xref: /freebsd/contrib/llvm-project/clang/lib/AST/Decl.cpp (revision 31ba4ce8898f9dfa5e7f054fdbc26e50a599a6e3)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/PartialDiagnostic.h"
45 #include "clang/Basic/SanitizerBlacklist.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 /// Determine whether D is declared in the purview of a named module.
572 static bool isInModulePurview(const NamedDecl *D) {
573   if (auto *M = D->getOwningModule())
574     return M->isModulePurview();
575   return false;
576 }
577 
578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579   // FIXME: Handle isModulePrivate.
580   switch (D->getModuleOwnershipKind()) {
581   case Decl::ModuleOwnershipKind::Unowned:
582   case Decl::ModuleOwnershipKind::ModulePrivate:
583     return false;
584   case Decl::ModuleOwnershipKind::Visible:
585   case Decl::ModuleOwnershipKind::VisibleWhenImported:
586     return isInModulePurview(D);
587   }
588   llvm_unreachable("unexpected module ownership kind");
589 }
590 
591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592   // Internal linkage declarations within a module interface unit are modeled
593   // as "module-internal linkage", which means that they have internal linkage
594   // formally but can be indirectly accessed from outside the module via inline
595   // functions and templates defined within the module.
596   if (isInModulePurview(D))
597     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598 
599   return LinkageInfo::internal();
600 }
601 
602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603   // C++ Modules TS [basic.link]/6.8:
604   //   - A name declared at namespace scope that does not have internal linkage
605   //     by the previous rules and that is introduced by a non-exported
606   //     declaration has module linkage.
607   if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608                                   cast<NamedDecl>(D->getCanonicalDecl())))
609     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610 
611   return LinkageInfo::external();
612 }
613 
614 static StorageClass getStorageClass(const Decl *D) {
615   if (auto *TD = dyn_cast<TemplateDecl>(D))
616     D = TD->getTemplatedDecl();
617   if (D) {
618     if (auto *VD = dyn_cast<VarDecl>(D))
619       return VD->getStorageClass();
620     if (auto *FD = dyn_cast<FunctionDecl>(D))
621       return FD->getStorageClass();
622   }
623   return SC_None;
624 }
625 
626 LinkageInfo
627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628                                             LVComputationKind computation,
629                                             bool IgnoreVarTypeLinkage) {
630   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631          "Not a name having namespace scope");
632   ASTContext &Context = D->getASTContext();
633 
634   // C++ [basic.link]p3:
635   //   A name having namespace scope (3.3.6) has internal linkage if it
636   //   is the name of
637 
638   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639     // - a variable, variable template, function, or function template
640     //   that is explicitly declared static; or
641     // (This bullet corresponds to C99 6.2.2p3.)
642     return getInternalLinkageFor(D);
643   }
644 
645   if (const auto *Var = dyn_cast<VarDecl>(D)) {
646     // - a non-template variable of non-volatile const-qualified type, unless
647     //   - it is explicitly declared extern, or
648     //   - it is inline or exported, or
649     //   - it was previously declared and the prior declaration did not have
650     //     internal linkage
651     // (There is no equivalent in C99.)
652     if (Context.getLangOpts().CPlusPlus &&
653         Var->getType().isConstQualified() &&
654         !Var->getType().isVolatileQualified() &&
655         !Var->isInline() &&
656         !isExportedFromModuleInterfaceUnit(Var) &&
657         !isa<VarTemplateSpecializationDecl>(Var) &&
658         !Var->getDescribedVarTemplate()) {
659       const VarDecl *PrevVar = Var->getPreviousDecl();
660       if (PrevVar)
661         return getLVForDecl(PrevVar, computation);
662 
663       if (Var->getStorageClass() != SC_Extern &&
664           Var->getStorageClass() != SC_PrivateExtern &&
665           !isSingleLineLanguageLinkage(*Var))
666         return getInternalLinkageFor(Var);
667     }
668 
669     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670          PrevVar = PrevVar->getPreviousDecl()) {
671       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672           Var->getStorageClass() == SC_None)
673         return getDeclLinkageAndVisibility(PrevVar);
674       // Explicitly declared static.
675       if (PrevVar->getStorageClass() == SC_Static)
676         return getInternalLinkageFor(Var);
677     }
678   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679     //   - a data member of an anonymous union.
680     const VarDecl *VD = IFD->getVarDecl();
681     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683   }
684   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685 
686   // FIXME: This gives internal linkage to names that should have no linkage
687   // (those not covered by [basic.link]p6).
688   if (D->isInAnonymousNamespace()) {
689     const auto *Var = dyn_cast<VarDecl>(D);
690     const auto *Func = dyn_cast<FunctionDecl>(D);
691     // FIXME: The check for extern "C" here is not justified by the standard
692     // wording, but we retain it from the pre-DR1113 model to avoid breaking
693     // code.
694     //
695     // C++11 [basic.link]p4:
696     //   An unnamed namespace or a namespace declared directly or indirectly
697     //   within an unnamed namespace has internal linkage.
698     if ((!Var || !isFirstInExternCContext(Var)) &&
699         (!Func || !isFirstInExternCContext(Func)))
700       return getInternalLinkageFor(D);
701   }
702 
703   // Set up the defaults.
704 
705   // C99 6.2.2p5:
706   //   If the declaration of an identifier for an object has file
707   //   scope and no storage-class specifier, its linkage is
708   //   external.
709   LinkageInfo LV = getExternalLinkageFor(D);
710 
711   if (!hasExplicitVisibilityAlready(computation)) {
712     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713       LV.mergeVisibility(*Vis, true);
714     } else {
715       // If we're declared in a namespace with a visibility attribute,
716       // use that namespace's visibility, and it still counts as explicit.
717       for (const DeclContext *DC = D->getDeclContext();
718            !isa<TranslationUnitDecl>(DC);
719            DC = DC->getParent()) {
720         const auto *ND = dyn_cast<NamespaceDecl>(DC);
721         if (!ND) continue;
722         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723           LV.mergeVisibility(*Vis, true);
724           break;
725         }
726       }
727     }
728 
729     // Add in global settings if the above didn't give us direct visibility.
730     if (!LV.isVisibilityExplicit()) {
731       // Use global type/value visibility as appropriate.
732       Visibility globalVisibility =
733           computation.isValueVisibility()
734               ? Context.getLangOpts().getValueVisibilityMode()
735               : Context.getLangOpts().getTypeVisibilityMode();
736       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737 
738       // If we're paying attention to global visibility, apply
739       // -finline-visibility-hidden if this is an inline method.
740       if (useInlineVisibilityHidden(D))
741         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742     }
743   }
744 
745   // C++ [basic.link]p4:
746 
747   //   A name having namespace scope that has not been given internal linkage
748   //   above and that is the name of
749   //   [...bullets...]
750   //   has its linkage determined as follows:
751   //     - if the enclosing namespace has internal linkage, the name has
752   //       internal linkage; [handled above]
753   //     - otherwise, if the declaration of the name is attached to a named
754   //       module and is not exported, the name has module linkage;
755   //     - otherwise, the name has external linkage.
756   // LV is currently set up to handle the last two bullets.
757   //
758   //   The bullets are:
759 
760   //     - a variable; or
761   if (const auto *Var = dyn_cast<VarDecl>(D)) {
762     // GCC applies the following optimization to variables and static
763     // data members, but not to functions:
764     //
765     // Modify the variable's LV by the LV of its type unless this is
766     // C or extern "C".  This follows from [basic.link]p9:
767     //   A type without linkage shall not be used as the type of a
768     //   variable or function with external linkage unless
769     //    - the entity has C language linkage, or
770     //    - the entity is declared within an unnamed namespace, or
771     //    - the entity is not used or is defined in the same
772     //      translation unit.
773     // and [basic.link]p10:
774     //   ...the types specified by all declarations referring to a
775     //   given variable or function shall be identical...
776     // C does not have an equivalent rule.
777     //
778     // Ignore this if we've got an explicit attribute;  the user
779     // probably knows what they're doing.
780     //
781     // Note that we don't want to make the variable non-external
782     // because of this, but unique-external linkage suits us.
783     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784         !IgnoreVarTypeLinkage) {
785       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786       if (!isExternallyVisible(TypeLV.getLinkage()))
787         return LinkageInfo::uniqueExternal();
788       if (!LV.isVisibilityExplicit())
789         LV.mergeVisibility(TypeLV);
790     }
791 
792     if (Var->getStorageClass() == SC_PrivateExtern)
793       LV.mergeVisibility(HiddenVisibility, true);
794 
795     // Note that Sema::MergeVarDecl already takes care of implementing
796     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797     // to do it here.
798 
799     // As per function and class template specializations (below),
800     // consider LV for the template and template arguments.  We're at file
801     // scope, so we do not need to worry about nested specializations.
802     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803       mergeTemplateLV(LV, spec, computation);
804     }
805 
806   //     - a function; or
807   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808     // In theory, we can modify the function's LV by the LV of its
809     // type unless it has C linkage (see comment above about variables
810     // for justification).  In practice, GCC doesn't do this, so it's
811     // just too painful to make work.
812 
813     if (Function->getStorageClass() == SC_PrivateExtern)
814       LV.mergeVisibility(HiddenVisibility, true);
815 
816     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817     // merging storage classes and visibility attributes, so we don't have to
818     // look at previous decls in here.
819 
820     // In C++, then if the type of the function uses a type with
821     // unique-external linkage, it's not legally usable from outside
822     // this translation unit.  However, we should use the C linkage
823     // rules instead for extern "C" declarations.
824     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825       // Only look at the type-as-written. Otherwise, deducing the return type
826       // of a function could change its linkage.
827       QualType TypeAsWritten = Function->getType();
828       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829         TypeAsWritten = TSI->getType();
830       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831         return LinkageInfo::uniqueExternal();
832     }
833 
834     // Consider LV from the template and the template arguments.
835     // We're at file scope, so we do not need to worry about nested
836     // specializations.
837     if (FunctionTemplateSpecializationInfo *specInfo
838                                = Function->getTemplateSpecializationInfo()) {
839       mergeTemplateLV(LV, Function, specInfo, computation);
840     }
841 
842   //     - a named class (Clause 9), or an unnamed class defined in a
843   //       typedef declaration in which the class has the typedef name
844   //       for linkage purposes (7.1.3); or
845   //     - a named enumeration (7.2), or an unnamed enumeration
846   //       defined in a typedef declaration in which the enumeration
847   //       has the typedef name for linkage purposes (7.1.3); or
848   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849     // Unnamed tags have no linkage.
850     if (!Tag->hasNameForLinkage())
851       return LinkageInfo::none();
852 
853     // If this is a class template specialization, consider the
854     // linkage of the template and template arguments.  We're at file
855     // scope, so we do not need to worry about nested specializations.
856     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857       mergeTemplateLV(LV, spec, computation);
858     }
859 
860   // FIXME: This is not part of the C++ standard any more.
861   //     - an enumerator belonging to an enumeration with external linkage; or
862   } else if (isa<EnumConstantDecl>(D)) {
863     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864                                       computation);
865     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866       return LinkageInfo::none();
867     LV.merge(EnumLV);
868 
869   //     - a template
870   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872     LinkageInfo tempLV =
873       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875 
876   //     An unnamed namespace or a namespace declared directly or indirectly
877   //     within an unnamed namespace has internal linkage. All other namespaces
878   //     have external linkage.
879   //
880   // We handled names in anonymous namespaces above.
881   } else if (isa<NamespaceDecl>(D)) {
882     return LV;
883 
884   // By extension, we assign external linkage to Objective-C
885   // interfaces.
886   } else if (isa<ObjCInterfaceDecl>(D)) {
887     // fallout
888 
889   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890     // A typedef declaration has linkage if it gives a type a name for
891     // linkage purposes.
892     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893       return LinkageInfo::none();
894 
895   } else if (isa<MSGuidDecl>(D)) {
896     // A GUID behaves like an inline variable with external linkage. Fall
897     // through.
898 
899   // Everything not covered here has no linkage.
900   } else {
901     return LinkageInfo::none();
902   }
903 
904   // If we ended up with non-externally-visible linkage, visibility should
905   // always be default.
906   if (!isExternallyVisible(LV.getLinkage()))
907     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908 
909   // Mark the symbols as hidden when compiling for the device.
910   if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911     LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912 
913   return LV;
914 }
915 
916 LinkageInfo
917 LinkageComputer::getLVForClassMember(const NamedDecl *D,
918                                      LVComputationKind computation,
919                                      bool IgnoreVarTypeLinkage) {
920   // Only certain class members have linkage.  Note that fields don't
921   // really have linkage, but it's convenient to say they do for the
922   // purposes of calculating linkage of pointer-to-data-member
923   // template arguments.
924   //
925   // Templates also don't officially have linkage, but since we ignore
926   // the C++ standard and look at template arguments when determining
927   // linkage and visibility of a template specialization, we might hit
928   // a template template argument that way. If we do, we need to
929   // consider its linkage.
930   if (!(isa<CXXMethodDecl>(D) ||
931         isa<VarDecl>(D) ||
932         isa<FieldDecl>(D) ||
933         isa<IndirectFieldDecl>(D) ||
934         isa<TagDecl>(D) ||
935         isa<TemplateDecl>(D)))
936     return LinkageInfo::none();
937 
938   LinkageInfo LV;
939 
940   // If we have an explicit visibility attribute, merge that in.
941   if (!hasExplicitVisibilityAlready(computation)) {
942     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943       LV.mergeVisibility(*Vis, true);
944     // If we're paying attention to global visibility, apply
945     // -finline-visibility-hidden if this is an inline method.
946     //
947     // Note that we do this before merging information about
948     // the class visibility.
949     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951   }
952 
953   // If this class member has an explicit visibility attribute, the only
954   // thing that can change its visibility is the template arguments, so
955   // only look for them when processing the class.
956   LVComputationKind classComputation = computation;
957   if (LV.isVisibilityExplicit())
958     classComputation = withExplicitVisibilityAlready(computation);
959 
960   LinkageInfo classLV =
961     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962   // The member has the same linkage as the class. If that's not externally
963   // visible, we don't need to compute anything about the linkage.
964   // FIXME: If we're only computing linkage, can we bail out here?
965   if (!isExternallyVisible(classLV.getLinkage()))
966     return classLV;
967 
968 
969   // Otherwise, don't merge in classLV yet, because in certain cases
970   // we need to completely ignore the visibility from it.
971 
972   // Specifically, if this decl exists and has an explicit attribute.
973   const NamedDecl *explicitSpecSuppressor = nullptr;
974 
975   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976     // Only look at the type-as-written. Otherwise, deducing the return type
977     // of a function could change its linkage.
978     QualType TypeAsWritten = MD->getType();
979     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980       TypeAsWritten = TSI->getType();
981     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982       return LinkageInfo::uniqueExternal();
983 
984     // If this is a method template specialization, use the linkage for
985     // the template parameters and arguments.
986     if (FunctionTemplateSpecializationInfo *spec
987            = MD->getTemplateSpecializationInfo()) {
988       mergeTemplateLV(LV, MD, spec, computation);
989       if (spec->isExplicitSpecialization()) {
990         explicitSpecSuppressor = MD;
991       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993       }
994     } else if (isExplicitMemberSpecialization(MD)) {
995       explicitSpecSuppressor = MD;
996     }
997 
998   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000       mergeTemplateLV(LV, spec, computation);
1001       if (spec->isExplicitSpecialization()) {
1002         explicitSpecSuppressor = spec;
1003       } else {
1004         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005         if (isExplicitMemberSpecialization(temp)) {
1006           explicitSpecSuppressor = temp->getTemplatedDecl();
1007         }
1008       }
1009     } else if (isExplicitMemberSpecialization(RD)) {
1010       explicitSpecSuppressor = RD;
1011     }
1012 
1013   // Static data members.
1014   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016       mergeTemplateLV(LV, spec, computation);
1017 
1018     // Modify the variable's linkage by its type, but ignore the
1019     // type's visibility unless it's a definition.
1020     if (!IgnoreVarTypeLinkage) {
1021       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022       // FIXME: If the type's linkage is not externally visible, we can
1023       // give this static data member UniqueExternalLinkage.
1024       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025         LV.mergeVisibility(typeLV);
1026       LV.mergeExternalVisibility(typeLV);
1027     }
1028 
1029     if (isExplicitMemberSpecialization(VD)) {
1030       explicitSpecSuppressor = VD;
1031     }
1032 
1033   // Template members.
1034   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035     bool considerVisibility =
1036       (!LV.isVisibilityExplicit() &&
1037        !classLV.isVisibilityExplicit() &&
1038        !hasExplicitVisibilityAlready(computation));
1039     LinkageInfo tempLV =
1040       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042 
1043     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044       if (isExplicitMemberSpecialization(redeclTemp)) {
1045         explicitSpecSuppressor = temp->getTemplatedDecl();
1046       }
1047     }
1048   }
1049 
1050   // We should never be looking for an attribute directly on a template.
1051   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1052 
1053   // If this member is an explicit member specialization, and it has
1054   // an explicit attribute, ignore visibility from the parent.
1055   bool considerClassVisibility = true;
1056   if (explicitSpecSuppressor &&
1057       // optimization: hasDVA() is true only with explicit visibility.
1058       LV.isVisibilityExplicit() &&
1059       classLV.getVisibility() != DefaultVisibility &&
1060       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061     considerClassVisibility = false;
1062   }
1063 
1064   // Finally, merge in information from the class.
