.
569   return TSK != TSK_ExplicitInstantiationDeclaration &&
570     TSK != TSK_ExplicitInstantiationDefinition &&
571     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
572 }
573 
574 template <typename T> static bool isFirstInExternCContext(T *D) {
575   const T *First = D->getFirstDecl();
576   return First->isInExternCContext();
577 }
578 
579 static bool isSingleLineLanguageLinkage(const Decl &D) {
580   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
581     if (!SD->hasBraces())
582       return true;
583   return false;
584 }
585 
586 static bool isDeclaredInModuleInterfaceOrPartition(const NamedDecl *D) {
587   if (auto *M = D->getOwningModule())
588     return M->isInterfaceOrPartition();
589   return false;
590 }
591 
592 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
593   return LinkageInfo::external();
594 }
595 
596 static StorageClass getStorageClass(const Decl *D) {
597   if (auto *TD = dyn_cast<TemplateDecl>(D))
598     D = TD->getTemplatedDecl();
599   if (D) {
600     if (auto *VD = dyn_cast<VarDecl>(D))
601       return VD->getStorageClass();
602     if (auto *FD = dyn_cast<FunctionDecl>(D))
603       return FD->getStorageClass();
604   }
605   return SC_None;
606 }
607 
608 LinkageInfo
609 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
610                                             LVComputationKind computation,
611                                             bool IgnoreVarTypeLinkage) {
612   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
613          "Not a name having namespace scope");
614   ASTContext &Context = D->getASTContext();
615   const auto *Var = dyn_cast<VarDecl>(D);
616 
617   // C++ [basic.link]p3:
618   //   A name having namespace scope (3.3.6) has internal linkage if it
619   //   is the name of
620 
621   if ((getStorageClass(D->getCanonicalDecl()) == SC_Static) ||
622       (Context.getLangOpts().C23 && Var && Var->isConstexpr())) {
623     // - a variable, variable template, function, or function template
624     //   that is explicitly declared static; or
625     // (This bullet corresponds to C99 6.2.2p3.)
626 
627     // C23 6.2.2p3
628     // If the declaration of a file scope identifier for
629     // an object contains any of the storage-class specifiers static or
630     // constexpr then the identifier has internal linkage.
631     return LinkageInfo::internal();
632   }
633 
634   if (Var) {
635     // - a non-template variable of non-volatile const-qualified type, unless
636     //   - it is explicitly declared extern, or
637     //   - it is declared in the purview of a module interface unit
638     //     (outside the private-module-fragment, if any) or module partition, or
639     //   - it is inline, or
640     //   - it was previously declared and the prior declaration did not have
641     //     internal linkage
642     // (There is no equivalent in C99.)
643     if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
644         !Var->getType().isVolatileQualified() && !Var->isInline() &&
645         !isDeclaredInModuleInterfaceOrPartition(Var) &&
646         !isa<VarTemplateSpecializationDecl>(Var) &&
647         !Var->getDescribedVarTemplate()) {
648       const VarDecl *PrevVar = Var->getPreviousDecl();
649       if (PrevVar)
650         return getLVForDecl(PrevVar, computation);
651 
652       if (Var->getStorageClass() != SC_Extern &&
653           Var->getStorageClass() != SC_PrivateExtern &&
654           !isSingleLineLanguageLinkage(*Var))
655         return LinkageInfo::internal();
656     }
657 
658     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
659          PrevVar = PrevVar->getPreviousDecl()) {
660       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
661           Var->getStorageClass() == SC_None)
662         return getDeclLinkageAndVisibility(PrevVar);
663       // Explicitly declared static.
664       if (PrevVar->getStorageClass() == SC_Static)
665         return LinkageInfo::internal();
666     }
667   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
668     //   - a data member of an anonymous union.
669     const VarDecl *VD = IFD->getVarDecl();
670     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
672   }
673   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674 
675   // FIXME: This gives internal linkage to names that should have no linkage
676   // (those not covered by [basic.link]p6).
677   if (D->isInAnonymousNamespace()) {
678     const auto *Var = dyn_cast<VarDecl>(D);
679     const auto *Func = dyn_cast<FunctionDecl>(D);
680     // FIXME: The check for extern "C" here is not justified by the standard
681     // wording, but we retain it from the pre-DR1113 model to avoid breaking
682     // code.
683     //
684     // C++11 [basic.link]p4:
685     //   An unnamed namespace or a namespace declared directly or indirectly
686     //   within an unnamed namespace has internal linkage.
687     if ((!Var || !isFirstInExternCContext(Var)) &&
688         (!Func || !isFirstInExternCContext(Func)))
689       return LinkageInfo::internal();
690   }
691 
692   // Set up the defaults.
693 
694   // C99 6.2.2p5:
695   //   If the declaration of an identifier for an object has file
696   //   scope and no storage-class specifier, its linkage is
697   //   external.
698   LinkageInfo LV = getExternalLinkageFor(D);
699 
700   if (!hasExplicitVisibilityAlready(computation)) {
701     if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
702       LV.mergeVisibility(*Vis, true);
703     } else {
704       // If we're declared in a namespace with a visibility attribute,
705       // use that namespace's visibility, and it still counts as explicit.
706       for (const DeclContext *DC = D->getDeclContext();
707            !isa<TranslationUnitDecl>(DC);
708            DC = DC->getParent()) {
709         const auto *ND = dyn_cast<NamespaceDecl>(DC);
710         if (!ND) continue;
711         if (std::optional<Visibility> Vis =
712                 getExplicitVisibility(ND, computation)) {
713           LV.mergeVisibility(*Vis, true);
714           break;
715         }
716       }
717     }
718 
719     // Add in global settings if the above didn't give us direct visibility.
720     if (!LV.isVisibilityExplicit()) {
721       // Use global type/value visibility as appropriate.
722       Visibility globalVisibility =
723           computation.isValueVisibility()
724               ? Context.getLangOpts().getValueVisibilityMode()
725               : Context.getLangOpts().getTypeVisibilityMode();
726       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
727 
728       // If we're paying attention to global visibility, apply
729       // -finline-visibility-hidden if this is an inline method.
730       if (useInlineVisibilityHidden(D))
731         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
732     }
733   }
734 
735   // C++ [basic.link]p4:
736 
737   //   A name having namespace scope that has not been given internal linkage
738   //   above and that is the name of
739   //   [...bullets...]
740   //   has its linkage determined as follows:
741   //     - if the enclosing namespace has internal linkage, the name has
742   //       internal linkage; [handled above]
743   //     - otherwise, if the declaration of the name is attached to a named
744   //       module and is not exported, the name has module linkage;
745   //     - otherwise, the name has external linkage.
746   // LV is currently set up to handle the last two bullets.
747   //
748   //   The bullets are:
749 
750   //     - a variable; or
751   if (const auto *Var = dyn_cast<VarDecl>(D)) {
752     // GCC applies the following optimization to variables and static
753     // data members, but not to functions:
754     //
755     // Modify the variable's LV by the LV of its type unless this is
756     // C or extern "C".  This follows from [basic.link]p9:
757     //   A type without linkage shall not be used as the type of a
758     //   variable or function with external linkage unless
759     //    - the entity has C language linkage, or
760     //    - the entity is declared within an unnamed namespace, or
761     //    - the entity is not used or is defined in the same
762     //      translation unit.
763     // and [basic.link]p10:
764     //   ...the types specified by all declarations referring to a
765     //   given variable or function shall be identical...
766     // C does not have an equivalent rule.
767     //
768     // Ignore this if we've got an explicit attribute;  the user
769     // probably knows what they're doing.
770     //
771     // Note that we don't want to make the variable non-external
772     // because of this, but unique-external linkage suits us.
773 
774     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
775         !IgnoreVarTypeLinkage) {
776       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
777       if (!isExternallyVisible(TypeLV.getLinkage()))
778         return LinkageInfo::uniqueExternal();
779       if (!LV.isVisibilityExplicit())
780         LV.mergeVisibility(TypeLV);
781     }
782 
783     if (Var->getStorageClass() == SC_PrivateExtern)
784       LV.mergeVisibility(HiddenVisibility, true);
785 
786     // Note that Sema::MergeVarDecl already takes care of implementing
787     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
788     // to do it here.
789 
790     // As per function and class template specializations (below),
791     // consider LV for the template and template arguments.  We're at file
792     // scope, so we do not need to worry about nested specializations.
793     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
794       mergeTemplateLV(LV, spec, computation);
795     }
796 
797   //     - a function; or
798   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
799     // In theory, we can modify the function's LV by the LV of its
800     // type unless it has C linkage (see comment above about variables
801     // for justification).  In practice, GCC doesn't do this, so it's
802     // just too painful to make work.
803 
804     if (Function->getStorageClass() == SC_PrivateExtern)
805       LV.mergeVisibility(HiddenVisibility, true);
806 
807     // OpenMP target declare device functions are not callable from the host so
808     // they should not be exported from the device image. This applies to all
809     // functions as the host-callable kernel functions are emitted at codegen.
810     if (Context.getLangOpts().OpenMP &&
811         Context.getLangOpts().OpenMPIsTargetDevice &&
812         ((Context.getTargetInfo().getTriple().isAMDGPU() ||
813           Context.getTargetInfo().getTriple().isNVPTX()) ||
814          OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
815       LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
816 
817     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
818     // merging storage classes and visibility attributes, so we don't have to
819     // look at previous decls in here.
820 
821     // In C++, then if the type of the function uses a type with
822     // unique-external linkage, it's not legally usable from outside
823     // this translation unit.  However, we should use the C linkage
824     // rules instead for extern "C" declarations.
825     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
826       // Only look at the type-as-written. Otherwise, deducing the return type
827       // of a function could change its linkage.
828       QualType TypeAsWritten = Function->getType();
829       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
830         TypeAsWritten = TSI->getType();
831       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
832         return LinkageInfo::uniqueExternal();
833     }
834 
835     // Consider LV from the template and the template arguments.
836     // We're at file scope, so we do not need to worry about nested
837     // specializations.
838     if (FunctionTemplateSpecializationInfo *specInfo
839                                = Function->getTemplateSpecializationInfo()) {
840       mergeTemplateLV(LV, Function, specInfo, computation);
841     }
842 
843   //     - a named class (Clause 9), or an unnamed class defined in a
844   //       typedef declaration in which the class has the typedef name
845   //       for linkage purposes (7.1.3); or
846   //     - a named enumeration (7.2), or an unnamed enumeration
847   //       defined in a typedef declaration in which the enumeration
848   //       has the typedef name for linkage purposes (7.1.3); or
849   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
850     // Unnamed tags have no linkage.
851     if (!Tag->hasNameForLinkage())
852       return LinkageInfo::none();
853 
854     // If this is a class template specialization, consider the
855     // linkage of the template and template arguments.  We're at file
856     // scope, so we do not need to worry about nested specializations.
857     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
858       mergeTemplateLV(LV, spec, computation);
859     }
860 
861   // FIXME: This is not part of the C++ standard any more.
862   //     - an enumerator belonging to an enumeration with external linkage; or
863   } else if (isa<EnumConstantDecl>(D)) {
864     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
865                                       computation);
866     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
867       return LinkageInfo::none();
868     LV.merge(EnumLV);
869 
870   //     - a template
871   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
872     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
873     LinkageInfo tempLV =
874       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
875     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
876 
877   //     An unnamed namespace or a namespace declared directly or indirectly
878   //     within an unnamed namespace has internal linkage. All other namespaces
879   //     have external linkage.
880   //
881   // We handled names in anonymous namespaces above.
882   } else if (isa<NamespaceDecl>(D)) {
883     return LV;
884 
885   // By extension, we assign external linkage to Objective-C
886   // interfaces.
887   } else if (isa<ObjCInterfaceDecl>(D)) {
888     // fallout
889 
890   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
891     // A typedef declaration has linkage if it gives a type a name for
892     // linkage purposes.
893     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
894       return LinkageInfo::none();
895 
896   } else if (isa<MSGuidDecl>(D)) {
897     // A GUID behaves like an inline variable with external linkage. Fall
898     // through.
899 
900   // Everything not covered here has no linkage.
901   } else {
902     return LinkageInfo::none();
903   }
904 
905   // If we ended up with non-externally-visible linkage, visibility should
906   // always be default.
907   if (!isExternallyVisible(LV.getLinkage()))
908     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
909 
910   return LV;
911 }
912 
913 LinkageInfo
914 LinkageComputer::getLVForClassMember(const NamedDecl *D,
915                                      LVComputationKind computation,
916                                      bool IgnoreVarTypeLinkage) {
917   // Only certain class members have linkage.  Note that fields don't
918   // really have linkage, but it's convenient to say they do for the
919   // purposes of calculating linkage of pointer-to-data-member
920   // template arguments.
921   //
922   // Templates also don't officially have linkage, but since we ignore
923   // the C++ standard and look at template arguments when determining
924   // linkage and visibility of a template specialization, we might hit
925   // a template template argument that way. If we do, we need to
926   // consider its linkage.
927   if (!(isa<CXXMethodDecl>(D) ||
928         isa<VarDecl>(D) ||
929         isa<FieldDecl>(D) ||
930         isa<IndirectFieldDecl>(D) ||
931         isa<TagDecl>(D) ||
932         isa<TemplateDecl>(D)))
933     return LinkageInfo::none();
934 
935   LinkageInfo LV;
936 
937   // If we have an explicit visibility attribute, merge that in.
938   if (!hasExplicitVisibilityAlready(computation)) {
939     if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
940       LV.mergeVisibility(*Vis, true);
941     // If we're paying attention to global visibility, apply
942     // -finline-visibility-hidden if this is an inline method.
943     //
944     // Note that we do this before merging information about
945     // the class visibility.
946     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
947       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
948   }
949 
950   // If this class member has an explicit visibility attribute, the only
951   // thing that can change its visibility is the template arguments, so
952   // only look for them when processing the class.
953   LVComputationKind classComputation = computation;
954   if (LV.isVisibilityExplicit())
955     classComputation = withExplicitVisibilityAlready(computation);
956 
957   LinkageInfo classLV =
958     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
959   // The member has the same linkage as the class. If that's not externally
960   // visible, we don't need to compute anything about the linkage.
961   // FIXME: If we're only computing linkage, can we bail out here?
962   if (!isExternallyVisible(classLV.getLinkage()))
963     return classLV;
964 
965 
966   // Otherwise, don't merge in classLV yet, because in certain cases
967   // we need to completely ignore the visibility from it.
968 
969   // Specifically, if this decl exists and has an explicit attribute.
970   const NamedDecl *explicitSpecSuppressor = nullptr;
971 
972   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
973     // Only look at the type-as-written. Otherwise, deducing the return type
974     // of a function could change its linkage.
975     QualType TypeAsWritten = MD->getType();
976     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
977       TypeAsWritten = TSI->getType();
978     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
979       return LinkageInfo::uniqueExternal();
980 
981     // If this is a method template specialization, use the linkage for
982     // the template parameters and arguments.
983     if (FunctionTemplateSpecializationInfo *spec
984            = MD->getTemplateSpecializationInfo()) {
985       mergeTemplateLV(LV, MD, spec, computation);
986       if (spec->isExplicitSpecialization()) {
987         explicitSpecSuppressor = MD;
988       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
989         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
990       }
991     } else if (isExplicitMemberSpecialization(MD)) {
992       explicitSpecSuppressor = MD;
993     }
994 
995     // OpenMP target declare device functions are not callable from the host so
996     // they should not be exported from the device image. This applies to all
997     // functions as the host-callable kernel functions are emitted at codegen.
998     ASTContext &Context = D->getASTContext();
999     if (Context.getLangOpts().OpenMP &&
1000         Context.getLangOpts().OpenMPIsTargetDevice &&
1001         ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1002           Context.getTargetInfo().getTriple().isNVPTX()) ||
1003          OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1004       LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1005 
1006   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1007     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1008       mergeTemplateLV(LV, spec, computation);
1009       if (spec->isExplicitSpecialization()) {
1010         explicitSpecSuppressor = spec;
1011       } else {
1012         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1013         if (isExplicitMemberSpecialization(temp)) {
1014           explicitSpecSuppressor = temp->getTemplatedDecl();
1015         }
1016       }
1017     } else if (isExplicitMemberSpecialization(RD)) {
1018       explicitSpecSuppressor = RD;
1019     }
1020 
1021   // Static data members.
1022   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1023     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1024       mergeTemplateLV(LV, spec, computation);
1025 
1026     // Modify the variable's linkage by its type, but ignore the
1027     // type's visibility unless it's a definition.
1028     if (!IgnoreVarTypeLinkage) {
1029       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1030       // FIXME: If the type's linkage is not externally visible, we can
1031       // give this static data member UniqueExternalLinkage.
1032       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1033         LV.mergeVisibility(typeLV);
1034       LV.mergeExternalVisibility(typeLV);
1035     }
1036 
1037     if (isExplicitMemberSpecialization(VD)) {
1038       explicitSpecSuppressor = VD;
1039     }
1040 
1041   // Template members.
1042   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1043     bool considerVisibility =
1044       (!LV.isVisibilityExplicit() &&
1045        !classLV.isVisibilityExplicit() &&
1046        !hasExplicitVisibilityAlready(computation));
1047     LinkageInfo tempLV =
1048       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1049     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1050 
1051     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1052       if (isExplicitMemberSpecialization(redeclTemp)) {
1053         explicitSpecSuppressor = temp->getTemplatedDecl();
1054       }
1055     }
1056   }
1057 
1058   // We should never be looking for an attribute directly on a template.
1059   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1060 
1061   // If this member is an explicit member specialization, and it has
1062   // an explicit attribute, ignore visibility from the parent.
1063   bool considerClassVisibility = true;
1064   if (explicitSpecSuppressor &&
1065       // optimization: hasDVA() is true only with explicit visibility.
1066       LV.isVisibilityExplicit() &&
1067       classLV.getVisibility() != DefaultVisibility &&
1068       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1069     considerClassVisibility = false;
1070   }
1071 
1072   // Finally, merge in information from the class.
1073   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1074   return LV;
1075 }
1076 
1077 void NamedDecl::anchor() {}
1078 
1079 bool NamedDecl::isLinkageValid() const {
1080   if (!hasCachedLinkage())
1081     return true;
1082 
1083   Linkage L = LinkageComputer{}
1084                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1085                   .getLinkage();
1086   return L == getCachedLinkage();
1087 }
1088 
1089 bool NamedDecl::isPlaceholderVar(const LangOptions &LangOpts) const {
1090   // [C++2c] [basic.scope.scope]/p5
1091   // A declaration is name-independent if its name is _ and it declares
1092   // - a variable with automatic storage duration,
1093   // - a structured binding not inhabiting a namespace scope,
1094   // - the variable introduced by an init-capture
1095   // - or a non-static data member.
1096 
1097   if (!LangOpts.CPlusPlus || !getIdentifier() ||
1098       !getIdentifier()->isPlaceholder())
1099     return false;
1100   if (isa<FieldDecl>(this))
1101     return true;
1102   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(this)) {
1103     if (!getDeclContext()->isFunctionOrMethod() &&
1104         !getDeclContext()->isRecord())
1105       return false;
1106     const VarDecl *VD = IFD->getVarDecl();
1107     return !VD || VD->getStorageDuration() == SD_Automatic;
1108   }
1109   // and it declares a variable with automatic storage duration
1110   if (const auto *VD = dyn_cast<VarDecl>(this)) {
1111     if (isa<ParmVarDecl>(VD))
1112       return false;
1113     if (VD->isInitCapture())
1114       return true;
1115     return VD->getStorageDuration() == StorageDuration::SD_Automatic;
1116   }
1117   if (const auto *BD = dyn_cast<BindingDecl>(this);
1118       BD && getDeclContext()->isFunctionOrMethod()) {
1119     const VarDecl *VD = BD->getHoldingVar();
1120     return !VD || VD->getStorageDuration() == StorageDuration::SD_Automatic;
1121   }
1122   return false;
1123 }
1124 
1125 ReservedIdentifierStatus
1126 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1127   const IdentifierInfo *II = getIdentifier();
1128 
1129   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1130   // at lexing time.
1131   if (!II)
1132     return ReservedIdentifierStatus::NotReserved;
1133 
1134   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1135   if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1136     // This name is only reserved at global scope. Check if this declaration
1137     // conflicts with a global scope declaration.
1138     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1139       return ReservedIdentifierStatus::NotReserved;
1140 
1141     // C++ [dcl.link]/7:
1142     //   Two declarations [conflict] if [...] one declares a function or
1143     //   variable with C language linkage, and the other declares [...] a
1144     //   variable that belongs to the global scope.
1145     //
1146     // Therefore names that are reserved at global scope are also reserved as
1147     // names of variables and functions with C language linkage.
1148     const DeclContext *DC = getDeclContext()->getRedeclContext();
1149     if (DC->isTranslationUnit())
1150       return Status;
1151     if (auto *VD = dyn_cast<VarDecl>(this))
1152       if (VD->isExternC())
1153         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1154     if (auto *FD = dyn_cast<FunctionDecl>(this))
1155       if (FD->isExternC())
1156         return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1157     return ReservedIdentifierStatus::NotReserved;
1158   }
1159 
1160   return Status;
1161 }
1162 
1163 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1164   StringRef name = getName();
1165   if (name.empty()) return SFF_None;
1166 
1167   if (name.front() == 'C')
1168     if (name == "CFStringCreateWithFormat" ||
1169         name == "CFStringCreateWithFormatAndArguments" ||
1170         name == "CFStringAppendFormat" ||
1171         name == "CFStringAppendFormatAndArguments")
1172       return SFF_CFString;
1173   return SFF_None;
1174 }
1175 
1176 Linkage NamedDecl::getLinkageInternal() const {
1177   // We don't care about visibility here, so ask for the cheapest
1178   // possible visibility analysis.