1065   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066   return LV;
1067 }
1068 
1069 void NamedDecl::anchor() {}
1070 
1071 bool NamedDecl::isLinkageValid() const {
1072   if (!hasCachedLinkage())
1073     return true;
1074 
1075   Linkage L = LinkageComputer{}
1076                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077                   .getLinkage();
1078   return L == getCachedLinkage();
1079 }
1080 
1081 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1082   StringRef name = getName();
1083   if (name.empty()) return SFF_None;
1084 
1085   if (name.front() == 'C')
1086     if (name == "CFStringCreateWithFormat" ||
1087         name == "CFStringCreateWithFormatAndArguments" ||
1088         name == "CFStringAppendFormat" ||
1089         name == "CFStringAppendFormatAndArguments")
1090       return SFF_CFString;
1091   return SFF_None;
1092 }
1093 
1094 Linkage NamedDecl::getLinkageInternal() const {
1095   // We don't care about visibility here, so ask for the cheapest
1096   // possible visibility analysis.
1097   return LinkageComputer{}
1098       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1099       .getLinkage();
1100 }
1101 
1102 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1103   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1104 }
1105 
1106 static Optional<Visibility>
1107 getExplicitVisibilityAux(const NamedDecl *ND,
1108                          NamedDecl::ExplicitVisibilityKind kind,
1109                          bool IsMostRecent) {
1110   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1111 
1112   // Check the declaration itself first.
1113   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1114     return V;
1115 
1116   // If this is a member class of a specialization of a class template
1117   // and the corresponding decl has explicit visibility, use that.
1118   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1119     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1120     if (InstantiatedFrom)
1121       return getVisibilityOf(InstantiatedFrom, kind);
1122   }
1123 
1124   // If there wasn't explicit visibility there, and this is a
1125   // specialization of a class template, check for visibility
1126   // on the pattern.
1127   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1128     // Walk all the template decl till this point to see if there are
1129     // explicit visibility attributes.
1130     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1131     while (TD != nullptr) {
1132       auto Vis = getVisibilityOf(TD, kind);
1133       if (Vis != None)
1134         return Vis;
1135       TD = TD->getPreviousDecl();
1136     }
1137     return None;
1138   }
1139 
1140   // Use the most recent declaration.
1141   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1142     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1143     if (MostRecent != ND)
1144       return getExplicitVisibilityAux(MostRecent, kind, true);
1145   }
1146 
1147   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1148     if (Var->isStaticDataMember()) {
1149       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1150       if (InstantiatedFrom)
1151         return getVisibilityOf(InstantiatedFrom, kind);
1152     }
1153 
1154     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1155       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1156                              kind);
1157 
1158     return None;
1159   }
1160   // Also handle function template specializations.
1161   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1162     // If the function is a specialization of a template with an
1163     // explicit visibility attribute, use that.
1164     if (FunctionTemplateSpecializationInfo *templateInfo
1165           = fn->getTemplateSpecializationInfo())
1166       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1167                              kind);
1168 
1169     // If the function is a member of a specialization of a class template
1170     // and the corresponding decl has explicit visibility, use that.
1171     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1172     if (InstantiatedFrom)
1173       return getVisibilityOf(InstantiatedFrom, kind);
1174 
1175     return None;
1176   }
1177 
1178   // The visibility of a template is stored in the templated decl.
1179   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1180     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1181 
1182   return None;
1183 }
1184 
1185 Optional<Visibility>
1186 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1187   return getExplicitVisibilityAux(this, kind, false);
1188 }
1189 
1190 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1191                                              Decl *ContextDecl,
1192                                              LVComputationKind computation) {
1193   // This lambda has its linkage/visibility determined by its owner.
1194   const NamedDecl *Owner;
1195   if (!ContextDecl)
1196     Owner = dyn_cast<NamedDecl>(DC);
1197   else if (isa<ParmVarDecl>(ContextDecl))
1198     Owner =
1199         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1200   else
1201     Owner = cast<NamedDecl>(ContextDecl);
1202 
1203   if (!Owner)
1204     return LinkageInfo::none();
1205 
1206   // If the owner has a deduced type, we need to skip querying the linkage and
1207   // visibility of that type, because it might involve this closure type.  The
1208   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1209   // than NoLinkage when we don't strictly need to, which is benign.
1210   auto *VD = dyn_cast<VarDecl>(Owner);
1211   LinkageInfo OwnerLV =
1212       VD && VD->getType()->getContainedDeducedType()
1213           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1214           : getLVForDecl(Owner, computation);
1215 
1216   // A lambda never formally has linkage. But if the owner is externally
1217   // visible, then the lambda is too. We apply the same rules to blocks.
1218   if (!isExternallyVisible(OwnerLV.getLinkage()))
1219     return LinkageInfo::none();
1220   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1221                      OwnerLV.isVisibilityExplicit());
1222 }
1223 
1224 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1225                                                LVComputationKind computation) {
1226   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1227     if (Function->isInAnonymousNamespace() &&
1228         !isFirstInExternCContext(Function))
1229       return getInternalLinkageFor(Function);
1230 
1231     // This is a "void f();" which got merged with a file static.
1232     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1233       return getInternalLinkageFor(Function);
1234 
1235     LinkageInfo LV;
1236     if (!hasExplicitVisibilityAlready(computation)) {
1237       if (Optional<Visibility> Vis =
1238               getExplicitVisibility(Function, computation))
1239         LV.mergeVisibility(*Vis, true);
1240     }
1241 
1242     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1243     // merging storage classes and visibility attributes, so we don't have to
1244     // look at previous decls in here.
1245 
1246     return LV;
1247   }
1248 
1249   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1250     if (Var->hasExternalStorage()) {
1251       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1252         return getInternalLinkageFor(Var);
1253 
1254       LinkageInfo LV;
1255       if (Var->getStorageClass() == SC_PrivateExtern)
1256         LV.mergeVisibility(HiddenVisibility, true);
1257       else if (!hasExplicitVisibilityAlready(computation)) {
1258         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1259           LV.mergeVisibility(*Vis, true);
1260       }
1261 
1262       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1263         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1264         if (PrevLV.getLinkage())
1265           LV.setLinkage(PrevLV.getLinkage());
1266         LV.mergeVisibility(PrevLV);
1267       }
1268 
1269       return LV;
1270     }
1271 
1272     if (!Var->isStaticLocal())
1273       return LinkageInfo::none();
1274   }
1275 
1276   ASTContext &Context = D->getASTContext();
1277   if (!Context.getLangOpts().CPlusPlus)
1278     return LinkageInfo::none();
1279 
1280   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1281   if (!OuterD || OuterD->isInvalidDecl())
1282     return LinkageInfo::none();
1283 
1284   LinkageInfo LV;
1285   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1286     if (!BD->getBlockManglingNumber())
1287       return LinkageInfo::none();
1288 
1289     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1290                          BD->getBlockManglingContextDecl(), computation);
1291   } else {
1292     const auto *FD = cast<FunctionDecl>(OuterD);
1293     if (!FD->isInlined() &&
1294         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1295       return LinkageInfo::none();
1296 
1297     // If a function is hidden by -fvisibility-inlines-hidden option and
1298     // is not explicitly attributed as a hidden function,
1299     // we should not make static local variables in the function hidden.
1300     LV = getLVForDecl(FD, computation);
1301     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1302         !LV.isVisibilityExplicit() &&
1303         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1304       assert(cast<VarDecl>(D)->isStaticLocal());
1305       // If this was an implicitly hidden inline method, check again for
1306       // explicit visibility on the parent class, and use that for static locals
1307       // if present.
1308       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1309         LV = getLVForDecl(MD->getParent(), computation);
1310       if (!LV.isVisibilityExplicit()) {
1311         Visibility globalVisibility =
1312             computation.isValueVisibility()
1313                 ? Context.getLangOpts().getValueVisibilityMode()
1314                 : Context.getLangOpts().getTypeVisibilityMode();
1315         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1316                            /*visibilityExplicit=*/false);
1317       }
1318     }
1319   }
1320   if (!isExternallyVisible(LV.getLinkage()))
1321     return LinkageInfo::none();
1322   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1323                      LV.isVisibilityExplicit());
1324 }
1325 
1326 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1327                                               LVComputationKind computation,
1328                                               bool IgnoreVarTypeLinkage) {
1329   // Internal_linkage attribute overrides other considerations.
1330   if (D->hasAttr<InternalLinkageAttr>())
1331     return getInternalLinkageFor(D);
1332 
1333   // Objective-C: treat all Objective-C declarations as having external
1334   // linkage.
1335   switch (D->getKind()) {
1336     default:
1337       break;
1338 
1339     // Per C++ [basic.link]p2, only the names of objects, references,
1340     // functions, types, templates, namespaces, and values ever have linkage.
1341     //
1342     // Note that the name of a typedef, namespace alias, using declaration,
1343     // and so on are not the name of the corresponding type, namespace, or
1344     // declaration, so they do *not* have linkage.
1345     case Decl::ImplicitParam:
1346     case Decl::Label:
1347     case Decl::NamespaceAlias:
1348     case Decl::ParmVar:
1349     case Decl::Using:
1350     case Decl::UsingShadow:
1351     case Decl::UsingDirective:
1352       return LinkageInfo::none();
1353 
1354     case Decl::EnumConstant:
1355       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1356       if (D->getASTContext().getLangOpts().CPlusPlus)
1357         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1358       return LinkageInfo::visible_none();
1359 
1360     case Decl::Typedef:
1361     case Decl::TypeAlias:
1362       // A typedef declaration has linkage if it gives a type a name for
1363       // linkage purposes.
1364       if (!cast<TypedefNameDecl>(D)
1365                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1366         return LinkageInfo::none();
1367       break;
1368 
1369     case Decl::TemplateTemplateParm: // count these as external
1370     case Decl::NonTypeTemplateParm:
1371     case Decl::ObjCAtDefsField:
1372     case Decl::ObjCCategory:
1373     case Decl::ObjCCategoryImpl:
1374     case Decl::ObjCCompatibleAlias:
1375     case Decl::ObjCImplementation:
1376     case Decl::ObjCMethod:
1377     case Decl::ObjCProperty:
1378     case Decl::ObjCPropertyImpl:
1379     case Decl::ObjCProtocol:
1380       return getExternalLinkageFor(D);
1381 
1382     case Decl::CXXRecord: {
1383       const auto *Record = cast<CXXRecordDecl>(D);
1384       if (Record->isLambda()) {
1385         if (Record->hasKnownLambdaInternalLinkage() ||
1386             !Record->getLambdaManglingNumber()) {
1387           // This lambda has no mangling number, so it's internal.
1388           return getInternalLinkageFor(D);
1389         }
1390 
1391         return getLVForClosure(
1392                   Record->getDeclContext()->getRedeclContext(),
1393                   Record->getLambdaContextDecl(), computation);
1394       }
1395 
1396       break;
1397     }
1398 
1399     case Decl::TemplateParamObject: {
1400       // The template parameter object can be referenced from anywhere its type
1401       // and value can be referenced.
1402       auto *TPO = cast<TemplateParamObjectDecl>(D);
1403       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1404       LV.merge(getLVForValue(TPO->getValue(), computation));
1405       return LV;
1406     }
1407   }
1408 
1409   // Handle linkage for namespace-scope names.
1410   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1411     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1412 
1413   // C++ [basic.link]p5:
1414   //   In addition, a member function, static data member, a named
1415   //   class or enumeration of class scope, or an unnamed class or
1416   //   enumeration defined in a class-scope typedef declaration such
1417   //   that the class or enumeration has the typedef name for linkage
1418   //   purposes (7.1.3), has external linkage if the name of the class
1419   //   has external linkage.
1420   if (D->getDeclContext()->isRecord())
1421     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1422 
1423   // C++ [basic.link]p6:
1424   //   The name of a function declared in block scope and the name of
1425   //   an object declared by a block scope extern declaration have
1426   //   linkage. If there is a visible declaration of an entity with
1427   //   linkage having the same name and type, ignoring entities
1428   //   declared outside the innermost enclosing namespace scope, the
1429   //   block scope declaration declares that same entity and receives
1430   //   the linkage of the previous declaration. If there is more than
1431   //   one such matching entity, the program is ill-formed. Otherwise,
1432   //   if no matching entity is found, the block scope entity receives
1433   //   external linkage.
1434   if (D->getDeclContext()->isFunctionOrMethod())
1435     return getLVForLocalDecl(D, computation);
1436 
1437   // C++ [basic.link]p6:
1438   //   Names not covered by these rules have no linkage.
1439   return LinkageInfo::none();
1440 }
1441 
1442 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1443 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1444                                           LVComputationKind computation) {
1445   // Internal_linkage attribute overrides other considerations.
1446   if (D->hasAttr<InternalLinkageAttr>())
1447     return getInternalLinkageFor(D);
1448 
1449   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1450     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1451 
1452   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1453     return *LI;
1454 
1455   LinkageInfo LV = computeLVForDecl(D, computation);
1456   if (D->hasCachedLinkage())
1457     assert(D->getCachedLinkage() == LV.getLinkage());
1458 
1459   D->setCachedLinkage(LV.getLinkage());
1460   cache(D, computation, LV);
1461 
1462 #ifndef NDEBUG
1463   // In C (because of gnu inline) and in c++ with microsoft extensions an
1464   // static can follow an extern, so we can have two decls with different
1465   // linkages.
1466   const LangOptions &Opts = D->getASTContext().getLangOpts();
1467   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1468     return LV;
1469 
1470   // We have just computed the linkage for this decl. By induction we know
1471   // that all other computed linkages match, check that the one we just
1472   // computed also does.
1473   NamedDecl *Old = nullptr;
1474   for (auto I : D->redecls()) {
1475     auto *T = cast<NamedDecl>(I);
1476     if (T == D)
1477       continue;
1478     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1479       Old = T;
1480       break;
1481     }
1482   }
1483   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1484 #endif
1485 
1486   return LV;
1487 }
1488 
1489 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1490   return getLVForDecl(D,
1491                       LVComputationKind(usesTypeVisibility(D)
1492                                             ? NamedDecl::VisibilityForType
1493                                             : NamedDecl::VisibilityForValue));
1494 }
1495 
1496 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1497   Module *M = getOwningModule();
1498   if (!M)
1499     return nullptr;
1500 
1501   switch (M->Kind) {
1502   case Module::ModuleMapModule:
1503     // Module map modules have no special linkage semantics.
1504     return nullptr;
1505 
1506   case Module::ModuleInterfaceUnit:
1507     return M;
1508 
1509   case Module::GlobalModuleFragment: {
1510     // External linkage declarations in the global module have no owning module
1511     // for linkage purposes. But internal linkage declarations in the global
1512     // module fragment of a particular module are owned by that module for
1513     // linkage purposes.
1514     if (IgnoreLinkage)
1515       return nullptr;
1516     bool InternalLinkage;
1517     if (auto *ND = dyn_cast<NamedDecl>(this))
1518       InternalLinkage = !ND->hasExternalFormalLinkage();
1519     else {
1520       auto *NSD = dyn_cast<NamespaceDecl>(this);
1521       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1522                         isInAnonymousNamespace();
1523     }
1524     return InternalLinkage ? M->Parent : nullptr;
1525   }
1526 
1527   case Module::PrivateModuleFragment:
1528     // The private module fragment is part of its containing module for linkage
1529     // purposes.
1530     return M->Parent;
1531   }
1532 
1533   llvm_unreachable("unknown module kind");
1534 }
1535 
1536 void NamedDecl::printName(raw_ostream &os) const {
1537   os << Name;
1538 }
1539 
1540 std::string NamedDecl::getQualifiedNameAsString() const {
1541   std::string QualName;
1542   llvm::raw_string_ostream OS(QualName);
1543   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1544   return OS.str();
1545 }
1546 
1547 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1548   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1549 }
1550 
1551 void NamedDecl::printQualifiedName(raw_ostream &OS,
1552                                    const PrintingPolicy &P) const {
1553   if (getDeclContext()->isFunctionOrMethod()) {
1554     // We do not print '(anonymous)' for function parameters without name.
1555     printName(OS);
1556     return;
1557   }
1558   printNestedNameSpecifier(OS, P);
1559   if (getDeclName())
1560     OS << *this;
1561   else {
1562     // Give the printName override a chance to pick a different name before we
1563     // fall back to "(anonymous)".
1564     SmallString<64> NameBuffer;
1565     llvm::raw_svector_ostream NameOS(NameBuffer);
1566     printName(NameOS);
1567     if (NameBuffer.empty())
1568       OS << "(anonymous)";
1569     else
1570       OS << NameBuffer;
1571   }
1572 }
1573 
1574 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1575   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1576 }
1577 
1578 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1579                                          const PrintingPolicy &P) const {
1580   const DeclContext *Ctx = getDeclContext();
1581 
1582   // For ObjC methods and properties, look through categories and use the
1583   // interface as context.
1584   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1585     if (auto *ID = MD->getClassInterface())
1586       Ctx = ID;
1587   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1588     if (auto *MD = PD->getGetterMethodDecl())
1589       if (auto *ID = MD->getClassInterface())
1590         Ctx = ID;
1591   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1592     if (auto *CI = ID->getContainingInterface())
1593       Ctx = CI;
1594   }
1595 
1596   if (Ctx->isFunctionOrMethod())
1597     return;
1598 
1599   using ContextsTy = SmallVector<const DeclContext *, 8>;
1600   ContextsTy Contexts;
1601 
1602   // Collect named contexts.
1603   DeclarationName NameInScope = getDeclName();
1604   for (; Ctx; Ctx = Ctx->getParent()) {
1605     // Suppress anonymous namespace if requested.
1606     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1607         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1608       continue;
1609 
1610     // Suppress inline namespace if it doesn't make the result ambiguous.
1611     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1612         Ctx->lookup(NameInScope).size() ==
1613             Ctx->getParent()->lookup(NameInScope).size())
1614       continue;
1615 
1616     // Skip non-named contexts such as linkage specifications and ExportDecls.