1179   return LinkageComputer{}
1180       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1181       .getLinkage();
1182 }
1183 
1184 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
1185   // FIXME: Handle isModulePrivate.
1186   switch (D->getModuleOwnershipKind()) {
1187   case Decl::ModuleOwnershipKind::Unowned:
1188   case Decl::ModuleOwnershipKind::ReachableWhenImported:
1189   case Decl::ModuleOwnershipKind::ModulePrivate:
1190     return false;
1191   case Decl::ModuleOwnershipKind::Visible:
1192   case Decl::ModuleOwnershipKind::VisibleWhenImported:
1193     return D->isInNamedModule();
1194   }
1195   llvm_unreachable("unexpected module ownership kind");
1196 }
1197 
1198 /// Get the linkage from a semantic point of view. Entities in
1199 /// anonymous namespaces are external (in c++98).
1200 Linkage NamedDecl::getFormalLinkage() const {
1201   Linkage InternalLinkage = getLinkageInternal();
1202 
1203   // C++ [basic.link]p4.8:
1204   //   - if the declaration of the name is attached to a named module and is not
1205   //   exported
1206   //     the name has module linkage;
1207   //
1208   // [basic.namespace.general]/p2
1209   //   A namespace is never attached to a named module and never has a name with
1210   //   module linkage.
1211   if (isInNamedModule() && InternalLinkage == Linkage::External &&
1212       !isExportedFromModuleInterfaceUnit(
1213           cast<NamedDecl>(this->getCanonicalDecl())) &&
1214       !isa<NamespaceDecl>(this))
1215     InternalLinkage = Linkage::Module;
1216 
1217   return clang::getFormalLinkage(InternalLinkage);
1218 }
1219 
1220 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1221   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1222 }
1223 
1224 static std::optional<Visibility>
1225 getExplicitVisibilityAux(const NamedDecl *ND,
1226                          NamedDecl::ExplicitVisibilityKind kind,
1227                          bool IsMostRecent) {
1228   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1229 
1230   // Check the declaration itself first.
1231   if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1232     return V;
1233 
1234   // If this is a member class of a specialization of a class template
1235   // and the corresponding decl has explicit visibility, use that.
1236   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1237     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1238     if (InstantiatedFrom)
1239       return getVisibilityOf(InstantiatedFrom, kind);
1240   }
1241 
1242   // If there wasn't explicit visibility there, and this is a
1243   // specialization of a class template, check for visibility
1244   // on the pattern.
1245   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1246     // Walk all the template decl till this point to see if there are
1247     // explicit visibility attributes.
1248     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1249     while (TD != nullptr) {
1250       auto Vis = getVisibilityOf(TD, kind);
1251       if (Vis != std::nullopt)
1252         return Vis;
1253       TD = TD->getPreviousDecl();
1254     }
1255     return std::nullopt;
1256   }
1257 
1258   // Use the most recent declaration.
1259   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1260     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1261     if (MostRecent != ND)
1262       return getExplicitVisibilityAux(MostRecent, kind, true);
1263   }
1264 
1265   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1266     if (Var->isStaticDataMember()) {
1267       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1268       if (InstantiatedFrom)
1269         return getVisibilityOf(InstantiatedFrom, kind);
1270     }
1271 
1272     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1273       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1274                              kind);
1275 
1276     return std::nullopt;
1277   }
1278   // Also handle function template specializations.
1279   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1280     // If the function is a specialization of a template with an
1281     // explicit visibility attribute, use that.
1282     if (FunctionTemplateSpecializationInfo *templateInfo
1283           = fn->getTemplateSpecializationInfo())
1284       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1285                              kind);
1286 
1287     // If the function is a member of a specialization of a class template
1288     // and the corresponding decl has explicit visibility, use that.
1289     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1290     if (InstantiatedFrom)
1291       return getVisibilityOf(InstantiatedFrom, kind);
1292 
1293     return std::nullopt;
1294   }
1295 
1296   // The visibility of a template is stored in the templated decl.
1297   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1298     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1299 
1300   return std::nullopt;
1301 }
1302 
1303 std::optional<Visibility>
1304 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1305   return getExplicitVisibilityAux(this, kind, false);
1306 }
1307 
1308 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1309                                              Decl *ContextDecl,
1310                                              LVComputationKind computation) {
1311   // This lambda has its linkage/visibility determined by its owner.
1312   const NamedDecl *Owner;
1313   if (!ContextDecl)
1314     Owner = dyn_cast<NamedDecl>(DC);
1315   else if (isa<ParmVarDecl>(ContextDecl))
1316     Owner =
1317         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1318   else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1319     // Replace with the concept's owning decl, which is either a namespace or a
1320     // TU, so this needs a dyn_cast.
1321     Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1322   } else {
1323     Owner = cast<NamedDecl>(ContextDecl);
1324   }
1325 
1326   if (!Owner)
1327     return LinkageInfo::none();
1328 
1329   // If the owner has a deduced type, we need to skip querying the linkage and
1330   // visibility of that type, because it might involve this closure type.  The
1331   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1332   // than NoLinkage when we don't strictly need to, which is benign.
1333   auto *VD = dyn_cast<VarDecl>(Owner);
1334   LinkageInfo OwnerLV =
1335       VD && VD->getType()->getContainedDeducedType()
1336           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1337           : getLVForDecl(Owner, computation);
1338 
1339   // A lambda never formally has linkage. But if the owner is externally
1340   // visible, then the lambda is too. We apply the same rules to blocks.
1341   if (!isExternallyVisible(OwnerLV.getLinkage()))
1342     return LinkageInfo::none();
1343   return LinkageInfo(Linkage::VisibleNone, OwnerLV.getVisibility(),
1344                      OwnerLV.isVisibilityExplicit());
1345 }
1346 
1347 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1348                                                LVComputationKind computation) {
1349   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1350     if (Function->isInAnonymousNamespace() &&
1351         !isFirstInExternCContext(Function))
1352       return LinkageInfo::internal();
1353 
1354     // This is a "void f();" which got merged with a file static.
1355     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1356       return LinkageInfo::internal();
1357 
1358     LinkageInfo LV;
1359     if (!hasExplicitVisibilityAlready(computation)) {
1360       if (std::optional<Visibility> Vis =
1361               getExplicitVisibility(Function, computation))
1362         LV.mergeVisibility(*Vis, true);
1363     }
1364 
1365     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1366     // merging storage classes and visibility attributes, so we don't have to
1367     // look at previous decls in here.
1368 
1369     return LV;
1370   }
1371 
1372   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1373     if (Var->hasExternalStorage()) {
1374       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1375         return LinkageInfo::internal();
1376 
1377       LinkageInfo LV;
1378       if (Var->getStorageClass() == SC_PrivateExtern)
1379         LV.mergeVisibility(HiddenVisibility, true);
1380       else if (!hasExplicitVisibilityAlready(computation)) {
1381         if (std::optional<Visibility> Vis =
1382                 getExplicitVisibility(Var, computation))
1383           LV.mergeVisibility(*Vis, true);
1384       }
1385 
1386       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1387         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1388         if (PrevLV.getLinkage() != Linkage::Invalid)
1389           LV.setLinkage(PrevLV.getLinkage());
1390         LV.mergeVisibility(PrevLV);
1391       }
1392 
1393       return LV;
1394     }
1395 
1396     if (!Var->isStaticLocal())
1397       return LinkageInfo::none();
1398   }
1399 
1400   ASTContext &Context = D->getASTContext();
1401   if (!Context.getLangOpts().CPlusPlus)
1402     return LinkageInfo::none();
1403 
1404   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1405   if (!OuterD || OuterD->isInvalidDecl())
1406     return LinkageInfo::none();
1407 
1408   LinkageInfo LV;
1409   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1410     if (!BD->getBlockManglingNumber())
1411       return LinkageInfo::none();
1412 
1413     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1414                          BD->getBlockManglingContextDecl(), computation);
1415   } else {
1416     const auto *FD = cast<FunctionDecl>(OuterD);
1417     if (!FD->isInlined() &&
1418         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1419       return LinkageInfo::none();
1420 
1421     // If a function is hidden by -fvisibility-inlines-hidden option and
1422     // is not explicitly attributed as a hidden function,
1423     // we should not make static local variables in the function hidden.
1424     LV = getLVForDecl(FD, computation);
1425     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1426         !LV.isVisibilityExplicit() &&
1427         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1428       assert(cast<VarDecl>(D)->isStaticLocal());
1429       // If this was an implicitly hidden inline method, check again for
1430       // explicit visibility on the parent class, and use that for static locals
1431       // if present.
1432       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1433         LV = getLVForDecl(MD->getParent(), computation);
1434       if (!LV.isVisibilityExplicit()) {
1435         Visibility globalVisibility =
1436             computation.isValueVisibility()
1437                 ? Context.getLangOpts().getValueVisibilityMode()
1438                 : Context.getLangOpts().getTypeVisibilityMode();
1439         return LinkageInfo(Linkage::VisibleNone, globalVisibility,
1440                            /*visibilityExplicit=*/false);
1441       }
1442     }
1443   }
1444   if (!isExternallyVisible(LV.getLinkage()))
1445     return LinkageInfo::none();
1446   return LinkageInfo(Linkage::VisibleNone, LV.getVisibility(),
1447                      LV.isVisibilityExplicit());
1448 }
1449 
1450 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1451                                               LVComputationKind computation,
1452                                               bool IgnoreVarTypeLinkage) {
1453   // Internal_linkage attribute overrides other considerations.
1454   if (D->hasAttr<InternalLinkageAttr>())
1455     return LinkageInfo::internal();
1456 
1457   // Objective-C: treat all Objective-C declarations as having external
1458   // linkage.
1459   switch (D->getKind()) {
1460     default:
1461       break;
1462 
1463     // Per C++ [basic.link]p2, only the names of objects, references,
1464     // functions, types, templates, namespaces, and values ever have linkage.
1465     //
1466     // Note that the name of a typedef, namespace alias, using declaration,
1467     // and so on are not the name of the corresponding type, namespace, or
1468     // declaration, so they do *not* have linkage.
1469     case Decl::ImplicitParam:
1470     case Decl::Label:
1471     case Decl::NamespaceAlias:
1472     case Decl::ParmVar:
1473     case Decl::Using:
1474     case Decl::UsingEnum:
1475     case Decl::UsingShadow:
1476     case Decl::UsingDirective:
1477       return LinkageInfo::none();
1478 
1479     case Decl::EnumConstant:
1480       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1481       if (D->getASTContext().getLangOpts().CPlusPlus)
1482         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1483       return LinkageInfo::visible_none();
1484 
1485     case Decl::Typedef:
1486     case Decl::TypeAlias:
1487       // A typedef declaration has linkage if it gives a type a name for
1488       // linkage purposes.
1489       if (!cast<TypedefNameDecl>(D)
1490                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1491         return LinkageInfo::none();
1492       break;
1493 
1494     case Decl::TemplateTemplateParm: // count these as external
1495     case Decl::NonTypeTemplateParm:
1496     case Decl::ObjCAtDefsField:
1497     case Decl::ObjCCategory:
1498     case Decl::ObjCCategoryImpl:
1499     case Decl::ObjCCompatibleAlias:
1500     case Decl::ObjCImplementation:
1501     case Decl::ObjCMethod:
1502     case Decl::ObjCProperty:
1503     case Decl::ObjCPropertyImpl:
1504     case Decl::ObjCProtocol:
1505       return getExternalLinkageFor(D);
1506 
1507     case Decl::CXXRecord: {
1508       const auto *Record = cast<CXXRecordDecl>(D);
1509       if (Record->isLambda()) {
1510         if (Record->hasKnownLambdaInternalLinkage() ||
1511             !Record->getLambdaManglingNumber()) {
1512           // This lambda has no mangling number, so it's internal.
1513           return LinkageInfo::internal();
1514         }
1515 
1516         return getLVForClosure(
1517                   Record->getDeclContext()->getRedeclContext(),
1518                   Record->getLambdaContextDecl(), computation);
1519       }
1520 
1521       break;
1522     }
1523 
1524     case Decl::TemplateParamObject: {
1525       // The template parameter object can be referenced from anywhere its type
1526       // and value can be referenced.
1527       auto *TPO = cast<TemplateParamObjectDecl>(D);
1528       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1529       LV.merge(getLVForValue(TPO->getValue(), computation));
1530       return LV;
1531     }
1532   }
1533 
1534   // Handle linkage for namespace-scope names.
1535   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1536     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1537 
1538   // C++ [basic.link]p5:
1539   //   In addition, a member function, static data member, a named
1540   //   class or enumeration of class scope, or an unnamed class or
1541   //   enumeration defined in a class-scope typedef declaration such
1542   //   that the class or enumeration has the typedef name for linkage
1543   //   purposes (7.1.3), has external linkage if the name of the class
1544   //   has external linkage.
1545   if (D->getDeclContext()->isRecord())
1546     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1547 
1548   // C++ [basic.link]p6:
1549   //   The name of a function declared in block scope and the name of
1550   //   an object declared by a block scope extern declaration have
1551   //   linkage. If there is a visible declaration of an entity with
1552   //   linkage having the same name and type, ignoring entities
1553   //   declared outside the innermost enclosing namespace scope, the
1554   //   block scope declaration declares that same entity and receives
1555   //   the linkage of the previous declaration. If there is more than
1556   //   one such matching entity, the program is ill-formed. Otherwise,
1557   //   if no matching entity is found, the block scope entity receives
1558   //   external linkage.
1559   if (D->getDeclContext()->isFunctionOrMethod())
1560     return getLVForLocalDecl(D, computation);
1561 
1562   // C++ [basic.link]p6:
1563   //   Names not covered by these rules have no linkage.
1564   return LinkageInfo::none();
1565 }
1566 
1567 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1568 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1569                                           LVComputationKind computation) {
1570   // Internal_linkage attribute overrides other considerations.
1571   if (D->hasAttr<InternalLinkageAttr>())
1572     return LinkageInfo::internal();
1573 
1574   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1575     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1576 
1577   if (std::optional<LinkageInfo> LI = lookup(D, computation))
1578     return *LI;
1579 
1580   LinkageInfo LV = computeLVForDecl(D, computation);
1581   if (D->hasCachedLinkage())
1582     assert(D->getCachedLinkage() == LV.getLinkage());
1583 
1584   D->setCachedLinkage(LV.getLinkage());
1585   cache(D, computation, LV);
1586 
1587 #ifndef NDEBUG
1588   // In C (because of gnu inline) and in c++ with microsoft extensions an
1589   // static can follow an extern, so we can have two decls with different
1590   // linkages.
1591   const LangOptions &Opts = D->getASTContext().getLangOpts();
1592   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1593     return LV;
1594 
1595   // We have just computed the linkage for this decl. By induction we know
1596   // that all other computed linkages match, check that the one we just
1597   // computed also does.
1598   NamedDecl *Old = nullptr;
1599   for (auto *I : D->redecls()) {
1600     auto *T = cast<NamedDecl>(I);
1601     if (T == D)
1602       continue;
1603     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1604       Old = T;
1605       break;
1606     }
1607   }
1608   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1609 #endif
1610 
1611   return LV;
1612 }
1613 
1614 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1615   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1616                                              ? NamedDecl::VisibilityForType
1617                                              : NamedDecl::VisibilityForValue;
1618   LVComputationKind CK(EK);
1619   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1620                              ? CK.forLinkageOnly()
1621                              : CK);
1622 }
1623 
1624 Module *Decl::getOwningModuleForLinkage() const {
1625   if (isa<NamespaceDecl>(this))
1626     // Namespaces never have module linkage.  It is the entities within them
1627     // that [may] do.
1628     return nullptr;
1629 
1630   Module *M = getOwningModule();
1631   if (!M)
1632     return nullptr;
1633 
1634   switch (M->Kind) {
1635   case Module::ModuleMapModule:
1636     // Module map modules have no special linkage semantics.
1637     return nullptr;
1638 
1639   case Module::ModuleInterfaceUnit:
1640   case Module::ModuleImplementationUnit:
1641   case Module::ModulePartitionInterface:
1642   case Module::ModulePartitionImplementation:
1643     return M;
1644 
1645   case Module::ModuleHeaderUnit:
1646   case Module::ExplicitGlobalModuleFragment:
1647   case Module::ImplicitGlobalModuleFragment:
1648     // The global module shouldn't change the linkage.
1649     return nullptr;
1650 
1651   case Module::PrivateModuleFragment:
1652     // The private module fragment is part of its containing module for linkage
1653     // purposes.
1654     return M->Parent;
1655   }
1656 
1657   llvm_unreachable("unknown module kind");
1658 }
1659 
1660 void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
1661   Name.print(OS, Policy);
1662 }
1663 
1664 void NamedDecl::printName(raw_ostream &OS) const {
1665   printName(OS, getASTContext().getPrintingPolicy());
1666 }
1667 
1668 std::string NamedDecl::getQualifiedNameAsString() const {
1669   std::string QualName;
1670   llvm::raw_string_ostream OS(QualName);
1671   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1672   return QualName;
1673 }
1674 
1675 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1676   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1677 }
1678 
1679 void NamedDecl::printQualifiedName(raw_ostream &OS,
1680                                    const PrintingPolicy &P) const {
1681   if (getDeclContext()->isFunctionOrMethod()) {
1682     // We do not print '(anonymous)' for function parameters without name.
1683     printName(OS, P);
1684     return;
1685   }
1686   printNestedNameSpecifier(OS, P);
1687   if (getDeclName())
1688     OS << *this;
1689   else {
1690     // Give the printName override a chance to pick a different name before we
1691     // fall back to "(anonymous)".
1692     SmallString<64> NameBuffer;
1693     llvm::raw_svector_ostream NameOS(NameBuffer);
1694     printName(NameOS, P);
1695     if (NameBuffer.empty())
1696       OS << "(anonymous)";
1697     else
1698       OS << NameBuffer;
1699   }
1700 }
1701 
1702 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1703   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1704 }
1705 
1706 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1707                                          const PrintingPolicy &P) const {
1708   const DeclContext *Ctx = getDeclContext();
1709 
1710   // For ObjC methods and properties, look through categories and use the
1711   // interface as context.
1712   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1713     if (auto *ID = MD->getClassInterface())
1714       Ctx = ID;
1715   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1716     if (auto *MD = PD->getGetterMethodDecl())
1717       if (auto *ID = MD->getClassInterface())
1718         Ctx = ID;
1719   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1720     if (auto *CI = ID->getContainingInterface())
1721       Ctx = CI;
1722   }
1723 
1724   if (Ctx->isFunctionOrMethod())
1725     return;
1726 
1727   using ContextsTy = SmallVector<const DeclContext *, 8>;
1728   ContextsTy Contexts;
1729 
1730   // Collect named contexts.
1731   DeclarationName NameInScope = getDeclName();
1732   for (; Ctx; Ctx = Ctx->getParent()) {
1733     // Suppress anonymous namespace if requested.
1734     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1735         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1736       continue;
1737 
1738     // Suppress inline namespace if it doesn't make the result ambiguous.
1739     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1740         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1741       continue;
1742 
1743     // Skip non-named contexts such as linkage specifications and ExportDecls.
1744     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1745     if (!ND)
1746       continue;
1747 
1748     Contexts.push_back(Ctx);
1749     NameInScope = ND->getDeclName();
1750   }
1751 
1752   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1753     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1754       OS << Spec->getName();
1755       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1756       printTemplateArgumentList(
1757           OS, TemplateArgs.asArray(), P,
1758           Spec->getSpecializedTemplate()->getTemplateParameters());
1759     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1760       if (ND->isAnonymousNamespace()) {
1761         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1762                                 : "(anonymous namespace)");
1763       }
1764       else
1765         OS << *ND;
1766     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1767       if (!RD->getIdentifier())
1768         OS << "(anonymous " << RD->getKindName() << ')';
1769       else
1770         OS << *RD;
1771     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1772       const FunctionProtoType *FT = nullptr;
1773       if (FD->hasWrittenPrototype())
1774         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1775 
1776       OS << *FD << '(';
1777       if (FT) {
1778         unsigned NumParams = FD->getNumParams();
1779         for (unsigned i = 0; i < NumParams; ++i) {
1780           if (i)
1781             OS << ", ";
1782           OS << FD->getParamDecl(i)->getType().stream(P);
1783         }
1784 
1785         if (FT->isVariadic()) {
1786           if (NumParams > 0)
1787             OS << ", ";
1788           OS << "...";
1789         }
1790       }
1791       OS << ')';
1792     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1793       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1794       // enumerator is declared in the scope that immediately contains
1795       // the enum-specifier. Each scoped enumerator is declared in the
1796       // scope of the enumeration.
1797       // For the case of unscoped enumerator, do not include in the qualified
1798       // name any information about its enum enclosing scope, as its visibility
1799       // is global.