1617     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1618     if (!ND)
1619       continue;
1620 
1621     Contexts.push_back(Ctx);
1622     NameInScope = ND->getDeclName();
1623   }
1624 
1625   for (unsigned I = Contexts.size(); I != 0; --I) {
1626     const DeclContext *DC = Contexts[I - 1];
1627     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1628       OS << Spec->getName();
1629       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1630       printTemplateArgumentList(
1631           OS, TemplateArgs.asArray(), P,
1632           Spec->getSpecializedTemplate()->getTemplateParameters());
1633     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1634       if (ND->isAnonymousNamespace()) {
1635         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1636                                 : "(anonymous namespace)");
1637       }
1638       else
1639         OS << *ND;
1640     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1641       if (!RD->getIdentifier())
1642         OS << "(anonymous " << RD->getKindName() << ')';
1643       else
1644         OS << *RD;
1645     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1646       const FunctionProtoType *FT = nullptr;
1647       if (FD->hasWrittenPrototype())
1648         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1649 
1650       OS << *FD << '(';
1651       if (FT) {
1652         unsigned NumParams = FD->getNumParams();
1653         for (unsigned i = 0; i < NumParams; ++i) {
1654           if (i)
1655             OS << ", ";
1656           OS << FD->getParamDecl(i)->getType().stream(P);
1657         }
1658 
1659         if (FT->isVariadic()) {
1660           if (NumParams > 0)
1661             OS << ", ";
1662           OS << "...";
1663         }
1664       }
1665       OS << ')';
1666     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1667       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1668       // enumerator is declared in the scope that immediately contains
1669       // the enum-specifier. Each scoped enumerator is declared in the
1670       // scope of the enumeration.
1671       // For the case of unscoped enumerator, do not include in the qualified
1672       // name any information about its enum enclosing scope, as its visibility
1673       // is global.
1674       if (ED->isScoped())
1675         OS << *ED;
1676       else
1677         continue;
1678     } else {
1679       OS << *cast<NamedDecl>(DC);
1680     }
1681     OS << "::";
1682   }
1683 }
1684 
1685 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1686                                      const PrintingPolicy &Policy,
1687                                      bool Qualified) const {
1688   if (Qualified)
1689     printQualifiedName(OS, Policy);
1690   else
1691     printName(OS);
1692 }
1693 
1694 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1695   return true;
1696 }
1697 static bool isRedeclarableImpl(...) { return false; }
1698 static bool isRedeclarable(Decl::Kind K) {
1699   switch (K) {
1700 #define DECL(Type, Base) \
1701   case Decl::Type: \
1702     return isRedeclarableImpl((Type##Decl *)nullptr);
1703 #define ABSTRACT_DECL(DECL)
1704 #include "clang/AST/DeclNodes.inc"
1705   }
1706   llvm_unreachable("unknown decl kind");
1707 }
1708 
1709 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1710   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1711 
1712   // Never replace one imported declaration with another; we need both results
1713   // when re-exporting.
1714   if (OldD->isFromASTFile() && isFromASTFile())
1715     return false;
1716 
1717   // A kind mismatch implies that the declaration is not replaced.
1718   if (OldD->getKind() != getKind())
1719     return false;
1720 
1721   // For method declarations, we never replace. (Why?)
1722   if (isa<ObjCMethodDecl>(this))
1723     return false;
1724 
1725   // For parameters, pick the newer one. This is either an error or (in
1726   // Objective-C) permitted as an extension.
1727   if (isa<ParmVarDecl>(this))
1728     return true;
1729 
1730   // Inline namespaces can give us two declarations with the same
1731   // name and kind in the same scope but different contexts; we should
1732   // keep both declarations in this case.
1733   if (!this->getDeclContext()->getRedeclContext()->Equals(
1734           OldD->getDeclContext()->getRedeclContext()))
1735     return false;
1736 
1737   // Using declarations can be replaced if they import the same name from the
1738   // same context.
1739   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1740     ASTContext &Context = getASTContext();
1741     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1742            Context.getCanonicalNestedNameSpecifier(
1743                cast<UsingDecl>(OldD)->getQualifier());
1744   }
1745   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1746     ASTContext &Context = getASTContext();
1747     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1748            Context.getCanonicalNestedNameSpecifier(
1749                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1750   }
1751 
1752   if (isRedeclarable(getKind())) {
1753     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1754       return false;
1755 
1756     if (IsKnownNewer)
1757       return true;
1758 
1759     // Check whether this is actually newer than OldD. We want to keep the
1760     // newer declaration. This loop will usually only iterate once, because
1761     // OldD is usually the previous declaration.
1762     for (auto D : redecls()) {
1763       if (D == OldD)
1764         break;
1765 
1766       // If we reach the canonical declaration, then OldD is not actually older
1767       // than this one.
1768       //
1769       // FIXME: In this case, we should not add this decl to the lookup table.
1770       if (D->isCanonicalDecl())
1771         return false;
1772     }
1773 
1774     // It's a newer declaration of the same kind of declaration in the same
1775     // scope: we want this decl instead of the existing one.
1776     return true;
1777   }
1778 
1779   // In all other cases, we need to keep both declarations in case they have
1780   // different visibility. Any attempt to use the name will result in an
1781   // ambiguity if more than one is visible.
1782   return false;
1783 }
1784 
1785 bool NamedDecl::hasLinkage() const {
1786   return getFormalLinkage() != NoLinkage;
1787 }
1788 
1789 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1790   NamedDecl *ND = this;
1791   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1792     ND = UD->getTargetDecl();
1793 
1794   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1795     return AD->getClassInterface();
1796 
1797   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1798     return AD->getNamespace();
1799 
1800   return ND;
1801 }
1802 
1803 bool NamedDecl::isCXXInstanceMember() const {
1804   if (!isCXXClassMember())
1805     return false;
1806 
1807   const NamedDecl *D = this;
1808   if (isa<UsingShadowDecl>(D))
1809     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1810 
1811   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1812     return true;
1813   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1814     return MD->isInstance();
1815   return false;
1816 }
1817 
1818 //===----------------------------------------------------------------------===//
1819 // DeclaratorDecl Implementation
1820 //===----------------------------------------------------------------------===//
1821 
1822 template <typename DeclT>
1823 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1824   if (decl->getNumTemplateParameterLists() > 0)
1825     return decl->getTemplateParameterList(0)->getTemplateLoc();
1826   return decl->getInnerLocStart();
1827 }
1828 
1829 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1830   TypeSourceInfo *TSI = getTypeSourceInfo();
1831   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1832   return SourceLocation();
1833 }
1834 
1835 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1836   TypeSourceInfo *TSI = getTypeSourceInfo();
1837   if (TSI) return TSI->getTypeLoc().getEndLoc();
1838   return SourceLocation();
1839 }
1840 
1841 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1842   if (QualifierLoc) {
1843     // Make sure the extended decl info is allocated.
1844     if (!hasExtInfo()) {
1845       // Save (non-extended) type source info pointer.
1846       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1847       // Allocate external info struct.
1848       DeclInfo = new (getASTContext()) ExtInfo;
1849       // Restore savedTInfo into (extended) decl info.
1850       getExtInfo()->TInfo = savedTInfo;
1851     }
1852     // Set qualifier info.
1853     getExtInfo()->QualifierLoc = QualifierLoc;
1854   } else if (hasExtInfo()) {
1855     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1856     getExtInfo()->QualifierLoc = QualifierLoc;
1857   }
1858 }
1859 
1860 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1861   assert(TrailingRequiresClause);
1862   // Make sure the extended decl info is allocated.
1863   if (!hasExtInfo()) {
1864     // Save (non-extended) type source info pointer.
1865     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1866     // Allocate external info struct.
1867     DeclInfo = new (getASTContext()) ExtInfo;
1868     // Restore savedTInfo into (extended) decl info.
1869     getExtInfo()->TInfo = savedTInfo;
1870   }
1871   // Set requires clause info.
1872   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1873 }
1874 
1875 void DeclaratorDecl::setTemplateParameterListsInfo(
1876     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1877   assert(!TPLists.empty());
1878   // Make sure the extended decl info is allocated.
1879   if (!hasExtInfo()) {
1880     // Save (non-extended) type source info pointer.
1881     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1882     // Allocate external info struct.
1883     DeclInfo = new (getASTContext()) ExtInfo;
1884     // Restore savedTInfo into (extended) decl info.
1885     getExtInfo()->TInfo = savedTInfo;
1886   }
1887   // Set the template parameter lists info.
1888   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1889 }
1890 
1891 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1892   return getTemplateOrInnerLocStart(this);
1893 }
1894 
1895 // Helper function: returns true if QT is or contains a type
1896 // having a postfix component.
1897 static bool typeIsPostfix(QualType QT) {
1898   while (true) {
1899     const Type* T = QT.getTypePtr();
1900     switch (T->getTypeClass()) {
1901     default:
1902       return false;
1903     case Type::Pointer:
1904       QT = cast<PointerType>(T)->getPointeeType();
1905       break;
1906     case Type::BlockPointer:
1907       QT = cast<BlockPointerType>(T)->getPointeeType();
1908       break;
1909     case Type::MemberPointer:
1910       QT = cast<MemberPointerType>(T)->getPointeeType();
1911       break;
1912     case Type::LValueReference:
1913     case Type::RValueReference:
1914       QT = cast<ReferenceType>(T)->getPointeeType();
1915       break;
1916     case Type::PackExpansion:
1917       QT = cast<PackExpansionType>(T)->getPattern();
1918       break;
1919     case Type::Paren:
1920     case Type::ConstantArray:
1921     case Type::DependentSizedArray:
1922     case Type::IncompleteArray:
1923     case Type::VariableArray:
1924     case Type::FunctionProto:
1925     case Type::FunctionNoProto:
1926       return true;
1927     }
1928   }
1929 }
1930 
1931 SourceRange DeclaratorDecl::getSourceRange() const {
1932   SourceLocation RangeEnd = getLocation();
1933   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1934     // If the declaration has no name or the type extends past the name take the
1935     // end location of the type.
1936     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1937       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1938   }
1939   return SourceRange(getOuterLocStart(), RangeEnd);
1940 }
1941 
1942 void QualifierInfo::setTemplateParameterListsInfo(
1943     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1944   // Free previous template parameters (if any).
1945   if (NumTemplParamLists > 0) {
1946     Context.Deallocate(TemplParamLists);
1947     TemplParamLists = nullptr;
1948     NumTemplParamLists = 0;
1949   }
1950   // Set info on matched template parameter lists (if any).
1951   if (!TPLists.empty()) {
1952     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1953     NumTemplParamLists = TPLists.size();
1954     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1955   }
1956 }
1957 
1958 //===----------------------------------------------------------------------===//
1959 // VarDecl Implementation
1960 //===----------------------------------------------------------------------===//
1961 
1962 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1963   switch (SC) {
1964   case SC_None:                 break;
1965   case SC_Auto:                 return "auto";
1966   case SC_Extern:               return "extern";
1967   case SC_PrivateExtern:        return "__private_extern__";
1968   case SC_Register:             return "register";
1969   case SC_Static:               return "static";
1970   }
1971 
1972   llvm_unreachable("Invalid storage class");
1973 }
1974 
1975 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1976                  SourceLocation StartLoc, SourceLocation IdLoc,
1977                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1978                  StorageClass SC)
1979     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1980       redeclarable_base(C) {
1981   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1982                 "VarDeclBitfields too large!");
1983   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1984                 "ParmVarDeclBitfields too large!");
1985   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1986                 "NonParmVarDeclBitfields too large!");
1987   AllBits = 0;
1988   VarDeclBits.SClass = SC;
1989   // Everything else is implicitly initialized to false.
1990 }
1991 
1992 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1993                          SourceLocation StartL, SourceLocation IdL,
1994                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1995                          StorageClass S) {
1996   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1997 }
1998 
1999 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2000   return new (C, ID)
2001       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2002               QualType(), nullptr, SC_None);
2003 }
2004 
2005 void VarDecl::setStorageClass(StorageClass SC) {
2006   assert(isLegalForVariable(SC));
2007   VarDeclBits.SClass = SC;
2008 }
2009 
2010 VarDecl::TLSKind VarDecl::getTLSKind() const {
2011   switch (VarDeclBits.TSCSpec) {
2012   case TSCS_unspecified:
2013     if (!hasAttr<ThreadAttr>() &&
2014         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2015           getASTContext().getTargetInfo().isTLSSupported() &&
2016           hasAttr<OMPThreadPrivateDeclAttr>()))
2017       return TLS_None;
2018     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2019                 LangOptions::MSVC2015)) ||
2020             hasAttr<OMPThreadPrivateDeclAttr>())
2021                ? TLS_Dynamic
2022                : TLS_Static;
2023   case TSCS___thread: // Fall through.
2024   case TSCS__Thread_local:
2025     return TLS_Static;
2026   case TSCS_thread_local:
2027     return TLS_Dynamic;
2028   }
2029   llvm_unreachable("Unknown thread storage class specifier!");
2030 }
2031 
2032 SourceRange VarDecl::getSourceRange() const {
2033   if (const Expr *Init = getInit()) {
2034     SourceLocation InitEnd = Init->getEndLoc();
2035     // If Init is implicit, ignore its source range and fallback on
2036     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2037     if (InitEnd.isValid() && InitEnd != getLocation())
2038       return SourceRange(getOuterLocStart(), InitEnd);
2039   }
2040   return DeclaratorDecl::getSourceRange();
2041 }
2042 
2043 template<typename T>
2044 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2045   // C++ [dcl.link]p1: All function types, function names with external linkage,
2046   // and variable names with external linkage have a language linkage.
2047   if (!D.hasExternalFormalLinkage())
2048     return NoLanguageLinkage;
2049 
2050   // Language linkage is a C++ concept, but saying that everything else in C has
2051   // C language linkage fits the implementation nicely.
2052   ASTContext &Context = D.getASTContext();
2053   if (!Context.getLangOpts().CPlusPlus)
2054     return CLanguageLinkage;
2055 
2056   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2057   // language linkage of the names of class members and the function type of
2058   // class member functions.
2059   const DeclContext *DC = D.getDeclContext();
2060   if (DC->isRecord())
2061     return CXXLanguageLinkage;
2062 
2063   // If the first decl is in an extern "C" context, any other redeclaration
2064   // will have C language linkage. If the first one is not in an extern "C"
2065   // context, we would have reported an error for any other decl being in one.
2066   if (isFirstInExternCContext(&D))
2067     return CLanguageLinkage;
2068   return CXXLanguageLinkage;
2069 }
2070 
2071 template<typename T>
2072 static bool isDeclExternC(const T &D) {
2073   // Since the context is ignored for class members, they can only have C++
2074   // language linkage or no language linkage.
2075   const DeclContext *DC = D.getDeclContext();
2076   if (DC->isRecord()) {
2077     assert(D.getASTContext().getLangOpts().CPlusPlus);
2078     return false;
2079   }
2080 
2081   return D.getLanguageLinkage() == CLanguageLinkage;
2082 }
2083 
2084 LanguageLinkage VarDecl::getLanguageLinkage() const {
2085   return getDeclLanguageLinkage(*this);
2086 }
2087 
2088 bool VarDecl::isExternC() const {
2089   return isDeclExternC(*this);
2090 }
2091 
2092 bool VarDecl::isInExternCContext() const {
2093   return getLexicalDeclContext()->isExternCContext();
2094 }
2095 
2096 bool VarDecl::isInExternCXXContext() const {
2097   return getLexicalDeclContext()->isExternCXXContext();
2098 }
2099 
2100 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2101 
2102 VarDecl::DefinitionKind
2103 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2104   if (isThisDeclarationADemotedDefinition())
2105     return DeclarationOnly;
2106 
2107   // C++ [basic.def]p2:
2108   //   A declaration is a definition unless [...] it contains the 'extern'
2109   //   specifier or a linkage-specification and neither an initializer [...],
2110   //   it declares a non-inline static data member in a class declaration [...],
2111   //   it declares a static data member outside a class definition and the variable
2112   //   was defined within the class with the constexpr specifier [...],
2113   // C++1y [temp.expl.spec]p15:
2114   //   An explicit specialization of a static data member or an explicit
2115   //   specialization of a static data member template is a definition if the
2116   //   declaration includes an initializer; otherwise, it is a declaration.
2117   //
2118   // FIXME: How do you declare (but not define) a partial specialization of
2119   // a static data member template outside the containing class?
2120   if (isStaticDataMember()) {
2121     if (isOutOfLine() &&
2122         !(getCanonicalDecl()->isInline() &&
2123           getCanonicalDecl()->isConstexpr()) &&
2124         (hasInit() ||
2125          // If the first declaration is out-of-line, this may be an
2126          // instantiation of an out-of-line partial specialization of a variable
2127          // template for which we have not yet instantiated the initializer.
2128          (getFirstDecl()->isOutOfLine()
2129               ? getTemplateSpecializationKind() == TSK_Undeclared
2130               : getTemplateSpecializationKind() !=
2131                     TSK_ExplicitSpecialization) ||
2132          isa<VarTemplatePartialSpecializationDecl>(this)))
2133       return Definition;
2134     if (!isOutOfLine() && isInline())
2135       return Definition;
2136     return DeclarationOnly;
2137   }
2138   // C99 6.7p5:
2139   //   A definition of an identifier is a declaration for that identifier that
2140   //   [...] causes storage to be reserved for that object.
2141   // Note: that applies for all non-file-scope objects.
2142   // C99 6.9.2p1:
2143   //   If the declaration of an identifier for an object has file scope and an
2144   //   initializer, the declaration is an external definition for the identifier
2145   if (hasInit())
2146     return Definition;
2147 
2148   if (hasDefiningAttr())
2149     return Definition;
2150 
2151   if (const auto *SAA = getAttr<SelectAnyAttr>())
2152     if (!SAA->isInherited())
2153       return Definition;
2154 
2155   // A variable template specialization (other than a static data member
2156   // template or an explicit specialization) is a declaration until we
2157   // instantiate its initializer.