1800       if (ED->isScoped())
1801         OS << *ED;
1802       else
1803         continue;
1804     } else {
1805       OS << *cast<NamedDecl>(DC);
1806     }
1807     OS << "::";
1808   }
1809 }
1810 
1811 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1812                                      const PrintingPolicy &Policy,
1813                                      bool Qualified) const {
1814   if (Qualified)
1815     printQualifiedName(OS, Policy);
1816   else
1817     printName(OS, Policy);
1818 }
1819 
1820 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1821   return true;
1822 }
1823 static bool isRedeclarableImpl(...) { return false; }
1824 static bool isRedeclarable(Decl::Kind K) {
1825   switch (K) {
1826 #define DECL(Type, Base) \
1827   case Decl::Type: \
1828     return isRedeclarableImpl((Type##Decl *)nullptr);
1829 #define ABSTRACT_DECL(DECL)
1830 #include "clang/AST/DeclNodes.inc"
1831   }
1832   llvm_unreachable("unknown decl kind");
1833 }
1834 
1835 bool NamedDecl::declarationReplaces(const NamedDecl *OldD,
1836                                     bool IsKnownNewer) const {
1837   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1838 
1839   // Never replace one imported declaration with another; we need both results
1840   // when re-exporting.
1841   if (OldD->isFromASTFile() && isFromASTFile())
1842     return false;
1843 
1844   // A kind mismatch implies that the declaration is not replaced.
1845   if (OldD->getKind() != getKind())
1846     return false;
1847 
1848   // For method declarations, we never replace. (Why?)
1849   if (isa<ObjCMethodDecl>(this))
1850     return false;
1851 
1852   // For parameters, pick the newer one. This is either an error or (in
1853   // Objective-C) permitted as an extension.
1854   if (isa<ParmVarDecl>(this))
1855     return true;
1856 
1857   // Inline namespaces can give us two declarations with the same
1858   // name and kind in the same scope but different contexts; we should
1859   // keep both declarations in this case.
1860   if (!this->getDeclContext()->getRedeclContext()->Equals(
1861           OldD->getDeclContext()->getRedeclContext()))
1862     return false;
1863 
1864   // Using declarations can be replaced if they import the same name from the
1865   // same context.
1866   if (const auto *UD = dyn_cast<UsingDecl>(this)) {
1867     ASTContext &Context = getASTContext();
1868     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1869            Context.getCanonicalNestedNameSpecifier(
1870                cast<UsingDecl>(OldD)->getQualifier());
1871   }
1872   if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1873     ASTContext &Context = getASTContext();
1874     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1875            Context.getCanonicalNestedNameSpecifier(
1876                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1877   }
1878 
1879   if (isRedeclarable(getKind())) {
1880     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1881       return false;
1882 
1883     if (IsKnownNewer)
1884       return true;
1885 
1886     // Check whether this is actually newer than OldD. We want to keep the
1887     // newer declaration. This loop will usually only iterate once, because
1888     // OldD is usually the previous declaration.
1889     for (const auto *D : redecls()) {
1890       if (D == OldD)
1891         break;
1892 
1893       // If we reach the canonical declaration, then OldD is not actually older
1894       // than this one.
1895       //
1896       // FIXME: In this case, we should not add this decl to the lookup table.
1897       if (D->isCanonicalDecl())
1898         return false;
1899     }
1900 
1901     // It's a newer declaration of the same kind of declaration in the same
1902     // scope: we want this decl instead of the existing one.
1903     return true;
1904   }
1905 
1906   // In all other cases, we need to keep both declarations in case they have
1907   // different visibility. Any attempt to use the name will result in an
1908   // ambiguity if more than one is visible.
1909   return false;
1910 }
1911 
1912 bool NamedDecl::hasLinkage() const {
1913   switch (getFormalLinkage()) {
1914   case Linkage::Invalid:
1915     llvm_unreachable("Linkage hasn't been computed!");
1916   case Linkage::None:
1917     return false;
1918   case Linkage::Internal:
1919     return true;
1920   case Linkage::UniqueExternal:
1921   case Linkage::VisibleNone:
1922     llvm_unreachable("Non-formal linkage is not allowed here!");
1923   case Linkage::Module:
1924   case Linkage::External:
1925     return true;
1926   }
1927   llvm_unreachable("Unhandled Linkage enum");
1928 }
1929 
1930 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1931   NamedDecl *ND = this;
1932   if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1933     ND = UD->getTargetDecl();
1934 
1935   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1936     return AD->getClassInterface();
1937 
1938   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1939     return AD->getNamespace();
1940 
1941   return ND;
1942 }
1943 
1944 bool NamedDecl::isCXXInstanceMember() const {
1945   if (!isCXXClassMember())
1946     return false;
1947 
1948   const NamedDecl *D = this;
1949   if (isa<UsingShadowDecl>(D))
1950     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1951 
1952   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1953     return true;
1954   if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(D->getAsFunction()))
1955     return MD->isInstance();
1956   return false;
1957 }
1958 
1959 //===----------------------------------------------------------------------===//
1960 // DeclaratorDecl Implementation
1961 //===----------------------------------------------------------------------===//
1962 
1963 template <typename DeclT>
1964 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1965   if (decl->getNumTemplateParameterLists() > 0)
1966     return decl->getTemplateParameterList(0)->getTemplateLoc();
1967   return decl->getInnerLocStart();
1968 }
1969 
1970 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1971   TypeSourceInfo *TSI = getTypeSourceInfo();
1972   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1973   return SourceLocation();
1974 }
1975 
1976 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1977   TypeSourceInfo *TSI = getTypeSourceInfo();
1978   if (TSI) return TSI->getTypeLoc().getEndLoc();
1979   return SourceLocation();
1980 }
1981 
1982 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1983   if (QualifierLoc) {
1984     // Make sure the extended decl info is allocated.
1985     if (!hasExtInfo()) {
1986       // Save (non-extended) type source info pointer.
1987       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1988       // Allocate external info struct.
1989       DeclInfo = new (getASTContext()) ExtInfo;
1990       // Restore savedTInfo into (extended) decl info.
1991       getExtInfo()->TInfo = savedTInfo;
1992     }
1993     // Set qualifier info.
1994     getExtInfo()->QualifierLoc = QualifierLoc;
1995   } else if (hasExtInfo()) {
1996     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1997     getExtInfo()->QualifierLoc = QualifierLoc;
1998   }
1999 }
2000 
2001 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
2002   assert(TrailingRequiresClause);
2003   // Make sure the extended decl info is allocated.
2004   if (!hasExtInfo()) {
2005     // Save (non-extended) type source info pointer.
2006     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
2007     // Allocate external info struct.
2008     DeclInfo = new (getASTContext()) ExtInfo;
2009     // Restore savedTInfo into (extended) decl info.
2010     getExtInfo()->TInfo = savedTInfo;
2011   }
2012   // Set requires clause info.
2013   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
2014 }
2015 
2016 void DeclaratorDecl::setTemplateParameterListsInfo(
2017     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2018   assert(!TPLists.empty());
2019   // Make sure the extended decl info is allocated.
2020   if (!hasExtInfo()) {
2021     // Save (non-extended) type source info pointer.
2022     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
2023     // Allocate external info struct.
2024     DeclInfo = new (getASTContext()) ExtInfo;
2025     // Restore savedTInfo into (extended) decl info.
2026     getExtInfo()->TInfo = savedTInfo;
2027   }
2028   // Set the template parameter lists info.
2029   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
2030 }
2031 
2032 SourceLocation DeclaratorDecl::getOuterLocStart() const {
2033   return getTemplateOrInnerLocStart(this);
2034 }
2035 
2036 // Helper function: returns true if QT is or contains a type
2037 // having a postfix component.
2038 static bool typeIsPostfix(QualType QT) {
2039   while (true) {
2040     const Type* T = QT.getTypePtr();
2041     switch (T->getTypeClass()) {
2042     default:
2043       return false;
2044     case Type::Pointer:
2045       QT = cast<PointerType>(T)->getPointeeType();
2046       break;
2047     case Type::BlockPointer:
2048       QT = cast<BlockPointerType>(T)->getPointeeType();
2049       break;
2050     case Type::MemberPointer:
2051       QT = cast<MemberPointerType>(T)->getPointeeType();
2052       break;
2053     case Type::LValueReference:
2054     case Type::RValueReference:
2055       QT = cast<ReferenceType>(T)->getPointeeType();
2056       break;
2057     case Type::PackExpansion:
2058       QT = cast<PackExpansionType>(T)->getPattern();
2059       break;
2060     case Type::Paren:
2061     case Type::ConstantArray:
2062     case Type::DependentSizedArray:
2063     case Type::IncompleteArray:
2064     case Type::VariableArray:
2065     case Type::FunctionProto:
2066     case Type::FunctionNoProto:
2067       return true;
2068     }
2069   }
2070 }
2071 
2072 SourceRange DeclaratorDecl::getSourceRange() const {
2073   SourceLocation RangeEnd = getLocation();
2074   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2075     // If the declaration has no name or the type extends past the name take the
2076     // end location of the type.
2077     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2078       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2079   }
2080   return SourceRange(getOuterLocStart(), RangeEnd);
2081 }
2082 
2083 void QualifierInfo::setTemplateParameterListsInfo(
2084     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2085   // Free previous template parameters (if any).
2086   if (NumTemplParamLists > 0) {
2087     Context.Deallocate(TemplParamLists);
2088     TemplParamLists = nullptr;
2089     NumTemplParamLists = 0;
2090   }
2091   // Set info on matched template parameter lists (if any).
2092   if (!TPLists.empty()) {
2093     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2094     NumTemplParamLists = TPLists.size();
2095     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2096   }
2097 }
2098 
2099 //===----------------------------------------------------------------------===//
2100 // VarDecl Implementation
2101 //===----------------------------------------------------------------------===//
2102 
2103 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2104   switch (SC) {
2105   case SC_None:                 break;
2106   case SC_Auto:                 return "auto";
2107   case SC_Extern:               return "extern";
2108   case SC_PrivateExtern:        return "__private_extern__";
2109   case SC_Register:             return "register";
2110   case SC_Static:               return "static";
2111   }
2112 
2113   llvm_unreachable("Invalid storage class");
2114 }
2115 
2116 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2117                  SourceLocation StartLoc, SourceLocation IdLoc,
2118                  const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2119                  StorageClass SC)
2120     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2121       redeclarable_base(C) {
2122   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2123                 "VarDeclBitfields too large!");
2124   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2125                 "ParmVarDeclBitfields too large!");
2126   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2127                 "NonParmVarDeclBitfields too large!");
2128   AllBits = 0;
2129   VarDeclBits.SClass = SC;
2130   // Everything else is implicitly initialized to false.
2131 }
2132 
2133 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2134                          SourceLocation IdL, const IdentifierInfo *Id,
2135                          QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2136   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2137 }
2138 
2139 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
2140   return new (C, ID)
2141       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2142               QualType(), nullptr, SC_None);
2143 }
2144 
2145 void VarDecl::setStorageClass(StorageClass SC) {
2146   assert(isLegalForVariable(SC));
2147   VarDeclBits.SClass = SC;
2148 }
2149 
2150 VarDecl::TLSKind VarDecl::getTLSKind() const {
2151   switch (VarDeclBits.TSCSpec) {
2152   case TSCS_unspecified:
2153     if (!hasAttr<ThreadAttr>() &&
2154         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2155           getASTContext().getTargetInfo().isTLSSupported() &&
2156           hasAttr<OMPThreadPrivateDeclAttr>()))
2157       return TLS_None;
2158     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2159                 LangOptions::MSVC2015)) ||
2160             hasAttr<OMPThreadPrivateDeclAttr>())
2161                ? TLS_Dynamic
2162                : TLS_Static;
2163   case TSCS___thread: // Fall through.
2164   case TSCS__Thread_local:
2165     return TLS_Static;
2166   case TSCS_thread_local:
2167     return TLS_Dynamic;
2168   }
2169   llvm_unreachable("Unknown thread storage class specifier!");
2170 }
2171 
2172 SourceRange VarDecl::getSourceRange() const {
2173   if (const Expr *Init = getInit()) {
2174     SourceLocation InitEnd = Init->getEndLoc();
2175     // If Init is implicit, ignore its source range and fallback on
2176     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2177     if (InitEnd.isValid() && InitEnd != getLocation())
2178       return SourceRange(getOuterLocStart(), InitEnd);
2179   }
2180   return DeclaratorDecl::getSourceRange();
2181 }
2182 
2183 template<typename T>
2184 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2185   // C++ [dcl.link]p1: All function types, function names with external linkage,
2186   // and variable names with external linkage have a language linkage.
2187   if (!D.hasExternalFormalLinkage())
2188     return NoLanguageLinkage;
2189 
2190   // Language linkage is a C++ concept, but saying that everything else in C has
2191   // C language linkage fits the implementation nicely.
2192   if (!D.getASTContext().getLangOpts().CPlusPlus)
2193     return CLanguageLinkage;
2194 
2195   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2196   // language linkage of the names of class members and the function type of
2197   // class member functions.
2198   const DeclContext *DC = D.getDeclContext();
2199   if (DC->isRecord())
2200     return CXXLanguageLinkage;
2201 
2202   // If the first decl is in an extern "C" context, any other redeclaration
2203   // will have C language linkage. If the first one is not in an extern "C"
2204   // context, we would have reported an error for any other decl being in one.
2205   if (isFirstInExternCContext(&D))
2206     return CLanguageLinkage;
2207   return CXXLanguageLinkage;
2208 }
2209 
2210 template<typename T>
2211 static bool isDeclExternC(const T &D) {
2212   // Since the context is ignored for class members, they can only have C++
2213   // language linkage or no language linkage.
2214   const DeclContext *DC = D.getDeclContext();
2215   if (DC->isRecord()) {
2216     assert(D.getASTContext().getLangOpts().CPlusPlus);
2217     return false;
2218   }
2219 
2220   return D.getLanguageLinkage() == CLanguageLinkage;
2221 }
2222 
2223 LanguageLinkage VarDecl::getLanguageLinkage() const {
2224   return getDeclLanguageLinkage(*this);
2225 }
2226 
2227 bool VarDecl::isExternC() const {
2228   return isDeclExternC(*this);
2229 }
2230 
2231 bool VarDecl::isInExternCContext() const {
2232   return getLexicalDeclContext()->isExternCContext();
2233 }
2234 
2235 bool VarDecl::isInExternCXXContext() const {
2236   return getLexicalDeclContext()->isExternCXXContext();
2237 }
2238 
2239 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2240 
2241 VarDecl::DefinitionKind
2242 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2243   if (isThisDeclarationADemotedDefinition())
2244     return DeclarationOnly;
2245 
2246   // C++ [basic.def]p2:
2247   //   A declaration is a definition unless [...] it contains the 'extern'
2248   //   specifier or a linkage-specification and neither an initializer [...],
2249   //   it declares a non-inline static data member in a class declaration [...],
2250   //   it declares a static data member outside a class definition and the variable
2251   //   was defined within the class with the constexpr specifier [...],
2252   // C++1y [temp.expl.spec]p15:
2253   //   An explicit specialization of a static data member or an explicit
2254   //   specialization of a static data member template is a definition if the
2255   //   declaration includes an initializer; otherwise, it is a declaration.
2256   //
2257   // FIXME: How do you declare (but not define) a partial specialization of
2258   // a static data member template outside the containing class?
2259   if (isStaticDataMember()) {
2260     if (isOutOfLine() &&
2261         !(getCanonicalDecl()->isInline() &&
2262           getCanonicalDecl()->isConstexpr()) &&
2263         (hasInit() ||
2264          // If the first declaration is out-of-line, this may be an
2265          // instantiation of an out-of-line partial specialization of a variable
2266          // template for which we have not yet instantiated the initializer.
2267          (getFirstDecl()->isOutOfLine()
2268               ? getTemplateSpecializationKind() == TSK_Undeclared
2269               : getTemplateSpecializationKind() !=
2270                     TSK_ExplicitSpecialization) ||
2271          isa<VarTemplatePartialSpecializationDecl>(this)))
2272       return Definition;
2273     if (!isOutOfLine() && isInline())
2274       return Definition;
2275     return DeclarationOnly;
2276   }
2277   // C99 6.7p5:
2278   //   A definition of an identifier is a declaration for that identifier that
2279   //   [...] causes storage to be reserved for that object.
2280   // Note: that applies for all non-file-scope objects.
2281   // C99 6.9.2p1:
2282   //   If the declaration of an identifier for an object has file scope and an
2283   //   initializer, the declaration is an external definition for the identifier
2284   if (hasInit())
2285     return Definition;
2286 
2287   if (hasDefiningAttr())
2288     return Definition;
2289 
2290   if (const auto *SAA = getAttr<SelectAnyAttr>())
2291     if (!SAA->isInherited())
2292       return Definition;
2293 
2294   // A variable template specialization (other than a static data member
2295   // template or an explicit specialization) is a declaration until we
2296   // instantiate its initializer.
2297   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2298     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2299         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2300         !VTSD->IsCompleteDefinition)
2301       return DeclarationOnly;
2302   }
2303 
2304   if (hasExternalStorage())
2305     return DeclarationOnly;
2306 
2307   // [dcl.link] p7:
2308   //   A declaration directly contained in a linkage-specification is treated
2309   //   as if it contains the extern specifier for the purpose of determining
2310   //   the linkage of the declared name and whether it is a definition.
2311   if (isSingleLineLanguageLinkage(*this))
2312     return DeclarationOnly;
2313 
2314   // C99 6.9.2p2:
2315   //   A declaration of an object that has file scope without an initializer,
2316   //   and without a storage class specifier or the scs 'static', constitutes
2317   //   a tentative definition.
2318   // No such thing in C++.
2319   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2320     return TentativeDefinition;
2321 
2322   // What's left is (in C, block-scope) declarations without initializers or
2323   // external storage. These are definitions.
2324   return Definition;
2325 }
2326 
2327 VarDecl *VarDecl::getActingDefinition() {
2328   DefinitionKind Kind = isThisDeclarationADefinition();
2329   if (Kind != TentativeDefinition)
2330     return nullptr;
2331 
2332   VarDecl *LastTentative = nullptr;
2333 
2334   // Loop through the declaration chain, starting with the most recent.
2335   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2336        Decl = Decl->getPreviousDecl()) {
2337     Kind = Decl->isThisDeclarationADefinition();
2338     if (Kind == Definition)
2339       return nullptr;
2340     // Record the first (most recent) TentativeDefinition that is encountered.
2341     if (Kind == TentativeDefinition && !LastTentative)
2342       LastTentative = Decl;
2343   }
2344 
2345   return LastTentative;
2346 }
2347 
2348 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2349   VarDecl *First = getFirstDecl();
2350   for (auto *I : First->redecls()) {
2351     if (I->isThisDeclarationADefinition(C) == Definition)
2352       return I;
2353   }
2354   return nullptr;
2355 }
2356 
2357 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2358   DefinitionKind Kind = DeclarationOnly;
2359 
2360   const VarDecl *First = getFirstDecl();
2361   for (auto *I : First->redecls()) {
2362     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2363     if (Kind == Definition)
2364       break;
2365   }
2366 
2367   return Kind;
2368 }
2369 
2370 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2371   for (auto *I : redecls()) {
2372     if (auto Expr = I->getInit()) {
2373       D = I;
2374       return Expr;
2375     }
2376   }
2377   return nullptr;
2378 }
2379 
2380 bool VarDecl::hasInit() const {
2381   if (auto *P = dyn_cast<ParmVarDecl>(this))
2382     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2383       return false;
2384 
2385   if (auto *Eval = getEvaluatedStmt())
2386     return Eval->Value.isValid();
2387 
2388   return !Init.isNull();
2389 }
2390 
2391 Expr *VarDecl::getInit() {
2392   if (!hasInit())
2393     return nullptr;
2394 
2395   if (auto *S = Init.dyn_cast<Stmt *>())
2396     return cast<Expr>(S);
2397 
2398   auto *Eval = getEvaluatedStmt();
2399 
2400   return cast<Expr>(Eval->Value.get(
2401       Eval->Value.isOffset() ? getASTContext().getExternalSource() : nullptr));
2402 }
2403 
2404 Stmt **VarDecl::getInitAddress() {
2405   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2406     return ES->Value.getAddressOfPointer(getASTContext().getExternalSource());
2407 
2408   return Init.getAddrOfPtr1();
2409 }
2410 
2411 VarDecl *VarDecl::getInitializingDeclaration() {
2412   VarDecl *Def = nullptr;
2413   for (auto *I : redecls()) {
2414     if (I->hasInit())
2415       return I;
2416 
2417     if (I->isThisDeclarationADefinition()) {
2418       if (isStaticDataMember())
2419         return I;
2420       Def = I;
2421     }
2422   }
2423   return Def;
2424 }
2425 
2426 bool VarDecl::isOutOfLine() const {
2427   if (Decl::isOutOfLine())
2428     return true;
2429 
2430   if (!isStaticDataMember())
2431     return false;
2432 
2433   // If this static data member was instantiated from a static data member of
2434   // a class template, check whether that static data member was defined
2435   // out-of-line.
2436   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2437     return VD->isOutOfLine();
2438 
2439   return false;
2440 }
2441 
2442 void VarDecl::setInit(Expr *I) {
2443   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2444     Eval->~EvaluatedStmt();
2445     getASTContext().Deallocate(Eval);
2446   }
2447 
2448   Init = I;
2449 }
2450 
2451 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2452   const LangOptions &Lang = C.getLangOpts();
2453 
2454   // OpenCL permits const integral variables to be used in constant
2455   // expressions, like in C++98.
2456   if (!Lang.CPlusPlus && !Lang.OpenCL && !Lang.C23)
2457     return false;
2458 
2459   // Function parameters are never usable in constant expressions.
2460   if (isa<ParmVarDecl>(this))
2461     return false;
2462 
2463   // The values of weak variables are never usable in constant expressions.
2464   if (isWeak())
2465     return false;
2466 
2467   // In C++11, any variable of reference type can be used in a constant
2468   // expression if it is initialized by a constant expression.