2158   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2159     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2160         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2161         !VTSD->IsCompleteDefinition)
2162       return DeclarationOnly;
2163   }
2164 
2165   if (hasExternalStorage())
2166     return DeclarationOnly;
2167 
2168   // [dcl.link] p7:
2169   //   A declaration directly contained in a linkage-specification is treated
2170   //   as if it contains the extern specifier for the purpose of determining
2171   //   the linkage of the declared name and whether it is a definition.
2172   if (isSingleLineLanguageLinkage(*this))
2173     return DeclarationOnly;
2174 
2175   // C99 6.9.2p2:
2176   //   A declaration of an object that has file scope without an initializer,
2177   //   and without a storage class specifier or the scs 'static', constitutes
2178   //   a tentative definition.
2179   // No such thing in C++.
2180   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2181     return TentativeDefinition;
2182 
2183   // What's left is (in C, block-scope) declarations without initializers or
2184   // external storage. These are definitions.
2185   return Definition;
2186 }
2187 
2188 VarDecl *VarDecl::getActingDefinition() {
2189   DefinitionKind Kind = isThisDeclarationADefinition();
2190   if (Kind != TentativeDefinition)
2191     return nullptr;
2192 
2193   VarDecl *LastTentative = nullptr;
2194   VarDecl *First = getFirstDecl();
2195   for (auto I : First->redecls()) {
2196     Kind = I->isThisDeclarationADefinition();
2197     if (Kind == Definition)
2198       return nullptr;
2199     if (Kind == TentativeDefinition)
2200       LastTentative = I;
2201   }
2202   return LastTentative;
2203 }
2204 
2205 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2206   VarDecl *First = getFirstDecl();
2207   for (auto I : First->redecls()) {
2208     if (I->isThisDeclarationADefinition(C) == Definition)
2209       return I;
2210   }
2211   return nullptr;
2212 }
2213 
2214 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2215   DefinitionKind Kind = DeclarationOnly;
2216 
2217   const VarDecl *First = getFirstDecl();
2218   for (auto I : First->redecls()) {
2219     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2220     if (Kind == Definition)
2221       break;
2222   }
2223 
2224   return Kind;
2225 }
2226 
2227 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2228   for (auto I : redecls()) {
2229     if (auto Expr = I->getInit()) {
2230       D = I;
2231       return Expr;
2232     }
2233   }
2234   return nullptr;
2235 }
2236 
2237 bool VarDecl::hasInit() const {
2238   if (auto *P = dyn_cast<ParmVarDecl>(this))
2239     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2240       return false;
2241 
2242   return !Init.isNull();
2243 }
2244 
2245 Expr *VarDecl::getInit() {
2246   if (!hasInit())
2247     return nullptr;
2248 
2249   if (auto *S = Init.dyn_cast<Stmt *>())
2250     return cast<Expr>(S);
2251 
2252   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2253 }
2254 
2255 Stmt **VarDecl::getInitAddress() {
2256   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2257     return &ES->Value;
2258 
2259   return Init.getAddrOfPtr1();
2260 }
2261 
2262 VarDecl *VarDecl::getInitializingDeclaration() {
2263   VarDecl *Def = nullptr;
2264   for (auto I : redecls()) {
2265     if (I->hasInit())
2266       return I;
2267 
2268     if (I->isThisDeclarationADefinition()) {
2269       if (isStaticDataMember())
2270         return I;
2271       Def = I;
2272     }
2273   }
2274   return Def;
2275 }
2276 
2277 bool VarDecl::isOutOfLine() const {
2278   if (Decl::isOutOfLine())
2279     return true;
2280 
2281   if (!isStaticDataMember())
2282     return false;
2283 
2284   // If this static data member was instantiated from a static data member of
2285   // a class template, check whether that static data member was defined
2286   // out-of-line.
2287   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2288     return VD->isOutOfLine();
2289 
2290   return false;
2291 }
2292 
2293 void VarDecl::setInit(Expr *I) {
2294   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2295     Eval->~EvaluatedStmt();
2296     getASTContext().Deallocate(Eval);
2297   }
2298 
2299   Init = I;
2300 }
2301 
2302 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2303   const LangOptions &Lang = C.getLangOpts();
2304 
2305   // OpenCL permits const integral variables to be used in constant
2306   // expressions, like in C++98.
2307   if (!Lang.CPlusPlus && !Lang.OpenCL)
2308     return false;
2309 
2310   // Function parameters are never usable in constant expressions.
2311   if (isa<ParmVarDecl>(this))
2312     return false;
2313 
2314   // The values of weak variables are never usable in constant expressions.
2315   if (isWeak())
2316     return false;
2317 
2318   // In C++11, any variable of reference type can be used in a constant
2319   // expression if it is initialized by a constant expression.
2320   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2321     return true;
2322 
2323   // Only const objects can be used in constant expressions in C++. C++98 does
2324   // not require the variable to be non-volatile, but we consider this to be a
2325   // defect.
2326   if (!getType().isConstant(C) || getType().isVolatileQualified())
2327     return false;
2328 
2329   // In C++, const, non-volatile variables of integral or enumeration types
2330   // can be used in constant expressions.
2331   if (getType()->isIntegralOrEnumerationType())
2332     return true;
2333 
2334   // Additionally, in C++11, non-volatile constexpr variables can be used in
2335   // constant expressions.
2336   return Lang.CPlusPlus11 && isConstexpr();
2337 }
2338 
2339 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2340   // C++2a [expr.const]p3:
2341   //   A variable is usable in constant expressions after its initializing
2342   //   declaration is encountered...
2343   const VarDecl *DefVD = nullptr;
2344   const Expr *Init = getAnyInitializer(DefVD);
2345   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2346     return false;
2347   //   ... if it is a constexpr variable, or it is of reference type or of
2348   //   const-qualified integral or enumeration type, ...
2349   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2350     return false;
2351   //   ... and its initializer is a constant initializer.
2352   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2353     return false;
2354   // C++98 [expr.const]p1:
2355   //   An integral constant-expression can involve only [...] const variables
2356   //   or static data members of integral or enumeration types initialized with
2357   //   [integer] constant expressions (dcl.init)
2358   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2359       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2360     return false;
2361   return true;
2362 }
2363 
2364 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2365 /// form, which contains extra information on the evaluated value of the
2366 /// initializer.
2367 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2368   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2369   if (!Eval) {
2370     // Note: EvaluatedStmt contains an APValue, which usually holds
2371     // resources not allocated from the ASTContext.  We need to do some
2372     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2373     // where we can detect whether there's anything to clean up or not.
2374     Eval = new (getASTContext()) EvaluatedStmt;
2375     Eval->Value = Init.get<Stmt *>();
2376     Init = Eval;
2377   }
2378   return Eval;
2379 }
2380 
2381 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2382   return Init.dyn_cast<EvaluatedStmt *>();
2383 }
2384 
2385 APValue *VarDecl::evaluateValue() const {
2386   SmallVector<PartialDiagnosticAt, 8> Notes;
2387   return evaluateValue(Notes);
2388 }
2389 
2390 APValue *VarDecl::evaluateValue(
2391     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2392   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2393 
2394   const auto *Init = cast<Expr>(Eval->Value);
2395   assert(!Init->isValueDependent());
2396 
2397   // We only produce notes indicating why an initializer is non-constant the
2398   // first time it is evaluated. FIXME: The notes won't always be emitted the
2399   // first time we try evaluation, so might not be produced at all.
2400   if (Eval->WasEvaluated)
2401     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2402 
2403   if (Eval->IsEvaluating) {
2404     // FIXME: Produce a diagnostic for self-initialization.
2405     return nullptr;
2406   }
2407 
2408   Eval->IsEvaluating = true;
2409 
2410   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2411                                             this, Notes);
2412 
2413   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2414   // or that it's empty (so that there's nothing to clean up) if evaluation
2415   // failed.
2416   if (!Result)
2417     Eval->Evaluated = APValue();
2418   else if (Eval->Evaluated.needsCleanup())
2419     getASTContext().addDestruction(&Eval->Evaluated);
2420 
2421   Eval->IsEvaluating = false;
2422   Eval->WasEvaluated = true;
2423 
2424   return Result ? &Eval->Evaluated : nullptr;
2425 }
2426 
2427 APValue *VarDecl::getEvaluatedValue() const {
2428   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2429     if (Eval->WasEvaluated)
2430       return &Eval->Evaluated;
2431 
2432   return nullptr;
2433 }
2434 
2435 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2436   const Expr *Init = getInit();
2437   assert(Init && "no initializer");
2438 
2439   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2440   if (!Eval->CheckedForICEInit) {
2441     Eval->CheckedForICEInit = true;
2442     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2443   }
2444   return Eval->HasICEInit;
2445 }
2446 
2447 bool VarDecl::hasConstantInitialization() const {
2448   // In C, all globals (and only globals) have constant initialization.
2449   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2450     return true;
2451 
2452   // In C++, it depends on whether the evaluation at the point of definition
2453   // was evaluatable as a constant initializer.
2454   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2455     return Eval->HasConstantInitialization;
2456 
2457   return false;
2458 }
2459 
2460 bool VarDecl::checkForConstantInitialization(
2461     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2462   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2463   // If we ask for the value before we know whether we have a constant
2464   // initializer, we can compute the wrong value (for example, due to
2465   // std::is_constant_evaluated()).
2466   assert(!Eval->WasEvaluated &&
2467          "already evaluated var value before checking for constant init");
2468   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2469 
2470   assert(!cast<Expr>(Eval->Value)->isValueDependent());
2471 
2472   // Evaluate the initializer to check whether it's a constant expression.
2473   Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty();
2474   return Eval->HasConstantInitialization;
2475 }
2476 
2477 bool VarDecl::isParameterPack() const {
2478   return isa<PackExpansionType>(getType());
2479 }
2480 
2481 template<typename DeclT>
2482 static DeclT *getDefinitionOrSelf(DeclT *D) {
2483   assert(D);
2484   if (auto *Def = D->getDefinition())
2485     return Def;
2486   return D;
2487 }
2488 
2489 bool VarDecl::isEscapingByref() const {
2490   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2491 }
2492 
2493 bool VarDecl::isNonEscapingByref() const {
2494   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2495 }
2496 
2497 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2498   const VarDecl *VD = this;
2499 
2500   // If this is an instantiated member, walk back to the template from which
2501   // it was instantiated.
2502   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2503     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2504       VD = VD->getInstantiatedFromStaticDataMember();
2505       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2506         VD = NewVD;
2507     }
2508   }
2509 
2510   // If it's an instantiated variable template specialization, find the
2511   // template or partial specialization from which it was instantiated.
2512   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2513     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2514       auto From = VDTemplSpec->getInstantiatedFrom();
2515       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2516         while (!VTD->isMemberSpecialization()) {
2517           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2518           if (!NewVTD)
2519             break;
2520           VTD = NewVTD;
2521         }
2522         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2523       }
2524       if (auto *VTPSD =
2525               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2526         while (!VTPSD->isMemberSpecialization()) {
2527           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2528           if (!NewVTPSD)
2529             break;
2530           VTPSD = NewVTPSD;
2531         }
2532         return getDefinitionOrSelf<VarDecl>(VTPSD);
2533       }
2534     }
2535   }
2536 
2537   // If this is the pattern of a variable template, find where it was
2538   // instantiated from. FIXME: Is this necessary?
2539   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2540     while (!VarTemplate->isMemberSpecialization()) {
2541       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2542       if (!NewVT)
2543         break;
2544       VarTemplate = NewVT;
2545     }
2546 
2547     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2548   }
2549 
2550   if (VD == this)
2551     return nullptr;
2552   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2553 }
2554 
2555 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2556   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2557     return cast<VarDecl>(MSI->getInstantiatedFrom());
2558 
2559   return nullptr;
2560 }
2561 
2562 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2563   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2564     return Spec->getSpecializationKind();
2565 
2566   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2567     return MSI->getTemplateSpecializationKind();
2568 
2569   return TSK_Undeclared;
2570 }
2571 
2572 TemplateSpecializationKind
2573 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2574   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2575     return MSI->getTemplateSpecializationKind();
2576 
2577   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2578     return Spec->getSpecializationKind();
2579 
2580   return TSK_Undeclared;
2581 }
2582 
2583 SourceLocation VarDecl::getPointOfInstantiation() const {
2584   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2585     return Spec->getPointOfInstantiation();
2586 
2587   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2588     return MSI->getPointOfInstantiation();
2589 
2590   return SourceLocation();
2591 }
2592 
2593 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2594   return getASTContext().getTemplateOrSpecializationInfo(this)
2595       .dyn_cast<VarTemplateDecl *>();
2596 }
2597 
2598 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2599   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2600 }
2601 
2602 bool VarDecl::isKnownToBeDefined() const {
2603   const auto &LangOpts = getASTContext().getLangOpts();
2604   // In CUDA mode without relocatable device code, variables of form 'extern
2605   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2606   // memory pool.  These are never undefined variables, even if they appear
2607   // inside of an anon namespace or static function.
2608   //
2609   // With CUDA relocatable device code enabled, these variables don't get
2610   // special handling; they're treated like regular extern variables.
2611   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2612       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2613       isa<IncompleteArrayType>(getType()))
2614     return true;
2615 
2616   return hasDefinition();
2617 }
2618 
2619 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2620   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2621                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2622                                  !hasAttr<AlwaysDestroyAttr>()));
2623 }
2624 
2625 QualType::DestructionKind
2626 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2627   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2628     if (Eval->HasConstantDestruction)
2629       return QualType::DK_none;
2630 
2631   if (isNoDestroy(Ctx))
2632     return QualType::DK_none;
2633 
2634   return getType().isDestructedType();
2635 }
2636 
2637 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2638   if (isStaticDataMember())
2639     // FIXME: Remove ?
2640     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2641     return getASTContext().getTemplateOrSpecializationInfo(this)
2642         .dyn_cast<MemberSpecializationInfo *>();
2643   return nullptr;
2644 }
2645 
2646 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2647                                          SourceLocation PointOfInstantiation) {
2648   assert((isa<VarTemplateSpecializationDecl>(this) ||
2649           getMemberSpecializationInfo()) &&
2650          "not a variable or static data member template specialization");
2651 
2652   if (VarTemplateSpecializationDecl *Spec =
2653           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2654     Spec->setSpecializationKind(TSK);
2655     if (TSK != TSK_ExplicitSpecialization &&
2656         PointOfInstantiation.isValid() &&
2657         Spec->getPointOfInstantiation().isInvalid()) {
2658       Spec->setPointOfInstantiation(PointOfInstantiation);
2659       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2660         L->InstantiationRequested(this);
2661     }
2662   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2663     MSI->setTemplateSpecializationKind(TSK);
2664     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2665         MSI->getPointOfInstantiation().isInvalid()) {
2666       MSI->setPointOfInstantiation(PointOfInstantiation);
2667       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2668         L->InstantiationRequested(this);
2669     }
2670   }
2671 }
2672 
2673 void
2674 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2675                                             TemplateSpecializationKind TSK) {
2676   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2677          "Previous template or instantiation?");
2678   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2679 }
2680 
2681 //===----------------------------------------------------------------------===//
2682 // ParmVarDecl Implementation
2683 //===----------------------------------------------------------------------===//
2684 
2685 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2686                                  SourceLocation StartLoc,
2687                                  SourceLocation IdLoc, IdentifierInfo *Id,
2688                                  QualType T, TypeSourceInfo *TInfo,
2689                                  StorageClass S, Expr *DefArg) {
2690   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2691                                  S, DefArg);
2692 }
2693 
2694 QualType ParmVarDecl::getOriginalType() const {
2695   TypeSourceInfo *TSI = getTypeSourceInfo();
2696   QualType T = TSI ? TSI->getType() : getType();
2697   if (const auto *DT = dyn_cast<DecayedType>(T))
2698     return DT->getOriginalType();
2699   return T;
2700 }
2701 
2702 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2703   return new (C, ID)
2704       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2705                   nullptr, QualType(), nullptr, SC_None, nullptr);
2706 }
2707 
2708 SourceRange ParmVarDecl::getSourceRange() const {
2709   if (!hasInheritedDefaultArg()) {
2710     SourceRange ArgRange = getDefaultArgRange();
2711     if (ArgRange.isValid())
2712       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2713   }
2714 
2715   // DeclaratorDecl considers the range of postfix types as overlapping with the
2716   // declaration name, but this is not the case with parameters in ObjC methods.
2717   if (isa<ObjCMethodDecl>(getDeclContext()))
2718     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2719 
2720   return DeclaratorDecl::getSourceRange();
2721 }
2722 
2723 bool ParmVarDecl::isDestroyedInCallee() const {
2724   if (hasAttr<NSConsumedAttr>())
2725     return true;
2726 
2727   auto *RT = getType()->getAs<RecordType>();
2728   if (RT && RT->getDecl()->isParamDestroyedInCallee())
2729     return true;
2730 
2731   return false;
2732 }
2733 
2734 Expr *ParmVarDecl::getDefaultArg() {
2735   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2736   assert(!hasUninstantiatedDefaultArg() &&
2737          "Default argument is not yet instantiated!");
2738 
2739   Expr *Arg = getInit();
2740   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2741     return E->getSubExpr();
2742 
2743   return Arg;
2744 }
2745 
2746 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2747   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2748   Init = defarg;
2749 }
2750 
2751 SourceRange ParmVarDecl::getDefaultArgRange() const {
2752   switch (ParmVarDeclBits.DefaultArgKind) {
2753   case DAK_None:
2754   case DAK_Unparsed:
2755     // Nothing we can do here.