2469   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2470     return true;
2471 
2472   // Only const objects can be used in constant expressions in C++. C++98 does
2473   // not require the variable to be non-volatile, but we consider this to be a
2474   // defect.
2475   if (!getType().isConstant(C) || getType().isVolatileQualified())
2476     return false;
2477 
2478   // In C++, but not in C, const, non-volatile variables of integral or
2479   // enumeration types can be used in constant expressions.
2480   if (getType()->isIntegralOrEnumerationType() && !Lang.C23)
2481     return true;
2482 
2483   // C23 6.6p7: An identifier that is:
2484   // ...
2485   // - declared with storage-class specifier constexpr and has an object type,
2486   // is a named constant, ... such a named constant is a constant expression
2487   // with the type and value of the declared object.
2488   // Additionally, in C++11, non-volatile constexpr variables can be used in
2489   // constant expressions.
2490   return (Lang.CPlusPlus11 || Lang.C23) && isConstexpr();
2491 }
2492 
2493 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2494   // C++2a [expr.const]p3:
2495   //   A variable is usable in constant expressions after its initializing
2496   //   declaration is encountered...
2497   const VarDecl *DefVD = nullptr;
2498   const Expr *Init = getAnyInitializer(DefVD);
2499   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2500     return false;
2501   //   ... if it is a constexpr variable, or it is of reference type or of
2502   //   const-qualified integral or enumeration type, ...
2503   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2504     return false;
2505   //   ... and its initializer is a constant initializer.
2506   if ((Context.getLangOpts().CPlusPlus || getLangOpts().C23) &&
2507       !DefVD->hasConstantInitialization())
2508     return false;
2509   // C++98 [expr.const]p1:
2510   //   An integral constant-expression can involve only [...] const variables
2511   //   or static data members of integral or enumeration types initialized with
2512   //   [integer] constant expressions (dcl.init)
2513   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2514       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2515     return false;
2516   return true;
2517 }
2518 
2519 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2520 /// form, which contains extra information on the evaluated value of the
2521 /// initializer.
2522 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2523   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2524   if (!Eval) {
2525     // Note: EvaluatedStmt contains an APValue, which usually holds
2526     // resources not allocated from the ASTContext.  We need to do some
2527     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2528     // where we can detect whether there's anything to clean up or not.
2529     Eval = new (getASTContext()) EvaluatedStmt;
2530     Eval->Value = Init.get<Stmt *>();
2531     Init = Eval;
2532   }
2533   return Eval;
2534 }
2535 
2536 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2537   return Init.dyn_cast<EvaluatedStmt *>();
2538 }
2539 
2540 APValue *VarDecl::evaluateValue() const {
2541   SmallVector<PartialDiagnosticAt, 8> Notes;
2542   return evaluateValueImpl(Notes, hasConstantInitialization());
2543 }
2544 
2545 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2546                                     bool IsConstantInitialization) const {
2547   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2548 
2549   const auto *Init = getInit();
2550   assert(!Init->isValueDependent());
2551 
2552   // We only produce notes indicating why an initializer is non-constant the
2553   // first time it is evaluated. FIXME: The notes won't always be emitted the
2554   // first time we try evaluation, so might not be produced at all.
2555   if (Eval->WasEvaluated)
2556     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2557 
2558   if (Eval->IsEvaluating) {
2559     // FIXME: Produce a diagnostic for self-initialization.
2560     return nullptr;
2561   }
2562 
2563   Eval->IsEvaluating = true;
2564 
2565   ASTContext &Ctx = getASTContext();
2566   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2567                                             IsConstantInitialization);
2568 
2569   // In C++, or in C23 if we're initialising a 'constexpr' variable, this isn't
2570   // a constant initializer if we produced notes. In that case, we can't keep
2571   // the result, because it may only be correct under the assumption that the
2572   // initializer is a constant context.
2573   if (IsConstantInitialization &&
2574       (Ctx.getLangOpts().CPlusPlus ||
2575        (isConstexpr() && Ctx.getLangOpts().C23)) &&
2576       !Notes.empty())
2577     Result = false;
2578 
2579   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2580   // or that it's empty (so that there's nothing to clean up) if evaluation
2581   // failed.
2582   if (!Result)
2583     Eval->Evaluated = APValue();
2584   else if (Eval->Evaluated.needsCleanup())
2585     Ctx.addDestruction(&Eval->Evaluated);
2586 
2587   Eval->IsEvaluating = false;
2588   Eval->WasEvaluated = true;
2589 
2590   return Result ? &Eval->Evaluated : nullptr;
2591 }
2592 
2593 APValue *VarDecl::getEvaluatedValue() const {
2594   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2595     if (Eval->WasEvaluated)
2596       return &Eval->Evaluated;
2597 
2598   return nullptr;
2599 }
2600 
2601 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2602   const Expr *Init = getInit();
2603   assert(Init && "no initializer");
2604 
2605   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2606   if (!Eval->CheckedForICEInit) {
2607     Eval->CheckedForICEInit = true;
2608     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2609   }
2610   return Eval->HasICEInit;
2611 }
2612 
2613 bool VarDecl::hasConstantInitialization() const {
2614   // In C, all globals and constexpr variables should have constant
2615   // initialization. For constexpr variables in C check that initializer is a
2616   // constant initializer because they can be used in constant expressions.
2617   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus &&
2618       !isConstexpr())
2619     return true;
2620 
2621   // In C++, it depends on whether the evaluation at the point of definition
2622   // was evaluatable as a constant initializer.
2623   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2624     return Eval->HasConstantInitialization;
2625 
2626   return false;
2627 }
2628 
2629 bool VarDecl::checkForConstantInitialization(
2630     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2631   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2632   // If we ask for the value before we know whether we have a constant
2633   // initializer, we can compute the wrong value (for example, due to
2634   // std::is_constant_evaluated()).
2635   assert(!Eval->WasEvaluated &&
2636          "already evaluated var value before checking for constant init");
2637   assert((getASTContext().getLangOpts().CPlusPlus ||
2638           getASTContext().getLangOpts().C23) &&
2639          "only meaningful in C++/C23");
2640 
2641   assert(!getInit()->isValueDependent());
2642 
2643   // Evaluate the initializer to check whether it's a constant expression.
2644   Eval->HasConstantInitialization =
2645       evaluateValueImpl(Notes, true) && Notes.empty();
2646 
2647   // If evaluation as a constant initializer failed, allow re-evaluation as a
2648   // non-constant initializer if we later find we want the value.
2649   if (!Eval->HasConstantInitialization)
2650     Eval->WasEvaluated = false;
2651 
2652   return Eval->HasConstantInitialization;
2653 }
2654 
2655 bool VarDecl::isParameterPack() const {
2656   return isa<PackExpansionType>(getType());
2657 }
2658 
2659 template<typename DeclT>
2660 static DeclT *getDefinitionOrSelf(DeclT *D) {
2661   assert(D);
2662   if (auto *Def = D->getDefinition())
2663     return Def;
2664   return D;
2665 }
2666 
2667 bool VarDecl::isEscapingByref() const {
2668   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2669 }
2670 
2671 bool VarDecl::isNonEscapingByref() const {
2672   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2673 }
2674 
2675 bool VarDecl::hasDependentAlignment() const {
2676   QualType T = getType();
2677   return T->isDependentType() || T->isUndeducedType() ||
2678          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2679            return AA->isAlignmentDependent();
2680          });
2681 }
2682 
2683 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2684   const VarDecl *VD = this;
2685 
2686   // If this is an instantiated member, walk back to the template from which
2687   // it was instantiated.
2688   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2689     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2690       VD = VD->getInstantiatedFromStaticDataMember();
2691       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2692         VD = NewVD;
2693     }
2694   }
2695 
2696   // If it's an instantiated variable template specialization, find the
2697   // template or partial specialization from which it was instantiated.
2698   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2699     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2700       auto From = VDTemplSpec->getInstantiatedFrom();
2701       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2702         while (!VTD->isMemberSpecialization()) {
2703           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2704           if (!NewVTD)
2705             break;
2706           VTD = NewVTD;
2707         }
2708         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2709       }
2710       if (auto *VTPSD =
2711               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2712         while (!VTPSD->isMemberSpecialization()) {
2713           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2714           if (!NewVTPSD)
2715             break;
2716           VTPSD = NewVTPSD;
2717         }
2718         return getDefinitionOrSelf<VarDecl>(VTPSD);
2719       }
2720     }
2721   }
2722 
2723   // If this is the pattern of a variable template, find where it was
2724   // instantiated from. FIXME: Is this necessary?
2725   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2726     while (!VarTemplate->isMemberSpecialization()) {
2727       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2728       if (!NewVT)
2729         break;
2730       VarTemplate = NewVT;
2731     }
2732 
2733     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2734   }
2735 
2736   if (VD == this)
2737     return nullptr;
2738   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2739 }
2740 
2741 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2742   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2743     return cast<VarDecl>(MSI->getInstantiatedFrom());
2744 
2745   return nullptr;
2746 }
2747 
2748 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2749   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2750     return Spec->getSpecializationKind();
2751 
2752   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2753     return MSI->getTemplateSpecializationKind();
2754 
2755   return TSK_Undeclared;
2756 }
2757 
2758 TemplateSpecializationKind
2759 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2760   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2761     return MSI->getTemplateSpecializationKind();
2762 
2763   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2764     return Spec->getSpecializationKind();
2765 
2766   return TSK_Undeclared;
2767 }
2768 
2769 SourceLocation VarDecl::getPointOfInstantiation() const {
2770   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2771     return Spec->getPointOfInstantiation();
2772 
2773   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2774     return MSI->getPointOfInstantiation();
2775 
2776   return SourceLocation();
2777 }
2778 
2779 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2780   return getASTContext().getTemplateOrSpecializationInfo(this)
2781       .dyn_cast<VarTemplateDecl *>();
2782 }
2783 
2784 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2785   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2786 }
2787 
2788 bool VarDecl::isKnownToBeDefined() const {
2789   const auto &LangOpts = getASTContext().getLangOpts();
2790   // In CUDA mode without relocatable device code, variables of form 'extern
2791   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2792   // memory pool.  These are never undefined variables, even if they appear
2793   // inside of an anon namespace or static function.
2794   //
2795   // With CUDA relocatable device code enabled, these variables don't get
2796   // special handling; they're treated like regular extern variables.
2797   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2798       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2799       isa<IncompleteArrayType>(getType()))
2800     return true;
2801 
2802   return hasDefinition();
2803 }
2804 
2805 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2806   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2807                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2808                                  !hasAttr<AlwaysDestroyAttr>()));
2809 }
2810 
2811 QualType::DestructionKind
2812 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2813   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2814     if (Eval->HasConstantDestruction)
2815       return QualType::DK_none;
2816 
2817   if (isNoDestroy(Ctx))
2818     return QualType::DK_none;
2819 
2820   return getType().isDestructedType();
2821 }
2822 
2823 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2824   assert(hasInit() && "Expect initializer to check for flexible array init");
2825   auto *Ty = getType()->getAs<RecordType>();
2826   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2827     return false;
2828   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2829   if (!List)
2830     return false;
2831   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2832   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2833   if (!InitTy)
2834     return false;
2835   return !InitTy->isZeroSize();
2836 }
2837 
2838 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2839   assert(hasInit() && "Expect initializer to check for flexible array init");
2840   auto *Ty = getType()->getAs<RecordType>();
2841   if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2842     return CharUnits::Zero();
2843   auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2844   if (!List || List->getNumInits() == 0)
2845     return CharUnits::Zero();
2846   const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2847   auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2848   if (!InitTy)
2849     return CharUnits::Zero();
2850   CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2851   const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2852   CharUnits FlexibleArrayOffset =
2853       Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2854   if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2855     return CharUnits::Zero();
2856   return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2857 }
2858 
2859 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2860   if (isStaticDataMember())
2861     // FIXME: Remove ?
2862     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2863     return getASTContext().getTemplateOrSpecializationInfo(this)
2864         .dyn_cast<MemberSpecializationInfo *>();
2865   return nullptr;
2866 }
2867 
2868 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2869                                          SourceLocation PointOfInstantiation) {
2870   assert((isa<VarTemplateSpecializationDecl>(this) ||
2871           getMemberSpecializationInfo()) &&
2872          "not a variable or static data member template specialization");
2873 
2874   if (VarTemplateSpecializationDecl *Spec =
2875           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2876     Spec->setSpecializationKind(TSK);
2877     if (TSK != TSK_ExplicitSpecialization &&
2878         PointOfInstantiation.isValid() &&
2879         Spec->getPointOfInstantiation().isInvalid()) {
2880       Spec->setPointOfInstantiation(PointOfInstantiation);
2881       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2882         L->InstantiationRequested(this);
2883     }
2884   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2885     MSI->setTemplateSpecializationKind(TSK);
2886     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2887         MSI->getPointOfInstantiation().isInvalid()) {
2888       MSI->setPointOfInstantiation(PointOfInstantiation);
2889       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2890         L->InstantiationRequested(this);
2891     }
2892   }
2893 }
2894 
2895 void
2896 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2897                                             TemplateSpecializationKind TSK) {
2898   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2899          "Previous template or instantiation?");
2900   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2901 }
2902 
2903 //===----------------------------------------------------------------------===//
2904 // ParmVarDecl Implementation
2905 //===----------------------------------------------------------------------===//
2906 
2907 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2908                                  SourceLocation StartLoc, SourceLocation IdLoc,
2909                                  const IdentifierInfo *Id, QualType T,
2910                                  TypeSourceInfo *TInfo, StorageClass S,
2911                                  Expr *DefArg) {
2912   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2913                                  S, DefArg);
2914 }
2915 
2916 QualType ParmVarDecl::getOriginalType() const {
2917   TypeSourceInfo *TSI = getTypeSourceInfo();
2918   QualType T = TSI ? TSI->getType() : getType();
2919   if (const auto *DT = dyn_cast<DecayedType>(T))
2920     return DT->getOriginalType();
2921   return T;
2922 }
2923 
2924 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
2925   return new (C, ID)
2926       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2927                   nullptr, QualType(), nullptr, SC_None, nullptr);
2928 }
2929 
2930 SourceRange ParmVarDecl::getSourceRange() const {
2931   if (!hasInheritedDefaultArg()) {
2932     SourceRange ArgRange = getDefaultArgRange();
2933     if (ArgRange.isValid())
2934       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2935   }
2936 
2937   // DeclaratorDecl considers the range of postfix types as overlapping with the
2938   // declaration name, but this is not the case with parameters in ObjC methods.
2939   if (isa<ObjCMethodDecl>(getDeclContext()))
2940     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2941 
2942   return DeclaratorDecl::getSourceRange();
2943 }
2944 
2945 bool ParmVarDecl::isDestroyedInCallee() const {
2946   // ns_consumed only affects code generation in ARC
2947   if (hasAttr<NSConsumedAttr>())
2948     return getASTContext().getLangOpts().ObjCAutoRefCount;
2949 
2950   // FIXME: isParamDestroyedInCallee() should probably imply
2951   // isDestructedType()
2952   const auto *RT = getType()->getAs<RecordType>();
2953   if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2954       getType().isDestructedType())
2955     return true;
2956 
2957   return false;
2958 }
2959 
2960 Expr *ParmVarDecl::getDefaultArg() {
2961   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2962   assert(!hasUninstantiatedDefaultArg() &&
2963          "Default argument is not yet instantiated!");
2964 
2965   Expr *Arg = getInit();
2966   if (auto *E = dyn_cast_if_present<FullExpr>(Arg))
2967     return E->getSubExpr();
2968 
2969   return Arg;
2970 }
2971 
2972 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2973   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2974   Init = defarg;
2975 }
2976 
2977 SourceRange ParmVarDecl::getDefaultArgRange() const {
2978   switch (ParmVarDeclBits.DefaultArgKind) {
2979   case DAK_None:
2980   case DAK_Unparsed:
2981     // Nothing we can do here.
2982     return SourceRange();
2983 
2984   case DAK_Uninstantiated:
2985     return getUninstantiatedDefaultArg()->getSourceRange();
2986 
2987   case DAK_Normal:
2988     if (const Expr *E = getInit())
2989       return E->getSourceRange();
2990 
2991     // Missing an actual expression, may be invalid.
2992     return SourceRange();
2993   }
2994   llvm_unreachable("Invalid default argument kind.");
2995 }
2996 
2997 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2998   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2999   Init = arg;
3000 }
3001 
3002 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
3003   assert(hasUninstantiatedDefaultArg() &&
3004          "Wrong kind of initialization expression!");
3005   return cast_if_present<Expr>(Init.get<Stmt *>());
3006 }
3007 
3008 bool ParmVarDecl::hasDefaultArg() const {
3009   // FIXME: We should just return false for DAK_None here once callers are
3010   // prepared for the case that we encountered an invalid default argument and
3011   // were unable to even build an invalid expression.
3012   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
3013          !Init.isNull();
3014 }
3015 
3016 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
3017   getASTContext().setParameterIndex(this, parameterIndex);
3018   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
3019 }
3020 
3021 unsigned ParmVarDecl::getParameterIndexLarge() const {
3022   return getASTContext().getParameterIndex(this);
3023 }
3024 
3025 //===----------------------------------------------------------------------===//
3026 // FunctionDecl Implementation
3027 //===----------------------------------------------------------------------===//
3028 
3029 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
3030                            SourceLocation StartLoc,
3031                            const DeclarationNameInfo &NameInfo, QualType T,
3032                            TypeSourceInfo *TInfo, StorageClass S,
3033                            bool UsesFPIntrin, bool isInlineSpecified,
3034                            ConstexprSpecKind ConstexprKind,
3035                            Expr *TrailingRequiresClause)
3036     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
3037                      StartLoc),
3038       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
3039       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
3040   assert(T.isNull() || T->isFunctionType());
3041   FunctionDeclBits.SClass = S;
3042   FunctionDeclBits.IsInline = isInlineSpecified;
3043   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
3044   FunctionDeclBits.IsVirtualAsWritten = false;
3045   FunctionDeclBits.IsPureVirtual = false;
3046   FunctionDeclBits.HasInheritedPrototype = false;
3047   FunctionDeclBits.HasWrittenPrototype = true;
3048   FunctionDeclBits.IsDeleted = false;
3049   FunctionDeclBits.IsTrivial = false;
3050   FunctionDeclBits.IsTrivialForCall = false;
3051   FunctionDeclBits.IsDefaulted = false;
3052   FunctionDeclBits.IsExplicitlyDefaulted = false;
3053   FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3054   FunctionDeclBits.IsIneligibleOrNotSelected = false;
3055   FunctionDeclBits.HasImplicitReturnZero = false;
3056   FunctionDeclBits.IsLateTemplateParsed = false;
3057   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3058   FunctionDeclBits.BodyContainsImmediateEscalatingExpression = false;
3059   FunctionDeclBits.InstantiationIsPending = false;
3060   FunctionDeclBits.UsesSEHTry = false;
3061   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3062   FunctionDeclBits.HasSkippedBody = false;
3063   FunctionDeclBits.WillHaveBody = false;
3064   FunctionDeclBits.IsMultiVersion = false;
3065   FunctionDeclBits.DeductionCandidateKind =
3066       static_cast<unsigned char>(DeductionCandidate::Normal);
3067   FunctionDeclBits.HasODRHash = false;
3068   FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3069   if (TrailingRequiresClause)
3070     setTrailingRequiresClause(TrailingRequiresClause);
3071 }
3072 
3073 void FunctionDecl::getNameForDiagnostic(
3074     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3075   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
3076   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
3077   if (TemplateArgs)
3078     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3079 }
3080 
3081 bool FunctionDecl::isVariadic() const {
3082   if (const auto *FT = getType()->getAs<FunctionProtoType>())
3083     return FT->isVariadic();
3084   return false;
3085 }
3086 
3087 FunctionDecl::DefaultedOrDeletedFunctionInfo *
3088 FunctionDecl::DefaultedOrDeletedFunctionInfo::Create(
3089     ASTContext &Context, ArrayRef<DeclAccessPair> Lookups,
3090     StringLiteral *DeletedMessage) {
3091   static constexpr size_t Alignment =
3092       std::max({alignof(DefaultedOrDeletedFunctionInfo),
3093                 alignof(DeclAccessPair), alignof(StringLiteral *)});
3094   size_t Size = totalSizeToAlloc<DeclAccessPair, StringLiteral *>(
3095       Lookups.size(), DeletedMessage != nullptr);
3096 
3097   DefaultedOrDeletedFunctionInfo *Info =
3098       new (Context.Allocate(Size, Alignment)) DefaultedOrDeletedFunctionInfo;
3099   Info->NumLookups = Lookups.size();
3100   Info->HasDeletedMessage = DeletedMessage != nullptr;
3101 
3102   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3103                           Info->getTrailingObjects<DeclAccessPair>());
3104   if (DeletedMessage)
3105     *Info->getTrailingObjects<StringLiteral *>() = DeletedMessage;
3106   return Info;
3107 }
3108 
3109 void FunctionDecl::setDefaultedOrDeletedInfo(
3110     DefaultedOrDeletedFunctionInfo *Info) {
3111   assert(!FunctionDeclBits.HasDefaultedOrDeletedInfo && "already have this");
3112   assert(!Body && "can't replace function body with defaulted function info");
3113 
3114   FunctionDeclBits.HasDefaultedOrDeletedInfo = true;
3115   DefaultedOrDeletedInfo = Info;
3116 }
3117 
3118 void FunctionDecl::setDeletedAsWritten(bool D, StringLiteral *Message) {
3119   FunctionDeclBits.IsDeleted = D;
3120 
3121   if (Message) {
3122     assert(isDeletedAsWritten() && "Function must be deleted");
3123     if (FunctionDeclBits.HasDefaultedOrDeletedInfo)
3124       DefaultedOrDeletedInfo->setDeletedMessage(Message);
3125     else
3126       setDefaultedOrDeletedInfo(DefaultedOrDeletedFunctionInfo::Create(
3127           getASTContext(), /*Lookups=*/{}, Message));
3128   }
3129 }
3130 
3131 void FunctionDecl::DefaultedOrDeletedFunctionInfo::setDeletedMessage(
3132     StringLiteral *Message) {
3133   // We should never get here with the DefaultedOrDeletedInfo populated, but
3134   // no space allocated for the deleted message, since that would require
3135   // recreating this, but setDefaultedOrDeletedInfo() disallows overwriting
3136   // an already existing DefaultedOrDeletedFunctionInfo.
3137   assert(HasDeletedMessage &&
3138          "No space to store a delete message in this DefaultedOrDeletedInfo");
3139   *getTrailingObjects<StringLiteral *>() = Message;
3140 }
3141 
3142 FunctionDecl::DefaultedOrDeletedFunctionInfo *
3143 FunctionDecl::getDefalutedOrDeletedInfo() const {
3144   return FunctionDeclBits.HasDefaultedOrDeletedInfo ? DefaultedOrDeletedInfo
3145                                                     : nullptr;
3146 }
3147 
3148 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3149   for (const auto *I : redecls()) {
3150     if (I->doesThisDeclarationHaveABody()) {
3151       Definition = I;
3152       return true;
3153     }
3154   }
3155 
3156   return false;
3157 }
3158 
3159 bool FunctionDecl::hasTrivialBody() const {
3160   const Stmt *S = getBody();
3161   if (!S) {
3162     // Since we don't have a body for this function, we don't know if it's
3163     // trivial or not.
3164     return false;
3165   }
3166 
3167   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3168     return true;
3169   return false;
3170 }
3171 
3172 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3173   if (!getFriendObjectKind())
3174     return false;
3175 
3176   // Check for a friend function instantiated from a friend function
3177   // definition in a templated class.
3178   if (const FunctionDecl *InstantiatedFrom =
3179           getInstantiatedFromMemberFunction())
3180     return InstantiatedFrom->getFriendObjectKind() &&
3181            InstantiatedFrom->isThisDeclarationADefinition();
3182 
3183   // Check for a friend function template instantiated from a friend
3184   // function template definition in a templated class.
3185   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3186     if (const FunctionTemplateDecl *InstantiatedFrom =
3187             Template->getInstantiatedFromMemberTemplate())
3188       return InstantiatedFrom->getFriendObjectKind() &&
3189              InstantiatedFrom->isThisDeclarationADefinition();
3190   }
3191 
3192   return false;
3193 }
3194 
3195 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3196                              bool CheckForPendingFriendDefinition) const {
3197   for (const FunctionDecl *FD : redecls()) {
3198     if (FD->isThisDeclarationADefinition()) {
3199       Definition = FD;
3200       return true;
3201     }
3202 
3203     // If this is a friend function defined in a class template, it does not
3204     // have a body until it is used, nevertheless it is a definition, see
3205     // [temp.inst]p2:
3206     //
3207     // ... for the purpose of determining whether an instantiated redeclaration
3208     // is valid according to [basic.def.odr] and [class.mem], a declaration that
3209     // corresponds to a definition in the template is considered to be a
3210     // definition.
3211     //
3212     // The following code must produce redefinition error:
3213     //
3214     //     template<typename T> struct C20 { friend void func_20() {} };
3215     //     C20<int> c20i;
3216     //     void func_20() {}
3217     //
3218     if (CheckForPendingFriendDefinition &&
3219         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3220       Definition = FD;
3221       return true;
3222     }
3223   }
3224 
3225   return false;
3226 }
3227 
3228 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3229   if (!hasBody(Definition))
3230     return nullptr;
3231 
3232   assert(!Definition->FunctionDeclBits.HasDefaultedOrDeletedInfo &&
3233          "definition should not have a body");
3234   if (Definition->Body)
3235     return Definition->Body.get(getASTContext().getExternalSource());
3236 
3237   return nullptr;
3238 }
3239 
3240 void FunctionDecl::setBody(Stmt *B) {
3241   FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3242   Body = LazyDeclStmtPtr(B);
3243   if (B)
3244     EndRangeLoc = B->getEndLoc();
3245 }
3246 
3247 void FunctionDecl::setIsPureVirtual(bool P) {
3248   FunctionDeclBits.IsPureVirtual = P;
3249   if (P)
3250     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3251       Parent->markedVirtualFunctionPure();
3252 }
3253 
3254 template<std::size_t Len>
3255 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3256   const IdentifierInfo *II = ND->getIdentifier();
3257   return II && II->isStr(Str);
3258 }
3259 
3260 bool FunctionDecl::isImmediateEscalating() const {
3261   // C++23 [expr.const]/p17
3262   // An immediate-escalating function is
3263   //  - the call operator of a lambda that is not declared with the consteval
3264   //  specifier,
3265   if (isLambdaCallOperator(this) && !isConsteval())
3266     return true;
3267   // - a defaulted special member function that is not declared with the
3268   // consteval specifier,
3269   if (isDefaulted() && !isConsteval())
3270     return true;
3271   // - a function that results from the instantiation of a templated entity
3272   // defined with the constexpr specifier.
3273   TemplatedKind TK = getTemplatedKind();
3274   if (TK != TK_NonTemplate && TK != TK_DependentNonTemplate &&
3275       isConstexprSpecified())
3276     return true;
3277   return false;
3278 }
3279 
3280 bool FunctionDecl::isImmediateFunction() const {
3281   // C++23 [expr.const]/p18
3282   // An immediate function is a function or constructor that is
3283   // - declared with the consteval specifier
3284   if (isConsteval())
3285     return true;
3286   // - an immediate-escalating function F whose function body contains an
3287   // immediate-escalating expression
3288   if (isImmediateEscalating() && BodyContainsImmediateEscalatingExpressions())
3289     return true;
3290 
3291   if (const auto *MD = dyn_cast<CXXMethodDecl>(this);
3292       MD && MD->isLambdaStaticInvoker())
3293     return MD->getParent()->getLambdaCallOperator()->isImmediateFunction();
3294 
3295   return false;
3296 }
3297 
3298 bool FunctionDecl::isMain() const {
3299   const TranslationUnitDecl *tunit =
3300     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3301   return tunit &&
3302          !tunit->getASTContext().getLangOpts().Freestanding &&
3303          isNamed(this, "main");
3304 }
3305 
3306 bool FunctionDecl::isMSVCRTEntryPoint() const {
3307   const TranslationUnitDecl *TUnit =
3308       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3309   if (!TUnit)
3310     return false;
3311 
3312   // Even though we aren't really targeting MSVCRT if we are freestanding,
3313   // semantic analysis for these functions remains the same.
3314 
3315   // MSVCRT entry points only exist on MSVCRT targets.
3316   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3317     return false;
3318 
3319   // Nameless functions like constructors cannot be entry points.
3320   if (!getIdentifier())
3321     return false;
3322 
3323   return llvm::StringSwitch<bool>(getName())
3324       .Cases("main",     // an ANSI console app
3325              "wmain",    // a Unicode console App
3326              "WinMain",  // an ANSI GUI app
3327              "wWinMain", // a Unicode GUI app
3328              "DllMain",  // a DLL
3329              true)
3330       .Default(false);
3331 }
3332 
3333 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3334   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3335     return false;
3336   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3337       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3338       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3339       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3340     return false;
3341 
3342   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3343     return false;
3344 
3345   const auto *proto = getType()->castAs<FunctionProtoType>();
3346   if (proto->getNumParams() != 2 || proto->isVariadic())
3347     return false;
3348 
3349   const ASTContext &Context =
3350       cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3351           ->getASTContext();
3352 
3353   // The result type and first argument type are constant across all
3354   // these operators.  The second argument must be exactly void*.
3355   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3356 }
3357 
3358 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3359     std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3360   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3361     return false;
3362   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3363       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3364       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3365       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3366     return false;
3367 
3368   if (isa<CXXRecordDecl>(getDeclContext()))
3369     return false;
3370 
3371   // This can only fail for an invalid 'operator new' declaration.
3372   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3373     return false;
3374 
3375   const auto *FPT = getType()->castAs<FunctionProtoType>();
3376   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4 || FPT->isVariadic())
3377     return false;
3378 
3379   // If this is a single-parameter function, it must be a replaceable global
3380   // allocation or deallocation function.
3381   if (FPT->getNumParams() == 1)
3382     return true;
3383 
3384   unsigned Params = 1;
3385   QualType Ty = FPT->getParamType(Params);
3386   const ASTContext &Ctx = getASTContext();
3387 
3388   auto Consume = [&] {
3389     ++Params;
3390     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3391   };
3392 
3393   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3394   bool IsSizedDelete = false;
3395   if (Ctx.getLangOpts().SizedDeallocation &&
3396       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3397        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3398       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3399     IsSizedDelete = true;
3400     Consume();
3401   }
3402 
3403   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3404   // new/delete.
3405   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3406     Consume();
3407     if (AlignmentParam)
3408       *AlignmentParam = Params;
3409   }
3410 
3411   // If this is not a sized delete, the next parameter can be a
3412   // 'const std::nothrow_t&'.
3413   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3414     Ty = Ty->getPointeeType();
3415     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3416       return false;
3417     if (Ty->isNothrowT()) {
3418       if (IsNothrow)
3419         *IsNothrow = true;
3420       Consume();
3421     }
3422   }
3423 
3424   // Finally, recognize the not yet standard versions of new that take a
3425   // hot/cold allocation hint (__hot_cold_t). These are currently supported by
3426   // tcmalloc (see
3427   // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53).
3428   if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) {
3429     QualType T = Ty;
3430     while (const auto *TD = T->getAs<TypedefType>())
3431       T = TD->getDecl()->getUnderlyingType();
3432     const IdentifierInfo *II =
3433         T->castAs<EnumType>()->getDecl()->getIdentifier();
3434     if (II && II->isStr("__hot_cold_t"))
3435       Consume();
3436   }
3437 
3438   return Params == FPT->getNumParams();
3439 }
3440 
3441 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3442   if (!getBuiltinID())
3443     return false;
3444 
3445   const FunctionDecl *Definition;
3446   if (!hasBody(Definition))
3447     return false;
3448 
3449   if (!Definition->isInlineSpecified() ||
3450       !Definition->hasAttr<AlwaysInlineAttr>())
3451     return false;
3452 
3453   ASTContext &Context = getASTContext();
3454   switch (Context.GetGVALinkageForFunction(Definition)) {
3455   case GVA_Internal:
3456   case GVA_DiscardableODR:
3457   case GVA_StrongODR:
3458     return false;
3459   case GVA_AvailableExternally:
3460   case GVA_StrongExternal:
3461     return true;
3462   }
3463   llvm_unreachable("Unknown GVALinkage");
3464 }
3465 
3466 bool FunctionDecl::isDestroyingOperatorDelete() const {
3467   // C++ P0722:
3468   //   Within a class C, a single object deallocation function with signature
3469   //     (T, std::destroying_delete_t, <more params>)
3470   //   is a destroying operator delete.
3471   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3472       getNumParams() < 2)
3473     return false;
3474 
3475   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3476   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3477          RD->getIdentifier()->isStr("destroying_delete_t");
3478 }
3479 
3480 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3481   return getDeclLanguageLinkage(*this);
3482 }
3483 
3484 bool FunctionDecl::isExternC() const {
3485   return isDeclExternC(*this);
3486 }
3487 
3488 bool FunctionDecl::isInExternCContext() const {
3489   if (hasAttr<OpenCLKernelAttr>())
3490     return true;
3491   return getLexicalDeclContext()->isExternCContext();
3492 }
3493 
3494 bool FunctionDecl::isInExternCXXContext() const {
3495   return getLexicalDeclContext()->isExternCXXContext();
3496 }
3497 
3498 bool FunctionDecl::isGlobal() const {
3499   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3500     return Method->isStatic();
3501 
3502   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3503     return false;
3504 
3505   for (const DeclContext *DC = getDeclContext();
3506        DC->isNamespace();
3507        DC = DC->getParent()) {
3508     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3509       if (!Namespace->getDeclName())
3510         return false;
3511     }
3512   }
3513 
3514   return true;
3515 }
3516 
3517 bool FunctionDecl::isNoReturn() const {
3518   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3519       hasAttr<C11NoReturnAttr>())
3520     return true;
3521 
3522   if (auto *FnTy = getType()->getAs<FunctionType>())
3523     return FnTy->getNoReturnAttr();
3524 
3525   return false;
3526 }
3527 
3528 bool FunctionDecl::isMemberLikeConstrainedFriend() const {
3529   // C++20 [temp.friend]p9:
3530   //   A non-template friend declaration with a requires-clause [or]
3531   //   a friend function template with a constraint that depends on a template
3532   //   parameter from an enclosing template [...] does not declare the same
3533   //   function or function template as a declaration in any other scope.
3534 
3535   // If this isn't a friend then it's not a member-like constrained friend.
3536   if (!getFriendObjectKind()) {
3537     return false;
3538   }
3539 
3540   if (!getDescribedFunctionTemplate()) {
3541     // If these friends don't have constraints, they aren't constrained, and
3542     // thus don't fall under temp.friend p9. Else the simple presence of a
3543     // constraint makes them unique.
3544     return getTrailingRequiresClause();
3545   }
3546 
3547   return FriendConstraintRefersToEnclosingTemplate();
3548 }
3549 
3550 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3551   if (hasAttr<TargetAttr>())
3552     return MultiVersionKind::Target;
3553   if (hasAttr<TargetVersionAttr>())
3554     return MultiVersionKind::TargetVersion;
3555   if (hasAttr<CPUDispatchAttr>())
3556     return MultiVersionKind::CPUDispatch;
3557   if (hasAttr<CPUSpecificAttr>())
3558     return MultiVersionKind::CPUSpecific;
3559   if (hasAttr<TargetClonesAttr>())
3560     return MultiVersionKind::TargetClones;
3561   return MultiVersionKind::None;
3562 }
3563 
3564 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3565   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3566 }
3567 
3568 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3569   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3570 }
3571 
3572 bool FunctionDecl::isTargetMultiVersion() const {
3573   return isMultiVersion() &&
3574          (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3575 }
3576 
3577 bool FunctionDecl::isTargetMultiVersionDefault() const {
3578   if (!isMultiVersion())
3579     return false;
3580   if (hasAttr<TargetAttr>())
3581     return getAttr<TargetAttr>()->isDefaultVersion();
3582   return hasAttr<TargetVersionAttr>() &&
3583          getAttr<TargetVersionAttr>()->isDefaultVersion();
3584 }
3585 
3586 bool FunctionDecl::isTargetClonesMultiVersion() const {
3587   return isMultiVersion() && hasAttr<TargetClonesAttr>();
3588 }
3589 
3590 bool FunctionDecl::isTargetVersionMultiVersion() const {
3591   return isMultiVersion() && hasAttr<TargetVersionAttr>();
3592 }
3593 
3594 void
3595 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3596   redeclarable_base::setPreviousDecl(PrevDecl);
3597 
3598   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3599     FunctionTemplateDecl *PrevFunTmpl
3600       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3601     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3602     FunTmpl->setPreviousDecl(PrevFunTmpl);
3603   }
3604 
3605   if (PrevDecl && PrevDecl->isInlined())
3606     setImplicitlyInline(true);
3607 }
3608 
3609 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3610 
3611 /// Returns a value indicating whether this function corresponds to a builtin
3612 /// function.
3613 ///
3614 /// The function corresponds to a built-in function if it is declared at
3615 /// translation scope or within an extern "C" block and its name matches with
3616 /// the name of a builtin. The returned value will be 0 for functions that do
3617 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3618 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3619 /// value.
3620 ///
3621 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3622 /// functions as their wrapped builtins. This shouldn't be done in general, but
3623 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3624 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3625   unsigned BuiltinID = 0;
3626 
3627   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3628     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3629   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3630     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3631   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3632     BuiltinID = A->getID();
3633   }
3634 
3635   if (!BuiltinID)
3636     return 0;
3637 
3638   // If the function is marked "overloadable", it has a different mangled name
3639   // and is not the C library function.
3640   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3641       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3642     return 0;
3643 
3644   const ASTContext &Context = getASTContext();
3645   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3646     return BuiltinID;
3647 
3648   // This function has the name of a known C library
3649   // function. Determine whether it actually refers to the C library
3650   // function or whether it just has the same name.
3651 
3652   // If this is a static function, it's not a builtin.
3653   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3654     return 0;
3655 
3656   // OpenCL v1.2 s6.9.f - The library functions defined in
3657   // the C99 standard headers are not available.
3658   if (Context.getLangOpts().OpenCL &&
3659       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3660     return 0;
3661 
3662   // CUDA does not have device-side standard library. printf and malloc are the
3663   // only special cases that are supported by device-side runtime.
3664   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3665       !hasAttr<CUDAHostAttr>() &&
3666       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3667     return 0;
3668 
3669   // As AMDGCN implementation of OpenMP does not have a device-side standard
3670   // library, none of the predefined library functions except printf and malloc
3671   // should be treated as a builtin i.e. 0 should be returned for them.
3672   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3673       Context.getLangOpts().OpenMPIsTargetDevice &&
3674       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3675       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3676     return 0;
3677 
3678   return BuiltinID;
3679 }
3680 
3681 /// getNumParams - Return the number of parameters this function must have
3682 /// based on its FunctionType.  This is the length of the ParamInfo array
3683 /// after it has been created.
3684 unsigned FunctionDecl::getNumParams() const {
3685   const auto *FPT = getType()->getAs<FunctionProtoType>();
3686   return FPT ? FPT->getNumParams() : 0;
3687 }
3688 
3689 void FunctionDecl::setParams(ASTContext &C,
3690                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3691   assert(!ParamInfo && "Already has param info!");
3692   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3693 
3694   // Zero params -> null pointer.
3695   if (!NewParamInfo.empty()) {
3696     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3697     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3698   }
3699 }
3700 
3701 /// getMinRequiredArguments - Returns the minimum number of arguments
3702 /// needed to call this function. This may be fewer than the number of
3703 /// function parameters, if some of the parameters have default
3704 /// arguments (in C++) or are parameter packs (C++11).
3705 unsigned FunctionDecl::getMinRequiredArguments() const {
3706   if (!getASTContext().getLangOpts().CPlusPlus)
3707     return getNumParams();
3708 
3709   // Note that it is possible for a parameter with no default argument to
3710   // follow a parameter with a default argument.
3711   unsigned NumRequiredArgs = 0;
3712   unsigned MinParamsSoFar = 0;
3713   for (auto *Param : parameters()) {
3714     if (!Param->isParameterPack()) {
3715       ++MinParamsSoFar;
3716       if (!Param->hasDefaultArg())
3717         NumRequiredArgs = MinParamsSoFar;
3718     }
3719   }
3720   return NumRequiredArgs;
3721 }
3722 
3723 bool FunctionDecl::hasCXXExplicitFunctionObjectParameter() const {
3724   return getNumParams() != 0 && getParamDecl(0)->isExplicitObjectParameter();
3725 }
3726 
3727 unsigned FunctionDecl::getNumNonObjectParams() const {
3728   return getNumParams() -
3729          static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3730 }
3731 
3732 unsigned FunctionDecl::getMinRequiredExplicitArguments() const {
3733   return getMinRequiredArguments() -
3734          static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3735 }
3736 
3737 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3738   return getNumParams() == 1 ||
3739          (getNumParams() > 1 &&
3740           llvm::all_of(llvm::drop_begin(parameters()),
3741                        [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3742 }
3743 
3744 /// The combination of the extern and inline keywords under MSVC forces
3745 /// the function to be required.
3746 ///
3747 /// Note: This function assumes that we will only get called when isInlined()
3748 /// would return true for this FunctionDecl.
3749 bool FunctionDecl::isMSExternInline() const {
3750   assert(isInlined() && "expected to get called on an inlined function!");
3751 
3752   const ASTContext &Context = getASTContext();
3753   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3754       !hasAttr<DLLExportAttr>())
3755     return false;
3756 
3757   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3758        FD = FD->getPreviousDecl())
3759     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3760       return true;
3761 
3762   return false;
3763 }
3764 
3765 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3766   if (Redecl->getStorageClass() != SC_Extern)
3767     return false;
3768 
3769   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3770        FD = FD->getPreviousDecl())
3771     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3772       return false;
3773 
3774   return true;
3775 }
3776 
3777 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3778   // Only consider file-scope declarations in this test.
3779   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3780     return false;
3781 
3782   // Only consider explicit declarations; the presence of a builtin for a
3783   // libcall shouldn't affect whether a definition is externally visible.
3784   if (Redecl->isImplicit())
3785     return false;
3786 
3787   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3788     return true; // Not an inline definition
3789 
3790   return false;
3791 }
3792 
3793 /// For a function declaration in C or C++, determine whether this
3794 /// declaration causes the definition to be externally visible.
3795 ///
3796 /// For instance, this determines if adding the current declaration to the set
3797 /// of redeclarations of the given functions causes
3798 /// isInlineDefinitionExternallyVisible to change from false to true.