2756     return SourceRange();
2757 
2758   case DAK_Uninstantiated:
2759     return getUninstantiatedDefaultArg()->getSourceRange();
2760 
2761   case DAK_Normal:
2762     if (const Expr *E = getInit())
2763       return E->getSourceRange();
2764 
2765     // Missing an actual expression, may be invalid.
2766     return SourceRange();
2767   }
2768   llvm_unreachable("Invalid default argument kind.");
2769 }
2770 
2771 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2772   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2773   Init = arg;
2774 }
2775 
2776 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2777   assert(hasUninstantiatedDefaultArg() &&
2778          "Wrong kind of initialization expression!");
2779   return cast_or_null<Expr>(Init.get<Stmt *>());
2780 }
2781 
2782 bool ParmVarDecl::hasDefaultArg() const {
2783   // FIXME: We should just return false for DAK_None here once callers are
2784   // prepared for the case that we encountered an invalid default argument and
2785   // were unable to even build an invalid expression.
2786   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2787          !Init.isNull();
2788 }
2789 
2790 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2791   getASTContext().setParameterIndex(this, parameterIndex);
2792   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2793 }
2794 
2795 unsigned ParmVarDecl::getParameterIndexLarge() const {
2796   return getASTContext().getParameterIndex(this);
2797 }
2798 
2799 //===----------------------------------------------------------------------===//
2800 // FunctionDecl Implementation
2801 //===----------------------------------------------------------------------===//
2802 
2803 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2804                            SourceLocation StartLoc,
2805                            const DeclarationNameInfo &NameInfo, QualType T,
2806                            TypeSourceInfo *TInfo, StorageClass S,
2807                            bool isInlineSpecified,
2808                            ConstexprSpecKind ConstexprKind,
2809                            Expr *TrailingRequiresClause)
2810     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2811                      StartLoc),
2812       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2813       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2814   assert(T.isNull() || T->isFunctionType());
2815   FunctionDeclBits.SClass = S;
2816   FunctionDeclBits.IsInline = isInlineSpecified;
2817   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2818   FunctionDeclBits.IsVirtualAsWritten = false;
2819   FunctionDeclBits.IsPure = false;
2820   FunctionDeclBits.HasInheritedPrototype = false;
2821   FunctionDeclBits.HasWrittenPrototype = true;
2822   FunctionDeclBits.IsDeleted = false;
2823   FunctionDeclBits.IsTrivial = false;
2824   FunctionDeclBits.IsTrivialForCall = false;
2825   FunctionDeclBits.IsDefaulted = false;
2826   FunctionDeclBits.IsExplicitlyDefaulted = false;
2827   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2828   FunctionDeclBits.HasImplicitReturnZero = false;
2829   FunctionDeclBits.IsLateTemplateParsed = false;
2830   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2831   FunctionDeclBits.InstantiationIsPending = false;
2832   FunctionDeclBits.UsesSEHTry = false;
2833   FunctionDeclBits.UsesFPIntrin = false;
2834   FunctionDeclBits.HasSkippedBody = false;
2835   FunctionDeclBits.WillHaveBody = false;
2836   FunctionDeclBits.IsMultiVersion = false;
2837   FunctionDeclBits.IsCopyDeductionCandidate = false;
2838   FunctionDeclBits.HasODRHash = false;
2839   if (TrailingRequiresClause)
2840     setTrailingRequiresClause(TrailingRequiresClause);
2841 }
2842 
2843 void FunctionDecl::getNameForDiagnostic(
2844     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2845   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2846   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2847   if (TemplateArgs)
2848     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2849 }
2850 
2851 bool FunctionDecl::isVariadic() const {
2852   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2853     return FT->isVariadic();
2854   return false;
2855 }
2856 
2857 FunctionDecl::DefaultedFunctionInfo *
2858 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2859                                             ArrayRef<DeclAccessPair> Lookups) {
2860   DefaultedFunctionInfo *Info = new (Context.Allocate(
2861       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2862       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2863       DefaultedFunctionInfo;
2864   Info->NumLookups = Lookups.size();
2865   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2866                           Info->getTrailingObjects<DeclAccessPair>());
2867   return Info;
2868 }
2869 
2870 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2871   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2872   assert(!Body && "can't replace function body with defaulted function info");
2873 
2874   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2875   DefaultedInfo = Info;
2876 }
2877 
2878 FunctionDecl::DefaultedFunctionInfo *
2879 FunctionDecl::getDefaultedFunctionInfo() const {
2880   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2881 }
2882 
2883 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2884   for (auto I : redecls()) {
2885     if (I->doesThisDeclarationHaveABody()) {
2886       Definition = I;
2887       return true;
2888     }
2889   }
2890 
2891   return false;
2892 }
2893 
2894 bool FunctionDecl::hasTrivialBody() const {
2895   Stmt *S = getBody();
2896   if (!S) {
2897     // Since we don't have a body for this function, we don't know if it's
2898     // trivial or not.
2899     return false;
2900   }
2901 
2902   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2903     return true;
2904   return false;
2905 }
2906 
2907 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2908   if (!getFriendObjectKind())
2909     return false;
2910 
2911   // Check for a friend function instantiated from a friend function
2912   // definition in a templated class.
2913   if (const FunctionDecl *InstantiatedFrom =
2914           getInstantiatedFromMemberFunction())
2915     return InstantiatedFrom->getFriendObjectKind() &&
2916            InstantiatedFrom->isThisDeclarationADefinition();
2917 
2918   // Check for a friend function template instantiated from a friend
2919   // function template definition in a templated class.
2920   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2921     if (const FunctionTemplateDecl *InstantiatedFrom =
2922             Template->getInstantiatedFromMemberTemplate())
2923       return InstantiatedFrom->getFriendObjectKind() &&
2924              InstantiatedFrom->isThisDeclarationADefinition();
2925   }
2926 
2927   return false;
2928 }
2929 
2930 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2931                              bool CheckForPendingFriendDefinition) const {
2932   for (const FunctionDecl *FD : redecls()) {
2933     if (FD->isThisDeclarationADefinition()) {
2934       Definition = FD;
2935       return true;
2936     }
2937 
2938     // If this is a friend function defined in a class template, it does not
2939     // have a body until it is used, nevertheless it is a definition, see
2940     // [temp.inst]p2:
2941     //
2942     // ... for the purpose of determining whether an instantiated redeclaration
2943     // is valid according to [basic.def.odr] and [class.mem], a declaration that
2944     // corresponds to a definition in the template is considered to be a
2945     // definition.
2946     //
2947     // The following code must produce redefinition error:
2948     //
2949     //     template<typename T> struct C20 { friend void func_20() {} };
2950     //     C20<int> c20i;
2951     //     void func_20() {}
2952     //
2953     if (CheckForPendingFriendDefinition &&
2954         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
2955       Definition = FD;
2956       return true;
2957     }
2958   }
2959 
2960   return false;
2961 }
2962 
2963 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2964   if (!hasBody(Definition))
2965     return nullptr;
2966 
2967   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
2968          "definition should not have a body");
2969   if (Definition->Body)
2970     return Definition->Body.get(getASTContext().getExternalSource());
2971 
2972   return nullptr;
2973 }
2974 
2975 void FunctionDecl::setBody(Stmt *B) {
2976   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2977   Body = LazyDeclStmtPtr(B);
2978   if (B)
2979     EndRangeLoc = B->getEndLoc();
2980 }
2981 
2982 void FunctionDecl::setPure(bool P) {
2983   FunctionDeclBits.IsPure = P;
2984   if (P)
2985     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2986       Parent->markedVirtualFunctionPure();
2987 }
2988 
2989 template<std::size_t Len>
2990 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2991   IdentifierInfo *II = ND->getIdentifier();
2992   return II && II->isStr(Str);
2993 }
2994 
2995 bool FunctionDecl::isMain() const {
2996   const TranslationUnitDecl *tunit =
2997     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2998   return tunit &&
2999          !tunit->getASTContext().getLangOpts().Freestanding &&
3000          isNamed(this, "main");
3001 }
3002 
3003 bool FunctionDecl::isMSVCRTEntryPoint() const {
3004   const TranslationUnitDecl *TUnit =
3005       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3006   if (!TUnit)
3007     return false;
3008 
3009   // Even though we aren't really targeting MSVCRT if we are freestanding,
3010   // semantic analysis for these functions remains the same.
3011 
3012   // MSVCRT entry points only exist on MSVCRT targets.
3013   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3014     return false;
3015 
3016   // Nameless functions like constructors cannot be entry points.
3017   if (!getIdentifier())
3018     return false;
3019 
3020   return llvm::StringSwitch<bool>(getName())
3021       .Cases("main",     // an ANSI console app
3022              "wmain",    // a Unicode console App
3023              "WinMain",  // an ANSI GUI app
3024              "wWinMain", // a Unicode GUI app
3025              "DllMain",  // a DLL
3026              true)
3027       .Default(false);
3028 }
3029 
3030 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3031   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3032   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3033          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3034          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3035          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3036 
3037   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3038     return false;
3039 
3040   const auto *proto = getType()->castAs<FunctionProtoType>();
3041   if (proto->getNumParams() != 2 || proto->isVariadic())
3042     return false;
3043 
3044   ASTContext &Context =
3045     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3046       ->getASTContext();
3047 
3048   // The result type and first argument type are constant across all
3049   // these operators.  The second argument must be exactly void*.
3050   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3051 }
3052 
3053 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3054     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3055   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3056     return false;
3057   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3058       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3059       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3060       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3061     return false;
3062 
3063   if (isa<CXXRecordDecl>(getDeclContext()))
3064     return false;
3065 
3066   // This can only fail for an invalid 'operator new' declaration.
3067   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3068     return false;
3069 
3070   const auto *FPT = getType()->castAs<FunctionProtoType>();
3071   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3072     return false;
3073 
3074   // If this is a single-parameter function, it must be a replaceable global
3075   // allocation or deallocation function.
3076   if (FPT->getNumParams() == 1)
3077     return true;
3078 
3079   unsigned Params = 1;
3080   QualType Ty = FPT->getParamType(Params);
3081   ASTContext &Ctx = getASTContext();
3082 
3083   auto Consume = [&] {
3084     ++Params;
3085     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3086   };
3087 
3088   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3089   bool IsSizedDelete = false;
3090   if (Ctx.getLangOpts().SizedDeallocation &&
3091       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3092        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3093       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3094     IsSizedDelete = true;
3095     Consume();
3096   }
3097 
3098   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3099   // new/delete.
3100   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3101     Consume();
3102     if (AlignmentParam)
3103       *AlignmentParam = Params;
3104   }
3105 
3106   // Finally, if this is not a sized delete, the final parameter can
3107   // be a 'const std::nothrow_t&'.
3108   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3109     Ty = Ty->getPointeeType();
3110     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3111       return false;
3112     if (Ty->isNothrowT()) {
3113       if (IsNothrow)
3114         *IsNothrow = true;
3115       Consume();
3116     }
3117   }
3118 
3119   return Params == FPT->getNumParams();
3120 }
3121 
3122 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3123   if (!getBuiltinID())
3124     return false;
3125 
3126   const FunctionDecl *Definition;
3127   return hasBody(Definition) && Definition->isInlineSpecified();
3128 }
3129 
3130 bool FunctionDecl::isDestroyingOperatorDelete() const {
3131   // C++ P0722:
3132   //   Within a class C, a single object deallocation function with signature
3133   //     (T, std::destroying_delete_t, <more params>)
3134   //   is a destroying operator delete.
3135   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3136       getNumParams() < 2)
3137     return false;
3138 
3139   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3140   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3141          RD->getIdentifier()->isStr("destroying_delete_t");
3142 }
3143 
3144 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3145   return getDeclLanguageLinkage(*this);
3146 }
3147 
3148 bool FunctionDecl::isExternC() const {
3149   return isDeclExternC(*this);
3150 }
3151 
3152 bool FunctionDecl::isInExternCContext() const {
3153   if (hasAttr<OpenCLKernelAttr>())
3154     return true;
3155   return getLexicalDeclContext()->isExternCContext();
3156 }
3157 
3158 bool FunctionDecl::isInExternCXXContext() const {
3159   return getLexicalDeclContext()->isExternCXXContext();
3160 }
3161 
3162 bool FunctionDecl::isGlobal() const {
3163   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3164     return Method->isStatic();
3165 
3166   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3167     return false;
3168 
3169   for (const DeclContext *DC = getDeclContext();
3170        DC->isNamespace();
3171        DC = DC->getParent()) {
3172     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3173       if (!Namespace->getDeclName())
3174         return false;
3175       break;
3176     }
3177   }
3178 
3179   return true;
3180 }
3181 
3182 bool FunctionDecl::isNoReturn() const {
3183   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3184       hasAttr<C11NoReturnAttr>())
3185     return true;
3186 
3187   if (auto *FnTy = getType()->getAs<FunctionType>())
3188     return FnTy->getNoReturnAttr();
3189 
3190   return false;
3191 }
3192 
3193 
3194 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3195   if (hasAttr<TargetAttr>())
3196     return MultiVersionKind::Target;
3197   if (hasAttr<CPUDispatchAttr>())
3198     return MultiVersionKind::CPUDispatch;
3199   if (hasAttr<CPUSpecificAttr>())
3200     return MultiVersionKind::CPUSpecific;
3201   return MultiVersionKind::None;
3202 }
3203 
3204 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3205   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3206 }
3207 
3208 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3209   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3210 }
3211 
3212 bool FunctionDecl::isTargetMultiVersion() const {
3213   return isMultiVersion() && hasAttr<TargetAttr>();
3214 }
3215 
3216 void
3217 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3218   redeclarable_base::setPreviousDecl(PrevDecl);
3219 
3220   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3221     FunctionTemplateDecl *PrevFunTmpl
3222       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3223     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3224     FunTmpl->setPreviousDecl(PrevFunTmpl);
3225   }
3226 
3227   if (PrevDecl && PrevDecl->isInlined())
3228     setImplicitlyInline(true);
3229 }
3230 
3231 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3232 
3233 /// Returns a value indicating whether this function corresponds to a builtin
3234 /// function.
3235 ///
3236 /// The function corresponds to a built-in function if it is declared at
3237 /// translation scope or within an extern "C" block and its name matches with
3238 /// the name of a builtin. The returned value will be 0 for functions that do
3239 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3240 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3241 /// value.
3242 ///
3243 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3244 /// functions as their wrapped builtins. This shouldn't be done in general, but
3245 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3246 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3247   unsigned BuiltinID = 0;
3248 
3249   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3250     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3251   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3252     BuiltinID = A->getID();
3253   }
3254 
3255   if (!BuiltinID)
3256     return 0;
3257 
3258   // If the function is marked "overloadable", it has a different mangled name
3259   // and is not the C library function.
3260   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3261       !hasAttr<ArmBuiltinAliasAttr>())
3262     return 0;
3263 
3264   ASTContext &Context = getASTContext();
3265   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3266     return BuiltinID;
3267 
3268   // This function has the name of a known C library
3269   // function. Determine whether it actually refers to the C library
3270   // function or whether it just has the same name.
3271 
3272   // If this is a static function, it's not a builtin.
3273   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3274     return 0;
3275 
3276   // OpenCL v1.2 s6.9.f - The library functions defined in
3277   // the C99 standard headers are not available.
3278   if (Context.getLangOpts().OpenCL &&
3279       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3280     return 0;
3281 
3282   // CUDA does not have device-side standard library. printf and malloc are the
3283   // only special cases that are supported by device-side runtime.
3284   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3285       !hasAttr<CUDAHostAttr>() &&
3286       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3287     return 0;
3288 
3289   // As AMDGCN implementation of OpenMP does not have a device-side standard
3290   // library, none of the predefined library functions except printf and malloc
3291   // should be treated as a builtin i.e. 0 should be returned for them.
3292   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3293       Context.getLangOpts().OpenMPIsDevice &&
3294       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3295       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3296     return 0;
3297 
3298   return BuiltinID;
3299 }
3300 
3301 /// getNumParams - Return the number of parameters this function must have
3302 /// based on its FunctionType.  This is the length of the ParamInfo array
3303 /// after it has been created.
3304 unsigned FunctionDecl::getNumParams() const {
3305   const auto *FPT = getType()->getAs<FunctionProtoType>();
3306   return FPT ? FPT->getNumParams() : 0;
3307 }
3308 
3309 void FunctionDecl::setParams(ASTContext &C,
3310                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3311   assert(!ParamInfo && "Already has param info!");
3312   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3313 
3314   // Zero params -> null pointer.
3315   if (!NewParamInfo.empty()) {
3316     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3317     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3318   }
3319 }
3320 
3321 /// getMinRequiredArguments - Returns the minimum number of arguments
3322 /// needed to call this function. This may be fewer than the number of
3323 /// function parameters, if some of the parameters have default
3324 /// arguments (in C++) or are parameter packs (C++11).
3325 unsigned FunctionDecl::getMinRequiredArguments() const {
3326   if (!getASTContext().getLangOpts().CPlusPlus)
3327     return getNumParams();
3328 
3329   // Note that it is possible for a parameter with no default argument to
3330   // follow a parameter with a default argument.
3331   unsigned NumRequiredArgs = 0;
3332   unsigned MinParamsSoFar = 0;
3333   for (auto *Param : parameters()) {
3334     if (!Param->isParameterPack()) {
3335       ++MinParamsSoFar;
3336       if (!Param->hasDefaultArg())
3337         NumRequiredArgs = MinParamsSoFar;
3338     }
3339   }
3340   return NumRequiredArgs;
3341 }
3342 
3343 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3344   return getNumParams() == 1 ||
3345          (getNumParams() > 1 &&
3346           std::all_of(param_begin() + 1, param_end(),
3347                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3348 }
3349 
3350 /// The combination of the extern and inline keywords under MSVC forces
3351 /// the function to be required.