3799 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3800   assert(!doesThisDeclarationHaveABody() &&
3801          "Must have a declaration without a body.");
3802 
3803   const ASTContext &Context = getASTContext();
3804 
3805   if (Context.getLangOpts().MSVCCompat) {
3806     const FunctionDecl *Definition;
3807     if (hasBody(Definition) && Definition->isInlined() &&
3808         redeclForcesDefMSVC(this))
3809       return true;
3810   }
3811 
3812   if (Context.getLangOpts().CPlusPlus)
3813     return false;
3814 
3815   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3816     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3817     // an externally visible definition.
3818     //
3819     // FIXME: What happens if gnu_inline gets added on after the first
3820     // declaration?
3821     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3822       return false;
3823 
3824     const FunctionDecl *Prev = this;
3825     bool FoundBody = false;
3826     while ((Prev = Prev->getPreviousDecl())) {
3827       FoundBody |= Prev->doesThisDeclarationHaveABody();
3828 
3829       if (Prev->doesThisDeclarationHaveABody()) {
3830         // If it's not the case that both 'inline' and 'extern' are
3831         // specified on the definition, then it is always externally visible.
3832         if (!Prev->isInlineSpecified() ||
3833             Prev->getStorageClass() != SC_Extern)
3834           return false;
3835       } else if (Prev->isInlineSpecified() &&
3836                  Prev->getStorageClass() != SC_Extern) {
3837         return false;
3838       }
3839     }
3840     return FoundBody;
3841   }
3842 
3843   // C99 6.7.4p6:
3844   //   [...] If all of the file scope declarations for a function in a
3845   //   translation unit include the inline function specifier without extern,
3846   //   then the definition in that translation unit is an inline definition.
3847   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3848     return false;
3849   const FunctionDecl *Prev = this;
3850   bool FoundBody = false;
3851   while ((Prev = Prev->getPreviousDecl())) {
3852     FoundBody |= Prev->doesThisDeclarationHaveABody();
3853     if (RedeclForcesDefC99(Prev))
3854       return false;
3855   }
3856   return FoundBody;
3857 }
3858 
3859 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3860   const TypeSourceInfo *TSI = getTypeSourceInfo();
3861   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3862              : FunctionTypeLoc();
3863 }
3864 
3865 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3866   FunctionTypeLoc FTL = getFunctionTypeLoc();
3867   if (!FTL)
3868     return SourceRange();
3869 
3870   // Skip self-referential return types.
3871   const SourceManager &SM = getASTContext().getSourceManager();
3872   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3873   SourceLocation Boundary = getNameInfo().getBeginLoc();
3874   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3875       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3876     return SourceRange();
3877 
3878   return RTRange;
3879 }
3880 
3881 SourceRange FunctionDecl::getParametersSourceRange() const {
3882   unsigned NP = getNumParams();
3883   SourceLocation EllipsisLoc = getEllipsisLoc();
3884 
3885   if (NP == 0 && EllipsisLoc.isInvalid())
3886     return SourceRange();
3887 
3888   SourceLocation Begin =
3889       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3890   SourceLocation End = EllipsisLoc.isValid()
3891                            ? EllipsisLoc
3892                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3893 
3894   return SourceRange(Begin, End);
3895 }
3896 
3897 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3898   FunctionTypeLoc FTL = getFunctionTypeLoc();
3899   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3900 }
3901 
3902 /// For an inline function definition in C, or for a gnu_inline function
3903 /// in C++, determine whether the definition will be externally visible.
3904 ///
3905 /// Inline function definitions are always available for inlining optimizations.
3906 /// However, depending on the language dialect, declaration specifiers, and
3907 /// attributes, the definition of an inline function may or may not be
3908 /// "externally" visible to other translation units in the program.
3909 ///
3910 /// In C99, inline definitions are not externally visible by default. However,
3911 /// if even one of the global-scope declarations is marked "extern inline", the
3912 /// inline definition becomes externally visible (C99 6.7.4p6).
3913 ///
3914 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3915 /// definition, we use the GNU semantics for inline, which are nearly the
3916 /// opposite of C99 semantics. In particular, "inline" by itself will create
3917 /// an externally visible symbol, but "extern inline" will not create an
3918 /// externally visible symbol.
3919 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3920   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3921           hasAttr<AliasAttr>()) &&
3922          "Must be a function definition");
3923   assert(isInlined() && "Function must be inline");
3924   ASTContext &Context = getASTContext();
3925 
3926   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3927     // Note: If you change the logic here, please change
3928     // doesDeclarationForceExternallyVisibleDefinition as well.
3929     //
3930     // If it's not the case that both 'inline' and 'extern' are
3931     // specified on the definition, then this inline definition is
3932     // externally visible.
3933     if (Context.getLangOpts().CPlusPlus)
3934       return false;
3935     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3936       return true;
3937 
3938     // If any declaration is 'inline' but not 'extern', then this definition
3939     // is externally visible.
3940     for (auto *Redecl : redecls()) {
3941       if (Redecl->isInlineSpecified() &&
3942           Redecl->getStorageClass() != SC_Extern)
3943         return true;
3944     }
3945 
3946     return false;
3947   }
3948 
3949   // The rest of this function is C-only.
3950   assert(!Context.getLangOpts().CPlusPlus &&
3951          "should not use C inline rules in C++");
3952 
3953   // C99 6.7.4p6:
3954   //   [...] If all of the file scope declarations for a function in a
3955   //   translation unit include the inline function specifier without extern,
3956   //   then the definition in that translation unit is an inline definition.
3957   for (auto *Redecl : redecls()) {
3958     if (RedeclForcesDefC99(Redecl))
3959       return true;
3960   }
3961 
3962   // C99 6.7.4p6:
3963   //   An inline definition does not provide an external definition for the
3964   //   function, and does not forbid an external definition in another
3965   //   translation unit.
3966   return false;
3967 }
3968 
3969 /// getOverloadedOperator - Which C++ overloaded operator this
3970 /// function represents, if any.
3971 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3972   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3973     return getDeclName().getCXXOverloadedOperator();
3974   return OO_None;
3975 }
3976 
3977 /// getLiteralIdentifier - The literal suffix identifier this function
3978 /// represents, if any.
3979 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3980   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3981     return getDeclName().getCXXLiteralIdentifier();
3982   return nullptr;
3983 }
3984 
3985 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3986   if (TemplateOrSpecialization.isNull())
3987     return TK_NonTemplate;
3988   if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
3989     if (isa<FunctionDecl>(ND))
3990       return TK_DependentNonTemplate;
3991     assert(isa<FunctionTemplateDecl>(ND) &&
3992            "No other valid types in NamedDecl");
3993     return TK_FunctionTemplate;
3994   }
3995   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3996     return TK_MemberSpecialization;
3997   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3998     return TK_FunctionTemplateSpecialization;
3999   if (TemplateOrSpecialization.is
4000                                <DependentFunctionTemplateSpecializationInfo*>())
4001     return TK_DependentFunctionTemplateSpecialization;
4002 
4003   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
4004 }
4005 
4006 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
4007   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
4008     return cast<FunctionDecl>(Info->getInstantiatedFrom());
4009 
4010   return nullptr;
4011 }
4012 
4013 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
4014   if (auto *MSI =
4015           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4016     return MSI;
4017   if (auto *FTSI = TemplateOrSpecialization
4018                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
4019     return FTSI->getMemberSpecializationInfo();
4020   return nullptr;
4021 }
4022 
4023 void
4024 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
4025                                                FunctionDecl *FD,
4026                                                TemplateSpecializationKind TSK) {
4027   assert(TemplateOrSpecialization.isNull() &&
4028          "Member function is already a specialization");
4029   MemberSpecializationInfo *Info
4030     = new (C) MemberSpecializationInfo(FD, TSK);
4031   TemplateOrSpecialization = Info;
4032 }
4033 
4034 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
4035   return dyn_cast_if_present<FunctionTemplateDecl>(
4036       TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4037 }
4038 
4039 void FunctionDecl::setDescribedFunctionTemplate(
4040     FunctionTemplateDecl *Template) {
4041   assert(TemplateOrSpecialization.isNull() &&
4042          "Member function is already a specialization");
4043   TemplateOrSpecialization = Template;
4044 }
4045 
4046 bool FunctionDecl::isFunctionTemplateSpecialization() const {
4047   return TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>() ||
4048          TemplateOrSpecialization
4049              .is<DependentFunctionTemplateSpecializationInfo *>();
4050 }
4051 
4052 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
4053   assert(TemplateOrSpecialization.isNull() &&
4054          "Function is already a specialization");
4055   TemplateOrSpecialization = FD;
4056 }
4057 
4058 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
4059   return dyn_cast_if_present<FunctionDecl>(
4060       TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4061 }
4062 
4063 bool FunctionDecl::isImplicitlyInstantiable() const {
4064   // If the function is invalid, it can't be implicitly instantiated.
4065   if (isInvalidDecl())
4066     return false;
4067 
4068   switch (getTemplateSpecializationKindForInstantiation()) {
4069   case TSK_Undeclared:
4070   case TSK_ExplicitInstantiationDefinition:
4071   case TSK_ExplicitSpecialization:
4072     return false;
4073 
4074   case TSK_ImplicitInstantiation:
4075     return true;
4076 
4077   case TSK_ExplicitInstantiationDeclaration:
4078     // Handled below.
4079     break;
4080   }
4081 
4082   // Find the actual template from which we will instantiate.
4083   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
4084   bool HasPattern = false;
4085   if (PatternDecl)
4086     HasPattern = PatternDecl->hasBody(PatternDecl);
4087 
4088   // C++0x [temp.explicit]p9:
4089   //   Except for inline functions, other explicit instantiation declarations
4090   //   have the effect of suppressing the implicit instantiation of the entity
4091   //   to which they refer.
4092   if (!HasPattern || !PatternDecl)
4093     return true;
4094 
4095   return PatternDecl->isInlined();
4096 }
4097 
4098 bool FunctionDecl::isTemplateInstantiation() const {
4099   // FIXME: Remove this, it's not clear what it means. (Which template
4100   // specialization kind?)
4101   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
4102 }
4103 
4104 FunctionDecl *
4105 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
4106   // If this is a generic lambda call operator specialization, its
4107   // instantiation pattern is always its primary template's pattern
4108   // even if its primary template was instantiated from another
4109   // member template (which happens with nested generic lambdas).
4110   // Since a lambda's call operator's body is transformed eagerly,
4111   // we don't have to go hunting for a prototype definition template
4112   // (i.e. instantiated-from-member-template) to use as an instantiation
4113   // pattern.
4114 
4115   if (isGenericLambdaCallOperatorSpecialization(
4116           dyn_cast<CXXMethodDecl>(this))) {
4117     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
4118     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
4119   }
4120 
4121   // Check for a declaration of this function that was instantiated from a
4122   // friend definition.
4123   const FunctionDecl *FD = nullptr;
4124   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
4125     FD = this;
4126 
4127   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
4128     if (ForDefinition &&
4129         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
4130       return nullptr;
4131     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
4132   }
4133 
4134   if (ForDefinition &&
4135       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
4136     return nullptr;
4137 
4138   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
4139     // If we hit a point where the user provided a specialization of this
4140     // template, we're done looking.
4141     while (!ForDefinition || !Primary->isMemberSpecialization()) {
4142       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
4143       if (!NewPrimary)
4144         break;
4145       Primary = NewPrimary;
4146     }
4147 
4148     return getDefinitionOrSelf(Primary->getTemplatedDecl());
4149   }
4150 
4151   return nullptr;
4152 }
4153 
4154 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
4155   if (FunctionTemplateSpecializationInfo *Info
4156         = TemplateOrSpecialization
4157             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4158     return Info->getTemplate();
4159   }
4160   return nullptr;
4161 }
4162 
4163 FunctionTemplateSpecializationInfo *
4164 FunctionDecl::getTemplateSpecializationInfo() const {
4165   return TemplateOrSpecialization
4166       .dyn_cast<FunctionTemplateSpecializationInfo *>();
4167 }
4168 
4169 const TemplateArgumentList *
4170 FunctionDecl::getTemplateSpecializationArgs() const {
4171   if (FunctionTemplateSpecializationInfo *Info
4172         = TemplateOrSpecialization
4173             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4174     return Info->TemplateArguments;
4175   }
4176   return nullptr;
4177 }
4178 
4179 const ASTTemplateArgumentListInfo *
4180 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
4181   if (FunctionTemplateSpecializationInfo *Info
4182         = TemplateOrSpecialization
4183             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4184     return Info->TemplateArgumentsAsWritten;
4185   }
4186   if (DependentFunctionTemplateSpecializationInfo *Info =
4187           TemplateOrSpecialization
4188               .dyn_cast<DependentFunctionTemplateSpecializationInfo *>()) {
4189     return Info->TemplateArgumentsAsWritten;
4190   }
4191   return nullptr;
4192 }
4193 
4194 void FunctionDecl::setFunctionTemplateSpecialization(
4195     ASTContext &C, FunctionTemplateDecl *Template,
4196     TemplateArgumentList *TemplateArgs, void *InsertPos,
4197     TemplateSpecializationKind TSK,
4198     const TemplateArgumentListInfo *TemplateArgsAsWritten,
4199     SourceLocation PointOfInstantiation) {
4200   assert((TemplateOrSpecialization.isNull() ||
4201           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
4202          "Member function is already a specialization");
4203   assert(TSK != TSK_Undeclared &&
4204          "Must specify the type of function template specialization");
4205   assert((TemplateOrSpecialization.isNull() ||
4206           getFriendObjectKind() != FOK_None ||
4207           TSK == TSK_ExplicitSpecialization) &&
4208          "Member specialization must be an explicit specialization");
4209   FunctionTemplateSpecializationInfo *Info =
4210       FunctionTemplateSpecializationInfo::Create(
4211           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
4212           PointOfInstantiation,
4213           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
4214   TemplateOrSpecialization = Info;
4215   Template->addSpecialization(Info, InsertPos);
4216 }
4217 
4218 void FunctionDecl::setDependentTemplateSpecialization(
4219     ASTContext &Context, const UnresolvedSetImpl &Templates,
4220     const TemplateArgumentListInfo *TemplateArgs) {
4221   assert(TemplateOrSpecialization.isNull());
4222   DependentFunctionTemplateSpecializationInfo *Info =
4223       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
4224                                                           TemplateArgs);
4225   TemplateOrSpecialization = Info;
4226 }
4227 
4228 DependentFunctionTemplateSpecializationInfo *
4229 FunctionDecl::getDependentSpecializationInfo() const {
4230   return TemplateOrSpecialization
4231       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
4232 }
4233 
4234 DependentFunctionTemplateSpecializationInfo *
4235 DependentFunctionTemplateSpecializationInfo::Create(
4236     ASTContext &Context, const UnresolvedSetImpl &Candidates,
4237     const TemplateArgumentListInfo *TArgs) {
4238   const auto *TArgsWritten =
4239       TArgs ? ASTTemplateArgumentListInfo::Create(Context, *TArgs) : nullptr;
4240   return new (Context.Allocate(
4241       totalSizeToAlloc<FunctionTemplateDecl *>(Candidates.size())))
4242       DependentFunctionTemplateSpecializationInfo(Candidates, TArgsWritten);
4243 }
4244 
4245 DependentFunctionTemplateSpecializationInfo::
4246     DependentFunctionTemplateSpecializationInfo(
4247         const UnresolvedSetImpl &Candidates,
4248         const ASTTemplateArgumentListInfo *TemplateArgsWritten)
4249     : NumCandidates(Candidates.size()),
4250       TemplateArgumentsAsWritten(TemplateArgsWritten) {
4251   std::transform(Candidates.begin(), Candidates.end(),
4252                  getTrailingObjects<FunctionTemplateDecl *>(),
4253                  [](NamedDecl *ND) {
4254                    return cast<FunctionTemplateDecl>(ND->getUnderlyingDecl());
4255                  });
4256 }
4257 
4258 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
4259   // For a function template specialization, query the specialization
4260   // information object.
4261   if (FunctionTemplateSpecializationInfo *FTSInfo =
4262           TemplateOrSpecialization
4263               .dyn_cast<FunctionTemplateSpecializationInfo *>())
4264     return FTSInfo->getTemplateSpecializationKind();
4265 
4266   if (MemberSpecializationInfo *MSInfo =
4267           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4268     return MSInfo->getTemplateSpecializationKind();
4269 
4270   // A dependent function template specialization is an explicit specialization,
4271   // except when it's a friend declaration.
4272   if (TemplateOrSpecialization
4273           .is<DependentFunctionTemplateSpecializationInfo *>() &&
4274       getFriendObjectKind() == FOK_None)
4275     return TSK_ExplicitSpecialization;
4276 
4277   return TSK_Undeclared;
4278 }
4279 
4280 TemplateSpecializationKind
4281 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4282   // This is the same as getTemplateSpecializationKind(), except that for a
4283   // function that is both a function template specialization and a member
4284   // specialization, we prefer the member specialization information. Eg:
4285   //
4286   // template<typename T> struct A {
4287   //   template<typename U> void f() {}
4288   //   template<> void f<int>() {}
4289   // };
4290   //
4291   // Within the templated CXXRecordDecl, A<T>::f<int> is a dependent function
4292   // template specialization; both getTemplateSpecializationKind() and
4293   // getTemplateSpecializationKindForInstantiation() will return
4294   // TSK_ExplicitSpecialization.
4295   //
4296   // For A<int>::f<int>():
4297   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4298   // * getTemplateSpecializationKindForInstantiation() will return
4299   //       TSK_ImplicitInstantiation
4300   //
4301   // This reflects the facts that A<int>::f<int> is an explicit specialization
4302   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4303   // from A::f<int> if a definition is needed.
4304   if (FunctionTemplateSpecializationInfo *FTSInfo =
4305           TemplateOrSpecialization
4306               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4307     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4308       return MSInfo->getTemplateSpecializationKind();
4309     return FTSInfo->getTemplateSpecializationKind();
4310   }
4311 
4312   if (MemberSpecializationInfo *MSInfo =
4313           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4314     return MSInfo->getTemplateSpecializationKind();
4315 
4316   if (TemplateOrSpecialization
4317           .is<DependentFunctionTemplateSpecializationInfo *>() &&
4318       getFriendObjectKind() == FOK_None)
4319     return TSK_ExplicitSpecialization;
4320 
4321   return TSK_Undeclared;
4322 }
4323 
4324 void
4325 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4326                                           SourceLocation PointOfInstantiation) {
4327   if (FunctionTemplateSpecializationInfo *FTSInfo
4328         = TemplateOrSpecialization.dyn_cast<
4329                                     FunctionTemplateSpecializationInfo*>()) {
4330     FTSInfo->setTemplateSpecializationKind(TSK);
4331     if (TSK != TSK_ExplicitSpecialization &&
4332         PointOfInstantiation.isValid() &&
4333         FTSInfo->getPointOfInstantiation().isInvalid()) {
4334       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4335       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4336         L->InstantiationRequested(this);
4337     }
4338   } else if (MemberSpecializationInfo *MSInfo
4339              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4340     MSInfo->setTemplateSpecializationKind(TSK);
4341     if (TSK != TSK_ExplicitSpecialization &&
4342         PointOfInstantiation.isValid() &&
4343         MSInfo->getPointOfInstantiation().isInvalid()) {
4344       MSInfo->setPointOfInstantiation(PointOfInstantiation);
4345       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4346         L->InstantiationRequested(this);
4347     }
4348   } else
4349     llvm_unreachable("Function cannot have a template specialization kind");
4350 }
4351 
4352 SourceLocation FunctionDecl::getPointOfInstantiation() const {
4353   if (FunctionTemplateSpecializationInfo *FTSInfo
4354         = TemplateOrSpecialization.dyn_cast<
4355                                         FunctionTemplateSpecializationInfo*>())
4356     return FTSInfo->getPointOfInstantiation();
4357   if (MemberSpecializationInfo *MSInfo =
4358           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4359     return MSInfo->getPointOfInstantiation();
4360 
4361   return SourceLocation();
4362 }
4363 
4364 bool FunctionDecl::isOutOfLine() const {
4365   if (Decl::isOutOfLine())
4366     return true;
4367 
4368   // If this function was instantiated from a member function of a
4369   // class template, check whether that member function was defined out-of-line.
4370   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4371     const FunctionDecl *Definition;
4372     if (FD->hasBody(Definition))
4373       return Definition->isOutOfLine();
4374   }
4375 
4376   // If this function was instantiated from a function template,
4377   // check whether that function template was defined out-of-line.
4378   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4379     const FunctionDecl *Definition;
4380     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4381       return Definition->isOutOfLine();
4382   }
4383 
4384   return false;
4385 }
4386 
4387 SourceRange FunctionDecl::getSourceRange() const {
4388   return SourceRange(getOuterLocStart(), EndRangeLoc);
4389 }
4390 
4391 unsigned FunctionDecl::getMemoryFunctionKind() const {
4392   IdentifierInfo *FnInfo = getIdentifier();
4393 
4394   if (!FnInfo)
4395     return 0;
4396 
4397   // Builtin handling.
4398   switch (getBuiltinID()) {
4399   case Builtin::BI__builtin_memset:
4400   case Builtin::BI__builtin___memset_chk:
4401   case Builtin::BImemset:
4402     return Builtin::BImemset;
4403 
4404   case Builtin::BI__builtin_memcpy:
4405   case Builtin::BI__builtin___memcpy_chk:
4406   case Builtin::BImemcpy:
4407     return Builtin::BImemcpy;
4408 
4409   case Builtin::BI__builtin_mempcpy:
4410   case Builtin::BI__builtin___mempcpy_chk:
4411   case Builtin::BImempcpy:
4412     return Builtin::BImempcpy;
4413 
4414   case Builtin::BI__builtin_memmove:
4415   case Builtin::BI__builtin___memmove_chk:
4416   case Builtin::BImemmove:
4417     return Builtin::BImemmove;
4418 
4419   case Builtin::BIstrlcpy:
4420   case Builtin::BI__builtin___strlcpy_chk:
4421     return Builtin::BIstrlcpy;
4422 
4423   case Builtin::BIstrlcat:
4424   case Builtin::BI__builtin___strlcat_chk:
4425     return Builtin::BIstrlcat;
4426 
4427   case Builtin::BI__builtin_memcmp:
4428   case Builtin::BImemcmp:
4429     return Builtin::BImemcmp;
4430 
4431   case Builtin::BI__builtin_bcmp:
4432   case Builtin::BIbcmp:
4433     return Builtin::BIbcmp;
4434 
4435   case Builtin::BI__builtin_strncpy:
4436   case Builtin::BI__builtin___strncpy_chk:
4437   case Builtin::BIstrncpy:
4438     return Builtin::BIstrncpy;
4439 
4440   case Builtin::BI__builtin_strncmp:
4441   case Builtin::BIstrncmp:
4442     return Builtin::BIstrncmp;
4443 
4444   case Builtin::BI__builtin_strncasecmp:
4445   case Builtin::BIstrncasecmp:
4446     return Builtin::BIstrncasecmp;
4447 
4448   case Builtin::BI__builtin_strncat:
4449   case Builtin::BI__builtin___strncat_chk:
4450   case Builtin::BIstrncat:
4451     return Builtin::BIstrncat;
4452 
4453   case Builtin::BI__builtin_strndup:
4454   case Builtin::BIstrndup:
4455     return Builtin::BIstrndup;
4456 
4457   case Builtin::BI__builtin_strlen:
4458   case Builtin::BIstrlen:
4459     return Builtin::BIstrlen;
4460 
4461   case Builtin::BI__builtin_bzero:
4462   case Builtin::BIbzero:
4463     return Builtin::BIbzero;
4464 
4465   case Builtin::BI__builtin_bcopy:
4466   case Builtin::BIbcopy:
4467     return Builtin::BIbcopy;
4468 
4469   case Builtin::BIfree:
4470     return Builtin::BIfree;
4471 
4472   default:
4473     if (isExternC()) {
4474       if (FnInfo->isStr("memset"))
4475         return Builtin::BImemset;
4476       if (FnInfo->isStr("memcpy"))
4477         return Builtin::BImemcpy;
4478       if (FnInfo->isStr("mempcpy"))
4479         return Builtin::BImempcpy;
4480       if (FnInfo->isStr("memmove"))
4481         return Builtin::BImemmove;
4482       if (FnInfo->isStr("memcmp"))
4483         return Builtin::BImemcmp;
4484       if (FnInfo->isStr("bcmp"))
4485         return Builtin::BIbcmp;
4486       if (FnInfo->isStr("strncpy"))
4487         return Builtin::BIstrncpy;
4488       if (FnInfo->isStr("strncmp"))
4489         return Builtin::BIstrncmp;
4490       if (FnInfo->isStr("strncasecmp"))
4491         return Builtin::BIstrncasecmp;
4492       if (FnInfo->isStr("strncat"))
4493         return Builtin::BIstrncat;
4494       if (FnInfo->isStr("strndup"))
4495         return Builtin::BIstrndup;
4496       if (FnInfo->isStr("strlen"))
4497         return Builtin::BIstrlen;
4498       if (FnInfo->isStr("bzero"))
4499         return Builtin::BIbzero;
4500       if (FnInfo->isStr("bcopy"))
4501         return Builtin::BIbcopy;
4502     } else if (isInStdNamespace()) {
4503       if (FnInfo->isStr("free"))
4504         return Builtin::BIfree;
4505     }
4506     break;
4507   }
4508   return 0;
4509 }
4510 
4511 unsigned FunctionDecl::getODRHash() const {
4512   assert(hasODRHash());
4513   return ODRHash;
4514 }
4515 
4516 unsigned FunctionDecl::getODRHash() {
4517   if (hasODRHash())
4518     return ODRHash;
4519 
4520   if (auto *FT = getInstantiatedFromMemberFunction()) {
4521     setHasODRHash(true);
4522     ODRHash = FT->getODRHash();
4523     return ODRHash;
4524   }
4525 
4526   class ODRHash Hash;
4527   Hash.AddFunctionDecl(this);
4528   setHasODRHash(true);
4529   ODRHash = Hash.CalculateHash();
4530   return ODRHash;
4531 }
4532 
4533 //===----------------------------------------------------------------------===//
4534 // FieldDecl Implementation
4535 //===----------------------------------------------------------------------===//
4536 
4537 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4538                              SourceLocation StartLoc, SourceLocation IdLoc,
4539                              const IdentifierInfo *Id, QualType T,
4540                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4541                              InClassInitStyle InitStyle) {
4542   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4543                                BW, Mutable, InitStyle);
4544 }
4545 
4546 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
4547   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4548                                SourceLocation(), nullptr, QualType(), nullptr,
4549                                nullptr, false, ICIS_NoInit);
4550 }
4551 
4552 bool FieldDecl::isAnonymousStructOrUnion() const {
4553   if (!isImplicit() || getDeclName())
4554     return false;
4555 
4556   if (const auto *Record = getType()->getAs<RecordType>())
4557     return Record->getDecl()->isAnonymousStructOrUnion();
4558 
4559   return false;
4560 }
4561 
4562 Expr *FieldDecl::getInClassInitializer() const {
4563   if (!hasInClassInitializer())
4564     return nullptr;
4565 
4566   LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init;
4567   return cast_if_present<Expr>(
4568       InitPtr.isOffset() ? InitPtr.get(getASTContext().getExternalSource())
4569                          : InitPtr.get(nullptr));
4570 }
4571 
4572 void FieldDecl::setInClassInitializer(Expr *NewInit) {
4573   setLazyInClassInitializer(LazyDeclStmtPtr(NewInit));
4574 }
4575 
4576 void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) {
4577   assert(hasInClassInitializer() && !getInClassInitializer());
4578   if (BitField)
4579     InitAndBitWidth->Init = NewInit;
4580   else
4581     Init = NewInit;
4582 }
4583 
4584 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4585   assert(isBitField() && "not a bitfield");
4586   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4587 }
4588 
4589 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4590   return isUnnamedBitField() && !getBitWidth()->isValueDependent() &&
4591          getBitWidthValue(Ctx) == 0;
4592 }
4593 
4594 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4595   if (isZeroLengthBitField(Ctx))
4596     return true;
4597 
4598   // C++2a [intro.object]p7:
4599   //   An object has nonzero size if it
4600   //     -- is not a potentially-overlapping subobject, or
4601   if (!hasAttr<NoUniqueAddressAttr>())
4602     return false;
4603 
4604   //     -- is not of class type, or
4605   const auto *RT = getType()->getAs<RecordType>();
4606   if (!RT)
4607     return false;
4608   const RecordDecl *RD = RT->getDecl()->getDefinition();
4609   if (!RD) {
4610     assert(isInvalidDecl() && "valid field has incomplete type");
4611     return false;
4612   }
4613 
4614   //     -- [has] virtual member functions or virtual base classes, or
4615   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4616   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4617   if (!CXXRD->isEmpty())
4618     return false;
4619 
4620   // Otherwise, [...] the circumstances under which the object has zero size
4621   // are implementation-defined.
4622   if (!Ctx.getTargetInfo().getCXXABI().isMicrosoft())
4623     return true;
4624 
4625   // MS ABI: has nonzero size if it is a class type with class type fields,
4626   // whether or not they have nonzero size
4627   return !llvm::any_of(CXXRD->fields(), [](const FieldDecl *Field) {
4628     return Field->getType()->getAs<RecordType>();
4629   });
4630 }
4631 
4632 bool FieldDecl::isPotentiallyOverlapping() const {
4633   return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4634 }
4635 
4636 unsigned FieldDecl::getFieldIndex() const {
4637   const FieldDecl *Canonical = getCanonicalDecl();
4638   if (Canonical != this)
4639     return Canonical->getFieldIndex();
4640 
4641   if (CachedFieldIndex) return CachedFieldIndex - 1;
4642 
4643   unsigned Index = 0;
4644   const RecordDecl *RD = getParent()->getDefinition();
4645   assert(RD && "requested index for field of struct with no definition");
4646 
4647   for (auto *Field : RD->fields()) {
4648     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4649     assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 &&
4650            "overflow in field numbering");
4651     ++Index;
4652   }
4653 
4654   assert(CachedFieldIndex && "failed to find field in parent");
4655   return CachedFieldIndex - 1;
4656 }
4657 
4658 SourceRange FieldDecl::getSourceRange() const {
4659   const Expr *FinalExpr = getInClassInitializer();
4660   if (!FinalExpr)
4661     FinalExpr = getBitWidth();
4662   if (FinalExpr)
4663     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4664   return DeclaratorDecl::getSourceRange();
4665 }
4666 
4667 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4668   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4669          "capturing type in non-lambda or captured record.");
4670   assert(StorageKind == ISK_NoInit && !BitField &&
4671          "bit-field or field with default member initializer cannot capture "
4672          "VLA type");
4673   StorageKind = ISK_CapturedVLAType;
4674   CapturedVLAType = VLAType;
4675 }
4676 
4677 void FieldDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4678   // Print unnamed members using name of their type.
4679   if (isAnonymousStructOrUnion()) {
4680     this->getType().print(OS, Policy);
4681     return;
4682   }
4683   // Otherwise, do the normal printing.
4684   DeclaratorDecl::printName(OS, Policy);
4685 }
4686 
4687 //===----------------------------------------------------------------------===//
4688 // TagDecl Implementation
4689 //===----------------------------------------------------------------------===//
4690 
4691 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4692                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4693                  SourceLocation StartL)
4694     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4695       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4696   assert((DK != Enum || TK == TagTypeKind::Enum) &&
4697          "EnumDecl not matched with TagTypeKind::Enum");
4698   setPreviousDecl(PrevDecl);
4699   setTagKind(TK);
4700   setCompleteDefinition(false);
4701   setBeingDefined(false);
4702   setEmbeddedInDeclarator(false);
4703   setFreeStanding(false);
4704   setCompleteDefinitionRequired(false);
4705   TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4706 }
4707 
4708 SourceLocation TagDecl::getOuterLocStart() const {
4709   return getTemplateOrInnerLocStart(this);
4710 }
4711 
4712 SourceRange TagDecl::getSourceRange() const {
4713   SourceLocation RBraceLoc = BraceRange.getEnd();
4714   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4715   return SourceRange(getOuterLocStart(), E);
4716 }
4717 
4718 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4719 
4720 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4721   TypedefNameDeclOrQualifier = TDD;
4722   if (const Type *T = getTypeForDecl()) {
4723     (void)T;
4724     assert(T->isLinkageValid());
4725   }
4726   assert(isLinkageValid());
4727 }
4728 
4729 void TagDecl::startDefinition() {
4730   setBeingDefined(true);
4731 
4732   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4733     struct CXXRecordDecl::DefinitionData *Data =
4734       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4735     for (auto *I : redecls())
4736       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4737   }
4738 }
4739 
4740 void TagDecl::completeDefinition() {
4741   assert((!isa<CXXRecordDecl>(this) ||
4742           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4743          "definition completed but not started");
4744 
4745   setCompleteDefinition(true);
4746   setBeingDefined(false);
4747 
4748   if (ASTMutationListener *L = getASTMutationListener())
4749     L->CompletedTagDefinition(this);
4750 }
4751 
4752 TagDecl *TagDecl::getDefinition() const {
4753   if (isCompleteDefinition())
4754     return const_cast<TagDecl *>(this);
4755 
4756   // If it's possible for us to have an out-of-date definition, check now.
4757   if (mayHaveOutOfDateDef()) {
4758     if (IdentifierInfo *II = getIdentifier()) {
4759       if (II->isOutOfDate()) {
4760         updateOutOfDate(*II);
4761       }
4762     }
4763   }
4764 
4765   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4766     return CXXRD->getDefinition();
4767 
4768   for (auto *R : redecls())
4769     if (R->isCompleteDefinition())
4770       return R;
4771 
4772   return nullptr;
4773 }
4774 
4775 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4776   if (QualifierLoc) {
4777     // Make sure the extended qualifier info is allocated.
4778     if (!hasExtInfo())
4779       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4780     // Set qualifier info.
4781     getExtInfo()->QualifierLoc = QualifierLoc;
4782   } else {
4783     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4784     if (hasExtInfo()) {
4785       if (getExtInfo()->NumTemplParamLists == 0) {
4786         getASTContext().Deallocate(getExtInfo());
4787         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4788       }
4789       else
4790         getExtInfo()->QualifierLoc = QualifierLoc;
4791     }
4792   }
4793 }
4794 
4795 void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4796   DeclarationName Name = getDeclName();
4797   // If the name is supposed to have an identifier but does not have one, then
4798   // the tag is anonymous and we should print it differently.
4799   if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4800     // If the caller wanted to print a qualified name, they've already printed
4801     // the scope. And if the caller doesn't want that, the scope information
4802     // is already printed as part of the type.
4803     PrintingPolicy Copy(Policy);
4804     Copy.SuppressScope = true;
4805     getASTContext().getTagDeclType(this).print(OS, Copy);
4806     return;
4807   }
4808   // Otherwise, do the normal printing.
4809   Name.print(OS, Policy);
4810 }
4811 
4812 void TagDecl::setTemplateParameterListsInfo(
4813     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4814   assert(!TPLists.empty());
4815   // Make sure the extended decl info is allocated.
4816   if (!hasExtInfo())
4817     // Allocate external info struct.
4818     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4819   // Set the template parameter lists info.
4820   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4821 }
4822 
4823 //===----------------------------------------------------------------------===//
4824 // EnumDecl Implementation
4825 //===----------------------------------------------------------------------===//
4826 
4827 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4828                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4829                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4830     : TagDecl(Enum, TagTypeKind::Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4831   assert(Scoped || !ScopedUsingClassTag);
4832   IntegerType = nullptr;
4833   setNumPositiveBits(0);
4834   setNumNegativeBits(0);
4835   setScoped(Scoped);
4836   setScopedUsingClassTag(ScopedUsingClassTag);
4837   setFixed(Fixed);
4838   setHasODRHash(false);
4839   ODRHash = 0;
4840 }
4841 
4842 void EnumDecl::anchor() {}
4843 
4844 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4845                            SourceLocation StartLoc, SourceLocation IdLoc,
4846                            IdentifierInfo *Id,
4847                            EnumDecl *PrevDecl, bool IsScoped,
4848                            bool IsScopedUsingClassTag, bool IsFixed) {
4849   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4850                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4851   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4852   C.getTypeDeclType(Enum, PrevDecl);
4853   return Enum;
4854 }
4855 
4856 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
4857   EnumDecl *Enum =
4858       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4859                            nullptr, nullptr, false, false, false);
4860   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4861   return Enum;
4862 }
4863 
4864 SourceRange EnumDecl::getIntegerTypeRange() const {
4865   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4866     return TI->getTypeLoc().getSourceRange();
4867   return SourceRange();
4868 }
4869 
4870 void EnumDecl::completeDefinition(QualType NewType,
4871                                   QualType NewPromotionType,
4872                                   unsigned NumPositiveBits,
4873                                   unsigned NumNegativeBits) {
4874   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4875   if (!IntegerType)
4876     IntegerType = NewType.getTypePtr();
4877   PromotionType = NewPromotionType;
4878   setNumPositiveBits(NumPositiveBits);
4879   setNumNegativeBits(NumNegativeBits);
4880   TagDecl::completeDefinition();
4881 }
4882 
4883 bool EnumDecl::isClosed() const {
4884   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4885     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4886   return true;
4887 }
4888 
4889 bool EnumDecl::isClosedFlag() const {
4890   return isClosed() && hasAttr<FlagEnumAttr>();
4891 }
4892 
4893 bool EnumDecl::isClosedNonFlag() const {
4894   return isClosed() && !hasAttr<FlagEnumAttr>();
4895 }
4896 
4897 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4898   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4899     return MSI->getTemplateSpecializationKind();
4900 
4901   return TSK_Undeclared;
4902 }
4903 
4904 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4905                                          SourceLocation PointOfInstantiation) {
4906   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4907   assert(MSI && "Not an instantiated member enumeration?");
4908   MSI->setTemplateSpecializationKind(TSK);
4909   if (TSK != TSK_ExplicitSpecialization &&
4910       PointOfInstantiation.isValid() &&
4911       MSI->getPointOfInstantiation().isInvalid())
4912     MSI->setPointOfInstantiation(PointOfInstantiation);
4913 }
4914 
4915 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4916   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4917     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4918       EnumDecl *ED = getInstantiatedFromMemberEnum();
4919       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4920         ED = NewED;
4921       return getDefinitionOrSelf(ED);
4922     }
4923   }
4924 
4925   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4926          "couldn't find pattern for enum instantiation");
4927   return nullptr;
4928 }
4929 
4930 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4931   if (SpecializationInfo)
4932     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4933 
4934   return nullptr;
4935 }
4936 
4937 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4938                                             TemplateSpecializationKind TSK) {
4939   assert(!SpecializationInfo && "Member enum is already a specialization");
4940   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4941 }
4942 
4943 unsigned EnumDecl::getODRHash() {
4944   if (hasODRHash())
4945     return ODRHash;
4946 
4947   class ODRHash Hash;
4948   Hash.AddEnumDecl(this);
4949   setHasODRHash(true);
4950   ODRHash = Hash.CalculateHash();
4951   return ODRHash;
4952 }
4953 
4954 SourceRange EnumDecl::getSourceRange() const {
4955   auto Res = TagDecl::getSourceRange();
4956   // Set end-point to enum-base, e.g. enum foo : ^bar
4957   if (auto *TSI = getIntegerTypeSourceInfo()) {
4958     // TagDecl doesn't know about the enum base.
4959     if (!getBraceRange().getEnd().isValid())
4960       Res.setEnd(TSI->getTypeLoc().getEndLoc());
4961   }
4962   return Res;
4963 }
4964 
4965 void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4966   unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4967   unsigned NumNegativeBits = getNumNegativeBits();
4968   unsigned NumPositiveBits = getNumPositiveBits();
4969 
4970   if (NumNegativeBits) {
4971     unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
4972     Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
4973     Min = -Max;
4974   } else {
4975     Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
4976     Min = llvm::APInt::getZero(Bitwidth);
4977   }
4978 }
4979 
4980 //===----------------------------------------------------------------------===//
4981 // RecordDecl Implementation
4982 //===----------------------------------------------------------------------===//
4983 
4984 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4985                        DeclContext *DC, SourceLocation StartLoc,
4986                        SourceLocation IdLoc, IdentifierInfo *Id,
4987                        RecordDecl *PrevDecl)
4988     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4989   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4990   setHasFlexibleArrayMember(false);
4991   setAnonymousStructOrUnion(false);
4992   setHasObjectMember(false);
4993   setHasVolatileMember(false);
4994   setHasLoadedFieldsFromExternalStorage(false);
4995   setNonTrivialToPrimitiveDefaultInitialize(false);
4996   setNonTrivialToPrimitiveCopy(false);
4997   setNonTrivialToPrimitiveDestroy(false);
4998   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4999   setHasNonTrivialToPrimitiveDestructCUnion(false);
5000   setHasNonTrivialToPrimitiveCopyCUnion(false);
5001   setParamDestroyedInCallee(false);
5002   setArgPassingRestrictions(RecordArgPassingKind::CanPassInRegs);
5003   setIsRandomized(false);
5004   setODRHash(0);
5005 }
5006 
5007 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
5008                                SourceLocation StartLoc, SourceLocation IdLoc,
5009                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
5010   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
5011                                          StartLoc, IdLoc, Id, PrevDecl);
5012   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5013 
5014   C.getTypeDeclType(R, PrevDecl);
5015   return R;
5016 }
5017 
5018 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C,
5019                                            GlobalDeclID ID) {
5020   RecordDecl *R = new (C, ID)
5021       RecordDecl(Record, TagTypeKind::Struct, C, nullptr, SourceLocation(),
5022                  SourceLocation(), nullptr, nullptr);
5023   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5024   return R;
5025 }
5026 
5027 bool RecordDecl::isInjectedClassName() const {
5028   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
5029     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
5030 }
5031 
5032 bool RecordDecl::isLambda() const {
5033   if (auto RD = dyn_cast<CXXRecordDecl>(this))
5034     return RD->isLambda();
5035   return false;
5036 }
5037 
5038 bool RecordDecl::isCapturedRecord() const {
5039   return hasAttr<CapturedRecordAttr>();
5040 }
5041 
5042 void RecordDecl::setCapturedRecord() {
5043   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
5044 }
5045 
5046 bool RecordDecl::isOrContainsUnion() const {
5047   if (isUnion())
5048     return true;
5049 
5050   if (const RecordDecl *Def = getDefinition()) {
5051     for (const FieldDecl *FD : Def->fields()) {
5052       const RecordType *RT = FD->getType()->getAs<RecordType>();
5053       if (RT && RT->getDecl()->isOrContainsUnion())
5054         return true;
5055     }
5056   }
5057 
5058   return false;
5059 }
5060 
5061 RecordDecl::field_iterator RecordDecl::field_begin() const {
5062   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
5063     LoadFieldsFromExternalStorage();
5064   // This is necessary for correctness for C++ with modules.
5065   // FIXME: Come up with a test case that breaks without definition.