3352 ///
3353 /// Note: This function assumes that we will only get called when isInlined()
3354 /// would return true for this FunctionDecl.
3355 bool FunctionDecl::isMSExternInline() const {
3356   assert(isInlined() && "expected to get called on an inlined function!");
3357 
3358   const ASTContext &Context = getASTContext();
3359   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3360       !hasAttr<DLLExportAttr>())
3361     return false;
3362 
3363   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3364        FD = FD->getPreviousDecl())
3365     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3366       return true;
3367 
3368   return false;
3369 }
3370 
3371 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3372   if (Redecl->getStorageClass() != SC_Extern)
3373     return false;
3374 
3375   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3376        FD = FD->getPreviousDecl())
3377     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3378       return false;
3379 
3380   return true;
3381 }
3382 
3383 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3384   // Only consider file-scope declarations in this test.
3385   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3386     return false;
3387 
3388   // Only consider explicit declarations; the presence of a builtin for a
3389   // libcall shouldn't affect whether a definition is externally visible.
3390   if (Redecl->isImplicit())
3391     return false;
3392 
3393   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3394     return true; // Not an inline definition
3395 
3396   return false;
3397 }
3398 
3399 /// For a function declaration in C or C++, determine whether this
3400 /// declaration causes the definition to be externally visible.
3401 ///
3402 /// For instance, this determines if adding the current declaration to the set
3403 /// of redeclarations of the given functions causes
3404 /// isInlineDefinitionExternallyVisible to change from false to true.
3405 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3406   assert(!doesThisDeclarationHaveABody() &&
3407          "Must have a declaration without a body.");
3408 
3409   ASTContext &Context = getASTContext();
3410 
3411   if (Context.getLangOpts().MSVCCompat) {
3412     const FunctionDecl *Definition;
3413     if (hasBody(Definition) && Definition->isInlined() &&
3414         redeclForcesDefMSVC(this))
3415       return true;
3416   }
3417 
3418   if (Context.getLangOpts().CPlusPlus)
3419     return false;
3420 
3421   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3422     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3423     // an externally visible definition.
3424     //
3425     // FIXME: What happens if gnu_inline gets added on after the first
3426     // declaration?
3427     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3428       return false;
3429 
3430     const FunctionDecl *Prev = this;
3431     bool FoundBody = false;
3432     while ((Prev = Prev->getPreviousDecl())) {
3433       FoundBody |= Prev->doesThisDeclarationHaveABody();
3434 
3435       if (Prev->doesThisDeclarationHaveABody()) {
3436         // If it's not the case that both 'inline' and 'extern' are
3437         // specified on the definition, then it is always externally visible.
3438         if (!Prev->isInlineSpecified() ||
3439             Prev->getStorageClass() != SC_Extern)
3440           return false;
3441       } else if (Prev->isInlineSpecified() &&
3442                  Prev->getStorageClass() != SC_Extern) {
3443         return false;
3444       }
3445     }
3446     return FoundBody;
3447   }
3448 
3449   // C99 6.7.4p6:
3450   //   [...] If all of the file scope declarations for a function in a
3451   //   translation unit include the inline function specifier without extern,
3452   //   then the definition in that translation unit is an inline definition.
3453   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3454     return false;
3455   const FunctionDecl *Prev = this;
3456   bool FoundBody = false;
3457   while ((Prev = Prev->getPreviousDecl())) {
3458     FoundBody |= Prev->doesThisDeclarationHaveABody();
3459     if (RedeclForcesDefC99(Prev))
3460       return false;
3461   }
3462   return FoundBody;
3463 }
3464 
3465 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3466   const TypeSourceInfo *TSI = getTypeSourceInfo();
3467   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3468              : FunctionTypeLoc();
3469 }
3470 
3471 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3472   FunctionTypeLoc FTL = getFunctionTypeLoc();
3473   if (!FTL)
3474     return SourceRange();
3475 
3476   // Skip self-referential return types.
3477   const SourceManager &SM = getASTContext().getSourceManager();
3478   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3479   SourceLocation Boundary = getNameInfo().getBeginLoc();
3480   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3481       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3482     return SourceRange();
3483 
3484   return RTRange;
3485 }
3486 
3487 SourceRange FunctionDecl::getParametersSourceRange() const {
3488   unsigned NP = getNumParams();
3489   SourceLocation EllipsisLoc = getEllipsisLoc();
3490 
3491   if (NP == 0 && EllipsisLoc.isInvalid())
3492     return SourceRange();
3493 
3494   SourceLocation Begin =
3495       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3496   SourceLocation End = EllipsisLoc.isValid()
3497                            ? EllipsisLoc
3498                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3499 
3500   return SourceRange(Begin, End);
3501 }
3502 
3503 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3504   FunctionTypeLoc FTL = getFunctionTypeLoc();
3505   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3506 }
3507 
3508 /// For an inline function definition in C, or for a gnu_inline function
3509 /// in C++, determine whether the definition will be externally visible.
3510 ///
3511 /// Inline function definitions are always available for inlining optimizations.
3512 /// However, depending on the language dialect, declaration specifiers, and
3513 /// attributes, the definition of an inline function may or may not be
3514 /// "externally" visible to other translation units in the program.
3515 ///
3516 /// In C99, inline definitions are not externally visible by default. However,
3517 /// if even one of the global-scope declarations is marked "extern inline", the
3518 /// inline definition becomes externally visible (C99 6.7.4p6).
3519 ///
3520 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3521 /// definition, we use the GNU semantics for inline, which are nearly the
3522 /// opposite of C99 semantics. In particular, "inline" by itself will create
3523 /// an externally visible symbol, but "extern inline" will not create an
3524 /// externally visible symbol.
3525 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3526   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3527           hasAttr<AliasAttr>()) &&
3528          "Must be a function definition");
3529   assert(isInlined() && "Function must be inline");
3530   ASTContext &Context = getASTContext();
3531 
3532   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3533     // Note: If you change the logic here, please change
3534     // doesDeclarationForceExternallyVisibleDefinition as well.
3535     //
3536     // If it's not the case that both 'inline' and 'extern' are
3537     // specified on the definition, then this inline definition is
3538     // externally visible.
3539     if (Context.getLangOpts().CPlusPlus)
3540       return false;
3541     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3542       return true;
3543 
3544     // If any declaration is 'inline' but not 'extern', then this definition
3545     // is externally visible.
3546     for (auto Redecl : redecls()) {
3547       if (Redecl->isInlineSpecified() &&
3548           Redecl->getStorageClass() != SC_Extern)
3549         return true;
3550     }
3551 
3552     return false;
3553   }
3554 
3555   // The rest of this function is C-only.
3556   assert(!Context.getLangOpts().CPlusPlus &&
3557          "should not use C inline rules in C++");
3558 
3559   // C99 6.7.4p6:
3560   //   [...] If all of the file scope declarations for a function in a
3561   //   translation unit include the inline function specifier without extern,
3562   //   then the definition in that translation unit is an inline definition.
3563   for (auto Redecl : redecls()) {
3564     if (RedeclForcesDefC99(Redecl))
3565       return true;
3566   }
3567 
3568   // C99 6.7.4p6:
3569   //   An inline definition does not provide an external definition for the
3570   //   function, and does not forbid an external definition in another
3571   //   translation unit.
3572   return false;
3573 }
3574 
3575 /// getOverloadedOperator - Which C++ overloaded operator this
3576 /// function represents, if any.
3577 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3578   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3579     return getDeclName().getCXXOverloadedOperator();
3580   return OO_None;
3581 }
3582 
3583 /// getLiteralIdentifier - The literal suffix identifier this function
3584 /// represents, if any.
3585 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3586   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3587     return getDeclName().getCXXLiteralIdentifier();
3588   return nullptr;
3589 }
3590 
3591 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3592   if (TemplateOrSpecialization.isNull())
3593     return TK_NonTemplate;
3594   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3595     return TK_FunctionTemplate;
3596   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3597     return TK_MemberSpecialization;
3598   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3599     return TK_FunctionTemplateSpecialization;
3600   if (TemplateOrSpecialization.is
3601                                <DependentFunctionTemplateSpecializationInfo*>())
3602     return TK_DependentFunctionTemplateSpecialization;
3603 
3604   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3605 }
3606 
3607 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3608   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3609     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3610 
3611   return nullptr;
3612 }
3613 
3614 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3615   if (auto *MSI =
3616           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3617     return MSI;
3618   if (auto *FTSI = TemplateOrSpecialization
3619                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3620     return FTSI->getMemberSpecializationInfo();
3621   return nullptr;
3622 }
3623 
3624 void
3625 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3626                                                FunctionDecl *FD,
3627                                                TemplateSpecializationKind TSK) {
3628   assert(TemplateOrSpecialization.isNull() &&
3629          "Member function is already a specialization");
3630   MemberSpecializationInfo *Info
3631     = new (C) MemberSpecializationInfo(FD, TSK);
3632   TemplateOrSpecialization = Info;
3633 }
3634 
3635 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3636   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3637 }
3638 
3639 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3640   assert(TemplateOrSpecialization.isNull() &&
3641          "Member function is already a specialization");
3642   TemplateOrSpecialization = Template;
3643 }
3644 
3645 bool FunctionDecl::isImplicitlyInstantiable() const {
3646   // If the function is invalid, it can't be implicitly instantiated.
3647   if (isInvalidDecl())
3648     return false;
3649 
3650   switch (getTemplateSpecializationKindForInstantiation()) {
3651   case TSK_Undeclared:
3652   case TSK_ExplicitInstantiationDefinition:
3653   case TSK_ExplicitSpecialization:
3654     return false;
3655 
3656   case TSK_ImplicitInstantiation:
3657     return true;
3658 
3659   case TSK_ExplicitInstantiationDeclaration:
3660     // Handled below.
3661     break;
3662   }
3663 
3664   // Find the actual template from which we will instantiate.
3665   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3666   bool HasPattern = false;
3667   if (PatternDecl)
3668     HasPattern = PatternDecl->hasBody(PatternDecl);
3669 
3670   // C++0x [temp.explicit]p9:
3671   //   Except for inline functions, other explicit instantiation declarations
3672   //   have the effect of suppressing the implicit instantiation of the entity
3673   //   to which they refer.
3674   if (!HasPattern || !PatternDecl)
3675     return true;
3676 
3677   return PatternDecl->isInlined();
3678 }
3679 
3680 bool FunctionDecl::isTemplateInstantiation() const {
3681   // FIXME: Remove this, it's not clear what it means. (Which template
3682   // specialization kind?)
3683   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3684 }
3685 
3686 FunctionDecl *
3687 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3688   // If this is a generic lambda call operator specialization, its
3689   // instantiation pattern is always its primary template's pattern
3690   // even if its primary template was instantiated from another
3691   // member template (which happens with nested generic lambdas).
3692   // Since a lambda's call operator's body is transformed eagerly,
3693   // we don't have to go hunting for a prototype definition template
3694   // (i.e. instantiated-from-member-template) to use as an instantiation
3695   // pattern.
3696 
3697   if (isGenericLambdaCallOperatorSpecialization(
3698           dyn_cast<CXXMethodDecl>(this))) {
3699     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3700     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3701   }
3702 
3703   // Check for a declaration of this function that was instantiated from a
3704   // friend definition.
3705   const FunctionDecl *FD = nullptr;
3706   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3707     FD = this;
3708 
3709   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3710     if (ForDefinition &&
3711         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3712       return nullptr;
3713     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3714   }
3715 
3716   if (ForDefinition &&
3717       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3718     return nullptr;
3719 
3720   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3721     // If we hit a point where the user provided a specialization of this
3722     // template, we're done looking.
3723     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3724       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3725       if (!NewPrimary)
3726         break;
3727       Primary = NewPrimary;
3728     }
3729 
3730     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3731   }
3732 
3733   return nullptr;
3734 }
3735 
3736 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3737   if (FunctionTemplateSpecializationInfo *Info
3738         = TemplateOrSpecialization
3739             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3740     return Info->getTemplate();
3741   }
3742   return nullptr;
3743 }
3744 
3745 FunctionTemplateSpecializationInfo *
3746 FunctionDecl::getTemplateSpecializationInfo() const {
3747   return TemplateOrSpecialization
3748       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3749 }
3750 
3751 const TemplateArgumentList *
3752 FunctionDecl::getTemplateSpecializationArgs() const {
3753   if (FunctionTemplateSpecializationInfo *Info
3754         = TemplateOrSpecialization
3755             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3756     return Info->TemplateArguments;
3757   }
3758   return nullptr;
3759 }
3760 
3761 const ASTTemplateArgumentListInfo *
3762 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3763   if (FunctionTemplateSpecializationInfo *Info
3764         = TemplateOrSpecialization
3765             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3766     return Info->TemplateArgumentsAsWritten;
3767   }
3768   return nullptr;
3769 }
3770 
3771 void
3772 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3773                                                 FunctionTemplateDecl *Template,
3774                                      const TemplateArgumentList *TemplateArgs,
3775                                                 void *InsertPos,
3776                                                 TemplateSpecializationKind TSK,
3777                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3778                                           SourceLocation PointOfInstantiation) {
3779   assert((TemplateOrSpecialization.isNull() ||
3780           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3781          "Member function is already a specialization");
3782   assert(TSK != TSK_Undeclared &&
3783          "Must specify the type of function template specialization");
3784   assert((TemplateOrSpecialization.isNull() ||
3785           TSK == TSK_ExplicitSpecialization) &&
3786          "Member specialization must be an explicit specialization");
3787   FunctionTemplateSpecializationInfo *Info =
3788       FunctionTemplateSpecializationInfo::Create(
3789           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3790           PointOfInstantiation,
3791           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3792   TemplateOrSpecialization = Info;
3793   Template->addSpecialization(Info, InsertPos);
3794 }
3795 
3796 void
3797 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3798                                     const UnresolvedSetImpl &Templates,
3799                              const TemplateArgumentListInfo &TemplateArgs) {
3800   assert(TemplateOrSpecialization.isNull());
3801   DependentFunctionTemplateSpecializationInfo *Info =
3802       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3803                                                           TemplateArgs);
3804   TemplateOrSpecialization = Info;
3805 }
3806 
3807 DependentFunctionTemplateSpecializationInfo *
3808 FunctionDecl::getDependentSpecializationInfo() const {
3809   return TemplateOrSpecialization
3810       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3811 }
3812 
3813 DependentFunctionTemplateSpecializationInfo *
3814 DependentFunctionTemplateSpecializationInfo::Create(
3815     ASTContext &Context, const UnresolvedSetImpl &Ts,
3816     const TemplateArgumentListInfo &TArgs) {
3817   void *Buffer = Context.Allocate(
3818       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3819           TArgs.size(), Ts.size()));
3820   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3821 }
3822 
3823 DependentFunctionTemplateSpecializationInfo::
3824 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3825                                       const TemplateArgumentListInfo &TArgs)
3826   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3827   NumTemplates = Ts.size();
3828   NumArgs = TArgs.size();
3829 
3830   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3831   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3832     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3833 
3834   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3835   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3836     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3837 }
3838 
3839 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3840   // For a function template specialization, query the specialization
3841   // information object.
3842   if (FunctionTemplateSpecializationInfo *FTSInfo =
3843           TemplateOrSpecialization
3844               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3845     return FTSInfo->getTemplateSpecializationKind();
3846 
3847   if (MemberSpecializationInfo *MSInfo =
3848           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3849     return MSInfo->getTemplateSpecializationKind();
3850 
3851   return TSK_Undeclared;
3852 }
3853 
3854 TemplateSpecializationKind
3855 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3856   // This is the same as getTemplateSpecializationKind(), except that for a
3857   // function that is both a function template specialization and a member
3858   // specialization, we prefer the member specialization information. Eg:
3859   //
3860   // template<typename T> struct A {
3861   //   template<typename U> void f() {}
3862   //   template<> void f<int>() {}
3863   // };
3864   //
3865   // For A<int>::f<int>():
3866   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3867   // * getTemplateSpecializationKindForInstantiation() will return
3868   //       TSK_ImplicitInstantiation
3869   //
3870   // This reflects the facts that A<int>::f<int> is an explicit specialization
3871   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3872   // from A::f<int> if a definition is needed.
3873   if (FunctionTemplateSpecializationInfo *FTSInfo =
3874           TemplateOrSpecialization
3875               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3876     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3877       return MSInfo->getTemplateSpecializationKind();
3878     return FTSInfo->getTemplateSpecializationKind();
3879   }
3880 
3881   if (MemberSpecializationInfo *MSInfo =
3882           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3883     return MSInfo->getTemplateSpecializationKind();
3884 
3885   return TSK_Undeclared;
3886 }
3887 
3888 void
3889 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3890                                           SourceLocation PointOfInstantiation) {
3891   if (FunctionTemplateSpecializationInfo *FTSInfo
3892         = TemplateOrSpecialization.dyn_cast<
3893                                     FunctionTemplateSpecializationInfo*>()) {
3894     FTSInfo->setTemplateSpecializationKind(TSK);
3895     if (TSK != TSK_ExplicitSpecialization &&
3896         PointOfInstantiation.isValid() &&
3897         FTSInfo->getPointOfInstantiation().isInvalid()) {
3898       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3899       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3900         L->InstantiationRequested(this);
3901     }
3902   } else if (MemberSpecializationInfo *MSInfo
3903              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3904     MSInfo->setTemplateSpecializationKind(TSK);
3905     if (TSK != TSK_ExplicitSpecialization &&
3906         PointOfInstantiation.isValid() &&
3907         MSInfo->getPointOfInstantiation().isInvalid()) {
3908       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3909       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3910         L->InstantiationRequested(this);
3911     }
3912   } else
3913     llvm_unreachable("Function cannot have a template specialization kind");
3914 }
3915 
3916 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3917   if (FunctionTemplateSpecializationInfo *FTSInfo
3918         = TemplateOrSpecialization.dyn_cast<
3919                                         FunctionTemplateSpecializationInfo*>())
3920     return FTSInfo->getPointOfInstantiation();
3921   if (MemberSpecializationInfo *MSInfo =
3922           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3923     return MSInfo->getPointOfInstantiation();
3924 
3925   return SourceLocation();
3926 }
3927 
3928 bool FunctionDecl::isOutOfLine() const {
3929   if (Decl::isOutOfLine())
3930     return true;
3931 
3932   // If this function was instantiated from a member function of a
3933   // class template, check whether that member function was defined out-of-line.