5066   if (RecordDecl *D = getDefinition(); D && D != this)
5067     return D->field_begin();
5068   return field_iterator(decl_iterator(FirstDecl));
5069 }
5070 
5071 /// completeDefinition - Notes that the definition of this type is now
5072 /// complete.
5073 void RecordDecl::completeDefinition() {
5074   assert(!isCompleteDefinition() && "Cannot redefine record!");
5075   TagDecl::completeDefinition();
5076 
5077   ASTContext &Ctx = getASTContext();
5078 
5079   // Layouts are dumped when computed, so if we are dumping for all complete
5080   // types, we need to force usage to get types that wouldn't be used elsewhere.
5081   //
5082   // If the type is dependent, then we can't compute its layout because there
5083   // is no way for us to know the size or alignment of a dependent type. Also
5084   // ignore declarations marked as invalid since 'getASTRecordLayout()' asserts
5085   // on that.
5086   if (Ctx.getLangOpts().DumpRecordLayoutsComplete && !isDependentType() &&
5087       !isInvalidDecl())
5088     (void)Ctx.getASTRecordLayout(this);
5089 }
5090 
5091 /// isMsStruct - Get whether or not this record uses ms_struct layout.
5092 /// This which can be turned on with an attribute, pragma, or the
5093 /// -mms-bitfields command-line option.
5094 bool RecordDecl::isMsStruct(const ASTContext &C) const {
5095   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
5096 }
5097 
5098 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
5099   std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
5100   LastDecl->NextInContextAndBits.setPointer(nullptr);
5101   setIsRandomized(true);
5102 }
5103 
5104 void RecordDecl::LoadFieldsFromExternalStorage() const {
5105   ExternalASTSource *Source = getASTContext().getExternalSource();
5106   assert(hasExternalLexicalStorage() && Source && "No external storage?");
5107 
5108   // Notify that we have a RecordDecl doing some initialization.
5109   ExternalASTSource::Deserializing TheFields(Source);
5110 
5111   SmallVector<Decl*, 64> Decls;
5112   setHasLoadedFieldsFromExternalStorage(true);
5113   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
5114     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
5115   }, Decls);
5116 
5117 #ifndef NDEBUG
5118   // Check that all decls we got were FieldDecls.
5119   for (unsigned i=0, e=Decls.size(); i != e; ++i)
5120     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
5121 #endif
5122 
5123   if (Decls.empty())
5124     return;
5125 
5126   auto [ExternalFirst, ExternalLast] =
5127       BuildDeclChain(Decls,
5128                      /*FieldsAlreadyLoaded=*/false);
5129   ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
5130   FirstDecl = ExternalFirst;
5131   if (!LastDecl)
5132     LastDecl = ExternalLast;
5133 }
5134 
5135 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
5136   ASTContext &Context = getASTContext();
5137   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
5138       (SanitizerKind::Address | SanitizerKind::KernelAddress);
5139   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
5140     return false;
5141   const auto &NoSanitizeList = Context.getNoSanitizeList();
5142   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
5143   // We may be able to relax some of these requirements.
5144   int ReasonToReject = -1;
5145   if (!CXXRD || CXXRD->isExternCContext())
5146     ReasonToReject = 0;  // is not C++.
5147   else if (CXXRD->hasAttr<PackedAttr>())
5148     ReasonToReject = 1;  // is packed.
5149   else if (CXXRD->isUnion())
5150     ReasonToReject = 2;  // is a union.
5151   else if (CXXRD->isTriviallyCopyable())
5152     ReasonToReject = 3;  // is trivially copyable.
5153   else if (CXXRD->hasTrivialDestructor())
5154     ReasonToReject = 4;  // has trivial destructor.
5155   else if (CXXRD->isStandardLayout())
5156     ReasonToReject = 5;  // is standard layout.
5157   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
5158                                            "field-padding"))
5159     ReasonToReject = 6;  // is in an excluded file.
5160   else if (NoSanitizeList.containsType(
5161                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
5162     ReasonToReject = 7;  // The type is excluded.
5163 
5164   if (EmitRemark) {
5165     if (ReasonToReject >= 0)
5166       Context.getDiagnostics().Report(
5167           getLocation(),
5168           diag::remark_sanitize_address_insert_extra_padding_rejected)
5169           << getQualifiedNameAsString() << ReasonToReject;
5170     else
5171       Context.getDiagnostics().Report(
5172           getLocation(),
5173           diag::remark_sanitize_address_insert_extra_padding_accepted)
5174           << getQualifiedNameAsString();
5175   }
5176   return ReasonToReject < 0;
5177 }
5178 
5179 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
5180   for (const auto *I : fields()) {
5181     if (I->getIdentifier())
5182       return I;
5183 
5184     if (const auto *RT = I->getType()->getAs<RecordType>())
5185       if (const FieldDecl *NamedDataMember =
5186               RT->getDecl()->findFirstNamedDataMember())
5187         return NamedDataMember;
5188   }
5189 
5190   // We didn't find a named data member.
5191   return nullptr;
5192 }
5193 
5194 unsigned RecordDecl::getODRHash() {
5195   if (hasODRHash())
5196     return RecordDeclBits.ODRHash;
5197 
5198   // Only calculate hash on first call of getODRHash per record.
5199   ODRHash Hash;
5200   Hash.AddRecordDecl(this);
5201   // For RecordDecl the ODRHash is stored in the remaining 26
5202   // bit of RecordDeclBits, adjust the hash to accomodate.
5203   setODRHash(Hash.CalculateHash() >> 6);
5204   return RecordDeclBits.ODRHash;
5205 }
5206 
5207 //===----------------------------------------------------------------------===//
5208 // BlockDecl Implementation
5209 //===----------------------------------------------------------------------===//
5210 
5211 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
5212     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
5213   setIsVariadic(false);
5214   setCapturesCXXThis(false);
5215   setBlockMissingReturnType(true);
5216   setIsConversionFromLambda(false);
5217   setDoesNotEscape(false);
5218   setCanAvoidCopyToHeap(false);
5219 }
5220 
5221 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
5222   assert(!ParamInfo && "Already has param info!");
5223 
5224   // Zero params -> null pointer.
5225   if (!NewParamInfo.empty()) {
5226     NumParams = NewParamInfo.size();
5227     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
5228     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
5229   }
5230 }
5231 
5232 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
5233                             bool CapturesCXXThis) {
5234   this->setCapturesCXXThis(CapturesCXXThis);
5235   this->NumCaptures = Captures.size();
5236 
5237   if (Captures.empty()) {
5238     this->Captures = nullptr;
5239     return;
5240   }
5241 
5242   this->Captures = Captures.copy(Context).data();
5243 }
5244 
5245 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
5246   for (const auto &I : captures())
5247     // Only auto vars can be captured, so no redeclaration worries.
5248     if (I.getVariable() == variable)
5249       return true;
5250 
5251   return false;
5252 }
5253 
5254 SourceRange BlockDecl::getSourceRange() const {
5255   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
5256 }
5257 
5258 //===----------------------------------------------------------------------===//
5259 // Other Decl Allocation/Deallocation Method Implementations
5260 //===----------------------------------------------------------------------===//
5261 
5262 void TranslationUnitDecl::anchor() {}
5263 
5264 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
5265   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
5266 }
5267 
5268 void TranslationUnitDecl::setAnonymousNamespace(NamespaceDecl *D) {
5269   AnonymousNamespace = D;
5270 
5271   if (ASTMutationListener *Listener = Ctx.getASTMutationListener())
5272     Listener->AddedAnonymousNamespace(this, D);
5273 }
5274 
5275 void PragmaCommentDecl::anchor() {}
5276 
5277 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
5278                                              TranslationUnitDecl *DC,
5279                                              SourceLocation CommentLoc,
5280                                              PragmaMSCommentKind CommentKind,
5281                                              StringRef Arg) {
5282   PragmaCommentDecl *PCD =
5283       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
5284           PragmaCommentDecl(DC, CommentLoc, CommentKind);
5285   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
5286   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
5287   return PCD;
5288 }
5289 
5290 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
5291                                                          GlobalDeclID ID,
5292                                                          unsigned ArgSize) {
5293   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
5294       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
5295 }
5296 
5297 void PragmaDetectMismatchDecl::anchor() {}
5298 
5299 PragmaDetectMismatchDecl *
5300 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
5301                                  SourceLocation Loc, StringRef Name,
5302                                  StringRef Value) {
5303   size_t ValueStart = Name.size() + 1;
5304   PragmaDetectMismatchDecl *PDMD =
5305       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
5306           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
5307   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
5308   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
5309   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
5310          Value.size());
5311   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
5312   return PDMD;
5313 }
5314 
5315 PragmaDetectMismatchDecl *
5316 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5317                                              unsigned NameValueSize) {
5318   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
5319       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
5320 }
5321 
5322 void ExternCContextDecl::anchor() {}
5323 
5324 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
5325                                                TranslationUnitDecl *DC) {
5326   return new (C, DC) ExternCContextDecl(DC);
5327 }
5328 
5329 void LabelDecl::anchor() {}
5330 
5331 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5332                              SourceLocation IdentL, IdentifierInfo *II) {
5333   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5334 }
5335 
5336 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5337                              SourceLocation IdentL, IdentifierInfo *II,
5338                              SourceLocation GnuLabelL) {
5339   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
5340   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5341 }
5342 
5343 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5344   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5345                                SourceLocation());
5346 }
5347 
5348 void LabelDecl::setMSAsmLabel(StringRef Name) {
5349 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5350   memcpy(Buffer, Name.data(), Name.size());
5351   Buffer[Name.size()] = '\0';
5352   MSAsmName = Buffer;
5353 }
5354 
5355 void ValueDecl::anchor() {}
5356 
5357 bool ValueDecl::isWeak() const {
5358   auto *MostRecent = getMostRecentDecl();
5359   return MostRecent->hasAttr<WeakAttr>() ||
5360          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5361 }
5362 
5363 bool ValueDecl::isInitCapture() const {
5364   if (auto *Var = llvm::dyn_cast<VarDecl>(this))
5365     return Var->isInitCapture();
5366   return false;
5367 }
5368 
5369 void ImplicitParamDecl::anchor() {}
5370 
5371 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
5372                                              SourceLocation IdLoc,
5373                                              IdentifierInfo *Id, QualType Type,
5374                                              ImplicitParamKind ParamKind) {
5375   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5376 }
5377 
5378 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
5379                                              ImplicitParamKind ParamKind) {
5380   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5381 }
5382 
5383 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
5384                                                          GlobalDeclID ID) {
5385   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
5386 }
5387 
5388 FunctionDecl *
5389 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
5390                      const DeclarationNameInfo &NameInfo, QualType T,
5391                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5392                      bool isInlineSpecified, bool hasWrittenPrototype,
5393                      ConstexprSpecKind ConstexprKind,
5394                      Expr *TrailingRequiresClause) {
5395   FunctionDecl *New = new (C, DC) FunctionDecl(
5396       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5397       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5398   New->setHasWrittenPrototype(hasWrittenPrototype);
5399   return New;
5400 }
5401 
5402 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5403   return new (C, ID) FunctionDecl(
5404       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
5405       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
5406 }
5407 
5408 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5409   return new (C, DC) BlockDecl(DC, L);
5410 }
5411 
5412 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5413   return new (C, ID) BlockDecl(nullptr, SourceLocation());
5414 }
5415 
5416 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5417     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5418       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5419 
5420 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5421                                    unsigned NumParams) {
5422   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5423       CapturedDecl(DC, NumParams);
5424 }
5425 
5426 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5427                                                unsigned NumParams) {
5428   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5429       CapturedDecl(nullptr, NumParams);
5430 }
5431 
5432 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5433 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5434 
5435 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5436 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5437 
5438 EnumConstantDecl::EnumConstantDecl(const ASTContext &C, DeclContext *DC,
5439                                    SourceLocation L, IdentifierInfo *Id,
5440                                    QualType T, Expr *E, const llvm::APSInt &V)
5441     : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt *)E) {
5442   setInitVal(C, V);
5443 }
5444 
5445 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5446                                            SourceLocation L,
5447                                            IdentifierInfo *Id, QualType T,
5448                                            Expr *E, const llvm::APSInt &V) {
5449   return new (C, CD) EnumConstantDecl(C, CD, L, Id, T, E, V);
5450 }
5451 
5452 EnumConstantDecl *EnumConstantDecl::CreateDeserialized(ASTContext &C,
5453                                                        GlobalDeclID ID) {
5454   return new (C, ID) EnumConstantDecl(C, nullptr, SourceLocation(), nullptr,
5455                                       QualType(), nullptr, llvm::APSInt());
5456 }
5457 
5458 void IndirectFieldDecl::anchor() {}
5459 
5460 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5461                                      SourceLocation L, DeclarationName N,
5462                                      QualType T,
5463                                      MutableArrayRef<NamedDecl *> CH)
5464     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5465       ChainingSize(CH.size()) {
5466   // In C++, indirect field declarations conflict with tag declarations in the
5467   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5468   if (C.getLangOpts().CPlusPlus)
5469     IdentifierNamespace |= IDNS_Tag;
5470 }
5471 
5472 IndirectFieldDecl *
5473 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5474                           const IdentifierInfo *Id, QualType T,
5475                           llvm::MutableArrayRef<NamedDecl *> CH) {
5476   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5477 }
5478 
5479 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5480                                                          GlobalDeclID ID) {
5481   return new (C, ID)
5482       IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(),
5483                         QualType(), std::nullopt);
5484 }
5485 
5486 SourceRange EnumConstantDecl::getSourceRange() const {
5487   SourceLocation End = getLocation();
5488   if (Init)
5489     End = Init->getEndLoc();
5490   return SourceRange(getLocation(), End);
5491 }
5492 
5493 void TypeDecl::anchor() {}
5494 
5495 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5496                                  SourceLocation StartLoc, SourceLocation IdLoc,
5497                                  const IdentifierInfo *Id,
5498                                  TypeSourceInfo *TInfo) {
5499   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5500 }
5501 
5502 void TypedefNameDecl::anchor() {}
5503 
5504 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5505   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5506     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5507     auto *ThisTypedef = this;
5508     if (AnyRedecl && OwningTypedef) {
5509       OwningTypedef = OwningTypedef->getCanonicalDecl();
5510       ThisTypedef = ThisTypedef->getCanonicalDecl();
5511     }
5512     if (OwningTypedef == ThisTypedef)
5513       return TT->getDecl();
5514   }
5515 
5516   return nullptr;
5517 }
5518 
5519 bool TypedefNameDecl::isTransparentTagSlow() const {
5520   auto determineIsTransparent = [&]() {
5521     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5522       if (auto *TD = TT->getDecl()) {
5523         if (TD->getName() != getName())
5524           return false;
5525         SourceLocation TTLoc = getLocation();
5526         SourceLocation TDLoc = TD->getLocation();
5527         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5528           return false;
5529         SourceManager &SM = getASTContext().getSourceManager();
5530         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5531       }
5532     }
5533     return false;
5534   };
5535 
5536   bool isTransparent = determineIsTransparent();
5537   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5538   return isTransparent;
5539 }
5540 
5541 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5542   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5543                                  nullptr, nullptr);
5544 }
5545 
5546 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5547                                      SourceLocation StartLoc,
5548                                      SourceLocation IdLoc,
5549                                      const IdentifierInfo *Id,
5550                                      TypeSourceInfo *TInfo) {
5551   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5552 }
5553 
5554 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C,
5555                                                  GlobalDeclID ID) {
5556   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5557                                    SourceLocation(), nullptr, nullptr);
5558 }
5559 
5560 SourceRange TypedefDecl::getSourceRange() const {
5561   SourceLocation RangeEnd = getLocation();
5562   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5563     if (typeIsPostfix(TInfo->getType()))
5564       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5565   }
5566   return SourceRange(getBeginLoc(), RangeEnd);
5567 }
5568 
5569 SourceRange TypeAliasDecl::getSourceRange() const {
5570   SourceLocation RangeEnd = getBeginLoc();
5571   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5572     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5573   return SourceRange(getBeginLoc(), RangeEnd);
5574 }
5575 
5576 void FileScopeAsmDecl::anchor() {}
5577 
5578 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5579                                            StringLiteral *Str,
5580                                            SourceLocation AsmLoc,
5581                                            SourceLocation RParenLoc) {
5582   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5583 }
5584 
5585 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5586                                                        GlobalDeclID ID) {
5587   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5588                                       SourceLocation());
5589 }
5590 
5591 void TopLevelStmtDecl::anchor() {}
5592 
5593 TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) {
5594   assert(C.getLangOpts().IncrementalExtensions &&
5595          "Must be used only in incremental mode");
5596 
5597   SourceLocation Loc = Statement ? Statement->getBeginLoc() : SourceLocation();
5598   DeclContext *DC = C.getTranslationUnitDecl();
5599 
5600   return new (C, DC) TopLevelStmtDecl(DC, Loc, Statement);
5601 }
5602 
5603 TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C,
5604                                                        GlobalDeclID ID) {
5605   return new (C, ID)
5606       TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5607 }
5608 
5609 SourceRange TopLevelStmtDecl::getSourceRange() const {
5610   return SourceRange(getLocation(), Statement->getEndLoc());
5611 }
5612 
5613 void TopLevelStmtDecl::setStmt(Stmt *S) {
5614   assert(S);
5615   Statement = S;
5616   setLocation(Statement->getBeginLoc());
5617 }
5618 
5619 void EmptyDecl::anchor() {}
5620 
5621 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5622   return new (C, DC) EmptyDecl(DC, L);
5623 }
5624 
5625 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5626   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5627 }
5628 
5629 HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5630                                SourceLocation KwLoc, IdentifierInfo *ID,
5631                                SourceLocation IDLoc, SourceLocation LBrace)
5632     : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5633       DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5634       IsCBuffer(CBuffer) {}
5635 
5636 HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C,
5637                                        DeclContext *LexicalParent, bool CBuffer,
5638                                        SourceLocation KwLoc, IdentifierInfo *ID,
5639                                        SourceLocation IDLoc,
5640                                        SourceLocation LBrace) {
5641   // For hlsl like this
5642   // cbuffer A {
5643   //     cbuffer B {
5644   //     }
5645   // }
5646   // compiler should treat it as
5647   // cbuffer A {
5648   // }
5649   // cbuffer B {
5650   // }
5651   // FIXME: support nested buffers if required for back-compat.
5652   DeclContext *DC = LexicalParent;
5653   HLSLBufferDecl *Result =
5654       new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5655   return Result;
5656 }
5657 
5658 HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C,
5659                                                    GlobalDeclID ID) {
5660   return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5661                                     SourceLocation(), SourceLocation());
5662 }
5663 
5664 //===----------------------------------------------------------------------===//
5665 // ImportDecl Implementation
5666 //===----------------------------------------------------------------------===//
5667 
5668 /// Retrieve the number of module identifiers needed to name the given
5669 /// module.
5670 static unsigned getNumModuleIdentifiers(Module *Mod) {
5671   unsigned Result = 1;
5672   while (Mod->Parent) {
5673     Mod = Mod->Parent;
5674     ++Result;
5675   }
5676   return Result;
5677 }
5678 
5679 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5680                        Module *Imported,
5681                        ArrayRef<SourceLocation> IdentifierLocs)
5682     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5683       NextLocalImportAndComplete(nullptr, true) {
5684   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5685   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5686   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5687                           StoredLocs);
5688 }
5689 
5690 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5691                        Module *Imported, SourceLocation EndLoc)
5692     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5693       NextLocalImportAndComplete(nullptr, false) {
5694   *getTrailingObjects<SourceLocation>() = EndLoc;
5695 }
5696 
5697 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5698                                SourceLocation StartLoc, Module *Imported,
5699                                ArrayRef<SourceLocation> IdentifierLocs) {
5700   return new (C, DC,
5701               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5702       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5703 }
5704 
5705 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5706                                        SourceLocation StartLoc,
5707                                        Module *Imported,
5708                                        SourceLocation EndLoc) {
5709   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5710       ImportDecl(DC, StartLoc, Imported, EndLoc);
5711   Import->setImplicit();
5712   return Import;
5713 }
5714 
5715 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5716                                            unsigned NumLocations) {
5717   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5718       ImportDecl(EmptyShell());
5719 }
5720 
5721 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5722   if (!isImportComplete())
5723     return std::nullopt;
5724 
5725   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5726   return llvm::ArrayRef(StoredLocs,
5727                         getNumModuleIdentifiers(getImportedModule()));
5728 }
5729 
5730 SourceRange ImportDecl::getSourceRange() const {
5731   if (!isImportComplete())
5732     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5733 
5734   return SourceRange(getLocation(), getIdentifierLocs().back());
5735 }
5736 
5737 //===----------------------------------------------------------------------===//
5738 // ExportDecl Implementation
5739 //===----------------------------------------------------------------------===//
5740 
5741 void ExportDecl::anchor() {}
5742 
5743 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5744                                SourceLocation ExportLoc) {
5745   return new (C, DC) ExportDecl(DC, ExportLoc);
5746 }
5747 
5748 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5749   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5750 }
5751 
5752 bool clang::IsArmStreamingFunction(const FunctionDecl *FD,
5753                                    bool IncludeLocallyStreaming) {
5754   if (IncludeLocallyStreaming)
5755     if (FD->hasAttr<ArmLocallyStreamingAttr>())
5756       return true;
5757 
5758   if (const Type *Ty = FD->getType().getTypePtrOrNull())
5759     if (const auto *FPT = Ty->getAs<FunctionProtoType>())
5760       if (FPT->getAArch64SMEAttributes() &
5761           FunctionType::SME_PStateSMEnabledMask)
5762         return true;
5763 
5764   return false;
5765 }
5766