3934   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3935     const FunctionDecl *Definition;
3936     if (FD->hasBody(Definition))
3937       return Definition->isOutOfLine();
3938   }
3939 
3940   // If this function was instantiated from a function template,
3941   // check whether that function template was defined out-of-line.
3942   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3943     const FunctionDecl *Definition;
3944     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3945       return Definition->isOutOfLine();
3946   }
3947 
3948   return false;
3949 }
3950 
3951 SourceRange FunctionDecl::getSourceRange() const {
3952   return SourceRange(getOuterLocStart(), EndRangeLoc);
3953 }
3954 
3955 unsigned FunctionDecl::getMemoryFunctionKind() const {
3956   IdentifierInfo *FnInfo = getIdentifier();
3957 
3958   if (!FnInfo)
3959     return 0;
3960 
3961   // Builtin handling.
3962   switch (getBuiltinID()) {
3963   case Builtin::BI__builtin_memset:
3964   case Builtin::BI__builtin___memset_chk:
3965   case Builtin::BImemset:
3966     return Builtin::BImemset;
3967 
3968   case Builtin::BI__builtin_memcpy:
3969   case Builtin::BI__builtin___memcpy_chk:
3970   case Builtin::BImemcpy:
3971     return Builtin::BImemcpy;
3972 
3973   case Builtin::BI__builtin_mempcpy:
3974   case Builtin::BI__builtin___mempcpy_chk:
3975   case Builtin::BImempcpy:
3976     return Builtin::BImempcpy;
3977 
3978   case Builtin::BI__builtin_memmove:
3979   case Builtin::BI__builtin___memmove_chk:
3980   case Builtin::BImemmove:
3981     return Builtin::BImemmove;
3982 
3983   case Builtin::BIstrlcpy:
3984   case Builtin::BI__builtin___strlcpy_chk:
3985     return Builtin::BIstrlcpy;
3986 
3987   case Builtin::BIstrlcat:
3988   case Builtin::BI__builtin___strlcat_chk:
3989     return Builtin::BIstrlcat;
3990 
3991   case Builtin::BI__builtin_memcmp:
3992   case Builtin::BImemcmp:
3993     return Builtin::BImemcmp;
3994 
3995   case Builtin::BI__builtin_bcmp:
3996   case Builtin::BIbcmp:
3997     return Builtin::BIbcmp;
3998 
3999   case Builtin::BI__builtin_strncpy:
4000   case Builtin::BI__builtin___strncpy_chk:
4001   case Builtin::BIstrncpy:
4002     return Builtin::BIstrncpy;
4003 
4004   case Builtin::BI__builtin_strncmp:
4005   case Builtin::BIstrncmp:
4006     return Builtin::BIstrncmp;
4007 
4008   case Builtin::BI__builtin_strncasecmp:
4009   case Builtin::BIstrncasecmp:
4010     return Builtin::BIstrncasecmp;
4011 
4012   case Builtin::BI__builtin_strncat:
4013   case Builtin::BI__builtin___strncat_chk:
4014   case Builtin::BIstrncat:
4015     return Builtin::BIstrncat;
4016 
4017   case Builtin::BI__builtin_strndup:
4018   case Builtin::BIstrndup:
4019     return Builtin::BIstrndup;
4020 
4021   case Builtin::BI__builtin_strlen:
4022   case Builtin::BIstrlen:
4023     return Builtin::BIstrlen;
4024 
4025   case Builtin::BI__builtin_bzero:
4026   case Builtin::BIbzero:
4027     return Builtin::BIbzero;
4028 
4029   case Builtin::BIfree:
4030     return Builtin::BIfree;
4031 
4032   default:
4033     if (isExternC()) {
4034       if (FnInfo->isStr("memset"))
4035         return Builtin::BImemset;
4036       if (FnInfo->isStr("memcpy"))
4037         return Builtin::BImemcpy;
4038       if (FnInfo->isStr("mempcpy"))
4039         return Builtin::BImempcpy;
4040       if (FnInfo->isStr("memmove"))
4041         return Builtin::BImemmove;
4042       if (FnInfo->isStr("memcmp"))
4043         return Builtin::BImemcmp;
4044       if (FnInfo->isStr("bcmp"))
4045         return Builtin::BIbcmp;
4046       if (FnInfo->isStr("strncpy"))
4047         return Builtin::BIstrncpy;
4048       if (FnInfo->isStr("strncmp"))
4049         return Builtin::BIstrncmp;
4050       if (FnInfo->isStr("strncasecmp"))
4051         return Builtin::BIstrncasecmp;
4052       if (FnInfo->isStr("strncat"))
4053         return Builtin::BIstrncat;
4054       if (FnInfo->isStr("strndup"))
4055         return Builtin::BIstrndup;
4056       if (FnInfo->isStr("strlen"))
4057         return Builtin::BIstrlen;
4058       if (FnInfo->isStr("bzero"))
4059         return Builtin::BIbzero;
4060     } else if (isInStdNamespace()) {
4061       if (FnInfo->isStr("free"))
4062         return Builtin::BIfree;
4063     }
4064     break;
4065   }
4066   return 0;
4067 }
4068 
4069 unsigned FunctionDecl::getODRHash() const {
4070   assert(hasODRHash());
4071   return ODRHash;
4072 }
4073 
4074 unsigned FunctionDecl::getODRHash() {
4075   if (hasODRHash())
4076     return ODRHash;
4077 
4078   if (auto *FT = getInstantiatedFromMemberFunction()) {
4079     setHasODRHash(true);
4080     ODRHash = FT->getODRHash();
4081     return ODRHash;
4082   }
4083 
4084   class ODRHash Hash;
4085   Hash.AddFunctionDecl(this);
4086   setHasODRHash(true);
4087   ODRHash = Hash.CalculateHash();
4088   return ODRHash;
4089 }
4090 
4091 //===----------------------------------------------------------------------===//
4092 // FieldDecl Implementation
4093 //===----------------------------------------------------------------------===//
4094 
4095 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4096                              SourceLocation StartLoc, SourceLocation IdLoc,
4097                              IdentifierInfo *Id, QualType T,
4098                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4099                              InClassInitStyle InitStyle) {
4100   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4101                                BW, Mutable, InitStyle);
4102 }
4103 
4104 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4105   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4106                                SourceLocation(), nullptr, QualType(), nullptr,
4107                                nullptr, false, ICIS_NoInit);
4108 }
4109 
4110 bool FieldDecl::isAnonymousStructOrUnion() const {
4111   if (!isImplicit() || getDeclName())
4112     return false;
4113 
4114   if (const auto *Record = getType()->getAs<RecordType>())
4115     return Record->getDecl()->isAnonymousStructOrUnion();
4116 
4117   return false;
4118 }
4119 
4120 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4121   assert(isBitField() && "not a bitfield");
4122   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4123 }
4124 
4125 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4126   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4127          getBitWidthValue(Ctx) == 0;
4128 }
4129 
4130 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4131   if (isZeroLengthBitField(Ctx))
4132     return true;
4133 
4134   // C++2a [intro.object]p7:
4135   //   An object has nonzero size if it
4136   //     -- is not a potentially-overlapping subobject, or
4137   if (!hasAttr<NoUniqueAddressAttr>())
4138     return false;
4139 
4140   //     -- is not of class type, or
4141   const auto *RT = getType()->getAs<RecordType>();
4142   if (!RT)
4143     return false;
4144   const RecordDecl *RD = RT->getDecl()->getDefinition();
4145   if (!RD) {
4146     assert(isInvalidDecl() && "valid field has incomplete type");
4147     return false;
4148   }
4149 
4150   //     -- [has] virtual member functions or virtual base classes, or
4151   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4152   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4153   if (!CXXRD->isEmpty())
4154     return false;
4155 
4156   // Otherwise, [...] the circumstances under which the object has zero size
4157   // are implementation-defined.
4158   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4159   // ABI will do.
4160   return true;
4161 }
4162 
4163 unsigned FieldDecl::getFieldIndex() const {
4164   const FieldDecl *Canonical = getCanonicalDecl();
4165   if (Canonical != this)
4166     return Canonical->getFieldIndex();
4167 
4168   if (CachedFieldIndex) return CachedFieldIndex - 1;
4169 
4170   unsigned Index = 0;
4171   const RecordDecl *RD = getParent()->getDefinition();
4172   assert(RD && "requested index for field of struct with no definition");
4173 
4174   for (auto *Field : RD->fields()) {
4175     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4176     ++Index;
4177   }
4178 
4179   assert(CachedFieldIndex && "failed to find field in parent");
4180   return CachedFieldIndex - 1;
4181 }
4182 
4183 SourceRange FieldDecl::getSourceRange() const {
4184   const Expr *FinalExpr = getInClassInitializer();
4185   if (!FinalExpr)
4186     FinalExpr = getBitWidth();
4187   if (FinalExpr)
4188     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4189   return DeclaratorDecl::getSourceRange();
4190 }
4191 
4192 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4193   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4194          "capturing type in non-lambda or captured record.");
4195   assert(InitStorage.getInt() == ISK_NoInit &&
4196          InitStorage.getPointer() == nullptr &&
4197          "bit width, initializer or captured type already set");
4198   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4199                                ISK_CapturedVLAType);
4200 }
4201 
4202 //===----------------------------------------------------------------------===//
4203 // TagDecl Implementation
4204 //===----------------------------------------------------------------------===//
4205 
4206 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4207                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4208                  SourceLocation StartL)
4209     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4210       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4211   assert((DK != Enum || TK == TTK_Enum) &&
4212          "EnumDecl not matched with TTK_Enum");
4213   setPreviousDecl(PrevDecl);
4214   setTagKind(TK);
4215   setCompleteDefinition(false);
4216   setBeingDefined(false);
4217   setEmbeddedInDeclarator(false);
4218   setFreeStanding(false);
4219   setCompleteDefinitionRequired(false);
4220 }
4221 
4222 SourceLocation TagDecl::getOuterLocStart() const {
4223   return getTemplateOrInnerLocStart(this);
4224 }
4225 
4226 SourceRange TagDecl::getSourceRange() const {
4227   SourceLocation RBraceLoc = BraceRange.getEnd();
4228   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4229   return SourceRange(getOuterLocStart(), E);
4230 }
4231 
4232 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4233 
4234 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4235   TypedefNameDeclOrQualifier = TDD;
4236   if (const Type *T = getTypeForDecl()) {
4237     (void)T;
4238     assert(T->isLinkageValid());
4239   }
4240   assert(isLinkageValid());
4241 }
4242 
4243 void TagDecl::startDefinition() {
4244   setBeingDefined(true);
4245 
4246   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4247     struct CXXRecordDecl::DefinitionData *Data =
4248       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4249     for (auto I : redecls())
4250       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4251   }
4252 }
4253 
4254 void TagDecl::completeDefinition() {
4255   assert((!isa<CXXRecordDecl>(this) ||
4256           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4257          "definition completed but not started");
4258 
4259   setCompleteDefinition(true);
4260   setBeingDefined(false);
4261 
4262   if (ASTMutationListener *L = getASTMutationListener())
4263     L->CompletedTagDefinition(this);
4264 }
4265 
4266 TagDecl *TagDecl::getDefinition() const {
4267   if (isCompleteDefinition())
4268     return const_cast<TagDecl *>(this);
4269 
4270   // If it's possible for us to have an out-of-date definition, check now.
4271   if (mayHaveOutOfDateDef()) {
4272     if (IdentifierInfo *II = getIdentifier()) {
4273       if (II->isOutOfDate()) {
4274         updateOutOfDate(*II);
4275       }
4276     }
4277   }
4278 
4279   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4280     return CXXRD->getDefinition();
4281 
4282   for (auto R : redecls())
4283     if (R->isCompleteDefinition())
4284       return R;
4285 
4286   return nullptr;
4287 }
4288 
4289 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4290   if (QualifierLoc) {
4291     // Make sure the extended qualifier info is allocated.
4292     if (!hasExtInfo())
4293       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4294     // Set qualifier info.
4295     getExtInfo()->QualifierLoc = QualifierLoc;
4296   } else {
4297     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4298     if (hasExtInfo()) {
4299       if (getExtInfo()->NumTemplParamLists == 0) {
4300         getASTContext().Deallocate(getExtInfo());
4301         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4302       }
4303       else
4304         getExtInfo()->QualifierLoc = QualifierLoc;
4305     }
4306   }
4307 }
4308 
4309 void TagDecl::setTemplateParameterListsInfo(
4310     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4311   assert(!TPLists.empty());
4312   // Make sure the extended decl info is allocated.
4313   if (!hasExtInfo())
4314     // Allocate external info struct.
4315     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4316   // Set the template parameter lists info.
4317   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4318 }
4319 
4320 //===----------------------------------------------------------------------===//
4321 // EnumDecl Implementation
4322 //===----------------------------------------------------------------------===//
4323 
4324 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4325                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4326                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4327     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4328   assert(Scoped || !ScopedUsingClassTag);
4329   IntegerType = nullptr;
4330   setNumPositiveBits(0);
4331   setNumNegativeBits(0);
4332   setScoped(Scoped);
4333   setScopedUsingClassTag(ScopedUsingClassTag);
4334   setFixed(Fixed);
4335   setHasODRHash(false);
4336   ODRHash = 0;
4337 }
4338 
4339 void EnumDecl::anchor() {}
4340 
4341 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4342                            SourceLocation StartLoc, SourceLocation IdLoc,
4343                            IdentifierInfo *Id,
4344                            EnumDecl *PrevDecl, bool IsScoped,
4345                            bool IsScopedUsingClassTag, bool IsFixed) {
4346   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4347                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4348   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4349   C.getTypeDeclType(Enum, PrevDecl);
4350   return Enum;
4351 }
4352 
4353 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4354   EnumDecl *Enum =
4355       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4356                            nullptr, nullptr, false, false, false);
4357   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4358   return Enum;
4359 }
4360 
4361 SourceRange EnumDecl::getIntegerTypeRange() const {
4362   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4363     return TI->getTypeLoc().getSourceRange();
4364   return SourceRange();
4365 }
4366 
4367 void EnumDecl::completeDefinition(QualType NewType,
4368                                   QualType NewPromotionType,
4369                                   unsigned NumPositiveBits,
4370                                   unsigned NumNegativeBits) {
4371   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4372   if (!IntegerType)
4373     IntegerType = NewType.getTypePtr();
4374   PromotionType = NewPromotionType;
4375   setNumPositiveBits(NumPositiveBits);
4376   setNumNegativeBits(NumNegativeBits);
4377   TagDecl::completeDefinition();
4378 }
4379 
4380 bool EnumDecl::isClosed() const {
4381   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4382     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4383   return true;
4384 }
4385 
4386 bool EnumDecl::isClosedFlag() const {
4387   return isClosed() && hasAttr<FlagEnumAttr>();
4388 }
4389 
4390 bool EnumDecl::isClosedNonFlag() const {
4391   return isClosed() && !hasAttr<FlagEnumAttr>();
4392 }
4393 
4394 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4395   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4396     return MSI->getTemplateSpecializationKind();
4397 
4398   return TSK_Undeclared;
4399 }
4400 
4401 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4402                                          SourceLocation PointOfInstantiation) {
4403   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4404   assert(MSI && "Not an instantiated member enumeration?");
4405   MSI->setTemplateSpecializationKind(TSK);
4406   if (TSK != TSK_ExplicitSpecialization &&
4407       PointOfInstantiation.isValid() &&
4408       MSI->getPointOfInstantiation().isInvalid())
4409     MSI->setPointOfInstantiation(PointOfInstantiation);
4410 }
4411 
4412 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4413   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4414     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4415       EnumDecl *ED = getInstantiatedFromMemberEnum();
4416       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4417         ED = NewED;
4418       return getDefinitionOrSelf(ED);
4419     }
4420   }
4421 
4422   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4423          "couldn't find pattern for enum instantiation");
4424   return nullptr;
4425 }
4426 
4427 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4428   if (SpecializationInfo)
4429     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4430 
4431   return nullptr;
4432 }
4433 
4434 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4435                                             TemplateSpecializationKind TSK) {
4436   assert(!SpecializationInfo && "Member enum is already a specialization");
4437   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4438 }
4439 
4440 unsigned EnumDecl::getODRHash() {
4441   if (hasODRHash())
4442     return ODRHash;
4443 
4444   class ODRHash Hash;
4445   Hash.AddEnumDecl(this);
4446   setHasODRHash(true);
4447   ODRHash = Hash.CalculateHash();
4448   return ODRHash;
4449 }
4450 
4451 //===----------------------------------------------------------------------===//
4452 // RecordDecl Implementation
4453 //===----------------------------------------------------------------------===//
4454 
4455 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4456                        DeclContext *DC, SourceLocation StartLoc,
4457                        SourceLocation IdLoc, IdentifierInfo *Id,
4458                        RecordDecl *PrevDecl)
4459     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4460   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4461   setHasFlexibleArrayMember(false);
4462   setAnonymousStructOrUnion(false);
4463   setHasObjectMember(false);
4464   setHasVolatileMember(false);
4465   setHasLoadedFieldsFromExternalStorage(false);
4466   setNonTrivialToPrimitiveDefaultInitialize(false);
4467   setNonTrivialToPrimitiveCopy(false);
4468   setNonTrivialToPrimitiveDestroy(false);
4469   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4470   setHasNonTrivialToPrimitiveDestructCUnion(false);
4471   setHasNonTrivialToPrimitiveCopyCUnion(false);
4472   setParamDestroyedInCallee(false);
4473   setArgPassingRestrictions(APK_CanPassInRegs);
4474 }
4475 
4476 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4477                                SourceLocation StartLoc, SourceLocation IdLoc,
4478                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4479   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4480                                          StartLoc, IdLoc, Id, PrevDecl);
4481   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4482 
4483   C.getTypeDeclType(R, PrevDecl);
4484   return R;
4485 }
4486 
4487 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4488   RecordDecl *R =
4489       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4490                              SourceLocation(), nullptr, nullptr);
4491   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4492   return R;
4493 }
4494 
4495 bool RecordDecl::isInjectedClassName() const {
4496   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4497     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4498 }
4499 
4500 bool RecordDecl::isLambda() const {
4501   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4502     return RD->isLambda();
4503   return false;
4504 }
4505 
4506 bool RecordDecl::isCapturedRecord() const {
4507   return hasAttr<CapturedRecordAttr>();
4508 }
4509 
4510 void RecordDecl::setCapturedRecord() {
4511   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4512 }
4513 
4514 bool RecordDecl::isOrContainsUnion() const {
4515   if (isUnion())
4516     return true;
4517 
4518   if (const RecordDecl *Def = getDefinition()) {
4519     for (const FieldDecl *FD : Def->fields()) {
4520       const RecordType *RT = FD->getType()->getAs<RecordType>();
4521       if (RT && RT->getDecl()->isOrContainsUnion())
4522         return true;
4523     }
4524   }
4525 
4526   return false;
4527 }
4528 
4529 RecordDecl::field_iterator RecordDecl::field_begin() const {
4530   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4531     LoadFieldsFromExternalStorage();
4532 
4533   return field_iterator(decl_iterator(FirstDecl));
4534 }
4535 
4536 /// completeDefinition - Notes that the definition of this type is now
4537 /// complete.
4538 void RecordDecl::completeDefinition() {
4539   assert(!isCompleteDefinition() && "Cannot redefine record!");
4540   TagDecl::completeDefinition();
4541 }
4542 
4543 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4544 /// This which can be turned on with an attribute, pragma, or the
4545 /// -mms-bitfields command-line option.
4546 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4547   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4548 }
4549 
4550 void RecordDecl::LoadFieldsFromExternalStorage() const {
4551   ExternalASTSource *Source = getASTContext().getExternalSource();
4552   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4553 
4554   // Notify that we have a RecordDecl doing some initialization.
4555   ExternalASTSource::Deserializing TheFields(Source);
4556 
4557   SmallVector<Decl*, 64> Decls;
4558   setHasLoadedFieldsFromExternalStorage(true);
4559   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4560     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4561   }, Decls);
4562 
4563 #ifndef NDEBUG
4564   // Check that all decls we got were FieldDecls.
4565   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4566     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4567 #endif
4568 
4569   if (Decls.empty())
4570     return;
4571 
4572   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4573                                                  /*FieldsAlreadyLoaded=*/false);
4574 }
4575 
4576 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4577   ASTContext &Context = getASTContext();
4578   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4579       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4580   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4581     return false;
4582   const auto &Blacklist = Context.getSanitizerBlacklist();
4583   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4584   // We may be able to relax some of these requirements.
4585   int ReasonToReject = -1;
4586   if (!CXXRD || CXXRD->isExternCContext())
4587     ReasonToReject = 0;  // is not C++.
4588   else if (CXXRD->hasAttr<PackedAttr>())
4589     ReasonToReject = 1;  // is packed.
4590   else if (CXXRD->isUnion())
4591     ReasonToReject = 2;  // is a union.
4592   else if (CXXRD->isTriviallyCopyable())
4593     ReasonToReject = 3;  // is trivially copyable.
4594   else if (CXXRD->hasTrivialDestructor())
4595     ReasonToReject = 4;  // has trivial destructor.
4596   else if (CXXRD->isStandardLayout())
4597     ReasonToReject = 5;  // is standard layout.
4598   else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4599                                            "field-padding"))
4600     ReasonToReject = 6;  // is in an excluded file.
4601   else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4602                                        getQualifiedNameAsString(),
4603                                        "field-padding"))
4604     ReasonToReject = 7;  // The type is excluded.
4605 
4606   if (EmitRemark) {
4607     if (ReasonToReject >= 0)
4608       Context.getDiagnostics().Report(
4609           getLocation(),
4610           diag::remark_sanitize_address_insert_extra_padding_rejected)
4611           << getQualifiedNameAsString() << ReasonToReject;
4612     else
4613       Context.getDiagnostics().Report(
4614           getLocation(),
4615           diag::remark_sanitize_address_insert_extra_padding_accepted)
4616           << getQualifiedNameAsString();
4617   }
4618   return ReasonToReject < 0;
4619 }
4620 
4621 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4622   for (const auto *I : fields()) {
4623     if (I->getIdentifier())
4624       return I;
4625 
4626     if (const auto *RT = I->getType()->getAs<RecordType>())
4627       if (const FieldDecl *NamedDataMember =
4628               RT->getDecl()->findFirstNamedDataMember())
4629         return NamedDataMember;
4630   }
4631 
4632   // We didn't find a named data member.
4633   return nullptr;
4634 }
4635 
4636 //===----------------------------------------------------------------------===//
4637 // BlockDecl Implementation
4638 //===----------------------------------------------------------------------===//
4639 
4640 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4641     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4642   setIsVariadic(false);
4643   setCapturesCXXThis(false);
4644   setBlockMissingReturnType(true);
4645   setIsConversionFromLambda(false);
4646   setDoesNotEscape(false);
4647   setCanAvoidCopyToHeap(false);
4648 }
4649 
4650 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4651   assert(!ParamInfo && "Already has param info!");
4652 
4653   // Zero params -> null pointer.
4654   if (!NewParamInfo.empty()) {
4655     NumParams = NewParamInfo.size();
4656     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4657     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4658   }
4659 }
4660 
4661 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4662                             bool CapturesCXXThis) {
4663   this->setCapturesCXXThis(CapturesCXXThis);
4664   this->NumCaptures = Captures.size();
4665 
4666   if (Captures.empty()) {
4667     this->Captures = nullptr;
4668     return;
4669   }
4670 
4671   this->Captures = Captures.copy(Context).data();
4672 }
4673 
4674 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4675   for (const auto &I : captures())
4676     // Only auto vars can be captured, so no redeclaration worries.
4677     if (I.getVariable() == variable)
4678       return true;
4679 
4680   return false;
4681 }
4682 
4683 SourceRange BlockDecl::getSourceRange() const {
4684   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4685 }
4686 
4687 //===----------------------------------------------------------------------===//
4688 // Other Decl Allocation/Deallocation Method Implementations
4689 //===----------------------------------------------------------------------===//
4690 
4691 void TranslationUnitDecl::anchor() {}
4692 
4693 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4694   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4695 }
4696 
4697 void PragmaCommentDecl::anchor() {}
4698 
4699 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4700                                              TranslationUnitDecl *DC,
4701                                              SourceLocation CommentLoc,
4702                                              PragmaMSCommentKind CommentKind,
4703                                              StringRef Arg) {
4704   PragmaCommentDecl *PCD =
4705       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4706           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4707   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4708   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4709   return PCD;
4710 }
4711 
4712 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4713                                                          unsigned ID,
4714                                                          unsigned ArgSize) {
4715   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4716       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4717 }
4718 
4719 void PragmaDetectMismatchDecl::anchor() {}
4720 
4721 PragmaDetectMismatchDecl *
4722 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4723                                  SourceLocation Loc, StringRef Name,
4724                                  StringRef Value) {
4725   size_t ValueStart = Name.size() + 1;
4726   PragmaDetectMismatchDecl *PDMD =
4727       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4728           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4729   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4730   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4731   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4732          Value.size());
4733   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4734   return PDMD;
4735 }
4736 
4737 PragmaDetectMismatchDecl *
4738 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4739                                              unsigned NameValueSize) {
4740   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4741       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4742 }
4743 
4744 void ExternCContextDecl::anchor() {}
4745 
4746 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4747                                                TranslationUnitDecl *DC) {
4748   return new (C, DC) ExternCContextDecl(DC);
4749 }
4750 
4751 void LabelDecl::anchor() {}
4752 
4753 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4754                              SourceLocation IdentL, IdentifierInfo *II) {
4755   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4756 }
4757 
4758 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4759                              SourceLocation IdentL, IdentifierInfo *II,
4760                              SourceLocation GnuLabelL) {
4761   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4762   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4763 }
4764 
4765 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4766   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4767                                SourceLocation());
4768 }
4769 
4770 void LabelDecl::setMSAsmLabel(StringRef Name) {
4771 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4772   memcpy(Buffer, Name.data(), Name.size());
4773   Buffer[Name.size()] = '\0';
4774   MSAsmName = Buffer;
4775 }
4776 
4777 void ValueDecl::anchor() {}
4778 
4779 bool ValueDecl::isWeak() const {
4780   auto *MostRecent = getMostRecentDecl();
4781   return MostRecent->hasAttr<WeakAttr>() ||
4782          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4783 }
4784 
4785 void ImplicitParamDecl::anchor() {}
4786 
4787 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4788                                              SourceLocation IdLoc,
4789                                              IdentifierInfo *Id, QualType Type,
4790                                              ImplicitParamKind ParamKind) {
4791   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4792 }
4793 
4794 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4795                                              ImplicitParamKind ParamKind) {
4796   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4797 }
4798 
4799 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4800                                                          unsigned ID) {
4801   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4802 }
4803 
4804 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4805                                    SourceLocation StartLoc,
4806                                    const DeclarationNameInfo &NameInfo,
4807                                    QualType T, TypeSourceInfo *TInfo,
4808                                    StorageClass SC, bool isInlineSpecified,
4809                                    bool hasWrittenPrototype,
4810                                    ConstexprSpecKind ConstexprKind,
4811                                    Expr *TrailingRequiresClause) {
4812   FunctionDecl *New =
4813       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4814                                SC, isInlineSpecified, ConstexprKind,
4815                                TrailingRequiresClause);
4816   New->setHasWrittenPrototype(hasWrittenPrototype);
4817   return New;
4818 }
4819 
4820 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4821   return new (C, ID) FunctionDecl(
4822       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4823       nullptr, SC_None, false, ConstexprSpecKind::Unspecified, nullptr);
4824 }
4825 
4826 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4827   return new (C, DC) BlockDecl(DC, L);
4828 }
4829 
4830 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4831   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4832 }
4833 
4834 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4835     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4836       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4837 
4838 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4839                                    unsigned NumParams) {
4840   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4841       CapturedDecl(DC, NumParams);
4842 }
4843 
4844 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4845                                                unsigned NumParams) {
4846   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4847       CapturedDecl(nullptr, NumParams);
4848 }
4849 
4850 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4851 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4852 
4853 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4854 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4855 
4856 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4857                                            SourceLocation L,
4858                                            IdentifierInfo *Id, QualType T,
4859                                            Expr *E, const llvm::APSInt &V) {
4860   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4861 }
4862 
4863 EnumConstantDecl *
4864 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4865   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4866                                       QualType(), nullptr, llvm::APSInt());
4867 }
4868 
4869 void IndirectFieldDecl::anchor() {}
4870 
4871 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4872                                      SourceLocation L, DeclarationName N,
4873                                      QualType T,
4874                                      MutableArrayRef<NamedDecl *> CH)
4875     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4876       ChainingSize(CH.size()) {
4877   // In C++, indirect field declarations conflict with tag declarations in the
4878   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4879   if (C.getLangOpts().CPlusPlus)
4880     IdentifierNamespace |= IDNS_Tag;
4881 }
4882 
4883 IndirectFieldDecl *
4884 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4885                           IdentifierInfo *Id, QualType T,
4886                           llvm::MutableArrayRef<NamedDecl *> CH) {
4887   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4888 }
4889 
4890 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4891                                                          unsigned ID) {
4892   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4893                                        DeclarationName(), QualType(), None);
4894 }
4895 
4896 SourceRange EnumConstantDecl::getSourceRange() const {
4897   SourceLocation End = getLocation();
4898   if (Init)
4899     End = Init->getEndLoc();
4900   return SourceRange(getLocation(), End);
4901 }
4902 
4903 void TypeDecl::anchor() {}
4904 
4905 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4906                                  SourceLocation StartLoc, SourceLocation IdLoc,
4907                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4908   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4909 }
4910 
4911 void TypedefNameDecl::anchor() {}
4912 
4913 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4914   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4915     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4916     auto *ThisTypedef = this;
4917     if (AnyRedecl && OwningTypedef) {
4918       OwningTypedef = OwningTypedef->getCanonicalDecl();
4919       ThisTypedef = ThisTypedef->getCanonicalDecl();
4920     }
4921     if (OwningTypedef == ThisTypedef)
4922       return TT->getDecl();
4923   }
4924 
4925   return nullptr;
4926 }
4927 
4928 bool TypedefNameDecl::isTransparentTagSlow() const {
4929   auto determineIsTransparent = [&]() {
4930     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4931       if (auto *TD = TT->getDecl()) {
4932         if (TD->getName() != getName())
4933           return false;
4934         SourceLocation TTLoc = getLocation();
4935         SourceLocation TDLoc = TD->getLocation();
4936         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4937           return false;
4938         SourceManager &SM = getASTContext().getSourceManager();
4939         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4940       }
4941     }
4942     return false;
4943   };
4944 
4945   bool isTransparent = determineIsTransparent();
4946   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4947   return isTransparent;
4948 }
4949 
4950 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4951   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4952                                  nullptr, nullptr);
4953 }
4954 
4955 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4956                                      SourceLocation StartLoc,
4957                                      SourceLocation IdLoc, IdentifierInfo *Id,
4958                                      TypeSourceInfo *TInfo) {
4959   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4960 }
4961 
4962 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4963   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4964                                    SourceLocation(), nullptr, nullptr);
4965 }
4966 
4967 SourceRange TypedefDecl::getSourceRange() const {
4968   SourceLocation RangeEnd = getLocation();
4969   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4970     if (typeIsPostfix(TInfo->getType()))
4971       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4972   }
4973   return SourceRange(getBeginLoc(), RangeEnd);
4974 }
4975 
4976 SourceRange TypeAliasDecl::getSourceRange() const {
4977   SourceLocation RangeEnd = getBeginLoc();
4978   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4979     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4980   return SourceRange(getBeginLoc(), RangeEnd);
4981 }
4982 
4983 void FileScopeAsmDecl::anchor() {}
4984 
4985 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4986                                            StringLiteral *Str,
4987                                            SourceLocation AsmLoc,
4988                                            SourceLocation RParenLoc) {
4989   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4990 }
4991 
4992 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4993                                                        unsigned ID) {
4994   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4995                                       SourceLocation());
4996 }
4997 
4998 void EmptyDecl::anchor() {}
4999 
5000 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5001   return new (C, DC) EmptyDecl(DC, L);
5002 }
5003 
5004 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5005   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5006 }
5007 
5008 //===----------------------------------------------------------------------===//
5009 // ImportDecl Implementation
5010 //===----------------------------------------------------------------------===//
5011 
5012 /// Retrieve the number of module identifiers needed to name the given
5013 /// module.
5014 static unsigned getNumModuleIdentifiers(Module *Mod) {
5015   unsigned Result = 1;
5016   while (Mod->Parent) {
5017     Mod = Mod->Parent;
5018     ++Result;
5019   }
5020   return Result;
5021 }
5022 
5023 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5024                        Module *Imported,
5025                        ArrayRef<SourceLocation> IdentifierLocs)
5026     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5027       NextLocalImportAndComplete(nullptr, true) {
5028   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5029   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5030   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5031                           StoredLocs);
5032 }
5033 
5034 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5035                        Module *Imported, SourceLocation EndLoc)
5036     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5037       NextLocalImportAndComplete(nullptr, false) {
5038   *getTrailingObjects<SourceLocation>() = EndLoc;
5039 }
5040 
5041 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5042                                SourceLocation StartLoc, Module *Imported,
5043                                ArrayRef<SourceLocation> IdentifierLocs) {
5044   return new (C, DC,
5045               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5046       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5047 }
5048 
5049 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5050                                        SourceLocation StartLoc,
5051                                        Module *Imported,
5052                                        SourceLocation EndLoc) {
5053   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5054       ImportDecl(DC, StartLoc, Imported, EndLoc);
5055   Import->setImplicit();
5056   return Import;
5057 }
5058 
5059 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5060                                            unsigned NumLocations) {
5061   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5062       ImportDecl(EmptyShell());
5063 }
5064 
5065 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5066   if (!isImportComplete())
5067     return None;
5068 
5069   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5070   return llvm::makeArrayRef(StoredLocs,
5071                             getNumModuleIdentifiers(getImportedModule()));
5072 }
5073 
5074 SourceRange ImportDecl::getSourceRange() const {
5075   if (!isImportComplete())
5076     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5077 
5078   return SourceRange(getLocation(), getIdentifierLocs().back());
5079 }
5080 
5081 //===----------------------------------------------------------------------===//
5082 // ExportDecl Implementation
5083 //===----------------------------------------------------------------------===//
5084 
5085 void ExportDecl::anchor() {}
5086 
5087 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5088                                SourceLocation ExportLoc) {
5089   return new (C, DC) ExportDecl(DC, ExportLoc);
5090 }
5091 
5092 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5093   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5094 }
5095